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1. Introduction

Observations show that although the universe was remarkably homogeneous at the epoch

of last scattering, when the cosmic microwave background (CMB) radiation was laid

down, at the present epoch the matter distribution displays a very complex structure

with significant inhomogeneities up to scales of at least 100h−1 Mpc, where h is the

dimensionless parameter related to the Hubble constant by H
0
= 100h km sec−1Mpc−1.

The present universe is dominated in volume by voids [1, 2, 3], with galaxy clusters

grouped in sheets and filaments that surround the voids, and thread them. At the

largest of scales we see a few peculiar structures, such as the Sloan Great Wall.

At the same time, despite a number of nagging puzzles, most of the gross features

of the universe are extremely well described by a spatially homogeneous and isotropic

Friedmann–Lemâıtre–Robertson–Walker (FLRW) model, with additional Newtonian

perturbations evolved by N–body computer simulations to model the structure. The

price that is paid for observational concordance is that most of the matter content in

the universe must be in forms that have never been directly observed: 20–25% in the

form of clumped nonbaryonic dark matter, and 70–75% in the form of a smooth dark

energy, with an equation of state, P = wρc2, extremely close to that of a cosmological

constant, w = −1.

The dichotomy that the universe displays considerable inhomogeneity, while still

being phenomenologically well fit by an average spatially homogeneous evolution, has

led to considerable interest in the averaging problem in inhomogeneous cosmology. Is it

possible that one or more of the components of the dark stuff introduced for the purposes

of a phenomenological fit to observations are simply an artefact of us misunderstanding

the workings of gravity on the largest scales? Whereas some researchers immediately

leap to the extreme of modifying the whole theory of gravity, those more intimately

acquainted with general relativity are aware that the implementation of the physical

ingredients of Einstein’s theory has not been precisely specified on all scales. There are

many unsolved problems provided by the questions of coarse-graining, fitting, averaging

and the statistical notions of gravitational energy and entropy, which must inevitably

enter when dealing with the complex many–body problem that observational cosmology

presents us. These are hard problems. However, we should try to understand the

universe we observe rather than inventing toy models purely because they are simple to

solve.

It is my view that future progress in the averaging problem demands advances in

conceptual understanding. This paper will therefore review the present state of play in

averaging with a strong conceptual bias, focusing on questions rather than answers. It is

not a review of the details of mathematical techniques in averaging; there are already a

number of recent reviews of that nature – including, for example, those of Buchert [4, 5]

and van den Hoogen [6]. The possible mathematical choices one can make are many,

but they each entail physical choices, either explicitly or implicitly. It is the nature of

these choices that I wish to focus on.
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2. The fitting problem: On what scale are Einstein’s equations valid?

Einstein’s field equations

Gµ
ν =

8πG

c4
T µ

ν (1)

define the structure of general relativity as a relationship between geometry and matter.

However, the scale over which matter fields are coarse–grained to produce the energy–

momentum tensor on the r.h.s. of (1) is not prescribed, leaving an inherent ambiguity in

the theory. Observation provides no direct guide in this matter, since general relativity

is only well tested for isolated systems – such as the solar system or binary pulsars –

for which T µ
ν = 0. Indeed, Wheeler’s aphorism that “matter tells space how to curve”

is really only tested to the extent that matter is defined by boundary conditions and

symmetry assumptions as long as the vacuum Einstein equations apply‡.

Einstein’s equations are designed to reduce to Poisson’s equation

∇2Φ = 4πGρ (2)

in the Newtonian limit that the spacetime geometry is that of a weak field near a flat

Minkowski background, and all characteristic velocities are much smaller than that of

light, so that g
00

= 1−2Φ/c2, with Φ ≪ c2, and ρc2 ≡ T 00 ≫ |T 0i| ≫ |T ij|, where Latin

indices denote spatial components.

There is no ambiguity in applying the full Einstein equations (1) to a fluid of

particles with well-defined properties, such as ions, atoms and molecules in the early

phases of the universe’s expansion. However, as soon as gravitational collapse occurs

then the geodesics of atoms and molecules cross. There are phase transitions, and the

definition of the particles in the fluid approximation must change, giving rise to at least

the following layers of coarse-graining in the epochs following last scattering:

(i) Atomic, molecular, ionic or nuclear particles: applicable with

• dust equation of state within any expanding regions which have not yet

undergone gravitational collapse;

• fluid equation of state within relevant collapsed objects (stars, white dwarfs,

neutron stars) for periods of time between phase transitions that alter the

nongravitational particle interactions and the equation of state;

(ii) Collapsed objects such as stars and black holes coarse-grained as isolated objects;

(iii) Stellar systems coarse-grained as dust particles within galaxies;

(iv) Galaxies coarse-grained as dust particles within clusters;

(v) Clusters of galaxies coarse-grained as bound systems within expanding walls and

filaments;

‡ In the Schwarzschild geometry, for example, a stellar interior solution is assumed to be matched with

junction conditions at the spherical surface of the star. The nature of the stellar interior is irrelevant

for the exterior vacuum geometry, however, on account of Birkhoff’s theorem.
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(vi) Voids, walls and filaments combined as as expanding regions of different densities

in a single smoothed out cosmological fluid.

General relativity with the vacuum Einstein equations is well–tested at level (ii),

and it generally accepted that the Einstein equations with a microscopic fluid T µν apply

at level (i), with the small caveats that the equation of state of objects with the density of

neutron stars is not completely understood, and also that general relativity must break

down near singularities in the extreme strong field regime. However, once we proceed

to higher levels in this fitting problem [7, 8] the physical issues become more and more

murky. Provided that we can ignore any galactic magnetic fields etc, and only consider

the effects of gravity, then at levels (iii)–(vi) we are generally only dealing with dust

sources. However, as the definition of dust becomes less and less clear with successive

coarse-grainings, the scale on which the Einstein equations should apply becomes open

to question.

2.1. Coarse–graining

One outstanding problem is that the mathematical problem of coarse-graining in general

relativity is very little studied. Any coarse-graining procedure amounts to replacing the

the microphysics of a given spacetime region by some collective degrees of freedom of

those regions which are sufficient to describe physics on scales larger than the coarse-

graining scale. Einstein’s equations were originally formulated with the intent that

the energy-momentum tensor on the r.h.s. of (1) should either describe fundamental

fields, such as the Maxwell field, or alternatively to the coarse-graining of the purely

nongravitational interactions described by such fields in the fluid approximation.

Einstein originally imagined a universe with the density of the Milky Way; the

complex hierarchy of galaxies, galaxy clusters, filaments, walls and voids was unknown

when he wrote down his equations (1). The fundamental problem then, is that since

the universe is composed of a hierarchy of long-lived structures much larger than those

of stars, we must also coarse-grain over gravitational interactions within that hierarchy

to arrive at a fluid description for cosmology. With such a coarse-graining, geometry no

longer enters purely on the left hand side of Einstein’s equations but in a coarse-grained

sense can be hidden inside effective fluid elements on the right hand side.

The most fundamental quantities of interest as the sources of the right hand side

of Einstein’s equations are those of mass–energy, momentum and angular momentum.

Effectively, if we demand that equations (1) should also apply in a coarse-grained version

on cosmological scales, then it means that we are seeking collective parameters such as

mass–energy which average over local spatial curvature, rotational kinetic energy etc.

Furthermore we must approach the problem more than just once, on a succession of

scales. This necessarily involves the issue of quasilocal gravitational energy, and more

particularly statistical properties of the gravitational interactions of bound systems.

Since we are no longer dealing with a fixed spatial metric this problem is far more

complicated than it is in Newtonian theory, and indeed it is largely unexplored territory.
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Before surveying what has been done, let me outline the challenges presented to us by

observation at each of the levels in the hierarchy presented above.

In going from level (i) to level (ii), the simple coarse-graining problem for

nongravitational interactions can be ignored for stellar system astrophysics, since by

symmetry assumptions in a vacuum spacetime we can solve the Einstein equations

exactly, and leave the matter to be assumed to be an interior solution with a fluid

equation of state matched at the timelike boundary which defines the surface of the

star.

To the best of my knowledge the formal coarse-graining of vacuum geometries

as dust to proceed from level (ii) to level (iii) is not a problem that has been directly

studied. However, quasilocal local mass definitions are very well developed for stationary

asymptotically flat systems, and provided we are sufficiently far from any isolated source

then gravity is generally assumed to coincide with its Newtonian limit via (2). Thus one

can easily envisage a smoothing procedure in which one excises a timelike worldtube

with S2 spatial topology around an isolated source, and replaces it by a density in

terms of an ADM-like mass divided by the excised spatial volume. The coarse-graining

procedure of Korzyński [9] provides a formalism in which this might be realised.

2.1.1. Galactic dynamics Already at the level (iii) of galactic dynamics general

relativity offers the possibility that dynamics is more interesting than Newtonian

dynamics in a global asymptotically flat background. In the standard model, Newtonian

dynamics is näıvely assumed to apply at the scale of galaxies and galaxy clusters.

However, this may not be the case. For example, Cooperstock and Tieu [10, 11]

have shown that stationary axisymmetric rotating dust solutions§ may be solved

to phenomenologically match the rotation curves of certain spiral galaxies, whose

observed density distribution might be plausibly approximated by circular symmetry

(neglecting the density contrasts of spiral arms or bars). Although various details of the

Cooperstock–Tieu model are debated [11, 12], it does demonstrate that the nonlinearity

of the Einstein equations is a potentially significant complicating feature for extended

matter distributions, even in the weak field limit.

2.1.2. Galaxy cluster dynamics In proceeding to level (iv) – galaxy clusters – the

fundamental issues become obviously nontrivial. Since many galaxy clusters are

spherical in shape there is a temptation to model them using the spherically symmetric

dust Lemâıtre–Tolman–Bondi (LTB) solutions [13, 14, 15]. While LTB models have

certainly been applied to structure formation [16, 17], their applicability is constrained

by the uniform spherical shell approximation remaining valid, without shell crossings

or the growth of angular momentum perturbations. This is probably unrealistically

constraining for the case of a generic collapse, and LTB models are most obviously

applicable to expanding spherical voids [18] with ionic or molecular sized dust. If we

§ The solutions are circular: i.e., with zero expansion and shear, but nonvanishing vorticity.
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consider virialized spherical clusters of galaxies then there is no obvious reason for the

LTB model to be applicable. In many galaxy clusters the motion of individual galaxies

may be close to radial – however, the phases of the galaxies relative to passage through

the centre of the cluster are completely uncorrelated. Individual galaxies will pass close

to the core of the cluster and emerge from the other side; at any instant the number of

galaxies moving out from the centre might be comparable to the number falling in. Thus

virialized galaxy clusters certainly do not have the symmetry of a spherically symmetric

dust solution if the galaxies are to be identified as the dust.

The real question is: can we nonetheless model such systems as spherically

symmetric solutions of Einstein’s equations with an effective purely radial pressure,

and possibly also effective heat flow terms? Or do we have to go beyond spherically

symmetric solutions to consider possible effective anisotropic stresses? Since the

interaction between individual galaxies in a virialized cluster is purely gravitational,

we see that this question is really one of the statistical nature of gravity under coarse–

graining. Namely, for virialized systems with a manifestly spherical shape, can the

statistical properties of the individual gravitational interactions of the dust particles

(galaxies) be described by Einstein’s equation with a spherically symmetric effective

fluid, or otherwise?

2.1.3. Cosmological dynamics The final levels (v) and (vi) of coarse-graining in going

to cosmological averages involve qualitatively new fundamental questions. If we require

that a single model should describe the evolution of the universe from last scattering

to the present day, then we must coarse grain on scales over which the notion of a dust

“particle” has a meaning from last scattering up to the present day. The description of a

galaxy composed of stellar particles, or of a virialized galaxy cluster composed of galaxy

particles is only valid for those epochs after which the relevant “particles” have formed

and are themselves relatively unchanging. Over cosmological timescales we do not have

well-defined invariant dust particles. The nature of galaxies and galaxy clusters changes

through growth by accretion of gas and by mergers.

The problem of cosmological dynamics is therefore essentially different to that of

the dynamics of galaxies or virialized galaxy clusters, as we can no longer make a

stationary approximation. In order to circumvent the problem of ill-defined particle-

like building blocks, an alternative strategy is that we coarse-grain the dust on scales

large enough that the average flow of mass from one particle to another is negligible

up to the present epoch. Although galaxy clusters vary greatly in their size and

complexity, there are no common virialized structures larger than clusters. Thus any

level of coarse-graining on scales larger than clusters necessarily means dealing with dust

“particles” that are themselves expanding, i.e., with objects more akin to fluid elements

in hydrodynamics. This feature gives the first fundamental qualitative difference for the

cosmological problem as compared to that of galaxies or galaxy clusters.

Although we can receive signals from anywhere within our particle horizon, if we

make the reasonable assumption that the amount of matter absorbed from cosmic rays
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from distant galaxies is negligible, then the region which has contributed matter particles

to define the local geometry of our own galaxy is very small. This bounding sphere,

which Ellis and Stoeger [19] call the matter horizon, is estimated by them to be of order

2Mpc for the Milky Way using assumptions about the growth of perturbations from the

standard cosmology. This scale coincides roughly with the scale at which the Hubble

flow is believed to begin in the immediate neighbourhood of the local group of galaxies.

It is one way of realising the concept of finite infinity, introduced qualitatively by Ellis

in his first discussion of the fitting problem [7].

The second qualitative difference is that we have to deal with expanding fluid

elements that have vastly different densities at the present epoch, and which evolve

more or less independently. For galaxy clusters some sort of finite infinity notion, with

a variable scale of order 2–10Mpc depending on the size of cluster might be useful for

defining independent fluid elements. By combining such regions we arrive at the walls

and filaments that contain most of the mass of the universe. However, to this we must

also add the voids which dominate the volume of the universe at the present epoch.

These are the regions in which structures have never formed, and which still contain the

same ionic, atomic and molecular dust content that has existed since very early epochs,

only greatly diluted by expansion.

Any relevant averaging scale is therefore phenomenologically related to the observed

statistical distribution of void sizes. A precise definition of a void fraction of course

depends on the definition of a void. Surveys indicate that voids with characteristic

mean effective radii‖ of order (15 ± 3)h−1Mpc (or diameters of order 30h−1Mpc), and

a typical density contrast of δρ/ρ = −0.94 ± 0.02, make up 40% of the volume of the

nearby universe [1, 2]. A very recent study [3] of the Sloan Digital Sky Survey Data

Release 7 finds a median effective void radius of 17h−1Mpc, with voids of effective radii

in the range 10h−1Mpc to 30h−1Mpc occupying 62% of the survey volume. In addition

to these there are numerous smaller minivoids [98], which combined with the dominant

voids ensure that overall voids dominate the present epoch universe by volume.

For the purposes of coarse-graining, what is important is not the overall volume

fraction of voids, but the size of the typical largest structures. Any minimal scale

for the cosmological coarse-graining of the final smoothed density distribution has to

be substantially larger than the diameter of the largest structures. Void statistics [3]

indicate an effective cutoff of 60h−1Mpc for the largest mean effective diameters of voids,

i.e., twice the scale of the typical dominant void diameters. Thus observationally, the

relevant scale for coarse-graining appears to be at least three times the dominant void

diameter, i.e., of order 100h−1Mpc, which coincides roughly with the Baryon Acoustic

Oscillation (BAO) scale.

‖ Voids display a degree of ellipticity. The mean effective radius of a void is that of a sphere with

the same volume as occupied by the void [1, 2, 3], which is typically larger than the maximal sphere

enclosed by the same void.
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2.2. Approaches to coarse-graining

The physical degrees of freedom which we must coarse grain are contained in the

curvature tensor and the sources of the field equations (1). In principle coarse-graining

the curvature tensor might involve steps other than simply coarse-graining of the metric.

However, if a metric description of gravity is assumed at each level, then schematically

the hierarchy of coarse-graining might be heuristically described as

gstellar

µν → ggalaxy

µν → gcluster

µν → gwall

µν
...

gvoid

µν











→ guniverse

µν (3)

where the ellipsis denotes the fact that the metric of more than one type of wall or void

might possibly be relevant. In this scheme the lowest members are assumed to be well

modeled by exact solutions of Einstein’s field equations: gstellar

µν being a solution to the

vacuum field equations in a stellar system with a star or black hole as source (typically

the Schwarzschild solution or Kerr solution), and gvoid

µν being that of a region filled with

low density ionic dust with whatever symmetries are relevant.

Dealing with this problem is obviously very complicated, and the models that have

been studied to date typically treat just one level in the hierarchy.

2.2.1. Discretized universes One of the few approaches to tackling the dust

approximation head-on is the Lindquist–Wheeler model [21], which has received new

interest recently [22, 23, 24]. In this approach the coarse–graining hierarchy (3) is

replaced by the simplified scheme

gstellar

µν → guniverse

µν (4)

with the understanding that here gstellar

µν denotes the Schwarzschild solution and could

be taken as a substitute for either galaxies or clusters of galaxies, depending on the

masses assigned to the objects in the lattice. Furthermore, here guniverse

µν does not play a

tangible geometrical role. No cosmological metric is assumed in Einstein equations at the

outset. Rather, by matching the spherical boundaries of radially expanding geodesics in

the Schwarzschild geometries of a regular lattice of equal point masses, the Friedmann

equations are obtained [21, 22]. The matching is exact only at the points where the

radial spheres intersect and is approximate in the regions in which spheres overlap or

are excluded.

This model is analogous to the Swiss cheese models [25, 26] in the sense that

the point group symmetry of the lattice is a discretized version of overall global spatial

homogeneity. The principal difference from Swiss cheese models is that one is not cutting

and pasting spheres into a pre-existing continuum spacetime. Rather the continuum

geometry is only realised as an approximate description of the underlying discretized

space. Since the approximate continuum geometry is a FLRW model, the Lindquist–

Wheeler model has much in common with the models listed in section 3.1 below. The

symmetry of the lattice is such an integral part of the construction that it is difficult to
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envisage how such models could be easily generalized to more typically inhomogeneous

cases. Nonetheless, it is an extremely interesting toy model in which questions such as

light propagation can be investigated with detailed control.

Clifton and Ferreira have carefully studied the propagation of light in a Lindquist–

Wheeler model which approximates a spatially flat Einstein–de Sitter model [22]. They

find a significant deviation of the redshift, z, of the lattice universe as compared to that

of the FLRW universe, z
FLRW

. For typical null geodesics, numerical calculations show

that 1 + z ≃ (1 + z
FLRW

)7/10. Essentially, this might be considered as a difference from

the focusing arising from Weyl curvature in the case of the point masses, as compared

with Ricci curvature focusing for a continuous dust fluid. While the change in the

luminosity distance–redshift relation is in the opposite direction as compared to what is

required for a viable explanation of the expansion history of the universe without dark

energy, the large difference between the discrete and continuum cases demonstrates that

we cannot confidently claim to have reached an era of “precision cosmology” as long as

such fundamental issues as that of coarse-graining and the dust approximation are not

understood.

2.2.2. Korzyński’s covariant coarse-graining Korzyński [9] has recently proposed

a covariant coarse-graining procedure to be applied to dust solutions. This procedure

could conceivably be applied to any step in the hierarchy (3) for which the starting

point is the metric of a known dust solution. Korzyński also discusses the special limit

of replacing a dust world tube by a single worldline [9], which might be viewed as

proceeding in the opposite direction to that taken in the Lindquist–Wheeler model.

Korzyński’s idea is to isometrically embed the boundary of a comoving dust-filled

domain – required to have S2 topology with positive scalar curvature – into a three-

dimensional Euclidean space, and to construct a “fictitious” three-dimensional fluid

velocity which induces the same infinitesimal metric deformation on the embedded

surface as the “true” dust flow does on the domain boundary in the original spacetime.

This velocity field is used to uniquely assign coarse-grained expressions for the volume

expansion and shear to the original domain. An additional construction using the

pushforward of the ADM shift vector is used to similarly obtain a coarse-grained

vorticity. The coarse-grained quantities are quasilocal functionals which depend only on

the geometry of the boundary of the relevant domain.

Korzyński’s approach represents an interesting new way of attacking the fitting

problem, and may also provide a useful framework for formulating the problem of

backreaction.

2.3. Averaging and backreaction

Averaging and coarse-graining are of course intimately related. The basic distinction

is that with averaging one is interested in the overall average dynamics and evolution,

most often without direct consideration of the details of the course-graining procedure.
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Whereas coarse-graining is little studied, much more attention has been paid to

averaging, and a number of different approaches have been pursued. These approaches

are also discussed in the reviews of van den Hoogen [6], Ellis [27] and Clarkson et al

[28].

Whereas coarse-graining is generally a bottom-up procedure, averaging is top-

down¶ as it usually starts from the assumption that a well-defined average exists, with

a number of assumed properties. Generically, if one assumes that the Einstein field

equations (1) are valid for some general inhomogeneous geometry, gµν , then given some

as yet unspecified averaging procedure denoted by angle brackets, the average of (1)

gives

〈Gµ
ν〉 = 〈gµλRλν〉 −

1

2
δµν〈g

λρRλρ〉 =
8πG

c4
〈T µ

ν〉 . (5)

At this point a number of choices are possible since there is no reason to necessarily

assume that 〈Gµ
ν〉 is the Einstein tensor of an exact geometry. In other words, on

cosmological scales there is no a priori necessity for (5) to correspond to an exact solution

of Einstein’s equations.

In his “macroscopic gravity” approach, Zalaletdinov [31, 32, 33] chooses to work

with the average inverse metric 〈gµν〉 and the average Ricci tensor 〈Rµν〉 and to write

〈gµλ〉〈Rλν〉 −
1

2
δµν〈g

λρ〉〈Rλρ〉+ Cµ
ν =

8πG

c4
〈T µ

ν〉 , (6)

where the correlation functions Cµ
ν are defined by the difference of the left hand sides

of (6) and (5). Zalaletdinov provides additional mathematical structure to prescribe a

covariant averaging scheme, thereby defining properties of the correlation functions.

Another way of formulating the problem is to work in terms of the difference

between the general inhomogeneous metric and the averaged metric

gµν = ḡµν + δgµν , (7)

where ḡµν ≡ 〈gµν〉, with inverse ḡλµ 6= 〈gλµ〉. We can now determine a connection Γ̄λ
µν ,

curvature tensor R̄µ
νλρ and Einstein tensor Ḡµ

ν based on the averaged metric, ḡµν , alone.

The differences δΓλ
µν ≡ 〈Γλ

µν〉−Γ̄λ
µν , δR

µ
νλρ ≡ 〈Rµ

νλρ〉−R̄µ
νλρ, δRµν ≡ 〈Rµν〉−R̄µν etc,

then represent the backreaction of the average inhomogeneities on the average geometry

determined from ḡµν . Furthermore, the average Einstein field equations (5) may be

written

Ḡµ
ν + δGµ

ν =
8πG

c4
〈T µ

ν〉 . (8)

This expresses the fact that the Einstein tensor of the average metric is not in general

the average of the Einstein tensor of the original metric. The processes of averaging and

constructing the Einstein tensor do not commute.

¶ The terms “averaging” and “coarse-graining” are often used interchangeably in a loose sense. One

might view averaging as a “top-down coarse-graining procedure”; just there are many ways of coarse-

graining, and here I have reserved the term for the bottom-up approaches.
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Equations (5) and (8) are of course very similar, but may differ in both the overall

average represented by the angle brackets, and also in the split between the background

averaged Einstein tensor and the correlation or backreaction terms.

There are three main types of averaging schemes that have been considered. They

can be classed as:

• Perturbative schemes about a given background geometry;

• Spacetime averages;

• Spatial averages on hypersurfaces based on a 1 + 3 foliation of spacetime.

I will briefly describe each case in turn.

2.3.1. Perturbations about exact cosmological spacetimes A vast literature exists on

inhomogeneous models treated as perturbations of the exact FLRW models. In this

approach one assumes that the average geometry ḡµν of (7) is exactly a FLRW model,

and the quantities δgµν are to be treated as perturbative corrections.

The issue of whether backreaction is significant or insignificant in the perturbative

FLRW context is a matter of much debate, with different authors coming to different

conclusions, which may be traced to various differences in assumptions made. Since

these issues are discussed in many other reviews, such as those of Clarkson et al [28],

Kolb [29] and the paper of Clarkson and Umeh [30], I will not discuss the perturbative

approach in detail here.

The perturbative approach of course relies on the assumption that a FLRW model

exactly describes the average evolution of the universe at the largest scales, and this

may be incorrect. Related physical issues are further discussed in section 3.3.

2.3.2. Spacetime averages: Zalaletdinov’s macroscopic gravity General covariance is

generally seen as a desirable property, since it is an essential feature of general relativity

that physical quantities should not depend on arbitrary choices of coordinates. However,

any process of taking an average will in general break general covariance. Furthermore,

if an average geometry on cosmological scales no longer satisfies the Einstein equations,

which is a distinct possibility given that solutions of (1) are only directly tested on

the scale of stellar systems, then the role that general covariance plays in defining

spacetime structure on the largest scales may need to be revisited from first principles.

In particular, although we might still desire that physical quantities should not depend

on choices of coordinates, the relationship of the coordinates of a “fine–grained manifold”

relative to those of an average “coarse–grained manifold” need to be carefully considered.

Zalaletdinov views general covariance as paramount in determining macroscopic

spacetime structure, and he introduces additional mathematical structure to perform

averaging of tensors in a covariant manner on a given manifold, M [31, 32, 33]. His aim

is to consistently average the Cartan equations from first principles, in analogy to the

averaging of the microscopic Maxwell–Lorentz equations in electromagnetism. However,
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whereas electrodynamics is linear in the fields on the fixed background of Minkowski

spacetime, gravity demands an averaging of the nonlinear geometry of spacetime itself.

The additional structure introduced by Zalaletdinov [31, 32, 33] takes the form

of bilocal averaging operators, Aµ
α(x, x

′), with support at two points x ∈ M and

x′ ∈ M, which allow one to construct a bitensor extension, Tµ
ν(x, x

′), of a tensor

T µ
ν(x) according to

Tµ
ν(x, x

′) = Aµ
α′(x, x′)T α′

β′(x′)Aβ′

ν(x
′, x) . (9)

The bitensor extension is then integrated over a 4-dimensional spacetime region, Σ ⊂ M,

to obtain a regional average according to

T̄ µ
ν(x) =

1

VΣ

∫

Σ

d4x′
√

−g(x′)Tµ
ν(x, x

′), (10)

where VΣ ≡
∫

Σ
d4x

√

−g(x) is the spacetime volume of the region Σ. The bitensor

transforms as a tensor at every point but is a scalar when integrated over a region for

the purpose of averaging.

In the macroscopic gravity approach, much effort has been expended [31, 32, 33, 34]

in developing a mathematical formalism which in the average bears a close resemblance

to general relativity itself. Indeed, apart from the fact that the macroscopic scale

is assumed to be larger than the microscopic scale, there is no scale in the final

theory. As Clarkson et al [28] have already commented, this is also potentially

a weakness of the macroscopic gravity approach. Observations suggest a complex

hierarchy of averaging, given by the scheme (3), which may involve physical issues

more complex than simply one step from a microscopic theory to a macroscopic theory

of gravity. Indeed, a number of the steps associated with the observed scales of coarse-

graining phenomenologically involve going from background solutions of Einstein’s field

equations with particular symmetries to other solutions of Einstein’s field equations with

particular symmetries. Therefore it is a highly nontrivial question as to whether the

physically relevant mathematical framework is one which takes us from one version of

a diffeomorphism invariant theory of gravity with no specific symmetries to another

diffeomorphism invariant theory of gravity with no specific symmetries, which is

precisely what Zalaletdinov has constructed. Specific cosmological questions involve

the choice of specific macroscopic scales.

In practice, cosmological applications of Zalaletdinov’s formalism have involved

making additional assumptions, such as those which lead to a spatial averaging limit

[35], or additionally in assuming that the average geometry is a FLRW geometry

[36, 37, 38, 39]. In this case it is found that the macroscopic gravity correlation terms

take the form of a spatial curvature, even though a spatially flat FLRW geometry is

assumed for the average geometry [36].

Recently an alternative covariant spacetime averaging scheme has been put forward

by Brannlund, van den Hoogen and Coley [40]. It treats the manifold as a frame bundle

as a starting point for the averaging of geometric objects.
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2.3.3. Spatial averages: Buchert’s formalism Building on earlier work [41, 42, 43] in

the late 1990s Buchert developed an approach [44, 45] for the spatial averaging of scalar

quantities associated with the Einstein field equations (1) in the 1+ 3 ADM formalism,

with cosmological averages in a fully nonperturbative relativistic setting in mind at the

outset. The 1 + 3 setting is natural if the Einstein field equations (1) are to be viewed

as evolution equations.

Rather than introducing additional structure to fully tackle the mathematically

difficult problem of averaging tensors, Buchert approached the problem by just averaging

scalar quantities associated with spacetimes with inhomogeneous perfect fluid energy–

momentum sources. Such scalars include the density, ρ, expansion, θ, and scalar shear,

σ2 = 1

2
σαβσ

αβ etc. For an arbitrary manifold, ADM coordinates

ds2 = −ω
0 ⊗ ω

0 + gij(t,x)ω
i ⊗ ω

j, (11)

where

ω
0 = N (t,x) c dt,

ω
i = dxi +N i(t,x) c dt. (12)

can always be chosen locally but not necessarily globally. Buchert restricted the

evolution problem to that of irrotational flow in order that (11), (12) can be assumed

to apply over global t =const spatial hypersurfaces. For a dust source+ we can then

choose synchronous coordinates with N = 1 and N i = 0. With these choices, the

Einstein equations may be averaged on a domain, D, of the spatial hypersurfaces, Σ, to

give

3
˙̄a
2

ā2
= 8πG〈ρ〉 − 1

2
c2〈R〉 − 1

2
Q, (13)

3
¨̄a

ā
= − 4πG〈ρ〉+Q, (14)

∂t〈ρ〉+ 3
˙̄a

ā
〈ρ〉 = 0, (15)

where the overdot denotes a t–derivative,

Q ≡
2

3

〈

(θ − 〈θ〉)2
〉

− 2〈σ2〉 =
2

3

(

〈θ2〉 − 〈θ〉2
)

− 2〈σ2〉 , (16)

is the kinematic backreaction, and angle brackets denote the spatial volume average of a

quantity, so that 〈R〉 ≡
(

∫

D
d3x
√

det 3gR(t,x)
)

/V(t) is the average spatial curvature,

for example, with V(t) ≡
∫

D
d3x
√

det 3g being the volume of the domain D ⊂ Σ. It

is important to note that ā is not the scale factor of any given geometry, but rather is

defined in terms of the average volume according to

ā(t) ≡
[

V(t)/V(t
0
)
]1/3

. (17)

+ The extension to perfect fluids was introduced in [45], and to other matter sources in [46]. Further

extensions that deal with general hypersurfaces tilted with respect to the fluid flow have been discussed

by various authors [47]–[51].
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It follows that the Hubble parameter appearing in (13)–(15) is, up to a factor, the

volume average expansion scalar, θ,

˙̄a

ā
= 1

3
〈θ〉. (18)

The following condition

∂t
(

ā6Q
)

+ ā4c2∂t
(

ā2〈R〉
)

= 0, (19)

is required to ensure that (13) is the integral of (14).

In Buchert’s scheme the non-commutativity of averaging and time evolution is

described by the exact relation [41, 42, 44, 52]

∂t〈Ψ〉 − 〈∂tΨ〉 = 〈Ψθ〉 − 〈θ〉〈Ψ〉 (20)

for any scalar, Ψ.

The operational interpretation of Buchert’s formalism poses many questions, which

we will return to in section 4. Leaving these issues aside, (14) is already suggestive since

it implies that if the backreaction term is large enough – for example, in the case of a

large variance in expansion rate with small shear – then the volume average acceleration,

ā−1¨̄a = 1

3

d

dt
〈θ〉 + 1

9
〈θ〉2, could be positive, even if the expansion of all regions is locally

decelerating. Essentially, the fraction of the volume occupied by the faster expanding

regions is initially tiny but may become significant at late epochs, skewing the average

to give an illusion of acceleration during the period in which the voids start to dominate

the volume average. Whether this is observationally viable, however, depends crucially

on how large the variance in expansion rates can grow given the initial constraints on

density perturbations, and on the operational interpretation of the Buchert average.

Another big question is the extent to which the truncation of the averaging problem

from the full Einstein equations to scalar evolution equations can be derived from a more

fundamental basis. If density perturbations are the most important phenomenologically,

then the Buchert scheme may well be justified, but it then needs to be understood

as an appropriate limit in a more general scheme. Coley [53] suggests that since

4-dimensional Lorentzian manifolds can be completely characterized by their scalar

polynomial curvature invariants, this might provide a suitable mathematical basis for

an averaging scheme based on scalars. In practice, however, we are still faced with the

same observational interpretation problems when dealing with a single null cone average

versus spatial averages of statistical ensembles.

Korzyński’s covariant coarse-graining approach [9], discussed in section 2.2.2, when

applied to irrotational dust might be viewed as a generalization of the Buchert approach,

which gives rise to additional backreaction terms. The extent to which Buchert’s scheme

might be viewed as a limit of Korzyński’s approach remains to be determined.

Within the context of 1 + 3 formalisms, there have been a number of studies of

averaging and backreaction which focus principally on associated mathematical issues.

These include Ricci flow [43, 54, 55, 56], group averaging of the FLRW isometry

group [57] and the characterization of constant mean (extrinsic) curvature (CMC) flows
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[58, 59, 60]. Such approaches might provide further insights into the general problem of

averaging tensors. For example, the Ricci flow is a well studied procedure in Riemannian

geometry which may be used to realize a regional smoothing through a rescaling of the

metrical structure [43, 54, 55, 56], in the spirit of renormalization group flows. Since the

primary motivation of this review is physical, I will not further discuss these approaches

here.

3. Average spatial homogeneity: How do we define it?

The very near isotropy of the CMB demonstrates that when photons travel to us from

the surface of last scattering, then to a very good approximation the geometry of the

universe must be isotropic in some average sense. If we assume some sort of statistical

Copernican principle, then we can also expect some sort of average notion of spatial

homogeneity. The hard question is: how do we convert the observed averaged isotropy

of the geometry on our past light cone into an appropriate notion of average spatial

homogeneity?

It is my own view that whereas a lot of effort has been expended in defining the

mathematics of averaging, not enough attention has been given to the foundational

physics underlying the appropriate notion of an average. I will outline my views as to

the best way to proceed in section 3.3, but will first describe the two approaches that

have received the most attention.

3.1. The Friedmann–Lemâıtre universe as the average

The remarkable success of the standard cosmology, albeit with sources of dark matter

and dark energy for which there is no direct evidence on the scale of the solar system,

understandably leads most researchers to assume that it must be correct, even if only

in an average sense.

As a consequence, even when researchers study inhomogeneity then, putting aside

exact inhomogeneous solutions, the FLRW model is simply assumed as the average in a

majority of approaches. A partial list of models for which this is the case includes:

• All perturbative calculations about the FLRW universe (whether based on the

standard ΛCDM cosmology or otherwise);

• any LTB models for which the universe is “asymptotically FLRW” with a core

spherical inhomogeneity;

• the Dyer-Roeder approach [61];

• Swiss cheese [25] and meatball [26, 62] models;

• studies of spatial averaging in a (1 + 3) setting which derive more general

mathematical results, but then assume the FLRW model as the average when

drawing specific conclusions in a cosmological context [52, 63];
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• studies based on Zalaletdinov’s macroscopic gravity which derive more general

mathematical results, but then assume the FLRW model as the average when

drawing specific conclusions in a cosmological context [35, 36, 37, 38, 39];

• studies of CMC flows which derive more general mathematical results, but then

assume the FLRW model as the average when drawing specific conclusions in a

cosmological context [58, 59].

I will not deal further with the details of these approaches, since several other

papers in this special issue deal with them. The main comment I wish to make is that

at the point that the FLRW model is introduced these approaches effectively assume

that on large enough scales the average geometry is described by Einstein’s equations

(1) with a spatially homogeneous perfect fluid source, or more specifically a spatially

homogeneous dust source if we consider late epoch cosmic evolution. In other words,

although many of the general results derived in some of these approaches may be quite

broadly applicable, assumption of the FLRW average demands very specific properties

of dust in the unsolved processes of coarse-graining discussed in section 2.1. Since the

large scale averages involve coarse–graining on scales on which space is expanding, it

generally means extrapolating the dust approximation to scales on which usual notions

of dust particles as bound systems cannot apply.

Furthermore, the notion of an average that these approaches implicitly demand is

also very restrictive, since it involves (at least) three conditions:

(i) The notion of average spatial homogeneity is described by a class of ideal comoving

observers with synchronized clocks.

(ii) The notion of average spatial homogeneity is described by average surfaces of

constant spatial curvature (orthogonal to the geodesics of the ideal comoving

observers).

(iii) The expansion rate at which the ideal comoving observers separate within the

hypersurfaces of average spatial homogeneity is uniform.

Already at the level of perturbation theory about FLRW models, one can specialize

to spacetime foliations which preserve one of the notions (i)–(iii) of average spatial

homogeneity more fundamentally than the other two, as was already discussed many

years ago in the classic work of Bardeen [64]. Since spatial curvature is not specified

by a single scalar in general, there are many ways of realizing spacetime foliations

which preserve one notion of average spatial homogeneity more strongly than the others.

Among the foliations discussed by Bardeen we can recognise those of each type above:

the comoving hypersurfaces (and related synchronous gauge) take property (i) as more

fundamental; the minimal shear hypersurfaces∗ (and related Newtonian gauge) are one

∗ For scalar perturbations this becomes a zero–shear condition, i.e., Kij −
1
3
gijK = 0, where Kij is the

extrinsic curvature, gij the intrinsic metric, and K ≡ Kℓ
ℓ. For general perturbations the hypersurfaces

are defined by
(

Kij −
1
3
gijK

)

|ij
= 0, where the bar denotes a covariant derivative with respect to the

intrinsic metric.
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type of foliation for which property (ii) is more fundamental; and finally the uniform

Hubble flow hypersurfaces take property (iii) as more fundamental.

The possible foliations of perturbed FLRW models were recently considered in

considerable detail by Bičák, Katz and Lynden-Bell [65], with a view to making

gauge choices that provide a realization of Mach’s principle, in the sense that the

rotations and accelerations of local inertial frames can be determined directly from local

energy–momentum perturbations δT µ
ν . The choices of hypersurfaces they consider are:

uniform Hubble flow hypersurfaces; uniform intrinsic scalar curvature hypersurfaces;

and minimal shear hypersurfaces. The uniform intrinsic scalar curvature hypersurfaces

provide a foliation in addition to those considered by Bardeen, which also take property

(ii) as more fundamental. In addition to a choice of hypersurface Bičák, Katz and

Lynden-Bell further fix the gauge by an adopting a condition similar to the “minimal

shift distortion condition” of Smarr and York [66]. With this condition, for each

choice of hypersurface the coordinates of local inertial frames are more or less uniquely

determined by the energy–momentum perturbations δT µ
ν . These “Machian gauges” are

therefore substantially more restrictive than the commonly used synchronous gauge and

generalized Lorenz–de Donder gauge [65].

3.2. Constant time hypersurfaces as the average

If we abandon the assumption that the average notion of spatial homogeneity is given

by an exact solution of Einstein’s field equations with a perfect fluid source, then there

is no reason to assume that all of the conditions (i)–(iii) described in the last section

need to apply. In general, we need just one condition to characterize the average; the

question is which one?

Perhaps for the same historical reasons that led to the popularity of the synchronous

gauge, the most studied choice of spacetime split beyond the perturbative regime is that

of constant time hypersurfaces orthogonal to ideal observers “comoving with the dust”,

even though the nature of the dust is not generally prescribed. The Buchert approach to

spatial averaging [44, 45] grew as a generalization of averaging in Newtonian cosmology

[41, 42]. Since the split of space and time is unique in Newtonian theory, from the

Newtonian viewpoint this is the only natural choice one can make.

If the particles of dust were observationally identifiable and invariant from the time

of last scattering until today, then there would be no physical ambiguity about the notion

of “comoving with the dust”. In such a case, the choice of constant time hypersurfaces

with a synchronous gauge would be well motivated. However, as discussed in section 2.1,

in order to consistently deal with both the particles of ionic dust in voids, and also with

“particles” of dust larger than galaxies, we have to coarse-grain over fluid elements

which are themselves expanding. This demands a detailed understanding of the general

statistical nature of general relativity in the presence of complex sources, which is as

yet unavailable. What is true of Einstein’s theory is that slicings based on any fixed

time or space cannot be expected to be the most natural choice of average background.
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In my view, to understand the formidable interlocking problems of averaging and the

statistical nature of general relativity, we must go back to first principles.

3.3. Mach’s principle, the equivalence principle, and the average

In this section I will outline my views about an alternative physically motivated

approach to defining average spatial homogeneity [67, 68], which underlies the timescape

cosmology [69, 70, 71]. Whether or not the current version of the timescape cosmology

is observationally viable as an alternative to the standard ΛCDM cosmology without

dark energy, the particular questions I wish to raise are key ones which must be fully

understood if we are to make progress with the averaging problem.

In formulating general relativity as a dynamical theory of spacetime, Einstein was

guided philosophically by Mach’s principle – namely, the broad notion that spacetime

does not have a separate existence from the material objects that inhabit it, but is a

relational structure between things. As Einstein put it [72]: “In a consistent theory

of relativity there can be no inertia relatively to ‘space’, but only an inertia of masses

relatively to one another”. This after all is the physical principle that underlies general

covariance: there is no absolute space or time, and so the basic laws of physics should

not depend on arbitrary choices of coordinates.

Einstein did not, however, fully succeed in implementing Mach’s principle in general

relativity, since he never solved the global problem of uniquely determining the structure

of spacetime on large scales. As things stand, his equations admit many cosmological

solutions such as general Bianchi models or the Gödel universe, which do not look in

the least like the universe we actually inhabit. Indeed, such solutions might be viewed

as running counter to the spirit of Mach’s principle. From the cosmological viewpoint

Mach’s principle may be phrased [73]: “Local inertial frames are determined through

the distributions of energy and momentum in the universe by some weighted average

of the apparent motions”. Although it is clear from this statement that any attempt

to tackle the averaging problem in cosmology must necessarily deal with the issue of

Mach’s principle, relatively few authors [65, 67, 68, 74, 75, 76] have approached the

averaging problem in these terms.

In considering the averaging problem, we should take the underlying physical

principles of relativity as a guide to constructing the correct mathematical formalism,

rather than simply trying to mimic mathematical properties such as general covariance,

which might be relevant for formulating the microscopic nongravitational laws of physics

but are not necessarily relevant for very large scale averages of gravitational degrees of

freedom.

To prescribe the rules for defining spacetime in relational terms, it is necessary to

define the relationship between inertial frames and any relevant mathematical structure.

The strong equivalence principle (SEP) stands as the concrete legacy of Einstein’s

attempts to come to grips with Mach’s principle, and it is the physical cornerstone

of general relativity. By the SEP the nongravitational laws of physics should reduce
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to those of special relativity in local inertial frames (LIFs) in the neighbourhood of an

arbitrary spacetime point. The principle of general covariance is a means of formulating

the nongravitational laws to achieve this.

However, when it comes to averages on large scales over which nongravitational

fields are negligible and only gravitational degrees of freedom prevail, we are still left

with the problem of defining a suitable “weighted average of the apparent motions”. To

be consistent with the broad principles of relativity, such an average must be limited by

initial conditions and causality. If Einstein’s field equations (1) are viewed as evolution

equations which determine the geometry dynamically, then causality should limit the

geometry at any event to only depend on the geometry within the past light cone of all

possible observers at that event. For realistic large scale cosmological applications, given

that energy absorbed from null signals provides a negligible contribution as compared

to local matter densities, it is the local matter horizon [19] which is actually the most

relevant domain in determining local average geometry.

In the perturbative FLRW framework, Bičák, Katz and Lynden-Bell [65] have

identified choices of hypersurfaces and coordinates within those hypersurfaces, which

are most uniquely restricted in terms of being determined by local energy–momentum

perturbations δT µ
ν and thereby represent “Machian gauges”. If the average geometry is

not an exact FLRW model, then in going beyond the perturbative regime the question

is which of these notions best embodies Mach’s principle?

3.3.1. The cosmological equivalence principle I have argued [67, 68] that a

nonperturbative generalization of the “uniform Hubble flow” [64, 65] or CMC [77, 78]

slicing is the best choice for a further refinement of the notion of inertia consistent with

Mach’s principle. The reader is referred to the essay version [68] for a first introduction

to these ideas, which I shall only very briefly sketch here.

Since gravity sourced by matter obeying the strong energy condition is universally

attractive, any solution of Einstein’s field equations (1) on scales which only involve

gravity is necessarily dynamical. In my view there is a further principle of relativity

that is lacking in general relativity with the SEP alone, which is a consequence of taking

this dynamical nature as fundamental to the relational structure. In particular, for the

regionally homogeneous and isotropic volume–expanding part of geodesic deviation it

should be impossible to distinguish whether particles are at rest in an expanding space

or alternatively are moving in a static Minkowski space.

The relation to inertia can be understood in terms of the semi–tethered lattice

thought experiments [67, 68] in which a uniformly expanding lattice of observers in

Minkowski space, connected by freely spooling isotropic tethers, apply brakes to the

tethers with an impulse which is the same function of the synchronized local proper

time at each lattice site. Deceleration takes place and work is done in converting the

kinetic energy of expansion to heat in the brakes. However, since the magnitude of the

impulse on each tether is identical at each lattice site, isotropy guarantees that there is

no net force on any observer of the lattice, and so the motion is inertial in that sense,
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although a deceleration and conversion of energy has taken place. In the gravitational

case the regionally homogeneous isotropic part of the density plays the same role as the

brakes on the tethers.

From the point of view of the averaging problem, my proposal is to restrict the

global geometry in the final step of the average (3) to one which can be decomposed into

average domains which obey the cosmological equivalence principle (CEP) [67]: At any

event, always and everywhere, it is possible to choose a suitably defined average spacetime

region, the cosmological inertial frame (CIF), in which average motions (timelike and

null) can be described by geodesics in a geometry that is Minkowski up to some time-

dependent conformal transformation,

ds2
CIF

= a2(η)
[

−dη2 + dr2 + r2(dθ2 + sin2 θ dφ2)
]

. (21)

While this statement of the CEP would reduce to the standard SEP if a(η) were

constant, or alternatively over very short time intervals during which the time variation

of a(η) can be neglected, it is important to realize that the averaging region represented

by the CIF (21) is very much larger than the neighbourhood of a point as assumed in a

LIF. Relative to bound systems, the spatially flat FLRW metric (21) is to be viewed as

applicable only on scales larger than galaxy clusters which correspond to finite infinity

[7, 69] or the matter horizon [19]. Alternatively, within void regions, which might be

regionally modeled by a portion of an open FLRW universe, a CIF would be applicable

only on spatial scales which are small with respect to the scalar curvature radius.

Although the spatial extent of a CIF would be much smaller within void regions

than within walls, it is important to recognise that unlike a LIF (21) is intended to apply

on arbitrarily long timescales which capture the volume–decelerating part of the average

geodesic deviation. Rather than being a geometry in the neighbourhood of a point, is

an average asymptotic geometry for spatial regions of order 1–10Mpc. On these scales

(21) provides a suitable geometry to replace the usual notion of an asymptotically flat

geometry for isolated systems. Although it is a spatially flat FLRW metric, it is not a

global geometry for the whole universe as is the case in the standard cosmology.

A more detailed discussion of the rationale behind the CEP, including the roles of

Weyl curvature and Ricci curvature in the averaging process, is provided in [67]. The

key idea is that the CIF isolates a notion of inertia that only exists as a result of a

collective degree of freedom of the regional background. In a sense we are dealing with

the conformal mode of the 3–geometry which has been identified before in discussions

that attempt to isolate the true gravitational degrees of freedom [77, 78, 79] and related

discussions of Mach’s principle‡ [81].

It is well–known that for the exchange of photons between comoving observers in the

background (21), to leading order the observed redshift of one comoving observer relative

to another yields the same local Hubble law, whether the exact relation, z + 1 = a
0
/a,

‡ The separation of the conformal degree of freedom of the 3–metric from shape degrees of freedom is

at the heart of Barbour’s Machian approach to gravity [80, 81], which he has approached from many

angles including the N-body problem [82].
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is used or alternatively the radial Doppler formula, z+1 = [(c+v)/(c−v)]1/2, of special

relativity is used, before making a local approximation. Making this a feature of regional

averages allows for forms of inhomogeneity that admit such an indistinguishability

of whether “particles are moving” or “space is expanding”, while disallowing global

coherent anisotropic flows of the sort typified by Bianchi models. Bianchi models single

out preferred directions in the global background universe, thereby imbuing spacetime

with absolute qualities that go beyond an essentially relational structure. To make

general relativity truly Machian such backgrounds need to be outlawed by principle,

and the CEP is one means to achieving this while allowing inhomogeneity.

To combine such regional average CIFs requires something akin to the introduction

of a CMC slicing to preserve a uniform Hubble flow condition. By the SEP the first

derivatives of the metric can always be set to zero in the neighbourhood of a point; it is

not the connection that corresponds to the physical observables but the curvature tensor

which is derived from it. The possibility of always being able to choose a uniform Hubble

flow slicing extends this to regional scales – the first derivatives of the regional metric

which correspond to the volume expansion are a degree of freedom upon which physical

observables do not depend. The Hubble parameter is thus recognized as a “gauge

choice” that can be made within the limits set by evolution from initial conditions at

early epochs. We are always allowed to make a choice of coordinates of the averaging

regions which keeps the Hubble parameter uniform in expanding regions despite the

presence of large variations in regional densities and curvature.

The mathematical procedures required to construct such a uniform flow slicing in

terms of patching one CIF region to the next have not been developed yet. Since one is

dealing with a nonperturbative regime without prescribed dust the problem is likely to

require mathematical constructions which go beyond the treatment of CMC foliations

in a globally well-defined background with a prescribed energy-momentum tensor. The

framework should involve a statistical description of geometry closely related to the

coarse-graining procedure.

4. Cosmic averages versus cosmic variance

In any description of cosmic averages we must ask the question of how local observables

are to be related to average quantities. There are two aspects to this question:

(i) How do our own measurements relate to some canonically defined average quantity?

(ii) How do statistically average quantities defined on spatial slices that define average

cosmic evolution relate to average distances and angles on the past light cone from

which all cosmological measurements are inferred?

These are significant questions which must be answered to build a viable

cosmological model. It was recognized early on in the Buchert approach that this

is a nontrivial problem, so that in general observed cosmological parameters will

be “dressed” when compared to the bare cosmological parameters of the averaging
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scheme [55, 83]. However, additional assumptions are required to achieve such a

dressing. Rather than tackling this problem, a common approach has been simply

to identify the volume average expansion parameter (18) in the Buchert scheme with

our observed Hubble parameter [84]–[92], and to identify the observed redshift according

to 1 + z = ā
0
/ā. However, such an assumption remains to be rigorously justified.

In my view it is important that we think carefully about these questions since

once there is inhomogeneity and a variance in geometry, then not every observer can be

the same average observer. Understanding and quantifying our observed measurements

in relation to cosmic variance is as fundamentally important as understanding cosmic

averages.

Structure formation provides us with a natural separation of scales which enable us

to attack this problem from first principles [69]. In particular, we and all the galaxies we

observe are bound structures which necessarily formed from density perturbations that

were greater than critical density. Yet the volume of the universe is dominated at the

present epoch by voids. Thus an average position by volume – which is operationally

what the Buchert average defines – will be located in a void unbound to any structure,

in a region whose local density and spatial curvature differs markedly from those in a

galaxy where the actual objects we observe are located. The mass average therefore does

not coincide with the volume average, and there can be systematic differences between

the geometry of galaxies and the average geometry, which must be taken into account.

We are therefore led to a statistical Copernican principle: we are observers in an

average galaxy, and in this sense our position is not special. However, by virtue of being

in a galaxy our local environment is not the same density as the local environment

of an average position by volume and this fact has to be taken into account in our

interpretation of cosmological measurements. By analogy, in the original heliocentric

solution Copernicus realised that we are not in the centre of the universe, but the fact

that we are on the surface of a planet that rotates means our view of the universe

is different from that at a random point in the solar system, and must be taken into

account when interpreting astronomical observations.

The averaging problem has been studied in the Buchert formalism in various

approaches which partition the universe into regions of different density [69, 70, 71, 85,

89, 92]. I will discuss the timescape cosmology in particular, since among the various

approaches it is unique in focusing on the importance of the position of the observer in

relation to average cosmic evolution, rather than the average cosmic evolution alone. It

provides a prescription for quantifying the apparent variance in the expansion rate, and

for the interpretation of volume average cosmological quantities by observers in galaxies,

whose local geometry does not coincide with the volume-average metric on account of

the mass-biased selection effect.
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4.1. The timescape model and the Buchert formalism

To date the timescape model [69, 70, 71] has been developed by adapting the Buchert

formalism. Since the timescape model is based on the idea that average spatial

homogeneity is related to a uniform Hubble flow condition, the use of the Buchert

formalism – with its choice of comoving hypersurfaces and a synchronous gauge – may

seem contradictory. However, dust is not prescribed in the Buchert scheme, and the

timescape model does not apply Buchert averaging to exact solutions with prescribed

dust.

The timescape model begins from the premise that dust is coarse-grained at the

100h−1Mpc scale§ of statistical homogeneity‖. It is hypothesized that within such

a cell there is a notion of average homogeneous expansion when CIFs in regions of

different density, which have undergone different relative volume decelerations, are

patched together appropriately. The proper volume of void regions increases more

rapidly, but there is a compensating increase of the clock rate of isotropic observers¶

within voids, as compared to isotropic observers in the denser wall regions. In this way

there is always a choice of rulers and clocks for which an average uniform expansion is

maintained.

The dust “particles” are then regions of the cosmic fluid which contain great

variations in density and spatial curvature and which can be described by different

alternative choices of time and space coordinates in a smoothed out description.

The different coordinate systems are those adapted to isotropic observers in different

locations in the fluid element, who have undergone different relative amounts of regional

volume deceleration, and who extend coordinates to the whole element with a time

coordinate assumed synchronous to their own. By any one set of clocks it appears that

the void regions expand faster than the wall regions, and thus observers working with

a single clock will assign a variance to the expansion rate within each fluid cell, even

though there is another gauge in which the expansion is uniform.

It is the equivalence of the different descriptions of the coarse-grained fluid cell

§ As we will discuss in section 4.2, the specification of length scales depends on the average metric

description any observer chooses. Here I assume a normalization of spatial distances to a spatially flat

metric, in accord with the conventions of the standard cosmology.
‖ Here statistical homogeneity is understood as a scale at which the variance in density from one dust

cell to another is bounded, rather than a scale at which a FLRW model is approached. The fact

that this coincides with the BAO scale is a natural consequence of initial conditions on the density

perturbation spectrum at last scattering. On scales smaller than the BAO scale the initial perturbations

were slightly amplified by acoustic oscillations in the primordial plasma, leading to a greater variance

in density contrasts on scales below the BAO scale as compared with scales larger than the BAO scale.

A crude estimate [71] of the variance in density on scales larger than the BAO averaging scale gives a

variance of order 6% in density on scales >
∼ 100h−1Mpc, which accords well with observations of order

7–8% from galaxy clustering statistics [93, 94].
¶ Isotropic observers are those who to leading order see an isotropic CMB. Unlike the standard

cosmology, however, in the timescape scenario the mean CMB temperature will differ for ideal observers

within surfaces of average spatial homogeneity who have undergone varying amounts of regional volume

deceleration and consequently have differently normalized clocks.
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by isotropic observers in regions of different local Ricci scalar curvature that replaces

diffeomorphism invariance of the microscopic metric as a relevant “coordinate freedom”

of the coarse-grained metric description. The Buchert time parameter is assumed to

apply to those isotropic observers whose locally measured spatial curvature is the same

as the volume average spatial curvature when averaged on horizon scales. The Buchert

formalism is assumed to apply insofar as the Buchert time parameter is a collective

coordinate of the coarse-grained fluid element, and the variance in expansion rate refers

to that attributed to the internal degrees of freedom of the fluid element by an isotropic

observer whose local spatial curvature scalar matches the volume average one.

It is certainly true that the assumptions about use of the Buchert formalism here

represent an ansatz, which needs to be rigorously demonstrated in a mathematical

scheme for coarse-graining. However, since dust is not prescribed in the Buchert

formalism any attempt to use the Buchert formalism in application to any realistic

cosmology must invariably make assumptions about how dust is to be defined. I take

the view that one should begin by making physically well-motivated assumptions, to see

whether any phenomenologically realistic model universe can be constructed. If that is

the case, then an appropriate mathematical formalism needs to be developed.

4.2. Spatial averages versus null cone averages illustrated by the timescape cosmology

If the Einstein equations (1) are to be viewed as evolution equations then a statistical

description of average evolution would appear to have to involve spatial averages,

especially since the geometry at any event is more influenced by the domain within

the matter horizon [19] than by events on or close to the null cone. Nonetheless, almost

all information about cosmic evolution comes to us on our past null cone, and thus any

attempt to test a model of average cosmic evolution must relate the average cosmological

parameters to observations made on the past null cone+.

Even in the case of simple LTB models with prescribed dust, it is possible

to demonstrate that an average of cosmic expansion and acceleration on spatial

hypersurfaces does not in general coincide with the expansion and apparent acceleration

as measured on the past light cone [97]. The determination of averages on the past light

cone demands taking the position of the observer into account. Consequently in any

spatial averaging formalism, including the Buchert formalism, specific arguments need to

be presented for the identification of cosmological parameters in terms of measurements

on our past light cone as observers in a galaxy.

Here I will briefly outline how these steps are achieved in the concrete example of

the timescape model [69, 70, 71]. The timescape model assumes that within dust cells

coarse-grained at the 100h−1Mpc scale of statistical homogeneity there are spatially flat

wall regions and negatively curved void regions. It is assumed we can always enclose the

bound structures which formed from over-critical density perturbations within regions

which are spatially flat on average, and marginally expanding at the boundary. These

+ For some other recent discussions of null cone averages see [95, 96].
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boundaries are called finite infinity regions [7, 69], with local average metric

ds2
fi
= −c2dτ 2w + aw

2(τw)
[

dη2w + η2wdΩ
2
]

. (22)

The walls constitute the disjoint union of such finite infinity regions.

θ<0Collapsing Expanding

Finite infinity <θ>=0

<θ>=0 θ>0

θ>0

Virialized

Figure 1. A schematic illustration of the notion of finite infinity, fi [69]: the boundary

(dashed line) to a region with average zero expansion inside, and positive expansion

outside. It may or may not contain collapsing regions.

Different finite infinity regions will have different spatial extents, being of order

1–2Mpc for our Local Group of galaxies, while being one order of magnitude larger for

rich clusters of galaxies. Although the overall universe is inhomogeneous, finite infinity

provides a demarcation between bound systems and expanding regions (see figure 1).

It also provides a notion of critical density regionally defined as the mass in a finite

infinity region divided by its volume. The boundaries of separate finite infinity regions,

although of different spatial extents, will have undergone the same amount of volume

deceleration since the epoch of last scattering and the parameter τw is therefore assumed

synchronous at all finite infinity boundaries.

In addition to the walls there are the voids which dominate the present epoch

universe by volume. Voids will also have different spatial extents, being characterized

by regional negatively curved metrics of the form

ds2
Dv

= −c2dτ 2v + av
2(τv)

[

dη2v + sinh2(ηv)dΩ
2
]

. (23)

Generally the voids will have different individual metrics (23). However, in the centres

of the 30h−1 Mpc voids [1, 2] the regional metrics will rapidly approach that of an

empty Milne universe for which the parameters τv can be assumed to be synchronous.

One could potentially use different curvature scales for dominant voids and minivoids to

characterize the average scalar curvature 〈R〉. However, in the two–scale approximation

of [69, 70] a single negative curvature scale is assumed as a simplification.

Although the construction is reminiscent of the Swiss cheese model, the important

difference is that the metrics (22) and (23) both represent the regional geometries in

disjoint regions of different spatial extents. Since there is no global FLRW metric there

is no “cheese” in this construction. The global spacetime structure is determined instead

by a Buchert average.
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The Buchert average is constructed as a disjoint union of wall and void regions over

the entire present horizon volume V = Viā
3, where

ā3 = fviav
3 + fwiaw

3, (24)

fvi and fwi = 1 − fvi being the respective initial void and wall volume fractions at last

scattering. It is convenient to rewrite (24) as fv(t) + fw(t) = 1, where fw(t) = fwi aw
3/ā3

is the wall volume fraction and fv(t) = fvi av
3/ā3 is the void volume fraction. Within

the dust particles the metrics (22) and (23) are assumed to be patched together with

the condition of uniform quasilocal bare Hubble flow [67, 69] discussed in section 3.3,

H̄ =
1

aw

daw

dτw
=

1

av

dav

dτv
. (25)

Since this bare Hubble parameter is uniform within a dust particle, it will also be equal to

the Buchert average parameter Hubble parameter (18). For the purpose of the Buchert

average it is convenient to refer all quantities to the set of volume–average clocks that

keep the time parameter t of (13)–(16) so that

H̄ =
˙̄a

ā
= γ̄wHw = γ̄vHv (26)

where

Hw ≡
1

aw

daw

dt
, Hv ≡

1

av

dav

dt
, (27)

and

γ̄w ≡
dt

dτw
, γ̄v =

dt

dτv
, (28)

are phenomenological lapse functions of volume–average time, t, relative to the time

parameters of isotropic wall and void–centre observers respectively. The ratio of the

relative Hubble rates hr = Hw/Hv < 1 is related to the wall lapse function by

γ̄w = 1 +
(1− hr)fv

hr
, (29)

and γ̄v = hrγ̄w.

In this two-scale approximation the Buchert equations for pressureless dust with

volume–average density ρ̄
M

can be solved analytically [70] if we make the assumption

that volume–average shear is negligible and that there is no backreaction within walls

and voids separately∗, but only in the combined average. With this assumption, the

kinematic backreaction term becomes [69]

Q = 6fv(1− fv) (Hv −Hw)
2 =

2ḟv
2

3fv(1− fv)
. (30)

∗ In the model of Wiegand and Buchert [92], two components of overdense and underdense regions

are similarly identified, but with two additional parameters representing internal backreaction within

these regions. Furthermore, as well as having a different observational interpretation of their solutions,

Wiegand and Buchert’s choice of the values of the parameters equivalent to the initial fractions fwi

and fvi is different, as they do not formally identify walls and voids [92]. Since walls and voids do not

exist at the surface of last scattering, I assume that the vast bulk of the present horizon volume that

averages to critical density gives fwi ≃ 1, while fvi = 1−fwi is the small positive fraction of the present

horizon volume that consists of uncompensated underdense regions at the last scattering surface.
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The independent Buchert equations (13), (19) then reduce to two coupled nonlinear

ordinary differential equations [69] for ā(t) and fv(t), namely

Ω̄M + Ω̄k + Ω̄
Q
= 1, (31)

ā−6∂t

(

Ω̄
Q
H̄

2
ā6
)

+ ā−2∂t

(

Ω̄kH̄
2
ā2
)

= 0 , (32)

where

Ω̄M =
8πGρ̄

M0
ā3
0

3H̄
2
ā3

, (33)

Ω̄k =
−kvc

2fvi
2/3fv

1/3

ā2H̄
2

, (34)

Ω̄
Q

=
−ḟv

2

9fv(1− fv)H̄
2
, (35)

are the volume–average or “bare” matter density, curvature density and kinematic

backreaction density parameters respectively, ā
0
and ρ̄

M0
being the present epoch values

of ā and ρ̄
M
. The average curvature is due to the voids only, which are assumed to have

kv < 0. Equations (31), (32) are readily integrated to yield an exact solution [70], which

also possesses a very simple tracking limit at late times with hr → 2/3.

The exact solution [70] of the Buchert equations is of course just a statistical

description which is not directly related to any physical metric that has been specified

thus far. Since all cosmological information is obtained by a radial spherically symmetric

null cone average, we retrofit a spherically symmetric geometry relative to an isotropic

observer who measures volume-average time, and with a spatial volume scaling as ā3(t),

ds̄2 = −c2dt2 + ā2(t) dη̄2 +A(η̄, t) dΩ2. (36)

Here the area quantity, A(η̄, t), satisfies
∫ η̄

H

0 dη̄A(η̄, t) = ā2(t)Vi(η̄H)/(4π), η̄H being

the conformal distance to the particle horizon relative to an observer at η̄ = 0. The

metric (36) is spherically symmetric by construction, but is not a LTB solution since

it is not an exact solution of Einstein’s equations, but rather of the Buchert average of

the Einstein equations.

In terms of the wall time, τw, of finite infinity observers in walls the metric (36) is

ds̄2 = −γ̄2
w(τw) c

2dτ 2w + ā2(τw) dη̄
2 +A(η̄, τw) dΩ

2 . (37)

This geometry, which has negative spatial curvature is not the locally measured geometry

at finite infinity, which is given instead by (22). Since (22) is not a global geometry, we

match (22) to (37) to obtain a dressed wall geometry. The matching is achieved in two

steps. First we conformally match radial null geodesics of (22) and (37), noting that

null geodesics are unaffected by an overall conformal scaling. This leads to a relation

dηw =
fwi

1/3dη̄

γ̄w (1− fv)
1/3

(38)

along the geodesics. Second, we account for volume and area factors by taking ηw in

(22) to be given by the integral of (38).
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The wall geometry (22), which may also be written

ds2
fi
= −c2dτ 2w +

(1− fv)
2/3 ā2

fwi
2/3

[

dη2w + η2wdΩ
2
]

, (39)

on account of (24), is a local geometry only valid in spatially flat wall regions. We now

use (38) and its integral to extend this metric beyond the wall regions to obtain the

dressed global metric

ds2 = − c2dτ 2w +
ā2

γ̄2
w

dη̄2 +
ā2 (1− fv)

2/3

fwi
2/3

η2w(η̄, τw) dΩ
2

= − c2dτ 2w + a2(τw)
[

dη̄2 + r2w(η̄, τw) dΩ
2
]

(40)

where a ≡ γ̄−1
w ā, and

rw ≡ γ̄w (1− fv)
1/3 fwi

−1/3ηw(η̄, τw). (41)

While (22) represents a local geometry only valid in spatially flat wall regions,

the dressed geometry (40) represents an average effective geometry extended to the

cosmological scales, parametrized by the volume–average conformal time which satisfies

dη̄ = c dt/ā = c dτw/a. Since the geometry on cosmological scales does not have constant

Gaussian curvature the average metric (40), like (36), is spherically symmetric but not

homogeneous.

If as wall observers we try to fit a FLRW model synchronous with our clocks that

measure wall time, τw, we are effectively fitting the dressed geometry (40), which is

effectively the closest thing there is to a FLRW geometry adapted to the rulers and

clocks of wall observers. The cosmological parameters we infer from taking averages on

scales much large than the 100h−1Mpc scale of statistical homogeneity will not be the

bare parameters H̄ , Ω̄M , Ω̄k, and Ω̄
Q
, but instead the dressed Hubble parameter

H ≡
1

a

da

dτw
=

1

ā

dā

dτw
−

1

γ̄w

dγ̄w

dτw
= γ̄wH̄ −

dγ̄w

dt
, (42)

and the dressed matter density parameter

ΩM = γ̄3
wΩ̄M . (43)

There is similarly a dressed luminosity distance relation

dL = a
0
(1 + z)rw, (44)

where a
0
= γ̄−1

w0 ā0, and the effective comoving distance to a redshift z is D = a
0
rw, where

rw = γ̄w0 (1− fv)
1/3

∫ t
0

t

c dt′

γ̄w(t
′)(1− fv(t′))1/3ā(t′)

, (45)

and 1 + z ≡ a
0
/a = (ā

0
γ̄w)/(ā γ̄w0).

It was demonstrated in [69, 70] that for realistic initial conditions at last scattering

the dressed deceleration parameter is negative at late epochs, even though the volume-

average bare deceleration parameter is positive. In particular, the general solution [70]

possesses a tracking limit which is reached to within 1% by a redshift z∼ 37. For the
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tracker solution [70] the phenomenological lapse function, γ̄w(t), void fraction fv(t), and

bare Hubble parameter, H̄(t), are related by

γ̄w = 3

2
tH̄(t) (46)

= 1 + 1

2
fv(t) (47)

=
9fv0H̄0

t+ 2(1− fv0)(2 + fv0)

2
[

3fv0H̄0
t+ (1− fv0)(2 + fv0)

] , (48)

where H̄
0
and fv0 are the present epoch values of H̄(t) and fv(t). From the bare Hubble

parameter we can construct a bare deceleration parameter,

q̄ ≡
−¨̄a

H̄
2
ā
= 1

2
Ω̄M + 2Ω̄

Q
=

2 (1− fv)
2

(2 + fv)2
. (49)

For the tracker solution, the time parameter τw of wall observers is related to the

Buchert volume–average time parameter, t, by

τw = 2

3
t+

4ΩM0

27fv0H̄0

ln

(

1 +
9fv0H̄0

t

4ΩM0

)

, (50)

where ΩM0
= 1

2
(1 − fv0)(2 + fv0) is the present epoch dressed matter density. At early

epochs, as t → 0, τw ∼ t, but at later epochs the two parameters differ by an amount

restricted to the range 2

3
t < τw < t. The dressed Hubble parameter (42) then satisfies

H =
2

3t
+

fv(t)[4fv(t) + 1]

6t
= H̄(t) +

fv(t)[4fv(t)− 1]

6t
, (51)

and can be used to construct a dressed deceleration parameter,

q ≡
−1

H2a2
d2a

dτ 2w
=

− (1− fv) (8fv
3 + 39fv

2 − 12fv − 8)
(

4 + fv + 4fv
2
)2

. (52)

At early epochs when the void fraction is small both deceleration parameters take the

value, q∼ q̄∼ 1

2
, as would be expected for an Einstein–de Sitter universe. However,

whereas the bare deceleration parameter (49) is always positive, the dressed deceleration

parameter changes sign at a value of fv ≃ 0.59 corresponding to a zero of the cubic in

the numerator of (52). At very late epochs both deceleration parameters approach the

Milne value, but with opposite signs: q̄ → 0+, while q → 0−. For parameter values with

a good fit to supernovae data [99, 100], fv0 ∼ 0.76, and apparent acceleration typically

begins at a redshift z∼ 0.9. Apparent acceleration is therefore a transitional feature,

which is largest in the transition period during which voids become dominant. During

this epoch the variance of local geometry in galaxies from the volume average geometry

grows large, leading to a variance in the relative calibration of clocks and rulers.

For parameter values which phenomenologically fit the observed expansion history

of the universe [71, 99, 100], we find γ̄w0 ∼ 1.37, meaning that the variance in the two

time parameters τw and t in (50) typically grows to 37% by the present epoch [69]. Such a

large difference is counter-intuitive, but can be understood as the cumulative integrated
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effect resulting from a tiny relative deceleration of whose magnitude is defined in terms

of the phenomenological lapse function by [67]

α

c
=

1
√

γ̄2
w − 1

dγ̄w

dτw
=

d

dt

√

γ̄2
w − 1 . (53)

Substituting the tracker solution (48) in (53) gives a relative deceleration as plotted

in figure 2. Its value at the present epoch is α
0
∼ 7 × 10−11ms−2 and is typically of

order 10−10ms−2 for most of the life of the universe. Although the absolute value of

α was higher in the past, the relative expansion rate was even higher in the past. As

a fraction of the Hubble parameter, α/(Hc), is highly suppressed at early epochs: this

dimensionless ratio ranges from 0.1 at the present epoch to 6 × 10−6 at the epoch of

last scattering. Thus even though we are dealing with an effect whose instantaneous

magnitude is extremely small and well within the weak field regime, it can still lead to a

significant cumulative difference when one has the age of the universe to integrate over.
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Figure 2. The magnitude of the relative deceleration scale [67], α: (a) in terms

of its absolute value for redshifts z < 0.25; (b) in terms of the dimensionless ratios

α/(cH̄) (solid curve) and α/(cH) (dashed curve) for redshifts z < 10. In panel (b)

just the best fit value fv0 = 0.76 is shown, whereas in panel (a) the solid and dashed

represent the best fit value and 1σ uncertainties, fv0 = 0.76+0.12
−0.09 [99] respectively. A

value H
0
= 61.7 km sec−1 Mpc−1 is assumed.

4.3. Observational tests of the timescape cosmology

A variety of inhomogeneous model universes, including the LTB model and other exact

solutions [101], can be fit to observational data which measure the expansion history

of the universe in a variety of ways, with varying degrees of success. One must take

care with such fitting, however, since the raw data has often been reduced assuming the

standard homogeneous cosmology in ways which can sometimes be very subtle. Type Ia

supernovae (SneIa), for example, are not standard candles but rather are standardizable

candles, and one widely used light curve fitter [102, 103] marginalizes over parameters of
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the standard cosmology as well as empirical light curves parameters when reducing the

data. Näıvely using the reduced data in studies of inhomogeneous models and averaging,

which a number of researchers unfortunately do, can therefore be problematic.

At the very least one needs a clear idea about how inhomogeneity limits the

derivation of an average expansion. In the timescape scenario, the minimum scale on

which an average isotropic Hubble law is expected is the 100h−1Mpc scale of statistical

homogeneity. Since many SneIa data sets contain significant numbers of points below

this scale, care must be taken to remove such points, or more generally to consider how

the inclusion of such events might affect the overall calibration of light curves.

Observational tests of the timescape cosmology are relatively well developed

[71, 99, 100], and to the extent that it has been tested the timescape model is competitive

with the standard ΛCDM cosmology. Luminosity distances of SneIa [99, 100] are the

most well tested. It was recently shown [100] that in terms of current data sets the

differences between the luminosity distance predictions of the ΛCDM and timescape

cosmologies are at the same level as systematic uncertainties in the light curve fitters,

due to unknown properties of SneIa. These include, in particular, a degeneracy between

the effect of intrinsic colour variations in SneIa events and the effect of absorption by dust

in the host galaxies, which is currently being investigated by astronomers. Depending on

which light curve fitting method one uses, one can find that there is Bayesian statistical

evidence in favour of the standard ΛCDM cosmology over the timescape cosmology, or

alternatively in favour of the timescape cosmology over the ΛCDM cosmology. In other

words, there are already enough SneIa events to distinguish the two models, but the

empirical treatment of SneIa light curves to convert them to standard candles still needs

to be understood before conclusions can be drawn.

Our recent study of SneIa luminosity distances [100] finds that making cuts to the

data below the 100h−1Mpc scale of statistical homogeneity can significantly affect the

analysis. Furthermore, in terms of SneIa systematics, we find that the timescape scenario

would appear to be more obviously favoured over the ΛCDM model if the reddening law

for dust in other galaxies has a reddening parameter, RV , close to the value RV ≃ 3.1

observed for dust in the Milky Way [100], rather than half this value. Since the reddening

law in nearby galaxies can be tested independently, future investigations of such issues

will have the power to falsify or strongly constrain the timescape scenario. Thus far

such studies find values RV = 2.82±0.38 and RV = 2.71±0.43 for two samples of eight

and seven nearby galaxies respectively [104, 105], consistent with the Milky Way value.

In the timescape model parameter values have also been determined which fit the

angular diameter distance of the sound horizon in the CMB anisotropy spectrum, and

the BAO scale in galaxy clustering statistics [71, 99, 100]. These estimates are crude

ones at this stage, as the raw data still needs to be reanalysed from first principles

using the timescape methodology before statistical bounds can be obtained, and this

is likely to be a very involved process. Several potential tests of the expansion history

were proposed in [71], including, for example, variants of the Alcock-Paczyński test

[106], the inhomogeneity test of Clarkson, Bassett and Lu [107], and the time drift of
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cosmological redshifts [108, 109, 110]. Furthermore, three separate tests with indications

of results in possible tension with the ΛCDM model on the basis of existing data are

found to be consistent with the expectations of the timescape cosmology [71]. Since

these observational tests have already been briefly reviewed elsewhere [111], I will not

discuss them further here.

The greatest observational challenge for the timescape model is the value of dressed

Hubble constant on scales larger than that of statistical homogeneity. If we compare the

angular diameter distance of the sound horizon seen in the CMB anisotropy spectrum

and the effective comoving scale of the BAO as seen in galaxy clustering statistics,

then a range of values of the dressed Hubble constant, 57 <∼ H
0
<∼ 68 km sec−1Mpc−1,

would be admissible in the timescape scenario [100]. This is at odds with the recent

measurement of H
0
= 73.8±2.4 km sec−1Mpc−1 by the SHOES survey [112]. However,

it is a feature of the timescape model that a 17–22% variance in the apparent Hubble

flow will exist on local scales below the scale of statistical homogeneity, and this may

potentially complicate calibration of the cosmic distance ladder.

Further quantification of the variance in the apparent Hubble flow in relationship

to local cosmic structures would provide an interesting possibility for tests of the

timescape cosmology for which there are no counterparts in the standard cosmology.

There is evidence from the study of large-scale bulk flows that apparent peculiar

velocities determined in the FLRW framework have a magnitude arguably in excess

of the statistical expectations of the standard ΛCDM model [113, 114, 115]. In the

timescape model it conceptually better to think in terms of varying expansion rates,

rather than peculiar velocities. Nonetheless, given that our location is right on an edge

between a wall and a dominant void [116] the effective equivalent maximum peculiar

velocity can be estimated as

vpec = (3
2
H̄

0
−H

0
)
30

h
Mpc = 510+210

−260 km/s . (54)

This estimate assumes the typical diameter of 30 h−1Mpc for the local void, and uses the

tracker solution relation H̄
0
= 2(2+ fv0)H0

/ (4f 2
v0 + fv0 + 4) [70] with the best fit values

fv0 = 0.76+0.12
−0.09 [99]. This rough estimate is of a magnitude consistent with observation.

In any inhomogeneous cosmology the manner in which we estimate peculiar

velocities from the data needs to be carefully considered. In the case of the kinematic

Sunyaev-Zel’dovich effect [114, 115] the standard FLRW model is assumed in the data

reduction in possibly subtle ways. One important question is whether the CMB dipole

is purely due to our peculiar velocity with respect to the surface of average homogeneity,

or whether it also contains some fraction, perhaps just at the percent level, which is due

to foreground inhomogeneities within the scale of statistical homogeneity.

A more insidious problem with conceptual thinking is that many researchers,

particularly observationalists, tend to think in terms of a uniform FLRW expansion of

the universe in Euclidean space with an action–at–a–distance Newtonian gravitational

force embedded on top, so that we experience “infall” towards the Virgo cluster or

even towards the much more distant Shapeley concentration even though the physical
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distances to these objects are always increasing. There is no fundamental reason to

expect spacetime to arrange itself so that the intuition we have about gravity from the

solar system repeats itself on the very largest of scales. If we use just one set of clocks,

then in any inhomogeneous model it makes more sense conceptually to think about

variations of the expansion rate in regions of different density (and spatial curvature)

which decelerate by different amounts. We need to think a bit more deeply in analysing

the data, particularly given the conundrum that observed peculiar velocities of galaxies

with respect to a FLRW background do not match statistical expectations.

5. Discussion

In this review I have discussed what I believe are some of the most important physical

questions in relation to the averaging problem. In my view, we stand at a very exciting

juncture for the development of general relativity, as the mystery of dark energy indicates

that deep fundamental questions remain concerning our understanding of spacetime on

the largest of scales. Even if dark energy is “just” a cosmological constant, then that

would be of profound significance, since quite apart from the problem of explaining its

magnitude we would have to understand why there is a field which permeates spacetime

without reference to other matter.

I believe that it is time to more seriously consider Einstein’s dictum that “In a

consistent theory of relativity there can be no inertia relatively to ‘space’, but only an

inertia of masses relatively to one another” [72]. In particular, rather than modifying

gravity to add exotic fields in the vacuum in ways which potentially violate the weak

equivalence principle, we should consider modifications that do not violate any existing

principles but which might add limiting principles to give a deeper realisation of

spacetime as a relational structure, consistent with Mach’s principle. The cosmological

equivalence principle (CEP) [67, 68] is proposed with such an end in mind. Although

there may ultimately be better ways of framing relevant principles, one cannot escape

from the fact that if the averaging problem is to be thought of in physical terms, then

it is intimately related to the cosmological statement of Mach’s principle [73].

The observed universe has a very complex hierarchical structure [117], and is very

clearly inhomogeneous on scales <∼ 100h−1Mpc. This has led many researchers to

consider both exact inhomogeneous solutions of general relativity [101], as well as the

averaging problem for general inhomogeneous metrics. Yet the vast majority of this

effort is mathematically driven, rather than physically driven.

Why is the expansion so close to that of a FLRW model despite the observed

inhomogeneity? A potential answer is that there is a canonical choice of clocks and

rulers that can always be made in the averaging problem to make the regional expansion

uniform – analogously to the freedom of choosing Riemann normal coordinates to make

the first derivatives of the metric zero near a point – and it is this choice which is made

by nature to define average spatial homogeneity and preserve the near isotropy of the

CMB.
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Without additional limiting principles inhomogeneous geometries offer so many

potential parameters that it is difficult to see how they could be constrained. Many

researchers choose to limit their models by the demand that the average evolution is

a FLRW one, as discussed in section 3.1. Yet the FLRW universe is not singled out

by any physical principle, and it embodies three separate notions of average spatial

homogeneity which may well be overly restrictive.

I suggest that the CEP, or something close to it, is a limiting principle which singles

out a notion of uniform expansion as the condition of average spatial homogeneity

without necessarily leading to FLRW evolution. A CMC-like slicing generalizes the

notion of relating inertial frames by a uniform velocity, and has been independently

recognised by a number of researchers [65, 67, 81] as embodying Mach’s principle.

The timescape scenario is a framework which attempts to put such physical

principles into a simple cosmological model. As a phenomenological model it is

interesting to note that it is competitive with the standard ΛCDM model, in as far

as it has been tested to date [71, 100, 111], with the only obvious major challenge at

present being the value of the global average Hubble constant [112]. However, there

are many outstanding issues in the timescape scenario, which prevent many researchers

from giving it further consideration.

One clear problem is the issue of junction conditions and the patching together of

CIFs to realise the uniform Hubble flow condition within a dust “particle”. In the two

scale model outlined in section 4.2 the wall and void regions are combined in a disjoint

union without applying junction conditions♯. The reason this has not yet been done

is that it would require the development of mathematical tools for the coarse-graining

of geometries in a statistical sense, and this is far from trivial. It is not a simple case

of cutting and pasting exact solutions for prescribed dust by well-known techniques.

Rather the solution of the problem is intimately related to the question of what a dust

fluid element is in general relativity when we have to coarse grain over gravitational

degrees of freedom themselves.

One feature of the formalism that is required to tackle this problem is that it

should deal with regional symmetries. In particular, whereas general relativity deals with

diffeomorphism invariance on one hand, and the point symmetries of the Lorentz group

on the other, establishing CIFs requires us to deal with the collective degree of freedom

corresponding to a regional volume expansion in particular. Different CIFs which

have undergone different amounts of relative volume deceleration will have differing

♯ The effect of junction conditions can be seen in the case of LTB models with prescribed dust or

networks of such LTB voids. In these cases the shear in hypersurfaces of constant comoving time

counteracts the variance in volume expansion leading to a greatly suppressed backreaction [118, 119].

The timescape scenario deals with a rather different situation: in particular, it does not deal with

prescribed dust constrained to avoid shell cross singularities, nor with highly symmetric exact solutions

which have been cut and pasted together. Finally, the surfaces of average spatial homogeneity are not

assumed to be surfaces of constant comoving time. In the LTB void model a “uniform Hubble flow”

slicing of the prescribed dust for reasonable density contrasts can only be introduced at the price of

taking hypersurfaces which are not necessarily purely spacelike [120].
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phenomenological lapse functions.

The construction of a phenomenological lapse function†† from a more rigorous

mathematical basis requires careful thought. In particular, there is no single global

ADM metric covering the whole universe which adequately describes the metric degrees

of freedom associated with galaxy clusters. Thus it is not a simple matter of taking a

single ADM lapse function and integrating it out when coarse-graining. Furthermore,

since we are dealing with a collective degree of freedom corresponding to a regional

volume expansion, the phenomenological lapse function is also subtly different to the

gamma factor in a Lorentz boost. By the semi-tethered lattice analogy [67, 68] it is

not associated with a boost in any particular direction but has more the character

of a boost which is orthogonal to every spatial direction. Since a rigorous treatment

requires a new as yet undeveloped methodology, it is difficult to convince sceptics of

its necessity. However, from a physical standpoint a relative deceleration implies a

difference in the amount of kinetic energy of expansion that is converted to other forms

of energy through gravitational collapse, which must have very tangible consequences

for physical processes. To ignore this problem – simply because it involves the thorny

issue of the nature of gravitational energy – is to ignore some of the most fundamental

principles of physics.

Dealing with the regional average symmetries that emerge in coarse-graining

inevitably means that we must consider quasilocal quantities, and in particular

quasilocal mass–energy and angular momentum. On account of the strong equivalence

principle we can always get rid of gravity near a point, and so the definition of

quasilocal energy is a subtle problem, which has been studied for decades without any

clear consensus emerging. (For a review see [121].) The quasilocal energy problem

has principally been studied for isolated systems, where conventional notions of mass

associated with asymptotically flat systems are well grounded. The issue of quasilocal

energy is relatively little studied for cosmological solutions, and what work there is

usually makes reference to specific exact solutions such as the FLRW models [122]–

[126]. Sussman has considered the specific case of defining relevant quasilocal variables

for generalized LTB models [127] and their relationship to averaging and backreaction

for the case of spherically symmetric dust [128, 129, 130].

Rather than always working with the same set of exact cosmological solutions,

more effort is needed to understand quasilocal variables that might be relevant for more

general coarse-graining procedures. Korzyński’s approach [9] represents an interesting

idea, which still remains to be fully developed. The statistical nature of gravitational

energy and entropy on the largest scales is an unsolved fundamental problem which

might be better understood by thinking more carefully about these procedures.

†† If the only symmetries that are allowed are diffeomorphisms of the global metric on one hand, and

local Lorentz transformations corresponding to rotations and boosts on the other, then realistically

there is no room for clock rate variations of the order of magnitude dealt with in the timescape scenario

[51]. However, the suggestion here is that additional mathematical ingredients are required to define

regional symmetries when coarse-graining.
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In summary, it is my view that the apparently accelerated expansion of the universe

demands that we take a fresh look at the foundations of cosmological general relativity

from first principles. In particular, we face the very real possibility that “dark energy”

is simply an illusion due to our misunderstanding of gravitational energy gradients in

a complex hierarchical geometry. To attack a problem as fundamental as gravitational

energy we must think fundamentally.

The argument about whether it is better to use spacetime averages (section 2.3.2)

as opposed to spatial averages (section 2.3.3) cannot really be addressed without asking

the more basic question of what is the structure of spacetime on the largest of scales,

especially over scales larger than that of the matter horizon [19] beyond which the

exchange of particles and energy between observers is minimal. Rather than simply

taking a principle such as general covariance as being paramount, we have to ask why

was general covariance introduced? The reason was that it is a way of characterizing

physical laws which combine gravity with the nongravitational interactions of nature in

such a way that spacetime geometry is a relational structure between the elementary

particles which interact via nongravitational forces.

In seeking to coarse grain gravitational degrees of freedom themselves, we have to

be prepared for the possibility that realising spacetime as a relational structure might

involve new ingredients beyond those which apply to nongravitational microphysics or

general relativity on the scale of isolated systems. For example, the Bianchi I universe

picks out preferred directions in space, and is at odds with observation; but would not be

admitted by the CEP. Whether the CEP or some other principle is the correct one, what

is most important is that we take up the challenges offered by cosmological observations

to think more deeply about the foundations of general relativity as a physical theory of

the universe.
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