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Abstract. In the timescape scenario cosmic acceleration is understaran apparent effect, due to gravitational energy
gradients that grow when spatial curvature gradients becsignificant with the nonlinear growth of cosmic structure.
This affects the calibratation of local geometry to the 8ohs of the volume—average evolution equations correbted
backreaction. In this paper | discuss recent work on defiolvgprvational tests for average geometric quantities wtem
distinguish the timescape model from a cosmological constaother models of dark energy.
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INTRODUCTION

| will discuss some recent results on observational tejtsf[d model cosmology, which represents a new approach
to understanding the phenomenology of dark energy as a goesee of the effect of the growth of inhomogeneous

structures. The basic idea, outlined in a nontechnical mamref. [2], is that as inhomogeneities grow one must

consider not only their backreaction on average cosmiasienl — as discussed by other contributors to this volume
— but also the variance in the geometry as it affects the redidn of clocks and rods of ideal observers. Dark energy
is then effectively realised as a misidentification of graidnal energy gradients.

Although the standard Lambda Cold Dark Matt&CDM) model provides a good fit to many tests, there are
tensions between some tests, and also a number of puzzlemnanthlies. Furthermore, at the present epoch the
observed universe is only statistically homogeneous oneesamples on scales of 150—300 Mpc. Below such scales
it displays a web-like structure, dominated in volume bydgoiSome 40%-50% of the volume of the present epoch
universe is in voids witldp /p ~ —1 on scales of 39! Mpc [3], whereh is the dimensionless parameter related to the
Hubble constant biA, = 10thkm sec*Mpc 1. Once one also accounts for numerous minivoids, and pedisps
few larger voids, then it appears that the present epocletseus void-dominated. Clusters of galaxies are spread in
sheets that surround these voids, and in thin filamentshhead them.

One particular consequence of a matter distribution thamiy statistically homogeneous, rather than exactly
homogeneous, is that when the Einstein equations are agbtlagy do not evolve as a smooth Friedmann-Lemaitre—
Robertson—-Walker (FLRW) geometry. Instead the Friedmauatons are supplemented by additional backreaction
terms [4]. Whether or not one can fully explain the expansiistory of the universe as a consequence of the growth
of inhomogeneities and backreaction, without a fluid—likekdenergy, is the subject of ongoing debate [5].

Elsewhere in this volume, Peebles [6] provides some of tipgraents that have been presented against backreaction.
His line of reasoning is that of a plausibility argument: i assume FLRW geometry with small perturbations, and
estimate the magnitude of the perturbations from the typaational and peculiar velocities of galaxies, then the
corrections of inhomogeneities are consistently smalis Would be a powerful argument, were it not for the fact that
at the present epoch galaxies are not homogeneously distibThe Hubble Deep Field reveals that galaxies were
close to being homogeneous distributed at early epochdpboiving the growth voids at redshifts< 1 that is no
longer the case today. Therefore galaxies cannot be censlistreated as randomly distributed gas particles on the
30h~1 Mpc scales|[3] that dominate present cosmic structure btevscale of statistical homogeneity.

Over the past few years | have developed a new physical iretiation of cosmological solutions within the Buchert
averaging schemel[7, 8, 9]. | start by noting that in the preseof strong spatial curvature gradients, not only
should the average evolution equations be replaced byieqaatith terms involving backreaction, but the physical
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interpretation of average quantities must also accourntidifferences between the local geometry and the average
geometry. In other words, geometric variance can be jushasitant as geometric averaging when it comes to the
physical interpretation of the expansion history of thevarse.

| proceed from the fact that structure formation providestural division of scales in the observed universe. As
observers in galaxies, we and the objects we observe in gtiakies are necessarily in bound structures, which
formed from density perturbations that were greater th#icar density. If we consider the evidence of the large
scale structure surveys on the other hand, then the averegton by volume in the present epoch universe is in a
void, which is negatively curved. We can expect systematfierénces in spatial curvature between the average mass
environment, in bound structures, and the volume-avemageomment, in voids.

Spatial curvature gradients will in general give rise tov@edional energy gradients. Physically this can be un-
derstood in terms of a relative deceleration of expandigipres of different densities. Those in the denser region
decelerate more and age less. Since we are dealing with waddk the relative deceleration of the background is
small. Nonetheless even if the relative deceleration igglly of order 10 1°ms 2, cumulatively over the age of the
universe it leads to significant clock rate variances [9fdgeed from an ansatz that the variance in gravitational en-
ergy is correlated with the average spatial curvature i suway as to implicitly solve the Sandage—de Vaucouleurs
paradox that a statistically quiet, broadly isotropic, Higbflow is observed deep below the scale of statistical ho-
mogeneity. In particular, galaxy peculiar velocities havemall magnitude with respect to a local regional volume
expansion. Expanding regions of different densities ateheal together so that the regionally measured expansion
remains uniform. Such regional expansion refers to thetiari of the regional proper lengtty,= #1/3, with respect
to proper time of isotropic observers (those who see andpmtimean CMB). Although voids open up faster, so that
their proper volume increases more quickly, on accountafigational energy gradients the local clocks will alsdtic
faster in a compensating manner.

Details of the fitting of local observables to average quistfor solutions to the Buchert formalism are described
in detail in refs. [, 8]. Negatively curved voids, and sphyiflat expanding wall regions within which galaxy clusgter
are located, are combined in a Buchert average

fo(t)+ fu(t) =1, (1)

where f,, (t) = f,;a,2/a is thewall volume fractionand f, (t) = f,;a,3/a% is the void volume fraction? = %a°
being the present horizon volume, afgd, f,; and¥; initial values at last scattering. The time parameteis the
volume—average time parameter of the Buchert formalisrigdbas not coincide with that of local measurements in
galaxies. In trying to fit a FLRW solution to the universe wieatpt to match our local spatially flat wall geometry

dst = —dr®+a(1) [dnZ +n5dQ?] . 2)

to the whole universe, when in reality the rods and clockgleél isotropic observers vary with gradients in spatial
curvature and gravitational energy. By conformally matghiadial null geodesics with those of the Buchert average
solutions, the geometrfy](2) may be extended to cosmologizaés as the dressed geometry

ds? = —dr?+a2(1) [dn?+r2 (17, 1) dQ?] (3)

wherea=y g y=4 ar Isthe relative lapse function between wall clocks and valwaverage onespd=dt/a=dt/a,

andry, = y(1— £,)Y3 £, 30, (0, 1), wheren,, is given by integrating g, = f.;*/3dn/[y(1— f,)%] along null
geodesics.

In addition to the bare cosmological parameters which desd¢he Buchert equations, one obtains dressed pa-
rameters reIat|ve to the geometfy (3). For example, thesdresnatter density parameterQs, = ;7352 where
Q = 8nGp 3H a%) is the bare matter density parameter. The dressed parantaiernumerical values close
to the ones m?erred in standard FLRW models.

APPARENT ACCELERATION AND HUBBLE FLOW VARIANCE

The gradient in gravitational energy and cumulative déferes of clock rates between wall observers and volume
average ones has important physical consequences. Usingx#ttt solution obtained in ret. [8], one finds that a

volume average observer would infer an effective decétergtarameteq = —a/(H 5) =2(1-1f)%/(2+ f,)?,



which is always positive since there is no global accelenatHowever, a wall observer infers a dressed deceleration
parameter
1 d?a  —(1-f,)(8f,3+39f,2—12f, - 8)

~ Had? (45 1,2 41.2)7 ’ @
where the dressed Hubble parameter is given by
H=alfa=yH-y=H-y &V ()

At early times whenf, — 0 the dressed and bare deceleration parameter both takernsieiE—de Sitter value
gq~q % However, unlike the bare parameter which monotonicalbrei@ses to zero, the dressed parameter becomes
negative wherf, ~ 0.59 andg — 0~ at late times. For the best-fit parametérs [10] the appaceeieration begins at

a redshifz~ 0.9.

Cosmic acceleration is thus revealed as an apparent efféchwarises due to the cumulative clock rate variance
of wall observers relative to volume—average observebedbmes significant only when the voids begin to dominate
the universe by volume. Since the epoch of onset of appaceetexation is directly related to the void fractiof,
this solves one cosmic coincidence problem.

In addition to apparent cosmic acceleration, a second itapbapparent effect will arise if one considers scales
below that of statistical homogeneity. By any one set ofk$atwill appear that voids expand faster than wall regions.
Thus a wall observer will see galaxies on the far side of a dantivoid of diameter 30 1 Mpc recede at a rate greater
than the dressed global averddg while galaxies within an ideal wall will recede at a rateslésanH,. Since the
uniform bare ratéd would also be the local value within an ideal wall, dd. (5)egiva measure of the variance in the
apparent Hubble flow. The best-fit parameters [10] give asgk#iubble constarti, = 61.7jﬁ km sectMpc1,

and a bare Hubble constarf = 48.2j§:2km sec IMpc 1. The present epoch variance is 17—-22%.

Since voids dominate the universe by volume at the presemtgany observer in a galaxy in a typical wall region
will measure locally higher values of the Hubble constarithyweak values of order 72km sedMpc! at the 3G 1
Mpc scale of the dominant voids. Over larger distances, adirie of sight intersects more walls as well as voids, a
radial spherically symmetric average will give an averagélble constant whose value decreases from the maximum
at the 30! Mpc scale to the dressed global average value, as the sdaterafgeneity is approached at roughly the
baryon acoustic oscillation (BAO) scale of HGMpc. This predicted effect could account for the Hubble Babb
[11] and more detailed studies of the scale dependence tdtakHubble flow[12].

In fact, the variance of the local Hubble flow below the scdleamogeneity should correlate strongly to observed
structures in a manner which has no equivalent predictiéiL RW models.

FUTURE OBSERVATIONAL TESTS

There are two types of potential cosmological tests thatlmmeveloped; those relating to scales below that of
statistical homogeneity as discussed above, and thoseelast to averages on our past light cone on scales much
greater than the scale of statistical homogeneity. Thergkctass of tests includes equivalents to all the standard
cosmological tests of the standard FLRW model with Newtopiarturbations. This second class of tests can be further
divided into tests which just deal with the bulk cosmologjamaerages (luminosity and angular diameter distances etc)
and those that deal with the variance from the growth of sines (late epoch integrated Sachs—Wolfe effect, cosmic
shear, redshift space distortions etc). Here | will conagatsolely on the simplest tests which are directly relébed
luminosity and angular diameter distance measures.

In the timescape cosmology we have an effective dressecdhbsity distance

d, = ay(1+2)r., ©
Whereao = Vala_o, and t dat’
_oya Y3 [0
rw =y(1-1) /t )7(t’)(1— fv(t’))l/?’a(t’) . (7

We can also define affective angular diameter distanag,, and areffective comoving distand®, to a redshifzin
the standard fashion

4 - P _ d,
AT 1l+z  (1+27°

(8)
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FIGURE 1. The effective comoving distandé,D(z) is plotted for the bestfit timescape (TS) model, witg = 0.762, (solid
line); and for various spatially flliCDM models (dashed lines). The parameters for the dashesldire (i, ,, = 0.249 (best-fit

to WMAPS only [13]); (ii) Qo = 0.279 (joint best-fit to Snela, BAO and WMAPS); (i@,,, = 0.34 (bestfit to Riess07 Snela
only [14]). Panela) shows the redshift range< 6, with an inset foz < 1.5, which is the range tested by current Snela data. Panel
(b) shows the range< 1100 up to the surface of last scattering, tested by WMAPS5.

A direct method of comparing the distance measures withetlddhromogeneous models with dark energy, is to
observe that for a standard spatially flat cosmology wittk @mergy obeying an equation of st&g = w(z)p, the

quantity
dz

H,D = / : 9)
\/ (Lw(Z'))dz"

mo(1+7Z) +QD0eXp[3j0 i 7'

does not depend on the value of the Hubble conskgityut only directly orQ,,, = 1 - Q. Since the best-fit values
of H, are potentially different for the different scenarios, axparison oH,D curves as a function of redshift for the
timescape model versus theDM model gives a good indication of where the largest défferes can be expected,
independently of the value &f,. Such a comparison is made in Hig. 1.

We see that as redshift increases the timescape modeldtatrp betweeACDM models with different values of
Qo+ For redshifte < 1.5 D4 is very close td, ., for the parameter valug®,,,,Q,,) = (0.34,0.66) (model
(iii)) which best—fit the Riess07 supernovae (Snela) da#d ¢hly, by our own analysis. For very large redshifts
that approach the surface of last scattering, 1100, on the other hand. ., very closely matche®, ., for
the parameter value®,,,,Q,,) = (0.249,0.751) (model (i)) which best-fit WMAPS only [13]. Over redshifts
2 <z< 10, at which scales independent tests are conceivBljlg,makes a transition over corresponding curves
of Dpcpy With intermediate values ofQ,,,Q,,)- The Dy, curve for joint best-fit parameters to Snela, BAO
measurements and WMARFS5 [180,,,, Qo) = (0.279,0.721) is best-matched over the rangg % < 6, for example.

The difference oD from any singleD , ,,, curve is perhaps most pronounced in the rangeZ’< 6, which may
be an optimal regime to probe in future experiments. Gamayabursters (GRBs) now probe distances to redshifts
z< 8.3, and could be very useful. A considerable amount work okvais already been done on Hubble diagrams for
GRBs. (See, e.g/, [15].) Much more work is needed to nail dsystematic uncertainties, but GRBs may eventually
provide a definitive test in future. An analysis of the timeggse model Hubble diagram using 69 GRBs has just been
performed by Schaefer [16], who finds that it fits the datadvattan the concordan@®eCDM model, but not yet by a
huge margin. As more data is accumulated, it should becomsslge to distinguish the models if the issues with the
standardization of GRBs can be ironed out.

The effective “equation of state”

It should be noted that the shape of tHgD curves depicted in Fid.l 1 represent the observable quanityis
actually measuring when some researchers loosely talktdbmasuring the equation of state”. For spatially flat
dark energy models, withi,D given by [9), one finds that the functiov(z) appearing in the fluid equation of state
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FIGURE 2. The artificial equivalent of an equation of state constmictsing the effective comoving distan¢e](10), plotted for
the timescape tracker solution with best-fit valyg = 0.762, and two different values @,,,: (a) the canonical dressed value

Q0 = (1= f0)(2+ o) = 0.33; (b) Q;,, = 0.279.

P, = w(2)pp, is related to the first and second derivatived of (9) by

2(1+2D"ID" +1
w(z) =
Quo(1+2)3H2D2 -1

(10)

where prime denotes a derivative with respea tBuch a relation can be applied to observed distance measnts,
regardless of whether the underlying cosmology has darggree not. Since it involves first and second derivatives
of the observed quantities, it is actually much more diffitoldetermine observationally than directly fittihgyD(z).
The equivalent of the “equation of statet(z), for the timescape model is plotted in Fig. 2. The fact thét)
is undefined at a particular redshift and changes sign tlirebg simply reflects the fact that if_(L0) we are
dividing by a quantity which goes to zero for the timescapedeipeven though the underlying curve of Hig. 1 is
smooth. Since one is not dealing with a dark energy fluid inptesent casey(z) simply has no physical meaning.
Nonetheless, phenomenologically the results do agreethadthusual inferences abowtz) for fits of standard dark
energy cosmologies to Snela data. For the canonical modegidfl(a) one finds that the average valuevif) ~ —1
on the range < 0.7, while the average value of(z) < —1 if the range of redshifts is extended to higher values. The
w = —1 “phantom divide” is crossed at~ 0.46 for f,q ~ 0.76. One recent study [17] finds mild 95% evidence for
an equation of state that crosses the phantom divide fwam—1 tow < —1 in the range 25 < z< 0.75 in accord
with the timescape expectation. By contrast, another sjliélyat redshiftsz < 1 draws different conclusions about
dynamical dark energy, but for the given uncertaintiew/(r) the data is consistent with Figl 1(a) as well as with a
cosmological constant/[1].
The fact thatv(z) is a different sign to the dark energy caseZor 2 is another way of viewing our statement above
that the redshift range 2 z < 6 may be optimal for discriminating model differences.

The H(z) measure

Further observational diagnostics can be devised if thamsipn rateH (z) can be observationally determined as
a function of redshift. Recently such a determinationdf) at z= 0.24 andz = 0.43 has been made using redshift
space distortions of the BAO scale in tA€DM model [19]. This technique is of course model dependamd, the
Kaiser effect would have to be re-examined in the timescamaefrbefore a direct comparison of observational results
could be made. A model-independent measutd(@j, the redshift time drift test, is discussed below.

In Fig.[3 we comparéi (z)/H, for the timescape model to spatially fIACDM models with the same parameters
chosen in Figl1l. The most notable feature is that the slop#(af/H, is less than in thé\CDM case, as is to be
expected for a model whose (dressed) deceleration paravaeies more slowly than fohCDM.
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FIGURE 3. The functionHalH(z) for the timescape model with,o = 0.762 (solid line) is compared tb|O*1H(z) for three
spatially flatACDM models with the same values @,,,,Q,,) as in Fig[1 (dashed lines).

The Om(z) measure

Recently a number of authors [20, 21} 22] have discussedusroughly equivalent diagnostics of dark energy. For
example, Sahni, Shafieloo and Starobinsky [21], have pexbasiiagnostic function

2
oz = [T a][a+2?-1 ", 1)
0

on account of the fact that it is equal to the constant prespoth matter density paramet€y,,,, at all red-
shifts for a spatially flat FLRW model with pressureless darsll a cosmological constant. However, it is not con-
stant if the cosmological constant is replaced by other foahdark energy. For general FLRW modets(z) =

D'(2]7%/1+ QkOHgDZ(z), which only involves a single derivatives BX(z). Thus the diagnosti¢ (11) is easier to
reconstruct observationally than the equation of statarpaterw(z).
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FIGURE 4. The dark energy diagnost®@m(z) of Sahni, Shafieloo and Starobinskyl[21] plotted for the So@pe tracker solution
with best—fit valuef,y = 0.762 (solid line), and & limits (dashed lines) from ref._[10]a) for the redshift range & z< 1.6 as
shown in ref.[[28];(b) for the redshift range & z < 6.

The quantityOm(z) is readily calculated for the timescape model, and the réswisplayed in Figl4. What is
striking about Figl ¥4, as compared to the curves for quietess and phantom dark energy models as plotted in ref.
[21], is that the initial value
2(8f3)— 312+ 4)(2+ f,0)

(412, + fy0 +4)2

is substantially larger than in the spatially flat dark eyermpdels. Furthermore, for the timescape mddeiz) does

not asymptote to the dressed density param@{gy in any redshift range. For quintessence mod@tyz) > Q,,,
while for phantom model©m(z) < Q,,,, and in both case®m(z) — Q,,, asz — . In the timescape model,
om(2) > Q,,,~0.33forz< 1.7, whileOm(z) < Q,,, for z> 1.7. It thus behaves more like a quintessence model for

(12)

om) = §H'l, =
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FIGURE 5. (a) The Alcock—Paczyski test functionf , , = HD/z and(b) the BAO radial test functiohl,D,, = HOngllD/S. In

each case the timescape model wiith = 0.762 (solid line) is compared to three spatially dd@DM models with the same values

of (Qu0:Qno) @s in Fig[d (dashed lines).

low z, in accordance with Fi§] 2. However, the steeper slope andifferent large behaviour mean the diagnostic is
generally very different to that of typical dark energy misd€or largez, Q,,, < Om(e0) < Q, , if f;o > 0.25.
Interestingly enough, a recent analysis of Snela, BAO an@ista [23] for dark energy models with two different
empirical fitting functions fomw(z) gives an intercegdm(0) which is larger than expected for typical quintessence or
phantom energy models, and in the better fit of the two motielsitercept (see Fig. 3 of ref. [23]) is close to the value
expected for the timescape model, which is tightly conseaito the range.838< Om(0) < 0.646 if f,, = 0.76" 535,

The Alcock—Paczyski test and baryon acoustic oscillations

Some time ago Alcock and Padmski devised a test [24] which relies on comparing the raatidl transverse proper
length scales of spherical standard volumes comoving WwetHubble flow. This test, which determines the function

@
oz

1

1106)_HD
AP T 4

- =, (13)

was originally conceived to distinguish FLRW models withasmological constant from those without\aterm.
The test is free from many evolutionary effects, but relieoe being able to remove systematic distortions due to
peculiar velocities.

Current detections of the BAO scale in galaxy clusteringistias [25,26] can in fact be viewed as a variant of
the Alcock—Paczjyski test, as they make use of both the transverse and réldiédds of the fiducial comoving BAO
scale to present a measure

202 13 13
DV_[%} _Df 13 (14)

In Fig.[H the Alcock—Pac#yski test function(113) and BAO scale measiiré (14) of thetrape model are compared
to those of the spatially flatCDM model with different values ok, ,,Q ;). Over the range of redshifts< 1 studied
currently with galaxy clustering statistics, tiig,, curve distinguishes the timescape model fromAl@ZDM models
much more strongly than tH®,, test function. In particular, the timescapg, has a distinctly different shape to that
of the ACDM model, being convex. The primary reason for use of thegral measuré (14) has been a lack of data.
Future measurements with enough data to separate the aadiangular BAO scales are a potentially powerful way
of distinguishing the timescape model fraxCDM.

Recently Gaztafiaga, Cabré and Hui [19] have made the fimst®fb separate the radial and angular BAO scales
in different redshift slices. Although they have not yet |shed separate values for the radial and angular scales,
their results are interesting when compared to the expeontabf the timescape model. Their study yields best-fit
values of the present total matter and baryonic matter eparametersQ,,, andQ,, which are in tension with
WMAPS parameters fit to th&CDM model. In particular, the ratio of non-baryonic cold klamatter to baryonic
matter has a best-fit valu., / Qg = (Qo — Qo) / Qgp 0f 3.7 in the 015< z< 0.3 sample, 2.6 in the.d < 2 < 0.47
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FIGURE 6. Left panel: The (in)homogeneity test function #(z) = [HD)2 — 1 is plotted for
the timescape tracker solution with  best-fit valuef,y = 0762 (solid line), and compared to
the equivalent curves # = QkO(HOD)2 for two different ACDM models with small curvature:

(@) Q0 = 0.28,Q,,=0.71,Q,, = 0.01; (b) Q,, = 0.28,Q,, = 0.73,Q,, = —0.01.
Right panel: The (in)homogeneity test functic#i(z) is plotted for thef,o = 0.762 tracker solution.

sample, and 3.6 in the whole sample, as compared to the exbealue of 6.1 from WMAPS5. The analysis of the
3—point correlation function yields similar conclusionsth a best fit[27]Q,,, = 0.28+0.05,Qp, = 0.079+ 0.025.

; ; ; ; 0.11
By comparison, the parameter fit to the timescape model of|1€f yields dressed paramete®s,, = 0.33'¢ 16
Qg, = 0.0807 5073 and a ratic.,/Qg, = 3.1753. Since other forms of dark energy are not generally expetcted
give rise to a renormalization of the ratio of non-baryomidaryonic matter, this is encouraging for the timescape
model.

Test of (in)homogeneity

Recently Clarkson, Bassett and LLul[28] have constructed thieg call a “test of the Copernican principle” based
on the observation that for homogeneous, isotropic modhishwobey the Friedmann equation, the present epoch
curvature parameter, a constant, may be written as

H@D' (2P -1
Q. .=—"——=>— 15
©~ T HD@P 49
for all z irrespective of the dark energy model or any other modelmpeters. Consequently, taking a further derivative,
the quantity
%(z) =1+H?DD" —D?) + HH'DD' (16)
must be zero for all redshifts for any FLRW geometry.

A deviation of ¥ (z) from zero, or of [Ib) from a constant value, would thereforeamthat the assumption of
homogeneity is violated. Although this only constitutesst bf the assumption of the Friedmann equation, i.e., of the
Cosmological Principle rather than the broader CoperniRrémciple adopted in ref.[7], the average inhomogeneity
will give a clear and distinct prediction of a non-z&f@z) for the timescape model.

The functions[(T1b) and (16) are computed in fief. [1]. Obswwally it is more feasible to fif (15) which involves one
derivative less of redshift. In Fig] 6 we exhibit ba#t{z), and also the functiog(z) = [HD']?> — 1 from the numerator
of ([I3) for the timescape model, as compared to @DM models with a small amount of spatial curvature. A
spatially flat FLRW model would havg?(z) = 0. In other FLRW case%(z) is always a monotonic function whose
sign is determined by that @1, ,. An open/ = 0 universe with the sam®@,,, would have a monotonic functiow(z)
very much greater than that of the timescape model.

Time drift of cosmological redshifts

For the purpose of them(z) and (in)homogeneity tests considered in the last sedtl¢n), must be observationally
determined, and this is difficult to achieve in a model indefent way. There is one way of achieving this, however,



namely by measuring the time variation of the redshifts §édént sources over a sufficiently long time interval [29],
as has been discussed recently by Uzan, Clarkson and ElisABhough the measurement is extremely challenging,
it may be feasible over a 20 year period by precision measemesof the Lymara forest in the redshift range
2 < z< 5 with the next generation of Extremely Large Telescopek [31

Inref. [1] an analytic expression fbf*1% is determined, the derivative being with respect to walktfior observers
in galaxies. The resulting function is displayed in . Ftfte best-fit timescape model wif)y = 0.762, where it is
compared to the equivalent function for three differentigfig flat ACDM models. What is notable is that the curve
for the timescape model is considerably flatter than thosleeokCDM models. This may be understood to arise from
the fact that the magnitude of the apparent acceleratiammisiderably smaller in the timescape model, as compared to
the magnitude of the acceleratio/i€DM models. For models in which there is no apparent acaseravhatsoever,
one finds thaH*l% is always negative. If there is cosmic acceleration, reapparent, at late epochs thblg1%
will become positive at low redshifts, though at a somewhagédr redshift than that at which acceleration is deemed

to have begun.
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FIGURE7. The functionHal% for the timescape model with,g = 0.762 (solid line) is compared ﬂdal% for three spatially
flat ACDM models with the same values @®,,,,Q,,) as in Fig[1 (dashed lines).

Fig.[4 demonstrates that a very clear signal of differentésa redshift time drift between the timescape model and
ACDM models might be determined at low redshifts Wlfr(-g‘ﬂ% should be positive. In particular, the magnitude of

H()*l% is considerably smaller for the timescape model as compgarA@DM models. Observationally, however, it
is expected that measurements will be best determined oces in the Lymanmr forest in the range, 2 z< 5. At
such redshifts the magnitude of the drift is somewhat mave@unced in the case of theCDM models. For a source
atz=4, over a period 081 = 10 years we would havéz = —3.3 x 10~19for the timescape model with,o = 0.762
andH, = 61.7km secMpc~1. By comparison, for a spatially fl&tCDM model withH, = 70.5km sec*Mpc™* a
source az= 4 would over ten years givlz = —4.7 x 10-*%for (Q,,,,Q,,) = (0.249,0.751), anddz= —7.0x 10~ 1°
for (Quo Qpo) = (0.279,0.721).

DISCUSSION

The tests outlined here demonstrate several lines of iigatistn to distinguish the timescape model from models of
homogeneous dark energy. The (in)homogeneity test of Ba€darkson and Lu is definitive, since it tests the validity
of the Friedmann equation directly.

In performing these tests, however, one must be very caiefirisure that data has not been reduced with built—in
assumptions that use the Friedmann equation. For exanupient estimates of the BAO scale such as that of Percival
et al. [26] do not determin®,, directly from redshift and angular diameter measures, attgerform a Fourier space
transformation to a power spectrum, assuming a FLRW cogygoRedoing such analyses for the timescape model
may involve a recalibration of relevant transfer functions

In the case of supernovae, one must also take care as cdommlauch as the Union [32] and Constitution/[33]
datasets use the SALT method to calibrate light curves.isnabproach empirical light curve parameters and cosmo-
logical parameters assuming the Friedmann equatierare simultaneously fit by analytic marginalisation befibie
raw apparent magnitudes are recalibrated. As Hiakeal. discuss|[33], a number of systematic discrepancies exist
between data reduced by the SALT, SALT2, MLCS31 and MLCSthr&ues even within thACDM model. In



the case of the timescape model, we find considerable diffeebetween the different approaches [34]. In principle,
at present there appear to be enough supernovae to decidechbetheACDM and timescape models on Bayesian
evidence, but one is led to different conclusions dependingow the data is reduced. It is therefore important that
the systematic issues are unravelled.

The value of the dressed Hubble constant is also an obsergahhtity of considerable interest. A recent determi-
nation ofH, by Riesset al. [35] poses a challenge for the timescape model. Howevieraifeature of the timescape
model that a 17-22% variance in the apparent Hubble flow widiteon local scales below the scale of statistical ho-
mogeneity, and this may potentially complicate calibnatidé the cosmic distance ladder. Further quantification ef th
variance in the apparent Hubble flow in relationship to l@camic structures would provide an interesting possybilit
for tests of the timescape cosmology for which there are nmtsparts in the standard cosmology.
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