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GRAVITATIONAL ENERGY AS DARK ENERGY: TOWARDS
CONCORDANCE COSMOLOGY WITHOUT LAMBDA

David L. Wiltshire1

Abstract. I briefly outline a new physical interpretation to the average
cosmological parameters for an inhomogeneous universe with backreac-
tion. The variance in local geometry and gravitational energy between
ideal isotropic observers in bound structures and isotropic observers
at the volume average location in voids plays a crucial role. Fits of a
model universe to observational data suggest the possibility of a new
concordance cosmology, in which dark energy is revealed as a mis-
identification of gravitational energy gradients that become important
when voids grow at late epochs.

1 Introduction

The last decade has seen a shift in our understanding of the expansion history of
the universe, on account of precision measurements in observational cosmology.
The current prevailing view, based on model universes which assume an exactly
homogeneous and isotropic background geometry for the universe, is that the
universe is undergoing a period of accelerating expansion, which began at relatively
low redshifts. The cause of this acceleration – which in the standard framework
would be due to some smooth fluidlike dark energy component that violates the
strong energy condition – is widely viewed as one of the biggest challenges both
for cosmology and fundamental physics. The simplest model for dark energy – a
cosmological constant, Λ – is consistent with many key observations, including in
particular type Ia supernovae (SneIa) luminosity distances, the spectrum of cosmic
microwave background (CMB) anisotropies, and the echo of the baryon acoustic
oscillation (BAO) scale in the primordial plasma as reflected statistically in galaxy
clustering.

Although the standard Lambda Cold Dark Matter (ΛCDM) model provides a
good fit to many tests, there are tensions between some tests, and also a number of
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puzzles and anomalies. Furthermore, theoretically the existence of a cosmological
constant begs the cosmic coincidence question: why does the cosmological constant
have a precise very tiny value such that the universe only began accelerating
at recent epochs, making the matter density parameter, ΩM0

, and cosmological
constant density parameter, Ω

Λ0
, of similar order today?

At the same time as the majority of cosmologists have been pursuing ideas
related to a fluidlike dark energy, or modifications of general relativity, while re-
taining homogeneous isotropic backgrounds, a small but growing number of cos-
mologists have questioned whether the the expansion history of the universe may
be understood in terms of the growing inhomogeneous structure in recent epochs.
(See, e.g., Célérier (2007) for a review.) After all, at the present epoch the uni-
verse is only statistically homogeneous once one samples on scales of 150–300 Mpc.
Below such scales it displays a web–like structure, dominated in volume by voids.
Some 40%–50% of the volume of the present epoch universe is in voids of 30h−1

Mpc (Hoyle & Vogeley 2002, 2004), where h is the dimensionless parameter related
to the Hubble constant by H

0
= 100h km sec−1 Mpc−1. Once one also accounts

for numerous minivoids, and perhaps also a few larger voids, then it appears that
the present epoch universe is void-dominated. Clusters of galaxies are spread in
sheets that surround these voids, and thin filaments that thread them.

One particular consequence of a matter distribution that is only statistically ho-
mogeneous, rather than exactly homogeneous, is that when the Einstein equations
are averaged they do not evolve as a smooth Friedmann–Lemâıtre–Robertson–
Walker (FLRW) geometry. Instead the Friedmann equations is supplemented by
additional backreaction terms (Buchert, 2000). Whether or not one can fully ex-
plain the expansion history of the universe as a consequence of the growth of
inhomogeneities and backreaction, without a fluidlike dark energy, is the subject
of ongoing debate (Buchert, 2008). Over the past two years I have developed a
new physical interpretation of solutions to the Buchert equations (Wiltshire 2007a,
2007b, 2008), with the conclusion that a new concordance cosmology without ex-
otic dark energy based on a realistic average of the observed structures is a likely
possibility. In this paper I will briefly outline the key physical ingredients of the
new interpretation.

2 Geometrical Averaging and Geometrical Variance

The Buchert equations for irrotational dust (Buchert, 2000) involve spatial aver-
ages on spacelike hypersurfaces. The equations take the form

3 ˙̄a
2

ā2
= 8πG〈ρ〉 − 1

2
〈R〉 − 1

2
Q, (2.1)

¨̄a

ā
= −4πG〈ρ〉 + Q, (2.2)

∂t〈ρ〉 + 3
˙̄a

ā
〈ρ〉 = 0, (2.3)

∂t

(

ā6Q
)

+ ā4∂t

(

ā2〈R〉
)

= 0, (2.4)
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where an overdot denotes a time derivative for observers comoving with the dust

of density ρ, ā(t) ≡
[

V(t)/V(t
0
)
]1/3

with V(t) ≡
∫

D
d3x

√

det 3g, angle brackets

denote the spatial volume average of a quantity, and Q = 2

3

(

〈θ2〉 − 〈θ〉2
)

− 2〈σ2〉,
is the kinematic backreaction, σ2 = 1

2
σαβσαβ being the scalar shear.

Since equations (2.1)–(2.4) involve spatial averages, their physical interpreta-
tion is not obvious. In particular ā(t) is not the scale factor of a local metric, and
the average spatial curvature, 〈R〉, refers to a whole domain, D, on a spatial slice,
rather an some more local regional measurement. It is important to recall that in
general relativity we measure invariants of the local metric, not spatially averaged
quantities. If we are dealing with a genuinely inhomogeneous geometry, with den-
sity contrasts δρ/ρ∼−1 on scales of 30h−1 Mpc, which is what is observed (Hoyle
and Vogeley 2002, 2004) then we can expect δR/R∼−1 on similar scales.

Given such strong gradients in spatial curvature below the scale of homogene-
ity, it is clear that not every observer is the same average observer. Although
average cosmic evolution may be governed by a set of equations such as (2.1)–
(2.4), to physically interpret their solutions we must consider where the observers
are within the inhomogeneous structure, and the physical relationship of their
local geometrical invariants to volume–average ones. In other words, geometric
variance can be just as important as geometric averaging when it comes to the
physical interpretation of the expansion history of the universe. Any interpreta-
tion of averaged inhomogeneous cosmologies which does not directly address this
issue is open to obvious potential criticisms (Ishibashi and Wald, 2006).

The physical interpretation of the Buchert equations I have developed is based
on the fact that structure formation provides a natural division of scales in the
observed universe. As observers in galaxies, we and the objects we observe in
other galaxies are necessarily in bound structures, which formed from density
perturbations that were greater than critical density. If we consider the evidence
of the large scale structure surveys on the other hand, then the average location
by volume in the present epoch universe is in a void. If the presently observable
universe is underdense, a possibility that can arise by cosmic variance from an
initially near scale-free spectrum of density perturbations, then the voids would
have negative spatial curvature. There can therefore be systematic differences of
spatial curvature between the average mass environment, in bound structures, and
the volume-average environment, in voids.

3 Gravitational Energy and Inhomogeneous Structure

The definition of gravitational energy and conservation laws in general relativity is
extremely difficult, on account of the dynamical nature of spacetime geometry and
the equivalence principle. By the strong equivalence principle, we can always get
rid of gravity near a point. However, those forms of energy which correspond to the
kinetic energy of expansion and to spatial curvature, which appear in the Einstein
tensor rather than the energy–momentum tensor, will generally have gradients in
an inhomogeneous universe. These regional quasilocal variations will affect the



94 Dark Energy and Dark Matter: Observations, Experiments and Theories

relative calibration of clocks and rods at widely separated events.

In general, the question of how to synchronize clocks in the absence of the
exact symmetry described by a timelike Killing vector in general relativity does
not have a solution, and the definition of quasilocal gravitational energy depends
on choices of the splitting of spacetime into spatial hypersurfaces, the threading of
those hypersurfaces by observers, and the associated choice of surfaces of integra-
tion. Such choices are in general non-covariant and non-unique. One is essentially
reduced to asking which choices of frame have the greatest physical utility.

Since the ambiguities have their origin in the equivalence principle, my view is
that the equivalence principle should be properly formulated and respected in the
relative calibration of average frames in cosmology. I have therefore extended the
strong equivalence principle as a cosmological equivalence principle (Wiltshire,
2008) to apply to average spatially flat regions – cosmological inertial frames –
undergoing a regionally homogeneous isotropic volume expansion with deceleration
over arbitrarily long time intervals. By thought experiments one can construct a
Minkowski space analogue for such frames, the semi-tethered lattice, by collectively
applying brakes in a synchronized fashion to freely unwinding tethers. In special
relativity, for two such lattices decelerating at different rates, the observers in
the lattice that decelerate more will age less. By the cosmological equivalence
principle, the same is true for observers in expanding regions of different average
density. Those in the denser region decelerate more and age less. Since a relative
clock rate implies a gradient in gravitational energy, and a gradient in average
density a gradient in Ricci scalar curvature, this conceptually establishes the notion
of a gravitational energy cost for a spatial curvature gradient. A small relative
deceleration of the background, typically of order 10−10ms−2, cumulatively leads
to significant clock rate variances over the age of the universe (Wiltshire, 2008).

By patching together cosmological inertial frames one obtains the cosmological

rest frame, namely an average global frame in which the mean CMB temperature
remains isotropic, even though the value of the mean CMB temperature and the
angular scale of the CMB anisotropies will vary with changes in relative grav-
itational energy and spatial curvature from region to region. The requirement
for patching such regions together is that the regionally measured expansion, in
terms of the variation of the regional proper length, ℓr = V1/3, with respect to
proper time of isotropic observers (those who see an isotropic mean CMB), remains
uniform. Although voids open up faster, so that their proper volume increases
more quickly, on account of gravitational energy gradients the local clocks will
also tick faster in a compensating manner. This provides an implicit solution to
the Sandage–de Vaucouleurs paradox that a statistically quiet, broadly isotropic,
Hubble flow is observed deep below the scale of statistical homogeneity.

The condition of an underlying uniform “bare” Hubble flow means that the
canonical isotropic observers will not in general be comoving with dust on fine-
grained scales. The Buchert average is taken to apply on large scales, and to
describe collective degrees of freedom of cells which are coarse-grained at least
on the size of statistical homogeneity. The average scalar curvature of such cells
and the average time parameter are not assumed to coincide with the quantities
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locally measured by isotropic observers within the cells. Ideally a new approach
to cosmological averaging, based on a uniform Hubble flow foliation, might be
developed. For the time being, I use the Buchert average equations for describing
cosmic evolution, while using the uniform local Hubble flow condition to relate the
volume–average quantities to parameters measured by observers in spatially flat
expanding wall regions containing galaxies.

Details of the fitting of local observables to average quantities for solutions to
Buchert’s equations are described in detail in Wiltshire (2007a, 2008). The model
universe which is considered there is a first approximation to the observed struc-
tures: negatively curved voids, and spatially flat expanding wall regions within
which galaxy clusters are located, are combined in a Buchert average

fv(t) + fw(t) = 1, (3.1)

where fw(t) = fwiaw
3/ā3 is the wall volume fraction and fv(t) = fviav

3/ā3 is the
void volume fraction, V = Viā

3 being the present horizon volume, and fwi, fvi and
Vi initial values at last scattering. In trying to fit a FLRW solution to the universe
we attempt to match our local spatially flat wall geometry

ds2

fi
= −dτ2 + aw

2(τ)
[

dη2
w + η2

wdΩ2
]

. (3.2)

to the whole universe, when in reality the rods and clocks of ideal isotropic ob-
servers vary with gradients in spatial curvature and gravitational energy. By con-
formally matching radial null geodesics with those of the Buchert average solutions,
(3.2) may be extended to cosmological scales as the dressed geometry

ds2 = −dτ2 + a2(τ)
[

dη̄2 + r2
w(η̄, τ) dΩ2

]

(3.3)

where a = γ̄−1ā, γ̄ = dt
dτ is the relative lapse function between wall clocks and

volume–average ones, dη̄ = dt/ā = dτ/a, and rw = γ̄ (1 − fv)
1/3

fwi
−1/3ηw(η̄, τ),

where ηw is given by integrating dηw = fwi
1/3dη̄/[γ̄ (1 − fv)

1/3
] along null geodesics.

In addition to the bare cosmological parameters which describe the Buchert
equations, one obtains dressed parameters relative to the geometry (3.3). For
example, the dressed matter density parameter is Ω

M
= γ̄3Ω̄

M
, where Ω̄

M
=

8πGρ̄
M0

ā3

0
/(3H̄

2
ā3) is the bare matter density parameter. The dressed parame-

ters take numerical values close to the ones inferred in standard FLRW models.
Since the relative lapse function is important in relating the bare and dressed
geometries, the interpretation is different to that of Buchert and Carfora (2003),
who considered dressing by volume factors relating to varying spatial curvature.

4 Apparent Acceleration and Apparent Hubble Flow Variance

The gradient in gravitational energy and cumulative differences of clock rates
between wall observers and volume average ones has important physical conse-
quences. Using the exact solution to the Buchert equations obtained in Wiltshire
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(2007b), one finds that a volume average observer would infer an effective deceler-

ation parameter q̄ = −¨̄a/(H̄
2
ā) = 2 (1 − fv)

2
/(2 + fv)

2, which is always positive
since there is no global acceleration. However, a wall observer infers a dressed
deceleration parameter

q = −
1

H2a

d2a

dτ2
=

− (1 − fv) (8fv
3 + 39fv

2 − 12fv − 8)
(

4 + fv + 4fv
2
)2

, (4.1)

where the dressed Hubble parameter is given by

H = a−1 d

dτ a = γ̄H̄ − ˙̄γ = γ̄H̄ − γ̄−1 d

dτ γ̄ . (4.2)

At early times when fv → 0 the dressed and bare deceleration parameter both as-
sume the Einstein–de Sitter value q ≃ q̄ ≃ 1

2
. However, unlike the bare parameter

which monotonically decreases to zero, the dressed parameter becomes negative
when fv ≃ 0.59 and q̄ → 0− at late times. For the best-fit parameters (Leith, Ng
and Wiltshire, 2008) the apparent acceleration begins at a redshift z ≃ 0.9.

Cosmic acceleration is thus revealed as an apparent effect which arises due to
the cumulative clock rate variance of wall observers relative to volume–average ob-
servers. It becomes significant only when the voids begin to dominate the universe
by volume. Since the epoch of onset of apparent acceleration is directly related to
the void fraction, fv, this solves one cosmic coincidence problem.

In addition to apparent cosmic acceleration, a second important apparent effect
will arise if one considers scales below that of statistical homogeneity. By any one
set of clocks it will appear that voids expand faster than wall regions. Thus a wall
observer will see galaxies on the far side of a dominant void of diameter 30h−1

Mpc to recede at a value greater than the dressed global average H
0
, while galaxies

within an ideal wall will recede at a rate less than H
0
. Since the uniform bare rate

H̄ would also be the local value within an ideal wall, eq. (4.2) gives a measure of
the variance in the apparent Hubble flow. The best fit parameters (Leith, Ng and
Wiltshire, 2008) give a dressed Hubble constant H

0
= 61.7+1.2

−1.1 km sec−1 Mpc−1,

and a bare Hubble constant H̄
0

= 48.2+2.0
−2.4 km sec−1 Mpc−1. The present epoch

variance is 22%, and we can expect the Hubble constant to attain local maximum
values of order 75 km sec−1 Mpc−1 when measured over local voids.

Since voids dominate the universe by volume at the present epoch, any observer
in a galaxy in a typical wall region will measure locally higher values of the Hubble
constant, with peak values of order 75 km sec−1 Mpc−1 at the 30h−1 Mpc scale
of the dominant voids. Over larger distances, as the line of sight intersects more
walls as well as voids, a radially spherically symmetric average will give an average
Hubble constant whose value decreases from the maximum at the 30h−1 Mpc scale
to the dressed global average value, as the scale of homogeneity is approached at
roughly the BAO scale of 110h−1Mpc. This predicted effect would account for
the Hubble bubble (Jha, Riess & Kirshner, 2007) and more detailed studies of the
scale dependence of the local Hubble flow (Li and Schwarz, 2008).

In fact, the variance of the local Hubble flow below the scale of homogeneity
should correlate strongly to observed structures in a manner which has no equiv-
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alent prediction in FLRW models. This would provide a definitive test of the
proposal. It would also suggest that one contributing factor in the decades long
debate about the value of the Hubble constant is the scale of averaging.

5 Present and Future Observational Tests

In addition to tests below the scale of homogeneity, equivalents to the all stan-
dard cosmological tests can be derived. Fits to CMB anisotropy data require that
standard numerical codes must first be rewritten from first principles, as the as-
sumption of a homogeneous isotropic cosmology is built into existing codes in a
fundamental way. As a first test of the CMB data, the fit to the angular scale of
the sound horizon has been examined (Wiltshire 2007a; Leith, Ng and Wiltshire,
2008). It is often said that the overall angular scale of CMB anisotropy spectrum,
and in particular of the first Doppler peak, is a measure of the spatial curvature of
the universe. However, this is only true if one assumes that the spatial curvature
of the universe is the same everywhere and that the universe evolves by the Fried-
mann equation. In the presence of strong inhomogeneities and spatial curvature
gradients the analysis must be redone.

In Wiltshire (2007a) the angular scale of the sound horizon was analysed,
accounting for the fact that a volume–average observer in a void sees a cooler
mean CMB temperature, and dressed matter density and Hubble parameters were
found. Interestingly, since the calibration of the baryon to photon ratio is affected,
one finds that typically one can accommodate parameter values which would agree
with measurements of primordial lithium abundances – a problem for the ΛCDM
concordance cosmology – while at the same time having more baryons relative
to nonbaryonic dark matter, as is required to fit the ratio of the heights of the
first and second Doppler peaks. This of course can only be confirmed once a full
numerical analysis of all the Doppler peaks is performed.

One can similarly determine parameter values which would give a dressed co-
moving scale corresponding to the BAO scale as seen in galaxy clustering statistics.
Again, a detailed analysis would require the full use of the new cosmological model
in the data reduction. However, as a first approximation one can assume the scale
is the same as observed in the spatially flat ΛCDM model. One finds that parame-
ter values for which the angular scale of the sound horizon and the comoving BAO
scale agree with each other are the same parameter values that best fit the Riess
et al. (2007) (Riess07) SNeIa gold dataset (Leith, Ng & Wiltshire, 2008). Interest-
ingly, such concordance is found for a value of the dressed Hubble constant which
agrees with that of Sandage et al. (2006).

In Wiltshire (2008) several potential cosmological tests are investigated. It is
expected that the next generation of dark energy experiments, designed to measure
cosmological parameters to high accuracy, should also be able to distinguish the
new cosmological model from standard FLRW models. As one example, in Fig. 1
we plot the effective comoving distance to a redshift z for the best-fit nonlinear
bubble model, as compared to three spatially flat ΛCDM models with different
values of ΩM0

. At low redshifts it closely matches the LCDM model which best
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fits the Riess07 SneIa gold data set only, while at high redshifts it closely matches
the ΛCDM model which best fits WMAP5 (Komatsu et al., 2009) only.
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Fig. 1. ∗ The effective comoving distance H
0
D(z) is plotted for the best–fit nonlinear

bubble model, with fv0 = 0.762, (solid line); and for various spatially flat ΛCDM models

(dashed lines). The parameters for the dashed lines are (i) Ω
M0

= 0.34 (best–fit to SneIa

only); (ii) Ω
M0

= 0.279 (joint best–fit to SneIa, BAO and WMAP5); (iii) Ω
M0

= 0.249

best–fit to WMAP5 only. Panel (a) shows the redshift range z < 6, with an inset for

z < 1.5, the range tested by current SneIa data. Panel (b) shows the range z < 1100 up

to the surface of last scattering, tested by WMAP5.
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