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Abstract 

Statistical analysis is a vital component of an assay. In an immunoassay, the diag­

nosis of an illness or the determination of a treatment may be at stake. In this and 

other assays, it is essential that the assay be analyzed with the greatest accuracy. 

Standard models for assays tend to have several complicating characteristics which 

have led to approximate rather tha,n exact evaluation of inferences. The main focus 

of this thesis is the development of methods that do not compromise the accuracy 

of the statistical analysis of an assay. 

For the most part, a Bayesian view is taken. There are many philosophical argu­

ments in favour of the Bayesian approach. However, the involvement of the Bayesian 

paradigm in this thesis is through necessity rather than philosophy. The frequen­

tist paradigm provides no apparent means of evaluating many of the calculations 

involved in the analysis of an assay. On the contrary, there is a formal procedure for 

solving all inference and decision making problems under the Bayesian paradigm. 

Heterogeneity in the variance of the response is one of the complicating charac­

teristics of assay data. Inferences for heteroscedastic regression models are strongly 

dependent on the fitted variance function. The estimation of the variance function 

for an assay is addressed in this thesis. 

Fitting the assay model and drawing inferences about the parameters is only one 

side of the statistical analysis of an assay. The other endeavour is the assessment of 

the quality of the assay as a measuring device. This is needed in order to maintain 

the quality of the assay over time and potentially for use as a criterion for the 

determination of an assay's optimal analytical and statistical (i.e. experimental) 

designs. 

The assessment of the quality of an assay has also been compromised by fre­

quentist approximations. The development and analysis of a Bayesian model for an 
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assay along with the assessment of the quality of an assay join variance function 

estimation as the focal points of this thesis. 
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Chapter 1 

Introduction 

1.1 Background 

An assay is a test that involves the counting of parts. In the fields of mining and 

prospecting, assays have been used for many years to test the purity or concentration 

of mineral and ore. Assays have since been used in biology! and more recently in 

clinical chemistry, pharmokinetics and toxicology (van Houweligen (1988)). 

The catalyst for this thesis is the immunoassay, an assay used in clinical chem­

istry, conducted in the Department of Nuclear Medicine at Christchurch Public 

Hospital (NMCH) in Christchurch, New Zealand. Immunoassays are exquisite an­

alytical tests used for qualitative and quantitative analysis of substances in blood 

fluids (Davies (1994)). The test involves the counting (assaying) of molecules, the 

immunoassay is thus an assay in its own right. Incidentally, the prefix "immuno" 

stems from the use of antibodies as reagents in these assays. (Refer to Appendix A 

for a detailed description of an immunoassay.) 

The analysis of an assay can justly be considered a problem in statistical cali­

bration. In an assay, samples with a known concentration (standards) and samples 

with an unknown concentration (unknowns) of some compound produce response 

counts. A regression model is fitted to these data and inferences about the concen­

tration of the unknowns are calculated. The role of the standards is to calibrate the 

mean function, the relationship between the mean response and concentration. This 

function is often referred to as the dose-response curve of an assay. Often replicated 

1 Assays used for biological tests or applications are often referred to as bioassays. 

1 



2 Chapter 1. Introduction 

response counts are taken for each sample tested. 

Assays are frequently used for analyses where a high level of accuracy is de­

manded. For example, in immunoassay the diagnosis of an illness or a course of 

treatment may depend on the outcome of the test. It is therefore vital that the sta­

tistical analysis of the assay be performed with the utmost accuracy and precision. 

In the literature there are two characteristics of the statistical analysis of assays 

that stand out: 

1. Complicated models are typically used. 

2. Approximations are invariably used in the calculation of inferences. 

The second characteristic is cause for concern. The involvement of approximations 

increases the potential for inaccuracies in the statistical analysis to compromise the 

results from an assay. 

1.2 Statistical analyses for an assay 

When all assays are considered, the number of distinct statistical analyses performed 

is very large. It is not feasible to consider each of these within the confines of a single 

thesis. The analyses covered in this thesis are those performed on immunoassays 

conducted at NMCH. These are mainstream analyses performed in many types of 

assays and so there will be widespread applicability. All developments are made in 

a general framework with the immunoassay being used only as an example. This 

should allow the methods and results to be easily adapted to other assays. 

There are two components to the statistical analysis of immunoassays at NMCH: 

1. Estimation of the concentration in the unknown samples. 

2. Assessment of the quality of the assay. 

The first component is crucial to the subjects undergoing the assay. This involves 

fitting a model to the data from the assay. The second component is only of interest 

to the practitioner conducting the assay. Here the assay is thought of as a tool and 

its sensitivity or precision of measurement is assessed. 
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There is some comparison between frequentist and Bayesian methods apparent in 

this thesis, but the main interest is in developing new approaches for these analyses. 

Many of the new approaches developed use the notion of Bayesian inference. 

1.2.1 Frequentist varIance function estimation 

The model for an assay typically involves three key components: 

1. A nonlinear mean function. 

2. A variance function. 

3. An abundance of parameters for values of the independent variable (the con­

centrations of the unknowns). 

In a frequentist analysis, the presence of a non-constant variance function is often 

the most problematic component of assay models. 

Accounting for heteroscedasticity in the response is a very important and nec­

essary task in a regression analysis of the mean response. If heteroscedasticity is 

neglected, standard least squares estimates of the mean function parameters can be 

inefficient and subsequent inferences flawed. 

A variance function is a mathematical description of the variance in a response 

measurement. In a regression analysis of the mean response the inverses of the fit­

ted variances can be used as weights in weighted least squares (WLS). The weights 

can then be re-estimated and this process repeated several times or continued until 

convergence is attained. This process is known as iterative reweighted least squares 

(IRWLS) and the result as generalized least squares (GLS) estimates. When max­

imum likelihood is used to estimate the mean function, the variance function is si­

multaneously fitted and applied to the estimation of the mean function. (See Beale 

and Sheiner (1988) for a review of methods for estimating a variance function.) 

In an assay the responses are generally replicated. If all responses are replicated 

the inverses of the sample variances can be used &'3 weights. This equates to assum­

ing that the variance of the response does not abide to any pattern or model over 

the range of the independent variable. vVhen the form of the variance function is 

known the inverses of the sample variances lead to hopelessly inefficient estimates 
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especially when the responses are only duplicated (Carroll and Cline (1988)). Pool­

ing the information from all the samples and fitting a function that accounts for 

heteroscedasticity is much more parsimonious and reliable. 

An alternative method of dealing with heteroscedastic responses is to transform 

the responses so as to induce homogeneity (Box and Cox (1964)). The downside of 

this approach is that the original model for the mean response often does not fit the 

transformed data. The model's validity is maintained if the data and model are 

multaneously transformed (Carroll and Ruppert (1984)). However, the distribution 

of the transformed response may incur undersirable properties such as skewness. 

With the variance function approach no such problems are encountered because the 

method does not entail transforming the data or the modeL 

Raab (1981) proposed modified maximum likelihood (MML) for the estimation 

of a variance function in immunoassay.. As the name suggests this is based on 

modifying the likelihood function. The modification to the likelihood function is 

just the adjustment needed for the maximum likelihood estimate of the variance 

of a population having a normal distribution with unknown mean to become the 

standard unbiased estimate. The motivation for the method is that even for simple 

variance functions, the method of maximum likelihood gives inconsistent estimates 

(Raab (1981)). In models where the number of parameters increases asymptotically, 

it is often the case that maximum likelihood estimates are inconsistent (Jewel and 

Raab (1981)). The root of the problem is the failure of the maximum likelihood 

method to account for the estimation of the mean responses. 

Raab (1981) was perhaps the first major investigation/comparison of methods for 

estimating a variance function in any area of statistics. This paper was a prelude to 

general methodological contributions such as Davidian and Carroll (1987) and Beale 

and Sheiner (1988). In the immunoassay field, papers by Finney (1976), Finney and 

Phillips (1977) and Rodbard et al. (1976) were forerunners to Raab's paper. The 

maximum approximate conditional likelihood (MACL) method derived in Sadler 

and Smith (1986) is an offspring of Raab's MML approach2. 

MML, often in the form of MACL, has become an accepted method of estimating 

the variance function for immunoassays. A salient characteristic of MML is that no 

2MACL was actually developed independently of MML and was used in assays at NMCH as 
early as 1980. 
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use is made of the mean function and the concentrations of the standards. It is 

apparent that by addressing this, an improvement can be made to MML. 

Restricted maximum likelihood (REML) is an appropriate and perhaps the most 

strongly recommended method of variance function estimation for a regression anal­

ysis in which there are no missing values of the independent variable(s). REML was 

introduced in Patterson and Thompson (1971) where it was coincidentally called 

modified maximum likelihood! Although maximum likelihood and pseudo likelihood 

estimates are consistent, they still perform poorly on small amounts of data. The 

failure to account for the estimation of the mean responses can again be pointed 

to as the reason fot the poor performance of these methods (Harville (1977) and 

Carroll and Ruppert (1988, pp. 73)). The REML method makes an allowance for 

the degrees of freedom lost in the estimation of the mean response by adjusting the 

likelihood equations. The result is that REML performs significantly better on small 

sets of data. Like MML, REML is based on an adjustment that leads to the usual 

unbiased estimate of variance when the responses have homogeneous variance. 

A REML procedure for an assay that extends the classical REML procedure of 

Patterson and Thompson (1971) to incorporate the responses with unknown con­

centrations is developed in this thesis. The resulting procedure makes use of both 

the information in the responses for the unknowns and the information gained from 

the knowledge of the concentrations of the standards. This procedure is referred to 

as extended restricted maximum likelihood (ExREML). The ExREML procedure is 

also adapted so that it is in the form of MML. This procedure is called extended 

modified maximum likelihood (ExMML). The ExREML procedure is characterized 

from a Bayesian point of view and together with ExMML compared via extensive 

simulation to MML and REML. 

1.2.2 Bayesian model for an assay 

Accounting for the estimation of the mean responses is a necessary ingredient for 

efficient estimation of the variance function. Although empirical results indicate that 

adjustments used in the MML and REML procedures tend to improve the estimates 

of the variance function parameters (Raab (1981) and see Section 3.4), there is 

no formal statistical theory to validate the adjustment. Within the frequentist 

paradigm, however, there is no apparent means of obtaining better estimates. 
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From a Bayesian viewpoint there is no such problem. Indeed to evaluate an esti­

mate or any other inference problem there is a formal procedure to follow. Lindley 

(1982) writes: "Once the basic step of describing uncertainty through (subjective) 

probability is admitted, we have a formal procedure for the solution of all inference 

problems." The procedure is as follows: 

• Say what is known - identify the data X. 

41» Specify a model for the data generation - a family of distributions for X indexed 

by O. 

It Specify the uncertainty concerning O. 

• Consider what quantity is of interest - generally part of O. If, for instance, 

0= (01, O2 ) we may only be interested in 01 , 

• Calculate 1r(0 I x), the uncertainty of the quantity of interest given the ob­

served value x of the data. If we are interested in 01 integrate O2 out and 

determine inferences. 

The problem of estimating a variance function therefore reduces to the calculation of 

the joint posterior distribution of the variance function parameters or some function 

thereof. The uncertainty in the mean function is automatically taken account of 

and a probability distribution is provided for the estimation of the variance function 

parameters. 

In addition to the existence of a formal procedure, there are several other ad­

vantages of the Bayesian approach. 

• Past experience and other prior knowledge can be incorporated. 

.. Inferences are conditional on the data rather than the parameters. This avoids 

the problem of repetition. If an experiment deviates from its plan, prespecified 

levels of significance do not become invalid. The data that has been observed 

can be conditioned on at any stage of the experiment and used to evaluate 

inferences. 

It The statistical significance of results is easier to gauge, interpret and discuss 

and is not influenced by the number of inferences that may be required. 
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In the literature there are only a few accounts of the use of Bayesian analysis in 

assays. Ramsey (1972) and Antoniak (1974) used Bayesian analysis for a bioassay. 

However, the experiment considered by these authors was of an entirely different na­

ture to that considered here. Racine-Poon, Weihs and Smith (1991) used a Bayesian 

model to analyze a radioimmunoassay where the concentrations of the standards are 

subject to sequential dilution errors but relied on analytical approximations. 

Bayesian analysis has been used to analyze calibration problems with the models 

generally being more simple than the atypical assay model. See Dunsmore (1968), 

Hoadley (1970), Hunter and Lambroy (1981) and Brown (1982) for Bayesian ap­

proaches to the linear calibration problem and Osbourne (1991) for a review of 

statistical calibration. Incidentally, Osbourne (1991) lists Racine-Poon et al. (1991) 

as the sole example of Bayesian analysis applied to a nonlinear calibration problem. 

In other fields, Bayesian analysis. has been applied to models involving a nonlinear 

mean function, a variance function and even missing values for the independent 

variable. One such instance is Wakefield et aL (1994) where Bayesian analysis is 

used to analyze a population model. 

A full Bayesian approach to the analysis of an assay is developed in this thesis. 

The practical side of the analysis is also addressed with computational routines 

and related discussion being included. The Metropolis-Hastings (M-H) algorithm 

(Metropolis et al. (1953) and Hastings (1970)) is successfully used to evaluate 

inferences for a Bayesian model of an assay. The M-H algorithm is the basis of 

the evaluation of all Bayesian inference problems in this thesis. 

If sufficient computer power is available, Bayesian analysis is a means of de­

termining inferences to any degree of accuracy. It will also enable practitioners 

to incorporate expert knowledge and their own past experiences into the analysis. 

These attributes will surely reduce the potential for a statistical analysis to adversely 

affect the results of an assay. 

1.2.3 Minimal detectable concentration 

The minimal detectable concentration (MDC), the smallest concentration that an 

assay can reliably measure, is a measure of the sensitivity of an assay. It reflects 

the capability of the assay to detect a small positive concentration. The MDC is 

commonly used to evaluate the limitations of an assay and to make comparisons 
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between assays. The object of measurement assumed in this thesis is a hypothetical 

unseen sample that is independent of the samples analyzed by the assay. The sen­

sitivity of the assay is thus reflected in its ability to detect a positive concentration 

in this sample. 

A plethora of statistical criteria have been used to define the term "reliable 

measurement" (Currie (1968), Oppenheimer et al. (1983) and Brown et aL (1996)). 

These fall into two categories: 

• Those based on the detection of positive concentration. 

\It Those related to the variance or coefficient of variation of a calibrated (i.e. 

estimated) concentration. 

The MDC usually pertains to just the first category or notion. Sometimes the MDC 

has encompassed both notions. The above references are instances of this. In this 

thesis, the MDC is aS$ociated with just the first notion of a reliable measurement. 

The second notion gives rise to the precision profile, another widely used diagnostic 

of assay performance. The MDC and the precision profile are both major focal 

points of this thesis. For this reason they are treated separately. 

The MDC has the potential to be used as a criterion for optimizing, or at least 

improving, the design of an assay. The statistical design of an assay is defined by 

the concentrations and replications of the standards and in certain situations the 

replications of the unknowns. The smaller the MDC, the lower the concentration 

that can be reliably measured and the more powerful the assay. The MDC-optimal 

design for an assay is the design for which the expected value of the MDC is min­

imized subject to necessary constraints on the number of standards and the total 

number of response measurements made on the standards and if applicable, the 

unknowns. 

In this thesis, several new measures of the MDC are developed. The following 

existing measures of MDC are reviewed: the critical limit (CL) and the detection 

limit (DL) (Currie (1968)) and the MDC as discussed in Davidian et al. (1988). 

This leads to the consideration of some alternative frequentist measures although 

the main focus is on the development of measures of MDC to accompany a Bayesian 

analysis of an assay. 
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Bayesian measures of MDC are shown to have two significant advantages over 

frequentist measures. Firstly, provided there is sufficient computational resource, the 

Bayesian measures of MDC can be precisely evaluated whereas approximations are 

invariably needed in order to evaluate frequentist measures. It is hypothesized that 

Bayesian measures of MDC more accurately depict the quality of the assay. This 

thesis attempts to illustrate that this hypothesis is true. The second advantage is 

that the MDC can be defined directly in terms of whatever decision making criteria 

for detection is used by the practitioner. This will lead to measures which can be 

easily understood by practitioners. 

1. 2.4 The precision profile 

The precision profile is a device for displaying the quality of the assay over all 

concentrations, whereas the MDC 'considers only concentrations near zero. It was 

originally described in Ekins (1978) and formally defined in Ekins (1983). Impreci­

sion has been used in place of precision by Sadler, Smith and Legge (1988), Sadler 

and Smith (1990a, b) and other authors. Essentially, a precision profile is a plot of 

the precision of the assay at a given concentration against concentration and pre­

cision is a diagnostic that quantifies the error in the calibrated concentration. The 

smaller the distance from the precision profile to the concentration axis the higher 

the quality of the assay. 

To cater for five different analytical requirements of assays, Ekins (1983) defines 

five different precision profiles. An analytical requirement of an assay consists of the 

sources of error that are to be taken account of in the calculation of an inferential 

statement about the assay. The definitions of Ekins vary according to whether the 

calculation of precision involves one or multiple distinct samples of the substance 

being tested (intra-sample verse inter-sample), one or more assays (intra-assay verse 

inter-assay) and different laboratories (inter-laboratory). 

In this thesis only the intra-sample, intra-assay precision profile is considered. 

This is the fundamental criterion of assay performance which governs assay design 

(Ekins (1983)). In Ekins' definition of the intra-sample, intra-assay precision profile 

the error in the fitted assay model is ignored. The resulting precision profile therefore 

reflects the error in the assay due to only the randomness of the independent response 

measurement. This is called "bottom line" or intrinsic assay error. Practitioners 
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regard Ekins' intra-sample, intra-assay precision profile as a valuable indicator of 

the level of intrinsic assay error. 

The viewpoint taken in this thesis is that the intra-sample, intra-assay preci­

sion profile should reflect all of the error in an assay's calibration of an unknown 

concentration. The same stance is assumed in O'Connell, Belanger and Harland 

(1993). The analytical requirement of Ekin's original intra-sample, intra-assay pre­

cision profile is effectively expanded to that of the intra-sample, inter-assay precision 

profile when all distinguishing features of the assay are identical or, in other words, 

homogeneous. A precision profile along these lines appears generally desired by 

practitioners. The methods developed in this thesis for calculating such a precision 

profile can also be used to calculate the intra-sample, intra-assay precision profile of 

Ekins. All that needs to be done is to disregard the error in the parameter estimates 

of the assay parameters in the calculation of precision. In other words the parameter 

estimates are treated as the true values of the assay model parameters. 

The general intra-sample, inter-assay precision profile only differs from the preci­

sion profile described in the preceding paragraph when the assays are heterogeneous. 

The calculation of the precision profile in this case and in the inter-laboratory case 

necessitates extensions to the assay model that are beyond the scope of this thesis. 

Inter-sample precision profiles are not discussed in this thesis as they appear to be 

neglected in the literature. Furthermore, it is envisaged that the methods developed 

for intra-sample precision profiles could be easily adapted to these. Unless otherwise 

stated, the term precision profile shall from hereon be taken to mean intra-sample, 

intra-assay precision profile and precision will mean intra-sample, intra-assay preci­

sion. 

The calculation of precision at a specific level of concentration is fundamental to 

the construction of the precision profile. The precision profile is just the mechanism 

for graphically displaying the precision of the assay over the range of concentrations. 

To improve the accuracy of the precision profile the calculation of precision must be 

improved. 

Precision has only been expressed in terms of the estimated variance, standard 

deviation or coefficient of variation of the calibrated concentration by Ekins and 

other authors (O'Connell et al. (1993), Sadler et al. (1988), Sadler and Smith 

(1990a)). There is no evidence in the literature of a Bayesian definition of precision. 
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From the frequentist viewpoint, a concern with the use of standard deviation and 

coefficient of variation to measure precision is that the concept of "bias" is not 

considered. Only the variability of the estimated concentration is considered. Hence, 

a constant would appear to be a perfect estimate. For variance based measures to 

be reliable the bias of the estimate must be negligible. If bias is not negligible the 

precision profile will not be an accurate refiection of the quality of the assay. This 

does not appear to have been noted in the literature. A corrective action is to 

replace variance with mean squared error in the calculation of precision. This point 

is made just in passing, incumbent methods are not adapted in this thesis as the 

effect of bias on the calculation of precision for "sensible" estimators is minimal. 

To ensure that precision is a reliable indicator of an assay's quality it is apparent 

that precision must mirror the MDC. Precision must be based on the measurement of 

the concentration in a future sample. In this thesis the main development is the cal­

culation of precision from a Bayesian viewpoint. However, currently used measures 

that have been reported in the literature are critiqued and suggested improvements 

are indicated. 

A by-product from the development of Bayesian measures of precision is a class 

of distributions that completely describe an assay's measurement of an unknown 

concentration. The outstanding feature of these distributions is that they express 

all the information gained from the assay in terms of a probability distribution for 

the calibrated concentration, the entity being measured, conditional on the actual 

concentration. This (These) distribution(s) is (are) known as "the predictive distri­

bution(s) of assay measurements" (denoted PDAM). At concentration x the PDAM 

is denoted as PDAM(x). The class {PDAM(x), x E [0, Do)} describes completely an 

assay's performance over the full range of concentrations. 

The PDAM does not appear to have been developed previously3. These distri­

butions can be used for more general calculations than just the calculation of the 

precision of an assay. The PDAM can be used to assess the performance of any 

measuring device. Therefore, this development is of fundamental importance. 

3 However , Seymour Geisser laid the foundation for the development of a similar entity in his 
work on Bayesian interim analysis (see Section 8.6.3). 
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1.2.5 Machine assays and quality diagnostics for batches of 

assays 

In the last five years machines have been developed which automate the analysis of an 

assay and so reduce the level of human input4 . A hallmark of these machines is that 

statistical algorithms for model fitting are embodied in them and the intermediate 

components of the analysis are hidden. At best only the final estimate and standard 

error of the quantity being measured and the associated raw response measurements 

are output. At worst (and most commonly) just the final estimates are divulged. 

Although minimizing the level of output may simplify the task of the operator, a 

lot of useful information about the assay is lost. 

An overview of several faults with the statistical analysis performed by assays 

analyzed internally by a machine (machine assays) will be given. Attention is, how­

ever, mainly directed at the assessment of the quality of a machine assay and the 

limitations therein. It is apparent that data from a batch of two or more homoge­

neous assays are needed to calculate the quality of a machine assay in the manner 

described in Sections 1.2.3 and 1.2.4. For a reliable assessment of an assay's qual­

ity, data from a batch of many (ten or more) homogeneous assays are needed. Even 

then one is limited to the precision profile because the MDC cannot be calculated. A 

method for calculating the precision profile with data from a batch of homogeneous 

machine assays is outlined in this thesis. 

The assessment of the overall quality of a batch of homogeneous assays in which 

the statistical analysis is controlled by the practitioner (manual assays) is also con­

sidered. (Note that a manual assay is known simply as an "assay" in parts of the 

thesis where machine assays are not discussed.) With data from a batch of homo­

geneous assays a more informed judgement of the quality of the assays' design can 

be made than from just one assay. The measures of MDC and precision discussed 

in the thesis for a single assay are extended to measures of the overall quality of a 

batch of homogeneous manual assays. 

elimination of the human element in the analysis of experimental data is not limited to 
assays. In the pharmaceutical industry the number of patents being taken out on machines which 
automate laboratory procedures and analyses is growing (Arveson (1998)). 
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1.3 Overview 

Before a parametric analysis of an assay can be undertaken, a statistical model for 

the observed data is required. A probability distribution must be specified for the 

observed counts given the concentration in the sample. In Chapter 2 the statistical 

model for the assay responses is described. Some justification of this model is given 

but specific details are consigned to Appendix A. The model is also expressed in a 

general form to enable the methods developed in this thesis to be easily generalized 

to other models. The notation to be used throughout the thesis is described in 

Section 2.2. 

Frequentist methods for estimating a variance function for an assay are reviewed 

and improved upon in Chapter 3. In Section 3.1 the currently used MML method 

is reviewed. Following discussion of the short-comings of this method the ExREML 

procedure is developed in Section 3.2 and from this the ExMML procedure is de­

duced. A feature of this chapter is the characterization of the ExREML procedure in 

Section 3.3. The classical and extended versions of MML and REML are compared 

via simulation in Section 3.4. The mathematical package MATLAB is used for these 

simulations. 

An important point to note is that while the main focus is on the estimation 

of the variance function, ExMML and ExREML fit every component of an assay 

model. These methods are therefore new techniques for the estimation of an assay 

model, not just the variance function. 

In Chapter 4, a Bayesian model is developed for the analysis of an assay. In Sec­

tion 4.1 the form and specification of the prior distribution for the assay parameters 

is described. This is followed in Section 4.2 with the application of the Bayesian 

method to the analysis of an assay. To illustrate the method the calculations are 

outlined for a simple model in Section 4.3. It is also shown how these calculations 

may be used to obtain approximate results in general situations. Exact calculation 

via the M-H algorithm is described in Section 4.4. The algorithm used for these cal­

culations is described and in the associated discussion several tips for the successful 

implementation of the algorithm are detailed. The analysis of data from a batch of 

assays is considered in Section 4.5. The ANSI C programming language is used for 

all of the Bayesian computations reported in this thesis. 
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Once a procedure for fitting the assay model is in place, the assessment of the 

quality of an assay can be undertaken. In Chapter 5 existing measures or diagnostics 

for the MDC of an assay are reviewed (Section 5.2) and new measures are developed 

(Section 5.3). A feature of the existing measures is that they are generally able to 

be only approximately evaluated. Some alternative approximations to one of the 

existing measures are also proposed in Section 5.2. The new measures of MDC arise 

from theses of what a practitioner would want the MDC to represent. The thesis, 

definition and calculation of each new measure of MDC are contained within the 

section in which the measure is introduced. The new measures use the notion of 

Bayesian inference and may be calculated using the M-H algorithm. The necessary 

additions to the algorithm that fits the assay model are given. In Section 5.4 the 

measures are characterized and compared using simulated data. This leads to a 

recommendation of which measures of MDC are the best to use in practice. 

Chapter 6 begins with a review of the methods currently being used to calculate 

the precision profile of an assay. In Section 6.2 some prospective improvements to 

these calculations are suggested. The main body of work is in Section 6.3 where 

measures of precision for a Bayesian analysis of an assay are defined. Preliminary 

development takes place in Section 6.3.1. In Section 6.3.3 the issue of what pre­

cision represents is addressed and one new measure of precision is developed. In 

Section 6.3.4 the measure developed in Section 6.3.3 is shown to give rise to the 

PDAM in a special case. A general PDAM based measure of precision is developed 

in Section 6.3.5. Further applications of the PDAM are considered in Section 6.3.5.4. 

Finally, in Section 6.4 the measures of precision are compared using a real data set. 

The operation of a machine assay is the first point of discussion in Chapter 7. 

In Sections 7.2 and 7.3 the assessment of the quality of a machine assay is consid­

ered. Section 7.3 describes the involvement of batches of homogeneous assays. In 

Section 7.4 the measures developed in Chapters 5 and 6 are extended to diagnostics 

of the overall quality of batches of homogeneous manual assays. 

Finally, in Chapter 8 the principle discussions and conclusions are reviewed. An 

outlook to future work is also given. 



Chapter 2 

Model and notation 

The standard model for the analysis of an immunoassay is introduced and informally 

justified in Section 2.1. The notation used in the remainder of the thesis shall then 

be defined. 

2.1 Statistical n1.odel for an imn1.unoassay 

In an immunoassay the response count is the number of molecules of the compound 

being assayed that either do or do not react with the antibody (refer to Appendix 

A for details). If the reaction were such that each molecule of the compound being 

tested had an equal chance of partaking in the reaction and acted independently of 

all other molecules of the compound, then the response would have a hypergeometric 

distribution. A variety of complicating factors in the measurement of the response 

count serve to make the Poisson distribution a more realistic model of the response 

distribution under "ideal conditions". For example, in radioimmunoassay, although 

the number of reacting molecules is hypergeometric the number of radioactive parts 

actually detected (counted or assayed) is Poisson. 

In reality ideal conditions rarely exist. The molecules will be serially correlated 

as the binding of a molecule to the antibody tends to increase the affinity of neigh­

bouring molecules for the antibody. Random errors from the laboratory analysis 

will inflate the variance of the counts. The error in the measurement of the reagents 

and errors incurred while separating the products of the reaction are examples of 

such errors. It is also unlikely that the probability of a molecule reacting will be the 

15 
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same for all molecules. 

Even though the count arises from a sum of events that cannot be considered 

to be independent, the distribution of the total number of bound (reacted) or free 

(unreacted) molecules will still converge to a normal distribution under fairly ro­

bust conditions. This convergence is due to a central limit theorem for correlated 

variables (see pages 375-379 of Billingsley (1986)). The super Poisson nature of the 

variances can be accommodated by the normal family of distributions by expressing 

the variance of the counts as a parametric function of the mean response. This 

function should be flexible enough to allow wide ranging behaviour in the variance 

of the response to be accommodated. On these grounds, the normal distribution 

is a reasonable model for immunoassay responses. A literature search for assay 

models indicated that the normal distribution is the standard distribution used for 

modelling immunoassay responses. 

Let Yij denote the jth of Ti responses for the ith of n samples analyzed by the 

assay and '(Ii the concentration of the ith sample. The standard model used for the 

analysis of an assay is 

ind N( 2)' 1 . Yij rv /hi, ai ) J = , ... , Ti, '/, 1, ... ,n, 

where /hi m(r/i, (3), at = V(/hi,O) and N(/hi) an denotes the normal distribution 

with mean /hi and variance at. In this model m and v are functions, and the 

parameters, (3 and 0, are p and q dimensional vectors respectively. 

The sigmoid function, 

m(x, (3) = {34 (2.1) 

is often a suitable mean function for the analysis of an immunoassay (Healy (1972), 

Rodbard and Hutt (1974), Finney (1976), De Lean, Munson and Finney (1978)). 

The sigmoid function is a member of the rich logistic family of curves. 

Common variance functions include 

(2.2) 

and 

(2.3) 
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2.1.1 General distribution of the response 

The general form of the distribution of the responses assumed in this thesis is 

where f is any probability distribution that is completely specified by its mean 

and variance. In other words, f is a two parameter family of distributions. The 

restriction to two parameter families is solely for convenience. There is no reason 

why distributions with three or more parameters cannot be used. When the analysis 

of an assay is Bayesian, a prior distribution for the unknown parameters must also be 

specified. Various possibilities for the prior distribution are discussed in Section 4.1. 

2.1.2 NMCH data and model 

Throughout the course of this thesis, the data from a serum thyroxine radioimmuno­

assayl conducted at NMCH on March 17, 1995 will be used for illustrations. These 

data shall be referred to as the NMCH data. 

In the NMCH data there are 7 standards and 75 unknowns (i.e. there are 82 

concentrations of which only 7 are known). The concentrations of the standards are 

denoted by 

x (0,35,70,140,210,280,350). (2.4) 

Each sample is duplicated except for the zero standard which is quadruplicated. 

The mean function to be fitted to the NMCH data is the sigmoid function. By 

convention this describes the percentage bounds rather than the raw responses. The 

percentage bound is an affine transformation of the raw responses (see equation A.1 

in the Appendix). The model for the mean response at concentration x is 

m(x, tJ) MnTotal (/3 
100 4 

(2.5) 

where MnTotal and NSB are assay specific constants (see Appendix A) and for the 

NMCH data have values 35520 and 740 respectively. The variance function is the 

power function of the mean response given in equation 2.2. The responses will be 

assumed to be normally distributed. The model just described will be referred to 

as the NMCH model. 

IThis is a reagent limited assay. For details see Appendix A or Davies (1994). 
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The NMCH data will also serve as the basis for the computer generated data 

used in simulations. The concentrations of the standards are equal to the value of 

X in (2.4) and the mean function is the affine transformed sigmoid function given 

in (2.5) with f3 = (55,1.2,60,4)', MnTotal= 35520 and NSB= 740. The variance 

function will be either (2.2) or (2.3). 1b generate assay data f3, 0, r,u and r also need 

to be specified. The values of these terms vary with the simulation being performed 

and so will be documented when and where it is appropriate. 

2.2 Notation 

In this thesis two sets of notation are required corresponding to the analysis of a 

single assay and of a batch of assays. However, there is a large overlap between 

the two. The notation for a batch of assays requires just a few amendments to the 

notation used for the analysis of a single assay. 

2.2.1 A single assay 

As mentioned above, f will denote the probability density function (pdf) of the 

observed responses. The marginal distribution function of the observed data is 

also indicated using the symbol f. Prior distribution functions shall be denoted 

using the symbol 7r. The output from a Bayesian analysis consists of the posterior 

distribution for the unknown parameters and sometimes a predictive distribution 

for as yet unobserved responses. Posterior distribution functions are also denoted 

using the symbol 7r while predictive distribution functions of response variables use 

the symbol p. All of these distributions will be described in detail in Chapter 4. 

For the most part no distinction is made between vectors and scalars. A subscript 

will distinguish a component of a vector from the full vector. When the argument of 

a function is a vector as opposed to a scalar, the vector is evaluated componentwise 

with the dimension of the vector being maintained. For matrices or general two 

dimensional arrays, a single subscript refers to a row and a double subscript to 

individual elements. 

Greek letters are used to denote parameters. A Greek letter with a hat over it 

is an estimate of the parameter. A vector or an array with a set as a superscript 
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indicates that the entity is reconstructed using just the observations in the respective 

set. 

The expectation operator will be denoted by E and the variance operator by V. 

The space a definite integral is evaluated over is denoted by R(z) where z is the 

variable being integrated. 

For simplicity no distinction is made between random variables and their real­

izations. The indices are also arranged so that the standards are first. 

The notation for a single assay is as follows: 

.. The set of indices for the standards: S. 

• The set of indices for the unknowns: U. 

• The number of standards: nS. 

• The number of unknowns: nU
• 

CD The total number of samples: n. 

• The vector containing the number of replicates for each sample: r. 

• The two dimensional array containing all of the observed responses: 

• The vector of responses for the ith sample: Ii. This is the ith row of Y. 

• The mean response for the ith sample: fi . 

.. The vector of all the concentrations: 

• The vector of the concentrations for the standards: X = 'T}s. 

• The assay data: (Y, X). 

• An arbitrary vector of responses which, conditional on the associated concen­

trations, is independent of the data observed in the assay: y. 
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• The known or true concentration of an independent response: x . 

.. The unknown concentration of an independent response: w. 

Ell The mean function parameters: fJ. 

.. The dimension of fJ: p. 

• The variance function parameters: O . 

.. The dimension of 0: q. 

6\ The model parameters: (fJ, 0). 

• The unknown concentration parameters: r,u. 

" assay parameters: (fJ) O} r,u). 

• An arbitrary level of mean response: m. 

• The vector of parameters for the mean response: fh = m(rJ, fJ). 

• The vector of estimates of the mean responses: fl = m( r" S). 

• The gradient of the mean function at concentration x: mp mp(x, fJ) 
:pm(x, fJ). 

• The fitted gradient of the mean function at concentration x: mp = mp(x, S). 

• The Jacobian matrix of the vector mean function for the standards: Jp = 

mp(X, fJ). The transpose of mp(Xi' fJ) is the ith of n S rows of Jp. 

Ell The fitted Jacobian matrix of the vector mean function for the standards: 

Jp = mp(X, S). 

When required, additional notation is defined for use in specific sections of the 

thesis. 
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2.2.2 A batch of assays 

When a batch of assays are analyzed, an additional subscript is required to indicate 

which assay the data and model belong to. For example, Yhij is defined as the jth of 

'fhi replicated response measurements for the ith of nh samples in the hth of b assays 

and 17hi is the associated concentration. The preceding rules for two dimensional 

arrays carryover to arrays that are two dimensions and higher. For example, Y is a 

three dimensional array of the responses over all assays, Yh is the two dimensional 

array of all the responses in the hth assay and Yhi is the vector of responses in the 

ith sample of the hth assay. 

The extra subscript extends to other entities in an analogous fashion. For exam­

ple, Sh is the set of indices for the standards in the hth assay and S contains pairs 

of indices indicating which samples are standards in each of the assays. If (h, i) E S, 

or equivalently i E Sh, then rlhi =Xhi, otherwise 17hi = 17g. The vector of the con­

centrations of the standards in the hth assay is X h and X is the two dimensional 

array of the concentrations of the standards for all of the assays in the batch. 





Chapter 3 

Variance function estimation 

The purpose of the research reported in this chapter is to develop better frequentist 

methods of estimating a variance function for an assay. It is convenient that the 

proposed improvements involve fitting the assay model and therefore suggest new 

methods for estimating the mean function and calibrating the unknown concentra­

tions. The technical developments in this chapter are made in terms of the standard 

immunoassay model. 

3.1 Modified maximum likelihood 

Modified maximum likelihood (MML) is based upon maximum likelihood estima­

tion of the model Yij ,....., N(/ti) V(/ti) 0)). This is the probability density function of 

the responses when the mean function and the concentrations of the standards are 

ignored. The likelihood function for this model is given by L IT?""l f(Yi I /ti,O), 

where 

(3.1) 

The MML procedure for variance function estimation is to adjust the likelihood 

function prior to maximization. The adjustment is simply to multiply (3.1), the 

contribution of the ith sample to the likelihood function for all of the experimental 

23 
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observations, by VV(pi' ()). The resulting modified log likelihood function for the 

assay data is proportional to 

l: ij Pi . Ti (JI: )2 } 
j=l V(Pil ()) 

(3.2) 

The MML estimates of () and P (the nuisance parameter in this context) are obtained 

by maximizing £, over the parameter space of () and p. The adjustment accounts 

for the loss of degrees in freedom resulting from the estimation of the nuisance 

parameter p. 

The adjustment to the likelihood function is theoretically justified on the basis 

that it aligns the maximum likelihood estimates with the standard parameter es­

timates for the model i~ N(Pi' ()2). The pseudo likelihood functionl obtained 

when the maximum likelihood estimate of P is substituted into this adjusted like­

lihood function is "correct" in the sense that it is "the integrated likelihood for 

()2" and is "the conditional likelihood of the observations at the observed values of 

the sufficient statistics fi for Pi" (Raab (1981)). As the pseudo likelihood for ()2 is 

equivalent to the integrated likelihood for ()2, the MML estimate of ()2 is also the 

mode of the (marginal) posterior distribution of ()2 when the prior for (p, ()2) is pro­

portional to a constant. Furthermore, MML estimates of ()2 are unbiased whereas 

maximum likelihood estimates are not even consistent. If max{Ti, i = 1, ... ,n} = k 

then maximum likelihood estimates are asymptotically negatively biased by at least 

()2/k. 

The above mentioned derivations of the modified likelihood function do not gen­

eralize to the case where the variance depends on the mean (Raab (1981)). Jewell 

and Raab (1991) calculated a marginal likelihood for the coefficient of variation that 

yields consistent estimators when the variance is proportional to the square of the 

mean but the method also fails to generalize. However, numerical evidence suggests 

that MML gives consistent estimates of (), in some cases even unbiased estimates 

(Raab (1981)). 

Since MML determines the weights for the estimation of the mean function 

independently of estimates of (3, only one iteration of iterative reweighted least 

squares (IRWLS) is required to obtain final estimates of all the parameters. This is 

pseudo likelihood function is a likelihood function in which parameter estimates are substi­
tuted for some parameters. 
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at the expense of any information that would be obtained from the residuals of the 

fitted mean function. It seems reasonable that a more efficient estimate of 0 will 

result if the fits from the mean function are used as estimates of p.,s in place of ys. 

Only p degrees of freedom are expended as opposed to the n'~ degrees of freedom 

needed to individually estimate each component of p.,s. With this motivation an 

improved method to MML is now developed.2 

3.2 REML for an assay 

In regression analyses where there are no missing values for any of the independent 

variables, restricted maximum likelihood (REML) is an appropriate and perhaps the 

most strongly recommended means of estimating a variance function. By accounting 

for the degrees offreedom lost in th/? estimation of the means, REML performs signif­

icantly better than maximum likelihood and pseudo likelihood estimates. REML has 

the added theoretical appeal of being equivalent to some standard non-informative 

Bayesian estimates. It clearly makes sense to follow the REML methodology to 

incorporate the mean function and use the known concentrations in the estimation 

of a variance function for an assay. 

In order for REML to be privy to information in the replicated responses of 

unknown samples, r,u must be estimated in conjunction with {J. This is achieved by 

writing the expectation of the ijth response in the extended form 

n 

L m('fjk, (J)I(k = i) 
k=l 

m(Xi' (J)I(i E S) + p.,J(i E U), (3.3) 

where I is the indicator function, I (event) = 1 if "event" is true and 0 otherwise, 

and J),i = m('fji, (J). 

By treating (3.3) as the mean function3 , generalized least squares (GLS) esti­

mates of JP will be calculated along with those of {J in the WLS (weighted least 

squares) step. The re-parameterization of 'fju to IP greatly simplifies the expo­

sition of the method and the computation of the estimated parameters because 

2In multivariate situations where the observations are correlated, as in universal kriging, there 
is some disagreement as to whether or not it is better to use the fitted mean function. 

3In classical REML the mean function would only comprise the left hand term of (3.3) causing 
the unknown samples to be ignored. 
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it uncoupled fJ and TJu. The estimates of the parameters are unaffected by re­

parameterization since the function being maximized is unchanged. 

Let fJ and pP be GLS estimates of fJ and IF respectively. Since pY is equal to 

yU at each iteration Pi = m(Xil fJ), i E S and Pi i E U. 
The development in Carroll and Ruppert (1988, pp. 74) is now followed. Re­

call that when the argument of a function is a vector as opposed to a scalar, 

the vector will be evaluated componentwise with the dimension of the vector be­

ing maintained. Define U(J.-Li, g) 10g(v(J.-Li' g)), UO(J.-Li, g) = :OU(J.-Li' g), e(J.-Li' g) = 

fo(fi J.-Li)/JV(J.-Li,g) and let Sl - Z=j~l(Yij fi)2. Also let W W(ils,g) = 

diag{ri/v(ili,g),i E S} and H(fJ, g) Wl/2J,,(Jpl¥J,,)-lJpWl/2. The ma­

trices Wand H are commonly referred to as the weight matrix and nonlinear 

"hat" matrix respectively. The n S x p first derivative matrix for the standards 

is J" rn,,(X, fJ). 
At il, the pseudo likelihood ing solves the equation 

n 

~ e(Pi, g?UO(ili' g) = ~ riuo(ilil g), (3.4) 
iES i=l 

since e(Pi, g) = 0, i E U. All the terms involving the residuals Yij - ili are purposely 

placed on the left hand side (lhs) of (3.4). The REML procedure is to equate the Ihs 

of (3.4) to its expectation and solve for g. The idea is that the resulting adjustment 

to (3.4) accounts for the degrees of freedom lost in the estimation of J.-L. 

The above expectations can be evaluated when m( TJ, fJ) is a linear function of fJ 
and v(m, g) is independent of m. However, if m(TJ, fJ) is a nonlinear function of fJ or 

v depends on m, then approximations are required. 

The procedure implied by Carroll and Ruppert (1988, pp. 74) is to approximate 

the expectation of the Ihs of (3.4) as follows: 

1. Treat V (ili, g), U(ili, g) and UO(Pi, g) as if they did not depend on ili so that 

(Ti l)V(ilil e) - E[Sll and hence 

E [ (Sl )] Ti 1, 
v Pi, g 

E [V(!~g)uo(Pi,g)l- E [v(!~e)l UO(Pi, g) = (Ti l)uo(Pi,g) 

and 



3.2. REML for an assay 27 

Set E[e(Pi, 0)2] 1 - Hii , i E S, where Hu = Hii(fj,O) is the ith diagonal 

element of H. 

details of the second approximation as presented in Carroll and Ruppert 

(1988) are somewhat sketchy. It is based on a first order Taylor series expansion 

of pS m(X, 13) about (3 and the adaption of the result that E[e(pS, O)e(pS, 0)'] 

I H when m is linear in {3 and v does not depend on {3. (See Carroll and Ruppert 

(1988, pp. 32, 33, 74) for further details.) 

After incorporating the above approximations, the expectation of the lhs of (3.4) 

becomes 

" " '2]ri l)uO(Pi,O) + L(l - Hii)Ue (Pi, 0) = L(ri - li)Ue(Pi, 0), 
i=l iES i=l 

where li li(Pi,O) is equal to Hii if i E Sand 1 if i E U. The ith leverage value , 
li measures the amount of information in the data from the ith sample used to 

estimate fJ, (equivalently (3 and fJ,U). The REML estimating equation for 0 is thus 

" " L ----:---'---,-1/, (Pi, 0) + L e(Pi, O)2Ue(Pi' 0) = L(ri - l(Pi, O))Ue(Pi, 0). (3.5) 
i=l iES i=l 

The resulting estimates are referred to as extended restricted maximum likelihood 

(ExREML) estimates to avoid confusion with classical REML estimates. The sub­

traction of li from ri is the only alteration to the right hand side (rhs) of (3.4). 

The pseudo likelihood estimating equation is in effect adjusted to account for the 

estimation of fJ,. 

The difference between the rhs of (3.5) and the true expectation of the lhs of 

(3.5) depends on the level of variation in the data and the curvature of fL. This is 

discussed further in Sections 3.4 and 8.1. When the mean function is linear in {3 

and the variance function is independent of fL the discrepancy vanishes. 

The adjustment can be imposed on the pseudo likelihood function for 0 at p, a 

WLS estimate of fL, to give the (modified) pseudo likelihood function 

L II". (A. o)-(ri-I({Li,e))/2 {Lj~l (Yij - Pi?} (3.6) v fL~, exp 2 (~. ll) . 
i=l V fLt,!7 

The value of 0 that maximizes L is an ExREML estimate of O. The final ExRE::\IlL 

estimate of 0 is obtained by iteratively updating the generalized least squares esti­

mate of fL and the ExREML estimate of 0 until convergence is reached. This process, 

iterative reweighted least squares, is formalized in the following algorithm: 
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1. Use the standards to obtain /J, an initial estimate of {3. 

2. Set Pi m(Xi' /J) for standards and Pi :9i for unknowns. 

3. Set li = l(Pi, 0) = Hii(/J, 0) for standards and li 1 for unknowns. 

4. Calculate e by maximizing (3.6). 

5. Use the standards to obtain, /J, the WLS estimate of {3 corresponding to e. 

6. If convergence has not yet been attained return to step 2. 

3.2.1 Variation of ExREML 

Instead of substituting the estimates of {3 and J-Lu into (3.6) one could estimate {3, 

o and J-Lu simultaneously. The procedure is to maximize the full modified likelihood 

function 

L 

over {3, 0 and J-Lu , where J-Li = m(Xi' {3) if i E S. This is MML extended to take 

account of the mean function and the known concentrations. This method of esti­

mation is referred to as extended modified maximum likelihood (ExMML). When 

v(m, {3) does not depend on m, ExMML and ExREML have the same estimating 

equations and so yield identical estimates. If v(m, {3) depends on m, the norm for 

an assay, the values of the estimates are slightly different. This is due to the use of 

information in the variance function about {3 and 'f} in the ExMML procedure but 

not in the WLS step of the ExREML procedure. It is conjectured that ExMML 

will be slightly more efficient when the observations are normally distributed but 

slightly less robust to departures from normality. 

The ExMML and ExREML procedures are very similar. The difference be­

tween them is analogous to the difference between MML and MACL. In MACL, 

the estimates of J-Lu are constrained to equal the corresponding sample means, as 

in ExREML, as opposed to unrestricted maximization of the modified likelihood 

function, as in ExMML. 
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3.3 Bayesian characterization of ExREML 

The equivalence of the ExREML estimation method to two calculations based on 

standard non-informative Bayesian analyses will now be illustrated. As the Bayesian 

paradigm is not fully empowered at this point, a full description of it is left until it 

is needed in Chapter 4. 

As well as providing some theoretical support, an equivalent Bayesian procedure 

illustrates the inherent properties of an estimator. Due to the similarity of the 

ExMML and ExREML procedures, the Bayesian characterization can be considered 

to apply to both. 

3.3.1 Main derivation 

This derivation is presented in two pegments: the integration step and the optimiza­

tion step. 

3.3.1.1 Integration step 

Assume that the prior for the parameters (3, () and p,u is locally uniform. (In the 

terminology of Chapter 4 this is an ad-hoc non-informative prior.). This assertion 

is approximated by n((3,(),p,U) ex: 1 or equivalently n((3,(),r"F) ex: ITiEuml1i (7]i,(3). 

To make Bayesian inferences on (), the posterior for () is required (Harville (1977)). 

This separates the nuisance parameters from the estimation of (). The posterior 

distribution for () is proportional to 

n(() I Y,X) { {f(Y I X, (3, (), 7])n((3, (), 7]U) d(3 d7]u 
In(l1U) In({J) 

( f(Ys I X, (3,()) ({ f(Yu I 7]U,(3,())n((3,())7]U)d7]U) d(3 
In(fJ) In(l1U) 

( f(Ys I X,(3,()) ({ f(Yu I p,U,())dp,U) d(3 
In({J) In(/lU) 

{ f(Ys I X, (3, ()) d(3 ( f(Yu lIP, ()) dp,u. (3.7) 
In({J) In(/lU) 

By changing the order of integration and transforming 7]u to p,u in (3.7), f3 is elimi-

nated from the portion of the likelihood function involving the responses for unknown 

samples thus partitioning the data. The re-parameterization has this effect because 

the Jacobian of the transformation is the inverse of the prior on (f3, (), 7]U). 
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In general, it is impossible to evaluate the integrals in (3.7) in the form of explicit 

algebraic expressions. The approach taken here is to use the following approxima­

tions: 

1. V(f-Li, e) ~ V(Pi, e) and 

2. m(Xi' (3) ~ m(Xi' /3) + mf3(Xi , /3)'({3 - /3), 

where {3 and Pi are taken to be generalized least squares estimates. These approxi­

mations mirror the approximations in Section 3.2. They allow the variance function 

to be treated as if it is independent of the mean and the mean function as if it is 

linear in (3. 

With the first approximation the right-hand integral in (3.7) evaluates to 

(3.8) 

since the normal kernels integrate to constants. 

Both approximations are needed to evaluate the left-hand integral in (3.7). Let 

ys = yS - m(X, /3) + lf3/3 so that by the second approximation 

L rlYi - m(Xi, (3))2 
iES v (f-Li, e) 

~ L rlYi - m~(Xi' (3)'(3) 2 

iES V (f-Li, e) 

(yS - l f3 (3)'w(ys - lf3(3). 

(3.9) 

(3.10) 

At this point, the following well known identity from weighted least squares regres­

sion is used: 

(yS - lf3(3)'w(ys - lf3(3) = 

YS'W 1/ 2(I - H)Wl/2yS + ({3 - j3)'(l~w l(3)({3 - 13), (3.11) 

where 13 (lbW l(3)-llbWYs. Denote the terms from left to right on the rhs 

of (3.11) by q(Y) and q({3) respectively. Applying the above approximations the 

left-hand integral in (3.7) evaluates to 
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. exp {-((:E S; /V(Pi, 0)) q(Y) 
iES 

q(f3))/2} df3 

(IT v(}. 0)-1';/2) exp {-((LiES Sf !v(P:, 0)) q(Y))/2} 
iES J t, det(JpW J(3)1/2 ' 

(3.12) 

since exp{ (f3) /2} is a multivariate normal kernel with covariance matrix (Jpw J(3)-l. 

To proceed further, the following result is needed. Although Carroll and Ruppert 

implicitly use this result, they do not provide a proof. Because the result is not 

obvious, full details of the proof are included herein. 

Theorem 3.3.1 If f3 is a GLS estimate of f3 at 0 then 

yS'Wl/2(I - H)Wl/2yS = :E e(Pi, 0)2. 
iES 

Proof: Since W is diagonal 

(I H)Wl/2yS = Wl/2(yS - J{3j3). 

(To verify this expression just substitute j3 with (Jpw J(3)-lJpWYS.) 

idempotent (I - H)2 I H and so 

yS'Wl/2(I H)Wl/2yS = (yS - J{3j3)'W(Ys - J{3j3). 

I His 

Since 13 is the GLS estimate corresponding to the weight matrix W it satisfies the 

following estimating equation: 

Hence, 

and so 

:EWii(Yi m(Xi,j3))m{J(xi,j3) = J~W(Ys - m(X, 13)) O. 
iES 

f3 (J~w J(3)-l J~WYs 

(J~w J{J)-lJ~W(YS - m(X,j3) J{3j3) 

(J~w J{J)-l[J~W(Ys - m(X, 13))] + 13 

13 

(yS _ m(X, j3))'W(YS m(X, 13)) 

:E Ti(Y - Pi)2 /V(Pi, 0) 
iES 

:E e(Pi, 0)2. 
iES 
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The interpretation of the equality i3 ~,is that the linearized model contains 

no information about f3 that is not modelled, or explained, by the nonlinear model. 

This derivation emulates an iteration of the Gauss Newton algorithm for a nonlinear 

model (Seber and Wild (1989), Christensen (1991)). In this case the starting value 

is the nonlinear least squares estimate so it is entirely reasonable that the algorithm 

remains stationed at this point. 

By Theorem 3.3.1 the expression in (3.12) becomes 

(3.13) 

3.3.1.2 Optimization step 

The posterior distribution of 8 is approximately proportional to the product, denoted 

7r(8), of the expressions in (3.8) and (3.13). It is now shown that the mode of 7r(8) 

equals the ExREML estimate of 8. 

The maximum value of log(7r(8)) satisfies to log(7r(8)) = O. Hence 

N Sf 
- L(Ti 1)ue(Pi,8) L (A~ 8)ue(Pi,8) 

iEU i=l v J-Ltl 

- LTiue(Pi,8) + Le(Pi,8)2ue(Pi,8) - :8(det(JpVV(P,8)J{3)) O. 
iES iES 

(3.14) 

From Nel (1980), a~" det(M(8)) tr(M(8)-1 at M(8)) where tr is the trace operator 

and M is a matrix whose entries are functions of 8. Now: 

tr( -( Jb W J(3)-1 Jb Wl/2U(8k)WI/2 J(3) 

-tr(U(8k)Wl/2 J{3(JpHI J(3)-1 Jpl1Tl/2) 

-tr(U(8k)H) 

L Uo" (Pi, 8)Hii. 
iES 
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Hence, :0 det(J~W(P, e)J(3) = - L:iES UO(Pi, e)Hii(~' e). Substituting this into (3.14) 

the ExREML procedure is obtained since 

iEU iES iES 
n 

L(ri -l(Pi, e))UO(Pi, e). 
i=l 

3.3.2 Alternative Bayesian derivation 

Now suppose that the variance function has the form v(m, e) = (J2g(m, T), where 9 is 

a function and e = ((J2, T)'. The variance functions in (2.2) and (2.3) are examples 

of such variance functions. Let 7r((3, (J2, T, pY) ex 1/ (J2 be the prior distribution. 

The following derivation shows that if the approximations used in Section 3.3.1 are 

applied to this model then the mode of the posterior distribution of T is the ExREML 

estimate of T. 

For this development, 9 takes the place of v in the definitions of U and W. The 

ExREML estimates of (J2 and T satisfy 

(3.15) 

and 

(3.16) 

respectively, where sst(i, T) = (riCfi - Pi? + Sf)/ g(Pi, T) is the weighted total sum 

of squares of the responses for the ith sample. Recall that Pi = Yi if i E U so the 

required simplification is assured for unknowns. 

The estimate of T under the alternative Bayesian formulation is constructed by 

replacing V (ILi, e) with (J2g(ILi' T) in 7r(e), multiplying by 1/ (J2 (to cater for the prior) 

and integrating with respect to (J2 over the interval (0, (0). This yields 

iEU iES 

100 ( 1 ) -(L:~=1 (T;-1)+n
s
-p)/2+1 {1 n .} 2 

. 2 exp -2 L sst('/" T) d(J. 
o (J (J i=l 



34 Chapter 3. Variance function estimation 

After recognizing the inverse gamma kernel in (52 it follows immediately that 

iEU iES 

( 

n ) -(I:~=1(Ti-l)+ns-p)/2 
. L sst(i, T) 

i=l 

Using the results developed in Section 3.3.1, the estimating equation for the maxi­

mizing value of T is found to be 

(3.17) 

Equation 3.17 is the ExREML estimating equation for T after (52 is substituted with 

the rhs of (3.15). 

This derivation extends Carroll and Ruppert's characterization ofREML (Carroll 

and Ruppert (1988, pp. 75, 76)). Aside from the additional integration (needed to 

cater for (52) it is equivalent to the derivation in Section 3.3.1. The equivalency 

occurs because the estimating equation for the approximate mode of the posterior 

distribution of T is the equation obtained when the REML estimate of (52 (as a 

function of f) is substituted into the remaining estimating equation. Incidentally, 

there is more justification for the prior 7r(f3, (52, T, p,u) ex 1/(52 than for a flat prior 

when the variance function is of the form v(m, B) = (52g(m, T). In particular, when 

p and T are known this prior is the Jeffreys prior for (52. It makes sense to average 

the posterior over (52 because (52 is a scale parameter and so does not affect the 

weights used in WLS. In this sense, (52 is a nuisance parameter. 

Other instances of Bayesian methods being used to suggest or to characterize es­

timates of variance functions include Box and Hill (1974), to estimate a homogeneity 

inducing transformation, and Harville (1974), to estimate variance components. 

3.4 Additional topics on ExMML/REML estima­

tion 

Some further topics involving ExMML/REML estimation of a variance function are 

now discussed. 
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3.4.1 Approximate ExMML/REML estimate 

It is interesting to study the extended (MML/REML) estimates when the data are 

homoscedastic. This is one of the rare instances where the ExMML and ExREML 

estimates are equal and furthermore reduce to a weighted average of an estimate 

based on the standards and an estimate based on the unknowns. The common 

ExMML and ExREML estimate of (J2 is 

A2 (J = 
",n 82 ",n

s ("'17 A)2 
6i=1 i + 6i=1 ri Ii - J-ti 

2:~l(ri -1) + n S 
- p 

(F - l)nUo-~m + (fSnS - p)o-;e 
(fu - l)nu + fSn S - p 

(3.18) 

where fS = l/ns 2:iES ri, F = l/nu 2:iEU ri, o-;e is the REML estimate of (J2 and 

o-~m is the MML estimate of (J2 based on only the unknowns. 

It seems intuitively clear that an improvement in the general case to REML and 

MML estimates could be made by substituting o-;e and o-~m with ere, the REML 

estimate of e, and emm , the MML estimate of e calculated using just the unknown 

samples, respectively. This may give a reasonable approximation to the extended 

estimate. In general, however, there is no guarantee that a weighted average is 

the most efficient way of combining the two estimates. The extended estimators will 

generally perform better than the weighted average estimator just described because, 

unlike the weighted average estimator, the extended estimators simultaneously use 

the information in the standard and unknown samples. The extended estimators 

benefit from a likelihood based optimal data specific weighting of the information in 

the standard and unknown samples while the weighted average estimator does not. 

By deleting the po-;e term in the numerator and the p in the denominator of 

(3.18) and taking ri = n r > 1 for i = 1, ... ,n, it can be seen that (3.18) becomes 

the weighted estimate suggested by Carroll and Ruppert (1988). Since the resulting 

estimate takes no account ofthe degrees offreedom used to estimate {3, the standards 

are weighted more heavily than in (3.18). For small n S and fS the standards will 

thus be overweighted. 

3.4.2 Importance of standards and unknowns 

To illustrate the relative importance of standard and unknown samples to the esti­

mation of the variance function, the homogeneous linear assay model is considered. 
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Let m( 'f}i, fJ) = z~fJ where the components of Zi are functions of 'f}i and V (/li, 0) (72. 

For the purpose of simplicity, suppose that the number of replicates is the same for 

all samples and write Ti = nT. Then the extended estimate of (72 is given by 

where n = nS + nU. As Sf is independent of fj "Vi,j, Sf is independent of (l~S -

Zj S)2 "Vi,j. Therefore, (n(nT - 1) + n S 
- p)!~ hacc:; a chi-square distribution with 

n(nT 1) n S 
- p degrees of freedom. Hence, the variance of o-;:r; is 

;)2+ n' _ p)' --'----'-2---

2(74 

The MML estimate of (72 is 

and 

The REML estimate of (72 is 

LiEn' Sf + nT 
LiEnS (f? z~S)2 

nSnT p 

and 
V( A2) 2(74 

(7Teml = nSnT p 

Therefore, the relative efficiency of o-!ml to o-;:r; is 

n(nT - 1) + nS - p 

and the relative efficiency of o-;eml to o-;:r; is 

Both o-!ml and o-;eml are clearly inefficient. When nU is large relative to nS
, 

the usual scenario in an assay, o-!ml will perform better than o-;eml' Ignoring the 

unknowns will in practice lead to a very inefficient estimate. 
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The above model is a simplification of the standard model for an assay. In this 

model the values of 7]8 X, 7]u and other entities will have a confounding effect. 

However, one would still expect the results to generalize to some extent. This 

suggests that unknown samples significantly enhance the quality of the estimates of 

the parameters of a variance function. The numerical results in Section 3.5 validate 

this claim. 

3.4.3 Some theoretical properties 

To summarize the above ideas, the key theoretical properties of the extended estima­

tors (ExMML and ExREML) for estimating a variance function are recapitulated. 

II The extended estimators extract more information from the data than either 

MML or REML. In MML, the known concentrations of the standards are not 

used and in REML the unknown samples are neglected . 

• Even though they use more information than MML and REML, not all of the 

information about e contained in the data is used by ExMML or ExREML. 

- By holding the variance function constant while integrating over fl,u, some 

information about e is discarded. From another perspective, this means 

that not all the uncertainty in p, has been considered. It is also the case 

that the likely disparity between the extended estimators and the true 

posterior mode will increase as the heterogeneity in the data increases. 

- Since m(X, (3) is linearized with respect to f3, the curvature in the mean 

function is ignored. Thus a high degree of nonlinearity in this function 

may have a noticeable effect on the accuracy of the estimators . 

• The estimate of e corresponds to the approximate mode of the posterior dis­

tribution of e under a fiat improper prior for (f3, e) p,U). When the variance 

function is of the form v (p,i, e) = a2 9 (p,i) T) where e (a2, T)') the ExREML 

estimate of T is an approximation of the mode of the posterior distribution for 

T under the prior 1f(f3, a2, T, p,U) ex 1/a2
• If m is linear in f3 and v does not 

depend on m, the extended estimators coincide and are exactly equal to the 

posterior modes (under the above priors) of e and T respectively. 
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e The ExMML and ExREML estimates are in general not able to be represented 

as a weighted average of an estimate based exclusively on the standards and an 

estimate based exclusively on the unknowns. This is due to the simultaneous 

use of all the data in the calculation of the ExMML and ExREML estimates. 

3.5 Simulation 

Using simulated data designed to resemble immunoassay responses the behaviour of 

the MML, REML, ExMML and ExREML estimates were investigated. The design 

of the assay (X and r) is as for the NMCH data. The concentrations of the un­

known samples were taken as 7]u {100, 100 + 150 x 1/7, ... ,100 150 x 6/7, 250}. 

This constitutes about l/loth the unknowns that would typically be analyzed in a 

serum thyroxine radioimmunoassay at NMCH. This reduction was made in order to 

prevent the estimates being dominated by the unknowns; As differences are easier 

to notice, an equal number of standards and unknowns is preferable to having ex­

cessive differences in the number of standards and unknowns when comparing the 

estimators discussed in this chapter. 

A range of values for () were considered for the following variance functions: 

In each case the MML, REML, ExMML and ExREML estimates were evaluated on 

1000 sets of randomly generated data. The behaviour of each estimator is summa­

rized by the mean and root mean squared error (RMSE) of the estimates over the 

1000 sets of data for each parameter value and variance function. To aid in the in­

terpretation of the results, () is transformed so that the estimates of its components 

are less dependent. 

To quantify the overall accuracy of the fitted variance function, the total distance 

between the fitted and true variance functions over the range of the assay was 

calculated. The measure of distance is the scaled L2 norm defined for continuous 

functions hand 9 on the domain [a, b] as 

1 rb 

D[a,bj(h, g) = b _ a la (h(u) g(u))2du. (3.19) 
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This measure is referred to as the scaled L2 distance (SL2Dist). The smaller the 

value of SL2Dist, the more accurate the fitted variance function can be said to be. 

In the simulation, hand g are the fitted and actual variance functions, a and bare 

m(O,,6) and m( 400,,6) respectively and the integration is with respect to the mean 

response. 

3.5.1 Power variance function 

3.5.1.1 Reparameterization 

Under the current parameterization, estimates of () are highly correlated. This can 

make numerical computation of the estimates expensive. Furthermore, correlation 

makes individual study of the estimates difficult and perhaps futile. It is better to use 

a parameterization for which the parameter estimates are not as highly correlated. 

The parameterization of () appropriate for the power variance function is indicated 

in the following theorem. 

Theorem 3.5.1 Let it be the geometric mean of fl. That is it = (TIi=l fl~i)l/T where 

T rio Then if Yij f'V N(fli, ()1 (fli/ it){h) and fl is known the maximum likelihood 

estimates of ()1 and ()2 are asymptotically independent. 

Proof: Let £, denote the log-likelihood function of (). It is easy to show that 

Now 

~ "i { log(/Li) - ~ log (g i'i') } 
log (g i'i') - log (g i'i') 
O. 

Hence, the off diagonal entries of I(()), the Fisher information matrix of (), are equal 

to zero. This indicates that the asymptotic correlation of the MLEs, Bl and B2 , 

is zero. As this is a regular model, the MLEs of () are asymptotically normally 

distributed and therefore independent. 
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Table 3.1: Relative means and relative root mean squared errors of the estimates of the scale 
parameter iJ1 in the power variance function. 

Parameters MML REML ExMML ExREML 
Relative Relative Relative Relative 

e1 e2 Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
1000 0 0.929 0.348 0.886 0.403 0.931 0.313 0.931 0.314 
5000 0 0.955 0.355 0.906 0.400 0.954 0.323 0.954 0.323 

15 0.5 0.946 0.335 0.909 0.398 0.952 0.313 0.950 0.313 
75 0.5 0.962 0.354 0.938 0.410 0.966 0.324 0.965 0.324 

0.2 1 0.968 0.337 0.921 0.395 0.969 0.304 0.967 0.304 
1 1 0.960 0.336 0.947 0.408 0.971 0.313 0.969 0.313 

0.01 1.5 0.956 0.347 0.923 0.412 . 0.962 0.321 0.958 0.320 
0.05 1.5 0.953 0.328 0.920 0.397 0.960 0.311 0.957 0.311 

0.001 2 0.950 0.340 0.923 0.406 0.956 0.318 0.951 0.317 
0.005 2 0.943 0.337 0.910 0.395 0.956 0.302 0.941 0.309 

Since all of the estimation methods discussed in this chapter reduce to the maxi­

mum likelihood method when f-t is known, Theorem 3.5.1 can be applied. To induce 

independence into the estimates of (), a reasonable approach is to transform e so 

that the above result applies. It is apparent from the equation 

that the required transformation is given by 81 = ()di2 • Intuitively, 81 measures 

the magnitude of the variance while ()2 measures the level of heteroscedasticity. The 

re-parameterization has uncoupled these features of the variance function. 

When f3 and f-tu are unknown and must be estimated, numerical evidence suggests 

that the correlation between 81 and O2 is significantly less than it is between 01 and 

O2 , 

3.5.1.2 Results for 81 

In Table 3.1 the means and root mean squared errors of the estimates of 81 are 

divided by the value of 81 , The relative values of 81 are easy to display because they 

are always close to unit value whereas the raw values vary extensively. 

The ExMML and ExREML estimators are clearly the best in terms of mean 
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Table 3.2: Means and root mean squared errors of the estimates of the power parameter O2 in the 
power variance function. 

Parameters MML iifi REML ExMML ExREML 
(h (h Mean RMSE ean RMSE Mean RMSE Mean RMSE 

1000 0 -0.109 0.762 -0.041 0.813 -0.103 0.710 -0.106 0.729 
5000 0 -0.122 0.753 -0.048 0.782 -0.111 0.699 -0.114 0.718 

15 0.5 0.403 0.745 0.463 0.794 0.388 0.694 0.399 0.711 
75 0.5 0.410 0.716 0.449 0.735 0.399 0.657 0.410 0.674 

0.2 1 0.895 0.768 0.952 0.786 0.874 0.713 0.897 0.729 
1 1 0.919 0.693 0.958 0.737 0.889 0.645 0.912 0.658 

0.01 1.5 1.361 0.769 1.427 0.806 1.347 0.725 1.383 0.735 
0.05 1.5 1.405 0.723 1.462 0.761 1.370 0.684 1.405 0.696 

0.001 2 1.903 0.746 l.965 0.787 1.856 0.707 1.904 0.713 
0.005 2 l.906 0.721 1.965 0.768 1.855 0.679 l.903 0.693 

squared error and are themselves almost identical on all accounts. The estimators 

yield estimates of e1 that are negatively biased with ExMML being the least so. It is 

interesting to note that the relative bias of all the estimates was least when ()2 1. 

In this case, the variance function is the variance of the Poisson distribution. 

3.5.1.3 Results for ()2 

The behaviour of e2 varies significantly between the estimators. The extended 

estimators have the smallest mean squared error with ExMML performing slightly 

better than ExREML. It is interesting to note that the higher an estimate ranked in 

terms of mean squared error the lower it ranked in terms of bias. This emphasizes 

that bias by itself is a poor criterion for assessing the quality of an estimator. 

It can also be seen that the estimates of ()2, like e1 estimates, were consistently 

negatively biased.4 

3.5.1.4 Relationship to Raab's findings 

At first sight these results appear to be in conflict with those of Raab (1981). Raab's 

results indicated that the MML estimates of ()2 should be more or less ("to within 

4The point of REML is to reduce bias relative to maximum likelihood estimates. This appears 
not to be the case for this problem. However, it must be remembered that the variance function 
is the entity for which bias should be assessed and not the individual parameters. 
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working precision") unbiased. However, replications of Raab's simulation have vali­

dated the results. Several variants of Raab's simulation have also been carried out. 

The following properties of the class of estimators of 0 comprising MML, ExMML 

and ExREML have been observed: 

• The greater the dispersion of the mean responses (the components of f.k) the 

less biased the parameter estimates are. In Raab's paper the mean responses 

are uniformly distributed over a wide range of values, while for the simulation 

reported in this thesis the concentrations are uniformly distributed. The non­

linearity of the relationship between 1] and f.k caused the induced distribution 

of the mean responses to be far from uniform and not even symmetric. This 

accounts for the lack of bias reported in Raab (1981) and the bias observed in 

this simulation. 

" The higher the degree of replication the lower the bias of e. This is under­

standable given that the effect of estimating the mean responses dissipates as 

the number of replicates increases. It was, however, interesting to note that 

even when f.k is known, the estimates of 01 still exhibit severe bias. 

\I The bias of e decreases as the number of unknowns increase. This is an 

indication that this class of estimates is consistent as n U -t 00. This result 

was expected given the claims about consistency in Raab (1981). 

3.5.1.5 Results for SL2Dist 

In terms of scaled L2 distance, ExMML is the best estimator of the power variance 

function. Both extended estimators have clearly performed better than MML and 

REML. It is surprising that the SL2Dist scores for MML and REML are very similar 

given the disparity between their estimates of 01 and O2 , 

3.5.2 Quadratic variance function 

For the case in which the variance function is assumed to be the quadratic function 

of the mean given in ( 2.3), the Fisher information matrix for 0 does not suggest a 

parameterization under which the MLEs are asymptotically independent. However, 
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Ta ble 3.3: Mean scaled 1,2 distance of the fitted power variance functio ns. 

Parameters MML REML ExMML ExREML 
fh B2 SL2Dist SL2Dist SL2Dist SL2Dist 

1000 0 4.0 4.2 3.6 3.7 
5000 0 20.0 21.0 18.1 18.6 

15 0.5 5.6 6.0 5.3 5.4 
75 0.5 28.0 29.7 26.0 26.6 
0.2 1 8.4 8.9 8.2 8.4 

1 1 41.3 44.0 39.1 40.4 
0.01 1.5 53.5 54.8 49.7 51.7 
0.05 1.5 254.7 259.1 238.1 247.7 

0.001 2 678.1 673.8 619.6 647.4 
0.005 2 3224.3 3256.8 3010.1 3083.6 

the correlation in the estimates can be reduced by replacing ft7 with 

This appears to be the case because the term 

is the projection ofthe vector (ftY, ft~, ... ,ft~)' onto ft, hence ft and jl are orthogonal. 

The variance function can thus be written in the form 

where 
",n 3 

Ii _ 1'1 + '--'i=l fti B 
vI - vI ",n 2 2· 

'--'i=l fti 

Unlike the power variance function the transformed parameter, [h, does not seem 

to have an intuitive interpretation. 

ensure that the estimated variance function is non-negative over the range 

of concentrations that have been fitted, B is constrained so that Bl 2:: 0 and B2 2:: 
-BI/max{"Yi}. This ensures that the variance function fits are non-negative over the 

range [0, max{"Yi}]. 
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Table 3.4: Relative means and relative root mean squared errors of the estimates of {h, the pa-
rameter for the linear term in the quadratic variance function. 

Parameters MML REML ExMML I ExREML I 
Relative Relative Relative Relative 

fh (102)02 Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
4 0 1.015 0.441 1.010 0.536 1.004 0.417 1.016 0.428 

20 0 0.978 0.398 0.960 0.480 0.964 0.369 0.972 0.379 
1 0.1 0.891 0.382 0.881 0.458 0.879 0.365 0.890 0.363 
5 0.1 0.914 0.397 0.907 0.475 0.910 0.388 0.920 0.391 

0.5 0.25 0.867 0.401 0.859 0.459 0.862 0.382 0.867 0.380 
2.5 0.25 0.873 0.395 0.860 0.463 0.863 0.381 0.869 0.379 
0.3 0.5 0.880 0.388 0.863 0.467 0.866 0.374 0.870 0.371 
1.5 0.5 0.849 0.384 0.844 0.452 0.844 0.371 0.846 0.370 
0.2 1 0.845 0.395 0.824 0.457 0.843 0.378 0.841 0.378 

1 1 0.845 0.399 0.834 0.458 0.843 0.385 0.840 0.380 

3.5.2.1 Results for 01 

The relative values of the estimates of 01 and their root mean squared errors are 

reported in Table 3.4. In this case the original estimates are difficult to display 

because at different values of the parameters the estimates of 01 have vastly different 

magnitudes. 

The extended estimators have the smallest mean squared error. The mean 

squared error of the ExREML estimator appears to be smaller than the mean 

squared error of the ExMML estimator when O2 0 (the only instance in Ta­

ble 3.4 in which this is not the case is when 01 5 and O2 = 0.001). When O2 = 0, 

the variance function is a special case of the power variance function, hence it is of 

no surprise that ExMML performs better in this instance. Whenever the quadratic 

variance function is such that 01 :f. 0 and O2 0, it appears that ExREML is slightly 

better than ExMML at estimating 01, 

3.5.2.2 Results for O2 

There is a stong indication that ExREML outperforms ExMML in terms of 

estimating O2 - The extended estimators outperform MML and REML but not by 

as much as for the power variance function (compare Table 3.2 to Table 3.5 above). 
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Table 3.5: Means and root mean squared errors of the estimates of O2 (in units of 10-2 ), the 
coefficient of the quadratic term in the quadratic variance function. 

Parameters MML REML ExMML ExREML 
fh (102 )02 Mean RMSE Mean RMSE Mean RMSE Mean RMSE 
4 0 0.002 0.027 0.001 0.027 0.001 0.026 0.002 0.026 

20 0 -0.004 0.126 -0.008 0.132 -0.010 0.116 -0.005 0.120 
1 0.1 0.072 0.067 0.073 0.070 0.070 0.065 0.073 0.063 
5 0.1 0.073 0.093 0.073 0.099 0.072 0.091 0.076 0.091 

0.5 0.25 0.173 0.158 0.178 0.165 0.172 0.154 0.176 0.151 
2.5 0.25 0.171 0.171 0.176 0.178 0.169 0.168 0.174 0.164 
0.3 0.5 0.351 0.309 0.355 0.328 0.341 0.306 0.351 0.297 
1.5 0.5 0.321 0.332 0.332 0.350 0.316 0.329 0.324 0.324 
0.2 1 0.638 0.650 0.646 0.672 0.634 0.634 0.642 0.626 I 

1 1 0.653 0.640 0.678 0.650 0.646 0.631 0.656 0.619 i 

Once again it is observed that the estimator of O2 which is the worst performer in 

the squared error sense is the least biased. 

3.5.2.3 Results for SL2Dist 

The mean scaled L2 distances cohere with the data in Tables 3.4 and 3.5. It is 

clear that ExREML is the best estimator at all values of the parameters except when 

O2 = 0 and as expected ExMML performs slightly better. In terms of estimating ( 2 ) 

the extended estimators significantly outperform the MML and REML estimators. 

The extent to which MML outperforms REML is greater for this variance function 

than for the power variance function. 

3.5.3 Summary of the findings from the simulation 

The results of the simulation conclusively illustrate that the extended estimators 

are better than either MML or REML. However, it is not clear which extended 

estimator is the best. ExMML performs best when the variance function is a power 

of the mean response while ExREML produced the best estimates for the quadratic 

variance function. There is no compelling reason as to why the relative performance 

of ExMML and ExREML is sensitive to the form of the variance function. 

Two reasons for rating ExREML ahead of ExMML are apparent. Firstly, the 
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Tab Ie 3.6: Mean scaled L2 distance of the fitted QUFI.t1rl'ltir. variance functi ons. 

I Parameters MML REML ExMML ExREML 
01 (10 2 )02 SL2Dist SL2Dist SL2Dist SL2Dist 
4 0 172 174 166 170 

20 0 793 809 747 766 
1 0.1 506 557 486 479 
5 0.1 687 742 678 680 

0.5 0.25 1247 1322 1186 1172 
2.5 0.25 1300 1397 1258 1243 
0.3 0.5 2358 2610 2284 2241 
1.5 0.5 2471 2640 2394 2374 
0.2 1 4900 5237 4714 4697 

1 1 4844 5260 4738 4680 

involvement of both f3. and 0 in the leverage function for the standards can occa­

sionally make full optimization of the modified likelihood function computationally 

unstable. Secondly, the use of weighted least squares estimates of f3 and rF in the 

ExREML procedure makes it slightly less sensitive than ExMML to departures from 

normality. 

When the number of standards is fixed, ExMML and ExREML clearly have the 

same asymptotic properties as MML. Thus, under the same conditions assumed by 

Raab (1981), ExMML and ExREML estimates will be consistent. Additional simu­

lations revealed that as the number of unknowns increase, MML estimates become 

virtually indistinguishable from the extended estimates. The ratio of unknowns to 

standards is often large (ten to one or more) in practice. For such assays MML 

estimates will be virtually identical to the extended estimates and so continued use 

of MML is justified. 

The disparity in performance between the MML and REML estimators illus­

trates the importance of the unknown samples to the estimation of the variance 

function and the analysis in general. vVith just eight unknowns the payoff from 

fitting the mean function and using the residuals to enhance the estimate of 0 is 

already outweighed by the improvement obtained from utilizing the unknowns. As 

the degree of replication increases, MML improves relative to REML. This is due to 

the information contained in the replicated responses for each sample outweighing 

the information contained in the residuals from the fitted mean function. However, 



3.5. Simulation 47 

if the number of standards increases, the leverage values decrease and so REML 

improves with respect to MML. 





Chapter 4 

ayesian analysis of an assay 

In this chapter the analysis of an assay is considered from a Bayesian viewpoint. 

Resul ts are often presented in a general form with the standard immunoassay model 

being used as an example. The emphasis is on the evaluation of inferences about 

the assay parameters. The evaluation of the quality of the assay is left to Chapters 

5,6 and 7. 

4.1 Bayesian model for an assay 

4.1.1 The likelihood function 

From Section 2.1 the general form of the assay model is 

where 

and 

In the standard model for an assay f(Yt,j I Tli, /3, 8) is a normal density. 

The likelihood function for the Ti independent response measurements made on 

the ith sample is 
Ti 

f(Yt, I TJi, /3, 8) = II f(Yt,j I TJi) /3, 8). 
j=l 

49 
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The likelihood function for the complete set of assay responses is the product of the 

likelihood functions for the responses from each sample. This is given by 

f(Y 1 X, rF, /3, e) = II f(Yi 1 Xi, /3, e) II f(Yi 1717, /3, e). (4.1) 
iES 

4.1.2 The prior distribution 

The probability distribution of the assay responses, also known as the likelihood 

function of the responses, has been described. To complete the specification of the 

Bayesian model for an assay, prior distributions for the assay parameters /3, e and 

ryU need to be specified. 

4.1.2.1 Structure of the prior 

The most general form for the prior distribution will be denoted by 7r(/3, e, ryU). 

However, in practice it is likely that a priori some parameters will be considered 

to be independent. For instance, it is unlikely that there would be a relationship 

between the unknown concentrations and the model parameters for a given assay. 

Thus we regard (/3, e) a priori independent from ryU and write 

(4.2) 

where 7rm and tru denote the respective prior probability densities. 

A priori independence between /3 and e is more difficult to justify. This is because 

the variance function is dependent on the regression function. In a sense, /3 is 

functioning both as a scale parameter and as a location parameter. This invalidates 

the usual justification that location and scale are a priori independent. The structure 

of the prior should reflect what is known about /3 and e. Some cases for independence 

can certainly be imagined but because of the complexity of the assay model, there is 

a temptation to specify independent priors for simplicity irrespective of prior beliefs. 

In practice a practitioner is typically blinded to the particulars of the subjects 

being tested. Without any specific information about the subjects, unknown con­

centrations can be regarded as independently and identically distributed, i.e. it is 

reasonable to expect that 

7ru (ryU) = II 7rO(ryi), (4.3) 
iEU 
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where 1To is a univariate density. The unknown concentrations can be thought of as 

a random sample from the distribution of the concentrations of the subjects eligible 

to be tested. 

In many applications, the population of eligible subjects will be partitioned into 

"healthy" and "unhealthy" strata. The distribution of concentrations is likely to be 

different within each stratum. An appropriate form for the prior distribution of fli 

is then 

where 1T~(fli) and 1To(rli) are the distributions ofthe concentration in the healthy and 

unhealthy populations respectively and p E [0,1] is the probability that a randomly 

selected subject is healthy. An extreme but perhaps common situation is when fI 0 

with probability 1 when a subject is healthy and fI > 0 with probability 1 when a 

subject is unhealthy. In this case . 

(4.4) 

4.1.3 Informative priors 

The specification of an informative prior can be a complex and time consuming 

process. The difficulty lies in the conversion of subjective knowledge from past 

experience or otherwise into probability distributions for the model parameters. 

The complexity of the assay model amplifies this problem. 

Methods for the elicitation of prior knowledge are difficult to discuss in any 

generality and the exact specification of a prior distribution based on this knowledge 

is highly situation oriented. Because a study of such methods is not a topic of this 

thesis, only some suggestions of how one might proceed are given. It should be 

noted that the mathematics associated with these suggestions has therefore not 

been totally substantiated. 

4.1.3.1 Specification of 1Tm({3, (}) 

Direct elicitation of 1Tm(f3, (}) is in theory possible. However, as fJ and () have rather 

complicated interpretations, which may be beyond many practitioners, an easier 

and perhaps practical method of aqcertaining the prior would be to use predictions 

about the responses since these are observable quantities. 
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For example, suppose 

If the expected response was specified at p distinct concentrations, then ,80 could be 

calculated as the value of (3 for which the mean function interpolates these responses. 

Similarly, by asserting the variance of the response at q distinct mean responses, 80 

could be calculated as the value of 8 for which the variance function interpolates 

these assertions. A convenient way of specifying .Eo is not so straight forward. It may 

be possible to obtain .Eo from confidence intervals for the mean and variance of the 

response at different concentrations. However, these predictions may themselves be 

too difficult to specify. The reader is referred to Bedrick, Christensen and Johnson 

(1996) and Bedrick, Christensen and Johnson (1997) for further ideas on inducing 

the prior distributions for the parameters from prior specifications of the response 

surface in regression problems. 

In Section 4.5 it is shown how information from past assays can be used to 

determine a hyper-prior for a Bayesian analysis of an assay. A short cut to this 

method is to guess the hyper-prior. One strategy is to deliberately use a distribution 

that is less informative than the actual state of prior knowledge to ensure that the 

analysis will err on the side of conservatism (in the sense that the data will have a 

greater bearing on the analysis than might otherwise be the case). 

4.1.3.2 Specification of 1rO(7]i) 

The task of specifying 1rO(7]i) is much less arduous. Firstly, the density is univariate 

and so dependence with other parameters does not have to be considered. Secondly, 

the concentration in an unknown sample is a well defined easily understood quantity. 

Furthermore, the prevalent concentration throughout the population of subjects 

eligible to be tested might be so well understood that this prior can be specified 

without recourse to subjective input. A convenient means of specifying 1ro (7]i) would 

be to match properties of the distribution such as the mean, variance and quantiles 

to an appropriate functional form. 
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4.1.4 Non-informative prIors 

Non-informative Bayesian analysis can be viewed as a method of obtaining a sensible 

and in a sense objective answer from statistical analyses with minimal effort. The 

problem of having to specify the prior is avoided through the specification of a prior 

that requires no prior knowledge. For these reasons and others, (see Berger (1985) 

and Yang and Berger (1996)) non-informative Bayesian analysis is a very powerful 

method in statistical analysis. The literature on non-informative priors has grown 

enormously over recent years (Yang and Berger (1996)). For discussion ofthe various 

approaches for developing non-informative priors, refer to the above references and 

also see Bernardo and Smith (1994). The non-informative prior approach is now 

developed for the assay model. 

4.1.4.1 Jeffrey's prior 

The Jeffrey's method of prior development is perhaps the most well known and 

widely used generic method of determining a non-informative prior. The Jeffrey's 

prior for the assay parameters is given by 7r({3, e, rF) = Vdet(1({3, e, 7]U)), where 

1({3, e, 7]U) is the Fisher information matrix. 

The calculation of Jeffrey's prior and variations of it are illustrated using the 

standard model for an assay. The log-likelihood function is 

where 

. _ { m(Xi ,{3) ifi E S 
J.L~ - m(7]i, {3) if i E U 

It is convenient to parameterize unknowns at the response level; that is, substitute 

m(7]i, {3) for J.LY if i E U. As Jeffrey's prior is invariant under transformations of 

the parameter space this substitution has no effect on the analysis. Recall that J.Lu 

denotes the mean response corresponding to the concentrations 7]u. 

The first derivatives of .c with respect to {3, e and J.Lu are 
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and 

8 
--£ 
80 
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where mf3i mf3(f)i,/3), vILli VILJPi,O), voi = VO(Pi,O) and fx 

The calculation of 1(/3,0, pU ), the information matrix of the assay parameters, 

is obtained as: 

-E [~£l 8 p'f i E U, 

[ 
82 1 

80Pi
L 

Jeffrey's prior is proportional to the square root of the determinant of the matrix 

with these components and gives a rather complicated expression especially when 

nU is large. 

If the parameters are a priori independent, the product of Jeffrey's priors for the 

independent components generally yields a prior with better properties than the Jef­

frey's prior itself (Berger (1985)). Location-scale models are one instance where this 

is the case. If the model parameters and the unknown concentration parameters are 

a priori independent, then if it is used Jeffrey's method should be applied separately 

to (/3,0) and flu. The determinant that then needs to be evaluated involves a matrix 

of dimension (p + q) rather than dimension (p + q + nU). If a priori independence 
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between {3 and 0 is also asserted, this amended Jeffrey's approach would stipulate 

that separate Jeffrey's priors should be calculated for each parameter. 

Even when the parameters are not regarded independently there is some evidence 

in the literature to suggest that a better analysis can still be obtained by using 

independent priors for them. From Yang and Berger (1996), "In multi-parameter 

situations Jeffrey's prior frequently induces dependence hetween the parameters. 

This dependence may lead to poor performance, even inconsistency" . 

Jeffrey's prior for (3 can be expressed in the form 

where W({3) is a diagonal matrix with 

the ith diagonal element. Similarly, Jeffrey's prior for 0 can be expressed in the form 

where Vo contains Vo (;.li , 0) as its ith row and W(O) is a diagonal matrix with 

V (/.li' 0) 

being the ith diagonal element. The Jeffrey's prior for /.lu is 

This can also be written as a quadratic form. 

Notice that these non-informative priors do not maintain a specification of prior 

independence. This is typical of Jeffrey's based non-informative priors. 

4.1.4.2 Uniform prior 

A uniform prior is any distribution, proper or improper, that is proportional to a 

constant. The major drawback of uniform or fiat priors is that they are not invariant 

under transformations of the parameter space. Two natural uniform priors for r,u 

are 1ru(r,u) ex: 1 and the distribution for r,u induced from 1ru(/.lU) ex: L These priors 

are clearly not equivalent. 
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There are preferences for both priors. An argument in favour of 7ru (J1,u) ex 1 is 

that p,u is a vector of location parameters and in the absence of other parameters 

the natural non-informative prior for a location parameter is the uniform prior. An 

argument against this prior is that it induces prior dependence between fJ and rl 

and so contradicts a specification of prior independence between these parameters. 

A second argument in favour of 7ru (JP) ex 1 is that for some simple models it gives 

rise to a proper posterior distribution for rF whereas 7ru (rF) ex 1 yields an improper 

posterior (see Hoadley (1970)). On this premise 7r u (JP) ex 1 is favoured. 

4.1.4.3 Reference prior 

Reference priors as defined in Bernardo (1979) and Bernardo and Smith (1994) are 

much more difficult to obtain than Jeffrey's priors. Such reference priors have not yet 

been calculated for models anywhere nearly as complicated as the assay model. The 

task of calculating a reference prior for the assay model may in fact be impossible. 

4.1.4.4 Other non-informative priors 

There often exist various non-informative priors particular to m and v that have 

good properties but yet do not arise from a general theory. There is often no 

justification for the use of such priors other than evidence of good empirical results 

in the literature. Yang and Berger (1996) call such priors "ad-hoc" priors. 

A standard non-informative prior for a model with the power variance function 

(2.2) is 7rm (fJ,O) ex 1/01• This is a natural non-informative prior for the linear 

regression model with variance OI. Since good results are obtained when m is linear 

in fJ and v is a constant there is reason to believe that this prior will give good results 

in more general cases. In this way 7rm (fJ, 0) ex 1/0I is an ad-hoc prior. The prior 

7rm (fJ,O) ex l/Th, where iiI = Otfi\ is an alternative generalization of the prior when 

the variance function is a power of the mean response as opposed to a constant. 

4.1.5 A generic prior 

In practice it is likely that prior knowledge of TJu will outweigh prior knowledge of fJ 

and O. The purpose of the assay is to infer the value of TJu , the entity of fundamental 

interest. It is desirable that all relevant information about TJu is included in the 
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analysis. On the other hand, 13 and () are service or nuisance parameters. It is equally 

desirable that the priors for these parameters do not have an undue influence on the 

analysis. A non-informative prior for 7r(j3, ()) and an informative prior for 7ro(l]y) 

would therefore be a suitable choice for a generic prior. 

4.2 Bayesian Analysis 

In this section the theoretical side of a Bayesian analysis of an assay is outlined. 

4.2.1 Posterior distribution 

The joint posterior distribution of the assay parameters is given by 

where 

and 

7r(j3, (), rFI Y, X) 

f(Y I X) 

f(Y I X,rF,j3, ())7r(j3, (),rF) 
f(Y I X) 

f(Y I X,rF,j3,()) = f(Ys I X, 13, ())f(Yu I rF,j3,()). 

The above integral and those subsequently presented in this thesis may be general­

ized to a Riemann-Stieltjes integral to facilitate discrete or mixed distributions. 

All inferences concerning the assay are based on 7r(j3, (), rF I Y, X). In cases in 

which an inference is to be made about a subset of the parameters, it will generally 

be necessary to calculate the joint posterior distribution of just those parameters. 

In particular, this distribution is required for the calculation of the posterior mode 

or a credibility region for a single parameter. The posterior mean can, on the other 

hand, be calculated directly from 7r(j3, (), rF I Y, X). 

4.2.2 Inferences about the assay parameters 

At the completion of the assay the joint posterior distribution of 13 and (), given by 

7r(j3, () I Y, X) 
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contains all the information about the assay model. This distribution is referred to 

as the "model fit" of the assay since the distribution of parameters are of interest 

as opposed to a single estimate (the quantity usually referred to as the model fit or 

fitted model). 

Inferences particular to {3 are based upon 

7r({31 Y, X) r 7r({3, e, I Y, X) de. 
iR(O) 

Inferences involving only e (for example, the estimation of the variance function) 

are based upon 

7r(e I Y, X) r 7r({3, e, I Y, X) d{3. 
iR({3) 

Further marginalization is required for inferences involving only a component of 

{3 or e. For example, the posterior varia;nce or posterior standard error of a single 

component of e would be calculated from the marginal posterior distribution of that 

component. 

4.2.3 Inferences about unknown concentrations 

For an inference about one unknown concentration, say rJi, the pertinent posterior 

distribution is 

where r{!.i = {rJj, j i- i}. From the Bayesian viewpoint, this is the distribution upon 

which all inferences and decisions specific to rJi should be based. Given all the data 

that has been observed, the state of knowledge about rJi is exactly described by 

7r(rJi I Y, X). 

In general, 

7r(rJU I Y,X) II 7r(rJi I Y,X) 
iEU 

because the information in each unknown sample contains information about {3 

and e. Even if the unknown concentration parameters are a priori independent, 

the common dependence of them on {3 and e makes them a posteriori marginally 

dependent. 
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4.2.4 Predictive inference 

At the completion of the assay, the prior and experimental information are combined 

in the form of the posterior distribution for the model parameters. The predictive 

distribution converts this information to a distribution describing the uncertainty in 

the value of the next response measurement at a given concentration. In Chapters 

5, 6 and 7 this predictive distribution plays an important role in many calculations. 

The predictive distribution of a new response measurement y at some given 

concentration x is 

p(y I x, Y,X) [ [ f(y I x, /3, B)1f(/3, B I Y, X) dB d/3. 
JR ({3) JR(B) 

(4.5) 

This expression follows from the theorem of total probability and the fact that y 

given (x, /3, B, Y, X) does not depend on (Y, X), hence f(y I x, 18, B, Y, X) f(y I 
x, /3, B). In (4.5), y can be a singleton response or a vector of replicated response 

measurements 

A nice feature about the predictive distribution is that it translates uncertainty 

in the model fit to uncertainty about the quantity being observed. This provides a 

mechanism for measuring the error in the fitted modeL The procedure is firstly to 

remove an observation from the calculation of the predictive distribution. Then the 

revised predictive distribution is used to predict the value of the deleted observation. 

The prediction is then compared to the actual value of the observation and the error 

in the prediction is calculated. These predictive distributions, known as "hold-out" 

predictive distributions, form the basis of Bayesian cross validation (see SchlUter 

(1996) or for a basic reference on predictive inference Geisser (1993)). 

4.3 Analytic derivation: linear mean function with 

known weights case 

In this section the calculations of the posterior and predictive distributions are 

illustrated for an assay with a linear regression function and variance known up 

to a constant. This is one of the few cases where closed form expressions for the 

distributions can be calculated. 
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The model to be assumed in this section is 

where Wi is known and TJi is as indicated earlier, i.e. 

{
Xi if i E 5 

TJi = U 'f' U TJi I 't E . 

It can be recognized that this is a special case of the linear calibration problem. In 

almost all practical situations this is an unrealistically simple model for an assay. 

Typically, the assay model is a nonlinear heterogeneous calibration model (refer to 

Section 8.6.1 for more details). 

For purposes of this section, X is defined to be the n S x 2 matrix with ith row 

Xi = (1, Xi) and W = diag{rdwi' i E 5} is a nS dimensional diagonal matrix. Thus, 

/li 130 + 131 TJi Xif3 if i E 5 and /li - /lY if i E U. 

From (3.3) it follows that 

E[Yij I TJi] = XIf3I(i E 5) + /lYI(i E U) Vi. 

This mean function is linear in 13 and /lu. By noting that a reference prior for the 

linear regression model is 7r(f3,OI) ex l/fh (Yang and Berger (1996)), it is easy to 

show that 7r(f3, BI , /lU) ex 1/0I is a reference prior for the model being considered 

here. 

4.3.1 Sufficient statistics 

As a prelude to deriving the posterior distribution of the parameters, the sufficient 

statistics of the parameters are calculated. It is well known that posterior distribu­

tions depend on experimental data only through sufficient statistics; such statistics 

being often easier to work with than the full data set. In particular for the given 

assay problem, they help to identify the posterior distribution. 

Theorem 4.3.1 A sufficient statistic for (13, BI , /lU) is (/3,52
, yU), where 

/3 (X'TtVX)-1 X'WyS 

x/3)'W(Y x/3) + t f= (Yij Yi)2 
i=1 j=1 Wi 
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and 

Proof: The sample likelihood function is proportional to 

L 

Since 

(Y X f3)'W (Y - X P) (Y X S)'W (Y - X S) (S - 13)' X'W X (S 13) 

it follows that 

L 

By the factorization theorem the proof is complete. 

4.3.2 Joint posterior distribution 

The following theorem provides a convenient expression of the joint posterior dis­

tribution of (13) (}l) ,P) in terms of conditional and marginal posterior distributions. 

This is not the only possible decomposition of the joint posterior distribution but it 

is the most amenable to subsequent calculations. 

Theorem 4.3.2 When 7[(13) (}1) ,P) ex: Ij(}l the joint posterior distribution of the 

assay parameters is given by 
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where 

iEU 

II N(Yi, W/)J/ri) , 
iEU 

v = I:~I ri - P nU and IG denotes the inverse gamma distribution. 

Proof: It is well known that 

and 

Furthermore, 8 2 /BI being a sum of squares of standard normal random variables 

has a chi-square distribution with v degrees of freedom. Hence, 

where G denotes the gamma distribution. Thus, by sufficiency 

iEU 

(4.6) 

Marginal distributions are easy to derive from (4.6) as the conditional posterior 

distributions for f3 and PY drop out when (4.6) is integrated with respect to f3 and 

PY respectively. 
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4.3.3 Posterior distribution of {3 

The posterior distribution of fJ is given by 

Let S2 = S2 Iv. Then 

( 
(fJ - ~)' X'W X (fJ _ ~)) -(v+p)/2 

7r(fJ I Y, X) ex 1 + 2 ' 
VS 

which is the kernel of a p-variate t distribution. It follows that 

(4.7) 

where tp(v, A,~) denotes a p-variate t density with v degrees of freedom, mean A 

and scale ~. 

4.3.4 Posterior distribution of /-LV 

The posterior distribution of MY is given by 
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4.3.5 J oint posterior distribution of (fJ,Jl,u) 

The joint posterior distribution of ({3, JF) can be calculated in the following analo­

gous fashion: 

where Wu = diag{rdwi' i E U} is a nU ?imensional diagonal matrix. Recognizing 

the multivariate t kernel, 7r({3, f-tu I Y, X) is readily identified as a 

density. 

It is clear from the form of the respective densities that 

and 

iEU 

In fact all of the assay parameters are a posteriori statistically dependent. 

4.3.6 Posterior distribution for 'flu 

To calculate the posterior distribution of rF from the above distributions, the fol­

lowing steps are performed: 

1. calculate the joint posterior distribution of (fl, f-tU), 

2. apply the parameter transformation: ({3, f-tU) --+ (fl, rF), 

3. integrate out fl. 
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The resulting expression is 

since (31n
u 

is the determinant of the Jacobian matrix of the transformation from 

((3, p,u) to ((3, rF). The Jacobian term makes algebraic manipulation difficult and 

the resulting density a non-standard distribution. 

The marginal posterior distributions of the components of rF will generally be 

of more interest than the posterior distribution of rF. To calculate the posterior 

distribution of 1Jf, the sequence of steps given earlier are followed with the exception 

that 1r((3, /-Li I Y, X) is calculated in step L The determinant of the Jacobian matrix 

for the transformation of ((3, /-LV) to ((3,1Jf) is 1/(31' An algebraic expression for the 

resulting probability distribution function is given in Hunter and Lambroy (1981). 

4.3.7 Predictive distributions 

Firstly, the predictive distribution of a singleton response measurement at concen­

tration x is derived. Let y rv N(x~(3, wpOd, where wp is known and 

Then 

p(y I x, Y,X) r roo f(y I x, (3, 01)1r((3, 01 I Y, X) dOl d(3 
lR({3) 10 
roo r f(y I x, (3, 01)1r((3 I 01, Y, X)1r(Ol I Y, X) d(3 dOl 10 lR({3) 

/000 p(y I Ol,X,Y,X)1r(Ol I Y,X) dOl 

As both f(y I X,(3,Ol) and 1r((3 I 01, Y,X) are normal distributions, so too is p(y I 
01, x, Y, X), the predictive distribution of y at concentration x conditional on 01 and 

(Y, X). Since E[y I 01, x, Y, X] E7r({3101,Y,X)[E[y I x, (3, 01]] and V[y I 01, x, Y, X] 

E7r({31 01 ,Y,X)[V[y I x,(3,Od] + V7r({31 01 ,Y,X) [E[y I x,(3,Od] it follows that 
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Therefore, 

7r(Y I X, Y, X) ex: 

ex: 

Hence, 

From the above it can be seen that if y represented the mean of r responses, the 

predictive distribution would be 

(4.9) 

Likewise, it is also easy to show that if y is a r dimensional replicated response 

measurement then 

where IT is a vector of r ones and Ir is the r x r identity matrix. This result can 

be generalized to the case in which the components of yare measured at different 

concentrations. 

4.3.8 Approximation of the general model 

Posterior and predictive distributions cannot be calculated analytically for the gen­

eral assay model. As the minimal sufficient statistics are usually the order statistics, 

appealing to sufficiency does not lead to any simplifications. One must resort to 

numerical calculation or analytical approximation. 

One method of obtaining analytical approximations of the relevant distributions 

is to use approximations to reduce the assay model to a linear regression model 

with known weights so that the results of Sections 4.3.1-4.3.2 can be applied. The 

approximations and resultant procedure used herein are outlined below: 
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1. Write the variance function in the form v( m, e) a2 g( m, T) where e = (a2 , T )'. 

That is, assume the variance function is known up to a proportionality param­

eter. 

2. Calculate the parameter estimates b, f and flu and derive fl, the vector of fits. 

3. Replace the mean function, m(TJi, /3), with its first order Taylor series expansion 

about /3, i.e. assume 

4. Substitute g(J-li, T) with g(fli, f) and set Wi = g(fli, f). 

5. Calculate S2 and substitute the terms found in steps 3 and 4 into (4.7) and 

(4.8). 

6. Revert to the original parameterization by reverse transforming f so that 

V (fli,0) - s2 g(fli,f) and W- 1 diag{v(fli,O)/ri, i = 1, ... ,nS}. 

From (4.7) and (4.8), the approximate posterior distributions resulting from this 

procedure are 

and 

where from the proof of Theorem 3.3.1 

Note that the value of used in the calculation of W satisfies 

vs2 = (Y - m(X, b) 

which is somewhat different from the standard estimate of a 2
• To develop an esti­

mate of p(y I x, Y, X), firstly use the approximation 
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Then, following the above procedure, the approximate predictive distribution of 

the mean of r responses at concentration x is 

p(y I x, Y, X) ~ (4.10) 

t(v, m(x, /3) + mf3(x, /3)'(/J /3), v(m(/3, x), O)/r + mp(x, /3)'(J~w J(3 )-lmf3(x, /3)). 

If /3 is the GLS estimate corresponding to {j then by Theorem 3.3.1 /J = /3; hence, 

8
2 reduces to the standard estimate of 0

2 and (4.10) simplifies. 

4.4 Numerical computation for the general model 

The major difficulties confronting a Bayesian analysis of an assay are the numerical 

evaluations required in obtaining the relevant posterior and predictive distributions. 

As illustrated in Section 4.2, extensive calculations in the form of integration are 

required. In the last 15 years there has been considerable progress in the devel­

opment of techniques for approximating and evaluating integrals which arise in a 

Bayesian analysis. The four main strategies that have been suggested are: Laplace 

and related analytic techniques, adaptive quadrature based on classical numerical 

analysis, versions of Monte Carlo importance sampling and Markov Chain Monte 

Carlo (MCMC) methods. For an overview and list of references dealing with the first 

three methods see Smith (1991). Refer to Evans and Swartz (1995) for an overview 

of the last three methods. See Smith and Roberts (1993), Tierney (1994), Chib and 

Greenberg (1995) and Besag et aL (1995) for discussion of MCMC methods. 

Of the methods that are available today, MCMC simulation appears to be the 

most promising general approach to Bayesian computation (Draper (1998)). In the 

last few years there has been a massive increase in the research being done on MCMC 

methods and their popularity has greatly increased. The MeMC approach is well 

suited to the assay problem. The abundance of unknown concentrations, which in a 

general context can be considered missing variables, makes the degree of parameter­

ization very high. Other computational techniques, such as importance sampling, 

quadrature, and closed form approximations, tend to encounter substantial compu­

tational difficulties or become impractical when the number of parameters is large. 

On the other hand, MeMe methods handle missing data with virtually no difficulty 

(Smith and Roberts (1993)). 
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The numerical computations reported in the thesis use MCMC simulation, in the 

form of the Metropolis-Hastings (M-H) algorithm, to fit Bayesian models. The M-H 

algorithm was developed by Metropolis et al. (1953) and subsequently generalized by 

Hastings (1970). This algorithm is extremely versatile as it requires that the joint 

distribution of the variable being generated is known only up to proportionality. 

This makes it well suited to the assay model since the joint posterior distribution of 

the assay parameters is typically only known up to proportionality. 

The other well known MCMC algorithm is the Gibbs Sampler (Geman and Ge­

man (1984)). The Gibbs sampler is a special case of the M-H algorithm (Chib 

and Greenberg (1995)). (Refer to Casella and George (1992) for a simple, intuitive 

exposition of the Gibbs Sampler.) The Gibbs Sampler requires that independent 

samples are generated from the full conditional posterior distributions. For the stan­

dard assay model, this procedure is, inefficient because the full conditional posterior 

distributions involve integrals that are themselves beyond algebraic evaluation. 

Issues concerning the application ofthe M-H algorithm to the assay problem are 

discussed in the remainder of this section. 

4.4.1 The M-H algorithm 

A feature of the M-H algorithm is its simplicity. The general setup of the algorithm 

is now outlined. Suppose that z rv 7r(z) is to be sampled, where 7r(z) is known as 

the target density. Typically, 7r(z) will be a non-standard multivariate probability 

density and some quantity dependent on this distribution is to be evaluated. 

Let q(y I x) be a probability distribution on y conditional on the variable x, 

where x has the same dimension as y. This is known as the probing distribution or 

as the candidate generating density. It is not necessary that q depends on x. 

The M-H algorithm is as follows: 

1. Initialize z as Z(D) and set i = O. 

2. Generate z from q(z I Z(i)). 

3. Calculate 

. [7r ( Z ) q ( z (i) I z) 1 . (( i) ) ( I (i) ) 
mm 7r(Z(i))q(z I Z(i)) , 1 , If 7r z q Z Z > 0 

1, otherwise. 
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4. Generate u from U(O, 1). 

5. If u ::; a(zei ), z) set zei+l) = z; otherwise set z(i+l) Z(i). 

6. Return to step 2 and repeat until the quantity being evaluated has been com­

puted with sufficient accuracy. 

In the preceding algorithm, the probability p(x, y) a(y, x)q(y I x) emulates a 

transition kernel in a Markov Chain. The probability of the Markov Chain moving 

from state x to state y is p(x, y). If q is such that the Markov Chain is reversible 

and aperiodic, then the steady state or equilibrium distribution of the chain is 7r. If 

these conditions are met, the empirical distribution of z converges to 7r(z). 

The condition of reversibility requires that 

7r(x)p(x, y) - 7r(Y)p(y, x) 

By the choice of a(x, y), this condition holds iffor all x and y in the domain of 7r, it is 

possible to move from x to y in a finite number of iterations with nonzero probability. 

Aperiodicity is usually satisfied if q(y I x) has positive support surrounding x (Chib 

and Greenberg (1995)). Also see Tierney (1991) and Tierney (1994) for a complete 

discussion of the convergence criteria for MCMC chains. 

4.4.1.1 Product of kernels principle 

The following result, referred to in this thesis as the "product of kernels principle" , 

is one of the most useful properties of MCMC algorithms. 

Define a conditional transition kernel to be a transition kernel for a component 

of a vector z that depends on the current values or states of the other components 

of z. Then the prod1.lct of conditional transition kernels for any partition of z has 

7r(z) as its invariant distribution. 

As discussed in Chib and Greenberg (1995), this result implies that sub-components 

of z can be drawn in succession from their respective conditional transition kernels 

and the chain will still converge. Therefore, it is not necessary to run the conditional 

transition kernels to convergence for every value of the variables conditioned on. In 

fact only one iteration need be performed each time a conditional transitional kernel 
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is visited. The product of kernels principle is important because it is often far eas­

ier to find several conditional kernels that converge to their respective conditional 

densities than it is to find a kernel that converges to the joint distribution of z. 

4.4.1.2 Calculation of inferences 

The following result is the basis of MCMC inference: If Zl, Z2, ... ,zn is a realisation 

from a convergent MCMC chain then 

where f(z) is some function of z. (See for example Smith and Roberts (1993), Besag 

et al. (1995).) 

Therefore, as more samples are generated, the empirical average (also known as 

the Monte Carlo average) of the function converges to the true mean of the function. 

Thus, to evaluate any particular inference, one merely needs to find the function(s) 

whose expectation(s) give the required inference. The following are examples: 

.. Mean: Use f(z) z . 

.. Variance: Use h(z) = Z2 and f2(z) = z and calculate [JI(z)]!n-E1I'[!2(z)]2 . 

.. a Percentile of 7f(z): Let f(z, za) I(z < za) and find Za such that E1I'[J(z, zoo)] 

a. 

4.4.2 M-H chain for an assay 

For the analysis of an assay the M-H algorithm needs to be applied to 7f({3, 0, rF I 
Y, X) or some re-parameterization thereof. All posterior and predictive inferences 

can be evaluated from the values of ({3, 0, 'T}U) output from the algorithm. The 

ingredients of the M-H chain developed for the analysis of assay data in this thesis 

are now discussed. 

There are three key elements of the M-H chain used to draw samples from the 

posterior distribution of the assay parameters. These elements are the structure of 

the chain, the types of the transition kernels and the choice of candidate generating 

densities. 
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4.4.2.1 Structure of chain 

The product of kernels principle enables the transitional kernel to be partitioned into 

conditional kernels. It has been observed that this is most beneficial, in fact only 

beneficial, when the parameters in different partitions are close to being independent. 

The assay parameters fit naturally into the following three groups: (3) e and rF. 
Although there will always be a posteriori dependence between these parameters, 

numerical results reveal that it is not necessary to use a joint kernel. Since each 

component of rF is its own entity, separate components were also used for each 

unknown concentration. This meant that a total of nU + 2 conditional kernels were 

used. 

4.4.2.2 Type of transition kernel 

For each conditional kernel, a random walk transition kernel was used. The random 

walk chain is a natural way of moving about the posterior density. Unlike indepen­

dence chains, chains for which q(y Ix) does not depend on x (the current state of 

the chain), one is not rooted to a certain location. It is often the case that x is the 

mean or some other measure of the location of the candidate generating density for 

the next step. Thus, there is no reliance on a good choice of location. However, 

there is no reason to believe that independence or other types of transition kernels 

would not be as successful. The random walk chain was used here because the im­

plementation was quite easy. (Refer to Chib and Greenberg (1995) for descriptions 

on the different types of transition kernels.) 

4.4.2.3 Candidate generating density 

The candidate generating density or more generally distribution is the most crucial 

component of a M-H chain. A good candidate generating distribution is necessary 

for the chain to produce reliable results in realistic computing time. The main goal 

in choosing the candidate generating distribution is to obtain a chain that mixes well 

(Draper (1998)). A chain is said to mix well if all regions of the posterior density are 

explored efficiently. "A chain that is mixing well will move around freely, happily 

jumping all over the place" (Draper (1998)). 

Three prominent guidelines in the literature concerning the choice of a candidate 



4.4. Numerical computation for the general model 73 

generating density are: 

1. Try to ensure that the candidate generating density is an over-dispersed version 

of the target density (Draper (1998)). 

2. The candidate generating density should have thicker tails than the target 

density (Berger (1985), Section 4.9.2). 

3. Choose a candidate generating density so that the current state of the chain 

is the expected value of the next state of the chain (Draper (1998)). 

For random walk chains, the first recommendation is less important because the 

movement of the location of the candidate generating density naturally inflates the 

dispersion of the draws. See Gilles and Roberts (1996) for a more comprehensive 

list of guidelines for choosing a candidate generating density. In Section 4.4.2.7 the 

candidate generating density used for the assay parameters is described. 

4.4.2.4 Parameter transformation 

The manner in which a problem is parameterized often holds the key to finding 

good candidate generating densities. If a particular parameterization leads to a 

posterior distribution with nice properties such as unimodality, symmetry and pa­

rameter independence, then the search for an efficient candidate generating density 

is simplified. The parameterization of the standard assay model can be improved in 

the following ways: 

1. Transforming so that the parameters are more independent. 

2. Transforming so that the parameters are real valued and the model is identi­

fiable (determined uniquely by the parameters). 

These two improvements are explained and discussed below with reference to the 

assay model. 

4.4.2.5 Independence inducing transformations 

It is advantageous to induce independence both within and between partitions of pa­

rameters. In the following discussion the "conditional asymptotic covariance matrix 
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for a group of parameters" represents the inverse of the Fisher information matrix 

for that group of parameters. An independence inducing transformation is defined 

as one which diagonalizes the conditional asymptotic covariance matrix for a group 

of parameters. \iVhile such a transformation does not necessarily induce complete 

independence, it has proven to be a good heuristic. For the standard immunoassay 

model the following independence inducing transformations have been found: 

U U a /31 
rli -+ fti = /-'4 + -1-+-'-::--=':---:C-::-

and 

(J (J- (J' Ih 
1 -+ 1 - 1ft , 

where jJ, denotes the geometric mean of ft. 

The first transformation makes the conditional asymptotic covariance between 

/3 and 1Ju equal to zero. The proof of this, result is immediate once it is noticed that 

the terms in the likelihood function involving both /3 and ftu are separated. This 

transformation effectively uncouples /3 from 1Ju. 

The second transformation makes the Fisher information matrix for (J diagonal 

(see Theorem 3.5.1). The effect of the transformation was demonstrated by noting 

that the convergence of the chain was several times faster than it was under the 

original parameterization of (J. This transformation also induced symmetry in the 

posterior distribution of the transformed parameter (the posterior distribution of 01 

is much less skewed than the posterior distribution of (J1)' When (J is known, the 

effect of the parameterization is even more pronounced. This is understandable as 

there are no confounding effects from other parameters. 

In general, re-parameterizations such as that applied to the power variance func­

tion in (2.2) are not always apparent. The power variance function is in many ways 

a natural model for a variance function which depends on the mean response. No 

such parameterization has been found for the quadratic variance function in (2.3). 

4.4.2.6 Constraint removing and identifiability inducing transformations 

The following constraints are needed to ensure that the model is well defined: 

2. /33 > 0 
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These conditions can be incorporated in the prior distribution. However, since 

constraints on parameters can sometimes lead to strangely shaped posteriors, from 

the point of view of numerical evaluation, it is beneficial transforming the parameters 

so that such constraints are eliminated. A model is said to be non-identifiable if the 

same fit can be obtained with more than one combination of parameter values. 

Non-identifiability is undesirable as the posterior will then be multimodal, making 

sampling from it more difficult. Notice that (f34, -f32, f33, f31) gives the same fit as 

(f31, f32, f33, f34) so the sigmoid function makes the assay model non-identifiable. 

The following transformations remove the constraints from the parameter space 

and also make the MNCH model identifiable: 

This step proved to be of minimal benefit when fitting the NMCH model because 

good candidate generating distributions were found. It may, however, be required 

for other assay models. 

Transformations that induce linearity in f3 were also considered. Ratkowsky 

and Reedy (1986) compared such transformations for the sigmoid function. These 

transformations had no noticeable effect on the convergence of the chain. 

4.4.2.7 Candidate generating density for assay parameters 

The candidate generating function for each conditional kernel in the M-H chain used 

to fit the assay model is a multivariate t distribution. After the independence in­

ducing transformations were applied the posterior distributions were approximately 

symmetric. It follows from the symmetry of a t distribution that the expected value 

of the chain at any iteration is always the current state of the chain. The multivari­

ate t density is preferred to the multivariate normal density because it has thicker 

tails. 
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Since the candidate generating density is symmetric about the mean and because 

the chain is a random walk chain, the probability of moving from Zi to Zi+l reduces 

to 
.. { 1r{Z(i+l))q(Z(i) I z(i+l)) } (2) (2+1) _ . 

a(z ,z ) - mm I, 1r(z(i))q(zU+l) I z(i)) 

To ensure that statistical dependencies between the parameters in each kernel 

were incorporated into the candidate generating densities, the scale parameter of 

the candidate generating t distribution was a Hessian based approximation of the 

asymptotic covariance matrix for those parameters. This is a vital step. The con­

vergence of the chain was found to be cumbersome if posterior dependence between 

the parameters was ignored. 

A number of values for the degrees of freedom were tried before three was se­

lected. Following Muller (1991), a tuning constant was used to further adjust the 

scale of the candidate generating density. 

4.4.3 Fitting the assay model 

The details of the method used to fit the assay model and to calculate associated 

inferences are summarized in tl1e following algorithm: 

1. Thansform the parameters so as to make the anticipated posterior distribution 

as nice as possible and partition the parameters accordingly. 

2. Run the chain, sequentially drawing each group of parameters from their re­

spective transition kernel. For each transitional kernel, use a random walk 

chain with candidate generating density taken as a multivariate t distribution 

with three degrees of freedom and with scale parameter a Hessian based esti­

mate of the conditional covariance matrix of the parameters. Use the tuning 

constant to adjust the scale parameter as necessary. Define the transitional 

probability to be zero if any draws fall outside of the parameter space. The 

order in which {J, () and pP are generated is not important and in fact can be 

changed. 

3. Repeat 2 until it appears that the chain is drawing from its equilibrium dis­

tribution. The usual rule of thumb is to plot the draws and their long-run 

average against time and continue until these plots indicate stability has been 
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attained. Once this point has been reached reset to zero any quantities that 

will be used in the calculation of inferences. 

4. Continue to repeat 2 until enough draws have been made that all inferences 

of interest have been calculated to the required level of accuracy. This is 

ascertained by plotting the value of the inference over time for independent 

chains initialized at different starting points and using different random num­

ber streams. If the realized values of the inference on all chains are very close 

to one another, then this is a good indication that the required accuracy has 

been obtained. If this is not the case, the simulation is continued. 

The methods given in the last two steps are the basis of the methods currently 

being used to determine when a chain reaches its steady state distribution and when 

inferences have been calculated accurately enough. There is a lot of ongoing research 

being devoted to this area. The task of determining when the effect of the initial 

state becomes negligible and an inference has been calculated to a specified level 

of accuracy are difficult problems that are magnified when the parameter has high 

dimensionality. Refer to Besag et al. (1995) for discussion of various diagnostic 

checks on the output from MCMC chains. 

4.5 Analysis of the NMCH data 

In this section Bayesian analysis is used to fit the NMCH model to the NMCH 

data. Recall that these data are real and not simulated; hence, there are no "true 

values" of the parameters. Prior independence is assumed between (/3, (J) and rp. 
The non-informative prior for (/3, (J) is given by 

In Analysis 1, a flat improper prior is assumed for p,u. That is 

In Analysis 2, the components of rp are a priori independent and identically dis­

tributed with 
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Figure 4.1: Plots of the value and ergodic average of {33 (denoted B3) and ()2 (denoted T2) over 
100,000 iterations of the Metropolis-Hastings algorithm for analysis 1 of the NMCH data. 

where /-Lo = 135 and TO 500. These values of /-Lo and TO resemble the mean and 

variance of previous estimates of the concentrations in unknown samples. It should 

be noted that strictly speaking this is not a Bayesian approach for the selection of a 

prior distribution. The method has some affinity with the empirical Bayes procedure 

which is also not a Bayes procedure. A true Bayesian methodology is described in 

Section 4.6. 

4.5.1 Convergence diagnostics 

Analysis of the draws indicated that the Markov Chain appeared to have passed 

through its transient phase by the 1000th iteration. However, the first 10,000 variates 

drawn were excluded from the calculation of inferences to be sure that there were 

no lingering transient effects. 
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Figure 4.2: Posterior distributions of the model parameters and two unknown concentrations for 
the NMCH model with a fully non-informative prior on the NMCH data (the x-axis is the parameter 
value, the y-axis is the value of the density). 

The point at which one can be assured that inferences have attained a specified 

level of accuracy is more difficult to determine. After 100,000 iterations the ergodic 

means of the parameters appeared to be sufficiently stable for reliable evaluation of 

inferences (see the plots on the rhs of Figure 4.1). 

4.5.2 Fitted models 

The posterior distributions of (J (B in the plots) and () (T in the plots) and for two 

unknown concentrations (E in the plots) are shown in Figures 4.2 and 4.3. 
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Figure 4.3: Posterior distributions of the model parameters and two unknown concentrations for 
the NMCH model with a non-informative prior for (3 and () and an informative prior for 11 on the 
NMCH data (the x-axis is the parameter value, the y-axis is the value of the density). 
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Table 4.1: Posterior means, posterior standard deviations and extended REML estimates of the 
model £ h C data. p~ameters and two unknown concentrations or t e NM H model on the NMCH 

Parameter Non-inf. Bayes Inf. Bayes ExREML 
Mean Std. Dev. Mean Std. Dev. Estimate 

/31 55.25 0.53 55.25 0.54 55.26 
/32 1.11 0.07 1.11 0.07 1.11 
/33 57.21 2.76 57.24 2.81 56.66 

/34 4.35 1.15 4.35 1.18 4.54 
fh 28660 4417 29764 4690 27130 
()2 1.4578 0.3188 1.4494 0.3276 1.52 

'TIl 172.91 6.5785 170.90 0.3889 172.62 

'TI2 26.0701 1.8709 26.5109 1.8873 26.13 

4.5.2.1 Discussion 

The distributions displayed in Figures 4.2 and 4.3 have some interesting features. 

The posterior distribution for each parameter is reasonably symmetric with virtually 

no mass close to boundary points. This is the reason why transition kernels based 

on the t-distribution work so well for this model. 

To the precision of graphical inspection, the (marginal) posterior distributions 

for /31 and /32 appear symmetric. The posterior distribution of /33 is clearly right 

skewed while n(/34 I Y, X) is left skewed. It is also the case that /33 and /34 are a 

posteriori negatively correlated. 

The posterior correlation between ()1 and ()2 is negative and the skewness of their 

posterior distributions is in opposite directions. The posterior distribution of 01 , the 

scale parameter, is skewed to the right whereas ()2, the shape parameter, is skewed 

to the left. 

There are no noticeable differences in the shape of the posterior distributions 

between the two analyses. For a more precise inspection, the posterior means and 

standard deviations of the model parameters refer to Table 4.1. For the purpose of 

comparison the extended REML estimates are also shown in Table 4.1. 

The posterior means from Analysis 1 in particular, are very similar to the ex­

tended REML estimates. From the perspective of point estimation, this validates 

the use of extended REML as an approximation to the posterior mean, at least for 

immunoassays data such as this. Incidentally, exact calculation of the estimation 
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errors of the extended REML estimates is intrinsically compromised since the true 

values of the assay parameters are not known. The posterior standard deviation can, 

however, be calculated along with the posterior mean and reported as a measure of 

the uncertainty in the value of the parameter. 

It is evident from Figures 4.2 and 4.3 and Table 4.1 that the informative prior on 

rJu has little effect on the posterior distributions of f3 and e. This is understandable 

given that this prior contains no information about f3 and e. The informative prior 

has the effect of pulling the posterior means of rJl and rJ2 a little towards the prior 

mean. This effect, known as shrinkage, is a trait that frequently occurs when an 

informative pri?r is used in Bayesian analysis. 

4.6 Grand immunoassay model 

In the final section of this chapter, a hierarchical Bayesian model is developed for 

the analysis of data from a batch of assays of the same type. Assays of the same 

type are assays homogeneous in all departments except the statistical design; i.e. 

the values of the concentrations of both standards and unknowns may be different. 

The substance being analyzed, the procedure and the reagents used are the same 

in all assays. In the final part of this section a procedure is developed for passing 

information from completed assays on to future assays. 

4.6.1 Model for a batch of assays 

The same data generating process is experienced by assays that are deemed to be 

of the same type. This allows information to be shared between the assays. 

Within a single assay the unknown concentrations can be viewed as an inde­

pendent sample of the concentrations in the population of eligible subjects. In a 

similar vein, the model parameters across a batch of assays can be thought of as 

independent realizations from a population of parameter values for assays of that 

type. It makes sense that the parameter values of the model are subject to variation 

as uncontrollable factors or hidden error processes will surely act between assays. 

The behaviour of the assay parameters is described by their marginal distribution. 

This is commonly known as the prior distribution. 
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Let Yhij denote the jth replicate, for the ith sample in the hth of k assays. Let 

'T/hi be the associated concentration and (f3h, (h) be the model parameters for assay 

h. The model for the data from a batch of assays is then 

and 

forj 1, ... ,Thi,i l, ... ,niandh=l, ... ,k. 

The likelihood function involves just the observed data and the assay parameters. 

This is the first stage of the modeL The prior distributions are the second stage of 

the model. The prior distributions are dependent on a further set of parameters, 

'T/1r' f31r and 011" These parameters are known as prior parameters. These do not 

necessarily have the same dimensions as 'T/hi, f3h and Oh respectively. The joint prior 

distribution of (f3h, Oh, 'T/h) will be denoted by 'irl(f3h, Oh, 'T/h I f31r) 011') 'r)1r) in this section. 

To perform the analysis) the prior parameters must be specified. One method of 

doing this is direct elicitation. Then the prior distribution is completely specified. 

Thus no information is able to be shared between the assays unless the same samples 

are analyzed on multiple assays. In other words, the assays may as well be analyzed 

independently. 

A hierarchical Bayesian model is a natural way of describing the data generating 

process when a batch of assays is analyzed. Instead of assigning specific values 

to the prior parameters, distributions that describe the uncertainty in the value of 

the prior parameters are specified. Such distributions are called stage II priors or 

hyperpriors. In a hierarchical Bayesian model, the stage I prior is often thought 

of as the structural component of the prior and the hyperprior as the subjective 

component of the prior (Berger (1985)). 

Since the model parameters and the unknown concentration parameters are re­

garded independently, it makes sense that the associated prior parameters are also re­

garded independently. The hyper-priors for the assay model are denoted as 'ir2(f31r) 011') 

and 'ir2('T/1r)' These densities may depend on known hyper-prior parameters. 
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4.6.2 Analysis of a batch of assays 

The hierarchical Bayesian model for a batch of assays resembles a union of the 

models from many assays. Instead of one assay there are a collection of assays and 

therefore many more unknown parameters. l 

Let {flh) eh, 'T/hi, h = 1, ... , k, i E U}, Q = (fl1r' e1r , T/1r ) and D {Dh' h = 

1, ... , k} where Dh = (Yh, X h) denotes the data for assay h. Define to mean 

{Zj,j i}, to mean {Zj,j < i} and Z9 to mean {Zj,j S; i} for an arbitrary 

entity Z. 

Since D given P and Q does not depend on Q and hence f(D I P, Q) f(D I P) 

the posterior distribution of the model parameters is 

where 

f(D) = f f f(D I P)1rl(P I Q)1r2 (Q)dQdP. 
In(p) In(Q) 

To obtain the posterior distribution for any parameter of interest, the remaining 

components of P are simply integrated out. For inferences concerning the hth assay 

the quantity of interest is 

1rl (Ph I D) = f 1rl (P I D)dP_h. 
In(p_h) 

Further integration yields the marginal distribution of specific components of Ph. 

Notice that the posterior distribution for the hth assay depends on D, the data from 

the whole batch of assays. If only the data from assay h were used, then inferences 

would be based on 1rl (Ph I Dh) alone and there would be no pooling or sharing of 

information between the assays. 

In theory this is how the data from a batch of assays could be simultaneously 

analyzed and inferences for any particular assay evaluated. The computation will, 

however, be difficult because it is huge, especially for large k. 

4.6.3 Practical application 

In practice it is unlikely that data from a full batch of assays will be available for 

the analysis of each individual assay. Because results are usually required urgently, 

lThls is in fact the set up for an empirical Bayes problem. 
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assays tend to be analyzed as the data are received. The analysis cannot be delayed 

until all the assays in the batch have been completed, since assays are usually carried 

out one at a time. Information from the analysis of assays preceding the current 

assay can, however, be incorporated in the analysis of the current assay. The method 

is illustrated in the following theorem. 

Theorem 4.6.1 Suppose that h out of the k assays have been completed. The pos­

terior distribution for the hth assay can be written in the form 

7fl(Ph I D~h) = (D ~ D ) r f(Dh I Ph)7fl(Ph ,Q)7f2(Q I D<h)dQ, 
P h <h In(Q) 

where 7f2 (Q I D <h) is the posterior distribution of Q given D <h and 

is the predictive distribution of Dh given D<h. 

Proof: From the theorem of total probability and Bayes' theorem 

r 7fl(P<h I JJ<h)dP<h 
In(p<h) - -

f(~ ) r r f(D I P<h)7fl(P<h I Q)7f2(Q)dQdP<h ~h In(p<h) In(Q) - -

fIr f(Dh I Ph)7fl(Ph I Q) r f(D<h I P<h)7fl(P<h I Q) 
In(Q) In(p<h) 

.7f2( Q)dP<hdQ 

~~~<h~ r f(Dh I Ph)7f1(Ph I Q) 
9 In(Q) 

r f(D<h I P<h)7fl(P<h I Q)7f2(Q) dP dQ 
. In(p<h) f(D<h) <h , 

where 

Hence, 

r 7f1 (P<h, Q I D<h)dP<h 
In(p<h) 

7f2( Q I D<h). 
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Since f(D-:;h) P(Dh I D<h)f(D<h) it follows that 

(D ~ D ) ( f(Dh I Ph)7fl(Ph I Q) 7f2(Q I D<h)dQ. 
P h <h in(Q) 

(4.11) 

The fact that 

{ ( f(Dh I Ph)7fl(Ph I Q) 7f2(Q I D<h)dQdPh 
in(Ph) in(Q) 

is all that is needed to complete the proof. This result follows easily by conditioning 

on Ph and Q and applying the theorem of total probability. 

Theorem 4.6.1 is an important result. It says that all experimental information 

from past assays of relevance to subsequent assays in the batch is contained in 

the posterior distribution of the hyper-parameters. After each assay is analyzed 

7f2(Q I D-:;h) merely needs to be stored and then used as the hyper-prior in the 

analysis of the next assay. Information can be passed from one assay to the next 

(see Section 4.6.4) without affecting the complexity of any ofthe individual analyses. 

Note that after integrating Q out of the numerator of (4.11), the corresponding 

result at the level of the stage I prior is obtained 

It might be thought that 7fl(Ph I D-:;h) can be used to pass information onto the (h+ 

l)th assay. However, the stage I prior is the wrong medium for passing information 

between assays. This is because Ph is specific to the hth assay; hence, 7fl(Ph I D-:;h) 

has no bearing on the (h+ l)th assay. On the other hand the analysis of every assay 

depends on the state of knowledge about Q. 

4.6.4 Sequential analysis of a batch of assays 

Firstly, the posterior distribution of the prior parameters given all the data, 7f2(Q I 

D-:;h) , can be computed using 7f2(Q I D<h), the posterior of the prior parameters 

given all the data up to the data from the last assay, as: 

f(D<h I Q) 7f2(Q) 
f(D-:;h) 

f(Dh I Q)f(D<h I Q)7f2(Q) 
P(Dh I D<h)f(D<h) 

(4.12) 
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j(Dh I Q)7r2(Q I D<h) 
p(Dh I D<h) 

( r j(Dh I Ph)7rl(Ph I Q)dPh) 7r2(Q I D<h) 
iR(Ph) P(Dh I D<h) 
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Equation (4.12) follows from the fact that if given P, the Dh are independent and 

given Q, the Ph are indentically independent then given Q, the Dh are independent. 

The procedure for analyzing data from a batch of assays using the hierarchical 

Bayesian model described in this section is therefore: 

l. Specify an initial prior for Q, subjectively or otherwise. Set Do = {} and h=l; 

2. Analyze the hth assay using 7r2(Q I D<h) as the hyper-prior. 

It Calculate 

the posterior distribution of Ph 

• Use 7rl (Ph I Ds:h) to evaluate the inferences of interest. 

3. Update the posterior distribution of Q, the hyper-prior parameters, according 

to 

7r2(Q I Ds:h) = ( r j(Dh I Ph)7rl(Ph I Q)dPh) 7r(1Q : ~<h)). 
iR(Ph) p h <h 

4. Return to step 2 and continue until all the assays in the batch have been 

analyzed. 

4.6.5 Discussion 

Bayes' theorem has provided a means of updating knowledge about the data gener­

ating process of an assay. The analysis of a sequence of assays of the same type is 

an illustration of the function of Bayes' theorem as a learning tool. 

After the specification of the structural and subjective components of the prior 

for the analysis of the first assay, no further subjective input is required. There­

fore, this approach is an automatic method of conducting an informative Bayesian 

analysis for the second assay onwards in a batch of assays. As more assays are 
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analyzed the hyper-prior will become more developed and most likely more infor­

mative; hence, it is expected that the precision of the inferences would improve as 

more assays are analyzed. 

The hyper-prior must be specified for the first assay in the batch. An informative 

hyper-prior can be elicited as if a single assay were being analyzed. Alternatively, 

a non-informative hyper-prior may be used. The use of the continuously updated 

posterior will continue for as long as the data generating process remains the same. 

As the number of assays increases the influence of the initial prior will decrease and 

eventually become negligible. If the data generating process changes, the hyper-prior 

should of course be re-specified and the analysis of a new batch of assays initiated. 



Chapter 5 

Minimum detectable concentration 

5.1 Definition and preliminary remarks 

The minimum detectable concentration (MDC) of an assay is the smallest concen­

tration (in an unseen sample) the assay can reliably measure. The MDC is a very 

general quantity in that the term "reliable measurement" has no universally ac­

cepted definition. The key ingredient and distinguishing feature of a measure of the 

MDC is the definition of a reliable measurement, several of which will be presented 

in this chapter. Reliable detection is a synonym that will at times be used for reliable 

measurement. 

The MDC is usually calculated using all of the observations from the assay. 

However, there are specific applications where it would be appropriate to only use 

the standards. One such example is when the MDC is used to determine the best 

concentrations at which the standards should be set. To calculate the MDC on a 

subset of the data, the necessary observations need only be excluded. 

5.2 Existing measures of MDC 

The objective of this section is to set the basis and motivation for the remainder of 

the chapter by reviewing the most widely used measures of MDC and identifying 

areas of potential improvement. This is by no means a comprehensive literature 

review. Testimony to this is the fact that one existing measure is not mentioned 

until the end of the chapter (Section 5.3.4). Notwithstanding, it is fair to say that 

89 
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the most respected and widely used measures are covered. 

In this chapter the notation ~ and e will be used to indicate estimators aris­

ing from generalized least squares, maximum likelihood or some variant such as 

extended REML and extended MML. For the measures of MDC discussed in this 

section, fj represents the mean of r hypothetical response measurements made on 

an independent sample having concentration x. 

5.2.1 Critical limit (CL) 

The CL was introduced in Currie (1968). It was adapted to a regression set-up by 

Rodbard (1978). The following definition is based on Rodbard (1978). 

When m is a decreasing function of concentration, the CL is defined as the 

concentration that interpolates (Le. is backfitted from) the left hand end point of a 

one sided (1 - a) 100% prediction interval for y when x O. 

The lack of a pivotal quantity or other formal procedure renders calculation of 

this prediction interval and subsequently of the MDC impossible. Approximations 

must be used. The usual procedure (Rodbard (1978) and Davidian et al. (1988)) is 

to suppose that 

vv(m(x, ~), e)/r + var(m(x, ~)) 
(5.1) 

has a Students t distribution with degrees of freedom based on the amount of infor­

mation used to estimate B. This approximation stems from the underlying normality 

of the observations and the fact that'!} and m(x,~) (the fitted mean response at 

concentration x) are independent. When B is estimated using all of the observations, 

the degrees of freedom are given by v = I:i=l (ri 1) + nS 
- p. Instead, if only the 

residuals from the regression of the mean responses on the mean function were used 

to estimate B, as in Rodbard (1978) and Davidian et al. (1988), then v n S 
- p. 

The variance of m(x,~) is given by Vai'(m(x, ~)). This is usually approximated 

by: 

(5.2) 

where 

(5.3) 
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Recall from Section 2.2 that m(J is the gradient of m with respect to /3. The rhs of 

(5.2) is the variance of the first order Taylor series expansion of the non-linear func­

tion m(x, (3). The rhs of (5.3) is the asymptotic variance of /J when the dependence 

of v on /3 is ignored and /3 is substituted for /3. If the dependence of v on /3 is not 

ignored, the analogous information matrix based approximation for var(/J) is 

(5.4) 

where Vm denotes the derivative of v with respect to m. When v is O(m1/ 2) or 

greater (5.4) should be used instead of (5.3). In an immunoassay this is usually not 

the case (see Sadler and Smith (1986)) and (5.3) is used. 

The measure of MDC that results when the above approximations are used, 

denoted by xci, is obtained by solvi,ng the equation 

where t(a,v) is the 1 a percentile of the Students t distribution with 1/ degrees of 

freedom. If m were an increasing function of concentration, then xcl would backfit 

the upper end point of a one-sided prediction interval for V and the terms on the 

rhs of (5.5) would be added together. 

Irrespective of whether m is increasing or decreasing, the monotone nature of the 

mean function ensures that when out of range responses are backfitted to whichever 

of 0 or 00 is appropriate, [0, xci] is the equivalent prediction interval for the backfitted 

concentration, w m-I (V, /J), when x = O. 

CL is the concentration above which detection is said to occur. In this 

scenario a reliable measurement is deemed to be a response measurement associated 

with a backfitted concentration that exceeds xci. When m is a decreasing function 

of concentration, this will be the case if and only if the response is below the lower 

limit point of the prediction interval for V when x = O. If the measurement is reliable 

then concentration is said to be detected. This criterion for detection approximates 

the rejection region of the a level test of the hypotheses Ho : W = 0 verse HI : W > 0 

that would be carried out if V were actually observed. 

In Rodbard's terms, xci is the concentration "which would have an expected 

response statistically significantly different from the fitted response for zero dose 
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(concentration)". Statistical significance is specified by a one sided level a Students 

t-test for the difference of means. The hypotheses are Ho : E[y I xcl ] = m(O, f3) and 

HI : E[y I xcl] < m(O, f3). 
If the t distribution with lJ degrees of freedom were the exact distribution of 

(5.1), then the type I error probability for detection under both of the preceding 

criteria would be 

pr (y < m(O, /3) - t(a,v) J v(m(O, /3), fJ) Ir + var(m(O, /3)) I x = 0, X) 

pr(m-l (y,/3) > xcl I x O,X) 

a. 

The ease of calculation makes the CL a widely used measure of MDC (Brown et 

aL 1996). The major shortcoming of the CL is that the term "reliable measurement" 

is defined solely in terms of the. uncertainty at zero concentration. No account is 

taken of the likelihood of detecting a positive concentration. In fact, it would be 

expected that about 50% of samples with concentrations equal to the CL would be 

detected. 

5.2.2 Detection limit (DL) 

This measure considers the uncertainty at positive concentrations by comparing 

responses at positive concentrations to the C1. The DL, like the CL, originates 

from Currie (1968). It is defined as the concentration for which the upper (lower) 

limit of a 1 - T one-sided prediction interval for y equals m (xcl , /3), in the case that 

m is a decreasing (increasing) function of concentration. 

The value of the DL is denoted by xdl, where xdl solves 

(5.6) 

when m is a decreasing (increasing) function of concentration. 

Even when (5.1) holds, the DL is often incorrectly said to be the concentration 

at which the type II error probability for the hypothesis test related to the CL is 

equal to T' The type II error probability of this test at x dl is 

( 
y - m(O, /3) I dl) pr A A . A > -t{a,v) x = x ,X . 

Jv(m(O, f3), (J)lr + var(m(O, f3)) 
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This cannot be evaluated without assuming specific values for (J and e. Even then, 

the exact distribution of the quotient is complicated. Among well known families of 

distributions, a non-central t distribution may be the closest approximation. 

In the following it is shown that pr(y > pC I x = xdl ) is in general not equal to 'Y in 

the case that (5.1) is true l . Let pC = m(O, in -t(C'i,v) 

Then 

pr(y> pC I x ( fi - m(xdJ
, fi) 

pr vv(m(xdl ,/3),iJ)/r+Vai(m(xdl ,/3)) > 

pC - m(x
dl

) /3) xdl, x) . 
/ A A A Ix 

V v(m(xdl ) (J), e)/r + Vai(m(xdl ) (J)) 

If (5.1) holds, it is clear that the probability is equal to 'Y if and only if 

t _. . pC - m(xdl ,/3) 

7,v - J v(m(xd1 , /3), iJ) /r + Vai(m(xdl , /3)) 

Since the right hand term is a function of random quantities when m is nonlinear 

in {J or v is a function of m this is certainly not true in general. 

Hence, xdl is merely a concentration at which the type H error of the related 

hypothesis test is approximately 'Y. There is no guarantee that the approximation 

will be particularly good. 

Historically the DL has been viewed as the concentration at which detection can 

be "expected". The built in allowance for type I error makes it accountable for both 

error types (although the exact levels of the type I and H error probabilities are 

unknown) and uncertainty at both zero and positive concentrations. Currie (1968) 

states that "the DL is an a priori measure of an assay's reliability. It reflects an 

assay's ability to detect a concentration when a sensible allowance has been made to 

ensure reliable non-detection." It is the limit of reliable or expected detection. On 

the other hand, the role of the CL is to classify a sample as detected or non-detected 

after a response measurement has been observed. It is in this sense that it is referred 

to as an a posteriori measure. 

Within the frequentist paradigm the DL is one of the most reasonable measures 

of the MDC. However, although the DL accounts for uncertainty in the response 

lWhen (5.1) is not true the type I error probability does not in general equal a; hence, there is 
no point in even trying to prove that the type II error probability is equal to ,. 
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at both zero and positive concentrations, it does not do so simultaneously (the 

uncertainty at zero concentration is firstly considered in the type I error probability 

calculation, then the uncertainty at positive concentrations is considered in the 

type II error probability calculation). Furthermore, the rather complicated nature 

of its definition makes it seem improbable that a practitioner would instinctively 

associated the DL with the MDC of an assay. In Sections 5.3.2 and 5.3.3 measures 

of MDC will be developed that simultaneously account for the uncertainty in the 

measurement of both zero and nonzero concentrations and which have definitions 

that are easy to understand. 

5.2.3 Estimated limit (EL) 

For the case in which m is a decreasing function of concentration, Davidian et al. 

(1988) defines the MDC as the smallest value of x for which 

pr(y < m(O, (3) Ix) > 1 - a. (5.7) 

This measure has a realistic and understandable foundation. Consider firstly the 

case in which f3 and () are known, Le. everything is known about the assay. The 

maximum likelihood estimate of the unknown concentration is zero if the observed 

mean response exceeds m(O, (3). This is because such a response does not backfit to 

a positive concentration. A concentration can thus be said to be "reliably able to be 

measured" if the likelihood of backfitting to a positive concentration is sufficiently 

high. 

Since (5.7) can only be evaluated when ,8 and () are known (Le. when everything 

is known about the assay's properties) this measure is referred to as the MDC in 

the presence of perfect information (xPi ). If deteCtion is the event that the mean 

response backfits to a positive concentration then xPi is the concentration at which 

detection occurs with probability 1 - a. 

In a realistic situation, f3 and () are unknown and thus xPi must be generalized. 

The uncertainty in the assay model must be accounted for if the measure of the 

MDC is to reflect the quality of the assay. Davidian et al. (1988) suggested the 

smallest value of x for which 

pr(y < m(O, lJ) I x,X) ::::: 1- a. (5.8) 
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This measure of the MDC is denoted xel. It is interesting to note that Davidian et 

al. (1988) implies that x el is an estimator of xPi . It will be shown in Section 5.4.2 

that x el is a terrible estimator of xPi . 

In general x el cannot be evaluated exactly and must be approximated. The 

procedure used by Davidian et al. (1988) is to solve the following equation for xel: 

To obtain the above equation it is necessary to apply (5.1) and to act as if m(x, /3) = 

m(O, /3). Only after this equation has been found is this "temporary" restriction 

removed. 

The number of approximations used in evaluating xel suggests that improvements 

are possible. The "temporary" restriction is particularly alarming since, in the 

context of the measure of MDC being developed, it does not make any sense to 

assume that m(x, /3) m(O, /3). Two alternative frequentist measures are developed 

in the remainder of this section, followed by a Bayesian measure in Section 5.3.l. 

The proximity of all of these measures to xPi is investigated in Section 5.4.2. 

5.2.3.1 Direct substitution approach 

:Bar comparison with other methods a measure of the MDC based on a sensible 

estimate of xPi is considered. This is not a serious measure of the MDC but rather 

is provided because it is a sensible estimator of xPi and so is useful for comparative 

purposes. 

An obvious estimator of xPi is found by substituting j3 and e with /3 and iJ in the 

definition of xPi . The resulting concentration, denoted xes, is given by 

where Za is the 1 Q percentile of the standard normal distribution. 

5.2.3.2 Prediction interval approach 

In this approach, the measure of MDC is based on an approximate 1 - Q prediction 

interval for fj - m(O, j3). The procedure is to approximate (5.8) without pretending 

that m(x, /3) = m(O, /3) at any point of the calculation. 
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The value of x is sought for which the interval ( -00,0) would be a 95% prediction 

interval for y - m(O, (3) when E[m(x, S)l m(x, (3). Firstly, note that 

y m(O, (3) rv N(m(x, (3) - m(O, (3), v(m(x, (3), (})/r). 

Then, as y is independent of (3, it follows that 

y - m(O, (3) (m(x, S) - m(O, S)) fV N(O, v(m(x, (3), (})/r + var(m(x, S) m(O, S))). 

However, the variance of the above distribution is dependent on the unknown pa­

rameter {} so inference is based on the approximate pivotal quantity 

y - m(O, (3) - (m(x,S) m(O,S)) 

vv(m(x, S), B)/r + var(m(x, S) - m(O, S))' 

This quantity, like the quantity in (5.1), distributed approximately according to 

a Students t distribution with 1I degrees of freedom. It thus follows that 

pr {y - m(O, (3) < m(x, S) m(O, S) + 
t(a,v)Vv(m(x, S), e)/r +var(m(x, S) - m(O, S))} 

rv 1 - a. 

Since the upper end point of the required prediction interval for y 1(0, (3) is 0, it 

is therefore reasonable to define the MDC by solving 

m(x, S) - m(O, S) +t(a,v)Vv(m(x, S)' B)/r + var(m(x, S) - m(O, S)) = o. 

for x. The solution is denoted xei. Thus, xei solves 

In the above expression the term V31(m(xei ,S) m(O,S)) can be approximated by 

(mp(xei , S) - mp(O, S) ),var(S)( mp(xei, S) - mp(O, S)) 

and var(S) may be evaluated using (5.3), (5.4) or some other approximation. 

The prediction interval version of the EL is the concentration xei for which zero is 

the upper end point of a one sided 1 a prediction interval for the difference between 

an independent mean response based on r observations at and the mean response 
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at zero concentration. Under repeated sampling I-a of such intervals would contain 

the true difference between fi and m(O, (3). In this way, may be interpreted as 

the concentration for which the uncertainty associated with an independent response 

measurement is significantly segregated from the uncertainty in the mean response 

at zero concentration. 

Since m(m(xei, S) m(O, S)) and m(m(O, S)) may be quite different in value, 

xel and xei may also be very different. It is unclear which of xel and xei is superior. 

Simulations have indicated that x e1 appears better for some values of the model 

parameters while for others xei seems to do a better job (see Tables 5.1 - 5.6). 

Like xel, xei is an extension of xPi to the case in which f3 and () are unknown. 

It can be seen that the solution for x ei given above reduces to xPi when the assay 

model is known. This follows by substituting Sand (j with f3 and () respectively and 

setting m(m(x, S) m(O, S)) = 0 .. 

The EL is based on an event which would be evaluated if the assay parameters 

were known. In this regard, the EL relates to what one really wants to know. This 

philosophy is reflected in the measures of MDC developed in the remainder of this 

chapter. 

5.3 Bayesian measures of MDC 

In this section measures of MDC are developed that use the notion of Bayesian infer­

ence. In the Bayesian paradigm, fitting a model consists of obtaining the posterior 

distribution of the unknown parameters. The posterior distribution quantifies the 

uncertainty in the underlying model at the completion of the assay. Inferences are 

derived from these distributions and so are conditional on the observed data. This 

differs from the frequentist approach where inferences are based on the sampling 

distributions of point estimates of the model parameters. These inferences are made 

in reference to all the data that could possibly have been observed in the experiment 

as opposed to just the data that were observed. 

Recall that the superscripts Sand U indicate that the entity is calculated using 

just the standards or the unknowns respectively. The development in this section is 

almost exclusively presented using the general assay model. The likelihood function 
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of the observed data is given by 

fey I X, r,u, (J, 0) IT f(ri I Xi, (J, 0) IT f(ri 17]i, (J, 0) 
iES iEU 

and the prior distribution of the assay parameters by 

1f((J, 0, r,u) = 1fm ((J, 0) IT 1fo(TJi). 
iEU 

Throughout this section it is assumed that 1f((J, 0 I Y, X) is determined at least 

to the extent that representative samples (a sample that reflects the population) are 

able to be drawn. The computational feasibility of any quantity involving 1f((J, e I 
Y, X) is subject to efficient generation of a representative sample from 1f((J, elY, X). 

After the observed data has been analyzed, all of the information known about 

the assay and the underlying data generating process is contained in the following 

three distributions: 

• 1f((J, elY, X), the joint posterior distribution of (J and e. This contains all of 

the experimental information about the assay model; it may be appropriately 

termed the model fit . 

• The prior (or marginal) distribution of the level of concentration that prevails 

throughout the population of unknowns. Recall that w denotes a general value 

of concentration and 1f0 (w) is the prior distribution for w. 

GIl fey I w, (J, e), the distribution function of y, a vector of independent (i.e. 

hypothetical) responses at concentration w. 

Any definition of MDC from a Bayesian framework must be constructed entirely 

from these three distributions. Furthermore, if the MDC is to be used to assess 

the "quality" of the assay just performed information from measurements made on 

the unseen sample cannot be used to update the posterior distribution of (J and e. 
Several Bayesian definitions of MDC are now developed. 

5.3.1 Response level MDC (RL MDC) 

In the first instance the logical Bayesian generalization of Davidian's MDC is con­

sidered. This is to compute prey < m(O,fJ) I x) as a Bayesian predictive probability. 
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The resulting measure of the MDC is denoted by xrl. Formally, xrl is defined as the 

smallest value of x for which 

pr(y < m(O, ,6) I x, Y, X) ~ 1 - a, (5.9) 

where y denotes the mean of y, a vector of r hypothetical responses. Thus xrl is the 

smallest concentration for which the predictive probability of the event (y < m(O, ,6)) 

is at least 1 a. This probability is of course conditioned on the data (Y, X) of the 

current assay. 

The lhs of (5.9) is now expanded to reveal the procedure for evaluating xrl. By 

definition of the Bayesian predictive distribution it follows that 

pr(y < m(O, (3) I x, Y, X) = 1 l
m(o,,6) 

1r(Y, fJ I x, Y, X) dy dfJ 
n({3) ° 
1 . 1 lm (O,{3) . 1r(y, fJ, 0 I x, Y, X) dy dfJ dO 

n(o) n({3) ° 

1 1 l
m(o,{3) 

1(y I x,Y,X,fJ,0)1r(fJ,0 I x,Y,X) 
n(o) n(,6) ° 

.dyd{3 dO. 

Since y given (x, (3, 0) is independent of Y and X and (fJ,O) given (Y, X) does not 

depend on the concentration x it follows that 

and 

Hence, 

pr(y < m(O, fJ) I x, Y, X) 

1(Y I x, Y, X, fJ, 0) = 1(y I x, fJ, 0) 

1r(fJ, 0 I x, Y, X) = 1r(fJ, 0 I Y, X). 

1 1 l
m(o,{3) 

1(y I x,fJ,0)dY1r({3,0 I Y,X)d{3dO 
n(o) n({3) ° 
r r pr(y < m(O, (3) I x, fJ, 0)1r(fJ, 0 I Y, X) d{3 dO 

in(o) inco) 

(5.10) 

The above derivation indicates that the predictive probability is an average with 

respect to the uncertainty (or error) in the values of fJ and O. The rhs of (5.10) is 

a weighted sum of the conditional probabilities, pr(y < m(O, fJ) I x, fJ, 0), for each 
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value of (3 and B. It can be seen from this expression that all the uncertainty in the 

parameters has been simultaneously considered. 

It is easy to see that xT! xPi if (3 and B were known. This follows by observing 

that given (3 and B, the data (Y, X) has no influence; hence, pr(y < m(O, (3) I 
x, y, X) = pr(y < m(O, (3) I x). 

If normality can be assumed, i.e. y rv N(m(x, (3), v(m(x, (3), B)/r), pr(y < 
m(O, (3) I x, (3, B) is equal to the cumulative distribution function (cdf) of the stan­

dard normal distribution evaluated at 

Hence, in this case 

pr(y < m(O, (3) I Y, X) 

m(O, (3) - m(x, (3) 

vv(m(x, (3), B)/r . 

r r <p (m(o, (3) m(x, (3)) 1r((3, B I Y, X) d(3 dB. 
in-(o) in-({3) vv(m(x, (3), B)/r 

An interesting feature of this measure of MDC is that the desired predictive 

probability involves a model parameter. Bayesian inferences usually pertain sepa­

rately to functions of parameters or functions of future responses. This makes the 

RL MDC somewhat unique. See Section 8.6.2 for more comments. 

5.3.1.1 Numerical evaluation 

In general, the calculation of xrl relies on the calculation of pr(y < m(O, (3) I x, Y, X) 

as given in equation (5.10) above. The strategy is to generate (y, (3) rv 7r(Y, (3 I 
x, Y, X) and then to calculate pr(y < m(O, (3) I x, Y, X) as a Monte-Carlo average 

of z = 1(y < m(O, (3)). By the strong law of large numbers this empirical average 

converges to its expectation which is precisely pr(y < m(O, (3) I x, Y, X) (see Smith 

and Roberts (1993), Besag et aL (1995) for the general result). 

The crucial step is the generation of (y, (3) from 1r(y, (3 I x, Y, X). To accomplish 

this firstly write 

7r(Y, (3 I x,Y,X) = r f(y I x,(3,B)1r((3,B I Y,X) dB 
in-(o) 

and note that y rv f(y I x, (3, B) can be easily generated. Thus it remains to generate 

a representative sample of ((3, B) from 1r((3, B I Y, X). As discussed in Section 4.4, 
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the Metropolis-Hastings algorithm is a suitable method for generating (3 and e from 

their joint posterior distribution. 

The algorithm given below embodies the calculation of pr(y < m(O, (3) I x, Y, X) 

into a M-H scheme for generating ((3, e) rv 7r((3, elY, X). This is not the only 

method which could be used but is one that is simple to implement and efficient to 

run. The algorithm can be easily adjusted to be compatible with other methods of 

generating posterior variates of (3 and e. 

1. Run the M-H algorithm on (3 and e until the burn-in period is over. 

2. Generate ((3 (i) ,e(i)) rv 7r((3, elY, X) using the M-H algorithm. 

3. Calculate m(O,(3(i)). 

4. Generate an r dimensional response vector y(ij) rv f(y I x,(3(i),e(i)). Let y(ij) 

be the sample mean of y(ij). . 

5. Record Z(ij) = I(y(ij ) 2: m(O, (3(i))). 

6. Repeat steps 4-5 K times. 

8. Repeat steps 2-7 until, in addition to the satisfaction of all convergence criteria 

of the M-H chain, the overall mean of the p(i) has converged. 

In the case of normally distributed responses, steps 4 and 5 of the algorithm may be 

circumvented with direct evaluation of the cumulative probability using a function 

that closely approximates <P. Adapting the approximation of the error function in 

Cody (1969) results in an excellent approximation of <P. Other good approximating 

functions are given on pages 932-3 of Abramowitz and Stegun (1970). 

The RL MDC is the value of x for which the proportion in step 5 converges 

to 1 - a. This is found by simultaneously carrying out steps 2 to 8 for a range 

of concentrations judiciously chosen so as to include xTI. The extreme values of x 

should give rise to proportions on either side of 1-a. If this is not the case, the range 

of x needs to be shifted. When the proportions encompass 1 - a, an appropriate 

curve can be fitted to the proportions and xTI estimated via interpolation at 1 - a. 

Alternatively, the algorithm can be re-run with the concentrations more condensed 

thus providing more concise information from which to interpolate xTI. 
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5.3.1.2 Optimal value of K 

The algorithm calculates binary variables Z(ij) = JUJUj) < m(O, ,B(i»)) corresponding 

to the jth of K values of y generated using the ith generated values of ,B and 

e. Note that because y(ij) is different for each z(ij) these binary variables are not 

Bernoulli random variables even if they were independent. Stratum are defined by 

the binary variables arising from the same value of ,B and e. By the strong law 

of large numbers for any fixed value of K (strata size) the marginal mean of these 

indicator variables converges to the probability being sought. It makes sense to 

choose K so that convergence occurs in the smallest possible computer (cpu) time. 

This is equivalent to determining K such that the variance of the marginal mean 

(proportion) is minimized subject to a finite amount of cpu time. There are two 

a..'3pects to consider here. The statistical aspect is that the information contained 

in two binary variables within the same stratum is less than that contained in two 

binary variables from different strata. However, the between strata generation (of 

,B and e) is more computer intensive than the within strata generation (of 1]). 

Consider the following simplified representation. Let z(ij) be such that E[Z{ij ) I 
J.ti] J.ti and var[z(ij ) I J.ti] = a2 where E[J.ti] = J.t and var[J.ti] T2. In the interest 

of simplicity the fact is ignored that because z(ij) is binary, a2 and T2 are likely to 

be functions of J.ti and J.t respectively. Suppose further that both the generation of 

Z(ij) given J.ti and the generation of J.ti are independent processes. The strata means 

p(i) Lf=l Z(ij) I K are then independent random variables with variance given by 

E[V(P(i) I J.ti]] + V[E[p(i) I J.ti]] 

E[a2 I K] + V[J.ti] 

a 21K +T2. 

The variance of the overall (marginal) proportion p = Lf=l p(i) In is therefore 

given by 

v (p) = --'----
n 

Let tr and tJ represent the respective average cpu times required to generate each 

J.ti and z(ij) I J.ti. The cpu time taken to generate n clusters with K replicates is thus 

n(tr + KtJ). The problem is to find the values of nand K which minimize V(P) 
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subject to the constraint n(tJ + KtJ) < T. A simple calculation yields the solution 

T J (J"2tJ n = and K = --. 
tI+KtJ T 2tJ 

Of course K and n must be rounded to integer values in the set of natural numbers. 

Clearly, it is only worthwhile to sample multiple z(ij) at each value of fbi if the 

variance-cpu time ratio for z{ij) exceeds the variance-cpu time ratio for the generation 

of the JJ+ 

Even though this is a simplified representation, some insight is gained into the 

optimal value for K in step 6 of the algorithm for calculating xrl. It can be construed 

that the optimal value of K in the calculation of x rl will increase if 

1. the within strata variation caused by the variability of y{ij ) increases relative 

to the between stratum variation caused by the variability of (f3(i) , (}(i)); 

2. the ratio of the CPU time taken to generate (f3{i) , (}(i)) increases relative to the 

CPU time required to generate y(ij). 

Since the generation time for (f3(i) , (}(i)) is much greater than for y0j), the optimal 

value of K is likely to be quite large. In other words it is beneficial to estimate the 

conditional probability at each value of (f3(i) , (}(i)) with a high degree of accuracy. 

Informal experiments have indicated that K E [10, 100] works quite well. The effect 

of moderate to high serial correlation in the values of f3(i) and (}(i)) remains an 

unresolved issue. 

5.3.2 Probability MDC (Pr MDC) 

The event of interest in the preceding section, (y - m(O, f3) < 0), was motivated by 

a frequentist perspective rather than from a Bayesian perspective. In this section a 

measure of MDC based on how a Bayesian practitioner could be expected to act is 

developed. 

Suppose for a moment that an unknown sample, not already analyzed by the 

assay, existed. Let y denote the observed response for this sample and w the (un­

known) concentration. Under a Bayesian framework, inferences about w would be 

based upon 1r(w I y, Y, X), the posterior distribution of the unknown concentration 

given y and (Y, X) and an initial prior for the assay parameters. As alluded to in 
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Section 4.1.2.1, in the assays where the MDC will be a concern it only makes sense 

to start with a prior that ha.s some positive probability for zero concentrations. 

If the mean response exceeded m(O, (3), the estimate of concentration would not 

necessarily be zero. Instead, it would be determined from pr(w = 0 I y, Y, X), the 

posterior probability that the concentration is zero, and the posterior distribution 

over concentrations close to zero. A measure of the MDC based on pr(w > 0 I 
y, y, X) 1 pr(w 0 I y, Y, X) is now developed. 

5.3.2.1 Definition of detection 

As pr(w > 0 I y, Y, X) is the quantity of interest it seems reasonable that the 

concentration associated with the response y would be declared as detected (greater 

than zero) if 

pr(w > 0 I y,Y,X) 2: 1- a 

for some small probability a. That is, detection is defined to be the event (pr(w > 
o I y, Y,X) 1- a). 

5.3.2.2 Definition of reliable measurement 

Note that the event "detection" depends on the response y. But for a given concen­

tration, the response is a random variable and hence "detection" mayor may not 

occur depending on the value of y. For a given concentration x, such dependence 

can be removed by using the predictive distribution of y given (x, Y, X) to deter­

mine the probability of detection. 2 If this predictive probability were sufficiently 

large, the concentration x would be said to be reliably able to be measured or de­

tected. Accordingly the concentration x is defined as reliably able to be measured 

if the probability of detection is greater than or equal to 1 - ,{, where 1 '{ IS a 

"sufficiently high" probability level. 

A convenient way of expressing the mathematical definition of "reliable detec­

tion" is the following. Let Yc be the set of responses for which concentration would 

be detected given the data (Y, X). That is 

Yc = {y : pr(w > 0 I y, Y, X) 2: 1 - a}. 

2If such a calculation were being performed in a frequentist framework the probability would 
be evaluated by averaging with respect to f(y, Y I x,X). 
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A concentration x is then deemed to be reliably measured if the predictive proba­

bility of the set Yc given (x, Y, X), pr(Yc I x, Y, X), is at least 1 'Y. 

The corresponding measure of MDC is xpr
, the smallest concentration for which 

the predictive probability of observing a response in the set Yc thus detecting pos­

itive concentration, is at least 1 - 'Y. This is the smallest value of x for which 

pr(Yc I x, Y, X) 2: 1 'Y. 

The quantity pr(Yc I x, Y, X) may be referred to as a predictive posterior probability 

since the quantity being predicted is based on a posterior probability. 

5.3.2.3 Fine points 

In the above definition the predictive distribution rids the MDC of any dependence 

on data, namely y, that is not a part of the assay data. This ensures that the MDC 

can be calculated in practice. However, there is one subtlety that must first be 

addressed. If y were actually observed, then pr(w > 0 I y, Y, X) would be calculated 

as 

pr(w > 0 I y, Y,X) r r pr(w> 0 I y, Y,X,{3,B)7r({3,B I y, Y,X) d{3dB 
In(9) In((3) 

r r pr(w > 0 I y, (3, B)7r({3, B I y, Y, X) d{3 dB. (5.11) 
In(9) In((3) 

Since y is an additional response measurement, standard Bayesian analysis would 

automatically incorporate it into the posterior distribution of ({3, B). However, y has 

not been observed so it can be assigned any arbitrary value. The term pr(w > 0 I 
y, (3, B) is effectively computing the probability that the unknown concentration is 

larger than zero as a function of y. In this sense y does not represent "data" and 

hence should not be used to compute the posterior distribution of ({3, B); that is 

7r({3, B I Y, X) should replace 7r({3, B I y, Y, X) in (5.11); hence, in this section it is 

defined that 

pr(w > 0 I y, Y, X) = r r pr(w > 0 I y, (3, B)7r({3, B I Y, X) d{3 dB, 
In(9) In{(3) 

There is further justification for the amendment to (5.11) described above. In 

the defining equation of xpr the predictive distribution of y is determined from 

7r({3, B I Y, X), the current state of knowledge about the assay. The same level of 
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knowledge should also be assumed in the calculation of pr(w > 0 I y, Y, X); that is, 

the value of y should not be used to update the posterior distribution of (/3, e) or in 

other words, the model fit should be independent of y. 

If 7f(/3, ely, Y, X) were used, then a slightly optimistic picture ofthe assay would 

be portrayed as being a product of the model fit y reinforces it. The future quality 

of the assay would be predicted as opposed to the current quality of the assay being 

measured. The prediction of the state of the assay in the future is an extension of 

the ideas of Geisser (1992) and Geisser (1993) on Bayesian interim analysis. See 

Section 8.6.3 for more comments. 

5.3.2.4 Formal definition of probability MDC 

With the remarks in Section 5.3.2.3 in mind the probability MDC is now formally 

defined. The probability MDC, xpr , is the smallest value of x for which 

pr(Yc I x, Y, X) 2: 1 -, 

where 

pr(Yc I x, Y, X) r I(y E Yc)p(y I x, Y, X) dy (5.12) 
lncy) 

r I(pr(w > 0 I y, Y, X) 2: 1 - a)p(y I x, Y, X) dy, 
lncy) 

pr(w > 0 I y, Y, X) = r r pr(w > 0 I y, /3, e)7f(/3, elY, X) d/3 de, 
lnco) lnC(3) 

(5.13) 

and 

p(y I x, Y, X) = r r f(y I x, /3, e)7f(/3, elY, X) d/3 de. 
lnco) lnC(3) 

5.3.2.5 MDC when /3, e are known 

If /3 and e are known, the data from the assay are not needed. The Pr MDC is the 

smallest concentration for which 

r I(pr(w > 0 I y, /3, e) 2: 1 - a)f(y I x, /3, e) dy 2: 1 -I. 
lncy) 

Recall from Section 5.3.1 that the predictive probability involved in the RL MDC 

could be expressed as an average of itself conditional on (/3, e) and the model fit. 
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This is not the case for xpr because (5.12) does not simplify to 

r r r I(pr(w > 0 I y, j3, e) ::::: 1 - a)f(y I x, j3, e)7r(j3, elY, X) dy dj3 de. 
In(B) In({3) In(y) 

(5.14) 

Furthermore, it seems unlikely that (5.12) would reduce to (5.14) in any circum­

stance. To illustrate the point let h(x) = I(x ::::: 1 a). Then 

I(pr(w > 0 I y, Y, X) > 1 - a) h(pr(w > 0 I y, Y,X)) 

h(E1f({3,BIY,X)[pr(w > 0 I y, j3, em. 
A sufficient condition for equality between (5.12) and (5.14) is 

h(E1f({3,8IY,X)[pr(w > 0 I y, j3, em = E 1f({3,81Y,X) [h{pr(w > 0 I y, j3, e))]. 

However, for 0 < a < 1 the Ihs equals 0 or 1 with probability 1 but the rhs will 

almost certainly lie between 0 and 1. Hence, this sufficient condition is not attained. 

However, a necessary condition still remains to be found. 

From the computational point of view it is disappointing that (5.12) and (5.14) 

are not equivalent. It is easier to evaluate (5.14) than (5.12) because the order 

of integration in (5.14) is opposite to the order in which j3, e and yare naturally 

generated. Refer to Section 5.3.2.8 for further discussion. 

The Pr MDC has some similarity to the DL discussed in Section 5.2.2. A decision 

making interpretation of this measure is, "xpr is the minimum concentration for 

which the probability of rejecting Ho : w = 0 in favour of HI : w > 0 using the 

decision rule: reject Ho if (pr(HI I y, Y, X) ::::: 1 - a), is predicted with probability 

at least 1 -,". The Bayesian analogues to the type I and II error probabilities are 

a and, respectively. A natural choice for a is 0.5 since under zero-one loss this is 

the Bayes action. 

The calculation of xpr emulates the inference about the unknown concentration 

which would be performed if y were actually observed. This makes it a suitable 

diagnostic for measuring the performance of the assay. Furthermore, the chance of 

it being understood and interpreted correctly by practitioners is likely to be higher 

than that for the preceding definitions. 

The conversion of uncertainty in the response to uncertainty in the concentration 

through the use of Bayes theorem is an integral component of the calculation of xpr. 
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Such a conversion is not seen in any of the preceding definitions. In a frequentist 

context such a conversion would be difficult because the sampling distribution of an 

estimator of concentration does not lend itself to explicit calculation. 

5.3.2.6 Prior distributions for w 

To implement the Pr MDC, a prior distribution with non-zero probability at w - 0 

must to be specified for the concentration associated with the independent response 

y. Over positive concentrations it is reasonable that the prior be continuous. Both 

requirements can be achieved using the following split prior distribution introduced 

in Section 4.1.2.1, i.e. 

7fo(w) PoI(w 0) + (1 - Po)7f~(w)I(w > 0), (5.15) 

where Po E [0,1]. As discussed in Section-4.1.2.1, in many assays (especially those in 

which the occurrence of zero concentrations are routine) such a distribution is more 

realistic than a purely continuous distribution. Purely continuous prior distributions 

do not admit positive probability at a point, in particular w = 0. The main reason 

they are used is only that the model is easier to fit. For the split prior given in 

(5.15) 

( > ° I (3 0) - (1 - Po) Jo
oo 

f(y I w, (3, O)7f8(w) dw (5 16) 
pr w y" - Pof(y I 0,(3,0) + (1 Po) Jooo f(y I w,(3,O)7fg(w)dw' . 

It is easy to see that calculation of (5.16) and hence (5.12) is routine, provided 

of course that Po and 7fo (w) have been specified. 

5.3.2.7 Non-informative prior 

It could be desired to evaluate the MDC without the addition of any further sub­

jective input. However, it is not immediately clear how a priori ignorance of w is 

represented in a split prior distribution. It seems reasonable that 7f8(w) be uniform 

so as to reflect impartiality over positive concentrations. It is tempting to assert 

that Po 0.5 and 7f8(w) is uniform over some finite range, (0, M) say. However, 

this imbalances the prior at zero concentration; the result being that as M increases 

posterior inferences about w become increasingly tighter about zero concentration, 

a phenomena known as Lindley's paradox. A more reasonable representation is to 
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set 1ro(w) U(O, M) where U(a, b) is a uniform distribution over the interval (a, b) 

and Po 1/(1\1 + 1). Then as M -t 00 

IoCO f(y I w, /3, 0) dw 
pr(w > 0 I y, /3, 0) -t f(y I 0, /3, 0) + Ioco f(y I w, /3, O)dw' (5.17) 

In (5.17) the posterior probability is calculated when the prior is a proper distribu­

tion (Le. M is finite) before the limit as lVJ -t 00 is taken. Note that, in (5.15) 

Po = l/(JvI + 1) -t 0 as M -t 00. Hence, if the order of the calculation of the 

posterior probability and the evaluation of the limit in the derivation of (5.17) were 

reversed, the essential concept of a split prior would thus be nullified. 

The rhs of (5.17) has the intuitive appeal of being the ratio of the likelihood 

of y when w > 0 to the total likelihood of y (the likelihood when w 0 plus the 

likelihood when w > 0). 

5.3.2.8 Numerical calculation 

Recall that in the context of the Pr :viDe a concentration x is "reliably" able to be 

measured if pr(Yc I X, Y,X) 2: 1 fl where Yc {y: pr(w > 0 I y, Y,X) 1 a} 

and where pr(w > 0 I y, Y, X) is calculated according to the amendment described 

in Section 5.3.2.3; that is, 

pr(w > 0 I y, Y,X) r r pr(w> 0 I y, /3, 0)1r(/3, 0 I Y, X) d/3 dO, 
iR(O) iR({J) 

as in (5.13). 

To evaluate xpr a method for the evaluation of the predictive probability pr(Yc I 
x, Y, X) is required. It is seen from the preceding paragraph that this requires that: 

1. One can generate y rv p(y Ix, Y, X). 

2. The probability pr(w > 0 I y, /3, 0) can be evaluated. 

The generation of y rv p(y I x, Y, X) is described in the calculation of xrl (see 

Section 5.3.1). It is to be noted that the term, pr(w > 0 I y, /3, 0), depends on just a 

one dimensional integral in wand so can be easily evaluated using some numerical 

means of integration (the trapezium rule is used for calculations reported in this 

thesis) . 
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The probability pr(w > 0 I y, Y, X) can be evaluated as the empirical average 

of pr(w > 0 I y, fJ(j), O(j)) where fJ(j) and OW are drawn from 7r(fJ,O I Y, X) using 

the M-H algorithm. Thus for each y the value of the indicator function I(pr(w > 
o I y, Y, X) 2:': 1 - 0:) is able to be evaluated. By generating many values of y from 

p(y I x, Y, X) and taking the average of the values of the indicator function, the 

desired quantity, pr(Yc I x, Y, X), is obtained. 

It is important to note that in the evaluation of pr(Yc lx, Y, X) two independent 

sequences of values of (fJ,O) rv 7r(fJ,O I Y, X) are required. This is because for 

evaluation pr(w > 0 I y, Y, X) and p(y I x,Y, X) are decomposed into expressions 

invol ving 7r (fJ, 0 I Y, X). The first set of values are used to generate the predictive 

responses y rv p(y I x, Y, X). The second set of values are used to evaluate pr( w > 
(I I y, Y, X) for each such value of y. If the same set of values were used for both 

calculations the full uncertainty in w would not be captured. This is apparant since 

the value of y being conditioned on in the evaluation of pr(w > 0 I y, fJl, (1) would 

be generated from the distribution f(y I x, f3b ( 1) as opposed to p(y I x, Y, X). 

The strategy for calculating pr(Yc I x, Y, X) is thus: 

1. Generate (fJl, ( 1 ) rv 7r(fJ, 0 I Y, X). 

2. Generate y rv f (y I x, fJl, ( 1
). 

4. Calculate pr(w > 0 I y,fJ2,(2). 

5. Repeat steps 1-4 until the empirical mean of z I(pr(w > 0 I y, fJ2, ( 2) 2: 0:) 

has converged to its limiting value. 

Since z is a binary variable with marginal mean pr(Yc lx, Y, X) these steps need 

only be iterated as many times as are needed for the empirical mean of z to estimate 

pr(Yc I x, Y, X) to the required accuracy. 

As the M-H algorithm does not provide an independent sequence of values of 

(fJ,O) rv 7r(fJ,O I Y,X), independent M-H chains are needed to generate (fJ\Ol) and 

(fJ2, (2) in the above. An outline of the algorithm for calculating pr(Yc lx, Y, X) 

follows: 
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1. Run two independent M-H simulations on 1f({J, (J I Y, X) until each chain 

reaches a steady state (i.e. passes through the transient phase). 

2. Generate y r-..J p(y I x, Y, X). 

(a) Generate ({J(i),(J(i») rv 1f(fJ,(J I Y,X) as described for the RL MDC. 

(b) Generate an r dimensional response vector y(i) rv f(y I x,{J(i),(J(i»). 

3. Generate z for which pr(yc I x, Y, X). 

(a) Generate ({JU),(J(j)) rv 1f({J,(J I Y,X). 

(b) Use the Trapezium method (the approach taken in this thesis) or some 

other numerical method to evaluate the one dimensional integral 

Then calculate the probability 

where Lo = f(y(i) I 0, fJ(j), (J(j)). 

( c) Record z(ij) = I (p( ij) 2: a). 

4. Repeat step 3 K times. 

PoLo + (1 - Po)LA ' 

5. Repeat steps 2-4 until all convergence diagnostics of the MCMC chain are 

satisfied and the overall mean of the Z(ij) has converged. 

To determine xpr this algorithm can be used within a scheme like that described 

for XTI. The probabilities for a range of values of x are evaluated simultaneously. A 

smooth curve is fitted to the empirical probabilities and xPT is found by projecting 

the point where pr(Yc I x, Y, X) = 1 I onto the x axis. 

Setting K at a value other than 1 may improve the running time of the algorithm. 

Step 3 makes the calculation involving each value of y more time consuming than 

for XTI. For this reason it is probably better to use a smaller value of K than the 

value that is optimal for the calculation of xTI. 
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5.3.3 Discriminant MDC (Ds MDC) 

In this section another definition of a reliable measurement of concentration is intro­

duced. This is done in terms of the likelihood of correctly ordering two samples by 

their levels of concentration when one sample has zero concentration (unbeknown 

to the practitioner). In a Bayesian framework the decision on which sample has 

the greater concentration would be based on the joint posterior distribution for the 

concentration in each sample given the observed responses. A valid decision cri­

terion is to select the sample for which the posterior probability that the level of 

concentration it contains is greater than that of the other sample exceeds 0.5. 

5.3.3.1 Preliminary definitions 

The probability MDC can be adapted to yield a measure of the MDC based on the 

scenario detailed above. This measure is, known as the discriminant MDC and will 

be denoted by xds. 

Let y and Yo represent response measurements from two samples with unknown 

concentration. Detection of the concentration in one sample as distinct from the 

concentration in the other sample is thus said to occur if pr(w > Wo I y, Yo, Y, X) :::: 

1 a with the posterior distribution 1f(w, Wo I y, Yo, Y, X) being used to make the 

computation. Detection thus depends on the values y and Yo; the set of responses 

for which detection occurs is defined to be 

YD = ((y,Yo): pr(w > Wo I y,yo,Y,X) > 1-a}. 

The predictive probability of YD can be computed at any values of concentration of 

the hypothetical responses, y and Yo, using the same method as was used for Ye. 
For the discriminant MDC the concentration generating Yo is, of course, set at O. 

A concentration x is said to be reliably measurable if the predictive probability 

of YD is at least 1 - , assuming that y is a response at concentration x and Yo is 

a response at zero concentration. In this case the MDC, x ds , is defined to be the 

smallest of such x values; i.e. the smallest value of x for which: 

pr(YD I x, 0, Y, X) :::: 1 -,> (5.18) 

Before proceeding the sequence of steps is reviewed. The set YD has been defined 

in the space of vector pairs of the form (y, Yo). It is simply a set with a certain 



5.3. Bayesian measures of MDC 113 

property, namely that the probability pr(w > Wo I y, Yo, Y, X) is at least 1 - 0::. The 

predictive probability of this set is then computed at a pair of concentrations x and 

0. If this probability is at least 1 -,,(, it is said that x has been reliably measured. 

The smallest of these reliably measurable concentrations is defined to be xds. 

For computational purposes it is helpful to expand the lhs of (5.18) as follows: 

pr(YD I x, 0, Y, X) 

r r I((y,yo) E YD)P(y,yo I x,O,Y,X)dydyo 
In(yo) In(y) 

r r I(pr(w > Wo I y, Yo, Y, X) ~ 1 - o::)p(y, Yo I x, 0, Y, X) dy dyo. 
In(yo) In(y) 

The term pr(w > Wo I y, Yo, Y, X) requires some attention. In the first instance 

this can be written 

pr(w > Wo 1 y, Yo, Y, X) (5.19) 

r r pr(w > Wo I' y, Yo, Y, X, {3, e)n({3, ely, Yo, Y, X)d (3d e 
In(o) In({3) 

r r pr(w > Wo I y, Yo, {3, e)n({3, ely, Yo, Y, X)d (3d e. 
In(o) In({3) 

(5.20) 

The term pr(w > Wo 1 y, Yo, (3, e) is simply computing the probability that one 

unknown concentration is larger than another as a function of unknown responses, 

y and Yo, to which values could be assigned. As noted in Section 5.3.2.3 such 

responses are in this sense not data and should not be used to compute the term 

1r({3, ely, Yo, Y, X). Thus n({3, elY, X) is used instead of n({3, ely, Yo, Y, X) in 

(5.20); hence, in this section it is defined that 

pr(w > Wo I y, Yo, Y, X) = r pr(w > Wo 1 y, Yo, {3, e)7r({3, elY, X)d (3d e. 
In({3) 

5.3.3.2' Formal definition of discriminatory MDC 

The discriminatory MDC, xpr , is thus formally defined as the smallest value of x for 

which 

pr(YD I x,O,Y,X) ~ 1-,,(, 

where 

pr(YD 1 x, 0, Y, X) (5.21) 

In(yo) In(y) I(pr(w > Wo 1 y, Yo, Y, X) > 1 - o::)p(y, Yo I x, 0, Y, X) dy dyo, 
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pr(w > Wo I y, Yo, Y, X) [ pr(w > Wo I y, Yo, /3, ())1r(/3, () I Y, X)d /3d e (5.22) 
in(o) 

and 

p(y,Yo I x,O,Y,X) [ [ f(y I x,/3,e)f(yo I 0,/3, e)1r(/3, e I Y,X)d/3de. 
in(o) in(o) 

The Ds MDC is interpreted as the smallest concentration at which the predictive 

probability of rejecting the hypothesis Ho : w < Wo in favour of HI : w > Wo using 

the decision rule: reject the null if pr(Hd 2: 1 - 0:, is at least 1 ,. The probability 

1 - , is interpretated as the minimum acceptable probability of correctly ordering 

a sample with zero concentration and a sample with positive concentration. 

If. the measurement error at zero concentration is neglected; that is, if Wo is 

replaced with the fixed point 0, xds reduces to x pr . Due to the extra component of 

variation it is clear that xds > xpr . 

The Ds MDC is an extended version of the Pr MDC. It is constructed from 

the same basis and with the same formulation. There are numerous variants of the 

probability and discriminant MDCs that could also be developed. The Bayesian 

paradigm provides the freedom to develop measures of MDC that are directly rel­

evant to a particular situation and are also able to be realized (can be evaluated 

without the need for mathematical approximations). The frequentist paradigm is 

not nearly as amenable. 

A prior distribution specifying non-zero probability at zero concentration is not 

required for xds to make sense. However, if samples with zero concentration can 

occur this possibility should be reflected in the prior. If (4.4) is used as the prior 

distribution then 

pr(w > Wo I y, Yo, Y,X) = 

pr(w > O,wo = ° I y,yo,Y,X) +pr(w > O,wo > 0 I y,yo,Y,X) 

. [00 100 
1r(W, Wo I w > 0, Wo > 0, y, YoY, X) dwo dw. 

io Wo 

The integral in the above expression is the probability that would be obtained 

if the prior distribution were purely continuous. This fact is made use of in the 

calculation of xds. It is important to note that when this prior is used it matters 

whether w > Wo or w 2: Wo in the definition of xds. If the latter were the case, the 

first term in the summation becomes pr(wo = ° I Yo, Y, X). 
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5.3.3.3 Numerical calculation 

To evaluate xds a calculation much like that for xpr is required. A sample of z = 

I(pr(w > Wo I y, Yo, Y, X) > 1 a) are generated. Since pr(YD I x, 0, Y, X), 

pr(YD I x, 0, Y, X) can be computed as the long run empirical average of M-H draws 

of z. The final step is to search over a range of values of x until the MDC is found. 

It can be seen from (5.21) that a sequence (y{i») Ybi ») , i 1,2, ... must be gener­

ated from p(y, Yo I x, 0, Y, X). This is the first step in the computation. As 

p(y, Yo I x, 0, Y, X) { ( J(y, Yo I x,O,Y,X,(3,B)1r((3,B I x,O,Y,X)d(3dB 
iR(O) i R «(3) 

{ ( J(y I x, (3,B)J(yo I O,(3,B)1r((3,B I Y,X)d(3dB, 
iR(O) iR«(3) 

a sequence of (y(i) , Vail) can be obtained by repeating the following steps: 

1. Generate ((3(i), B(i») rv 1r((3, B I Y, X). 

It must then be determined which of these (y(i), y~i»),S belong to the given set YD. 

This requires that the probability pr(w > Wo I y, Yo, Y, X) is evaluated. If for the 

particular pair (y(i), yai») , the value of this probability is at least 1 a it is recorded 

that the pair belongs to YD. Note that this step "acts as though" this particular 

pair was generated at "unknown" concentrations wand Wo respectively, which of 

course they were not. 

Thus the second computational step is to compute pr(w > Wo I y(i), yai
), Y, X). 

This can be done by generating a sequence of (w(ij) , w~ij») f'..) 1r(w, Wo I y(i), y~i), Y, X) 

j = 1,2, ... for each pair (y(i) , y~i») and computing the proportion of times that the 

event (W(ij) > waij») is true. Alternatively, the probability can be evaluated directly 

using a two dimensional version of the Trapezium method or some other method 

from numerical analysis. The former approach was used in this thesis. 

To generate (w(ij),waij») rv 1r(w,wo I y(i), y~i), Y,X) the fact is used that 

1r(w, Wo I y, Yo, Y, X) { { 1r(w, Wo I y, Yo, (3, B)1r((3, B I Y, X) d(3 dB 
iR(O) iR«(3) 

{ ( 1r(w I y,(3,B)1r(wo I Yo, (3, B)1r((3, B I Y,X)d(3dB, 
iR(O) i R «(3) 
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the latter step following from the fact that given (/3, e), wand Wo are independent. 

Note that in line with the definition of 7f(w, Wo I y, Yo, Y, X) being used in this section, 

the posterior distribution for (/3, e) does not depend on (y, Yo). 

It is clear from the above decomposition of 7f(w, Wo I y, Yo, Y, X) that a sequence 

of (w(i]) , w~ij») rv 7f(w, Wo I y(i), yai), Y, X) can be generated by repeated application 

of the following steps: 

1. Generate (/3(j) , e(j)) rv 7f(/3, 0 I Y, X). 

It is crucial that the sequence (/3(j) , O(j») is independent of the sequence (/3(i») e(i») 

used for generating (y(i) , y~i») rv p(y, Yo I x, 0, Y, X). As noted in Section 5.3.2.8 

failure to observe this rule would lead to the full uncertainty in (w, wo) not being 

accounted for. 

As 7f(w I y,/3,O) and 7f(wo I yo,/3,O) are only known up to proportionality, nu­

merical methods must be relied upon to generate samples from them. Accept-reject 

importance sampling and the M-H algorithm are two options with importance sam­

pling probably the preferred choice as the densities are univariate. 

To recapitulate, the strategy for the calculation of pr(YD I x, 0, Y, X) is: 

1. Generate (/3\ ( 1
) '" 1f(/3, 0 I Y, X). 

6. Calculate z I(pr(w > Wo I y, Yo, /32
, (

2
) > 1 a) and repeat steps 1-5 

until the empirical mean of the values of z has converged to its limiting value, 

pr(YD I x, 0, Y, X). 

A skeleton algorithm for the calculation of pr(YD I x, 0, Y, X) is given below: 

1. Run two independent M-H simulations on 7f(/3, elY, X) until each chain 

reaches a steady state (i.e. the transient phase is over). 
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2. Generate (y, Yo) rv p(y, Yo I x, 0, Y, X). 

(a) Generate ({3(i) , e(i)) rv 7r({3, elY, X) using the M-H algorithm. 

(b) Generate 'r dimensional response vectors y(i) rv j (y lx, (3(i), e(i)) and 

y~i) rv j(y 10,{3(i),e(i)). 

3. Generate z for which E[z] = pr(YD I x, 0, Y, X). 

(a) Set k = l. 

(b) Generate ({3(j) , e(j)) rv 7r({3, elY, X). 

(c) Use the M-H algorithm (this was used in this thesis), importance sam­

pling or some other method to generate w(ijk) rv 7r(w I y(i), (3(j), e(j)) and 

w~ijk) rv 7r( W I y~i), (3(j), e(j)). 

(d) Record t(k) = I(w(ijk) > w~ijk)) 

(e) Repeat steps 3b and 3c until the mean of the sequence {t(l) , t(2) , ... } has 

converged to its limiting value, denoted p(ij). 

(f) Record z(ij) = I(p(ij) 2: 1- a). 

4. Repeat steps 2-4 until all convergence diagnostics of the MCMC chain are 

satisfied and the grand mean of the z(ij) has converged to its limiting value. 

When Po > ° in 7ro(w), it might be more efficient to proceed as if, for the most 

part, Po = 0. To cater for the fact that Po = 0, all that needs to be done is to update 

'p(ij ) to 

in between steps 3e and 3f. The probabilities on the rhs of the above equation can 

be calculated at each iteration by the method described for the calculation of xpr . 

The generation of posterior samples of wand Wo in step 3b of the algorithm 

makes the CPU time needed to calculate xds greater than for xrl or x pr . An optimal 

value for K has not been determined. 
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5.3.4 Browns unified measure of MDC 

The final measure of MDC to be studied is Brown's unified measure (Brown et al. 

(1996)). This has purposely not been introduced until this point because it warrants 

comparison with xds. 

Brown's unified MDC is denoted by x un . It is calculated as follows: 

1. Using the data from the assay and a reliable means of estimation (frequentist 

or Bayesian) obtain point estimates, /3 and e, of f3 and B. 

2. Find all r dimensional response vectors y for which 

('JO 100 

1r(W I y, /3, e)1r(WO I Yo, /3, e) dw dwo = 1 - CY, 
10 W(O) 

(5.23) 

where Yo is the vector of responses associated with the zero standard and 1r(wo I 
y, Yo, /3, e) is the posterior distribution of Wo for the response Yo, conditional 

on /3 and e being the values of the model parameters. 1r(w I y, /3, e) is similarly 

interpreted in terms of the response y. 

3. For each response vector y satisfying (5.23) calculate the median of 1r(w I 
y,/3,e). The maximum medium is x un

. 

In step 2 of the calculation Brown recommends using a prior distribution for w 

that is uniform over the range of 0 to 1.5 times the maximum concentration of the 

standards. 

If the response measurements are singletons there will be only one solution to 

(5.23). When the responses are replicated and the sufficient statistic for these ob­

servations has dimension greater than 1, the possibility of more than one solution 

arises. The normal distribution is one such case. 

The major differences between x un and xds are: 

1. The uncertainty in f3 and B is not accounted for in xun whereas it is accounted 

for in xds. 

2. The response at zero concentration in xds is an independent measurement. 

Although Yo is not independent of the assay data it is used as the response at 

zero concentration in xun
. 
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3. The posterior distributions of the unknown concentrations are not averaged 

with respect to the distributions of the responses they are conditioned on when 

calculating xun . All hypothetical response measurements are averaged over in 

the calculation of xds. 

These are all deficiences with xun . The fact that xun treats the estimates of f3 

and () as the true parameter values means that it is insensitive to the design of the 

assay. No account is taken of the uncertainty in f3 and () and so x un will be an overly 

optimistic measure, particularly when the number of standards is small. 

The response Yo is used twice; in the first instance to estimate f3 and () and 

secondly as data that is conditioned on to develop the posterior of woo This makes 

the procedure ad-hoc and xun devoid of any statistical properties. 

By not averaging over the distribution of y, the estimating equation is left as 

a function of hypothetical data. A secondary criterion, in this case the posterior 

median, must then be used to convert these responses into concentrations. The fact 

that many, perhaps infinite, values of y may satisfy (5.23) makes xun more ad-hoc 

and unreliable. The rule of thumb that xun be the maximum possible posterior 

median is likely to associate the MDC with a hypothetical response that is unusual 

and extreme. 

In summary xun , is difficult to interpret and appears to take little account of 

the quality of the assay. The name "unified definition" assigned to this measure in 

Brown et al. (1996) is misleading. Other measures of MDC are only unified in the 

sense that they are approximated by features such as percentiles of 1r(w I y, {J, iJ) 

(see Brown et al. (1996)). The measures of MDC developed in this chapter are not 

encompassed in this way by xun . 

5.4 Some num.erical properties of the measures of 

MDC 

The measures of MDC that have been discussed are now compared using simulated 

data based on the NMCH data. The behaviour of the measures of MDC when the 

quality of the assay is changed is of particular interest. To study this, the sampling 

distribution of the measures of MDC are calculated using simulated data based on 
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the NMCH data and model. 

The non-informative prior 1f((3, 0, jlY) ex: 11{h, where e1 0Ii12 and fi, is the geo­

metric mean of }.L, is used for Bayesian model fitting and (4.4), the non-informative 

split prior, is used in the calculation of x pr and xds. 

5.4.1 Comparative performance 

Since the MDC varies according to which definition of a reliable measurement is 

used, it is not possible to say which measure of MDC is better in an absolute sense. 

Unlike standard estimation problems, a "true value" to which each measure can be 

compared does not exist. In essence, different measures of MDC relate to different 

quantities. The difference in the nature of these quantities needs to be taken account 

of before the measures of MDC can be compared. 

Imagine a situation in which two assa.ys have been performed and one wishes to 

determine which is the better assay. The MDC is promoted as a diagnostic of the 

quality of an assay and the assay with the smaller value of the MDC is deemed to 

be the better assay. 

If the two assays were repeated many times, sampling distributions of measures 

of MDC could be obtained. It is intuitively clear that a large segregation of these 

sampling distributions implies a large difference in the quality of the assays. In 

this thesis the "relative quality (RQ)" of two assays for a particular measure of 

MDC is defined as the probability that a randomly drawn value from the sampling 

distribution of the MDC for one assay exceeds a randomly drawn value from the 

sampling distribution of the MDC for the other assay. A probability close to D.5 

indicates that there is little difference between the quality of the assays. If the 

probability is close to lorD then one assay is much better than the other. 

The RQ of two assays as defined above is a common language effect size (CLES) 

statistic in the sense of McGraw and Wong (1992); a CLES statistic is in general a 

probability that a value from one population is less than (or greater than depending 

on the definition) a value drawn from another population. A value drawn from the 

sampling distribution of a measure of MDC for a particular assay is referred to as a 

score for that assay. 

When the ordering of the quality of two or more assays is known, the RQ of 

any two &'lsays can be used to compare different measures of MDC and to identify 
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the best one. In general, the best measure of MDC is the one which gives the most 

accurate assessment of the comparative quality for two assays. In the following 

discussion it will be illustrated that the RQ is not necessarily a true indicator of the 

comparative quality of two assays. In situations where the RQ is a true measure of 

the comparative quality of two assays, the best measure of MDC has the highest 

RQ value and so is easy to identify. Such situations are now described. 

The quality of an assay is influenced by the values of j3, 0, X, rp and T. The RQ 

for two assays is, however, a well defined measure of the performance of the MDC 

only in the situations in which the disparity between the assays is in the assays' 

data generating processes; i.e. the value of j3 and O. This follows from the fact 

that the other entities are either known at the time of analysis or information is 

known about them (for instance, nU is known in the case of rp) and this knowledge 

is such that it can be used to "rig" the performance of the MDC in terms of the RQ 

criterion. For example, consider two assays that are identical except that in one, 

assay responses are measured in duplicate and in the other responses are measured 

in quadruplicate. Then the measure of MDC defined to equal the inverse of the 

total number of observations will identify the better assay with probability 1; hence 

RQ= 1. Realistically though, this ridiculous measure of the MDC is of no practical 

value. 

The measures of MDC considered in this chapter are in general much more 

practical than the one discussed above. However, approximations are used in the 

evaluation of the frequentist measures which may result in these measures being 

over-sensitive to changes in the values of X, nU and T; hence, a distorted picture of 

the comparative quality of the assays may be portrayed. In the case in which assays 

differ in the value of nU or T, identifying the best measure of MDC becomes a 

matter of common sense. 

When the RQ is a well defined measure of the performance of the MDC, one 

only needs to know which assay is better in order to be able to be able to identify 

the best measure of MDC. There are certain factors which when altered the quality 

of the modified assay can be assessed as better or worse. For example: 

1. Increasing either component of 0 in the power variance function increases the 

variance of the responses and so the quality of the assay is reduced. 
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2. Increasing either the number of standards, unknowns or the degree of replica­

tion improves the quality of the assay. 

The consequences of changes in {J, X and 7]u are not in general clear so such changes 

are not considered herein. Recall from the above that only in first instance is the 

RQ is a a well defined measure of the performance of the MDC. 

In Section 5.4.1.2 the measures of MDC are evaluated in the controlled environ­

ment in which only () varies. The behaviour of the measures of MDC when nS
, nU 

and r change is then investigated. 

5.4.1.1 Calculation 

Suppose that two assays, A and B, have been defined by specifying the values of X, 

rand ((3, (), rF) for each of them. The RQ for assays A and B is then calculated as 

follows: 

1. For each assay generate simulated sets of responses and then the corresponding 

MDC scores. Denote the ith scores for the assays A and B by sf and sf 

resp ecti vely. 

2. Calculate 
1 n n 

22: 2: 1(sf < sf)· 
n i=l j=l 

This is the proportion of times a score for assay A is less than a score for assay 

B. 

Alternatively, the calculation in step 2 can be performed by summing the ranks of 

the scores as in the calculation of the Mann-Whitney U statistic (Randles and Wolfe 

(1979)). 

Unless n is extremely large, the estimation error of p will be non-trivial and 

should be reported. The variance of p, which can be derived from the variance of 

the Mann-Whitney U statistic (Randles and Wolfe (1979)), is a function of p. But in 

this case the sample sizes are equal and hence the variance is maximized at p = 0.5. 

Then 

var(p I p = 0.5) 
2n+ 1 
12n2 

Since many independent sets of simulated data are generated, the Central Limit 

Theorem implies that the distribution of p will be very closely approximated by a 
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normal distribution with mean p and variance less than var(fi I p = 0.5). Thus, 

an upper bound on a (1 - a)100% confidence margin (CM), or half-width of a 

(1- a)100% confidence interval, for p is almost certain to be 

Za./2 j(2n + 1)/3. 
2n 

5.4.1.2 Change in response variability 

The effect of changes in the variability of the assay responses on the measures of 

MDC will be investigated for the power variance function having the following val­

ues of (): 

VI: () = (0.5,1.1). 

V2: () = (1,1). 

V3: () = (1,1.1). 

V4: () = (1,1.2). 

V5: () = (2,1.1). 

Models VI to V5 are otherwise identical, namely 75 unknowns are set at concentra­

tions evenly spaced from 50 to 300, f3 is fixed at (55,1.2,60,4)' and the remaining 

components are as for the NMCH model. 

The partial orders of quality for these assays are VI > V3 > V5 and V2 > V3 

> V 4, where VA > VB indicates that assay A is better than assay B. The event 

(RQ> 0.5) can thus be predicted for the following pairs of assays: 

For change in ()l: VI v. V3, V3 v. V5, VI v. V5. 

For change in ()2: V2 v. V3, V3 v. V 4, V2 v. V 4. 

For change in ()l and ()2: VI v. V 4, V2 v. V5. 

The RQ for each of the above comparisons are shown in Tables 5.1 to 5.3. The 

sample size and 95% confidence margins are also given. Note that RQ(A,B) is taken 

to mean the "estimated RQ of assays A and B"; i.e. the estimate of pr(SA > 
SA) in which SA denotes a randomly generated score (value of MDC) for assay A. 

Furthermore, in each instance A will denote the better assay. Thus, the value of 

RQ(A,B) is expected to exceed 0.5. 

Some examples of the empirical distributions of the simulated values of MDC are 

shown in Figure 5.1. To make this figure more presentable the data has been fitted 

to a gamma distribution. The gamma distribution was used because this family 
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Table 5.1: Estimated values of the RQ for measures of MDC when B1 changes in the NMCR model. 

MDC Procedure 
! 

n 95% CM RQ(V1,V3) RQ(V3,V5) RQ(V1,V5) 
Criticalliinit (XCI) 6403 0.01 0.7983 0.7899 0.9441 
Detection limit (Xdl ) 6403 0.01 0.8280 0.8338 0.9694 
Davidian's EL (xel ) 6403 0.01 0.7992 0.7907 0.9447 
Substitution EL (xes) 6403 0.01 0.7930 0.7815 0.9380 
Prediction interval EL (xei ) 

1
6403 0.01 0.8164 0.8211 0.9613 

Response level MDC (xTl) • 1028 0.025 0.7718 0.7785 0.9365 
Probability MDC (xPT ) 

1

1028 0.025 0.8117 0.8098 0.9630 
Discriminant MDC (xds ) 257 0.05 I 0.8248 0.8177 0.9690 

Table 5;2: Estimated values of the RQ for measures of MDC when B2 changes in the NMCR model. 

MDC Procedure n 95% CM RQ(V2,V3) RQ(V3,V4) RQ(V2,V4) 
Critical limit (XCI) 6403 0.01 0.8845 0.8730 0.9873 
Detection limit (xdl ) 6403 0.01 0.9092 0.9140 0.9957 
Davidian's EL (xel) 6403 0.01 0.8852 0.8734 0.9875 
Substitution EL (xes) 6403 0.01 0.8793 0.8629 0.9844 
Prediction interval EL (xei ) • 6403 0.01 0.8985 0.9023 0.9931 
Response level MDC (XT1) 1028 0.025 0.8689 0.8642 0.9898 
Probability MDC (XPT) 1028 0.025 i 0.8974 0.8865 0.9916 
Discriminant MDC (xds ) 257 0.051 0.8967 0.9038 0.9954 

Table 5.3: Estimated values of the RQ for measures of MDC when both B1 and B2 change in the 
NM OR model 

MDC Procedure n 95% CM RQ(V1,V4) RQ(V2,V5) 
Critical limit (XCl ) 6403 0.01 0.9720 0.9726 
Detection limit (xd1 ) 6403 0.01 0.9880 0.9875 
Davidian's EL (xe1 ) 6403 0.01 0.9723 0.9729 
Substitution EL (xes) 6403 0.01 0.9672 0.9683 
Prediction interval EL (x ei ) 6403 0.01 0.9833 0.9824 
Response level MDC (xTl) 1028 0.025 0.9690 0.9736 
Probability MDC (xPT ) 1028 0.025 0.9810 0.9838 
Discriminant MDC (xds ) 257 0.05 0.9893 0.9848 
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Figure 5.1: Some examples of the sampling distributions of measures of MDC when () (denoted by 
T) changes in the NMCH model. 

of distributions seemed to adequately describe the important features of the MDC 

sampling distributions. 

5.4.1.3 Comments: changes in (J 

There is very little difference in the RQ values between the measures of MDC that 

have been considered. One reason why the Bayesian measures did not perform better 

is that they could not be calculated as accurately as desired because it was not 

possible to run the simulation for the required length of time. Thus, the additional 

sensitivity gained from exact calculation may have been lost or at least compromised. 

Despite the above comments, the Ds MDC still performed close to the level of the 

DL, which from inspecting Tables 5.1 to 5.3 can be seen to be the best performing 

measure of MDC. It can also be observed from inspecting these tables that the 
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prediction interval EL and the PI' MDC were the next highest scoring measures of 

MDC. A feature exclusive to xds and the DL is that they are based on measurements 

at both zero and positive concentrations. This suggests that it is advantageous 

to use measures of MDC that are based on the discrimination of samples at zero 

concentration from samples at positive concentrations when comparing assays for 

which the variability of the responses is different. 

The values of RQ are only slightly lower for xes than for other measures. In this 

case, incorporating the error due to estimation appears to have only a small effect 

on the comparative quality of assays having different values of O. 

5.4.1.4 Changes in the number of observations 

The behaviour of the measures of MDC when the number of observations changes 

between assays is now investigated. To standardize the data generating process, the 

model parameters, J3 and 0, are fixed at (55,1.2,60,4)' and (1,1.1)' respectively. In 

cases where there are more than seven standards, the seven values of concentrations 

in the NMCH model are kept and the remaining values are evenly spaced from 50 

to 250. The values of concentration of the unknowns are again evenly spaced from 

50 to 300. The degree of replication is as indicated except for the zero standard 

for which there are always four replicates. The seven models to be used in this 

simulation are given below: 

Dl: nS 7, nU 0, r = 2. 

D2: n S 7, nU = 75, r = 1. 

D3: n S = 7, nU = 75, r = 2. 

D4: n S = 14, nU = 75, r 2. 

D5: nS = 28, nU 75, r 2. 

D6: n S 7, nU = 75, r = 4. 

D7: n S = 7, nU = 150, r = 2. 

These assays have the following partial orders of quality: D7 > D3 > Dl, D5 > 

D4 > D3 and D6 > D3 > D2. The event (RQ> 0.5) can thus be predicted for the 

following pairs of assays: 

For change in nU
: Dl v. D3, D3 v. D7, Dl v. D7. 

For change in nS
: D3 v. D4, D4 v. D5, D3 v. D5. 

For change in r: D2 v. D3, D3 v. D6, D2 v. D6. 
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Table 5.4: Estimated values of the RQ for measures of MDC when n 11 changes in the NMCH model. 

MDC Procedure n 95% CM RQ(D3,D1) RQ(D7,D3) RQ(D7,D1) 
Critical limit (XCI) 6403 0.01 0.5200 0.4863 0.5114 
Detection limit (x dl ) 6403 0.01 0.5245 0.4867 0.5167 
Davidian's EL (xel ) 6403 0.01 0.5198 0.4862 0.5113 
Substitution EL (xes) 6403 0.01 0.4643 0.4810 0.4484 
Prediction interval EL (xei ) 6403 0.01 0.5236 0.4865 0.5154 
Response level MDC (xrl) 1028 0.025 0.5831 0.5003 0.5891 
Probability MDC (xpr) 1028 0.025 0.5988 0.5211 0.6187 
Discriminant MDC (xds ) 257 0.05 0.6650 0.5808 0.7316 

Table 5.5: Estimated values of RQ for measures of MDC for the NMCH data when n S changes 
in the NMCH model. 

MDC Procedure n 95%CM RQ(D4,D3) 
Critical limit (XCI) 6403 0.01 
Detection limit (xdl ) 6403 0.01 
Davidian's EL (xel ) 6403 0.01 
Substitution EL (xes) 6403 0.01 
Prediction interval EL (xei ) 6403 0.01 
Response level MDC (xrl) 1028 0.025 
Probability MDC (xpr) 1028 0.025 
Discriminant MDC (xds ) 257 0.05 

For change in nS and nU
: Dl v. D4, Dl v. D5. 

For change in n S and r: D2 v. D3, D2 v. D4. 

For change in n U and r: Dl v. D6. 

0.6077 
0.6467 
0.6095 
0.4839 
0.5412 
0.5267 
0.5291 
0.5541 

RQ(D5,D4) RQ(D5,D3) 
0.5406 0.6489 
0.5497 0.6958 
0.5413 0.6513 
0.4983 0.4814 
0.5149 0.5570 
0.4544 0.4817 
0.5058 0.5365 
0.5388 0.5867 

The estimated RQ for each pair of assays when just one of nU
, n S and r change 

are given in Tables 5.4 - 5.6 along with 95% confidence margins. In RQ(A,B), A 

is once again the better assay; hence, the value of RQ(A,B) is expected to exceed 

0.5. The sampling distributions of the MDC in some of these instances are also 

displayed. The results for comparisons between assays where two of nU
, n S and r 

change are not reported. 
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Figure 5.2: Some examples of the sampling distributions of measures of MDC when n'" changes in 
the NMCH model. 

Table 5.6: Estimated values of the RQ for measures of MDC when r changes in the NMCH model. 

MDO Procedure n 95% OM RQ(D3,D2) RQ(D6,D3) RQ(D6 
Oriticallimit (XC) 6403 0.01 0.6759 0.6279 0.7516 
Detection limit (x d1 ) 6403 0.01 0.7320 0.6963 0.8233 
Davidian's (xcI) 6403 0.01 0.6746 0.6264 0.7501 
Substitution (XCS ) 6403 0.01 0.6720 0.8077 0.8368 
Prediction interval EL (XCi) 6403 0.01 0.7860 0.8341 0.9111 
Response level MDC (XTI) 1028 0.025 0.7882 0.8308 0.9211 
Probability MDO (XPT) 1028 0.025 0.8165 0.8091 0.9381 
Discriminant MDO (x ds ) 257 0.05 0.7926 0.8561 0.9374 
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Figure 5.3: Some examples of the sampling distributions of measures of MDC when n S changes in 
the NMCH model. 
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Figure 5.4: Some Examples of the Sampling Distributions of Measures of MDC when r changes in 
the NMCH model. 
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5.4.1.5 Comments: changes in n U
, n S and r 

It is apparent from Tables 5.4 to 5.6 that there is a greater difference in the RQ 

values for different measures of MDC when nU
, n S and T change than when e changes. 

Although the confidence intervals of the RQ values for different measures of the 

MDC frequently overlap, the observed differences are often consistent within and 

between tables. For example, in each of the Tables 5.4, 5.5 and 5.6 the Ds MDC is 

always greater than the RL MDC. It is therefore would be fair to say that there is 

substantial evidence that the RQ value is on the whole higher for the Ds MDC than 

for the RL MDC. 

The frequentist/Bayesian foundation is the main contributor to differences in 

the RQ values between the measures of MDC. By inspecting Tables 5.4 to 5.6 it is 

obvious that the variation between the frequentist and Bayesian measures of MDC 

far exceeds the variation within either group. Since the Bayesian measures involve no 

analytical approximations, it is reasonable to assume that these react more sensibly 

to changes in the assay than do the frequentist measures. The following discussion 

is based on this supposition; i.e. that the RQ is being reliably assessed by Bayesian 

measures of MDC and not so by frequentist measures of MDC. 

The nature of the disparity between the frequentist and Bayesian measures indi­

cates that the approximations underlying the frequentist measures have the following 

effects on the assessment of assay quality: 

• An increase in the number of standards is over-weighted. This is seen from 

the fact that in Table 5.5 the RQ values for frequentist measures is generally 

somewhat larger than the RQ values for the Bayesian measures. Note that this 

is not the case for xes and x ei but these are special cases and will be discussed 

later. 

• An increase in the number of unknowns is under-weighted. This conclusion 

is immediately reached upon observing Table 5.4; in every instance the small­

est RQ value for the Bayesian measures exceeds the largest RQ value of the 

frequentist measures. 

• An increase in the number of replicates is under-weighted. From observing 

Table 5.6 one can see that RQ values for the Bayesian measures generally 
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exceed those of the frequentist measures. It should be noted that x ei is again 

the exception to the rule. 

The three effects listed above can be attributed to the analytical approximations 

used in evaluating the frequentist measures of MDC. Firstly note that these approx­

imations cause information in the unknown samples and from the dependence of the 

variance function on the mean function to be discarded. Then note that the sample 

variances contain information about both the variance function and mean function 

of a model. Therefore, an increase in the number of unknowns or the number of 

replicates will improve the quality of the fitted variance and mean functions. Like­

wise, an increase in the number of standards will be tempered by the fact that a lot 

of information about the mean function is already provided by replicated unknowns. 

Figures 5.2 5.4 show that as the quality of the assay is reduced, the sampling 

distributions lose their symmetry and become right skewed. When there is a decrease 

in nU or r, the sampling distributions for the detection limit stretch outwards at both 

the right and left hand tails. Therefore, even though the quality of the assay has 

decreased in this situation, values of the DL (and other frequentist measures) which 

indicate that the assay is extremely good, become more likely. 

The behaviour of x ei is quite unique. From Tables 5.4 to 5.6 it can be observed 

that x ei is rather insensitive to the number of unknowns but behaves like a Bayesian 

measure when the number of standards or replicates are changed. There is no 

apparent explanation for this. When nS is changed, the substitution EL, xes, also 

behaves differently than the other frequentist measures of MDC (see Table 5.5). 

However, this is explained by the fact that the error in the fitted assay model is not 

accounted for in xes. 

While the frequentist measures of MDC have been somewhat validated in sit­

uations in which only the variability of the response is changed, the same cannot 

be said when nU
, n S or r change. By the arguments presented in this section, the 

Bayesian measures of MDC are more reliable criteria to use when comparing the 

quality of assays that differ on account of nU
, n S or r. 

Among Bayesian measures, it appears that xds is the best discriminator between 

assays with a different number of unknowns or standards and that xpr is superior 

to xrl. The scores for xds are highest in each of these cases (see Table 5.4 and 

Table 5.5). In the case of models D3 and D6, the RQ value for xds is the highest of 
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all the mea.sures of MDC (see Table 5.6). This suggests that the Ds MDC may also 

be the most sensitive to changes in the number of replicates. However, for models 

D2 and D3 the score for xpr is slightly higher implying that there is less certainty 

in the superiority of MDC in terms of the degree of replication. 

The scores for Bayesian measures are generally larger when the number of repli­

cates changes than they are when the number of unknowns changes. This suggests 

that the benefit gained from increasing the number of replicates is greater than the 

benefit gained from analyzing more unknowns. 

5.4.1.6 Best generic measure of MDC 

In the light of these results and the results from Section 5.4.1.2, it can be said that 

xds is the best generic measure of the MDC and xpr is the second best. These 

measures perfornied well in all of the situations that have been considered. It is also 

expected that these will be easier to interpret than existing measures since they are 

based on probabilities that are easy to interpret as opposed to an obscure prediction 

interval. 

5.4.2 Comparison of measures related to Davidian's MDC 

The relationships between the measures of MDC associated with Davidian's MDC 

(xPi , the MDC in the presence of perfect information) are now explored further. 

Although there is some comment on the closeness of these measures to x Pi , the 

primary intention is to reinforce the points made in Section 5.4.1. 

The measures of MDC to be compared are: 

1. Davidians EL: xe! (denoted EL in Figure 5.5). 

2. Substitution EL: (denoted ES in Figure 5.5). 

3. Prediction interval EL: xei (denoted EI in Figure 5.5). 

4. Response level MDC: xl'! (denoted RL MDC in Figure 5.5). 

For each model, the sampling distributions of these measures of MDC and xPi (in 

the form of a dotted vertical line), are shown. 
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5.4.2.1 Comments on Figure 5.5 

The behaviour of xei and xr1 is very similar except when n S = 28 (plot C in Fig­

ure 5.5). In this case, the sampling distribution of xei shifts to the left and behaves 

like x Pi while the sampling distribution of xrl remains to the right of xei. This is an 

illustration of the fact that the frequentist measures of MDC are overly sensitive to 

changes in nS. Very similar characteristics are observed for x el • 

The sampling distribution for Davidians EL, xel ) is in every case located well to 

the right of xPi and of the sampling distributions of the other measures. Clearly 

this is a very poor estimator of xPi . The substitution EL, xes, appears to be a good 

estimator of xPi but as previously noted this is not a good measure of an assay's 

quality and so should not be used as a measure of MDC. 

It is also apparent from Figure 5.5 that the sampling distributions of x ei and xrl 

are very similar in comparison to the other distributions. This indicates that xei 

emulates xrl to some degree whereas the other frequentist measures are much less 

responsive to a change in the degree of replication. 





Chapter 6 

The precision profile 

6.1 Definition and preliminary remarks 

A precision profile (PP) is the relationship between the concentration of a substance 

and its measured precision. The expression "precision of an assay" is taken to mean 

a quantitative measure of the error in the calibrated concentration of an independent 

sample. The formal definition of precision is the key ingredient of a precision profile. 

The role of the independent sample in the definition of precision emulates its role 

in the definition of MDC; it makes precision, like MDC, a measure of the quality of 

an assay's "next" measurement. 

In Section 6.2 the measures of precision that have been reported in the literature 

are reviewed. In Section 6.3 measures of precision based on the notion of Bayesian 

inference are developed. In Section 6.3.6 there is some discussion of the various 

measures of precision and in Section 6.4 the results of some numerical computations 

are presented. 

6.2 Current method of calculating precision 

Historically, the error in the calibrated concentration has been expressed either in 

terms of its standard deviation or the coefficient of variation. Let w w(y, Y, X) 

be some estimator of an unknown concentration. The precision at concentration 

x is thus based on the variance of W, where y is a response measurement from an 

independent sample with assumed concentration x. In addition, to calculate the 
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coefficient of variation, the mean of w at concentration x is also required. The 

sampling distribution of w is constructed by averaging over all possible realizations 

ofY and y. 

Exact calculation of the mean and variance of w requires that {3 and B are known 

which, of course, is not the case in practice. The mean and variance must therefore 

be approximated. The original derivation of Ekins (1983) is the most widely used 

method but relative to the definition of precision assumed in this thesis (see Sec­

tion 1.2.4) it involves particularly harsh approximations. These will be exhibited 

shortly. 

The precision profile can be constructed by either an analytical method, I.e. 

determining the functional relationship between precision and the hypothetical con­

centration x, or by calculating precision directly from a data set of fitted concen­

trations generated froIn the fitted assay- model. In the latter case, it is necessary 

that the concentration values are spaced finely enough to ensure that no important 

features of the precision profile are missed. 

6.2.1 Analytical method 

The procedures of Ekins (1983) and O'Connell et aL (1993) are special cases of the 

analytical method. It is called the analytical method because the precision profile 

is calculated by analytically approximating the functional relationship between pre­

cision and concentration. This requires that w must be expressed as a closed form 

function of y and (P,O), the estimate of ({3, B). For such estimators, it is assumed 

that w = w(y, p, 0) is expressible in a closed form. The analytical method involves 

using a truncated Taylor series expansion (TSE) of w(y, p, 0) about the mean val­

ues of y, P and 0, to derive approximate closed form expressions for the mean and 

variance of w at an arbitrary concentration x. 

The inverse estimator defined as w = I(y, P) = m-l(y,/!J) for y in the range of 

m(x, P), otherwise 0 or 00 as appropriate, is the estimator to which the analytical 

method has been exclusively applied to in the literature. When m is the sigmoid 
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function (equation 2.1) and ~2 > 0 this is given by 

w(y,~) (6.1) 

The inverse estimator has the intuitive appeal of being the concentration which 

backfits or interpolates the fitted mean function at the response y. Of course y must 

be a singleton or a one dimensional summary statistic of a replicated response. This 

will be assumed whenever the inverse estimator is being discussed. 

The procedure for deriving a precision profile using the analytical method is as 

follows: 

1. Derive the Taylor series expansion for the function w(y,~, e) about the point 

(rn(x) fJ), E[~], E[e]). 

2. Truncate the expansion after a finite number of terms and denote this by TSE. 

3. Compute expressions for the expectation and variance of TSE. 

4. Replace fJ and e by their respective estimates ~ and e to obtain approximate 

expressions for the expectation and variance of the TSE. 

5. Compute the approximated precision at concentration x. 

Additional approximations are typically needed to yield analytical expressions in 

step 3 of the algorithm. 

This procedure is now illustrated by reviewing the calculations of Ekins (1983) 

and O'Connell et al. (1993). New approaches are then developed. 

6.2.1.1 First order methods 

To reduce the number of terms in the expansion suppose that w is a function of y 

and ~ as for the inverse estimator. That is, W = w(y, ~). Let Wy denote the first 

derivative of W with respect to y and wf3 the gradient of W with respect to fJ. The 

method used by O'Connell et aL (1993) is based on the following TSE of w(y, ~): 
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where J-tx = m(x, f3). Note that wy(J-tx, E[~]) = l/mx(w(J-tx), E[~]). Since (6.2) is 

linear in y and ~ and y and ~ are independent (this follows from the independence 

of y and Y), the mean and variance of (6.2) are easy to calculate. In the evaluation 

of the expectations, y is conditioned on concentration x. The mean of (6.2) is 

When f3 is an unbiased estimate of f3 

(6.3) 

and the complication of having to estimate the bias of ~ is removed. Throughout 

this section it is assumed that E[~] = f3 or at least that the bias is negligible - an 

assumption made by authors in the past. 

The variance operator is similarly applied to (6.2). By the independence of y 

and ~, cov(y, ~i) = OVi and so the variance of (6.2) reduces to 

V[W Ix,X] Wy(J-tx, f3)2V(J-tx, e) + w(3(J-tx, f3)'2:,w(3(J-tx, f3) 

wy(flx, ~)2v(flx, 0) + w(3(flx, ~)'tw(3(flx, ~), (6.4) 

where 2:, = cov(~) and the terms flx and t are obtained by respectively evaluating 

J-tx and 2:, using (~, 0) for (f3, e). Recall from Section 5.2.1 that the usual estimate 

of 2:, is 
~ ~-1 

_1_ {I: rim(3(Xi' f3)m!(~i' f3)'} , 
n - PiES v(m(Xi' f3), e) 

where m(3 is the gradient of m with respect to f3 and P = dim(f3). 

The estimated precision at concentration x is given by S[w I x, X] = ylV[w I x, X], 

when precision is measured in terms of standard deviation and S[w I x,X]/x, when 

precision is measured in terms of the coefficient of variation. 

The calculations used in Ekins method are the same as in (6.3) and (6.4) but 
~ ~ 

with f3 being treated as a constant function of the data; i.e. the randomness of f3 is 

ignored. The resulting expressions for the mean and variance of W at concentration 

x are 

E[w I x,X] ~x 

and 

(6.5) 
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These are the formulae initially used in Ekins (1983) to calculate the precision profile. 

Since Sand iJ are treated as fixed quantities, the precision profile is completely 

insensitive to the quality of the fitted assay modeL As mentioned in Section 1.2.4 

this precision profile is a measure of intrinsic assay error (the component of error 

due to the independent response). 

6.2.1.2 Higher order methods 

A concern with the above calculations is that the approximate mean and variance 

of the first order TSE may be poor approximations of the actual mean and variance 

of W. Together with other approximations used to estimate E[w I x,X] and in 

particular, V[w I x, X] this may cause the measure of precision to be misleading. 

A potential means of improving the accuracy of these calculations is to base the 

estimates of the mean and variance on a higher order TSE of w(y, S). The second 

order Taylor series expansion of w(y, S) about Px and fJ is (6.2) augmented with 

where Wyy , wyfJ and wfJfJ denote the second order derivatives of w with respect to y 

and fJ. The analogous estimate of E[w I x, X], obtained by substituting fJ with S in 

the derivative terms, is 

where tr(A) denotes the trace of the matrix A. 

The general expression for the variance of the second order TSE involves third 

and fourth order moments of the distributions of y and S. Since only the first two 

moments of y rv j(y I x, fJ, 0) are specified by the mean and variance functions, 

the distribution of the responses must be used to determine higher order moments. 

Procedures based on expansions that are of second order or higher are therefore 

parametric or in other words, distribution dependent. 

Since the sampling distribution of S will in general be unknown, it is difficult to 

calculate the higher order moments. An intuitively simple solution is to use a well 

known distribution as an approximation. A reasonable choice, especially when the 

responses are normally distributed, is to assume that fJ is normally distributed. This 
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has some justification since maximum likelihood type estimators (M-estimators) of 

f3 are asymptotically normal. 

Using the moment generating function, it is easy to show that if Z rv Np(O,~) 

where p;::: 4 then 

and 

E[ZiZj] = ~ij, 

E[ZiZjZk] = 0, Vi, j, k 

Thus, COV(ZiZj, ZkZI) = ~ik~jl + ~i1~jk and var(zf) 2var(Zi) 2 
, If it is assumed that 

E[y- flx I x, X] 0, then together with the earlier supposition that E[/3 - f3 I Xl ° 
the above results may be used to obtain the approximation 

V[W I X, Xl rv Wy(flXl /3?V(flXl 0) + wfJ(flx, /3)''EwfJ(flx) /3) 
1 A A A AA A 

+ 2wyy(flx) (3)2v(flx, 0)2 + V(flXl (3)wyfJ(flx, (3)'~wYfJ(flx, (3) 

1 PPPP 
A AAA 

+ "4 L L L LWfJifJj (flx, (3)wfJkfJ/(flx) (3)(~ik~jl 'Eil'E jk ). 
i=1 j=1 k=1 1=1 

The second order expressions for the expectation and variance can be used in place 

of their first order equivalents to evaluate the precision at concentration x. 

It is clear that as the number of terms in the TSE expansion of w increases the 

number of terms in the expressions for the mean and variance will escalate. The 

number of terms can be reduced if second order and higher derivatives of w with 

respect to f3 are negligible thus enabling terms involving these can be eliminated. 

For example, if terms involving second order derivatives in f3 are excluded from the 

second order expansions, the expressions for the mean and variance of w(y, Y, X) 

reduce to 

and 

V[W I x, Xl wy(flx) /3)2v(flxl 0) + wfJ(flx, /3)''EWfJ(flXl /3) 

+ ~Wyy(flXl /3?v(flx) o? v(flx) /3)wYfJ(flx) /3)''EWyfJ(flXl /3) 

respectively. It is envisaged that there would be little, if any, benefit to be gained 

from using a TSE with derivatives of order greater than two. This comment stems 



6.2. Current method of calculating precision 143 

from a concern that the higher the order of the expansion, the greater the potential 

magnitude of the error from assuming that ~ is normally distributed. A decrease in 

the robustness of the procedure will offset the increased accuracy of the TSE as the 

number of terms in the expansion increases. 

It 'should be noted that O'Malley (1996) suggested an improvement to Ekins' 

calculation of precision. This is to use a second order approximation but with ~ 

treated as a constant function of the data. If the variance and covariance terms 

involving f3 are set equal to zero in the general second order approximations of 

E[w I x, Xl and V[W I x, X], one obtains 

and 
A A 1 A A 

V[w I x, Xl ~ wy({Lx, f3?v({Lx, e) + 2Wyy ({Lx, f3?v({Lx, e?, 

as in O'Malley (1996). Some improvement over Ekins' method was observed (see 

O'Malley (1996)). 

6.2.2 Empirical method 

The second approach that has been used to calculate the precision profile is now 

reviewed. Suitable aliases for this method are "memoryless method" or "direct 

method". This is because the analysis is developed solely on the basis of the fitted 

concentrations which in a way ignores or forgets the assay model for the responses. 

The general procedures for calculating E[w I x, Xl and V[W I x, Xl using the 

empirical method are as follows: 

1. Obtain ~ and {) by fitting the assay model. 

2. For every Iij, i = 1, ... ,n and j = 1, ... ,ri evaluate the estimate of concentra­

tion that would result if Iij were actually observed as an independent singleton 

response. Denote the ijth fitted concentration by TJij. The only requirement 

is that TJij is defined for every Iij. 

3. Using a statistical model express TJij as a stochastic function of TJi, the actual 

concentration. 
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4. Obtain an expression for E(w I X, X) and V{w I X, X) by fitting the model in 

step 3. 

The above methodology is a generalization of the approach of Sadler et al. (1988). 

Also refer to Sadler and Smith (1990a,b) for details of this method. The model used 

in step 3 of the algorithm by these authors is 

where 0: is a vector of unknown parameters. This model asserts that ilij is an 

unbiased estimate of ru. 
In Sadler et al. (1988) an analytical argument based on (6.5) is used to justify 

the use of the variance function 

when m{x, {3) is the sigmoid function. This variance function accommodates wide 

ranging behaviour in wand so may be suitable in many situations. 

To estimate the vector 0:, Sadler and Smith (1986) use MACL. When there are 

relatively few standards, as is typically the case in immunoassays, this method of 

estimation is endorsed. In general, though, a method that distinguishes standards 

from unknowns would be preferred. 

Unfortunately, with data from just a single assay, the empirical method can only 

account for the intrinsic error of an assay. Since Y is fixed in the calculation of 

{ilij, i 1, ... ,n, j = 1, ... ,ri}, this approach does not consider the error in the 

fitted assay model when estimating the variance of the fitted concentrations. Hence, 

only the variation due to the randomness of y is reflected in these data. The same 

concentrations must be estimated on two or more homogeneous assays to account 

for the error of estimation in ~ and e. Refer to Chapter 7 for further comments. 

The empirical method has wider applicability than the analytical method. It 

can be used in modern immunoassay laboratories in which analyses are performed 

by a machine that outputs only the estimates of concentration for each sample. The 

fitted assay model and response counts are often not revealed. It is clear that the 

analytical method cannot be used in this scenario. Again refer to Chapter 7 for 

further comments. 
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6.2.3 Exact calculation of precision 

Two contrasting approaches are currently being used to calculate the precision profile 

of an assay. Both the analytical and empirical methods are characterized by their 

use of approximations which must by definition compromise the sensitivity of the 

precision profile. 

Using simulation, precision may be calculated exactly at specific values of {3, 0 

and r,u. The procedure for the calculation of precision at concentration x and the 

parameter values ({31, 01 ) 71f) is as follows: 

1. For given x and X, generate y rv f(y I x, {31, 01 ) and Y rv f(Y I 711) {31, 01 ), 

where 711 = (X,71f)· 

2. Calculate fj and {) as though ({3, 0, 71U) were unknown by fitting the assay model 

to the data (17, X). 

3. Calculate w = w(y, /3, e) and update the mean and variance of the values of w 
that have so far been generated. 

4. Repeat steps 1 to 3 until the mean and variance in step 3 has converged. 

5. Calculate the precision as the standard deviation or coefficient of variation 

and relate to the known value x. 

A feature of this calculation is that the observed data are never utilized. Since the 

purpose of the analysis is to assess the quality of the measurements that have been 

made, this seems somewhat unreasonable. 

A further problem with the calculation is that in practice {3, 0 and 71u are un­

known. Some arbitrary choice for the value of these parameters thus needs to be 

made or, alternatively, some criterion such as the maximum or average precision 

with respect to ({3, 0, 71U) could in theory be used. But since ({3, 0, 71U) is a p q+nu 

vector, these latter calculations appear to be unfeasible. It should be noted that 

averaging over the ({3, 0, 71U) space requires that some distribution be asserted for 

({3, 0, 71U); hence, such a procedure is somewhat related to the calculation of precision 

under a Bayesian framework. 
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6.3 Bayesian approach to calculating precision 

In this section, measures of precision are developed that arise naturally with a 

Bayesian analysis of an assay. In this development, the procedure for estimating an 

unknown concentration under a Bayesian model will be important and hence is now 

briefly reviewed. 

6.3.1 Bayesian estimation of an unknown concentration 

In a decision theoretic context the Bayesian procedure for estimating w is based on 

the minimization of a loss function. Let l (a, w) denote the loss of deciding that a 

is the concentration when the true concentration is w. Examples of common loss 

functions are: squared error loss, l(a,w) = (a W)2; absolute error loss: l(a,w) = 

la wi; and weighted squared error loss: .l(a,w) (a W)2JW. The Bayes procedure 

for the estimation of the concentration w associated with the response y is as follows: 

1. Calculate 7r(w I y, Y, X), the posterior distribution of w given y and (Y, X). 

2. Estimate w as the value of a which minimizes 

gir[l(a,w) I y,Y,X] = 1000 

l(a,w)7r(w I y,Y,X)dw, 

the expected value of l(a,w) with respect to 7r(w I y, Y,X). 

The first step can be thought of as representing all pre-experimental and experi­

mental information about w in the form of a probability distribution, 7i(w I y, Y, X), 

which describes the uncertainty about the value of w. 

In the second step, 7r(w I y, Y, X) is converted to a one number summary known 

as an estimate. This is denoted by w w(y, Y, X) and is called the Bayes rule 

associated with the loss function l (a, w). 

The error of estimation of w is the posterior expected loss. This is given by 

EL(w I y, Y, X) [l(W,w) I y, Y,Xl 10
00 

l(w,w)7r(w I y, Y,X) dw. (6.6) 

This is reported in conjunction with the estimate and interpreted as a measure of 

the reliability or precision of the estimate just as the standard error is often reported 

in the frequentist paradigm. 
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In general however, it is not necessary to estimate W by way of a loss function 

as in the general theoretic framework. In fact, w can be any function of (y, Y, X). 

When no loss function is specified, the estimation error of w is typically reported as 

the posterior mean squared error of W, given by 

E 7r [(w - W)2 I y, Y, Xl = 10
00 

(w W)27r(W I y, Y, X) dw. 

This is defined as the posterior variance of w (see Berger (1985)) and is denoted 

here as V7r[w I y, Y, Xl. The mean squared error of w is minimized when w E7r[w I 
y, Y, X], the posterior mean. In this case the expected loss is V7r [w I y, Y, Xl, the 

posterior variance of w. The posterior mean is a frequently used point estimate in 

Bayesian analysis. 

Throughout this chapter the estimation error of w is written EL(w I y, Y,X). 

This shall be taken to mean V7r(w I y, Y, X) when w is not determined from the 

minimization of a loss function. 

The estimate of w conditional on (J and e, written w(y, (J, e), is the value of a 

that minimizes 

Io00Z (a,w)7r(w I y,(J,e)dw. 

Note that in general w(y, Y, X) is not necessarily equal to 

r r w(y, (J, e)7r((J, ely, Y, X) d(J de, 
In(o) In(fJ) 

One important exception is the case in which w is the posterior mean of w. From 

well known results 

w(y, Y,X) E 7r [w I y, Y, Xl 

E 7r(fJ,oly,y,X)[E7r [w I y, (J, ell 
E 7r(fJ,Oly,Y,X) [w(y, (J, ell. 

The estimate in this case can be calculated by averaging the conditional estimate 

over the posterior distribution of ((J, e) (see Section 6.3.3.4). However, the same is 

not true of the estimation error since 

EL(w I y,Y,X) V7r[W I y, Y, Xl 

E 7r(fJ,Oly,Y,X)[v7r [w I y, (J, eJ] V 7r(fJ,oly,Y,X)[E7r [w I y, (J, ell 
E7r(fJ,oly,Y,X)[EL(w I y, (J, e)] V 7r (fJ,Oly,Y,X) [w(y, (J, e)l 

> E 7r(fJ,oly,y,X}[EL(w I y, (J, e)]. 
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6.3.2 General form of a Bayesian measure of precision 

As with Bayesian measures of MDC, Bayesian measures of precision are based on 

emulating what would be done if y were actually observed. As discussed in the 

previous section, an estimate W is obtained and the estimation error is reported as 

a measure of accuracy or precision. To calculate the precision profile of the assay, 

the procedure parallels that derived for the MDC. 

The same conditions that apply to the calculation of pr(w > 0 I y, Y, X), for 

the probability MDC (xpr) , and 7r(w I y, Y, X), for the discriminant MDC (xds ), 

apply here. Since y is a predicted response based on 7r({3, B I Y, X), it cannot be 

allowed to influence 7r({3, B I Y, X) at any stage of the calculation of precision (see 

Section 5.3.2.3). Hence, 7r(w I y, Y, X) is defined as 

7r(W I y, Y, X) r r 7r(w I y, (3, B)7r({3, B I Y, X) d{3 dB. 
in(9) in({J) . 

(6.7) 

6.3.3 Estimator specific precision 

By the expression "estimator specific precision" a two component measure of preci­

sion is implied. This measure reflects both the quality of the assay and the quality of 

the estimator. Estimator specific (ES) precision encapsulates a predictive loss com­

ponent and a predictive error component. These components are firstly described 

before giving the formal definition of ES precision. 

6.3.3.1 Predictive loss 

The predictive loss at concentration x will be taken to mean the predictive estimation 

error of w at concentration x. This is the average of EL(w I y, Y, X) with respect 

to p(y I x, Y, X). Let PL(w I x, Y, X) denote the predictive estimation error at 

concentration x. Then 

P L(w I x, Y, X) = r EL(w I y, Y, X)p(y I x, Y, X)dy, (6.8) 
in(y) 

where from (6.6) and (6.7) 

EL(W I y, Y, X) {'Xl r r l(w, w)7r(w I y, (3, B)7r({3, B I Y, X) d{3 dB dw, 
io in(9) i n ({3) 

and 

p(y I x, Y,X) r r f(y I x,{3,B)7r({3,B I Y,X)d{3dB. 
i n (9) in({3) 
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A key feature of this measure is that the uncertainty about w is expressed as a 

one number summary, EL(w I y, Y, X), before the hypothetical response is averaged 

over in (6.8). This one number is just the predicted posterior variance of w at 

concentration x when l(w, w) is taken to be mean squared error. 

6.3.3.2 Predictive error 

This second component of ES precision makes use of the fact that x is known. 

The distance between wand x is an assessment of the quality of W. However, this 

information is not used in the calculation of the predictive loss. Let d(w, x) be some 

metric of the distance of w from x; two common metrics being the squared distance, 

d(w, x) = (w - X)2, and the absolute distance, d(w, x) = Iw - xl. 
The quantityd(w, x) is a measure of the error in w(y, Y, X). It can be predicted 

in the same way as the predicted loss. Let P E(w I x, Y, X) denote the predictive 

error of w = w(y, Y, X) at concentration x; that is 

PE(w I x, Y,X) = r d(w(y, Y,X),x)p(y I x, Y,X)dy. 
In(y) 

There is no restriction on the function d. However, it seems reasonable that d should 

have the same form as l in a decision theoretic setting and that d(w, x) = (w - X)2 

otherwise. 

Like the predictive loss, the predictive error can also be expressed as a one 

number summary, namely d(w(y, Y, X), x), before averaging over the hypothetical 

response. 

The predictive error appears at first sight to be exactly what is required of a 

measure of precision. It describes how close the estimated concentration is to the 

actual concentration. However, this is not the full picture. The predictive error 

does not account for the uncertainty in the value of concentration when y is actually 

observed and x is unknown. In other words, the uncertainty about the value of w, 

the concentration that would be measured in practice, is not accounted for. The 

uncertainty about w is in fact what the predictive loss quantifies. By combining 

predictive loss and predictive error into a single measure, all sources of error in 

w(y, Y, X) are taken into account. 
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6.3.3.3 Definition of ES precision 

Define the quantity ES(w I x, Y, X) to be an ES measure of precision at concentra­

tion x if 

ES(w I x, Y,X) = h(PL(w I x, Y,X),PE(w I x, Y,X)) 

for some function h. 

This is the most general form for this definition. In practice, it is difficult to 

think of a situation when it would not be appropriate for h to simply be a function 

of the arithmetic sum of the predictive loss and the predictive error, i.e. 

ES(w I x, Y,X) = h(PL(w I x, Y,X) + PE(w I x, Y,X)). (6.9) 

6.3.3.4 Numerical evaluation of ES precision 

For simplicity, it is supposed that estimation is by squared error loss, so that w = 

E7f[w I y, Y,X] and EL[w I y, Y,X] = V7f[w I y, Y,X]. Also let d(w, x) = (w - X)2. 

In this case the algorithm for the calculation of xds may be easily adapted to the 

predictive loss (PL) and the predictive error (PE). Samples of w rv n(w I y, Y, X) are 

drawn in exactly the same manner as (w, wo) rv n (w, Wo I y, Yo, Y, X) variates were 

generated to calculate xds. The only difference to the structure of the algorithm is 

that, instead of evaluating a probability in the inner loop, statistics that enable the 

calculation of P L(w I x, Y, X) and P E(w I x, Y, X) are enumerated. 

The following pseudo code forms the backbone of a suitable algorithm for the 

calculation of the PL and the PE. 

1. Run two independent M-H simulations on n({3, () I Y, X) until each chain has 

surpassed its transient phase. 

2. Generate y rv p(y I x, Y, X). 

(a) Generate ({3(i) , ()(i)) rv n({3, () I Y, X) using the M-H algorithm. 

(b) Generate an r dimensional response vector y(i) rv f (y lx, (3(i) , ()(i)). 

3. Generate w rv n(w I y, Y, X). 

(a) Set j = 1. 
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(b) Generate ({3U) , ()(j)) "" 7r({3, () I Y, X) using an independent M-H simula­

tion to that used in step 2. 

(c) Use MCMC simulation or importance sampling to generate wU) "" p(w I 
y(i), {3(j) , ()(j)). the M-H algorithm is used, a warm-up run will be nec-

essary. 

4. Continue step 3 until both the long run averages of wU) and (W(j))2 have 

converged. 

5. Let wand P L(i) be the long-run averages of w(j) and (wU) - w)2 respectively 

and PE(i) = (w X)2. 

6. Repeat steps 2-5 until the long run averages of the P L(i) variates and the 

P E(i) values in step 5 converge and all other convergence criteria of the two 

M-H chains are satisfied. The converged averages of these sequences will be 

P L(w I x, Y, X) and P L(w I x, Y, X) respectively. 

To develop the precision profile, this algorithm must be applied to values of x that 

span the range of concentrations of interest. The resulting values of ES precision 

are then plotted against x. 

When criteria other than minimum expected squared error loss are used to esti­

mate w, steps 4 and 5 of the algorithm need to be adjusted. The calculation of the 

posterior mean needs to be substituted with the calculations needed to obtain the 

estimate of concentration corresponding to the estimation criterion being used. If 

the estimator cannot be expressed in closed algebraic form, numerical minimization 

of the loss function may have to be embedded in the algorithm. 

6.3.3.5 Alternative methods of calculation 

The independence required of y(i) and ({3(j), ()U)) makes this algorithm, like those for 

xpr and x ds , rather complicated. The computation would be more efficient if y and 

w variates could be generated from the same value of {3 and e. 
As for the calculation of xpr and xds this is not possible, at least for loss and 

distance functions that are strictly convex. This is because neither the predictive 

loss or the predictive error are able to be expressed in the form 
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where P(y, /3, 0) is some function of y, /3 and O. If this were the case, numerical 

evaluation would be easy and efficient to evaluate because the order of integration 

is in the reverse order to the order in which (/3,0), y and ware naturally generated. 

Here the natural order of generation is (/3,0) followed by y and then w. Hence, 

each variate only needs to be generated once within each iteration of a Monte Carlo 

simulation. 

Partial representation in the above form is possible for some loss functions. 

Again, consider the case where land d represent squared error loss and distance 

respectively. Then 

EL(w I y, Y, X) V 1r [w I y, Y, X] 

E1r(/3,OIY,X)[V1r [w I y,/3,O]] V1r(/3,OIY,X) [E1r [w I y,/3,O]] 

The second term on the rhs is not in the. required form since it depends on (E1r[w I 
y, Y,X])2. Therefore, the inner expectation/integration with respect to /3 and 0 

will not cancel when the expectation of EL(w I y, Y, X) is taken with respect to 

p(y I x, Y, X). However, the sought after cancellation does take place for the first 

term since 

E 1r(/3,OIY,X)[Ef( y1 x,/3,O)[V1r [W I y, /3, 0]]] 

E 1r(/3,Oly,X)[PL(w I x, /3, 0)]. (6.10) 

The efficiency of the algorithm may be able to be improved by embedding a more ef­

ficient calculation of E1r(/3,OIY,X) [V1r [w I y, /3, 0]] in the full algorithm or by calculatjng 

this component of ES precision separately. 

6.3.3.6 Alternative (incorrect) expression 

An alternative expression for the precision of an estimator is obtained by averaging 

E(w I x, /3, 0), the predicted loss conditional on /3 and 0, over n(/3,O I Y, X). The 

resulting expression 

r r [r l(w(y,/3,O),x)f(y I x,/3,O)dy]n(/3,o I Y,X)d/3dO, 
In(o) In(/3) In(y) 

(6.11) 

is just the general form of (6.10). Hence, although the above expression and EL[w I 
x, Y, X] are functions of the same variables (x, Y and X), this expression does not 
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account for all of the sources of uncertainty in the measurement process. It will 

therefore yield an overly optimistic view of the assay. Only in the extreme case 

where (3 and B are known does this equal ES precision. 

6.3.4 The predictive distribution of assay measurements 

(PDAM) 

In the calculation of the predictive loss and the predictive error it was noted that 

the uncertainty in W is summarized before averaging over the hypothetical response. 

This is a consequence of quantifying the uncertainty about W in terms of the er­

ror in w(y, Y, X). However, the general definition of precision does not specify that 

precision must be based upon the properties of an estimator of the unknown concen­

tration. The calculation of an estimator of an unknown concentration is a feature 

that is only required when the analysis is frequentist. When the analysis of the 

assay is Bayesian it is not necessary to be so restricted, in fact precision can be 

based upon any measure of the quality of an assay. 

6.3.4.1 Derivation 

If the involvement of an estimator of W is taken out of the calculation of precision 

then just two terms are left, namely the posterior distribution of w, 7f(w I y, Y, X) 

and the predictive distribution of y, p(y I x, Y, X), in which x is arbitrary. The 

uncertainty in W is completely described by 7f(w I y, Y, X). Since y is a hypothetical 

response, the dependence of 7f(w I y, Y, X) on y needs to be removed. The procedure 

is to average 7f(w I y, Y, X) with respect to the distribution of y given x and (Y, X); 

that is, with respect to p(y I x, Y, X), thus obtaining 

7f(W I x, Y, X) [ 7f(w I y, Y, X)p(y I x, Y, X) dy. 
JR(Y) 

Of course, as y is hypothetical 7f(w I y, Y, X) is calculated as 

7f(wly,Y,X)= [ r 7f(wly,(3,B)7f((3,BIY,X)d(3dB, 
JR(O) JR({3) 

to avoid the undesirable phenomena of having the response y, predicted from the 

fitted model, reinforcing the model fit. 
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The resulting distribution, 7r(w I x, Y, X), is the predictive posterior distribution 

of the unknown concentration at concentration x. It is called the predicted distri­

bution of assay mea..c;urements at concentration x (PDAM(x)). The abbreviation, 

PDAM, is used for both singular and plural versions of "predicted distribution(s) 

of assay measurements". As the full distribution of the uncertainty in the measure­

ment of W is predicted, the PDAM contain all of the information about an assay's 

measurement of W at any value of x. 

6.3.4.2 Expansion 

It is instructive to express PDAM(x) as the following mixtures of its component 

distributions: 

7r(W I x, Y,X) , 

r 7r(w Iy, Y, X)p(y I x, Y,'X) dy (6.12) 
in(y) 

r r r 7r(w I y,;3, 0)7r(;3, 01 Y, X)p(y I x, Y, X) d;3 dO dy (6.13) 
in(y) in(o) in(p) 

r r r 7r(W ly,Y,X)f(ylx,;3,O)7r(;3,O I Y,X) dy d;3 dO. (6.14) 
in(o) IR(P) in(y) 

Note that, (6.14) is obtained directly from (6.12) not (6.13). The two mixtures 

in (6.13) and (6.14) cannot be combined because 7r(w I y, Y, X) and p(y I x, Y, X) 

must be conditioned on independent values of (;3, 0); Le. they cannot be conditioned 

on the same value of (;3,0). It is a consequence of this fact that PDAM(x) cannot 

be expressed as a posterior expectation of 7r(w I x,;3, 0), a quantity that would be 

known as PDAM(x) given (;3,0). 

It is important not to fall into the trap of conditioning 7r(w I x, Y, X) on (;3,0) 

before conditioning on y. This would lead to the expression 

r r [ r 7r(w I y,;3, O)f (y I x,(J, 0) dY]7r(;3, 0 I Y, X) d;3 dO, 
into) in(p) in(y) 

(6.15) 

in which it can be observed that 7r(w I y, Y, X) and p(y I x, Y, X) are conditioned 

on the same value of (;3,0). This expression is an invalid expansion for the PDAM 

because 7r(w I y,;3, 0) is, in effect, averaged with respect to f(y I x,;3, 0) as opposed 

to p(y I x, Y, X). Incidently, the error of using (6.15) to calculating PDAM(x) is 

analogous to error of using (6.11) to calculate ES precision. 
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6.3.5 PDAM precision 

The PDAM provide precisely what is needed to form a precision profile, namely a 

probability distribution on w (the quantity being measured) that is conditioned on 

x (the true value of this quantity) and the information in the assay, (Y, X). 

6.S.5.1 Definition of PDAM precision 

A PDAM measure of precision at concentration x is defined to be anyone-dimension 

measure of the spread of PDAM(x). Examples of such measures are variance, range, 

squared error and relative squared error. 

PDAM precision is a one number summary of the uncertainty that surrounds 

the measurement of w. The property of the PDAM which best reflects the quality of 

an assay's measurements at a given concentration will be situation and application 

dependent. In the majority of situations, it is envisaged that a measure based on 

mean squared error (MSE) will be appropriate. The calculation in the case of relative 

root mean squared error (RRMSE) is 

where 

7r _ JMSE7r(w I x, Y,X) 
RRlvISE [w I x, Y,Xl- , 

x 

r (w - X)21f(W I x, Y, X)dw 
In(w) 

r r (w - x?1f(w I y, Y,X)p(y I x, Y,X) dydw 
In(w) In(y) 

r r (w - x)21f(W I y, Y, X) dWp(y I x, Y, X) dy 
In(y) In(w) 

r MSE7r(w I y, Y,X)p(y I x, Y,X) dy. (6.16) 
In(y) 

Equation 6.16 indicates that when it is measured in terms of RRMSE, PDAM pre­

cision is based on the predicted value of M S E7r (w I y, Y, X), a quantity that would 

be reported if the response y was actually observed. A similar expansion to (6.16) 

holds for all measures of precision based on moments of PDAM(x) about x. 

The advantage of mean squared error based measures over variance based mea­

sures is that both location and spread are considered. Thus, there is no need to 

constrain bias when measuring the spread of the measurements. 
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6.3.5.2 Relationship between ES and PDAM precision 

The ES and PDAM measures of precision are different quantities. However, in a 

very important case they coincide. 

Theorem 6.3.1 Suppose that estimator specific precision is 

ES(w I x, Y, X) P L(w I x, Y, X) PE(w I x, Y, X), 

that w is the Bayes rule under squared error' loss and that d(w, x) (w X)2 in the 

calculation of P E(w I x, Y, X). Then, if the PDAM precision at concentration x is 

the mean squared error of PDAM(x), PDAM precision equals ES precision. 

Proof: As the posterior mean is the Bayes rule under squared error loss 

w w(y, Y, X) = E 7r [w I y, Y, X] 

and 

EL(w I y, Y, X) V7r[w I y, Y, X] 

E7r[(w _ I y, Y, X])2]. 

Hence, 

PL(w I x, Y, X) ( V7r[w I y, Y,X]p(y I x, Y,X) dy 
In(y) 

EP(y1x,y,X)[V7r [w I y, Y, X]] 

and 

PE(w I x, Y, X) { (E7r[w I y,Y,X]_X)2p(y I x,Y,X)dy 
In(y) 

Therefore, 

ES(w I x, Y, X) 

EP(Y1 x,y,X)[(E7r [w I y, Y,X]- x?J 

EP( Y1 x,y,X)[V7r [w I y, Y, X]] EP(Y1x,Y,X)[(E7r [w I y, Y, X]- x?] 

EP(y1 x,Y,X){E7r [(w - E 7r [w I y, Y,XJ)2] + (E7r [w I y, Y,X]- X)2} 

EP( y1x,y,X){E7r [(w - X)2 I y, Y,Xn 

{ roo (w _ X)27f(W I y, Y, X)p(y I x, Y, X) dw dy 
In(y) 10 
fooo(w X)27f(W I x,Y,X)dw 

MSE7r [w I x, Y,X]. 
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Under the mean squared error criterion, MSE1r[w I X, Y, X] is the PDAM precision 

at concentration x and so the proof is complete. 

This result to some extent "characterizes" PDAM precision. is are-assuring 

result that the two Bayesian measures of precision are equivalent under the widely 

used squared error/squared distance metrics. It is clear that the two measures will 

also coincide under these metrics if ES(w I x, Y, X) h(P L(w I x, Y, X) + P E(w I 
x, Y, X)) and PDAM(x) = h(MSE1r[w I x, Y, Xl) for any function h. 

6.3.5.3 Numerical evaluation of PDAM precision 

To calculate any measure of PDAM precision, one just needs to be able to sample 

from 1f(w I x, Y, X). Recall that PDAM(x) is defined as: 

PDAM(x) = ( 1f(w I y,Y,X)p(y I x,Y,X)dy. 
fRey) 

This indicates that to evaluate PDAM(x) samples from the following distributions 

must be able to be generated: 

1. y rv p(y I .'1:, Y, X). 

2. W rv 1f(w I y, Y, X). 

Methods of generating variates from each of these distributions have been discussed 

earlier. The order in which samples are drawn from these distributions is identical 

to that needed to calculate ES precision. In fact, the only change required to adapt 

the algorithm used to calculate precision to the calculation of PDAM precision 

is the nature of the summary statistics being enumerated and the locations where 

enumeration occurs. 

The following algorithm outlines a method for the calculation of the PDAM pre­

cision at concentration x when it is measured in terms of the RRMSE ofPDAM(x). 

1. Run two independent M-H simulations on 1f(/3, () I Y, X) until each chain has 

surpassed its transient phase and set SSQ= 0 

2. Generate y rv p(y I x, Y, X). 

(a) Generate (/3(i),()(i») rv 1f(/3,() I Y,X) using the M-H algorithm. 

(b) Generate an r dimensional response vector y(i) rv f (y lx, /3(i) , ()(i»). 
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3. Generate w rv 7r(w I y, Y, X). 

(a) Set j l. 

(b) Generate (!3(j) , B(j)) rv 7r(!3, B I Y, X) using an independent M-H simula­

tion to that used in step 2. 

(c) Use importance sampling or MCMC simulation to generate wU) rv p(w I 
y(i), !3(j), B(j») for j = 1, ... , Kl. If the M-H algorithm is used, a warm-up 

run will be necessary. 

(d) Calculate SSQ SSQ + z:::f21(w(j) - X)2. 

4. Calculate SSQ(i) = SSQ/Kl. 

5. Repeat steps 2-4 until all convergence diagnostics of the MCMC chain are 

satisfied and it is evident that the mean of the SSQ(i) values in step 4 has 

converged. 

6. Set RRMSE(w I x, Y,X) = f(SSQ/K2)/x, where K2 is the total number of 

times the algorithm passed through step 5. 

To develop the precision profile the algorithm needs to be applied to values of x that 

span the range of concentrations of interest. The resulting values of precision can 

then be plotted against x to form the precision profile. 

The nature of the calculation in steps 3d, 4 and 6 will have to be altered if other 

measures of PDAM precision are used. For example, to calculate the variance of 

PDAM(x), running totals of w(j) and (w(j))2 need to be maintained at step 3d and 

the averages at steps 4 and 6 adjusted accordingly. It should be noted that it is 

possible to adapt the algorithm so that it will calculate any property of PDAM(x). 

6.3.5.4 Further applications of the PDAM 

The PDAM completely describe the quality of an assay's measurement of the con­

centration in an unseen sample. This completeness makes the PDAM candidates 

for the calculation of other aspects of an assay's quality. For example, probability 

and discriminant type measures of MDC can be defined in terms of the PDAM. 

The predictive posterior probability at concentration x that w, the calibrated 

concentration, is in some set can be obtained from PDAM(x). A concentration 
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might then be said to be "reliably able to be measured" if the predicted posterior 

probability ofthis set is sufficiently high (see Chapter 5 for various other definitions 

of the term "reliable measurement"). 

This leads to the definition of the MDC as the smallest value of x for which 

pr(w > 0 I x, Y, X) ;:: 1 - a, 

where w rv PDAM(x). Unlike the probability MDC of Chapter 5, the act of deciding 

if w > 0 for all possible values of y is removed. This makes this measure of MDC 

a function of the PDAM. Of course for this measure to make sense it is necessary 

that a priori pr(w = 0) > 0, as for the probability MDC. 

The PDAM can also be used to develop a measure of the MDC based on discrim­

ination of a sample with positive concentration from one with zero concentration. 

The resulting MDC is the smallest value of x for which 

pr(w > Wo I x, 0, Y, X) ;:: 1 - a, 

where (w, wo) rv 7r(w, Wo I x, 0, Y, X) - a bivariate PDAM. 

Finally, the PDAM can be used for model selection. When 7r(w I y, Y, X) was 

used for the derivation of measures of MDC or precision it was noted that y must not 

be allowed to influence 7r({3, () I Y, X). In other words y is withdrawn or "held out" 

from 7r({3, () I Y, X). Hence, there is some similarity between 7r(w I y, Y, X) and the 

"hold-out" distributions used in Bayesian cross-validation. The major distinction 

is that a PDAM predicts the independent variable whereas hold-out distributions 

predict the response. 

In any case, the PDAM could be used for model selection whenever there is a 

basis for judging a model in terms of its prediction of the value of an independent 

variable. Such applications will be those where the primary intention of the analysis 

is the estimation of values of the independent variable from observed responses, such 

as in assays. 

6.3.6 Discussion 

6.3.6.1 Bayesian verse frequentist precision profiles 

In the frequentist framework, precision is defined in terms of a property of the 

sampling distribution of some estimator of w denoted by w(y, Y, X). The calculation 
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of precision therefore involves averaging with respect to f(y, Y I X, X); i.e. averaging 

over both past and future observations. In the Bayesian framework precision is 

defined using the notion of predictive inference. Instead of averaging over all values 

of Y the averaging is with respect to p(y I X, Y, X) which clearly conditions on the 

present observations. 

The role of p(y I X, Y, X) in a Bayesian framework parallels the role of the 

sampling distribution of (y, /J, (}) in a frequentist framework; i.e. it serves the same 

purpose. Both the uncertainty in fJ and () and the randomness of yare taken account 

of in p(y I X, Y, X). 

Bayesian analysis allows more freedom in the construction of the precision profile. 

An equivalent to the PDAM and hence PDAM precision clearly does not exist under 

the frequentist paradigm since uncertainty about w cannot be expressed in the form 

of a probability distribution about w. Probability distributions can be defined for 

estimates of a parameter but not for the parameter itself. In the frequentist paradigm 

uncertainty about w can only be represented in terms of a sampling distribution 

for W, as if the present assay could be repeated over and over again under the 

exact same conditions. Thus, when the analysis is frequentist, an estimator of the 

concentration w must be relied upon and the calculation of precision will be specific 

to this estimator. 

6.3.6.2 ES verse PDAM based precision profiles 

In the Bayesian paradigm one is able to choose between and PDAM precision. 

These measures are now compared. The former, ES precision, takes account of both 

the quality of the assay experiment and the method of estimating tlle unknown 

concentrations. If the estimator of an unknown concentration has undesirable prop­

erties, ES precision will be adversely affected. It should be used if the quality of 

an assay's estimation of an unknown concentration is of fundamental concern (for 

example, when deciding which of two estimators of r,u is best). 

The fundamental feature of PDAM precision is that there is no reliance on an 

estimator of the unknown concentration. PDAM precision therefore reflects the 

quality of the assay in its purest form as opposed to being tailored to the specific 

demands of an estimator. PDAM precision is a more general measure of quality than 

ES precision. If the quality of the assay alone is of interest, then PDAM precision 
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is the better measure. This is the case whenever aspects of an assay's design (for 

example, the number, replication and concentration of the standards) are being 

studied. 

6.3.6.3 Use of ES and PDAM precision with Bayesian measures of MDC 

ES and PDAM precision profiles may be used in conjunction with the probability 

and discriminant measures of MDC to present a summary of the quality of the a.ssay. 

Practitioners often use the precision profile to determine the range of concentrations 

measured or calibrated within a certain level of precision. This is called the working 

range. The working range together with xpr and xds would constitute a three number 

summary of the limit of reliable detection of an assay. This is in the spirit of the 

three number summary originally proposed by Currie (1968). 

6.4 Numerical illustration 

In this section the precision profiles are calculated using the NMCH data and 

modeL For a range of values of x PDAM(x) is plotted. The non-informative prior 

1r({3, 0, pP) ex: Ilea is used for Bayesian model fitting. These plots provide insight 

into the relationship between the various measures of precision. 

The performance of the measures of precision could have been assessed in the 

same manner as the measures of MDC were in Section 5.4.1. Given a rule for, on the 

basis of their precision profiles, determining the better of two assays the methodology 

can be directly applied. The smallest area under the precision profile on an interval 

of interest, the lowest value of precision at a concentration of particular importance 

and the largest width of the working range (the range of concentrations that can be 

measured within some specified level of precision) are all potential rules for selecting 

the better of two assays based from their precision profiles. Due to the similarity 

in the construction of the MDC and the precision at a given concentration it is 

expected that the results from such a simulation would be similar in spirit to the 

results for the frequentist and Bayesian measures of MDC in Section 5.4.1. 
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Figure 6.1: The precision profiles for the NMCH data. 

6.4.1 Precision profiles for the NMCH data 

The precision profiles for the NMCH data and model are shown in Figure 6.1. A 

Bayesian precision profile is developed for the RRMSE measure of PDAM precision. 

Note that, this is equivalent to the measure of ES precision given by: 

ES(w I x, Y, X) 
VPL(w I x, Y,X) + PE(w I x, Y,X) 

x 

where P L(w I x, Y, X) and P E(w I x, Y, X) are calculated using the squared error 

loss and squared distance criteria respectively. Frequentist measures of precision are 

based on the coefficient of variation and Bayesian measures are based on relative 

root mean squared error. The inverse estimator is used to calculate the frequentist 

measures of precision. 
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6.4.1.1 Comments 

From Figure 6,1 it is clear that the precision profiles fall into the following four 

categories: 

1, Precision profiles developed using the analytical method applied to only y.' 

Both the first and second order versions of these precision profiles are shown 

in plot A. 

2. Precision Profiles developed using the analytical method applied to y and /3. 
The first and second order versions of these precision profiles are shown in plot 

B. 

3. The precision profile developed using the empirical method. This precision 

profile is shown in plot C. 

4. The Bayesian precision profile. The ESjPDAM precision profile is shown in 

plot D. 

As the precision profiles in plot A cannot be distinguished and those in plot 

B can only just be distinguished, it is strikingly apparent that the addition of the 

second order terms in the analytical approach has little effect on the calculation of 

precision. For the remainder of this discussion the first and second order analytical 

methods will be discussed as one. 

The difference between the precision profiles in plots A and B reveals that the 

incorporation of the error in the model fit has a significant effect on the precision 

profiles derived using the analytical approach. Accounting for only the error in y 

results in a precision profile that is a lot more optimistic than when the error in the 

model fit is also accounted for. This is reflected in the profound difference in the 

working ranges at level 0.05, the range of concentrations for which precision is less 

than 0.05, between plots A and B. 

The analytical methods involving expansions in y and f3 yield precision profiles 

that are generally substantially more conservative than the Bayesian precision profile 

(to observe this compare plots B and D). There is only a small interval around the 

minimum point of the precision profile in which the analytical method's precision 
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profiles are less conservative than the Bayesian precision profiles1
. The working 

range at level 0.05 is indeed significantly greater for the Bayesian precision profile. 

The discrepancy is likely to have been caused by the fact that in the frequentist 

calculation of the error in the model fit, the information in the unknowns and the 

dependence of v on m are not adequately incorporated in the analysis. Thus, an 

overly pessimistic view of the assay will be given if the analytical method is applied 

to both y and (3. Of course, it is assumed here that the Bayesian precision profile 

is the standard against which other precision profiles should be judged, but this 

seems reasonable since it appeared as though this wa..s the case for the MDC (see 

the results and discussion in Section 5.4.1). 

The empirical method yields a precision profile (see plot C) that exhibits variable 

behaviour. Over low and mid-range concentrations it gives the most favourable 

impression of the assay. However, comp!1red to the Bayesian precision profile (see 

plot D), it is significantly less favourable at high concentrations. The consequence of 

this is that the precision profile produced by the empirical method and the Bayesian 

precision profile give rise to similar working ranges at level 0.05. It is clear that this 

is, however, a fortuitous result because for the most part the empirical method's 

precison profile is quite different from the Bayesian precision. 

An interesting feature of the precision profiles is that they are decreasing func­

tions over some concentrations and increasing functions over others. Even when 

the measure of precision is based on variance or squared error as opposed to a rel­

ative measure, it is still often the case that the precision profile decreases before 

it increases. This happens because the decrease in the variability of y temporarily 

offsets the increasing effect of other sources of variability in the calibrated value of 

w. 

6.4.2 The PDAM for the NMCH data 

The PDAM(x) for x 0,2,5,10,100 and 300 are shown in Figure 6.2. 

1 It can be construed from plots Band D that this interval is approximately from 50 to 80 on 
the horizontal axis, i.e. for x E [50,80]. 
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Figure 6.2: The predictive distribution of assay measurements at the following concentrations: 0, 
2, 5, 10, 100 and 300 for the NMCH data (the horizontal axis is the concentration, the mean of 
PDAM(x) is the dotted vertical line). 
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6.4.2.1 Comments 

As the concentration x increases the spread of the PDAM increases. At values of x 

close to zero, PDAM(x) is right skewed. At large values of x the skewness dissipates, 

the probability of zero concentration vanishes and the distribution takes on a very 

symmetric appearance. As would be expected, PDAM(x) is centered at a value very 

close to x when x is large. 



Chapter 7 

Machine assays and quality 

diagnostics for batches of assays 

In this chapter the situation in which batches of assays are available for analysis is 

the main focus of discussion. In the first part of the chapter, Sections 7.1 to 7.3, 

the statistical analysis of a machine assay, an assay performed by a machine that 

has a statistical algorithm embodied in it, is discussed. The main point of emphasis 

arising from this discussion is that data from other homogeneous assays are needed 

in order to incorporate the error in the model fit in an assessment of the assay's 

quality. In Section 7.4, measures of MDC and precision are derived for a batch of 

homogeneous manual assays using the techniques discussed in earlier chapters. Note 

that, the term "manual assay" is used in this chapter to distinguish these assays 

from machine assays and that earlier use of the word assay in this thesis has meant 

manual assay. 

7.1 Machine assays 

The fundamental characteristic of a machine assay is its black box behaviour. Stan­

dard and unknown samples are supplied to the machine and estimates of concen­

tration are returned. The intermediate steps of the analysis are not included in 

the output. In many instances the raw response measurements are not even pro­

vided. Machine assays thus give the appearance that they directly measure the 

concentration. 

167 
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When using a machine assay, a practitioner merely indicates which samples are 

standards and which are unknowns. Presently, since there is no facility for obtaining 

a common estimate for groups of replicated samples, in a machine assay the fitted 

concentrations for every individual sample are returned. The response measurements 

and the fitted assay model are not revealed. 

The following consequences are noteworthy: 

1. The practitioner must combine the estimate for each replicate into a single 

estimate. The resulting estimate is unlikely to be as efficient as a single esti­

mate based on all the data since the information in each of the replicates is 

not pooled. 

2. Since the assay model is not disclosed, there is insufficient information to 

calculate reliable measures of assay performance such as the MDC and the 

precision profile. 

Another concern with machine assays is that a limitation on the models that can 

be fitted to the assay will necessitate the use of a model that may be inappropriate. 

With the intermediate analysis not being provided, detection of an inappropriate 

model will also be difficult. 

It is clear that machine assays as they currently exist, are unable to provide an 

analysis of an assay of the quality or completeness that can be achieved manually. 

The output from a machine assay should be amended so that it emulates the output 

from a manual assay. The raw data and full details of the model fit should at 

least be given. A further improvement would require machine assays to calculate 

inferences of choice, measures of MDC and precision profiles upon request from the 

practitioner. 

7.2 Assessing the quality of a single machine 

assay - intrinsic assay error 

Despite the above remarks, there are instances in which the difference in the esti­

mates of the unknown concentrations between a manual and a machine assay are 

minimaL However, there is a large difference in the ability to ascertain the quality 
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of the assay. "Fundamentally, machine assays do not yield the information needed to 

make an accurate assessment of an assay's quality. 

It is clear from the onset that there is no practical way of estimating the MDC 

for a machine assay. This is because the output from a machine assay does not allow 

inferences about the response, y, or the concentration, W, of an unseen sample to be 

calculated. However, as described in Section 6.2.2 one measure of quality that can 

be calculated for a machine assay is its intrinsic error (see Section 1.2.4 for definition 

of intrinsic assay error). The method applied to a machine assay is briefly reviewed. 

Sadler et al. (1988) proposed a method for the calculation of intrinsic assay 

error that can be applied to machine assays. The method, known as the empirical 

method, is the only method presently available which can calculate intrinsic assay 

error for a machine assay. The approach is to fit a parametric model that relates 

the estimated concentrations to the actual concentration. A generalized version of 

the model they proposed is 

where fjij is the fitted concentration for the jth replicate of the ith solution and 

g('I}i, a) is the variance function with parameter a. The intrinsic assay error at 

concentration 'l}i is then calculated as either the standard deviation or coefficient of 

variation at 'l}i. 

This model asserts that estimates of concentration are unbiased. When this 

assumption holds, the variance function equals the squared error of an estimate of 

concentration. For the reasons discussed in Section 6.4.1.1, g('I}i, a) is not necessarily 

a monotone function of'l}i. 

It is not necessary to be restricted to the above model. In fact any model can be 

used to describe the relationship between fj and 'I}. If a prior distribution is specified 

for a, then the model can be fitted using Bayesian methods. 

7.3 The precision profile for batches of homoge­

neous machine assays 

In Section 6.2.2 it was pointed out that given the data from a single assay, the 

empirical method can only incorporate the intrinsic assay error in the calculation of 
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precision. This is because all of the estimates of concentration are derived from the 

same fitted assay model; hence, the error in the fitted assay model is ignored or in 

other words, only error due to the randomness of the response is modelled. In this 

section it is seen that with data from a batch of homogeneous machine assays the 

error in the fitted assay model may be incorporated in the calculation of precision. 

Recall that a batch of homogeneous assays is a group of assays with identical 

experimental designs that are designed to analyze the same substance using the 

same reagents and procedures. If data from a batch of homogeneous assays were 

available, then the error in the fitted assay model may be considered by calculating 

a precision profile for the batch of assays. 

The estimated concentrations provide the basis from which the precision profile 

for a machine assay is calculated. Therefore, the only way to reliably calculate a 

precision profile for a machine assay is to ,make the error in the fitted assay model an 

inherent feature of the estimated concentrations. This requires that some samples 

are analyzed by more than one assay in the batch. 

Such data are typically provided by the standard and QC (quality control) sam­

ples. The same batches are used on each assay in succession until the QC specimen 

indicate that the assay is out of controL Then fresh standards and QC specimen 

are made up and a new batch of assays is begun. 

7.3.1 Model and method 

If singleton measurements are made within each assay the empirical method can 

be applied to these data as if a single assay were being analyzed. vVhen response 

measurements are replicated within an assay the estimates of concentration are not 

marginally independent (i.e. over the batch of assays). The estimates of concen­

tration made on the same assay are positively correlated. Any valid calculation of 

precision must consider this fact. 

For the purpose of illustration, suppose that the fitted concentrations are nor­

mally distributed. The approach can be easily generalized to a general distribution. 

Let g(TJhi, a), where a is an unknown parameter, denote the variance of the cali­

brated concentration for the ith sample in the hth assay. Define p(TJhi, T), where T 

is an unknown parameter, to be the correlation between estimates of Tjhi' 

If there are two replicates for the ith sample in the hth assay, the contribution 
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to the sample likelihood function is 

N , g(TJhi' a) ( ( 
TJhi ) (1 p( TJh

1
i' T) )) , 

TJhi p( TJhi, T) 
(7.1) 

where 

When the same sample is analyzed by more than one assay, some components 

of the unknown concentration parameters are obviously redundant. Note also that, 

the known values of the concentration of any standards can be substituted into the 

sample likelihood function, thus eliminating the need to estimate these concentra­

tions. 

If the final estimate of concentration is given by the mean Tihi Lj~l iJhij/rhi, 

the estimated total or marginal variance of Tihi is 

where & and r are estimates of a and T respectively and rhi is the number of replicates 

for the ith sample in the hth assay. For a given concentration, this expression 

estimates the total variation in the fitted concentrations and so can be used to form 

the precision profile, i.e. the procedure is just to plot g(x, &)(1 p(x, r))/r, or some 

function thereof, against x for some degree of replication r. It is clear that var(Tihi) 

will be under-estimated if no account is taken of the positive correlation between 

the estimates of TJhi. 

7.3.2 Simplified calculation 

An alternative method of calculating precision is to use the mean estimates as the 

responses and proceed as if there were no replication within each assay (assuming 

that the number of replicates is the same for all samples). The fitted concentrations 

are independent conditional on TJ and so the model 

(7.2) 

can be used. 
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The disadvantage of this approach is that only standard and QC samples can be 

used. This is because taking the mean leaves only one degree of freedom with each 

unknown sample and this is used to estimate the unknown concentration. Another 

casualty is the information contained in the replicated responses, from the same 

assay, of the standard samples and the QC specimen. Since the standard and QC 

samples typically make up only a small proportion of the samples, a very large pool 

of information will not be used in the analysis; hence, the procedure will not be fully 

efficient. 

7.3.3 Discussion 

In machine assays, QC and unknown samples are often not replicated within an 

assay. However, the responses for the standards are usually measured at least in 

duplicate. If the estimated concentrations are normally distributed, the model in 

(7.1) could be used for the standards and the model in (7.2) for the QC samples. In 

practice, the model in (7.2) tends to be used for both the standards and QC samples 

despite this not being a fully efficient procedure. 

In some practical situations, the standards are not used in the calculation of the 

precision profile. This is due to a concern that standards have different properties 

than unknowns, in particular variability. This concern arises from the fact that the 

standards are made up under controlled laboratory conditions rather than being 

actual real-life samples. This issue is not considered relevant to this thesis. If 

standards and unknowns did have different properties, then this should be reflected 

in the assay model, not just in the calculation of a precision profile. 

7.4 Quality assessment for batches of manual as-

says 

When data from a batch of machine assays are used to form a precision profile, the 

result is an average or batch-wide measure of the quality of the assays. When the 

assays are manual assays batch-wide measures of both MDC and precision can be 

developed. 

In this section measures of MDC and precision are developed for a batch of 
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homogeneous manual assays. These are based on the definitions of precision and 

the MDC used in Chapters 5 and 6 respectively. The purpose here is to review 

the calculations that can be made given the output from a batch of homogeneous 

manual assays. 

For each assay in a batch of assays, measures of MDC and precision may have 

been calculated. A quick and easy method of combining the measures for each assay 

is to average them. However, this is ad-hoc because there is no assurance that such 

averages will have desirable properties. A more reliable approach is now described. 

7.4.1 Annexing a batch of assays 

A batch of assays is converted to a' single assay through the random assignment of 

the unseen sample (i.e. the sample the independent response y is generated from) 

to one of the assays for measurement. In the calculation of measures· of MDC and 

precision, there are now two unknowns, namely the assay the hypothetical response 

y is measured on and the unknown concentration. 

Since a batch of assays is involved, the notation of Section 2.2.2 is used. Recall 

that, f(y I X, /3hl (h) is the likelihood function for an independent response from 

a sample with concentration x in the hth of k assays. The data from the hth 

assay are denoted by (Yh, X h), ~h and Fh denote the estimates of /3h and {h and 

(Y,X) {(Yh,Xh),h 1, ... ,k}. 

Let (/3,0) = {(/3h,Oh), h = 1,2, ... ,k} and (~,O) = {(~h,Oh)' h = 1,2, ... ,k}. 

Let Ph be the probability that the unseen sample is analyzed by the hth assay. Then 

the probability distribution for y at concentration x is 

b 

f(y I x, /3, 0) = :L Phf(y I x, /3hl Oh). (7.3) 
h=l 

Typically, Ph equals the proportion of samples out of the total number of samples 

that are analyzed by the hth assay. If each assay analyses the same number of 

samples then Ph = 11k. 
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7.4.2 Definition of batch-wide MDC and precision 

The batch-wide equivalent of a measure of MDC or precision is obtained by evalu­

ating the measure of precision using (7.3) for the distribution function of the inde­

pendent response measurement and the model fits of the individual assays for the 

overall model fit. 

A feature of this definition is that each assay in the batch is fitted using just the 

data observed for that assay. The model fit for each assay is therefore independent 

of the model fits for the other assays in the batch. This coincides with the way 

in which assays are fitted in practice. An alternative approach would be to use 

the grand immunoassay model of Section 4.6 to determine the overall model fit. 

Under this model, data from the current assay is supplemented with information 

from the preceding assays in the batch. If the model assumptions are valid, resultant 

inferences will be more efficient. However, as the fitted assay models would no longer 

be independent, the calculation of batch-wide measures of MDC and precision would 

be more arduous. 

7.4.3 Measures of batch-wide MDC 

7.4.3.1 Frequentist measures 

Under a frequentist framework, the MDC for the hth assay can be expressed as the 

value of x for which 

(7.4) 

where c(a, z, Yh , X h ) is an approximate 1 a level critical value of a prediction 

interval of an independent response y at concentration z E {O, x}. For the CL z 0 

and 

and for the DL 

If the MDC for the hth assay is based on backfitting c(a, z, Yh , X h ) to the concen­

tration axis, then the batch-wide MDC should be based on backfitting c(a, z, Y, X), 
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the a level critical value for the annexed batch of assays, to the concentration axis. 

Recall that (Y,X) is taken to mean {(Yl,X1), ... , (Yk,Xk)) in dicussions of batches 

of assays. 

Under a frequentist framework, calculation of c(a, z, Y, X) is impossible without 

knowledge of f3 and O. Since y has a mixture distribution, possibly having more than 

one mode, accurate approximations of prediction intervals and error probabilities 

will even be difficult to find. 

The following measure of frequentist batch-wide MDC may be used instead of 

the above. Define as the MDC the value of x for which 

where ah solves 

Under this definition, the MDC is interpreted as the value of x at which 1- a is the 

average probability level of the prediction intervals defined by (7.4) for the assays 

in the batch. 

The above system of equations consists of k + 1 equations and the (k 1) un­

Imowns, (x and {al' ... 1 ak}). Hence, a unique value for the MDC can be obtained. 

Allowing the probability levels of (7.4) to vary over the individual assays, allows 

the constraint m(x,lh) = c( ah, z, Yh , X h ) Vh to be satisfied. Note that, if this con­

straint were not enforced, the measure of MDC being considered here would not 

have a unique value. 

For the CL, the approximate batch-wide MDC is the value of x for which 

where ah solves 

7.4.3.2 Bayesian measures 

In a Bayesian framework batch-wide measures of the MDC can be computed directly 

from the definition. For example, the batch-wide response level MDC is the smallest 
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concentration x for which 

I-a pr(y < m(O,13) I x, Y, X) 
k 

L Phpr(y < m(O, 13h) I x, Yh, Xh)' 
h=l 

Recall that pr(y < m(O,13h) I x, Yh, X h) is the probability that determines the re­

sponse level MDC on the hth assay. 

For the batch-wide probability MDC let Yc denote the set of values of y for 

which 

k 

7r(TJ> ° I y, Y, X) L Phpr(TJ > 0 I y, Yh, X h) 
h=l 

> 1- a. 

Then x pr is the smallest value of x for which 

1 I pr(y E Yc I x, Y, X). 

The batch-wide discriminant MDC is defined similarly. 

Unlike the frequentist framework, it is generally the case that the Bayesian defi­

nitions can be evaluated. The computational requirements for Bayesian batch-wide 

measures of MDC are not much greater than for the evaluation of the MDC for a 

single assay. 

7.4.4 Measures of batch-wide precision 

7.4.4.1 Frequentist measures 

Frequentist measures of precision are based on the standard error of w(y, Y, X), the 

estimated concentration for the response y. Let E[w I x, Xh ] and var[w I x, Xh ] 

denote the respective expectation and variance (standard error) of w conditional on 

y being measured by the hth assay. Then for a batch of assays 

var[w I x,X] E[var[w I x, X h ]] + var[E[w I x, X h ]]] 

k 

L Ph [var(w I x, X h) + (E[w I x, X h] E[w I x, Xh])2] , 
h;o::l 

where E[w I x, X h ] = ~ I:~=1 E[w I x, X h ]. Estimates of E[w I x, X h] and var[w I 
x, X h ] can be obtained using the analytical method on each assay or otherwise. 
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These are substituted into the above expression to yield an approximate expression 

for var[w I X, X]. The approximate precision at concentration X for the batch of 

assays is then evaluated. If the estimates of ware unbiased, or are assumed as such, 

then the variance of w reduces to the mean of the variances for the individual assays. 

7.4.4.2 Bayesian measures 

PDAM precision is used to illustrate the calculation in the Bayesian sense. In this 

case, the precision at concentration x for a batch of assays is based on the PDAM at 

concentration x when (7.3) is the distribution function of y. PDAM(x) is determined 

from the predictive distribution of the response y at concentration x, which is given 

by 

p(y I x, Y,X) 
k 

L Ph { ( f(y I X, Ph, Oh)1f(Ph, Oh I Yh, X h) dph dOh 
h=1 In(Oh) in(f3h) 

k 

L PhP{y I x, Yh1 X h) 
h=1 

It follows that PDAM(x) is a weighted average of the PDAM at concentration x for 

each individual assay. If 1f{w I x, Yh, X h) denotes the PDAM for the hth assay then 

k 

PDAM(x) = 1f(w I x, Y, X) = L Ph1f (W I x, Yh, Xh)' 
h=1 

In fact, whenever precision is based on a moment of 1f(w I x, Y, X) about x, batch­

wide precision is the weighted average precision of the individual assays. 

7.4.4.3 An important point 

A feature of this Bayesian measure of batch-wide precision is that it is the average 

precision of the assays. On the other hand, the value of a frequentist measure of 

batch wide precision is greater than the (weighted) average precision of the assays. 

The second term in the frequentist expression for batch-wide precision accounts for 

the variation between assays. In a frequentist measure of precision for a single assay, 

this term is not present; hence, the magnitude of the average precision is smaller. 

This is a further illustration of the fact that variance based frequentist measures of 

precision do not account fully for the error in the estimated concentration. A better 

criterion is mean squared error. 





Chapter 8 

Summary 

The main observations and findings of the thesis are summarized in this chapter. 

Some general comments concerning the application of the methods that have been 

developed to other statistical analyses and some thoughts on future research are 

included. 

8.1 Frequentist variance function estimation 

8.1.1 ExMML and ExREML 

In this thesis two new procedures (ExMML and ExREML) for the estimation of 

a variance function in an assay arose by observing that Raab's MML (modified 

maximum likelihood) procedure and the REML (restricted maximum likelihood) 

procedure could be improved. The ExMML and ExREML procedures incorporate 

the best aspects of the MML and REML procedures; i.e. by pooling information 

from both standard and unknown samples as in MML, and by using the fitted 

regression function to estimate the mean responses for the standards as in REML. 

The methods were compared using simulated data for two variance functions and 

a range of parameters values. The mean squared errors of the estimated parameters 

were smaller for the extended estimators (ExMML and ExREML) than for either 

MML or REML. The average scaled L2 distance between the actual variance function 

and the fitted variance function was also smaller for the extended estimators. These 

numerical results reinforce the notion that the extended estimators perform better 
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because they extract more information from the data. 

For general use, the extended estimators are superior to both MML and REML. 

It should be noted that in practice it is usually the case that there are many more 

standards than unknowns. vVhen the response measurements are replicated the 

extended estimators and the :\'1ML estimate will be virtually indistinguishable. This 

validates the use of MML in this circumstance. However, if the responses for the 

unknowns are only measured in singleton then REML will perform better than MML 

and the extended estimators reduce to the REML estimate. 

Since the extended estimators have simultaneous access to all of the information 

in the data, they can also be expected to perform better (if only slightly) than any 

weighted average of the MML estimate and the REML estimate (see Section 3.4.1). 

8.1.2 Practicalapplication 

Among the class of likelihood based estimators of the variance function parameters, 

the ExMML and ExREML procedures may not be able to be surpassed. Further­

more, they should appeal to both frequentist and Bayesian statisticians. 

The extended estimators should appeal to frequentist statisticians because of 

their properties concerning consistency. Standard frequentist procedures for esti­

mating a variance function in a regression of the mean response do not take account 

of the estimation of the mean responses. These procedures must be adjusted if they 

are to produce estimates of the variance function parameters that will be consistent 

in even simple models (Raab (1981)). This is true in all such problems where the 

dimension of the parameter space for the mean responses is proportional to the num­

ber of observations. The extended procedures should be used instead of standard 

frequentist estimates if consistency is desired. 

On the Bayesian side, the ExREML procedure is equivalent to an analytical 

approximation of a non-informative Bayesian analysis. This provides a platform 

upon which results can be interpreted. 

Although minor improvements to the quality of variance function estimates may 

not lead to much better point estimates of the mean function parameters, such 

improvements can significantly affect interval estimates and other inferences that 

depend on the error of estimation. In Davidian (1989) it was shown that the accuracy 

and reliability of frequentist measures of the MDC are very dependent on the error 
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in the fitted variance function. If the variance function is itself of interest, then 

it should be estimated as accurately as possible. In such circumstances the use of 

either the ExMML or ExREML estimator is clearly warranted. 

The ExMML and ExREML procedures can be applied to a broader class of 

variance functions from those typically used in immunoassay. Since the form of the 

adjusted likelihood remains the same, these procedures are in fact applicable to any 

analysis where a variance function is estimated and a proportion of the observations 

have missing values for some independent variables. This includes analyses where 

the variance function depends directly on explanatory variables as well as through 

the mean function. 

8.1.3 Further work 

The development of exact procedures (Le. those void of approximations) with de­

sirable properties such as consistency, for the estimation of a variance function is 

a largely untouched area. Within the frequentist framework, it is unclear how to 

proceed. Substituting the full likelihood function with the conditional likelihood 

function for the variance function parameters given the estimates of the mean re­

sponses is a natural way of accounting for the estimation of the mean responses. 

However, since the conditional likelihood function can only be calculated explicitly 

in a few simple cases, the method cannot be applied generally. 

These difficulties are overcome by the Bayesian paradigm. The procedure is to 

apply a full Bayesian analysis to the data and then to use numerical simulation 

or otherwise to evaluate the estimate to the required level of accuracy. Although 

this approach is more time consuming than solving a few estimating equations, 

the procedure is always clear and well defined. The availability of the necessary 

computational resource is the only concern, but this is generally an issue in high 

dimensional problems only. 

A preliminary study of the frequentist properties of Bayesian estimates of the 

variance function indicated that in the case of the power variance function and 

the non-informative prior 1f({3, (), jP) ex: I/O}, the posterior mean of (}2 appeared to 

perform better than the ExREML estimator. In one instance a reduction of 9% in 

the squared error of 82 was noticed. These results, however, are still very much at 

the preliminary stage. Conclusive results for this and other variance functions have 
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yet to be determined. 

8.2 Bayesian analysis of an assay 

A Bayesian analysis of an assay is a challenging endeavour which offers many re­

wards. The most outstanding reward is that it provides a formal procedure for the 

solution of all inference problems. Unlike frequentist methods, any inference prob­

lem can be reduced to one of computation. With the recent evolution in Bayesian 

computation, the numerical evaluation of problems once considered intractable can 

now be solved in reasonable periods of time. 

A second advantage is that a Bayesian analysis of an assay provides a formula 

for exact computation of the model fit and related inferences. In Chapter 4 the 

formulae are given for various posterior and predictive distributions pertinent to 

the analysis of an assay. From these distributions any inference of interest can be 

evaluated. i\s alluded to in Section 8.1.3, the Bayesian approach is perhaps the only 

means of calculating exact inferences about a variance function. 

A final advantage is that Bayesian analysis enables prior knowledge of unknown 

parameters to be incorporated into the model. Practitioners tend to carry out 

many assays per week and so are likely to have expert knowledge of entities such as 

the distribution of the concentrations of the substance being tested throughout the 

population of eligible subjects and the behaviour of the mean and variance functions. 

This knowledge has the potential to improve the analysis. 

A generic model for a Bayesian analysis of an assay has been described and 

procedures for the calculation of inferences of interest have been suggested. 

8.2.1 N:umerical implementation 

Numerical evaluation of a Bayesian analysis of an assay has proven to be surprisingly 

feasible. Several techniques have been proposed for making the M-H (Metropolis­

Hastings) algorithm an efficient means of fitting the model in an assay. These include 

the use of structural re-parameterizations, based on the Fisher information matrix or 

otherwise, to lessen the a posteriori dependence between the parameters and using 

separate kernels for groups of parameters that are independent or nearly so. 
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Transformations based on the Fisher information matrix have the potential to 

uncouple complex interactions between parameters in addition to statistical depen­

dence making them very powerful tools. The use of different kernels for distinct 

groups of parameters increased the probability of a change in the state of the chain 

in each step causing the chain to explore the posterior more rapidly. 

One of the main observations noted from the trials and tribulations with the 

implementation of the M-H algorithm was the harmful effect of dependence between 

the parameters. If statistical dependence between parameters was not reflected 

in the candidate generating density, then the algorithm tended to perform very 

badly as the chain took a long time to move about the posterior density. This 

necessitated the use of multivariate probing distributions for all groups of parameters 

between which there was significant statistical dependence. The inverse hessian 

based approximation of the posterior covariance matrix for a group of parameters 

proved to be an adequate approximation of their posterior covariance. 

Another factor that contributed to the success of the M-H algorithm on real 

and simulated NMCH data was that after transformation, the posterior distribution 

of the parameters was reasonably symmetric and had virtually no mass close to 

boundaries of the parameter space. This meant that the multivariate t distribution 

was a good approximation of the posterior distribution being sampled from. 

8.2.2 Further'Vork 

There is much work to be done on the use of Bayesian methods in the analysis of 

an assay. For example, suitable non-informative and informative priors need to be 

developed for the variety of situations encountered in practice. 

Some comparisons between existing methods and the Bayesian methods devel­

oped in this thesis for analyzing an assay were made herein. As mentioned earlier a 

comprehensive investigation of Bayesian estimates of the variance function is war­

ranted. 

8.3 Minimum detectable concentration 

Although it has elusive definitions depending on the perspective, the MDC (mini­

mum detectable concentration) is an important diagnostic of an assay's performance. 
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Many measures of the MDC of an assay have been presented in this thesis. Anoma­

lies with the interpretation of some incumbent measures have been resolved and 

several new measures have been developed. 

8.3.1 Bayesian measures of MDC 

The notion of Bayesian inference facilitates development of measures of MDC that 

emulate decision making criteria used in practice. This is possible because the 

value of quantities that would be calculated in practice can be predicted using 

Bayesian analysis. The procedure is just to express such quantities as a function of 

an independent response y and then at the last step average these quantities with 

respect to the predictive distribution of y. Only under the Bayesian paradigm is a 

calculation of this form possible .. 

There is also a strong connection to quantities that would be evaluated if the 

assay model were known. Any quantity that would be evaluated if the assay model 

were known has a counterpart that can be evaluated when the model is unknown. 

The procedure is to average the quantity with respect to the joint posterior distri­

bution of all the unknown parameters in the evaluation of the MDC. 

Under the frequentist paradigm, the lack of a formal procedure for the solution 

of all problems of inference inhibits the calculation of the MDC under either of the 

above principles. The problem is two-fold. Firstly, a procedure with the required 

probability level must be determined. Secondly, the procedure must not involve 

approximations if it is to accurately reflect the quality of the assay. The impos­

sibility of finding a pivotal quantity based on a minimal sufficient statistic for the 

model parameters renders both impossible. Frequentist measures of MDC must be 

estimated by approximate confidence procedures. The direct correspondence to and 

meaning of the measure of MDC is jeopardized by the use of these approximations. 

The MDC of an assay is an example of a difficult problem for which the Bayesian 

approach is a very good computational tool. 

The Bayesian paradigm also enables uncertainty in the response to be transferred 

to uncertainty in the concentration. This enables measures of the MDC to be ex­

pressed in terms of the distribution of an unknown concentration. It is conjectured 

that it is in these terms that practitioners naturally think of the MDC. 
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8.3.2 Numerical results 

When the value of the variance function parameter is the only difference between 

two assays, the performance of a measure of MDC is evaluated by the probability 

that the MDC will identify the better assay. The best performing measures of MDC 

were those for which detection is based on discrimination from a sample with zero 

concentration, namely the detection limit and the discriminant MDC. 

The numerical simulations in Section 5.4.1.4 indicated that the RQ (relative 

quality) values for the detection limit and other frequentist measures of MDC were 

misleading when the amount of data changed in some way. When the number of 

unknowns or the number of replicates changed, the frequentist measures of MDC 

were on the whole less sensitive than the Bayesian measures. However, when the 

number of standards changed, they were more sensitive than Bayesian measures'. 

Since the Bayesian measures are based on exact calculation, it is reasonable to 

assume that these behave the way a measure of the MDC should. It is therefore 

concluded that in these situations the frequentist measures of MDC provide incorrect 

assessments of the relative quality of rival assays. 

The behaviour of the Bayesian measures of MDC indicated that the number of 

unknown samples and the number of replicates have a significant influence on the 

value of the MDC. A substantial increase in the number of unknowns or an increase 

in the degree of replication leads to a more precise fit of the variance function. This 

in turn reduces the MDC. Due to the dependence of the variance function on the 

mean function, the sample variances contain information about the mean function 

in addition to the variance function. \Vhile adding to the disparity in the quality 

between assays that differ in the number of unknowns or the degree of replication, 

this lessens the influence of the standards on the quality of an assay. 

8.3.3 Generalization 

Although the MDC uses zero or null concentration as a benchmark, this can be 

generalized to any concentration. The resultant diagnostic would reflect the ability 

of an assay to detect concentrations significantly greater than the benchmark con­

centration. Further generalization would lead to quantities that assess an assay's 

ability to detect concentrations significantly less than or different from a benchmark. 
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(See Sadler, Murray and Turner (1992) for discussion of the relationship of this type 

of measure and the precision profile.) In this way the measures of MDC developed 

in this thesis can be applied to any assay, not just those where the objective is the 

detection of a substance. 

8.4 Precision profiles 

The precision profile is another tool for measuring and displaying the quality of an 

assay. It may be reported in conjunction with measures of MDC to give an overview 

of an assay's quality. 

The calculation of precision in the frequentist sense, like MDC, encounters diffi­

culties because the average over the sample space must be computed. To evaluate 

frequentist measures of precision,approximations are needed. Alternative approxi­

mations, which may offer better accuracy in some situations, have been proposed, 

but these procedures are still inexact. 

Two general measures of precision that use the notion of Bayesian inference 

were developed in Chapter 5. These were called ES (estimator specific) and PDAM 

(predictive distribution(s) of assay measurements) precision. In Section 6.3.5.2 it 

was shown that the mean squared error of the PDAM is equivalent to a natural 

measure of ES precision. This is a key result in the sense that it characterizes the 

two forms of Bayesian precision. 

The advantages these have over frequentist measures parallel the advantages that 

Bayesian measures of MDC have over their frequentist counterparts. Exploratory 

investigations not reported in the thesis have revealed that frequentist precision 

profiles suffer the same deficiences as the frequentist measures of MDC. They are 

overly sensitive to changes in the number of standards but do not reveal the full 

importance of unknowns or the degree of replication. 

The fact that much of the information in the data is not used in the calculation 

of frequentist precision profiles was apparent when they were plotted along side the 

Bayesian precision profile for the NMCH data (Figure 6.1). This was seen from the 

fact that the Bayesian precision profiles offered a more optimistic view of the assay 

than the comparable frequentist precision profiles. 

The PDAM (predictive distribution(s) of assay measurements) is a significant 
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development in itself. These distributions give a complete representation of the 

accuracy and precision of an assay's measurement of an unknown concentration. 

The use of the PDAM is clearly not confined to the development of precision profiles. 

They can be used as the basis for any quality definition involving the measurement 

of an unknown concentration. A PDAM based measure of MDC is one application. 

8.5 Machine assays and quality diagnostics for 

batches of assays 

The embodiment of statistical algorithms in a machine that analyses an assay has the 

potential to significantly simplify the analysis of the assay. Unfortunately existing 

machines do not analyze the data as efficiently as they could, nor do they provide 

the level of output needed to account for the error in the fitted assay model. This 

makes it impossible to reliably assess the quality of the assay. It would be desirable 

for the interface of a machine assay to be amended so that replications of the same 

sample can be grouped for more efficient estimation and full details of the analysis 

can be obtained upon request. 

The situation improves from the point of view of the assessment of an assay's 

quality if a batch of homogeneous assays have been analyzed. The estimates of 

concentration for the same sample on different assays contain the error due to fitting 

the assay model. A new method of calculating the precision profile from these data 

has been described. The precision profile that results is known as a batch-wide 

precision profile since it is based on the data from the whole batch of assays. 

Measures of the batch wide MDC and batch wide precision profiles for frequentist 

and Bayesian analyses of manual assays have been described. The generalization 

of the measures for a single assay to a batch of assays is more easily accomplished 

when the analysis of the assays is Bayesian than when it is frequentist. Unlike 

frequentist measures, mathematical approximations are not needed to develop the 

Bayesian measures. Accordingly, it is envisioned that the Bayesian measures will 

provide a more accurate assessment of the overall quality of a batch of assays. 

When the assays are homogeneous in the sense that each assay can be considered 

a re-sampled version of any other assay, batch-wide measures of MDC and preci­

sion reflect the average performance of the assays in the batch. These measures 



188 Chapter 8. Summary 

are important in their own right because, compared to measures developed on a 

single assay, they provide superior assessments of the quality of the analytical and 

statistical (or in other words, experimental) designs used in the assays. 

8.6 General extensions 

The techniques developed in this thesis have application beyond the analysis of an 

assay. 

8.6.1 The calibration problem 

The extension of methods developed in this thesis to the calibration problem is imme­

diate. Furthermore, if the concentrations of the standards are themselves measured 

with error, the general calibration problem becomes embodied in the model for an 

assay. 

Let the observed or measured value (Xi) of the concentration of the ith standard 

vary about the true value (rli) according to the probability distribution function 

where a is an unknown vector of parameters. It is likely that errors in the measure­

ment of the standard concentrations would be independent of the response counts. 

The likelihood function then becomes 

f(Y I ry,j3,O)f(X I ryS,a). 

It would be expected that X will be tightly distributed about ryS, otherwise there 

would be little point in having standards. The model used for the estimation of 

relative potency in a radioimmunoassay with sequential dilution errors by Racine­

Po on et al. (1991) is of this form. In this case the observed concentrations are 

perturbations of the actual concentrations of the standards due to errors incurred 

when performing the dilutions. 

A further extension is the case where the response and concentration measure­

ments were correlated. In this situation, the likelihood function for the ith standards 

would be a multivariate distribution function of (li, Xi). 
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In all of these instances a prior distribution for any additional unknown param­

eters only needs to be specified and all of the methods developed in this thesis can 

be applied. 

8.6.2 Ranking and selection 

The type of inference at the basis of the response level MDC is not typically seen in 

Bayesian analysis. The population of subjects with zero concentration and the pop­

ulation of subjects with some positive concentration are being compared in terms of 

the probability that the predicted response for a subject with positive concentration 

exceeds the mean response for the subjects with zero concentration. 

A general setting for this type of problem is that of determining which of k lots 

is best. Let D denote the observed data, 0 denote the vector of means for the lots 

and Z a vector of future measurements made on the lots. The selection strategy is 

often based on the posterior probabilities 

pr(Oi > OJ I D) for i =1= j 

or the predictive probabilities 

pr(Zi > Zj I D) for i =1= j. 

If the comparison made in the response level MDC is incorporated in this problem 

the predictive probabilities 

pr(Zi > OJ I D) for i =1= j (8.1) 

form the basis of the selection strategy. 

It is difficult to conceive of a scenario where one would be interested in using 

using (8.1) for ranking or selection. However, the idea behind the response level 

MDC may be able to be applied in a more general way to the field of ranking and 

selection. 

8.6.3 Bayesian interim analysis 

The calculation of :1r and Xds resembles the calculations of Seymour Geisser in 

the field of Bayesian interim analysis (see Geisser (1992) and Geisser (1993)). The 

connection is now explored. 
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Suppose that the interim point of an assay occurs after the data (Y, X) has been 

observed and there is just one more unknown sample to analyze. Let y denote 

the response for this sample and w the unknown concentration. At the end of 

the assay, inference about w will be based upon lI(W I y, Y, X). Suppose that one 

is interested in whether or not there will be sufficient evidence at the completion 

of the assay to conclude that w > 0 when in fact the actual concentration is x. 

Let 1 - a be the critical value that pr(w > 0 I y, Y, X) must exceed in order to 

reach the conclusion that w > O. Then the predictive probability of the event 

I(y) = (pr(w > 0 I y, Y, X) > 1 - a) for y rv j(y I x, {3, 0) is of interest. This is 

E[I(y) I x, Y, X] r I(y)p(y I x, Y,X)dy, 
In(y) 

where p(y I x, Y, X) is the predictive distribution of y at concentration x given 

(Y, X). This is the interim analysis for the detection of positive concentration for a 

sample having concentration x. In the above, Geisser's procedure has been extended 

to a regression framework by conditioning the future response on the independent 

variable x. Geisser's procedure is also extended in the sense that there are many 

nuisance parameters and the parameter of interest w is aligned only with a future 

observation and not a parameter such as {3 or 0 that is associated with all of the 

observations. 

The only difference between the above calculation and that of xpr is in the 

calculation of pr( w > 0 I y, Y, X). In the interim analysis setting 

pr(w > 0 I y, Y, X) = r r pr(w > 0 I y, {3, 0)1I({3, 0 I y, Y, X)d{3dO, 
In({J) I n ((}) 

where 11 ({3 , 0 I y, Y, X) 1000 11({3, 0, w I y, Y, X) dw, while for the calculation of xpr
, 

1I({3,0 I y, Y, X) is replaced with 1I({3,0 I Y, X). As alluded to in Section 5.3.2.3 

this is necessary to ensure that xpr reflects the current quality of the assay, not the 

predicted quality of the assay one observation into the future. 

In an analogous way xds and ES precision can also be formulated as a Bayesian 

interim analysis problem. A further extension is to characterize PDAM(x) and hence 

PDAM precision using Bayesian interim analysis. 

Note that, the derivations in Chapters 5 and 6 had been developed by the author 

before he became aware of Geisser's work. 
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8.7 Final remarks 

The results of assays are used to make important decisions in many fields. Hence, it 

is desirable that the analysis be as accurate and precise as possible. To accomplish 

the correspondent statistical analysis many interesting and challenging problems are 

suggested. 

In this thesis it has been shown that procedures based on the notion of Bayesian 

inference allow precise evaluation of the statistical analyses of an assay. It has also 

been shown that frequentist procedures do not take account of all of the information 

in the data; hence, these have the potential to be inaccurate. It is perhaps unfortu­

nate that these inadequate frequentist procedures are the methods currently being 

used to analyze assays. When important decisions are made from the results of 

an assay, even small improvements to the quality of information being provided are 

invaluable. Thus, Bayesian methods should be seriously considered by practitioners. 

It is the case that evaluation of Bayesian inferences requires intensive CPU sim­

ulations. In the past this was a seemingly insurmountable obstacle in the way of 

Bayesian analysis. With recent advances in Bayesian computation and the ever 

increasing power of modern computers, computational issues are no longer a valid 

reason for overlooking Bayesian methods. However, it still remains to be seen if 

practitioners will implement the Bayesian methods developed in this thesis. 
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Chapter A 

The immunoassay experiment 

The content of the first two sections of this appendix is largely based on Davies 

(1994). 

Immunoassays are exquisite analytical tests that utilize antibodies. They are 

used for qualitative and quantitative analysis of substances in blood fluids. The 

experiment is based on the assaying (counting) of molecules. 

The fundamental property of an immunoassay is an unparalleled specificity of 

the antibody for the substance to which they bind and the strength of the binding 

once formed. The unparalleled specificity of the antibody is necessary in order 

for minute concentrations of analyte to be assayed in the presense of many closely 

related substances such as in blood samples. The strength of the binding enables 

accurate and precise quantification of concentrations. 

A.I Components of an immunoassay 

The three major components of an immunoassay are: 

• the antigen 

ell the antibody 

., the labeling agent 

In an immunoassay experiment the substance being analyzed is the antigen. 

An antigen is a molecule that can bind to an antibody. The antibody used in an 

203 
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immunoassay needs to have a single binding site that recognizes and binds to the 

antigen. 

The labeling agent is either a labeled version of the antigen or the antibody. The 

number of bound or free (unbound) molecules of the labeling agent are counted at 

the completion of the reaction. These counts are referred to as the activity bound 

and the activity free respectively. 

A.2 Immunoassay mechanics 

The reaction between the antigen and antibody is an equilibrium reaction. The 

bonds that form are non-covalent and there is a balance between the molecules in 

the reaction complex (Le. bound) and those which are not. As the concentration of 

the reagents alter so do the rates of the forward and backward reactions and hence 

the equilibrium constant. the concentration of one reagent increases then the 

rate of the reaction in the reverse direction increases and the equilibrium constant 

adjusts accordingly. 

There are two major types of immunoassays. The important features of each are 

reviewed. 

A.2.1 Competitive assays 

In a competitive assay the labeling agent is a labeled version of the antigen. For 

example, in a radioimmunoassay a radioactive isotope is covalently attached to the 

antigen. The concentrations of the antibody and the labeled antigen are small 

relative to the expected concentration of the antigen. Consequently, this type of 

assay is sometimes referred to as a reagent limited assay. Despite an excess of 

antibody binding sites, the equilibrium nature of the reaction ensures that there 

will always be some molecules of antigen that are bound and some that are free. 

Assuming that all molecules of the antigen, labeled and unlabeled, have an equal 

chance of binding, the relative proportions of molecules bound and free will be the 

same for the labeled and unlabeled versions of the antigen. As the concentration 

of the unlabeled antigen increases the equilibrium constant moves in favour of the 

reverse reaction. So, although the total number of bound antigen will increase the 

overall proportion of bound antigen decreases. Therefore, the expected number of 
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molecules of bound antigen that are labeled decreases as the concentration of un­

labeled antigen increases. Since the rate of decrease is also a decreasing function 

of the concentration of unlabeled antigen, the dominating shape of the relationship 

between the activity bound and the concentration of unlabeled antigen is a hyper­

bola. The activity bound tends towards an asymptote on a small positive count at 

very large concentrations of antigen. 

A.2.2 Immunometric assays 

Immunometric assays use an antibody as the labeling agent. The most common 

design of this assay is the two-site immunometric assay, also called a sandwich 

assay. 

Sandwich assays are appropriate when the antigen has two well separated binding 

sites. Two antibodies are used as reagents. One antibody captures the antigen, the 

other detects or quantifies it. Only the detecting antibody need be labeled. Excessive 

doses of both antibodies are added to the antigen. A sandwich assay is therefore a 

reagent excess assay. The experimental procedure is as follows: 

1. The antigen is incubated with the capture antibody, which is usually attached 

to some solid phase (for example, a magnetic particle). Bonds form between 

the antibody and one of the available binding sites on the antigen. 

2. The solid is washed to remove unreacted components. 

3. The solid is incubated with the (labeled) detection antibody. Bonds form 

between the detection antibody and the solid complex from the first reaction. 

4. The solid is washed to remove unreacted components. 

5. The molecules of antigen bound to the detection antibody in the solid phase 

are counted. 

Often steps 1 and 3 are performed simultaneously and the solid is only washed at 

the completion of the reaction. 

In this assay, the activity bound increases as the concentration of the antigen 

increases. However, as the concentration of the antigen continues to increase, the 

increments become smaller because the equilibrium constant moves more in favour 
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of the reverse reaction. The relationship between the activity bound and the concen­

tration of antigen is again hyperbolic. Note that, if the two reactions between the 

antibody and the antigen did not settle at equilibrium but rather went to comple­

tion, the relationship between the activity bound and the concentration of antigen 

would be a straight line. 

A.2.3 Some additional terminology 

The following are standard terms used in immunoassay: 

• Non-specific binding (NSB). The activity bound for the assay when the 

concentration of antigen is zero. This estimates the residual free antigen in 

the activity bound after the free antigen has been separated. This needs to be 

subtracted from the raw counts. 

• Mean total activity (MnTotal). The sum of the activity bound and the 

activity free in the presense of only labeled reagent (antigen or antibody de­

pending on assay type). This measures the total activity of the assay. 

• Percentage bound. The standardized form of the raw counts given by 

O1B d _ Activity bound - NSB 100 
/0 oun - T I x. 

Mn ota 
(A.l) 

In radioimmunoassays it is standard practice for the raw counts to be trans­

formed into their percentage bounds prior to model fitting. 

A.3 Assay design 

Thus far, attention has been directed at the qualitative and quantitative aspects 

of the assay reaction. We now look at the process of using the output from this 

reaction to estimate the concentration of the substance being tested. 

In an immunoassay it is usual for a batch of samples to be calibrated in the 

one experiment. These samples are referred to as unknowns. The procedure is as 

follows: 

1. Obtain the raw count for each unknown. 
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2. Estimate the mean function and make point estimates and other inferences 

about the unknown concentrations. 

It is important to estimate the mean function as accurately as possible. The 

closer the fitted mean function is to the actual relationship between the mean counts 

and the ,underlying concentration of the unknowns, the better the estimates of the 

unknown concentrations will be. The counts for the unknowns contain almost no 

information about the mean function. This is because there is no way of calibrating 

the measurements. To bolster the pool of information about the mean function, the 

unknowns are usually supplemented with samples containing a known concentration 

of the substance being analyzed. These samples are called standards. To maximize 

the information about the mean function contained in the standards their concen­

trations should be strategically spread over the full range of concentrations that can 

realistically occur. ' 

Another feature of the design of an assay is the degree of replication for each 

sample. Standards are usually measured in duplicate. At the most critical or influ­

ential concentrations (in particular zero concentration) the degree of replication may 

be greater than two. In modern laboratories it is common for just one measurement 

of the response of an unknown sample to be taken. However, replicated response 

measurements have many benefits. In addition to obtaining a better estimate of 

the mean response, replicated responses yield more information about the variance 

function and thus allow it to be fitted with greater accuracy. When measured in 

singleton the counts for the unknowns contain virtually no information about the 

variance function. 

A third type of sample that is often used in an immunoassay is the quality 

control (QC) specimen. These are unknowns which are analyzed in more than one 

assay. The purpose of QC specimen is to provide a checking mechanism for possible 

deterioration in the assay materials. Of primary concern is the degradation of the 

concentration of the standards over time. If the estimated concentrations of the 

QC samples vary too much between assays, it is likely that either the standards or 

the QC specimen have become corrupted. To guard against the first possibility, the 

current assay is repeated with a fresh batch of standards and QC specimen. The QC 

samples also allow a model to befitted to the systematic movement or drift in the 

mean function from assay to assay. A potential means of improving the estimation 
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within each assay is to pool the information in separate assays. If there is a model 

accounting for the drift between assays, the same mean function can be assumed for 

each assay in the batch; hence, information from the assays can be pooled. 
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