
  

A hierarchical systems modelling approach based on 
neural networks for forecasting global waste generation:  

A case study of Chile 
1Samarasinghe, S. and Ordonez, E. 

1Centre for Advanced Computational Solutions, Lincoln University, New Zealand e-mail: 
sandhya@lincoln.ac.nz 

Keywords: Waste Forecasting, Neural Networks 
 

EXTENDED ABSTRACT 
 

In this-first every study for Chile, a neural network 
based hierarchical modelling approach is proposed 
for forecasting domestic waste generation for the 
whole country.  Over 30 global variables from the 
342 communes (municipalities) in the country 
were analysed extensively using statistical tools 
that led to 5 significant explanatory variables: 
population, percentage of urban population, years 
of education, number of libraries and number of 
indigents.  The five explanatory variables were 
used to develop a feedforward neural network for 
predicting volume of global waste generation for a 
particular year (2002 in this case) in Chile and 
assessing the contribution of variables.  The model 
had validation R2 of 0.82.   

 

Effective waste management programmes must be 
implemented at local level.  This requires estimates 
of waste generated by individual communes.  To 
simplify local modelling process, 342 communes 
(municipalities) were clustered into 3 groups 
(Low, Medium and High waste), using self-
organising Feature Map (SOM) based on the 5 
selected explanatory variables.  Next, a search 
method was developed and implemented to 
identify the best  representative commune for each 
group.   Then, data for the explanatory variables 
were sourced for the representative communes for 
a range of years to develop forecast models.  The 
best models for the Low and Medium group 
representatives were multilayer preceptrons and 
for the High group was Jordan recurrent network, 
with validation R2 of 0.81, 0.91 and 0.98, 
respectively.  Each of the three models was further 
validated with leave-few-out cross-validation using 
3 randomly selected subsets of data for each 
model.       

 

The developed local representative models were 
used to forecast total waste generation for the 
whole country.  Specifically, a forecast for each 
representative commune was first obtained for the 
2002 to 2010 period from the above models.  

Then, using the relationship between waste 
generation of the representative commune to that 
of the communes in the group it represents, a waste 
generation for each represented commune was 
obtained.  These were aggregated to get an 
estimate for the groups.  By combining group 
forecasts an estimated forecast for the country was 
obtained.  Forecasts up to 2007 were deemed more 
reliable and on this basis, waste generation in the 
whole country will increase to 500,000 
tonnes/month from 467 000 tonnes per month in 
2002.     
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1. INTRODUCTION 
 

The amount of waste generated in Chile has had a 
dramatic increase over the last decade. In the 
period 1996-2002 the total amount of waste 
generation rose an order of magnitude faster than 
the population growth which is widely considered 
to be an indicator of waste growth.  Predicting 
waste generation has been considered important by 
environmental authorities developing the 
environmental agenda for the country [1].    

2. AIM 
 

The main aim of the research described in this 
paper is to develop an efficient method to forecast 
amount of waste generation in a country from the 
variables affecting waste generation, with Chile as 
a case study.  The aim is to be achieved by 
designing a hierarchical communal analysis tool 
based on neural networks and statistical methods 
to study waste generating factors and to forecast 
waste generation levels. 

3. BACKGROUND 
 

Past researchers have studied the influence of a 
variety of variables, but population and income are 
the most widely studied, although with 
inconclusive results as to the relevance to waste 
generation. Among some of the variables 
considered are: household size, residency type, age 
groups, employment, electricity consumption, 
tipping fees, CPI, GDP, education, culture, 
geography and climate. 

Population has been considered to be one of the 
most important variables affecting waste 
generation [2,3]. However, it has also been found 
to be of little statistical significance predicting 
average waste generation rate [4]. Income has also 
been found to be one of the most influential factors 
affecting waste generation [4,5,6]. Nevertheless, 
others have observed no influence of income on 
waste [7].  

In developing relationships between variables and 
waste generation, most of the researchers have 
used regression analysis and time-series models 
for predicting waste generation. In 1974, 
Grossman et al.’s regression model neither 
explained nor forecasted waste generation, 
concluding that waste production occurred 
independently of the analysed variables and that 
these were not significant for the assessed 
community [8]. Ali Khan and Burney (1989)  
mixed different cities around the world to generate 
a single explanatory model; however, this 

approach cannot be justified due to contrasting 
waste generating conditions in different countries. 
They concluded that income, temperature and 
dwelling occupancy rate affected the percentage of 
waste components [5].  Buenrostro et al. [6] 
worked with monthly income and number of  
dwellers per household, but the study concluded 
that these variables were of limited value in 
explaining solid waste generation. Bagby et al. [9] 
developed models as part of Seattle’s Solid Waste 
Plan. They found little growth in waste generation 
over the forecasted period due to Seattle’s 
characteristics such as a continuing decline in the 
average household size and trends in the housing 
markets [9].  

Some researchers have worked with Time-Series 
with better results. In 1986, Bridgwater made 
projections for up to fifty years, concluding that S-
curves give the best results [10].  In 1993, Chang 
et al. used geometric lag time-series analysis for 
the period 1981-1990 and found a negative 
relationship between average waste generation per 
capita per day and total population, a relationship 
affected by a period of population mobilisation [4].  
Chang and Lin (1997) applied an ARIMA (Auto 
Regressive Integrated Moving Average) model to 
time-series data for 12 districts of Taipei City, 
Taiwan, from 1990 to 1995, with predictions 
solely based on previous trends in waste 
generation [11]. Finally, Navarro-Esbrí et al. [11] 
analysed waste generation using sARIMA 
(seasonal ARIMA) and a non-linear technique and 
concluded that both methods give good results in 
terms of predictive accuracy and cumulative 
errors.  

Koushki and Al-Khaleefi’s [13]research on waste 
prediction in Kuwait related household’s solid 
waste generation to monthly income, family size or 
to the number of persons employed per household. 
They concluded that any one of these three 
variables can forecast waste generation [13]. Chen 
and Chang  [14] developed a grey fuzzy dynamic 
model for the prediction of solid waste generation 
in a city in Taiwan. The model depended on an 
extensive database [14]. 

4.0  METHODS 
 
In this study, a hierarchical neural network 
modeling approach is used for forecasting waste 
generation in a country as presented in Figure 1.  
The approach takes advantage of the fact that 
countries are generally divided into several 
administrative regions.  A brief description of the 
proposed method is as follows: In Chile, there are 
342 such regions called communes.  The volume 
of waste generation in each commune and data for 
a large number (about 30) of potential variables 
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affecting it are collected from national databases.  
The data are  preprocessed using statistical 
methods to select few significant  variables 
affecting amount of total waste generation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed hierarchical neural network 
model 

 

The selected variables are used to develop a 
feedforward neural network (FFN) model to assess 
their relationship to waste and ascertain the 
contribution of each variable to waste generation.   
The selected variables are then used to group the 
total number of communes into three clusters for 
efficient development of forecasting models at 
commune level.  This is achieved by unsupervised 
clustering in SOM.  Then a search method is used 
to select the most  representative commune (Rep) 
from each cluster.  Then, data are collected for 
yearly waste levels and the values for the selected 
variables for each of the 3 representative 
communes for developing forecast models.   
Feedforward and recurrent networks are developed 
to make 10 year extended forecasts of waste 
generation for the representative communes.  An 
extended forecast for other communes in a group is 
obtained through a conversion factor that relates 
the waste levels of the representative commune in 
the cluster to that of the commune for which a 
forecast is sought.  By combining forecasts for 
each cluster, an extended forecast for the country 
is obtained.     

 

4.1  Artificial Neural Networks 

Artificial Neural Networks (ANNs) are simplified 
computational models of the brain [14,15]. 

Capabilities of ANNs include: pattern 
classification, clustering, function approximation, 
forecasting and optimization.  An ANN is formed 
by a large number of processing neurons 
interconnected by weights.   ANNs are classified 
into feed forward and recurrent networks. In a feed 
forward network, neurons are grouped into layers 
and the signals flow from one layer to another in 
the forward direction. Multi Layer Perceptron 
(MLP) and radial basis function (RBF) networks 
are feed forward networks. A typical feed forward 
network consists of an input layer, a hidden neuron 
layer and an output layer of neurons. Input layer 
simply transmits inputs through weighted links to 
hidden neurons where weighted inputs are 
accumulated and processed by a transfer function 
to generate an output to be sent to the output layer. 
A similar process takes place in the neurons in the 
output layer where outputs are generated.  

In a recurrent network the flow is forward and 
backwards. In recurrent nets for time series 
forecasting, outputs of some neurons are fed back 
to the same or other neurons in preceding layers.   
The Elman and the Jordan nets are examples of 
recurrent networks. In Elman networks, hidden 
layer outputs are fed back to the input layer for 
processing in the next time step and in Jordan 
network, output layer output is fed back to the 
input layer. This feedback helps incorporate 
temporal effects into recurrent networks. 

ANNs are modelled via a learning process which 
can be supervised or unsupervised. In supervised 
learning, the network is presented with the inputs 
and target outputs and the network iteratively 
adjusts its weights using efficient learning methods 
such as steepest descent and second order methods.   
The aim is to minimise the error by generating 
outputs as close as possible to the targets. 
Feedforward and recurrent networks are examples 
of supervised networks.  Conversely, unsupervised 
learning uses no external supervision and clusters 
the data presented to the network based on the 
properties of the data in a self-organising manner. 
An example where unsupervised learning is used is 
self organizing map (SOM).  In an SOM 
multidimensional data are projected onto a 2-
dimensional grid of neurons where similar input 
vectors form clusters in the course of learning.  
In this research, the relationship of the selected 
variables to waste generation is developed using an 
MLP, an SOM is used for clustering the 
communes, and waste forecasting models are 
developed using MLP and recurrent networks. The 
software used is NeuroShell 2 by Ward Systems 
Group®, Inc.[16].   The dataset is divided into 
three distinct sets. The training set is used to train 
the network, validation set is used to assess the 
model at various stages of training and the test set 
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is used to test the model predictions on unseen data 
(generalisation). In the evaluation process, the best 
networks are selected based on the highest 
coefficient of multiple determination (R2) and the 
lowest mean squares error (MSE). 

 
4.2 Model development and variable 
contribution 

Global Variables: Based on an extensive  
literature review, possible waste generating factors 
were evaluated and a preliminary set of potential 
global variables selected for data collection from 
the 342 communes.  These variables were grouped 
according to population, economic, education, 
dwelling, geographic and waste related indicators 
as follows: Population indicators: Population, 
Percentage of Urban Population, Population 
Density, Gender, Age Groups and Native 
Population. Economic indicators: Poverty Level 
and Income per Household, Economic Activities, 
Regional GDP, Foreign Investment, Exports, 
Construction Rate, Vehicles, Employment, Labour 
Force and Unemployment. Education indicators: 
Years of Education, Cultural Activities, Number of 
Public Libraries and Illiteracy Rate. Dwelling 
indicators: Number of Houses and Households and 
Number of People per Household. Geographic 
indicators: Geography and Climate, and Waste-
related indicators: Waste Generation 
(tonnes/month), Waste Generation Rate, Per 
Capita Waste Generation and Existence of 
Disposal Sites. 

Data Collection: Data on global variables was 
sourced from a number of locations in Chile such 
as the Central Bank of Chile, the National Institute 
of Statistics, National Commission for the 
Environment, and relevant Ministries. Data was 
available for 2002 only.   
 
Data Pre-Processing: Data was processed 
searching for multicollinearity and 
heteroskedasticity. A correlation analysis showed 
that Waste Generation is highly correlated with 
Urban Population, Gender, Population, Non-Poor 
Population, Number of Houses, Age Group and 
Number of Vehicles. These variables are also 
highly correlated with each other and therefore, 
variables with high correlation with the dependent 
variable and low correlation with the other 
independent variables were selected.   The Breusch 
and Pagan test detected heteroskedasticity in the 
data. However, its effect was reduced using the 
Two-Step Weighted Least Square method. The 
final selected explanatory variables and their 
correlation to waste are:  Population (POP): 0.875, 
Percentage of Urban Population (PUP): 0.502, 
Years of Education (EDU): 0.519, Number of 

Libraries (LIB): 0.522 and Indigent Population 
(IND): 0.503.    
 

 Relationships Establishment: MLP networks 
were used to determine the relationship between 
waste and the selected generating factors as well as 
their contribution to the variable Waste. The aim 
was to analyse how the variables impact waste 
generation across the country. The data were 
normalized so that they had similar ranges.  A 
three layer MLP network modelled the relationship 
between the explanatory variables and waste 
generation with an R2 = 0.819 and a correlation 
coefficient equal to 0.915 based on the validation 
dataset. The architecture of the MLP had five input 
units, twenty hidden units and one output unit, 
both hidden and output units using logistic 
functions. Training was back propagation with 
momentum.  Figure 2 shows actual and the 
network predicted waste generation indicating an 
accurate model.   

The relative contribution of a variable in predicting 
waste generation was obtained by assessing its 
effect on error when its value is held fixed at the 
mean compared to the error from the original 
model.  These contributions were: 0.413 for POP, 
0.169 for LIB, 0.154 for IND, 0.138 for PUP and 
0.125 for EDU. All the variables contribute 
positively to Waste Generation. Results showed a   
remarkable nonlinear influence of POP. The 
influence of other variables were only slightly 
nonlinear [18].  
 
4.3. Clustering of Communes  
 
SOM was used to cluster the 342 communes into 
three clusters based on the 5 influential variables 
selected.  The SOM net clustered the communes 
into groups with 91, 156 and 95 communes.  The 
three groups can be seen in the bi-dimensional plot 
of the 342 communes shown 
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Figure 2: Actual and predicted waste generation 
for the 342 communes of Chile 

 
 
in Figure 3, where weighted population is plotted 
against the weighted sum of the other four 
variables. Weights represent the percentage 
contribution of variables to waste generation as 
found by the MLP network.       

 

 

 

 

 

 

 

 

 

 

Figure 3.  Communes Clustered into Groups 
 

 
Determining Group Representatives: The most 
representative communes are those that are close 
to the largest number of communes in the cluster.  
In this study, the one that embodies the largest 
number of communes within a  radius of 15% 
perturbations to its values for explanatory variables 
was selected using a search process.  The selected 
representative commune of Group 1 covers 44% of 
the communes of the group (40 communes); the 
representative of Group 2 covers 75% (117) and 
the representative from Group 3 covers 76.8% of 
the communes of the group (73 communes).  The 
representatives together cover 67.3% of the total 
number of communes (230 communes) within 
15% perturbation range of their values for 
explanatory variables.    
 
Data Collection: The selected representative 
communes were visited to collect data but all the  
expected data could not be collected due to lack of 
information gathering in the country.  A new  
representative from Cluster 1 and 2 had to be 
selected due to lack of data.  Thus real coverage 
range decreased to 39.6% for Group 1 (36 
communes), 38.5% for Group 2 (60) and 74.7% 
for Group 3 (71). This means decreasing the total 
number of communes covered from 67.3% to 
48.8%, i.e., from 230 to 167 communes.  
 
  

4..4. Forecasting Waste Generation 

 

Forecasting Waste Generation for the 
representatives: Several MLPs and recurrent 
networks were trained to forecast waste generation 
for the three groups, with the aim of forecasting 
amounts (and trends) in waste generation for the 
period up to 2010 from past and current data. In 
modelling terms, this specifically involves 
forecasting next year generation from previous 
year explanatory variables. In a time series, next 
outcome can be highly correlated with the current 
outcome (e.g. WG next year may be correlated to 
WG this year). This is possible because this year’s 
outcome may capture substantially the effects of 
explanatory variables on the next outcome. 
However, time series models can be further 
improved if the explanatory variables are also 
included in order to capture the aspects that are not 
accounted for by this year’s waste alone 
(exogenous variables). 

Unfortunately, the data for all the explanatory 
variables was not available for all the past years 
due to the lack of data collection in Chile. For 
example, Groups 1 and 2 only had POP and LIB 
and Group 3 only and data on POP and PUP. Data 
for EDU and IND could not be obtained for any of 
the communes. 

Time series were analysed using MLP and 
recurrent networks. Networks were trained using 
the explanatory variables for which data was 
available and current per capita waste generation 
(PCWG). These inputs for the current year were 
used to forecast waste for the next year. Many 
networks were tested and the best nets were: 
Group 1 (MLP) with R2 0.81, Group 2 (MLP) with 
R2 0.91, and  Group 3 (Jordan) with R2 0.98.    All 
the models showed a higher forecasting accuracy 
for the period for which actual data.   

 The developed models for each group were 
validated with leave-few-out cross validation due 
to limited data.  For this, original yearly data sets 
were randomly divided into 3 sets with 2 years left 
out from each set.  Separate models were trained 
with each data set and validated with the data for 2 
years left out.   The validation R2 was consistent 
across all models for the three groups.   The 
predictions from the best models were extremely 
accurate for the period for which actual data was 
available.     

For space limitation, results for only Group 3 are 
presented in Figure 4 which shows that the model 
predictions for Group 3 for the period 1992-2002 
for which data was available are extremely 
accurate.  In the figure, bars represent actual 
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observed waste.  The yearly rate of change of WG 
peaks at 6% by 2006-2007.      

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Waste Forecasts up to 2010  for Group 3 
 

The model for the represented commune of Group 
1 (not shown) indicates that its waste generation 
will reach 100 tonnes/month by 2010 from 70 
tonnes/month in year 1998.  The best MLP model 
predictions for Group 2 forecasts that the level of 
waste generation will reach around 240 
tonnes/month by 2010 from 150 tonnes/month in 
1997.    

 

Estimating waste forecasts for communes and 
Groups:    In order to forecast waste generation for 
every one of the communes represented in each 
group, an annual conversion factor (CFi) is created 
based on the representative commune’s waste 
generation forecasts (WGRC) and its level of waste 
generation in the previous year (starting from 
2002). The conversion factor is determined by the 
following equation: 

1,

1,,

−

−−
=

iRC

iRCiRC
i WG

WGWG
CF   [1] 

where i is  year from 2002 to 2010 and RC is  
Representative Commune. 

The estimated level of waste generation for a 
represented commune j in a year i (WGj,i) is 
determined from its waste generation from the 
previous year (starting from 2002) and the CFi for 
the representative commune for the respective year 
I as  
 

)1(*1,, iijij CFWGWG += −   [2] 

The total waste forecasts for the represented 
communes in the three groups are shown in Figure 

5.  In aggregated terms, the three groups of 
represented communes will behave in different 
ways for the projected period.  From the figure it 
can be seen that total waste from Group 1 will 
remain at a similar level up to 2010, total waste 
from Group 2 will increase steadily and total waste 
from Group 3 will peak in 2007 and then drop. 

In detail terms, the 36 represented communes from 
Group 1 will increase their total waste generation 
from 3,400 tones/month to a peak of over 3,800 
tonnes/month by 2010.  The 60 communes from 
Group 2 will increase their total waste generation 
up to over 18,500 tonnes/month by 2010, with an 
average per commune level of around 308 
tonnes/month by 2010. This group will increase its 
waste generation by 16% from 2002 to 2010. For 
the 71 communes in Group 3, the average waste 
generation level per commune will vary from 
around 4,100 to more than 4,600 tonnes/month.  
The represented communes cover only a portion of 
the communes in a group.  Using the ratio of the 
combined waste for the represented communes to 
the total waste in a group, obtained from the years 
for which the whole group waste generation was 
known, an estimate for the total waste in a group  
was found.  By adding these, projected estimates 
for the country was obtained and presented in 
Table 1 which shows forecasts up to 2007 predicts 
a 7.6% increase for the country from 2002.   

 

The forecasts in this study were made with very 
limited data for the individual communes.  With 
more comprehensive data, the approach proposed 
in this paper can be expected to produce much 
more improved waste forecasts.    
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Table 1.  Total forecasted waste (tonnes/month) 
up to year 2007 (* indicates model year is 2002) 

 

5.  CONCLUSIONS 

This research aims to design a communal analysis 
tool to study waste generation factors and forecast 
waste generation in a country.  It shows the 
development of a systematic process where factors 
affecting waste generation are determined to 
forecast waste generation. Three groups of 
communes were classified based on the relevant 
waste related variables. Representative communes, 
one per group, were selected and their results were 
used for estimating future generation for the 
groups they represent. These are used to obtain an 
estimate for the country.  Despite the limited data 
available for the case of Chile, satisfactory results 
were obtained from the models validating the 
proposed approach.        
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