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This paper discusses the optimization of monitoring data for the increased reliability of regional groundwater 
models and the predictions that depend on them.  The significant costs of commissioning and maintaining 
groundwater monitoring networks are such that there is great benefit in being able to assess where data 
gathering has the greatest impact on improving predictive reliability.  This optimization assessment can be 
made on the basis of existing networks or prior to any data acquisition efforts.  Various data acquisition 
strategies, for quite disparate data types, can be compared in terms of their ability to increase the reliability of 
model based predictions; data collection strategies which provide the greatest return for investment can then 
be selected for implementation.  Similarly the relative merits of making measurements at different locations 
and times can be assessed.  Using the Lockyer Valley ground water model (RPS 2010) we demonstrate how 
predictive uncertainty analysis can provide a powerful foundation for optimizing both existing monitoring 
networks and future data acquisition strategies to support model based environmental management. 

Such analyses are efficient yet robust.  The particular characterization of model predictive variance in the 
problem formulation employed (Moore and Doherty, 2005), ensures that the contributions to predictive 
uncertainty by both measurement errors and environmental heterogeneity that cannot be captured by the 
calibration process is accounted for in the analysis.  Efficiency is gained via a linearity assumption in the 
equation used in the analysis, which allows the calculation to be made sufficiently rapidly, so that it can be 
repeated at many alternative existing or proposed monitoring sites and times.  Furthermore, this analysis has 
no cost barriers, as the software for such analyses is in the public domain (Doherty, 2011a and b). These are 
particularly important benefits in the large scale regional model context, where monitoring is typically a 
significant effort and is subject to public scrutiny in terms of both cost and rigour. 
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1. INTRODUCTION 

Regional groundwater models are frequently used as a tool to assist water allocation and/or land-use 
management. Typically they involve painstaking conceptualization and costly monitoring and data 
processing efforts before a model can be used to predict the consequences of a proposed suite of management 
options.  Inevitably these predictive simulations will be made with varying degrees of reliability, or 
uncertainty.  In this paper we demonstrate a methodology which can be used to identify optimal data 
monitoring networks, where “optimal” is defined in terms of increased reliability of the particular prediction 
that underpins a management decision. Because this analysis does not rely on the actual value of a 
measurement, but rather the sensitivity of the prediction to the measurement being made, this monitoring data 
may be an actual measurement or a proposed one.  Similarly, data of different types can be easily compared 
e.g. from pump testing, groundwater water levels, surface water flows, tracer test concentrations etc.   
Furthermore the analysis can be undertaken both prior to a model meeting calibration constraints (e.g. 
calibration), or refined after calibration.   

The methodology is based on assessing ‘data worth’ using a predictive error variance analysis theory 
presented in Moore and Doherty (2005), and a Bayesian extension of this work presented in Christensen and 
Doherty (2008). This approach for assessing data worth  was applied to a synthetic numerical groundwater 
model in Moore (2005), where the worth of spatially distributed head and hydraulic conductivity 
measurements were compared, in terms of improvements in reliability of a contaminant transport prediction. 
The method has since been applied to a number of other synthetic problems, including Dausman et al. (2010) 
who compared the relative worth of salinity and temperature observations for predictions of the location of a 
salt water–fresh water interface, Turnadge (2010) who compared the worth of isotope and head 
measurements for contaminant transport predictions, and Fienen et al. (2010), who explored worth of head 
measurements for drawdown and flux predictions.  

In this paper we demonstrate how the analysis can be extended to the context of optimizing a regional  
groundwater level monitoring network.  The network selected for this demonstration comprises the dataset 
used in the Lockyer Valley model calibration (note that this network has since been extended beyond that 
available at the time of calibration).  The model is being used to assess the potential use of Purified Recycled 
Water (PRW) to supplement water supplies within the Lockyer Valley in South East Queensland.  The target 
for the monitoring network optimization is to improve the reliability of pertinent predictions made by this 
model.  While a range of PRW demand predictions are being considered, this paper restricts discussion to the 
predicted PRW demand required to maintain a target groundwater level surface, where this target surface is 
known to sustain creek flows, and well supply reliability.   

2. DATA OPTIMISATION USING PREDICTIVE UNCERTAINTY ANALYSIS 

Data worth can be assessed in terms of the calculated reduction in model predictive uncertainty that would be 
accrued through inclusion of extra information furnished by a measurement.  Measurements may be system 
state measurements such as water levels or stream flows, hydraulic property tests, or could relate to model 
inputs that are typically ignored in uncertainty assessments, such as recharge boundary conditions and 
abstraction estimates.   The requirements for optimization of a monitoring data network, using the analysis 
presented herein are: (i) a prediction of a groundwater response and a physically based model used to make 
that prediction, where the model contains sufficient ‘real-world’ hydraulic process detail for which the 
prediction is sensitive; (ii) if calibration constraints are imposed, a description of the probability distribution 
of  the error of measurements used in the calibration dataset is required and must include model structural 
error as evidenced by model-to-measurement misfit; (iii) a description of the probability distribution of both 
fixed model inputs and estimated parameters prior to imposition of calibration constraints (e.g. “a priori” 
distributions); and (iv) calculated sensitivities of the prediction to the measurements, model inputs and model 
parameters. The uncertainty analysis theory, using the data listed above, and underpinning the analysis of 
data worth is now introduced.   

Bayesian analysis describes how measurements of system state are used to constrain the values of parameters 
that can be potentially used by a model, such that only those parameters which allow the model to replicate 
historical measurements are allowed.  As outlined in Dausman et al. (2010), if noise associated with these 
measurements and parameters display Gaussian variability, the formulation of equations that describe the 
constraining effect of these measurements is relatively straightforward, as shown below.   

Let x be a vector of multi-Gaussian random variables with a covariance matrix C(x), where x can be 
partitioned into two subvectors x1 and x2, and C(x) be partitioned on the same x1, x2 basis e.g. (C(x1x1) or 
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C11, C(x1x2) or C12, C(x2x1) or C21, and C(x2x2) or C22) .  If elements of x2 become known, then C’
11, the 

covariance matrix of x1 conditional on knowing x2 is calculated as (from Koch 1987): 

C’
11 = C11-C21C

-1
22C21  (1) 

This formula can be used to characterize the reduction in uncertainty of model parameters (and the 
predictions which depend on them) that is achieved by adding data that contains information pertinent to 
model parameters, as is now shown.    

Suppose that the (m×1) vector p contains the values of parameters used by a model. Let the action of a 
(linear) model on these parameters p be represented by the matrix X.  Unless the parameter values 
encapsulated in the vector p are accurately known at all places within a model domain, they must be 
described in probabilistic terms. Therefore, let the covariance matrix of p be denoted as C(p). Further, let the 
vector h represent observations of system state comprising the model calibration set and allow for these 
observations to be contaminated by measurement noise ε, such that: 

h = Xp+ε  (2) 

Let s (a scalar) designate a prediction made by the model; let the sensitivities of this prediction to model 
parameters be represented by the vector y. Then s is calculable using the relationship:- 

s = ytp (3) 

The estimated parameter vector p can be determined as follows:-  

p = (XtQX)-1XtQh (4) 

where p is the vector of estimated parameters and observations weights are encapsulated in the matrix Q. The 
potential wrongness of estimated parameters p compared to those representing the true parameter field p, can 
be described as: - 

p-p = Ip – (XtQX)-1XtQh (5) 

Then the covariance of parameter error, C(p – p) is easily calculated from (4) (as in Menke, 1984) as:- 

C(p – p) = (I – R)C(p)(I – R)t + GC(ε)Gt (6) 

where R is (XtQX)-1XtQX and G is (XtQX)-1XtQ 

And substituting for (3) in (6) we can calculate the covariance of predictive error as: -  

σ2
s-s = yt(I – R)C(p)(I – R)ty + ytGC(ε)Gty (7) 

The formulation of this equation is described in detail in Moore and Doherty (2005), and in Doherty (2011b). 
In Christensen and Doherty (2008) a Bayesian formulation of equation (7) is presented, which calculates 
predictive uncertainty rather than error variance.  The Bayesian approach abandons the notion of a calibrated 
model, and instead a suite of model outputs are used to describe the possible predictions, and is encapsulated 
as: - 

σ2
s = ytC(p)y - ytC(p)Xt[XC(p)Xt + C(ε)]-1 XC(p)y (8) 

This formulation has been implemented via the PEST utility software PREDUNC (Doherty 2011) and used, 
in this form, in this work.   An important characteristic of equations (7) and (8) is that they do not contain 
parameter values, or measurements or model output values.  Instead only the sensitivities of the model 
outputs to parameters under calibration and predictive conditions are considered, as constrained by the matrix 
X and the vector y respectively.  The existing calibration dataset can therefore be augmented by proposed 
new data, by simply adding rows to the X matrix.    The reduction in σ2

s resulting from such additions to the 
X matrix is a measure of the worth of such additions to the calibration dataset; this is the metric for 
observation worth that is employed in this paper.   

Similarly, to assess the contribution of a parameter to the uncertainty of a model output, C(p) can be replaced 
by C*(p), where the parameters can be assumed to have a zero variance if measured, or a reduced variance as 
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calculated using equation (6) or its Bayesian equivalent encapsulated in equation (8).  In this case, the 
reduction in the uncertainty associated with a prediction s as a result of improved knowledge of these 
parameters is calculated as: 

∆σ2
s = yt(C(p)- C*(p)ty (9) 

To apply this analysis to monitoring data network optimizations, a pertinent prediction s becomes the target 
for which data worth is optimized.  Equations (7), (8) and/or (9) are then evaluated on the basis of the 
addition of measurement data to be optimized and/or enhanced parameter knowledge respectively.     

3. CASE STUDY: LOCKYER VALLEY, SOUTH EAST QUEENSLAND 

The Lockyer Valley is located approximately 80 km west of Brisbane and is a heavily used agricultural 
catchment which contributes significantly to the vegetable supply for Brisbane.  Recharge to this alluvial 
groundwater system predominantly occurs from leakage from the surface water ways within the Lockyer 
catchment; however diffuse recharge from rainfall and irrigation drainage also contributes to the water 
balance of this alluvial groundwater system (RPS 2010). Long term drawdowns in groundwater levels, and 
the resulting impacts of reduced surface water flows, and well yields, has motivated an investigation of 
potential supplementary water supplies to the Valley.    

  

Figure1. a) Extent of the Lockyer Valley numerical groundwater model, and b) Simulated water demand 
over time for a selected target groundwater level surface.   

The South East Queensland (SEQ) Water Grid, which operates the third largest recycled water scheme in the 
world represents one potential supplementary water supply (ca. 15-37 GL/a being available for the Lockyer 
system). This supplementary water supply option is currently being explored in detail by government 
agencies and the water grid managers.  

A transient, single layer, regional groundwater flow model (Arunakumaren 2003) has been extended for this 
exploration and has been calibrated to groundwater level data from 1991 to 2010 (refer to RPS 2010 for 
details of this model).  The model domain area is depicted in Figure 1a and comprises 250 columns and 228 
rows with a resolution of 250m. The total water demand that would be required to meet a target ‘high’ 
groundwater level surface within the Valley is assessed over a 20 year period as depicted in Figure 1b; this is 
the predictive simulation selected to demonstrate the data worth optimization methodology in this paper,.  
Alternative predictive simulations are also being explored, and the resulting data worth optimizations 
compared with this analysis presented herein, however for simplicity they are not presented within this paper. 

Table 1 lists the parameter groups considered in the calibration of the model.  Note that the parameter groups 
listed in table 1 include both hydraulic property parameters and also model parameters that are usually 
‘hardwired’ in the construction of the model, e.g. groundwater abstraction rates.  The spatial correlation 
structure of the aquifer hydraulic conductivity and storage parameters was examined geostatistically, with a 
resulting spatial correlation scale smaller than the grid spacing scale, therefore off-diagonal terms of the C(p) 
matrix for these properties were assumed to be zero.   For the remaining ‘hardwired’ parameters, the impact 
of general errors in their estimation was assessed in terms of a range of array multipliers.  The 95% 
confidence range of these multipliers was estimated to be from 0.5 and 1.5. Using the model, calculated 
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sensitivities, the existing calibration dataset as weighted by model-to-measurement misfits, and the ‘a priori’ 
parameter distributions listed in Table 1, data worth was examined in terms of the selected prediction.   

 
Table 1.  ‘A priori’ model parameter ranges 

Parameter Group 95% confidence limit range Parameter standard 
deviation 

Recharge (Creek and Diffuse) 0.5 to 1.5 (multiplier of the 
current parameter distributions) 

0.25 (multiplier of the current 
parameter distributions) 

Abstraction 0.5 to 1.5 (multiplier of the 
current parameter distributions) 

0.25 (multiplier of the current 
parameter distributions) 

Hydraulic conductivity 1-10000 m/day 0.9 (log domain) 

Storage 0.003 to 0.3  1 (log domain) 

  

4. RESULTS AND DISCUSSION 

The analyses outlined in Section 2 was firstly used to assess the relative worth of data within the groundwater 
level monitoring network used for the model calibration.  This analysis was assessed in two ways, firstly in 
terms of the increase of uncertainty that occurs if an observation is removed (i.e. starting conditions assume 
all observations are available), and secondly in terms of the reduction of uncertainty that occurs by adding an 
observation to the dataset (i.e. starting conditions assume no observations are available). In both of these 
cases the observations can be existing or nominal future observations, as the actual value of the observation is 
not used in the uncertainty calculation. In this example we used the existing groundwater level monitoring 
network, which is reasonably extensive.   

Figure 3a) describes data worth calculated on the basis that all observations have been used to constrain a 
prediction, and then each observation well’s data has been systematically removed.  The greatest uncertainty 
reduction is around 0.3 of the original uncertainty, and is shown by pale shading, and the least uncertainty 
reduction (e.g. around 1) is indicated by dark shading.  This figure indicates that each single water level has 
greatest value in the areas where groundwater abstraction is most densely occurring (abstraction bores are 
shown as yellow points in Figure 3). In situations of data scarcity the data worth analysis derived from 
adding or removing an observation can be similar.  However in this case, Figure 3b indicates that each 
observation removed has very little effect on the prediction uncertainty, with the exception of the one part of 
the Lockyer where monitoring bores are scarce (monitoring bores are shown as pale grey points in Figure 3).   
Therefore Figure 3b indicates, that there is more than sufficient water level data for the assessment of the 
total required water imports for a given target groundwater level, except in the Tenthill Creek area. 

 
Figure 2. Plot of spatial distribution of data worth of monitored groundwater level records :a) data worth 

determined by beginning with no observations and adding an observation one at a time; b) data worth 
determined by beginning with a set of observations and removing an observation one at a time. 

a) Uncertainty increase b) Uncertainty decrease

Low data worth

High data worth

Bore
Calibration bore
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It is important to note that differing environmental targets are being considered in the wider project beyond 
that presented in this paper.  For differing targets, the existing water level monitoring data maybe be less than 
sufficient, for example in terms of predicting areas of ponding that could occur with large volumes of 
supplementary water supplies introduced to the Valley.   The relative worth of a range of different data types 
is currently being investigated in the same manner described above, including isotope measurements, 
pumping tests for direct hydraulic property measurements and flood recession groundwater level 
measurements.  The investigation of data network optimization in terms of these alternative predictions and 
data types is in progress.  

Secondly, the extent to which acquisition of better knowledge of different types of parameters and model 
inputs would reduce the uncertainty of the prediction of current interest was explored, as is depicted in Figure 
3. This analysis can be applied to the model with and without imposition of calibration constraints, and 
therefore pertain to both a pre- and post-calibrated model. (Recall that the analysis requires only sensitivities 
of model outputs with respect to parameters and not the values of these model outputs or of the parameters 
themselves).   

There is some reduction in prediction uncertainty achieved from the imposition of calibration constraints 
depicted in Figure 3.  Interestingly the analysis indicates that the calibration process has increased the extent 
to which predictive uncertainty can be lowered through better knowledge of hydraulic conductivity. This 
occurs because calibration constraints have enforced a linkage between hydraulic conductivities and other 
parameters. On the other hand, the prediction is principally sensitive to parameters other than hydraulic 
conductivity, for example specific yield, groundwater abstraction and recharge. The post calibration linkage 
of these parameters therefore allows knowledge of hydraulic conductivity to reduce the uncertainty of the 
prediction as a result of its ability to reduce the uncertainty of parameters on which the prediction more 
directly depends. 

 
Figure 3. Summary of reduction in prediction uncertainty possible with enhanced knowledge of model 

parameters  

5.   CONCLUSIONS AND RECOMMENDATIONS 

The optimization of a monitoring data network is able to be achieved on the basis of estimating the ability of 
measured data to improve predictive reliability.  The efficiencies of this methodology allow it to be 
implemented for even large scale groundwater modeling problems.  This study has demonstrated that the 
proposed methods have a significant potential to evaluate, extend, and optimize monitoring networks under 
the ‘best return for investment’ principle.  Best return, in this case, is defined in terms of greatest 
improvement in predictive reliability.  The method demonstrated is model independent and applicable to a 
wide range of observation networks.      
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The paper has demonstrated the utility of a methodology in the context of a specific model prediction within 
the Lockyer Valley. Supplementary water demand was explored in terms of the amount of water required to 
maintain a ‘high’ groundwater level surface target, over variable climate conditions.  Examination and 
optimization of data worth for the investigation of the Lockyer PRW demand is ongoing.  The investigation 
of data worth for more detailed predictions, and for differing data types will likely yield new information 
beyond that discussed in this paper. 
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