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Abstract The purpose of this model is to enable implementation of the theory of linear systems control in operational 
management of waste and fertiliser applications onto land, so that the underlying groundwater is protected from pollution by 
leachate. The state-space form of the model enables use of the extensive theory and available software on stochastic linear 
S)lstCms. In particular, the Kalman filter is relevant to the imperfectly understood and highly variable processes of solute 
transport and transformation in field soils. The series of mixing cells was selected as a linear system model of 
one-dimensional, vertical, advective-dispersive transport, and based on cumulative soil water drainage as the index variable 
for application to unsteady flow in unsaturated soil. For each cell, solute transfer between mobile and immobile soil water, as 
well as equilibrium and nonequilibrium linear adsorption, are represented as lumped processes by two fractions linked by 
rate-limited transfer. The resident solute concentrations in the cell fractions are the states of the system. The complete model 
of solute transport and transformation for a unifonn soil has four parameters, and can be described in MATLAB® with about 
ten lines of code. The software library can then be used to produce the discrete form of the model, which is unconditionally 
stable for any drainage interval. as well as to implement state estimation and control algorithms. A demonstration of the 
model is reported for 35S-labelled sulphate leached from five replicated lysimeters (800 mm diameter, lIDO mm depth) of an 
undisturbed field soil (a free-draining silt loam) under pasture receiving rainfall and irrigation, The results show satisfactory 
one-step-ahead forecasts with the Kalman filter for the period of record, and a forecast is given of the complete response to 
the solute pulse application beyond the data record. 

l. INTRODUCTiON 

Application of fertilisers or wastes to the land surface can 
degrade the quality of underlying groundwater if these 
substances are in excess of crop requirements or the 
assimilative capacity of the soil. The model presented in 
this paper is designed to support management of the 
amount and timing of susbstance applications to the land 
so that groundwater quality is protected. The proposed 
management process involves monitoring leachate quality 
by means of lysimeters and using these data for 
operational decision making. 

Each lysimcter is an undisturbed column of soil, 
surrounded by a sealed vertical casing, from which freely 
draining soil water is collected for analysis (Cameron et 
al., 1992). The collected leachate is a ;00% sample of 
drainage from the horizontal area of the lysimeter and 
therefore substance mass balances are measured for the 
soil volume. A reliable estimate of water and solute mass 
flux in the field is obtained with appropriate replication of 
Iysimeter units. 

For reasons explained in the following section, cumulative 
drainage is the index variable rather than time. For 
practical monitoring, leachate data are collected after 
significant rainfall or irrigation events. and the drainage 
interval since the previous collection is unknown. 
Therefore, the leachate concentration data represent the 
mean values during these irregular intervals of cumulative 
drainage. 

544 

2, MOIJEL 

2.1 State-Space for Monitoring and Control 

Transport and transformation of substances in soil 
involves processes which are highly variable and have 
properties which are difficult to measure accurately. 
Management under these circumstances is facilitated by 
application of the theory of stochastic control 
(e,g., Bertsekas, 1976; Davis and Vinter, 1985) which 
enables formulation of rules for monitoring and control 
with optimal performance. This theory requires the 
processes of interest be described by a mathematical 
model with the "state-space" structure which relates the 
measured outputs Y(t) of a system to the internal states 
X(t) in response to inputs U(t) in the form: 

dX(t) =AX(t)+BU(t) 
dt 

Y(t) =C X(t) + DU(t) 

(1) 

The coefficient matrices A, B, C, and D for the present 
paper are assumed to be constant with respect to the index 
variable 1. A model in the form of (1) can easily be coded 
in MA TLAB® software for access to a library of 
algorithms for linear system control (Grace et al., 1992), 
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2.2 Unsteady, Unsaturated Solute Transport 

For one-dimensional, vertical, steady, advective-dispersive 
transport of solute through soil, the probability density 
function f{x,t) of the distance x travelled by solute 
particles in time tis: 

v t _ I ev r (x - Vt)'} 
fl" ) - ,J2n(2Dt) hPl 2(2Dt) (2) 

where V is the mean pore water velocity and D is the 
dispersion coefficient. The distribution (2) is Gaussian, 
centred on the mean travel distance Vt and with variance 
2Dt. There is experimental and analytical evidence that 
this process is applicable to non-uniform water content 
(De Smedt and Wierenga, 1978) and transient water flow 
(Wierenga, 1977; Jury et al" 1990). This behaviour 
depends on dispersion being linearly related to velocity by 
the dispersivity A. Substitution of D=AV into (2) results 
m dispersion which is dependent only on the mean 
distance travelled by the solute particles. If I is the total 
amount of vertical drainage which has transported the 
solute pulse down from the ground surface, then the mean 
depth of travel is lie where 8 is the fraction of mobile soil 
water in the profile after drainage has ceased, With the 
additional substitution Vt=!J9 in (2) it can be shown that 
the distribution with cumulative drainage i, at an 
observation depth Lis: 

1'(~ L) L 1 {( ,L_=-----'.I_/Oc..:.)_2} 1 ::::: exp --
, I .jh(2A1I e 2(2).1/0) (3 ) 

mean =: L9 var iance = 2).Le 2 

The ratio of variance to mean for (3) is 2A8, which is 
independent of the travel distance, This information is 
used in the next section to develop a model to simulate (3) 
with a structure suitable for (i), 

2.3 Mixing Cell Simi..dation of Advection-Dispersion 

The mixing cell concept has a long history in dispersion 
modelling (Bear, 1969; Bajracharya and Barry, 1994) but 
is generally presented as an approximation to the finite 
difference solution of the advection-dispersion equation. 
with optimal results when the spatial step is equal to twice 
the dispersivity. Numerical dispersion and stability 
restrict the size of the time step. Bajracharya and Barry 
(1992) developed an "improved" mixing ccll model which 
overcomes these problems but it does not have the slate
space structure desired for the present application. 

A mixing cell is a volume W of water (per area transverse 
to the flow) through which flows a water flux q(t), Solute 
of concentration c1{t) in the inflow is instantaneously 
mixed with the contents of the cell. and the outflow 
concentration Co{l) is the same as that within the cell, 
Solute mass balance for the cell is: 
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dc (t). . 
w-"- ~ q(t)c,(t)- q(t)c, (t) 

dt 
(4) 

By substituting incremental drainage dl=q(t)dt into (4). 
and omitting the time index for convenience: 

dc, 
W--+c =c· dI 0 I 

(5) 

which is a first order linear differential equation. The 
impulse response solution to (5) gives the distribution of 
solute transit through the cell in terms of I as: 

(6) 

which is the exponential distribution with mean Wand 
variance W2

, The ratio of variance to mean is W, and by 
putting w=ne the mixing cel! becomes a simple 
mathematical concept for simulating the first two 
moments of (3). The number of cells required is the mean 
of (3), Le, divided by the mean for one mixing cell, 2),9, 
which is n=Ll2A. The resulting impulse response for n 
cells in series is the gamma distribution: 

!(l) r~' {I } 
(n -I)! (HB)" exp - HB 

(7) 

The shape of (7) becomes closer to (3) as n (or Ll2A.) 

increases. and the mixing cell series is a good practical 
representation of advection-dispersion. The vertical space 
step is restricted to a size of 211. but this is not usually a 
practical difficulty given the precision of soil profile data. 

The differential equations for the series of n mixing cells 
can be expressed in terms of (5), with a=11W=1/2A.9: 

del --::::; -ac, + ac· 
d! ' 

dc, 
--- = -ac 2 + act 

dl 
(8) 

which has the state~space structure of (1) when written as: 

c, -a 0 0 c, a 

c, a -a 0 0 c2 0 

d c, 0 a -a 0 0 c, 0 
+ c, 

dl 

cn~l 0 0 a -a o c n_1 0 

Co 0 0 a -a Co 0 

A B (9) 

Co ~111co +IOlc, 
C D 



The continuous-drainage model (9) is the basis for 
Obtaining the discrete state-space models for any drainage 
interval by means of MA TLAB® software. These models 
are unconditionally stable, and can include filtering to 
account for leachate concentration being the mean value 
over the drainage interval rather than the instantaneous 
value, 

2.4 Solute Transformations 

With advective-dispersive transport represented by the 
system of mixing cells, solute transformations may be 
considered as lumped processes within each mixing cell 
subsystem (Sardin et aL 1991). The following discussion 
considers only linear, equilibrium and nonequilibrium 
solute transformations. These are described from a 
process point of view in this section and will then be 
re-parameterised in terms of dynamic behaviour in 
section 2.5. 

2.4.1 Mobile-Immobile Soil Water 

Each mixing cell has a mobile water fraction 8m with 
solute concentration c, which is part of the advective
dispersive transport through all the cells, and an immobile 
fraction elm with concentration s, which is connected only 
to the mobile fraction of thc same cell (Figure 1). The 
differential equations for the jth cell are, for mass balance: 

(10) 

and rate-limited diffusion: 

(11 ) 

in which r is a transfer coefficient with dimension 
(drainage units)"l rather than (timer!, because the 
nonequilibrium processes are with reference to cumulative 
drainage. 

2.4.2 Lin.ear Adsorption~Desorption 

Linear equilibrium adsorption within either the mobile or 
immobile fraction can be quantified by a "retardation 
coefficient" R. specific to each fraction. which is the ratio 
of total resident mass in equilibrium, per volume of soil, 
to the solute mass in the soil water fraction. Inclusion of 
equilibrium adsorption in (10) gives: 

(12) 

The only form of nonequilibrium adsorption-desorption 
considered in the present conceptual discussion is that due 
to the rate-limited diffi.!Sion described by (11). Therefore, 

546 

any equlihrium adsorption within the immobile fraction is 
observed externally as being nonequilibrium. 

RainfaHlirrigation 

Parameters 

Cel!1 E N 
n - number of cells 

E - equilibrium volume 

N . nonequilibrium volume 

r - transfer coefficient 

Celln : + 
Leachate 

Figure 1: Conceptual structure of the mixing cell model 

2.5 Tile Complete Dynamic Model 

By making the substitutions: 

in (12), and substituting (11) into (12), the 
equations for the jth cell become: 

de; 1 (l+rN) rN 
ill=ECj~l---E-Cj+ESj 

ds j 
ill=rcj -rsj 

(13) 

differential 

(14) 

The four parameters E, N, r, and the number of cells n, 
are the maximum set that can be identified from a series 
of leachate concentration data. However, the equivalences 
(13) can be useful for suggesting initial values from other 
process knowledge, or for relating calibrated parameter 
values to physical reality. Any form of adsorption
desorption with first-order dynamics (relative to drainage) 
will be indistinguishable from the concepts used in the 
model development. 



The state-space structure (9) is extended to include the 
additional states Sj 0=1. nJ and the terms in (14): 

c i 
, c i I , , 

CC , CS 0 , , 
d c, , c, 1 , 

= --------,------- +- c i ill 51 , 51 E·· , 
SC 

, ss , 
~J Is, 

, , 
0 , 

c" = en 

-1 0 0 

-I 0 0 

CC=~ 0 I -1 0 0 

E··· 

0 0 1 -1 0 

0 0 -1 

cs ~ r~ 11(n)1 SC ~ rll(n)1 SS ~ -rll(n)1 (15) 
t 

where I(n) is the identity matrix of size n. 

The model (15) can be describcd in MATLAB® with 
about ten lines of code, 

3. DEMONSTRATION 

The emphasis in the following demonstration is on the 
role of the model in describing prior knowledge about the 
dynamic behaviour of solute transport, which can then be 
incorporated into a Bayesian approach to prediction and 
control with uncertain information. 

3.1 Experimental Data and Parameter Estimation 

The data are from an experiment (Fraser et aI" 1994) on 
five replicated lysimeters (BOO mm diameter. 1200 nun 
depth) of undisturbed soil (a free-draining silt loam) 
under pasture, which received rainfall and irrigation over 
a period of one year. Several solutes were applied as a 
surface pulse to the soil (at field capacity) with 4 mm of 
water to represent anima! urine, and immediately followed 
by 10 mm of simulated rainfalL Leachale drainage, in 
this research environment, was sampled at regular 
intervals of 30 mm. Solute breakthrough data for J5S_ 
labelled sulphate from the same experiment (McLaren et 
al .. 1993) were selected for demonstration in the present 
paper. 

The solute breakthrough curves (BTC) do not represent 
the pulse response of transport by vertical soil water 
movement 1hrough the soil. because of plant uptake of 
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solute and water in the root 'lone. Solute, which does 
arrive at the measurement depth, has been transported by 
vertical water movement which is larger than the 
measured cumulative drainage. The result is that the 
solute input history, in terms of measured cumulative 
drainage, is unknown and therefore the usual system 
identification techniques cannot be applied. 

The parameters n, E, N, and r in (15) were fitted by 
visually comparing the impulse response of (15) with the 
BTC data, with both scaled to unit area for the length of 
record, Figure 2 shows the nature of the comparison for 
the sulphate data. The criterion for a satisfactory "fit" 
was that the steepest and flattest gradients of the impulse 
response should match corresponding feap.1.res of the BTC, 
as a measure of dynamic behaviour. The parameters were 
fitted sequentially, because the nitrate data were described 
adequately by advection-dispersion (n, E), bromide data 
required the addition of diffusion (r. N) and the sulphate 
data needed adsorption in the immobile fraction (same n. 
E, r, but different value of N). Space limitation in the 
present paper does not permit a complete reporting of this 
process, 

The parameter values for the sulphate data used in this 
demonstration (Figure 2) are: n=20, E=10.3 mm. 
N=28 mm, r=0.005 mm·'. For the measurement depth 
L=1100 mrn, these values correspond to dispersivity 
)",=27.5 mm, and mobile water fraction Bm=O.l9. The 
value of N=4 mm obtained for bromide (no adsorption) 
implies that the immobile water fraction is Bim=O.07 and 
the retardation coefficient for sulphate in the immobile 
fraction is Run=? 

3.2 State Estimation with the Kalman Filter 

Application of substances to the land surface in response 
to feedback information from monitoring of leachate 
concentration may be considered as a controlled system 
which tracks the consumption of solutes by plant uptake, 
decay, or other biochemical processes. The best 
information for feedback to operational action is based on 
estimation of the current states of the system. For the 
model (15) the states are the values of Cj and Sj, the 
resident concentrations of the cells. 

Uncertainty about process knowledge and imperfect 
measurement can be accounted for by appending error 
components to (15). The relative magnitudes of the 
variance of these error terms for the demonstration are 
shown in Figure 3. These are based on the error variance 
of the experimental data for the measurement error, and 
subjective judgement about processes in the soil profile for 
the state errors. The most significant feature of the latter 
is the high relative variance ascribed to the root zone 
(cells 1-5), especially near the ground surface, in 
comparison to the lower value for the deeper part of the 
profile where there is insignificant uptake. 



"" 50" 

Figure 2: Impulse response of the model (-) for use with 
35S-labelled sulphate data (*). 

Mea~u'emen! variance ~ 1 

Figure 3: Uncertainty about process knowledge expressed 
as error variance relative to measurement error. 

The Kalman filter (e.g., Davis and Vinter. 1985: 117-127) 
is a Bayesian statistical procedure for combining prior 
knowledge about a dynamic system together with 
information from measured data to produce an optimal 
estimate of the states of the system, given assumptions 
about the error properties, In the present demonstration, 
model (15) was combined with the sulphate BTC data and 
the uncertainty profile of Figure 3, by means of the 
MATLAB® Control System procedures "dlqe" and 
"destim" (Grace ef al .. 1992), to form the state estimator 
which is itself in state-space form. 

The state estimator was tested for its ability to forecast the 
system states (Cj, Sj), and hence the output Co, at OTIe 

drainage interval beyond each observed BTC data value, 
using the procedure "dlsim" with the data series as input 
The initial state values at the beginning of the series were 
set to zero except for the top cell which was determined 
from the value of the solute pulse applied at the ground 
surface. The water depth applied with the solute pulse 
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Figure 4: One-step-ahead forecast (-) of the 35S data (*). 
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Figure 5: Forecast of the complete 35S breakthrough 
curve. 

(14 mm) was approximately the combined water fraction 
for one cell, and therefore the solute pulse dose of 
740 Mbq m-' "s was allocated to an equilibrium 
concentration in the total water storage equivalent 
(E+N=38.3 mm) of the top cell as an approximation to 
initial conditions, Figure 4 shows the results of the one
step-ahead forecasts. 

Forecasts of leachate concentration can, of course, be 
made for any number of drainage intervals beynnd a 
measured value, but then the knowledge basis is the model 
(IS) with initial state values as estimated from this last 
value and with no further correction. Figure 5 shows the 
full leachate response to the solute pulse as forecasted 
(using "dinitial") from the last measured value. 
Approximately 14% of the "s dose had been leached at 
the end of the measured portion of the BTC, whereas the 
complete estimated response accounts for 66% at 
3000 mm ofleachate. 



4. DISCUSSION AND CONCLUSIONS 

The purpose of the model development was to enable 
access to control theory and supporting software so that 
this technology could be applied to managing the impact 
on groundwater of applying wastes and fertilisers to the 
land, The model is designed for application to leachate 
data from undisturbed field soils where uncertainty of 
process parameters and measurement is high. Processes 
of advective-dispersive transport, mobile-immobile soil 
waler, and linear adsorption (equilibrium and 
non equilibrium) were explicitly included in the model 
development, but have been shown to be represented by a 
smaller set of dynamic characteristics. Sources and sinks, 
such as plant uptake, are implicitly included in the 
concept of this model being part of a controlled system 
which is tracking these assimilative processes. 

Demonstration of the model was centred on its role as a 
component in an application of the Kalman filter, a 
pivotal theory in estimation and controi under uncertainty. 
The results (Figure 4) display satisfactory dynamic 
tracking in response to new data but the error between 
forecast and measurement shows some persistence, which 
indicates imperfections in specification of the model and 
uncertainty profile (Figure 3). The forecast of the 
complete response. at 1100 mm depth, to a solute 
application at the land surface (Figure 5) demonstrates 
again how the mood can be used to incorporate available 
data and subjective judgements about uncertainty into 
making an optimal estimate of dynamic behaviour. 
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