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Abstract 
 

Clinicians and patients typically experience difficulty with the conditional 
probability reasoning (Bayes Theorem) required to make inferences about health 
states on the basis of diagnostic test results. This problem will grow in importance as 
we move into the era of personalized medicine where an increasing supply of 
imprecise diagnostic tests meets an increasing demand to use such tests on the part of 
intelligent but statistically innumerate clinicians and patients. We describe a user 
friendly, interactive, graphical software interface for calculating, visualizing, and 
communicating accurate inferences about uncertain health states when diagnostic 
information (test sensitivity and specificity, and health state prevalence) is relatively 
imprecise and ambiguous in its application to a specific patient. The software is free,  
open-source, and runs on all popular PC operating systems (Windows, Mac, Linux) 
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Introduction 

The directors of the National Institutes of Health (NIH) and the Food and Drug 

Administration (FDA)  recently spelled out a set of pathways under development to regulate, 

but also facilitate, an expected explosive growth in personalized medicine1. Conspicuously 

absent from their plans are behavioral methods to improve the way clinicians (counselors, 

nurses, doctors) and patients, understand and  communicate diagnostic information as it 

applies to personal health problems.  

 

Any complex system will only be as good as its’ weakest link. In this case  clinicians and 

patients are the weakest link because they typically2,3 experience serious difficulties  

reasoning with diagnostic information, especially when an understanding and calculation of 

inverse conditional probabilities (Bayes’ theorem) is required. We call this the “last mile” 

problem for personal medicine because it is directly analogous to the last mile problem in 

modern telecommunication systems: how to deliver enhanced end user services from modern, 

technologically sophisticated, high volume networks of a providers to older, noisy, low 

capacity copper wire systems at the end user’s place of residence. 

 

The problem will only grow worse as we enter the era of personalized medicine. The 

fundamental idea behind personalized medicine1 involves widespread use of diagnostic tests 

based on newly discovered genes and proteins to better predict individual patients’ clinical 

responses to specific drug therapies. The combination of  a rapid increase  in the supply of 

new and untried diagnostic tests and increased demand for the new diagnostic tests from 

intelligent but statistically innumerate  clinicians and patients is a recipe for trouble. 

Improved methods for calculating, using and communicating health risk information based on 

diagnostic tests at the level of clinicians and patients are sorely needed.  

 

We have developed one such method — an interactive, visual software tool that: 

• eliminates calculation errors in inference tasks based on diagnostic test outcomes; 

• facilitates interactive robustness checks (what-if reasoning) on inferences  

• builds on the demonstrated3,4,5,6 ability of manual, text based natural frequency 

representations of inference tasks to improve comprehension and communication of 

information about health risks ;  
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• has a user-friendly graphical interface involving only the manipulation of sliders and 

menu buttons; 

• is based on freely available, open source software capable of running on all widely used 

operating systems (Linux, Mac, Windows).  

 

Case Description  

Just how difficult is this problem of statistical innumeracy, in particular the difficulties 

clinicians and patients have when calculating and interpreting the results of diagnostic test 

information for individual patients? Theoretical and empirical answers to this question are  an 

active research area 2-10.  A recent survey8 of 9 studies in this involving over 600 subjects 

from a variety of professional and socio-economic backgrounds, including studies on 

physicians, reports that only around 5-50% of subjects are able to make accurate inferences 

when basic information relevant to a typical inference problem (sensitivity, specificity, and 

prevalence) is presented to them. These results confirm earlier research10 on the statistical 

innumeracy of physicians showing that an astonishing 70-75% of medical students, house 

physicians and practicing physicians cannot correctly calculate the inverse probabilities 

required to generate post-test predictive probabilities.  

 

Natural frequency representations of inference tasks do help3,4,6,7 these research subject 

improve their one-shot inductive calculating and reasoning with “given” precise information 

in questions that would not look out of place in an undergraduate statistics course. But being 

a static text and manual calculation based format, natural frequency representations inhibit 

the ability to make repeated and comparative inductive inferences, quickly, transparently, and 

without error. Because even the best medical evidence applied to an individual case is almost 

always  imprecise  or incomplete  to  some extent (sampling errors, measurement errors, 

sample selection biases, confounding variables not controlled for or measured), a useful 

representation of an inference task should facilitate  robustness checks and  tentative 

explorations of what-if counterfactual questions  to discover the implications of ambiguities 

and imprecision in estimates for an individual patient. Trying to express, calculate, re-

calculate , record and compare  text based manual  natural frequency representations in a 

clinical consultation situation with intelligent but statistically innumerate clinicians and 

patients would be error ridden and confusing – which is why it is seldom, if ever, done11. 
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There must be – and is – a better way using modern computer technology. 

 

Method of Implementation 

 

The software tool implementing the dynamic graphical interface we have developed runs  on 

all popular PC operating systems (Windows, Mac, Linux). Original (but more abstract) 

source code on an earlier version was initially distributed  at the open source Wolfram 

Demonstration Project12 . The current version of this code with enhancements that improve 

it’s use on a PC and an introductory/instructional webcast audio/video showing the interface 

in action is available in the public domain at the University of Canterbury’s UCTV website13. 

To actually run and interact with software it is necessary to download and install 

Mathematica Player . Mathematica Player is made freely available for download over the web 

by the developers of Mathematica14 in order to permit users to run the thousands of open 

source programs on the Wolfram Demonstration Project.  Absolutely no experience with 

Mathematica or any programming language is required to use this software. User controls are 

in the form of sliders and  menu buttons set in a user friendly interface with familiar sliders, 

menu buttons, text input fields. Being open source, users with experience in Mathematica can 

access and modify the code as they wish.  

 

The proof of the pudding is in the eating so we turn now to some examples of how to use the 

software to make inferences about health risks on the basis of diagnostic test information. 

 

Examples and Observations 

 

Figure 1 below is a screen shot of the interface. It has four interconnected parts: two sets of 

user controlled input variables on the left (one a benchmark for comparison purposes) and 

two outputs on the right, (one tabular, the other graphical). The table in the top right displays 

the possible combinations of the health conditions/diseases and diagnostic test outcomes as a 

logician’s truth table, augmented by natural frequency information. D is the logical truth 

value, 1 or 0, of a proposition  “a patient  has a disease” and  T is the logical truth value for 

the proposition that “a patient has a positive diagnostic test result for the disease”. The four 
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columns of 1’s (true) and 0’s (false) in the table identify the four logically possible 

combinations of disease D and test outcome T for the patient, each labeled with their 

conventional epidemiological and clinical names.  

 

Prior to any diagnostic testing, clinicians and patients are uncertain about values of D and T 

for their individual cases. There are several ways of quantitatively expressing this 

uncertainty. The sliders in the left panel that specify numerical inputs for test sensitivity, 

P(T=1|D=1), test specificity, P(T=0|D=0), and pre-test base rate or prevalence of the disease 

,P(D), are one way , using conditional and marginal probabilities. Another logically 

equivalent way is the frequency information in the bottom rows of the natural frequency table 

which uses whole numbers in the form of counts of cases in a hypothetical population 

supposedly “just like” the patient whose health outcomes we are trying to predict. It may 

seem like only a cosmetic change, but “natural frequency” representations of uncertainty 

using whole number arithmetic have been shown2-6 to dramatically improve understanding of 

and communications about health risks. The top row of frequencies (in black) in the table are 

derived from the selected input values for the sliders on the top left panel; the bottom row (in 

grey) corresponds to the benchmark slider values in the bottom left panel.   

 

The graph in Figure 1 displays positive post-test predictive probabilities (solid red line, 

P(D=1|T=1)) and negative post-test predictive probabilities (dashed blue line, P(D=1|T=0)) 

for the patient for every possible pre-test disease prevalence rate P(D=1) from 0 to 1 based on 

the test-sensitivity and test specificity  determined by the slider settings for these variables in 

the top left panel (arbitrary default values are 80% and 70% respectively). It also shows the 

specific levels of each predictive probability as conditional probabilities (the labeled squares 

at 40% and 7% on the respective curves ) at the selected pre-test base rate P(D=1)  (20% in 

Figure 1, marked by a vertical black line).  

 

Figure1 here 

 

Figure 2 shows the impact on post-test predictive probabilities of decreasing the base rate 

from 20% to 5% (using the slider in the top left) when test sensitivity and specificity remain 

unchanged. As the base rate slider is manipulated, the position of the vertical line as the base 

rate indicator changes (with an opaque line marking the original base rate at a benchmark 
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level for comparison purposes) and predictive probabilities and natural frequencies instantly 

updated. While the predictive probabilities are calculated by the program rather than 

manually by the user, the interface is not a “black box” calculator. These levels can be 

checked against and explained by the corresponding natural frequency representations. For 

example in Figures 1 the positive predictive probability of 0.4 corresponds to 16 true positive 

cases in (column 1) of the table out of 16+4=20 positive cases (columns 1 and 2) with 

positive test results.  

 

Figure2 here 

 

The differences between positive and negative predictive probabilities at base rates for the 

disease relevant to the user are also important. Often in a clinician-patient consultation the 

issue isn’t just how to interpret a single ex post test result, but whether or not to take the test 

in the first place. One key factor in that decision is how much can be learned about the 

chances of having the disease by taking the test. If the difference between positive and 

negative predictive probabilities (the vertical gap above and below the main diagonal 

between corresponding curves) is small, then the test will not reduce uncertainty much 

compared to what already is assessed pre-test.  

 

The initial sensitivity and specificity values used for the calculations in  Figures 1 and 2 are 

low, 80% and 70% respectively. What if the test was more (or less) sensitive or more (or less) 

specific, or more (or less) on both counts, or perhaps a tradeoff  exists between sensitivity and 

specificity? Figure 3 shows the impact of one of those changes. Test sensitivity and test 

specificity are now each close to 95%. Notice that the positive predictive probability now 

increases above 80% for all but the lowest base rates for diseases. Similarly the negative 

predictive probability decreases to less than 20% for all but the highest prevalence rates. 

Overall the gap between two post-test predictive probability curves has increased 

dramatically (in comparison to the lower sensitivity and specificity in the benchmark case, 

illustrated by the opaque curves in Figure 3 and controlled by the benchmark sliders in the 

left panel). This reveals that the diagnostic test has more discriminatory power when test 

sensitivity and specificity are improved, and therefore testing may be more worthwhile 

performing. Many other combinations of sensitivity and specificity and pre-test base rates can 

easily be expressed and explored with this software tool.  
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Figure 3 here 

 

Discussion 

 

We have augmented the standard manual natural frequency representation of inference task 

problems in three main ways. First, our interface integrates natural frequency representations 

with standard clinical ways of representing uncertainties about health risks and diagnostic 

tests (sensitivity, specificity, and base rate). Second, the interface provides visually clear, 

dynamically updated representations of both inputs to and outputs of an inference task based 

on medical diagnostics. Third, the many calculations and re calculations necessary when 

undertaking robustness checks and exploring the implications (for post-test health risks) of 

imprecision and ambiguities in underlying information sources can be performed and 

visualized simply, quickly, flexibly and correctly. 

 

As Edward Tufte15 says:   “…clarity and excellence in thinking is very much like the clarity 

and excellence in the display of data. When principles of design replicate the principles of 

thought, the act of arranging information becomes an act of insight”. Our interface 

implements good behavioral3,5 and Bayesian16,17 statistical principles of inductive inference. 

It’s use in clinical settings and in pre-clinical medical teaching institutions may help to 

resolve the last mile problem of personalized medicine.   
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Figure 1 
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Fig 2 
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Fig 3 
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