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ABSTRACT 

The great social and economic impact of earthquakes has made necessary the 

development of novel solutions for increasing the level of structural safety and 

assessment. Outdated design codes used to design many existing structures built years 

ago, increased demand loads, nonlinearities usually neglected or simplified in current 

design procedures, aging, low-cycle fatigue loads from smaller earthquakes, poor 

maintenance, and several other factors have also increased the risk for a large portion of 

existing structures. These issues make existing structures unreliable and their outcome 

unpredictable without regular monitoring of the structure’s integrity. 

Structural Health Monitoring (SHM) is defined as the process of comparing the 

current state of a structure’s condition relative to a healthy baseline state to detect the 

existence, location, and degree of likely damage during or after a damaging input, such 

as an earthquake. Many SHM algorithms have been proposed in the literature. However, 

a large majority of these algorithms cannot be implemented in real time. Therefore, their 

results would not be available during or immediately after a major event for urgent post-

event response and decision making. Further, these off-line techniques are not capable 

of providing the input information required for structural control systems for damage 

mitigation. The small number of on-line or real-time SHM (RT-SHM) methods 

proposed in the past, resolve these issues. However, these approaches have significant 

computational complexity and typically do not manage nonlinear cases directly 

associated with relevant damage metrics. 

In particular, many existing SHM techniques, either on-line or off-line, use 

linear baseline models that do not provide enough information on structure’s dynamics. 
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Therefore, more comprehensive nonlinear baseline models that offer further structural 

parameters to be monitored and consequently provide more useful information on safety 

and serviceability of structures during or after an event should be implemented in RT-

SHM algorithms. Finally, many available SHM methods require full structural response 

measurement, including velocities and displacements, which are typically difficult to 

measure. All these issues make implementation of many existing SHM algorithms very 

difficult if not impossible. 

 This thesis proposes simpler, more suitable algorithms utilising a nonlinear 

Bouc-Wen hysteretic baseline model for RT-SHM of a large class of nonlinear 

hysteretic structures. The RT-SHM algorithms are devised so that they can 

accommodate different levels of the availability of design data or measured structural 

responses. The second focus of the thesis is on developing a high-speed, high-resolution 

seismic structural displacement measurement sensor to enable these methods by using 

line-scan cameras as a low-cost and powerful means of measuring structural 

displacements at high sampling rates and high resolution. Analytical studies and 

computer simulations are undertaken to develop novel RT-SHM algorithms, evaluate 

their robustness under different ground motions, and to investigate their sensitivity to 

small yet important amounts of damage.  

Overall, the RT-SHM algorithms developed are computationally-efficient, less 

dependent on the availability of design data or difficult to measure displacement 

responses, and use nonlinear baseline models that can provide more health monitoring 

information of the structure. These advantages over other existing RT-SHM methods 

enable more accurate SHM information and make the algorithms developed more 

amenable to RT-SHM of both existing and new nonlinear hysteretic structures and 

systems by the profession. The results are thus novel, crucial and significant steps 
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towards developing smart, damage-free structures and providing more reliable 

information for post-event decision making. 
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The whole of science is nothing more than 

 a refinement of everyday thinking. 

Albert Einstein 
German-American Physicist, 1879-1955 

CHAPTER 1  

Introduction 

Every year hundreds of people across the world lose their lives due to 

catastrophic earthquakes. The deadliest earthquake of the last two decades with a 

magnitude of 9.1 ML happened in the Northern Sumatra region of Indonesia in 2004 

and claimed 227,898 lives, from the earthquake and resulting tsunami. A year after, 

another massive earthquake of 7.6 ML hit Kashmir in Pakistan and 80,361 people lost 

their lives. In 2008, another large, deadly earthquake of 7.9 ML occurred in Eastern 

Sichuan in China, and 87,587 people died. Finally in 2010, the 7.0 ML Haiti earthquake 

claimed 222,570 lives (USGS 2011).  

Apart from loss of life, earthquakes damage residential, commercial and 
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industrial buildings, and equally importantly, infrastructure such as power plants, roads, 

and pipelines. The resulting damage can cost billions of dollars depending on the 

severity of the earthquake, and significantly delay economical and social return to 

normal activity. 

 The 1989 Loma Prieta earthquake in California struck Monterey to San 

Francisco with a magnitude of 6.9 ML and caused US$6 to US$10 of billion property 

loss  (Page et al. 1999).  In 1995, a magnitude 6.9 quake killed more than 6,000 people 

and caused US$100 billion in damage in Kobe-Japan (Michael et al. 1999).  Recently, 

in February 2011, a large earthquake of magnitude 6.3 ML struck Christchurch area in 

New Zealand and claimed 181 lives (NZ Police 2011) and up to NZ$15 billion 

(approximately US$11.9 billion) damage (Villamor and the Science Response teams 

2010; GNS 2011; NZ Government 2011; NZ Parliament 2011). Figure 1.1 shows some 

examples of the widespread damage to buildings and infrastructure in Christchurch. In 

this latter case, the figure was worsened by another massive 6.3 ML aftershock in June 

2011. Finally, the down-time cost of infrastructure and main business activity 

sometimes exceeds the direct cost of damage to the property or the infrastructure itself. 

Earthquakes may also trigger extremely destructive tsunami waves that 

significantly increase the negative impact of the quakes. An example of such 

catastrophic events recently occurred in Tohoku-Japan in March 2011. The immediate 

economic effects and casualties for this event are still unclear. However, the costs are 

estimated to be as high as US$200 billion (2.5% of the country’s GDP) and over 10,000 

people may have lost their lives (The World Bank 2011). 

Such huge earthquakes can occur in many regions around the world, and may 

even cause more damage, as the existing structures become older. Research conducted 

by the US Geological Survey (USGS) and other researchers shows there is a 70% 
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probability of at least one magnitude 6.7 or greater earthquake striking the rapidly 

growing San Francisco Bay region before 2030 (Michael et al. 1999). Such an 

earthquake would cause widespread damage and consequently have a huge impact on 

the US economy. 

 

 
 

Figure 1.1: Severe damage to Christchurch CBD from the February 2011 earthquake of magnitude 6.3 
ML: top-left) collapse of residential buildings, top-right) extensive damage to roads, bottom-left & -right) 

widespread liquefaction around the city (Photos courtesy of Mohammad S. Ashtiani) 

  

The great social and economical impact of earthquakes has attracted many 

researchers from different disciplines, such as geotechnical, structural and control 

engineering to the broad field of earthquake engineering to develop novel solutions for 

mitigating the catastrophic effect of earthquakes. Advancements in geotechnical and 

structural engineering help to have better understanding of ground motions and how 

structures behave against such motions, and thus enable more resilient structures in 

areas with high seismic risks, resulting in a safer and more resilient society.  

The problem of increasing the level of safety of structures becomes complicated 
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when it comes to existing structures built years ago according to outdated design codes 

that did not have the knowledge or understanding that we have now. On the other hand, 

demand loads on some infrastructure, such as bridges and roads have also increased. 

The combination of increasing demand, outdated design, and, in some cases, poor 

maintenance has increased the risk for a large portion of our infrastructure, which may 

have an inadequate level of safety compared to current design codes.  

Other complexities come into the problem when existing structures experience 

several minor or moderate earthquakes during their life time or become aged. Aging and 

being subject to relatively low-cycle fatigue loads, resulting from smaller earthquakes, 

ensure the structure performs differently from what it was originally designed to do. 

Such fatigue loads may be lower than design levels and cause no visible damage in the 

structure, but significantly shorten the remaining life of the structure (Vayas et al. 2003; 

Erberik and Sucuoglu 2004; Sucuoglu and Erberik 2004; Teran-Gilmore and Jirsa 2007; 

Nastar et al. 2010). Moreover, nonlinearities, usually neglected or simplified in the 

design procedures, affect the structure’s performance against earthquake loads during its 

service life.  Overall, these issues make existing structures unreliable and their outcome 

unpredictable without regular monitoring of the structure’s integrity. It is particularly 

important for critical infrastructure, such as hospitals and major lifelines, which are 

most needed after catastrophic events. 

Replacement of old existing structures may seem the simplest option to increase 

the safety level of such structures and to remove the need for continuous monitoring. 

However, this option is expensive and thus rarely possible. For instance, the total 

investment needed to bring bridge infrastructure in the US up to code, over a five-year 

period, is estimated by The American Society of Civil Engineers (ASCE) to be US$930 

billion. However, only US$549.5 billion is planned to be spent over this period 
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(Ahlborn et al. 2010). Monitoring of existing structures can be used to improve such 

funding allocations by improving the information that these decisions are based on. 

Structural Health Monitoring (SHM) is defined as the process of comparing the 

current state of a structure’s condition relative to a healthy baseline state to detect the 

existence, location, and degree of likely damage after a damaging input, such as an 

earthquake. SHM can simplify and improve typical visual or localized experimental 

approaches, as it does not require subjective visual inspection of the structure (Doherty 

1993). It can thus provide valuable data for post-event safety assessments to help 

optimize recovery planning. 

Sohn et al. (2004) describe SHM as a four-part process: 

1. Operational Evaluation 

2. Data Acquisition, Fusion, and Cleansing 

3. Feature Extraction and Information Condensation, and 

4. Statistical Model Development for Feature Discrimination.  

Operational evaluation determines economic and/or life safety motivations, 

damage definitions, conditions both operational and environmental under which the 

system functions, and, finally, limitations on data acquisition in the operational 

environment. Data acquisition covers topics such as determination of the quantities to 

be measured, the sensors type, location, number, resolution, and bandwidth, the data 

acquisition/storage/transmittal hardware, and how often the data should be collected. 

The third step in the process is feature extraction, which is the process of identifying 

damage-sensitive properties from measured vibration responses to determine existence, 

location, type, and the extent of damage. Finally, statistical models are used to 

determine whether the changes observed in the selected features used to identify 

damage are statistically significant (diagnosis). Similar models are also used to estimate 
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the remaining useful life of the structure (prognosis). 

The main focus of this thesis is on the third part of the SHM process, developing 

novel feature extraction techniques, with the aim of resolving problems of existing 

feature extraction algorithms to provide better resolution, accuracy and relevance. A 

major drawback of many existing approaches, which will be reviewed in this chapter, is 

their inability to be implemented in real-time, on a sample-to-sample basis as the event 

occurs. Hence, these methods are not suitable for real-time structural control for damage 

mitigation purposes, and their results would not be immediately available after an event.  

Among many proposed SHM techniques in the literature, only a very few, such 

as adaptive fading Kalman filters (Sato and Takei 1997; Loh et al. 2000), adaptive H∞ 

filter techniques (Sato and Qi 1998), bootstrap filtering approaches (Li et al. 2004a), 

Artificial Neural Networks (ANNs) based methods (Masri et al. 2000; Zapico and et al. 

2001; Zang et al. 2004), or wavelet approaches (Kim and Melhem 2004) can achieve 

real-time or near real-time results. However, they have either significant computational 

cost and complexity, or are incapable of locating and quantifying the damage detected. 

Therefore, developing on-line SHM techniques with simpler and more suitable 

algorithms is still a challenging field. 

This thesis proposes real-time SHM (RT-SHM) algorithms for nonlinear 

hysteretic structures using simpler and more suitable techniques for on-line SHM of 

such structures than the existing methods in the literature. It uses a simple adaptive 

Least Mean Squares (LMS) filtering technique, a fast and slow dynamics separation 

method, and a simple comparison between the internal dynamics of healthy and faulty 

structures to develop three SHM algorithms suitable for health monitoring of a large 

class of nonlinear hysteretic structures with different levels of availability of design 

data. Thus, the methods proposed are suitable for on-line monitoring of both existing 
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and new hysteretic structures and systems. 

In structural systems, hysteresis appears as a natural mechanism in the materials 

used and produces restoring forces that dissipate energy. Hysteresis, as used here, refers 

to the memory nature of inelastic structural behaviour where the restoring forces depend 

not only on the instantaneous deformations, but also on the history of the deformations. 

The detailed analytical modelling of this behaviour results in very complicated, 

nonlinear models that are not suitable for on-line identification and health monitoring 

applications using existing methods. Therefore, semi-physical modelling, which is a 

combination of simplified physical analysis and black-box modelling, is usually used to 

represent hysteretic behaviour in structures.  

One of the most common such semi-physical models proposed is a first-order 

nonlinear differential equation known as the Bouc-Wen model. It was originally 

proposed by Bouc (1967) and later was further generalized by Wen (1976). Choosing a 

set of suitable parameters in the model relates input displacements to output restoring 

forces in a broad range of hysteretic structures. The Bouc-Wen model is able to capture 

a range of hysteresis loop shapes that match the behaviour of a wide class of hysteretic 

systems including buildings, soil, base-isolation systems, and magneto-rheological 

(MR) dampers among others (Ismail et al. 2009). This thesis uses the Bouc-Wen model 

of hysteresis to simulate nonlinear hysteretic behaviour in structures and systems, and 

develops SHM methods to directly identify changes in both the key structural and Bouc-

Wen model parameters in real-time. 

The methods developed require full-state structural responses: accelerations, 

velocities, and displacements. However, due to a variety of practical constraints and the 

high cost of implementation, direct high-speed measurement of structural displacement 

and velocity is typically difficult. Estimation of velocity and displacement by 
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integration of measured acceleration is also subject to drift and error, which needs to be 

corrected using independent displacement data, particularly, where permanent 

displacements exist (Yang et al. 2006; Stiros 2008). Hence, the second focus of the 

thesis is on developing a high-speed, high-resolution structural displacement 

measurement sensor for the SHM methods developed. This latter concept contributes to 

the second step of the SHM process, data acquisition, by introducing line-scan cameras 

as a low-cost and powerful means of measuring seismic structural displacements at high 

sampling rates and high resolutions. 

The following sections present a brief review of the existing literature on the 

third step of the SHM process, covering a range of SHM algorithms. The existing 

literature on structural displacement measurement techniques is reviewed later in the 

relevant chapters. 

1.1. Literature review on SHM algorithms 

Existing SHM algorithms in the literature can be categorized into two main 

groups: parametric and non-parametric methods. In parametric SHM, the mathematical 

model governing the structural behaviour is known and the aim is to identify likely 

changes in the structural parameters with respect to a baseline model to detect and 

locate damage. In contrast, non-parametric methods map the inputs to the structure to its 

outputs without any knowledge about the internal structural model. Damage is then 

detected by identifying changes in the parameters of the generic or non-physical model 

created. Nevertheless, non-parametric models cannot locate the damage detected unless 

a priori knowledge from all possible damage cases and the corresponding structural 

responses is available. However, a significant advantage of non-parametric SHM 

methods over the parametric approaches is their capability to capture the full dynamics 
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of the structure including un-modelled or simplified dynamics. 

1.1.1. Parametric Methods 

Many current vibration-based SHM methods are based on the idea that changes 

in modal parameters: frequencies, mode shapes, and modal damping, are a result of 

damage or decay (Doebling et al. 1996). The idea was first proposed by Chen et al. 

(1977) who found longer time period, higher damping, and some mode shape 

discontinuity for the damaged structure in a forced vibration test on a full-scale four-

storey concrete model building. However, modal properties are not robust in the 

presence of noise and are not sensitive to small amounts of damage (Farrar et al. 1994). 

Moreover, sometimes damage at two different locations result in exactly the same shifts 

in the natural frequencies, and the damage cannot be uniquely localized. Further, modal-

based methods are typically more applicable to steel-frame and bridge structures where 

vibration response is highly linear (Doebling et al. 1996; Chase et al. 2005b). 

The most common method for identification of modal parameters in civil 

structures is the Eigensystem Realization Algorithm (ERA), using time domain free 

vibration response data (Juang 1985). In ERA, a discrete Hankel matrix is formed, the 

state and output matrices determined, and a continuous time system model created. The 

natural frequencies and mode shapes are then found by determining the eigenvalues of 

this continuous time system. Dyke et al. (2000) use cross-correlation functions in 

conjunction with the ERA method for identification of the modal parameters, which are 

used to identify frequency and damping parameters. Caicedo et al. (2000) introduce 

SHM methods based on changes in the component transfer functions of the structure, or 

transfer functions between the floors of a structure, and use the ERA to identify the 

natural frequencies of each component transfer function. They also presented ERA-

based methods to identify modal parameters before using least squares optimization to 
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locate and identify damage (Caicedo et al. 2004).  

Lus et al. (2004) presented ERA methods using a Kalman filter estimator to 

identify a baseline model and the ERA method for modal parameters before using least 

squares optimization to locate and identify damage. Lus and Betti (2000) also proposed 

a damage identification method based on ERA with a Data Correlation and Kalman 

Observer. Bernal and Gunes (2000) also used ERA with a Kalman Observer for 

identifying modal characteristics when the input is known, and used a subspace 

identification algorithm when the input cannot be measured. A novel modal 

identification based approach was also presented by Barroso and Rodriguez (2004) who 

employed a damage index method to identify changes in stiffness mass ratios for the 

IASC-ASCE (International Association for Structural Control-American Society of 

Civil Engineers) benchmark structure. 

Flexibility-based methods are generally more sensitive to changes in the first few 

natural modes, which also dominate the response of many typical civil structures, than 

the modal-based techniques. Lin (1990) uses the cross-unity check between the 

flexibility matrix obtained from measured data and the analytical stiffness matrix to 

locate damage. Bernal and Gunes (2004) presented a flexibility-based method that 

involved sub-matrix inverses and the full data record to perform modeless 

identification. Bernal (2007) also introduces Dynamic Damage Locating Vectors 

(DDLVs) approach for structural damage detection and localization. DDLVs lie in the 

null space of the change in the transfer matrix and provide Laplace transform of 

dynamic loads, and thus, result in zero stress fields over the damaged region. 

The problem of damage detection can also be seen as an inverse problem. Using 

measured input-output vibration data, analytical model of the structure can be updated 

to reproduce the measured data. Minimizing the error between the reproduced and 
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measured responses by iteratively refining the stiffness and mass matrices yields the 

damaged structure’s parameters (Lus et al. 2003a; Lus et al. 2003b). Some recently 

published methods also include Bayesian statistical approaches using one or two stages 

to identify modal parameters and then damage (Lam et al. 2004; Yuen et al. 2004). 

The parametric SHM methods reviewed are used mainly as off-line techniques 

because post processing of measured time history data is required to extract the 

necessary diagnostic information. However, the inability of off-line SHM techniques to 

be implemented in real-time, on a sample-to-sample basis as the event occurs, makes 

them unsuitable for real-time structural control for damage reduction purposes upon 

detecting damage. Equally, their outcomes may not be available immediately after an 

event, perhaps reducing their potential, positive impact on immediate earthquake 

response. In contrast, on-line/real-time methods provide all the necessary information to 

plan damage mitigation measures in advance, and thus, avoid catastrophic failures, as 

well as aiding immediate post-event response. 

Adaptive fading Kalman filters (Sato and Takei 1997; Loh et al. 2000), adaptive 

H∞ filter techniques (Sato and Qi 1998),  and bootstrap filtering approaches (Li et al. 

2004a) can achieve real-time or near real-time results and provide structural parameter 

identification. However, they have significant computational cost and complexity that 

makes the implementation of such methods for on-line SHM difficult.  

Simpler algorithms for on-line SHM make use of adaptive Least Squares 

Estimation (LSE). Chassiakos et al. (1998) uses adaptive least squares approach for on-

line identification of hysteretic systems through reliable estimates of the hysteretic 

restoring force parameters using acceleration data. This work was extended by Smyth et 

al. (1999) to handle the general case when no information is available on the system 

parameters.  
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Lin et al. (2001) presented a Recursive Least Squares (RLS) based algorithm that 

upgrades the diagonal elements of the adaptation gain matrix sample-to-sample by 

comparing the values of estimated parameters between two consecutive time steps. The 

method requires full-state structural response measurement. Yang et al. (2004) also 

proposed an on-line adaptive least-square tracking technique that uses only acceleration 

data to identify abrupt changes in the parameters of hysteretic structures, from which 

structural damage can be determined.  

MX Least Mean Squares (MX-LMS) filters, named after their modular cross-

coupled structure, were also used by Kaiser et al. (1999) to identify modal parameters in 

the health monitoring of adaptive aerospace structures. The changes of these parameters 

are then related to the location and extent of damage. 

Model-based methods combined with adaptive LMS filtering theory were also 

used to identify structural stiffness changes in real-time in a computationally efficient 

and robust fashion. Adaptive LMS filters approximate gradient optimization and 

convergence in real-time from sample-to-sample. In contrast, least squares structural 

optimization methods use the full data record and multiple computational analyses to 

converge to a solution. 

LMS-based SHM has been used for a benchmark problem (Chase et al. 2005b), 

and also for a highly nonlinear rocking structure (Chase et al. 2005c), to directly 

identify changes in structural stiffness only. Similar RLS methods have also been 

applied to the same problem (Chase et al. 2005a). All these methods directly identify 

changes in structural stiffness over time by comparing the stiffness matrix of a structure 

with the undamaged model matrix. These model-based adaptive filtering methods are 

robust with fast convergence and low computational cost. However, they do not identify 

plastic and permanent deflections, and require full-state structural response 
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measurement. 

Hann et al. (2009) proposed a SHM method for nonlinear hysteretic dynamics 

identification using convex integral-based fitting methods and Piecewise Linear Least 

Squares (PLLSQ) fitting. The method uses only acceleration measurements and 

infrequently measured displacements motivated by global positioning system (GPS), 

and is also capable of identifying plastic and permanent deflections in real-time. The 

identified permanent displacement is a particularly useful damage measure for the 

construction of probabilistic fragility functions. 

1.1.2. Non-parametric Methods 

Artificial Neural Networks (ANNs) are one of the common non-parametric SHM 

methods. A neural network is composed of many layers with weight factors and a bias 

value. Outputs of one layer are multiplied by its weights and shifted by the layer’s bias 

value and then used as inputs to the next layer. The weights and biases are adjusted 

during the training phase of the ANN to minimize error between measured and 

predicted outputs of the structure. When damage occurs, the weights change to 

compensate changes in the outputs of the structure due to the damage. However, the 

non-uniqueness of the set of the network weights calculated for a particular type or form 

of damage makes it difficult to relate changes in the weights to the location and severity 

of the damage occurred. Equally, training sets may not generalise well to actual damage, 

or remain relevant over time.  

Masri et al. (1992; 2000) proposed an ANN-based method that can detect 

changes in an unknown system’s nonlinear dynamic behaviour based on the level of 

output prediction error when measured responses of a damaged system are passed 

through the network trained to predict the undamaged state responses. However, it is 

difficult to relate this information to locate or quantify the damage detected. 
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In another study, Zapico et al. (2001) proposed a procedure based on a Multi-

Layer Perceptron (MLP) for damage assessment in a two-storey steel frame with steel-

concrete composite floors. The MLPs were trained using a simplified finite element 

model through the error back-propagation algorithm. The two longitudinal bending 

natural frequencies were used as inputs to the MLPs to determine damage at floor 

levels. Nevertheless, more knowledge of the damage level at each floor, for example 

through analysing the experimental frequency response functions of the damaged 

structure, is needed to validate the results. 

Zang et al. (2004) also presented an approach to detect structural damage based 

on a combination of Independent Component Analysis (ICA) extraction of time domain 

data and ANN to detect damage in a truss structure also in a three-storey bookshelf-type 

model building. The ICA technique used captures the essential structure of a large 

volume of the measured vibration data to be used in the ANN training phase.  

Discrete and continuous wavelet analyses have also been used in SHM. A good 

review of the research on damage detection using wavelet analysis can be found in (Kim 

and Melhem 2004). One example of wavelet-based approaches is a statistical pattern 

classification method, developed by Sun and Chang (2004), based on Wavelet Packet 

Transform (WPT). This method uses acceleration responses of the free end of a steel 

cantilever I-beam excited by a pulse load to detect induced damage in the beam in the 

form of line cuts of different severities in the flange. The responses are decomposed into 

wavelet packet components, and dominant signal energies of the wavelet packet 

components are then used as the Wavelet Packet Signature (WPS) for damage detection. 

Two damage indicators were formulated by Sun and Chang to lump the discriminate 

information from the extracted WPS with thresholds set based on the statistical 

properties and successive measurements. 
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Wavelet-based methods determine the time at which damage occurred (Hou et al. 

2000; Hera and Hou 2004). Damage, and the moment when the damage occurs, can be 

detected by a spike or an impulse in the plots of higher resolution details from wavelet 

decomposition of the acceleration response data. Hera and Hou (2004), also used the 

spatial distribution pattern of the observed spikes to determine the region in which the 

damage occurred.  

Empirical Mode Decomposition (EMD) has also been used for damage detection. 

Yang et al. (2004) used EMD to extract sudden stiffness damage time instants and 

locations over the full measured record. They also used EMD and Hilbert–Huang linear 

transforms to identify damage time instants, as well as natural frequencies and damping 

ratios of the structure before and after damage using measured data. However, these 

methods are complex, and require the full record and sometimes operator input to arrive 

at a final diagnosis, therefore they are neither on-line nor automated.   

1.2. Final Statements on the literature 

The SHM field is too large to present a complete literature review. Similar 

approaches can be found in excellent reviews by Doebling et al. (1998), Sohn et al. 

(2004), Carden and Fenning (2004), Montalvao et al. (2006), and Dharap (2006). 

Overall, despite the extensive efforts made by the SHM community, it can be seen that 

there is still a great need for further developments in the following areas:  

• Many existing SHM algorithms cannot be implemented in real time. 

Therefore, their results would not be available during or immediately after 

an event for urgent post-event response. Further, these off-line techniques 

are not capable of providing the input information required for structural 

control systems for damage mitigation. On-line SHM methods resolve 
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these issues. However, existing on-line SHM approaches have significant 

computational complexity. Therefore, developing computationally-

efficient and more suitable algorithms for RT-SHM is crucial in 

developing damage-free structures, providing more reliable information 

for post-event decision making and consequently more resilient 

communities to devastating earthquakes.  

• Many existing off-line or on-line SHM methods require full structural 

response measurement, including velocities and displacements that are 

typically difficult to measure. Novel displacement and velocity sensors 

would provide the inputs required for many SHM algorithms and make 

their implementation by the profession possible. 

• Parametric SHM methods are generally more suitable for SHM because 

of their ability to determine type and location of damage over the non-

parametric approaches. However, many parametric SHM techniques use 

linear baseline models that do not provide enough information about the 

structure. More comprehensive nonlinear baseline models offer further 

structural parameters to be monitored and consequently more useful 

information on safety and serviceability of structures after an event.     
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1.3. Objectives and scope 

The main objective of this study is to develop simple RT-SHM algorithms, 

capable of on-line tracking of the key structural parameters including stiffness, 

damping, and the governing nonlinear baseline model parameters, for a large class of 

Bouc-Wen-type hysteretic structures. The RT-SHM information made available by the 

algorithms developed will then provide the necessary input data required by many 

structural control methods for damage mitigation or avoidance purposes. Further, the 

identified nonlinear baseline model with measured displacement data provides a very 

useful measure for safety and serviceability of structures, plastic and permanent 

deformations.  

Analytical studies and computer simulations are undertaken to develop the 

algorithms, evaluate their robustness under different ground motions, and to investigate 

their sensitivity to small yet important amounts of damage. Availability of the required 

input data by the algorithms is investigated as one of the main implementation issues. 

The study focuses on several main areas: 

• Development and proof-of-concept computer simulations of RT-SHM 

algorithms for new structures or where limited a priori knowledge of the 

structure is typically available. 

• Development and in silico validation of RT-SHM algorithms for old 

structures or where usually no design data is available. 

• Robustness evaluation of the developed algorithms under different ground 

excitations and assessment of their sensitivity to small amounts of damage 

that may lead to larger damage and eventually failure of the structure.  

•  Investigation of emerging line-scan cameras as a new means of 



18 

 

measuring structural displacements at high sampling rates and high 

resolution to provide the displacement inputs required for on-line SHM 

methods. This investigation is conducted through several random and 

sinusoidal experimental tests simulating the range of possible, actual 

structural displacement data. 

• Study of the implementation issues of the proposed line-scan based 

displacement measurement method, such as camera-pattern calibration, 

high resolution measurement of seismic motions with different scales over 

a fixed field of view (FOV), and others is also presented to define the 

range and capability of the approach. 

1.4. Preface 

Chapter 2 presents the development and simulation results of a modified adaptive 

LMS-based SHM method using the nonlinear Bouc-Wen structural baseline model to 

directly identify both changes in stiffness and plastic deflections in real-time. A novel 

computationally-efficient structural identification method with two steps is presented 

that assumes limited a priori knowledge of the structure’s potential nonlinear behaviour 

based on readily available design information. The effect of the specific external load on 

performance of the proposed SHM method is also evaluated using a suite of 20 different 

ground motions to test robustness of the results. 

Chapter 3 presents a novel real-time health monitoring technique based on a 

comparison between known internal dynamics of the healthy structure with measured 

dynamics of the faulty system. The method is developed in the context of fault detection 

and diagnosis in seismic base-isolation systems as it is an increasingly applied structural 
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design technique in highly seismic areas (Martelli 2009). The governing nonlinear 

hysteretic model of the base-isolation system is assumed to be known prior to the 

damage detection based on available design data.  

Chapter 4 presents a sensitivity analysis on the Bouc-Wen model parameters to 

investigate how changes in the hysteretic baseline model parameters affect the 

hysteresis loops shape, representing the nonlinear behaviour of the structure, and the 

overall structural responses. Outcomes of the analysis provide ground for making 

decisions on the possibility of reducing the number of baseline model parameters to 

broaden the application of the proposed SHM methods to cases where limited 

knowledge of the structure is available for identification of all of the nonlinear baseline 

model parameters. 

Chapter 5 introduces a new real-time algorithm for structural identification and 

health monitoring of nonlinear Bouc-Wen type hysteretic structures without a priori 

knowledge of the structure. The method proposed uses a fast and slow dynamics 

separation technique to identify and track the structural parameters over time. 

Robustness of the method under different ground motions and different possible damage 

scenarios is assessed.  

Chapter 6 explores the idea of using high-speed line-scan cameras as a powerful 

means of measuring seismic structural displacements at high sampling rates and high 

resolutions. The original method proposed by Lim et al. (2008) for foundation pile 

movements measurement is modified and evaluated for seismic displacement 

measurement through different tests with harmonic and random target displacements. A 

new edge tracking algorithm is proposed for the method that makes it amenable to 

systems where displacements occur across a range of scales, while maintaining or 

improving resolution. Moreover, a simple camera-pattern calibration procedure is 
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developed that guarantees fulfilment of all the basic assumptions made in the original 

work and thus significantly increases the measurement results accuracy. 

Chapter 7 uses a Monte Carlo simulation of 100k randomly selected possible 

displacement measurement cases uniformly distributed over the specified ranges of 

different parameters involved in the proposed displacement measurement method to 

evaluate the effect of incorrectness in the dimensions of the printed pattern used on the 

accuracy of the output displacement results. It thus quantifies the potential sources of 

error in terms of quantifiable errors in the pattern used. 

Chapters 8 and 9 present the overall conclusions to the research and discuss 

possible extensions and future work. 

1.5. Summary 

This chapter presented the motivations for this thesis followed by an overview 

from the health monitoring algorithms and required sensors and measurement 

techniques developed within this thesis. Overall, the development of RT-SHM methods 

and the required instruments provides the necessary input data to structural control 

methods with damage mitigation purposes, and thus is crucial in developing damage-

free structures and consequently more resilient communities to devastating earthquakes. 

Equally, they provide diagnostic data to inform decision making both before and after 

an event.   

The key issue with the existing health monitoring methods is their extensive 

complexity to be implemented in real-time. Further, providing the displacement data 

required by these algorithms is a challenging task. The development of more 

computationally-efficient algorithms and novel displacement sensors would enable 
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implementation of real-time health monitoring algorithms by the profession, and 

constitute a significant step forward toward damage-free structures becoming a realistic 

design alternative, as well as providing better information to decision makers at all 

levels of disaster planning and management. 
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Simplicity is the ultimate sophistication.  

  

 

Leonardo da Vinci 
Italian Polymath, 1452-1519 

 

CHAPTER 2  

LMS-based approach to RT-SHM  

2.1. Introduction 

 A major drawback of many SHM approaches reviewed in the previous chapter is 

their inability to be implemented in real time, on a sample-to-sample basis, as the event 

occurs. Therefore, these methods are not suitable for real-time structural control for 

damage reduction purposes. Further, their results would not be available during or 

immediately after an event for immediate post-event response.  

Adaptive fading Kalman filters (Sato and Takei 1997; Loh et al. 2000), adaptive 
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H∞ filter techniques (Sato and Qi 1998), Monte Carlo filter based methods (Yoshida 

2001), and bootstrap filtering approaches (Li et al. 2004a) can achieve real-time or near 

real-time results. However, they have significant computational cost and complexity. 

Simpler and more suitable algorithms for RT-SHM make use of LSE with different 

stochastic gradient estimation approaches (Chassiakos et al. 1998; Smyth et al. 1999; 

Lin et al. 2001; Yang and Lin 2004; Chase et al. 2005a; Chase et al. 2005b; Chase et al. 

2005c).  

The last two LSE-based algorithms referenced use model-based methods 

combined with adaptive LMS filtering theory and offer even a more computationally-

efficient and robust method for RT-SHM. LMS-based SHM has been used for a 

benchmark problem (Chase et al. 2005b), and also for a highly nonlinear rocking 

structure (Chase et al. 2005c), to directly identify changes in structural stiffness only. 

The model-based adaptive filtering approach is robust with fast convergence and low 

computational cost. However, the baseline model used is linear, and therefore, cannot 

fully represent nonlinear structural dynamics. Further, the method requires full-state 

structural response measurement, which, as discussed in the previous chapter, is 

typically very difficult. The former issue is addressed in this chapter and the latter in 

Chapters 6 and 7. 

This chapter develops a modified adaptive LMS-based SHM method using the 

nonlinear Bouc-Wen structural baseline model to directly identify both changes in 

stiffness and the nonlinear baseline model parameters in real time. A novel 

computationally-efficient structural identification method with two steps is presented 

that assumes limited a priori knowledge of the structure’s potential nonlinear behaviour 

based on readily available design information. Further, the effect of specific external 

loads on performance of the proposed SHM method is evaluated using a suite of 20 



25 

 

different actual ground motion acceleration records to test robustness of the results.  

Overall, the method thus provides more health monitoring information of the 

structure. In particular, the algorithm offers very useful measures for determining the 

safety and serviceability of structures after a major seismic event, plastic and permanent 

displacements. It thus provides unique nonlinear information that has direct relevance to 

structural damage and serviceability. 

2.2. Definition of the SHM problem 

A seismically excited nonlinear structure can be modelled at each time step 

using incremental equations of motion: 

 
(2.1) 

 

where M, C, and KT are the mass, damping, and tangent stiffness matrices of the model, 

respectively, { }v∆ , { }v∆ɺ , and { }v∆ɺɺ  are the changes in displacement, velocity, and 

acceleration vectors, respectively, and 
gxɺɺ  is the change in the ground motion 

acceleration over the time step.  

The tangent stiffness matrix of a hysteretic structure can be represented using the 

Bouc-Wen model (Bouc 1967; Wen 1976). For instance, the tangent stiffness matrix of 

a four-degree-of-freedom (4-DOF) four-storey shear-type structure, as an example for 

the tangent stiffness matrix of a hysteretic structure in multi-degree-of-freedom 

(MDOF) case, can be written: 

{ } { } { } gv v v x⋅ ∆ + ⋅ ∆ + ⋅ ∆ = − ⋅ ∆TM C K (t) Mɺɺ ɺ ɺɺ
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(2.2) 

where (KT)ij , i,j = 1,…,4, are components of the 4×4 tangent stiffness matrix, 0≤αi≤1, 

i=1,…,4, is the ith storey bi-linear factor, which determines the change in slope between 

elastic and plastic regimes of that storey (αi=0 represents a fully hysteretic and αi=1 a 

fully elastic structure.), and zi, i=1,…,4, is the dimensionless hysteretic component of 

the ith storey and is governed by the following first-order nonlinear differential equation 

(Constantinou and Tadjbakhsh 1985; Ikhouane and Rodellar 2007): 
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(2.3) 

where Ai, βi, γi, and ni are stiffness, loop fatness, loop pinching, and abruptness 

parameters in the classical Bouc-Wen model, respectively. Further, ni, the power factor, 

determines the sharpness of the curve from elastic to plastic force-deflection behaviour 

of each storey. Finally, )(tri
ɺ  is the velocity of storey i relative to storey i-1, Yi is the 

yield displacement of ith story, and N is the number of stories in a shear-type structure. 

The five dimensionless parameters, Ai, βi, γi, ni, and αi determine the hysteresis loop 
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shape. The conditions under Equation (2.1) limit the loop shape to the actual hysteretic 

behaviour seen in physical systems. Hysteresis loops that do not satisfy these conditions 

do not represent a physical hysteretic behaviour (Ikhouane and Rodellar 2007). Detailed 

information on the Bouc-Wen model can be found in an excellent review by Ismail et al. 

(2009).   

Neither degradation nor pinching of hysteresis is accounted for by the classical 

Bouc-Wen model. Over the years, this classical model has been modified to a more 

contemporary version. This version accommodates changes in hysteresis loops arising 

from deteriorating systems (Baber and Noori 1986).  

In this study, as illustrated in Figure 2.1a, the classical Bouc-Wen model, in 

conjunction with a variable linear structural stiffness over time, has been used to model 

nonlinearities arising from both the hysteretic behaviour of the structure and 

degradation of structural stiffness including model error. As shown in Figure 2.1b, the 

hysteretic baseline model parameters may also change over time due to damage to the 

structure. This latter behaviour is accounted for in Section 2.5 by introducing an on-line 

identification method for the Bouc-Wen model parameters.  

The overall approach can also detect combination of the two damage scenarios, 

nonlinear yielding damage and structural stiffness degradation. Overall, with more a 

priori knowledge, the more detailed contemporary baseline model could be used and 

more damage cases be considered. 
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(a) 

 
(b) 

Figure 2.1: Damage models used: a) change in stiffness and b) change in the hysteretic baseline model 
parameters ( (Fr)i is the restoring force of storey i)  

Since the Bouc-Wen model captures dominant energy dissipation due to 

nonlinear behaviour, structural damage may be assessed by its impact on stiffness and 

plastic deformations over time. The potentially time-varying equations of motion for a 

damaged structure can be defined: 

 (2.4) 

where { }v∆ɺɺ , { }v∆ɺ , and { }v∆  are the measured changes in responses of the damaged 

structure, TK , is the tangent stiffness matrix of the damaged structure from Equation 

(2.2) using damaged structural responses, and 
TK (t)∆  contains changes in the tangent 

stiffness of the structure due to damage and can be a function of time. Using the Bouc-

Wen model of Equation (2.2), TK∆  can be written: 

{ } { } { }( )T TM C K (t) K (t) M gv v v x⋅ ∆ + ⋅ ∆ + + ∆ ⋅ ∆ = − ⋅∆ɺɺ ɺ ɺɺ
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(2.5) 

Identifying the TK∆  term enables the structure’s condition including any 

plastic/permanent deformation to be directly monitored.  

To determine TK∆  using adaptive LMS methods, a new form of TK∆  is 

defined with time-varying scalar parameters iα̂ , to be identified using the LMS filter 

based on (Chase et al. 2005a; Chase et al. 2005b; Chase et al. 2005c). For a 4-DOF 

four-story example shear building, TK∆  can be sub-divided into four matrices to allow 

independent identification of changes in the linear elastic stiffness component of each 

story i.e. (∆k0)1, (∆k0)2, (∆k0)3, and (∆k0)4: 

 (2.6) 
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              (2.8) 

            (2.9) 

              (2.10) 

and 

 (2.11) 

Hence, Equations (2.6)-(2.11) can be summarised: 

 (2.12) 

where n is the number of degrees of freedom of the model, and Ki is the corresponding 

time-varying matrix to i
th DOF in Equations (2.6)-(2.10). Rewriting Equation (2.4) 

using Equations (2.6)-(2.12) yields: 

 (2.13) 

where { }v∆ɺɺ , { }v∆ɺ , and { }v∆  are measured, and TK  at each time step is calculated 

using Equations (2.2) and (2.3). To this end, the ii zY ∆  term in TK  and the Ki matrices 

can be re-defined by introducing a hysteretic displacement, hi, for each storey defined: 

 (2.14) 
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respectively. Therefore, Equation (2.3) can be rewritten: 

 (2.15) 

Equation (2.15) is equivalent to: 

 (2.16) 

where, 
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Using Equation (2.18) and assuming ihɺ  is constant over the small interval (∆t) for each 

time step, the changes in hysteretic displacement of storey i over each time step, 

iii zYh ∆=∆ , are defined: 

 (2.19) 

 

Therefore, 
iii zYh ∆=∆ , changes in damaged hysteretic displacement of i

th storey over 

each time step, can be determined from Equation (2.19) using measured or estimated 

damaged structural responses, { }v∆ɺɺ , { }v∆ɺ , and { }v∆ . 

The damaged structure stiffness, or effective stiffness changes due to nonlinear 

behaviour, can then be determined by identifying the 
i

α̂  in Equation (2.13) at every 

time step using a LMS-filtering approach (Chase et al. 2005b): 

 (2.20) 
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where 
kgx )( ɺɺ∆  is the change in the input ground acceleration over a given time step of k, 

and 
kv}{ ɺɺ∆ , { }kv∆ ɺ , and { }

k
v∆

 
are the measured changes in the acceleration, velocity, 

and displacement vectors of the damaged structure over the same time step, 

respectively. Matrices TK  and Ki are calculated sample-to-sample using Equations 

(2.2) and (2.7)-(2.10) with the measured damaged structural responses. The elements of 

the vector signal {y}k can be readily modelled in real-time using adaptive LMS filters to 

identify the coefficients iα̂  reflecting changes in linear stiffness of each storey (Chase 

et al. 2005b). 

2.3. Plastic displacement  

Plastic displacements can also be calculated using the Bouc-Wen model. As 

Figure 2.2 illustrates, the plastic displacement range of storey i relative to storey i-1 

during a stable hysteresis loop, ∆(rp)i(t), can be written (Dowling 2007): 

 (2.21) 
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Figure 2.2. Stable force-displacement hysteresis loop 

 
where, ∆ri(t) and ∆(re)i(t) are the total and elastic displacement ranges of storey i 

relative to storey i-1 during the same hysteresis loop, respectively. Moreover, ∆(Fr)i(t) is 

the restoring force range of the loop, (k0)i is the linear elastic stiffness of ith storey, and 

N is the degrees of freedom of the structure. ∆(Fr)i(t) in Equation (2.21) can be written 

using the Bouc-Wen model (Constantinou and Tadjbakhsh 1985; Ma et al. 2006; Ismail 

et al. 2009): 

 (2.22) 

where (Fy)i, Yi, and αi are the yield force, the yield displacement, and the bi-linear factor 

of storey i, respectively, and ∆hi(t) is the hysteretic displacement change during the 

loop. Substituting ∆(Fr)i(t) in Equation (2.21) with its equivalent from Equation (2.22) 

yields: 

 
(2.23) 

For structures with symmetric hysteresis loops with respect to tension and compression, 

this equation can be written using half of the ranges or amplitudes: 
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(2.24) 

Therefore, (xp)i(t), the absolute plastic displacement of storey i can be calculated as sum 

of the relative plastic displacements of the first i stories: 

 (2.25) 

(xp)i(t) is the deflection of the structure if the elastic component of displacement were 

removed. It is a function of time, and is zero for an elastically responding structure. 

Importantly, permanent deflection is typically defined as the final plastic deflection. 

Plastic displacements over time along with material specific fatigue life curves thus 

provide greater information to assess damage and to evaluate the remaining life of the 

structure (Vayas et al. 2003; Dowling 2007; Nastar et al. 2010). 

2.4. Adaptive LMS filtering theory 

Adaptive filters are digital filters with coefficients that can change over time. 

The general idea is to update filter coefficients and assess how well the existing 

coefficients are performing in modelling a noisy signal, and then adapt the coefficient 

values to improve performance. The LMS algorithm is a widely used adaptive filtering 

technique and approximates the Steepest Descent Method using an estimator of the 

gradient (stochastic-gradient) instead of its actual value, considerably simplifying the 

calculations for real-time applications. In this case, the goal is to identify the individual 

scalar iα̂
 
elements by modelling the signal {y}k of Equation (20) using the adaptive 

LMS filter. 

In adaptive LMS filtering, as shown in Figure 2.3, the coefficients are adjusted 

from sample-to-sample to minimize the Mean Square Error (MSE) between a measured 
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scalar signal and its modelled value from the filter. 

 
Figure 2.3. Adaptive LMS filtering process (Blome 2004) 

 (2.26) 

where Wk is the adjustable filter coefficient vector or weight vector at time k, yk is the 

measured scalar signal at time k, to be modelled or approximated, Xk is the input vector 

to the filter, model of current and previous filter inputs, ikx − , so T

k kW X  is the vector dot 

product output from the filter at time k to model a scalar signal yk, and m is the number 

of prior time steps or taps considered. The Widrow–Hopf LMS algorithm for updating 

the weights to minimize the error, ek, is defined (Ifeachor and Jervis 1993): 

 (2.27) 

where µ is a user-selected positive scalar, called step size, that controls the stability and 

rate of convergence. Several similar stochastic-gradient methods can be used to improve 

stability and convergence at different computational costs (Sayed 2003). 

To identify TK∆  at time k, using LMS adaptive filters, the One-Step method 

(Chase et al. 2005b) and Equation (2.26) in matrix form can be used. Substituting 

T

k kW X  with its equivalent from Equation (2.20), yields: 

 (2.28) 
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weight update formula for each coefficient in the weight matrix of the SHM problem: 

 (2.29) 

Summing 
ijα̂  over j filter taps, yields the ˆ

i
α , change in stiffness of each story in 

Equation (2.20). The subscript k-j in Equation (2.29) represents the contribution of prior 

time step inputs in updating filter weights. 

2.5. Identification of the Bouc-Wen parameters  

To identify the Bouc-Wen parameters for any given structure, a two-step 

procedure is presented. First, based on limited a priori knowledge of the structure, such 

as mass, geometrical properties, and material specifications, push-over finite element 

analysis (FEA) is done to obtain estimates of αi, Yi, and (Fy)i, the bi-linear factor, the 

yield displacement, and the yield force of stories, respectively. Estimations of two other 

structural parameters, linear damping ratio and ni, the power factor of each storey, are 

also assumed to be available from the basic knowledge of the structure. The second 

step, which can be done off-line or on-line as an event occurs, yields the basic Bouc-

Wen hysteresis loop parameters (Ai, βi, and γi). 

To identify the basic loop parameters, Equation (2.19) can be written: 

 (2.30) 

Therefore, 
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 (2.33) 

In Equations (2.31)-(2.33), )(tri
ɺ , relative velocity between stories i and i-1, is 

calculated using measured velocities of the stories, Yi is known from the push-over 

analysis, and the hysteretic displacement, hi(t), is then calculated from Equation (2.34) 

assuming zero initial values for the hysteretic displacements (Baber and Wen 1981): 
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where qi is the nonlinear hysteretic restoring force, mi is mass, ci is the equivalent 

viscous damping, (Fy)i is the yield force, Yi is the yield displacement, and αi is the bi-

linear factor, all for storey i. Finally, ri(t), ( )
i

r tɺ , and ( )
i

r tɺɺ
 
are relative displacement, 

velocity, and acceleration between storeys i and i-1, respectively, )(txg
ɺɺ

 
is the ground 

acceleration, and δij is the Kronecker delta: 

 

(2.35) 

 

In Equation (2.34), all of the terms are either known or measured. Hence, it 

yields a set of independent equations for each storey. These equations can be solved for 

hi(t) sample-by-sample, in real time.  

For the simpler case of a single-degree-of-freedom (SDOF) shear-type nonlinear 

hysteretic structure, the equation of motion is written: 
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respectively, m is mass, and c is the equivalent viscous damping of the structure. Fy, Y, 

and α are again the yield force, the yield displacement, and the bi-linear factor of the 

structure. Using Equation (2.36), h(t) for a SDOF structure can be written: 

( )
( )( ) ( ) ( ) ( )

1 1
g

y

Y
h t m x v t cv t v t

F

α

α α

  = + + +   − − 
ɺɺ ɺɺ ɺ  (2.37) 

 

Therefore, Equations (2.31)-(2.33), using Equations (2.34) and (2.35), or in a 

SDOF case using (2.36) and (2.37), provide three independent equations that yield Ai, 

βi, and γi in less than one hysteresis loop period. This time period is illustrated in Figure 

2.4 for a SDOF hysteretic structure oscillating at 0.5 Hz (Tn=2.0 seconds) with unit 

amplitude. In this figure, points where the sign of ( ) ( )
i i

r t h tɺ  changes are shown with 

black dots.  As the figure shows, in one quarter of a loop period (0.5 seconds), the first 

three points provide enough independent equations to obtain the three unknown 

parameters. 

In this chapter, the proposed two-step structural identification method is 

presented as an on-line technique to first identify the Bouc-Wen model parameters over 

the first hysteresis loop time of a structural response assuming no damage to the 

structure over this short period, comprising the initial small response cycle(s) before 

strong motion. The identified hysteretic parameters are then used for structural damage 

detection. One may also use this method as an off-line structural identification 

technique to obtain the Bouc-Wen parameters using available earthquake records prior 

to the damage detection in the current event. However, off-line identified models may 

not necessarily be exact for excitations apart from the excitation used for identification. 

This choice would thus impose an added error on the damage detection results when 

subsequently employed. 
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(a) 

 
(b) 

Figure 2.4. a) Hysteresis loop for one period of oscillation of a harmonic oscillator at 0.5 Hz (Tn=2.0 s) 
with unit amplitude, and b) velocity times hysteretic displacement for the same oscillator over the same 

period. 

The proposed identification method is based on a priori knowledge from the 

structure. Therefore, limitations on the availability of the design data limit the use of the 

method. In such cases, there are number of more computationally-intensive off-line and 

on-line identification techniques that can be used. Examples of such methods are least 

squares (Yang and Lin 2004), Kalman filtering (Zhang et al. 2002), genetic algorithm 

(Ma et al. 2006), and bootstrap filtering technique (Li et al. 2004a). 
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Figure 2.5. Flowchart of the overall adaptive LMS-based RT-SHM developed including the nonlinear 
baseline model identification. Path 2 is followed when the baseline model is identified off-line. 
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Overall computational procedure of the adaptive LMS-based RT-SHM, 

including the nonlinear Bouc-Wen baseline model parameter identification, developed 

in Sections 2.2 to 2.5 is summarised in Figure 2.5.  

2.6. Inputs to the SHM problem 

Inputs to this SHM problem are measured structural responses: acceleration, 

velocity, and displacement. Acceleration can be easily measured with low cost 

accelerometers at high sampling rates. Due to practical constraints, direct, especially 

high sampling rate measurement of displacement and velocity is not typically possible. 

Estimation by integration of measured accelerations is subject to correctable drift and 

error (Li et al. 2004b; Hann et al. 2009), and other estimations are available. Emerging 

high speed displacement sensors allow more precise estimation of the velocity at 

minimal added computational cost and enable this approach (Nayyerloo et al. 2010). 

Line-scan displacement measurement method, as one such emerging approach, will be 

explored later in this thesis in Chapters 6 and 7. Hence, all necessary measurements can 

be assumed available, or readily estimated. 

2.7. Simulation proof-of-concept structure 

The simulated proof-of-concept structure is a SDOF moment-resisting frame 

model of a five-story concrete building, chosen for both realism and simplicity. The 

plan view of a typical floor of the building is shown in Figure 2.6. The floor system 

consists of 200-series precast hollow-core floor units having a 65-mm topping spanning 

on long direction of each floor. The seismic weight per floor is 1692 kN for roof level 

and 2067 kN for other levels. Each storey has 3.8 m height, and the frame system is 

designed according to the New Zealand Concrete Structures Standard (NZS 3101 2006) 
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using the displacement-based design approach to sustain a target drift level of 2% under 

a 500-year return period earthquake.

 

Figure 2.6. The simulated five-storey shear

The proposed two-step structural identification method

implemented to identify the Bouc

structural responses to be used for the identification, 

structure is subjected to the El Centro earthquake

dynamic analysis is performed in MATLAB

represent the nonlinear hysteretic behaviour of the structure. The simulated structural 

responses from MATLAB® are used to provide proof

accuracy of the identified parameters, changes in 

based design approach to sustain a target drift level of 2% under 

year return period earthquake. 
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(b) 
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plastic and permanent displacements.  

In simulating the structural responses, 5% constant viscous damping is 

considered, and the building was given an abruptness or power factor of n=2 to provide 

realistic nonlinear structural behaviour. Further, noise on the structural responses is 

assumed to be filtered prior to the identification process. 

The developed SHM algorithm is implemented in MATLAB® for the stiffness 

identification process. Identified values were used to recalculate structural responses 

using the Newmark-β integration method to assess accuracy. The simulated structure 

was subjected to the Cape Mendocino record with peak ground acceleration (PGA) of 

0.23 g, with a 10% reduction in pre-yield stiffness applied to the structure at the 10 

second mark to simulate sudden damage (10% change in k0 in Figure 2.1), and 

simulation-derived data is recorded at 500 Hz. 

Next, to assess the robustness of the proposed method over different ground 

motions, the simulated structure was subjected to a suite of 20 different ground motions 

shown in Table 2-1. The same identified hysteretic parameters were used for all of the 

records, and a 5% reduction in pre-yield stiffness was applied to the structure at the 10 

second mark (5% change in k0 in Figure 2.1). This small amount of damage is chosen to 

show the capability of the proposed algorithm in capturing small, more likely levels of 

damage. The adaptive identification process was performed with a fixed filter tuning 

parameter or step size (µ) for all of the records in Table 2-1. This factor determines the 

speed of convergence. Simulation-derived data is again recorded at 500 Hz. 

More details about the selected records can be found in (Christopoulos et al. 

2002). This suite has been selected since it has been widely used for structural dynamic 

analyses in different studies and is a very popular suite among earthquake engineers. 
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Table 2-1. Selected ground motions (Christopoulos et al. 2002) 

EQ Event Year Station 
R-Distance 

(km) 
Soil Type 

Duration 

(s) 

Scaling 

Factor 

PGA 

(g) 

EQ1 
Cape Mendocino 1992 

Fortuna - Fortuna Blvd. 23.6 B 44.0 3.8 0.116 
EQ2 Rio Dell Overpass - FF 18.5 B 36.0 1.2 0.385 
EQ3 

Landers 1992 
Desert Hot Springs 23.2 B 50.0 2.7 0.171 

EQ4 Yermo Fire Station 24.9 C 44.0 2.2 0.245 
EQ5 

Loma Prieta 1989 

Capitola 14.5 C 40.0 0.9 0.48 
EQ6 Gilroy Array #3 14.4 C 39.0 0.7 0.367 
EQ7 Gilroy Array #4 16.1 C 40.0 1.3 0.417 
EQ8 Gilroy Array #7 24.2 C 40.0 2.0 0.323 
EQ9 Hollister Diff. Array 25.8 - 39.6 1.3 0.269 

EQ10 Anderson Dam  21.4 B 40.0 1.4 0.244 
EQ11 

Northridge 1994 

Beverly Hills 14145 Mulhol 20.8 B 30.0 0.9 0.617 
EQ12 Canoga Park - Topanga Can 15.8 C 25.0 1.2 0.42 
EQ13 Glendale - Las Palmas 25.4 C 30.0 1.1 0.357 
EQ14 LA - Hollywood Stor FF 25.5 C 40.0 1.9 0.358 
EQ15 LA - N Faring Rd 23.9 C 30.0 2.2 0.242 
EQ16 N. Hollywood - Coldwater  14.6 B 21.9 1.7 0.298 
EQ17 Sunland - Mt Gleason Ave. 17.7 B 30.0 2.2 0.157 
EQ18 

Superstition Hills 1987 
Brawley 18.2 C 22.0 2.7 0.116 

EQ19 El Centro Imp. Co. Cent. 13.9 C 40.0 1.9 0.358 
EQ20 Plaster City. 21.0 C 22.2 2.2 0.186 
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2.8. Results 

2.8.1.  Hysteretic model parameter identification results 

Figure 2.7 shows the push-over analysis results for the proof-of-concept 

structure from Ruaumoko (Carr 2004). It shows the total yield force (1269.45 kN), the 

bi-linear factor (0.065), and the yield displacement (46.5 mm) of the structure. These 

parameters are used for the second step of the identification process to identify A, β, and 

γ, the basic hysteresis loop parameters of the proof-of-concept structure. Figure 2.8 

shows that the hysteretic parameters (A, β, and γ) can be identified in less than a quarter 

of the natural period of the structure (0.3 seconds in this case). 

 

 

Figure 2.7. Push-over analysis results of the simulated building using the Ruaumoko finite element code 
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Figure 2.8. Identified hysteretic parameters for the simulated case-study structure subjected to the El 

Centro earthquake 

 

2.8.2.  Damage identification results 

Figure 2.9 shows responses of the SDOF proof-of-concept structure with a 10% 

reduction in the linear elastic stiffness at the 10 second mark for the Cape Mendocino 

earthquake. As shown in Figure 2.10, in a worst-case, sudden failure situation, ∆k0, 

changes in the pre-yield linear elastic stiffness of the structure, converge to within 10% 

of the actual change in less than 2 seconds using 10 filter taps at a 500 Hz sampling rate. 

Moreover, Figure 2.11 shows that the LMS filter approaches faster and smoother to the 

final values of the pre-yield stiffness changes (damage) when higher sampling rates or a 

greater number of taps (or prior time steps) are used. 
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Figure 2.9. Responses of the simulated structure subjected to the Cape Mendocino earthquake and 10% 
sudden failure at the 10 second mark 

 

 
Figure 2.10. Identified changes in the pre-yield stiffness of the simulated structure, with 10% sudden 

failure at the 10 second mark, using the adaptive LMS algorithm 
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(a) 

 

 
(b) 

Figure 2.11. Identified changes in the pre-yield stiffness of the simulated structure, with 10% sudden 
failure at the 10 second mark, using the adaptive LMS algorithm, (a) at different sampling rates and (b) 

with different tap numbers 
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hysteretic parameters and changes in stiffness (∆k0). This figure clearly shows that as 

the sudden change occurs, plastic deflection begins in this case. The model then tracks 

the initial sampled behaviour accurately. For the entire record, the ratio between the 

norm of the error signal in estimating the plastic deflections and the norm of the actual 

plastic deflection signal is less than 2.5%, and error in identifying the permanent 

deflection is less than 0.5% of the actual value. 
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(a) 

 

 
(b) 

Figure 2.12. Identified plastic displacements of the simulated structure, with 10% sudden failure at the 
time of 10 second mark, using the estimated changes in the pre-yield stiffness. The box in panel (a) shows 

the area highlighted in panel (b). 
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2.8.3.  Effect of external loads on damage identification results 

Figure 2.13 shows, in a worst-case sudden failure situation, ∆k0 converges to 

within 10% of the actual value in less than 2 seconds using a fixed step size and 10 taps 

at a 500 Hz sampling rate under all 20 different excitations in Table 2-1. Once more, re-

simulating the structural responses with the identified values shows that as the filter 

converges, the plastic deflection approaches its actual value, and the errors between the 

actual and estimated values for plastic deflections become smaller.  

For the suite used in this study, Figures 2.14 and 2.15 show the ratio between 

norms of the error signals in estimating the plastic deflections and norms of the actual 

plastic deflection signals is less than 12%, and the error in identifying permanent 

deflections is less than 15% of the actual value over the entire records. Records that 

caused permanent deflections less than 0.1% of the height of the case-study structure 

were excluded from the error summary and set to zero due to their very small size and 

insignificance.  

 
Figure 2.13. Identified changes in the linear elastic stiffness of the simulated structure  

(10 taps with µ=25,000) 
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Figure 2.14. Changes in the ratio of norm of the error in identifying plastic deflections and norm of the 
plastic deflection signal for the 20 different records in Table 2-1 (Mean=7.31%, Median=7.1%, and 

IQR=5.93%)  

 

 

Figure 2.15. Identified permanent deflection and permanent deflection identification error for the 20 
different records in Table 2-1 (Mean error=8.54%, Median error=7.46%, and IQR = 9.3%) 
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permanent deflection. This problem can be solved to some extent by implementing a 

variable step size or self-tuning LMS-based filtering algorithm initially tuned based on 

past earthquake records and capable of self-tuning to external load changes for the best 

identification results. Different methods with variable step size can be found in the 

adaptive filtering literature to improve the identification results (Sayed 2003; Abadi and 

Far 2008; Costa and Bermudez 2008). However, most of the results here are less than 

5%, and even the largest errors are broadly acceptable. 

 It is worth mentioning that the accuracy of any model-based SHM algorithm 

relies directly on the correctness and thoroughness of its baseline model, which is the 

Bouc-Wen model in this case. Therefore, using a more comprehensive baseline model 

and having more precise estimation of the baseline model parameters would yield more 

accurate results. These analyses were not included in this thesis, but present a future 

avenue of research that can be pursued with similar derivation and generalised 

approach. 

2.9. Summary 

SHM algorithms based on adaptive LMS filtering theory can directly identify 

time-varying changes in structural stiffness in real-time in a computationally efficient 

fashion. However, better metrics of seismic structural damage and future utility after an 

event are related to permanent and plastic deformations. This chapter presented a 

modified LMS-based SHM method and a novel two-step structural identification 

technique using a baseline nonlinear Bouc-Wen structural model to directly identify 

changes in stiffness due to damage, as well as plastic and permanent deflections. The 

algorithm designed is computationally efficient; therefore it can work in real-time.  

An in silico SDOF nonlinear shear-type structure was used to prove the concept. 
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The efficiency of the proposed SHM algorithm in identifying stiffness changes and 

plastic/permanent deflections was assessed under different ground motions using a suite 

of 20 different ground acceleration records. The results showed that in a realistic 

scenario with fixed filter tuning parameters, the proposed LMS-based SHM algorithm 

identifies stiffness changes to within 10% of true values within 2.0 seconds. Median 

ratio of the norm of error signal in identifying plastic deformations to the norm of actual 

as-modelled plastic deflection signal was shown to be 7.1% for the suite of records 

used. Further, permanent deformation was identified to within 7.46% of the actual value 

using noise-free simulation-derived structural responses. The two latter values provide 

important post-event information on the future serviceability, safety, and repair cost. 
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Self-education is, I firmly believe,  

the only kind of education there is. 

 
Isaac Asimov 

American Scientist, 1920-1992 

CHAPTER 3  

RT-SHM using changes in internal dynamics: 

Application to base-isolation systems 

3.1. Introduction 

A novel adaptive LMS-based approach for RT-SHM of nonlinear hysteretic 

structures under seismic excitations was developed in the previous chapter. It was 

assumed that only a limited a priori knowledge of the structure is available to identify 

parameters of the nonlinear baseline model used in the SHM process. However, when 

more design data is available, such as in base-isolation systems, simpler and more 

suitable real-time techniques can be used.     
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Base-isolation is an increasingly applied structural seismic protection technique 

in highly seismic areas in the world. Martelli (2009) reports the number of seismically-

isolated structures until October 2008 as over 10,000 structures in about 30 different 

countries. The range of applications is also very broad and covers both new and existing 

structures of almost all kinds, such as bridges and viaducts, buildings (private and 

public), important industrial installations, heritage structures, museum display cases, 

etc. (Martelli 2009).  

Base-isolation systems decouple structures from the ground to protect structural 

integrity and contents from severe seismic excitations. They support the weight, damp 

the response and transfer of energy to the isolated structure, and restore the original 

position of the structure after an earthquake (Saito 2007). Sliding and elastomeric 

bearing systems are typically used for base-isolation (Narasimhan et al. 2006). These 

systems reduce the superstructure’s response at the cost of an increase in the base 

displacements in near-fault motions. 

The current practice is to use nonlinear passive dampers to limit bearing 

displacement. However, this approach increases the force at both the base and the 

isolation level (Narasimhan et al. 2006).  Active and semi-active dampers, such as 

magneto-rheological (MR) dampers (Spencer and Nagarajaiah 2003), provide attractive 

alternatives to passive dampers by providing more flexibility, and control of the applied 

damping forces. The performance of the overall nonlinear hysteretic system at the 

isolation level, shown in Figure 3.1, directly affects the seismic behaviour of the 

superstructure above the isolation level. Therefore, the base-isolation system needs to be 

monitored for likely faults to reliably maintain and ensure superstructure integrity. 
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Figure 3.1. Base-isolation system (Narasimhan et al. 2006)   

 

In nonlinear control theory, fault detection and diagnosis have attracted 

significant attention, particularly for highly sensitive systems where fault detection at 

the earliest stage is required (Patton 1997; Duan and Patton 1998; Edwards et al. 2000; 

Saif 2002; Liberatore et al. 2006; Mhaskar et al. 2008). The process of fault detection 

and diagnosis is often referred to as SHM in the mechanical, aerospace, and the civil 

engineering fields. Fault detection is typically done by means of a residual signal 

generated from available measurements (Besançon 2003). It must be a signal that is zero 

or near zero in the absence of faults and considerably affected when the system is 

undergoing faults to provide high resolution to the detection process (Kinnaert 1999; 

Besançon 2003; Liberatore et al. 2006). In addition, the residual signal has to return to 

its original no-fault state when the faults fade or one repaired away.  

Different fault detection and diagnosis algorithms have been proposed in the 

literature, such as Duan and Patton (1998), Edwards et al. (2000), and Saif (2002), but 

they all come with significant complexity. This chapter develops a simple fault 

detection technique based on a comparison between the internal dynamics of the base-

isolation system with a healthy baseline model’s internal dynamics to detect likely 

faults. The residual signal is then used for fault quantification using PLLSQ fitting 

techniques (Hann et al. 2009). It is thus an extension in approach and application of the 

SHM methods in the previous chapter. 
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Different combinations of stiffness and damping faults are considered for proof-

of-concept simulations on a passive second-order base-isolated system. The choice of 

passive system is only for simplicity. It is straightforward to generalize the method 

developed to active and semi-active base-isolation systems. 

3.2. SHM problem statement 

A nonlinear, seismically excited base-isolation system with passive MR 

dampers, as shown in Figure 3.2, can be modelled (Constantinou and Tadjbakhsh 1985; 

Shen et al. 2005; Rodríguez et al. 2009; Tsouroukdissian et al. 2009): 

( )( ) ( ) ( ) 1 ( ) ( )
g

mv t cv t kv t kYz t mx tα α+ + + − = −ɺɺ ɺ ɺɺ  (3.1) 

 

 

 
Figure 3.2. Model of a base-isolation system with passive MR dampers 

where m, c, and k are the mass, damping, and the stiffness of the system, respectively, v

, vɺ, and vɺɺ are displacement, velocity, and acceleration of the base-isolation system, 

respectively, 0≤α≤1 is the bi-linear factor defined as the post- to pre-yield stiffness ratio 

of the system, and g
xɺɺ  is the ground motion acceleration. Moreover, z(t) is the 

dimensionless Bouc-Wen hysteresis component governed by the following first-order 

differential equation from the so-called classical Bouc-Wen model, introduced in 

Section 2.2 and repeated here, in brief, for convenience (Bouc 1967; Wen 1976; 
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Constantinou and Tadjbakhsh 1985; Ikhouane and Rodellar 2007): 

1
( ) ( ) ( ) ( ) ( ) ( )

( )

0, 0, , 1

n n
Av t v t z t z t v t z t

z t
Y

A n

β γ

β β γ β

−
− −

=

> > − < ≤ ≥

ɺ ɺ ɺ
ɺ

 (3.2) 

where A, β, γ, and n are stiffness, loop fatness, loop pinching, and abruptness parameters 

in the classical Bouc-Wen model, respectively. Further, n, the power factor, determines 

the sharpness of the curve from elastic to plastic force-deflection behaviour of the 

system, and finally, Y is the yield displacement of the system. This model has been 

chosen only for simplicity, and more detailed models for MR dampers (Spencer et al. 

1997) could also be used.    

When a fault occurs in a base-isolation system, assuming the mass and the 

internal parameters of the damper remain unchanged (Choi et al. 2001), the equations of 

motion of the faulty or damaged system can be written: 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) (1 ) ( ) ( ) ( )
g

mv t c c t v t k k t v t k k t Yz t mx tα α+ +∆ + +∆ + − +∆ = −ɺɺ ɺ ɺɺ  (3.3) 

where vɺɺ , vɺ , and v  are responses of the faulty system, and ∆k and ∆c respectively 

denote time-varying changes in the stiffness and damping of the system due to the fault. 

Further, ( )z t  is the hysteretic component of the faulty structure from Equation (3.2) 

using velocities of the faulty base-isolation system. 

The problem is to design a fault or damage detection signal that is zero in the 

absence of fault and non-zero with amplitude relative to the severity of the fault when it 

occurs. Such signals are called residual signals in fault detection systems (Kinnaert 

1999; Besançon 2003; Liberatore et al. 2006). In addition to fault detection, the 

designed residual signal should provide enough information for diagnosis of the fault 

detected, such as enabling the identification of time-varying ∆k and ∆c terms in 

Equation (3.3). 
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3.3. Residual signal design 

The Bouc-Wen model used to represent the internal dynamics of base-isolation 

systems has only one state variable. Therefore, any change in the dynamic behaviour of 

the system will appear in this single state. This outcome suggests rearranging Equation 

(3.3) by introducing a new hysteretic component, ( )Z t , for the faulty or damaged 

system: 

( )( ) ( ) ( ) 1 ( ) ( )
g

mv t cv t kv t kYZ t mx tα α+ + + − = −ɺɺ ɺ ɺɺ  (3.4) 

where, 

( ) ( )
( ) ( ) ( )

( ) 1 ( ) ( ) ( )
1 1

k t k t c t
Z t z t v t v t

k kY kY

α

α α

∆ ∆ ∆
= + + +

− −

 
 
 

ɺ  (3.5) 

A simple comparison between Equations (3.1) and (3.4) shows that these two equations 

are essentially the same except in the hysteretic component. Therefore, comparing the 

internal dynamics of the healthy and faulty systems by taking the difference between the 

hysteretic components reveals any likely changes (faults) in the system. 

As Equation (3.5) shows, in the absence of a fault, ∆k=∆c=0 and ( ) ( )Z t z t= . 

Thus, ( ) ( )Z t z t−  is zero in this case. When there is a fault in the system, ( ) ( )Z t z t≠  and 

the residual, ( ) ( )Z t z t− , is non-zero. This difference can be used as an indication for the 

existence of stiffness or damping faults in the base-isolation system: 

( )1
( ) ( ) ( )I t Z t z tκ= −  (3.6) 

where I(t) is the residual signal and 
1

0κ >  is a scaling factor. 

Changes in the stiffness and damping of the system typically do not result in the 

same residual signals. Changes in the damping coefficient usually have much less effect 

on the structural responses and consequently on the designed residual signal. This 

difference in the effect of the two different types of fault, with same severity on the 
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base-isolation system, makes presentation of results for combined cases of fault 

difficult. Therefore, two more scaling factors, 
2 3
, 0κ κ > , are introduced to overcome this 

problem, yielding: 

( )
31

2

( )
( ) ( ) ( ) ( )

1
( )

1

c t
I t Yz t v t v t

kY
k t

κκ

α

α
κ

α

∆
= + +

−

  
∆  

−  

ɺ  (3.7) 

where I(t) is again the residual signal, and all other terms have been previously defined. 

The scaling factors, κ1-3, can be determined empirically or by following the procedure 

outlined in Figure 3.3. 

To calculate the residual signal in Equation (3.6), Z  is calculated from Equation 

(3.4) using measured responses of the possibly faulty system and measured ground 

accelerations. The internal dynamics of the healthy system, z , are estimated by 

calculating its first time derivative, zɺ , from Equation (3.2) using measured velocities of 

the faulty structure and assuming zero initial state. All other terms in Equations (3.2) 

and (3.4), including the Bouc-Wen and structural parameters, are either measured or 

assumed to be known prior to fault detection to represent the healthy dynamics of the 

base-isolation system in the absence of damaging inputs. Thus, if the system is fault 

free, Z z= , and I(t)=0. Figure 3.4 summarises the fault detection procedure developed. 
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Figure 3.3. A simple procedure to determine the scaling factors, κ1-3, used in the real-time fault detection 
and diagnosis method developed 
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Figure 3.4. Flowchart of each time step in the fault detection method developed 

3.4. Fault diagnosis 

The aim of the diagnostic part is to determine the type and severity of likely 

faults detected by the residual signal in the base-isolation system. Quantifying detected 

faults, for instance in terms of initial stiffness and/or damping values of the system, is of 

great importance in structural health monitoring and provides the information required 

for structural control methods with damage avoidance or mitigation goals. Detected 

faults could be of stiffness type (∆k ≠ 0), damping type (∆c ≠ 0), or a combination of 

both (∆k≠0 and ∆c ≠ 0). Therefore, identifying ∆k and ∆c in Equation (3.7) determines 

the fault type, as well as its severity. To identify ∆k and ∆c in real-time, Equation (3.7) 

can be rewritten at each time step ∆tk: 

1, 2,k k k k k
I k cφ φ= ∆ + ∆  (3.8) 

and 

Determine I(t) 

 from Equation (3.6)  

Determine system parameters 
(m, c, k, Y, α, A, β, γ and n) 

based on available design data 

Measure ( )v tɺɺ , ( )v tɺ , 

( )v t , and 
g

xɺɺ  

Compute ( )Z t  from  

Equation (3.4)  

Calculate ( )z tɺ from Equation (3.2) 

and then estimate ( )z t  

No

I(t)=0 No fault  
Yes 

Fault detected 
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( )

1 2

1,

1 3

2,
1

1
k

k k

k k
kY

v
kY

Yz v
κ κ

φ

κ κ
φ

α

α

α
=

=
−

 
+ 

− 

ɺ

 (3.9) 

where the subscript k denotes values at time k. In Equation (3.9), k
vɺ  and kv , are the 

measured responses of the faulty system at each time step, k
z  is estimated from 

Equation (3.2) using measured velocities of the faulty system, 1 3κ − are user selected 

scaling factors, and all other parameters are assumed to be a priori known. These 

parameters are mainly design parameters of the base-isolation system and are typically 

available before fault detection and diagnosis. 

Thus, 1,kφ  and 2,kφ  can be readily calculated at each time step. Moreover, as 

mentioned earlier, 
k

Z  is calculated from Equation (3.4) using measured responses of the 

faulty system, measured ground motion accelerations, and known parameters of the 

healthy system. Therefore, from Equation (3.6), Ik is known, and Equation (3.8) is a 

linear equation in terms of the unknowns (∆kk and ∆ck) at each time step ∆tk and can be 

solved using PLLSQ estimation (Hann et al. 2009). 

Without loss of generality, one of the two unknowns (∆k(t) or ∆c(t)) can be 

assumed to have a faster dynamics than the other and changes over smaller time steps 

over ∆tk: 

( )

( )

1 ,( ) , 1, ...,

1 ,( ) , 1, ...,

, 1

k kk

l ll

k l

k t t k tk t k k m

l t t l tc t c l n

t p t p

′− ∆ ≤ ≤ ∆∆ = ∆ =

′− ∆ ≤ ≤ ∆∆ = ∆ =

∆ = ∆ >

 (3.10) 

where m′  and n′  are the number of intervals over which the piecewise time-varying 

functions, ∆c(t) and ∆k(t), are defined. Further, ∆tk and ∆tl are user-selected intervals 

over which piecewise constant behaviour is reasonable. For ease of fitting, p is assumed 

to be an integer value greater than one. In this way, p values of ∆cl are fitted alongside 
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every single value of ∆kk, as shown in Figure 3.5 for the case of p=3. 

 
Figure 3.5. Time variation of the fitted parameters for p=3 

Identification of the unknown parameters, ∆kk and ∆cl, requires a set of linear 

equations, each in the form of Equation (3.8). For the example of Figure 3.5, three 

values of ∆ti could be chosen in each time interval ∆tl ( 3)p′ = . Again for ease of 

fitting, p′  is assumed to be an integer value greater than one. This choice will give nine 

equations ( )p p′×  for each time interval ∆tk with four unknowns: 

{ } { }.
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(3.12) 
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(3.14) 

Further, , 1, ..., 9
i

I i m′=  and 1 2,
, 1,...,9

i
i mφ

−
′=  are defined from Equations (3.6) and (3.9) 

at each time step , 1,...,9
i

t i m′∆ = , respectively. The least squares solution of the matrix 

Equation (3.11) yields the unknown vector {x}k. The overall fault diagnosis procedure 

presented is summarised in Figure 3.6. 

 

Figure 3.6. Flowchart of each time step in the fault diagnosis method developed using PLLSQ fitting 

3.5. Simulated proof-of-concept structure 

To evaluate the performance of this real-time fault detection and diagnosis 

algorithm for SHM of nonlinear hysteretic base-isolation systems, a realistic base-
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isolated system is created. Its basic definition includes: m=156×103 kg, c=2×104 N.s/m, 

k=6×106 N/m, α=0.6, Y=0.6 m, A=1, β=γ=0.5, and n=3, similar to (Ikhouane et al. 2005; 

Vidal et al. 2010). The simulated structure is subjected to the Loma Prieta earthquake 

with PGA of 0.27 g (EQ9 in Table 2-1). The values κ1=500, κ2=1, and κ3=50 are used 

for the scaling factors, and were determined by following the procedure explained in 

Figure 3.3.   

Nonlinear dynamic analysis is performed in MATLAB® to represent the 

nonlinear hysteretic behaviour of the system. Simulated responses from MATLAB® are 

used to provide proof-of-concept data for the fault detection and diagnosis algorithm 

developed and are sampled at 1 kHz. The simulated system is subjected to three worst-

case sudden fault patterns, including stiffness, damping, and combined stiffness and 

damping faults, to evaluate the proposed SHM algorithm’s performance. 

To assess the efficacy of the method under harmonic motions, which may be the 

case in marine structures, the proof-of-concept structure is subjected to a sinusoidal 

excitation of amplitude 0.2 g and frequency of 1.0 Hz. This frequency is chosen to 

match the natural frequency of the simulated structure and maximise any instability in 

the base-isolation system. Simulation-derived data is recorded at 1 kHz (∆ti=0.001 s), 

and results are smoothened in real time using a low-pass filter to cancel erroneous 

jumps occurred at sudden change time stamps in the damage patterns used.     

3.6. Results and discussion 

Figure 3.7a shows a sample stiffness fault pattern and the resultant residual 

signal when the simulated structure is subjected to the Loma Prieta earthquake. Figures 

3.8a and 3.9a show the same results for the damping, and combined stiffness and 

damping fault examples, respectively. Finally, Figure 3.10a shows the calculated 
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residual signal for a combined case of fault where the structure is under harmonic 

excitation. 

As these figures show, the residual signal designed is sensitive to changes as 

small as ±5% in stiffness and damping of the system, and the residual signal 

immediately goes back to its zero prior-to-fault state once the fault disappears. In some 

special cases, the two types of stiffness and damping faults may have equal effects on 

the system responses, but in opposite directions. In such situations, although there is a 

fault in the system, the residual signal remains zero. This result is expected given that 

the residual signal relies on observing a change in the system responses. 

Figures 3.7b to 3.10b show the identified changes in stiffness and damping of 

the simulated base-isolation system using the developed diagnostic approach for each of 

the different fault patterns used in the simulations. These figures clearly show that the 

algorithm is very capable of tracking different combinations of faults in real time. The 

only errors are due to delay in the identification results. This delay is caused in the low-

pass filtering process of the erroneous jumps occurring at the sudden damage times and 

can be shortened using more sophisticated filtering methods or higher sampling rates in 

the fault diagnosis process. However, maximum delay in the identification results 

presented is ~0.8 s, which is largely acceptable.  

The total computation time for each time step in the simulation is ~5e-5 s on a 

1.60 GHz Intel® dual core desktop machine. This is ~5% of the 0.001-second time step 

(1 kHz sampling rate) used. Moreover, the proposed algorithm only relies on the prior 

time step values. Therefore, the proposed algorithm is computationally quite light, and 

can be readily implemented as an on-line fault detection and diagnosis method. 



70 

 

 
 

 

 
(a) 

 

 
(b) 

Figure 3.7. a) Fault and residual signal and b) identified faults for a sample stiffness fault in the simulated 
base-isolation system under the Loma Prieta earthquake 
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(a) 

 

 
(b) 

  

Figure 3.8. a) Fault and residual signal and b) identified faults for a sample damping fault in the 
simulated base-isolation system under the Loma Prieta earthquake 
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(b) 

Figure 3.9. a) Fault and residual signal and b) identified faults for a sample combined stiffness and 
damping fault in the simulated base-isolation system under the Loma Prieta earthquake   
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(a) 

 

 
(b) 

Figure 3.10. a) Fault and residual signal and b) identified faults for a sample combined stiffness and 
damping fault in the simulated base-isolation system under a harmonic ground motion of amplitude 0.2 g 

and frequency of 1.0 Hz 
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3.7. Summary 

In recent years, base-isolation has become an increasingly applied structural 

design technique in highly seismic areas. Sliding and elastomeric bearing systems are 

typically used to isolate the top superstructure from the shaking ground to maintain the 

structure’s integrity during earthquakes. However, these systems increase the base 

displacements in near-fault motions. The state-of-the-art practice to also limit base 

displacement is to use active or passive MR dampers or similar nonlinear devices. The 

impact of faults in the overall base-isolation system on the isolated superstructure 

requires that the resulting nonlinear hysteretic system to be monitored in real time for 

possible changes in the two most important structural parameters: stiffness and 

damping.  

This chapter developed a simple fault detection and diagnosis technique based 

on comparing the internal dynamics of the base-isolation system with those of a healthy 

baseline model to detect faults. It leverages the extensive design knowledge available 

for such isolation systems. Three different cases of stiffness, damping, and combined 

stiffness and damping faults were studied, in silico, on a realistic base-isolated structure 

subjected to the Loma Prieta earthquake with a passive MR damper. The simulation 

results showed that the proposed fault detection and diagnosis algorithm is very capable 

of detecting the existence, determining the type, and quantifying the severity of faults in 

the system in real time as the faults occur. The real-time diagnostic information 

provided can thus be used to provide the input data required for advanced structural 

control methods to compensate the faults occurred and consequently avoid damage to 

the overall structural system. Equivalently, they provide real-time information on the 

system status. 

Measured system responses and input ground motion accelerations used in the 
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fault detection and diagnosis algorithm presented are assumed to be filtered for noise 

prior to the fault detection and diagnosis process. Noise impact on performance of the 

RT-SHM method developed needs to be assessed before experimental validation and 

implementation of the technique in the field. 
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An expert is someone who knows  

some of the worst mistakes,  

which can be made, in a very narrow field. 

 

Niels Bohr 
Danish Physicist, 1885-1962 

 

CHAPTER 4  

Parameter analysis of the Bouc-Wen model  

4.1. Introduction  

Structures exhibit inelastic behaviour under severe seismic, wind, or repeated 

wave loads. The restoring forces caused by the internal friction in the structure, if 

plotted versus structural displacements, form hysteresis loops, where the restoring 

forces depend not only on the instantaneous displacements, but also on the history. 

Similarly, some nonlinear vibration isolation devices, such as elastomeric dampers 

(Constantinou and Tadjbakhsh 1985), MR dampers (Spencer et al. 1997), and wire rope 



78 

 

isolators (Demetriades et al. 1993), are designed to dissipate energy through hysteretic 

behaviour. Hysteresis is thus particularly important in modelling the damping 

characteristics of a broad range of nonlinear structures and systems.  

One of the most widely accepted models, as described in the previous chapters, 

is a first-order nonlinear differential equation proposed by Bouc (1967) and later 

generalized by Wen (1976). The differential equation contains five unspecified 

parameters that can be chosen to generate a broad range of different hysteresis loop 

shapes. Results of a parameter or sensitivity analysis (SA) of the Bouc-Wen model 

could enable using simpler and more suitable forms of the model with less unidentified 

parameters for RT-SHM. In particular, less sensitive parameters can be fixed on values 

determined by basic engineering judgements based on limited available information 

from the structure. This approach removes the need to identify unimportant and 

difficult-to-determine parameters in the SHM process, particularly, where very limited 

knowledge of the structure is available prior to the identification. 

Some studies have been conducted to quantify the importance of each parameter 

in the Bouc-Wen model on overall responses of different hysteretic structures, and to 

rank the parameters, accordingly. One of the first efforts to analyse sensitivity of the 

Bouc-Wen model parameters is the work by Ni et al. (1998). They used partial 

derivatives of the overall hysteretic structural model with respect to each parameter, 

while the others were fixed, to evaluate local sensitivity of the Bouc-Wen model to its 

five parameters.  

In a similar study, Xiaomin et al. (2009) evaluated local and ‘global’ sensitivity 

of the output force of a MR damper, as a Bouc-Wen type hysteretic system, to its eight 

parameters. They changed one parameter at a time, while others were fixed, and 

compared the maximum mean square error induced in the output force to evaluate the 
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local sensitivity of the MR damper model to its parameters. To assess the sensitivity of 

the MR damper model in a global sense, considering interactions and influences of all 

the parameters simultaneously, Xiaomin et al. proposed a modified local sensitivity 

analysis (LSA) method. Their method generates input and output distributions required 

for evaluating model and parameter uncertainties in a global sense. Unlike the LSA, in 

their global sensitivity analysis (GSA), maximum mean square errors are compared 

when one parameter is varied at a time and others are left unrestrained. 

A more detailed study on the sensitivity of the Bouc-Wen model was conducted 

by Ma et al. (2004) for the extended Bouc-Wen model with 13 parameters. Local and 

global sensitivity analyses were conducted using the one-parameter-at-a-time method 

and the Sobol indices (Sobol' 1990; Sobol' 2001), respectively. Another example of 

similar studies is the recent work by Worden and Becker (2011), which uses a 

principled Bayesian approach for parameter sensitivity analysis of the classical Bouc-

Wen model with five parameters.  

In this chapter, the classical Bouc-Wen model is carefully examined for the 

sensitivity of the model and consequently the overall responses of the structure to 

changes in each of the five parameters in the model. In particular, the chapter aims to 

show the importance of input excitation, natural frequency of the case-study structure, 

and base values used in the SA on the output results through simple one-parameter-at-a-

time SAs. The mean LSA results for each case are then used to provide a ‘global’ sense 

of the sensitivity.   

Different forms of the Bouc-Wen model and transformations used in the 

previous studies reviewed make comparison of the results for validation very difficult. 

However, the results are significant to the field in the sense that they underscore the 

importance of including factors, such as natural frequency of the case-study structure, 
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for more detailed SAs of the Bouc-Wen model in the future.   

4.2. Variation of hysteresis loops with the Bouc-Wen 

model parameters 

The Bouc-Wen model and its parameters were introduced in detail, in Sections 

2.2 and 3.2. Here, only a very brief explanation is given for convenience. A SDOF 

shear-type nonlinear hysteretic structure can be modelled: 

( ) ( ) ( ) (1 ) ( )
y y

g

F F
mv t cv t v t h t mx

Y Y
α α+ + + − = −ɺɺ ɺ ɺɺ  (4.1) 

where ( )v tɺɺ , ( )v tɺ , and ( )v t  are acceleration, velocity, and displacement of the structure, 

respectively, m is mass, and c is the equivalent viscous damping of the structure. The 

parameter α is the bi-linear factor. Further, Fy and Y are the yield force and the yield 

displacement of the structure, respectively, and g
xɺɺ  is the input ground motion 

acceleration. Finally, h is the Bouc-Wen hysteretic displacement from Equation (2.18) 

(Bouc 1967; Wen 1976; Ikhouane and Rodellar 2007; Nayyerloo et al. 2011): 

( )( )
( )

( ) ( ) ( ) ( )

0, 0, , 1

n
h t

h t v t A sign v t h t
Y

A n

β γ

β β γ β

  
= − + 

  

> > − < ≤ ≥

ɺ ɺ ɺ

 (4.2) 

where A, β, γ, and n are stiffness, loop fatness, loop pinching, and abruptness parameters 

in the classical Bouc-Wen model, respectively. Further, n, the power factor, determines 

the sharpness of the curve from elastic to plastic force-deflection (hysteretic 

displacement versus actual displacement) behaviour of the structure. The five 

dimensionless parameters (A, β, γ, n, and α) determine the hysteresis force-deflection 

loop shape, and in the case of hysteretic-actual displacement loop, as used in this 

chapter, only four parameters (A, β, γ, and n) determine the loop shape.  

Figure 4.1 to Figure 4.4 and Table 4-1 show how hysteresis loops evolve with 
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changes in each of the four parameters of the Bouc-Wen model of Equation (4.2) for a 

SDOF structure subjected to a harmonic acceleration of amplitude 10.0 and frequency 

of 1.0 Hz. As Figure 4.1 shows, changes in the stiffness parameter (A), as the name 

suggests, change the initial slope of the loop, and consequently the rest of the loop 

shape, as it essentially follows the initial slope. Moreover, the figure clearly shows that 

greater values of A result in higher maximum hysteretic displacements and widen the 

hysteresis loops vertically with only a small change in the loop fatness in the horizontal 

direction. This latter change is basically a result of change in the initial slope. 

Figure 4.2 shows how changes in the loop fatness parameter (β) change 

hysteresis loop shape. Since –β<γ≤β, the nominal value for γ has been set low to 0.1 in 

this figure to allow a wider range for changes in β to be studied. As the figure shows, 

higher values of β expand the loop horizontally by lowering the maximum hysteretic 

displacement and consequently the post-yield slope of the loops, yielding fatter 

hysteresis loops over a fixed range of actual displacements. Moreover, the resulting 

changes in the post-yield slope shrink the loops vertically at a greater rate than the 

horizontal contractions. 
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Figure 4.1. Hysteresis loop shape for different values of A (β=γ=0.5, n=2, and Y=0.05) 

 

 
Figure 4.2. Hysteresis loop shape for different values of β (A=1, γ=0.1, n=2, and Y=0.05) 
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The effect of changes in the loop pinching parameter (γ) is studied in Figure 4.3. 

As the figure presents, unlike β, increase in the loop pinching factor shrinks the loops 

vertically without any important change in the loop fatness in the horizontal direction. 

The values for γ=-0.5 are quite extreme because γ=-β in this case and no yielding 

occurs. This case does not represent an actual physical structure, as described in Section 

2.2, and only has been given to further evaluate the effect of γ.  

Table 4-1 includes a suite of 99 different hysteresis loop shapes for different 

values of the two loop fatness (0.1≤β≤0.9) and loop pinching parameters (-0.9≤γ≤0.9) of 

the Bouc-Wen model. In each figure in the table, the dotted loop represents the loop 

shape for β=γ=0.5 and has been shown as a reference for comparison. The table 

provides similar comparisons as in Figure 4.2 and Figure 4.3 in each row or column for 

various fixed values of β or γ, respectively, and confirms the previous results. Once 

again, the case of γ=-β in the table, does not represent a physical system behaviour and 

has been given for completeness and only to show the loop shape in this unrealistic limit 

case.   

Finally, as shown in Figure 4.4, the power factor (n) changes the smoothness of 

transition from elastic to plastic regions in the hysteretic versus actual displacement 

curve, without any significant change in the overall shape of the loop. As the power 

factor increases, the curve becomes sharper and approaches to a bi-linear transition as n 

goes to infinity. 
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Figure 4.3. Hysteresis loop shape for different values of γ (A=1, β=0.5, n=2, and Y=0.05) 

 

 
Figure 4.4. Hysteresis loop shape for different values of n (A=1, β=γ=0.5, and Y=0.05) 
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Table 4-1. Evolution of hysteresis loops with changes in the loop fatness (β) and pinching (γ) parameters (A=1, n=2, and Y=0.05) 
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 Table 4.1. Continued … 

 γ 
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4.3. Case-study structure 

The simulated case-study structure for SA of the Bouc-Wen model is a SDOF 

model of a five-story concrete building described in Section 2.7 with m=996 tonnes, 

Fy=1270 kN, Y=50 mm, and 5% constant viscous damping. Three sets of base values, 

shown in Table 4-2, are chosen for the Bouc-Wen parameters. The choice of the base 

values is such that when they are varied for SA, the resulting range for each parameter 

satisfies the conditions under Equation (4.2) and remains within the normal range 

observed in the hysteresis loops of physical systems (Ikhouane and Rodellar 2007).  

Table 4-2. Base values for the Bouc-Wen model parameters used in the LSA  

Parameter Set 1 Set 2 Set 3 

A 0.5 1.0 1.5 

α 0.0325 0.0650 0.0975 

β 0.25 0.50 0.75 

γ -0.1 0.1 0.3 

n 2.0 2.5 3.0 

  

To evaluate the effect of different input excitations on the LSA results, the 

structure is subjected to the suite of ground motions in Table 2-1. Further, three 

different natural frequencies (0.5, 1.0, and 1.5 seconds) for the structure are considered 

to evaluate the effect of structure’s natural frequency on the LSA results. The simulated 

structural responses from MATLAB® are then used for comparison with the responses 

of the baseline model with the nominal parameters in Table 4-2 to quantify the local 

sensitivity of the overall Bouc-Wen model of Equations (4.1) and (4.2) to its five 

parameters (A, β, γ, n, and α). 

4.4. Local sensitivity analysis 

The simplest way to conduct sensitivity analysis is a method referred to as one-
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parameter-at-a-time approach, where one parameter is changed at a time, while others 

are fixed at chosen nominal values (Hamby 1994). This method is local in the sense that 

it only addresses sensitivity relative to the chosen base values and not for the entire 

parameter range. Interactions of the parameters also cannot be evaluated by such a local 

technique (Ma et al. 2004).  Further, the local sensitivity results are limited by the 

choice of base values, input excitations, and natural frequency of case-study structure 

used. However, the method is very capable of providing a graphical representation of 

sensitivity ranking. 

To assess local sensitivity of the Bouc-Wen model to each of its five parameters 

using the one-parameter-at-a-time method, only one parameter is changed at a time and 

all other factors are fixed at their nominal values. Similar to Ma et al. (2004), maximum 

of the norm of error in structural responses caused by changes in each of the model 

parameters is used to quantify the model’s local sensitivity: 

( )
1

2
2 2 2

max

1

max ( ) ( ) ( ) , 1,2,3,...
N

i bi i bi i bi

i

RMSE v v v v h h N
=

 
  

= − + − + − =  
   

∑ ɺ ɺ  (4.3) 

where vi, i
vɺ , and hi are respectively the displacement, velocity, and the hysteretic 

displacement of the model when a parameter is varied, and vbi, bi
vɺ , and hbi are 

respectively the displacement, velocity and the hysteretic displacement of the structure 

with the nominal base values chosen for the Bouc-Wen model parameters. Further, N is 

the number of sampling points in simulation of the responses. Finally, RMSEmax is the 

maximum of the norm of error in the responses, or the maximum root-mean-square 

(RMS) error. Each parameter of the model is varied ±50% of its base value with 5% 

steps, and the data is sampled at each 0.001 seconds for a total simulation time of 50 

seconds (N=50k). There is no bias due to N as it has the same value for all cases. 

Three different cases, as outlined in Table 4-3, are studied for LSA. First, the 
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analysis is carried out for three different natural periods of the case-study structure (0.5, 

1.0, and 1.5 s) with a single set of nominal values for the Bouc-Wen parameters (Case 1 

in Table 4-3). The structure is subjected to the El Centro ground motion (EQ19 in Table 

2-1) in the three simulations to calculate the maximum RMS error in the responses.  

Second, a fixed natural period of 1.0 second for the case-study structure with 

three different sets of base values for the Bouc-Wen parameters are considered (Case 2 

in Table 4-3), and the structure is again subjected to the El Centro earthquake in Table 

2-1. Finally, a fixed natural period of 1.0 second with a single set of base values for the 

hysteresis parameters are studied for LSA of the Bouc-Wen model under the suite of 20 

different ground motions in Table 2-1 (Case 3 in Table 4-3). Using different input 

excitations in the simulation significantly reduces errors in LSA results associated with 

the type of excitation used.  

Table 4-3. Different cases studied for LSA of the Bouc-Wen model  

Simulation parameter   Case 1   Case 2   Case 3  

  0.5        

Natural period (s)  1.0   1.0   1.0  

  1.5        

A  1.0  0.5 1.0 1.5  1.0  

α  0.0650  0.0325 0.0650 0.0975  0.0650  

β  0.50  0.25 0.50 0.75  0.50  

γ  0.3  -0.1 0.1 0.3  0.3  

n  1.5  2 2.5 3  1.5  

Input excitation 

(as in Table 2-1) 

 EQ19   EQ19   EQ1-20  

4.5. Global sensitivity analysis 

Global sensitivity analysis can account for the interactions of the parameters in a 

multi-parameter model. Some of the popular methods for GSA have been reviewed in 

(Hamby 1994). There are also several techniques based on conditional variances of 

model output for GSA such as (Iman and Hora 1990; Chan et al. 2000). However, more 
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common methods are Fourier Amplitude Sensitivity Test (FAST) (Saltelli and Bolado 

1998) and the Sobol probabilistic sensitivity indices (Sobol' 1990; Sobol' 2001).  

The Sobol indices are generally superior to FAST in that the single and multi-

parameter indices can be represented by the same equations and thus can be calculated 

in a similar way, yielding a simpler overall procedure for GSA. Homma and Saltelli 

(1996) introduced the total effect sensitivity indices, based on the work by Sobol, to 

measure the mutual interactions of parameters in groups of two, three, or more. In this 

chapter, the mean LSA results for the three different cases in Table 4-3 are used only to 

provide a ‘global’ sense of the sensitivity of the model, and the emphasis is on the fact 

that the model is not equally sensitive to its five parameters. For a more thorough GSA 

of the Bouc-Wen model, any of the methods reviewed earlier can be used. 

4.6. Results  

Results for LSA of the Bouc-Wen model for Case 1 in Table 4-3, with different 

natural periods for the case-study structure, are shown in Figure 4.5. As the figure 

shows, the results generate spider-like graphs with zero RMS errors at the centre and 

growing RMS errors as the change in the parameters increases. For the three different 

natural periods studied, RMS errors induced in the structural responses due to change in 

A, are considerably greater than errors for the other four parameters. Moreover, no 

uniform pattern is observed for the remaining places in the ranking for the three 

different natural periods studied. For instance, in Figure 4.5a, for the natural period of 

0.5 s, changes in the power factor, n, has greater effects on the RMS errors compared to 

the remaining three, whereas in Figure 4.5c, β has the second greatest effect on the 

responses. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.5. Spider diagrams generated using the LSA results for the Bouc-Wen hysteretic model for 
structures with different natural periods: a) Tn=0.5 s, b) Tn=1.0 s, c) Tn=1.5 s, and d) the average results. 
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Maximum RMS errors for the three different natural periods in Case 1 are 

summarised in Table 4-4. The average maximum RMS errors for the three natural 

periods are also shown in the table. The average results yield a sensitivity ranking of the 

parameters as A>n>β>α>γ. 

Table 4-4. Results of LSA of the Bouc-Wen model for Case 1 in Table 4-3 with different natural 
periods for the case-study structure 

Natural period (s) 0.5 1.0 1.5 Mean 

 RMSE Rank RMSE Rank RMSE Rank RMSE Rank 

A 28.40 1 30.60 1 28.30 1 29.10 1 

α 0.29 5 6.02 4 5.84 3 4.05 4 

β 3.63 3 7.58 3 6.63 2 5.95 3 

γ 2.34 4 4.31 5 3.90 5 3.52 5 

n 6.63 2 7.76 2 5.67 4 6.69 2 

 

Figure 4.6 shows similar LSA spider diagrams for Case 2 in Table 4-3 with 

different base values for the Bouc-Wen model parameters. As the figure shows, 

variations of the stiffness parameter again generate much greater errors in the responses 

compared to the other parameters. The resulting parameter rankings for each of the three 

different sets of base values are shown in Table 4-5. As the table shows, based on the 

average maximum RMS errors for each of the Bouc-Wen parameters in the three 

different sets, the overall ranking for Case 2 is also A>n>β>α>γ. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.6. Spider diagrams of the LSA results for the Bouc-Wen hysteretic model generated for different 
base values for the parameters: a) Set 1, b) Set 2, c) Set 3, all from Table 4-2, and d) the average results. 
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Table 4-5. Results of LSA of the Bouc-Wen model for Case 2 in Table 4-3 with different base 
values for the model parameters 

Set # Set 1 Set 2 Set 3 Mean 

 RMSE Rank RMSE Rank RMSE Rank RMSE Rank 

A 41.20 1 34.20 1 30.4 1 35.30 1 

α 1.63 5 6.68 2 7.70 2 5.34 4 

β 8.56 2 6.23 4 3.99 4 6.26 3 

γ 2.98 4 1.18 5 1.13 5 1.76 5 

n 6.83 3 6.55 3 6.44 3 6.61 2 

 

Results for the LSA of the Bouc-Wen model for Case 3 in Table 4-3, under the 

20 different ground motion records in Table 2-1, are shown in Figures 4.7 to 4.11 for 

each model parameter individually. Results for each step change in the model 

parameters for the 20 different records are presented in the format of box plots, and the 

median values of different boxes are compared to evaluate sensitivity of the model to 

each parameter. In total, for each parameter, 420 different cases (20 record×21 steps) 

are studied to generate median RMS error trend lines for LSA of the Bouc-Wen model 

under different input excitations. Boxes in the figures are stretched along the vertical 

axis. This result clearly shows that changes in the input excitation have a significant 

effect on the RMS errors in the structural responses and consequently on the LSA 

results. This outcome is more evident for greater changes in the model parameters. 

The median trend lines of the LSA results for Case 3 are compared for different 

model parameters in Figure 4.12. As the figure shows, once more, changes in the 

stiffness parameter have significantly greater effect on the responses compared to the 

other parameters in the Bouc-Wen model. Further, trend lines on the left-hand side of 

the centre point in the figure, have higher slopes than the trend lines for the same 

parameter on the right-hand side. This result reveals that for all the Bouc-Wen model 

parameters, a decrease in the parameter value results in a higher error in the response 

compared to the same amount of increase in the parameter value. This behaviour is also 
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seen in Figures 4.5d and 4.6d for the first two cases in Table 4-3. 

Parameter ranking for Case 3 is shown in Table 4-6. The maximum median 

RMS error results for the entire suite of records used in the analysis are used to rank the 

parameters in order of their effect on the responses of the case-study structure. The 

maximum median RMS errors for three earthquake records with different PGAs are also 

shown in the table for comparison. The maximum median errors for the 20 different 

records used yields a parameter ranking as A>n>β>γ>α for Case 3. This ranking largely 

agrees with the rankings for the first two cases except for the order of the last two 

parameters. 

 
Figure 4.7. RMS error in the responses of the case-study structure due to change in the stiffness 

parameter of the Bouc-Wen model, A, for Case 3 in Table 4-3. 

 

 
Figure 4.8. RMS error in the responses of the case-study structure due to change in the bi-linear factor of 

the Bouc-Wen model, α, for Case 3 in Table 4-3 
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-50 -40 -30 -20 -10 0 10 20 30 40 50

0

2

4

6

8

10

12

Change in αααα (%)

R
M

S
 e

rr
o

r

 

 

Median RMS error, max= 1.74



96 

 

 

 
Figure 4.9. RMS error in the responses of the case-study structure due to change in the loop fatness 

parameter of the Bouc-Wen model, β, for Case 3 in Table 4-3 

 

 
Figure 4.10. RMS error in the responses of the case-study structure due to change in the loop pinching 

parameter of the Bouc-Wen model, γ, for Case 3 in Table 4-3 

 

 
Figure 4.11. RMS error in the responses of the case-study structure due to change in the power factor of 

the Bouc-Wen model, n, for Case 3 in Table 4-3 
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Figure 4.12. Spider diagram generated by median RMS errors in the responses of the case-study structure 

due to change in the Bouc-Wen model parameters for Case 3 in Table 4-3 

 

Table 4-6. Results of LSA of the Bouc-Wen model for Case 3 in Table 4-3 with different input 
excitations of Table 2-1. 

Record # (PGA in g) EQ1 (0.116) EQ19 (0.358) EQ11(0.617) Median (EQ1-20) 

 RMSE Rank RMSE Rank RMSE Rank RMSE Rank 

A 41.54 1 30.57 1 15.18 1 25.41 1 

α 3.95 5 6.02 4 0.18 5 1.74 5 

β 8.14 2 7.58 3 2.60 3 5.28 3 

γ 4.95 4 4.30 5 1.23 4 3.08 4 

n 7.70 3 7.76 2 3.19 2 5.30 2 

 

 

Table 4-7 summarises the results for the three different cases considered for 

LSA in Table 4-3. The overall ranking of the model parameters, based on the maximum 

mean/median RMS errors induced in the structural responses, due to changes in the 

model parameters, shows that the Bouc-Wen model is considerably more sensitive to A, 

followed by a large distance with n, β, α, and finally γ. The ranking, includes the effect 

of different input excitations (20 records), different base values (3 sets), and different 

natural periods for the case-study structure (3 periods) and in a sense provides a ‘global’ 

sensitivity analysis results for the Bouc-Wen model. 
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Table 4-7. Summary of the results of LSA of the Bouc-Wen model with mean maximum RMS 
errors for Case 1 and 2, and maximum median RMS errors for Case 3.  

Case # as in Table 4-3 Case 1 Case 2 Case 3 
Overall  

Mean 

 RMSE Rank RMSE Rank RMSE Rank RMSE Rank 

A 29.10 1 35.30 1 25.41 1 29.94 1 

α 4.05 4 5.34 4 1.74 5 3.71 4 

β 5.95 3 6.26 3 5.28 3 5.83 3 

γ 3.52 5 1.76 5 3.08 4 2.79 5 

n 6.69 2 6.61 2 5.30 2 6.20 2 

 

4.7. Summary 

The versatile classical Bouc-Wen model is one of the most widely used semi-

physical models of hysteresis in structural mechanics. In this chapter, the classical 

Bouc-Wen model was carefully examined for the effect of its parameters on the overall 

hysteresis loop shape and consequently on the structural responses. Results for local and 

global sensitivity analyses were presented to assess relative sensitivity of overall 

performance of the structure to each of the parameters in the model. The results 

presented show that some parameters of the hysteretic model have rather less effect on 

structural responses, and thus could be fixed at values determined by basic engineering 

judgements based on the limited a priori knowledge of the structure. This approach 

would enable simpler, more suitable hysteretic models with less number of parameters 

to be identified in SHM of nonlinear hysteretic structures, particularly where RT-SHM 

is necessary or desired. 

Overall, the local and ‘global’ sensitivity analysis results showed that the five 

parameters in the classical Bouc-Wen model can be ranked in order of their effect on 

structural performance as A>>n>β>α>γ. However, the results presented are limited by 

hereditary problems using LSAs, and a more thorough GSA is needed to further study 

the mutual interactions of the parameters and limitations associated with the choice of 
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base values, input excitations, and natural frequencies used. However, the overall result 

provides a fundamental and reasonable guideline for the use of these models. 
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Science is a wonderful thing  

if one does not have to earn one's living at it. 

Albert Einstein 
German-American Physicist, 1879-1955 

CHAPTER 5  

 RT-SHM using a fast and slow dynamics 

separation technique 

5.1. Introduction 

In Chapter 2, a simple, more suitable algorithm for RT-SHM of nonlinear 

hysteretic structures was developed to resolve issues of high computational cost and 

complexity with existing real-time health monitoring approaches. The parametric 

algorithm developed uses adaptive LMS filtering theory to identify key structural and 

nonlinear Bouc-Wen baseline model parameters in real time. The chapter assumes that 

limited knowledge of the structure is available prior to the SHM process to provide the 

minimum healthy baseline model data required for identification and health monitoring. 
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In particular, mass, geometrical or material properties required for a push-over FEA, 

damping factors, and the power factor in the nonlinear Bouc-Wen baseline model were 

assumed to be known or reasonably estimated from basic knowledge. Similarly, the RT-

SHM method of Chapter 3 was predicated on the availability of full internal dynamics 

of the healthy Bouc-Wen baseline model prior to the health monitoring process for 

comparison with the faulty system’s dynamics to identify damage. However, some of 

this information, particularly, the nonlinear baseline model parameters, may not be 

available a priori. 

The two-step identification method developed in Chapter 2 can identify the 

Bouc-Wen model parameters. However, the first step in the identification process 

proposed is a push-over FEA that is a tedious process and cannot be implemented in 

real time. Therefore, any change in the off-line identified parameters using the push-

over analysis, cannot be detected by the RT-SHM method of Chapter 2. 

Simpler forms of the nonlinear Bouc-Wen model, with a smaller number of 

parameters, require fewer a priori known parameters to represent nonlinear hysteretic 

behaviour of the structure. These simpler forms could thus provide the opportunity of 

combining the two identification and health monitoring processes developed in Chapter 

2, into an integrated one-step RT-SHM process. This approach enables identifying most 

or all of the structural and nonlinear baseline model parameters in real time, as an event 

occurs. Moreover, the RT-SHM algorithms of Chapters 2 and 3 require full-state 

structural response measurement, but displacement and velocity are very difficult to 

measure. Therefore, RT-SHM methods that are less dependent on structural 

displacement and velocity measurements are more suitable for implementation in the 

field. 

The present chapter develops an on-line SHM algorithm for identification and 
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health monitoring of Bouc-Wen type nonlinear hysteretic structures using a simpler 

form of the Bouc-Wen model than the version used in Chapters 2 and 3. This new form 

has only three parameters, all of which can be identified in real time with no prior 

information of the structure, except for the structural mass and the Bouc-Wen power 

factor. Mass can be estimated reasonably accurately from the design by knowing the 

type and measuring geometrical dimensions of the structure. The power factor can also 

be either estimated based on limited a priori knowledge of the structure, or, where no 

such information is available, can be ignored using a linear-in-parameter form of the 

Bouc-Wen model (Acho and Pozo 2009). 

The novel RT-SHM algorithm proposed in this chapter thus removes the need 

for push-over analysis and makes the health monitoring process significantly easier. 

Moreover, the algorithm proposed does not require structural displacement 

measurement, and relies only on measured accelerations and estimated velocities from 

integration of the accelerations measured. Therefore, the method is also superior to the 

previous algorithms developed in Chapters 2 and 3, in the sense that it removes the need 

for difficult to measure structural displacements to provide RT-SHM information.     

The on-line parametric SHM algorithm proposed uses a fast and slow dynamics 

separation technique and robust PLLSQ fitting to identify and track key structural and 

nonlinear baseline model parameters. The method is thus able to uniquely identify 

structural stiffness, damping, and the Bouc-Wen hysteretic model parameters. 

Importantly, all of these values are directly related to well-recognised damage metrics. 

Proof-of-method simulations of various combinations of damage, as modelled 

by changes in these parameters, are performed on a realistic nonlinear case-study 

structure. Noise-free input responses are used to evaluate the efficacy of the proposed 

algorithm in identifying structural parameters in real time. The effect of the specific 
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external load on performance of the proposed SHM method is evaluated using a suite of 

20 different ground motions to test robustness of the results across a range of realistic 

inputs. 

5.2. Definition of the SHM problem 

Equations of motion for a m-DOF shear-type nonlinear hysteretic structure 

under seismic loading can be written (Lin et al. 2001): 

{ } { } { }( ){ } { }, , gv q v v t I x⋅ + = − ⋅ ⋅M Mɺɺ ɺ ɺɺ  (5.1) 

where M, is the m×m diagonal mass matrix of the structure, { }v , { }vɺ , and { }vɺɺ  are the 

m×1 displacement, velocity, and acceleration vectors, respectively, g
xɺɺ  is the ground 

motion acceleration, {I} is the identity column vector of order m, and finally, q is the 

m×1 total restoring force vector defined as the difference between the restoring forces of 

(i-1)th
 and i

th stories. The nonlinear hysteretic restoring force of each floor including the 

damping force, qi, i=1,..,m, is governed by the following first-order nonlinear 

differential equation that is a form of the Bouc-Wen model described in Section 2.2 

(Wen 1976; Lin et al. 2001; Yang and Lin 2004; Ismail et al. 2009): 

1
, 1,...,i in n

i i i i i i i i i i i iq c r k r a r q q b r q i m
−

= + − − =ɺ ɺɺ ɺ ɺ ɺ  (5.2) 

where ci is the equivalent viscous damping and ki is the equivalent stiffness of storey i, 

and i
rɺɺ, i

rɺ , and ri are the relative acceleration, velocity, and displacement between storey 

i and i-1, respectively. Further, ai, bi, and ni are loop fatness, loop pinching, and 

abruptness parameters (power factor) of the i
th storey in the Bouc-Wen model of 

hysteresis, respectively. Finally, m is the number of stories in the shear-type structure.  

Ground motion acceleration, as well as accelerations at different floors, can be 

easily measured with low cost accelerometers at high sampling rates. Therefore, the 



105 

 

total restoring force vector, {q}, can be readily determined from Equation (5.1). 

Integration of measured accelerations without (Boyce 1970; Trifunac 1971; Trujillo and 

Carter 1982; Yang et al. 2006) or with (Hann et al. 2009) limited displacement data for 

integration drift correction also provides the velocities, { }vɺ
 
or { }irɺ . Hence, tracking 

the time-varying structural and Bouc-Wen parameters, ci, ki, ai, and bi in Equation (5.2), 

determines the structure’s health in real time. The power factor, ni, is assumed to be 

known a priori for each floor. In the case where no such information is available, the 

equivalent linear-in-parameter modified Bouc-Wen model, with the same proposed 

technique in this paper, can be used (Acho and Pozo 2009). 

5.3. Fast-slow dynamics separation 

For simplicity, and due to the fact that when Equation (5.1) is solved for the 

restoring force vector, {q}, Equation (5.2) can be independently solved for each DOF, 

all subsequent equations will be developed for a SDOF model. Thus, the subscript i will 

be omitted from the terms previously defined. However, all equations and methods can 

be readily generalised to MDOF cases. 

From Equations (5.1) and (5.2), qk, the restoring force at time k, and its first 

derivative,
k

qɺ , can be written:  

,( )k k g kq m v x= − +ɺɺ ɺɺ
 

(5.3) 
 

1n n

k k k k k k k k k k k kq c r k r a r q q b r q
−

= + − −ɺ ɺɺ ɺ ɺ ɺ  (5.4) 

where the subscript k denotes values at time k. To further simplify the equations by 

reducing the number of unknowns to be identified from four (c, k, a, and b) to three (c, 

k, and d), following a similar procedure as in Equations (2.15)-(2.18), a new form of 

Equation (5.4) is defined: 
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n

k k k k k k k kq c r k r d r q= + +ɺ ɺɺ ɺ ɺ  (5.5) 

where 

( )
, 0

, 0

, 0

k k k k

k k k k k k k k

k k k k

a b r q

d a sign r q b b r q

a b r q

− − >


 = − + = − = 
 − <

ɺ

ɺ ɺ

ɺ

 (5.6) 

Similar to  in Figure 2.4, over each period of the structure’s motion, the term 

k k
r qɺ  in Equation (5.6) changes sign four times. Therefore, in a quarter of a period, this 

equation yields the two independent linear equations required to determine ak and bk. 

A finite difference approximation based on a third-order corrector method is 

used to relate Equations (5.3) and (5.5) (Lin et al. 2001; Yang and Lin 2004): 

( )1 1 25 8
12

k
k k k k k

t
q q q q q− − −

∆
− = + −ɺ ɺ ɺ  (5.7) 

where ∆tk is the time step. This equation can be rewritten as a linear equation in terms of 

the unknowns using Equations (5.3) and (5.5): 

1, 2, 3,k k k k k k kc k d yφ φ φ+ + =  (5.8) 

where, 

1 , , 1

1, 1 2

2, 1 2

3, 1 1 2 2

( )

5 8

5 8

5 8

k k k g k g k

k k k k

k k k k

n n n

k k k k k k k

y m v v x x

r r r

r r r

r q r q r q

φ

φ

φ

− −

− −

− −

− − − −

= − − + −

= + −

= + −

= + −

ɺɺ ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

 (5.9) 

Equation (5.8) cannot be independently solved for three unique answers for ck, 

kk, and dk at each time step. Thus, more independent equations are needed over each 

time step. The two stiffness and damping parameters have much slower dynamics 

compared to the Bouc-Wen parameter, dk. As was mentioned earlier, dk changes sign 

four times in every period of motion, while the two other parameters can reasonably be 

considered fixed or to change much more slowly. This point suggests that, similar to 

Section 3.4, over increasingly smaller time steps of ∆tl, the values ck and kk can be 

( ) ( )i ir t h tɺ
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assumed constant compared to the faster dynamics of dk (Hann et al. 2009): 

( )
( )
( )

( ) , 1,...,1 ,

( ) 1,...,1 ,

( ) 1,...,1 ,

1

k k k

k k k

l l l

k l

c t c k mk t t k t

k t k k mk t t k t

d t d l nl t t l t

t p t p

′= =− ∆ ≤ ≤ ∆

′= =− ∆ ≤ ≤ ∆

′= =− ∆ ≤ ≤ ∆

∆ = ∆ >

 (5.10) 

where m ′  and n′  are the number of intervals over which the piecewise time-varying 

functions, c(t), k(t), and d(t) are defined. Further, ∆tk and ∆tl are user-selected intervals 

over which piecewise constant behaviour is reasonable. For ease of fitting, similar to 

Section 3.4, p is assumed to be an integer value greater than one. In this way, p values 

of dl are fitted alongside every single value of ck and kk as shown in Figure 5.1 for the 

case of p=3. 

 
Figure 5.1. Time variation of the fitted parameters for p=3 

Identification of the unknown parameters, ck, kk, and dl requires a system of 

linear equations (at least three), each in the form of Equation (5.8), at each time step. 

For the example of Figure 5.1, three values of ∆ti ( )3p =′  could be chosen in each 

time interval ∆tl. This choice will give nine equations for each time interval ∆tk with 

five unknowns, defined by the system: 

{ } { }.
k k

x y=kA  (5.11) 

where 
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1, 2, 3,

1, 1 2, 1 3, 1

1, 2 2, 2 3, 2

1, 3 2, 3 3, 3

1, 4 2, 4 3, 4

1, 5 2, 5 3, 5

1, 6 2, 6 3, 6

1, 7 2, 7 3, 7

1, 8 2, 8 3, 8

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
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 
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


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
 

kA
9,10,...,9

,
1,...,

i m

k m

′=

′=






 
(5.12) 

 

{ }

1

2
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,

3, 4,...,3
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lk

l

l
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k
k m

x d
l m

d

d

−

−

 
 
  ′= 

=  
′= 

 
  

 (5.13) 
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(5.14) 

Further, 1 3,
, 1,...,9

i
i mφ

−
′=  and , 1,...,9

i
y i m′=  are defined from Equation (5.9) at each time 

step , 1,...,9
i
t i m′∆ = . The least squares solution of the matrix Equation (5.11) yields the 

unknown vector {x}k. 

The overall RT-SHM algorithm developed is summarised in Figure 5.2. The two 

Bouc-Wen model parameters, a and b of Equation (5.2), if needed, can then be either 

calculated at smaller time steps using a similar fast and slow dynamics separation 

approach, or determined using Equations (5.3) and (5.6) at each quarter of a period of 

the structure’s motion. The overall approach thus identifies parameters within quarter of 

a response cycle, which should be more than adequate for the application envisioned. 
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Figure 5.2. Flowchart of one time step of the RT-SHM method developed for nonlinear hysteretic 
structures using a fast and slow dynamics separation technique     

5.4. Simulation proof-of-concept structure 

The simulation proof-of-concept structure is a SDOF nonlinear hysteretic 

structure with the following parametric values similar to (Lin et al. 2001; Yang and 

Lin 2004):  m=125.53 kg, c=0.07 kN.s/m, k=24.2 kN/m, a=0.2, b=0.1, and n=2.  The 

first fundamental natural frequency is 2.21 Hz, and the damping ratio in the same 

mode is 2%. The structure is subjected to the Northridge earthquake with PGA of 

0.617 g (EQ11 in Table 2-1).  

Nonlinear dynamic analysis is performed in MATLAB® using the predefined 

parameters and the Newmark-β integration method to represent the nonlinear hysteretic 

behaviour of the structure. The simulated structural responses from MATLAB® are then 

used to provide proof-of-concept inputs to the method and to thus quantify the accuracy 

of the identified parameters, stiffness, damping, and the combined Bouc-Wen 

parameter, d. 

Compose Ak and {y}k in 
Equations (5.12) and (5.14) 

Read mass (m) and the power 
factor (n) based on very limited 

available knowledge of the 
structure 

Calculate yi to yi-8 and φ1-3,i to  
φ1-3,i-8 from Equation (5.9) 

Find least squares solution of 
Equation (5.11) 

Use Equations (5.10) and (5.13) 
to calculate k(t), ∆c(t), and d(t) 

Measure i
vɺɺ and 

,g i
xɺɺ  

Pick suitable p′ and p 
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The structural identification and health monitoring algorithm developed is also 

implemented in MATLAB® for the identification process under the Northridge 

earthquake. Further, to evaluate the performance of the proposed SHM method under 

harmonic single frequency excitations, the simulation proof-of-concept structure is 

subjected to a harmonic excitation of amplitude 0.2 g and frequency of 2.21 Hz. This 

frequency is chosen to match the natural frequency of the simulated structure and cause 

instability. This harmonic excitation case is a worst-case approach, but also is a good 

representative of the loads seen in marine structures. Finally, to assess the robustness of 

the proposed method over different ground motions, the simulated structure is subjected 

to the suite of 20 different ground motions in Table 2-1. 

Table 5-1. Damage patterns used in the simulation 

Damage 

pattern # 
Description 

1 20% reduction in stiffness at the 5 second mark 

2 20% reduction in both stiffness and damping at the 5 second mark 

3 
20% reduction in the Bouc-Wen model parameter (d) at the 5 second 
mark 

4 
20% reduction in all three, stiffness, damping, and the Bouc-Wen 
model parameter at the 5 second mark 

 

 The simulated structure is also subjected to four different worst-case, sudden 

damage scenarios, defined in Table 5-1. The goal is to evaluate the proposed 

algorithm’s performance in damage identification over a range of limit cases and 

possibilities. The damage cases are applied to the structure at the 5-second mark. 

Simulation-derived data is recorded at 4 kHz, and results are smoothened using a 

backward moving average filter in real time to cancel the effect of very ill-conditioned 

coefficient matrices of Ak in Equation (5.11). 
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5.5. Results 

Figure 5.3 shows the nonlinear response of the SDOF proof-of-concept structure 

undergoing the Northridge earthquake. The figure clearly shows that the case-study 

structure is highly nonlinear and has a permanent residual deformation after the 

earthquake. As shown in Figure 5.4a, the algorithm is very capable of identifying the 

structural and Bouc-Wen model parameters, c, k, and d, in real time. In this figure, in 

the third graph from the top, the actual upper (a-b) and lower limits (-a-b) of the value 

of d, are shown for easier comparison, instead of its actual as-modelled values. 

 
Figure 5.3. Responses of the simulated structure subjected to the Northridge earthquake 

The maximum error in the identification process for the entire record after the 2-

second mark (t ≥ 2 s) is 3.04% of the actual as-modelled value for stiffness and 2.35% 

for damping for the simulated structure under the Northridge earthquake. These error 

values are well within modelling and construction errors. Identification results for the 

first two seconds were excluded from the error evaluation process to ignore the effect of 

incorrect initial values chosen for the parameters. 

To further evaluate the accuracy of the RT-SHM algorithm developed, the 
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identified values were used to recalculate the restoring forces. The result is shown in 

Figure 5.4b. As the figure shows, the actual and identified restoring forces are almost 

identical. Figure 5.5 shows the same results for the sinusoidal excitation. The maximum 

error in the identified values is 1.33% of the actual as-modelled value for k and 5.25% 

for c when the simulated structure is subjected to the harmonic excitation. Again, these 

values are quite small next to modelling errors or construction variability. 

(a) (b) 

Figure 5.4. a) Identified structural and Bouc-Wen model parameters and b) hysteresis loops of the 
simulated structure subjected to the Northridge earthquake 

(a) (b) 

Figure 5.5. a) Identified structural and Bouc-Wen model parameters and b) hysteresis loops of the 
simulated structure subjected to a harmonic excitation of amplitude 0.2 g and frequency of 2.21 Hz 
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Figures 5.6 and 5.7 show that the proposed SHM algorithm is robust to different 

input excitations. The maximum error in the identification process is less than 7.12% 

(mean=2.67%, median=1.88%, and the 5th-95th inter-percentile=6.78%) for stiffness and 

7.19% (mean= 4.3%, median= 4.2%, and the 5th-95th inter-percentile=4.29%) for 

damping for all the ground motions in Table 2-1. Differences in the maximum error 

values for the different ground motions used are due to differences in the structural 

responses. These differences affect the coefficient matrix, Ak, in Equation (5.12) and 

sometimes result in less accurate least squares solutions for this equation. 

 
Figure 5.6. Maximum error in stiffness identification using the proposed algorithm when the case-study 

structure is subjected to the 20 different ground motion records in Table 2-1 (Mean error = 2.67%, 
median error = 1.88%, and the 5th-95th inter-percentile = 6.78%) 

 
Figure 5.7. Maximum error in damping factor identification using the proposed algorithm when the case-

study structure is subjected to the 20 different ground motion records in Table 2-1 (Mean error = 4.3%, 
median error = 4.2%, and the 5th-95th inter-percentile = 4.29%)  
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The SHM results for the four different damage patterns in Table 5-1 are shown 

in Figures 5.8 to 5.11. As these figures show, the RT-SHM approach proposed is readily 

able to identify damage in all four different damage scenarios with the worst-case 

abrupt change in the structural parameters. Identified and actual hysteresis loops for the 

last damage pattern (No. 4) are also shown in Figure 5.11b. As this figure shows, even 

for the worst damage pattern of the four in Table 5-1, with sudden changes in all the 

three parameters, the identified hysteresis loops are in a very good agreement with the 

actual as-modelled loops. 

 

 

 
Figure 5.8. Identified structural and Bouc-Wen model parameters of the simulated structure subjected to 

the Northridge earthquake and damage pattern 1 in Table 5-1  
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Figure 5.9. Identified structural and Bouc-Wen model parameters of the simulated structure subjected to 

the Northridge earthquake and damage pattern 2 in Table 5-1 

 

 
Figure 5.10. Identified structural and Bouc-Wen model parameters of the simulated structure subjected to 

the Northridge earthquake and damage pattern 3 in Table 5-1  
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(a) 

 
(b) 

Figure 5.11. a) Identified structural and Bouc-Wen model parameters and b) hysteresis loops of the 
simulated structure subjected to the Northridge earthquake and damage pattern 4 in Table 5-1 
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The SHM results presented in this chapter are functionally equivalent to real-

time results. Specifically, using MATLAB®, identification of the three stiffness, 

damping and the combined Bouc-Wen model parameters takes ~1.37e-5 s for each 

piecewise step of ∆ti=2.5e-4 s (4 kHz sampling rate) on a 3.16 GHz Intel® dual-core 

desktop machine. This execution time is only ~5.5% of the smallest identification time 

step used (∆ti). Coding in more sophisticated programming languages, such as C, 

typically reduces computational time by 10-100×, or more, compared to MATLAB®. In 

addition, the identification process at each time step only relies on the prior time step 

values. Hence, the proposed algorithm can be readily used as an on-line SHM method, 

and is much more computationally-efficient than many of its real-time competitors, 

such as (Sato and Qi 1998; Loh et al. 2000; Li et al. 2004a). 

The method developed remains to be experimentally validated and further 

tested, particularly against noise-contaminated input responses. However, a range of 

highly-effective noise-filtering methods that are computationally-efficient are readily 

available to manage this issue (Ifeachor and Jervis 1993; Sayed 2003). In addition, the 

best nonlinear model that can represent the structure’s nonlinear yielding behaviour is 

sometimes unknown or is not necessarily of a Bouc-Wen type.  In such cases, actual and 

modelled structural behaviours would not be perfectly the same. Therefore, the effect of 

different baseline models on the identification results need to be evaluated before 

implementation on a real structure. However, the method proposed is definitely a first 

step forward and has significant potential benefits in assessing structural safety and 

serviceability after major events, such as earthquakes, and provides the input data 

required for structural control methods with damage mitigation or avoidance purposes. 
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5.6. Summary  

SHM is the process of identification, localisation, and quantification of 

structural damage due to external loads, such as an earthquake. SHM results simplify 

and automate typical visual or localised experimental approaches and enable more 

informed structural safety assessment and post-event retrofit. On-line SHM is of 

particular interest for rapid safety assessment by owners and civil defence authorities, 

particularly in the immediate aftermath of an event. It can also be used during an event 

to inform active control systems to further avoid or mitigate damage.  

This chapter presented an on-line SHM algorithm for identification and 

monitoring of nonlinear hysteretic structures. It separates fast and slow dynamics and 

uses robust PLLSQ fitting to identify key structural parameters including stiffness, 

damping, and the Bouc-Wen hysteretic model parameters in real time. These parameters 

are directly related to well-recognised damage metrics. 

Moreover, the RT-SHM method developed does not require structural 

displacement measurements, which are typically very difficult to acquire or reasonably 

estimate. Estimation of displacement by double integration of acceleration 

measurements is also subject to drift and error, which needs to be corrected using 

additional displacement data. Therefore, this great advantage of the algorithm 

developed over many of its competitors makes it more amenable in the field.        

Proof-of-method simulations of a realistic nonlinear case-study structure, 

subjected to a suite of 20 different ground motions, show that the algorithm is well-

capable of identifying structural parameters to within 2.7% and 4.3% of the actual as-

modelled values for stiffness and damping, respectively. Results for various 

combinations of changes (damage) in structural parameters also show that the algorithm 

performs well in tracking the changes in real time. The RT-SHM approach developed 
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remains to be further studied for noise effect and shorter response times before 

experimental validation and implementation by the profession. 
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The world is divided into men who have wit and no religion  

and men who have religion and no wit. 

Ibn Sina (Avicenna) 
Persian Polymath, 980-1037 

CHAPTER 6  

Line-scan based seismic displacement 

measurement 

6.1. Introduction 

As discussed in Chapter 1, SHM is a multi-staged process that includes defining 

properties of the structure that need to be monitored, instrumentation and data 

acquisition, identification of damage-sensitive properties to distinguish between 

damaged and undamaged structures, and, finally, determination of whether the changes 

observed in the selected features used to identify damage are statistically significant 

(Sohn et al. 2004). The data collection stage plays a key role in the SHM process by 

providing the required inputs. Limitations on acquiring the necessary input data have 
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made the implementation of many existing SHM algorithms difficult or impossible. In 

particular, most SHM and control algorithms for damage detection and mitigation, 

including the methods developed in Chapters 2 and 3, require continuous monitoring of 

dynamic responses: acceleration, velocity, and displacement (Loh et al. 2000; Hann et 

al. 2009; Nayyerloo et al. 2011). Acceleration can be easily measured using ordinary 

accelerometers. However, velocity and displacement are typically difficult to capture, 

especially at the high enough sampling rate required by these algorithms relative to the 

structural frequencies. Velocity and displacement are usually estimated by integration of 

measured acceleration. However, the integrated results are subject to drift and error, 

which needs to be corrected using additional data from an independent, typically lower 

sampling rate, displacement sensor (Li et al. 2004b). 

Displacement sensors can be categorized into two main groups: contact and non-

contact. Contact sensors, such as Linear Variable Differential Transducers (LVDTs), 

piezoelectric (PZT) sensors, or optical fibre sensors are not always non-invasive and 

require extensive sensor networking to measure structural displacements in multiple 

directions. Moreover, contact sensors may architecturally interfere with light model 

structures, or in the case of optical fibre sensors may involve expensive optical 

spectrum analyzers (Lee 2003).  

In the non-contact group, Laser Doppler Vibrometers (LDVs), GPS-based 

sensors, and computer vision based techniques are common methods with a wide range 

of applications. LDVs provide high bandwidth and highly accurate displacement and 

velocity data, but only in one direction and at relatively high cost (Lee et al. 2007). 

GPS-based and vision-based sensors can provide displacement data in multiple 

directions and require less networking compared to LDVs and contact sensors. 

Nonetheless, each has its own problems. GPS-based systems are low-rate and very low-
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resolution for precision applications (Li et al. 2004b; Kijewski-Correa et al. 2006). 

Vision-based methods can be very high-resolution and high-rate depending on sampling 

rate and resolution of the acquired frames. However, the increasing volume of image 

data to be processed significantly increases the processing time and computational 

complexity, making it, at least at this time, unsuitable for cost-effective real-time 

applications. 

Visual techniques are also quite flexible and can be easily adapted to different 

applications.  Light-based motion tracking of buildings subjected to earthquake motions 

or equipment inside buildings proposed by Hutchinson et al. (2005; 2006) is one 

application. Three-dimensional (3D) structural displacement measurement with multiple 

digital cameras is a second (Chang and Ji 2007). Others include, non-target stereo-

vision spatio-temporal response measurement of line-like structures (Ji and Chang 

2008), digital image correlation based stereovision for 3D displacement measurement 

(Orteu 2009), and applying edge detection technique with sub-pixel accuracy for 

structural displacement measurement (Fu and Moosa 2002). 

 Recently, Lim et al. developed a method that uses a single line-scan camera with 

a printed pattern to measure foundation pile movements in multiple directions (Lim and 

Lim 2008). Using line-scan cameras significantly decreases the size and pixel volume of 

the acquired frames. It thus enables high-speed displacement measurement without the 

need for very expensive, real-time hardware. However, its resolution is limited for 

larger displacements, which is particularly a problem where the expected motions cover 

a wide range of scales, such as seen in seismic response motions. Further, no calibration 

procedure was proposed in the work by Lim et al. to ensure that the assumptions made 

in developing the line-scan based method proposed are fully met. However, if these 

issues can be solved, line-scan cameras offer a high-resolution, high-rate displacement 
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sensor platform.   

This chapter extends and empirically evaluates the efficacy of the proposed line-

scan based displacement measurement method by Lim et al. In particular, the method is 

extended to improve resolution, especially for large seismic events with a wide range of 

displacement level. This change also ensures maximum resolution across a range of 

displacements, as a result. Thus, both larger and smaller displacements have equal 

resolution, which was not the case for the original method. 

Further, as the accuracy of the proposed measurement method depends directly 

on the camera-pattern calibration, a simple and easy-to-implement calibration procedure 

is proposed that ensures accuracy of the measurement results. Chapter 7 addresses the 

impact of the correctness or any error of the printed pattern dimensions utilised by this 

sensor and method on the measurement results. This latter analysis thus quantifies the 

level of confidence in the measured displacements as a function of inaccuracy in the 

pattern dimensions at the heart of this approach. 

6.2. Line-scan displacement measurement 

6.2.1. Method of Lim et al. 

Lim et al. proposed a vision-based displacement measurement method using one 

high-speed line-scan camera with the special pattern shown in Figure 6.1 to capture 

vertical, horizontal and rotational movements of any point on the pattern. The pattern is 

a printed array of black and white triangles and is posted on a desired spot on the 

structure. The camera is pointed at the array so that the scan line intersects the pattern 

lines, as shown schematically in Figure 6.1.  



 

Figure 6.1. Special pattern enables vertical, horizontal, and rotational displacement measurement using 
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Special pattern enables vertical, horizontal, and rotational displacement measurement using 

} coordinate system, 

which has been rotated by 45° with respect to the original coordinate system, {M}. It 

and PnS (n=0,1,2,…), 

respectively. These intersection points can be written in terms of the known pattern 

and bt. At each time 

step or image, the Euclidian distance between any two consecutive intersection points 

can be measured in pixels. Therefore, calculating the ratios of two consecutive white to 

 in the unknowns at 

(6.1) 

(6.2) 

the pattern in Figure 6.1, 
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respectively, and  Ln (n=0,1,2,...) or Lm (m=0,1,2,...) are ratios between two consecutive 

black and white distances in each frame of the line-scan image and are assessed directly 

from the image. Using ratios of the distances, instead of the distances themselves, 

makes calibration of measurement results in pixels to the FOV in meters easier. Using 

Equations (6.1) and (6.2), the centre of the scan line, or in other words, the centre of the 

camera’s FOV can be written in terms of at and bt using coordinates of intersection 

points adjacent to the centre point: 

2 2
,

1 1t

t t t t t
C

t t

b HR b a HR
P

a a

 − + +
=   + + 

 (6.3) 

where, Rt, as illustrated in Figure 6.2, is the ratio of the distance of the centre point to 

the closest adjacent intersection point between the scan line and the normal pattern lines 

over the distance between the two consecutive intersection points between the normal 

lines and the scan line that passes through the centre point: 
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Figure 6.2. Rt is the distance between P1H and PC over the distance between P1H and P0H (Lim and Lim 
2008) 

 Transferring the movements from {T} to a coordinate system with the scan line 

as one of the axes represents a linear transformation of the pattern. Rotational 

movements of the pattern can then be calculated as the difference between inverse 

tangents of at for two consecutive captured frames: 
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where ∆xt, ∆yt, and ∆θt are linear movements of the pattern parallel to the scan line, 

linear movements perpendicular to the scan line, and rotations of the pattern about the 

centre of the scan line, respectively. Moreover, all the parameters with subscript “0” 

denote the initial values. 

6.2.2. Software design and edge tracking 

The image processing provides the time-varying coordinates of the intersection 

points between the scan line and the pattern lines. Simply, it detects the edges from the 

white to black and black to white regions. This detection can be done using a relative 

intensity threshold level to detect location of large changes in the intensity of pixels at 

each acquired grayscale image from the camera. Following edge detection, edges in the 

first frame can be tracked to detect relative displacements of the target with respect to 

its initial position. As the line-scan image acquisition is very fast (up to 20+ kHz) 

compared to movements of the target, the next position of each edge falls within a small 

distance to its previous location. Therefore, the next position of each edge can be sought 

in a small bounded area around its previous position (Lim and Lim 2008). Hence, the 

new location of an edge can be found by using binary search algorithm (Sedgewick 

1997) in the bounded area defined. This bounded area should not be less than maximum 

estimated movement of the target at each measurement time step on either side of the 

edge. 

This edge tracking algorithm requires a sufficiently wide FOV depending on the 

maximum likely displacements that may occur. Tracking each edge by simply locating 

the edge using pixel numbers in each frame requires the edges to always remain in the 
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FOV of the camera. To ensure that this condition is met, the FOV of the camera must be 

expanded so that it encompasses all possible locations that the edges may move to. 

During this process of “zooming-out”, the number of pixels in the Charge-Coupled 

Device (CCD) array remains constant (constant camera resolution), and as a result the 

number of pixels per millimetres of movement of the target or the output measurement 

resolution decreases. Hence, if the likely responses span a range of displacement scales, 

resolution at small motions is lost to enable large motion measurement. Resolving this 

issue enables using low-cost low-resolution line-scan cameras for structural 

displacement measurement using the method of Lim et al., as well as improving the 

overall method. 

The resolution problem arising from the edge tracking algorithm can be solved 

by dynamically altering which edges are being tracked after time zero. The new 

algorithm renames edges when they cross the centre point of the CCD array such that 

the required edges for displacement measurement are always centred around the CCD 

array centre pixel. To this end, offset factors are stored and updated with each renaming 

to ensure that data is continuous. Therefore, the size of the FOV required to capture the 

motions is fixed regardless of the size of the motions, and it is a function of the pattern 

dimensions only. Thus, the resolution is maximised and also, as a result, fixed for all 

displacement scales sensed. 

The new edge tracking method developed is illustrated in Figure 6.3. Six edges, 

three on the right and three on the left-hand side of the centre point of the CCD array, 

should be detected in each captured image and tracked over different images to provide 

the data required for displacement measurement using Lim et al. method. These edges 

can be simply detected using relative intensity threshold method and tracked using their 

pixel values. However, when an edge crosses the centre point, an undesired shift in the 
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edge position values recorded occurs. As a result, the three edges on the left or right-

hand side of the centre point will not be the same edges being tracked over the previous 

frames. 

This shift is shown in Figure 6.3 by renaming the edges at t2, when edge 3 

crosses the centre point and becomes 3’ instead of 2’. Therefore, at edge renaming time 

steps, offset or shift values (S1-5) should be stored and added to the edge pixel values for 

the actual position of each edge. For example, actual position of edge 3 after it crosses 

the centre point of the CCD array is calculated by adding S3 to the new position of edge 

3 detected (3’) to yield 2’, the actual position of edge 3 at t2. Time steps at which such 

shifting occurs can be detected by tracking the change in the sign of the first derivative 

of distances between the centre point and the first edge on the right or left-hand side of 

the centre point in each image. The dotted curve in Figure 6.3 shows this change for the 

case of using the first edge on the right-hand side of the centre point. 

 
Figure 6.3. The new edge tracking technique proposed. 

Figure 6.4 shows the edges tracked during a linear movement of a target in two 

opposite directions using the direct tracking technique by pixel position of the edges and 

the new edge tracking algorithm proposed. The discontinuities in Figure 6.4b show the 

time step marks at which an edge renaming occurs. The figure clearly shows that the 
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tracked edges span a smaller section of the CCD array than edges tracked by the direct 

method. Hence, resolution and accuracy are maintained or improved with this novel 

extension to the method. 

  
 

(a) 
 

(b) 

Figure 6.4. Position of the tracked edges, a) when the edges are simply tracked by their pixel position and 
b) when the proposed edge tracking algorithm is used 

6.2.3. Experimental hardware design 

Main components of the image acquisition and processing system are introduced 

in Table 6-1. One of the main components in the displacement measurement chain is the 

line-scan camera. Line-scan cameras scan a single-pixel-width digital imaging sensor at 

very high speed. Therefore, the images are only one pixel wide. High-speed line-scan 

cameras with line rates as high as 23 kHz and longitudinal resolutions in the order of 

12k pixels are now commercially available (Teledyne DALSA Corp. 2011). Such 

cameras provide high resolution and high speed at the same time, which is critical for 

real-time applications.  

Consider a black dot moving against a white background on a linear path in the 

FOV of the camera. The line-scan camera sees only a moving darker pixel over a series 

of images, as illustrated in Figure 6.5. Calibrating these pixels to the FOV in meters 

offers a displacement measurement. 
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Table 6-1. Specifications of the measurement set-up 

Item Description 

Camera 

Teledyne DALSA P2-23-08K40 (Teledyne DALSA Corp. 2008b) 

Maximum line rate (kHz) 9.3 

Pixel size (µm) 7 × 7 

Resolution (pixel) 8192 

Lens 
Schneider Componon-S 4.0/80 (Schneider Kreuznach Corp. 2010) 
with focusing mount and accessories 

Frame grabber board National Instruments PCIe-1430 (National Instruments Corp. 2006) 

Light source 
Philips MASTERLine 111 halogen reflector lamp 
60W 12V 8D (Philips Corp. 2011) 

Host and target 

PCs 

Intel® Core™ 2 Duo CPU 2.66 GHz 

3.24 GB RAM 

100 GB HDD 

LabVIEW™ real-time operating system compatible LAN card 

Image acquisition  

and processing software 

LabVIEW™ 8.5 and LabVIEW™ real-time operating system 
(LabVIEW™ RTOS) 

 

   
 

(a) 
 

(b) 
 

(c) 

Figure 6.5. a) Line-scan camera used in this study, b) a linear mass-spring-damper system with a printed 
pattern (a black dot on a white background) posted on the mass (the red line on the pattern shows the 

FOV of the camera), and c) what the line-scan camera sees over several frames 

The light intensity required to capture useful images depends on factors such as 

the surface roughness, nature, speed, and spectral characteristics of the target being 

imaged, also on exposure time of the CCD array of the camera (image acquisition rate), 

light source characteristics, environmental and acquisition system specifications, and 

more (Teledyne DALSA Corp. 2008a). Further, higher image acquisition rates typically 

require higher illumination intensities, because at high sampling rates, the CCD array is 

exposed to light for a shorter period and thus less amount of light is captured. AC light 
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sources are also typically not suitable for line

fluctuations in the light intensity caused by the alternating nature of the applied current. 

Therefore, linear LED light sources or Halogen projectors are recommended for the 

application of this thesis. 

Figure 6.6 shows the data flow in the displacement measurement system. The 

image acquisition and processing code is written in LabVIEW™ on a host PC for real

time execution. The target PC runs under LabVIEW™ real

(RTOS) to make it dedicated to the image acquisition and processing tasks, to enable 

high sampling rates. The line

installed on the target PC. This car

image data to the target PC hard disk drive (HDD). The image processing is performed 

in real time, but results can be retrieved from the target PC for further processing either 

after the acquisition process or in real 

through the server makes remote measurement possible.

 

 

line-scan camera  
Frame grabber 

board

Figure 6.6. Data flowchart of the displacement measurement system (pictures and icons from 
www.teledynedalsa.com
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where FOV is the FOV of the camera, N is the number of active pixels of the camera, r 

is the resolution of the measurement process, d is the pixel size of the camera, M is the 

lens magnification, f is the focal length of the lens, and p is the distance between the 

camera and the moving target. 

For example, to measure displacements of a structure with maximum likely 

displacement of ±250 mm, a 500 mm long FOV is needed if the original edge tracking 

algorithm is used. For the best resolution with the camera used in this study (maximum 

8192 active pixels), this FOV results in 61 µm resolution. However, using the new edge 

tracking algorithm, only a 50 mm long or shorter FOV is needed because using the new 

method, the length of the FOV depends only on the pattern dimensions to encompass at 

least five edges at each frame. Fairly low-resolution 1k pixels over this FOV result in a 

better resolution of 50 µm or less. With the 8192 pixels of the device used here over a 

50 mm FOV, the resolution is 6.1 µm, which is 10 times better for no added cost or 

significant complexity.  

By knowing the image size (N×d) and FOV, magnification, M, can be calculated 

from Equation (6.8), and Equation (6.9) can then be used to find a suitable lens with the 

required focal length based on a desired or allowed distance between the target and the 

camera. The resolution from Equation (6.7), can then be improved using sub-pixel 

interpolation techniques if required. For this paper, full camera resolution at frame rates 

up to 500 frames per second is used and other settings are chosen to have less than 30 

µm resolution in measurements. 



134 

 

6.3. Camera-pattern calibration 

If the CCD array of the camera is not perfectly parallel to the pattern plane (out-

of-plane angled CCD) or the horizontal plane upon which the camera is mounted (in-

plane angled CCD), the measurement results from Lim et al. method will have 

potentially significant error due to the distortion induced by the non-perpendicular 

perspective. An out-of-plane angled CCD array results in a non-unique distance 

between different parts of the pattern and the camera. Hence, closer parts of the pattern 

appear longer and further parts shorter in the captured frames compared to the non-

angled case. This change alters the assumptions made in calculating the intersection 

points between the slanting and normal pattern lines and the scan line in Equations (6.3) 

and yields significant errors in the measurement results. The effect of in-plane angle 

should also be accounted for because the reported measurement results of Equations 

(6.5) and (6.6) are in the camera coordinate system and any inclination makes it 

different from the desired frame with horizontal and vertical axes. This section analyzes 

the effect of rotation about each of the three axes on the assumptions made by Lim et al. 

and consequently on the measurement results. A procedure for camera-pattern 

calibration is then proposed to eliminate the resulting errors due to camera-pattern 

misalignment. 

Figure 6.7a shows the reference frames for the other panels in the figure. The 

three coordinate systems used are {G}, {C}, and {LS}, which are the ground, camera, 

and the scan line coordinate systems, respectively. In {C}, XC axis is parallel to the 

CCD array, YC is perpendicular to XC, and ZC is normal to XCYC plane. Further, the 

dotted line on the pattern plane represents the original FOV of the camera when 

calibrated. In the ideal case, the two former coordinate systems are perfectly parallel, 

and the assumptions made in (Lim and Lim 2008) are satisfied.  



135 
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(c) (d) 

Figure 6.7. Different possible camera misalignments with respect to the global horizontal and vertical 
coordinates system 

Figure 6.7b shows the case where the camera has a small rotation about XC so 

that the camera scans a line a bit higher or lower than the original FOV depending on 

the rotation direction. Moreover, the FOV is wider due to the increase in the distance 

between the camera and the pattern. However, ratios of distances between the edges in 

the scanned frame and the orientation of {LS} with respect to {G} remain unchanged. 

Therefore, this type of misalignment does not alter the basic assumptions made in the 

original work. 

In the second case, shown in Figure 6.7c, the camera rotates about YC axis. In 

this case, the camera scans a line that is a bit further to the right or to the left of the 

original FOV depending on the rotation direction. The out-of-plane angle between the 
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CCD plane (XCYC) and the pattern plane (XGYG), α, causes a non-perpendicular 

perspective of the pattern and alters the basic assumptions made by Lim et al. for the 

normal and slanting line equations in the pattern plane. This occurs because, unlike 

before, the closer parts of the pattern appear longer and further parts shorter, causing 

error in the measurement results even though {LS} is still parallel to {G}. 

The last case is where the camera rotates about ZC axis. As Figure 6.7d shows, 

this in-plane rotation of the camera does not alter any of the basic assumptions, and thus 

does not cause error on the measurement results. However, camera rotation rotates the 

coordinates system in which the results are reported (i.e. {LS}). Therefore, the results 

will no longer be in a desired coordinate system parallel to {G}. In reality, a 

combination of the two in-plane and out-of-plane angles is usually the case. Each angle 

should be carefully removed so that cancelling one does not cause the other.   

6.3.1. Removing the out-of-plane angle 

The out-of-plane angle of Figure 6.7c can be removed using a slightly different 

pattern designed for calibration. The proposed calibration pattern, shown in Figure 6.8, 

is an array of black and white rectangles with equal widths. The printed pattern is 

posted on a desired spot on the structure, and the line-scan camera is pointed at the 

pattern for calibration. As Figure 6.8 shows, the scan line intersects the parallel pattern 

lines, and only when there is no out-of-plane angle, the following definition holds: 

... 1
AB BC CD

A B B C C D
= = = =

′ ′ ′ ′ ′ ′
 (6.10) 

where , , ,...A B B C C D′ ′ ′ ′ ′ ′  are the measured edge to edge Euclidean distances in the linear 

frame captured by the camera. 

In the case where an out-of-plane angle exists, the edge to edge distances in the 

linear frame, as seen by the camera, would not be the same due to the non-perpendicular 
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perspective from the pattern. Thus, Equation (6.10) does not hold. Moreover, as the 

figure clearly shows, the likely existing in-plane-angle, β, does not alter the condition of 

Equation (6.10). Therefore, the calibration pattern proposed cancels the in-plane angle 

effect when the camera is calibrated for the out-of-plane angle. Further, Figure 6.8 also 

shows that there is no need for careful placement of the pattern with respect to the 

global horizontal and vertical axes, and the angle γ does not affect the calibration 

process. 

 

Figure 6.8. The newly designed calibration pattern and the scan line at zero out-of-plane angle 
situation 

To remove the out-of-plane angle of Figure 6.7c using the designed calibration 

pattern, the edge to edge distances in the first captured frame are measured and 

compared. If they are not equal, the camera is rotated in the plane upon which the 

camera is mounted (about YC axis in Figure 6.7c) until Equation (6.10) is satisfied to 

within a desired tolerance. Direction of the rotations is always toward the side with 

longer distances, since same side of the camera is closer to the pattern plane. 

6.3.2. Removing the in-plane angle 

The in-plane angle rotates the scan line frame. Therefore, the measurement 

results would not represent horizontal and vertical displacements of the pattern with 

respect to the desired global coordinate system. The in-plane angle, or the initial scan 

line angle with respect to the global frame (β in Figure 6.7d), can be calculated from 
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Equation (6.6). In this equation, a0, the initial slope of the scan line in {T} can be 

calculated using the method of Lim et al. with the measured edge to edge distances in 

the first captured frame.  Knowing that {T} is rotated by 45˚ with respect to {M} yields 

the following equation for the in-plane angle provided that {M}, the pattern frame 

shown in Figure 6.1, has been precisely posted on the target so that it is parallel to the 

global frame {G}: 

1
0tan

4
a

π
β −= +  (6.11) 

6.4. Experimental validation 

6.4.1. Set-up 

To assess the performance of the overall system (extended method and 

calibration of Sections 6.3.1 and 6.3.2) in capturing seismic structural displacements, a 

SDOF case-study structure with an undamped natural period of 0.5 seconds was 

considered. Displacements of the structure under the 20 different earthquakes in Table 

2-1 were simulated in MATLAB® with 5% constant damping. Peak displacement 

results for each record are shown in Table 6-2.  

The 0.5 second natural period was chosen to ensure the presence of higher 

frequencies in the displacement data to examine how well the line-scan measurement 

system captures these relatively faster motions. Fast Fourier Transform (FFT) analysis 

of the derived displacement suites for simulated structures with higher and lower natural 

periods, as shown in Figure 6.9, confirms that there is no significant frequency content 

in the displacement data greater than 15 Hz. Therefore, sampling at 500 Hz is far 

beyond the frequencies involved in the structure’s motion and guarantees that all 

necessary motions and dynamics are captured.  
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Table 6-2. Peak displacements of the case-study structure, used for experimental validation of the line-
scan displacement measurement method, under the ground motion records in Table 2-1 

EQ 

Peak 

Displacement 

(cm) 

EQ 

Peak 

Displacement 

(cm) 

EQ1 1.71 EQ11 3.77 

EQ2 3.78 EQ12 4.53 

EQ3 1.5 EQ13 3.09 

EQ4 3.39 EQ14 4.14 

EQ5 4.85 EQ15 2.61 

EQ6 3.90 EQ16 2.03 

EQ7 5.26 EQ17 2.76 

EQ8 4.23 EQ18 0.94 

EQ9 2.86 EQ19 3.83 

EQ10 3.8 EQ20 3.52 

 

 
Figure 6.9. FFT analysis of displacement suites derived from records in Table 2-1 for case-study 

structures with different natural periods 

A computer-controlled cart, controlled by a dSPACE® system (dSPACE GmbH, 

Germany), was used to generate the simulated displacement records. Encoder 

measurements of the actual position of the cart were used to validate the results from the 

imaging system. The cart movements represent motions of the centre of mass of a real 

linear structure with the same natural period simulated. Figure 6.10a shows the 

experimental set-up in detail. 

In addition, to show the capability of the proposed method to capture even 

higher frequencies and smaller motions, a dynamic material testing machine (MTS 810, 
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MTS Systems Corporation), shown in Figure 6.10b, was used to generate high-

frequency, low-amplitude sinusoidal motions as small as ±1 mm at 5 Hz, which is a 

value well below most SHM algorithms requirements. 

 
(a) 

 

 
(b) 

Figure 6.10. Experimental set-up used for a) random (1. Line-scan camera, 2. Pattern, 3. Cart, 4. 
dSPACE, 5. Light, and 6. Data acquisition computer) and b) harmonic (1. Line-scan camera, 2. Pattern, 3. 

MTS machine, 4. Computer to control the MTS machine, 5. Light, 6. Camera and light source power 
supplies, 7. Target computer, 8. Host computer, and 9. Moving head of the MTS machine) displacement 

measurement tests 

In both the random and sinusoidal tests, a 20×60 mm (H×W) pattern printed with 

600 dpi (dots per inch) resolution was posted on the moving target so that the pattern 

sides (H and W in Figure 6.1) were parallel to the global horizontal and vertical axes. 

The line-scan camera was calibrated using the method described in Section 6.3. The 

pattern is visible in Figure 6.10.  
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6.4.2. Results and discussion 

Figure 6.11a shows variations of the difference between norms of the measured 

and actual displacement signals over the norm of the actual signal for the 20 different 

displacement records derived from the earthquake ground accelerations described in 

Table 2-1 for the case study structure. This ratio is less than 3% for the entire suite, and 

the measured and actual signals are almost identical. Figure 6.11b shows the results for 

record 20 in Table 2-1 as an example. 

(a) (b) 

Figure 6.11. a) Absolute value of the difference between norms of the actual and measured displacement 
signals over the norm of the actual displacement signal in percent for the records in Table 2-1 and b) 

measurement results for record 20 in Table 2-1, as an example, with a 20 mm shift to show both results 
clearly as separate lines  

Since sampling rate and resolution of the displacement measurement set-up is 

sufficient to capture movements of the cart, the error is mainly due to inaccurate cart 

position data from the encoder. These encoder errors are caused by the backlash in a 

pinion coupled to the encoder. This pinion is moved on a rack by the cart movements. 

Therefore, the output from the encoder does not change when the cart movements are 

smaller than the backlash, which is approximately 0.5 mm. Hence, the image-based 

displacement results are within the encoder error. 

Results for the harmonic test are shown in Figure 6.12. Once more, error 

between the actual and measured displacements at peak points is less than 3%, and the 

actual and measured displacement signals are almost identical. Moreover, the norm of 
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the error for the entire 25-second measurement period over the norm of the actual 

displacement signal from interior LVDT of the MTS machine is 4.64%. These values 

demonstrate the capability of the proposed method for high-frequency low-amplitude 

vibration measurement, which is typically the most difficult to measure without a direct 

contact sensor. 

(a) (b) 

Figure 6.12. a) Error in peak points measurement and b) actual and measured displacements for the lower 
head of the MTS machine, travelling ±1 mm harmonically at 5 Hz 

 

As will be shown in the next chapter, Monte Carlo simulation of 100k randomly 

selected possible measurement cases uniformly distributed over possible ranges for each 

of the parameters involved in the measurements, shows that the 600 dpi resolution used 

to print out the 20×60 mm pattern (0.2% error in H and 0.07% error in W) has almost no 

effect on the results reported here. Moreover, the pattern surface is assumed to have no 

bumps when printed and posted on a desired spot on the structure, and error due to these 

likely surface bumps are neglected in the measurements. Such a surface smoothness, if 

required, can be easily achieved by printing the pattern on a hard surface, such as a 

wood or plastic board.  
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6.5. Summary 

 The chapter empirically examined high-speed line-scan cameras as a robust and 

high-speed displacement sensor for a range of seismic monitoring applications. Line-

scan cameras have the additional benefit of requiring no invasive mechanisms or added 

processing to provide a high-resolution output measure, and do not interfere 

architecturally. Following the method proposed by Lim et al. for measuring foundation 

pile movements, multiple displacements and motions of any structure can be determined 

in real time at rates over 1 kHz using only one high-speed line-scan camera and a 

special pattern. This resolution is more than sufficient for structural monitoring and 

control problems. 

A novel edge tracking algorithm was also developed that enables high-resolution 

measurement of large motions using relatively low-resolution line-scan cameras, as well 

as equivalent resolution for very small motions, a unique advance that enables seismic 

displacement monitoring. Further, as the accuracy of the measurement results depends 

directly on camera-pattern calibration and satisfying the assumptions made by Lim et 

al., an easy-to-implement calibration procedure was developed that ensures the accuracy 

of the measurement results. Finally, the versatility of the total measurement procedure 

was examined through both harmonic and random vibration experiments with a suite of 

different input motions applied to a computer-controlled cart. The impact of error in the 

printed pattern dimensions on the measurement results is assessed in the next chapter 

using Monte Carlo methods to rigorously determine the level of confidence of the 

reported measurement results. 

Comparing the input and the measured motions confirms that vision-based 

structural displacement measurement utilizing a high-speed line-scan camera offers a 

robust, high-resolution and low-cost means of non-invasively measuring structural 
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vibration displacements. The line-scan displacement measurement method developed, 

as any other vision-based approach to structural displacement measurement, can only 

measure relative displacements to the camera and is mainly meant for use in laboratory 

environments, where the camera can be put on a fixed base. However, it is equally 

valued where measuring relative displacements, such as inter-storey drifts, is important, 

which is the situation in many practical and realistic SHM applications. 
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Doubt is the key to knowledge. 

 

Persian Proverb 

CHAPTER 7  

Monte Carlo simulation of  

inaccurate pattern dimensions effect  

on the method of Lim et al. 

7.1. Introduction 

Vision-based structural displacement measurement methods (Fu and Moosa 

2002; Kanda et al. 2004; Hutchinson et al. 2005; Chang and Ji 2007; Lee et al. 2007; Ji 

and Chang 2008; Orteu 2009) can be very high-resolution and high-rate, depending on 

sampling rate and resolution of the acquired images. However, the increasing volume of 

image data to be processed, as resolution and sampling demands increase, significantly 

increases the processing time, computational complexity, and the processing hardware 
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cost. Line-scan based approaches to structural displacement measurement, originally 

proposed by Lim et al. (2008), significantly decrease the size and pixel volume of the 

acquired frames and enables high-speed displacement measurement, as seen in the 

previous chapter. 

The method of Lim et al. was empirically evaluated and significantly modified 

for seismic structural displacement measurement in the previous chapter. In particular, 

two extensions were made to the original method. First, a new edge tracking algorithm 

for the image processing part of the original method is developed that enables high-

resolution measurement of large seismic displacements using low-cost low-resolution 

line-scan cameras. Second, it also enables best or maximum resolution for all scales of 

motion, significantly broadening the potential application space. Third, an easy-to-

implement camera-pattern calibration procedure is proposed that guarantees the basic 

geometrical assumptions required are fulfilled, ensuring the accuracy of the output 

measurements. 

However, measurement accuracy also depends directly on the correctness of the 

printed pattern dimensions. This chapter evaluates the impact of inaccurate pattern 

dimensions on measurement results. It uses Monte Carlo Simulation (MCS) of 100k 

randomly chosen different possible measurement cases to determine the level of 

confidence in the measured displacements as a function of error in the pattern 

dimensions. It thus quantifies the potential sources of error in terms of quantifiable 

errors in the pattern used. Hence, overall, this chapter together with the previous one 

present and characterize a practical, high-speed, high-accuracy, but low-cost means of 

non-invasive, non-contact displacement sensing.  
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7.2. Sources of error on measurement results 

As Equations (6.1)-(6.3) show, any inaccuracy in the pattern dimensions, H 

(height) and W (width), will lead to an error in the measured movements in Equations 

(6.5) and (6.6). Moreover, when the CCD array of the camera is not perfectly parallel to 

the pattern plane (out-of-plane-angled CCD) or the horizontal plane upon which the 

camera is mounted (in-plane-angled CCD), the results will have further error. As 

discussed in the previous chapter, the error due to an out-of-plane-angled camera 

induces distortion, and in-plane angled camera error is produced by the inclination that 

makes the line-scan frame different from the desired frame with horizontal and vertical 

axes. The present chapter assumes the camera is calibrated prior to the measurement so 

that these effects are eliminated, as described in the previous chapter. Thus, all resulting 

errors are due solely to inaccurate pattern dimensions.  

7.3. Effect of inaccurate pattern dimensions 

7.3.1. Error evaluation method 

By substituting Equations (6.1) and (6.2) in Equation (6.3), changes in measured 

coordinates of the centre point at time t can be written using partial derivatives of (Pct)x 

and (Pct)y, components of Pct in x and y directions, with respect to H and W: 

( ) ( )
 

( )

( ) ( ) ( )
 

t x t x

t x

t y t y t y

Pc Pc
H W

Pc H W

Pc Pc Pc
H W

H W

∂ ∂ 
∆ + ∆ ∆  ∂ ∂

 = 
∆ ∂ ∂   ∆ + ∆ 

∂ ∂ 

 (7.1) 

or, 

 2 2
 ( ) 2 2

 
( )  2 2

 
2 2

t t

t x

t y t t

R C AR
H W

Pc B

Pc R C AR
H W

B

 +
∆ − ∆ ∆ 

 = 
∆  + 

∆ + ∆ 
 

 (7.2) 

Similarly, using Equation (6.6), the error in rotation angle measurement can be written: 
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( )
2 2 2 2

 t

AB
H W W H

A W B H
∆Θ = ∆ − ∆

+
 (7.3) 

where A, B, and C are dimensionless parameters defined: 

n mA L L= −  (7.4) 

( ) ( )  1 1m n m nB L L L L= − + + +  (7.5) 

( ) 2 1nC L=− +  (7.6) 

and all other parameters have been previously defined. 

Using Equations (7.2) and (7.3), it is possible to assess the error on 

measurements made with Lim et al. method due to inaccuracies in pattern dimensions 

defined by ∆H and ∆W. 

7.3.2. Monte Carlo simulation 

Monte Carlo Simulation (MCS) can provide approximate solutions for a wide 

class of non-deterministic problems through statistical sampling on a computer. First, 

ranges of different parameters affecting the solution are determined. Second, 

considering the probability distribution of each of the parameters, n different random 

values within the specified ranges are assigned to each parameter. Simulating the 

problem for all n random cases provides an approximate solution for the problem. The 

simulation error decreases by 
1

n
 as the population of the random simulated cases 

increases (Fishman 1996).  

 In this case, five different variables are involved in determining the 

measurement results: 1,2) the pattern dimensions, H and W, and 3,4,5) the frame-

dependent parameters measured at each frame, Ln, Lm, and Rt. The pattern dimensions, 

H and W, can be any real positive number. To keep the pattern within the FOV of the 

camera as the pattern moves, W should be sufficiently wide. Accordingly, H needs to be 
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long enough to avoid very thin and hard to detect parts occurring at the corners of 

triangles in the pattern. Therefore, 10≤W≤200 mm and 0.2 5
H

W
≤ ≤  is recommended for 

the structural displacement measurement case as these values encompass a typical range 

for this application space. 

 The frame-dependent parameters, Ln and Lm, change each measurement time 

step. Depending on the position of the pattern, different values may be obtained from 

processing the acquired frames. For example, Figure 7.1 shows three possible cases for 

the scan line position on the pattern. From Case (1) to (3), in the highlighted box on the 

left, the ratio between black to white distances decreases, and finally approaches zero, 

as the black part becomes shorter. In addition, rotation in the opposite direction shows 

that the ratio approaches infinity as the white part shortens. Similar behaviours can 

occur for the other pattern triangle elements. However, in reality, the width of the 

pattern is chosen according to the likely maximum rotational and translational 

movements of the target to keep the FOV of the camera limited to the middle of the 

pattern. Therefore 0 ≤ Ln(or m) ≤ 20 is suggested.  

 
Figure 7.1. Changes in Ln and Lm with pattern rotation relative to the scan line 

 As Figure 6.2 shows, PC can be either between P0H and P1H, or outside of this 

space, depending on the pattern movement resulting from movement of the target. 
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Therefore, in Equation (6.4), as the pattern moves in one direction, Rt becomes smaller 

or larger depending on the direction of the movement. Thus, upper and lower bounds 

for Rt can be any number. However, pattern dimensions can be chosen based on the 

maximum likely movement of the pattern so that PC always falls between any set of PnH 

and P(n+1)H. In this case, Rt is between 0 and 1.  

To evaluate the independence of the frame-dependent parameters, two 

illustrative examples are given. The first example is illustrated in Figure 7.2. In this 

figure, O is the centre of the CCD array and from labels (1) to (3) as the pattern (or the 

scan line) rotates about O, Rt remains constant: 

t
OA OB OC

R
AF BE CD

= = =  (7.7) 

However, it can be shown that Ln(or m) changes during this rotation: 

(  )  :  n or m

AA BB CC
L

A F B E C D

′ ′ ′
≠ ≠

′ ′ ′
 (7.8) 

 

 
Figure 7.2. From (1) to (3) Lm and Ln change while Rt is constant 

The second example occurs when the pattern moves only in the horizontal 

direction and is perfectly aligned with the scan line. In this case, as shown in Figure 7.3, 

as the pattern moves, Ln(or m) is fixed while Rt changes. These two examples clearly 

show that changes in Rt are independent from changes in Lm or Ln, and Rt is an 

independent variable that cannot be ignored in the simulation.  
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Figure 7.3. From (1) to (2) Lm and Ln are fixed while Rt changes 

To simulate the errors in the displacement measurement results due to inaccurate 

pattern dimensions, 100k uniformly distributed random values are selected over the 

specified ranges for each of the five parameters: H, W, Lm, Ln, and Rt. Errors in the 

pattern dimensions are assumed to be within ±1% of the actual values selected for H 

and W over a step-wise range with 0.2% increments. This range is based on an 

assessment of standard printer errors (resolution>300 dpi and pattern dimensions>10 

mm). Thus, 11×11 different combinations are assessed for the errors in H and W. 

7.4. Results and discussion 

Figures 7.4 to 7.6 show variations of the median error in the horizontal, vertical, 

and rotational movement measurement with the error in the pattern dimensions. Figures 

7.7-7.9 show the 5th-95th inter-percentile range for each of the median errors in Figures 

7.4- 7.6. These inter-percentile values for each case of ∆H and ∆W show a range where 

90% of the simulation results can be found for that particular case. The median values 

are in the middle of these ranges. Therefore, the inter-percentile value can be used as an 

indication of how the simulation results are spread around the median value, or in other 

words how well the median value represents the simulation results set for that particular 

case.  



153 

 

 

 

 

 
(a) 

 

 
(b) 

Figure 7.4. Median horizontal displacement measurement error in percent due to imprecise pattern 
dimensions: a) median horizontal displacement measurement error surface and b) median errors for fixed 

values of ∆W  
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(a) 

 

 
(b) 

Figure 7.5. Median vertical displacement measurement error in percent due to imprecise pattern 
dimensions: a) median vertical displacement measurement error surface and b) median errors for fixed 

values of ∆W  
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Figure 7.6. Median rotational movement measurement error in percent due to imprecise pattern 

dimensions 

As the simulation results confirm, measurement results for the horizontal and 

vertical displacements are considerably more sensitive to errors in the pattern 

dimensions than the rotation measurement results. Errors as large as ±1% in the pattern 

dimensions, due to imprecise printing process, result in median errors around ±1.0% 

with inter-percentile ranges of up to 1.3% in measurement results for the horizontal 

direction. In the vertical direction, the results are ±1.2% with 5th-95th inter-percentile 

ranges of up to 7.4%. The same amount of inaccuracy in pattern dimensions does not 

alter the rotational movement measurements, with median error near 0% and an inter-

percentile range of 1.1% in the worst case. 

Figures 7.4a and 7.5a show that the median error in measurement results for the 

vertical and horizontal measurements is more sensitive to error in H than in W. In these 

figures, both of the median error surfaces are sloped planes in ∆H direction with 

considerably less variation in ∆W direction. This result can also be seen in Figures 7.4b 

and 7.5b, where median errors for fixed ∆H values are close to each other across the 

range of ∆W.  
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(a) 

 

 
(b) 

Figure 7.7. 5th-95th inter-percentile range of the horizontal displacement measurement error in percent 
due to inaccurate pattern dimensions: a) inter-percentile surface and b) inter-percentile ranges for fixed 

values of ∆W (solid lines are for ∆W > 0).  
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(a) 

 

 
(b) 

Figure 7.8. 5th-95th inter-percentile range of the vertical displacement measurement error in percent due 
to inaccurate pattern dimensions: a) inter-percentile surface and b) inter-percentile ranges for fixed values 

of ∆W (solid lines are for ∆W > 0)  
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(a) 

 

 
(b) 

Figure 7.9. 5th-95th inter-percentile range of the rotational movement measurement error in percent due to 
inaccurate pattern dimensions: a) inter-percentile surface and b) inter-percentile ranges for fixed values of 

∆W (solid lines are for ∆W > 0).  
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As an example of how these results can be used to assess the accuracy of 

measurement results, a 20×60 mm (H×W) pattern printed using an ordinary 600 dpi 

printer is considered. The printing resolution, in this case, is approximately 0.042 mm 

per pixel. Thus, errors in the horizontal (H) and vertical (W) dimensions of the pattern 

are approximately ±0.2% and ±0.07%, respectively. As Figures 7.4-7.6 show, this error 

in the pattern dimensions results in ~±0.19% and ~±0.23% maximum median errors in 

the measurement results in the horizontal and vertical directions with 5th-95th inter-

percentile ranges of up to ~0.2% and ~1%, respectively. 

Overall, as the results confirm, for seismic structural displacement measurement 

applications, typical patterns (H>10 mm, W>10 mm) printed using standard printers 

with a resolution higher than 300 dpi induce very small amounts of error (<~±1%) in 

the measurement results. Therefore, errors due to imprecise printing process can be 

ignored in many seismic displacement measurement applications. However, when very 

high-resolution measurement is required, the errors caused by imprecise printing 

process may be high and should be evaluated using the results developed in this chapter.  

7.5. Summary 

High-speed computer vision based methods for real-time structural displacement 

measurement are typically computationally-intensive and/or require costly processing 

hardware. They are thus not suitable for real-time applications. Using line-scan cameras 

significantly decreases the volume of acquired pixels and frames, and makes high-speed 

displacement measurement far more feasible using relatively low-cost cameras, 

hardware, and processing. Recently, Lim et al. proposed a method that uses only one 

line-scan camera with a specific printed pattern to capture structural displacement in 

multiple directions, as well as rotation. The method was extended and modified for 
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measuring seismic structural displacements in Chapter 6. However, the effect of 

inaccuracy in the pattern dimensions, resulting from imprecise printing, on the accuracy 

of measurement results was unknown. In particular, where precise motion measurement 

is required, this inaccuracy may significantly affect measurement quality, as the entire 

method is based around this pattern. 

This chapter evaluated this effect through Monte Carlo simulation of 100k 

randomly selected possible measurement cases for a range of pattern dimensions 

varying between 10 and 200 mm in width with aspect ratios ranging from 0.2 to 5. 

Results for the simulated cases show that errors as large as ±1% in the pattern 

dimensions result in median errors around ±1.2% with 5th-95th inter-percentile ranges of 

up to 7.4% in horizontal and vertical measurements. Moreover, the same amount of 

inaccuracy in the pattern dimensions does not alter rotational movement measurements. 

Overall, as the results confirm, for seismic structural displacement measurement 

applications, typical pattern dimensions (>10 mm) and printing resolutions (>300 dpi) 

induce negligible amounts of error (<~±1%) in the measurement results. Thus, for the 

application focus of this thesis, error due to imprecise printing process can be ignored. 
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We build too many walls and not enough bridges. 

 

Isaac Newton 
English Mathematician, 1642-1727 

CHAPTER 8  

Conclusions 

This thesis explored novel computationally-efficient algorithms and cost-

effective sensors for RT-SHM of a broad range of realistic nonlinear hysteretic 

structures undergoing seismic excitation. The parametric SHM methods developed can 

directly identify changes in the key structural parameters including stiffness, damping, 

and the nonlinear baseline model parameters, in real time. These structural parameters 

are directly related to well-recognised damage metrics and provide useful information 

about the safety and serviceability of structures during and immediately after an event. 

Further, the algorithms developed provide the data required for many structural control 

methods for damage avoidance or mitigation purposes.   

 The SHM methods developed in this thesis directly identify changes (damage) 
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in stiffness, damping, and, importantly, the nonlinear baseline model parameters. 

Therefore, unlike modal or frequency metric based approaches, these methods are 

capable of locating damage and are highly sensitive to small yet important amounts of 

damage. Equally importantly, the methods developed provide SHM information in real 

time at a very low computational cost and complexity compared to their other 

competitive real-time approaches. This great advantage over many existing RT-SHM 

approaches makes the techniques developed more amenable to real-world applications.  

The RT-SHM algorithms developed use a nonlinear Bouc-Wen hysteretic 

baseline model to capture more dynamics of the structure. These parametric methods 

are thus capable of uniquely identifying likely damage to the structure by identifying 

changes to the overall structural model parameters. In this sense, these methods are also 

superior to existing non-parametric RT-SHM methods, such as ANN-based approaches, 

that can capture the full dynamics of the structure and provide real-time health 

information, but are not capable of localizing or quantifying the damage that occurred. 

The nonlinear Bouc-Wen baseline model was chosen for simplicity, as well as its 

flexibility to model a wide range of nonlinear structural behaviour. More 

comprehensive models that offer more structural parameters to be monitored and 

consequently more information can be developed and implemented with similar 

approaches, as the methods presented are readily generalised. 

In developing the specific RT-SHM methods presented in this thesis, careful 

attention was given to cases where only very limited a priori knowledge of the structure 

is available prior to the monitoring and identification process, such as in historical 

structures, and appropriate methods were developed accordingly. Cases where typically 

more design data is available before the SHM process were also considered and simpler 

methods were developed to better accommodate those cases. Further, the last algorithm 
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developed, in particular, does not rely on the availability of difficult to measure 

structural displacements and provides RT-SHM data using only measured accelerations 

and velocities, which is a significant simplification.  

To enable these methods, a robust and high-rate displacement sensor is required. 

Hence, a line-scan based displacement measurement method, originally proposed by 

Lim et al. (2008) for foundation pile movement measurement, was empirically 

evaluated and significantly extended for seismic structural displacement measurement. 

The modified method offers a novel, low-cost and high-resolution means of measuring 

seismic structural displacements in multiple directions, as well as rotations, without 

extensive sensor networking, architectural interference, or necessary invasive 

implementation prerequisites.  

Overall, the results presented showed significant promise and highlighted 

several key recommendations to optimise the SHM methods developed. These methods 

remain to be experimentally proven and further tested, particularly against noise and 

other operational problems prior to implementation by the profession. However, the 

overall methods and approach are readily generalisable and create a platform for further 

realistic development of SHM.   

 The following sections highlight the specific contributions from this research to 

the SHM field: 

Chapter 2 developed a computationally-efficient LMS-based algorithm and a 

two-step structural identification method for RT-SHM of nonlinear hysteretic structures. 

The RT-SHM algorithm developed, utilising a baseline nonlinear Bouc-Wen structural 

model, can directly identify changes in stiffness and plastic deflections in real time. 

Proof-of-concept simulation results showed that for the simulated SDOF structure and 

suite of records considered, the algorithm identifies stiffness changes to within 10% of 



165 

 

true values in less than 2.0 seconds, in a realistic scenario with fixed filter tuning 

parameters. Further, median ratio of the norm of error signal in identifying plastic 

deformations to the norm of actual as-modelled plastic deflection signal was shown to 

be 7.1% for the suite of records used. Finally, permanent deformation was identified to 

within 7.46% of the actual value using noise-free simulation-derived structural 

responses for the 20 different ground motion records considered. The algorithm 

developed is thus robust to ground motion excitation. 

The chapter thus showed that: 

• Computationally simple adaptive filtering technique can be readily 

extended by utilising a nonlinear baseline model to accurately identify 

stiffness, as well as plastic and permanent deflections in real time. These 

identified values can provide the data required for structural control 

methods. Equally, they provide important post-event information on the 

future serviceability, safety, and repair cost, in particular, the two latter 

identified values. 

• The two-step identification method presented thus offers significant 

potential benefit in assessing structural damage in a broad range of 

nonlinear Bouc-Wen hysteretic structures. 

The results presented in Chapter 2 could be readily improved with a more optimized 

adaptive filter with a variable step size or tuning parameter, using higher sampling rates, 

and greater number of taps or prior time step values used in the identification.  

Chapter 3 developed a real-time fault detection and diagnosis method for SHM 

of nonlinear Bouc-Wen hysteretic base-isolation systems using a simple comparison 

between the internal dynamics of the system with the healthy baseline model dynamics. 

The chapter assumed that the healthy baseline model dynamics are known prior to the 
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SHM process, which is the case for base-isolation systems, and thus developed a 

simpler approach to RT-SHM of such nonlinear hysteretic structures compared to 

Chapter 2. The designed residual signal was then used for determining the type and 

quantifying the severity of faults occurred using a PLLSQ fitting technique. Proof-of-

concept simulation results showed that for the simulated base-isolation system and the 

four worst-case, abrupt fault scenarios considered, including stiffness, damping, and 

combined stiffness and damping faults, the SHM method developed is very capable of 

tracking sudden changes in stiffness and damping of the base-isolation system in real 

time (maximum delay ~0.8 s) using noise-free structural responses. The real-time 

diagnostic information provided thus offer significant potential benefit in assessing 

base-isolation systems’ safety after a major event and can provide the information 

required for advanced structural control methods to compensate faults occurred and 

consequently maintain the overall structural system’s integrity during large earthquakes. 

Chapter 4 carefully examined the versatile classical Bouc-Wen model of 

hysteresis for the effect of each of its parameters on the overall hysteresis loop shape 

and consequently on the structural responses. Results for local and ‘global’ sensitivity 

analyses, considering the effect of different input excitations (20 records), different base 

values (3 sets), and different natural periods for the case-study structure (3 periods), 

were presented to assess the relative sensitivity of the overall performance of the 

structure to each of the parameters in the overall structural model. The results presented 

confirmed that some model parameters, such as the loop pinching factor (γ), have much 

less effect on the overall responses, and can thus be fixed at values determined by basic 

engineering judgements based on a limited a priori knowledge of the structure. This 

outcome enables simpler and more suitable hysteretic models with a lesser number of 

parameters to be identified in the RT-SHM process.  
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Overall, the local and ‘global’ sensitivity analysis results showed that the five 

parameters in the classical Bouc-Wen model can be ranked in order of the maximum 

RMS errors induced by their change on structural performance as A>>n>β>α>γ. These 

results are limited by hereditary problems using LSAs associated with the choice of 

base values, input excitations, and natural frequencies used, and a more thorough GSA 

is suggested as a future work to further study the mutual interactions of the parameters. 

However, the overall results provide a guideline for the use of these models in future 

studies. 

Chapter 5 presented an on-line SHM method for nonlinear hysteretic structures 

using a fast and slow dynamics separation and robust PLLSQ fitting techniques. The 

SHM algorithm developed can directly identify changes in stiffness, damping, as well 

as the nonlinear hysteretic Bouc-Wen baseline model parameters, in real time, with 

much less a priori known knowledge of the structure compared to the similar RT-SHM 

methods developed in Chapters 2 and 3. In particular, the algorithm needs only mass (if 

the linear-in-parameter Bouc-Wen model is used), which is easy to estimate, to provide 

RT-SHM information. The method developed in this chapter is also superior to the 

previous SHM approaches presented in this thesis in the sense that it does not rely on 

difficult to measure structural displacements. 

Proof-of-concept simulation results showed that for the simulated case-study 

structure and suite of records considered, the algorithm identifies stiffness and damping 

values, in real time, within 2.7% and 4.3% of the actual as-modelled values, 

respectively. The algorithm developed is thus robust to ground motion excitation. 

Moreover, simulation results for the four abrupt damage scenarios considered showed 

that the proposed SHM method is very capable of tracking sudden changes in the key 

structural parameters of hysteretic structures (stiffness, damping, and hysteretic baseline 
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model parameters) in real time.  

Overall, the RT-SHM method presented offers significant potential benefit in 

assessing structural safety after a major event and is capable of providing the data 

required for modern structural control methods for damage mitigation purposes without 

any difficult to measure or identify structural dynamics. The algorithm is particularly 

useful for SHM of historical structures, where usually no design data is available a 

priori. The method remains to be experimentally proven and further tested, particularly 

against significant noise. However, it is a significant first step forward and can be 

readily generalized to other similar nonlinear models. 

Chapter 6 empirically examined the efficacy of the line-scan displacement 

measurement method, originally proposed by Lim et al. (2008) for measuring 

foundation pile movements, for the purpose of seismic structural vibration 

measurement. Two significant extensions were made to this method, to enable an 

accurate and effective method: 

• A new edge tracking algorithm was proposed for the line-scan based 

displacement measurement that makes the size of the camera’s FOV 

independent from the size of the motions to be measured. This approach 

allows using low-cost, low-resolution line-scan cameras for high-speed, 

high-resolution large seismic displacement measurement. More 

importantly, it makes the method amenable to systems where 

displacements occur across a range of scales, while maintaining or 

improving resolution.  

• A simple camera-pattern calibration procedure for the line-scan based 

displacement measurement was developed that guarantees fulfilment of 

all the basic assumptions made in the original work and thus significantly 
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increases the measurement results accuracy.  

Comparison of input and measured motions for the case-study structure 

confirmed that the proposed vision-based structural displacement measurement offers a 

high-speed, high-resolution, and low-cost means of non-invasively measuring structural 

vibrations over a range of magnitudes. The line-scan displacement measurement method 

developed, as any other vision-based approach to structural displacement measurement, 

can only measure relative displacements to the camera. However, this capability is of 

high value in many realistic applications, such as inter-storey drift measurement. 

Chapter 7 analysed the accuracy of measurement results for the line-scan based 

structural displacement and rotation measurement method developed in the previous 

chapter. Error due to imprecision in the pattern dimensions due to imprecise printing 

process was assessed through Monte Carlo simulation. A set of 100k randomly selected 

possible measurement cases for a range of pattern dimensions varying between 10 and 

200 mm in width with aspect ratios ranging from 0.2 to 5 were considered in the 

simulation, and random values for each of the simulation parameters were uniformly 

distributed over the specified ranges. Simulation results showed that even errors as large 

as ±1% in the pattern dimensions induce only ~±1.2% error with a maximum 5th-95th 

inter-percentile range of ~7.4% for the linear movement measurement results. Further, 

results for rotation measurements remained almost unchanged with median errors close 

to zero with a maximum 5th-95th inter-percentile range of 1.06%.   

Results of this chapter can be used to determine the acceptable range of 

displacement and rotation measurement results of the line-scan based method 

developed, particularly, where precise motion measurement is required. Thus, these 

results further quantify the capability of this overall approach and extend the range of its 

potential applications. Specifically, for the application focus of the present thesis, 



170 

 

seismic structural displacement measurement, the results presented confirm that typical 

pattern dimensions (>10 mm) and printing resolutions (>300 dpi) induce negligible 

amounts of error (<~±1%) in the measurement results.  
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Science is always wrong.   

It never solves a problem without creating ten more.   

 

George Bernard Shaw 
Irish Dramatist, 1856-1950 

CHAPTER 9  

Future Work 

Several areas of interest for future work have been identified as a result of this 

research. These areas are detailed for each chapter: 

 

Chapter 2: LMS-based approach to RT-SHM   

•••• The LMS-based RT-SHM method developed was predicated on the idea that 

noise on input responses to the algorithm can be filtered using readily-

available, computationally-efficient noise-filtering methods (Ifeachor and 

Jervis 1993; Sayed 2003)  prior to the identification and monitoring process. 

However, in some cases, there is no a priori knowledge of the noise for 
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noise cancellation. Hence, the effect of noise on the health monitoring results 

of the algorithm developed should be assessed, although, in general, LMS-

based methods are robust to noise by design (Chase et al. 2005b).   

•••• Performance of the LMS-based RT-SHM algorithm developed depends 

directly on the choice of the step size or filter tuning parameter (µ) used in 

the weight updating formula of Equation (2.29). The optimum step size 

value can be identified for a suite of records by minimising the error between 

identified and actual as-modelled health monitoring information. However, 

the step size identified in this way may not perform well in identifying 

structural parameters under different excitations than the ones tuned for. This 

problem can be resolved by implementing a variable step size or self-tuning 

LMS-based filtering algorithm initially tuned based on past earthquake 

records and capable of self-tuning to external load changes for the best 

identification results (Sayed 2003; Abadi and Far 2008; Costa and Bermudez 

2008). 

•••• A more thorough analysis of the sensitivity of the LMS-based RT-SHM 

approach developed to relatively small amounts of damage is required to 

determine the damage detection resolution of the algorithm. This analysis 

quantifies the level of confidence in the health monitoring information 

reported. 

•••• More complex stochastic gradient estimation methods (Sayed 2003) could 

also be used at an additional computational cost in the LMS-based RT-SHM 

method developed. A detailed study of the effect of different gradient 

estimation techniques on the accuracy of the algorithm’s results provides 

useful information on the optimum gradient estimation method required for a 
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desired level of accuracy of the output RT-SHM results.  

•••• Evaluating the performance of the LMS-based RT-SHM algorithm 

developed in identification and health monitoring of non-Bouc-Wen type 

nonlinear hysteretic structures that initially assumed to be Bouc-Wen type is 

also recommended as a future avenue of research.  Results of this study, if 

successful, would broaden the potential application space of the algorithm 

developed to other types of nonlinear hysteretic systems and structures.   

•••• Finally, the overall LMS-based RT-SHM algorithm, including the two-step 

identification procedure, remains to be experimentally validated and further 

tested before implementation in the field for final performance evaluation 

against operational issues.  

Chapter 3: RT-SHM using changes in internal dynamics 

•••• Noise-contaminated input structural responses to the RT-SHM algorithm 

developed in Chapter 3 might affect sensitivity of the algorithm in both 

detection and diagnosis phases to small, yet important amounts of damage. 

Thus, further studies are required to assess how well the algorithm would 

perform under noisy conditions.  

•••• Experimental validation of the fault detection and diagnosis developed is 

also a key step that should be taken before implementation of the algorithm 

in the field. To simulate sudden or gradual damping faults in a base-isolated 

model building with a MR damper, sudden and gradual changes in the input 

voltage to the damper is suggested. Stiffness faults can also be induced in the 

model by opening bracings or changing the thickness of columns in the 

model.   

•••• Stiffness and damping faults may have equal effects on the base-isolation 
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system responses, but in opposite directions. In such situations, although 

there is a fault in the system, the residual signal designed remains zero. This 

result is expected given that the residual signal relies only on observing a 

change in the system responses. However, these changes may lead to larger 

damage and eventually failure in the system if not detected at early stages. 

Therefore, further research and development of the method is required to 

account for such exceptional cases. 

Chapter 4: Parameter analysis of the Bouc-Wen model 

•••• The results presented in this chapter provide only a sense of ‘global’ 

sensitivity of Bouc-Wen type hysteretic structures to the Bouc-Wen model 

parameters. A more thorough global sensitivity analysis using FAST method 

(Saltelli and Bolado 1998) or Sobol indices (Sobol' 1990; Sobol' 2001), 

considering different natural frequencies for the case-study structure and 

different input ground motions, would provide more reliable results, and 

could be followed as future research avenue. 

Chapter 5: RT-SHM using a fast and slow dynamics separation technique 

•••• Issues such as the effect of noise on input structural responses on sensitivity 

of the method developed to small amounts of damage, and algorithm’s 

response speed to sudden damage to the structure should be assessed. The 

latter assessment would be particularly relevant if the algorithm’s RT-SHM 

results are used as inputs to real-time structural control methods. 

•••• Implementation of the liner-in-parameter Bouc-Wen model (Acho and Pozo 

2009) in the RT-SHM method developed removes the need for estimation of 

the power factor prior to the SHM process and provides the opportunity of 

identifying all of the nonlinear hysteretic model parameters in real time. This 
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modification is particularly useful where there is no design data to accurately 

estimate the power factor, such as in historical structures. 

Chapter 6 and 7: Line-scan based seismic displacement measurement 

•••• In Figure 9.1, movements in the XY plane, as well as rotations about the z 

axis, can be captured using the modified line-scan displacement 

measurement method, described in Chapters 6 and 7, and only one line-scan 

camera positioned at A. An additional line-scan camera at position B could 

provide movements and rotations of the joint in the YZ plane and makes full 

3D movements and rotations of the joint available. Modifying the line-scan 

based method developed to account for the effect of projection at an angle 

provides the opportunity of using only one line-scan camera for full 3D 

displacement and rotation measurement. As Figure 9.1 shows, only one line-

scan camera could be placed at an angle to both sides of a joint (position C), 

and the camera’s FOV could be divided into two parts to be processed 

individually based on an extended method. This novel modification makes 

the method even more cost-effective and enables non-invasively measuring 

3D structural displacement and rotation measurement at high sampling rates 

and high resolutions using only one line-scan camera. However, it remains to 

be fully analysed and validated in future work.  
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Figure 9.1. Extension of the line-scan displacement and rotation measurement method developed for full 

3D displacement and rotation measurement (3D model of the camera from www.teledynedalsa.com) 

 



178 

 

REFERENCES 

Abadi, M. S. E. and A. M. Far (2008). "A unified framework for adaptive filter algorithms with 
variable step-size." Computers & Electrical Engineering 34(3): 232-249 

Acho, L. and F. Pozo (2009). A linear-in-parameter modified Bouc-Wen model. IV ECCOMAS 
Thematic Conference on Smart Structures and Materials (SMART'09). Porto, Portugal: 
8 pp. 

Ahlborn, T. M., R. Shuchman, et al. (2010). The state-of-the-practice of modern structural 
health monitoring for bridges: a comprehensive review, Michigan Tech Research 
Institute. 

Baber, T. and M. Noori (1986). "Modelling general hysteresis behaviour and random vibration 
application." Journal of Vibration, Acoustics, Stress, and Reliability in Design 108: 
411-420 

Baber, T. and Y.-K. Wen (1981). "Random vibration of hysteretic, degrading systems." Journal 
of Engineering Mechanics Division, ASCE 107(EM6): 1069-1087 

Barroso, L. R. and R. Rodriguez (2004). "Damage detection utilizing the damage index method 
to a benchmark structure." Journal of Engineering Mechanics 130(2): 142-151 

Bernal, D. (2007). "Damage localization from the null space of changes in the transfer matrix." 
AIAA journal 45(2): 374 

Bernal, D. and B. Gunes (2000). Observer/Kalman and subspace identification of the UBC 
benchmark structural model. The 14th ASCE Engineering Mechanics Conference 
Austin, Texas. 

Bernal, D. and B. Gunes (2004). "Flexibility based approach for damage characterization: 
Benchmark application." Journal of Engineering Mechanics 130(Compendex): 61-70 

Besançon, G. (2003). "High-gain observation with disturbance attenuation and application to 
robust fault detection." Automatica 39(6): 1095-1102 

Blome, C. F. (2004). LMS-based health monitoring of a non-linear rocking structure. 
Christchurch, University of Canterbury. 

Bouc, R. (1967). Forced vibration of mechanical systems with hysteresis. The 14th Conference 
on Non-Linear Oscillation., Prague, Czechoslovakia. 



179 

 

Boyce, W. H. (1970). "Integration of accelerograms." Bulletin of the Seismological Society of 
America 60(1): 261-263 

Caicedo, J. M., S. J. Dyke, et al. (2000). Health monitoring based on component transfer 
function. The 2000 International Conference on Advances in Structural Dynamics, 
Hong Kong. 

Caicedo, J. M., S. J. Dyke, et al. (2004). "Natural excitation technique and Eigensystem 
realization algorithm for phase I of the IASC-ASCE benchmark problem: Simulated 
data." Journal of Engineering Mechanics 130(1): 49-60 

Carden, E. P. and P. Fanning (2004). "Vibration Based Condition Monitoring: A Review." 
Structural Health Monitoring 3(4): 355-377 

Carr, A. J. (2004). RUAUMOKO, program for inelastic dynamic analysis: user manual, 
Department of Civil Engineering, University of Canterbury, Christchurch, New 
Zealand. 

Chan, K., S. Tarantola, et al. (2000). Variance-Based Methods. Sensitivity Analysis. A. Saltelli, 
K. Chan and E. M. Scott. Chichester, New York, John Wiley and Sons: 167-197. 

Chang, C. C. and Y. F. Ji (2007). "Flexible Videogrammetric Technique for Three-Dimensional 
Structural Vibration Measurement." Journal of Engineering Mechanics 133(6): 656-664 

Chase, J. G., V. Begoc, et al. (2005a). "Efficient structural health monitoring for a benchmark 
structure using adaptive RLS filters." Computers & Structures 83(8-9): 639-647 

Chase, J. G., K. L. Hwang, et al. (2005b). "A simple LMS-based approach to the structural 
health monitoring benchmark problem." Earthquake Engineering & Structural 
Dynamics 34(6): 575-594 

Chase, J. G., H. A. Spieth, et al. (2005c). "LMS-based structural health monitoring of a non-
linear rocking structure." Earthquake Engineering & Structural Dynamics 34(8): 909-
930 

Chassiakos, A. G., S. F. Masri, et al. (1998). "On-Line Identification of Hysteretic Systems." 
Journal of Applied Mechanics 65(1): 194-203 

Chen, C. K., R. M. Czarnecki, et al. (1977). Vibration test of a 4-story concrete structure. 
Second ASCE Engineering Mechanics Speciality Conference. Raleigh, NC: 2753-2758. 

Choi, S. B., S. K. Lee, et al. (2001). "A hysteresis model for the field-dependent damping force 
of a magnetorheological damper." Journal of Sound and Vibration 245(2): 375-383 

Christopoulos, C., A. Filiatrault, et al. (2002). "Seismic response of self-centring hysteretic 
SDOF systems." Earthquake Engineering & Structural Dynamics 31(5): 1131-1150 

Constantinou, M. and I. Tadjbakhsh (1985). "Hysteretic dampers in base isolation: random 
approach." Journal of Structural Engineering, ASCE 111(4): 705-721 



180 

 

Costa, M. H. and J. C. M. Bermudez (2008). "A noise resilient variable step-size LMS 
algorithm." Signal Processing 88(3): 733-748 

Demetriades, G. F., M. C. Constantinou, et al. (1993). "Study of wire rope systems for seismic 
protection of equipment in buildings." Engineering Structures 15(5): 321-334 

Dharap, P. V. (2006). Real-Time Structural Damage Detection Using Interaction Matrix 
Formulation And Observers. Department of Civil and Mechanical Engineering. 
Houston, Texas, Rice University. PhD. 

Doebling, S. W., C. R. Farrar, et al. (1998). "A Summary Review of Vibration-Based Damage 
Identification Methods." Shock and Vibration Digest 30(2): 91-105 

Doebling, S. W., C. R. Farrar, et al. (1996). Damage identification and health monitoring of 
structural and mechanical systems from changes in their vibration characteristics: a 
literature review., Los Alamos National Laboratory Report LA-13070-MS. 

Doherty, J. E. (1993). Non-destructive evaluation. Handbook on Experimental Mechanics. A. S. 
Kobayashi. New York, NY and Weinheim, Germany, VCH Publishers, Inc. and VCH 
Verlagsgesellschaft mbH: 527-555. 

Dowling, N. E. (2007). Mechanical Behavior of Materials: Engineering Methods for 
Deformation, Fracture, and Fatigue New Jersey, Pearson Prentice Hall. 

Duan, G. R. and R. J. Patton (1998). Robust fault detection in linear systems using Luenberger 
observers. Control '98. UKACC International Conference on (Conf. Publ. No. 455). 

Dyke, S. J., J. M. Caicedo, et al. (2000). Monitoring of a benchmark structure for damage 
identification. The 14th ASCE Engineering Mechanics Conference, Austin, Texas. 

Edwards, C., S. K. Spurgeon, et al. (2000). "Sliding mode observers for fault detection and 
isolation." Automatica 36(4): 541-553 

Erberik, A. and H. Sucuoglu (2004). "Seismic energy dissipation in deteriorating systems 
through low-cycle fatigue." Earthquake Engineering & Structural Dynamics 33(1): 49-
67 

Farrar, C. R., W. E. Baker, et al. (1994). Dynamic Characterization and Damage Detection in 
the I-40 Bridge Over the Rio Grande, Los Alamos National Laboratory Report (LA-
12767-MS). 

Fishman, G. S. (1996). Monte Carlo: concepts, algorithms, and applications, Springer. 

Fu, G. and A. G. Moosa (2002). "An Optical Approach to Structural Displacement 
Measurement and Its Application." Journal of Engineering Mechanics 128(5): 511-520 

GNS. (2011). "6.3 magnitude earthquake part of aftershock sequence - 25/02/2011."   Retrieved 
May 24, 2011, from http://www.gns.cri.nz/Home/News-and-Events/Media-
Releases/earthquake-part-of-aftershock-sequence. 



181 

 

Hamby, D. M. (1994). "A review of techniques for parameter sensitivity analysis of 
environmental models." Environmental Monitoring and Assessment 32(2): 135-154 

Hann, C. E., I. Singh-Levett, et al. (2009). "Real-Time System Identification of a Nonlinear 
Four-Story Steel Frame Structure-Application to Structural Health Monitoring." Sensors 
Journal, IEEE 9(11): 1339-1346 

Hera, A. and Z. Hou (2004). "Application of wavelet approach for ASCE structural health 
monitoring benchmark studies." Journal of Engineering Mechanics 130(1): 96-104 

Homma, T. and A. Saltelli (1996). "Importance measures in global sensitivity analysis of 
nonlinear models." Reliability Engineering & System Safety 52(1): 1-17 

Hou, Z., M. Noori, et al. (2000). "Wavelet-Based Approach for Structural Damage Detection." 
Journal of Engineering Mechanics 126(7): 677-683 

Hutchinson, T. C., S. R. Chaudhuri, et al. (2005). "Light-Based Motion Tracking of Equipment 
Subjected to Earthquake Motions." Journal of Computing in Civil Engineering 19(3): 
292-303 

Hutchinson, T. C., F. Kuester, et al. (2006). "Optimal hardware and software design of an 
image-based system for capturing dynamic movements." Instrumentation and 
Measurement, IEEE Transactions on 55(1): 164-175 

Ifeachor, E. C. and B. W. Jervis (1993). Digital signal processing: A practical approach, 
Addison-Wesley. 

Ikhouane, F., V. Mañosa, et al. (2005). "Adaptive control of a hysteretic structural system." 
Automatica 41(2): 225-231 

Ikhouane, F. and J. Rodellar (2007). Systems with Hysteresis: Analysis, Identification and 
Control using the Bouc-Wen Model, John Wiley & Sons, Ltd. 

Iman, R. L. and S. C. Hora (1990). "A Robust Measure of Uncertainty Importance for Use in 
Fault Tree System Analysis." Risk Analysis 10(3): 401-406 

Ismail, M., F. Ikhouane, et al. (2009). "The hysteresis Bouc-Wen model, a survey." Archives of 
Computational Methods in Engineering 16(2): 161-188 

Ji, Y. F. and C. C. Chang (2008). "Nontarget Stereo Vision Technique for Spatiotemporal 
Response Measurement of Line-Like Structures." Journal of Engineering Mechanics 
134(6): 466-474 

Juang, J.-N. (1985). "Eigensystem realization algorithm for modal parameter identification and 
model reduction." Journal of guidance, control, and dynamics 8(5): 620-627 

Kaiser, S., J. Melcher, et al. (1999). Structural dynamic health monitoring of adaptive CFRP-
structures. Smart Structures and Materials 1999: Industrial and Commercial 
Applications of Smart Structures Technologies, 2-4 March 1999, USA, SPIE-Int. Soc. 



182 

 

Opt. Eng. 

Kanda, K., Y. Miyamoto, et al. (2004). "Vision-based measurement for seismic damage 
monitoring." Journal of Japan Association for Earthquake Engineering 4(1): 10 

Kijewski-Correa, T., A. Kareem, et al. (2006). "Experimental Verification and Full-Scale 
Deployment of Global Positioning Systems to Monitor the Dynamic Response of Tall 
Buildings." Journal of Structural Engineering 132(8): 1242-1253 

Kim, H. and H. Melhem (2004). "Damage detection of structures by wavelet analysis." 
Engineering Structures 26(3): 347-362 

Kinnaert, M. (1999). "Robust fault detection based on observers for bilinear systems." 
Automatica 35(11): 1829-1842 

Lam, H. F., L. S. Katafygiotis, et al. (2004). "Application of a statistical model updating 
approach on phase I of the IASC-ASCE structural health monitoring benchmark study." 
Journal of Engineering Mechanics 130(1): 34-48 

Lee, B. (2003). "Review of the present status of optical fiber sensors." Optical Fiber Technology 
9(2): 57-79 

Lee, J. J., Y. Fukuda, et al. (2007). "Development and application of a vision-based 
displacement measurement system for structural health monitoring of civil structures." 
Smart Structures and Systems 3(3): 373-384 

Li, S. J., Y. Suzuki, et al. (2004a). "Improvement of parameter estimation for non-linear 
hysteretic systems with slip by a fast Bayesian bootstrap filter." International Journal of 
Non-Linear Mechanics 39(9): 1435-1445 

Li, X., G. D. Peng, et al. (2004b). Integration of GPS, accelerometer and optical fibre sensors 
for structural deformation monitoring. 17th International Technical Meeting of the 
Satellite Division of the Institute of Navigation ION GNSS, 21-24 Sep. Long Beach, 
California 211-224. 

Liberatore, S., J. L. Speyer, et al. (2006). "Application of a fault detection filter to structural 
health monitoring." Automatica 42(7): 1199-1209 

Lim, M.-S. and J. Lim (2008). "Visual measurement of pile movements for the foundation work 
using a high-speed line-scan camera." Pattern Recognition 41(6): 2025-2033 

Lin, C. S. (1990). "Location of modeling errors using modal test data." AIAA journal 28(9): 
1650-1654 

Lin, J.-W., R. Betti, et al. (2001). "On-line identification of non-linear hysteretic structural 
systems using a variable trace approach." Earthquake Engineering & Structural 
Dynamics 30(9): 1279-1303 

Loh, C.-H., C.-Y. Lin, et al. (2000). "Time Domain Identification of Frames under Earthquake 



183 

 

Loadings." Journal of Engineering Mechanics 126(7): 693-703 

Lus, H. and R. Betti (2000). Damage identification in linear structural systems. The 14th ASCE 
Engineering Mechanics Conference, Austin, Texas  

Lus, H., R. Betti, et al. (2004). "Investigation of a system identification methodology in the 
context of the ASCE benchmark problem." Journal of Engineering Mechanics 130(1): 
71-84 

Lus, H., M. De Angelis, et al. (2003a). "Constructing second-order models of mechanical 
systems from identified state space realizations. Part I: Theoretical discussions." Journal 
of Engineering Mechanics 129(5): 477-488 

Lus, H., M. De Angelis, et al. (2003b). "Constructing second-order models of mechanical 
systems from identified state space realizations. Part II: Numerical investigations." 
Journal of Engineering Mechanics 129(5): 489-501 

Ma, F., C. H. Ng, et al. (2006). "On system identification and response prediction of degrading 
structures." Structural Control and Health Monitoring 13(1): 347-364 

Ma, F., H. Zhang, et al. (2004). "Parameter Analysis of the Differential Model of Hysteresis." 
Journal of Applied Mechanics 71(3): 342-349 

Martelli, A. (2009). Progress of the application of passive anti-seismic systems. Earthquake 
Resistant Engineering Structures VII (Proceedings of the Seventh World Conference on 
Earthquake Resistant Engineering Structures, Volume 104 of WIT transactions on the 
built environment). M. Phocas, C. A. Brebbia and P. Komodromos, Wessex Institute of 
Technology, UK: 281-293. 

Masri, S. F., A. G. Chassiakos, et al. (1992). "Structure-unknown non-linear dynamic systems. 
Identification through neural networks." Smart Materials and Structures 1(1): 45-45 

Masri, S. F., A. W. Smyth, et al. (2000). "Application of Neural Networks for Detection of 
Changes in Nonlinear Systems." Journal of Engineering Mechanics 126(7): 666-676 

Mhaskar, P., C. McFall, et al. (2008). "Isolation and handling of actuator faults in nonlinear 
systems." Automatica 44(1): 53-62 

Michael, A. J., S. L. Ross, et al. (1999). Major Quake Likely to Strike Between 2000 and 2030, 
U.S. Geological Survey (USGS Fact Sheet 152-99). 

Montalvao, D., N. M. M. Maia, et al. (2006). "A Review of Vibration-based Structural Health 
Monitoring with Special Emphasis on Composite Materials." The Shock and Vibration 
Digest 38(4): 1-30 

Narasimhan, S., S. Nagarajaiah, et al. (2006). "Smart base-isolated benchmark building. Part I: 
problem definition." Structural Control and Health Monitoring 13(2-3): 573-588 

Nastar, N., J. C. Anderson, et al. (2010). "Effects of low-cycle fatigue on a 10-storey steel 



184 

 

building." The Structural Design of Tall and Special Buildings 19(1-2): 95-113 

National Instruments Corp. (2006). NI Vision, NI PCIe-1430 User Manual: Dual-Channel, Base 
Configuration Camera Link Image Acquisition Device. National Instruments Corp. 

Nayyerloo, M., J. G. Chase, et al. (2011). "LMS-based approach to structural health monitoring 
of nonlinear hysteretic structures " Structural Health Monitoring 10(4): 429-444 

Nayyerloo, M., A. Malherbe, et al. (2010). Seismic structural displacement measurement using 
a high-speed line-scan camera: experimental validation. The 2010 New Zealand Society 
of Earthquake Engineering Conference and AGM, Wellington, New Zealand. 

Ni, Y. Q., J. M. Ko, et al. (1998). "Identification of non-linear hysteretic isolators from periodic 
vibration tests." Journal of Sound and Vibration 217(4): 737-756 

NZ Government. (2011). "Briefing on Costs: Earthquake Recovery "   Retrieved May 24, 2011, 
from http://beehive.govt.nz/feature/briefing-costs-earthquake-recovery. 

NZ Parliament. (2011). "Earthquake, Canterbury—Cost of Damage."   Retrieved Jan 7, 2011, 
from http://www.parliament.nz/en-
NZ/PB/Business/QOA/f/5/2/49HansQ_20100909_00000002-2-Earthquake-Canterbury-
Cost-of-Damage.htm. 

NZ Police. (2011). "List of deceased (as a result of the Christchurch earthquake)."   Retrieved 
May 24, 2011, from http://www.police.govt.nz/list-deceased. 

NZS 3101 (2006). "NZS 3101, Concrete Structures Standard, New Zealand."  

Orteu, J.-J. (2009). "3-D computer vision in experimental mechanics." Optics and Lasers in 
Engineering 47(3-4): 282-291 

Page, R. A., P. H. Stauffer, et al. (1999). Progress Toward a Safer Future Since the 1989 Loma 
Prieta Earthquake, U.S. Geological Survey (USGS Fact Sheet 151-99). 

Patton, R. J. (1997). "Robustness in model-based fault diagnosis: The 1995 situation." Annual 
Reviews in Control 21: 103-123 

Philips Corp. (2011). MASTERLine 111 60W G53 12V 8D 1CT: Low-voltage halogen 
reflector lamp with double-ended burner and high-purity aluminium reflector. 
Koninklijke Philips Electronics N.V. 

Rodríguez, A., N. Iwata, et al. (2009). "Model identification of a large-scale magnetorheological 
fluid damper." Smart Materials and Structures 18(1): 015010 

Saif, M. (2002). Fault diagnosis based on equivalent control concept. Automation Congress, 
2002 Proceedings of the 5th Biannual World. 

Saito, T. (2007). "Basic concept of base isolation system for buildings." Lectures on Seismic 



185 

 

Isolation Systems in Japan at the headquarters of the IStructE (The Institution of 
Structural Engineers) in London  Retrieved August 1, 2011, from 
http://www.cibw114.net/report/Japan02.pdf. 

Saltelli, A. and R. Bolado (1998). "An alternative way to compute Fourier amplitude sensitivity 
test (FAST)." Computational Statistics & Data Analysis 26(4): 445-460 

Sato, T. and K. Qi (1998). "Adaptive H∞ Filter: Its Application to Structural Identification." 
Journal of Engineering Mechanics 124(11): 1233-1240 

Sato, T. and K. Takei (1997). Real time robust identification algorithm for structural systems 
with time-varying dynamic characteristics. Proceedings of SPIE: Smart Structures and 
Materials, Mathematics and Control in Smart Structures San Diego, CA, USA. 

Sayed, A. H. (2003). Fundamentals of Adaptive Filtering, John Wiley & Sons, Inc. 

Schneider Kreuznach Corp. (2010). Macro system. Jos. Schneider Optische Werke GmbH. 

Sedgewick, R. (1997). Algorithms in C: Parts 1-4. Fundamentals, data structures, sorting, 
searching, Addison-Wesley. 

Shen, Y., M. F. Golnaraghi, et al. (2005). "Analytical and Experimental Study of the Response 
of a Suspension System with a Magnetorheological Damper." Journal of Intelligent 
Material Systems and Structures 16(2): 135-147 

Smyth, A. W., S. F. Masri, et al. (1999). "On-Line Parametric Identification of MDOF 
Nonlinear Hysteretic Systems." Journal of Engineering Mechanics 125(2): 133-142 

Sobol', I. M. (1990). "Sensitivity estimates for nonlinear mathematical models." 
Matematicheskoe Modelirovanie 2 (1): 112-118 (in Russian).English translation in: 
Sobol' I. M. (1993), Mathematical Modeling and Computational Experiment: 1(4), 407-
414. 

Sobol', I. M. (2001). "Global sensitivity indices for nonlinear mathematical models and their 
Monte Carlo estimates." Mathematics and Computers in Simulation 55(1-3): 271-280 

Sohn, H., C. R. Farrar, et al. (2004). A Review of Structural Health Monitoring Literature: 
1996-2001, Los Alamos National Laboratory. 

Spencer, J. B. F., S. J. Dyke, et al. (1997). "Phenomenological Model for Magnetorheological 
Dampers." Journal of Engineering Mechanics 123(3): 230-238 

Spencer, J. B. F. and S. Nagarajaiah (2003). "State of the Art of Structural Control." Journal of 
Structural Engineering 129(7): 845-856 

Stiros, S. C. (2008). "Errors in velocities and displacements deduced from accelerographs: An 
approach based on the theory of error propagation." Soil Dynamics and Earthquake 
Engineering 28(5): 415-420 



186 

 

Sucuoglu, H. and A. Erberik (2004). "Energy-based hysteresis and damage models for 
deteriorating systems." Earthquake Engineering & Structural Dynamics 33(1): 69-88 

Sun, Z. and C. C. Chang (2004). "Statistical Wavelet-Based Method for Structural Health 
Monitoring." Journal of Structural Engineering 130(7): 1055-1062 

Teledyne DALSA Corp. (2008a). Piranha 2 P2-2x-xxx40 Camera User's Manual. T. DALSA, 
Teledyne DALSA. 

Teledyne DALSA Corp. (2008b). Piranha 2 P2-2X-XXX40 Line Scan Cameras-Datasheet, 
Teledyne DALSA Corporation. 

Teledyne DALSA Corp. (2011). Piranha 3 P3-8X-XXX40 Line Scan Cameras-Datasheet, 
Teledyne DALSA Corporation. 

Teran-Gilmore, A. and J. O. Jirsa (2007). "Energy demands for seismic design against low-
cycle fatigue." Earthquake Engineering & Structural Dynamics 36(3): 383-404 

The World Bank (2011). Developing Trends:  March 2011, Focus: Effects of the 2011 Japan 
earthquake, The World Bank: 13-16. 

Trifunac, M. D. (1971). "Zero baseline correction of strong-motion accelerograms." Bulletin of 
the Seismological Society of America 61(5): 1201-1211 

Trujillo, D. M. and A. L. Carter (1982). "A new approach to the integration of accelerometer 
data." Earthquake Engineering & Structural Dynamics 10: 529-535 

Tsouroukdissian, A. R., F. Ikhouane, et al. (2009). "Modeling and Identification of a Small-
scale Magnetorheological Damper." Journal of Intelligent Material Systems and 
Structures 20(7): 825-835 

USGS. (2011). "Largest and Deadliest Earthquakes by Year."   Retrieved Jan 07, 2011, from 
http://earthquake.usgs.gov/earthquakes/eqarchives/year/byyear.php. 

Vayas, I., A. Sophocleous, et al. (2003). "Fatigue analysis of moment resisting steel frames." 
Journal of Earthquake Engineering 7(4): 635 - 654 

Vidal, Y., L. Acho, et al. (2010). Fault detection in base-isolation systems via a restoring force 
observer. 2010 Conference on Control and Fault Tolerant Systems. Nice, France, IEEE: 

777-782. 

Villamor, P. and the Science Response teams (2010). The M 7.1, 4 September Darfield 
(Canterbury) Earthquake and Impacts: A Research Overview, GNS Science. 

Wen, Y.-K. (1976). "Method for random vibration of hysteretic systems." Journal of 
Engineering Mechanics Division, ASCE 102(2): 249-263 

Worden, K. and W. Becker (2011). On the Identification of Hysteretic Systems, Part II: 



187 

 

Bayesian Sensitivity Analysis. Nonlinear Modeling and Applications, Volume 2. T. 
Proulx, Springer New York. 11: 77-91. 

Xiaomin, X., S. Qing, et al. (2009). "Parameter Estimation and its Sensitivity Analysis of the 
MR Damper Hysteresis Model Using a Modified Genetic Algorithm." Journal of 
Intelligent Material Systems and Structures 20(17): 2089-2100 

Yang, J., J. B. Li, et al. (2006). "A simple approach to integration of acceleration data for 
dynamic soil-structure interaction analysis." Soil Dynamics and Earthquake 
Engineering 26(8): 725-734 

Yang, J. N., Y. Lei, et al. (2004). "Hilbert-Huang based approach for structural damage 
detection." Journal of Engineering Mechanics 130(1): 85-95 

Yang, J. N. and S. Lin (2004). "On-line identification of non-linear hysteretic structures using 
an adaptive tracking technique." International Journal of Non-Linear Mechanics 39(9): 
1481-1491 

Yoshida, I. (2001). Damage detection using Monte Carlo filter based on non-Gaussian noise. 
The 8th International Conference on Structural Safety and Reliability: ICOSSAR '01. 
Newport Beach, CA, USA, A. A. Balkema a member of Swets & Zeitlinger Publishers, 
Lisse, The Netherlands: 324 -331. 

Yuen, K.-V., S. K. Au, et al. (2004). "Two-stage structural health monitoring approach for 
phase I benchmark studies." Journal of Engineering Mechanics 130(1): 16-33 

Zang, C., M. I. Friswell, et al. (2004). "Structural Damage Detection using Independent 
Component Analysis." Structural Health Monitoring 3(1): 69-83 

Zapico, J. L. and et al. (2001). "Vibration-based damage assessment in steel frames using neural 
networks." Smart Materials and Structures 10(3): 553 

Zhang, H., G. C. Foliente, et al. (2002). "Parameter identification of inelastic structures under 
dynamic loads." Earthquake Engineering & Structural Dynamics 31(5): 1113-1130 

 

 


