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ABSTRACT 

Digital Image Elasto Tomography (DIET) is a non-invasive breast cancer screening technology that images the surface 
motion of a breast under harmonic mechanical actuation. A new approach capturing the dynamics and characteristics of 
tumor behavior is presented. A simple mechanical model of the breast is used to identify a transfer function relating the 
input harmonic actuation to the output surface displacements using imaging data of a silicone phantom. Areas of higher 
stiffness cause significant changes of damping and resonant frequencies as seen in the resulting Bode plots. A case study 
on a healthy and tumor silicone breast phantom shows the potential for this model-based method to clearly distinguish 
cancerous and healthy tissue as well as correctly predicting the tumor position. 
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1. INTRODUCTION 

Breast cancer is one of the most common types of cancer in women worldwide1. X-ray Mammography is currently the 
only approved large scale breast screening modality. However, due to the radiation exposure and breast compressions, 
mammography screening programmes have resulted in poor compliance rates2. Furthermore, breast screening programs 
are often not available in developing countries due to the relatively high costs involved3 and the mostly rural populations 
with limited access to specialised radiology clinics4.  

Digital Image Elasto Tomography (DIET) is an elastographic imaging technology for non-invasive and low cost breast 
cancer screening5. DIET aims to generate a three dimensional representation of elastic properties throughout the breast 
volume, based on the high stiffness contrast differences of 300% to 1500% between cancerous and healthy tissue in the 
breast6. The technology is highly portable and does not required specialized operator skills, making it well suitable for 
remote screening applications at a low cost. Proof of concept testing has been performed on silicone phantom breasts7 
and in vivo trials are underway with good initial results. 

Mechanical vibrations are introduced into the breast and the resulting surface oscillations are captured by digital cameras 
surrounding the breast, tracking fiducial markers on the breast’s surface5,8. The oscillating surface motion is analyzed to 
detect disturbances in observed vibration patterns, which indicate a stiffer inclusion within the tissue. Finite Element5 
(FEM) or surface based methods7 can be used to provide an estimate of the inclusion’s location and size. While FEM can 
provide full 3D elastography data, the inverse solutions involved are typically computationally expensive9 and the linear 
stress-strain assumptions will not necessarily always hold. A simpler analysis approach that could be performed in real-
time is desired to provide immediate diagnostic information after imaging. 

Due to the distinct vibration response of every point on the breast’s surface, diagnostic information could be enhanced by 
analyzing the full frequency response of the surface. This research proposes a diagnostic metric based on the frequency 
response of the oscillating breast surface. A minimal modeling concept is introduced to capture the essential dynamics of 
breast responses that characterize tumor behavior. A simple spring-mass-damper model is used to model the response at 
each point on the surface. By identifying the transfer functions of these responses, elastic model parameters can be used 



to locate a stiffer inclusion. This study thus presents a model-based diagnostic analysis approach, which is veryfied in a 
case study in vitro on two silicone phantom breasts. 

2. METHODOLOGY 

2.1 Experimental setup and data acquisition 

The experimental setup and silicone phantoms shown in Figure 1 are used to obtain imaging data. A vibration actuator 
induces oscillating sinusoidal vibrations into the phantom and five cameras surrounding the breast capture its surface 
motion by synchronized imaging with a strobe system10. Breast surface motion is tracked and parameterized to provide a 
displacement and phase map for the entire surface in 3D. Two silicone phantom breasts of equal geometry and healthy 
tissue properties (E=3kPa) are used. The cancerous phantom has a tumor of 20mm diameter with a stiffness contrast of 
10x.  

 

 
Figure 1: A silicone phantom with fiducial markers (left); The experimental setup with the vibration actuator in the middle, and five 

cameras with strobe lights surrounding it. 

A rectangle polar coordinate system is used, with α defining the elevation and θ defining the rotational angle, as shown 
in Figure 3. The surface is discretized into intervals of α and θ and the mean value of all tracked markers is used for each 
interval to account for uneven marker coverage. With imaging sets taken at a range of frequencies covering at least the 
first resonant frequency, Bode plots can be plotted for each α and θ segment on the breast surface. Bode plots for a 
healthy and cancerous silicone phantom at the tumor’s position at α = 25° and θ = 180°, and at α = 25° and θ = 25°, 
respectively, are shown in Figure 2. Frequency steps were chosen between 8-50Hz, with a resolution of 2Hz. 

 
Figure 2: Example of Bode plots obtained on the surface of the breast, at two different locations, (a) α = 25°, θ = 25°; (b) α = 25°, 

θ = 180° (tumor position). Blue: healthy phantom data; Red: tumor phantom data. 



Clear differences between the healthy and tumor responses at the tumor’s position are evident, seen in the differences 
evident around the first peak at 16 Hz shown in Figure 2(b). The first healthy resonant frequency lies at about 16 Hz, 
whereas the first resonant frequency at the tumor’s position is shifted to about 18 Hz. Since all this information is 
contained in the region surrounding the first resonant peak, for simplicity, only frequencies up to 20 Hz are considered in 
the modeling. 

2.2 Mechanical breast model  

A simplified sketch of the breast is presented in Figure 3 (a). The data of the motion captured by the camera system is 
dependent on the surface location (α and θ). The breast response is modeled by a a single spring-mass-damper system, 
shown in Figure 3 (b). The input u(t) is the excitation of the breast by the actuator. The mass m is modeled as a function 
of α and θ to account for the distance to the actuation source. The stiffness k and damping b of the breast vary depending 
on both α and θ. Near a tumor the stiffness k(α,θ) and damping b(α,θ) are expected to increase due to the stiffer elastic 
properties of cancerous tissue. For a healthy breast b(α,θ) and k(α,θ) are expected to be constant throughout the whole 
breast.  

 
Figure 3: (a) Schematic of the breast; (b) Mechanical model of the breast 

 

The resulting equation of the single spring-mass-damper model in Figure 3(b) is defined: 

€ 

m(α,θ )˙ ̇ x (t) + b(α,θ ) ˙ x (t) + k(α,θ )x(t) = u(t)         (1) 

where: 

€ 

u(t) = Asin(ωt)           (2) 

and ω is the excitation frequency. Equation (1) is rewritten in the form: 

€ 

˙ ̇ x (t) + b (α,θ) ˙ x (t) + k (α,θ )x(t) = k0u(t)         (3) 

where:  

€ 

b (α,θ ) =
b(α,θ )
m(α,θ )

 ;  

€ 

k (α,θ) =
k(α,θ)
m(α,θ)

 ; 

€ 

k0(α,θ) =
1

m(α,θ)
   (4) 

Equation (3) is then rewritten as: 

€ 

˙ ̇ x (t) + 2ξ(α,θ )ω n (α,θ) ˙ x (t) +ω n
2(α,θ)x(t) = k0(α,θ)u(t)       (5) 

where ωn is the natural frequency and ξ is the damping ratio of the breast defined by: 



€ 

ω n (α,θ ) =
k(α,θ )
m(α,θ )   ; 

€ 

ξ(α,θ ) =
b(α,θ )

2 k(α,θ)m(α,θ )      (6) 

Taking the Laplace transform of Equation (5) yields: 

€ 

s2 + 2ξ(α,θ )ω n (α,θ)s+ω n
2(α,θ )( )X(s) = k0(α,θ)U(s)       (7) 

The transfer function is thus defined: 

€ 

s2 +Gα,θ (s) =
X
U

=
k0(α,θ)

s2 + 2ξ(α,θ)ω n (α,θ )s+ω n
2(α,θ)

      (8) 

The frequency transfer function is obtained from Equation (8) by setting s=jω: 

€ 

Gα,θ ( jω) =
k0(α,θ)

(ω n
2(α,θ ) −ω 2) + 2ξ(α,θ )ω n (α,θ) jω

       (9) 

where	
  ω	
  is	
  the	
  excitation	
  frequency. 

The displacement of the surface motion in dB is: 

€ 

Gα ,θ ( jω ) model = 20log10
k0(α,θ )

(ω n
2(α,θ) −ω 2) + 2ξ(α,θ)ω n (α,θ ) jω

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟     (10)  

And the phase in degrees: 

€ 

ϕ Gα,θ ( jω)( )model = arctan
RE(Gα ,θ ( jω ))
IM(Gα,θ ( jω))
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
180
π

      (11) 

2.2 Parameter identification and normalization  

Damping ξ(α,θ) and natural frequency ωn(α,θ) are estimated for each surface segmet with nonlinear least squares. 

For a healthy breast it is assumed that damping is constant for a given α, as θ varies from 0 to 2π, whereas damping is 
expected to be different at the location of a tumor θ. The natural frequency would behave similarly. Thus, to normalize 
the effect of α, measures of relative change in damping ξ and natural frequency ωn are defined: 

€ 

ξnorm (α,θ) =
ˆ ξ (α,θ )

minα ( ˆ ξ (α))
 ; 

€ 

ω nnorm (α,θ ) =
ˆ ω n (α,θ)

minα ( ˆ ω n (α))
    (12) 

3. RESULTS 

Model fits to the Bode plots at α = 25° and θ = 180° for the healthy and cancerous case are shown in Figure 4. The mean 
error value for displacement over θ for the healthy case is 0.56 dB, with a 90th percentile of 1.18 dB. These values are 
relatively small compared to the absolute change in displacement which is about 20 dB as seen in Figure 4. There is also 
a good match of the phase, with absolute mean errors of 6.0° and a 90th percentile of 12.5°. 

For the healthy case, the mass is a function of α only and in both cases the mass increases as a function of α. This result 
matches the mass representation of Figure 3 (a). For the cancer case there is a noticeable increase in mass near θ = 180°, 
which corresponds to the tumor location. This result is expected since a tumor would add to the effective mass seen at a 
surface point close to it. 



 

 
Figure 4: Model fits to the Bode plots at α = 25° and θ = 180° for the healthy (left) and cancerous case (right) (model ≡ ‘-’; data ≡ ‘o’) 

 

Figure 5 shows the results obtained for normalized damping ξnorm(α,θ) and natural frequency ωn,norm(α,θ). Both metrics 
hardly change in the healthy case shown in Figure 5 (top), but there are significant changes in the cancerous phantom at 
the location of the tumor, as shown in Figure 5 (bottom). The position of the tumor is predicted to be at an angle of 
θ=180° and α=30°.  

 

 
 

Figure 5: Surface plot for ξnorm(α,θ)and ωn,norm(α,θ); (top) healthy case; (bottom) tumor case 

 



4. DISCUSSION AND CONCLUSIONS 

The proposed minimal modeling approach is able to capture frequency response data from the surface of an oscillating 
breast phantom. Due to the simplicity of the model, only data up to the first resonant peak is required. Model fits were 
very good, in both the healthy and the cancerous phantom on all surface segments. Normalization with regard to α and θ 
managed to capture relative changes of damping and natural frequency around the breast, so that in principle, differences 
in breast size or shape are effectively removed, allowing for a robust, repeatable method. 

Normalized damping ξnorm(α,θ) and natural frequency ωn,norm(α,θ) values identified over the surface of the breast show a 
distinctive difference around the location of the tumor. In particular θ matches the position of the tumor exactly. This 
result can be expected due to the concentric source of actuation with regards to θ. The identified value for α differs from 
the angle of the tumor inclusion, which is due to the asymmetrical geometry of the breast relative to the vibration source.  

A potential limitation of the proposed method is the oversimplified mechanical model of the breast. In our own 
experiments on phantoms and in-vivo, we have observed at least a second resonant peak in most cases, which can only 
be captured by more complex modeling approaches. While the diagnostic performance could possibly be improved with 
better modeling, the simple approach presented here already shows robust and good results in this silicone phantom data. 
More thorough validation of this method in-vitro and in-vivo will be required to assess its performance regarding tumor 
size and depth, and on varying physiological breast shapes. Full validation was not the intention of this initial study and 
is left for future investigation. 

A simple modeling approach has been presented to match elastic breast behavior. By imaging the frequency response of 
the surface of a breast, the proposed method could provide elastographic information of the breast in real time, which 
could indicate the presence of a tumor. Combined with a non-invasive optical imaging system, such as DIET, this 
approach could provide a simple screening adjunct modality to mammography.  
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