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Abstract: The knowledge of bed topography is important to study the hydrodynamics of open channel 
flows, fluvial hydraulics, or flood propagation to name but a few. Known channel bed topography 
allows one to computationally predict the free surface profile in different flow scenarios and predict 
critical quantities such as flood coverage. The direct measurement of the bed topography is a time-
consuming and costly activity. This motivates the present work which proposes two algorithms which 
can reconstruct the bed topography from a known free surface elevation profile. We show that this 
inverse problem is governed by a differential equation which is only a slight modification of the 
standard shallow water equation. Hence, the inverse problem can be solved in "one shot" by solving 
this differential equation numerically. We also show that a one dimensional riverbed can be 
reconstructed using a pseudo-analytical approach. These reconstruction strategies are successfully 
tested on a set of experimental data.             
  
Keywords: shallow water flows, bed topography, free surface data, inverse analytical solution.  

1. INTRODUCTION 

Flows in rivers, estuaries and flood plains are natural open channel flows. The study of these kinds of 
flows has been a research interest for many decades. The underlying reasons include the need to 
map flood inundation over flood plains and for control of floods; the need of optimal design of open 
channels for irrigation purposes; the need for better understanding of natural stream hydrodynamics. 
Such flows are described by the shallow water equations. The shallow water approximation depicts 
the evolution of an incompressible fluid in response to gravitational and rotational accelerations in 
addition to the effects of friction and the slope of the channel. It is traditionally used to describe the 
behaviour of water flow in rivers, estuaries, open channels, flood plains and waves in lakes or 
downstream of dam breaks, Arico et al (2007), Wu (2008), and Cunge et al (1980).  

Free surface elevation measurements of rivers using ground based surveys along a stream are often 
difficult and time consuming. However, recent developments show that it is possible to measure the 
free surface elevation of rivers using airborne optical remote sensing technology (LiDAR) and ground 
based close range photogrammetry (CRP). In Smart et al (2009) and (Hilldale & Raff, 2007), the 
potential use of LiDAR to measure the free surface elevation of rivers is well addressed. Smart et al 
(2009) used the LiDAR returns of the free surface elevation to reconstruct the underlying bed 
topography of the Waiau River in New Zealand. (Hilldale & Raff, 2007) assess the quality of 
bathymetric airborne LiDAR from the perspective of creating accurate, precise and complete river 
bathymetry of the Yakima and Trinity river basins in the USA. On the other hand Chandler et al (2008) 
report the use of digital close range photogrammetry (CRP) in combination with particle image 
velocimetry (PIV) to measure dynamic free surface elevation of real and flooded rivers.  

In the following, we call finding the free surface profile of the flow from a given river bed topography 
the forward problem. The corresponding inverse problem is that of reconstructing the river bed from a 
known free surface profile. The study of the inverse problem and its application has similar 
advantages to the forward problem. Because there is a growing need to efficiently and accurately 
represent the river channel topography with high resolution to study fluvial hydraulics, flood routing 
and monitor geomorphological changes, (Marks & Bates, 2000). Different techniques have been 
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implemented to reconstruct bed topography from a known free surface; the direct approach to 
reconstruct substrate topography in thin film flows, Sellier (2008), and (Heining & Aksel, 2009); 
Automatic differentiation technique to reconstruct channel bed topography Castaings et al (2006); 
Variational data assimilation based optimization technique to retrieve channel topography. Honnorat et 
al (2007). (Roux & Dartus, 2008) have also proposed a methodology to reconstitute information about 
the geometry of the river from top sight based on an optimization technique.  

In this study, we present numerical and pseudo-analytical algorithms to reconstruct the bed profile and 
use analytical, numerical, and experimental data to demonstrate their applicability. These approaches 
have also a potential applicability for other geophysical flows due to the fact that it is a one step and 
easy to implement methodology. The numerical methodology relies upon the one dimensional 
unsteady shallow water equations to solve steady shallow water flows. Section 2 presents the 
governing equations with the description of the forward and the inverse problems. Section 3 presents 
the numerical and analytical solution methodologies. The discretization technique and its 
implementation are addressed. Section 4 presents an experimental study and its comparison with the 
numerical and analytical solution with discussion. In Section 5, the concluding remarks are addressed. 

2. GOVERNING EQUATIONS 

The Saint Venant shallow water equations govern unsteady incompressible one dimensional open 
channel flow. These equations are derived from the Navier Stokes equations based on the following 
assumptions: (1) the pressure distribution in the flow is hydrostatic, (2) the effect of wind stress on the 
free surface is neglected, (3) the effect of shear stress on the channel bottom neglected, (4) Coriolis 
forces are neglected, and (5) the depth of the flow is smaller than the other length scales (shallow 
aspect ratio).  The equations can be written in the form of continuity and momentum equations  
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Where Q  is the flow rate (m3/sec), A  is the cross-sectional area in (m2), h  is the depth of the flow, 
zh +=ψ  is the free surface elevation which is the sum of the bed  topography elevation and the 

depth of the flow, fS is the frictional slope (frictional resistance) and g  is the acceleration due to 
gravity. The frictional slope fS  can be given by the Manning formula  
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Where n  is the manning friction coefficient, R  is the hydraulic radius ( P/AR = ) and P  the wetted 
perimeter of the channel.   

The flow parameters Q  and A  can also be written as functions of the flow velocityu , the flow depth h  
and the channel width B . 

                 uhBQ =  and hBA =                                                                                                            (4) 

The terms incorporated in the momentum equation are the flow acceleration with respect to time, the 
convective acceleration of the flow, the potential energy and energy loss due to channel friction. 

3. NUMERICAL AND ANALYTICAL SOLUTION 

The above governing equations can be solved numerically and analytically to infer the channel bed 
topography from a measured free surface profile in shallow water flows. We restrict ourselves to the 
one dimensional shallow water equations. The following sections provide a detailed analysis of the 
numerical and analytical solutions respectively.  
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3.1. Numerical Approach 

The forward problem is solved by substituting the variable ψ  with zh +  in the momentum equation 
and solving for the flow depth h  and flow velocity u  for a given bed topography z . This is because 
the term ψ incorporates the unknown variable h  and the known variable z . However, to solve the 
inverse problem the given governing equations are solved for h  and u  simultaneously. After 
substituting equation (4) into (1) and (2), an upwind conservative explicit numerical technique is used 
to discretize the governing equations. This methodology has previously been implemented by Ying et 
al (2004) for the forward problem and by the present authors for the inverse problem, Gessese et al 
(2011). The above governing equations are discretized on the spatial and temporal domains to 
simulate unsteady flows; however, the steady state solution can be obtained after a few iterations 
given a steady flow rate and boundary conditions. Hence, steady flow rate, depth at the inlet boundary 
and free surface data are the parameters needed for the algorithm in the reconstruction process of 
channel bed topography in one dimensional flow. The discretized form of the governing equations for 
the inverse problem can be written as: 
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where 1w  and 2w  are weighting factors for the upwind and downwind fluxes and they are evaluated 
by the following expressions.  
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Δ  ;  and u  is the depth averaged velocity of the flow. 

Equations (12) and (13) are solved iteratively and simultaneously for h  and u  using a Matlab script 
given the initial and boundary conditions depending on the problem under study. Once the depth of 
the flow h is determined from the above sets of equations, the bed elevation z  is determined by 
simply subtracting h from the given free surface elevation ψ . The full details of the algorithm are 
presented in Gessese et al (2011).   

A set of numerical experiments using the forward problem has been done, and the results show that 
the methodology is capable of simulating standard benchmark problems such as dam break problems 
with dry and wet front conditions, and steady flows over a bump. These are not reported here for the 
sake of conciseness. 

3.2. Analytical Approach 

In this study, we show that for the steady state problem, an analytical solution exists to reconstruct the 
bed topography in shallow water flows by simplifying equations (1) and (2). The steady state 
governing equations can be written as 
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Equation (7) depicts the conservation of mass in the flow showing that there exists a constant flow rate 
along the channel length. For a known continuous functionψ , the term 

dx
dψ  is also known by 

differentiating with respect to the independent variable x.  However, the free surface data 
measurement is discrete and noisy in practice and a curve fitting technique is required to obtain 
reliable gradients of the free surface.  Simplifying equation (8) and substituting equation (7) results in  
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Equation (9) is a simple ordinary differential equation which can be solved by simple integration.  
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Where 0C is a constant of integration to account for the indefinite integral that can be determined from 
the known boundary condition. For a known area of the flow inlet and steady flow rate, the term fS  
can be determined.  

Assume a frictionless channel, the term with integral in equation (11) vanishes, thus 0C can be 
evaluated by the remaining terms.   
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Substituting the value of 0C and introducing the friction term in the equation results in 
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Equation (13) is the energy equation which governs one dimensional open channel flows with kinetic 
energy, potential energy and loss of energy due to channel friction terms respectively. This is 
illustrated in the following figure. The sum of the energies at point 1 is equal to the sum of the kinetic 
and potential energies at point 2 and the energy lost due to friction when the fluid particles flow from 1 
to 2.  

 

 

 

 

 

Figure 1 Description of open channel flow 

The frictional energy loss between given points in a flow can be evaluated by considering an 
infinitesimal channel length over which we can conveniently assume a constant frictional loss. Hence, 
equation (13) can be rewritten between grid point (i) and (i-1) in the computational domain which 
relates the change in free surface elevation, kinetic energy and frictional energy loss between these 
grid points.      
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Substituting equation (4) in to (14) produces the following simplified form. 
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Thus by applying a marching approach from the upstream to the downstream boundary, we can solve 
for u and then for h from the continuity equation to generate an analytical solution of the channel bed 
topography in the one dimensional context. The results of analytical solution are compared with the 
experimental and numerical results in section 4. 

4. EXPERIMENTAL RESULTS  

A set of experiments was conducted to measure the free surface data for a given steady flow rate in a 
horizontal flume.The flume comprises a rectangular section of channel which is open at the top. It has 
clear acrylic sides which are bonded to the bed. A bed form with constant profile along its span is 
placed and mounted on the flat bed to give an uneven bed profile. Once a steady state flow rate is set, 
the free surface elevation is measured in the flow direction by point gauge. The bed topography under 
study has the form shown in figure 1 with a maximum elevation of 62 mm above the horizontal 
channel.                                                    

For given flow conditions, a steady flow rate is set at 25±0.5 litres/second, the depth of the flow at the 
unaffected upstream position is 144±3 mm; we measure the depth of the flow along the channel hence 
the free surface elevation can be determined. Figure 1 and table 1 show the stage of the flow and the 
measured channel bed topography from the experiment.  

 

Figure 2 Free surface elevation and bed topography (flow is left to right) 

Table 1 Bed and free surface elevation along the channel 
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Channel length 
(m) Bed level (m) Stage (m) 

0 0 0.144 1.1 0.0646 0.121 
0.1 0 0.144 1.2 0.056 0.1 
0.2 0 0.144 1.3 0.021 0.055 
0.3 0 0.144 1.4 0.0025 0.0336 
0.4 0 0.144 1.5 0 0.0304 
0.5 0 0.144 1.6 0 0.0304 
0.6 0.0128 0.143 1.7 0 0.0304 
0.7 0.0532 0.1366 1.8 0 0.0304 
0.8 0.057 0.131 1.9 0 0.0304 
0.9 0.0584 0.131 2 0 0.0304 
1 0.0604 0.1293    
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Figure 3 Flow depth variation along the channel length 

The variation of depth of the flow is shown in figure 3. As can be seen from the above figures, the 
presence of the bed form affects the flow conditions. Downstream to the form, the flow has constant 
depth and it is supercritical in nature while at the upstream the flow is subcritical.   

The known free surface along with the steady flow rate and boundary conditions can be used with the 
numerical reconstruction algorithm and analytical solution methodology to infer the channel bed 
topography.   

 

Figure 4 Comparison of numerically and analytically reconstructed bed with actual bed 

As can be seen from figure 4, the numerically and analytically reconstructed channel bed topographies 
and actual bed topography are in a good agreement with each other. The slight difference on the left 
part of the topography arose from steady flow rate variations. The magnitude of the maximum 
difference in the reconstructed and actual bed topographies is approximately 5%.  The uncertainty in 
the reconstructed bed topography is a consequence of the uncertainty in the steady flow rate 
measurement.  
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5. CONCLUSION  

A direct numerical and analytical approach is proposed to reconstruct channel bed topography from a 
known free surface profile in open channel flows governed by the one dimensional shallow water 
equations. Inferring the bed topography requires knowledge of the flow rate and the depth of the flow 
at the inlet. The governing equations of the forward and inverse problems are very similar in form 
which allows the use of similar discretization procedures. The governing equations are conveniently 
integrated to give an analytical solution for steady one dimensional shallow water flow. Numerical and 
analytical solutions are tested against the experimental results and both results show good agreement 
with each other confirming that the numerical and analytical methodology is capable of reconstructing 
channel bed topography from measured free surface data for the one dimensional shallow flows.   
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