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Abstract: Tight glycemic control (TGC) has emerged as a major research focus in critical care due to its 

potential to simultaneously reduce both mortality and costs. However, repeating initial successful TGC 

trials that reduced mortality and other outcomes has proven difficult with more failures than successes. 

Hence, there has been growing debate over the necessity of TGC, its goals, the risk of severe 

hypoglycemia, and target cohorts.  

 

This paper provides a review of TGC via new analyses of data from several clinical trials, including 

SPRINT, Glucontrol and a recent NICU study. It thus provides both a review of the problem and major 

background factors driving it, as well as a novel model-based analysis designed to examine these 

dynamics from a new perspective. Using these clinical results and analysis, the goal is to develop new 

insights that shed greater light on the leading factors that make TGC difficult and inconsistent, as well as 

the requirements they thus impose on the design and implementation of TGC protocols.  

 

A model-based analysis of insulin sensitivity using data from three different critical care units, 

comprising over 75,000 hours of clinical data, is used to analyse variability in metabolic dynamics using a 

clinically validated model-based insulin sensitivity metric (SI). Variation in SI provides a new 

interpretation and explanation for the variable results seen (across cohorts and studies) in applying TGC. 

In particular, significant intra- and inter- patient variability in insulin resistance (1/ SI) is seen be a major 

confounder that makes TGC difficult over diverse cohorts, yielding variable results over many published 

studies and protocols. Further factors that exacerbate this variability in glycemic outcome are found to 

include measurement frequency and whether a protocol is blind to carbohydrate administration.  

 

 

Keywords: Critical Care, Glycemic Control, Variability, Modeling, Insulin Sensitivity, TGC, 

ICU, Mortality, SPRINT, Glucontrol, Intensive Insulin Therapy, IIT. 
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1. INTRODUCTION: 

 

1.1 The Physiological and Clinical Problem  

 

Critically ill patients often experience stress-induced hyperglycemia and high insulin resistance 

[1-5]. It is strongly associated with increased mortality [6-10]. Hyperglycemia is also associated 

with increases in other negative clinical outcomes, including infection [11], sepsis and septic 

shock [10, 12, 13], myocardial infarction [2], and polyneuropathy and multi-organ failure [3, 14]. 

 

In specific, the effect of a strong counter-regulatory (stress) hormone response in stimulating 

endogenous glucose production (EGP) and inhibiting insulin production and/or action, is further 

aggravated by the similar impact of a strong pro-inflammatory immune responses [15-17]. Thus, 

both factors significantly increase effective insulin resistance. Absolute and relative insulin 

deficiency is a further cause. Finally, high glucose content nutritional regimes exacerbate 

hyperglycemia and thus mortality [18-23], whereas reducing glucose intake from all sources has 

reduced glycemic levels [19, 22, 24-26] and can alleviate the impact of the hyperglycemic 

counter-regulatory response that drives the problem [1, 4, 27, 28]. Equally, insulin, with TGC, can 

ameliorate these inflammatory responses and improve insulin sensitivity and glycemic response 

[17, 29-31]. 

 

The problem is thus summarised as a strong counter-regulatory hormone driven stress response 

that induces significant insulin resistance and can antagonise insulin production and action. 

Coupled with unsuppressed EGP and potentially excessive nutritional inputs, high blood glucose 

is inevitable. Dynamic patients whose condition, and thus insulin resistance, evolves regularly and 

sometimes acutely, provide a further challenge to providing consistently tight TGC across every 
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individual patient in a cohort. Coupled with clinical burden in measuring frequently, and large 

swings in blood glucose are inevitable without the ability to adapt. Thus, the overall problem 

becomes one of managing a highly dynamic cohort, with minimal effort or intervention, which 

also displays significant variability both between and within patients. Considered generically, this 

definition is a classic dynamic systems and control problem definition that can be readily 

addressed if the major driving factors can be accurately modeled and understood.  

 

1.2 Hyperglycemia, Hypoglycemia, TGC and Patient Mortality Outcome 

 

Van den Berghe et al [3], obtained significant mortality reductions for a cardiovascular surgery 

cohort, as well as reducing other outcomes and treatments. It was matched by the retrospective 

study of Krinsley [32]. A later study by Van den Berghe et al [33] was less successful with a more 

dynamic medical ICU cohort. The SPRINT (Specialised Relative Insulin and Nutrition Titration) 

study obtained significant mortality reductions for a medical ICU cohort controlling both nutrition 

and insulin inputs [34, 35], which is a unique approach in the field [36]. These studies showed 

reductions of 17-42% in mortality for patients whose length of ICU stay was 3-5 days or longer. 

They were matched by equally impressive reductions in cost per patient treated [37, 38], and in 

reduced clinical incidence of sepsis, polyneuropathy and organ failure [36, 39].  

 

However, other studies did not get a similar result [40-46], with some stopped for safety due to 

hypoglycemia [44] or unintended protocol violations [46]. The recent NICE-SUGAR study [45] 

reported an increase in mortality in the TGC arm with a lower glycemic target, but was also 

subject to criticism of its treatment approach, analysis and randomisation methods [47-50]. The 

meta-analysis that followed the publication of the NICE-SUGAR study showed that most studies 

failed to achieve a result either way, but also had significantly variable numbers of centres, 
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patients, target cohorts and ICU types [43]. Thus, overall comparisons are difficult, making it 

almost impossible to assess which factors are associated with successful TGC. 

 

Hypoglycemia, as noted, is also a major cause of TGC difficulty, as it stopped the neonatal 

NIRTURE TGC study [51], and was a factor in stopping both VISEP and Glucontrol [44, 46]. 

Almost all studies report increased hypoglycemia with intensive TGC [43], excepting SPRINT 

[34]. One recent study links hypoglycemia in the first 24 hours of stay, for those patients who stay 

longer than 24 hours, as a factor for increased risk of death [52] although this was not the case in 

SPRINT. Thus, hypoglycemia and hyperglycemia are risk factors, and fear of hypoglycemia in 

particular has thus driven recent doubts about the role of TGC.   

 

Hence, overall, there is significant controversy around TGC and its application [53-55]. This paper 

posits that it is a lack of understanding of both the problem and the patient-specific dynamics that 

hinder clarity on all of these issues. More specifically, it reviews the basic known physiological 

and clinical aspects of TGC, in terms of their impact on glycemia and thus outcome. The first 

outcomes are recommendations on the analysis of current and future (or where possible prior) 

studies with a focus on determining the patient-specific or per-patient results to ascertain if tight 

control was truly achieved across a cohort or just for a selected sub-group or sample. This paper 

then further analyses the role of patient specific metabolic status in terms of the ability to achieve 

TGC and as a source of significant variability in TGC glycemic, safety and mortality outcomes. 

Thus, the overall paper reviews both effects and causes of the difficulty in applying TGC in 

critical care and does so from a metabolic model-based perspective. The goal is to provide a 

review and a new analysis framework from which new insights into this problem and how to 

implement effective, repeatable solutions. 
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2. THE INTERRELATIONSHIP OF GLYCEMIA, TGC, PATIENTS and OUTCOME: 

 

The following facts are well reported in this area: 

 Mortality increases with mean, maximum, and minimum and/or range of blood glucose in 

a range of cohorts [6-8, 56-59]. 

 

 Mortality increases with blood glucose variability, independent of mean or median value 

achieved by any form of glycemic control [60-63]. 

 

 Blood glucose levels over 7.0-8.0 mmol/L reduce and/or eliminate the effectiveness 

immune response to infection [15, 17, 64]. 

 

However, the failure of several recent trials to yield improved clinical outcomes has caused many 

to doubt these results or to simply accept the increased risk of death associated with 

hyperglycemia and glycemic variability via new consensus guidelines [50, 65]. 

 

Thus, this article adds the following points to consider: 

 

 Mortality is an individual outcome, and not a cohort outcome, even if its rate is measured 

by cohort. More specifically, mortality is patient-specific and thus is a function of how 

well the therapy was applied to that person and/or how successful the TGC was for that 

individual patient and their dynamically evolving condition.  

 

 Patients are individual and dynamic in their condition, with glucose levels or/and insulin 

resistance being a broad marker of severity of disease [66, 67]. 

 

 Hence, glucose response to nutritional carbohydrate administration and insulin dosing, or 

the resulting glycemic control, is an individual outcome.  

 

Outcome: Hence, the ability to achieve tight glycemic control and potentially reduce the risk of 

death for a given patient will be a function of the ability of the TGC method to manage that patient 

specifically. More specifically, the benefits of TGC work at an individual level. Only those 

patients who are tightly controlled will receive benefit based on the physiological factors and 

associations already noted in this section. Hence, TGC is effective at reducing mortality and 
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improving outcomes for a whole cohort, if and only if it is equally effective for every patient in 

that cohort.  

 

In contrast, consider the case of achieving the same cohort wide glycemic control between two 

cohorts. One is very tightly controlled to the same glycemic level across all patients. The second 

has the same glycemic variability per patient, but patient-specific median glycemia are widely 

spread across the cohort. Based on the reported associations between increasing hyperglycemia 

and mortality, a much different set of mortality outcomes might well be expected for the second 

cohort (increased) versus the first. A similar thought experiment considers two cohorts with 

equivalent patient-specific, tightly controlled median blood glucose values for all patients, but 

very different patient-specific variability. In this latter case, despite similar median cohort 

glycemia, the more variable group would be at greater risk. Together, these thought experiments 

imply that achieving tight, minimally variable glycemic control for each individual patient should 

be the primary goal of TGC. The subsequent implication is that the primary analysis of TGC 

should start at whether per-patient results were equivalently tightly controlled within each cohort 

of a study, before considering cohort differences in mortality and clinical outcomes, which is not 

currently the case. 

 

However, only a few trials have reported per patient results [34, 39, 68]. More importantly, Table 

1 summarises the cohort results from selected trials in terms of median and (lognormal 

multiplicative) variance, where enough data were reported to clearly identify these values. It 

clearly shows that there is no clear correlation between clinical “success” in reducing mortality 

and the specific glycemic level achieved, supporting the brief analysis above. More specifically, 

the cohort results do not reflect the (patient-specific) mortality outcomes reported, clearly 
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indicating that specific differences in how patients were treated as individuals resulted in the 

successful reduction of mortality or the failure to achieve that result in the different trial protocols. 

 

Table 1: Cohort-based clinical trial results. Where Leuven 2001/2006, Krinsley and SPRINT 

(bold face) were “successful” in comparison to their control or retrospective cohort.  Note that the 

variance (*) is for a multiplicative lognormal standard deviation and thus a greater value implies 

greater variability by (*-1)*100%. See also [43] for further data, but without the median or 

variance reported here for all cases. 
 

 

 

 

 

 

 

 

 

 
Note: all values converted to lognormal median (geometric mean) and multiplicative variance (*) 

 

In particular, it should be noted that SPRINT statistically decoupled all glucose metrics (mean, 

variability, peak/range) from mortality across the TGC cohort (p < 0.05). Thus, there was no 

relationship between any glucose metric and mortality, meaning that survivors and non-survivors 

received equivalent tight control over all patients.  

 

More succinctly, TGC with SPRINT eliminated glycemia (and its variability) as an indicator of 

mortality over a 384 patient cohort in contrast to all prior analyses [6-8, 56-63]. Thus, if they are 

decoupled or disassociated, then we can say that glycemic levels had no impact on mortality 

outcome, and thus that the (controlled) blood glucose levels are not, statistically, a factor 

differentiating those who lived and those who died. More specifically, all other studies, 

Trial 

Median 

(mmol/L) 

Variance 

* 

Leuven 2001 5.6 1.20 

Leuven 2001 Control 8.3 1.24 

Krinsley 6.7 1.50 

Krinsley Retrospective 7.2 1.76 

Leuven 2006 - all 6.0 1.29 

Leuven 2006 Control - all 8.3 1.22 

Leuven 2006 - LoS ≥ 3 day 5.8 1.27 

Leuven 2006 Cont. - LoS≥3 day 8.6 1.17 

Treggiari et al – Control / None 7.7 1.30 

Treggiari et al – 4-7 mmo/L goal 7.5 1.28 

Treggiari et al – 4-6 mmol/L goal 7.0 1.26 

SPRINT 5.8 1.24 

SPRINT Retrospective 7.2 1.88 

VISEP IIT all  6.1 1.17 

VISEP Conventional all 8.2 1.24 
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retrospective analyses and TGC studies, show that increases in glycemic metrics (mean, range, 

and others) are associated with increasing mortality. Thus, SPRINT “decoupled” glycemia as a 

marker of (increased) risk of death. The only other study that similarly analysed glucose and 

mortality within a TGC cohort still showed a (weak) link between them [39]. 

 

As a statistical note, Table 1 uses lognormal statistics because TGC data are often skewed. While 

arithmetic mean is typically used to report central tendency in this field, it is not a robust statistic, 

as it is greatly influenced by outliers. In particular, for skewed distributions, the arithmetic mean 

will not match the notion of "middle", and robust lognormal or non-parametric statistics provide a 

much better definition of central tendency [69]. 

 

Figure 1 further supports these points and the data in Table 1. It shows the spread of median (50
th

 

percentile) glucose achieved for each patient, across the cohorts, for the SPRINT [34], Glucontrol 

[46], and NICE-SUGAR [45] studies. Note that the Glucontrol data are only for the CHU de Liege 

pilot study centre in Liege, Belgium and not for all 21 centres. Both the control or standard care 

cohorts, and TGC cohort results are shown. These are the only 3 studies reporting a mortality 

outcome that reported both the control or standard care and intensive insulin therapy or TGC 

cohort’s per-patient results or for which we had the data. The control cohort for each study is 

shown first and the TGC cohort underneath it.  

 

First, it is clear that the SPRINT cohort had the tightest control across patients in the TGC cohorts 

by almost a factor of 2x with a 5
th

-95
th

 percentile range of 1.8 mmol/L versus the 3.2 mmol/L for 

Glucontrol A (the TGC cohort) and 4.3 mmol/L for NICE-SUGAR Intensive therapy. The middle 

50% are similarly tighter with 0.7 mmol/L for SPRINT, 1.0 mmol/L for Glucontrol A and 1.9 

mmol/L for NICE-SUGAR Intensive therapy. Hence, it can be readily concluded that SPRINT 
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controlled all of its patients (90% range) to a very tight range far better than Glucontrol or NICE-

SUGAR by a factor of ~2x, showing a clearly superior ability to adapt to inter-patient variability 

across the cohort. This result also held for the middle 50% of patients although with a lower 

(~1.4x) difference between Glucontrol A and SPRINT. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Median blood glucose values achieved over all patients for both the 

control/retrospective and TGC cohorts in the SPRINT, NICE-SUGAR and Glucontrol studies. 

Dots show median glycemia achieved by the protocols for the 5
th

, 25
th

, 50
th

 (median), 75
th

 and 95
th

 

percentile patients. Boxes show the inter-quartile range (IQR) from 25
th

 to 75
th

 percentile or 

middle 50% representing central tendency. 

 

Second, comparing the 5
th

-95
th

 percentile ranges for each study, tightness can also be seen in the 

TGC protocol’s ability to reduce this range. SPRINT reduced the range by 63% (4.9 mmol/L to 

1.8 mmol/L). The results were a 22% reduction for Glucontrol and 30% for NICE-SUGAR. While 

Glucontrol was a study with two target glycemic outcomes, which mitigates some of the value of 

this metric for that study, the difference reductions for SPRINT and NICE-SUGAR clearly reflect 

the ability of SPRINT to more tightly control a range of patients and conditions over time. 

 

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

Glucontrol A

Glucontrol B

NICE-SUGAR Intensive

NICE-SUGAR Standard

SPRINT

SPRINT Retro

Blood Glucose (mmol/L)
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Finally, it is clear in Figure 1 that SPRINT also achieved the best separation between cohorts, with 

minimal overlap in glycemic values.  Thus, considering the physiological relationships between 

hyperglycemia and immune response in the beginning of Section 2, as well as the fact that 

mortality is an individual outcome related to individual treatment outcomes, Figure 1 shows how 

SPRINT was the most likely to see a difference in patient outcome. This point is reflected in the 

fact that only SPRINT obtained a positive mortality outcome and did so in significantly less 

patients than in the other two studies (~1000 both arms vs ~1500 for Glucontrol and ~6000 for 

NICE-SUGAR).  

 

It should also be noted that with respect to tightly and adaptively controlling patients, SPRINT had 

the lowest median blood glucose level (median value of blood glucose for the median patient) for 

the control or retrospective cohort. In particular, the median control or standard care cohort results 

were 7.5 mmol/L for SPRINT versus 7.9 mmol/L for NICE-SUGAR and 7.8 mmol/L for 

Glucontrol B. Hence, it had to provide a tighter control result across all patients than the other two 

protocols to get the same separation between the TGC and control cohorts. 

 

These results are reinforced in Figure 2, which shows the cumulative distribution functions 

(CDFs) for SPRINT and Glucontrol A, where the differences in Figure 1 are clearer. These data 

were not available for the NICE-SUGAR study at the time of preparing this manuscript. As these 

CDFs also show all blood glucose values, it is also clear that the steeper sloped SPRINT provided 

overall tighter control for these patients at each percentile and thus overall.  

 

The circled region shows the increased hypoglycemia in the Glucontrol A study for that specific 

centre (7.9% of patients) versus SPRINT (2.1% of patients). Importantly, hypoglycemia is a 

further measure of an inability to adapt to both inter- and intra- patient variability. For 
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comparison, NICE-SUGAR reported a hypoglycemia rate of 6.8% for the entire study over all 

centres, and Glucontrol reported 8.7% over all centres. This latter result further indicates that 

tighter per-patient TGC yields better outcomes and improved safety from hypoglycemia, as well 

as indicating that variability, as seen in hypoglycemia, can perhaps increase as protocols are 

translated out across multiple centres and practice cultures. 

 

Figure 2: CDFs of blood glucose for the SPRINT (left) and Glucontrol A (right) cohorts. The 

dashed lines show the 4-8 mmol/L range where most patients have the majority of their 

measurements for SPRINT. The circle shows the increased hypoglycemia seen in Glucontrol A. 

CDF lines show the 5
th

, 25
th

, 50
th

 (median), 75
th

 and 95
th

 percentile patient CDFs. 

 

In addition, some studies show an increased risk of mortality associated with hypoglycemia [62, 

70]. Hence, the inability to manage variability with respect to relatively low blood glucose values 

on a per-patient or patient-specific basis may result in significant hypoglycemia. This more 

variable per-patient TGC can increase mortality, matching retrospective analyses [60-63].  

 

Overall, there are three direct conclusions or goals that can be drawn from this initial analysis: 

 

1. Conclusion 1: It is per-patient glycemic results that are important, rather than those over 

a cohort, since mortality is an individual response to condition and therapy.  
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2. Conclusion 2: The primary goals of TGC should be to first provide tight, minimally 

variable TGC to each individual patient. The clinical outcome of successfully 

accomplishing this task could then be measured by whether glycemia (mean, variability, 

etc) was statistically decoupled or disassociated from mortality across the TGC cohort. 

 

3. Conclusion 3: Median blood glucose levels should be less than ~7.0 mmol/L, and thus 

allow for reasonable variation in control as patient condition evolves. This goal will also 

have lesser impact on immune response to infection, thus reducing the potential for 

sepsis, multi-organ dysfunction and failure, and thus death [36, 71-74]. 

 

The first point thus notes that the median patient and their associated 5
th

, 25
th

, 75
th

 and 95
th

 

percentile compatriots should be as equivalent as possible under a TGC protocol to try to ensure 

that all patients in a cohort, regardless of outcome, receive the same level of control, which is 

critical to making any comparison. In particular, comparing mortality between a TGC and control 

or retrospective cohort implicitly assumes that the control received within each cohort was 

equivalent for each patient, thus rendering the comparison of overall cohort mortality to determine 

the impact of TGC on outcome valid. If this assumption doesn’t hold, then it is not possible to 

determine the impact of TGC or glycemic control in general, because it is not possible to verify 

that survivors or non-survivors in either cohort had a significantly different glycemic outcome 

from TGC. More specifically, if the TGC protocol does not provide quality control for enough or 

all patients, then failure to achieve a mortality reduction is a function of the protocol and not the 

therapy. 

 

Given the above, the second point implies that the primary goal of TGC is to obtain tight control 

for each patient individually and thus that TGC should be first assessed for each patient, rather 

than as a cohort. Decoupling or disassociating glycemia from mortality in the TGC cohort should 

then be assessed to ascertain the true impact of the intervention before comparing cohorts. Note 

that statistically decoupling or disassociating glycemia and mortality may not be required to 

achieve a difference between TGC and non-TGC cohorts, but, if achieved with a lower median or 

average glycemia (Conclusion 3), is a good measure of the quality of TGC given and would likely 
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increase the potential for seeing a mortality difference. Equally, this decoupling is something that 

can only be assessed post-hoc is not something that can be clinically treated to on an individual 

per-patient basis. 

 

The last point simply follows from studies on immune response efficacy in hyperglycemia [15, 

17]. A target between 6.0 and 7.0 mmol/L for median blood glucose also allows for variation and 

patient evolution, while providing a buffer against hypoglycemia. In particular, studies of 

glycemia and mortality show increasing risk of death average for glycemia of 7.0 mmol/L or 

greater, but no change in risk of death below 6.0 mmol/L [2, 6, 75]. In addition, a recent study of 

organ failure and SPRINT showed that cumulative time in the 4.4-7.0 mmol/L band greater than 

50% was associated with faster reduction of organ failure [36]. Thus, within this band there are no 

current limitations or guidelines on clinical practice or choice.  

 

Finally, from this analysis, a further two conclusions about patient variability that lead directly to 

requirements for any TGC implementation are also immediately evident:  

 

4. Conclusion 4: Inter-patient variability can be very high across cohorts, especially in 

medical ICUs. This result requires a protocol that is adaptive across a wide range of 

insulin resistance to provide equal glycemic control to each patient. 

 

5. Conclusion 5: Intra-patient variability can also be significant as patients evolve 

dynamically. This result also requires a level of adaptability from the TGC protocol that 

is not available in most published cases [66, 76-78]. 

 

These latter two conclusions refer to the significant patient variability that must be addressed, both 

within and between patients. This variability requires any TGC algorithm to be able to  identify and 

manage these variations in their interventions to provide TGC.  More specifically, to obtain 

mortality benefits from TGC, a protocol must provide tight control with minimal risk of hypo- or 

hyper- glycemia. It must also achieve this goal for all patients from the 5
th

 to the 95
th

 percentile. 
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Summary: All of these conclusions imply that measuring glycemic control over entire cohorts for 

comparison is not valid. Equally critically, most prior studies have not done the analyses to 

determine whether their TGC protocols were effective enough across all types of patient to 

provide a valid comparison to mortality in the randomised control or retrospective cohorts used.  

 

Thus, the goal of any TGC protocol should be to (first) provide uniformly tight per-patient TGC 

that (second) results, ideally, in a statistical decoupling or disassociation of glycemia from 

mortality outcome in the TGC cohort, before comparison to a control cohort. To accomplish these 

goals they must be able to manage significant intra- and inter- patient variability in metabolic 

response and/or insulin resistance. 

 

The remaining question: How to achieve such tight control? Or conversely, what physiological 

behaviours and dynamics have made these goals difficult to achieve in practice? 
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3. INSULIN SENSITIVITY, PATIENT VARIABILITY AND IMPACT ON TGC: 

 

Glycemia, both level and variability, in the critically ill broadly reflects patient condition. More 

specifically, the more critically ill the patient is, the more variable and greater their glycemia (e.g. 

[2, 6, 7, 60, 63, 66, 79, 80]). However, glycemia merely reflects three main factors: 

 

 Nutritional inputs (carbohydrate content in specific and endogenous glucose production) 

 Insulin (endogenous and exogenous) 

 Insulin sensitivity (SI hereafter) and its variability, which controls the balance between 

the first two factors (insulin and nutritional inputs) and outcome glycemia for a given set 

of these two interventions 

 

A typical TGC control protocol controls only insulin dosing [42, 66, 77, 81], excepting SPRINT, 

which (uniquely) controls both insulin and nutrition individually. Many studies leave nutritional 

inputs to unit specific standards and don’t specify or report them. However, the glycemic response 

to be controlled is the response to both inputs. The insulin sensitivity of the patient or their ability 

to take up glucose via insulin in a whole body sense given the highly insulin resistant and counter 

regulated state of the critically ill thus defines this glucose response. 

 

Thus, insulin sensitivity is the primary factor. It determines the resulting glucose level for any 

given inputs, and thus how much insulin is required to achieve tight control, at least to the dose 

where insulin effect saturates [82-85]. More specifically, in the model used in this study, it 

accounts for the net effect of any suppression or increase in endogenous insulin and glucose 

production, and the rate of peripheral glucose uptake. Finally, the cytokines and hormones that 

drive these affects that result in hyperglycemia are physiologically linked to lowered insulin 
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sensitivity and vary continuously over time as patient condition evolves. Hence, this overall 

effective insulin sensitivity is dynamic and time-varying [86-88].  

 

With respect to applying TGC insulin sensitivity is critical. The variation due to patient condition 

will drive inter-patient differences and variability. Variation in this value as patient condition 

evolves will then drive intra-patient variability. As a result insulin sensitivity, as defined above, 

lies behind the main driving factors behind the significant glycemic variability seen in critically ill 

patients and the success (or lack of it) of TGC protocols. 

 

3.1 Analysing Insulin Sensitivity in the Critically Ill 

 

For this analysis, a clinically validated model [35, 89-99] is used to identify patient-specific, time-

varying (hourly) insulin sensitivity (SI) every hour:  
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Where G(t) [mmol/L] is plasma glucose I(t) [mmol/L] is plasma insulin, uex(t) [mU/min] is 

exogenous insulin input, basal endogenous insulin secretion is IB [mU/L/min], with kI representing 

suppression of basal insulin secretion by exogenous insulin. Interstitial insulin is Q(t) [mU/L], 

with k [1/min] accounting for losses and transport. Body weight and brain weight are denoted by 

mbody [kg] and mbrain [kg]. Patient endogenous glucose clearance and insulin sensitivity are pG 

[1/min] and SI [L/(mU.min)]. The parameter VI,frac [L/kg] is the insulin distribution volume per kg 

body weight and n [1/min] is the transport rate of insulin from plasma. Total plasma glucose input 

is P(t) [mmol/min], endogenous glucose production is PEND [mmol/kg/min] and VG,frac [L/kg] 
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represents the glucose distribution volume per kg body weight. CNS [mmol/kg/min] captures non-

insulin mediated glucose uptake by the central nervous system. Michaelis-Menten functions model 

saturation, with αI [L/mU] for the saturation of plasma insulin disappearance, and αG [L/mU] for 

insulin-dependent glucose clearance saturation. These parameters and their clinically validated 

values are well documented in the literature [86, 87]. In particular, they have been used in several 

clinical TGC studies, including the development of SPRINT [35, 89, 90, 95-100]. Hence, the 

insulin sensitivity metric (SI) it is well validated metric and has also shown significant correlation 

to gold standard research assessments of insulin sensitivity [91-94], and in comparison to steady 

states achieved in these gold standard tests [101].  

 

Note that Equations (2)-(3) define an intravenous insulin pathway, per ICU standard insulin 

delivery, but all pharmaco- dynamics and kinetics are otherwise general and have been used in 

type 1 diabetes analysis, as well [102-104]. The insulin kinetics in Equations (2)-(3) are similar 

looking to those of the well known Minimal Model, but have very different meaning as defined. In 

particular, the Minimal Model uses two parameters in its version of Equation (2) whose ratio 

defines insulin sensitivity, thus mixing insulin kinetics and its pharmacodynamic outcome, 

resulting poorer control and prediction outcomes [91, 92, 95].  

 

For this study, two primary cohorts are analysed to illustrate the range of dynamics observed in 

the inter- and intra- patient variability of insulin sensitivity: 

 

 Adult ICU (ICU1): N = 384 patients from SPRINT with over 49,000 hours of data [34] 

 Neonatal ICU (NICU): N = 25 patients and over 3500 hours of data [105] 
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A third TGC clinical trial cohort is used for additional comparisons to further illustrate certain 

aspects of insulin sensitivity and patient variability in the critically ill: 

 

 Adult ICU (ICU2): N = 211 patients from Glucontrol trial pilot study (both A and B 

cohorts) at the CHU de Liege in Liege, Belgium with over 30,000 hours of data  [46]. 

 

For each cohort, insulin sensitivity, SI, is identified hourly from the clinical data [88] using a 

method that with this model yields correlations of R > 0.97 for insulin resistant and normal 

subjects in euglycemic clamp testing where enough data are known to assess the accuracy of this 

identified value [91]. In each cohort, the resulting hour to hour variation in SI(t) for each patient is 

then used to generate a stochastic model giving the probability distribution for hourly variation in 

SI from any current value of SI [86, 87]. Hence, there is a distribution over a cohort of insulin 

sensitivity showing primarily inter-patient variability, as well as distributions of hour to hour 

changes in insulin sensitivity showing intra-patient variability. This stochastic model is used in 

this analysis only to show the variability over time of SI, but is effectively a lag-1 Markov model 

with further details in [86, 87, 106]. It is used with the model of Equations (1)-(3) in TGC to 

provide bounds and assess the risk due to variability of a given intervention [100]. 

 

Fig. 3 shows the SI distribution for the two main cohorts. It is clear that the NICU cohort has a far 

wider and flatter distribution of values. These results indicate a lesser level of whole body insulin 

resistance compared to adults. They also show greater inter-patient variability in this parameter. 

For context, Fig. 3 also shows the typical range for type 2 diabetic individuals [92]. 
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Figure 3: ICU1 and NICU distributions of SI. The range for a typical type 2 diabetes mellitus 

patient (T2DM) is also shown for context [92]. 

 

In detail, the ICU1 cohort, the median SI-ICU1 = 0.22x10
-3

 (IQR: [0.14-0.33]x10
-3

; 90%CI: [0.06-

0.78]x10
-3

) L/(mU.min). For the NICU cohort, median SI-NICU = 0.67x10
-3

 (IQR: [0.43-0.95]x10
-3

; 

90%CI: [0.17-1.47]x10
-3

) L/(mU.min). For context, the range in healthy T2DM, SI-T2DM = [1, 

2.5]x10
-3

 L/(mU.min) [92]. Hence, the ICU1 cohort from SPRINT has significantly less inter-

patient variability with a much smaller SI range than the NICU cohort. 

 

Fig. 4 shows the ICU1 (from SPRINT) and NICU stochastic models, capturing hourly variation 

from SI,n to SI,n+1. The lines indicate the median, IQR and 90%CI for SI,n+1 in the next hour on a 

vertical line from the current hour value, SI,n value on the x-axis. Most variation is in a narrow 

band that grows wider with a downward skew (a potential to become more ill), as SI,n rises. Note 

the NICU axes are ~2x larger. 
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Figure 4: Hourly variation of SI for adults (top) and the SPRINT data and sub-1kg neonates 

(bottom) from [105]. Note the axes are scaled differently by ~2x. Note the ranges for the 5
th

, 25
th

, 

50
th

, 75
th

 and 95
th

 percentiles become more variable in regions of scarce data (dots) 

 

Fig. 4 shows generally smaller variations at similar SI,n for the NICU case. Fig. 5 shows this 

variation in percent (from median) for each cohort in cumulative distribution functions over all SI 

levels in Figures 4. Median values for the 1-hour changes SI-ICU1 and SI-NICU are zero (p < 0.01). 

However, their IQR ranges are different (IQR: SI-NICU = [-7.5, +9.8]; SI-ICU1 = [-11.3, +15.7])% 

(p=0.02) with the IQR range of SI-NICU is 40% smaller than the IQR range for SI-ICU1. The same 

results hold true for variations over 2-4 hours in the subsequent panels, with the range of IQR for 

SI increasing over time to up to 60% (of median) at 4-hours. Hence, adult ICU patients have 

significantly greater intra-patient variation in SI when comparing these two cohorts. 
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Fig. 5: Temporal variation in insulin sensitivity SI for adult (ICU1, solid line) and neonatal 

(NICU, dashed line) cohorts. The left panel shows normalised probability density function of 

percent change in insulin sensitivity, and the right panel shows cumulative density functions for 

insulin sensitivity change for 1-4 hour intervals (top to bottom). 

 

Thus, Figures 4-5 clearly show how variable these patients can be metabolically. In addition, 

many protocols reduce clinical burden with 3-4 hourly measurement once the patient reaches a 

desired target or band (e.g. [3, 45, 46, 66]). With 50% of all likely variations spanning +/- 30% 

over 4 hours, even these more likely variations can result in significant swings in blood glucose 

for a given consistent intervention. Hence, the resulting large glycemic variability and relatively 

higher hypoglycemia seen in many TGC protocols can be readily explained by this variability (at 

any measurement interval). 
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More generally, these results show the need to use more detailed definitions of patient stability 

than simply reaching a glycemic band, which should provide more robustness to these variations. 

In particular, SPRINT does not increase the measurement interval to 2 hours until the patient is 

glycemically stable for 4 hours with higher insulin sensitivity [34]. As a result, insulin 

interventions are lower and the impacts of these variations are thus explicitly minimised by the 

design of the protocol [35, 99]. 

 

As a final analysis the ICU2 (from Glucontrol) and ICU1 cohorts are compared, where Figure 6 

shows the distribution of per-patient insulin sensitivity CDFs for each cohort. This figure clearly 

shows that the ICU2 cohort, which was primarily cardiovascular surgical patients, has 

approximately 2x the inter-patient variability of the medical ICU cohort in the ICU1 case from 

SPRINT. However, interestingly, the hourly variations for each cohort shown in Figure 7 indicate 

that the evolution or intra-patient variability of these cohorts is very similar [107].  

 

 

Figure 6: Per-patient CDFs for the ICU1 (left) and ICU2 (right) cohorts from SPRINT and 

Glucontrol respectively showing very different ranges of patient-specific insulin sensitivity and 

thus different inter-patient variability. 
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These last results seem to reinforce the need to account for both kinds of variability in providing 

TGC, as it is clear that some adult cohorts will have different inter-patient variability, but 

potentially quite similar intra-patient variability. This is an important result that will require 

further confirmation from other data sets if and when they become available. With respect to 

designing and implementing TGC it does reinforce the need to account for variability in a patient-

specific fashion, and to do so in the protocol directly and by design. More specifically, TGC 

methods should directly account for patient-specific insulin sensitivity (per Figure 6) and its 

potential to vary hour to hour (per Figure 7) when determining a give intervention, something only 

model-based approaches might currently provide (e.g. [87, 100]).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Hour to hour variation in insulin sensitivity for both the SPRINT (ICU1, solid lines) and 

Glucontrol (ICU2, dashed lines) cohorts, showing very similar results particularly through the 

middle ranges of insulin sensitivity where both cohorts have dense data per Figure 6. Regions of 

variable boundaries, especially at the 5
th

 and 95
th

 percentiles due to lower data density from a 
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cohort are shown. The top most pair of solid+dashed lines are the 95
th

 percentile boundary, the 

next down are the 75
th

 percentile lines. The middle pair of the 5 pairs shown are the median or 50
th

 

percentile. The following two are the 25
th

 and 5
th

 percentile lines. Thus, the 95
th

 through 5
th

 

percentile lines are arranged from top (95
th

) to bottom (5
th

) vertically in these plots as a matter of 

convention. The 5
th

, 25
th

, 75
th

 and 95
th

 percentile lines are labelled, and the median lines are 

thickest, while the 25
th

 and 75
th

 percentile lines are next thickest and the 5
th

 and 95
th

 percentile 

lines are the (outermost) thinnest lines. 

 

 

Summary: Adult ICU patients have significantly more intra-patient variation in SI compared to 

NICU patients, and are thus far more dynamic in their evolution, which might be expected 

clinically when comparing these two very different cohorts. It is also clear that ICU patients have 

less inter-patient variability than NICU patients, but that this inter-patient variability can differ 

between adult cohorts. Thus, each cohort has a significant form of variability to be managed.  

 

3.2 The Impact of Insulin Sensitivity and Its Variation, and Implications for TGC Protocol Design 

 

This analysis of SI in two distinctly different critical care cohort types using three different cohorts 

has significant implications for TGC protocols. In particular,  

 

 To be patient specific a TGC protocol must directly (e.g. model-based) or indirectly 

(model-derived) account for both intra- and inter- patient variability. 

 Measurement frequency must be 1-3 hourly and is likely to vary with patient condition 

and stability due to the consistently significant intra-patient variability observed. 

 

Currently, only a very few protocols either directly or indirectly adapt their intervention based on 

patient insulin sensitivity [34, 97, 105, 108]. Most of these are model-based or, in the case of 

SPRINT, model-derived [35, 89, 99]. As a result, they are able to explicitly and directly account 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

 

for variations in the patient’s metabolic response, as they have greater insight than typical 

clinically derived protocols without these computations.  

 

However, most other reported protocols do not account for or assess insulin sensitivity in any way 

[3, 32, 33, 40-42, 44-46, 51, 68, 77, 81, 109-119], including the recent, major RCTs. Other 

protocols, adjust based on a surrogate response to insulin decreases (e.g. resistance increases) 

[116, 117], but do so in fixed multiples, rather than via an explicit or patient-specific algorithm. 

None account for the hour to hour variability, or the risks it imposes. 

 

Thus, for successful TGC, a protocol must account as directly as possible for intra- and inter- 

patient variability in insulin sensitivity. To accomplish this task it must be able to estimate either 

directly or implicitly the patient-specific level of this metric. The result leads to patient-specific 

and tighter control over diverse cohorts. 

 

3.3 The Impact of Nutrition and Implications for TGC Protocol Design  

 

An additional significant factor that exacerbates this issue is that all but two implemented 

protocols are completely blind to carbohydrate intake [66]. Those two are SPRINT, including its 

model-based precursors [34, 97, 98, 105, 120], and the eMPC algorithm [108]. Only SPRINT 

specifies carbohydrate intake, formula and/or goal feed rates [35, 99]. All other reports leave these 

variables to local clinical standards and do not consider it in their TGC protocol, despite the risk 

factors associated with various levels of carbohydrate intake in the critically ill [18, 23, 121]. 

 

Lack of knowledge or control of carbohydrate intake adds a further area of glycemic variability. 

Certainly, the differences in glycemic variability seen in Figures 1 and 2, are due, at least in part, 
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to the 5x wider range of carbohydrate administration used in Glucontrol at that centre [107], which 

was based on local standards and clinician specification [46]. Thus, a lack of knowledge of 

carbohydrate administration, coming from a range of possible sources in the ICU, can multiply the 

impact of patient-specific variability on the glycemic outcomes of a TGC protocol. 

 

More specifically, TGC protocols are designed with underlying assumptions of carbohydrate 

administration that thus guide the insulin dosing recommended at a given blood glucose level. 

Deviation from this implicit level by a given clinician or unit will result in a different metabolic 

balance, and thus a wider range of patient-specific glycemic outcomes. These more variable 

glycemic outcomes will therefore further enhance the overall glycemic variability seen from the 

protocol, as well as result in different insulin dosing. 

 

Hence, it is not hard to conceive that a multi-centre trial with a protocol blind to carbohydrate 

administration would struggle to provide consistent, tight glycemic control. In particular, a 

protocol designed and pilot tested in a single unit and then disseminated to others, might also 

inadvertently add further variability by not accounting for the different nutritional regimes and 

practices of other units, which vary considerably [18, 121-123]. Hence, nutrition levels and their 

variation are also a pre-disposing factor for hypoglycemia [124], as might be expected from this 

analysis.  

 

Hence, for successful TGC, carbohydrate administration must be known, if not actually specified, 

by the algorithm. Without knowledge of carbohydrate administration it will be difficult for the 

protocol to estimate insulin sensitivity directly, except as a value relative measure, which could 

thus limit some important aspects of patient-specific, adaptive TGC. 
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3.4 The Impact of Measurement Frequency and Error, and Implications for TGC Protocol Design  

 

All of these issues are aggravated by often extended measurement periods out to 4-hourly, where 

variability can be quite wide, as evident from Figures 4-5. Measurement frequency and clinical 

burden are major issues in implementing TGC [125-130]. The IQR range for variations in SI at 3 

and 4 hours approaches 60% (± ~30%), leading to significant variations in glycemic response for a 

given intervention. Given the prevalence of continuous infusions held over these longer intervals, 

even relatively modest variation (10-20% over 3-4 hours) would result in significant changes in 

glucose from the intended outcome. Hence, as measurement periods rise so does both glycemic 

variability and hypoglycemia [66, 99]. The end result is a tradeoff between the quality of control 

via measurement frequency and clinical workload or burden, which must be managed to provide 

good TGC to each patient with minimum variability and hypoglycemia in the glycemic outcome. 

 

Some studies have cited measurement error as one factor in the difficulty found in achieving 

adequate control of blood glucose levels [131-134] leading to a push for better or more frequent 

bedside sensors. However, experience of SPRINT and several others has been that measurement 

error was not a factor or was not cited, despite using bedside glucometers with standard errors of 

7-15% depending on blood glucose level, or blood gas analysers with much lower errors of 1-3%.  

Monte Carlo analysis of SPRINT and other protocols using clinically validated virtual patients 

revealed little difference with added measurement error in these ranges [99], with measurement 

frequency being the much more dominant affect when assessed with error. Thus, while better 

measurements are always beneficial, measurement error itself does not appear to have a greater 

impact than the TGC protocol design or its ability to manage inter- and intra- patient variability. 
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Importantly, issues of clinical burden and measurement rate may well dissipate as continuous 

glucose monitoring (CGMs) devices are emerging for in-hospital and ICU use [135-139]. While 

attempts have been made to use them in control [51, 115, 140, 141], a primary use has been for 

reducing hypoglycemia. However, CGMs have significantly greater sensor or assay error along 

with their increased measurement rate. Thus, more effort has been put towards processing these 

signals for use in control or hypoglycemia alarms with, until recently, greater focus on the type 1 

diabetes case (e.g. [142-145]). For TGC in the ICU this area was also reviewed in [66]. 

 

3.5 Summary With Respect to Some Recent Protocols 

 

Given that some patients are more variable than others, failure to directly identify and account for 

patient variability means that some patients will receive, all else equal, more variable TGC. Thus, 

such clinical protocols are likely to fail in returning a mortality result, despite showing a good 

overall glycemic response for the cohort, as is seen comparing results across Table 1. Hence, fixed 

protocols that provide dosing based on more fixed parameters or protocols, rather than patient-

specific responses are likely to fail. 

 

For example, the NICU based NIRTURE trial [51, 119] provided dosing on a fixed mU/g body 

weight. The NIRTURE protocol adjusted them on a fixed sliding scale to account for increasing 

insulin resistance, but had little mechanism for lowering insulin dosage before hypoglycemia. As a 

result, it could not adapt to the wide range inter-patient variability in insulin sensitivity in neonates 

seen in Fig. 1, or to the modest intra-patient variability seen in Fig. 2. Long measurement periods 

out to 4-6 hours, with constant insulin infusions in between exacerbated the problems with the 

resulting control. The end result was high glycemic variability with excessive hypoglycemia that 
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resulted in the NIRTURE trial being stopped early by the investigators due to the associated 

increased risk. 

 

Similar issues and results were seen for the Leuven, VISEP, NICE-SUGAR and Glucontrol trials 

[3, 44, 46, 54, 146]. As a result the fear of hypoglycemia has led to a raising of glycemic target 

bands [65]. These recommendations were made not because they were physiologically or 

clinically justified with respect to the impact of higher glycemic levels, but out of the inability to 

achieve tight control safely at lower levels [147, 148]. These further points reinforce the need to 

move toward patient-specific protocols that reduce variation and hypoglycemia. Thus, the primary 

implication is simply that for TGC to provide equal control to all patients, the control protocol 

must be patient-specific and able to directly account for patient-variation, measurement frequency 

and nutritional intake. 

 

In essence, it is the interaction between insulin sensitivity, the insulin and nutrition administered, 

and the patient’s variability over time that determines glycemic outcome in TGC. Not knowing or 

understanding any one of these variables means patient-specific control cannot be delivered.  

 

Summary: A TGC cohort result may have acceptable median and variability, as seen in Table 1, 

but the clinical outcome will be highly dependent on how each patient is treated. Failure to 

account for inter- and intra- patient variability would result in poor TGC for the more dynamic 

patients (intra-patient variability) or those for whom dosing is inappropriate due to inter-patient 

variability. Managing variability means that any protocol must be able to adapt and provide 

patient specific interventions that evolve with patient condition. This adaptation should include 

knowledge, if not specification, of carbohydrate administration. Finally, measurement frequencies 

must be short enough to minimise potential variation between interventions. At 1-3 hours for 
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maximum sampling periods, protocols must also be designed to minimise clinical burden. Failing 

these issues, glycemic control and safety will be compromised resulting in poor control, an 

inability to fully separate cohorts in randomised trials, failure to eliminate glycemic metrics as 

markers for mortality, and thus difficulty or failure to show the benefit of TGC.  

 

More generally, TGC is a multi-faceted and difficult problem, and the major facets of the problem 

as outlined in this review have not often been fully or properly treated, resulting in a poor success 

rate for TGC as a whole. 
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4. CONCLUSIONS: 

 

The field of critical care has seen a great deal of debate over TGC therapy. How to implement it, 

benefits, safety, the cohorts most likely to benefit, and the most effective and/or safe glycemic 

targets.  

 

This article uses a mixture of review and model-based analysis to analyse the state of tight 

glycemic control in critical care. The study uses data from two major trials and three very different 

cohorts to emphasise the generality of the analysis across age (neonatal vs adult), primary 

diagnostic (medial ICU vs cardiothoracic surgical ICU) and clinical culture or region (NZ vs 

Belgium). There are two main conclusions drawn: 

 

1. The foremost goal of effective TGC must be to obtain tight glycemic control for each patient 

in a cohort, individually, before considering differences in glycemia and outcome between 

cohorts (TGC and standard care). Data and results presented show some published protocols 

failed to achieve such consistent, tight control for all patients, resulting in negligible benefit or 

even detriment from tight control. Contrasting successful results were also shown. 

 

2. The difficulty in obtaining tight, consistent TGC is due to the inability to manage inter- and 

intra- patient variability, observed in the model-based analysis of insulin sensitivity and its 

dynamic variation, which plays the leading role in glycemic, and thus other, outcomes. 

 

Hence, it is per-patient results that matter most, and achieving successful outcomes, such as 

reduced mortality, is likely going to be strictly a function of being able to manage patient 

variability across a cohort to provide consistent TGC. The implications for developing and 

implementing TGC algorithms are then presented and discussed along with additional 

confounding factors that add further variability and difficulty, including protocols blinded to 

carbohydrate intake.  
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Finally, both parts of the paper outlined distinct metrics and/or goals, based on this analysis and 

prior results, to provide potential directions and goals for designing and implementing the next 

generation of TGC protocols. Proper treatment and consideration of these issues in protocol design 

and implementation should result in increased success of TGC protocols in practice. 
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Figure 1: Median blood glucose values achieved over all patients for both the 

control/retrospective and TGC cohorts in the SPRINT, NICE-SUGAR and Glucontrol 

studies. Dots show median glycemia achieved by the protocols for the 5
th

, 25
th

, 50
th

 

(median), 75
th

 and 95
th

 percentile patients. Boxes show the inter-quartile range (IQR) 

from 25
th

 to 75
th

 percentile or middle 50% representing central tendency. 
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Figure 2: CDFs of blood glucose for the SPRINT (left) and Glucontrol A (right) 

cohorts. The dashed lines show the 4-8 mmol/L range where most patients have the 

majority of their measurements for SPRINT. The circle shows the increased 

hypoglycemia seen in Glucontrol A. CDF lines show the 5
th

, 25
th

, 50
th

 (median), 75
th

 

and 95
th

 percentile patient CDFs. 
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Figure 3: ICU1 and NICU distributions of SI. The range for a typical type 2 diabetes 

mellitus patient (T2DM) is also shown for context [92]. 
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Figure 4: Hourly variation of SI for adults (top) and the SPRINT data and sub-1kg 

neonates (bottom) from [105]. Note the axes are scaled differently by ~2x. Note the 

ranges for the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles become more variable in regions 

of scarce data (dots) 
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Fig. 5: Temporal variation in insulin sensitivity SI for adult (ICU1, solid line) and 

neonatal (NICU, dashed line) cohorts. The left panel shows normalised probability 

density function of percent change in insulin sensitivity, and the right panel shows 

cumulative density functions for insulin sensitivity change for 1-4 hour intervals (top 

to bottom). 
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Figure 6: Per-patient CDFs for the ICU1 (left) and ICU2 (right) cohorts from 

SPRINT and Glucontrol respectively showing very different ranges of patient-specific 

insulin sensitivity and thus different inter-patient variability. 
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Figure 7: Hour to hour variation in insulin sensitivity for both the SPRINT (ICU1, 

solid lines) and Glucontrol (ICU2, dashed lines) cohorts, showing very similar results 

particularly through the middle ranges of insulin sensitivity where both cohorts have 

dense data per Figure 6. Regions of variable boundaries, especially at the 5
th

 and 95
th

 

percentiles due to lower data density from a cohort are shown. The top most pair of 

solid+dashed lines are the 95
th

 percentile boundary, the next down are the 75
th

 

percentile lines. The middle pair of the 5 pairs shown are the median or 50
th

 

percentile. The following two are the 25
th

 and 5
th

 percentile lines. Thus, the 95
th

 

through 5
th

 percentile lines are arranged from top (95
th

) to bottom (5
th

) vertically in 

these plots as a matter of convention. The 5
th

, 25
th

, 75
th

 and 95
th

 percentile lines are 

labelled, and the median lines are thickest, while the 25
th

 and 75
th

 percentile lines are 

next thickest and the 5
th

 and 95
th

 percentile lines are the (outermost) thinnest lines. 
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