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Abstract 
Insulin sensitivity (SI) is useful in the diagnosis, screening and treatment of diabetes. 
However, most current tests cannot provide an accurate, immediate or real-time 
estimate. The DISTq method does not require insulin or C-peptide assays like most SI 
tests, thus enabling real-time, low-cost SI estimation. The method uses a-posteriori 
parameter estimations in the absence of insulin or C-peptide assays to simulate 
accurate, patient-specific, insulin concentrations that enable SI identification. 

Mathematical functions for the a-posteriori parameter estimates were generated using 
data from 46 fully sampled DIST tests (glucose, insulin and C-peptide). SI values 
found using the DISTq from the 46 test pilot cohort and a second independent 218 test 
cohort correlated R=0.890 and R=0.825, respectively, to the fully sampled (including 
insulin and C-peptide assays) DIST SI metrics. When the a-posteriori insulin 
estimation functions were derived using the second cohort, correlations for the pilot 
and second cohorts reduced to 0.765 and 0.818, respectively. 

These results show accurate SI estimation is possible in the absence of insulin or C-
peptide assays using the proposed method. Such estimates may only need to be 
generated once and then used repeatedly in the future for isolated cohorts. The 
reduced correlation using the second cohort was due to this cohort’s bias towards low 
SI insulin resistant subjects, limiting the dataset’s ability to generalise over a wider 
range. All the correlations remain high enough for the DISTq to be a useful test for a 
number of clinical applications. The unique real-time results can be generated within 
minutes of testing as no insulin and C-peptide assays are required and may enable 
new clinical applications. 
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Introduction 

Insulin resistance (IR) has been widely accepted as a strong indicator of an 

individual’s risk of type 2 diabetes (T2DM) [1; 2]. A longitudinal study of the 

pathogenesis of T2DM has shown that those subjects who were diagnosed with 

T2DM had a 60% higher IR than average when assessed 10 years earlier [3]. IR is 

thus a strong predictor of T2DM risk and cardiovascular disease [4]. Therefore, low-

cost, accurate estimation of IR could be used to screen patients, monitor interventional 

lifestyle changes, and to guide other therapies that could drastically reduce the 

incidence and cost associated with T2DM [5]. 

The various tests used to estimate insulin sensitivity (SI, SI=IR-1) use various methods 

to provoke and measure the subject’s glycaemic responses [6; 7]. The euglycemic 

hyperinsulinaemic clamp (EIC) aims to suppress endogenous glucose production 

(EGP) and significantly suppress endogenous insulin production (Uen) to assess tissue 

sensitivity to exogenous insulin [8]. In contrast, the intravenous glucose tolerance test 

(IVGTT) stimulates Uen to measure insulin sensitivity [9]. Hence, while the metrics 

obtained by these tests are similar, they are not equivalent. An ideal metric for clinical 

or diagnostic use would measure the efficiency of insulin to dispose of glucose to the 

periphery at physiologically relevant glucose and insulin concentrations.   

The gold standard for SI testing is the EIC. It measures the rate of glucose disposal at 

basal glucose, driven by hyper-physiological insulin concentrations designed to 

suppress Uen. The EIC is accurate and repeatable [8], but takes 4-5 hours and 

approximately 6 clinician hours to perform. The time, intensity and cost of the EIC 
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prohibits its use in many clinical situations. A reliable result is not necessarily 

guaranteed with an inexperienced clinician. 

The IVGTT measures the subject’s response to a 20-25g intravenous (IV) glucose 

bolus with very frequent 1-3 minute sampling. Some protocols modify the response 

with a 2-3U IV bolus of insulin following the glucose bolus (IM-IVGTT) [7]. SI is 

then typically obtained by fitting the minimal model [10] to the sampled data. The 

boluses in this test tend to be supra-physiological and the trial generally runs for 2-3 

hours requiring significant clinical effort due to the frequent sampling. Model 

parameters are often unidentifiable, in particular in subjects with low SI values [11; 

12]. 

Lower cost and lower intensity surrogate tests include fasting glucose, 2-hour oral 

glucose tolerance (2hr OGTT) and the homeostasis model assessment (HOMA). 

Fasting glucose allows a diagnosis of T2DM [13], but does not offer an estimate of SI. 

Elevated fasting glucose is a resulting symptom of significant IR and the inability to 

maintain glycaemic homeostasis. Once elevated fasting glucose is detected, 

significant, and often irreversible beta-cell damage has already occurred [14]. Hence, 

fasting glucose is not an effective screening tool for early risk diagnosis to prevent 

further disease development.  

The 2hr OGTT measures the subject’s ability to dispose a 75g oral glucose load. Two 

hours after ingestion of the glucose load the blood glucose concentration is measured 

for a T2DM diagnostic. The accuracy of the 2hr-OGTT is questionable, with studies 

finding intra-subject reclassification of diagnosis rates of 50-60% [15-17]. Similarly 

to a fasting glucose level, early diagnosis of risk factors prior to the development of 

T2DM is difficult with the OGTT. 
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HOMA multiplies the fasting insulin and glucose assay values from a single blood 

test to produce a surrogate estimation of IR. The underlying assumption is that 

subjects with low sensitivity will require more insulin to maintain glycaemic 

homeostasis, elevating fasting levels of glucose and/or insulin. This test has an 

inconsistent correlation with the clamp (R=-0.19 → R=-0.82) [18; 19], does not track 

changes from intervention well [20], and does not fully represent insulin-glucose 

dynamics at physiologically relevant concentrations. 

The dynamic insulin sensitivity test (DIST) is a short, infrequently sampled, low dose 

intravenous glucose tolerance test. The test takes 30-45 minutes to administer. 

Glucose, insulin and C-peptide data is used with a clinically validated physiological 

model [20; 21] to provide accurate estimates for Uen, insulin clearance rate, and SI. 

The DIST has shown good correlation to the EIC in virtual trials (R=0.93) [20], and 

high repeatability in a clinical pilot study (Δ= 6%) [21], with a validation study 

ongoing. 

This study presents the DISTq (quick DIST) which is an alternative method for 

solving DIST data using only glucose samples and the subjects’ physical attributes 

(height, weight, sex, and age). Glucose samples can be assayed at the test station 

during sampling, enabling low cost test analysis. As no insulin or C-peptide assays are 

required, the DISTq can effectively provide SI immediately in “real-time”. To remove 

the need for insulin and C-peptide assays, the insulin concentrations in plasma and 

interstitium must be estimated using knowledge available at testing. Parameter 

relationships derived from the fully sampled clinical DIST pilot study data [21] can be 

used to generate the required estimates [22]. These parameter estimates are used with 
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the physiological model shown in Figure 1 to simulate an interstitial insulin profile 

with sufficient accuracy to identify SI (R=0.86 to the fully sampled DIST) [22]. 

 

Figure 1: The physiological compartment model used to match the DIST test data 
(symbols are fully defined in the Methods section) 

 

In this research study, the validity of the DISTq assumptions are tested on two 

separate cohorts. One cohort is used to generate the insulin estimation functions, 

which are then tested on both cohorts. The goal is to assess how applicable and valid 

these estimations are across cohorts, and thus estimate or identify any additional 

errors in using this. 
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Method 

Model 

The DISTq method utilises only the glucose and anatomical data (height, weight, sex 

and age) from each subject as used in the previously published DIST protocol [20; 21] 

to identify model based insulin sensitivity (SI). The model is defined: 
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where: k1, k2, k3, nK, nL, and nC are transport rate parameters [min-1]; nI, is the 

transport rate between plasma and interstitium [L·min-1]; Iα  is the saturation 

coefficient of liver clearance [L·mU-1]; C and Y are plasma and interstitial 

compartment C-peptide concentrations [pmol·L-1]; ξ is a conversion factor 

[6.94mU·pmol-1]; Uen is the rate of endogenous insulin and (equi-molar) C-peptide 

production [mU·min-1]; I and Q are plasma and interstitial compartment insulin 

concentrations [mU·L-1]; Uex and P are the insulin and glucose bolus inputs [mU and 

mmol]; Vp and Vq are volumes of distribution of plasma and interstitium, respectively 

[L]; xL is the fractional first pass liver extraction [mU·mU-1]; G is the glucose 

concentration in plasma [mmol·L-1]; Ge and Qb are equilibrium or basal levels of the 
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respective analytes [mmol·L-1 and mU·L-1]; Vg is the volume of distribution of 

glucose [L]; and pgu is the non-insulin mediated glucose disposal rate [min-1].   

The lack of insulin and C-peptide data allows estimation of SI, but unique estimation 

of Uen and insulin clearance is not possible.  

DIST protocol 

The DIST is a low dose insulin-modified intravenous glucose tolerance test that 

utilises a short protocol and infrequent sampling. Participants provided signed 

informed consent prior to testing, and reported to the place of testing after an 

overnight fast. Height, weight, age and sex were recorded prior to each test. A cannula 

was placed in a large vein on the inner elbow for the purposes of bolus administration 

and taking blood samples. Blood samples were taken at t = 0, 10, 15, 20, 25, 30, 35, 

40, 45, and 55 minutes, with a boluses of glucose (50% dextrose) and insulin 

(actrapid) administered immediately after the t=10 and t=20 minute samples 

respectively. Participant’s received a low dose (5g glucose and 0.5U insulin), medium 

dose (10g, 1U) or high dose (20g, 2U) test dose. 

Insulin and C-peptide population-based estimation functions 

The absence of insulin or C-peptide data requires a reasonable estimation of the 

participant’s insulin response to accurately determine SI. These estimations can be 

made with information about the participant’s anatomical data (height, weight, age 

and sex), protocol and predictions of the pharmaco-kinetic parameters typically used 

to simulate these profiles. Figure 2 shows ten characteristics from a DIST test that 

must be estimated in the absence of insulin and C-peptide assays to enable unique, 

patient-specific insulin production and concentration profiles. Although these 
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characteristics varied in magnitude between tests, each one was observed in each trial 

of the pilot investigation of the DIST [21]. 
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Figure 2: The ten features that can fully define the endogenous insulin production 
rate (Uen) and the plasma and interstitial insulin concentration responses (I(t) and Q(t) 
respectively) to a DIST protocol test [21]. 

Some characteristics are identified using knowledge of the protocol, or using 

published results. Hence, 5 of the 10 characteristics in Figure 2 can be identified 

robustly and are listed (with numbering as in Figure 2): 

2. The first phase pancreatic insulin release occurs immediately after the 
glucose bolus [7]. 

6. The effect of the first phase pancreatic response on insulin 
concentrations in plasma is known once the first phase response is 
defined. First pass hepatic extraction xL is set at 70% based on prior 
results [23-25] and is not a variable in this method, as it is in the full 
DIST method. 

7. The time of the insulin bolus is recorded per protocol. 
8. The maximum insulin concentration in plasma is estimated by 

dividing the known bolus mass by the volume of distribution of 
plasma as estimated by Van Cauter et al [26]. 

10. The insulin transport rate to interstitial fluid is defined using published 
population kinetic parameters [26]. 

The five other characteristics in Figure 2 cannot be estimated easily: 

1. Basal endogenous insulin production rate (UB). 

3. The magnitude of the first phase response (Umax). 

4. The magnitude of the second phase response (Uave). 
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5. Basal insulin concentration in plasma (Ib), which is measured in the 

fully sampled DIST, but not in the DISTq 

9. Liver clearance rate of insulin in plasma (nL). 

To estimate these 5 parameters, a relationship to attributes known at the time of the 

test must be derived. No a-priori relationships existed between these parameters and 

any function of anatomical data (height, weight, sex and age) that provided consistent 

estimates. However, strong relationships were evident between these five parameters 

and the SI value identified with the iterative integral method and full data. The 

iterative integral method uses 10 iterations to define SI by which time the parameter 

variation is in the order of 1e-3%. 

Parameter estimation graphs are developed using the full DIST data set (including 

insulin and C-peptide assays) from the pilot cohort to identify the endogenous insulin 

production profile (Uen) and the liver clearance rate (nL) as a function of insulin 

sensitivity (SI). These parameters were identified using an iterative integral method 

[22; 27].  

Figure 3 shows how the basal insulin (Ib and #5 in Figure 2) and liver clearance (nL 

and #9 in Figure 2) parameters are related to SI. The relationship between Ib and SI is 

identified using linear regression of the logarithms of SI and Ib:  

039.1)(*18.45 −= SIIb  6 

The mathematical relationship between nL and SI is identified with linear regression:  

SInL *0041.00924.0 +=  7 
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Figure 3: Basal insulin and the hepatic clearance rates from the pilot cohort presented 
as relationships to SI with the mathematical estimation equation lines. 

 

The endogenous insulin production profile (Uen and Figure 2 (left)) is predicted using 

minute-wise equations based on SI. The Uen profiles from the pilot cohort are 

synchronised so the first phase response occurs at 10 minutes. Each minute of these 

55-minute tests is then solved as an exponential function of SI using the linear 

regression of the logarithms of SI and Uen. This approach generates a matrix of 56 

coefficients and 56 exponents to enable a 56 minute simulation of Uen using a single 

SI value. For clarity the t = 0, 15 and 35 minute equations, which represent the basal 

(#1 in Figure 2), maximum (#3 in Figure 2) and second phase production (#4 in 

Figure 2) rates are given in Equations 8-10. These equations are 3 of the 56 equations 

in the Uen estimation process and are not used in isolation by the DISTq method. 

Figure 4 shows the estimation profiles overlaid on the identified profiles of the 46 

trials in the pilot study [21]. 
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Figure 4: Endogenous insulin production rates identified from the 46 tests from the 
pilot cohort (semi transparent colour-map) and the resulting estimated Uen profiles 
over all of the SI range used (wire-grid). Note that the full DIST pilot results only 
existed in the range of the colour-map shown, and thus parameter estimation is 
restricted to the values within this range. 
 

609.0)(*63.95)0( −= SIUen  8 
116.0)(*7.122)15( −= SIUen  9 
892.0)(*8.238)30( −= SIUen  10 

The DISTq identification method uses an initial pilot cohort average value of SI of 

10e-4L·mU-1·min-1 to make an initial guess of the Uen profile using the 56 Uen 

equations. Parameters Ib and nL are subsequently estimated using this SI value in 

Equations 6-7. The Uen profile and Ib and nL parameters are used with the a-priori 

parameter estimations of Van Cauter et al. [26] and the physiological model of 

Equations 1-5 to generate an interstitial insulin concentration profile (Q(t)).  

The iterative integral method [22; 27] is then used with the (real) glucose test data and 

the estimated Q(t) profile to identify a new revised SI. This newly identified SI is 
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dependent on the population average insulin pharmaco-kinetics and SI estimate, and 

may not be truly representative of the participant’s actual SI. Thus, Uen, nL and Ib are 

re-identified using the population based parameter equations with this new SI value. A 

new Q(t) profile is identified that is more representative of the participant’s actual SI, 

and a subsequent new, more accurate SI is found. This cycle is repeated no less than 

seven times, until SI converges to within 0.1% between iterations. Figure 5 shows this 

DISTq method schematically. 



Page 14-32 

 

Figure 5: The DISTq method presented diagrammatically. The generation of the 
parameter estimation equations is not specifically part of the DISTq method. Instead, 
it is prepared previous to the use of the DISTq method from prior full test data. 

 

Previously presented DISTq methods [22] have included an additional subsequent nL 

variation sub-cycle to further refine the SI result, which has not been used in this 

analysis. 
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Pilot study and participants 

For the DIST pilot study, eighteen subjects from the Canterbury and Otago regions of 

New Zealand were recruited. Forty-six individual trials were performed on these 

participants during a two-part study that sought to define the inter-dose and intra-dose 

repeatability. Seven high dose, 28 medium, and 11 low dose tests were completed. 

Further participant and test details are given in Lotz et al. [20; 21]. 

Second cohort and participants 

Eighty-one female participants were recruited from the Otago region to take part in a 

dietary intervention study. Inclusion was conditional upon an increased risk of T2DM. 

Participants either had a BMI>25 at the time of the first test, a BMI>23 with a family 

history of T2DM, or had an ethnicity with an increased risk of T2DM and a BMI>23. 

Participants attended three tests, each at the medium dose, at week 0, week 4 and 

week 10 of the intervention. Seven participants did not return for either week 4 or 

week 10 tests, and the samples from their first tests were not assayed. Three 

participants did not attend the week 4 test, and one did not attend the week 10 test. 

The assays for these participants were completed making 218 full data sets available 

from this cohort. 

Table 1 outlines the key attributes of the cohort participants. 
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Cohort 

Trials 

N 

Status 

NGT/IFG/T2D 

BMI 

Mean(SD) 

Sex 

M/F 

Age 

Mean(SD) 

HOMA-IR 

Q1 Q2 Q3 

DIST-SI 

Q1 Q2 Q3 

Pilot 46 14/2/2 27.9(6.2) 6/12 43.0(13.4) 0.34 0.70 2.18 6.83 13.5 19.9 

2nd Cohort 218 63/11*/0 32.4(5.4) 0/74 42.6(11.5) 1.37 2.15 3.11 5.79 7.83 10.9 

Combined 264 77/13/2 31.5(5.8) 6/86 42.7(11.9) 1.08 1.91 2.89 6.00 8.24 11.8 

Table X: participant characteristics and sensitivity results according to cohorts. NGT 
is normal glucose tolerance, IFG is impaired fasting glucose (>5.6 mmol·L-1), and 
T2D is type 2 diabetic. HOMA-IR is calculated: IR=GbIb/22.5. DIST-SI is identified 
with the iterative integral method and the full data set. * Only one participant was 
diagnosed with IFG in all three tests, two were diagnosed in two of the three tests and 
eight had IFG once. 
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Method assessment 

The DISTq method will be evaluated in a three step process, involving the DIST pilot 

study cohort, a second independent study cohort and a third cohort combining the first 

two. In the first step, the data obtained during the pilot investigation of the DIST test 

is used to generate nL, Ib and minute-wise Uen estimation equations. Using only the 

glucose data, SI is identified using the DISTq method and compared to the fully-

sampled (including insulin and C-peptide assays) DIST SI of the pilot study [20]. This 

first comparison allows a self validation of the DISTq. 

The parameter estimates from the pilot data are then used to define SI metrics for the 

second 218 trial cohort. The SI values found using DISTq for the second cohort are 

compared to the DIST results for that cohort. This comparison provides a form of 

cross validation. 

Finally, the gradient of the fully sampled SI to DISTq SI will be identified to show if 

there is equivalence in terms of magnitude for the two cohorts and their respective 

fully sampled results (ie grad=1.0). The gradient is defined as: 

grad 22
/ DISTDISTq SISI=  11 

In the second step, the process is reversed, where the parameter estimation equations 

are generated using the fully sampled second cohort data. These parameter estimation 

graphs are overlaid upon the pilot graphs of Figure 3 to analyse any disparity between 

the cohorts. Finally, as above, the pilot and second cohort data are used to identify SI 

using the DISTq method and results compared to the full DIST results for each 

cohort, providing a second, reversed self- and cross-validation result.  
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In the third step, a combined cohort of both the pilot data and the second cohort are 

used to define the parameter estimation equations jointly. This overall approach 

allows a 3x3 table to be constructed, showing the correlations and gradients between 

the fully sampled and DISTq SI values for each combination of pilot, second and 

combined cohort generated estimation equations and analysis set. Hence, variations 

induced due to using different cohorts to create the insulin parameter estimations for 

the DISTq can be assessed and analysed. 
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Results 

Pilot cohort derived parameter estimates 

The pilot data yielded parameter estimation graphs sufficiently accurate to enable a 

correlation of R=0.890 between the fully sampled DIST method and the DISTq 

method. Furthermore, the correlation of DIST and DISTq SI for the second cohort 

using these same estimations was R=0.825. The pilot cohort showed good 

equivalence with fully sampled datasets with a gradient of 1.049, whereas the second 

cohort gradient showed a significant shift or bias in magnitude (grad=1.507). Figure 6 

shows the relationship between SI solved using the DISTq and fully sampled DIST 

methods for both the pilot data and the second cohort data. The bias seen in the 

gradient for the second cohort is evident in the rotated slope seen in Figure 6 (right). 

Similarly, the small bias for the pilot data set is evident in Figure 6 (left).  
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Figure 6: The relationships between SI derived by the DISTq method and the fully 
sampled method from both the pilot cohort and the second cohort when the parameter 
estimation equations derived using the pilot data are used. 
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Second cohort derived parameter estimates 

The second cohort parameter estimation graphs generally showed consistency with 

the pilot estimation graphs regarding the form of the relationships. However, in 

contrast to the pilot study, which sought to find a cohort representative of insulin 

sensitivity across the wider community, the second cohort was targeted at participants 

with high risk of T2DM. Thus, the DIST SI distribution was different to the pilot 

cohort (p<0.000001) as were the Ib and nL values (p<0.001 and p<0.000001 

respectively). Figure 7 shows the second cohort parameter relationships overlaid upon 

the corresponding relationships from the pilot investigation. The three lines are 

representative of the equations generated using the pilot, second, and (forthcoming) 

combined cohorts.  
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Figure 7: Parameter relationships between SI and the basal insulin and liver clearance 
rate defined using the fully sampled DIST test. The second cohort is shown with the 
pilot cohort to show that there is regional consistency in parameter behaviour between 
cohorts, but a global tendency toward lower SI in the second cohort. 
 

Utilising the second cohort for the development of the parameter estimation equations 

reduced the pilot data correlation (R=0.765) and even caused a small reduction in the 

correlation of the second cohort (R=0.818). However, the gradient of the second 
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cohort showed a significant improvement in this self-validation (grad=1.106). The 

pilot cohort gradient was still strong, but reduced (grad=0.918) in this cross-

validation.  

0 10 20 30 40 50
0

10

20

30

40

50

60

70

Fully sampled SI [e-4L.mU-1.min-1]

D
IS

Tq
 S

I [
e-4

L.
m

U-1
.m

in
-1

]

Pilot Cohort

 

 

0 5 10 15 20 25
0

5

10

15

20

25

30

Fully sampled SI [e-4L.mU-1.min-1]

D
IS

Tq
 S

I [
e-4

L.
m

U-1
.m

in
-1

]

Second Cohort

 

 

SI points
1:1 line
mean gradient line

        
           

 

Figure 8: The relationships between the SI derived by the DISTq method and the 
fully sampled method from both the pilot cohort and the second cohort when the 
parameter estimations equations from the second cohort are used.  
 

Comparing DISTq SI values identified using the second cohort derived parameter 

equations to those identified using the pilot cohort derived parameter estimations, the 

correlation remains high (R=0.962). This result indicates some measure of robustness 

regarding the cohort used to create insulin estimates. However, the overall results 

using the second cohort indicate it is less representative than the pilot cohort. 

Combined cohort derived parameter estimates 

Combining full data from  both cohorts to generate the parameter estimates improved 

upon the second cohort parameter estimations when used to identify the pilot cohort 

in a partial self-validation (R=0.883). However, this result did not hold when they 

were used in the second cohort (R=0.783). The gradients of the pilot and second 
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cohort (Table 1) showed that the combined cohort parameter estimations caused the 

DISTq to under-estimate SI in the pilot cohort, and over estimate SI in the second 

cohort, effectively splitting the biases seen in Figures 6 and 8. Figure 9 shows the 

differing behaviour of the contributing cohorts when the combined cohort parameter 

estimation equations are used.  

Table 1 illustrates the effects of the derivation cohorts on the correlation between the 

fully sampled and DISTq SI values. It is clear that the best correlation results come 

from using only the pilot cohort with its broad range of subjects and doses. However, 

the gradients are closest to 1 when the identified cohort is used to generate the 

parameter estimations, as expected for a self-validation test. 
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Figure 9: The total cohort relationships between SI solved with the DISTq method 
using population estimation equations derived with the total cohort data and SI solved 
with the fully sampled DIST method. The distinguishing symbols show the differing 
behaviour of the two contributing cohorts. 
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Correlation 
(gradient) 

Derivation set 

Pilot 2nd Cohort Combined 
Id

en
tif

ic
at

io
n 

se
t Pilot 0.890 

(1.049) 
0.765 

(0.918) 
0.883 

(0.808) 

2nd Cohort 0.825 
(1.507) 

0.818 
(1.106) 

0.813 
(1.228) 

Combined 0.815 
(1.316) 

0.774 
(1.023) 

0.783 
(1.056) 

Table 1: table of the Pearson’s correlation factors and (gradient) values between the 
fully sampled and the DISTq SI values for the various subgroups when the parameter 
generation equations derived from the various subgroups are used.  
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Discussion 

The pilot-derived correlation (R=0.890) confirms the primary assertion that a 

physiologically relevant SI metric can be identified using only anatomical data and 

glucose samples, without requiring insulin and C-peptide measurements. This 

approach enables relatively low-cost, immediate or real-time identification of SI. 

Furthermore, the correlation between DIST SI and DISTq SI improved compared to 

the previously presented DISTq method [22] which used an ad-hoc method of Uen 

simulation. Overall, the high correlation ensures good accuracy relative to the fully 

sampled and high resolution DIST [20; 21]. However, this type of validation can only 

be used to identify the robustness of the identification method; it is not particularly 

well suited to identifying the predictive value of the method. In order to properly 

identify the predictive value of the test a comparison to a well-established or gold 

standard test must be made.   

The self-validation correlations for the second and combined cohorts, where they are 

used to create the insulin estimates, were lower (R=0.818 and R=0.783 respectively). 

However, these values still represent a good overall result when considering that no 

insulin or C-peptide samples were assayed. Hence, testing these correlations on the 

data from which the estimate is derived, or self-validating, shows a good result. 

However, a self-validation is not clinically useful if tests are performed on a different 

cohort. Thus, the cross-validations performed in this study are more meaningful in 

evaluating clinical efficacy of the DISTq method. Best performance was achieved 

using the pilot cohort. A larger cohort of DIST results over an even wider range of SI 

values could potentially improve the quality of this approach. 
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The parameter estimation equations derived from the combined cohort enabled 

relatively high SI correlations for both the pilot and second cohort individually, but 

not as a combined cohort. This difference can be attributed to the differing DISTq to 

fully sampled SI gradients of the contributing cohorts, as shown in Figure 9. Both 

cohorts show good adherence to their respective regression lines, as exhibited in their 

individual correlations for this derivation set. However, when the results are 

combined, the differing gradients cause a reduction in correlation. Thus, as individual 

cohorts using the combined parameter estimation equations, there is a high 

correlation, but this correlation is not persistent when the results are combined. 

Correlation coefficients measure the spread of a comparison, as well as the 

equivalence [28]. Thus, a targeted cohort on a reduced range of a wider population 

will deliver a correlation parameter less than what would be appropriate for the 

performance of the test in a wider context. The reduced cross-validation correlations 

of the second cohort show this effect as the distribution of SI in the second cohort was 

significantly reduced compared to the pilot cohort.  

Finally, a high correlation does not explicitly imply a good predictive value for a test. 

Hence, equivalence is necessary as measured by the gradient (grad=1). The second 

cohort correlated well when the pilot parameter estimations were used, but the high 

gradient would mean that many false negative risk assessments could be made if 

using a fixed scale due to the bias (grad=1.507), as seen in Figure 6 (right). 

Both the pilot and the second cohort performed best (in terms of correlation and 

adherence to the 1:1 line) using parameter estimations derived from their own full 

data sets, as should be expected. Some of this self-validation result can potentially be 

explained by the differing anatomical and physiological makeup between the two 
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cohorts. The pilot cohort was representative of the wider population but limited in 

numbers, whereas the second cohort was restricted to overweight (BMI>25) women 

or those who had an increased risk of developing T2DM. Thus, the DISTq method 

more accurately captures the lower average nL values and higher first phase insulin 

secretion rate of the second cohort when using parameter estimations derived from the 

second cohort. The broader pilot cohort based estimates did better, even for the 

second cohort, than the second cohort estimates in terms of correlation, but the 

gradient of the second cohort reduced the method’s predictive and diagnostic power. 

If the DISTq were to be used in another unique, highly specific population, no such 

population specific parameter estimations would be available. Thus, a set of 

population driven parameter estimations must be selected from those previously 

available or reported. The pilot data is sparse compared to the second cohort, but 

generally allowed better correlations across all possible cohorts. Either set is capable 

of confidently predicting SI metrics with correlations in excess of 0.75. Overall, the 

results of this study indicate that the best results can be obtained using a broad cohort 

with a relatively even SI distribution as the basis for creating the parameter estimates 

for the DISTq. However, a denser broad cohort or estimates from a prior more 

specific cohort would, in the long term, be ideal. 

More specifically, further fully sampled data sets may allow a more refined result and 

may point to the adoption of cohort specific parameter estimation equations. If 

sufficient fully sampled data sets become available, future DISTq methods may 

incorporate numerous, cohort specific equation sets, which could be selected by the 

subject’s sex, age, diet, exercise regime, or family history of T2DM. However, such a 
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system would remove the operator independence of the current method. This study 

did not have the large number of data sets required to achieve this level of precision. 

The DISTq is capable of high accuracy in SI estimation due to the insulin 

administration in the protocol. The exogenous insulin given during the test generally 

has a much greater effect on plasma insulin concentration than the participant’s first 

phase insulin response (which is diminished by first pass hepatic extraction). As a 

result, the majority of the insulin in the participant’s interstitium during the active 

period of the test can be attributable to the exogenous insulin bolus, which is a known 

amount given at a known time. The effect of the uncertainty in the population-derived 

parameter-estimation equations on the final SI metric is thus diminished. In addition, 

most kinetic parameters can be defined by a-priori published population parameter 

estimations [26]. Thus, much of the pharmaco-kinetics of insulin can be defined prior 

to testing. Further robustness is achieved with the relatively low-dose protocol, which 

avoids saturation effects. 

Figures 3 and 7 show that the parameter relationship equations are not particularly 

accurate when considering the fit to all data points. However, these mathematical 

relationships are sufficient to, in the overall result, accurately predict SI in an isolated 

cohort (Table 1). Instead of using smooth and simple equations to estimate these 

relationships, multiple-term equations could have been used that could fit the noise in 

the relationships, and would likely provide higher intra-cohort correlations. However, 

the applicability of these multiple-term relationships in an isolated cohort would be 

limited, and could potentially reduce the performance of the test significantly.    

A potential and significant strength of the DISTq is the ability to obtain a result for 

the fully sampled DIST using the stored blood samples, if desired. If a participant’s SI 
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result lies close to a particular clinically specified SI threshold value, stored blood 

samples taken during the test can be assayed for insulin and/or C-peptide and a full 

DIST analysis can be performed. Thus, a high accuracy classification study could be 

performed wherein 90% of the participants could have results from the DISTq and the 

remaining 10% (for example) could have a high resolution fully sampled DIST 

without the need for a new test.  This approach reduces cost over 90% as insulin and 

C-peptide assays are significantly more costly than glucose assays, and thus ensure 

the extra difference is only spent where there may be doubt on the resolution. 

Regardless of these possibilities for improvement, the DISTq method currently allows 

relatively high resolution SI estimation in its own right. The cost of the DISTq in 

terms of assay cost and clinician time is comparable to the 2hr OGTT and HOMA, but 

the DISTq has a higher correlation to fully sampled DIST and similar SI tests. In 

contrast, to these other tests, the DISTq also measures a true insulin sensitivity at 

physiologically relevant doses, and does not rely on surrogate metrics. The accuracy 

of DISTq is lesser than that of fully sampled tests such as the EIC and the fully 

sampled DIST test, but reduces costs by over 90-95%. More importantly, unlike all of 

these tests, it allows real-time SI testing with a result immediately available before a 

subject leaves the clinic, as glucose can be assayed at the “bedside”, whereas insulin 

and C-peptide must be assayed in a laboratory, which typically requires 1-4 days to 

process. 

This unique real-time capability of the DISTq may enhance treatment for individuals 

who require glycaemic stabilisation treatment. Newly diagnosed type 2 diabetic 

individuals often have a highly transient SI, and would benefit significantly from real-

time assessment to enable more accurate insulin treatment regimes to be developed.  
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Many surrogate metrics tests have been endorsed for low-cost assessment of insulin 

sensitivity [29-32]. However, none of these tests have been incorporated into routine 

care. These surrogate metrics generally require both glucose and insulin samples from 

the 2-hour glucose tolerance test. Thus, the resultant metrics are not available in real-

time. The time required for assays may be sufficient for changes in SI to render the 

identified metrics obsolete. In contrast, the presented protocol and assay schedule 

allow a result immediately after a 50 minute protocol. The presented method is an 

important advance in this field that should prompt re-evaluation of sensitivity testing 

for this particular application. 

The unique real-time capability of this method may enable further possible 

applications. In particular, intensive care or high dependency patients could use 

accurate SI values to aid sepsis identification [33] or prior to beginning model-based 

or other forms of tight glycaemic control [34].  

Finally the low-cost attribute of the method enables the obvious application in low-

cost screening for early detection of type 2 diabetes risk. Tests of this nature have 

been used in such studies and found significant relationships [3; 35; 36], and it would 

be reasonable (in the absence of direct evidence) to expect that the proposed method 

would be appropriate for this type of application.  
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Conclusion 

The DISTq method allows real-time, low-cost SI prediction using the DIST protocol, 

a series of population based parameter estimation equations, and the iterative integral 

identification method. The method produces SI metrics that highly correlate with the 

fully sampled DIST test.  

The addition of the second cohort confirmed the applicability of the test in cohorts 

isolated from the development cohort via cross-validation. Cross-validation 

correlations were slightly reduced, but still relatively high given the large differences 

in the cohorts. 

The low cost of the DISTq and its unique real-time capabilities ensure that it can be 

considered for a place amongst the myriad of available SI tests. The cost of the DISTq 

is comparable to the HOMA or 2hr OGTT while still measuring a physiologically 

relevant SI, and not relying on surrogate metrics. The ability to get a higher resolution 

DIST result with a different analysis of the same blood samples already obtained 

creates a simple, single test hierarchy of SI estimates, useful for both low cost 

screening and higher resolution monitoring of at risk individuals. Hence, it is 

potentially suitable for a wide range of clinical applications. 
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