
i 

 

 

 

 

 

 

 

 

 

 

The Role of Bark Beetles as Vectors in the 

 

Colonisation of Windthrown Timber by Fungi 

 

 

A thesis submitted in partial fulfilment of the 

 

requirements for the Degree 

 

Master of Science in Ecology 

 

at the University of Canterbury 

 

by James K. McCarthy 

 

University of Canterbury 

 

2011 

 

 



ii 

 

Abstract 

The increasing frequency and severity of windthrow events affecting the forestry industry in 

New Zealand have raised important management issues surrounding the rate of colonisation of 

fallen trees by sapstain fungi and the time available for salvage harvesting before sapstain 

degradation limits potential economic returns. These fungi are known to be spread by a 

multitude of factors including wind, rain splash, harvesting processes and insect vectoring. 

Apart from the ecological interest in these interactions between fungi, plants and insects, 

sapstain fungi are also economically important because their hyphae discolour the sapwood and 

reduce the overall quality of the timber. The amount of time available to salvage harvest 

damaged trees is unknown, especially on seasonal and regional scales. Manipulative 

experiments were established in Pinus radiata forests to examine this seasonal and regional 

variation in sapstain attack following windthrow, and to investigate the importance of bark 

beetles as vectors of sapstain fungi. A range of methods were implemented to assess the role of 

bark beetles as vectors and to ascertain which sapstain fungi are associated with them. 

Experimental billet logs were caged to exclude beetles and subsequently analyse fungal attack 

in comparison with identical logs left exposed to beetles. In addition, individual beetles were 

sampled directly to determine whether they carried spores of particular fungal species and to 

assess the degree of association in vector-fungal dynamics. Finally, a novel application of DNA 

melt peak analysis was developed to investigate variation among the fungal communities 

associated with beetles potentially involved in vectoring sapstain spores.  

The moisture content of fallen trees was found to be the main factor regulating sapstain 

development, and when moisture content drops below 100% (on dry weight basis) sapstain 

fungi grew rapidly. The speed at which this level drops depends on the season, with much faster 

drying occurring in the warmer months of spring and summer. As a result, trees that fell in the 

previous winter or autumn did not develop significant sapstain levels until temperatures rose in 

the following summer, suggesting that storm-damaged trees that fall in winter can be left safely 

until just before the next summer before they are no longer suitable for salvage harvest. In New 
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Zealand, the bark beetle species acting as vectors of sapstain fungi are not behaviourally 

adapted to colonisation of logs that are not in contact with the ground. Following windthrow 

events in pine forests, trees generally lie with their stems suspended above the level of the 

ground by their branches. As a result, under these circumstances, beetle colonisation of 

windthrown timber was low, and bark beetles were not a significant vector of stain. The caged 

and un-caged experimental log billets, however, were in contact with the ground, resulting in 

colonisation of the un-caged logs. In this case, bark beetles did play an important role in 

contributing to sapstain intensity, and the stain distribution within the logs mirrored that of the 

stain distribution. However, this effect may be due to the provision of access points for wind- or 

water-borne spores of the non-insect vectored stain fungus Diplodia pinea, or to the spread of 

hyphae through the tunnelling and feeding activities of beetles within the tree, rather than by 

bark beetles acting as vectors of spores. Bark beetles were confirmed as sapstain vectors with 

the isolation of seven different ophiostomatoid stain fungi from them, five of which were also 

found in wood. Finally, the development of a laboratory based, rapid species identification 

method was developed to identify fungal DNA. Melt peak analysis allowed the species-specific 

DNA melt temperatures to be compared with the melt temperatures of known species to be able 

to rapidly, and cheaply, identify an unknown species. 

Bark beetles are vectors of sapstain fungi in P. radiata forests, however the bark beetle 

species naturalised in New Zealand prefer to colonise wood when it is in contact with the 

ground. Following windthrow, trees are generally not attacked by beetles as they are held from 

the ground by their branches, leaving them to be stained predominantly be wind and rain 

dispersed stain fungus D. pinea. Stain did not occur until the moisture content of fallen trees 

dropped below 100%, which only happens in the warm months of summer and spring. In New 

Zealand, there are interactions between trees and bark beetles, and bark beetles with fungal 

pathogens from all around the globe resulting in a unique novel assemblage of species together 

for the first time. Understanding the dynamics of these species in their novel environment is 

crucial to effectively responding to potential pest threats. 
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Chapter 1 – General Introduction 

1.1 Introduction 

In New Zealand, commercial plantation forests represent ca. 22% of the total forest cover 

(Foley et al. 2005, Brockerhoff et al. 2008), and 7% of the total land area (Anon 2011b). In 

addition to their economic profitability through the sales of production timber, the establishment 

of plantation forests can reduce or eliminate the need to exploit natural forest for timber 

production, and consequently the land area of plantation forestry is increasing world-wide 

(Brockerhoff et al. 2008). The planting and subsequent management of exotic forests in New 

Zealand has created habitats that are also suitable for a wide range of native plants, insects, 

microbes and other organisms, many of which can be injurious to the plantation itself. 

The stand management regime of plantation forests, and the fact that they are usually planted 

on hills, makes them highly susceptible to damage by wind (Finnigan and Brunet 1995). 

Harvesting of individual block and stands of trees allows strong winds to funnel through 

corridors causing damage to trees standing at the perimeter of the harvested stand, and hills 

create turbulent airflow that speed up as they rise in altitude and cause significant damage at the 

hill crest (Finnigan and Brunet 1995). Following large-scale windthrow events, a salvage 

harvest strategy is usually implemented where damaged trees are harvested, and the land either 

replanted or left to fallow until adjacent stands are harvested. One major unknown with salvage 

harvesting involves the timeframes available until staining of the wood by sapstain fungi 

becomes extensive, causing the value of the timber to drop considerably (Grayson 1989). These 

sapstain species are known to be transported by bark beetles (Reay et al. 2005, 2006a, Romon et 

al. 2007), however there are also species that disperse independently by wind and rain-splash 

(Bihon et al. 2011). 

Increases in frequency and intensity of extreme storm events are occurring world-wide as 

temperature extremes (both low and high) become more common, and as wind and rainfall 

events increase in intensity (Easterling et al. 2000, Emanuel 2005). Changes in these weather 
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patterns also has profound effects on plant and animals in the form of climate-induced 

extinctions, species range shifts, and phenological changes (Easterling et al. 2000). Impacts of 

these changes on species can be from one end of the spectrum where habitat loss can lead to 

mass extinctions or sensitive species (Brooks et al. 2002, Brook et al. 2003), or the other where 

they can alter the climate sufficiently enough to allow a species to overcome historical 

geographic barriers to expand their range at alarming rates (Thomas et al. 2001). 

The mountain pine beetle (Dendroctonus ponderosae) is a native pest bark beetle of North 

America whose populations periodically erupt into large scale outbreaks (Kurz et al. 2008). The 

current outbreak of this species is an order of magnitude larger in area and severity than all 

previously recorded outbreaks (Taylor et al. 2006). Previous barriers preventing the beetles 

spread (latitude and climate) have been overcome as a result of a changing climate, and the 

beetles have expanded their range to areas not previously recorded (Taylor et al. 2006). This has 

allowed the pest beetle species to come into contact with host trees un-adapted to beetle 

epidemics, where the beetles have higher reproductive success (Cudmore et al. 2010). 

The increase of beetle outbreaks (Kurz et al. 2008), and increased extreme weather events 

(Easterling et al. 2000), are predicted to alter the “disease triangle” between plant hosts, plant 

pathogens, and environmental change where unlikely combinations of species, coupled with 

environmental variability, result in unpredicted outcomes (Grulke 2011). As exotic and native 

species mix in the global homogenisation of species, and as pests and pathogens meet novel 

hosts, outcomes of major disease and pest outcomes will become more difficult to predict 

(Hulcr and Dunn 2011). With additional complexities added to the three-factored triangle, such 

as pathogen vectors, this issue of unpredictability and increased virulence becomes even more 

difficult to manage when attempting to protect vulnerable ecosystems (Parker and Gilbert 

2004). 

Plantation forests in New Zealand are vulnerable to multiple threats ranging from fungal 

diseases such as Dothistroma needle blight (Watt et al. 2009, Watt et al. 2011) and Armillaria 

(Hood 1989, Kimberley et al. 2002), to bark beetle attack of seedlings (Reay et al. 2001, Reay 
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and Walsh 2002), in addition to abiotic events such as windthrow (Childs 1966, Nieuwenhuis 

and Fitzpatrick 2002). Windthrow is caused by high speed winds, and is one of the most 

frequent and severe forms of damage to forests world-wide (Grayson 1989, Usbeck et al. 2010). 

There is not a single generalised relationship between wind speed and damage intensity, the 

extent of damage is a result of a variation of factors such as soil moisture content, soil depth, 

soil/bedrock acidity, tree species, and stand height (Usbeck et al. 2010). This stochasticity and 

unpredictability of these storm events makes it challenging to adequately prepare a response, 

and predict the downstream-effects resulting from the damage, including insect and fungal 

outbreaks. The abundance of freshly felled and damaged trees greatly exacerbates pest 

abundances that respond to the sudden abundance of host material with population explosions 

(e.g. bark beetles - Wichmann and Ravn 2001, Wermelinger 2004). 

These issues are not unique to New Zealand, and forest managers in many regions of the 

world face similar challenges. Although on the surface this might seem advantageous, as 

solutions to common pest issues may be readily available, this is not always the case as biotic 

interactions and community assembly dynamics in novel, or „emerging‟, ecosystems can be 

unpredictable (Hobbs et al. 2006, Hobbs et al. 2009). Even interactions between the same 

organisms under differing environmental contexts can vary greatly (Cramer et al. 2008), which 

alters the potential management responses to pest threats in novel environments. 

Windthrow is a significant source of damage and disturbance in both natural (Kramer et al. 

2001, Martin and Ogden 2006, Panayotov et al. 2011) and production forests (Childs 1966, 

Grayson 1989, Nieuwenhuis and Fitzpatrick 2002, McCarthy et al. 2010) world-wide, which 

can cause damage at the scales from individual trees, to stands, or even landscapes 

(Kuuluvainen 1994). When such events occur over large spatial scales, salvage harvest 

operations are often implemented to recover as much value as possible from the damaged wood 

(Childs 1966, Lang et al. 2009). Controversy arises in the salvage-harvesting of natural forests 

where disturbances can be viewed as key ecosystem processes, rather than ecological disasters 

that require human repair (Lindenmayer et al. 2004). 
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Salvage harvest of natural forests can have negative impacts on many taxa due to the 

removal of critical habitats for specialised species (Lindenmayer and Ough 2006), or the 

interactive effects of two events in succession (initial storm or fire, followed by salvage 

logging) on species not adapted to high rates of disturbance (Paine et al. 1998). Salvage logging 

in natural forests can also facilitate the colonisation of invasive species, impair natural 

regeneration, and have detrimental effects on soil properties (Lindenmayer and Noss 2006), and 

the implementation of salvage logging in such areas has been discouraged. Conversely, there 

can also be negative effects of leaving windthrown timber unsalvaged. For example, following 

severe storms damage of spruce forests in Central Europe, outbreaks of the spruce bark beetle, 

Ips typographus, rose to levels where they infested living spruce trees – a behaviour only 

displayed under epidemic conditions (Wichmann and Ravn 2001, Wermelinger 2004). In the 

case of plantation forestry, it is advantageous to harvest not only to salvage the value of 

damaged trees, but also to protect those that remain. In New Zealand, pine plantations have 

been demonstrated to be valuable alternate habitats for native species (Brockerhoff et al. 2005, 

Brockerhoff et al. 2008, Pawson et al. 2008). With this being said, salvage harvest operations 

are unlikely to have major negative environmental impacts relative to normal plantation 

management, which involves practices such as clearfelling.  

Aside from the loss of trees before reaching their full size in terms of growth, there are 

concerns following windthrow as to the available timeframes of salvage before the quality and 

value of the timber is reduced (Childs 1966, Hood and Ramsden 1997, Wylie et al. 1999). There 

are multiple agents that can reduce the value of damaged stands such as sapstain fungi, decay 

fungi, and insects. It is also possible for these agents to interact, and occur collectively with 

synergistic losses on quality and value. Sapstain is a major issue and costs the forest industry 

upward of NZ$100 million per year in spoiled timber (Wakeling 1997), a significant loss of 

revenue for the forestry sector. 

Sapstain fungi are aerobic organisms, so the main factor limiting their growth is the water 

saturation of the conducting tissues of a living tree. Sapstain becomes evident once the moisture 
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content of felled trees falls below 100% (dry weight basis), and oxygen levels begin to rise 

(Seifert 1993, Beal et al. 2010). Fungal inoculum can be dispersed through methods such as 

wind and rain splash (Farrell et al. 1997, Uzunovic et al. 2004), however bark beetles have also 

been shown to be vectors (Leach et al. 1934, Paine et al. 1997, Reay et al. 2001, Romon et al. 

2007). This study aims to identify the principal determinates of the timing and rate of sapstain 

onset in windthrown timber in New Zealand. This will be investigated with particular reference 

to the importance of bark beetles as vectors of the staining fungi. Timeframes available to 

salvage harvest damaged timber before sapstain develops extensively will be experimentally 

tested, depending on the seasonality and regionality of the storms occurrence.  
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1.2 Bark beetles 

Bark beetles (Coleoptera: Curculionidae, Scolytinae) are one of the most economically 

important forest insect groups (Paine et al. 1997). Bark beetles can be described as either 

primary (“aggressive”) or secondary (“non-aggressive”) pest species, which generally conforms 

to their relative ability to colonise and kill healthy living trees as opposed to stressed, dying or 

dead trees, respectively (Raffa et al. 1993). Relatively few species of bark beetle are highly 

aggressive. For example, of the 411 species of bark beetle found in the United States, only 7 to 

10 species commonly kill otherwise healthy trees (Six 2005). Most bark beetle species are 

secondary bark beetles, capable of colonising trees that are already stressed, weakened, or 

recently killed (Raffa et al. 1993, Paine et al. 1997). Causes of stress to a host tree can be due to 

factors such as disease, drought or disturbance. Other sources of material for secondary bark 

beetles are recently harvested trees, logging residue such as stumps and branches, or storm 

damaged trees (Mausel et al. 2007).  

New Zealand has 11 exotic Scolytinae species established within its forests (Brockerhoff et 

al. 2003) with two species, the pine bark beetle (Hylastes ater Payk.) and the golden haired pine 

bark beetle (Hylurgus ligniperda Fabr.) being the most abundant and widespread (Reay and 

Walsh 2001, Brockerhoff et al. 2003, Brockerhoff et al. 2006a). As both are introduced pests in 

an introduced ecosystem, few of their natural enemies exist in this novel environment to control 

their populations (Ciesla 1988). Both are considered secondary pest species in that they do not 

attack healthy living trees, and are generally not considered major forest pests (Ciesla 1988).  

Both species use fresh stumps and slash as material for breeding sites, and are generally 

considered more harmful to the New Zealand forest industry as quarantine pests (Lanfranco et 

al. 2004, Zhang et al. 2004). As a result of this, export timber requires fumigation with the gas 

methyl bromide, to kill bark beetles and other insects before it leaves the country (Pawson and 

Watt 2009, Pawson et al. 2009). In some cases, continuous harvesting of large areas year round 

ensures an ample supply of breeding habitat allowing bark beetle populations to persist at 

epidemic levels for longer periods of time than what would be expected in a natural forest 
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environment (Örlander et al. 1997, Leather et al. 1999). 

Hylastes ater was first detected in the North Island of New Zealand in 1929 (Clark 1932), 

and is now established wherever pine forests occur. It is native to Europe, and in addition to 

New Zealand has been introduced to Australia and Chile (Milligan 1978, Leahy et al. 2007). In 

New Zealand, H. ater adults are known to feed predominantly on P. radiata, but also attack 

Picea (spruce), Abies (fir), Larix (larch), and P. menziesii (Douglas-fir) (Milligan 1978). The 

most troublesome destruction caused by H. ater is due to its feeding on the stem of young pine 

seedlings, sometimes resulting in death (Milligan 1978, Ciesla 1988, Reay et al. 2005). Up to 12 

H. ater adults have been found on the root system of a single seedling (Ciesla 1988). Evidence 

suggests that seedlings are able to survive all but the most severe attacks (Reay and Walsh 

2002), but the impact of sub-lethal damage to seedlings is unclear as these beetles are also 

known to vector sapstain fungi which also adversely affects seedling growth (Reay et al. 2005). 

Hylastes ater often co-occurs with H. ligniperda (Ciesla 1988), and is usually suppressed in 

numbers with the other species present (Kerr 2010), possibly resulting in a reduction of seedling 

damage overall due to reduced numbers. 

Hylurgus ligniperda was first detected in the North Island of New Zealand in 1974 (Bain 

1977a), and has recently been detected as far south as Dunedin (Kerr 2010). It is native to 

Europe, the Mediterranean area, and Atlantic islands and is established in North America, 

Australia, Japan, South America, and South Africa, in addition to New Zealand (Bain 1977a, 

Ciesla 1988, Haack 2006). It is classically thought to be restricted to pine trees (Bain 1977a), 

however recent studies linked it to colonisation of Douglas-fir and other species, though 

breeding among these hosts has not been observed (Vanhanen, unpublished data). Like H. ater, 

adults breed in the inner bark of recently felled logs, as well as the remnant stumps and roots 

(Bain 1977a, Ciesla 1988). Hylurgus ligniperda contrasts H. ater in that it is not known to attack 

seedlings in New Zealand (Bain 1977a).  

The New Zealand native wood borer Pachycotes peregrinus (Chapuis) (Coleoptera: 

Curculionidae, Scolytinae) colonises freshly felled logs, and will attack most softwoods, 
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including P. radiata (Bain 1977b). Their attack can be distinguished by distinctive holes about 

2.5 mm in diameter with white frass evident at the opening, materials such as logs can become 

heavily and repetitively attacked when left in contact with the ground (Bain 1977b). This beetle 

occurs throughout New Zealand, except some dry zones in the Canterbury region (Bain 1977b), 

and has been documented at sites following windthrow (McCarthy et al. 2010). Pachycotes 

peregrinus may be mistaken for H. ater and H. ligniperda, but can be distinguished from each 

other by their setae (hairs) and pronotum (Figure 1.1) (Bain 1977b).  

Both H. ater and H. ligniperda are primarily stump and root feeders, and are therefore 

behaviourally adapted to attacking trees at ground level; or where there is some form of contact 

with something solid; rather than sections of wood suspended in the air (McCarthy et al. 2010). 

This behaviour is common among many Hylastes species (Flechtmann et al. 1999). This reduces 

their impact on storm damaged trees, as these tend to be held above the ground by their 

branches, or by resting on other fallen trees. In addition to the physical beetle damage caused by 

tunnelling into the phloem and sapwood of susceptible trees (Paynter et al. 1990, Mausel et al. 

2007), bark beetles and wood borers play an important role as vectors of fungal spores (Paine et 

al. 1997, Suckling et al. 1999, Reay et al. 2005, 2006a, Romon et al. 2007). The importance of 

this relationship to the colonisation of trees by sapstain fungi has not been thoroughly studied in 

New Zealand.  

  

Figure 1.1. (A) Hylastes ater, (B) Hylurgus ligniperda, and (C) 

Pachycotes peregrinus. Note the differences in shape of the 

pronotum, also the distribution and abundance of setae (from 

Bain 1977b). 
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1.3 Sapstain fungi 

Sapstain is the discolouration of wood caused by fungi, affecting both conifers and broadleaved 

trees (Gibbs 1993), and has caught the attention of foresters and scientists since the middle of 

the 19th century (Von Schrenk 1903). There are at least 14 species of sapstain fungi present in 

New Zealand (Thwaites et al. 2005) and P. radiata is highly susceptible to attack from sapstain 

which greatly reduces the cosmetic value of the wood and associated products (Francke-

Grosmann 1967, Farrell et al. 1997). This staining is caused by a dark pigment called melanin, 

which is present in small granules on the outer surface of the fungal wall (Zimmerman et al. 

1995, Eagen et al. 1997, Reay et al. 2002). It has been shown that this pigment may enhance 

competitive interactions by conferring resistance to UV and desiccation, and may be required 

for the growth of appressoria (a hyphal “pressing” organ) that fungi use to actively penetrate 

their hosts (Zimmerman et al. 1995, Eagen et al. 1997). Some ophiostomatoid fungi are 

colourless, but the species that cause staining range across shades of blue, brown, and black 

depending on the pigment of the fungal hyphae (Seifert 1993). Sapstain is generally caused by 

three types of fungi (Seifert 1993, McCarthy et al. 2010): 

1. Species of Ophiostoma, Ceratocystis, Ceratocystiopsis and Grosmannia (sexual 

teleomorphs), and their asexual anamorphs, all collectively known as “ophiostomatoid 

fungi” (Zipfel et al. 2006, Bueno et al. 2010). The genus Ophiostoma has many 

anamorphs classified in at least four genera: Pesotum, Leptographium, 

Hyalorhinocladiella and Sporothrix (Aghayeva et al. 2004). 

2. Black yeasts such as Hormonema dematioides, Aureobasidium pullulans, 

Rhinocladiella atrovirens and Phialophora spp. 

3. Dark moulds such as Alternaria alternata, Cladosporium sphaerospermum, C. 

cladosporioides and Diplodia pinea. 

The darkly pigmented sapstain fungal hyphae first grow into the sapwood, then extend 

radially via the parenchyma of the xylem rays, and finally into the tracheids of the axial water-
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conducting system (Ballard et al. 1982). In live trees, this disrupts conduction of water and 

results in stress on the tree (Ballard et al. 1982). In dead trees, sapstain simply affects the 

cosmetic value of the wood, as the structural integrity is not reduced (Von Schrenk 1903, Gibbs 

1993, Hood and Ramsden 1997). In the case of felled timber, stain growth is initially hampered 

by the natural moisture levels of the wood physically occupying the space where fungi grow and 

reducing oxygen levels in the conducting tissues, but as the wood dries out space is created 

allowing the fungi to grow, and discolour the wood (Seifert 1993, Beal et al. 2010). This was 

evident in a study by McCarthy et al. (2010) investigating the onset of sapstain following 

windthrow in the Nelson region of New Zealand. Felled trees were separated into two classes, 

severed or rooted, where snapped trees were killed instantly and rooted trees fell with some of 

the root system remaining intact in the soil. Increases in sapstain proceeded more rapidly in 

snapped trees, which also dried quicker, than in trees that toppled but remained rooted (Figure 

1.2). 

Moisture content levels required to suppress fungal growth are reported to be between 100 

and 120% (Liese 1984, Beal et al. 2010), or below 20% (Colley and Rumbold 1930). In 

addition, there is an optimal temperature of between 22 and 30°C (Seifert 1993). With 

knowledge of some of these factors affecting fungal growth, a model called the “Sapstain 

Danger Index” (SDI) was created to track the time taken for felled logs to be spoiled due to 

sapstain (Zeff 1999). The model was developed based on the critical growth factors of fungi: 

nutrient level, temperature, and wood moisture content.  

The SDI model is shown below (Eq. 1) (Zeff 1999). 

SDI �
8.0

�F1 � F2 � F3�
 

(1) 
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Figure 1.2. Comparisons of model predictions for timber moisture content and 

sapstain in snapped (severed, black) and rooted (grey) trees. Symbols indicate 

observed data points, with the curve being the predicted values from a model 

developed to predict the rate of sapstain accumulation over time (adapted from 

McCarthy et al. 2010). 
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The numerator 8.0 is used as a constant as the maximum proposed number of days between 

felling and application of anti-sapstain treatment (Cooper 2000). F1 is time of year, used as a 

surrogate for nutrient level – highest in spring and summer (0.2), and lower in autumn and 

winter (0.1) (Cooper 2000). F2 is midday temperature, and F3 is time since last significant 

rainfall, a surrogate for moisture content. Therefore, the SDI takes into account the major 

growth limiting factors of sapstain fungi to create a model allowing foresters to determine the 

maximum number of days between the felling of a log and when anti-sapstain treatment should 

be applied (Figure 1.3). A high SDI value indicates that anti-sapstain treatment is not required 

for a number of days, whereas a low value shows that log turnover should not exceed one or two 

days.  
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Figure 1.3. Sapstain Danger Index for Spring 1998 with a 7-day average to remove day-to-day 

variations in the index (adapted from Zeff 1999). 
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The effect of sapstain on wood strength is generally thought to be negligible (Seifert 1993). 

A study by Schirp et al. (2003a) investigated the effect of sapstaining fungi on the strength 

properties of P. radiata in New Zealand. Samples of pine were inoculated with isolates of stain 

fungi (Ophiostoma floccosum, O. pluriannulatum, O. ips, O. piceae, Leptographium procerum, 

and Diplodia pinea) with tests conducted on the effects of sapstain on toughness and dry weight 

compared to controls. They reported no significant differences between wood specimens 

inoculated with sapstaining fungi and the controls for all species except O. ips which caused an 

18% reduction in strength after 16 weeks (Schirp et al. 2003a). There were, however, significant 

decreases in strength when decay fungi were present, with as much as a 61% reduction in 

toughness caused by Gloeophyllum trabeum after 16 weeks (Schirp et al. 2003a). This needs to 

be taken into account as recent studies have indicated that it is common to have sapstain and 

decay fungi co-existing within the same piece of wood (McCarthy et al. 2010), meaning that 

there would be a decrease in strength, even if not directly attributable to the stain fungus. 

McCarthy et al. (2010) reported repeated isolations of decay fungi such as Phlebiopsis gigantea 

and Schizophyllum commune which caused toughness reductions of 16% and 32%, respectively 

(Schirp et al. 2003a). Sapstain fungi have been shown to preferably metabolise readily 

accessible, non-structural wood components such as starch, with little secretion of cell wall 

degrading enzymes (Schirp et al. 2003b) explaining the minimal effect on wood strength. 

Multiple methods for the control of sapstain fungi have been investigated. Following serious 

events such as fire and windthrow, there is often an influx of material salvaged from the 

damaged stands flooding the timber market with an oversupply or product. A major concern 

during such events is the salvage and sale of affected logs before deterioration occurs (Childs 

1966, Liese 1984, Hood and Ramsden 1997, Wylie et al. 1999, McCarthy et al. 2010). One 

method of protecting logs from beetle and fungal attack is to maintain moisture content levels 

by storing logs under wet storage, either using sprinkler systems, or storing the logs directly in 

large bodies of water such as lakes (Clifton 1978, Liese 1984). This option has been 

implemented successfully for up to two years (Clifton 1978), though serious attack by beetles 
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and fungi is still possible so this option is not recommended for anything longer than six months 

(Wylie et al. 1999). 

Multiple studies have named D. pinea (syn. Sphaeropsis sapinea) as the most significant and 

important stain fungus in New Zealand (Farrell et al. 1997, Thwaites et al. 2005, McCarthy et 

al. 2010). It is known that D. pinea sometimes acts as a latent endophyte in healthy Pinus trees 

(unlike ophiostomatoid fungi), often becoming obvious once a tree becomes damaged or 

stressed (Smith et al. 1996, Flowers et al. 2001, Reay et al. 2006b). Infection of live trees by D. 

pinea can result in leader dieback, crown wilt and whorl cankers in many Pinus species (Chow 

1984). Short-distance dispersal of this pathogen is generally attributed to wind and rain splash 

(Thwaites et al. 2005), however, the methods of long distance dispersal are unknown 

(Brookhouser and Peterson 1971, Palmer et al. 1988). There is limited evidence suggesting a 

possible relationship between D. pinea and bark beetles (Wingfield and Knox-Davies 1980, 

Romon et al. 2007, Whitehill et al. 2007), but this species is generally thought to disperse 

independently of insects and was not found to be present on any Diptera or Coleoptera in a New 

Zealand survey (Suckling et al. 1999). It is thought that the main method of dispersal of this 

fungus is through wind and rain splash of spores originating from infected mature trees nearby 

(Bihon et al. 2011). Three morphotypes, A-C, have been described for D. pinea (de Wet et al. 

2002), with morphotype B assigned the species name Diplodia scrobiculata (de Wet et al. 

2003). Morphotypes A and C retain the D. pinea classification, with morphotype A being 

widely distributed across the southern hemisphere, and the more virulent morphotype C thus far 

known only in the north central United States (de Wet et al. 2003). 

In contrast to D. pinea, the ophiostomatoid fungi have small, sticky spores that are elegantly 

adapted for insect dispersal (Francke-Grosmann 1967, Beaver 1989, Paine et al. 1997). These 

fungi are not particularly virulent pathogens, with the exception of those that cause Dutch elm 

disease and black stain root disease (Harrington 1993, Harrington et al. 2001), but they do cause 

significant staining of timber (Figure 1.4) (Seifert 1993, Uzunović et al. 1999b, Thwaites et al. 

2005). A major advantage this fungal group has over other species, is its method of dispersal 
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that not only depends on wind and rain, but is commonly carried on the bodies of insects (Gibbs 

1993, Paine et al. 1997, Harrington 2005, Romon et al. 2007).   

Figure 1.4. Comparison of multiple Ophiostomatoid fungal stain species on two species of coniferous 

tree, Scots Pine (Pinus silvestris) and Norway Spruce (Picea abies) (adapted from Lagerberg et al. 1927). 
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1.4 Beetle-fungus interactions 

There is substantial evidence indicating that many of the sapstaining fungi, especially 

ophiostomatoid fungi, are intimately linked with bark beetles that act as vectors (Gibbs and 

Inman 1991, Paine et al. 1997, Farrell et al. 2001, Harrington 2005, Romon et al. 2007). The 

association was first reported in 1903 at the Black Hills Forest Reserve (South Dakota and 

Wyoming), but after unsuccessful attempts at isolating the fungus from the beetle it was 

concluded that the spores were wind-blown (“blown about by the wind in countless 

thousands”), merely entering the holes made by the beetles (Von Schrenk 1903). The links were 

then re-examined in detail in 1934 in freshly cut logs of Norway pine (Pinus resinosa), under a 

variety of treatments to exclude both insects and fungi (Leach et al. 1934). These experiments 

showed that bark beetles (Ips pini and Ips grandicollis) introduced blue-staining fungi into the 

logs, and that the fungi were rarely, if ever, introduced in any other way. They also suggest that 

mites, frequently introduced to the logs by beetles, may be moving about the tunnels and 

spreading blue stain fungi as they travel (Leach et al. 1934). They went on to report that 

although there was no nutritional symbiosis present between the two organisms, the insects 

benefited from the fungi inhibiting the flow of sap, and the fungi obviously benefitted from the 

introduction to the inner bark of susceptible trees, indicating the presence of a broad symbiosis 

(Leach et al. 1934). 

There is a wealth of fungi, mainly ascomycetes, that can be found in the galleries of 

coniferous bark beetles (Harrington 2005). Many of these fungi show adaptations for insect 

dispersal, such as the formation of spores at the tip of fruiting structures which aid in their being 

picked up by passing beetles (Malloch and Blackwell 1993). Ophiostoma species and their 

anamorphs are common associates of bark beetles (Paine et al. 1997, Harrington 2005). The 

Ophiostoma genus is thought to have a late cretaceous origin (Farrell et al. 2001). Bark beetles 

are also believed to have origins in the late cretaceous, where their ancestors shifted from 

angiosperm hosts to Araucaria species, and coinciding with the evolution of the Pinaceae 

family and the genus Pinus (Sequeira and Farrell 2001). It has been hypothesised that either the 



17 

 

diversification of Ophiostoma followed that of the coniferous bark beetles who provided access 

to uncolonised phloem, or that the pathogenic Ophiostoma allowed bark beetles to attack the 

defensive resin canal system of the conifer host (Farrell et al. 2001, Harrington 2005). 

Ophiostomatoid fungal spores can be either carried on the outside, or through the gut 

passages of a beetle (Francke-Grosmann 1967). These fungi produce a sticky mucilage which 

helps to hold together spore masses, aids adhesion to the beetle exoskeleton or the bark, and 

helps protect the spore from desiccation (Beaver 1989). This mucilage also helps to protect the 

spore from digestion while in the gut of the beetle (Francke-Grosmann 1967), so that epizoic 

(living nonparasitically on the exterior of a living animal) and endozoic (living within, or 

passing through, an animal) dispersal is be possible (Beaver 1989).  

Some bark beetle species have special structures on their bodies that are adapted for the 

transport of symbiotic fungal spores, called mycangia (Figure 1.5) (Batra 1963, Beaver 1989). 

Mycangia may have evolved as hollow glands, or pocket-like internal expansions of existing 

exoskeleton (Beaver 1989). There are two types of mycangia that have been described for bark 

beetles – oral, and prothoracic. Oral mycangia are small pouches on or around the mandibles, 

whereas prothoracic mycangia are glandular with secretions allowing for growth of the fungi 

within the mycangium (Harrington 2005). Mycangia have evolved independently several times 

in bark beetles, suggesting that they play a role in the continuity of bark beetle-fungus 

interactions between generations (Bleiker et al. 2009). It has been suggested that actively 

growing hyphae from mycangial fungi may provide a continual (regenerating) source of fungal 

inocula over the extended periods of gallery development (Bleiker et al. 2009). Having 

mycangia is by no means a requirement for a relationship with fungi – there are many bark 

beetles such as Dendroctonus pseudotsugae, D. rufipennis, and Ips avulses known to have 

consistent associations with particular fungi, but none appear to have mycangia (Beaver 1989). 

Of all bark beetle species, only nine are known to have well-developed mycangia (Table 1.1). 

Most of the known mycangia-bearing bark beetles are near-obligate parasites of pines and are 

within the genus Dendroctonus. This is a relatively old genus, estimated to have diverged in the  
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Bark beetle Tribe Principal Plant Hosts Mycangial Type Ascomycete Associates Basidiomycete Associates 

Dendroctonus frontalis Tomicini Pinus spp. Prothoratic, glandular Ceratocystiopsis ranaculosus Entomocorticium sp. A 

D. brevicomis Tomicini P. ponderosae, P. coulteri Prothoratic, glandular C. brevicomis Entomocorticium sp. B 

D. approximates Tomicini Pinus spp. Prothoratic, glandular Unknown Phlebiopsis gigantea 

D. adjunctus Tomicini Pinus spp. Prothoratic, glandular Leptographium pyrinum Unknown 

D. ponderosae Tomicini Pinus spp. Maxillary Ophiostoma clavigerum, 

O. montium 

Entomocorticium dendroctoni, 

E. sp. D, E, F, G, H, P. gigantea 

D. jeffreyi Tomicini P. jeffreyi Maxillary O. clavigerum Entomocorticium sp. E 

Ips acuminatus Ipini Pinus spp. Mandibular O. clavatum, A. macrospora Unknown 

Pityborus comatus Corthylini Pinus spp. Prothoratic, pubescent Unknown Entomocorticium sp. C 

Table 1.1. Species of bark beetles known to have mycangia, their hosts, mycangial types, and principal fungi (ascomycetous or basidiomycetous) upon which they feed or carry 

(adapted from Harrington 2005). 
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early cenozoic, relatively close to the divergence of bark beetles and the Ophiostoma genus 

(Sequeira and Farrell 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Highly developed mycangia are not essential for the transportation of fungi by bark beetles, 

and it is likely that all coniferous bark beetles at least occasionally carry ophiostomatoid fungi. 

As an example, the nonmycangial beetle Hylastes ater has been demonstrated to commonly 

carry ophiostomatoid fungi such as Leptographium guttulatum, Ophiostoma quercus, O. ips and 

Grosmannia galeiformis (Zhou et al. 2004c, Reay et al. 2005, Romon et al. 2007). This 

Figure 1.5. Mycangia on the Mountain Pine Beetle, D. ponderosae: 1 - 

mycangial opening (My) on the maxillary cardine (c), 2 – yeasts and spore-like 

objects protruding from a mycangial opening, 3 – hypha (HI) extending from a 

mycangial opening (adapted from Bleiker et al. 2009). 
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transport can involve the carrying of spores on the exoskeleton, primarily in pits and asperites 

below setae (Figure 1.6). For the mountain pine beetle, Dendroctonus ponderosae, there is 

evidence suggesting that the external transport of fungi is incidental rather than adaptive, and 

that no one species is better adapted for external transport than another (Bleiker et al. 2009). It 

has been suggested that mycangia have evolved for carrying specific beneficial fungi. All fungi 

listed in Table 1.1, with the exception of O. clavigerum, are not known to be tree pathogens, 

therefore mycangial fungi seem to be a source of nutrition for the beetles (Harrington 2005). 

 

 

 

 

 

 

 

 

Currently only four genera of bark beetles (that all attack conifers) are thought to be feed on 

fungi, including Dendroctonus, Ips, Tomicus, and Pityoborus (Harrington 2005). Both 

ascomycetes and basidiomycetes are fed upon by bark beetles, and both are carried in mycangia 

(Table 1.1). Overall, mycophagy seems to be relatively uncommon, possibly because the inner 

bark of trees are rich in nutrients (Harrington 2005). It is probable that the fungi provide many 

essential nutrients and other benefits for beetles (Ayres et al. 2000), though this is not usually 

obligatory (Harrington 2005). 

The bark beetles present in New Zealand, Hylastes ater and Hylurgus ligniperda, are known 

to have multiple fungal associates, though the importance of this to sapstain accumulation of 

sensitive logs is not known, especially in a New Zealand context. 

Figure 1.6. Fungal spores in the exoskeletal pits (P) or 

asperites (A) of the Mountain Pine Beetle, D. ponderosae 

(adapted from Bleiker et al. 2009). 
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1.5 Management of sapstain in timber production systems following windthrow 

Windthrow events are frequent in managed forests, and are the major cause of forest destruction 

world-wide (Grayson 1989, Ulanova 2000, Nieuwenhuis and Fitzpatrick 2002). There is a large 

body of information suggesting methods to manage stands in a manner that reduces the chance 

and severity of potential damage (Grayson 1989, Usbeck et al. 2010), though information on the 

effective retrieval of damaged trees before insect attack, sapstain and decay become prevalent is 

limited (Childs 1966). Severe wind and snow storm events in July and August of 2008 (Figure 

1.7) caused significant damage to several production forest estates near Nelson (South Island, 

New Zealand). These storms raised questions about the time available for the salvage harvest of 

damaged trees before extensive damage by insects, sapstain, and decay fungi reduced the value 

of the affected timber. Pinus radiata, the predominant species of New Zealand‟s plantation 

forests, is highly susceptible to attack from sapstain and decay fungi which damage the wood 

both cosmetically and structurally, respectively (Childs 1966). 

Following the July - August 2008 severe storm events, a trial was set up in the Golden 

Downs region (near Nelson) to assess the time available to salvage harvest timber from affected 

stands. Both “rooted” trees (that had toppled with their roots still in the ground) and “snapped” 

trees (that had snapped boles) were assessed for sapstain over a 12 month period at intervals of 

1 to 3 months . The findings indicated that sapstain and decay fungi colonised and developed at 

a considerably faster rate in snapped trees than in rooted trees. However, even in snapped trees, 

the onset of sapstain took longer than expected, probably because the storms occurred in winter 

when sapstain progresses more slowly (McCarthy et al. 2010). 

Climatic conditions have a strong effect on the activity levels of insects that may vector 

potential sapstain and decay fungi, with their prevalence usually heightened during the warmer 

months of the year (Reay and Walsh 2001, Mausel et al. 2007, Kerr 2010). This has been 

demonstrated for sapstain with harvested logs, indicating that in the warmer months sapstain 

can develop in less than two weeks in some regions (Zeff 1999). However, the study in Nelson 

showed that the colouration of timber by sapstain can take a much longer period of time 
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Figure 1.7. Images of damage caused by extreme weather 

events in P. radiata plantations in New Zealand. (A) Typical 

damage to forests following the Nelson windstorm of July 

2008. (B) Snow cover of forests following the Nelson 

snowstorm of August 2008. (C) Image depicting typical 

damage sustained with snapping of trees and branches. 
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(McCarthy et al. 2010). This may be due to a lower incidence of bark damage, and also because 

many of the toppled trees remained rooted. These factors both contribute to maintenance of 

higher log moisture content, slowing fungal development. In addition, the windthrow in Golden 

Downs occurred in winter when there were fewer active adult bark beetles that could potentially 

vector fungal spores. Although an index, based on an empirical study of seasonal nutrient level, 

midday temperature, and wood moisture content, is available indicating the probability of 

sapstain onset across seasons (for harvested wood, Zeff 1999), information on relative 

determinants of intensity and distribution of this stain, with regards to fungal species and insect 

vectors, is limited, especially in a salvage harvest situation. These knowledge gaps restrict the 

ability of New Zealand‟s forestry industry to develop reliable protocols that can be adopted 

following severe weather events such as wind or snow damage. 
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1.6 This thesis 

This thesis will test the hypothesis that bark beetles (vectors) facilitate the colonisation of 

damaged/windthrown trees by sapstain and decay fungi, and that the strength of this interaction 

intensity varies through time. Activity levels of bark beetles vary through the seasons, along 

with fluctuating temperatures and rainfall, this is usually as a response to temperature (Reay and 

Walsh 2001, Mausel et al. 2007). For example, as temperature increases, bark beetle activity 

does also, likely affecting the rate of attack on vulnerable wood and subsequently increasing 

fungal spore distribution and colonisation. 

The general association between sapstain fungi and insects has long been known (Von 

Schrenk 1903, Leach et al. 1934), though the importance of the sapstain fungi they introduce, as 

opposed to those dispersed by wind and rain, is unknown. I will quantify the importance of bark 

beetles as vectors of stain fungi, in comparison with those dispersed by other means. In 

addition, I will assess the timeframes available to salvage harvest windthrown trees following 

events of severe windthrow, taking both seasonal and regional variations into account. 

The ecological effects of spatial and temporal variation in inter- and intra-specific 

interactions between multiple vectors and pathogens are poorly understood. It is known that the 

insects vector sapstain spores, however the importance and overall effect of this is uncertain 

relative to wind-dispersal of spores. Pine trees are introduced to New Zealand, and consequently 

most of their pathogens and insect pests are introduced also. The resulting assemblage is what 

could be termed a novel ecosystem, as only a subset of what would be a „natural assemblage‟ 

for these species is present, and they predominantly interact with a novel suite of species native 

to New Zealand. Key features of novel ecosystems are the formation of new species 

combinations, potential changes to ecosystem functioning (Hobbs et al. 2006), and virulence of 

pathogens can be altered (Parker and Gilbert 2004). The bark beetles examined in this study 

would not have had associations with many of the fungal species in their native distributions 

that they have come into contact with in New Zealand. The uncertainty behind the consequences 

of these novel associations requires targeted research in order to manage them adequately. 
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From an applied perspective, the results of this research will provide a solid knowledge base 

for effective harvest and stand recovery from wind and snow damage, and detail the importance 

of the interaction between insects and decay fungi and sapstain fungal spores. This knowledge 

base will allow forest managers to better prioritise salvage-harvesting efforts following such 

events, and recover maximum value. This becomes increasingly important as climate patterns 

are changing and extreme weather events become more likely (Easterling et al. 2000). 

In Chapter 2, I experimentally test the rate of sapstain onset following simulated windthrow 

events with both seasonal and regional variation. In total, 288 trees were experimentally felled 

in this trial, in order to test the effects of: time since felling, wood moisture content, bark beetle 

colonisation and fungal species identity on the intensity and distribution of sapstain attack. As 

temperature is a one of the factors driving moisture loss from logs, it was predicted that the 

seasonality of the storm simulations would alter the rate of sapstain development. Likewise, 

differences in regional climates were also predicted to have an effect. 

Chapter 3 tests whether bark beetles vector fungi to experimental billet logs, half of which 

were caged to prevent them from beetle attack. This experiment was undertaken in order to 

assess the effect of insects alone on stain development, while keeping all other factors (ground 

contact, temperature, wind-blown sapstain spores) constant. A controlled experiment such as 

this one allows the measurement of beetle attack alone as determinants of stain development, by 

comparison of logs that were caged and un-caged. 

In Chapter 4 sapstain fungi are isolated from the bark beetles H. ater and H. ligniperda, and 

the wood borer P. peregrinus, as well as sections of wood in order find out what (if any) 

sapstain species are vectored by them, and also to compare these with isolations taken from 

stained wood. The specificity of vector-fungi associations was determined from over 5000 

individual isolations, identifying previously unrecorded associations. 

Finally, in Chapter 5 I draw together evidence of the of the individual thesis chapters to 

describe the importance of bark beetles as vectors of windthrown timber in New Zealand. The 

factors driving the success of bark beetles as fungal vectors to windthrown pine trees in 
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particular, are also described. Management implications of the development rate of sapstain are 

discussed, with timeframes for the salvage harvest of wind damaged stands described depending 

on the seasonality and regionality of the storm. 
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Chapter 2 – Temporal and spatial patterns of sapstain following 

simulated windthrow 

2.1 Introduction 

One of the most frequent and severe causes of damage to forests world-wide is the snapping and 

breaking of trees caused by windthrow (Franklin et al. 2002, Gandhi et al. 2008, Usbeck et al. 

2010). When these storms occur within production forests, financial losses can be compounded 

with losses from trees deemed uneconomical to salvage (Grayson 1989, Mitchell 1995) due to 

damage or immaturity (Nieuwenhuis and Fitzpatrick 2002), and attack by insects and sapstain 

fungi (Childs 1966, Hosking 1977, Schroeder 2001, Komonen et al. 2011). The ability to limit 

economic damage following storm events relies on accurate information regarding the 

management of damaged stands. One major uncertainty following both large- and small-scale 

windthrow events is the timeframe available to salvage-harvest logs before the process becomes 

uneconomical due to fungal staining, decay, and insect infestation.  

Sapstain is the discolouration of wood caused by the darkly pigmented hyphae of some 

groups of fungi. This staining is caused by a dark pigment called melanin present on the outer 

surface of the fungal cell wall (Zimmerman et al. 1995, Eagen et al. 1997, Reay et al. 2002). 

Stain is generally caused by three groups of fungi (Seifert 1993), the insect-dispersed 

ophiostomatoid fungi (Zipfel et al. 2006), black yeasts, and dark moulds. The darkly pigmented 

hyphae grow first into the sapwood, then extend radially through the rays, and finally into the 

tracheids of the water conducting system (Figure 2.1, Ballard et al. 1982). Although the 

structural integrity of stained wood is not significantly reduced (Gibbs 1993, Schirp et al. 

2003a), the colouration reduces the cosmetic quality of the timber and generally limits it to low-

grade uses (Childs 1966). One of the main regulating factors on the extent of sapstain growth is 

the change in moisture content of the timber following tree death, whereby values greater than 

120% (dry weight basis) maintain low oxygen levels preventing the growth of many sapstain 

fungi (Clifton 1978, Liese 1984, Seifert 1993, Hood and Ramsden 1997). 
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(a) 

    
(b) 

30 µm 

Figure 2.1. (a) a false colour image depicting sapstain (D. pinea) hyphae (arrows) in the ray cells of P. radiata sapwood. Fixed material was microtomed into 60 µm thick sections 

and stained with 0.03% lactofuschin. (b) lactofuschin was also imaged by confocal microscopy using excitation at 561 nm (green light) with florescence collected from 570 to 620 

nm (yellow and red light). Scale bar = 30 µm (image: David Collings and James McCarthy). 
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Sapstain degradation of windthrown timber costs New Zealand‟s forestry industry upwards 

of NZ$100 million per year (Wakeling 1997). Recently, successive wind and snow storms 

during the winter of 2008 caused extensive uprooting and breakages of Pinus radiata trees in 

plantation forests in the Nelson region of the northern South Island of New Zealand. More than 

2000 ha of plantation forest were affected in this event, and salvage harvesting operations were 

implemented immediately to salvage as much from the damaged stands as possible, with no 

reliable quantitative information as to how much time was available before the logs became 

uneconomic to harvest. A study was initiated in the areas affected by the storm to obtain 

quantitative information on the rate of sapstain development on the fallen trees. This study 

found that in a storm at that time of the year, trees that toppled but remained rooted would retain 

minimum stain levels for up to one year, whereas severed stems would succumb to extensive 

staining after just 4 months (McCarthy et al. 2010 - see appendix A). Sapstain development 

coincided with a reduction of moisture content over time that was accelerated if the tree was 

severed from its roots. 

Large-scale damage of production forests caused by storms is a common event around the 

world. In 1997 a major storm occurred in the south of Ireland damaging close to 500 000 m
3
 of 

timber (Nieuwenhuis and O'Connor 2001). Salvage operations commenced shortly afterwards, 

but the profit made from wind-thrown timber was on average 10.5% less than timber harvested 

by standard clearfell methods. A small portion of this reduction of profit was attributed to 

increased harvesting costs, but most was due to the downgrading of sawlog material due to 

structural and cosmetic damage to the timber (Nieuwenhuis and O'Connor 2001). In New 

Zealand, Littlejohn (1984) described a salvage harvest operation following a storm in the central 

North Island where very little degradation occurred until spring, six months after the storm, 

when sapstain started to spread rapidly in the fallen trees and cause substantial degradation of 

timber quality. Climatic conditions appear to have a strong effect on the activity levels of 

insects that vector sapstain fungi, with their activity usually heightened during the warmer 

months of the year (Reay and Walsh 2001, Mausel et al. 2007). The warmer temperatures of 
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summer also accelerate the rate of moisture loss from the logs (Zeff 1999). Knowledge of these 

factors affecting sapstain dispersal and growth have led to further questions regarding the 

impact of seasonality and regional locality on the rate of onset of sapstain degradation, in order 

to more effectively manage salvage harvesting following the impacts of such storms. 

The aim of this study was to experimentally test the rate of decline of timber moisture 

content, and increase in sapstain cover with time since felling under experimentally controlled 

conditions, discriminating the temporal (successional) effects from seasonal effects on sapstain 

cover in two climatically different regions of New Zealand. Windthrow was experimentally 

simulated across two regions of the south island of New Zealand – Golden Downs Forest, 

Nelson region and Bottle Lake Forest, Canterbury. Both sites were selected as they are among 

large areas of plantation estate, and sit in differing climates and altitudes where Nelson is 

generally warmer with higher precipitation than Canterbury (Figure 2.2). The windthrow 

simulations were staggered across summer, autumn, winter and spring in order to track the 

effect of storm seasonality on sapstain growth, and determine the degree to which sapstain 

growth is a time-dependent process versus a season-dependent process. Moisture content of the 

wood, insect attack, insect phenology, and fungal species were all determined in order to fully 

understand the dynamics within this system. In an applied sense, the goal of this research is to 

provide guidance of timeframes available for salvage harvest following windthrow before wood 

quality is significantly reduced. 
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Figure 2.2. Location of the two study regions with rainfall and temperature characteristics. From NIWA 500 m resolution gridded 

interpolated virtual climate station annual rainfall data for the period 1980-1999. 
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2.2  Materials and methods 

2.2.1  Study sites, and establishment 

The field study was conducted over 21 months in P. radiata stands in Canterbury (Bottle Lake) 

and Nelson (Golden Downs), in the South Island of New Zealand. Canterbury was chosen as a 

cooler region (av. max. temp 16.8°C, av. min. temp. 7.3°C (Anon 2011a)), with a relatively low 

rainfall (av. 524 mm p/a) and low elevation (2.5 m above sea level), whereas Nelson has a 

higher temperature (av. max. temp 17.6°C, av. min. temp. 4.8°C), higher rainfall (av. 1385 mm 

p/a), and higher elevation (approx. 550 m above sea level). Four study sites were established in 

each region, each approximately 200 m by 200 m, and ranging in spatial separation from 2-16 

km apart in Nelson, and 2-3 km apart in Canterbury. 

Study sites were established in December 2009 (Nelson) and January 2010 (Canterbury), in 

stands ranging in age from 9 to 10 years (Table 2.1). This project used experimentally simulated 

windthrow, created in a controlled fashion by felling trees at each site with a chainsaw. In 

Nelson, windthrow was simulated in all four seasons (summer, autumn, winter, spring), and 

monitoring continued for 12 months following each simulation to determine the onset and 

progression of sapstain fungi and beetle attack. Due to logistical constraints, windthrow at 

Canterbury was only simulated in summer and winter, and the final assessment of Nelson‟s 

autumn windthrow simulation was not undertaken due to high amounts of stain being present in 

the third assessment. In order to control for within-site heterogeneity, all sites were set up in a 

randomised block design where trees were arranged in a grid (ca. 20 m × 20 m) , and all trees 

inside were randomly assigned a number corresponding to when they would be felled, and 

sampled – 48 trees per site in Nelson, and 24 trees per site in Canterbury. All of these trees were 

identified and tagged at the beginning of the study. 

The study was initiated in summer when 12 trees were cut down at every site. After three 

months – in autumn – three of these trees were sampled from each site (for sampling details see 

section 2.2.2. tree and disc processing), and in Nelson where there was an autumn sampling,  
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Location Site 

Coordinates 

(NZTM) 
Summer felling Autumn felling Winter felling Spring felling 

E N Date when 

felled 

Age when 

felled (yr) 

Date when 

felled 

Age when 

felled (yr) 
Date when felled 

Age when 

felled (yr) 
Date when felled 

Age when 

felled (yr) 

Canterbury 1 1574109 5187816 14 Jan 2010 10 N/A  15 Jul 2010  N/A 10 

2 1575693 5187139 10   10 

3 1576190 5189861 9   9 

4 1575694 5188566 10   10 

Nelson 1 1591963 5404592 11 Dec 2009 10 13 Mar 2010 10 24 Aug 2010 10 10 Sept 2010 10 

2 1588580 5397031 9 9 9 9 

3 1588357 5395148 9 9 9 9 

4 1587032 5411993 9 9 9 9 

Table 2.1. Details of study sites in Canterbury and Nelson. 
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another 12 trees were cut down. After six months, another three trees from the summer 

simulation were sampled, as well as the first three trees from the trees cut in autumn. This was 

repeated for every season sampled, with three trees collected quarterly from each seasonal 

simulation, until all twelve trees from a season were collected, one year following the initial 

cutting. For a detailed summary see Table 2.2.  

2.2.2  Tree and disc processing 

Sapstain development and bark beetle infestation were monitored by cutting discs from sample 

trees. Five 3 cm-thick discs were taken from each tree at intervals of 1.5 m, offsetting slightly if 

this position intersected with a branch node. The initial disc was cut 0.2 m from the base, with 

1.5 m intervals measured from there. The edge of the disc that was facing upward in the field 

was marked. The discs were then immediately labelled and sealed in plastic bags, and within ca 

12 hours were moved to a cold room at 4°C in order to minimise moisture loss and prevent 

further fungal growth before measurement. Due to this destructive method of sampling, each 

tree could be sampled only once. 

Sapstain was recorded by photographing the cut face of each disc using a specially 

constructed stage to keep the background colour constant. Care was taken to ensure that the disc 

was positioned in the correct vertical alignment in the photo, in order to allow accurate 

placement of a digital grid over each image when making stain measurements. In order to 

measure the amount of stain in each segment, the entire image was imported into Adobe 

Photoshop ® (CS4 Extended, Version 11.0) and the top half of the disc was separated from the 

bottom by placement of a line through its centre. Each half of the disc was extracted and saved 

as a single-coloured (black) bitmap image (one image file per half-disc) to determine its total 

area. This process was then repeated, but this time drawing around the stain-covered areas only. 

The software package „Image J‟ (version 1.43u) was then used to calculate the number of pixels 

in the stain-covered area versus the total half-disc area. The pixels were summed from the two 

halves of each disc, and the stain cover from the halves, to calculate a total percentage cover. 
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  2009 2010 2010 2010 2010 2011 2011 

  Summer Autumn Winter Spring Summer Autumn Winter 

Nelson Trees cut 1-12 13-24 25-36 37-48 - - - 

 Trees sampled - 1-3 4-6, 13-15 7-9, 16-18, 25-27 10-12, 19-21, 28-30, 37-39 22-24, 31-33, 40-42 34-36, 43-45 

Canterbury Trees cut 1-12 - 13-24 - - - - 

 Trees sampled - 1-3 4-6 7-9, 13-15 10-12, 16-18 19-21 22-24 

Table 2.2. Sampling strategy for each region. Numbers indicated were randomly assigned to trees. This was repeated for all four sites in each region. Trees cut, 

indicate the trees that were cut down during the particular season, and trees sampled were those cut into discs and assessed. 
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Moisture content of the inner and outer sapwood of each disc half was determined (dry 

weight basis) within 36 h of sampling. Two small wooden blocks were cut from each disc half, 

at what was the top and bottom parts of the disc edge when the tree was in the field. From each 

half, one small block was taken from the outer edge, and the other block was taken from the 

inner portion of the disc along the same radius (a total of four small blocks per disc). Blocks 

were weighed at room temperature to constant mass before and after drying at 80°C in a 

ventilated oven.  

2.2.3  Bark beetle sampling 

Bark beetle infestation was measured on all study trees from the beginning of the experiment. 

During field sampling, each 1.5 m section of tree between the experimental discs was examined 

and the position of all external evidence of beetle attack was recorded (exuded frass, bore holes 

etc.) and counted within each 0.5 m third of every length. Beetle colonisation, or evidence there-

of (insect galleries), was also recorded if it occurred on any of the discs brought back to the 

laboratory. 

In order to measure the seasonal abundances of beetles thought to be potentially important 

vectors of sapstain, the phenologies of the scolytines Hylastes ater, Hylurgus ligniperda, and 

Pachycotes peregrinus (Coleoptera: Curculionidae: Scolytinae), and the longhorn beetles 

Arhopalus ferus and Prionoplus reticularis (White) (Coleoptera: Cerambycidae) were 

determined using eight-unit Lindgren funnel traps (PheroTech, Delta, BC, Canada) (Figure 2.3). 

Two general attractants for pine-infesting bark beetles and wood borers, α-pinene and ethanol, 

were used as lures as described in Brockerhoff et al. (2006a). Two traps were installed at each 

site, and beetles were collected fortnightly during autumn, summer and spring, and monthly 

during winter. 

2.2.4  Fungal isolation and identification 

Isolations attempts to identify and quantify sapstain fungi were undertaken within 10 days of 

sampling, from discs 1 and 4 only, on all study trees for each sampling time. All isolations were  
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attempted on two agar media, one general malt medium for the isolation of most stain fungi 

present, and one selective medium with the addition of the eukaryote antibiotic cyclohexamide, 

which ophiostomatoid fungi tolerate (Harrington 1981, Jacobs and Wingfield 2001). The 

standard media consisted of malt agar (3% malt extract, and 2% agar) with 100 µg/ml 

streptomycin to inhibit bacterial growth. The selective media consisted of malt agar and 

streptomycin as above, as well as 400 µg/ml cyclohexamide to inhibit growth of non-

ophiostomatoid fungi. 

An arbitrary wedge was taken from each disc using a small axe. This was bisected 

aseptically along the radial longitudinal plane using an axe and mallet to initiate the split, and 

then separated manually, avoiding any external contact of the newly exposed surfaces. Five 

small chips were cut along the radial line from the newly exposed face using a sterile scalpel (as 

Figure 2.3. Lindgren-type funnel trap, with dispensers for attractant (α-

pinene and ethanol) on the side (see text). 
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in McCarthy et al. 2010), the 1st and 5th of which were directly below the cambium, and above 

the pith, respectively. The remaining three were taken at equidistant lengths between the 1st and 

5th chips. This was repeated twice per wedge, once inoculating a standard medium, and once 

inoculating the ophiostomatoid selective medium. After incubation periods of up to 10 weeks, 

emerging isolates were sub-cultured in tubes of malt agar (2% malt extract, and 2% agar). 

Occasionally, isolations were taken directly from insect hole in the wood. Bacterial colonies 

were recorded, but not isolated or identified further. 

Emerging isolates were sorted into groups, and identified where possible from their 

vegetative morphology and fruiting structures. All isolates believed to be ophiostomatoid from 

morphological characteristics were resolved using sequence analysis of the internal transcribed 

spacer (ITS) using the primers ITS1F (Bruns and Gardes 1993), and β-tubulin regions using the 

primers Bt2a and Bt2b (Glass and Donaldson 1995). Isolates were sub-cultured on sterile 

GelAir cellophane (BIO-RAD Laboratories, Hercules CA, USA) that was spread over 1.5% 

malt agar plates. Mycelium was scraped directly from the cellophane and placed into a sterile 

1.5 mL microcentrifuge tube for DNA extraction, which was processed using the REDExtract-

N-Amp™ plant PCR kit (Sigma, St Louis, Missouri, USA), following the manufacturer‟s 

instructions. If this DNA failed to amplify, it was re-extracted using the ChargeSwitch® gDNA 

plant PCR kit (Invitrogen, Carlsbad, California, USA), following the manufacturer‟s 

instructions. DNA was amplified using the 5 × HOT FIREPol® Blend Master Mix, Ready to 

Load (dnature, Gisborne, New Zealand). Amplifications were performed in an Eppendorf 

Mastercycler Gradient Thermal Cycler (Eppendorf, Hamburg, Germany) under the following 

conditions for ITS and β-tubulin regions: (1) ITS - initial denaturation 95°C for 15 min (to 

activate the HOT FIRE polymerase), followed by 35 cycles of 95°C for 30 sec, 60°C annealing 

for 40 sec and 72°C extension for 40 sec, followed by a final extension period of 72°C for 5 

min, (2) β-tubulin - initial denaturation 94°C for 15 min, followed by 30 cycles of 94°C for 60 

sec, 58°C annealing for 60 sec and 72°C extension for 60 sec, followed by a final extension 

period of 72°C for 10 min. 
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PCR products were visualised by electrophoresis and purified using the ExoSAP method 

(Exonuclease I, Escherichia coli and Shrimp Alkaline Phosphatase, SAP) according to the 

supplier‟s instructions (Fermantas Life Sciences, Lithuania). Sequence analysis was carried out 

at Macrogen Inc., Korea. Sequences were edited and aligned using Sequencher version 5.0 

(GeneCodes Corp., Ann Arbor, Michigan, USA) and identities were determined by Genbank 

BLASTn search (Altschul et al. 1990). For identification, a minimum of 95% sequence identity 

to an ITS sequence of at least 450 bp from a known specimen in the database was required. For 

β-tubulin sequences, the required sequence length was 350 bp. Those samples with 97-100% 

identity match to a known species were considered a match and named to the species level, 

provided the morphological characteristics of the isolate (sourced from the scientific literature) 

matched that of the name derived from sequence data. 

2.2.5  Statistical analyses 

Mixed model analyses of variance (ANOVAs) were used to test the significance of 

experimental factors including site, felling time, time of assessment, disc location within tree 

(Discs 1-5) and position within disc (upper versus lower) on moisture content and sapstain 

cover. These analyses included tree and disc within tree as random effects in the analysis as 

appropriate.  

A test of association between sapstain with presence of insect damage was made using a 

variable consisting of insect borer count in the stem. This variable was included as a covariate in 

an ANOVA performed on stem-level sapstain data. 

Prior to analysis, sapstain percentage was transformed using the angular transformation 

(arcsine(sqrt(proportion)) as appropriate for a variable assessed as proportional cover. Moisture 

content was strongly positively skewed and was normalised using a log10 transformation.  

Pairwise comparisons between relevant means were performed using the least significant 

difference (LSD) test at the 5% level of significance. All analyses were performed using the 

SAS Version 9.2 MIXED procedure (SAS 2008). 
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2.3  Results 

2.3.1  Regional and seasonal effects on sapstain 

In this study, 288 trees were cut down for windthrow simulations across sites in Nelson and 

Canterbury. From these trees, 1154 discs were analysed for stain and moisture content levels. 

The linear mixed effects model indicated that there was no significant difference in sapstain 

cover between upper and lower halves of each disc (F1,2307 = 0.00, P = 0.99). All subsequent 

analyses therefore used sapstain data at the disc or tree level. 

There was a significant effect of site, season, and time following harvesting on stain 

development at both regions (Table 2.3). There were also multiple significant interaction terms 

involving disc location, with variation in stain development at different sites, felling seasons, 

and sampling times all being dependent on disc location within trees (Table 2.3). It was evident 

that the disc location interaction effects were predominantly due to differences in sapstain onset 

between disc 1 and the remaining four discs (Figure 2.4). Percent sapstain in disc 1 was much 

higher than discs 2-5 in Canterbury, but much lower than discs 2-5 in Nelson (Figure 2.4a). 

However, there were no significant differences in sapstain between discs 2-5 at either location. 

Moisture content varied significantly between discs being lowest for disc 1, then higher for disc 

2, and declining again from there up to disc 5 (Figure 2.4b). Because of the inconsistent 

behaviour of disc 1 compared with discs 2-5, the remaining analysis was performed only using 

data from discs 2-5. When the sapstain analysis was repeated with disc 1 removed, there were 

no longer any significant disc location effects (Table 2.4).  

The ANOVA of data from discs 2-5 (Table 2.4) showed significant effects for most terms in 

the model and their interactions other than disc location indicating that site, season and sample 

time, and their interactions, all have an effect on stain, whereas disc locality (omitting disc 1) 

did not. Overall, trees at the Nelson sites had significantly more stain than in Canterbury, and 

there was generally more stain during the months of spring and summer (Table 2.4). In Nelson, 

there were significant differences in sapstain development for each felling time (Table 2.5). 
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Fixed effect 

Numerator 

degrees of 

freedom 

Denominator 

degrees of 

freedom F Value Pr > F Significance 

site 1 46 342.40 <.0001 *** 

season 3 46 162.66 <.0001 *** 

site * season 1 46 68.77 <.0001 *** 

sample_time 3 46 79.26 <.0001 *** 

site * sample_time 3 46 13.64 <.0001 *** 

season * sample_time 8 46 12.68 <.0001 *** 

site * season * sample_time 3 46 7.49 <.0001 *** 

disc_loc 4 1166 0.50 0.7390  

site * disc_loc 4 1166 44.03 <.0001 *** 

season * disc_loc 12 1166 4.24 <.0001 *** 

site * season * disc_loc 4 1166 4.61 0.0011 ** 

disc_loc * sample_time 12 1166 3.89 <.0001 *** 

site * disc_loc * sample_time 12 1166 2.30 0.0069 ** 

season * disc_loc * sample_time 32 1166 1.83 0.0034 ** 

site * season * disc_loc * sample_time 12 1166 1.57 0.0942 + 

 

Sapstain developed fastest in trees felled in summer, followed in order by spring, winter and 

autumn. Levels in Canterbury were significantly lower than in Nelson but again, development 

was significantly faster for trees felled in summer than in winter. 

At the one time when all treatments were assessed more or less simultaneously (i.e., in the 

autumn following felling), there was a clear distinction between Nelson and Canterbury, but 

little difference between felling times at each site (Table 2.6). The only intra-regional difference 

being at Nelson where trees felled in the previous autumn (i.e., that had been felled longest) 

somewhat surprisingly had a significantly lower sapstain intensity than those felled in winter, 

spring or summer. This suggests that sapstain varies according to the season of the damage, 

more than with the time passed since trees have been felled. This is seen clearly by comparing 

Figure 2.5 (a) and (b) which shows sapstain development versus time from felling with  

Table 2.3. ANOVA table for sapstain percentage (angular-transformed) testing the significance of the 

model terms for discs 1-5. Fixed effects are listed, and a random effect for tree was included in each 

model. Significance codes indicate P:  < 0.001 “***”, 0.001 – 0.01 “**”, 0.1 – 0.05 “*”, 0.05 - 0.1 “+”, 

0.1 “+”. 
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Fixed effect 

Numerator 

degrees of 

freedom 

Denominator 

degrees of 

freedom F Value Pr > F Significance 

site 1 46 467.65 <.0001 *** 

season 3 46 144.82 <.0001 *** 

site * season 1 46 81.94 <.0001 *** 

sample_time 3 46 90.38 <.0001 *** 

site * sample_time 3 46 18.73 <.0001 *** 

season * sample_time 8 46 16.23 <.0001 *** 

site*season * sample_time 3 46 8.65 0.0001 *** 

disc_loc 3 922 0.61 0.6116  

site * disc_loc 3 922 0.72 0.5405  

season * disc_loc 9 922 0.49 0.8786  

site * season * disc_loc 3 922 0.61 0.6089  

disc_loc * sample_time 9 922 0.26 0.9855  

site * disc_loc * sample_time 9 922 0.44 0.9152  

season * disc_loc * sample_time 24 922 0.39 0.9962  

site * season * disc_loc * sample_time 9 922 1.26 0.2524  

 

 

 

 

 

 

 

 

 

 

 

Site 

Felling 

time 

Time after felling (days) 

90 180 270 360 

Canterbury Summer 11 a 18 a 6 b 29 b 

 

Winter 0 c 0 c 15 bc 24 b 

Nelson Autumn 1 c 18 a 22 c 49 c 

 

Spring 23 a 82 d 91 d 

  

 

Summer 66 d 87 d 91 d 91 d 

 

Winter 2 c 1 c 69 a 79 a 

Table 2.4. ANOVA table for sapstain percentage (angular-transformed) testing the significance of 

the model terms for discs 2-5 (omitting disc 1). Fixed effects are listed, and a random effect for tree 

was included in each model. Significance codes indicate P:  < 0.001 “***”, 0.001 – 0.01 “**”, 0.1 – 

0.05 “*”, 0.05 - 0.1 “+”, 0.1 “+”. 

 

Table 2.5. Percentage sapstain in discs 2-5 assessed at 30, 180, 270, and 

360 days after felling at Canterbury and Nelson for various felling 

times. Values in each column followed by the same letter do not differ 

significantly (LSD test, P = 0.05). 
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Figure 2.4. (a) Sapstain percent, and (b) moisture content percent in discs assessed by disc position (1 at the cut 

end/base of the tree, running sequentially up its length) 180 days after felling for the two regions. Error bars show 

standard errors. 

 

Figure 2.5. Percentage sapstain development over time for trees felled seasonally at Golden Downs and 

Canterbury. (a) & (b) percentage over time, and (c) & (d) date felled/assessed. Error bars show standard 

errors. 
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Figure 2.6. Daily temperature (at 1300 hrs) and rainfall data over the duration of the study, from weather 

stations located nearby in each study region. Data sourced from National Rural Fire Authority (Anon 2011a). 

 

Table 2.6. Percentage sapstain in 

discs 2-5 assessed in March/April at 

two sites for various felling times. 

Values in each column followed by 

the same letter do not differ 

significantly (LSD test, P = 0.05). 
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Figure 2.5 (c) and (d) which shows sapstain development against time-within-year. In the latter 

case it is clear that sapstain development was similar at the same season regardless of when 

during the previous year, the trees had been felled. 

In all cases sapstain developed rapidly during summer, even in trees felled just previously. 

Development was much more rapid in Nelson than Canterbury. Splined calculations derived 

from interpolation calculations from met-stations allowed us to gain long term climate means 

for the precise locations of all sites. The mean annual temperature for the Nelson sites is 10.4°C, 

lower than that of Canterbury, at 12.2°C. Mean annual rainfall of 1352.2 mm was higher at 

Nelson than that of Canterbury which only reaches 564.5 mm (Anon 2011a). This overall trend 

is reflected in the data over the exact course of the study (Figure 2.6). 
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Figure 2.7. Loss of moisture content over time, depending on season of windthrow simulation, and 

region, and their effect on stain. Note, (c) and (d) have the x-axis reversed to display declining 

moisture content. Error bars show standard errors. 
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2.3.2  Moisture content effects on sapstain 

The degree of association between sapstain and moisture content was tested, and it was shown 

that  sapstain responds closely to, and can be predicted from, moisture content (Figure 2.7a,b). 

A relationship was present, where minimal sapstain was consistently found at above 100% 

moisture content, and stain developed rapidly once it had fallen below this level (Figure 2.7c,d, 

Table 2.7). Moisture content levels in both Nelson and Canterbury fell sharply following 

summer felling simulations, however they fell at a much faster rate in Nelson. After a simulated 

storm in winter, moisture content fell at a slow rate in both Nelson and Canterbury, however, 

after six months, by the beginning of summer, the moisture content levels matched those of 

summer felled trees. 

 

 

 

Fixed effect 

Numerator 

degrees of 

freedom 

Denominator 

degrees of 

freedom F Value Pr > F Significance 

site 1 46 109.42 <.0001 *** 

season 3 46 41.18 <.0001 *** 

site * season 1 46 17.07 <.0001 *** 

sample_time 3 46 133.42 <.0001 *** 

site * sample_time 3 46 0.28 0.8368  

season * sample_time 8 46 22.73 <.0001 *** 

site * season * sample_time 3 46 4.88 0.005 ** 

disc_loc 4 1166 46.81 <.0001 *** 

site * disc_loc 4 1166 8.20 <.0001 *** 

season * disc_loc 12 1166 2.00 0.0213 * 

site * season * disc_loc 4 1166 2.31 0.0559 + 

disc_loc * sample_time 12 1166 8.64 <.0001 *** 

site * disc_loc * sample_time 12 1166 1.08 0.3774  

season * disc_loc * sample_time 32 1166 1.25 0.1578  

site*season * disc_loc * sample_time 12 1166 0.65 0.7977  

  

Table 2.7. ANOVA table for percentage moisture content (log-transformed) testing the significance of the 

model terms. Fixed effects are listed, and a random effect for tree was included in each model. . Significance 

codes indicate P:  < 0.001 “***”, 0.001 – 0.01 “**”, 0.1 – 0.05 “*”, 0.05 - 0.1 “+”, 0.1 “+”. 
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2.3.3  Bark beetle phenology and relationships with sapstain 

A test of association between sapstain with presence of insect damage was made using a 

variable consisting of insect hole count in the stem included in an ANOVA as a covariate (Table 

2.8). This showed there was no significant association between presence of insect damage and 

the level of sapstain at the tree scale (P = 0.54), after accounting for other experimental factors. 

Seasonal abundance of beetle populations was monitored by trapping with funnel traps as an 

indicator of their ability to infest study trees. In Nelson, all beetle species, with the exception of 

P. reticularis, were trapped in large numbers during the summer months of January – March of 

2010 (Figure 2.8). One bark beetle species, H. ater, displayed a second large peak in May and 

June. Numbers then fell for all species over the winter months before picking up again for the 

summer from December 2010 through to March 2011. This is with the exception of P. 

peregrinus, which was present during the summer of 2009/10, but not at all during the second 

summer. 

 

 

 

 

 

 

 

Fixed effect 

Denominator 

degrees of 

freedom 

Numerator 

degrees of 

freedom F Value Pr > F Significance 

site 1 45 301.93 <.0001 *** 

season 3 45 109.43 <.0001 *** 

site * season 1 45 42.71 <.0001 *** 

sample_time 3 45 47.59 <.0001 *** 

site * sample_time 3 45 11.01 <.0001 *** 

season * sample_time 8 45 12.68 <.0001 *** 

site * season * sample_time 3 45 3.94 0.0140 * 

insect presence 1 45 0.38 0.5413  

  

Table 2.8. ANOVA table for percent sapstain (angular-transformed) performed at the tree-level and 

including insect hole count from the stem as a covariate. Fixed effects are listed, and a random 

effect for tree was included in each model. . Significance codes indicate P:  < 0.001 “***”, 0.001 – 

0.01 “**”, 0.1 – 0.05 “*”, 0.05 - 0.1 “+”, 0.1 “+”. 
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Phenologies of beetle species in Canterbury largely mirrored that of Nelson with clear 

summer peaks and winter troughs (Figure 2.8). The major differences being the complete 

absence of P. peregrinus in Canterbury, which was only found in Nelson, and noticeable double 

peaks of the bark beetles H. ligniperda and H. ater, and the longhorn beetle A. ferus, in October 

2010 (spring) and March 2011(autumn), with a slight dip during summer. This suggests there 

were two generations of H. ater and H. ligniperda for that year during the summer months, with 

periods of low activity during the cold winter months. 

The summer peaks of these species matched the period of extensive staining in both Nelson 

and Canterbury. It is likely that they did have some effect on stain during these high-flight 

periods, however the growth of wind and rain dispersed fungi were likely to be more important 

for stain development in this case. 

2.3.4  Stain fungi 

In this study, 20 isolations were attempted from two discs from each tree, on two different agar 

mediums (ophiostomatoid-selective, and non-ophiostomatoid-selective) for a total of 5760 

isolation attempts. The most frequently isolated, and clearly dominant, stain fungus in this study 

was D. pinea, which was abundant in both regions. This species of stain fungus constituted 666 

of the 691 (96.4%) positive isolations for stain fungi from Nelson, and 205 of the 215 (95.3%) 

from Canterbury. It was also present in all harvesting periods that yielded any discs with stain, 

and conversely was absent whenever all discs from a particular season had no stain at all (Table 

2.9). Cultures from this species were recognised from their morphology, with a small subset 

verified with sequence analyses. 

Isolates of other stain fungi included Sporothrix inflata (once in Nelson), Ophiostoma 

nigrocarpum (seven in Nelson, six in Canterbury), O. sparsiannulatum (once in Nelson), O. 

pallidulum (eight in Nelson, once in Canterbury), O. radiaticola (four in Nelson), O. setosum, 

O. breviusculum-like, O. piliferum, and Hormonema dematioides (all once in Nelson). 
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Months since windthrow %  isolations yielding Diplodia pinea 

 Summer Autumn Winter Spring 

 Total% Disc 1 Disc 4 Total% Disc 1 Disc 4 Total% Disc 1 Disc 4 Total% Disc 1 Disc 4 

(a) Nelson 

3 50.0 (55)
a 

25.5 74.5 40 (48) 66.7 33.3 0 (0) 0 0 49.2 (59) 52.5 47.5 

6 66.7 (80) 26.3 73.7 8.3 (10) 10 90 5 (6) 16.7 18.3 56.7 (68) 30.9 69.1 

9 36.7 (44) 34.1 65.9 17.5 (21) 4.8 95.2 46.7 (56) 16.1 83.9 65 (78) 37.2 62.8 

12 45.0 (54) 24.1 75.9 33.3 (40) 27.5 72.5 39.2 (47) 4.3 95.7 - - - 

(b) Canterbury 

3 41.7 (50) 50 50 - - - 4.2 (5) 100 0 - - - 

6 35 (42 59.5 40.5 - - - 0 (0) 0 0 - - - 

9 11.7 (14) 50 50 - - - 12.5 (15) 46.7 55.3 - - - 

12 33.3 (30)
b 

33.3 66.7 - - - 23.3 (28) 10.7 89.3 - - - 

a
 110, and 

b 
90 isolation attempts due to missing trees, all other isolation attempts total 120

 

Table 2.9. Percentage of isolation attempts from each sampling time yielding the most common stain fungus, Diplodia pinea. 
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Figure 2.8. Phenology of Prionoplus reticularis, Pachycotes peregrinus, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus across 

four trial sites of simulated windthrow in Nelson (a), and Canterbury (b). Mean per trap collections at the individual sites (symbols) are 

plotted against a smoothed 3 week moving phenology „average‟ of the same data. Note, no P. peregrinus were present at the Canterbury 

sites. 
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2.4  Discussion 

This study of the effect of sapstain development following storms shows a substantial difference 

in development time and extent depending on where and when the storm occurred, with stain 

growing rapidly during warmer seasons and in warmer climates. Generally, this was due to a 

rapid loss of moisture content caused by heightened rates of desiccation in the warmer 

temperatures. There was no statistical effect of bark beetles and wood borers on sapstain 

development in this case, and this is backed up by the fungal species isolated from wood 

samples, where the overwhelming majority (~95%) of stain species were the non-insect 

vectored Diplodia pinea. This is likely due to low beetle colonisation of the cut trees that did 

not lie with much ground contact up the length of the stem – a factor that increases the 

colonisation rate of H. ater and H. ligniperda (Mausel et al. 2007). 

This study shows that the time elapsed since windthrow is less important than the time 

within the year that the windthrow happened. The findings suggest that stain develops rapidly in 

trees felled during warm temperatures, however those felled in the cooler months are likely to 

remain largely stain free until the next summer. 

2.4.1  Inter-disc differences 

The disc taken from the base of the tree at the exposed cut face (disc 1) behaved atypically of 

the remaining discs taken from each tree, in both Nelson and Canterbury. The mean percentage 

of stain in both sites for this disc 180 days after felling was 20-30% (with a moisture content of 

40-50%), whereas the remaining discs (discs 2-5) from Nelson were much higher than in 

Canterbury. It is likely that the cut face near disc 1 dries quickly after felling (largely regardless 

of the location or temperature), reaching the optimum moisture content for fungal growth (60-

80%, Seifert 1993) but then rapidly falling below optimum levels of moisture content conducive 

to fungal growth, where continued fungal growth may again be inhibited. This resulted in higher 

sapstain being present in disc 1 compared to discs 2-5 at Canterbury (where stain was low 

overall), and decreased levels of sapstain in Nelson where stain is more prevalent. Disc 1 is 
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equivalent to the part of a fallen tree that would be assessed in a windthrown forest for stain 

cover before salvage harvesting begins, and therefore assessing this end of a log is unlikely to 

be a reliable representation of the log as a whole. The remaining four discs are more accurate 

representations of the regional sapstain prevalence overall. 

2.4.2  Regional and seasonal effects 

There was a clear distinction in sapstain onset between the two regions tested in this trial that 

could not be explained by the meteorological data alone. Both Nelson and Canterbury logs 

developed sapstain; however after 12 months, even the summer felled trees at Canterbury had 

an average of just 29.2% sapstain cover, with 11.3% after three months (90 days). Summer-

felled trees from Nelson reached an average of 91.0% sapstain after 12 months, with 66.2% 

after three months – significantly more than Canterbury. This regional difference was also 

evident with the winter felled trees, however neither region began to show significant amounts 

of stain for six months, until the following spring/summer. The higher rainfall at Nelson could 

have been conducive to increased fungal dispersal by rain splash. Further research is needed to 

validate the importance of rain as a dispersal method for fungi. 

In both regions there was an increase of stain over the summer months, regardless of when 

the storm occurred. When mean stain percentage was plotted against assessment date, it was 

clear that stain onset occurs in the summer months, regardless of when the storm occurred 

before then. If, in Nelson, there was a major storm event in summer it can be assumed salvage 

harvest would be required within a matter of days or weeks before wood quality was affected. 

This is consistent with results from winter felled trees in the same region near Nelson, where 

severed trees began to show signs of stain after 180 days, which also coincided with summer 

(McCarthy et al. 2010).  

2.4.3  Moisture content 

The moisture content levels described in the literature suggest that a water content of 100-120% 

is necessary to prevent sapstain in pine (Seifert 1993, Zeff 1999, Beal et al. 2010). This study 
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shows that trees felled in Nelson during summer and spring rapidly fall below this tolerance, to 

55% and 71% respectively, within three months. When the moisture content levels of the wood 

were high, there were negligible levels of sapstain intensity. This trend was evident in both 

regions studied. 

Stain generally began to increase when moisture content levels dropped below 100%, and 

would be extensive below 50%. After 1 year in Canterbury, there were no occasions where the 

average moisture content levels dropped this far, explaining the low levels of stain in this 

region. Unfortunately, the reasons behind this regional difference is unknown. Intuitively, one 

would expect the warmer and dryer region to accumulate sapstain at a greater rate; however this 

was not the case. 

2.4.4  Bark beetle colonisation and phenology 

Bark beetles are known to be vectors of some of the fungal species that cause sapstain (Paine et 

al. 1997, Reay et al. 2006a, Romon et al. 2007). These beetles have long been known as 

important dispersal agents for stain species (Leach et al. 1934), and can also cause physical 

damage to timber in their own right. Although there was evidence of bark beetle colonisation in 

this study, there was no apparent significant correlation between beetle presence and sapstain. 

Beetle attack was low overall with an average of 9.2 attacks per tree in Nelson (with a 

maximum of 45), and an average of 5.2 in Canterbury (with a maximum of 26). It is likely these 

beetles did vector stain fungi to the fallen trees, but their effect on sapstain as a whole was 

minimal compared to the stain caused by wind dispersed and endophytic fungi. 

Funnel traps were placed at all sites to monitor bark beetle flight activity throughout the trial. 

The results are consistent with other studies where there is little activity during winter 

(McCarthy et al. 2010), with high numbers over the months of spring, summer and autumn 

(Reay and Walsh 2001, Mausel et al. 2007). There were large differences in numbers between 

the Nelson and Canterbury sites, with catches of H. ater and H. ligniperda at Canterbury 40% 

and 18% of that at Nelson, respectively. It is possible that the increased bark beetles numbers at 

Nelson contributed to the increased level of staining, however this is not supported by the 
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species of sapstain present, and further research would need to be completed on this aspect. 

Both H. ater and H. ligniperda are known to preferentially colonise logs where there is 

ground contact, rather than logs elevated above the ground (Mausel et al. 2007). In windthrow 

situations such as those simulated here, trees are suspended above the ground by their branches, 

and only small portions of the tree are in contact with the ground. Only 8.6% of discs from 

Nelson were in any form of contact with the ground, with 12.7% in contact in Canterbury. It is 

likely that if the logs were in more direct ground-contact, then stain levels would be a larger 

issue due to additional stain fungal species introduced from the beetles . The only way to 

effectively address the role of bark beetles in stain development would be to experimentally 

exclude beetles in order to make direct comparisons between sapstain levels resulting from 

beetle vectored fungi versus spores dispersed by wind and rain (see Chapter 3). 

2.4.5  Fungal species and dispersal 

In both regions, the most commonly isolated stain fungus from sapwood in this study was 

Diplodia pinea. This species is a well known agent of sapstain of P. radiata (Uzunovic et al. 

2004, Thwaites et al. 2005), and has previously been found as the primary staining fungus of 

windthrown pines in New Zealand (McCarthy et al. 2010). The dominance of this particular 

stain species is consistent with the weak correlation between bark beetle attack and stain 

distribution in this study. The ophiostomatoid fungi, another common group of stain fungi, are 

primarily dispersed by bark beetles (Gibbs 1993, Paine et al. 1997, Harrington 2005), whereas 

D. pinea is possibly a latent endophyte of healthy pines, often becoming prevalent when a tree 

is otherwise damaged or stressed (Smith et al. 1996, Flowers et al. 2001, Reay et al. 2006b). 

Eight species of ophiostomatoid fungi were isolated from sapwood in this study, but were 

present in low numbers. This pattern differs from previous studies in Australia (Hood and 

Ramsden 1997, Wylie et al. 1999) where insect-vectored fungi were important after fire. 

Generally, sapstain becomes an issue during harvesting where substantial amounts of bark is 

dislodged by mechanical equipment removing a defence against sapstain spores and desiccation 

(Lee and Gibbs 1996, Uzunović et al. 1999a, Yang and Beauregard 2001, Uzunovic et al. 2004). 
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Compared to typical harvesting practices, very little bark was damaged or removed in this 

study, as is the case with windthrow in general.  

2.4.6  General conclusions 

Environmental variables need to be taken into account if the negative effect of sapstain is to be 

minimised or avoided during the salvage harvest of wind damaged trees. Damaged stands will 

deteriorate more rapidly if the damage occurs during the warm months of spring or summer, and 

should be salvaged within days. This may, however vary depending on the regional locality of 

the damage. Moisture content could be monitored within the central portions of logs (not the 

butt end) as an indicator of potential for stain development, where trees are safe as long as the 

moisture level stays above 100%. If unsure about the rate of onset in a particular area, adoption 

of a “better safe than sorry” regime should be implemented, and stands salvaged immediately. 

In New Zealand, the bark beetle species acting as vectors of sapstain fungi are not behaviourally 

adapted to colonisation of logs that are not in contact with the ground (Mausel et al. 2007). In 

other countries with aggressive bark beetles such as the mountain pine beetle (Dendroctonus 

ponderosae), ophiostomatoid fungi are likely to play a more important role in staining damaged 

trees. 
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Chapter 3 – Bark Beetles as Vectors of Sapstain Fungi 

3.1  Introduction 

Sapstain is the discolouration of wood caused by darkly pigmented fungal hyphae (Zimmerman 

et al. 1995, Eagen et al. 1997) growing through the sapwood and water conducting cells of 

susceptible trees and timber (Ballard et al. 1982). This reduces the cosmetic quality of the wood, 

and is of concern to forest managers world-wide. Sapstain fungi are generally aerobic species, 

and therefore staining generally occurs when sapwood moisture content has reduced to a point 

where the fungi are able to grow (Seifert 1993, Bale et al. 2002). As a result, cut trees and 

milled timber can be at risk within as little as five days after cutting, given optimal conditions 

for fungal growth which for most species are typically temperatures of around 20-24°C, and 

wood moisture content of 45-135% of dry weight (Seifert 1993, Zeff 1999, Beal et al. 2010). 

Ophiostomatoid fungi are the major stain-causing species in many parts of the world (Gibbs 

1993, Uzunović et al. 1999b). Although many species can be pathogenic to trees, most are not 

particularly virulent, with the exception of those that cause Dutch elm disease and black stain 

root disease (Harrington 1993, Harrington et al. 2001). Instead, sapstain colonisation is 

primarily a problem in dead or damaged trees, in particular because many ophiostomatoid fungi, 

such as species of Ophiostoma, Ceratocyctis, Grosmannia, and their asexual anamorphs, are 

vectored by bark beetles. 

A large body of literature has identified and described the associations between bark beetles 

and ophiostomatoid fungi, both in New Zealand (Reay et al. 2002, Reay et al. 2005, 2006a), and 

in other regions of the world (Zhou et al. 2004a, Chung et al. 2006, Romon et al. 2007, Lu et al. 

2010, Kim et al. 2011). The intensity of sapstain in dead and damaged trees has been shown to 

be higher with the presence of ophiostomatoid-vectoring bark beetles, and stain was rarely 

extensive when beetles were not present (Leach et al. 1934). The complex of sapstain-causing 

species includes the ophiostomatoid fungi as well as non-ophiostomatoid fungi such as darkly-

pigmented yeasts and moulds that are not typically thought to be vectored by insects (Seifert 
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1993). For example, recent studies have suggested that fungal species such as Diplodia pinea 

(syn. Sphaeropsis sapinea) can be among the most important stain-causing fungi in some 

systems (Farrell et al. 1997, Thwaites et al. 2005, McCarthy et al. 2010). There is only limited 

evidence linking D. pinea with transport by bark beetles (Wingfield and Knox-Davies 1980, 

Romon et al. 2007, Whitehill et al. 2007), and it is thought that the main method of dispersal of 

this fungal species is abiotic (e.g. wind and rain splash), and therefore independent of insects 

(Bihon et al. 2011).  

From an applied perspective, there is a growing concern of the uncertainty regarding 

timeframes available to salvage harvest following storm- or fire-damage of production forests 

(Hood and Ramsden 1997, McCarthy et al. 2010) before sapstain reduces their value. The 

interactions between environmental conditions, the composition of the complex of sapstain-

causing species, and the potential for rapid colonisation of damaged timber by beetle-vectored 

fungi are all thought to be important in harvest management decisions. This is the first study 

quantitatively measuring the effect of bark beetle vectored fungi in comparison with those 

dispersed through wind and rain-splash alone. 

Increases in the frequency of extreme weather events, causing severe windthrow (McCarthy 

et al. 2010) and promoting bark beetle outbreaks (Cudmore et al. 2010), are predicted to alter 

the “disease triangle” between three crucial factors affecting host-plant damage – plant 

pathogen, plant host, and environmental change (Grulke 2011, Hulcr and Dunn 2011). In the 

case of sapstain, this complexity is exacerbated by significant variation in a fourth factor, 

pathogen-vector dynamics, driven by variation in bark beetle abundance and propensity to 

attack susceptible trees under differing environmental conditions. Although sapstain 

colonisation of wind-thrown trees is a secondary cause of tree damage, the complexities of 

vector-pathogen and pathogen-host relationships are nevertheless central to improved 

understanding of the onset and development of tree damage. The key problem with predicting 

and managing sapstain attack on windthrown timber is that there is only a general qualititative 

understanding of the major drivers of sapstain onset and development, such as the fact that bark 
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beetles can vector ophiostomatoid stain fungi, and stain development is related to environmental 

conditions. At present, there is little understanding of the quantitative relationship between the 

activity of beetle vectors and the eventual outcome of stain development within a colonised log. 

This is the first study to quantitatively measure the effect of bark beetle vectored fungi alone in 

comparison with those dispersed through wind and rain-splash. 

Very few studies have attempted to directly test the degree to which variation in bark beetle 

abundance, distribution and attack rates determines the extent and distribution of sapstain. There 

have been cases of wind, snow, and fire damage to valuable forests where the role and 

importance of bark beetle as vectors of stain causing fungi were, and still are, unknown (Hood 

and Ramsden 1997, Wylie et al. 1999, McCarthy et al. 2010). Knowledge of the role of bark 

beetles, and its relative importance, to the spread and extent of sapstain in damaged logs would 

provide decision-makers with tools to act appropriately in the face of insect attack on their 

damaged resource. There is clearly a need for an increased understanding of vector-pathogen 

dynamics and the role of bark beetles in the onset of sapstain.  

This study aims to test whether colonisation by bark beetles increases the extent of sapstain 

in logs, and to compare this with stain caused by fungi that disperse via wind and rain-splash. I 

experimentally excluded the abundant non-native bark beetles Hylurgus ligniperda and Hylastes 

ater from experimental log billets in New Zealand Pinus radiata plantations. This was to test 

whether stain is influenced predominantly by bark beetle vectoring, or whether its distribution is 

determined independently of bark beetles by physical processes of fungal spore dispersal, such 

as wind or rain splash, or by growth of endophytic fungi already present in the logs. Both 

abundant bark beetle species were accidentally introduced to New Zealand (Brockerhoff et al. 

2003, Brockerhoff et al. 2006a), and both are known to be vectors of sapstain fungi that attack 

P. radiata timber in New Zealand (Reay et al. 2001, Reay et al. 2005, 2006a, Romon et al. 

2007, Kim et al. 2011).  
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3.2  Materials and methods 

3.2.1  Site selection and experimental setup 

To test the role of bark beetle attack in sapstain development in cut logs, 10 un-caged and 10 

caged logs (ca 0.5 m in length) were placed at each of two sites in the Nelson region of the 

South Island, New Zealand. The 40 logs (plus an additional 6 logs of the same size that were 

used to monitor sapstain development at regular intervals) were cut from four 7 year-old Pinus 

radiata trees on the day the experiment was established, on the 25th of January 2011.  Healthy 

trees of a suitable size were selected, felled with a chainsaw, de-limbed and cut into lengths. 

The 46 logs were checked to ensure there was no inadvertent damage to the bark, and rapidly 

placed under cover to prevent insect attack prior to caging. The period of time between cutting 

the logs and setting up the experiment did not exceed one day, and care was taken not to 

damage the logs in transit. 

The two sites were selected in second-rotation P. radiata forests that had been harvested 

within the six months leading up to January 2011. Recently-harvested sites were selected to 

ensure sufficient bark beetle activity was present to provide high colonisation rates of un-caged 

logs. Both sites were flat, un-shaded, and not flood-prone so that pooling of water did not affect 

the progression of beetle colonisation and stain within the logs. 

Caged logs were protected from bark beetle attack with 1.8 × 1.4 mm aluminium mesh that 

was small enough to exclude the common pine-infesting bark beetles that are present in New 

Zealand. It is known that there are many smaller insects, other than bark beetles, that colonise 

logs, and whose larvae feed within and under the bark layer, but excluding them in this study 

was unrealistic as mesh small enough to create a barrier to them would probably have altered 

the microclimate within the cage. This was not thought to be an issue in terms of fungal 

colonisation in this case as I was investigating the effect of bark beetles as vectors of fungi, and 

the successional colonisation of timber by saproxylic invertebrates is known to occur, 

independent of the presence of bark beetles. However, it is possible that feeding and tunnelling 
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activities of other insects might affect fungal growth and distribution within the log, following 

colonisation. Therefore, evidence of attack by insects other than bark beetles was recorded and 

considered in the analyses.  

Care was taken to ensure that no part of the upper surfaces of the caged logs was in contact 

with the mesh. As H. ater and H. ligniperda are known to preferentially colonise logs that are in 

contact with the ground (Mausel et al. 2007), the full length of every log was in full contact with 

the ground along its entire length. At each site, the 10 un-caged and 10 caged logs were placed 

at random points in a 4.5 x 6 m grid pattern, all facing north, separated by an equal distance of 

1.5 m from any other log. In addition, three of the sapstain monitoring logs were placed 1.5 m 

away from the experimental logs at each of the two sites. One of these three logs was cut open 

every two weeks, at each site, to monitor beetle colonisation and sapstain growth, so that the 

most suitable timing of sampling of the experimental logs could be estimated. 

3.2.2  Log processing 

The logs were left out for a total of 34 days during the warmest months of the Southern 

Hemisphere summer, when the prevalence of fungal staining is at its height (Zeff 1999). The 

logs were collected when approximately half of each cut face in the monitoring logs was 

covered in stain. Each experimental log was removed from its enclosure, where necessary, and 

placed in sealed plastic bags, with the upper surface of the log precisely marked so that it was 

known which surface was in contact with the ground. To limit post-collection stain growth, logs 

were kept as cool as possible until processing, which was completed within four days of 

collection. 

Measurements were taken of log length, and circumference and bark thickness at the ends 

and middle of the log. Each log was delineated into eight sections along the length of the log, 

and within each section, six radial segments were delineated, as illustrated in Figure 3.1. The 

two end sections (1 and 8) were thinner than other sections in order to measure the amount of 

stain and beetle attack in the immediate vicinity of the exposed cut ends. The remaining six 

sections were divided equally into the remaining length of the log. As each log was around 0.5 
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m long, sections 2 – 7 were typically about 75 mm thick, but due to slight inconsistencies in log 

length and saw-cut width, section thickness varied by up to 5 mm. Within each section, the 

radial segments closest to the ground had finer divisions to increase the resolution of sapstain 

and beetle attack measurements where colonisation was expected to be greatest. 

 

 

 

  
Figure 3.1. Schematic illustration of sampling areas on the experimental logs. Numbers 1 to 8 indicate 

log sections (cuts are the dashed lines dividing the sections), and letters A to F indicate log segments 

within each section. The two outer sections, where stain penetration was expected to be greatest, were 

cut 20 mm thick, and the remaining length of log was divided into six equal-sized sections (ideally 77 

mm, but varying from 75 – 79 mm, depending on variability between individual logs and individual 

section-cuts). The entire outer surface of the log was divided into discrete areas (1A to 8F) where insect 

attack was measured. 
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Logs were processed by first making a visual inspection of external insect attack in the 

external sectors indicated in Figure 1. To do this, the bark was carefully stripped away and bark 

beetles, their larvae, and their galleries were identified and counted within each sector. Insect 

larvae and galleries that were not those of bark beetles were also counted, but not identified 

further. Following this, the logs were cut into the eight delineated sections, and a photograph 

was taken of each cut face. Care was taken to ensure that the segments were aligned in their 

correct vertical orientation in the photo, allowing accurate placement of a digital grid over each 

image when making stain measurements. Note, that as there were eight sections this results in 

seven surfaces where stain was measured, these were between sections 1 & 2, 2 & 3, and so on, 

through to the cut face of segments 7 & 8. Only one image was required for each cut from one 

of the cut faces as the amount of stain on each face is identical to the other. The measurement 

points were then referred to as „section cuts‟, each with one section on either side. 

In order to measure the proportion stain in each segment, the entire image was imported into 

Adobe Photoshop® (CS4 Extended, Version 11.0) and a radial grid was overlaid on the image, 

as illustrated in Figure 2. Each segment was extracted and saved as a single-coloured (black) 

bitmap image (one image file per segment) to determine total segment area. This process was 

then repeated for each segment, but this time drawing around stain-covered areas only. Image J 

(version 1.43u) was then used to calculate the number of pixels in the stain-covered area versus 

the total segment area (Figure 2). 

3.2.3  Data analysis 

The effect of bark beetle exclusion on variation in proportion sapstain cover was tested using a 

generalised linear mixed effects model (GLMM) with fixed categorical factors for the caging 

treatment, and log segment nested within log section, as well as random factors specified for site 

replicate and log replicate. The sapstain model was tested as a GLMM with binomial errors 

using the lme4 package in the R programming environment (Bates et al. 2011). If 

overdispersion was evident in the fitting of the GLMM, then this was controlled for using a  

 



63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model with Poisson lognormal error structure (Elston et al. 2001). Model simplification was 

performed using an information theoretic approach with AICc (Akaike Information Criterion 

corrected for small sample size) and akaike weight (Wm) to rank and subsequently select the 

best model describing the data, as recommended by Burnham & Anderson (2002).  

To assess the effect of the caging treatment, evidence of insect attack was separated into a 

binary „beetle evidence‟ dataset (evidence = 1, no evidence = 0), where bark beetle evidence 

constitutes the presence of adults, larvae, or galleries, and a binary „other insect evidence‟ 

dataset, where the evidence of insects other than bark beetles constitutes the presence of the 

larvae themselves or their galleries. For each sapstain measurement, corresponding measures of 

beetle evidence and other insect evidence were recorded from the two adjacent segments 

(combined) on either side of the cut-face (e.g. 2B and 3B, Figure 3.1). 

Figure 3.2. An example of the stain percentage calculation, showing (a) the entire face of one log section 

divided into six segments (A – F), and (b) a single segment extracted and digitally converted to a bitmap 

of relative colour intensity, in order to determine percent stain coverage (in this case, 94.4% of a 

214151.04 pixel segment). 
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Finally, to test the relative contribution of bark beetle attack and other-insect attack in 

explaining the distribution of sapstain within caged and un-caged logs, the sapstain GLMM was 

repeated with „beetle evidence‟ and „other insect evidence‟ entered as covariate predictors ahead 

of the fixed caging, section and segment variables in the model. Models were compared and 

selected using AICc and Wm values, as above. If the spatial distribution of insect attack was 

sufficient in its own right to explain the spatial distribution of sapstain then the covariate would 

subsume all the variance attributable to the fixed factors in the model. All statistical analyses 

were performed using R 2.13.1 software (R Development Core Team, 2011). 
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3.3  Results 

3.3.1  Spatial distribution of sapstain 

The amount of sapstain cover varied from as low as 0% in the central section cuts and upper 

segments of the log, to as high as 100% in the terminal cuts and lower segments of the log 

nearest to the ground (Figure 3.3a,b). Evidence of sapstain fungal colonisation was evident to 

some degree in all logs in the study, whether they were un-caged or caged. However, on average 

the un-caged logs had a noticeably greater occurrence of stain along the lower segments of the 

log which were in contact with the ground (Figure 3.3a), whereas caged logs typically only had 

intense staining near the terminal (cut) ends of these logs (Figure 3.3b). Surprisingly in the 

Poisson lognormal GLMM analyses, this apparent difference in total stain between caging 

treatments appeared not to be significant (P = 0.08), and instead the best-supported model 

showed significant effects of caging and segment location (i.e. the distribution of stain within 

the log, depending on whether it was caged or not), as well as their associated interaction, on the 

proportion cover of stain per segment (Table 3.1a). The caging by segment interaction effect 

was driven by higher levels of stain at the bottom of the un-caged logs than that of the caged 

logs (Figure 3.4a,b). 

3.3.2  Spatial distribution of insect colonisation 

Insect attack was evident among both caged and un-caged logs, at both sites. While most insect 

attack on caged logs was by species other than bark beetles (only 2 out of 20 caged logs had no 

evidence of insect attack at all), bark beetles did penetrate some cages. The total number of bark 

beetles recorded in all of the caged logs was 26, in comparison to 420 in the un-caged logs, 

suggesting a 93.8% exclusion of colonising bark beetles. In the GLMM analysis, there was a 

significantly greater level of bark beetle attack in the un-caged logs than in the caged logs, and 

this attack was concentrated in the area of the logs in contact with the ground (Figure 3.3c,d, 

Table 3.2b). The attack on the caged logs, from the few beetles that did penetrate, was sporadic 
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 Model AICc ΔAICc Wm Rank 

(a) Stain  cage * segment 6973.9 0.0 1.0 1 

 – Poisson lognormal Segment 7110.9 137.0 0.0 2 

 cage 7671.4 697.5 0.0 3 

 cage + section 7671.4 697.5 0.0 4 

 section 7474.0 700.1 0.0 5 

 cage * section 7676.0 702.1 0.0 6 

 cage * section/segment 8257.3 1283.4 0.0 7 

 section/segment 8334.6 1360.7 0.0 8 

 cage + section/segment 8341.8 1367.9 0.0 9 

 cage + segment 40937.9 33960.4 0.0 10 

      

(b) Beetle  cage * segment  861.7 0.0 1.0 1 

 – binomial cage + segment  912.2 50.5 0.0 2 

 segment  946.5 84.8 0.0 3 

 cage + section/segment  1047.6 185.8 0.0 4 

 section/segment  1080.7 219.0 0.0 5 

 cage * section/segment  1449.5 587.8 0.0 6 

 cage  1496.9 635.2 0.0 7 

 cage + section  1499.7 638.0 0.0 8 

 cage * section  1501.4 639.7 0.0 9 

 section  1531.0 669.3 0.0 10 

      

(c) Stain beetle + insect + cage * segment 6973.5 0.0 0.6 1 

 (with beetle predictor) beetle + insect + segment 6974.2 0.7 0.4 2 

 – Poisson lognormal beetle + insect + cage + segment 6979.4 5.9 0.0 3 

 beetle + cage + segment 7054.6 81.1 0.0 4 

 beetle + cage * segment 7057.8 84.3 0.0 5 

Table 3.1. Results of model selection assessing all combinations of fixed factors using AICc 

values of the GLMMs. (a) stain as a response variable GLMMs with a Poisson lognormal error 

structure to account for overdispersion in the binomial stain model, (b) evidence of beetle attack 

as a response in GLMMs with binomial error structure, and (c) GLMMs testing whether the 

fixed covariate effects of beetle evidence and other-insect evidence explain the distribution of 

stain within and among logs, with Poisson lognormal error structure. All models included site 

replicate and log replicate as random factors. Models within 2 ΔAICc units of the best model 

(ΔAICc = 0) were considered to have equivalent explanatory power, as indicated in bold. All 

models also included the random effects of site replicate and log replicate. 
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 insect 7183.7 210.1 0.0 6 

 beetle + insect 7215.1 241.6 0.0 7 

 beetle + insect + cage 7254.5 281.0 0.0 8 

 beetle 7356.3 382.8 0.0 9 

 beetle * cage 7377.1 403.6 0.0 10 

 beetle * segment 122846.0 115872.5 0.0 11 

 beetle + cage 207836.0 200862.5 0.0 12 

 

 

but generally also concentrated to the lower segments of logs (Figure 3.3d). In the un-caged logs 

there was a much greater intensity of beetle colonisation on the lower surfaces, than on the 

upper, whereas in the caged logs the colonisation rates were similar on the bottom and the sides 

– probably due to the small number of beetles that got in (Table 3.2b, Figure 3.4b) 

3.3.3  Insect attack driving sapstain distribution 

Spatial patterns of log attack by bark beetles and other insects corresponded strongly with 

sapstain distribution and intensity (Figure 3.3). A GLMM analysis of stain distribution showed 

that when attack by beetles and attack by other insects were entered first into the model, ahead 

of caging and segment effects, there was still a highly significant effect of segment position 

(i.e., the radial angle of segments) on stain intensity, but only weak and equivocal remaining 

influence of the caging effect (Figure 3.3, Table 3.1c, Table 3.2c,d). This suggests that the 

caging effect on stain intensity is predominantly driven by reduction in beetle and other insect 

attack (despite the fact that some beetles did penetrate cages), but that the beetle and other insect 

evidence is not sufficient in its own right to explain variation in stain intensity among segments 

within logs (Table 3.1c).  
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 Fixed factors Estimate Standard error Z value P Significance 

(a) Stain – Poisson lognormal intercept 0.885 0.449 1.97 0.049 * 

 Cage 0.683 0.394 -1.73 0.083 + 

 segmentB -2.420 0.032 -74.54 < 0.001 *** 

 segmentC -3.931 0.041 -96.57 < 0.001 *** 

 segmentD -3.820 0.040 -96.09 < 0.001 *** 

 segmentE -1.921 0.031 -61.45 < 0.001 *** 

 segmentF 0.046 0.031 1.47 0.141  

 cage:segmentB 1.208 0.043 27.99 < 0.001 *** 

 cage:segmentC 1.794 0.051 34.86 < 0.001 *** 

 cage:segmentD 2.319 0.049 47.05 < 0.001 *** 

 cage:segmentE 1.440 0.042 34.56 < 0.001 *** 

 cage:segmentF 0.435 0.042 10.40 < 0.001 *** 

       

(b) Beetle – binomial intercept 2.899 0.619 4.68 < 0.001 *** 

 cage -6.568 0.767 -8.55 < 0.001 *** 

 segmentB -5.389 0.484 -11.14 < 0.001 *** 

 segmentC -6.338 0.567 -11.17 < 0.001 *** 

 segmentD -5.941 0.525 -11.33 < 0.001 *** 

 segmentE -4.759 0.454 -10.48 < 0.001 *** 

 segmentF -0.833 0.428 -1.94 0.051 + 

 cage:segmentB 3.738 0.789 4.74 < 0.001 *** 

 cage:segmentC -11.222 1391.715 -0.01 0.994  

 cage:segmentD 4.292 0.814 5.27 < 0.001 *** 

 cage:segmentE 4.443 0.646 6.87 < 0.001 *** 

 cage:segmentF 1.962 0.594 3.29 < 0.001 *** 

       

(c) Stain (beetle & insect predictors) intercept -0.0956 0.874 -0.11 0.913  

 – Poisson lognormal beetle 0.83 0.422 1.97 0.049 * 

 insect 1.9341 0.343 5.64 < 0.001 *** 

 cage -0.3364 0.827 -0.41 0.684  

Table 3.2. Co-efficients output from selected models showing significance values for all factors. (a) stain as a 

response variable in a GLMM with a Poisson lognormal error structure, (b) evidence of bark beetles as a 

response in a GLMM with binomial error structure, (c) stain as a response variable in a GLMM with beetle, 

insect, cage, segment, and a cage * segment interaction as factors with a Poisson lognormal error structure, and 

(d) stain as a response variable in a GLMM with beetle, insect and segment as factors with a Poisson lognormal 

error structure. Significance codes indicate P:  < 0.001 “***”, 0.001 – 0.01 “**”, 0.01 – 0.05 “*”, 0.05 - 0.1 

“+”. 

 



69 

 

 segmentB -1.4707 0.572 -2.58 0.010 ** 

 segmentC -3.5386 0.627 -5.65 < 0.001 *** 

 segmentD -3.1295 0.610 -5.13 < 0.001 *** 

 segmentE -0.7504 0.546 -1.38 0.169  

 segmentF 0.816 0.479 1.70 0.088 + 

 cage:segmentB 0.49 0.725 0.68 0.499  

 cage:segmentC 0.686 0.778 0.88 0.378  

 cage:segmentD 1.3868 0.759 1.87 0.068 + 

 cage:segmentE 0.8619 0.714 1.21 0.227  

 cage:segmentF 0.4642 0.677 0.69 0.493  

       

(d) Stain (beetle & insect predictors) intercept -0.3212 0.737 -0.44 0.663  

 – Poisson lognormal beetle 0.8858 0.379 2.34 0.019 * 

 insect 1.9104 0.347 5.51 < 0.001 *** 

 segmentB -1.2379 0.393 -3.15 0.002 ** 

 segmentC -3.2982 0.434 -7.60 < 0.001 *** 

 segmentD -2.4861 0.420 -5.92 < 0.001 *** 

 segmentE -0.3488 0.369 -0.95 0.367  

  segmentF 0.8377 0.345 2.43 0.015 * 
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Figure 3.3. Comparison of average stain intensity for (a) un-caged and (b) caged logs, as well as the corresponding bark beetle attack intensity for the 

same (c) un-caged and (d) caged logs (average of n = 20 experimental logs in each case). The radial angle of the segment indicates the spatial 

orientation of the log, with 180° representing the point of ground contact, as indicated by the dashed line. Bark beetle attack intensity is measured as 

the frequency of attack across logs. 
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Figure 3.4. Mean (a) stain percentage and (b) beetle colonisation intensity for all segments within 

caged and un-caged logs. Error bars are +/- 95% confidence intervals around the mean. 
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3.4  Discussion 

Sapstain was present in all logs in this study, however beetle attack was an important factor in 

the colonisation of logs by fungi. My experimental design used a caging treatment to exclude 

beetle colonisation while keeping other site-level and seasonal environmental factors constant. 

Although the cages were not entirely effective in preventing beetle attack, there was a strong 

correspondence between the spatial distributions of bark beetle attack and areas of high sapstain 

intensity within and between logs. This clearly indicates that bark beetle attack is an important 

factor influencing sapstain colonisation. However, it is important to note that sapstain was found 

on all experimental cut logs, regardless of whether they were un-caged or caged, indicating that 

sapstain colonisation can occur without insect vectors, although the intensity of sapstain was 

clearly more pronounced in the central section of un-caged cut logs that were accessible to bark 

beetles and other insects. 

This confirms that vectors have a quantitative contributing effect on sapstain distribution and 

intensity, but that they are not essential for the occurrence of sapstain colonisation. Furthermore, 

the feeding and tunnelling activity of other saproxylic insects and their larvae also appeared to 

contribute to the onset and extent of stain within timber (see also Suckling et al. 1999, Uzunović 

et al. 1999a). Consequently, although bark beetles do appear to be instrumental in the 

colonisation and spread of sapstain to damaged timber (Reay et al. 2006a, Romon et al. 2007), it 

seems that endophytic or wind blown fungal spores and the distribution of insect activity within 

fallen timber, also play an important role in sapstain. I discuss the implications of these findings 

for the forest industry to aid in the protection of both logs already harvested, and for the 

effective salvage-harvest of trees damaged by stochastic events such as fire and storm damage. 

3.4.1  Stain and beetle attack 

There was a low level of stain in the upper segments of all logs, especially toward the middle of 

the log where the sapwood is protected by the bark, and beetles hadn‟t attacked. If left in the 

elements for longer, these sections would presumably have also become stained as the „clean‟ 
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timber succumbs to stain fungi growing from the sites of beetle attack, and from the exposed 

ends over time. In the un-caged logs, the greater intensity of staining was along the lower 

surface of the log, where the log was in contact with the ground (Figure 3.3). This is mirrored 

almost exactly by the pattern of bark beetle attack, in this case by Hylastes ater and Hylurgus 

ligniperda. As these species are known to feed preferentially on roots, and other parts of trees 

that are in ground contact,  they are behaviourally adapted to preferentially attack logs where 

they are in contact with the ground (Mausel et al. 2007). There was evidence of staining in the 

upper sections of logs, but only at the cut ends where the sapwood was exposed allowing a 

faster rate of desiccation and exposure to wind-blown spores (Figure 3.3). 

While the cages were not entirely effective the spatial distribution of stain within a caged log 

was significantly different to that of an un-caged log. The stain within a caged log is 

concentrated at the exposed ends where wind and rain-splashed sources of inoculum can enter 

the unprotected sapwood, and where the sapwood also dries faster.  This stain was dramatically 

reduced where protection from the bark layer along the middle of the logs length prevents the 

available points of entry for fungal spores (Figure 3.3). The reduction of stain intensity through 

the lower sections of the middle of the log is explained by the reduction of bark beetle 

colonisation in this treatment. 

Bark beetles were an important factor in predicting and influencing the distribution of stain 

in this study. Of the stain fungi vectored by bark beetles, ophiostomatoid fungi are the primary 

concern to foresters world-wide for both forest health (pathogenic) and economic (stain) reasons 

(Gibbs and Inman 1991, Paine et al. 1997, Farrell et al. 2001, Harrington 2005). Although bark 

beetles play an important role in vectoring sapstain fungi to its host, it is not exclusively a 

beetle-mediated phenomenon. The stain fungus and plant pathogen Diplodia pinea is considered 

the most common stain fungus in New Zealand (Farrell et al. 1997, Thwaites et al. 2005, 

McCarthy et al. 2010). This species has large spores upwards of 30 µm in length (de Wet et al. 

2000), much larger than those of ophiostomatoid fungi which are generally around 5 µm (Jacobs 

and Wingfield 2001). The relatively small spore size of ophiostomatoid fungi makes insect 
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dispersal more successful as these are produced in abundance and adhere to an insect 

exoskeleton with ease, whereas larger spores such as that of D. pinea require more resources to 

produce and won‟t be picked up as easily by chance on a passing insect. Insect dispersal is 

documented for D. pinea (Wingfield and Knox-Davies 1980, Romon et al. 2007, Whitehill et al. 

2007), however this is generally in low abundance and may be an opportunistic association 

where spores may adhere to a beetle by chance, without a mutualistic relationship or co-

evolutionary history. A survey of staining fungi present on H. ater and H. ligniperda, the same 

bark beetle species as in this study, in New Zealand found no evidence of a D. pinea association 

(Reay et al. 2006a). A recent survey of stained trees in the same geographic region showed D. 

pinea as the dominant stain species, along with some isolates of ophiostomatoid fungi 

(Ophiostoma piceae, and Grosmannia huntii) (McCarthy et al. 2010). The trees in this study 

were damaged by windthrow, where branches and other fallen trees held most of the fallen tree 

from the ground, which probably prevented colonisation by bark beetles. In contrast to a 

windthrow situation when harvested trees are stacked for storage, all of the logs are in at least 

partial contact with another creating a similar environment around the logs as when there is 

contact with the ground, providing habitats ideal for bark beetle colonisation. 

It is possible that D. pinea is a latent endophyte in healthy Pinus trees (unlike 

ophiostomatoid fungi), and often only show signs of infestation once a tree becomes damaged 

or stressed (Smith et al. 1996, Flowers et al. 2001, Reay et al. 2006b, Bihon et al. 2011). 

Therefore, it is likely that the fungal inoculum was already present in the experimental logs and 

grew from the ends as the timber dried allowing aerobic fungal growth, or conversely, the 

spores may have been carried to the exposed ends by wind. Further studies could be 

implemented using sterile pine logs, or logs protected from wind and rain dispersed fungi, in 

order to test the effect of this potentially endophytic species. Either way, there is an indication 

that non-insect-mediated stain fungi do affect damaged pines. 

3.4.2  Stain and ‘other-insect’ attack 

Curiously, unidentified insect larvae also had a significant influence of stain, and were 
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commonly found in both the caged and un-caged logs. The distribution of these larvae also 

significantly explained the stain variation. These larvae were likely to have entered the cages 

through the mesh directly, or burrowed below the log and oviposited through. The ability of 

flies, mites, beetles, and their larvae, to vector sapstain fungi is documented (Powell et al. 1995, 

Suckling et al. 1999, Uzunović et al. 1999a), and is therefore not a surprise. The possibility of 

other insects as vectors of of sapstain is not commonly considered – further research is needed 

to examine and identify the species involved, and quantify their respective importance as 

vectors of sapstain fungi. 

3.4.3 Caveats on interpretation of experimental findings 

Although the cages were not completely effective at protecting their enclosed logs from bark 

beetle colonisation, bark beetles and other insects were still the most important predictors of 

stain distribution (Table 3.2c,d). Due to the bark beetles penetrating this treatment logs could 

not be tested by the caging factor alone as a surrogate for “no insect attack”. Moreover, analysis 

could not be restricted to those logs without insect colonisation, as sample sizes would have 

been too small to allow this. Significant interactions between stain and bark beetles, and stain 

and other insects, show that both are important predictors of stain, over and above the caging 

effect (Table 3.2c,d). It is nearly impossible to predict the distribution of stain in the total 

absence of bark beetles and other insects, however, the results show that there would have been 

slower colonisation and growth of sapstain without insects.  

3.4.3  Applied management implications 

Risk of timber discolouration caused by sapstain colonisation is greatest during harvesting, 

storage and transport of logs, and following storm events that may warrant salvage-harvesting. 

Bark beetles play an important role in the transport of sapstain fungi to susceptible logs, and the 

protection of these logs from bark beetles should be attempted. This study shows that if logs are 

not protected from bark beetles, sapstain will progress rapidly following their colonisation, 

acting either synergistically or additively with wind blown spores to stain the timber. 
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In the case of storm damaged stands where salvage harvest may be warranted, New Zealand 

is in the situation where the two major bark beetles species, Hylastes ater and Hylurgus 

ligniperda, are behaviourally adapted to be feed preferentially on roots, and other parts of the 

tree that are in ground contact, and therefore colonise logs along the surface in contact with the 

ground (Mausel et al. 2007). The lack of ground contact following such events limits the 

amount of the log likely to be colonised. Colonisation at ground level was demonstrated in this 

study also, where the overwhelming majority of bark beetle attack were in the lower segments 

of the experimental logs (Figure 3.3c, 3.4b). In a recent study investigating the onset of sapstain 

following windthrow, only 28 of 480 (5.8%) discs sampled systematically from fallen trees had 

any form of contact with the ground or another tree. This was primarily due branches propping 

the tree up and ensuring the stem remains elevated (McCarthy et al., unpublished data). 

Although these trees will still sustain some beetle attack, and they are susceptible to staining by 

wind dispersed and endophytic fungi (McCarthy et al. 2010), the extent of the damage will be 

lessened without extensive beetle attack. Mausel et al. (2007) found that logs stacked in a 

manner that reduces contact with the ground, and other logs, greatly reduces attack numbers of 

both H. ater and H. ligniperda. This is likely to be the case for other bark beetles with similar 

attack strategies. 

There are, however, many species of bark beetle that do attack standing trees and stems 

stored above ground level such as the mountain pine beetle (Dendroctonus ponderosae). The 

mountain pine beetle is one of the most destructive forest pests, and the current outbreak in 

British Columbia is an order of magnitude larger in severity and area than all previous 

outbreaks, due to climate driven range shifts and the susceptibility of naive tree populations 

(Kurz et al. 2008, Cudmore et al. 2010). Countries containing species with similar attack 

strategies need to implement rigorous barrier or insecticide methods to protect harvested or 

damaged trees; and countries without need to ensure such species do not become established 

there (Brockerhoff et al. 2006b). Many species of aggressive bark beetles, including D. 

ponderosae, have been intercepted at the New Zealand border, and have probably entered the 
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country also (Brockerhoff et al. 2003). The current climate of New Zealand is likely to be 

unsuitable for the establishment of D. ponderosae, or indeed many other aggressive bark beetle 

species, but under predicted global change scenarios and associated expansion of species ranges 

this is unlikely to remain the case (Parmesan and Yohe 2003, Parmesan 2006). 

3.4.4  General conclusions 

This study shows that colonisation of trees by the bark beetles Hylastes ater and Hylurgus 

ligniperda increases the amount of stain within the colonised logs. The effective protection of 

susceptible logs, whether they be harvested or storm damaged, will require examination of the 

bark beetle species most likely to colonise, and their attack strategies. In countries such as New 

Zealand, where species predominantly attack logs in contact with the ground or other hard 

surfaces, log stacking strategies in order to reduce the amount of contact between them, such as 

simple methods of log stacking to reduce this contact could be implemented such as the use of 

small “spacers” in order to reduce points of contact between stacked logs. In areas with more 

aggressive bark beetles that attack logs under all conditions, more intensive methods of insect 

and fungal management will be required. 
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Chapter 4 – Bark Beetle-Fungus Interactions 

4.1 Introduction 

Bark beetles (Coleoptera: Curculionidae, Scolytinae) share an intimate relationship with 

ophiostomatoid blue-staining wood fungi that dates back as far as the late cretaceous, over 70 

million years before the present (Sequeira and Farrell 2001). These relationships were first 

postulated by von Schrenk (1903), and confirmed by Leach et al. (1934) who observed that the 

bark beetles Ips pini and I. grandicollis alone were responsible for the introduction of 

ophiostomatoid fungi to freshly cut logs of Norway pine (Pinus resinosa). The blue staining of 

timber is of great concern to the forestry industry world-wide, as the value of infected timber is 

greatly reduced due to the adverse cosmetic effect of darkly pigmented fungal hyphae growing 

through the tissues of infected timber (Gibbs 1993, Seifert 1993). 

At present, New Zealand has two prominent species of introduced bark beetles naturalised 

within Pinus radiata D. Don plantations, Hylastes ater (Paykull) and Hylurgus ligniperda 

(Fabricius) (Brockerhoff et al. 2003). Both species were accidentally introduced to New 

Zealand and breed prolifically in the abundance of woody debris available following harvesting 

of production forest stands (Reay and Walsh 2001, Brockerhoff et al. 2003). Hylastes ater was 

first detected in the South Island of New Zealand in 1929 (Clark 1932) and is now found 

wherever pine forests occur. It is native to Europe, and in addition to New Zealand now occurs 

in Australia, South Africa and Chile (Ciesla 1988, Brockerhoff et al. 2003). Hylurgus ligniperda 

is also of European origin and was first discovered in the North Island of New Zealand in 1974 

(Bain 1977a), and is now widely established among pine plantations reaching as far south as 

Dunedin (Kerr 2010). In addition to New Zealand, H. ligniperda is now established in North 

America, Australia, Japan, Sri Lanka, South America, Algeria and South Africa (Ciesla 1988, 

Brockerhoff et al. 2003, Haack 2006). Of the approximately 19 native scolytines in New 

Zealand (Ciesla 1988, Brockerhoff et al. 2003, Haack 2006), only Pachycotes peregrinus 

commonly attacks pine, and other softwoods (Bain 1977b). This species has not been the focus 
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of many studies, and its relationship with ophiostomatoid fungi is unknown. 

Both H. ater and H. ligniperda feed on the inner bark of the stumps and logs of dead pine 

trees, limiting the economic impact of these species in comparison with those that colonise and 

kill dead trees. There is, however, evidence of H. ater attacking the root collar of young pine 

seedlings, often resulting in seedling death (Ciesla 1988, Reay and Walsh 2002, Reay et al. 

2002, Kerr 2010). These two species are known to vector ophiostomatoid fungi to seedlings 

(Reay et al. 2005, 2006a). However, an area that has not been studied in detail in New Zealand 

is the importance of these species as vectors of sapstain fungi to commercial timber.  In New 

Zealand there are at least 16 different species of fungi that cause sapstain, 15 ophiostomatoid 

fungi and Diplodia pinea (syn. Sphaeropsis sapinea) (Thwaites et al. 2005). Ophiostomatoid 

fungi are known to be major causes of sapstain world-wide (Seifert 1993), however, in New 

Zealand there is evidence that the dominant staining fungus is D. pinea (Farrell et al. 1997, 

McCarthy et al. 2010). Unlike ophiostomatoid fungi, Diplodia pinea can be a latent endophyte 

in healthy Pinus trees, often becoming obvious by displaying disease symptoms such as leader 

dieback, crown wilt and whorl canker when the tree becomes damaged or stressed (Chow 1984, 

Smith et al. 1996, Flowers et al. 2001, Reay et al. 2006b). Short-distance dispersal of this 

species is generally attributed to wind and rain splash (Thwaites et al. 2005), with methods of 

long distance dispersal not known in any great detail (Brookhouser and Peterson 1971, Palmer 

et al. 1988). Although there is some evidence suggesting dispersal by bark beetles (Wingfield 

and Knox-Davies 1980, Romon et al. 2007, Whitehill et al. 2007), there was no evidence 

suggesting this species was present on any wood inhabiting Coleoptera or Diptera in a recent 

New Zealand survey (Suckling et al. 1999). 

Here, I test the differences in ophiostomatoid fungi vectored by bark beetles in New Zealand 

by classical methods, and compare these with ophiostomatoid fungi extracted from windthrown 

timber. In addition, a novel rapid screening technique using high resolution melt curve 

technology to identify fungal associates of bark beetles is developed. The traditional approach 

to isolating fungi from bark beetles is to place beetles in a malt extract agar medium, and 
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identify those species that grow from the beetle inoculum (Reay et al. 2001, Reay et al. 2005, 

2006a, Romon et al. 2007, Masuya et al. 2009) or to vortex the beetles in water, which is then 

used to inoculate malt agar plates (Erbilgin et al. 2005, Erbilgin et al. 2009). These methods, 

while effective, are time-consuming and there is the potential for one fungal species, whichever 

grows fastest, to quickly surround the beetle in the medium, not allowing other, slower growing 

species to grow at all, precluding their detection. 

Recent advances in the development of real-time, quantitative polymerase chain reaction 

(PCR) allows rapid detection, quantification, and possible identification to species level from 

DNA sequences (VanGuilder et al. 2008). This technology uses a florescent dye that intercalates 

with double-stranded DNA (dsDNA) resulting in a change in florescence when dsDNA unwinds 

(„melts‟) (Reed et al. 2007) resulting in a highly specific peak that is specific to a particular 

species  when used with species-specific, or even universal primers (Winder et al. 2011). Yvon 

et al. (2009) differentiated between viral variants, and showed that high resolution melt (HRM) 

results were identical for multiple samples. Standard and high resolution melt curve analysis has 

been used to identify mammalian carnivores (Berry and Sarre 2007), algae (Kavanagh et al. 

2010, Andree et al. 2011), bacteria (Skow et al. 2005, Winchell et al. 2010), insect quarantine 

pests (Barcenas et al. 2005), and fungi (Hsu et al. 2003). 

Comparisons between ophiostomatoid fungi found in wood and on insects are made in this 

study, and the presence of D. pinea on bark beetles is investigated also, all using the standard 

technique of isolating from beetles directly on agar plates. In addition, a novel application of 

HRM analysis was investigated where fungal DNA is amplified from bark beetles, and 

compared to pre-selected fungal “standards” using primers of the internal transcribed spacer 

(ITS) region of the ribosomal RNA genes, which allows direct amplification of fungal DNA 

from substrates containing DNA from multiple sources such as plant or soil tissue (Peay et al. 

2008). This technique will provide an economical and efficient method to search for, and 

identify species of interest without the need for traditional culturing techniques.  
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4.2  Materials and methods 

4.2.1  Bark beetle capture 

Three beetle species were collected for isolation and identification of associated ophiostomatoid 

fungi. These were the exotic, but naturalised, bark beetles Hylurgus ligniperda (F.), and 

Hylastes ater (Paykull), and the native wood-boring scolytine Pachycotes peregrinus (Chapuis) 

(Coleoptera: Curculionidae: Scolytinae). All beetles were captured aseptically using forceps that 

had been sterilised in the field with a hand-held butane torch, and then specimens were 

deposited into sterile, twice autoclaved, 1.5 mL microcentrifuge tubes. Due to large differences 

in the abundance of each species, different methods had to be utilised for the capture of each of 

the three species. 

Hylurgus ligniperda was the easiest of the three species to capture, being abundant in 

recently-harvested sites during the summer months (Reay and Walsh 2001). Twenty lures of 

host volatiles, ten each containing 150 mL of α-pinene, and150 mL of ethanol (Brockerhoff et 

al. 2006a) , were distributed among one area of recently-harvested Pinus radiata plantation 

forest in the Nelson region. The lures were made using a 400 mm length of 150 µm flat plastic 

tubing, with felt strips sealed inside with the host volatiles to assist in an even release of 

volatiles. At 10:30 am, the peak flight time for this species of (Kerr 2010), beetles that had been 

attracted to the host volatiles were aseptically picked from the lures themselves and from 

surrounding logs  

Hylastes ater is not as common as H. ligniperda (Reay and Walsh 2001, Kerr 2010), and 

therefore more difficult to capture. Specimens were collected from Bottle Lake Forest in 

Christchurch, New Zealand, from the stumps remaining in the ground following recent 

harvesting of P. radiata trees. The bark was carefully removed from the portion of the stumps 

above ground level, whereby care was taken not to dislodge the beetles. Adult beetles were then 

picked aseptically from the stump and inner surface of the removed bark. 

Pachycotes peregrinus is a closed-canopy dwelling species (Alwin Sky (University of 
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Canterbury), unpublished data), and therefore uncommon in harvested stands. During the 

summer months in Nelson where this species is known to be active, specimens were captured by 

locating logs from thinning operations with evidence of colonisation (McCarthy et al. 2010). 

Attack by P. peregrinus was recognised by the exudation of white or cream-coloured frass 

(typical of xylophagous beetles), as opposed to the brown frass of bark beetles (which are 

phloeophagous). These logs were cut into small sections and placed in emergence buckets with 

mesh sections to allow air-flow. These emergence chambers were checked daily, with emerged 

beetles collected aseptically as per the methods used for H. ligniperda and H. ater (above).  

4.2.2  Isolation of fungi from beetles 

Fungal isolations were attempted from a total of 48 specimens of each beetle species to identify 

potential ophiostomatoid and sapstain fungi that may be associated with them. All isolations 

were attempted on two agar mediums, one general malt extract medium for the isolation of most 

fungi present, and one selective medium with the addition of the eukaryotic antibiotic 

cyclohexamide, which ophiostomatoid fungi are tolerant of (Harrington 1981, Jacobs and 

Wingfield 2001). The standard media consisted of malt agar (3% malt extract, and 2% agar) 

with 100 µg/ml streptomycin to inhibit bacterial growth. The selective media consisted of malt 

agar and streptomycin as above, as well as 400 µg/ml cyclohexamide, to inhibit growth of non-

ophiostomatoid fungi.  

Four beetles of each species were either pressed directly into the agar, allowed to walk freely 

on the agar for ten minutes before being removed, or squashed between two sterile microscope 

slides with the gut content spread on the surface of an agar plate, using an inoculation loop. This 

was repeated on each medium, and half of all beetles within each treatment were surface 

sterilised by soaking in 4.8% hypochlorite solution for 2 minutes in order to kill spores on the 

outer surface of the beetle allowing just gut flora to grow, then rinsed twice using sterilised 

distilled water (as in Reay et al. 2005). After incubation periods of up to 10 weeks, emerging 

fungal isolates were subcultured in tubes of malt agar (2% malt extract, and 2% agar). Bacterial 

colonies were recorded, but not isolated or identified further. As I was interested in the fungal 
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species present on each species, fungal species data was pooled for each species for 

interpretation. 

4.2.3  Isolation of fungi from wood 

Ophiostomatoid fungal isolations from wood was shared between Chapters 1 and 3. Methods 

are repeated below: 

Wood discs approximately 50 mm thick were collected from trees felled in both the Nelson 

region of the northern South Island of New Zealand, and Bottle Lake forest in Christchurch, 

also in the South Island of New Zealand. There were four sites of Pinus radiata plantation forest 

selected in each region, with trees 10-11 years old. Trees were felled in a systematic manner 

during each season (spring, summer, autumn, and winter in Nelson, summer and winter in 

Christchurch), then left in the field for varying lengths of time to account for fungal succession 

and growth over periods of time following the felling of the tree (see Table 2.2). In Nelson, 12 

trees per site were felled per season. Of these 12 trees, three were harvested after three, six, nine 

and 12 months, respectively, in order to take seasonal and temporal scales into account when 

sampling fungal growth.  

Each tree had a disc cut from the bottom of the cut stem, discarding the first 5 cm, and a disc 

taken from 4.5 m up the length of the tree. After cutting, discs were immediately labelled, 

sealed in plastic bags, and stored at 4°C within 24 hours in order to prevent moisture loss and 

prevent excess fungal growth before sampling. Isolations to identify ophiostomatoid fungi were 

undertaken within 10 days of sampling from both discs of every tree. An arbitrary wedge was 

cut from each disc using a small axe. This was bisected aseptically along the radial longitudinal 

plane using an axe and mallet to initiate the split, and then separated manually, avoiding any 

external contact of the newly exposed surfaces. Five small chips were excised with a sterile 

scalpel from along a radial line on one of the freshly exposed surfaces (as in McCarthy et al. 

2010), the first and fifth of which were directly below the cambium, and above the pith, 

respectively. The remaining three were taken at equidistant lengths between the 1st and 5th 

chips. This was repeated twice per wedge, once inoculating the standard media, and once 
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inoculating the ophiostomatoid selective media (as in 4.2.2). After incubation periods of up to 

10 weeks, emerging fungal isolates were subcultured in tubes of malt agar (2% malt extract and 

2% agar). Occasionally, isolations were taken directly from insect holes in the wood. Bacterial 

colonies were recorded but not isolated or identified further. 

4.2.4  Fungal identification 

Emerging isolates were organised into groups, and identified where possible from their 

vegetative morphology and fruiting structures. All isolates believed to be ophiostomatoid were 

resolved using sequence analysis of the internal transcribed spacer (ITS) using the primers 

ITS1F (Bruns and Gardes 1993), and β-tubulin regions using the primers Bt2a and Bt2b (Glass 

and Donaldson 1995). 

Isolates were sub-cultured on sterile GelAir cellophane (BIO-RAD Laboratories, Hercules CA, 

USA) that was spread over 1.5% malt agar plates. Mycelium was scraped directly from the 

cellophane and placed into a sterile 1.5 mL microcentrifuge tube for DNA extraction, which 

was processed using the REDExtract-N-Amp™ plant PCR kit (Sigma, St Louis, Missouri, 

USA), following the manufacturer‟s instructions. If this DNA failed to amplify, it was re-

extracted using the ChargeSwitch® gDNA plant PCR kit (Invitrogen, Carlsbad, California, 

USA), following the manufacturer‟s instructions. DNA was amplified using the 5 × HOT 

FIREPol® Blend Master Mix, Ready to Load (dnature, Gisborne, New Zealand). 

Amplifications were performed in an Eppendorf Mastercycler Gradient Thermal Cycler 

(Eppendorf, Hamburg, Germany) under the following conditions for ITS and β-tubulin regions: 

(1) ITS - initial denaturation 95°C for 15 min (to activate the HOT FIRE polymerase), followed 

by 35 cycles of 95°C for 30 sec, 60°C annealing for 40 sec and 72°C extension for 40 sec, 

followed by a final extension period of 72°C for 5 min, (2) β-tubulin - initial denaturation 94°C 

for 15 min, followed by 30 cycles of 94°C for 60 sec, 58°C annealing for 60 sec and 72°C 

extension for 60 sec, followed by a final extension period of 72°C for 10 min. 

PCR products were visualised by electrophoresis and purified using the ExoSAP method 

(Exonuclease I, Escherichia coli and Shrimp Alkaline Phosphatase, SAP) according to the 
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supplier‟s instructions (Fermantas Life Sciences, Lithuania). Sequence analysis was carried out 

at Macrogen Inc., Korea. Sequences were edited and aligned using Sequencher version 5.0 

(GeneCodes Corp., Ann Arbor, Michigan, USA) and identities were determined by Genbank 

BLASTn search (Altschul et al. 1990). For identification, a minimum of 95% sequence identity 

to an ITS sequence of at least 450 bp from a known specimen in the database was required. For 

β-tubulin sequences, the required sequence length was 350 bp. Those samples with 97-100% 

identity match to a known species were considered a match and named to the species level, 

provided the morphological characteristics of the isolate matched that of the name derived from 

sequence data.  

4.2.5  High resolution melt (HRM) analysis 

A search of the literature resulted in 10 ophiostomatoid fungi commonly associated with the 

bark beetles Hylastes ater and Hylurgus ligniperda (Reay et al. 2005, Thwaites et al. 2005, 

Romon et al. 2007). Seven fungal species were selected as standards, depending on availability 

of samples, and relevance to the insect species. The fungal species selected were: Ophiostoma 

stenoceras, O. quercus, O. piceae, O. pluriannulatum, Grosmannia huntii, and Sporothrix 

inflata. All samples were obtained from the archived NZ Forest Research fungal culture 

collection (Rotorua, New Zealand). 

All fungal samples were removed from storage and sub-cultured on sterile GelAir cellophane 

(BIO-RAD Laboratories, Hercules CA, USA) over 1.5% malt agar plates. Mycelium was 

scraped off the cellophane directly with a flame sterilised blade and placed into a sterile 1.5 mL 

microcentrifuge tube. The DNA was then extracted using the Extract-N-Amp™ Plant PCR kit 

(Sigma, St. Louis, Missouri, USA) following the manufacturer‟s instructions. The ITS2/ 4 was 

amplified using the following primers ITS2F (5‟GGCATGCCTGTYCGAGCGTCATTWC3‟) 

and ITS2R (5‟CCGCTGAACTTAAGCATATCAATAAGCGGAGGA3‟) under the conditions: 

initial denaturation at 94°C for 2 min, followed by 25 cycles of 94°C for 30 sec, 55°C annealing 

for 30 sec and 72°C extension for 45 sec, followed by a final extension period of 72°C for 1 min 

(see Appendix B for primer descriptions). In brief, the crude fungal DNA (2 µl) was used to  
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amplify the ITS 2/4 region using: 0.5 µl forward, and 0.5 µl reverse primers, 8 µl H2O, 10 µl 

Taq polymerase (Kapa Biosciences, South Africa). Amplifications were performed in an 

Eppendorf Mastercycler Gradient Thermal Cycler (Eppendorf, Hamburg, Germany). 

PCR products were resolved by agarose gel electrophoresis. The amplicons were excised and 

purified using the GeneJET™ Gel Extraction Kit (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). The amplicons were cloned into pGEM-T easy vectors and sequenced at 

Macrogen Inc, South Korea. Sequences were edited and aligned using  MEGA 5 (Tamura et al. 

2011) and confirmation of their identities were determined by Genbank BLAST search 

(Altschul et al. 1990).  

HRM analysis was undertaken using real time PCR methods using a Rotor-gene thermal 

cycler (Quigen N.V., Venio, Netherlands). All of the cloned DNA samples were diluted to 100 

pg/µl and run in triplicate as 10 µl reactions consisting of: 5 µl KAPA qPCR  Kit (Kapa 

Biosystems, South Africa), 0.25 µl each of both forward and reverse primers, 3.5 µl H2O, and 1 

µl DNA. First, DNA was amplified under the following conditions: initial denaturation 95°C for 

10 min, followed by 40 cycles of 95°C for 10 sec, 60°C annealing for 15 sec and 72°C 

extension for 20 sec, followed by a final extension period of 72°C for 5 min. This was followed 

by step-wise denaturation from 72°C to 99°C with 0.1°C increments and 2 sec hold. During this 

protocol, fluorescence data were converted to melt profile charts using Rotor-Gene Q – Pure 

Detection software which plotted the negative derivative of fluorescence against temperature 

(dF/dT vs temperature). Mean melt peak temperatures, among replicates, were determined 

manually using the software output listing the melt peak temperatures. Combinations of cloned 

DNA were then assessed to determine whether multiple peaks within a single sample could be 

resolved. Due to the possibility of small differences between runs of the machine, and the 

extreme sensitivity of the technology, all standards were included in every run in order to be 

able to accurately compare outputs.  

Fungi were extracted from beetles using a modification of a crude extraction method 

described by Cenis (1992). A 2 mL microcentrifuge tube was filled with 1 mL sterile malt 
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extract broth, a culture was then started by adding a beetle to the tube and left for 96 hours at 

20°C in an orbital shaker. The beetle was then removed with a sterile pipette tip, and the 

mycelial mat was pelletted by centrifugation for 5 min at 13000 rpm. The remaining broth was 

decanted and the pellet washed with 500 µl TE buffer and paletted again. The TE buffer was 

decanted, and 300 µl of extraction buffer (220 mM Tris HCl pH 8.5, 250 mM NaCl, 25 mM 

EDTA, 0.5% SDS) was added. The mycelium was then crushed with a small, sterile eppendorf 

pestle fitting exactly in the tube until a uniform solution was achieved. Following this, 150 µl of 

3 M sodium acetate pH 5.2 was added. The tubes were then left at -20°C for at least 10 mins. 

Tubes were then centrifuged, and the supernatant was transferred to another tube. An equal 

amount of isopropanol was added, and left for 5 mins at room temperature, then precipitated 

DNA was paletted by centrifugation. The paletted DNA was then washed with 70% ethanol, 

and then dried until all ethanol had evaporated. The pellet was then re-suspended in 50 µl of TE 

buffer. Samples were diluted to 100 pg/µl before being analysed by HRM. Beetle DNA 

extractions were run in triplicate, along with all fungal standards (also run in triplicate), with 10 

µl reactions using the HRM protocol above. Molecular grade water samples were also used as 

negative controls. Fungal DNA melt peaks could then be averaged, and compared with those of 

the standards. This was repeated with four beetles, in order to test whether the method provides 

repeatable results. 

A full field trial is planned as an application of this method over the summer to be conducted 

by myself, where beetles collected from the field and assessed for their fungal communities. 

The aim of this study is to describe the differences in fungal communities on beetle species at 

both inter- and intra-specific levels to find out if species, or even populations, have unique 

fungal compositions. 
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4.3 Results 

4.3.1  Beetle isolations 

In total 134 isolations were attempted from bark beetles in this study, with seven species of 

ophiostomatoid fungi isolated. Diplodia pinea was not present on any bark beetles in this study. 

ophiostomatoid fungi found to be associated with Hylastes ater included O. piceae (non-

sterilised, in media), O. radiaticola (non-sterilised, walking on media, also squashed), and 

Grosmannia huntii (both sterilised and non-sterilised, walking on media). ophiostomatoid fungi 

found on H. ligniperda were G. huntii (sterilised, in media and squashed) and O. nigrocarpum 

(sterilised, from gut content). There was one species, G. huntii that was found on both H. ater 

and H. ligniperda. 

This is the first study to attempt to isolate ophiostomatoid fungi from the native scolytine 

wood borer Pachycotes perigrinus. Ophiostomatoid fungi isolated included O. breviusculum-

like (non-sterilised, walking on media), O. pallidulum (non-sterilised, walking on media), 

Pesotum fragrans (non-sterilised, walking on media). Diplodia pinea was not isolated from any 

beetle species in this study. All of the ophiostomatoid species found on beetles in the study are 

summarised in Table 4.1, and complied with associations from the literature in Table 4.2. 

4.3.2 Wood isolations 

In total, 5520 isolations were taken during the course of this study from wood discs, 3600 from 

Nelson and 1920 from Christchurch. Of these isolates, only a total of 21 (0.58%) from Nelson, 

and 7 (0.36%) from Christchurch, were ophiostomatoid fungi. Nine species of ophiostomatoid 

fungi were isolated from wood discs collected in this study, all nine of which were found at the 

Nelson site, whereas only two of these were found at the Christchurch site. The eight species 

found in Nelson were: Ophiostoma nigrocaropum (0.39% of the total isolates from selective 

media), Ceratocystiopsis collifera-like (0.33%), O. pallidulum (0.22%), O. nigrocarpum  
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 Hylastes ater Hylurgus ligniperda Pachycotes peregrinus 

 Sterilised Non-sterilised Sterilised Non-sterilised Sterilised Non-sterilised 

 A B C A B C A B C A B C A B C A B C 

Grosmannia huntii
 

                  

Ophiostoma breviusculum-like                   

Ophiostoma pallidulum                   

Ophiostoma nigrocarpum                   

Ophiostoma piceae                   

Ophiostoma radiaticola                   

Petosum fragrans                   

A – squashed, B – in media, C – on surface walking 

a
Isolated from wood in McCarthy et al 2010 

Table 4.1. Ophiostomatoid fungal isolations from the bark beetles Hylastes ater and Hylurgus ligniperda and the wood borer Pachycotes 

peregrinus.  
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Bark beetle Fungus Reference 

Hylastes ater Ophiostoma floccosum (Reay et al. 2005) 

 Ophiostoma galerforme (Reay et al. 2001, Zhou et al. 2004c, Reay et al. 2005) 

 Leptographium guttulatum (Wingfield and Gibbs 1991, Romon et al. 2007) 

 *Grosmannia huntii (Reay et al. 2001, Zhou et al. 2004c, Reay et al. 2005) 

 Ophiostoma ips (Reay et al. 2001, Reay et al. 2002, Reay et al. 2005, Romon et al. 

2007) 

 Leptographium lundbergii (Jacobs and Wingfield 2001) 

 Ophiostoma minus (Gibbs 1993) 

 Grosmannia olivacea (Romon et al. 2007) 

 Ophiostoma penicillatum (Mathiesen 1950) 

 Ophiostoma piceae  

 Ophiostoma piliferum-like (Romon et al. 2007) 

 Ophiostoma pluriannulatum (Reay et al. 2001, Romon et al. 2007) 

 Leptographium procerum (Jacobs and Wingfield 2001, Reay et al. 2001, Reay et al. 2005) 

 Ophiostoma quercus (Reay et al. 2001, Zhou et al. 2004c, Reay et al. 2005, Romon et 

al. 2007) 

 Ophiostoma radiaticola  

 Ophiostoma rectangulosporium-like (Romon et al. 2007) 

 Leptographium serpens (Wingfield and Gibbs 1991) 

 Ophiostoma setosum (Reay et al. 2001, Reay et al. 2005) 

 Ophiostoma stenoceras (Reay et al. 2005, Romon et al. 2007) 

 Leptographium wingfieldii (Romon et al. 2007) 

 Leptographium truncatum (Wingfield and Gibbs 1991, Reay et al. 2001, Reay et al. 2005, 

Romon et al. 2007) 

Hylurgus ligniperda Ophiostoma floccosum (Reay et al. 2006a, Kim et al. 2011) 

 Opgiostoma galeiforme (Zhou et al. 2001, Zhou et al. 2004c, Reay et al. 2006a, Kim et al. 

2011) 

 Leptographium guttulatum (Romon et al. 2007) 

 *Grosmannia huntii (Reay et al. 2006a, Kim et al. 2011) 

 Ophiostoma ips (Zhou et al. 2001, Zhou et al. 2004a, Zhou et al. 2004c, Reay et al. 

2006a, Kim et al. 2011) 

 Leptographium lundbergii (Jacobs and Wingfield 2001, Zhou et al. 2001) 

 Ceratocystiopsis minuta (Zhou et al. 2001, Zhou et al. 2004c) 

 Ophiostoma nigrocarpum  

 Ophiostoma penicillatum (Jacobs and Wingfield 2001) 

 Ophiostoma piceae (Zhou et al. 2001, Kim et al. 2011) 

 Ophiostoma pluriannulatum (Zhou et al. 2001) 

 Leptographium procerum (Jacobs and Wingfield 2001, Reay et al. 2006a) 

 Ophiostoma quercus (Reay et al. 2006a, Kim et al. 2011) 

 Leptographium serpens (Zhou et al. 2001, Kim et al. 2011) 

 Ophiostoma setosum (Reay et al. 2006a) 

 Ophiostoma stenoceras (Zhou et al. 2001, Kim et al. 2011) 

 Leptographium tereforme (Kim et al. 2011) 

 Leptographium truncatum (Reay et al. 2006a) 

Table 4.2. Comparison of ophiostomatoid fungi on bark beetle species found in New Zealand, Hylastes ater and 

Hylurgus ligniperda from this study, and the literature. Species marked with an asterisk (*) were found in this 

study, species found for the first time on a beetle species from this study are bolded. 
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(0.10%), Sporothrix inflata (0.06%), O. radiatacolata (0.06%), O. setosum (0.06%), O. 

sparsiannulatum (0.06%) and O. breviusculum-like (0.06%). The two species found in 

Christchurch were Sporothrix inflata (0.10%) and O. piliferum (0.06%). In addition, five 

isolates of O. nigrocarpum (0.52%) was isolated from the standard media in Christchurch wood 

samples (Table 4.3). Some additional ad hoc isolations were taken from wood surrounding 

insect holes in Nelson, resulting in two isolations for O. nigrocarpum and one isolation of O. 

pallidulum. 

4.3.3 HRM analysis 

Individual plasmid DNA samples from known fungal isolates formed smooth peaks that were 

consistent between each triplicate (Figure 4a,b). Mixed samples of more than one DNA isolate 

also resulted in a double peak, such as those depicted in Figure 4b, where Grosmannia huntii 

and S. inflata form two easily distinguishable peaks at 90.07°C and 91.76°C, respectively, in 

comparison with the single isolate standards of 90.35°C and 91.85°C. The height of the peaks is 

a quantitative measure of DNA abundance, and was not relevant to this study. The method was 

also successful at determining the identity of ophiostomatoid fungal DNA grown from bark 

beetle inoculated malt extract broth media. With four H. ligniperda specimens, I was able to 

identify ophiostomatoid fungi from two of them - S. inflata from one, and G. huntii from the 

other (Figure 4.1c,d). 
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 Wood Scolytid beetles 

Ophiostomatoid species Pinus 

radiata 

Hylastes 

ater 

Hylurgus 

ligniperda 

Pachycotes 

peregrinus 

Ceratocystiopsis collifera-like     

Grosmannia huntii  
a 

   

Ophiostoma breviusculum-like     

Ophiostoma nigrocarpum     

Ophiostoma pallidulum     

Ophiostoma piceae     

Ophiostoma piliferum     

Ophiostoma radiaticola     

Ophiostoma setosum     

Ophiostoma sparsiannulatum     

Pesotum fragrans     

Sporothrix inflata     

a
 In McCarthy et al (2010) 

Table 4.3. Comparison between ophiostomatoid fungal species found living in cut logs and 

being carried on beetle species from Nelson and Christchurch. Bolded species were found in 

both wood and on beetles. 
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0.0

0.5

1.0

1.5

2.0

 Grosmannia huntii

C

BA  Sporothrix inflata

 Grosmannia huntii

 Mixed (S. inflata & G. huntii)

86 87 88 89 90 91 92 93 94 95 96 97 98 99

0.0

0.5

1.0

1.5

2.0

 Ophiostoma quercus

 Fungus from bark beetle

Dd
F

/d
T

86 87 88 89 90 91 92 93 94 95 96 97 98 99

 Sporothrix inflata

 Fungus from bark beetle

Temperature (°C)

Figure 4.1. High Resolution Melt (HRM) peaks of fungal DNA for identifying unknown fungal samples, from known 

standards. All samples were run in triplicate. (A) Grosmannia huntii melt peak (av. 91.85°C) showing repeatability of 

triplicate runs. (B) Mixed samples can be differentiated: Sporothrix inflata (av. 90.35°C) and G. huntii (av. 91.85°C ) 

pure DNA isolates, compared with a single sample with both DNA samples mixed together (av.‟s 90.07°C and 

91.71°C). (C) Ophiostoma quercus melt peak (av. 88.63°C) matches that of an unknown fungus grown from a bark 

beetle, Hylurgus ligniperda (88.77°C). The height of the curves is a quantitative measure of abundance (not 

investigated further), but the melt peak average is indicative of the DNA make-up of a specific species. (D) S. inflata 

melt peak (av. 90.31) matches that of an unknown fungus grown from a bark beetle, H. ligniperda (av. 90.36°C). In 

(D) there is also a peak at 88.13°C (av.) of an unknown fungus that was not one of the standards, and therefore 

represents an unidentified species. 
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4.4  Discussion 

As a result of a co-evolutionary history, bark beetles are important vectors of ophiostomatoid 

fungi that cause sapstain in timber. In this study, 12 species of ophiostomatoid fungi, including 

Ceratocystiopsis, Grosmannia, Ophiostoma, Pesotum, and Sporothrix spp., were isolated from 

the bark beetles Hylastes ater and Hylurgus ligniperda, the wood borer Pachycotes peregrinus, 

and samples of Pinus radiata. There were five species of ophiostomatoid fungi that were found 

on both, beetles and wood: Ophiostoma nigrocarpum was found on both P. radiata and H. 

ligniperda; O. radiaticola, O. pallidulum and O. breviusculum-like were found on both P. 

radiata and P. peregrinus; Grosmannia huntii and O. radiaticola were found on both P. radiata 

and H. ater; and G. huntii  was found on H. ligniperda after being isolated from P. radiata by 

McCarthy et al. (2010) from the same region, with a similar experimental design . Among these 

are associations new to science, and this is the first time any ophiostomatoid fungi have been 

isolated from P. peregrinus. Finding ophiostomatoid fungi that infect pine on this native borer 

may have consequences on our native forest tree species if this can lead to an introduction of 

exotic tree pathogens to native trees. 

The high resolution melt curve (HRM) species identification tool developed here allows 

mass screening of samples at unprecedented temporal and economic scales. Classical techniques 

of identifying fungi from beetles and wood involves inoculating agar with the sample, sub-

culturing a pure isolate, and morphological and possibly molecular identification. Growing 

periods alone for the fungi can be multiple weeks before morphological features are 

distinguishable. This application of the HRM technique allows a beetle-inoculated fungal broth, 

from which DNA can be extracted and identified by matching DNA denaturing temperatures. 

One broth culture costs approximately NZ 50c (at time of publication of this thesis), and results 

are available just 2 hours following DNA extraction. This technique has potential applications 

in the rapid identification of quarantine samples of both pathogens and pests (Winder et al. 

2011). 
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4.4.1 Ophiostomatoid fungi from wood and beetles 

There were six species that were isolated from one source only. Ceratocystiopsis collifera-like, 

O. setosum, O. piliferum, O. sparsiannulatum, and Sporothrix inflata were found on P. radiata 

samples only. Ophiostoma piceae, was found on H. ater only, and Pesotum fragrans was found 

on P. peregrinus only. There were no fungal species found on H. ligniperda alone, as all were 

also found on wood. This is the first survey of the fungi associated with P. peregrinus, and 

finding four species of ophiostomatoid fungi associated with this insect is important to the forest 

industry as it commonly inhabits timber damaged by storms that lie in its preferred habitat of 

closed canopy forests (Alwin Sky (University of Canterbury), unpublished data). 

Aside from the new associations with P. peregrinus, I believe two of the associations listed 

above to be new to science. This is the first reported association between both O. nigrocarpum 

and G. huntii with H. ligniperda, and between O. piceae and H. ater. O. nigrocarpum was 

commonly found on wood in this study, and has been intercepted previously on logs being 

exported from New Zealand to Japan, and had also not previously been reported there (Kim et 

al. 2005a). It is distributed in pines in Austria, Canada, Japan, New Zealand, South Africa, and 

the United States (de Beer et al. 2003a) . G. huntii is a known root pathogen, potentially able to 

kill pine saplings and cause sapstain in infected trees (Matusick and Eckhardt 2010). It has been 

previously discovered on H. ater (Reay et al. 2001, Zhou et al. 2004a, Reay et al. 2005) which, 

along with H. ligniperda, prefers to attack wood in ground contact (Ciesla 1988). This shared 

target of root attack explains the common association with both of these beetle species. 

phiostoma piceae is closely related to the highly pathogenic O. ulmi and O. novo-ulmi which 

both caused Dutch elm disease pandemics across Europe and North America (de Beer et al. 

2003b). Ophiostoma piceae is not considered a pathogen, but is associated with the bluestain of 

conifer timber (Schirp et al. 2003a). This species is known to be associated with H. ligniperda 

(Zhou et al. 2001, Kim et al. 2011), and occurs almost exclusively on coniferous hosts (Kim et 

al. 1999, de Beer et al. 2003b). 

Ceratocystiopsis collifera-like was found on wood in our study, and has been reported to be 
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associated with the bark beetle Dendroctonus valens (Owen et al. 1987, Marmolejo and Butin 

1990), though it was not found to be associated with any of the beetles here. Ophiostoma 

breviusculum-like is a recently described species that forms part of the O. piceae-complex, and 

is morphologically similar to O. piceae and O. quercus, all of which cause sapstain to pines 

(Chung et al. 2006), and it was found to be associated with both wood and the wood-borer P. 

peregrinus in this study. Ophiostoma pallidulum was found on P. peregrinus for the first time. 

This species is a known stain-causing fungus from pines, and has been isolated from the bark 

beetle Hylastes brunneus in Finland (Linnakoski et al. 2010). This species seems to be present 

on multiple beetle species world-wide, including one closely related to H. ater, indicating the 

potential for it to be spread by this species also. The last species to be associated with P. 

peregrinus is P. fragrans. Pesotum fragrans is a stain fungus that has been associated with 

many coniferous hosts and weevil species in China (Paciura et al. 2010), Korea (Kim et al. 

2007), Poland (Jankowiak and Kolařík 2010), South Africa (Zhou et al. 2006), Australia, North 

America, and New Zealand (Harrington et al. 2001, Jacobs et al. 2003, Jacobs and Seifert 2004). 

It was not isolated from wood in this study, but it is likely that it does inhabit P. radiata logs in 

New Zealand. 

Ophiostoma radiaticola was only found in wood in this study. It is a stain fungus that has 

been found on New Zealand P. radiata previously, both within New Zealand and in trees 

exported to Korea (Kim et al. 2005a, Kim et al. 2005b), and is a member of the O. galeiformis-

complex (Zhou et al. 2004b). Ophiostoma setosum was also found in wood in this study, and 

along with O. breviusculum is a member of the O. piceae-complex and is found primarily on 

conifers (Uzunović et al. 2000, Harrington et al. 2001). It is a relatively aggressive sapstain 

fungus (Fleet et al. 2001), and it is already known to be present among logs and stumps 

harvested in New Zealand (Reay et al. 2005, Thwaites et al. 2005). It is another species found in 

logs exported from New Zealand to Korea (Kim et al. 2005a), and has been found on bark 

beetles in China (Paciura et al. 2010), and on H. ater in New Zealand (Reay et al. 2005). 

Ophiostoma sparsiannulatum is another species to be found only on wood in this study. It is a 
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recently-described species and a member of the O. pluriannulatum-complex, and until now was 

only known from the roots of Pinus taeda damaged by various root-infesting insects (Zanzot et 

al. 2010). It is not thought to be a pathogenic fungus, and it is not known for certain to be 

distributed by insects, however Zanzot et al. (2010) suggested further research should be 

undertaken to confirm this. The final species to be isolated in this study was S. inflata. This is a 

common soil borne fungus with a world-wide distribution (de Hoog 1993), and is known to 

attack Douglas-fir (Pseudotsuga menziesii), multiple oak (Quercus) species, and has been 

isolated from bark beetle Dryocetes autographus (Halmschlager and Kowalski 2003). This is 

possibly the first time this species has officially been isolated from P. radiata. 

There were no discernible patterns between species isolated from beetles walking on the 

surface of the media, placed in the agar, or from the gut contents (Table 4.1). Many species 

were deposited from beetles walking on the surface, indicating that these species “shed spores” 

in their travels. Also, G. huntii and O. radiaticola were the only fungi isolated from the gut 

contents of a beetle (H. ater), however these same species were also shed while walking on the 

agar surface, and grew from beetles placed in agar (Table 4.1). 

The lack of occurrence of a fungal species on a particular beetle does not say that there is 

definitely not an association between them. Traditional culturing techniques are time consuming 

and cumbersome, and processing the beetle numbers required in order to be sure that all 

associations were recorded was beyond the scope of this thesis. In order to study this effectively 

and efficiently, I developed the use of the HRM method for this purpose which can now be 

implemented to conduct such studies more efficiently. 

4.4.2 HRM species identification tool  

The melt profile temperature of a region of the ITS domain was sufficient to discriminate fungal 

species cultured from beetles from fungal standards. Winder et al. (2011) were able to 

distinguish between three insect (weevil) species, four arachnid (tick) species, and a virus by 

standard (not high resolution) melt peak analysis. Due to the high degree of inter-relatedness 

between species in our standards, HRM was required in this case in order to attain more definite 
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and consistent separation of peaks. This method requires half the time, and a small fraction of 

the cost, of PCR followed by gel electrophoresis showing the advantages of adopting this 

technique for species identification. 

Currently, isolation and identification of ophiostomatoid fungi from beetles by plating whole 

beetles, crushed beetles, or beetle parts is the standard method for investigating their associated 

fungi. Multiple studies, including this one, have employed this technique with some success 

(Klepzig and Wilkens 1997, Reay et al. 2005, Bleiker et al. 2009, Bueno et al. 2010, Kim et al. 

2011), however it is time consuming and subject to a selection bias towards faster growing 

fungi. 

Kim et al (1999) developed a rapid method of detecting the sapstain fungi O. piceae and O. 

quercus in stained wood, using PCR and gel electrophoresis alone Their method eliminated the 

need to grow the organisms in artificial media saving money and reducing chances of cross-

contamination. Tsui et al. (2010) designed padlock probes to target species-specific single 

nucleotide polymorphisms of two ophiostomatoid fungi associated with the bark beetle 

Dendroctonus ponderosae. This approach was able to distinguish the two fungal species from 

other species on D. ponderosae, however, a large number of padlock probes would be required 

to test for multiple species at once, increasing the cost, and reducing the efficiency of the 

technique. 

Another recent method reported involves the development of DNA probes to identify the 

major fungal species associated with D. ponderosae (Khadempour et al. 2010). They were able 

to distinguish between fungal species on beetles and on wood. Their technique, however, still 

requires the use of target-specific primers, and gel electrophoresis. High resolution melting 

analysis has recently been implemented for the early detection of the sapstain fungus Diplodia 

pinea, and was able to distinguish the species from others closely related to it (Luchi et al. 

2011). The technique was validated by screening symptomatic and symptomless pine shoots, 

showing its effectiveness as an early detection method of the pathogenic fungus. 

Other methods of rapid identification and detection of ophiostomatoid fungi have been 
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investigated over the years, and none have become a standard technique. These techniques 

cannot efficiently distinguish between large numbers of species (> 5) requiring multiple runs of 

gel electrophoresis, and also require the design of expensive probes. The time- and cost-

efficiency of this method is a major advantage, and with further development and design of 

target species standards, could be implemented in laboratories for species identification.  

4.4.3 General conclusions 

In summary, the results described here show that there are many ophiostomatoid sapstain fungi 

present in New Zealand that infect pines, and many of these species are transmitted on 

scolytines that colonise susceptible timber. Biosecurity strategies need to be implemented not 

only to ensure that new bark beetle pests are not introduced, nor any fungi that may be 

associated with them. Earlier studies have either focussed on on fungi present on beetles, or 

fungi present on wood – very few have examined both at once. Future studies would benefit 

from enlarged beetle sample sizes, implementation of rapid screening techniques, and also 

comparing fungal communities present within beetle species from population and regional 

sampling scales. 

Species identification through HRM curves, in conjunction with specific primers, represents 

a promising tool to better understand fungal population dynamics on beetles, and screen beetles 

for potentially pathogenic and stain causing fungal associates. Advantages of this method over 

the classical techniques include a dramatic reduction in cost, no need to pour gels or use 

hazardous chemicals (such as ethidium bromide), higher chance of detecting slower growing 

organisms,  and a rapid turnaround time of a matter of hours. With the development, and 

reduction in costs associated with qPCR equipment, this method could be implemented at points 

of interception of invasive organisms offering quick and accurate identification aiding in the 

prevention and response to biosecurity incursions. 
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Chapter 5 - General Discussion 

5.1 Overview 

Forest managers world-wide face increasing challenges from escalating biosecurity and forest 

health issues that threaten the production of timber and the provision of ecosystem goods and 

services (MEA 2005). Outbreaks of forest pests and diseases and continuing invasions of exotic 

forest insect pests and pathogens are important drivers of forest health issues world-wide 

(Brockerhoff et al. 2006b, Aukema et al. 2010). These forest health issues are exacerbated by 

the increasing frequency and magnitude of storm events in a changing global climate (Easterling 

et al. 2000, Emanuel 2005). To some extent, these interactions between pest complex, stand 

structure, and environmental conditions have been one of the primary concerns of foresters 

since the advent of large scale production, particularly in plantation monocultures that are 

especially vulnerable to outbreaks (Dinoor and Eshed 1984). However changing climatic 

conditions are seeing the expansion of historical geographic ranges of many pest species, 

bringing about rapid changes in the activity, development, phenology, and survival of novel pest 

species on commercially-important host tree species (Karban and Strauss 2004). For example, 

the pine processionary moth (Thaumetopoea pityocampa Denis & Schifferműller) is an 

important defoliator of pine trees. A warming climate and milder winters in southern and central 

Europe have led to a northward expansion of its geographic range, and outbreaks are now 

occurring in areas that were previously too cold and not affected by this pest (Battisti et al. 

2005). 

Novel pest and pathogen interactions with trees are also becoming more common as the 

increasing global movements of people and products transport species across biogeographic 

barriers. For example, in the USA the spread of Dutch elm disease (Ophiostoma ulmi), a 

pathogenic fungus of Himalayan origin, was facilitated by a novel vector-pathogen association 

with European and North American bark beetles (Webber 1990). In the converse situation, the 

establishment of tree crops in novel environments can also lead to unexpected pest or pathogen 
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problems. For example, Eucalyptus nitens plantations established in South Africa have been 

attacked by the moth Coryphodema tristis which is normally a pest of fruit such as grapes or 

quince, but has unexpectedly switched hosts (Gebeyehu et al. 2005).  

Bark beetles are among the most damaging insect pests in plantations, and climate change 

has led to several outbreaks of these beetles due to warming at higher latitudes and elevations 

(Williams and Liebhold 2002). This is especially important when it involves pathogen-vectoring 

tree-killing bark beetles such as the southern pine beetle (Dendroctonus frontalis) and the 

mountain pine beetle (D. ponderosae), both of which are spreading across North America as the 

climate warms (Williams and Liebhold 2002, Kurz et al. 2008). Fortunately, New Zealand does 

not (yet) have any tree-killing bark beetles, but there is evidence of geographic range expansion 

in the secondary pests that are present. Hylastes ater was detected in New Zealand in 1929 

(Clark 1932), and is now present wherever pines occur across the country. Hylurgus ligniperda, 

on the other hand, was first detected in 1974 in the North Island (Bain 1977a), but has only 

recently been detected as far south as Dunedin (Kerr 2010).  

The interactions observed today between species present in New Zealand plantation forests 

are mostly the result of a small subset of species being drawn from natural pine ecosystems on 

the other side of the world which have been deposited in a novel biogeographic region, with a 

wide range of interacting species native to New Zealand. There are interactions between trees 

and bark beetles, and bark beetles with fungal pathogens from all around the globe resulting in a 

unique novel assemblage of species together for the first time. Understanding the dynamics of 

these species in their novel environment is crucial to effectively responding to potential pest 

threats.  

This is the first study in New Zealand quantifying the importance of bark beetles as vectors 

of sapstain fungi, in comparison to those distributed by wind and rain. The goal of this research 

was to investigate the role of bark beetles as vectors of sapstain and to investigate the potential 

synergistic interactions between beetles and sapstain fungi under differing seasonal and 

environmental conditions that might exacerbate the impact of sapstain on timber 
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merchantability following increasingly frequent storm damage. 

 

5.2 The effects of beetle colonisation on sapstain development 

In this study trees were experimentally felled to simulate windthrow and track the development 

of sapstain over time, depending on the region and season of the (simulated) storm. Bark beetle 

colonisation of windthrown logs was relatively uncommon, and where it did occur there was no 

correlation between insect attack and sapstain development. This was supported by the fungal 

isolations where 96% and 95% of all sapstain fungi isolations in Nelson and Christchurch, 

respectively, were identified as Diplodia pinea – a species not commonly vectored by bark 

beetles. The low level of bark beetle attack was consistent with the environment provided by the 

windthrow simulated trees where the logs are held in the air by branches and other trees, rather 

than being in contact with the ground. This is not conducive to attack by either H. ater or H. 

ligniperda, which generally colonise wood that is in contact with the ground (Mausel et al. 

2007). 

To elucidate the role of bark beetles further under more controlled conditions, a manipulative 

field experiment was established where logs, in contact with the ground, were either protected 

from beetles with cages or left exposed to allow natural levels of beetle colonisation. Although 

some bark beetles did manage to penetrate the exclusion netting (the cages were ca. 94 % 

effective), there was a clear correspondence between bark beetles and stain, where the presence 

of bark beetles (along with larvae of a few other unidentified beetles and flies) increased the 

amount of stain in the section of wood affected by bark beetle attack. Bark beetle colonisation 

of the uncaged logs occurred almost exclusively in the parts of logs that were in contact with the 

ground, with no colonisation of the upper surfaces, and this was matched by the pattern of the 

stain. The stain of the caged logs, however, was primarily concentrated at the exposed cut faces 

at the terminal ends. Stain development was reduced near the centre of these logs, where the 

undamaged bark provides protection to the sapwood from wind-blown spores.  
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These findings indicate that, in New Zealand, the role of bark beetles in vectoring sapstain 

fungi is not as important overall as in other countries where other bark beetle species occur that 

attack the entire log and not just those parts that are in ground contact. This is relevant in 

windthrow situations where substantial parts of logs are not in ground contact, with a 

concomitant reduction in the risk of beetle-facilitated sapstain attack. The greater importance in 

New Zealand of D. pinea as a sapstain-causing fungus, compared with ophiostomatoid fungi, 

also contributes to a diminished role of bark beetles as vectors of sapstain fungi because, unlike 

many ophiostomatoid fungi, D. pinea is not vectored by bark beetles. The fact that bark beetles 

still play a potentially important role in facilitating sapstain, as seen in the experiment 

comparing caged and uncaged logs in ground contact, is probably due to two factors: (i) logs in 

ground contact are clearly at greater risk from attack by bark beetles as well as beetle-vectored 

sapstain fungi, and (ii) bark damage caused by beetle tunnelling is likely to provide access also 

to the omnipresent D. pinea.  

 

5.3 Sapstain species associated with New Zealand bark beetles 

Although bark beetles do not appear to be vectors of the most important stain fungus in New 

Zealand, D. pinea, I still found a rich flora of ophiostomatoid fungi associated with all three 

species (H. ater, H. ligniperda, and Pachycotes peregrinus). These fungal species did not 

contribute significantly to stain levels of windthrown timber in this study, but they have been 

shown to be vectored to P. radiata seedlings in New Zealand and even cause seedling death 

(Reay et al. 2001, Reay et al. 2002, Reay et al. 2005). Although seedling mortality is generally 

low, large numbers of seedlings can be damaged by the beetle feeding around the root collar. 

Under certain circumstances, such as drought or sub-lethal damage by bark beetles, the 

pathogenicity of vectored ophiostomatoid fungi may become an issue and contribute to seedling 

growth inhibition, or death (Desprez-Loustau et al. 2006). 

Pachycotes peregrinus is a native wood borer that attacks all exotic softwoods, as well as 

native softwoods, such as Podocarpus ferrugineus (miro), Dacrydium cupressinum (rimu) and 
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Agathis australis (kauri) among others (Bain 1977b). In this thesis, P. peregrinus was found to 

vector ophiostomatoid fungi for the first time. As P. peregrinus is a non host-specific species, 

there is the potential for this species to transmit both exotic pathogens to native trees, and native 

pathogens to exotic trees. Both H. ater and H. ligniperda are not known to colonise native trees 

(Brockerhoff et al. 2003), so the potential for P. peregrinus to be a vector of these exotic (and 

native) pathogenic fungi could have effects on both native biodiversity, and economic 

productivity of plantation forests.  

Such issues are not commonly considered in plantation forest management within a wider 

landscape context, and there is an unappreciated wealth of species- and interaction-diversity 

among these production systems. Methods to identify the presence of such interactions, from 

biosecurity, pathology, and forestry points of view are crucial in order to effectively protect 

these important aspects of both the native landscape, and forest economy. 

  

5.4 Rapid screening of bark beetles for ophiostomatoid fungi 

A new method to identify fungal species on bark beetles, or indeed any substrate, was 

developed in this thesis. Extremely precise high resolution melt (HRM) technology was used in 

order to identify fungal species on a particular beetle, from a pre-defined library of known 

fungal species. These known species formed a library, whose exact DNA melt temperatures 

were known, and these were compared with the melt points of unknown fungi grown from 

beetles in conjunction with specially designed primers. 

This new technique is thought to have a broad suite of applications such as biosecurity 

screening of plant and insect matter, identification of pathogenic fungi from trees, and 

confirmation of species identification. It has a range of advantages: it only costs approximately 

50 c per beetle to process (in NZ dollars, 2011), the procedure is rapid and results can be 

obtained within just a few hours, and it is safer than usual methods of identification via gel 

electrophoresis where hazardous substances such as ethidium bromide may be used. A large 

scale application of the technique to assess the differences of fungal populations on different 
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beetle species, and different populations of the same beetle species, is under way, however 

results were not available in time for publication of this thesis. 

 

5.5 Management impacts from varying rates of sapstain fungal colonisation of fallen 

timber 

In the experimental windthrow study there were marked differences in the extent of sapstain 

development between the two climatically different regions, Nelson and Canterbury, and there 

were equally marked differences in the rate of sapstain onset depending on the seasonal 

occurrence of the (simulated) windthrow. Sapstain onset is not simply a time-dependent 

relationship, but depends on seasonal temperatures that influence the drying rate of the wood. 

For example, following a storm in the Nelson region during summer, less than three months 

would be available to salvage-harvest damaged trees before average sapstain cover is greater 

than 60 %, where its value is reduced considerably. Consequently, it is recommended that 

salvage harvest operations are commenced immediately, with the most valuable stands 

harvested first. Conversely, after the same period of time following a summer storm in 

Canterbury, the average stain cover would only reach 11.3 % [...and what would that mean for 

economic loss?]. Following storms in winter, stain levels remained very low (~0 %) for at least 

six months in both regions.  

The strong context-dependence in sapstain development might suggest that management 

guidelines for windthrown timber would be difficult to develop, or would need to be specific to 

regions and seasons. While this might be true to an extent, there does appear to be a fairly 

simple deterministic relationship between tree moisture content and sapstain growth that might 

underlie the observed variation in sapstain development. There was also a moisture content 

threshold (~100%) above which sapstain did not occur, but once moisture content fell below 

that, stain developed in response to temperature. Due to the warmer temperatures of summer 

and spring, windthrown logs dried out faster, and therefore were more heavily and quickly 

stained than those that fall during winter and autumn. [need an extra sentence saying that both 
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regions seem to follow a remarkably similar relationship between moisture and sapstain]. There 

was some uncertainty as to the reasons for faster moisture loss and faster sapstain development 

in Nelson than Canterbury. The expectation might have been that trees felled in Bottle Lake 

should have developed stain at a faster rate than those in Golden Downs due to higher 

temperatures and lower rainfall, but this was not the case. Felled trees in Nelson had 

consistently faster levels of drying and higher levels of stain, although the factors driving this 

remain unknown. 

Although bark beetles were present at all sites, they did not have a significant effect on stain 

development in either region. These beetles were predominantly present during the warmer 

months of spring, summer, and autumn. Actual bark beetle attack of fallen logs was relatively 

rare. The physical effects of branches holding logs from the ground during windthrow prevent 

mass-colonisation by bark beetles in New Zealand for this reason, but this is unlikely to be the 

case in countries with more aggressive species of bark beetle, such as Dendroctonus 

ponderosae. Perhaps because of the limited beetle attack, the main stain species isolated was D. 

pinea – a non insect-vectored fungus, which accounted for 96.4 % and 95.3 % of all stain fungi 

isolated from Golden Downs and Bottle Lake, respectively. Eight species of ophiostomatoid 

fungi were also isolated from wood in this study, but they were all rare. This is consistent with 

other studies of its type in Nelson (McCarthy et al. 2010), and also with the non-significant 

effect of bark beetles on stain development , except when logs are in direct contact with the 

ground. 

 

5.6 Overall synthesis, and suggested future research 

Bark beetles are vectors of sapstain fungi in New Zealand, however their behaviour and attack 

strategies reduce their impact as stain vectors affecting windthrown timber. The stain fungi are 

carried on the beetles exoskeleton, or in the gut contents. There is also the potential that bark 

damage caused by beetle tunnelling is providing access to D. pinea who are the main culprits of 

sapstain in this context. The attack patterns of H. ater and H. ligniperda suggest they would be 
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more problematic to logs in ground contact and those stacked following harvesting once their 

branches are removed. Salvage harvest of wind damaged stands should be immediate if the 

damage occurs during summer. If the damage occurs at any other point of time during the year, 

logs will develop very low levels of stain until the following summer, when stain development 

will increase rapidly. 

Many questions have arisen from this set of initial experiments. These questions provide the 

basis for some suggestions of future research directions in four key areas, which are listed 

below: 

1. Why are there differences in the rate of sapstain onset between regions? Is it solely a 

temperature- and nutrient-driven process, or are other environmental factors 

important such as rainfall or propagule density in the landscape? What are the 

sources of inoculum for wind and rain dispersed species, and how do they differ 

regionally? 

2. What is the importance of other insects as sapstain vectors, and what groups are 

contributing? It is possible that there are insect groups that are equally, or even more 

important than bark beetles as vectors of sapstain fungi, even though this possibility 

has received little attention so far. 

3. What contributions do endophytic fungi make to sapstain development, in 

comparison to those dispersed by wind or rain? 

4. What effect would border-incursion of an aggressive bark beetle species, that does 

colonise standing trees and fallen trees that aren‟t in ground contact, have on the rate 

of sapstain development following windthrow? 
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Abstract 

Storm damage in production forests constitutes a major source of economic loss world wide, yet the 

retrieval of salvageable timber remains problematic. In particular, an inability to anticipate when 

sapstain and degrade will appear hampers the planning of log recovery operations. A study was 

conducted to monitor the deterioration of fallen trees following two winter storms causing wind and 

snow damage in a Pinus radiata plantation forest in the upper South Island of New Zealand. 

Percentage sapstain, incidence of basidiomycete decay fungi, and frequency of bark beetle 

infestation increased, while percentage sapwood moisture content decreased, over a period of 1 year. 

These changes proceeded more rapidly in fallen trees that were severed at stump height, to simulate 

breakage, than in those that were left partially rooted. There was little beetle activity at the time of the 

storms, but Arhopalus ferus (Coleoptera: Cerambycidae), and Hylastes ater, Hylurgus ligniperda and 

Pachycotes peregrinus (Coleoptera: Curculionidae: Scolytinae), were collected in flight traps during 

the following spring and summer. The predominant fungal species associated with sapstain was 

Diplodia pinea, while Ophiostoma piceae and Grosmannia huntii were isolated near the end of the 

period. The main decay fungi obtained were Phlebiopsis gigantea, Stereum sanguinolentum, and 

Schizophyllum commune. A generalized linear mixed model was constructed to predict the 

development of sapstain in fallen trees for conditions prevailing during the study after a storm at the 

same time of year. According to the model, a 10 m long butt log of 22 cm mid length diameter will 

have minimal stain (<10% of the cross sectional area affected) when cut from severed stems up to 4 

months after the storm; if taken from still-rooted trees this period will extend to 1 year. However, 

because of large between-tree variation, economically productive log recovery will also depend on the 

proportion of trees that lie below an acceptable sapstain threshold. Further research is needed to 

determine regional and seasonal influences on the development of sapstain in fallen trees. 
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HM1F  CAAGGTCTCTGTTGGTGAACCAGCGG----------------------------------------------------------------------------------------------[120] 

HM2R  ------------------------------------------------------------------------------------------------------------------------[120] 

HM1R  ------------------------------------------------------------------------------------------------------------------------[120] 

HM2F  ------------------------------------------------------------------------------------------------------------------------[120] 

O.piceae  CAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTAGCGAGTT--TT-CAACTCCCAACCCTTGCGAACCGTACCCCGTTCT------------GTTCTCGTTGCTTC-TGGCGGGAGG[120] 

D.pinea  CAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAATGAGAT---CATGCCCCTCGGGGTAGACCTCCCACCCTTTGTTTAC--------AATACCATTGTTGCTTT--GGCGGCCCC[120] 

G.huntii  -------------GGTGA-CCAGCGGAGGGATCATTAGCGAGTTCACTGCGACTCCCAACCCGTGCAAACCTTACCGCATCCTTTCTGAGAGAGAGCGCCCGTTGCCTCCTGCCGGGCGG[120] 

O.galeiforme CAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTAGCGAGTTCACAGCGACTCCCAACCCGTGCATACCT-ACCGCGCCCTCC-------GGGGCGCCCGTTGCCTCCTGGCGGGC--[120] 

O.piliferum CAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTATCGAGTTA-TC-CAACTCCCAACCCTTGCGAATCGTACCCCGTTCT------------GTTCTCGTTGCTTC-TGGCGGGAGG[120] 

O.pluriannulatum CAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACAGAGTT--TT-TAACTCCCAACCCTTGCGAACCGTACCCCGTTCT------------GTTCTCGTTGCTTC-TGGCGGGAGG[120] 

O.stenoceras CAAGGTCTCTGTTGGTGAACCAGCGGAGGGATCATTACAGAGTTT-TCTAAACTCCCAACCCTTGCGAACCATACCC-ATACT------------GTTCTCGTTGCTTC-CGGCGGGGGA[120] 

S.inflata ------------------------------ATCATTACAGAGTTT-TCACAACTCCCAACCCTTGCGAACCGTACCC-ATTCT------------GTTCTCGTTGCTTC-CGGCGGGGGG[120] 

 

HM1F  ------------------------------------------------------------------------------------------------------------------------[240] 

HM2R  ------------------------------------------------------------------------------------------------------------------------[240] 

HM1R  ------------------------------------------------------------------------------------------------------------------------[240] 

HM2F  ------------------------------------------------------------------------------------------------------------------------[240] 

O.piceae  GGGG---------GGGCGCGTC---CTTCGG--GGCGCGCCTCTCTCTCCCAGGTCCCTTC-------------------------------GGGGCGCCCGCCAGCGGCC-GCGAGCCG[240] 

D.pinea  GTCGC-------------------------------------AAGACAACCGGCTCCGG---------------------------------------CTGGTCAGCGGCCGCCAGAGGA[240] 

G.huntii  CGTGC-----------CCCTCCCCCCCTTTGCTGGGGGCGGACGGGTGCCCGCCCGCCG---------------------------------GGGACGCGGCGCGGCCGCTCCCTCTCGC[240] 

O.galeiforme --CGC-----------CGCGCCC-----------------AGCGCGCGCGCGCCCGCCG---------------------------------GGG-------------GCTCTC------[240] 

O.piliferum CGGACTGGGTGGCGGGCAAGGCTGGCTTCGGCCGGCCCTGCTCTGCTGCCCGGGCCTCCCCCGGTCCTCCCTCTGGCCCTCGGGCCAGGGACGAGGCGCCCGCCAGCGGTCAGCGAGCCA[240] 

O.pluriannulatum GGAG---------GGGCGCGTC---CTTCGG--GGCGTGCCTCTCTCTCCCAGGTCCCTTC-------------------------------GGGGCGCCCGCCAGCGGCC-GCGAGCCG[240] 

O.stenoceras CGGGG------------------------CGGGGTGCTCTCTCGAGCGCCCCTCCCCTCC--------------------------------------CGCGCCGGGGGCG-GCGGGCCC[240] 

S.inflata GACG-------------------------GGGGGGCCCGAAACGGCCTCCCCGCCCC----------------------------------------GCCCGCCGGGGGCG-GCGGGCCC[240] 

 

HM1F  ------------------------------------------------------------------------------------------------------------------------[360] 

HM2R  ------------------------------------------------------------------------------------------------------------------------[360] 

HM1R  ----------------------------------------------------------------CTTTCAACAACGGATCTCTTGGKTCTGGC---------------------------[360] 

HM2F  ------------------------------------------------------------------------------------------------------------------------[360] 

O.piceae  CCTGAACTTTT---TTTAAACC-GTAACGAAAC-GTCTGAGAAACAAA-CAAAAACAGCCAAAACTTTCAACAACGGATCTCTTGGCTCTGGCATCGATGAAGAACGCAGCGAAATGCGA[360] 

D.pinea  CTCCAAAACTC----ATAT-----TGTCATTGTCGTCTGAGTACTA----TACAATAGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGA[360] 

G.huntii  CGCGAACCTTC----TTTGCCGTATATCTGTATCGTCTGAGCAA-AACCACAGAATCGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAACTGCGA[360] 

O.galeiforme --CGAACCTCA----GCAG-----TAACAGTA-CGTCTGAGCAA-AACCACTGAATCGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAACTGCGA[360] 

O.piliferum CTCTGAACTCT---TATAAACCGTTTTAGTTACTGTCTGAGAAACAAAACAAAAATAGCCAAAACTTTCAACAACGGATCTCTTGGCTCTGGCATCGATGAAGAACGCAGCGAAATGCGA[360] 

O.pluriannulatum CCTGAACTTTT---TATAAACCAGTAACGAAAC-GTCTGAGAAACAAA-CAAAAACAGCCAAAACTTTCAACAACGGATCTCTTGGCTCTGGCATCGATGAAGAACGCAGCGAAATGCGA[360] 

O.stenoceras TATGAACCTTTATATCTCAACCACTA--GAAACCGTCTGAGAAACAAA--CAAAATAATCAAAACTTTCAACAACGGATCTCTTGGCTCTGGCATCGATGAAGAACGCAGCGAAATGCGA[360] 

S.inflata TACGAACCTTTATATCTCAACCACTA--GAAACCGTCTGAGAAACAAA--CAAAATAATCAAAACTTTCAACAACGGATCTCTTGGCTCTGGCATCGATGAAGAACGCAGCGAAATGCGA[360] 

 

HM1F  ------------------------------------------------------------------------------------------------------------------------[480] 

HM2R  ------------------------------------------------------------------------------------------------------------------------[480] 

HM1R  ------------------------------------------------------------------------------------------------------------------------[480] 

HM2F  ---------------------------------------------------------------------------GGCATGCCTGTYCGAGCGTCATTWC--------------------[480] 

O.piceae  TACGTAATGCGAATTGCAGAATTCAGCGAGTCATCGAATCTTTGAACGCACATTGCGCCCGCCAGCATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCCCCCCTCA----GCACGCCC[480] 

D.pinea  TAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTTCGAGCGTCATTACAACCCTCA------AGCTCT[480] 

G.huntii  TAAGTAATGCGAATTGCAGAATTCAGCGAGCCATCGAATCTTTGAACGCACATTGCGCCCGCCAGCATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCCTCCCTCACGCAGCGCGCCT[480] 

O.galeiforme TAAGTAATGCGAATTGCAGAATTCAGCGAGCCATCGAATCTTTGAACGCACATTGCGCCCGCCAGCATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCCTCCCTCACGCGGCCCCCCC[480] 

O.piliferum TACGTAATGCGAATTGCAGAATTCAGCGAGTCATCGAATCTTTGAACGCACATTGCGCCCGCCAGCATTCTGGCGGGCATGCCTGTTCGAGCGTCATTTCCCCCCTCA----GCACGCCT[480] 

O.pluriannulatum TACGTAATGCGAATTGCAGAATTCAGCGAGTCATCGAATCTTTGAACGCACATTGCGCCCGCCAGCATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCCCCCCTCA----GCATACCC[480] 

O.stenoceras TACGTAATGTGAATTGCAGAATTCAGCGAACCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCCCCCCTCA-----CGCGCCC[480] 

S.inflata TACGTAATGTGAATTGCAGAATTCAGCGAACCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCCCCCCTCA-----CGCGCCC[480] 
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HM1F  ------------------------------------------------------------------------------------------------------------------------[600] 

HM2R  ------------------------------------------------------------------------------------------------------------------------[600] 

HM1R  ------------------------------------------------------------------------------------------------------------------------[600] 

HM2F  ------------------------------------------------------------------------------------------------------------------------[600] 

O.piceae  TTTGGGTGCGCTGGCGTT--GGGGCT---CCTCCGCCCTCTGT-GGCGGCAG--GGCCCTCAAATCCAGTGGCGGGCCCGTCTGGTTGGCTCCGAGCGCAGTACCGAACGCAAGTTCTCT[600] 

D.pinea  GCTTGGTATTG-GGCGCC----------ACCCCCG----------------GGTGCGCCTTAAAATCAGTGGCGGTGCCG----TCTGGCTTCAAGCGTAGTA----------ATACTTC[600] 

G.huntii  GCGTGGTGTTGGGGCGTTCTGCGGCCAGGCCTGCGCCCAGCGCAGGCCGCCGCAGCCCCCGAAAGCCAGTGGCGGGCCGG--CAGCGGGCTCCGAGCGCAGTA---AGCATCA-CGCCCT[600] 

O.galeiforme GCGTGGTGTTGGGGCGTTCTGCGGC--GGCCT--------CGC-GGCCGGCGCAGCCCCCGAAAGCCAGTGGCGGGCCGG--CGGCGG-CTCCGAGCGCAGTA---AGCACCAGTGCCCT[600] 

O.piliferum TC--GGCGCGCTGGCGTT--GGGGCT---CCTCCGCCCTCTGT-GGCGGCAG--GGCCCTCAAATCCAGTGGCGGGCCCGACTGGTTGGCTCCGAGCGCAGTACCGAACGCAAGTTCTCT[600] 

O.pluriannulatum TTTGGGTGCGCTGGCGTT--GGGGCT---CCTCCGCCCTCTGT-GGCGGCAG--GGCCCTCAAAACCAGTGGCGGGCCCGTCTGGTTGGCTCCGAGCGCAGTACCGAACGCAAGTTCTCT[600] 

O.stenoceras -CGTTGCGCGCTGGTGTT--GGGGCT---CCTCTGCC---------TGGCAGAGGGCCCCCAAAGCGAGTGGCGGGCCCGGCTGGTGG-CTCCGAGCGCAGTACCGAACGCAAGTTCTCC[600] 

S.inflata CGT-TGCGCGCTGGTGTT--GGGGCT---CCTCCGCC-----T-GGCGG-AG--GGCCCCGAAAGCGAGTGGCGGGCCCGGCTGGTTGGCTCCGAGCGCAGTACCGAACGCAAGTTCTCC[600] 

 

HM1F  ------------------------------------------------------------------------------------------------------------------------[720] 

HM2R  ---------------------------------------------------------------------------------------------------------------CCGCTGAAC[720] 

HM1R  ------------------------------------------------------------------------------------------------------------------------[720] 

HM2F  ------------------------------------------------------------------------------------------------------------------------[720] 

O.piceae  CTCTCGCTCTGCAGCCCCGGCCGGCGCCCAGCCGTCAAGCCGCGCAGGCGACCCT-CTCG-AGGGCCGCCTCGCATTTTT----------------------------------------[720] 

D.pinea  ---TCGCTTTGGAGTCCGGGCGAGCGTCCTGCCAA-AACCCCCATATTTTTTTCAGGTTGACCTCGGATCAGGTAGGAGATACCCGCTGAACTTAAGCATATCA----------------[720] 

G.huntii  --CGCTCTGGACGCCCCCCGCCTGCGCCCTGCCCCCCC-CCGACCGGCAGACGCG-----------AGTCTGTCTCCTTCTCAAGGTTGACCTCG-------------------------[720] 

O.galeiforme --CGCTCCGGACGACCACCGCCTGCGCCCTGCCC------AGAACG-CGGACGCG-----------AGTCTCGCACCT-CACAAGGTTGACCTCGGATCAGGTAGGACTACCCGCTGAAC[720] 

O.piliferum -TCTCGCTCTGCAGCCCCGGCCGGTGCCCAGCCGTCAAGCC-TGCGAGTGGCCTC------ACAGCCGCCCGCTATCTTTTATAAGGTGACCTCGAATCAGGTAG---------------[720] 

O.pluriannulatum CTCTCGCTCTGCAGCCCCGGTCGGTGCCCAGCCGTCAAACCGCGCAGGAGGCTCTGCTTGCAGAACCGCCTCGCATTTTTACAAGGTTGACCTCGGATCAGGTAGGATTACCCGCTGAAC[720] 

O.stenoceras ATCTCACTCGGACGCCCCG-TCGGCGCCTTGCCAGTTCAAATCGCGCATGACGTG--------------CAACTCTTTTTACAAGGTTGACCTCGGATCAGGTAGGACTACCCGCTGAAC[720] 

S.inflata -CCTCGCTCAGACGCCCCG-CCGGCGCCCTGCCGTCAAAACGCGCATGACGTGCAACTC-------------------------------------------------------------[720] 

 

HM1F  ------------------------[744] 

HM2R  TTAAGCATATCAATAAGCGGAGGA[744] 

HM1R  ------------------------[744] 

HM2F  ------------------------[744] 

O.piceae  ------------------------[744] 

D.pinea  ------------------------[744] 

G.huntii  ------------------------[744] 

O.galeiforme TTAAGCATATCAAT----------[744] 

O.piliferum ------------------------[744] 

O.pluriannulatum TTAAGCATA---------------[744] 

O.stenoceras TTAAGCATATCAATAAGCGGAGGA[744] 

S.inflata ------------------------[744] 
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