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ABSTRACT 

In this paper, the seismic performance of the as-designed SAC Los Angeles 3 storey 

seismic frame with rigid moment connections at the beam ends is compared with that 

of the same frame using semirigid connections with high force-to-volume (HF2V) 

lead dissipators. The presence of the gravity frames in the model is also considered. It 

was found that the placement of dissipators, ignoring the effect of the gravity frames, 

caused a 12% increase in period of the frame due to the decreased stiffness of the 

connections. During design level ground shaking the semi-rigid connections with 

HF2V dissipators have slightly lower accelerations, up to an 80% increase in peak 

drift, and a 200% increase in the permanent displacement compared to the as-

designed case, but no structural damage is expected.  When the gravity frames are 

considered, the floor accelerations decrease further, the peak displacements do not 

significantly change, but the residual storey dirft ratios reduce to approximately 

0.17%. This result is less than one half that of the as-designed frame, where typically 

gravity frame effects are not considered. The realistic analyses combining HF2V lead 

dissipators with gravity frames and well-designed non-structural elements creates a 

system with almost no structural damage and low residual displacements.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35466768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

1. Introduction 

 

Where steel moment frame structures are expected to be exposed to moderate or 

strong earthquakes, they are designed to accept damage in the beam end plastic hinge 

zones or in the beam-column joint panel zones. Furthermore, large permanent 

displacements may be present at the end of the earthquake shaking. Repair costs for 

such damage and consequent downtime can be substantial to the building owners and 

users, creating significant economic and business impacts. 

 

The use of a Damage Avoidance Design approach (DAD) (Mander and Cheng 1997) 

approach, with relatively damage-free connections, reduced repairs, and minimized 

disruption would substantially reduce economic and business impacts. Damage 

avoidance may be achieved in moment frames by using special devices that do not 

show degradation of dissipative performance with use. Ideally, such devices would 

perform in a consistent and repeatable manner on every response cycle throughout the 

life of a structure, and would not require maintenance or replacement after a seismic 

event. 

 

Energy dissipation devices using lead were proposed by Robinson and Greenbank 

(1976) to absorb energy in a controlled, repeatable manner as a base isolation system. 

Lead is ideal for this purpose due to its unique rheological properties, low re-

crystallisation temperature, and ability to allow any residual compression forces in the 

device to creep back towards zero over time (Rodgers et al. 2008b). Prototype devices 

of 100-700 kN capacity have been used in several bridges and buildings in New 

Zealand (Skinner et al. 1993). A summary of the state of the practice that developed 
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from this early work is given by Cousins and Porritt (1993). While these devices were 

ideal for their intended purpose, they were too large to fit within standard structural 

connections, despite having the necessary resisting force and energy dissipation 

capacity.  

 

Recently developed high force-to-volume (HF2V) dissipation devices of compact size 

(Rodgers et al. 2007) can fit directly into beam-column connections to enable true 

damage avoidance connections. The device consists of a steel cylinder filled with lead 

and through which a shaft with a bulge passes. As the shaft is moved, the lead moves 

around the bulge providing a resisting force. These devices may be modelled as 

weakly velocity sensitive non-linear viscous dampers, whereby, at higher velocities, a 

slightly greater resisting force is provided. The relationship between velocity and 

damper force, FDamper, is defined in (Pekcan et al. 1999): 

 

 α
α xCFDamper =        (1) 

where Cα = a constant dependent on specific device geometry, x  = the velocity of the 

damper shaft relative the casing, and α = the velocity exponent, which is within the 

range of 0.11-0.15 (Rodgers et al. 2008a), and taken as 0.12 in this study (Cousins and 

Porritt 1993). 

 

The HF2V devices are relatively inexpensive to manufacture and they have been 

experimentally characterized, with full details shown by Rodgers et al. (2007). Energy 

can be dissipated on every successive dynamic response cycle without strength 

degradation or permanent damage (Rodgers et al. 2008b), in contrast to conventional 

steel connections or connections with sacrificial dissipators (Bradley et al. 2008; Li 
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2006). These attributes, and the low cost, make them potentially economically 

feasible for wide use in large buildings where a damage-free response is desired. 

Figure 1a shows a picture of a 120 kN capacity prototype device. 

 

           (a) Device with mounting bolts                  (b) In Concrete DAD Connection 

Figure 1: Cylindrical 120 kN HF2V Device Use 
 

Figure 1b shows a 120 kN prototype device and mounting brackets externally placed 

on an 80% full size prestressed concrete connection (Rodgers et al. 2008b). In 

addition to these experimental studies, spectral analysis has led to the development of 

performance-based design guidelines to characterize their impact on seismic response 

over suites of ground motion records (Rodgers et al. 2008a).  

 

To address the performance of steel moment frames, it is necessary to answer the 

following questions: 

1) Can HF2V devices be used in steel frames? 

2) Can these devices in steel joints be modelled appropriately? 

3) Are there ways to minimize permanent displacements of the structure? 

4) How does the response change when using these devices, instead of 

conventional connections, in modern steel moment resisting frames?  
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In an attempt to address and answer these questions, this paper conducts several non-

linear dynamic analyses to compare the seismic performance of a structure with and 

without the HF2V devices. The structure analysed is the SAC Steel Project three story 

steel moment resisting frame designed for Los Angeles. Floor accelerations, peak 

story drifts and permanent story drifts are the parameters that will be used to describe 

the need of cost- and time-intensive structural repairs.  

 

2. Application of HF2V Devices in Steel Buildings 

A simple device model with low computational cost is required to consider these 

devices in large non-linear dynamic simulations. The HF2V joint connection design to 

be modelled is shown in Figure 2 for an experimental 50% scale steel beam column 

connection used to investigate device properties and their impact on hysteretic steel 

connection behaviour (Desombre et al. 2011; Mander et al. 2009). The beam end is 

cut at an angle of 0.1 radians to provide space for joint rotational motion to be 

transmitted to the device. The upper flange is connected to the column by means of an 

angle bracket and bolts, effectively hinged at the top edge to form a semi-rigid 

connection. Both axial and shear force is considered to be carried by this connection. 

 

The device is connected above or below the beam bottom flange and the end of the 

shaft passing through the device is connected to the column flange. The eccentricity 

between the top-flange rocking connection and the damper line of action is an 

important consideration in design. An increase in eccentricity will lead to increased 

lateral resistance and increased frame stiffness for a given damper size. Alternatively, 

the required damper capacity is reduced for a given frame resistance by increasing the 
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damper eccentricity, although the required stroke capacity of the damping device is 

increased accordingly. 

 

 

Figure 2: Steel Joint with HF2V Device Setup 

 

3. Modelling HF2V Devices in Steel Buildings 

The experimental setup in Figure 2 was modelled in detail with separate consideration 

of the device, beam, column and the pinned connection on the top of the beam. It was 

carried out using the finite element program ABAQUS. While this model allowed the 

connection behaviour to be appropriately modelled, a simpler model was desired for 

multiple time history analyses of a multi-storey building with many connections. A 

rotational hinge element, containing elastic, plastic and velocity dependent (damping) 

components, was therefore developed. 

 

A comparison between the experimental data from the test in Figure 2 and that from 

the simple hinge model developed is shown in Figure 3 (Desombre et al. 2011). Note 
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that the experimental results in Figure 3 have multiple cycles to 4% drift without any 

notable stiffness or strength degradation (Mander et al. 2009). Moderate differences 

between the experimental and model results can be seen at large increasing story 

drifts, where the experimental results have a positive slope and the model results have 

a negative slope.  Two main factors attribute to this difference. First, the flexibility of 

the damper connecting elements result in a lag effect between the velocity of the 

column/connection rotation and the velocity induced within the damping device. 

Second, the damper moves in an arc about the rocking edge, but is only designed to 

allow linear translational motion. Therefore, at large drifts there is some additional 

friction and low level binding of the damper shaft against the endcaps. This additional 

friction results in a slight bi-linear response of the damping device and is the main 

reason for the positive slope of the experimental hysteresis loop. Due to the fact that 

the model does not incorporate these secondary effects, there is a small but notable 

difference in the results at large drifts. The model was considered to be sufficiently 

reliable for incorporation in the building model in this research.  

 

Figure 3: Finite Element Hinge Model Comparison with Experiment 
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4. Minimizing Permanent Displacements 

The HF2V devices exhibit behaviour similar to that from an elastic perfectly plastic 

(EPP) structure as shown in Figure 3. If this device is placed in a real structure, P-

delta effects on the frame are likely to cause the curve to have a negative post-elastic 

stiffness ratio, r, where r is shown schematically in Figure 4a. Single-degree-of-

freedom (SDOF) oscillators with r < 0 have little inherent dynamic re-centering 

capability, as shown by the average residual displacement ratio, ∆r/∆r,max, in Figure 

4b, where ∆r is the residual displacement and ∆r,max is the maximum possible residual 

displacement for the specified target ductility (MacRae and Kawashima 1997). 

Because of the shape of the hysteresis curve, it is likely that even if no damage to the 

structure or contents occurs, the structure may have large permanent displacements 

that will make it vulnerable to aftershocks and difficult to straighten after an 

earthquake. 

 

 

 

 

 

 

 

 

 
Figure 4. Effect of Hysteresis Curve on Residual Displacement Ratio: a) Schematic 
Hysteresis curve, and b) Average Residual Displacement Ratio (Kawashima et al. 

1998) 
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It may be seen from Figure 4 that one means of improving the likely response is to 

increase the post-elastic stiffness factor, r, until it is significantly positive. Another 

method in multi-storey frames is to consider the effect of continuous columns over the 

height of the structure. Such columns, which include the seismic in-plane columns, 

the seismic out-of-plane columns and all gravity columns, provide continuity between 

stories. Thus, the response of the overall frame is not like that of the SDOF oscillators 

in Figure 4. In fact, MacRae et al. (2004) have shown that continuous columns reduce 

the drift concentrations in individual stories. Also, Tagawa et al. (2007) have shown 

that for multi-storey steel frames, where individual stories have a negative post-elastic 

stiffness, the instantaneous post-elastic stiffness ratio, ri, was always greater than zero 

during records causing major yielding due to the presence of continuous columns. In 

dynamic analyses conducted by researchers or practitioners, the effect of column 

continuity is often not considered, except in the seismic frame analyzed, and gravity 

frame effects are thus often ignored. Based on these results, large permanent 

displacements may be mitigated by either increasing the post-elastic stiffness of each 

story, or by providing/considering column continuity.  

 

While post-elastic stiffness of the HF2V device is close to zero, the post-elastic 

stiffness of the total storey in a steel frame may be greater than zero primarily as a 

result of the rotational stiffness of the gravity beam end connections. This added 

stiffness contribution, which can be controlled to some extent in the design and is in 

addition to the contribution of column continuity, is investigated in this research. 

 

5. Frames Analyzed  
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(a) Frame Selection 

The structural system used in this investigation was developed as part of the Los 

Angeles SAC Steel Project (Krawinkler and Gupta 1998). The SAC Project was 

primarily concerned with the impact of connection fractures of steel moment resisting 

frames in nine buildings, with three, nine and twenty storeys designed for Los 

Angeles, Seattle and Boston locations. The structure and earthquake suite used in this 

research were developed for the Los Angeles area (Somerville et al. 1997), whose 

high level of seismic hazard makes it a good candidate for implementation of the 

DAD connections with HF2V devices. 

 

The specific structure in this study is the three-storey steel building designed for Los 

Angeles, also called SAC-3 or LA-3, with moment resisting frames only at the 

periphery. Each bay has centreline dimensions of 9.14 m by 9.14 m and the columns 

extend over the 3 stories of 3.96m height each. Figure 5 shows the typical floor plan. 

The structure is nearly uniform in the two orthogonal directions. The horizontal 

seismic weight per frame at levels 3, 2 and 1 were 5200kN, 4800kN and 4800kN 

respectively.  

 

For the two-dimensional analyses, only the east half of the building is modelled, as 

shown in Figure 5. The seismic frame is modelled directly, but to further reduce the 

total number of degrees of freedom, the other columns on the east half of the building 

are merged into a single "consolidated gravity column" (Axis E) by summing the 

stiffness and strength of the individual columns considering deformation in the N-S 

direction. The consolidated gravity column is slaved in the horizontal direction at 

every floor to the seismic frame to form a complete two-dimensional model shown in 
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Seismic NS Frame on East of Structure All other columns on 
East of structure 

Hinge type depends on case considered 

Figure 6. Pins at the ends of the beams in the right hand bay represent perfectly 

pinned connections. With these pinned connections, the bay width in the right hand 

bay is unimportant. However, this width was assumed to be one half of the actual bay 

width for convenience in different case studies, as discussed later.  

 

 

 

 

 

 

Figure 5: SAC-3 typical floor plan (Luco 2002) 

 

Figure 6: Model 1 - As-Designed Structure 

 

The second and third models considered, Model 2 and Model 3, used HF2V devices 

in the seismic frame, rather than the as-designed rigid beam-column connections. 

These modified connections are shown as rectangular boxes between grid lines A – D 

of Figure 7. As a result, it is expected that this change in connection design will affect 

the structural stiffness and natural period as well as its ability to dissipate energy. 

Seismic  
NS  
Frame 

Side of 
Frame  
Considered 
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Hinge type depends on case considered  

Figure 7: Models 2 and 3 - With Devices in the Seismic Frame  

 

The HF2V device force capacity is chosen to achieve the base shear strength required 

by FEMA 450 (2003). The seismic base shear was determined by Equation (2) where 

Cs is the seismic coefficient and W is the structure’s seismic weight. 

 

WCV S=          (2) 

 

where Cs was determined by Equation (3), SDS = the design spectral response 

acceleration parameter, R = the response modification factor and I = the occupancy 

importance factor. 

 

)//( IRSC DSS =         (3) 

 

For the Los Angeles area, soil type D, an R factor of 8, and a period, T, of 1.0s, means 

Cs = 0.05. Hence, the design strength for this structure is 5% of its seismic weight. 

Model 2 was provided with devices that allowed this base shear value to be reached.  
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Due to the possibility of overstrength, and to have a more reasonable comparison with 

Model 1, Model 3 was designed to resist twice this base shear, or 10% of the total 

weight. In both Models 2 and 3, device capacities were thus selected such that the 

shear resistances at each level over the seismic frame height were proportional to the 

weight above.  

 

For each of the seismic frame models, Models 1-3, three separate cases for the gravity 

beam end connection rotational stiffness and strength were considered. Parameters 

describing the bilinear beam end rotation stiffness and strength values were provided 

beside Column E. These parameters are given in Table 1.  

 

• Case 1 represents the case of a perfect pin with no rotational stiffness (k = 0). 

• Case 2 describes much less effective connection with k = 1.7EI/L and Ms of 

50% of Mp.  

• Case 3 describes a major effect of the gravity beam (and slab) end connection, 

where the rotational stiffness, k = 2.5EI/L and the strength, Ms, is 100% of the 

plastic moment of the beam, Mp.  

  

The values chosen in Cases 1 and 2 are based on previously published experimental 

studies (Liu and Astaneh-Asl 2000; Liu and Astaneh-Asl 2004). In the span D-E 

beam, the point of inflection in the gravity beams is 4.57m from Column E, which is 

the expected location of the point of inflection due to seismic forces. This point is 

shown by the white circles representing perfect pins on the right of column D in 

Figures 6 and 7.   
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The different models (representing the seismic frame characteristics) and the different 

cases (representing the gravity beam end connection bilinear parameters) are given in 

Table 1. Model 1 Case 1 (M1C1) represents the SAC LA3 building design as it is 

generally analyzed with no extra consideration for gravity frame effects. The 

fundamental periods varied from 1.0s for M1C1 to 1.12s for M3C1. Initial stiffness 

proportional Rayleigh damping of 5% was used in the first mode. Velocity 

dependence of the device dissipation was incorporated into the modelling following 

Equation (1) (Desombre et al. 2011). 

 

Table 1: Analysis Matrix 

Model Model Characteristics Case 
Gravity Beam End 

Connection for Case 

1 
As- designed  
seismic frame 

1 k = 0 
2 k = 1.7EI/L, Ms = 50%Mp 
3 k = 2.5EI/L, Ms = 100%Mp 

2 

With HF2V Devices - 
Design Base Shear is 5% of 

Weight 

1 k = 0 
2 k = 1.7EI/L, Ms = 50%Mp 
3 k = 2.5EI/L, Ms = 100%Mp 

3 

With HF2V Devices - 
Design Base Shear is 10% of 

Weight 

1 k = 0 
2 k = 1.7EI/L, Ms = 50%Mp 
3 k = 2.5EI/L, Ms = 100%Mp 

 

 

Dynamic inelastic time history analyses were conducted with ABAQUS using the LA 

medium suite of the earthquake records from the SAC Steel Project (Somerville et al. 

1997). These 20 earthquake records have a magnitude between 6.5 - 7.25, epicentral 

distances of 5 – 40 kilometres and an exceedance probability of 10% in 50 years, 

which equates to a return period of 475 years. They are probabilistically scaled to 

match the design spectrum for the Los Angeles region and they are therefore design 

basis earthquakes (DBE). 
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(b) Frame Behaviour 

The total floor accelerations, relative residual roof drifts and relative storey drifts are 

listed in Tables 2 to 4. In each case, the median (50th percentile) and appropriate 

lognormal standard deviation (Limpert et al. 2001) are calculated based on the 20 data 

points. The log-normal geometric mean (or median) x̂ , based on n samples, ix , is 

defined: 









= ∑

=

n

i
ix

n
x

1
)ln(1expˆ        (4) 

Similarly, the log-normal-based multiplicative standard deviation, σ̂ , is defined: 

∑=−
=

n

i i xx
n 1

2))ˆ/(ln(
1

1expσ̂      (5) 

It is important to note that when using the multiplicative standard deviation as defined 

in Equation (5), the range of one standard deviation, covering on average 68% of the 

data values, is defined as between σ̂/x̂  and σ̂ˆ ×x . The range for two standard 

deviations, covering on average 95% of the data values, is between )ˆ/(ˆ 2σx  and 

)ˆ(ˆ 2σ×x . Finally, three standard deviations covers the range from )ˆ/(ˆ 3σx to )ˆ(ˆ 3σ×x . 

It should be noted that this definition varies from that used for normal distribution and 

is the reason that some of the smaller median values presented in Tables 2-4 (such as 

Interstory Drift) have seemingly large values for the deviation. 

 

 

 

 

 



 16 

 



 17 

Table 2: Response for Gravity Beam End Connection Case 1 (k=0) showing the 
median, multiplicative deviation and percentage change. 

median deviation median deviation change [%] median deviation change [%]
[m/s^2] 8.062 1.640 7.580 1.597 -6.362 7.423 1.618 -8.613
[m/s^2] 6.892 1.535 5.437 1.668 -26.767 5.412 1.665 -27.341
[m/s^2] 8.250 1.483 5.772 1.534 -42.938 5.626 1.535 -46.636

[m] 0.185 1.916 0.359 1.430 94.295 0.327 1.413 76.582
[m] 0.039 2.657 0.120 2.366 207.088 0.067 5.787 70.848
[m] 0.075 1.353 0.133 1.380 77.848 0.122 1.357 63.188
[m] 0.070 1.383 0.122 1.435 73.323 0.111 1.411 58.646
[m] 0.068 1.357 0.110 1.444 60.480 0.089 1.684 30.430

Residual  Roof Drift
Interstorey Drift 3-2
Interstorey Drift 2-1
Interstorey Drift 1-0

Peak Acc Floor 1
Peak Acc Floor 2
Peak Acc Floor 3

 Relative Roof Drift

Model 1 Model 2 Model 3
As built 5 % Baseshear 10 % Baseshear 

 

Table 3: Response for Gravity Beam End Connection Case 2 (k=1.7EI/L, Mpl=50%) showing 
the median, multiplicative deviation and percentage change. 

median deviation median deviation change [%] median deviation change [%]
[m/s^2] 7.874 1.665 7.379 1.624 -6.716 7.228 1.643 -8.950
[m/s^2] 6.837 1.526 5.689 1.653 -20.169 5.582 1.610 -22.475
[m/s^2] 8.645 1.447 6.094 1.534 -41.866 5.940 1.511 -45.532

[m] 0.194 1.370 0.306 1.380 57.301 0.280 1.387 44.105
[m] 0.015 4.408 0.022 2.934 40.491 0.020 2.273 30.161
[m] 0.069 1.353 0.114 1.289 65.711 0.104 1.310 51.940
[m] 0.066 1.367 0.104 1.378 58.551 0.095 1.384 45.344
[m] 0.067 1.350 0.097 1.342 45.064 0.088 1.359 32.319

Model 1 Model 2 Model 3
As built 5 % Baseshear 10 % Baseshear 

Interstorey Drift 2-1
Interstorey Drift 1-0

Peak Acc Floor 1
Peak Acc Floor 2
Peak Acc Floor 3

 Relative Roof Drift
Residual  Roof Drift
Interstorey Drift 3-2

 

Table 4: Response for Gravity Beam End Connection Case 3 (k=2.5EI/L, Mpl=100%) showing 
the median, multiplicative deviation and percentage change. 

median deviation median deviation change [%] median deviation change [%]
[m/s^2] 7.841 1.525 7.315 1.633 -7.192 7.170 1.609 -9.357
[m/s^2] 6.791 1.434 5.722 1.634 -18.689 5.595 1.620 -21.377
[m/s^2] 8.738 1.480 6.071 1.543 -43.923 5.953 1.510 -46.776

[m] 0.193 1.367 0.296 1.383 53.576 0.272 1.399 41.343
[m] 0.015 4.832 0.021 3.306 43.479 0.019 3.444 29.323
[m] 0.067 1.362 0.110 1.291 65.111 0.101 1.319 51.888
[m] 0.065 1.362 0.101 1.380 56.059 0.093 1.395 43.738
[m] 0.066 1.352 0.094 1.341 41.970 0.086 1.373 30.037

Interstorey Drift 2-1
Interstorey Drift 1-0

Peak Acc Floor 1
Peak Acc Floor 2
Peak Acc Floor 3

 Relative Roof Drift
Residual  Roof Drift
Interstorey Drift 3-2

Model 1 Model 2 Model 3
As built 10 % Baseshear 5 % Baseshear
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As seen in Tables 2-4, the total floor accelerations were between 6% and 46% less for 

the structures with HF2V devices (Models 2 and 3) compared to the as-designed 

structure (Model 1). The greatest reduction occurred in the upper stories. 

Accelerations for the 5% and 10% base shear cases (Models 2 and 3) were similar, as 

were the lognormal standard deviations.  

 

The similar lognormal deviations indicate that the HF2V design did not change the 

distribution of the responses. The reductions in total storey accelerations should 

significantly increase occupant and contents safety. The bigger damping and the 

increase in period are reasons for reduced accelerations in the stronger frame 

(Rodgers et al. 2008a).  

 

The median increase in peak storey drift is between 30% and 78%; this can be 

attributed to the increased period. This increase is greatest in Model 2 (with 5% base 

shear) for Case 1 where gravity frame effects are ignored because there is no added 

recentering stiffness to resist the motion. The experimental investigation of this 

technology presented in Mander et al. (2009) shows that repeated cycles to 4% drift 

can be undertaken without any stiffness or strength degradation. Therefore, no 

damage to structural connections is expected with the HF2V devices in the seismic 

frame (Models 2-3). Nevertheless, the increase in storey drifts may incur damage to 

poorly detailed non-structural elements, such as cladding and internal partitions. 

However, if the non-structural elements are designed and detailed to sustain these 

larger (but not unrealistic) drifts without damage, then no non-structural damage is 

expected. 
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The median relative roof drifts are increased by 35% to 94%, which is similar to the 

increase in drifts. Figure 8 shows the relative roof displacement for the Loma Prieta 

earthquake record in the medium suite and compares the Model 1 Case 2 response to 

that of the Model 2 (5% base shear) Case 2 response. It can be clearly seen that the 

peak displacement is significantly higher for the 5% base shear design structure.  

 

 

 

 

 

 

 

Figure 8: Relative Roof Displacement History for LA01 and k=1.7EI/L 

 

The presence of the HF2V devices (Models 2 and 3) increased the median relative 

roof residual (or permanent) displacement by more than 200% for the Case 1 frame 

(with k = 0 at all gravity beam ends). However, for the frames with the gravity beam 

end connection stiffness and strength considered, the median increase was less than 

50%.  

 

Even though the peak displacements of the models containing dissipators, Models 2 

and 3, are more than twice that of the as-designed (Model 1, i.e. k=0) structure, the 

presence of the gravity frame stiffness and strength (i.e. Cases 2 and 3) decreases the 

residual displacement to about one half of that of the as-designed (k=0) structure. The 

median value of the relative residual roof drifts for the frames with devices when 
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considering the gravity frames was less than 0.22%. This is close to the allowable 

construction tolerance of 0.2%. Hence, designing recentering stiffness into gravity 

frame connections enables reduced permanent displacement despite damage-free 

increased transient response. 

 

The distribution of residual drifts is much tighter for the structures considering gravity 

columns and their recentering stiffness. For example, the 95th percentile residual drift 

for Models 1, 2 and 3 were 0.039m * 2.6572 = 0.275m,  0.671m, and 2.243m for the 

Case 1 (k = 0) frame, but it is 0.291m, 0.189m and 0.103m for the Case 2 frames. The 

combination of HF2V dissipators with the gravity frame stiffness is therefore very 

effective and a higher level of confidence can be ascertained to the performance of 

structures designed with these devices. 

 

CONCLUSIONS 

 

This paper has explored the advanatges of using HF2V energy dissipators at the beam 

column joints of steel moment resisting frames by analysing the SAC Los Angeles 3 

storey seismic frame subject to the SAC Los Angeles medium suite records. It has 

incorporated recentering stiffness both from the gravity columns and from the beam 

connection to gravity columns together with DAD connections using HF2V devices. 

It has been shown that: 

 

i) Placing HF2V lead dissipators in the seismic frame joints reduces the joint 

stiffness and increases the fundamental period, resulting in decreased floor 

accelerations, increased peak displacements and slightly increased residual 



 21 

displacements with respect to those obtained from the as-designed rigid jointed 

frame. Due to the fact that median interstory drifts for Models 2 and 3 get as 

high as 3%, the effects of these drifts on the gravity frame and non-structural 

elements must be considered.  Careful detailing to prevent the gravity frame 

carrying lateral loads and well-designed and separated non-structural elements 

are needed to prevent an increase in non-structural damage from this design 

approach. No damage is expected to the core seismic frame because all energy 

dissipation and non-linearity occurs in the damage free HF2V devices. 

 

ii) Gravity frames provide increased recentering stiffness. When these were 

considered in the model, floor accelerations decreased further, and peak 

displacements decreased but were still greater than that of the as-designed 

structure. Most significantly, roof residual displacements reduced to 

approximately 50% of the as-designed structure not considering gravity frame 

effects. 

 

iii) The combination of HF2V dissipators with gravity frames and well designed 

non-structural elements creates a system with almost no damage and low 

residual displacements. This system appears superior to conventional 

construction methods, particularly as it has the potential to result in less 

economic, financial and business impacts. 
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