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Abstract— Histopathological classification and grading of biopsy 
specimens play an important role in early cancer detection and 
prognosis. Nottingham scoring system is one of the standard 
grading procedures used in breast cancer assessment, where 
three parameters, Mitotic Count (MC), Nuclear Pleomorphism 
(NP), and Tubule Formation (TF) are used for prognostic 
information. The grading takes into account the deviations in 
cellular structures and appearance from normal, using measures 
such as density, size, colour and regularity. Cell structures in 
tissue images are also known to exhibit multifractal 
characteristics.  This paper looks at the multifractal properties of 
several graded biopsy specimens and analyses the dependency 
and variation of the fractal parameters with respect to the scores 
assigned by pathologists. 

Keywords-Breast cancer assessment; Multifractal spectra; 
Image analysis; Histopathological classification; Feature detection; 
Cancer grading  

I.  INTRODUCTION 
According to the statistics collected by the International 

Agency for Research on Cancer (IARC), breast cancer is the 
most frequent type of cancer among women [1]. By comparing 
the breast cancer with other types of cancers, it is ranked as the 
fifth major cause of death. However, breast cancer is still the 
deadliest cancer in several developing and developed countries. 
As in most diseases, early diagnosis and medical treatment is 
the key for recovery. Histopathological classification and 
grading of biopsy samples provide valuable prognostic 
information that could be used for diagnosis and treatment. 
Nottingham scoring system is the standard for breast cancer 
grading. It focuses on three criteria (1) Mitotic Count (MC), (2) 
Nuclear Pleomorphism (NP), and (3) Tubule Formation (TF) 
[2], [3].  

The current procedure for breast cancer grading is manually 
performed by the pathologists. Breast tissue samples of a 
patient are taken and examined under the microscope, and 
grades assigned based on the deviation of cell structures from 
normal tissues. This is a time consuming process [4]. 
Histopathological images are now available in high resolution 
and high magnification digital formats, which can be further 
processed to extract structural information useful to 
pathologists. 

The grading of biopsy samples is essentially based on the 
deviation of cell structures from the normal tissue. Cell 
structures also have multifractal characteristics that could be 
directly used for identifying pathological conditions. Therefore, 
it would be useful to explore the relationship between various 
multifractal measures of cell structures in tissues and the 
corresponding pleomorphic scores assigned by pathologists. 
This paper proposes an approach using local intensity 
variations in images to identify mitotic cells and also to obtain 
an estimate of the NP and TF scores based on the multifractal 
spectra computed from the images. 

II. RELATED WORK 
Several algorithms for automatic breast cancer grading 

have been proposed in literature. However, most of the 
methods can only handle one of the three Nottingham criteria.  
Tutac et al. [6] and Dalle et al. [7] have recently developed 
methods for automatic indexing and grading of 
histopathological images including all three parameters. 
Petushi et al. have also discussed the multi-resolution method 
which combines all the criteria in their papers [8-9]. 

A method of counting the mitotic cells is proposed by Baak 
et al. [10-11]. Segmentation of mitotic cells is based on 
intensity thresholding and region growing techniques. 
Traditional colour based algorithms including thresholding, 
morphological operation, watershed algorithm, etc, are 
proposed in [12-16]. Dalle et al. proposed a method for 
selecting critical cell nuclei for nuclear pleomorphism scoring 
[17]. They have shown that the proposed concept requires less 
computational time and provides accurate classification results. 
A method for analysing tubule formation is proposed by 
Petushi et al. [8-9]. In their research, the microstructure of the 
histological image is presented. Localised tubular formations 
can be obtained by segmentation and classification of the cells. 

Multifractal formalism is an effective tool for biomedical 
image processing. Segmentation, classification, signal analysis, 
etc using multifractal have been proposed by several authors 
[18-24]. Multifractal analysis has recently been used in the 
domain of medical image processing [19, 21]. The statistical 
characterisation of the intensity variations in an image structure 
can be represented by the multifractal spectrum. Despite the 
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complexity of highly irregular shape of the tissue and cell 
images, multifractal analysis can resolve the local densities and 
represent the statistical properties of shapes with complex 
spatial arrangements.  

III. MULTIFRACTAL ANALYSIS 
Hölder exponent or the local singularity coefficient, α, 

describes the local variation of an intensity based measure 
within the neighbourhood of a pixel, p. The measure function 
is denoted as μp (w) where w is the size of a square region 
(window) centred at a pixel shown in Fig. 1(a).  The variation 
of the intensity measure with respect to w can be characterised 
as follows: 

   (1) 

  (2) 

  (3) 

where C is an arbitrary constant. In (2), m is the total number 
of windows used in the computation of αp. The value of αp at 
each pixel is given by (3), and is estimated from the slope of 
the linear regression line in a log-log plot where log (μ) is 
plotted against log (w).  

The four commonly used intensity measures in multifractal 
analysis are (1) maximum measure, (2) inverse-minimum 
measure, (3) summation measure, and (4) iso measure [18-19, 
23-24]. The intensity range of the image is represented as 
multi-levels of gray scale distributed from 0 to 1, where black 
is 0 and white is 1. 

Maximum measure finds the maximum intensity of the 
pixels in w. The inverse minimum measure uses the minimum 
intensity value in w and subtracted it from 1. The summation 
measure computes the total intensity value; and iso counts the 
number of nearby pixels which have a similar value as the 
centre pixel. The result after computing the local singularity of 
the image is called the α-image. 

The second stage of multifractal analysis is the calculation 
of the fractal dimension, sets of points having the same 
singularity coefficient α. The fractal dimension is denoted as 
f(α) in (4). The variation of f(α) with α is known as the 
multifractal spectrum. As shown in Fig. 1(b), the fractal 
dimension of the image of size N by N pixels can be calculated 
via the box counting method [25-26]. Box counting is a 
method that counts the number of boxes, n(ε) with size ε, that 
contain pixels with an α-value within the α-interval [αi, αi+1]. 
The α-intervals are obtained by subdividing the range of α-
values into a pre-specified number of subintervals. 

  (4) 

  (5) 

  
(a) (b) 

Figure 1.  (a) Computation of Holder Exponent, α. (b) Box counting 

IV. METHODS 
The system overview for the multifractal analysis of breast 

cancer sections is indicated in Fig. 2. The high resolution high 
magnification histopathological images are sub-divided into 
small image frames of size 288 x 288 pixels. Each image frame 
contains a border of 16 pixels wide, which is also the window 
size, w, for measuring local singularity coefficient α. The 
system calculates the α-value at each pixel position.  

An α-threshold comparison is applied to separate the sub-
image frames that contain epithelial type tissues from those 
containing non-epithelial type tissues. Huang et al. use 
epithelial tissue images to extract information on Nottingham 
parameters in their paper [27]. The process of selecting 
epithelial tissue images is presented in the next section. After 
that, the system detects the mitotic cells and computes fractal 
spectrum of the epithelial sub-image frames. The mitotic cell 
detection is a method which is based on the computed α-values 
within the cell region. We then explore if the NP and TF scores 
can be estimated from the multifractal spectrum. 

 
Figure 2. System overview of multifractal analysis of tissue images 

A. First Stage Classification Process 
Unlike the classification methods presented in [8-9], the 

proposed method given in Fig. 2 separates the image frames 
into two tissue structure categories, which are (1) non-
epithelial type and (2) epithelial type. Examples of these types 
of images are given in Fig. 3. Stroma and fat-like tissues have 
plain tissue substance, and they are irrelevant to the breast 
grading. Hence these are classified as non-epithelial group and 
are separated out during the first stage selection process. 
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Based on the multifractal properties of the sub-images, the 
characteristic of the cell nuclei can be identified via the α-
range of the (1) maximum measure and (2) summation 
measure and the minimum α-value in the (3) iso measure.  

As indicated in Table I, the epithelial tissues have larger 
difference in α-max and α-min (α-range) of the α-image than 
the non-epithelial in both maximum measure and summation 
measure. The epithelial tissue contains nuclei cells along with 
other tissue substances; hence, its intensity distribution is 
richer than the stroma and fat-like tissue image. It contains 
variations of α-value in the α-image; therefore, its α-range is 
larger than non-epithelial type. The minimum α-value of 
epithelial tissue is smaller than the non-epithelial type because 
these types of tissues have nearly uniform intensity 
distribution and yield higher values for the iso measure. 

  
(a) (b)  

Figure 3. Tissue image example of (a) epithelial type (b) non-epithelial type 

TABLE I.  TABLE FOR CLASSIFICATION 

Type of  multifractal Epithelial 
α-min α-max 

maximum measure [0] [0.37, 0.94] 

summation measure [1.75, 1.88] [2.28, 2.67] 

iso measure [0.50, 0.78] [1.92, 2.05] 

Type of  multifractal 
Non-epithelial 

α-min α-max 

maximum measure [0] [0.03, 0.44] 

summation measure [1.84, 1.99] [2.01, 2.42] 

iso measure [0.67, 1.82] [2.05, 2.08] 

B. Mitotic Cell Detection 
Mitotic cell tends to have darker colour, and irregular 

shape. The method of detecting a mitotic cell is displayed in 
Fig. 4, where a mitotic cell identified by the pathologist and is 
labelled “M” in Fig. 4(a). An α-threshold, based on summation 
measure, is applied for detecting mitotic cell. Only pixels with 
α-value above 55% of the α-range are considered, and they are 
shown as white clusters in Fig. 4(b). The system scans the 
binary thresholded α-image and marks the connected 
components. A connected component is considered as noise if 
its area is smaller than a predefined threshold. After the 
removal of the noise, the largest remaining component is 
usually a mitotic cell. The result of processing the image in 
Fig. 4(a) using this method is shown in Fig. 4(c). 

 
(a) (b) (c)  

Figure 4. Process of finding mitotic cell (a) a labelled mitotic cell (b) 
threshold image (c) detected mitotic cell 

C. Nuclear Pleomorphism and Tubule Formation Analysis 
The pathologists grade regions of biopsy sections based on 

the criteria NP and TF of Nottingham scoring system which 
scores between 1 and 3. Table II describes Nottingham grading 
system for NP and TF. Fig. 5 gives a few image frames with 
NP and TF scores assigned by the pathologists. 

TABLE II.  NOTTINGHAM GRADING SYSTEM FOR NP AND TF 

Score NP TF 

1 nuclei: minimal variation in size and shape > 75% tubule 

2 nuclei: moderate variation in size and shape 10%-75% tubule 

3 nuclei: marked variation in size and shape < 10% tubule 
 

   
NP = 1, TF = 1 NP = 2, TF = 2 NP = 3, TF = 3 

(a) (b) (c) 
Figure 5. Sample images of Nuclear Pleomorphism and Tubule Formation 

(a) Score 1 (b) Score 2 (c) Score 3 

Petushi et al, Dalle et al, and Tutac et al. analyse the TF 
scoring with a low resolution global image [6-9]. This research 
proposes analysing the TF criterion in high resolution image 
frame. The advantage of using this technique is that both NP 
and TF scoring can be estimated together. All four types of 
multifractal spectrum contain the information of NP and TF, as 
shown in Fig. 6, Table III, and Table IV.  The initial goal of 
our research is to find out which type of multifractal measure 
returns the best estimate for NP or TF scoring.  

TABLE III.  MULTIFRACTAL SPECTRUM FOR NP ANALYSIS 

Type of multifractal 
α-range of interest 

from to 

maximum measure α0, f(α0) = 1 α-max 

inverse minimum measure α0, f(α0) at peak α1, f(α1) = 1 

summation measure α = 2 α-max 

iso measure α0, f(α0) = 1 α1, f(α1) at peak 
1.4 < α1 < 1.9 

M 
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TABLE IV.   MULTIFRACTAL SPECTRUM FOR TF ANALYSIS 

Type of multifractal 
α-range of interest 

from to 

maximum measure α-min α1, f(α1) at peak 

inverse minimum measure α0, f(α0) = 1 α-max 

summation measure α0, f(α0) = 1 α = 2 

iso measure α0 
α0 = 0.75×α-range α-max 

 
(a) (b) 

 
(c) (d) 

Figure 6. Multifractal spectrum for  NP and TF analysis (a) maximum 
measure (b) inverse minimum measure (c) summation measure (d) iso 

measure 

The fractal dimension values obtained from the multifractal 
spectra are used for estimating the NP grade. The nuclei has 
darker colour hence its intensity value is smaller than other 
tissue substance. For both maximum measure and summation 
measure shown in Fig. 7, the second part of the spectrum 
describes the global intensity distribution of the nuclei. 
Majority of the nuclei including some of the healthy nuclei and 
most of the cancer infected nuclei are calculated in the fractal 
dimension. As labelled in the box in Fig. 7(a) and Fig. 7(b), the 
spectra for two NP scorings are differentiable in maximum 
measure and summation measure. 

 
(a) (b) 

Figure 7. Fractal spectrum for analysing NP (a) maximum measure (b) 
summation measure 

As highlighted in the box in Fig. 8 (a), the inverse-
minimum spectrum shows the difference between two TF 
scoring. The key information for this spectrum is when it 
reaches its maximum and to the end of the curve. On the other 
hand, in Fig. 8(b), the region of interest for iso spectrum, 
highlighted in the box, is the third quarter of the curve. Each 
scoring has unique features in both spectra.  

 
(a) (b) 

Figure 8. Fractal spectrum for analysing TF (a) inverse minimum measure 
(b) iso measure 

V. DISCUSSION 
Four histopathological image samples were used for the 

analysis in this paper; each sample contributes 250 sub-image 
frames. In the original histopathological images, the 
pathologist has labelled 80 regions with NP score and 39 
regions with TF score. Each region has a size 1024 by 1024 
pixels, and ten sub-image frames are selected from each 
region. The number of frames used for analysing NP and TF 
scores are shown in Table V.  

TABLE V.  THE NUMBER OF IMAGE FRAMES USED FOR DATA ANALYSIS 

Criterion 
Score 

total 
1 2 3 

NP 150 190 460 800 

TF 150 50 190 390 

A. First stage classification process 
The α-thresholds for classifying the epithelial and non-

epithelial tissue are dependent on the magnification scale. The 
magnification scale of the image samples used in this research 
are ×20.0 and ×40.0. The α-thresholds for classifying non-
epithelial type are listed in Table VI. 

TABLE VI.  THRESHOLD LIST FOR CLASSIFYING NON-EPITHELIAL TYPE 
TISSUE  

Threshold 
Magnification scale 

×20.0 ×40.0 

α-range of 
maximum measure < 0.3 < 0.1 

α-range of 
summation measure < 0.3 < 0.1 

α-min of 
iso measure > 0.8 > 1.2 
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B. Mitotic cell detection
Mitotic cells can be detected with the correct selection of α-

threshold and noise threshold. This paper assumes a noise 
cluster occupies less than 100 pixels and such clusters are 
removed from the result. In the summation measure, the α-
values of the mitotic cell distribute across the second half of the 
α-range. All potential mitotic cells can be segmented using this 
feature. After applying the α-threshold process, cluster with the 
largest number of pixels is consider as the mitotic cell. 
However, the selection of the α-threshold can affect the 
outcome. For our analysis, 33 images with mitotic cells were 
selected, and the comparison chart for different α-threshold is 
shown in Fig. 9. With a smaller α-threshold, more number of 
cell nuclei starts to show up as the largest cluster. When the α-
threshold is set as 65% of the α-range, 23 mitotic cells formed 
the largest clusters in their respective images, but nine mitotic 
cells that were detected were not the largest cluster in their 
image frame. In contrast, a higher α-threshold has the risk of 
not detecting a possible mitotic cell. In the example of Fig. 9, 
for the α-threshold at 70% of the α-range, four mitotic cells 
were not detected because their sizes were slightly smaller than 
the pre-defined noise threshold, 100 pixels. 

 
Figure 9. The comparison of different α-threshold for detected mitotic cell 

C. Nuclear Pleomorphism and Tubule Formation scoring 
Our research shows that the NP and TF scoring of image 

sections can be related to certain characteristics of their 
multifractal spectrum. A simple classification scheme based 
on multifractal analysis is proposed, and the results of 
experimental analysis are shown in Fig. 11 and Fig. 12. The 
section of the multifractal spectrum which varies with NP and 
TF scores (as previously shown in Fig. 6) can be approximated 
by a cubic polynomial function, f e(α) described as follow: 

  (6) 

where C3, C2, C1, and C0 are the coefficient of the polynomial 
function that can be used as the feature vector for 
classification. An example is shown in Fig. 10. 

 
(a) (b) 

Figure 10. (a) original spectrum (b) polynomial function of f e(α)  = -
201.154403α3 + 1257.301618α2 - 2625.020288α + 1831.373506 

The reference spectrum for each NP and TF score is 
calculated based on the average of the multifractal spectrum of 
images having the same score. The polynomial coefficients are 
then extracted from the reference spectrum. The multifractal 
spectrum of a sub-image can then be compared with the 
reference curve values obtained from the polynomial equation 
using a distance metric. The classification results for NP and 
TF scores are shown in Figs. 11 and 12 respectively. Each 
sample has 200 image frames (as previously described in 
Table V), and the overall results are presented below.  

 
Figure 11. Estimation rate of NP training set 

 
Figure 12. Estimation rate of TF training set 

D. Future Work 
The result presented in this paper show that multifractal 

analysis could be a valuable tool in the processing of tissue 
images for identifying irregularities in the cell structure and in 
estimating the NP and TF scores. Some of the possible 
enhancements and future research directions are outlined 
below. 

1) Converting the image into different colour model: 
Multifractal describes the statistical characteristincs of 
intensity variations of the image. In this paper, the multifractal 
spectra are calculated by using only the red channel of the 
image frame. Hue model is suggested for color model because 
it distinguishes the lightness and chroma of the initial colour. 

2) Apply genetic algorithm for threshold selection: The α-
thresholds of the classification are manually found for x20.0 
and x40.0 magnification scale. 250 sub-image frames are 
selected from the histopathological image. An automatic 
threshold selection system, such as using the genetic 
algorithm, can be useful if threshold for different 
magnification scale sample is required. 

3) Shape detection: Mitotic cell tends to have irregular 
shape. Majority mitotic cells can be distinguised from their 
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largest pixel area in the thresholded α-image. However, as 
shown in Fig. 9, in some of the images, round shaped nuclei 
might have the largest area. An automatic shape recognition 
algorithm to identify and remove regular shapes can improve 
the detection accuracy of mitotic cells. 

4) Increase the number of α-slices: As suggested by 
Mukundan and Hemsley [23-24] , increasing the number of 
subdivisions of the α-range can improve the accuracy of the 
factal dimension, but this will also increase the computational 
complexity. To improve the etimation accuracy of NP and TF 
scores, it is suggested to improve the number of α-slices only 
in the relevant portion of the α-range. 

VI. CONCLUSION 
This research work presented in this paper explored the 

possibility of using multifractal methods for identifying the 
statistical characteristics of the image intensity distribution 
that are important for processing histopathological images. It 
has been shown that a multifractal decomposition of tissue 
images could be used for identifying mitotic cells, and also for 
estimating the NP and TF scores. The proposed multifractal 
methods could be combined with algorithms for extracting 
cytological features for effective classification and 
segmentation of images of biopsy sections. 
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