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Abstract 

 

The objective of this thesis is to experimentally investigate the performance of steam 

gasification of chars of pure coal (lignite, sub-bituminous), pure biomass (radiata pine, 

eucalyptus nitens) and their blends. The influences of gasification temperature, types 

of coal and biomass, coal-biomass blending ratio, alkali and alkaline earth metal 

(AAEM) in lignite, on specific gasification characteristics (producer gas composition 

and yield, char reactivity) were studied. In addition, synergistic effects in co-

gasification of coal-biomass blend char were also investigated. This project is in 

accordance with objectives of the BISGAS Consortium. 

 

In this study, experiments were performed in a bench-scale gasifier at gasification 

temperatures of 850°C, 900°C and 950°C, respectively. Two types of coals (lignite 

and sub-bituminous) and two kinds of biomass (radiata pine and eucalyptus nitens) 

from New Zealand were selected as sample fuels. From these raw materials, the chars 

with coal-to-biomass blending ratios of 0:100 (pure coal), 20:80, 50:50, 80:20 and 

100:0 (pure biomass), which were derived through the devolatilization at temperature 

of 900 C for 7 minutes, were gasified with steam as gasification agent. During the 

gasification tests, the producer gas composition and gas production were continuously 

analysed using a Micro gas chromatograph. When the gas production was 

undetectable, the gasification process was assumed to be completed and the 

gasification time was recorded. The gasification producer gas consisted of three main 

gas components: hydrogen (H2), carbon monoxide (CO) and carbon dioxide (CO2). 

 

The results from gasification of chars of individual solid fuels (coal or biomass) 

confirmed that biomass char gasification was faster than coal char gasification. The 

influences of gasification temperatures were shown as: when gasification temperature 

increased, the H2 yield increased in coal char gasification but decreased in biomass 

char gasification. In the meantime, CO yields increased while CO2 yields decreased in 
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both coal char and biomass char gasification. In addition, the char reactivity of all the 

pure fuel samples increased with elevated gasification temperatures. 

 

The results from co-gasification of coal-biomass blend char exhibited that the syngas 

production rate, which is defined as the total gas production divided by the 

gasification completion time, was enhanced by an increase in gasification 

temperatures as well as an increase in the biomass proportion in the blend. The 

AAEM species played a significant catalytic role in both gasification of pure coal 

chars and co-gasification of coal-biomass blend chars. The presence of AAEM 

increased the producer gas yield and enhanced the char reactivity. 

 

The positive synergistic effects of the coal-biomass blending char on syngas 

production rate only existed in the co-gasification of lignite-eucalyptus nitens blend 

chars. The other blend chars showed either insignificant synergistic effects or negative 

effects on the syngas production rate. 
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1 Introduction  

1.1 Backgrounds  

New Zealand is currently faced with a series of issues involving energy supply and 

environmental protection, such as the substantial increase in energy demand, lack of 

good quality fossil fuels, and related environmental concerns for air pollutants and 

CO2 emissions. Therefore, it is in the interests of the nation to investigate and develop 

renewable energy, together with the possibility of using cleaner and more efficient 

energy conversion technologies at an industrial scale in the future.  

 

Co-gasification of blended coal and biomass provides a promising opportunity for 

high efficiency energy conversion and environmentally friendly technology in New 

Zealand.  

 

Firstly, it is well recognized that gasification is a clean and efficient way for 

converting solid fuel into hydrogen-rich fuel gases. The gases produced (which are 

also called producer gas) can be utilized directly as fuels for electricity and power 

generation or as a synthesis liquid fuel precursor for manufacturing methanol, Fischer-

Tropsch oil, etc. (Chmielniak and Sciazko 2003; Weerachanchai et al. 2009).  

Furthermore, gasification feedstock is highly versatile; a wider range of solid fuels can 

be used, such as coal, biomass, plastic waste, petroleum coke and so on (Higman and 

Burgt 2003).  

 

Secondly, the vast local coal reserves and abundant biomass in New Zealand should 

be sufficient in meeting energy demands for centuries. New Zealand’s coal reserves 

are estimated to be 8.6 billion tons, in which lignite is 75%, sub-bituminous is 17% 

and bituminous is 8% (Clemens et al. 2006). 90% of the coal reserve is well suited to 

gasification. Besides, New Zealand has abundant woody biomass resources from the 

domestic forestry industry and agricultural sector. Every year, the plantation forest 
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harvest is approximately 20 million m
3
 (Forestry 2009), in which 4-5 million m

3
 of 

wood residues (sawdust, bark or chips) are generated during the processing (Penniall 

2008). 

 

Finally, coal-biomass blends could thus make use of possible synergistic effects in co-

gasification by combining some of the characteristics of each feedstock alone. From 

environmental point of view, the addition of biomass to coal gasification could 

contribute to the reduction of CO2 emissions and the pollution caused by sulphur and 

ash contained in coal, as biomass characteristics are known to be CO2 neutral and low 

in sulphur and ash content (Fermoso et al. 2010). From an economical point of view, 

the blending of coal and biomass for co-gasification can provide a potential 

opportunity to build a large scale gasification based energy plant. The large scale plant 

can increase energy efficiency and reduce costs for unit energy product; however, high 

costs for transportation and handling of a large quantity of low density biomass 

(Kajitani et al. 2009) will hinder the commercialisation of such large scale plant 

(Kumabe et al. 2006). On the other hand, coal utilisation involves much lower costs 

for transportation and handling. 

 

As mentioned above, the study of the co-gasification of coal and biomass, when 

applied to New Zealand, has an important significance.  

 

1.2 Gasification  

Gasification is a thermo-chemical process which coverts solid fuel (coal and biomass) 

with gasification agents (air, oxygen or steam) into a producer gas which consists of 

H2, CO, CO2, CH4 and other minor hydrocarbons. 
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1.2.1 Gasification Mechanism  

It is generally agreed that the gasification process can be divided into two main stages 

after the initial short drying: devolatilization (pyrolysis) and char gasification as 

shown in Figure 1-1 (Bridgwater 2003; Liu and Niksa 2004; Pan et al. 1996).  

 

 

Figure1-1: Process of co-gasification of coal and biomass 
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a) Devolatilization (pyrolysis) 

As the temperature of the dry feedstock increase to 300 – 500°C, devolatilization takes 

place and the feedstock is decomposed into solid char, volatiles and a very small 

amount of unsaturated hydrocarbons, e.g., tars. The volatiles consist of H2, CO, CO2, 

CH4, H2O and C2H6. The char is the residual solids mainly consisting of solid carbon 

and metals (Ahrenfeldt and Knoef 2005; Gordillo et al. 2009).  

 

Dry feed stock + Heat Char + Volatiles 

 

b) Char gasification.  

Char gasification is the slowest conversion process and thus it is the rate-determining 

step of the overall gasification process (Ahmed and Gupta 2011; Zhang et al. 2010). 

Char gasification consists of a series of heterogeneous reactions of the carbon in the 

chars with the gasification agent (Steam, Air, or Oxygen), and reactions among 

reactant and resultant gases. Hence, the char gasification directly depends on char 

reactivity with gasification agent (Asadullah et al. 2010).  

 

The heterogeneous reactions among char, gasification agents and resultant gas in 

gasification process are described as follows (Klass 1998; McKendry 2002b). In these 

reactions, the standard enthalpy is shown with temperature at 298K.  

 

(1) Steam reaction: 

molkJHHCOOHC /3.13122  

 

(2) Water-gas shift:  

molkJHHCOOHCO /1.41222  
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(3) Boudouard reaction: 

 molkJHCOCOC /4.17222  

(4) Hydro-reaction:  

molkJHCHHC /8.742 42  

(5) Steam methane reforming:  

molkJHHCOOHCH /2063 224  

 

At the same time, oxidisation reactions may occur when air or oxygen is used as the 

gasification agent once the temperature is sufficiently high. The oxidisation reactions 

of the char, dry feedstock and the volatiles directly provide thermal energy for the 

demand of gasification. 

 

(6) Partial carbon combustion:  

molkJHCOOC /5.110
2

1
2  

(7) Carbon combustion: 

molkJHCOOC /5.39322  

(8) Hydrogen combustion:  

molkJHOHOH /3.245
2

1
222  
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1.2.2 Steam gasification 

When steam is used as a gasification agent, gasification (which is also called steam 

gasification) is an attractive process for producing a hydrogen-rich gaseous fuel, as 

steam is a more reactive gas than other gasification mediums (Haykiri-Acma et al. 

2006). Moreover, steam involvement in the reaction is important for enhancement of 

hydrogen yield in the producer gas through the Reactions (1), (2) and (3) (Umeki et 

al. 2009a). Compared with air-blown gasification and oxygen-blown gasification, 

steam gasification has obvious advantages:  

 

 It produces a gas with higher heating value about 10 - 16 MJ/Nm
3
  (Li et al. 2004b; 

Lv et al. 2004);  

 It generates a hydrogen-rich gas with a 30-60 vol.% H2 content (Yan et al. 2010). 

 It reduces the diluting effect of N2 from air (Umeki et al. 2009a). 

 It is economically feasible as it eliminates the need for an expensive oxygen plant 

when oxygen is used as gasification mediums from the viewpoint of economical 

feasibility.  

 Excess steam in steam gasification can be easily separated by condensation 

(Weerachanchai et al. 2009).  

 

However, the steam gasification process as a whole is endothermic. Thus, for practical 

applications of the steam-only gasification, it is necessary to supply heat from an 

external source (Encinar et al. 2001; Umeki et al. 2009b).  

 

1.3 Characteristics of the feedstock materials 

Both biomass and coal are carriers of accumulated solar energy and thus are 

considered to be important solid fuels for energy supply. However, the differences in 

their natures and availability create differences in performance when utilized in energy 
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production (Sjöström et al. 1999). In general, the compositions of coal and biomass 

have to be analyzed by two methods before being utilized and the information can be 

used to understand the effects of the fuel composition on the producer gas quality. One 

method is proximate analysis, in which the proportions of moisture content, ash 

content, volatile matter content and fixed carbon content are measured. The other 

method is ultimate analysis, which is elemental composition analysis. C, H, O, N and 

S are generally major elements in coal and biomass. Table 1-1 shows the proximate 

analysis and ultimate analysis of various coal and biomass. 

 

Table 1-1: Analysis of composition of coal and biomass (Demirbas 2003; Higman and 

Burgt 2003) 

 Biomass Coal 

Corn 

cobs 

Wheat 

straw Pine Straw Lignite 

Sub-

bituminous Bituminous 

Proximate 

analysis 

Moisture 15.0 6.5 11.6 7.6 5.5 10.5 13.0 

Ash 1.4 7.6 0.3 10.1 32.3 11.2 10.7 

Volatiles 76.6 69.2 74.5 68.8 24.9 34.7 37.0 

Fixed 

carbon 7.0 16.7 13.6 21.5 37.3 43.6 39.3 

Ultimate 

analysis 

C 48.4 41.4 46.9 43.4 77.3 76.4 78.4 

H 5.6 5.7 5.2 4.2 5.3 5.6 5.4 

O 44.3 42.9 51.6 40.3 14.2 14.9 9.9 

N 0.3 1.1 0.9 0.2 1.3 1.7 1.4 

S - 0.5 - - 1.9 1.4 4.9 

 

1.3.1 Coal 

As the traditional fossil fuel, the coal reserve is the most abundant and is also 

geographically more widely spread over the world (Sonobe et al. 2008). Coal can be 

further classified into lignite, sub-bituminous coal and bituminous coal, ranking from 

the lowest to the highest grades respectively (Lee et al. 2007).  
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Due to the higher fixed carbon content, coal gasification can generate producer gas 

with high calorific values. Furthermore, the low rank coal (such as lignite) contains 

significant amounts of inherent alkali and alkaline earth metal (e.g. calcium and 

magnesium), which can act as an excellent catalyst for gasification (Clemens et al. 

1998). However, coal utilization has led to serious environmental concerns such as 

global warming due to the utilizing coal leads to an increase in the atmospheric CO2 

concentration (Merrick 1984). 

 

1.3.2 Biomass 

Biomass is widely considered to be as a renewable and environmentally friendly 

energy source for sustainable heat and power generation, as its utilization is known to 

be CO2 neutral (Bridgwater 1995; Demirbas 2001). The CO2 balance for biomass is 

about zero as plants in their growth phase remove CO2 from the atmosphere during 

photosynthesis process in the amounts comparable to the ones produced during 

biomass gasification (Chen et al. 2003; Smolinski et al. 2010). Renewable biomass 

resources include agricultural residues, short rotation woody crops and wood waste 

(e.g. sawdust, chips, bark, and forestry residues) (McKendry 2002a).  

 

Biomass has a relatively high reactivity as it contains high atomic H/C ratio and has a 

high content of volatile matter (Kastanaki et al. 2002). In addition, high reactivity of 

biomass is also a consequence of the high surface area of biomass and the inherent 

alkali metals. For example, agricultural residues contain abundant calcium and 

potassium species (Ganga Devi and Kannan 1998; Jaffri and Zhang 2009). The high 

reactivity of biomass can facilitate the conversion of fuel and upgrade the quality of 

producer gas in gasification (Zhang et al. 2007). However, raw biomass has a low 

density and high moisture content, it caused the high cost for its collection, 

transportation and preparation, hence biomass gasification is relatively costly (Bahng 

et al. 2009; Fushimi et al. 2010; Kirubakaran et al. 2009).  
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1.4 Objectives of the project 

This study is part of a joint project based on New Zealand Coal Association initiative, 

CRL Energy hydrogen programme and University of Canterbury’s biomass 

gasification programme. This thesis has focused on the understanding and 

experimentally testing of the behaviour of the co-gasification of coal and biomass. The 

two specific objectives of this study are: 

 

 To review the previous studies in literature on influences of gasification condition 

(temperature), blending ratio of coal and biomass, and the presence of alkali and 

alkaline earth metals in the coal on the processes of gasification and co-gasification. 

 To experimentally investigate the influences of gasification temperature, coal-

biomass blending and catalytic elements in the coal on co-gasification performance 

(producer gas quality and char reactivity).  

 To analyse the synergistic effect in co-gasification of coal-biomass blend char 

 

1.4.1 Objectives of experiments  

For the above purposes, a series of experiments were conducted, in which chars 

produced from various blends of coal and biomass were gasified in a bench scale 

gasifier with steam as the gasification medium.  

 

Four variable operation parameters in the experiment design are considered as follows: 

 Choice of feedstock; 

 Gasification temperature;  

 Blended ratio of coal and biomass; 
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 Presence of AAEM in solid fuels.  

 

The following analyses were performed in the experimental runs: 

 Producer gas production rate and producer gas composition;  

 Accumulative producer gas production; 

 Char reactivity. 

 

1.4.2 Contribution of project 

The experiment results obtained from this project will provide contributions to this 

field in two areas: 

 

 Better understanding of the influences of different operational conditions and 

blending ratio on co-gasification of New Zealand coals and biomass. 

 Providing data base for validation of theoretical results from gasification simulation 

models which has been carried out in a separate study.  
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2 Literature Reviews of Gasification and Co-gasification 

Studies 

A literature review was conducted to better understand the existing research on 

gasification of coal, biomass and blended coal and biomass. The effects of operational 

conditions on gasification and co-gasification have been extensively investigated in 

recent years. However, the published gasification experiments were carried out by 

various researchers under different operational conditions, such as the feedstock 

resources (coal and biomass), gasification agent, and gasifier systems as well as varied 

temperature and pressure, which are listed in Table 2-1 for biomass gasification, Table 

2-2 for coal gasification and Table 2-3 for co-gasification.   

 

Table 2-1: The summary of reported biomass gasification experiments in literature 

Authors of 

the 

experiments 

Year 

Feedstock 

Gasification 

agents 
Gasifier 

Operation conditions 

Coal Biomass 
Temperature 

(°C) 
Pressure 

Franco et al. 2003 X 

Pinus 

pinaster, 

Eucalyptus 

globulus, 

Holm oak 

Steam 
Fluidised 

bed 
700-900 

Atmospheric 

pressure 

Hanaoka et 

al.  

2005 X 

Japanese 

oak, Red 

pine bark 

Air - Steam 
Downdraft 

fixed bed 
900 

Atmospheric 

pressure 

Li et al.  2004 X 

Six 

sawdust 

species 

Air 

Circulating 

fluidized 

bed 

700-850 
Atmospheric 

pressure 

Luo et al. 2009 X 
Pine 

sawdust 
Steam Fixed bed 600-900 

Atmospheric 

pressure 

Lv et al.  2004 X 
Pine 

sawdust 
Air - Steam 

Fluidized 

bed 
700-900 

Atmospheric 

pressure 
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Table 2-1 (continued) 

Smolinski et 

al. 

2010 X 

Crops 

from 

Poland and 

Germany 

Steam 

A 

laboratory-

scale fixed 

bed 

650-900 
Atmospheric 

pressure 

Umeki et al.  2009 X 
Wood 

Chips 
Steam 

Updraft 

fixed bed 
927 

Atmospheric 

pressure 

Wei et al.  2007 X 

Pine 

sawdust, 

legume 

straw 

Steam 

Downflow 

free-fall 

reactor 

750-850 
Atmospheric 

pressure 

Yan et al. 2010 X 
Pine 

sawdust 
Steam Fixed bed 600-850 

Atmospheric 

pressure 

 

Table 2-2: The summary of reported coal gasification experiments in literature 

Authors of 

the 

experiments 

Year 

Feedstock 

Gasification 

agents 
Gasifier 

Operation conditions 

Coal Biomass 
Temperature 

(°C) 
Pressure 

Lee et al.  1998 

Australian 

sub-

bituminous 

coal 

X Air - Steam 
Fluidized 

bed 
750-900 

Atmospheric 

pressure 

Tay and Li 2009 
Victorian 

brown coal 
X O2 and CO2 

Fluidized 

bed and 

fixed bed 

800 
Atmospheric 

pressure 

Wang et al.  2009 

Australian 

Newlands 

sub-

bituminous 

coal 

X Steam 

Horizontal 

corundum 

tubular 

reactor 

700-900 
Atmospheric 

pressure 

Wu et al.  2006 
Yanzhou 

coal 
X Steam Fixed bed 900-1200 

Atmospheric 

pressure 
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Table 2-3: The summary of reported co-gasification experiments in literature 

Authors of 

the 

experiments 

Year 

Feedstock 

Gasification 

agents 
Gasifier 

Operation conditions 

Coal Biomass 
Temperature 

(°C) 
Pressure 

Aznar et al.  2006 Coal 

Plastic 

waste, Pine 

sawdust 

Air 
Fluidized 

bed 
750-880 

Atmospheric 

pressure 

Alzate et al.  2009 

A sub-

bituminous 

coal 

Pinus 

Patula, 

Cypress 

sawdust 

Steam 

A 304 steel 

cylindrical 

fluidized 

bed 

850 50-60 psig 

 André et al. 2005 
Lignite 

from Spain 

Bagasse, 

Pine 
Air - Steam 

Fluidised 

bed 
730-900 

Atmospheric 

pressure 

Collot et al. 1999 
Daw Mill 

Coal 

Silver birch 

Wood 
Air - Steam 

A fixed-

bed and a 

fluidized 

bed 

850/1000 25bar 

Fermoso et 

al.  

2009 

Bituminous 

coals from 

China, 

Spain, 

South 

Africa 

Olive pulp, 

Pine 

sawdust 

Oxygen/ 

Steam 

mixture 

fixed bed 1000 1 and 15 atm 

Fermoso et 

al.  

2009 

A 

bituminous 

coal 

Olive stone, 

Eucalyptus 
Air - Steam 

A stainless 

steel 

tubular 

reactor 

850-1000 0.5 - 2 Mpa 

Kajitani et 

al.  

2009 

Australian 

bituminous, 

Chinese 

bituminous 

Cedar 
Carbon 

dioxide 

two stage 

entrained 

flow 

gasifier 

1200-1300 0.5MPa 

Kumabe et 

al.  

2006 

Mulia coal 

from 

Indonesia 

Japanese 

cedar 
Air - Steam 

downdraft 

fixed bed 
900 

Atmospheric 

pressure 
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Table 2-3 (continued) 

Lapuerta et 

al.  

2008 Coal-coke 

Pinus, 

Olive, 

Sawdust 
Air 

A 

circulating 

flow 

gasifier 

1250 
Atmospheric 

pressure 

Li et al.  2009 

A Chinese 

bituminous 

coal 

Pine 

sawdust, 

Rice straw 
Oxygen-rich 

air / Steam 

A bench-

scale 

fluidized 

bed 

900 
Atmospheric 

pressure 

Mastellone 

et al.  

2010 Lignite Wood Air - Steam 

A bubbling 

fluidised 

bed 

850 
Atmospheric 

pressure 

Pan et al. 2000 
Black coal, 

Sabero coal 
Pine Chips Air - Steam 

A fluidized 

bed  
840-910 

Atmospheric 

pressure 

Pinto et al. 2003 Coal 

Pine, 

Waste 

plastic 
Air - Steam 

A fluidized 

bed  
750-890 

Atmospheric 

pressure 

Pinto et al. 2009 

Colombian 

coal, Pine, 

Bagasse, 

Polyethylene 

Steam and 

air/oxygen 

A fluidized 

bed  
850 

Atmospheric 

pressure 
Puertollano 

coal 

Vélez et al. 2009 

Colombian 

coal (sub-

bituminous) 

Sawdust, 

Rice, 

Coffee husk 
Air - Steam 

A fluidized 

bed  
750-850 

Atmospheric 

pressure 

Yan and Lu 2009 Lignite 

Herbaceous, 

Woody 

biomass 

Air - Steam 

A bubbling 

fluidized 

bed 

900 
Atmospheric 

pressure 

Xu et al.  2011 Lignite Wood Steam 

A bench 

scale 

gasifier 

850, 900 

and 950 

Atmospheric 

pressure 
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2.1 Effect of operation temperature on producer gas in gasification 

studies of coal, biomass and their blends 

The gasification temperature shows remarkable influence on the gasification 

performance of pure coal, pure biomass and their blends, since the balance between 

endothermic and exothermic gasification reactions is determined by the operation 

temperature. Therefore, the reactor temperature has a significant influence on the 

producer gas yields and composition (Pan et al. 2000).  

 

When the gasification temperature was elevated, the gas yields were increased and the 

char and tar contents were reduced. These effects could be due to several reasons. 

Firstly, the increased temperature clearly favors the formation of volatile matter 

during the initial devocalization step. Secondly, endothermic reactions of tar cracking 

and char gasification are enhanced at elevated temperatures (Pinto et al. 2003; Wei et 

al. 2007). 

 

The quality of producer gas is determined by the contents of each component in the 

producer gas. The main components of the producer gas are H2, CO and CO2, and 

small quantities of minor hydrocarbons, such as CH4, C2H4 and C2H6. It is thus 

important to understand how temperature influences the composition of producer gas.  

 

2.1.1 Hydrogen content 

It has been found from the literature that elevated temperatures clearly favoured the 

formation of H2 in all of the aforementioned experimental studies (Detournay et al. 

2010; Küçük and Demirbas 1997; Lee et al. 1998; Umeki et al. 2009a; Umeki et al. 

2009b; Wang et al. 2009b; Yan et al. 2010), although their temperature ranges were 

different, as shown in Table 2-1, Table 2-2 and Table 2-3.  
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According to the thermodynamic principle, higher temperatures favoured the reactant 

direction in exothermic reactions and favoured the products direction in endothermic 

reactions. Therefore, the endothermic Reactions (1), (2) and (6) (given in Chapter 1) 

were enhanced with increased temperature, so that the equilibrium shifted towards the 

side with H2 formation, which resulted in a significant increase in H2 production (Lv 

et al. 2004).  

 

Based on the gasification processes, the increase in gasification temperature led that a 

greater volatile matter which contained H2 was released during the devolatilization, 

the first steps of gasification (Lapuerta et al. 2008). And then, the rise in temperature 

clearly favoured a secondary cracking and reforming of tars and heavy hydrocarbons, 

leading to an increase in H2 generation (Franco et al. 2003; Pinto et al. 2003; Wei et al. 

2007). Therefore, it could be inferred that higher temperatures are more favourable for 

hydrogen yield.  

 

2.1.2 Carbon monoxide content 

The influence of gasification temperature on the CO content was also detected through 

a series of experiments; however, the results were conflicting. Several experiments 

indicated that raising the temperature resulted in an increase in the fraction of CO 

(Aznar et al. 2006; Detournay et al. 2010; Fermoso et al. 2009b; Lee et al. 1998) 

because the endothermic steam gasification (1) is significantly enhanced at higher 

temperatures. Furthermore, as the reaction temperature increased, carbon tended to 

react with CO2, through the Boudouard reaction (4), displacing the equilibrium to 

CO formation. 

 

However, other experiments (Luo et al. 2009; Lv et al. 2004; Wang et al. 2009b) 

displayed the opposite trend in which CO content decreased with an elevated 

temperature (Luo et al. 2009). A possible explanation is that CO content was mainly 

determined by partial combustion reaction (7) which is an exothermic reaction. 

Hence, higher temperatures were not favourable for CO production.  
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A few of further experiments were also reported (André et al. 2005; Smolinski et al. 

2010) in which no significant changes in CO content were detected in the producer 

gas with increased gasification temperature.  

 

2.1.3 Carbon dioxide content 

It was observed that the CO2 content was significantly decreased with a rise in 

gasification temperature in the experiments reported by André et al. (2005); Aznar et 

al. (2006); Detournay et al. (2010); Lee et al. (2007); Pinto et al. (2003) and Smolinski 

et al. (2010). As thermodynamically predicted, at lower temperatures, the carbon 

oxidation reaction (8) is more significant than carbon gasification, as it is exothermic. 

Then, with a rising temperature, the combustion reaction is further inhibited so that 

less CO2 was produced. Besides, the consumption of CO2 through the Boudouard 

reaction (4), which is an endothermic reaction, can also contribute to the reduced CO2 

content in the producer gas when the gasification temperature is increased. 

 

However, one experiment by Luo et al. (2009) indicated a contrary trend for increased 

gasification temperature, with CO2 content increasing significantly with temperature 

raised from 600-900°C. 

 

2.1.4 Methane content  

A lot of experiments (André et al. 2005; Lee et al. 1998; Pinto et al. 2003; Rezaiyan 

and Cheremisinoff 2005; Smolinski et al. 2010) have detected the same trend of CH4 

content decreases with the rise in gasification temperature. This was believed to be 

caused by the exothermic hydro-reaction (5) in which high temperatures can inhibit 

the CH4 formation. Furthermore, the increased temperatures promote the endothermic 

steam methane reforming reaction (6), leading to the consumption of the methane. 
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However, reports from a few of other experiments (Fermoso et al. 2009b; Lapuerta et 

al. 2008) showed a different result: the production of CH4 remained almost constant 

and was not affected by the variation in reaction temperature. This indicated that CH4 

was produced mainly during the devolatilization step. 

 

2.1.5 Overall views on gas production 

As has been reported in the literature, the results were related to the fact that the 

fraction of H2, CO, CO2 and CH4, were linked together by the equilibrium of the 

reactions (1) to (8) under test conditions. Hence some authors suggested that either 

one or several reactions were more dominant at a certain temperature than the rest of 

the reactions. Conflicting results in producer gas composition were therefore caused 

by the difference in setting temperature. 

 

In Yan et al. (2010)’s studies, H2 content and hydrogen yield increased significantly 

with temperatures ranging from 600 to 850 °C in which temperature range CO2 and 

CH4 molar fractions increased to reach the maximum value at a temperature of 700°C 

and then decreased. Contrastingly, CO content decreased between 600 and 700 °C and 

rose between 700 and 850 °C, with the minimum value obtained at 700°C. 

 

The significant decrease in CO observed between 600 – 700°C, while contrary trends 

appeared for the content of other gases, indicates that the water-gas shift reaction (3) 

was more dominant than devolatilization.  

 

With an increase in temperature from 700 to 800 °C, small decreases in CO2, CH4 and 

an increase in CO were detected, indicating that the water-gas shift reaction (3) and 

devolatilization reaction had less importance, whereas the steam reaction (1), 

Boudouard reaction (4) and steam methane reforming reaction (6) had significant 

influence on gases compositions. H2 content increased significantly with the 

gasification temperature for the same reason.  
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At temperatures higher than 800°C, a dramatic decrease in CO2, CH4 and an increase 

in CO were observed, which illustrates the steam reaction (1), Boudouard reaction 

(4) and steam methane reforming reaction (6) playing more prevailing roles while 

the converse reaction might have occurred. 

 

The same results from another study (Vélez et al. 2009) showed that, for high 

temperatures, the steam reaction (1), Boudouard reaction (4) can be more 

influential than the water-gas shift reaction (3). 

 

Therefore, at a certain gasification temperature, one or several reactions are more 

dominant than the rest. It is necessary to investigate that how gasification temperature 

influences the producer gas composition in this project.  

 

2.2 Effect of blended coal and biomass on producer gas in co-

gasification studies  

Previous studies as shown in Table 3-3 have been reported on the investigation of the 

catalytic effects in co-gasification of blended coal and biomass. In these literatures, 

the relationship between the composition of producer gas and the blending ratio in the 

coal-biomass blends were reviewed. In the experiments of the reported studies, the 

operating conditions such as gasification temperature and flow rate of gasification 

agent (steam, air or oxygen) were kept constant in each experiment. The experimental 

conditions of co-gasification are listed in Table 2-3 and the observations from ten 

studies are summarized as follows: 

 

Case 1: In the experiments of Li et al. (2009), it has been found that the increase in 

biomass proportion in the coal-biomass blend led to increase H2 content and decrease 

CO content. 
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Case 2: A separate study of Lapuerta et al. (2008) showed an increase in CO, H2 and 

CH4 with increasing of the biomass content in the blend fuel.  

 

Case 3: Another study by André et al. (2005) showed that an increase in biomass 

content resulted in an increase in CO content and a decrease in H2 content. In this 

study, CO2 remained relatively constant (showing an insignificant variation) and CH4 

content was slightly increased.  

 

Case 4:  In the study of Kumabe et al. (2006), the H2 content decreased and CO2 

content increased with an increase in the biomass ratio in the coal-biomass blend. In 

contrast, the contents of CO and CH4 were independent of the biomass ratio. 

 

Case 5: Further experimental study about the gasification of biomass-coal pellets was 

performed by Alzate et al. (2009) who found that as the quantity of coal in the pellets 

increased, the H2 content in the producer gas was decreased while the CH4 content 

increased. The CO content changed when plotted against the coal-biomass ratio, 

showed as curvature, with the minimum value occurring at around 20% of coal in 

pellets. This trend is contrary to the tendency of CO2 change which was the maximum 

at around 20% of coal in the coal-biomass blend.  

 

Case 6: Another recent study of Yan and Lu (2009) found that the H2, CO and CH4 

contents increased and only CO2 content decreased with an increases in the biomass 

(pine sawdust) ratio. In another experiment using a different biomass (straw), before 

the biomass percentage increased from 0% to 30%, the content of CO firstly increased, 

and then decreased as the straw proportion increased to 100%. The trends of other 

producer gas contents (H2, CO2 and CH4) were as similar as that from co-gasification 

of coal-pine blend but the CO content displayed a different trend - it increased at first 

and then decreased.  
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Case 7: From studies of de Jong et al. (1999) and Vélez et al. (2009), it was found that 

gasification of pure biomass produces a higher concentration of combustible syngas 

(hydrogen and carbon monoxide) than coal-biomass blends.  

 

Case 8: Two studies conducted by Fermoso et al. (2009a; 2009b) have shown that the 

production of H2 and CO increased with additions of biomass. A slight increase in 

CO2 production was also observed. An increased in gas production was predictable, as 

biomass fuels are much more reactive than coal. It was also found from these two 

studies that the carbon conversion of the coal-biomass blends was higher than that of 

gasification of pure coal. This finding has indicated that the interactions between the 

coal and biomass fuels during the gasification have promoted the gasification rate due 

to the high reactivity of the biomass fuel. 

 

In the mentioned studies above, it has been found that the effects of blended coal and 

biomass on producer gas were inconsistent. The results of those studies may be caused 

by several reasons: 

 

Firstly, biomass has higher volatile matter content than coal (Kumabe et al. 2006; Yan 

and Lu 2009); therefore, the increase in biomass content in blends produced the more 

volatile matter during devolatilization and thus the contents of producer gas (such as 

H2, CH4) were increased.  

 

Secondly, biomass has lower fixed carbon content than coal; hence the increase in 

biomass ratio reduced the total amount of gasified carbon in blends (Li et al. 2009). It 

caused that the steam reaction (1) and Boudouard reaction (4) was inhibited, 

leading to increase the CO2 content and decrease the H2 and CO content.  
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Thirdly, the high reactivity of biomass lead to a faster volatile release, causing the 

increase in the syngas production in the gasification processes (de Jong et al. 1999; 

Fermoso et al. 2009a; Lapuerta et al. 2008). 

 

Finally, the variability in the feedstock materials, gasifier type and operation 

conditions are also believed to affect the results significantly. 

 

From the above discussion, the influences of blended coal and biomass on the 

producer gas were not conclusive. An important factor for this is believed to the solid 

fuel (coal and biomass) characteristics which vary significantly with the type and 

location of fuels. However, few reports are found on gasification of New Zealand coal 

and biomass resources and their blends. Therefore, it is important to experimentally 

investigate the catalytic effects of New Zealand coal and biomass in gasification.   

 

2.3 Effect of AAEM in the gasification studies   

The overall efficiency of gasification is determined by the conversion rate of the solid 

chars which are generated from the initial devolatilization process. In turn, the rate of 

char gasification directly depends on the char reactivity (Asadullah et al. 2010; Tay 

and Li 2009) which are essentially influenced by the structural properties and the 

intrinsic reactivity of the chars. The structural properties include the surface area and 

porosity, while the intrinsic reactivity reflects the surface chemistry and catalytic 

effect of the inorganic compounds (Everson et al. 2006), such as alkali and alkaline 

earth metals (AAEM). The catalytic effect of AAEM is an important factor and also 

the most variable property of the coal-biomass blend in the co-gasification. 

 

It is known that AAEM are active catalysts for gasification. Among these AAEM 

species, calcium (Ca) and potassium (K) are the most promising. The former is 

presented in the coal, whereas the latter is abundant in some herbaceous biomass 
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resources (Zhang et al. 2010). A series of studies (Li et al. 2004a; Matsumoto et al. 

2009; Quyn et al. 2002; Wu et al. 2002) on the catalytic effect of AAEM species on 

char reactivity in individual coal or biomass gasification were investigated. From 

these studies, it was found that the presence of AAEM had a significant influence on 

the char structure as well as its reactivity in the gasification step (Huang et al. 2009; 

Mitsuoka et al. 2011).  

 

2.3.1 The mechanisms of AAEM in gasification 

The mechanisms of AAEM may be explained by the following steps. These theories 

may explain why AAEM species exhibit positive catalytic effects on gasification 

performance. 

 

Firstly, during the initial rapid pyrolysis of coal and biomass, AAEM species were 

easily desorbed from the solid surface into the volatile phase, where AAEM species 

(mainly Ca and K) were associated with the carboxyl and phenolic groups to form part 

of organic substance in coal or biomass (Quyn et al. 2003). Simultaneously, the 

organic molecules in the solid phase rearranged to form a micro-crystalline structure 

of char; therefore, the char structure changed and became more porous to promote the 

reactivity during gasification (Mitsuoka et al. 2011).  

 

Secondly, during the volatile-char interactions, AAEM species in the vapour phase 

were re-adsorbed onto the surface of the porous char (Li et al. 2006; Li and Li 2006). 

the formation of intermediate alkali-surface compounds between AAEM species and 

carbon also increased the interlayer distance and caused total pore volume expansion, 

thus the C-C bonds existing between layers were weakened and the gasification 

reactions were enhanced (Huang et al. 2009). And then the re-adsorbed AAEM and 

the residual AAEM in solid char participates the char gasification process, which 

decreased the energy activation of gasification reactions (Leboda et al. 1998) .  
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2.3.2 The reactions of AAEM mechanism in gasification 

Several researchers (Brown et al. 2000; Jaffri and Zhang 2008a; Jaffri and Zhang 

2008b) have proposed the reactions scheme for explanation the effects of AAEM 

species during the gasification. As catalysts, AAEM species can participate in the 

gasification process by undergoing chemical or electronic interaction with the 

carbonaceous substrate. Specifically, an oxidation-reduction cycle by carbon takes 

place to form intermediate alkali-surface compounds. These are represented by 

][ COM called a phenolic alkali metal surface oxide group and ][ 2MCO , which is 

known as a carboxylic alkali metal surface oxide group (Wang et al. 2009b): 

 

)]([)]([)()( 232 sMCOsCOMsCsCOM  

 

During gasification the steam on carbon particle surface reacts with the intermediate 

alkali surface compounds to form H2 and CO as described in the following reactions: 

 

)()]([)()]([ 222 gHsMCOgOHsCOM  

)()]([)()]([ 2 gCOsCOMsCsMCO  

)()]([)()]([ 22 gCOsMCOgCOsCOM  

The carbon particles react with H2O at the carbon particle surface as the steam 

gasification reaction and Boudouard reaction:  

 

22 HCOOHC  

COCOC 2  
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However, few reports have been found in literature on the effect of AAEM on the 

quality of producer gas in the gasification. In this project, as one of selected fuel 

samples, lignite contains significantly AAEM species, especially calcium (Clemens et 

al. 1998). Hence, the effects of AAEM in lignite on gasification characteristics 

(producer gas and char reactivity) will be investigated in this project. 

 

2.4 Synergistic effects in co-gasification   

The synergistic effects in co-gasification is defined as A few studies of the synergistic 

effects in co-gasification (Demirbas 2002; Lapuerta et al. 2008; Sjöström et al. 1999; 

Zhang et al. 2007) have found that the synergistic effects existed when coal and 

biomass were blended in co-gasification. Therefore, sufficient data are not available 

for explaining the observations. However, it might be suggested through the following 

mechanisms:  

 

The effects may be caused by high volatile matter content and high reactivity in 

biomass. When coal-biomass blends are fed into the reactor, the biomass will react 

rapidly, releasing a high amount of volatile matter via the thermal or oxidative 

cleavage of the weakest covalent bonds in the organic matter. This matter then rapidly 

decomposes and forms a high number of free radicals, which react not only with the 

organic matter of the biomass, but possibly with the coal as well, thereby favouring 

decomposition and oxidation/gasification reactions in the coal. Furthermore, the 

hydrogen-rich light molecules produced from the devolatilization of the biomass and 

the cracking of violates may react with the volatiles produced from coal, thereby 

preventing recombination reactions and the formation of less reactive secondary char.  

 

In order to investigate the synergistic effects in co-gasification of coal-biomass blend 

chars and explain the observations, four types of coal-biomass blend chars are used to 

exam the performance of synergistic effects in co-gasification. 
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3 Experiments and Methodology 

As a major part of this project, the proposed experimental work was carried out on a 

bench scale gasifier, where chars of pure biomass, pure coal and their blends were 

gasified with steam as gasification agent. 

 

3.1 Materials 

Two different ranks of coals found in New Zealand (Lignite and Sub-bituminous coal), 

as well as two types of woody biomass, Radiata pine (Pine) and Eucalyptus nitens (E. 

nitens), were selected as solid fuels for the experiments. Lignite and sub-bituminous 

are both typical low rank coals and their reserves are enormous in New Zealand. Pine 

is the most common species in New Zealand plantation (Forestry 2009). E. nitens is a 

short rotation plantation hardwood species. All of the four fuel samples have abundant 

resources in New Zealand and suitable for energy resources.  

 

Table 3-1: Proximate analysis and ultimate analysis of solid fuel samples 

  Pine E. nitens Lignite Sub-bituminous 

Proximate analysis (% w/w as received basis) 

Fixed Carbon  13.9 12.7 34.1 42.4 

Volatiles  78 81.5 41.9 38.6 

Ash  0.34 0.38 4.9 5.4 

Moisture  7.8 5.4 19.1 13.6 

  

Ultimate analysis (% daf) 

Carbon  47.2 47.5 50.6 59.4 

Hydrogen  5.41 5.57 3.64 4.1 

Nitrogen  <0.03 <0.03 0.55 1.03 

 

Table 3-1 presents the results from both the proximate and ultimate analysis for the 

four types of solid fuels tested. Proximate analysis and Ultimate analysis are two 

general methods to examine the composition of fuel species. The former one is used 

to measure the proportions of moisture content, ash content, volatile matter content 
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and fixed carbon content, while the latter one is used to analyze the elemental 

composition, such as carbon, hydrogen, oxygen, nitrogen and Sulfur 

 

3.2 Solid fuel sample preparations 

3.2.1 Pulverization  

Before the experiments, the four solid fuel feedstock materials were firstly pulverized 

through a ring mill and sieved to powders with particle size of less than 0.5 mm, as 

shown in Figure 3-1. In order to investigate the catalytic effects of the alkali and 

alkaline earth metals (AAEM) in the lignite, some lignite powder was acid-washed to 

remove the AAEM in the powder. The pulverized powders were maintained in the dry 

containers for the next treatment. 

 

 

Figure 3-1: Solid fuel materials in the original forms as received and in the power 

form for the gasification experiments 

 

 



29 

 

3.2.2 Blend of coal and biomass 

The pulverized samples (coal and biomass) were thoroughly mixed with coal-to-

biomass blending ratio in different batches of 0 wt%, 20 wt%, 50 wt%, 80 wt% and 

100 wt% of coal. The identification numbers for the coal-biomass blends are given in 

Table 3-2.  

 

Table 3-2: Identification number for the blended coal and biomass 

  Pine E. nitens 

Lignite No. 1 No. 2 

Sub-bituminous No. 3 No. 4 

Acid-washed lignite No. 5 No. 6 

 

3.2.3 Pelletization and charring processes 

After the pulverization and blend process, the powders were compressed under a 

pressure of 1.6 MPa in a mould to produce cylindrical pellets approximately of 

~10mm in length and 8 mm in diameter as shown in Figure 3-2 for the lignite-biomass 

pellets. The pelletization was to prevent the segregation of coal and biomass during 

charring. 
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Figure 3-2: Samples of pellets and chars 

 

Table 3-3 (a): Proximate analysis of lignite-pine blend chars 

Lignite - Pine 
Proximate analysis (% w/w as dry basis) 

Fixed Carbon Volatiles Ash 

0 - 100 95.9 2.1 1.9 

20 - 80 91.8 3.2 4.9 

50 - 50 87.4 4.3 8.3 

80 - 20 82.3 4.8 10.7 

100 - 0 81.4 5.0 12.9 

 

Table 3-3 (b): Proximate analysis of lignite-E. nitens blend chars 

Lignite - E. nitens 
Proximate analysis (% w/w as dry basis) 

Fixed Carbon Volatiles Ash 

0 - 100 92.7 4.0 3.2 

20 - 80 89.4 4.2 6.0 

50 - 50 85.7 4.6 9.7 

80 - 20 84.5 5.1 10.4 

100 - 0 81.4 5.0 12.9 
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Table 3-3 (c): Proximate analysis of sub-bituminous-pine blend chars 

Sub-bituminous - 

Pine 

Proximate analysis (% w/w as dry basis) 

Fixed Carbon Volatiles Ash 

0 - 100 95.9 2.1 1.9 

20 - 80 90.1 4.8 5.2 

50 - 50 88.2 4.9 8.7 

80 - 20 86.6 3.3 10.1 

100 - 0 85.4 3.7 10.9 

 

Table 3-3 (d): Proximate analysis of sub-bituminous-E. nitens blend chars 

Sub-bituminous - E. 

nitens 

Proximate analysis (% w/w as dry basis) 

Fixed Carbon Volatiles Ash 

0 - 100 92.7 4.0 3.2 

20 - 80 89.5 4.1 6.4 

50 - 50 87.6 3.6 8.8 

80 - 20 86.6 3.5 9.8 

100 - 0 85.4 3.7 10.9 

 

Sample char was produced by heating up the prepared pellets, which were placed into 

an oven for 7 minutes at a temperature of 900°C to remove the volatile components. 

The char samples for the lignite-biomass blends are also shown in Figure 3-2 under 

the corresponding un-charred pellets. The proximate analysis of coal-biomass blend 

chars is listed in Tables 3-3 (a) to 3-3 (d). 

 

3.2.4 Acid washing  

In order to investigate the effect of AAEM in the lignite on gasification performance, 

some lignite powder was washed using mid-acid to remove the AAEM. This was 

done in a beaker by stirring for 15 minutes in a 1 mol per litre solution of hydrochloric 

acid (HCl) at room temperature. The acid-washed powder sample was then filtered 

and washed repeatedly with distilled water until the washing gave no indication of 
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chloride in treatment with silver nitrate solution. Finally the washed lignite powder 

was pelletized and charred.  

 

3.3 Experimental equipments and procedures 

3.3.1 Equipments 

The bench scale gasification system is sketched in Figure 3-3 and its photo is shown 

in Figure 3-4. In the system, nitrogen gas is introduced as an inert gas carrier. This 

system contains a bench scale gasifier, a steam generator and a gas preheater, a water 

cooling system and a micro gas chromatograph.  

 

Figure 3-3: Flow diagram of gasification apparatus 

 

The gasifier is made of a special glass with 1.5mm in thickness which can stand high 

temperatures of over 1000 C. Its dimensions are 36mm in diameter and 350mm in 
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height. A porous quartz frits with a 4mm thickness is fixed inside and close to the 

bottom of the gasifier, above which the solid char particles were held during the 

gasification tests. The gasifier is placed and heated by an electrical oven. This oven’s 

temperature is controlled at temperatures of up to 1200 C. One pair of K-type 

thermocouples are placed above the fritz to measure the temperature inside the 

gasifier.  

 

The preheater is used for heating the mixture of steam and nitrogen up to 300 C. The 

water cooling system consists of a condenser and a water bottle, which were applied 

to reduce the temperature and to remove condensed water in producer gas, 

respectively. A dehumidifier absorbs the residual vapour in the producer gas. Finally, 

the MTI M200 micro gas chromatograph (Micro-GC) is used to analyse the gas 

content in producer gas.  

 

 

Figure 3-4: Gasification apparatus 
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3.3.2 Experiment procedures 

For each experimental run, 1 gram of sample char was first fed into the bench scale 

gasifier. Then pure nitrogen gas was continuously supplied with its flow rate being 

manually controlled at 0.6 litres per minute by a valve and the flow rate was 

monitored by the gas flow meter. Before entering the gasifier, the nitrogen was 

preheated to 300°C through the pre-heater. When the gasifier was fully filled with 

heated nitrogen, the gasifier was heated to a set temperature (850°C, 900°C or 950°C) 

by controlling the electrical oven.  

 

After the temperature inside the gasifier became stable at the set point, the water 

pump was turned on to inject the distilled water at a flow rate of 1.79 millilitres per 

minute into the steam generator which was also turned on once it was filled with 

water. Once being generated, the steam was mixed with the heated nitrogen; the 

steam-nitrogen mixture was then flowed into the top of the gasifier in which the steam 

reacted with the sample char.  

 

The producer gas was generated and flowed out from the bottom of the gasifier with 

the carrier gas (nitrogen). The flow rate of the producer gas was measured by a flow 

meter and its composition (H2, CO, and CO2, as well as N2) was analysed by the MTI 

M200 Micro-GC. The sample gas was taken and analysed every 60 seconds. Each 

experiment was continued until all of the concentrations of H2, CO, and CO2, were 

less than 0.5%, which was shown on the GC monitor. 
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3.4 Methodology 

3.4.1 Experimental variations 

The effects of experimental conditions on the gasification process and on the gas 

composition were evaluated. Apart from the sample char species as shown in Table 3-

2, the variables investigated also included gasification temperature and blending ratio 

of coal and biomass. 

 

In this study, a total number of 90 experimental runs were performed, which included 

six combinations of coal-biomass blends (lignite-pine, lignite-E. nitens, sub-

bituminous-pine, sub-bituminous-E. nitens, acid-washed lignite-pine, acid-washed 

lignite-E. nitens), five blended ratios of coal to biomass (0-100, 20-80, 50-50, 80-20, 

100-0) and three gasification temperatures (850, 900 and 950°C) as shown in Table 3-

2 and Table 3-4. At least three runs were carried out for each data point to ensure data 

reliability.  

 

Table 3-4: The variables for gasification tests 

                             Temperatures 

Blended ratio 

(coal : biomass) 

850°C 900°C 950°C 

 

0-100 

 

X X X 

 

20-80 

 

X X X 

 

50-50 

 

X X X 

 

80-20 

 

X X X 

 

100-0 

 

X X X 
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3.4.2 Data analysis  

In this study, the effects of experimental parameters as described above on producer 

gas composition and on gasification output parameters were analyzed, which included 

char reactivity, producer gas yield and production rate.  

 

For each experimental run, the composition of the producer gas varied with elapsed 

time and this was recorded from the continuous micro-GC analysis. In the 

experiments, nitrogen acted as an inert and carrier gas, which flowed into the gasifier 

at a constant flow rate of 0.6 litres per minute. The results of gas yield and gas 

composition were analyzed from the experiments and the gas components of the 

producer gas analysed included hydrogen (H2), carbon monoxide (CO) and carbon 

dioxide (CO2). 

 

The gasification output parameters (gas yield and gas composition) were calculated 

using the following methods: 

 

1) Producer gas yield 

Producer gas yield (Y) was estimated as: 

t

ot
ttFY )(                                                                                                     (3-1) 

）（
）(

)( tN
tN

F
tF gasproducerone

Nitrogn

nitrogen
                                                                         (3-2) 

 

, in which t  is the time interval of 60 second, )(tF  is producer gas flow rate (L/s) at 

a certain time interval, NitrognN  and gasproduceroneN are, respectively, the nitrogen content 

and the gas content for H2, CO or CO2 at the same certain time interval, which values 
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were obtained from the micro GC analysis, nitrogenF  is the flow rate of nitrogen, 0.6 

litre per minutes = 0.01 litre per seconds. 

 

2) Char reactivity 

Char mass remained in the gasifier (m) at time t is determined as the difference 

between the original char mass (m0) and the accumulated carbon consumedm  reacted: 

carbon

it

t

COCO

consumed M
v

ttYtY
tm

0 0

)]()([
)( 2 ………….………………..….… (3-3) 

)()( 0 tmmtm consumed ………………...……………………….……………… (3-4) 

 

, in which )(tYCO
and )(

2
tYCO are the gas volume of CO and CO2 at the certain time 

interval, 
0v is the gas constant volume at reference conditions (22.4 litre/mole), 

carbonM  is molar weight of carbon, 12 gram/mole. 

 

Once the reacted carbon is determined, the char conversion percentage (X) can be 

calculated by: 

%100
)(

1)(
0m

tm
tX                                                                                             (3-5) 

 

Char reactivity (r) at time t is related to the carbon conversion rate as the following 

equation: 

dt

dm

tmdt

dX

tX
r

)(

1

)(1

1
                                                                                  (3-6) 
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3) Syngas production rate 

The average syngas (H2, CO or CO2) production rate (SPR) is calculated as:  

timeongasificatiTotal

gasproducerofyieldgasveAccumulati
SPR                                                  (3-7) 

 

4) The calculation for synergistic effect test 

In order to investigate whether synergistic effects exist when coal and biomass were 

blended, the prediction has to be calculated from each individual fuel on the basis of 

the absence of synergistic effects. 

 

biomassbiomasscoalcoalmix XFXFX                                                                              (3-8) 

In which
coalX  and

biomassX are the data from pure coal char and pure biomass char 

gasification, 
coalF  and

biomassF are the fraction of single fuel in the coal-biomass blend 

char, and %100biomasscoal FF . 

 

If the experimental results deviate from the predicted results mixX  by more than 5% 

(experimental error), then the occurrence of synergistic effects have been identified. 

 

3.4.3 Assumptions  

In this project, several assumptions are stated. 

 The component of char is 100% carbon only.  

 Gas productions only include H2, CO and CO2. 

 A less amount of hydrocarbon compounds, such as CH4, is negligible. 
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 The vapor in gas production after passing the water bottle is negligible. 

 

3.4.4 Error analysis  

In each experimental test, three parameters have to be collected and recorded 

manually, which were 1) the mass of char before gasification, 2) the mass of ash after 

gasification, and 3) the volume of water from non-reacted steam (which is trapped in 

the water bottle after the water cooling system), as shown in Appendixes A. Hence, 

the reproducibility of experimental results has to be checked and a good agreement of 

the data among the three repeating runs was obtained, with experimental errors lower 

than 5%. 

 

The error analysis was demonstrated in carbon balance and oxygen balance. 

Carbon balance: all carbon elements in gas production are from the carbon in char 

reacted. 

ashchar MMCarbonexp                                                                                          (3-9) 

)(
2COCOcarboncal nnMCarbon                                                                            (3-10) 

%100%
exp

exp

Carbon

CarbonCarbon
error

cal
                                                               (3-11) 

 

, where charM  is the mass of char before gasification (g), ashM  is the mass of ash after 

gasification (g), carbonM  is the molar mass of carbon, 12g/mol, COn  is the molar 

number of CO and 
2COn is the molar number of CO2. 
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Oxygen balance: the oxygen elements in gas production are from the oxygen elements 

in steam. 

water
watersteam M

lml

VtFlow
Oxygen

/1000
exp                                                                 (3-12) 

)2(
2COCOcal nnOxygen                                                                                     (3-13) 

%100%
exp

exp

Oxygen

OxygenOxygen
error

cal
                                                               (3-14) 

 

, where 
steamFlow  is the flow rate of steam, 1.79 ml/min, t is the total gasification 

completion time (min), waterV  is volume of water trapped in water bottle, 
carbonM  is the 

molar volume of water, 55.6 mol/l, 
COn  is the molar number of CO and 

2COn is the 

molar number of CO2. 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

4 Results  

4.1 Char yields from devolatilization 

Devolatilization, also termed as pyrolysis, is the first step prior to generation solid 

chars for char gasification. In this project, the devolatilization was conducted at a 

temperature of 900 C for 7 minutes for preparation of chars for steam gasification 

tests, where the coal-biomass blend pellets were made at the coal to biomass blending 

ratios of 100:0, 80:20, 50:50, 20:80 and 0:100. The char yields of coal-biomass blends 

at various blending ratios in the devolatilization process are demonstrated in Table 4-1.  

 

As expected, the average char yield of pure coal is approximately 45% which is much 

higher than that of pure biomass (about 17%). Since coal has lower volatile matter and 

higher fixed carbon content, compared with biomass; the coal yields higher content of 

solid char in the devolatilization process (Haykiri-Acma and Yaman 2010). According 

to proximate analysis (Table 3-1), the pure lignite coal has 41.9 wt% volatile and 34.1 

wt% fixed carbon whereas the sub-bituminous has 38.6% volatile and 42.4% fixed 

carbon. The corresponding values for pine are 78% and 13.9% while those for E. 

nitens are 81.5% and 12.7%.  

 

The results of devolatilization of the four selected fuel samples follow the same trends 

as the proximate analysis and the char yields decreased in the following sequence: 

sub-bituminous coal produced the most amounts of char (49%), followed by lignite 

(41%), pine (18%) and E. nitens (15%). The char yield of coal-biomass blends was 

related to ratio of the coal to biomass and the char yield of each fuel. It has been 

observed that an increase in coal proportion in the coal-biomass blend increases the 

char yield of the blend. These results were presented in Table 4-1. 
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Table 4-1: Char yield of coal-biomass blend from devolatilization 

Coal / Biomass Ratio Char yield 

Lignite-Pine 

80 / 20 36% 

50 / 50 29% 

20 / 80 23% 

  

Sub-bituminous-Pine 

80 / 20 43% 

50 / 50 34% 

20 / 80 25% 

  

Lignite-E. nitens 

80 / 20 38% 

50 / 50 29% 

20 / 80 21% 

  

Sub-bituminous-E. nitens 

80 / 20 44% 

50 / 50 33% 

20 / 80 24% 

  

Lignite 100 41% 

      

Sub-bituminous  100 49% 

  

Pine 100 18% 

  

E. nitens 100 15% 
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4.2 Results of individual coal and biomass char gasification  

In this work, steam gasification of chars generated was experimentally investigated in 

a bench scaled gasifier. This section will present the results from steam gasification of 

four pure fuel chars (lignite, sub-bituminous, pine and E. nitens) whereas the results 

for the gasification of blended chars will be presented in the following section.  

 

The producer gas compositions as a function of elapsed time are shown in Figures 4-

1(a) to 4-1 (d) for steam gasification of lignite, sub-bituminous, pine and E. nitens at 

the gasification temperature of 950 C. In the figures, three major gas components of 

hydrogen (H2), carbon monoxide (CO) and carbon dioxide (CO2) are presented. The 

results for gasification temperature of 850 C and 900 C are included in Figures D-1 

to D-4 in Appendixes D.  

 

The generation of producer gas was determined by the reactions between char and the 

gasification agent described below. The main constituent of char was carbon. 

Therefore, in the steam char gasification, the main reaction was Steam Gasification 

Reaction (4-2), in which a large amount of hydrogen was produced. 

22 HCOOHC                                                                                               (4-1) 

 

CO and CO2 may undergo the Water-Gas Shift Reaction (4-3) and the Boudouard 

Reaction (4-4):  

222 HCOOHCO                                                                                           (4-2) 

COCOC 22                                                                                                       (4-3) 
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Based on these reactions, for both coal and biomass char gasification, the evolution of 

producer gas composition can be summarised as follows. Firstly, H2 content in 

producer gas was the highest confirming that the Steam Gasification Reaction (4-1) 

was the most dominant. Secondly, the CO content reached its peak value more rapidly 

than that of CO2 content which can be attributed to the fact that the occurrence of the 

Steam Gasification Reaction (4-1) occurred prior to the Water-Gas Shift Reaction 

(4-2) and the Boudouard Reaction (4-3). Thirdly, the CO and CO2 contents in late 

stage of the gasification were approaching the equilibriums values determined by the 

Water-Gas Shift Reaction (4-2) and the Boudouard Reaction (4-3).   
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Figure 4-1: The composition of producer gas from steam gasification of chars of 

lignite (a), sub-bituminous (b), pine (c) and E. nitens (d) at 950 C  

 

4.3 Results of co-gasification of coal-biomass blend chars 

Steam co-gasification of four coal-biomass blend chars (lignite-pine, lignite-E. nitens, 

sub-bituminous-pine and sub-bituminous-E. nitens), at the coal-biomass blending 

ratios of 100:0, 80:20, 50:50, 20:80 and 0:100, was carried out at gasification 

temperatures of 850, 900 and 950 C.  

 

The gas composition results of co-gasification of coal-biomass blend chars, at the 

blending ratio of 50:50, with steam at the gasification temperature of 950 C are 

presented in Figure 4-2(a) for lignite-pine, in Figure 4-2(b) for lignite-E. nitens, in 

Figure 4-2(c) for sub-bituminous-pine and in Figure 4-2(d) for sub-bituminous-E. 
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nitens. The gas compositions for other blending ratios and gasification temperatures 

are presented in Figures E-1 to E-12 in Appendix E. 

 

From Figures 4-2(a) to 4-2(d), it can be seen that for all of the coal-biomass blends, 

the producer gas contents for all of the gas components increased rapidly in the initial 

period to their peak values, and then decayed exponentially over a longer period of 

time until the completion of the gasification process. It is found that the evolution of 

producer gas content curves during the co-gasification of coal-biomass blend chars is 

similar to that of pure coal char gasification. This is unsurprising considering the 

much lower char yield of biomass than coal during the devolatilization; therefore, the 

coal char was more dominant in the co-gasification of the coal-biomass blend char.  

Hence, the curves of producer gas in coal-biomass blend char co-gasification 

resemble those of coal char rather than biomass char. Other authors also observed a 

similar behavior (Fermoso et al. 2010; Xu et al. 2011). 
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Figure 4-2: The composition of producer gas from steam gasification of coal-biomass 

blend chars of lignite-pine (a), lignite-E. nitens (b), sub-bituminous-pine (c) and sub-

bituminous-E. nitens (d) at 950 C  

 

4.4 Database and error analysis 

The information and error analysis of all experimental tests are presented in the in 

Appendix G 
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5 Discussions 

A series of gasification experiments have been performed in order to investigate the 

effects of types of coal and biomass, operation variances (gasification temperatures, 

blended coal-to-biomass ratio, AAEM present in lignite) on gasification reactivity, 

and producer gas composition and yields. Finally, the synergistic effects in co-

gasification of coal-biomass blend chars are also investigated 

 

5.1 Effects of fuel species 

It is clear that the gasification of pure coal char and pure biomass char are quite 

different, based on the results of producer gas compositions as shown in Figures 4-1(a) 

to 4-1(d), both in terms of the gas composition values and the trends of changes with 

elapsed time. In addition, the completion time for gasification process is also different 

between the coal chars and the biomass chars. These differences can be due to the 

different characteristics between coal char and biomass char. Hence, it is important to 

examine the effects of feedstock species on producer gas composition and char 

reactivity. 

 

5.1.1 Producer gas production  

In Figure 4-1 (a) and Figure 4-1 (b), for the coal char gasification, the producer gas 

contents increase drastically initially before reaching their peak values (as listed in 

Table 5-1). After reaching their peak values, the curves decayed exponentially until 

coal char conversion was completed. The whole gasification process of lignite and 

sub-bituminous char took 1800 seconds and 2400 seconds, respectively.  

 

In contrast to the sharp peaks displayed in coal char gasification, Figures 4-1 (c) and 

4-1(d) display bell-shaped curves where producer gas compositions for the biomass 

chars remain fairly stable around the peak values for about 300 seconds after the 

initial heat-up stage. The curves then decrease rapidly towards the equilibrium values 
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while the gasification process is completed. The completion time of the gasification of 

pine and E. nitens chars was 1100 seconds and 1200 seconds, respectively. 

 

Table 5-1: The maxima of producer gas content for each feedstock species at 

gasification temperature of 950 C 

Species Lignite Sub-bituminous Pine E. nitens 

H2 33% 21% 31% 29% 

CO 11% 5% 9% 12% 

CO2 10% 7% 10% 9% 

 

It is expected that the performance of gasification, in terms of gasification completion 

time and the shape of the producer gas curves, is related to the micro-structures of the 

coal char and the biomass char. As shown in Table 3-3, biomass char has higher fixed 

carbon content and lower volatile matter compared to coal char. Thus, char created 

from coal exhibits different micro-structures from that created from biomass, because 

the volatile matter is removed during the devolatilization. It has also been observed in 

other studies. The biomass chars have porosities with values from 40 to 50% and a 

pore sizes between 20 and 30µm. On the other hand, coal have porosities ranging 

from 2 to 18% and a pore sizes of around 5 µm (Encinar et al. 2001). Furthermore, in 

the scanning electronic microscopy (SEM) images (Diagram 5-1) were illustrated in 

the studies (Xu et al. 2011), it clearly demonstrated that for the biomass char, there are 

a large amount of finer voids between the carbonaceous matters forming the porous 

structure of thinner clusters. For the coal char, the carbonaceous materials are more 

likely to be segregated in the form of more compacted clusters. 
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Diagram 5-1: The SEM images of (a) pure biomass char and (b) pure coal char. All 

images have a magnification of 350  (Xu et al. 2011). 

 

Hence, compared with coal char, the biomass char is structurally more amorphous and 

porous (Kastanaki and Vamvuka 2006; Klose and Wölki 2005). During gasification, 

steam diffuses into the porous biomass char easily and reacts with the char mass at 

both the interior and the surface of the char. This creates a large effective reaction 

area which is maintained for a long time and enhances the intrinsic reactivity of the 

biomass char. Therefore, the producer gas curves of the biomass char gasification 

remained at around their peak values for approximately 5 minutes, during which time 

large amounts of biomass char were consumed. 

 

On the other hand, the coal char has a more compact structure than the biomass char 

(Zhu et al. 2008), so steam reacts with the char mass largely at the surface area of the 

coal char but the resistance for the steam to penetrate into the coal char is higher than 

that into the biomass char. This can be confirmed by the observation in Figures 4-1(a) 

and 4-1(b) in which a sharp increase in  the producer gas composition curves is 

observed during the initial period of coal char gasification, when the char surface was 

available for the reaction with steam. As the reaction processes, the producer gas 

composition for the coal chars decreased exponentially with time indication the 

significantly reduced reaction area in the chars. 
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5.1.2 Char reactivity 

According to the producer gas composition from the char gasification, the char 

conversion percentage with elapsed time and char reactivity were calculated using the 

Equations (3-5) and Equation (3-6) in Chapter 3, respectively. The results for the 

gasification temperature of 850 C are shown in Figure 5-1 for the char conversion 

percentage and in Figure 5-2 for char reactivity. In the figures, the comparison among 

all of the tested coal and biomass fuels are presented. The results for other gasification 

temperatures of 850 C and 900 C are include in Figures F-1 and F-2 in Appendixes F. 
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Figure 5-2: The effect of feedstock species on char reactivity at 850 C 

 

From Figures 5-1 and 5-2, it is found that the gasification of both biomass chars (pine 

and E. nitens) was completed at the same time (around 40 minutes) (Figure 5-1). The 

two biomass char samples bear a resemblance for the char reactivity as a function of 

char conversion percentage (Figure 5-2). 

 

However, for the two coal samples, the completion time of lignite char conversion (50 

minutes) was approximately half of that of sub-bituminous char (100 minutes) as 

shown in Figure 5-1. This can be explained by the difference in char reactivity as 

shown in Figure 5-2 in which the reactivity of lignite char was much higher than sub-

bituminous char. From Figure 5-2, it is also found that the reactivity curves as a 

function of char conversion percentage are also different. The reactivity of sub-

bituminous char remained relatively constant at 0.03min
-1

 throughout whole 

gasification process. However, the reactivity of lignite char was sustained at 0.08min
-1

 

up to the char consumption of 30% and then gradually decreased with further char 

conversion. The higher reactivity of lignite might be explained by the catalysis of 

inherent alkali and alkaline earth metals (AAEM) in lignite, especially calcium 
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(Clemens et al. 1998). It is thought that the decrease in the reactivity at a high 

conversion percentage for lignite may be attributed to the deactivation of calcium 

when most of the char has been converted (Ganga Devi and Kannan 1998; Zhang et al. 

2010). 

 

The reactivity difference between the coal char and the biomass char can also be 

attributed to the difference in their char chemical structures and micro-structures. Pine 

and E. nitens chars are much more reactive and thus the completion time of steam 

gasification was shorter than coal chars, particularly for the sub-bituminous char. This 

trend agrees well with the results reported by other researchers (Haykiri-Acma et al. 

2006). The coal consists mainly of C=C bonds, which requires high activation energy 

to be broken, hence coal has low reactivity. On the other hand, the cellulose and lignin 

of the biomass consist mainly of weaker R-O-R bonds, which are less resistant to 

thermal decomposition (Lapuerta et al. 2008; Ulloa et al. 2009). Furthermore, the 

carbon micro-structure in biomass char is porous and highly disordered (Kastanaki 

and Vamvuka 2006). These characteristics can accelerate the reaction rate between 

the solid carbon in the biomass char and steam.  

 

In conclusion, biomass chars appeared more reactive than coal chars during the whole 

gasification process, since the completion time of biomass char gasification was much 

less than that of coal char. However, the catalytic effect of AAEM in lignite is 

significant at low conversion percentage; therefore, the lignite char had the highest 

reactivity among the four selected sample chars while the char conversion percentage 

was less than 40%. The more details on effect of AAEM in lignite will be discussion 

in Chapter 5.2.3 

 

In conclusion, the reactivity of biomass char is higher than that of coal char, this is 

due to the micro-structure of char, the former is more porous and the latter is more 

compact. Consequently, the total gasification completion time of coal char is longer 
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than that of biomass char gasification. However, the presence of AAEM in lignite is 

other important factor on char reactivity. 

 

5.2 Effects of operation variations 

The effects of three operation variation, gasification temperatures, coal-to-biomass 

blending ratio and AAEM in lignite, on producer gas composition and yield as well as 

char reactivity were investigated.  

 

5.2.1 Effects of gasification temperatures 

The gasification temperature is an important operating variable with regard to the 

final composition of the producer gas and gas component distribution in the 

gasification of pure coal char, pure biomass char and/or their blend char (Pinto et al. 

2003).  In this project, gasification temperatures were varied from 850 to 950 C in 

50 C increments. In this section, the results of the effects of gasification temperature 

on the yield of producer gas and char reactivity were presented.  

 

5.2.1.1 Producer gas production 

Gasification of pure char 

The accumulative gas yield of the producer gas (H2, CO and CO2) from steam 

gasification of lignite, sub-bituminous, pine and E. nitens were determined by the 

Equations (3-1) and (3-2) as described in Chapter 3. The results for the three main 

gas components (H2, CO and CO2) are plotted in Figure 5-3 for H2, in Figure 5-4 for 

CO and in Figure 5-5 for CO2.  

 

The influences of gasification temperature on producer gas yields were the result of a 

series of complex reactions. In general, higher temperatures enhanced the 

endothermic gasification reaction (Steam Gasification Reaction (4-1) and 
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Boudouard Reaction (4-3)), the reverse direction of Water-Gas Shift Reaction (4-2) 

towards the left-hand side (formation of CO and H2O instead of CO2 and H2).  
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Figure 5-3: The effect of gasification temperature on hydrogen yield 

 

Figure 5-3 shows the effect of gasification temperature on the accumulative hydrogen 

production for the char gasification of four pure feedstocks. The rise of gasification 

temperature was found to give a reverse trend of hydrogen yield between coal char 

and biomass char, with an increase in the former and a decrease in the latter.  

 

For lignite and sub-bituminous chars, H2 yield increased with a rise in temperature. 

The H2 yield for the lignite char was increased from 2.67 liters at 850 C to 2.94 liters 

at 950 C whereas that for the sub-bituminous chars was increased from 2.26 liters at 

850 C to 2.40 liters at 950 C. Results obtained in other studies (Lee et al. 1998; Wang 

et al. 2009b) of coal char gasification indicated the same trend. On the contrary, for 

pine and E. nitens chars, H2 yields decreased with a rise in temperature from 2.98 
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liters at 850 C to 2.81 liters at 950 C for the pine char and from 3.05 liters at 850 C 

to 2.70 liters at 950 C for the E. nitens char. However, no studies were found in 

literature on this trend for the biomass char gasification. 
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Figure 5-4: The effect of gasification temperature on carbon monoxide yield 

 

The results in Figure 5-4 show that an increase in the gasification temperature had a 

positive effect on the accumulative carbon monoxide (CO) production of all four 

feedstock chars. With gasification temperature increasing from 850 C to 950 C, the 

CO yield increased from 0.31 liters to 0.75 liters for the lignite char, from 0.38 liters 

to 0.74 liters for the sub-bituminous char, from 0.42 liters to 0.74 liters for the pine 

char and from 0.51 liters to 0.97 liters for the E. nitens char, respectively.  
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Figure 5-5: The effect of gasification temperature on carbon dioxide yield 

 

On the contrary, the yield of carbon dioxide (CO2) decreased with the increase in 

gasification temperature as shown in Figure 5-5. With the gasification temperature 

increasing from 850 to 950 C, the accumulative CO2 yields decreased from 1.16 liters 

to 1.04 liters for the lignite char, from 0.91 liters to 0.81 liters for the sub-bituminous 

char, from 1.29 liters to 1.18 liters for the pine char and from 1.18 liters to 0.94 liters 

for the E. nitens char, respectively. Based on the results shown in Figures 5-4 and 5-5, 

yields of CO and CO2 complement one another. This trend agrees with the results 

reported by other researchers (Aznar et al. 2006; Detournay et al. 2010; Lee et al. 

1998).  

 

The complementary behaviour of CO and CO2 can be explained by the Water-Gas 

Shift Reaction (4-2) and/or the Boudouard Reaction (4-3). CO2 was produced 

through the Water-Gas Shift Reaction (4-2) but as the gasification temperature 

increased, this exothermic reaction was inhibited, leading to a decrease in the CO2 

yield. However, when the gasification temperature increased, the Boudouard 
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Reaction (4-3) was more dominant than the Water-Gas Shift Reaction (4-2) thus 

CO2 was consumed. Hence, at a higher temperature, less CO2 was produced, resulting 

that an increase in CO yield in the gasification of both coal chars and biomass chars.  

 

Co-gasification of coal-biomass blend char 

The influence of gasification temperature in co-gasification is the combination 

between that in gasification of pure coal char and pure biomass char. Figures 5-14, 5-

15 and 5-16 show the influence of gasification temperature on producer gas (H2, CO 

and CO2) yields obtained at different blended ratios. The hydrogen (H2) yield is 

shown in Figure 5-14, the carbon monoxide (CO) yield is shown in Figure 5-15 and 

the carbon dioxide (CO2) yield is shown in Figure 5-16. From these results, it can be 

seen that producer gas yields were significantly influenced by temperature.  

 

As seen in Figure 5-14, the trend for the effects of gasification temperature is not 

consistent on the H2 yield in the co-gasification of coal-biomass blend char. For 

example, for the lignite-pine blends, at the blended ratio of 20:80, H2 yield tended to 

increase from 2.82 to 2.99 liters with gasification temperature increased from 850 C 

to 950 C. On the contrary, at the blended ratio of 80:20, the H2 yield decreased from 

2.84 to 2.32 liters with the same gasification temperature increased. However, for the 

sub-bituminous-E. nitens blends, a clear trend is observed that the H2 yield increased 

with the gasification temperatures increased for all of the blending ratios. 

 

The main reason for these results is that coal and biomass showed different trends of 

hydrogen yield at elevated temperatures during their individual char gasification. 

These differences caused the inconsistent results of hydrogen yield with increasing 

temperatures during co-gasification of coal-biomass blends. 
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In Figures 5-15 and 5-16, it can be seen that the sub-bituminous- E. nitens blend chars 

with a blended ratio of 20:80 had the highest CO yield at 950 C, which was 0.86 litres; 

while the lowest CO2 yield (0.19 litres) was produced for the lignite-pine blend chars 

with the blending ratio of 20:80 at 850 C. The lowest CO2 yield (0.75 litres) was 

found for the sub-bituminous-E. nitens blend chars at the blending ratio of 80:20, and 

the highest CO2 yield (1.44 litres) was for the lignite-E. nitens blend chars at the 

blending ratio of 20:80, both cases being observed for gasification temperature of 

850 C.   

 

From the results shown in Figures 5-15 and 5-16, a clear and consistent trend has been 

observed that the CO yield increased and the CO2 yield decreased with increase in 

gasification temperature. This trend holds for all of the coal-biomass blends and all of 

the blending ratios. For example, with the lignite-E. nitens blend at the blending ratio 

of 50:50, the CO yield was increased from 0.36 litres to 0.57 litres while the CO2 

yield decreased from 1.35 litres to 1.08 litres when the gasification temperature 

increased from 850 C to 950 C. 

 

The complementary behaviour of CO and CO2 in co-gasification was the same as the 

evolutions of CO and CO2 in gasification of both pure coal chars and pure biomass 

chars. This suggests that the effects of temperature on gasification reactions between a 

single fuel and blended fuels are the same. Higher temperatures inhibited the 

endothermic reactions, Water-Gas Shift Reaction (4-2) and Boudouard Reaction 

(4-3), and thus resulting in a decrease of CO2 yield and an increase of CO yield when 

the temperature rose from 850 C to 950 C. 
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5.2.1.2 Char reactivity 

Pure chars (coal/biomass) 

The variation of reactivity measured against char conversion percentage at the 

gasification temperatures of 850 C, 900 C and 950 C are displayed in Figures 5-6 to 

5-9 presenting the results of lignite, sub-bituminous, pine and E. nitens, respectively.  
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Figure 5-6: The effect of gasification temperature on char reactivity in steam 

gasification of lignite char  
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Figure 5-7: The effect of gasification temperature on char reactivity in steam 

gasification of sub-bituminous char 
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Figure 5-8: The effect of gasification temperature on char reactivity in steam 

gasification of pine char 
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Figure 5-9: The effect of gasification temperature on char reactivity in steam 

gasification of E. nitens char 

 

In all of the four fuel chars, it has been found that the char reactivity was increased 

with the gasification temperature and the completion time is inversely related to the 

char reactivity. It is also well-known that at higher gasification temperatures, the 

reaction acquires more energy which accelerates the reaction. The results concur with 

other researchers’ findings (Wu et al. 2006). 

 

Coal-biomass blend chars 

The effects of gasification temperature on char reactivity in co-gasification were also 

investigated in this study and the results are shown in Figure 5-10 for lignite-pine 

blend, in Figure 5-11 for lignite-E. nitens blend, in Figure 5-12 for sub-bituminous-

pine blend and in Figure 5-13 for the sub-bituminous-E. nitens, respectively, all at the 

blending ratio of 50:50. The results for other blending ratios are presented in Figures 
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F-4 to F-7 in Appendix F. From Figures 5-10 to 5-13, it can be seen that in the co-

gasification of both coal-biomass blend chars, the influence of gasification 

temperature on the char reactivity was consistent with that in the gasification of 

individual coal chars and biomass chars. The char reactivity as a function of 

conversion percentage was increased with the gasification temperature.  
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Figure 5-10: The effect of temperatures on char reactivity in co-gasification of 

50%lignite-50%pine blend  
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Figure 5-11: The effect of temperatures on char reactivity in co-gasification of 

50%lignite-50%E. nitens blend  
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Figure 5-12: The effect of temperatures on char reactivity in co-gasification of 

50%sub-bituminous-50%pine blend  
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Figure 5-13: The effect of temperatures on char reactivity in co-gasification of 

50%sub-bituminous-50%E. nitens blend  

 

5.2.2 Effects of coal-to-biomass blending ratio 

The characteristics of coal char and biomass char are different, such as the char 

reactivity, the char structure and the chemical composition of the char. It is important 

to study the interaction between coal char and biomass char during co-gasification. In 

this section, the effects of the blended coal-to-biomass ratio in the blend char on 

producer gas yield, char reactivity and syngas production rate are to be analyzed 

based on the experimental results. 

 

5.2.2.1 Producer gas production 

Figures 5-14, 5-15 and 5-16 show the effects of coal-to-biomass blending ratio on 

producer gas (H2, CO and CO2) yields obtained at different temperatures. From the 

results presented in Figures 5-14 to 5-16, it is seen that the coal-biomass ratio in the 
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blends also influences the producer gas yield, to a certain extent. These three figures 

refer to the main producer gas components: H2, CO and CO2.  
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Figure 5-14: Hydrogen yield in the co-gasification of various coal-biomass blend 

chars at three gasification temperatures 

 

Figure 5-14 shows that the H2 yield from co-gasification of various coal-biomass 

blends at different blending ratio at three gasification temperatures. From the figure, it 

can be seen that the influence of the coal-biomass blending ratio has inconsistent trend 

of influence on the H2 yield. For the sub-bituminous-E. nitens blend chars at the 

gasification temperature of 850 C, the H2 yield increased from 2.1 litres at coal-

biomass blending ratio of 20:80 to 2.4 litres at the blending ratio of 80:20. However, 

for lignite-E. nitens blend chars at the gasification temperature of 900 C, the H2 yield 

decreased from 3.1 litres at the coal-biomass blending ratio of 20:80 to 2.8 litres at the 

blending ratio of 80:20. It is interesting to notice that the blending ratio has 

insignificant influence on the H2 yield for sub-bituminous-pine blends and this is true 



70 

 

for all of the gasification temperatures with the H2 yield varying between 2.35 and 

2.45 litres 

 

However, in Figure 5-15 and Figure 5-16, the blending ratio in the coal-biomass 

blends has a consistent trend on the CO and CO2 yields which decreased with the coal 

proportion or the coal to biomass ratio. This trend is true for all of the coal-biomass 

blends and at all of the gasification temperatures tested. One possible explanation for 

the CO and CO2 yield decrease with the coal proportion is that the fixed carbon 

content decreased with the increase in the proportion of coal in the blend chars, which 

is shown in Table 3-3. As mentioned before, the less fixed carbon content in the blend 

char, the lower the yields of CO and CO2 production from the Steam Gasification 

Reaction (4-1) and Boudouard Reaction (4-3).  
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Figure 5-15: Carbon monoxide yield in the co-gasification of various coal-biomass 

blend chars at three gasification temperatures 
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Figure 5-16: Carbon dioxide yield in the co-gasification of various coal-biomass blend 

chars at three gasification temperatures 

 

5.2.2.2 Char reactivity 

The reactivity of coal-biomass blend chars at various blending ratios was determined 

by a calculation based on the gas analysis of the producer gas. The evolution of char 

reactivity as a function of char conversion percentage for coal-biomass blend chars at 

the gasification temperature of 850 C is presented in Figure 5-17 to Figure 5-20. The 

results for other gasification temperatures (900 C and 950 C) are presented in Figures 

F-8 to F-11 in Appendix F. Figures 5-17 and 5-18 show the char reactivity for the 

lignite-biomass blended chars including pure lignite and pure biomass chars, whereas 

results for sub-bituminous-biomass blended chars are shown in Figures 5-19 and 5-20.  
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Figure 5-17: The effect of blended ratio on char reactivity for lignite-pine blend chars 

at the gasification temperature of 850 C 

 

In Figure 5-17, the evolution of char reactivity of lignite-pine blend char was 

presented. At the initial gasification, the reactivity of the pure lignite char was highest, 

while the reactivity of pure pine char was lowest. It may be due to the effect of 

AAEM in lignite. In the meantime, the reactivity of lignite-pine blend char shifted 

between these pure char cases. Furthermore, the reactivity of lignite-pine blend char 

increased with an increase in the lignite proportion. Following the process, the 

reactivity of both pure lignite char and lignite-pine blend char decreased. In contract, 

the reactivity of pure pine char increased, after the char conversion reached 40%, it 

exceeded the pure lignite char. While the reactivity of lignite-pine blend char is less 

than those of pure pine char and pure lignite char, which indicated the negative 

synergistic effects occurred. 
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Figure 5-18: The effect of blended ratio on char reactivity for lignite-E. nitens blend 

chars at the gasification temperature of 850 C 

 

In Figure 5-18, it is observed that the evolution of char reactivity could be divided 

into two parts. In the first part, at the lower char conversion stage (less than char 

conversion percentage of 40%), the reactivity of lignite-E. nitens blended chars was 

higher than those of pure lignite char and pure E. nitens char, it indicated that positive 

synergistic effects occurred during the co-gasification of lignite-E. nitens blend char. 

In the meantime, the reactivity of coal-biomass blend char increased with an increase 

in the coal proportion. As gasification processing, the reactivity of both pure lignite 

char and lignite-E. nitens blend char decreased. In contract, the reactivity of pure E. 

nitens char increased. In the second part, after the char conversion percentage of about 

40%, the char reactivity of E. nitens become greater than that of pure lignite char and 

the lignite-E. nitens blend chars; while, the reactivity of lignite-E. nitens blend char 

shifted between these pure char cases.  
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Figure 5-19: The effect of blended ratio on char reactivity for sub-bituminous-pine 

blend chars at the gasification temperature of 850 C 
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Figure 5-20: The effect of blended ratio on char reactivity for sub-bituminous-E. 

nitens blend chars at the gasification temperature of 850 C 
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The char reactivity for the sub-bituminous-biomass blend chars is shown in Figure 4-

19 (blending with pine biomass) and in Figure 5-20 (blending with E. nitens biomass). 

It was shown in these two figures that the char reactivity of pure biomass chars were 

significantly higher than that of both the pure sub-bituminous char and the sub-

bituminous-biomass blend chars. Based on these findings, it can be concluded that 

blending of sub-bituminous and biomass reduced the biomass char reactivity in the 

steam gasification. However, the reactivity of the blended chars was similar to that of 

pure sub-bituminous chars. 

 

It can be seen from these figures that the evolutions of coal-biomass blend char 

reactivity were more identical to those of coal chars, rather than biomass chars. This 

has further evidenced that the characteristics of coal-biomass blend char are close to 

that of coal char. 

 

 

5.2.3 Effects of AAEM in lignite 

In order to further examine the catalytic effects of AAEM in lignite on gasification 

performance. The gasification of acid-washed lignite char was carried out in the bench 

scaled gasifier as well.  

 

5.2.3.1 Producer gas production 

The effects of AAEM on producer gas and gasification completion time are shown in 

Figure 5-21 and Table 5-2, respectively. In Figure 5-21, it is seen that for all of the 

lignite chars and acid-washed lignite chars, the production rate (litre per second) of 

producer gas peaked after a short time from start and then decreased rapidly with the 

elapsed time. However, from these results, it is clear that at the same gasification 

temperature, the peak values of producer gas generation from lignite char gasification 
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were much higher than those from gasification of acid-washed lignite chars. When the 

curves decayed exponentially from their peak values, acid-washed lignite gasification 

took much longer time, which at least double the time of raw lignite chars. In Table 5-

2, the overall gasification completion time (minutes) of lignite char and acid-washed 

lignite char at different temperature is presented. 
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Figure 5-21: The comparison of producer gas in gasification of lignite and acid-

washed lignite (AWL) chars 

 

Table 5-2: The comparison of the overall gasification completion time of lignite and 

acid-washed lignite chars at different temperatures 

Temperature 850
o
C 900

o
C 950

o
C 

Raw lignite 52 min 43 min 31 min 

Acid-washed lignite 132 min 87 min 63 min 
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The effect of AAEM on producer gas yield is displayed in Figure 5-22. It is obvious 

that the removal of AAEM reduced the producer gas yield at the same tested 

temperatures. For example, at 850 C, the yield of producer gas in lignite gasification 

was 4.15 litres, while acid-washed lignite only generated 2.83 litres. The same trends 

are also found at the gasification temperatures of 900 and 950 C. The different results 

between lignite char gasification and acid-washed lignite char gasification is due to 

the promotion of AAEM on Steam Gasification Reaction (4-1) and Boudouard 

Reaction (4-3), which was presented in the Chapter 2.3.2. As a result, AAEM 

increased the char consumption, so that more produce gas were generated in lignite 

char gasification. 
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Figure 5-22: The comparison of producer gas yields in gasification of lignite chars 

and washed lignite chars 
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5.2.3.2 Char reactivity 

The char reactivity of lignite, acid-washed lignite and sub-bituminous coal in 

gasification measured against the char conversion percentage at gasification 

temperature of 900 C is plotted in Figure 5-23. The results for other gasification 

temperature (850 C and 950 C) are presented in Figures G-3(a) and G-3(b) in 

Appendix G. Throughout the whole gasification process, the reactivity of char 

prepared from acid-washed lignite was lower than that of raw lignite and sub-

bituminous coal. Obviously, the removal of AAEM from lignite reduced the char 

reactivity. Several authors reported that AAEM was particularly effective for 

gasification of chars (Bayarsaikhan et al. 2005; Mitsuoka et al. 2011; Wang et al. 

2009a). In these studies, the coal char with added Ca (one common AAEM specie 

found in coal) had higher reactivity during the gasification than the raw coal char.   
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Figure 5-23: The comparison of char reactivity for lignite, acid-washed lignite and 

sub-bituminous chars at the gasification temperature of 900 C 
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Interestingly, the effect of AAEM was more significant at the low carbon conversion 

percentage (<50%). A possible explanation for this may be the deactivation of AAEM 

species with more char consumed in the late stage of the gasification. Previous 

researchers (Huang et al. 2009) found that the particles of Ca metals were inclined to 

agglomerate during the gasification processing, resulting in deactivation.  

 

It is also interesting to notice from Figure 5-23 that the acid-washed lignite chars and 

the sub-bituminous chars had similar reactivity trends with values much lower than 

the raw lignite chars. The reactivity of both acid-washed lignite and sub-bituminous 

char remained largely constants at 0.03 and 0.05 min
-1

, respectively. This indicates 

that the sub-bituminous chars had very low level of AAEM. 

 

In conclusion, the inherent AAEM species in lignite played catalytic roles in the 

steam gasification of char. In other words, the presence of AAEM had a positive 

influence by increasing the reaction rate and raising the producer gas yield (Encinar et 

al. 2001) 

 

5.3 Synergistic effects in co-gasification of coal-biomass blend chars  

In this project, the performances of synergistic effects in co-gasification of four types 

of coal-biomass blends (lignite-pine, lignite-E. nitens, sub-bituminous-pine and sub-

bituminous-E. nitens) are studied. A new term, syngas production rate, is used to exam 

the co-gasification performance. Syngas production rate is dependent on the producer 

gas yield and the gasification completion time (related to the reactivity), and it is 

calculated by the Equation (3-7).  

 

The results of syngas production rate during the co-gasification for various blending 

ratios and different gasification temperature are presented in Figures 5-24 to 5-27 as 

bars, for blended chars of lignite-pine, lignite-E. nitens, sub-bituminous-pine and sub-
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bituminous-E. nitens, respectively. In these four figures, it is shown that, compared 

with pure coal char, the pure biomass char had a higher syngas production rate 

because of its high surface areas due to a more porous structure and high char 

reactivity from the Discussion 5.1.  

 

The effects of gasification temperatures were also shown, the increase in gasification 

temperatures enhanced the syngas production rate in all coal-biomass blend char, 

which is consistent with the conclusion in Discussion 5.2.1 (high temperature 

increased the total producer gas yield and reduced the total gasification completion 

time). 

 

Although the effects of coal-to-biomass blending ratio on producer gas yield and char 

reactivity are conflict and disorder in Discussion 5.2.2, these four diagrams 

demonstrated clearly the influences of coal-to-biomass blending ratio, the increase of 

biomass proportion in blend promote the syngas production rate. 

 

5.3.1 Synergistic effects 

In Figures 5-24, 5-26 and 5-27, the syngas production rate of these three coal-biomass 

blend chars were almost less than those of pure coal and pure biomass char. However, 

the case of lignite-E. nitens blend char in Figure 5-25 was different, which was greater 

than the pure lignite and pure E. nitens char. Those observations indicated the 

synergistic effect may exist during co-gasification. 

 

In order to investigate the synergistic effect in the coal-biomass blend during co-

gasification, the experimental results of gas production rate are compared with those 

( mixY ) theoretically calculated using the following equation without considering the 

synergistic effects. 
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biomassbiomasscoalcoalmix YFYFY                                                                                    (5-1) 

 

, where 
coalY  and

biomassY are the total producer gas yields from the steam gasification of 

pure coal chars and pure biomass chars, 
coalF  and

biomassF are the fractions of single fuel 

in the coal-biomass blend char, and %100biomasscoal FF . 

 

The calculated results are also included in Figure 5-24 to 5-27 for corresponding coal-

biomass blends. The differences between the experimentally measured values and the 

calculation results can be used as a reflection of the synergistic effects of the coal-

biomass blending. From the comparison in the Figures 5-24 to 5-27, it is found that 

synergetic effects occurred in all of the four different coal-biomass blend chars in the 

steam gasification because significant discrepancies have been observed between the 

experimental values and the calculated results. 
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Figure 5-24: The effect of temperature and blending ratio on gas production rate in 

steam gasification of lignite-pine blend chars 
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Figure 5-25: The effect of temperature and blending ratio on gas production rate in 

steam gasification of lignite-E. nitens blend chars 
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Figure 5-26: The effect of temperature and blending ratio on gas production rate in 

steam gasification of sub-bituminous-pine blend chars 
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Figure 5-27: The effect of temperature and blending ratio on gas production rate in 

steam gasification of sub-bituminous-E. nitens blend char  

 

In Figures 5-24, 5-26 and 5-27 for the blends of lignite-pine, sub-bituminous-pine and 

sub-bituminous-E. nitens, the producer gas production rates obtained in co-

gasification experiments were lower than the calculated values which indicate that the 

blending had a negative synergetic effect on the gasification reactions. On the 

contrary, as shown in Figure 5-25 (lignite-E. nitens blends), the producer gas 

production rates in the experiments were higher than the calculated values thus the 

lignite-E. nitens blend chars has a positive synergetic effect during co-gasification. 

 

In the previous studies (Demirbas 2002; Fermoso et al. 2009a; Sjöström et al. 1999; 

Zhang et al. 2007), the synergistic effects in co-gasification when coal and biomass 

were blended have also been found, it may suggests that the synergistic effects depend 

on properties of fuel species (coal and/or biomass). In this study, the existing 

synergistic effects are discussed in the following chapters. The positive synergetic 
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effects in the co-gasification of lignite-E. nitens may be determined by the 

combination of the catalytic effect of AAEM in lignite and the intrinsic properties of E. 

nitens. 

 

5.3.2 Effect of E. nitens 

In the devolatilization, the synergistic effect occurred when E. nitens was blended 

with coal as shown in Figure 5-28 and Figure 5-29. Both Figures illustrate the char 

yield at different blend ratios of coal and biomass, as well as the straights lines 

calculated from Equation (5-2).  

 

In a similar way as for char gasification, the synergistic effects between coal and 

biomass during devolatilization can be reflected by the char yield (
mixX ) with 

devolatilization as a function of fuel fractions in the blend fuel and the char yields of 

pure coal and pure biomass. If there is no synergistic effect, the char yield is linearly 

related to the fractions and char yields of each fuel: 

 

biomassbiomasscoalcoalmix XFXFX                                                                               (5-2) 

Here coalX  and biomassX are the char yields of pure coal and pure biomass during 

devolatilization, coalF  and biomassF are the fractions of coal and biomass in the coal-

biomass blends, %100biomasscoal FF . 

 



85 

 

10%

15%

20%

25%

30%

35%

40%

45%

50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
h

ar
 y

ie
ld

 

Blended ratio (coal percentage)

The Effect of Blended Ratio of Coal  and Biomass on Char Yield at 
Devolatilization Temperature of 900oC

Lignite / E.niten

Sub-bituminous  / E.niten

Lignite/ E.niten Calculation

Sub-bituminous/E.niten Calculation

 

Figure 5-28: Char yield of coal-E. nitens blends at devolatilization temperature of 

900 C 
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Figure 5-29: Char yield of coal-pine blends at devolatilization temperature of 900 C 



86 

 

 

When E. nitens as the biomass was blended with coal, deviation was observed 

between the experimental char yields and the calculated ones using Equation (5-2) as 

shown in Figure 5-28. In a general trend, the experimental char yields are higher than 

the calculated ones. Therefore, the synergistic effect was remarkable in coal - E. 

nitens blends during devolatilization. This behaviour was also observed in other 

pyrolysis studies (Jones et al. 2005; Sjöström et al. 1999; Sonobe et al. 2008; Zhang et 

al. 2007). 

 

However, the result as displayed in Figure 5-29 for coal-pine blend chars show a 

fairly close agreement between the experimental char yield and the calculated ones 

using Equation (5-2), indicating that the char yield was almost linearly related to the 

coal proportion in the coal-biomass blend. Hence, there was no significant synergistic 

effect between coal and pine in their blends during devolatilization. This finding is 

consistent with previous studies (Biagini et al. 2002; Kastanaki et al. 2002; Meesri 

and Moghtaderi 2002; Moghtaderi et al. 2004) in which no significant synergy was 

observed between coal and biomass during pyrolysis over the selected experiment 

conditions. 

 

Based on the above observations, the occurrence of synergistic effect in coal-biomass 

blends during devolatilization depends upon the fuel type used. In this project, when E. 

nitens was blended with coal, the synergistic effect existed, which may be caused by 

intrinsic properties of E. nitens. 

 

5.3.3 Effect of AAEM in lignite 

In order to investigate the effect of AAEM in co-gasification, the acid-washed lignite 

was blended with two types of biomass, pine and E. nitens, at the blended ratios of 

20:80, 50:50 and 80:20. The differences in syngas production rate during co-

gasification between acid-washed lignite-biomass blend and raw lignite-biomass 



87 

 

blend are shown in Figure 5-30 for blend chars of lignite-pine and acid-washed 

lignite-pine and in Figure 5-31 for acid-washed lignite-E. nitens and raw lignite-E. 

nitens.  
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Figure 5-30: The comparison of gas production rate between lignite-pine and acid-

washed lignite-pine blend chars 

 

The results showed that the raw lignite-biomass blend chars had much higher syngas 

production rate, as it took a shorter time to complete the gasification reaction and 

improved char reactivity. In Figure 5-30, at the same operation conditions (i.e. 

gasification temperature and blended ratio), the syngas production rate of raw lignite-

pine blend char was almost three times higher than that of the char from acid-washed 

lignite-pine. Furthermore, as shown in Figure 5-31, the syngas production rate of raw 

lignite-E. nitens char was double of that of the acid-washed lignite-E. nitens.  
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Figure 5-31: The comparison of gas production rate between lignite-E. nitens and 

acid-washed lignite-E. nitens blend chars 

 

These results suggested that the enhanced syngas production rate could be associated 

with the catalytic effects of AAEM in lignite. In other word, the removal of AAEM 

from lignite reduces the reactivity of coal-biomass blend char as well as the syngas 

production rate. From Figures 5-30 and 5-31, it also found that the acid-washed 

lignite-biomass blend chars had similar syngas production rates, which indicates that 

E. nitens and pine have a similar influence on co-gasification. Therefore, the AAEM 

species played a more dominant catalytic role in co-gasification than the intrinsic 

properties of E. nitens. 

 

In conclusion, in the case of lignite-E. nitens blend char, it was suggested that the 

combination of the catalytic effect of AAEM in lignite and the intrinsic properties of E. 

nitens promoted the synergistic effects during the co-gasification. In addition, the 

AAEM species played a more dominant catalytic role in co-gasification than the 

intrinsic properties of E. nitens. 
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6 Conclusions  

The characteristics of steam co-gasification of chars of pure coal, pure biomass and 

coal-biomass blends were experimentally investigated in this project in a bench scale 

gasifier. Two types of coals (lignite and sub-bituminous) and two kinds of biomass 

(pine and eucalyptus nitens) were selected as sample fuels. The chars with the blended 

coal-to-biomass ratio of 0:100 (pure coal), 20:80, 50:50, 80:20 and 100:0 (pure 

biomass), which were derived through the devolatilization at the temperature of 

900 C for 7 minutes, were gasified with steam as gasification agent at gasification 

temperatures of 850 C, 900 C and 950 C. A series of gasification experiments have 

been performed in order to investigate the effects of operation variations (gasification 

temperature, types of coal and biomass, blended coal-to-biomass ratio and alkali and 

alkaline earth metal (AAEM) in lignite) on gasification reactivity, and producer gas 

composition and yields. In addition, the synergistic effects in co-gasification were also 

investigated.  

 

In the devolatilization, it is found that pure coal has a higher char yield than pure 

biomass while some difference exists in different types of coal and biomass. The char 

yields of the four sample fuels are as follows: sub-bituminous coal (49%) > lignite 

(41%) > Pine (18%) > E. nitens (15%). It is also found that the char yield of the coal-

biomass blend is decreased with the increase of biomass proportion in the blend. In 

addition, the synergistic effects in coal-biomass blends during devolatilization were 

also examined and it is observed that only coal-E. nitens blends exhibited noticeable 

synergistic effects on char yield during the devolatilization. 

 

For the gasification performance, the producer gas composition with elapsed time 

were continuously analysed by using a Micro-GC from which the total gas yield was 

calculated. Based on the gas analysis results, char reactivity and char conversion rate 

were determined.  
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From the results of gasification of pure coal and pure biomass chars, it is found that 

the biomass char gasification was faster than coal char gasification due to the higher 

reactivity for the biomass char. Compared to the coal char, the biomass char has a 

more porous micro-structure, which enhances the reactions between the biomass char 

and the steam. The influences of varying gasification temperatures on producer gas 

and char reactivity were investigated as well. For producer gas, with increase in 

gasification temperature, the H2 yields in coal char gasification was increased but the 

H2 yields in biomass char gasification was decreased. In both coal and biomass char 

gasification, as gasification temperature increased, the CO yields increased while CO2 

yields decreased. The study also found that the reactivity of all four fuel samples chars 

increased with the increase in gasification temperature. 

 

From the experiments on co-gasification of coal-biomass blend chars, syngas 

production rates as well as the parameters examined in the gasification of pure fuel 

chars above were investigated. For producer gas, the effects of gasification 

temperature and coal to biomass blending ratio on H2 yield were inconsistent. The 

increase in gasification temperatures enhanced the CO yield but reduced the CO2 

yield, while the increase of coal char proportion in blends decreased both the CO and 

CO2 yields. In addition, the char reactivity as a function of conversion percentage was 

increased with the gasification temperature, and it was independent of the coal to 

biomass blending ratio. These trends were true for all of the coal-biomass blends and 

at all of the gasification temperatures tested. Syngas production rate is the total 

producer gas yield divided by total gasification completion time. The syngas 

production rate was enhanced by an increase in gasification temperatures as well as an 

increase in the biomass proportion in the blend.  

 

In gasification of lignite char and co-gasification of lignite-E. nitens blend chars, the 

influences of AAEM were significant. The presence of AAEM not only increased the 

producer gas yield, but also enhanced the char reactivity, hence promoting the syngas 

production rate. For example, AAEM species in lignite led to lignite having the 

highest reactivity during lower char conversion. 



91 

 

 

The synergistic effects on syngas production rate were also examined during the co-

gasification of all coal-biomass blend chars. From the results, the positive synergistic 

effect was only found in the gasification of lignite-E. nitens blend chars, which is the 

result of the effect of AAEM in lignite and the intrinsic properties of the biomass. 

However, for the other blend chars, the synergistic effects were either insignificant or 

negative, indicating the AAEM was low in sub-bituminous coal or the interaction 

between the coal and the biomass inhibited the steam reaction with the chars. In 

overall, The AAEM species played an important catalytic role in gasification by 

reacting with the carbonaceous substrate in the char during the gasification process. 

 

This project based on a bench scaled gasifier is a fundamental research on gasification 

of pure fuel chars and co-gasification of blended coal and biomass chars. The results 

can be applied to the study of co-gasification of coal-biomass in a large-scaled gasifier 

in the future. When biomass was blended with coal in this project, an increase of 

biomass percentage in coal-biomass blend accelerated the gasification rate, due to the 

high reactivity of biomass. In this study, AAEM species in lignite led to lignite having 

the highest reactivity during lower char conversion. Therefore, the application of 

inherent AAEM species in raw materials should be considered. 

 

New Zealand has abundant resources for the feedstock fuels, namely radiata pine, 

eucalyptus nitens, lignite and sub-bituminous, therefore, the results from this study 

have strong potential in future application. In addition, the blending of coal with 

biomass can potentially reduce the costs for low density biomass and reduce the green 

house gas emission from pure coal. 
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A. Appendixes A - Checklist of experiments 

Gasifier Setting 

Temperature (C)
850 900 950

Coal

Biomass Pine E. nitens

Blended Ratio 

coal/biomass
0 / 100 20 / 80 50 / 50 80 / 20 100 / 0

Char Sample Weight (g) (1g)

Resin Condition Check Yes No

GC Calibration Yes No

Nitrogen Input (0.6L/min) On Off

Gasifier Gas leak Check Yes No

Cooling Water On Off

Preheater & Oven On Off

Steam (1.8ml/min) On Off

GC Analysis Start Run ID

GC Shutdown On Off

Steam & Oven Closed On Off

Preheater Shutdown On Off

Cooling water & Nitrogen stop On Off

Water (ml) Before                  After                  Difference                  

Ash weight (g)                  

Signature                                    

                                    

                                      

Lignite                   Acid washed-lignite             Sub-bituminous 
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B. Appendixes B - Proximate analysis and ultimate analysis of solid 

fuel samples 
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C. Appendixes C - Char yield of blended coal and biomass at 

devolatilization temperature of 900 °C 

Table C-1: the char yield of coal-biomass blend after devolatilization 

Coal / Biomass Ratio 
Pellets weight 

[g] Char weight [g] Char/Pellet 

Acid washed Lignite / 
Pine 

80 / 20 10.06 3.87 0.38 

50 / 50 13.38 4.03 0.30 

20 / 80 27.34 5.78 0.21 

  

Lignite / Pine 

80 / 20 47.27 17.17 0.36 

50 / 50 46.92 13.75 0.29 

20 / 80 57.68 13.03 0.23 

  

Subbituminous / Pine 

80 / 20 67.55 29.04 0.43 

50 / 50 55.72 18.68 0.34 

20 / 80 49.73 12.32 0.25 

  

Lignite / E.niten 

80 / 20 11.19 4.27 0.38 

50 / 50 16.91 4.97 0.29 

20 / 80 29.02 6.03 0.21 

  

Subbituminous  / 
E.niten 

80 / 20 9.95 4.35 0.44 

50 / 50 8.63 2.85 0.33 

20 / 80 9.57 2.27 0.24 

  

Lignite 100 6.09 2.47 0.41 

  

Acid-washed Lignite 100 6.65 2.90 0.44 

          

Subbituminous  100 7.71 3.78 0.49 

  

Pine 100 41.39 7.61 0.18 

  

E.niten 100 11.10 1.65 0.15 
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D. Appendixes D - Experimental results of steam gasification of pure 

coal char and pure biomass char 

D-1 Steam gasification of lignite char 
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Figure D-1: The composition of producer gas from steam gasification of lignite char 

at 850 °C (a) and 900 °C (b) 
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D-2 Steam gasification of sub-bituminous char 
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(b)  

Figure D-2: The composition of producer gas from steam gasification of sub-

bituminous char at 850 °C (a) and 900 °C (b) 
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D-3 Steam gasification of pine char 
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(b)  

Figure D-3: The composition of producer gas from steam gasification of Pine char at 

850 °C (a) and 900 °C (b) 
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D-4 Steam gasification of E. niten char 
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Figure D-4: The composition of producer gas from steam gasification of E. niten 

chars at 850 °C (a) and 900 °C (b) 
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E. Appendixes E - Experimental results of steam gasification of coal-

biomass blend chars 

E-1 Steam gasification of lignite-pine blend chars 

20% lignite – 80% pine blends 
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Figure E-1: The composition of producer gas from steam gasification of lignite-pine 

blend chars with a blending ratio of 20:80 at 850 C (a), 900 C (b) and 950 C (c)  
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Figure E-2: The composition of producer gas from steam gasification of lignite-pine 

blend chars with a blending ratio of 50:50 at 850 C (a) and 900 C (b)  

 

80% lignite – 20% pine blends 
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(c)  

Figure E-3: The composition of producer gas from steam gasification of lignite-pine 

blend chars with a blending ratio of 80:20 at 850 C (a), 900 C (b) and 950 C (c)  
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E-2 Steam gasification of lignite-E. nitens blend chars 

20% lignite – 80% E. nitens blends 
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Figure E-4: The composition of producer gas from steam gasification of lignite-E. 

nitens blend chars with a blending ratio of 20:80 at 850 C (a), 900 C (b) and 950 C (c)  

 

50% lignite – 50% E. nitens blends 
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(b)  

Figure E-5: The composition of producer gas from steam gasification of lignite-E. 

nitens blend chars with a blending ratio of 50:50 at 850 C (a) and 900 C (b)  
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(c)  

Figure E-6: The composition of producer gas from steam gasification of lignite-E. 

nitens blend chars with a blending ratio of 80:20 at 850 C (a), 900 C (b) and 950 C (c)  
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E-3 Steam gasification of sub-bituminous-pine blend chars 

20% sub-bituminous – 80% pine blends 
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(c)  

Figure E-7: The composition of producer gas from steam gasification of sub-

bituminous-pine blend chars with a blending ratio of 20:80 at 850 C (a), 900 C (b) 

and 950 C (c)  

 

50% sub-bituminous – 50% pine blends 
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(b) 

Figure E-8: The composition of producer gas from steam gasification of sub-

bituminous-pine blend chars with a blending ratio of 50:50 at 850 C (a) and 900 C (b)  

 

80% sub-bituminous – 20% pine blends 

0%

2%

4%

6%

8%

10%

12%

14%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
a

s
 c

o
n

te
n

t 
(V

o
lu

m
e

%
) 

Time (second)

Gas Production from from 80% sub-bituminous - 20% pine blend 
char gasification at Temperature of 850 oC

H2

CO

CO2

 

(a) 



123 

 

0%

5%

10%

15%

20%

25%

0 1000 2000 3000 4000 5000

G
a

s
 c

o
n

te
n

t 
(V

o
lu

m
e

%
) 

Time (second)

Gas Production from from 80% sub-bituminous - 20% pine blend 
char gasification at Temperature of 900 oC

H2

CO

CO2

 

(b) 

0%

5%

10%

15%

20%

25%

30%

0 500 1000 1500 2000 2500 3000 3500

G
a

s
 c

o
n

te
n

t 
(V

o
lu

m
e

%
) 

Time (second)

Gas Production from from 80% sub-bituminous - 20% pine blend 
char gasification at Temperature of 950 oC

H2

CO

CO2

 

(c)  

Figure E-9: The composition of producer gas from steam gasification of sub-

bituminous-pine blend chars with a blending ratio of 80:20 at 850 C (a), 900 C (b) 

and 950 C (c)  
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E-4 Steam gasification of sub-bituminous-E. nitens blend chars 

20% sub-bituminous – 80% E. nitens blends 
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(c)  

Figure E-10: The composition of producer gas from steam gasification of sub-

bituminous-E. nitens blend chars with a blending ratio of 20:80 at 850 C (a), 900 C (b) 

and 950 C (c)  

 

50% sub-bituminous – 50% E. nitens blends 
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(b)  

Figure E-11: The composition of producer gas from steam gasification of sub-

bituminous-E. nitens blend chars with a blending ratio of 50:50 at 850 C (a) and 

900 C  

 

80% sub-bituminous – 20% E. nitens blends 
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(c)  

Figure E-12: The composition of producer gas from steam gasification of sub-

bituminous-E. nitens blend chars with a blending ratio of 80:20 at 850 C (a), 900 C (b) 

and 950 C (c)  
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Appendixes F – Char reactivity 

F-1 Effect of feedstock species on char conversion percentage 
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(b)  

Figure F-1: The effect of feedstock species on char conversion percentage at 900 (a) 

and 950 C (b) 
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F-2 Effect of feedstock species on char reactivity 
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(b)  

Figure F-2: The effect of feedstock species on char reactivity at 900 (a) and 950 C (b) 
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F-3 Effect of AAEM on char reactivity 
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(b)  

Figure F-3: The comparison of char reactivity for lignite, acid-washed lignite and sub-

bituminous chars at the gasification temperature of 850 C (a) and 950 C (b) 
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F-4 Effect of gasification temperature on char reactivity of coal-biomass blends 

Lignite – pine blend 
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(b)  

Figure F-4: The effect of temperatures on char reactivity in co-gasification of lignite-

pine blend with a coal to biomass blending ratio of 20:80 (a) and 80:20 (b) 
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Lignite – E. niten blend 
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(b)  

Figure F-5: The effect of temperatures on char reactivity in co-gasification of lignite-E. 

niten blend with a coal to biomass blending ratio of 20:80 (a) and 80:20 (b) 
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Sub-bituminous - pine blend 
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(b)  

Figure F-6: The effect of temperatures on char reactivity in co-gasification of sub-

bituminous-pine blend with a coal to biomass blending ratio of 20:80 (a) and 80:20 (b) 
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Sub-bituminous – E. niten blend 
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(b)  

Figure F-7: The effect of temperatures on char reactivity in co-gasification of sub-

bituminous-E. niten blend with a coal to biomass blending ratio of 20:80 (a) and 80:20  
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F-5 Effect of coal to biomass blending ratio on char reactivity of blends 

Lignite – pine blend 
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(b)  

Figure F-8: The effect of blended ratio on char reactivity for lignite-pine blend chars 

at the gasification temperature of 900 C (a) and 950 C (b) 
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Lignite – E. niten blend 
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(b)  

Figure F-9: The effect of blended ratio on char reactivity for lignite-E. niten blend 

chars at the gasification temperature of 900 C (a) and 950 C (b) 

 



137 
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(b)  

Figure F-10: The effect of blended ratio on char reactivity for sub-bituminous-pine 

blend chars at the gasification temperature of 900 C (a) and 950 C (b) 
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Sub-bituminous – E. niten blend 
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(b)  

Figure F-11: The effect of blended ratio on char reactivity for sub-bituminous-E. niten 

blend chars at the gasification temperature of 900 C (a) and 950 C (b) 
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G. Appendixes G – Database and error analysis 

G-1 Profile of lignite-pine blend char gasification 

File Date of test Lignite Pine Temp.

Pellet 

Mass 

(g)

Water 

Trap 

(ml)

Ash (g)
Carbon 

balance Error

Gas 

production 

error

mg100.0.850la Jul 09, 2009 100% 0% 850 1.0000 95 0.1740 1% 2%

mg100.0.850lc Nov 02, 2009 100% 0% 850 1.0000 90 0.1494 1% 5%

mg100.0.850ld Sep 13, 2010 100% 0% 850 1.0040 98 0.1655 1% 3%

mg100.0.900la Jun 26, 2009 100% 0% 900 1.0000 70 0.1110 4% 4%

mg100.0.900lb Jul 13, 2009 100% 0% 900 1.0000 79 0.1170 2% 1%

mg100.0.900ld Jun 01, 2010 100% 0% 900 1.0079 75 0.1253 5% 2%

mg100.0.950la Jun 17, 2009 100% 0% 950 1.0000 45 0.0890 1% 5%

mg100.0.950lb Jul 13, 2009 100% 0% 950 1.0000 53 0.0950 5% 4%

mg100.0.950lc Jul 29, 2010 100% 0% 950 1.0060 60 0.0671 5% 3%

mg80.20.850lpa Dec 16, 2009 80% 20% 850 1.0000 115 0.1650 1% 3%

mg80.20.850lpb Jun 24, 2010 80% 20% 850 1.0086 110 0.1375 1% 1%

mg80.20.850lpc Aug 02, 2010 80% 20% 850 1.0031 120 0.1631 5% 5%

mg80.20.900lpa Jul 01, 2010 80% 20% 900 1.0061 95 0.1175 5% 1%

mg80.20.900lpb Jul 01, 2010 80% 20% 900 1.0028 100 0.1148 1% 0%

mg80.20.900lpc Aug 03, 2010 80% 20% 900 1.0048 80 0.1093 5% 2%

mg80.20.950lpa Jul 30, 2010 80% 20% 950 1.0026 70 0.0736 5% 2%

mg80.20.950lpb Jul 30, 2010 80% 20% 950 1.0020 75 0.0831 3% 3%

mg80.20.950lpc Jul 30, 2010 80% 20% 950 1.0037 73 0.0659 4% 4%

mg50.50.850lpa Aug 02, 2010 50% 50% 850 1.0018 160 0.1542 5% 3%

mg50.50.850lpb Jun 21, 2010 50% 50% 850 1.0076 140 0.1172 1% 1%

mg50.50.850lpc Jun 22, 2010 50% 50% 850 1.0051 165 0.1367 0% 0%

mg50.50.900lpa Nov 03, 2009 50% 50% 900 1.0000 95 0.0725 3% 3%

mg50.50.900lpb Jun 21, 2010 50% 50% 900 1.0058 115 0.0839 2% 1%

mg50.50.900lpc Nov 02, 2009 50% 50% 900 1.0000 110 0.0824 1% 5%

mg50.50.950lpa Nov 03, 2009 50% 50% 950 1.0000 55 0.0630 2% 2%

mg50.50.950lpb Jun 23, 2010 50% 50% 950 1.0019 70 0.0844 1% 3%

mg50.50.950lpc Jun 24, 2010 50% 50% 950 1.0043 60 0.0887 5% 2%

mg20.80.850lpa Aug 03, 2010 20% 80% 850 1.0059 150 0.1575 5% 3%

mg20.80.850lpb Jun 18, 2010 20% 80% 850 1.0064 170 0.1295 4% 3%

mg20.80.850lpc Aug 11, 2010 20% 80% 850 1.0041 145 0.1812 1% 2%

mg20.80.900lpa Jun 18, 2010 20% 80% 900 1.0024 95 0.0538 3% 3%

mg20.80.900lpb Aug 11, 2010 20% 80% 900 1.0046 85 0.0850 5% 2%

mg20.80.900lpc Jun 17, 2010 20% 80% 900 1.0045 95 0.0574 2% 1%

mg20.80.950lpa Jun 15, 2010 20% 80% 950 1.0000 57 0.0454 0% 2%

mg20.80.950lpb Jun 17, 2010 20% 80% 950 1.0080 55 0.0577 1% 1%

mg20.80.950lpc Jun 17, 2010 20% 80% 950 1.0060 65 0.0520 0% 3%

mg0.100.850pb May 04, 2010 0% 100% 850 1.0068 80 0.0136 5% 3%

mg0.100.850pc May 07, 2010 0% 100% 850 1.0016 72 0.0145 5% 4%

mg0.100.850pd Jun 23, 2010 0% 100% 850 1.0086 80 0.0156 4% 1%

mg0.100.900pa Jun 23, 2010 0% 100% 900 1.0046 40 0.0115 3% 1%

mg0.100.900pb Oct 28, 2009 0% 100% 900 1.0000 35 0.0102 2% 1%

mg0.100.900pc May 06, 2010 0% 100% 900 1.0027 38 0.0123 4% 4%

mg0.100.950pa Oct 28, 2009 0% 100% 950 1.0008 21 0.0046 2% 1%

mg0.100.950pb May 04, 2010 0% 100% 950 1.0068 22 0.0053 5% 2%

mg0.100.950pc May 11, 2010 0% 100% 950 1.0036 30 0.0062 5% 3%
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G-2 Profile of lignite-E. nitens blend char gasification 

File Date of test Lignite
E. 

nitens
Temp.

Pellet 

Mass 

(g)

Water 

Trap 

(ml)

Ash (g)

Carbon 

balance 

Error

Gas 

production 

error

mg100.0.850la Jul 09, 2009 100% 0% 850 1.0000 95 0.1740 1% 2%

mg100.0.850lc Nov 02, 2009 100% 0% 850 1.0000 90 0.1494 1% 5%

mg100.0.850ld Sep 13, 2010 100% 0% 850 1.0040 98 0.1655 1% 3%

mg100.0.900la Jun 26, 2009 100% 0% 900 1.0000 70 0.1110 4% 4%

mg100.0.900lb Jul 13, 2009 100% 0% 900 1.0000 79 0.1170 2% 1%

mg100.0.900ld Jun 01, 2010 100% 0% 900 1.0079 75 0.1253 5% 2%

mg100.0.950la Jun 17, 2009 100% 0% 950 1.0000 45 0.0890 1% 5%

mg100.0.950lb Jul 13, 2009 100% 0% 950 1.0000 53 0.0950 5% 4%

mg100.0.950lc Jul 29, 2010 100% 0% 950 1.0060 60 0.0671 5% 3%

mg80.20.850lna Jul 17, 2009 80% 20% 850 1.0000 87 0.0920 3% 2%

mg80.20.850lnb Jul 07, 2009 80% 20% 850 1.0000 86 0.0760 5% 3%

mg80.20.850lnc Jul 17, 2009 80% 20% 850 1.0000 91 0.0920 5% 4%

mg80.20.900lna Jan 24, 2009 80% 20% 900 1.0000 65 0.0600 3% 3%

mg80.20.900lnb Jul 08, 2009 80% 20% 900 1.0000 55 0.0600 1% 1%

mg80.20.900lnc Jul 20, 2009 80% 20% 900 1.0000 68 0.0700 2% 3%

mg80.20.950lna Mar 01, 2009 80% 20% 950 1.0000 48 0.0600 4% 1%

mg80.20.950lnb Jul 08, 2009 80% 20% 950 1.0000 42 0.0710 5% 4%

mg80.20.950lnc Sep 27, 2010 80% 20% 950 1.0044 50 0.0696 3% 5%

mg50.50.850lna Feb 25, 2009 50% 50% 850 1.0000 110 0.0790 5% 3%

mg50.50.850lnb Jun 25, 2009 50% 50% 850 1.0000 95 0.0800 5% 4%

mg50.50.850lnd Sep 17, 2010 50% 50% 850 1.0042 110 0.0688 0% 0%

mg50.50.900lna Feb 25, 2009 50% 50% 900 1.0000 65 0.0749 5% 4%

mg50.50.900lnb Jul 20, 2009 50% 50% 900 1.0000 65 0.0760 1% 1%

mg50.50.900lnc Sep 13, 2010 50% 50% 900 1.0038 75 0.0781 2% 5%

mg50.50.950lna Feb 28, 2009 50% 50% 950 1.0000 45 0.0549 1% 1%

mg50.50.950lnb Jul 02, 2009 50% 50% 950 1.0000 42 0.0730 2% 3%

mg50.50.950lnc Jul 15, 2009 50% 50% 950 1.0000 35 0.0640 5% 1%

mg20.80.850lna Sep 27, 2010 20% 80% 850 1.0022 105 0.0516 1% 2%

mg20.80.850lnb Jul 06, 2009 20% 80% 850 1.0000 130 0.0620 0% 5%

mg20.80.850lnc Jul 16, 2009 20% 80% 850 1.0000 102 0.0600 5% 4%

mg20.80.900lna May 14, 2009 20% 80% 900 1.0000 68 0.0500 5% 1%

mg20.80.900lnb Sep 14, 2010 20% 80% 900 1.0000 75 0.0455 1% 1%

mg20.80.900lnc Jul 16, 2009 20% 80% 900 1.0000 60 0.0530 4% 5%

mg20.80.950lna Jun 10, 2009 20% 80% 950 1.0000 30 0.0550 1% 2%

mg20.80.950lnb Jun 16, 2009 20% 80% 950 1.0000 35 0.0400 2% 4%

mg20.80.950lnc Jul 17, 2009 20% 80% 950 1.0000 33 0.0500 2% 4%

mg.0.100.850na Mar 15, 2009 0% 100% 850 1.0000 80 0.0950 4% 4%

mg.0.100.850nb Sep 20, 2010 0% 100% 850 1.0034 75 0.0987 1% 4%

mg.0.100.850nc Jul 14, 2009 0% 100% 850 1.0000 68 0.1040 5% 5%

mg.0.100.900na Mar 15, 2009 0% 100% 900 1.0000 42 0.0500 1% 1%

mg.0.100.900nb Jun 29, 2009 0% 100% 900 1.0000 35 0.0400 0% 4%

mg.0.100.900nc Jul 14, 2009 0% 100% 900 1.0000 38 0.0580 5% 3%

mg.0.100.950na Jul 29, 2010 0% 100% 950 1.0013 40 0.0311 1% 0%

mg.0.100.950nb Jun 24, 2009 0% 100% 950 1.0000 28 0.0230 2% 0%

mg.0.100.950nc Jul 13, 2009 0% 100% 950 1.0000 35 0.0150 5% 3%
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G-3 Profile of sub-bituminous-pine blend char gasification 

File Date of test Sub-

bitunimous

Pine Temp.
Pellet 

Mass (g)

Water 

Trap (ml)
Ash (g)

Carbon 

balance 

Error

Gas 

production 

Error

mg100.0.850sa Jul 21, 2009 100% 0% 850 1.0000 142 0.2800 3% 1%

mg100.0.850sc May 05, 2010 100% 0% 850 1.0024 174 0.2916 4% 1%

mg100.0.850sd May 14, 2010 100% 0% 850 1.0036 200 0.3016 1% 4%

mg100.0.900sa Jul 22, 2009 100% 0% 900 1.0000 130 0.1560 4% 4%

mg100.0.900sc May 06, 2010 100% 0% 900 1.0041 109 0.1727 3% 2%

mg100.0.900sd May 14, 2010 100% 0% 900 1.0037 125 0.1550 5% 3%

mg100.0.950sa Jul 22, 2009 100% 0% 950 1.0000 88 0.1420 5% 2%

mg100.0.950sb Aug 03, 2009 100% 0% 950 1.0000 90 0.0990 3% 0%

mg100.0.950se Sep 14, 2010 100% 0% 950 1.0049 95 0.1256 4% 4%

mg80.20.850spa Jul 26, 2010 80% 20% 850 1.0060 250 0.2759 2% 4%

mg80.20.850spb Jul 27, 2010 80% 20% 850 1.0039 230 0.2559 1% 1%

mg80.20.850spd Jul 28, 2010 80% 20% 850 1.0044 230 0.2611 4% 3%

mg80.20.900spa Jul 22, 2010 80% 20% 900 1.0036 140 0.1507 4% 1%

mg80.20.900spc Jul 22, 2010 80% 20% 900 1.0025 135 0.1625 3% 0%

mg80.20.900spd Jul 23, 2010 80% 20% 900 1.0036 150 0.1717 5% 2%

mg80.20.950spa Jul 23, 2010 80% 20% 950 1.0052 85 0.1171 5% 2%

mg80.20.950spb Jul 23, 2010 80% 20% 950 1.0041 80 0.1208 4% 3%

mg80.20.950spc Jul 26, 2010 80% 20% 950 1.0063 90 0.1172 2% 3%

mg50.50.850spa Jul 20, 2010 50% 50% 850 1.0020 240 0.1544 2% 0%

mg50.50.850spb Jul 21, 2010 50% 50% 850 1.0068 230 0.1965 5% 2%

mg50.50.850spc Jul 21, 2010 50% 50% 850 1.0061 230 0.1781 4% 2%

mg50.50.900spa Jul 16, 2010 50% 50% 900 1.0024 140 0.1241 5% 2%

mg50.50.900spb Jul 16, 2010 50% 50% 900 1.0046 140 0.1279 3% 0%

mg50.50.900spc Jul 19, 2010 50% 50% 900 1.0024 145 0.1385 5% 2%

mg50.50.950spa Jul 19, 2010 50% 50% 950 1.0064 85 0.0671 5% 2%

mg50.50.950spb Jul 20, 2010 50% 50% 950 1.0042 105 0.0743 5% 0%

mg50.50.950spc Jul 20, 2010 50% 50% 950 1.0044 100 0.0745 5% 3%

mg20.80.850spa Jul 13, 2010 20% 80% 850 1.0013 210 0.1956 3% 2%

mg20.80.850spb Jul 13, 2010 20% 80% 850 1.0040 200 0.1832 0% 1%

mg20.80.850spc Jul 15, 2010 20% 80% 850 1.0035 220 0.2079 2% 3%

mg20.80.900spa Jul 14, 2010 20% 80% 900 1.0058 115 0.1351 4% 2%

mg20.80.900spb Jul 14, 2010 20% 80% 900 1.0012 120 0.1064 5% 1%

mg20.80.900spc Jul 15, 2010 20% 80% 900 1.0016 120 0.1083 2% 0%

mg20.80.950spa Jul 09, 2010 20% 80% 950 1.0069 85 0.0550 5% 5%

mg20.80.950spb Jul 09, 2010 20% 80% 950 1.0034 75 0.0605 3% 0%

mg20.80.950spc Jul 14, 2010 20% 80% 950 1.0026 75 0.0592 1% 1%

mg0.100.850pb May 04, 2010 0% 100% 850 1.0068 80 0.0136 5% 3%

mg0.100.850pc May 07, 2010 0% 100% 850 1.0016 72 0.0145 5% 4%

mg0.100.850pd Jun 23, 2010 0% 100% 850 1.0086 80 0.0156 4% 1%

mg0.100.900pa Jun 23, 2010 0% 100% 900 1.0046 40 0.0115 3% 1%

mg0.100.900pb Oct 28, 2009 0% 100% 900 1.0000 35 0.0102 2% 1%

mg0.100.900pc May 06, 2010 0% 100% 900 1.0027 38 0.0123 4% 4%

mg0.100.950pa Oct 28, 2009 0% 100% 950 1.0008 21 0.0046 2% 1%

mg0.100.950pb May 04, 2010 0% 100% 950 1.0068 22 0.0053 5% 2%

mg0.100.950pc May 11, 2010 0% 100% 950 1.0036 30 0.0062 5% 3%
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G-4 Profile of sub-bituminous-E. nitens blend char gasification 

File Date of test Sub-

bitunimous

E. nitens Temp.

Pellet 

Mass 

(g)

Water 

Trap 

(ml)

Ash (g)

Carbon 

balance 

Error

Gas 

production 

Error

mg100.0.850sa Jul 21, 2009 100% 0% 850 1.0000 142 0.2800 3% 1%

mg100.0.850sc May 05, 2010 100% 0% 850 1.0024 174 0.2916 4% 1%

mg100.0.850sd May 14, 2010 100% 0% 850 1.0036 200 0.3016 1% 4%

mg100.0.900sa Jul 22, 2009 100% 0% 900 1.0000 130 0.1560 4% 4%

mg100.0.900sc May 06, 2010 100% 0% 900 1.0041 109 0.1727 3% 2%

mg100.0.900sd May 14, 2010 100% 0% 900 1.0037 125 0.1550 5% 3%

mg100.0.950sa Jul 22, 2009 100% 0% 950 1.0000 88 0.1420 5% 2%

mg100.0.950sb Aug 03, 2009 100% 0% 950 1.0000 90 0.0990 3% 0%

mg100.0.950se Sep 14, 2010 100% 0% 950 1.0049 95 0.1256 4% 4%

mg80.20.850sna Sep 17, 2010 80% 20% 850 1.0012 180 0.1837 0% 4%

mg80.20.850snb Sep 15, 2010 80% 20% 850 1.0020 180 0.2220 3% 4%

mg80.20.850snd Aug 12, 2010 80% 20% 850 1.0033 170 0.1997 2% 2%

mg80.20.850snc Jul 30, 2009 80% 20% 850 1.0000 158 0.1800 5% 5%

mg80.20.900sna Jul 30, 2009 80% 20% 900 1.0000 120 0.0980 5% 3%

mg80.20.900snc Aug 13, 2010 80% 20% 900 1.0069 140 0.1208 5% 1%

mg80.20.900snd Aug 05, 2009 80% 20% 900 1.0000 135 0.1220 3% 2%

mg80.20.950sna Jul 31, 2009 80% 20% 950 1.0000 75 0.0910 5% 3%

mg80.20.950snb Aug 06, 2009 80% 20% 950 1.0000 75 0.0960 4% 3%

mg80.20.950snc Aug 12, 2010 80% 20% 950 1.0066 85 0.0908 5% 0%

mg50.50.850sna Jul 23, 2009 50% 50% 850 1.0000 170 0.1930 2% 2%

mg50.50.850snb Sep 21, 2010 50% 50% 850 1.0012 185 0.1942 1% 3%

mg50.50.850snc Jul 28, 2010 50% 50% 850 1.0029 200 0.1858 4% 4%

mg50.50.900sna Sep 21, 2010 50% 50% 900 1.0044 140 0.0918 0% 1%

mg50.50.900snb Aug 04, 2009 50% 50% 900 1.0000 100 0.1120 1% 2%

mg50.50.900snc Sep 24, 2010 50% 50% 900 1.0020 135 0.0996 4% 1%

mg50.50.950sna Jul 23, 2009 50% 50% 950 1.0000 65 0.0820 2% 1%

mg50.50.950snb Aug 04, 2009 50% 50% 950 1.0000 80 0.0920 4% 2%

mg50.50.950snc Jul 29, 2010 50% 50% 950 1.0078 85 0.0870 5% 0%

mg20.80.850sna Sep 20, 2010 20% 80% 850 1.0032 200 0.2059 4% 1%

mg20.80.850snb Sep 18, 2010 20% 80% 850 1.0021 200 0.2172 4% 3%

mg20.80.850snc Aug 12, 2010 20% 80% 850 1.0020 185 0.2539 3% 4%

mg20.80.900sna Jul 27, 2009 20% 80% 900 1.0000 122 0.1150 5% 3%

mg20.80.900snb Aug 06, 2009 20% 80% 900 1.0000 127 0.0940 5% 2%

mg20.80.900snc Sep 13, 2010 20% 80% 900 1.0021 125 0.0760 2% 5%

mg20.80.950sna Jul 27, 2009 20% 80% 950 1.0000 75 0.0820 4% 0%

mg20.80.950snb Aug 06, 2009 20% 80% 950 1.0000 70 0.0710 5% 4%

mg20.80.950snc Sep 14, 2010 20% 80% 950 1.0023 85 0.0404 2% 0%

mg.0.100.850na Mar 15, 2009 0% 100% 850 1.0000 80 0.0950 4% 4%

mg.0.100.850nb Sep 20, 2010 0% 100% 850 1.0034 75 0.0987 1% 4%

mg.0.100.850nc Jul 14, 2009 0% 100% 850 1.0000 68 0.1040 5% 5%

mg.0.100.900na Mar 15, 2009 0% 100% 900 1.0000 42 0.0500 1% 1%

mg.0.100.900nb Jun 29, 2009 0% 100% 900 1.0000 35 0.0400 0% 4%

mg.0.100.900nc Jul 14, 2009 0% 100% 900 1.0000 38 0.0580 5% 3%

mg.0.100.950na Jul 29, 2010 0% 100% 950 1.0013 40 0.0311 1% 0%

mg.0.100.950nb Jun 24, 2009 0% 100% 950 1.0000 28 0.0230 2% 0%

mg.0.100.950nc Jul 13, 2009 0% 100% 950 1.0000 35 0.0150 5% 3%
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G-5 Profile of acid-washed lignite-pine blend char gasification 

File Date of test
Acid-

washed 

Lignite

Pine Temp.

Pellet 

Mass 

(g)

Water 

Trap 

(ml)

Ash (g)

Carbon 

balance 

Error

Gas 

productio

n Error

mg100.0.850wla May 20, 2010 100% 0% 850 1.0053 230 0.2516 4% 2%

mg100.0.850wlb Jun 11, 2010 100% 0% 850 1.0052 235 0.3581 0% 0%

mg100.0.850wlc Jun 14, 2010 100% 0% 850 1.0071 260 0.4015 0% 0%

mg100.0.900wla May 17, 2010 100% 0% 900 1.0036 160 0.0872 4% 4%

mg100.0.900wlb May 18, 2010 100% 0% 900 1.0033 165 0.1246 5% 4%

mg100.0.900wld Jun 09, 2010 100% 0% 900 1.0060 135 0.1418 1% 3%

mg100.0.950wla May 18, 2010 100% 0% 950 1.0036 95 0.0792 4% 0%

mg100.0.950wlb May 20, 2010 100% 0% 950 1.0056 115 0.0923 3% 1%

mg100.0.950wlc Jun 11, 2010 100% 0% 950 1.0070 110 0.0781 4% 0%

mg80.20.850wlpa Aug 27, 2010 80% 20% 850 1.0011 240 0.2587 4% 4%

mg80.20.850wlpb Aug 27, 2010 80% 20% 850 1.0019 230 0.2411 5% 5%

mg80.20.850wlpc Aug 28, 2010 80% 20% 850 1.0011 235 0.2579 5% 4%

mg80.20.900wlpa Aug 19, 2010 80% 20% 900 1.0031 180 0.1439 4% 5%

mg80.20.900wlpb Aug 19, 2010 80% 20% 900 1.0037 175 0.1278 2% 3%

mg80.20.900wlpc Aug 20, 2010 80% 20% 900 1.0010 175 0.1116 5% 3%

mg80.20.950wlpa Sep 08, 2010 80% 20% 950 1.0025 115 0.0493 1% 1%

mg80.20.950wlpb Sep 08, 2010 80% 20% 950 1.0011 120 0.0535 1% 2%

mg80.20.950wlpc Sep 08, 2010 80% 20% 950 1.0033 110 0.0523 2% 2%

mg50.50.850wlpa Aug 28, 2010 50% 50% 850 1.0047 230 0.1400 0% 4%

mg50.50.850wlpb Aug 30, 2010 50% 50% 850 1.0020 240 0.1513 1% 3%

mg50.50.850wlpc Aug 30, 2010 50% 50% 850 1.0045 240 0.1624 1% 3%

mg50.50.900wlpa Aug 16, 2010 50% 50% 900 1.0021 150 0.0961 5% 5%

mg50.50.900wlpb Aug 17, 2010 50% 50% 900 1.0017 160 0.0965 5% 2%

mg50.50.900wlpc Aug 17, 2010 50% 50% 900 1.0043 155 0.0688 2% 2%

mg50.50.950wlpa Sep 07, 2010 50% 50% 950 1.0012 105 0.0379 1% 5%

mg50.50.950wlpb Sep 07, 2010 50% 50% 950 1.0028 95 0.0389 1% 5%

mg50.50.950wlpc Sep 08, 2010 50% 50% 950 1.0039 100 0.0394 3% 4%

mg20.80.850wlpa Sep 01, 2010 20% 80% 850 1.0012 220 0.0906 0% 3%

mg20.80.850wlpb Sep 02, 2010 20% 80% 850 1.0035 225 0.0976 2% 5%

mg20.80.850wlpc Sep 02, 2010 20% 80% 850 1.0019 225 0.1045 1% 4%

mg20.80.900wlpa Aug 16, 2010 20% 80% 900 1.0030 115 0.0702 1% 1%

mg20.80.900wlpb Aug 13, 2010 20% 80% 900 1.0041 115 0.0621 3% 3%

mg20.80.900wlpc Aug 16, 2010 20% 80% 900 1.0084 125 0.0686 0% 3%

mg20.80.950wlpa Aug 31, 2010 20% 80% 950 1.0025 75 0.0343 5% 5%

mg20.80.950wlpb Sep 01, 2010 20% 80% 950 1.0031 80 0.0299 3% 0%

mg20.80.950wlpc Sep 02, 2010 20% 80% 950 1.0023 80 0.0287 2% 3%

mg0.100.850pb May 04, 2010 0% 100% 850 1.0068 80 0.0136 5% 3%

mg0.100.850pc May 07, 2010 0% 100% 850 1.0016 72 0.0145 5% 4%

mg0.100.850pd Jun 23, 2010 0% 100% 850 1.0086 80 0.0156 4% 1%

mg0.100.900pa Jun 23, 2010 0% 100% 900 1.0046 40 0.0115 3% 1%

mg0.100.900pb Oct 28, 2009 0% 100% 900 1.0000 35 0.0102 2% 1%

mg0.100.900pc May 06, 2010 0% 100% 900 1.0027 38 0.0123 4% 4%

mg0.100.950pa Oct 28, 2009 0% 100% 950 1.0008 21 0.0046 2% 1%

mg0.100.950pb May 04, 2010 0% 100% 950 1.0068 22 0.0053 5% 2%

mg0.100.950pc May 11, 2010 0% 100% 950 1.0036 30 0.0062 5% 3%
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G-6 Profile of acid-washed lignite-E. nitens blend char gasification 

File Date of test
Acid-

washed 

Lignite

E. 

nitens
Temp.

Pellet 

Mass 

(g)

Water 

Trap 

(ml)

Ash (g)

Carbon 

balance 

Error

Gas 

production 

Error

mg100.0.850wla May 20, 2010 100% 0% 850 1.0053 230 0.2516 4% 2%

mg100.0.850wlb Jun 11, 2010 100% 0% 850 1.0052 235 0.3581 0% 0%

mg100.0.850wlc Jun 14, 2010 100% 0% 850 1.0071 260 0.4015 0% 0%

mg100.0.900wla May 17, 2010 100% 0% 900 1.0036 160 0.0872 4% 4%

mg100.0.900wlb May 18, 2010 100% 0% 900 1.0033 165 0.1246 5% 4%

mg100.0.900wld Jun 09, 2010 100% 0% 900 1.0060 135 0.1418 1% 3%

mg100.0.950wla May 18, 2010 100% 0% 950 1.0036 95 0.0792 4% 0%

mg100.0.950wlb May 20, 2010 100% 0% 950 1.0056 115 0.0923 3% 1%

mg100.0.950wlc Jun 11, 2010 100% 0% 950 1.0070 110 0.0781 4% 0%

mg80.20.850wlna Aug 24, 2010 80% 20% 850 1.0008 230 0.2526 3% 2%

mg80.20.850wlnb Aug 25, 2010 80% 20% 850 1.0037 230 0.2381 4% 4%

mg80.20.850wlnc Aug 25, 2010 80% 20% 850 1.0038 220 0.2260 5% 1%

mg80.20.900wlna Aug 23, 2010 80% 20% 900 1.0036 175 0.0805 3% 5%

mg80.20.900wlnb Aug 23, 2010 80% 20% 900 1.0040 175 0.1029 5% 3%

mg80.20.900wlnc Aug 24, 2010 80% 20% 900 1.0035 170 0.0915 5% 0%

mg80.20.950wlna Sep 10, 2010 80% 20% 950 1.0023 120 0.0498 4% 5%

mg80.20.950wlnb Sep 10, 2010 80% 20% 950 1.0015 110 0.0503 0% 1%

mg80.20.950wlnc Sep 10, 2010 80% 20% 950 1.0040 120 0.0513 5% 5%

mg50.50.850wlna Aug 31, 2010 50% 50% 850 1.0030 235 0.2092 5% 4%

mg50.50.850wlnb Aug 31, 2010 50% 50% 850 1.0033 225 0.1816 0% 3%

mg50.50.850wlnc Sep 01, 2010 50% 50% 850 1.0018 235 0.2296 5% 3%

mg50.50.900wlna Aug 20, 2010 50% 50% 900 1.0025 150 0.1584 5% 4%

mg50.50.900wlnb Aug 20, 2010 50% 50% 900 1.0021 150 0.1438 5% 1%

mg50.50.900wlnc Aug 23, 2010 50% 50% 900 1.0050 155 0.1529 4% 3%

mg50.50.950wlna Sep 06, 2010 50% 50% 950 1.0019 95 0.0393 0% 3%

mg50.50.950wlnb Sep 07, 2010 50% 50% 950 1.0029 100 0.0412 0% 2%

mg50.50.950wlnc Sep 07, 2010 50% 50% 950 1.0023 105 0.0403 1% 0%

mg20.80.850wlna Sep 03, 2010 20% 80% 850 1.0014 220 0.0648 4% 2%

mg20.80.850wlnb Sep 03, 2010 20% 80% 850 1.0021 210 0.0623 2% 3%

mg20.80.850wlnc Sep 06, 2010 20% 80% 850 1.0026 210 0.0741 1% 4%

mg20.80.900wlna Aug 17, 2010 20% 80% 900 1.0028 120 0.0442 5% 3%

mg20.80.900wlnb Aug 18, 2010 20% 80% 900 1.0045 130 0.0545 5% 2%

mg20.80.900wlnc Aug 18, 2010 20% 80% 900 1.0077 110 0.0457 5% 1%

mg20.80.950wlna Sep 03, 2010 20% 80% 950 1.0018 70 0.0283 2% 4%

mg20.80.950wlnb Sep 06, 2010 20% 80% 950 1.0061 70 0.0263 1% 1%

mg20.80.950wlnc Sep 06, 2010 20% 80% 950 1.0038 75 0.0296 5% 4%

mg.0.100.850na Mar 15, 2009 0% 100% 850 1.0000 80 0.0950 4% 4%

mg.0.100.850nb Sep 20, 2010 0% 100% 850 1.0034 75 0.0987 1% 4%

mg.0.100.850nc Jul 14, 2009 0% 100% 850 1.0000 68 0.1040 5% 5%

mg.0.100.900na Mar 15, 2009 0% 100% 900 1.0000 42 0.0500 1% 1%

mg.0.100.900nb Jun 29, 2009 0% 100% 900 1.0000 35 0.0400 0% 4%

mg.0.100.900nc Jul 14, 2009 0% 100% 900 1.0000 38 0.0580 5% 3%

mg.0.100.950na Jul 29, 2010 0% 100% 950 1.0013 40 0.0311 1% 0%

mg.0.100.950nb Jun 24, 2009 0% 100% 950 1.0000 28 0.0230 2% 0%

mg.0.100.950nc Jul 13, 2009 0% 100% 950 1.0000 35 0.0150 5% 3%
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