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Abstract

Impaired mass transfer characteristics of blood borne vasoactive species such

as ATP in regions such as an arterial bifurcation have been hypothesized as a

prospective mechanism in the aetiology of atheroscleroticlesions. Arterial en-

dothelial (EC) and smooth muscle cells (SMC) respond differentially to altered

local hemodynamics and produce coordinated macro-scale responses via intercel-

lular communication. Using a computationally designed arterial segment com-

prising large populations of mathematically modelled coupled ECs & SMCs, we

investigate their response to spatial gradients of blood borne agonist concentra-

tions and the effect of micro-scale driven perturbation on the macro-scale. Alter-

ing homocellular (between same cell type) and heterocellular (between different

cell types) intercellular coupling we simulated four casesof normal and patholog-

ical arterial segments experiencing an identical gradientin the concentration of

the agonist. Results show that the heterocellular calcium (Ca2+) coupling between

ECs and SMCs is important in eliciting a rapid response when thevessel segment

is stimulated by the agonist gradient. In the absence of heterocellular coupling,

homocellular Ca2+ coupling between smooth muscle cells is necessary for propa-

gation of Ca2+ waves from downstream to upstream cells axially. Desynchronized

intracellular Ca2+ oscillations in coupled smooth muscle cells are mandatory for

this propagation. Upon decoupling the heterocellular membrane potential, the

arterial segment looses the inhibitory effect of endothelial cells on the Ca2+ dy-

namics of underlying smooth muscle cells. The full system comprising hundreds

of thousands of coupled nonlinear ordinary differential equations simulated on the

massively parallel Blue Gene architecture. The use of massively parallel compu-

tational architectures shows the capability of this approach to address macro-scale

phenomena driven by elementary micro-scale components of the system.
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Chapter 1

Introduction

The scientific method has been predicated on the thesis that by “breaking down”

complex phenomena into its component parts we may be able to further under-

stand the natural beauty of our world both surrounding us andinside us. Both

animals and plants are formed from a collection of cells which in some cases

numbers into the billions. Each cell within three dimensional space connects to

many providing a unit capable of complex interactions. We are now at the stage

where through the use of supercomputing technologies we areable to “rebuild”

those parts into a viable whole and thus compare with phenomena normally seen

with the naked eye.

One such example of this “connectedness” is the human vasculature. Vascular

tissue comprises of billions of specialized cells. These cells are tightly packed in

structures that form hollow tubes of various diameters. These tube, categorized as

arteries or veins depending on whether they take blood to or away from the heart,

are the primary source of transport of matterin vivo, from one organ to another.

Endothelial cells and smooth muscle cells are the two constituent units of the

vascular wall, that are of interest in this thesis. These cells form networks which

give rise to vascular tissue and react to the signals originating locally, upstream

(away from the direction of blood flow) and downstream (in thedirection of blood

flow). The channel through which this information flows between the connected

cells are known as gap junctions. Through these channels, vascular cells interact

with each other to produce coordinated response by the vascular tissue in response

3



4 Introduction 1.0

to the blood borne signal/stimuli.

Atherosclerosis is a disease of blood vessels, primarily ofarteries, in which

the plaques (or obstructions) are formed and occlude the blood flow. It is a pro-

gressive disease and at mature stages, can causeischemia, improper blood supply,

to downstream tissue. Acute case of ischemia can cause aninfarct, or area of

necrosis where permanent damage occurs due to cells death due to severehy-

poxiaor lack of oxygen. The coincidence of the atherosclerotic plaques anddis-

turbedblood flow has been indicative of an underlying relationshipbetween the

local hemodynamics and pathogenesis of the disease for decades now (Caro et al.,

1969). Reliable proof of this correlation in mouse models have been shown by

only recently (Cheng et al., 2006). These experiments, however, are not able to

fully elucidate the mechanistic basis of this correlation.A strong hypothesis has

prevailed for a long time regarding involvement of impairedmass transport in the

areas of low wall shear stress and subsequent formation of atherosclerotic plaques

(Caro et al., 1969). The cells (ECs and SMCs) have been found to respond the

hemodynamic signals (e.g. wall shear stress) and blood borne agonists (e.g. ATP),

in isolation or in as network, connected via gap junctions. Adetailed literature re-

view in Chapter2 addresses the multiple facets of the disturbed flow regions,the

associated mass transport impairment and the gap junction expressions in these

region.

Computational models of ECs and SMCs have proven to be a reliablesource of

information on the intracellular dynamics and interactionof molecules and cell or-

ganelles. Often such information cannot be acquired inin vitro conditions. There

are several limitations associated within vitro studies that are beyond the scope of

this thesis. These studies, on the other hand, have contributed enormously to the

building of the computational models. It is possible to connect these mathematical

models, representing an EC and SMC, into large scale multicellular models in a

geometry that conforms to the anatomical structure of an artery. This multicellular

model then can be used to simulate onto them, physiologically relevant environ-

ments such as hemodynamics that are characteristic of an arterial bifurcation, to

elucidate the mechanisms resulting in terms of the cellulardynamics of the under-

lying cells. This can help understand the mechanism(s) thatcorrelates impairment

in mass transport to the pathogenesis of atherosclerosis. These are thus the aims
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of this study.

In the Chapter 2, a literature review will be presented that covers the anatomy

of an artery, the flow conditions and their impact within the region of an arterial

bifurcation and the a review of coupled models. Chapter 3 to 6 progressively build

on the methodology. Chapter 7 implements the spatially varying mass transfer

profile on a computationally designed arterial section. Chapter 6 and 7 present the

discussion and conclusions on the observed phenomena.
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Chapter 2

Literature Review

2.1 Vascular Anatomy

The human vasculature is a continuous conduit supplying blood in approximately

all tissues (exceptions include cornea in the eye is not vascularized). Depending

on what an artery or vein is feeding, the radius of the artery,and to a significant

extent its structure varies with its anatomical location and function. A main artery

such as aorta which feeds downstream branches has radius of the order of a cen-

timetre, where as a tertiary arteriole feeding surroundingtissue is has a radius of

merely few micrometers. Thus this variation of radii acrossthe vasculature makes

it a multiscale architecture. A blood vessel is categorizedas an artery or a vein

depending on whether it is transporting blood into an organ or taking the blood

away from it. Surely, there are structural differences between the anatomy of an

artery and a vein. From here on, the discussion will be focused on an artery, as

the transport is vein and its anatomy is beyond the scope of this thesis.

2.1.1 Layers of Arteries

Figure2.1 show typical anatomy of an artery. The inner most layer,tunica in-

tima (tunica=layer), is made up of endothelial cells (ECs) which lye parallel to

the longitudinal axis of the arterial lumen and are the primary and direct inter-

face between blood flow and the arterial wall. The middle layer, tunica media,

is composed of of smooth muscle cells (SMCs). This layer is much thicker than

7
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tunica intima. Smooth muscle cells are circumferentially assembled and are ex-

citable (contract and relax). The outer layer,tunica externaalso known astunica

advetitiais mainly composed of fibrous connective tissue, collagen. This layer is

innervated (supplied with nerve endings) and is the main interface between the

artery and peripheral nervous system. Adventitia is also vascularized with small

arteries, calledvasa vasorum, feeding the cells of the inner layers that are not in

direct contact with the blood.Internal elastic membrane or lamena(IEL) or base-

ment membraneas shown in the figure, is a perforated curtain between intimaand

tunica.

Figure 2.1: Figure shows anatomy of an artery, its layers and there positioning.
(adapted fromSeeley et al.(2006).

2.1.2 Anatomical Characterization of Arteries

Arteries are characterized on the basis of the thickness of tunica media and tunica

media. The aorta and its branches (e.g. subclavian, common carotid (beginning

Chapter2/Figures/anatomy1.eps


2.2 Localization of atherosclerotic lesions 9

portion), pulmonary, etc) are elastic. This is to help respond the variations in

blood pressure that arise within a cardiac cycle. Histologically (when studied

under a microscope after staining a tissue section with colored stains), intima of

the large/elastic arteries is thick. Intimal border is delineated by internal elastic

lamena which is does not appear so prominent in the case of elastic arteries. Fig-

ure 2.2a shows a high power microscope image of the aortic tissue. The tunica

media is most prominent and thickest of all the layers. Upon examining the cross-

section of an elastic artery, one can see multiple layers of SMCs, sitting one on

another. This is proportion of intimal/medial thickness isa characteristic of an

elastic artery.

Muscular arteries, also termed as distributive arteries are branches of the main

arteries that supply blood to organs. As shown in Figure2.2b, tunica media is

thinner compared to its thickness in elastic arteries. The IEL is distinguishable

and intima is thinner than in elastic arteries. Medial layeris mainly composed of

SMCs. Examples of the muscular arteries are the coronary arteries, internal and

external carotid, femoral, radial, and pial artery, to namea few.

As we go down the scale, the medial layer becomes thinner and the layers

of SMCs become significantly less (around 8-10 layers circumferentially). Distin-

guishing intima becomes increasingly difficult and the IEL remains visible. These

serve as feed artery downstream to which the radius decreases further and this net-

work is collectively characterized as the resistance arteries. The main goal of

this scale of arteries is to maintain perfusion of the downstream tissue, therefore,

keeping it sufficiently oxygenated as required. Tunica media is further reduced

in thick, down to approximately 2 layer of SMCs, and these vessels are character-

ized as arterioles. Figure2.2c & d shows examples of small arteries and arterioles.

Arterioles feed the downstream capillary network.

2.2 Localization of atherosclerotic lesions

Atherosclerosis is predominantly a disease of large or proximal arteries however it

also occur in small or distal vessels. The definition or specification of small arter-

ies varies with arterial beds where the lesions form(Aboyans et al., 2007). Three

arterial beds are of main concern due to their link to morbidity and mortality:



10 Literature Review 2.2

(a) (b)

(c) (d)

Figure 2.2: Figure shows histological images of sections of arterial tissue of dif-
ferent scales. (a to d) show images of an elastic, muscular, small artery and ar-
teriole respectively. The abbreviations used in (a) areel = elastic lamellae,end
= endothelial cell nuclei,n = smooth muscle cell nuclei,TA = tunica adventitia,
TI=tunica intima andTM= tunica media.(b)ef = elastic fibre,ext= external elastic
membrane,int= internal elastic membrane,n= nuclei of smooth muscle cells,TA=
tunica adventitia,TI= tunica intima,TM = tunica media. (c)end= endothelial cell
nucleus,n = smooth muscle nucleus,rbc = red blood cells. (d)end= endothelial
cell nucleus,n = smooth muscle nucleus,rbc = red blood cells. This information
was adapted from http://www.courseweb.uottawa.ca/medicine-histology

Chapter2/Figures/large.eps
Chapter2/Figures/muscular.eps
Chapter2/Figures/small.eps
Chapter2/Figures/arteriole.eps
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• the cerebrovascular arterial bed, including internal carotid artery

• the coronary bed

• and network of arteries supplying to peripheries such as toes and fingers

etc.

The localization of atherosclerotic plaque formation is not limited to these vascu-

lar beds however and involves large arteries bifurcations and bends such as the

aorta, ascending, descending, and aortic arch, abdominal aorta, renal and iliac bi-

furcation etc. Figure2.3shows in a mouse model, the localization map of prospec-

tive sites of formation of atherosclerotic lesions (adapted from (VanderLaan et al.,

2004)).

Figure 2.3: Longitudinal representation of the ma-
jor arterial vasculature illustrating observed dis-
tribution of atherosclerosis (grey shading) in the
vasculatures of LDL receptor-deficient mice fed a
high-fat atherogenic diet. (1) Indicates aortic sinus;
(2) ascending aorta; (3) lesser curvature of aortic
arch; (4) greater curvature of aortic arch; (5) in-
nominate artery; (6) right common carotid artery;
(7) left common carotid artery; (8) left subclavian
artery; (9)thoracic aorta; (10) renal artery; (11) ab-
dominal aorta; and (12) iliac artery (VanderLaan
et al., 2004).

Predisposing or triggering factors described by (Aboyans et al., 2007) involve:

Chapter2/Figures/systemicLocalization.eps
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• genetic predisposition

• age

• race

• gender (weak correlation with race)

• hypertension

• chronic high systolic and/or diastolic blood pressure

• diabetes mellitus (especially important in the lesions formation in small/distal

arteries)

• smoking

• hypercholestrimia & hyperlipidemia etc.

These risk factors play a pivotal part in the progression of lesions towards plaque

formation, but the aetiology of lesions has been indicated to coincide with the

period as early as prenatal and infancy. Although there are some risk factors such

as maternal smoking, maternal hypercholestrimia, maternal diabetes and postnatal

usage of breast milk substitutes that correlate significantly with the incidence of

atherosclerotic lesions at foetal and infant stage, lesions were also found to occur

in some cases in spite of the lack of these risk factors(Matturri et al., 2004; Milei

et al., 2008; Mukherjee, 2009).

Bifurcations, curvatures and sharp bends occur systemically in the vascula-

ture, the focal incidence of atherosclerotic plaque in certain preferential sites and

regions in human arterial system has been of research interest for quite some time

now. In the case of bifurcations, fatty streaks (composed ofmacrophages and

white blood cells and represent early atheroma) and early lesions in large arteries

were established to have a significant relationship with thelocal hemodynamics as

late as 1960’s. (Caro et al., 1969) studied postmortem samples of aortic segments

bifurcating/branching into the coeliac artery or the celiac trunk, superior mesen-

teric and renal arteries, and aortic bifurcation for evidence of lesions at branch-

ing sites, from a mixed/unselected population of cadavers.They reported a high

incidence of developed lesions and fatty streaks at the outer wall of the daugh-

ter/branching arteries downstream of flow divider, except for the celiac trunk. Al-

most in all cases the inner wall of the daughter arteries was smooth and lacked any

physical expression of lesion formation. They hypothesized that low wall shear



2.3 Disturbed flow 13

stress (frictional force exerted on the vessel wall due to blood flow) and altered

mass transfer characteristics could contribute to formation of these lesions. The

observation of unilateral involvement of daughter arteries in lesion localization at

bifurcation and suggested link to limited mass transfer of solutes in these regions

has been seconded by a number of subsequent studies over the time(Asakura and

Karino, 1990; Comerford and David, 2008; Ethier, 2002; Kjaernes et al., 1981; Ku

et al., 1985; Ma et al., 1997; Mahinpey et al., 2004; Nollert and McIntire, 1992;

Tada and Tarbell, 2006).

As described in the previous chapter (Anatomy and physiology chapter yet

to be written), the blood flows parallel to the long axis of theartery and there

are three types of mechanical stimuli that the intimal layerexperiences simultane-

ously. Figure2.4 shows the directions of these mechanical forces/stimuli acting

on an arterial segment (adapted from (Chien, 2007)). Wall shear stress (WSS) is

the tangential component of the stress tensor acting up on the EC surface. Intra-

mural pressure which acts perpendicular to the intimal lining varies with cardiac

cycle and brings about myogenic response where underlying SMCs contract or

relax thus altering the elastic stress and produces the circumferential stretch. We

focus here on the tangential component of this stress tensor, the WSS, which has

been found associated to the localization of early lesions.

2.3 Disturbed flow

The nature of systemic flow in non pathological vasculature is by and large lam-

inar, except for aorta where higher flow rates caused by exercise and exertion

can be observed and are capable of producing mild turbulent flow. Also, in the

early systole in cardiac cycle, relatively higher flow ratescould be observed which

rapidly subside (not implying that the resultant flow becomes turbulent but due to

high higher flow rate it nears the threshold Reynolds number (the ratio of inertial

to viscous forces in fluid medium) of 2000, past which turbulence is observed.

This feature has been observed only in aorta). With decreasein diameter and fur-

ther branching from aorta, the Reynolds number drastically decreases and flow

remains laminar throughout the vasculature for the whole cardiac cycle(Truskey

et al., 2009).
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Although flow is laminar in these secondary branches, the flowcharacteris-

tics are very complex. Flow is pulsatile and velocity profiles are also asymmetric.

The resulting wall shear stress is not only time varying but also spatially varying

in these arteries. Low wall shear stress region is a area of composite phenomena

rather than its literal meaning, when looking at its causative effect on atherogen-

esis. In addition to the magnitude variation of the WSS, therealso exists a flow

separation region in this area spanned by the Low WSS profile. Here the resi-

dence times of the solutes, that are carried convectively inbulk fluid, are notably

different(Ma et al., 1997). Another phenomenon taking place in this region is the

secondary flows or flow recirculation. By definition, secondary flows are fluid

Figure 2.4: Diagram shows the gener-
ation of wall shear stress parallel (tan-
gential to the EC surface) by blood
flow and the generations of normal
stress (perpendicular to the endothe-
lial cell surface) and circumferential
stretch due to the action of pressure
[adapted from (Chien, 2007)].

motions which occur in a plane perpendicular to that of the distally directed blood

flow and thus are secondary to the primary direction of motion(Nerem, 1992).

Although tricky to measure because of their very low velocities, they do have

an effect on the resultant WSS direction (or so to say WSS gradient). Another

phenomenon associated to this region is impairment of the mass transfer of the

metabolic entities or solutes to which the intimal wall is reactive. Thus the result-

ing magnitude and direction of WSS influence the concentration boundary layer

of these entities and hence the response of intimal cells to this stimulus. The dy-

namics of this phenomenon are discussed in Section 3. The collection of these

phenomena is characterized as low wall shear stress effect and the characteristic

of flow is called disturbed flow.

Chapter2/Figures/forces.eps
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(a) Streamlines showing the veloc-
ity in different regions of common
carotid (CCA) branching into inter-
nal (ICA) and external carotid arter-
ies(ECA). Near to the apical region,
high shear stress is cumulated where
as disturbed flow is observed on the
lateral/outer side of the bifurcation,
especially in the sinus of ICA

(b) The stagnation point (marked by arrow) migrates spa-
tially due to the sudden onset of flow. Cells under develop-
ing eddy at any location are experience temporal gradients.
Cells between the step change in geometry and the dashed
line experience spatial gradients due to the movement of the
recirculation zone downstream.

Figure 2.5: Flow orientation in regions susceptible to atherogenesis (White and
Frangos, 2007).

2.3.1 Patterns of disturbed flow at lateral wall of arterial bifur-

cations

Arterial blood flow is pulsatile and the absolute WSS varies with cardiac cycle

continuously. In straight geometries in vasculature, blood flows unidirectionally

and there is no recirculation of flow. In these regions, the time averaged WSS

or mean pulsatile shear stress (MPSS) is positive (positiverepresenting forward

flow). MPSS greater than 6 dynes/cm2 predominates throughout the arterial sys-

tem(White and Frangos, 2007). Even with the laminar flow in these regions, the

WSS changes with phases of cardiac cycle such as early systole, end systole, early

diastole and late/end diastole. These phases govern the resultant velocity profile

and hence the WSS. Thus we do witness moderate amount of time dependent

WSS gradient in these regions but all in all the steady state shear stress value does

not change.

The proximal and distal areas immediate to branching of the arteries and ar-

Chapter2/Figures/recirculationZone.eps
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terial bends experience a different story, especially the lateral wall of the vessel.

Here recirculating zones are evident as shown in Figure2.5a. In this region flow

departs from its conventional trajectory and moves away from the wall producing

secondary flows, defined in the previous section. The flow eventually detaches

from the wall due to adverse pressure gradient and consequent flow reversal. The

point where flow reattaches itself to a location distal to theflow detachment region

is known as stagnation point because of zero WSS there. The results is spatial and

temporal gradients in this region. By definition, spatial gradient in WSS is the

difference of shear stress between two nearby points of a cell at a time. Temporal

gradient is fluctuation of WSS over a small period of time at thesame location.

Using a step flow apparatus in vitro (Glagov et al., 1988) showed that due the

down-stroke of systole in a cardiac cycle or sudden change inflow in their case,

the recirculation zone can migrate downstream thus shifting the stagnation point

and returning back during diastole (see Figure2.5b). Thus, with pulsatility, the

stagnation point oscillates spatially. Due to the flow reversal, i.e. negative flow,

the MPSS in this region is low. At a given location, the WSS oscillates in time

because of the spatial oscillation of recirculation regionand this is measured by a

relative index called oscillatory shear index (OSI), and isdefined by equation 1.

OSI= 0.5×


1−

∣∣∣
∫ T

0 τwdt
∣∣∣

∫ T
0 |τw|dt


 (2.1)

τw is the WSS at a specific location on the vessel wall and the limit0 to T time, typ-

ically of the order of one or more cardiac cycles. Thus OSI canfluctuate between 0

to 0.5, 0.5 being highly oscillatory thus representing sever flow reversal. Magnetic

resonance imaging based studies coupled with computational fluid dynamics ap-

plications have attempted to investigate the causative potential of oscillatory flow

in the regions of interest. Figure2.6shows the mapping of OSI in carotid sinus of

ICA. By looking at the figure it can be observed that the largest OSI values (repre-

sented by red in Figure2.6b) coincides with the patches of the vessel experiencing

low time averaged WSS at or around bifurcation in Figure2.6a. This means that

the intimal layer of this region will be experiencing a spatial and temporal gradient

of low magnitude wall shear stress simultaneously.
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(a) Time averaged wall shear
stress

(b) OSI map

Figure 2.6: Time averaged hemodynamics in a realistic model of carotid artery.
Some areas under low WSS in (a) also experience oscillatory flow thus facing a
synergistic spatial and temporal gradient(Augst et al., 2007).

2.3.2 Effects of disturbed flow on vascular endothelium

Cellular morphology

Vascular endothelial cells form the surface or intimal lining of the arterial lumen

and is exposed to hemodynamic and or humoral stimuli broughtinto their vicin-

ity by bulk flow. In addition to being reactive to various blood borne solutes,

the endothelial cells also respond to alterations in WSS and it is found capable

of changing the intracellular haemostasis of a vascular endothelial cell. This is

not only manifest biochemically but also affect the cells morphology. A substan-

tial number of in vitro studies have shown effect of flow on thecytoskeleton of

an endothelial cell (Chiu et al., 1998; Colgan et al., 2007; DePaola et al., 1999;

Jeng-Jiann et al., 2004; Malek et al., 1999; Sakamoto et al., 2010). In static or no

flow conditions, where WSS is low or zero, the endothelial cells appear polygonal

in shape under a microscope as opposed to when laminar flow with high WSS,

where cells are elongated in the direction of flow. Under bothlaminar flow with

low WSS and disturbed flow conditions, ECs express similar morphological be-

haviour as when under stagnant flow. Also, while elongated under a laminar flow

with relatively moderate to high WSS, the ECs are in close contact with neighbour-

ing ECs. Figure2.7illustrates the EC elongation and alignment in the direction of

flow which is capable of producing moderately high WSS. This cellular adhesion

Chapter2/Figures/wssTimeAv.eps
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(a) Effect of steady shear stress on bovine brain microvascular en-
dothelial cell (BBMvEC) morphology. Following shear stress(10
dyn/cm2,24h),BBMvEC realignment was monitored by phase contrast
microscopy (i and iii) and standard fluorescent microscopy (rhodamine-
phalloidin staining for F-actin; ii and iv). Dotted arrows highlight align-
ment in direction of flow. Images are representative of 3 independent
experiments (Colgan et al., 2007).

(b) Bovine aortic EC under static and flow condi-
tions. Under no flow condition cells have random
shape but under shear the shape is more homoge-
neous and definitive (Tzima, 2006).

Figure 2.7: Influence of fluid shear stress on EC cytoskeleton.

Chapter2/Figures/ECunderflow1.eps
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allows more surface area for cell - cell contact and better intercellular communi-

cation either via paracrine or gap junctional communication. Under high WSS

ECs respond by activating the rearrangement of endothelial cytoskeleton. One of

the possible mechanism for shear stress stimulated restructuring of microtubules

is proposed by (Tzima, 2006), as shown in Figure2.8, which involves membrane

bound G protein activation followed by a complex downstreamprocess which rear-

ranges not only the cell’s own cytoskeleton but also communicated with adjacent

ECs to allow the expansion in the longitudinal direction.

Figure 2.8: Model for mechanotransduction. Shear stress activates integrins, which
bind to extracellular matrix. Ligated integrins transiently deactivate Rho, whichcauses
disassembly of stress fibers. Ligated integrins also activate Rac at the downstream edge
of the cell, which facilitates alignment of the newly formed stress fibers in the direction of
flow. Polarized activation Cdc42 mediates reorganization of the microtubule organizing
centre (MTOC). GTPases also control gene expression and regulate endothelial junctions.
Ras GTPase is activated through G proteins and regulates gene expression under flow
through extracellular signal regulating kinase (ERK) and C-Jun-N-terminal kinase (JNK)
as well as endothelial nitric oxide synthase(eNOS) activation (Tzima, 2006).

Chapter2/Figures/ECunderflow3.eps
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Cell migration

Another important effect of WSS on morphology of EC layer is related to ge-

ometries where flow impingement can occur, for example the apex of an arterial

bifurcation. In vitro studies have shown that local hemodynamics profoundly ef-

fect EC migration and proliferation rates in these regions.In the apical region

of bifurcation, an impinging flow is observed. This is characterised by having a

stagnation point (where WSS is zero and WSS gradient is zero) surrounded by

high WSS regions on both side where WSS gradient has also reached a maximum.

(Szymanski et al., 2008) created such regions using an inverted T shaped flow di-

vider where flow would enter from the top and then go sideways when reaching

the divider. The bottom of this inverted T shaped conduit (see Figure2.9 where

ECs are cultured on a cover slip).

(a) 2D sketch of inverted T shape conduit
used in the experiment. The velocity mag-
nitude, direction in the impingement flow
field, and the three flow zones (I, II, III) are
also shown

(b) (a) Cell density vs. distance for ECs treated with
and without Mitomycin-C (MMC), an irreversible in-
hibitor of cellular proliferation after exposure to high
flow (Re=250) for 48 h. (b) Representative cell density
peak for untreated cells exposed to high flow (Re=250)
for 72 h, showing a shift downstream compared to 48
h. (c) Peak location measured from the impingement at
48 and 72 h experiments under high flow.

Figure 2.9: Migratory behaviour of EC seen in the case of impinging flow mim-
icking that seen at spices of arterial bifurcations(Szymanski et al., 2008).

At the beginning of the experiment, the region where stagnation point was

formed, cells presented random polygonal shape with a uniform cell density as

its adjacent regions on both sides. In regions with high WSS ECswere elongated

in the direction of the flow. With passage of time, the cell density decreased in

Chapter2/Figures/impingment2.eps
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the area of low or zero WSS and increased in the surrounding high WSS region

(where WSS gradient is also high) but was unaffected in the areas beyond where

WSS gradient was either low or non existent. This behaviour persisted in the

presence of proliferation inhibitors showing that the celldensity increase in the

regions of high WSS and high WSS gradient was not because of the cell growth

but ECs migrated from low or no WSS regions to high WSS and this migration

was promoted by existence of WSS gradient.

Cellular proliferation

Local flow patterns have also been found to affect the growth rate or rate of prolif-

eration of ECs. Laminar flow with adequately high WSS reduces DNA synthesis

and ECs are arrested in cell cycle thus they age slower and hence the turn over

time of such populations is higher(Davies, 2000). In the areas of disturbed flow

such as bifurcation points, ECs age faster(Cooke, 2003), thus the proliferative rate

is higher that the laminar flow (high WSS) regions. Aged ECs produce less ni-

tric oxide (NO), and generate free radicals such as superoxide anions(Tseng et al.,

2010). Thus, laminar flow with high WSS acts as atheroprotective agent compared

to the disturbed flow in branching point and bends, that encourages atherogenic

processes.

Disturbed flow and endothelial calcium dynamics

As has been established earlier, the correlation between complex fluid flow, low

and/or oscillatory WSS and atherosclerotic plaque localization firmly exists, yet

less is known about the mechanistic basis of formation of theearly lesions. WSS is

a known stimulus for second messenger mediated signal transduction in the ECs

that leads to important downstream intracellular processes and perturbs cellular

haemostasis. These effects include manipulation of intracellular Ca2+ concentra-

tions, activation of gene expressions specific to production of proteins that bring

about definitive changes in endothelial cytoskeleton and altering vasomotor tone,

in dose dependent manner, which is thought to be mediated by what is known

today asEndothelial derived relaxing factor (EDRF), widely accepted to be ni-

tric oxide (NO). NO is a potent vasodilator that diffuses into the medial layer of
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the artery and enforces relaxation of contracted SMCs. Endothelial Nitric Ox-

ide Synthase (eNOS) is a enzyme that when activated initiates production of NO

from an intracellular substrate L-arginine(L-Arg), in thepresence of oxygen. Of

multiple pathways for the activation of eNOS, bioavailability of cytosolic Ca2+ is

one. In response to certain external stimuli such as WSS or agonist binding to

specific receptors located in plasma membrane, Ca2+ can enter the cytosol of an

EC via specific and/or non specific Ca2+ channels, thus increasing the intracellular

Ca2+ concentration and providing means of eNOS activation and consequent NO

production. Figure2.10depicts this process.

NO rapidly diffuses past basement membrane and into the SMCs in the me-

dial layer where it activates an intracellular hemoproteinsoluble guanylate cyclase

(sGC) which catalyze the conversion of Guanosine triphosphate (GTP) into cyclic

Guanosine MonoPhosphate(cGMP). cGMP then activates a pivotal entity called

protein kinase G (PKG) which performs a number of important regulatory cell

functions including the relaxation of SMCs. PKG disables theCa2+ influx path-

ways and also desensitizes the myosin light chain kinase (MLCK), the building

block in the contractile cytoskeleton of a SMC, to Ca2+ calmodulin(Ca2+-CaM)

complex. PKG has also been found to induce gene expression which enables the

potassium(K+) efflux via Ca2+ activated K+ channels. All these concurrent pro-

cesses result in SMC relaxation. Hence, NO activation of cGMP pathway to bring

about vasodilation through SMC relaxation is partially dependent on the Ca2+ in-

flux into and EC in response to external stimuli such as agonist binding or WSS.

Not much literature exists on the response of coupled ECs/SMCsto disturbed flow

as a unit but the information on how isolated cells or homogeneous populations of

ECs or SMCs react to steady and unsteady flow is available.

2.4 Mass Transport and Atherosclerosis Localization

Whole blood carries many solutes which sever as either ligands to specific recep-

tors, or are to be excreted or to be transported to distant organs. These blood

borne species vary in size, mass/molecular weight, diffusivity, electrostatic prop-

erties and several other factors that come into account in determining their mass

transfer characteristics. Amongst these blood borne species are vasoactive solutes
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Figure 2.10: Schematic diagram of endothelium-derived smooth muscle relax-
ation via nitric oxide (NO)/cGMP pathway(Yang et al., 2005).

such as vasodilators (e.g. histamine, adnosine, acetylcholine, bradykinin, nora-

drenaline, substance P etc..) and vasoconstrictors (e.g. adenosine triphosphate and

adenosine biphosphate (ATP and ADP), phenylephrine, endothelin, angiotensin II,

norepinephrine etc..) which are of interest here. These solutes serve as agonists to

specific receptors expressed by EC surface and upon attachment activate complex

downstream processes that result in a number of agonist specific alterations such

as reorganization of cellular cytoskeleton, gene expressions which initiate further

downstream processes such as cell proliferation or apoptosis, activation of ex-

ocrine processes, or even release of agents that further affect the cells in periphery

such as in vasomotion; to name a few. Local mass transfer characteristics of these

molecules heavily rely on the hemodynamics of that region. (Caro et al., 1969)

first hypothesized the correlation of impaired mass transfer in regions of disturbed

flow and early atheroma. In a subsequent publication (Caro et al., 1971) they elab-

orated that the altered mass transfer characteristics, specifically for cholesterol

in their case, were coupled to low WSS profiles. Cholesterol is excreted out of

the cell into the blood stream and carried to the liver where it is metabolized. In
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pathology cholesterol accumulates in the cell leading to cytotoxicity. According

to the authors, WSS has a sweeping effect on the concentrationof cholesterol on

the wall surface hence maintaining the concentration gradient for further efflux of

cholesterol from wall phase to fluid phase. In the areas of lowWSS, the reduc-

tion of this sweeping effect diminishes and the concentration boundary layer of

the surface cholesterol thickens, thus lowering the drive of the molecules moving

from inside of the cell to the outside on the wall surface. This causes retention

of cholesterol inside the cell. This hypothesis was furtherseconded by (Kjaernes

et al., 1981). Thus in a historic perspective there exists this notion ofinvolvement

of impaired mass transfer in the regions of disturbed flow.

Later advances in computational techniques and imaging modalities have im-

proved the mechanistic understanding of the altered mass transport coupled to

the disturbed flow. Using computational fluid dynamics for a realistic geometric

model of human carotid artery, (Ma et al., 1997) computed the mass transport

characteristics at and around carotid bifurcation. Emphasis was given on the mass

transport of small molecules such as oxygen and is suggestedthat it may also im-

ply to other blood borne species with relatively low diffusivity e.g. ATP and ADP

in ambient conditions. The velocity profiles of their computational fluid dynamic

(CFD) study showed disturbed flow characteristics particularly on the lateral wall

(outer wall) of sinus located immediately after the point ofbifurcation in the in-

ternal carotid branch (ICA). This included both substantially large recirculation

zones and areas of flow separation followed by reattachment of fluid distal to the

flow separation region. The specie concentration in this region was reduced when

compared to the rest of the locations in geometry where flow was undisturbed.

Coupled with the thickening of the hydordynamic layer (a thinimmobile layer

of fluid that always exists at a solid/moving fluid interface)was the progressive

thickening of specie concentration boundary layer (the height of the region from

the wall to the centre of the axis devoid of specie). The thickened concentration

boundary layer extended upstream of the bifurcation point (see Figure2.11). Inter-

estingly, the authors also found that the peak of the concentration boundary layer

did not coincide with the minute region of flow separation where the WSS was

0, but was located slightly upstream to it where low WSS existed. This region

where low WSS existed would also have nonzero WSS gradient. Downstream of
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the flow reattachment the concentration boundary layer fades and becomes thin

once again.

Figure 2.11: Region of flow recircula-
tion correlates well with thickened con-
centration boundary layer. Cross sec-
tional views show that the concentra-
tion boundary layer is convoluted in
the sinus. However, the thickest con-
centration boundary layer does not co-
incide identically with flow separation
(Ma et al., 1997).

Other subsequent studies focusing species of similar size or other important

larger molecules such as low density lipoproteins (LDL) with similar diffusivities,

have also been conducted with more contemporary techniquesrevealing more in-

formation on the mechanics of the mass transfer in regions with altered flow char-

acteristics. Some studies have attempted to model the effects of geometry (Com-

erford et al., 2006) on the species mass transfer to the wall where as other have

modelled the effects of flow characteristics such as pulsatality (Barakat, 2001),

Reynolds number (Mahinpey et al., 2004). (David, 2003) considered the depen-

dence of local specie mass transfer as a function of local flowderived parame-

ters such as WSS and its spatial variability . (Kaazempur Mofrad et al., 2005)

have modelled the mass transfer of small molecules such as oxygen and ATP in

stenosed arteries. Thus this problem has been looked upon from various angles but

all these studies focus on the hemodynamics and the resultant specie concentration

on the wall. The biochemical influence of the alteration in concentration boundary

layer vasoactive substances on the vessel wall has rarely been studied (Comerford

and David, 2008; Comerford et al., 2008; Plank et al., 2006a,b). (Plank et al.,

2006b) modelled the effects of spatial variation of WSS on Ca2+ dynamics of an

EC by coupling a mass transport model of ATP and an EC Ca2+ dynamics model

in 2D backward facing step geometry. This geometry simulated widening of an

artery and recirculation zones and stagnation point occurspast a wedge. WSS

varied as a function of axial location and ATP concentrationon EC surface is de-

Chapter2/Figures/ma1997.eps
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pendent on both the axial distance and local WSS in this study.The fact that ECs

produce ATP which in turn stimulates the cell itself in autocrine and neighbouring

cells in paracrine manner, is also included in the model as increasing function of

WSS. Ca2+ influx via IP3 dependent and independent pathways due to either ATP

or WSS stimulation respectively is taken into the account. Results, as shown in

Figures2.12(a)to (c) show that the steady state ATP concentration is spatially

varying in the areas where WSS gradient exists. Moreover, unlike (Ma et al.,

1997), the minimum ATP concentration coincides with the stagnation point where

magnitude of WSS is zero. The Ca2+ concentration is lowest in the recirculation

zone and minimum at the stagnation point. The magnitude of maximum and min-

imum Ca2+ however is a function of the flow velocity but the spatial variation

feature is retained even at higher laminar flows. (Comerford et al., 2008) used the

model presented by (Plank et al., 2006b) to numerically study using CFD, the ef-

fects of arterial bifurcation geometry on the eNOS production and Ca2+ dynamics

in a near realistic geometry. The localization of spatial gradient in ATP concen-

tration conferred with the (Ma et al., 1997) finding and occurred at the outer wall

just upstream of the bifurcation region and followed the regional WSS profile very

closely.

Spatial variation of ATP concentration in arterial regionswith disturbed flow

is evident in steady state scenarios. The fact that the flow rate and Reynolds num-

ber fluctuates over the period of a cardiac cycle which consists of a systole phase

where flow accelerates due to the emptying of contracting left ventricle of the heart

and pushing the blood into the arteries. This is followed by adeceleration which

relates to the closure of the aortic valve and initiation of the refilling of the left

ventricle. A diastole phase follows the end of the systole which is relates to the re-

filling period of the left ventricle for the next systole. Theflow remains relatively

steady in this phase. Thus WSS varies with pusatlity at the arterial wall in straight

segments. In regions of disturbed flow the time varying WSS profiles are differ-

ent then in a straight segment and the very fact that the atherosclerotic lesions

occur in these regions, these profiles are referred to as atheroprone or atherogenic.

Thus it would be logical to ask the question whether the mass transport also shows

time varying characteristics atheroprone regions. (Barakat, 2001; Comerford and

David, 2008) have studied the time varying characteristics of the nucleotide con-
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(a) (b)

(c) (d)

Figure 2.12: Spatial gradients in WSS and ATP concentration at arterial bifurca-
tions. (a),(b) and(c) show stable steady value of WSS (τw), ATP concentration
(φ ) on EC surface and intracellular Ca2+ concentration (Cac), respectively, plotted
against axial distance (x) for two different flow velocitieswhere x=0 is the reat-
tachment point (Plank et al., 2006b). (d) shows the ATP contours with limiting
streamlines overlain,θ=75 deg and Re=500 at the outer wall (Comerford et al.,
2008).
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centration in regions of disturbed flow numerically.

(a) (b)

Figure 2.13: Comparison of ATP topology:(a)Steady,(b)time averaged. Al-
though the surface concentrations are different to a certain degree there are very
similar characteristics (Comerford and David, 2008).

(Comerford and David, 2008) contributed some vital information regarding

the ATP mass transfer characteristics in steady and unsteady/pulsatile flow. The

authors did an intensive CFD study in a realistic porcine trifurcation which was

focused at investigating the effects of pulsatile flow on theconcentration bound-

ary layer of ATP in non-uniform geometry such as near the branches and gave

emphasis to the outer walls of the proximal regions of parentand daughter vessels

in the branching areas. Figure2.13shows compared the ATP concentration distri-

bution in time invariant spatially non-uniform flow profile in (a)as opposed to the

time varying case in(b). It is evident that although the level of depletion of ATP

in the areas known to have reduced mass transfer is exaggerated in steady flow

case compared to the time varying, the pattern or localization remains unaffected.

Moreover, even in the case of pulsatile flow the ATP surface concentration did not

show any noticeable transient behaviour. Figure2.14shows this by comparing the

early and end systole flow were the velocity profile are distinctively changed but

surface distribution of ATP concentration remains relatively unaltered, suggesting

that the mass transfer of species such as ATP with high Pecletnumber i.e. low

diffusivity as compared to advective transport, dose not change transiently under

time varying flow. The authors attributed this limited transient behaviour of ATP

concentration to the low diffusivity of ATP.
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(a) (b)

(c) (d)

Figure 2.14: Comparison of hemodynamics and resulting ATP distribution in
the iliac artery in the region of femoral branch(a)time=0.15 and(b)time=0.27.
The size and strength of secondary flow is considerably greater during systolic
deceleration (time=0.27), however ATP distribution does not change significantly
due to the very low diffusivity (Comerford and David, 2008).
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2.5 Intercellular communication and atherosclerosis

Appropriate tissue perfusion is mainly regulated by the supplying arterial diameter

that controls the resistance of the feeding arterial tree and thus the flow in it (Pohl

et al., 1993). Thus to alter the conductance of the arterial conduit there has to be a

means of communicating the message from the tissue end to theupstream vascu-

lature which could react by increasing the blood flow by vasodilation. Ascending

or conducted dilation is a concept where by the dilation of the vessels start from

arteriolar scale moving up to the secondary or muscular arteries(Wit and Wolfle,

2009). To make this coordinated dilation possible, it is necessary that the vessel

segments which are made up of individual ECs and SMCs, work together as a unit

and bring about the change in diameter. Intercellular communication provides that

pathway to establish such a network through intercellular gap junctions.

Gap junctions are intercellular channels that directly connect the cytoplasm

of adjacent cells, allowing the passage of current and smallsignalling molecules

(molecular mass< 1,000 Da), such as Ca2+ and IP3 (Figueroa and Duling, 2009).

They are constituted by channels made of protein called connexin (Cx). A col-

lection of six connexins form a connexon, or a hemichannel. Two hemichan-

nels, contributed one from each apposing cell forms a functional gap junction.

Hemichannels remain close unless docked with the complementary hemichannel

in the adjacent cell.

A connexon or hemichannel can be formed of a single type of connexin, in

which case it is called a homomeric channel or of a mixture of connexins forming

a heteromeric channel (Haefliger et al., 2004). The constituency of hemichannels

forming a gap junction directly influences the functional properties of that channel,

such as ion permeability, selectivity to solutes, its open probability and its subcel-

lular localization. It is becoming increasingly evident that the heteromeric nature

of formation of hemichannels could be a means of fine tuning the selectivity of the

channel(Johnstone et al., 2009). Two hemichannels on adjacent cells can interact

and form a functional gap junction in either of the two manners: homotypic or het-

erotypic. A homotypic junction is one where all the twelve connexin subunits are

identical. In heterotypic junction, each hemichannel is homomeric and of differ-

ent connexin isoform (Rackauskas et al., 2007a). On cell-cell level, gap junctions
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formed between identical cell types are known as homocellular junction and be-

tween different cell types it is called heterocellular junction. EC-EC homocellular

contact is well documented in both marco (Ebong et al., 2006) and microvessels

(Segal and Beny, 1992). SMC-SMC communication has also been demonstrated

to conduct vasoconstriction through gap junctions in arterioles (Figueroa and Dul-

ing, 2008).

All the discussion that follows will consider homotypic gapjunctions from

here on. Intercellular transport of ions or metabolic species such as Ca2+, IP3 ,

cGMP, cAMP, ATP, glutamate, glutathione and monovalent ions such as Na+,K+and

Cl- which act as charge carriers form the basis of the intercellular coupling. There

can be two topologies forming the network comprising of two types of cells. Cells

can couple either homocellularly (EC↔EC or SMC↔SMC) or heterocellularly

(EC↔SMC or SMC↔EC). (Beny, 1999) suggests that there can be four possible

coupling modes which are plausible in propagating information from the point of

stimulation or where the signal arises.

1. Transmission of metabolic species e.g. Ca2+ and IP3 which traverses the

cytoplasm of the receiving cell and passed on to the apposingcell. This

mode of transmission would pass the message to very short distances at a

very slow rate.

2. Intercellular exchange of second messenger e.g. Ca2+ and IP3 which trig-

gers an intercellular release of Ca2+ via Ca2+ induced Ca2+ release (CICR).

The speed of propagation will match that of diffusion but it may carry the

signal to finitely long distances.

3. Between non-excitable cells like ECs, rapid electrostaticcoupling which is

made possible by the close apposition of cell membranes of adjacent cells

may take place. This modes cannot traverse long distance because of the

exponential decay in the transmitted charge with increasing distance.

4. Electrostatic coupling between excitable cells like SMCs(because of hav-

ing voltage operated Ca2+ channels), which is rapid and theoretically could

propagate the signal for infinitely long distances.

Keeping in line with these observations of (Beny, 1999) we consider the intercel-

lular coupling via three media, Ca2+, IP3 and electrostatic or membrane potential
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(a) Transmembrane domains, two extracellular and two intracellular loops
are shown for Cx26 protein.

(b) A hierarchical scheme that results in a functional gap junction of one
of the four types.

Figure 2.15: Schematic representation of an intercellular gap junctionbetween
two adjacent cells (adapted from (Mese et al., 2007))
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homocellular and heterocellular coupling between apposing cells. Association of

these coupling media to relevant connexins constituting the connexons through

which these ions pass, has been made in previous section (gapjunctions in Ch1).

2.5.1 Localization of vascular connexins

Three connexin isoforms, Cx37, Cx40 and Cx43 are commonly expressed in vas-

culature (Arensbak et al., 2001; Johnstone et al., 2009; van Kempen and Jongsma,

1999). The expression is not uniform systemically (i.e. is heterogeneous) and

varies with specie, vascular bed and in stasis and pathology(Hill et al., 2001).

Cx40 has been recognized as one of the most commonly expressedconnexin in

ECs in general and in SMCs in muscular and small arteries (van Kempen and

Jongsma, 1999). Cx37 is also expressed in most if not all small arteries and arte-

rioles (Ebong et al., 2006; Gustafsson et al., 2003; Isakson et al., 2006; Isakson

and Duling, 2005; Toma et al., 2008; van Kempen and Jongsma, 1999; Yeh et al.,

2003). Cx43 in ECs is more heterogeneous and site specific. .Cx43 in ECshas

been reported in areas with disturbed flow (Dai et al., 2004; DePaola et al., 1999)

or in tissue manifesting pathology (Kwak et al., 2002).

In SMCs the connexin expression is much more heterogeneous and sometimes

absent in a few vascular beds. Cx43 expression has been widelyreported in elastic

and muscular arteries (aorta and carotid (Arensbak et al., 2001; Haefliger et al.,

2004; Kwak et al., 2002) while there have been disparate reports about expression

of Cx37 by SMCs in few species (Arensbak et al., 2001; Haefliger et al., 2004;

Kwak et al., 2002; Simon and McWhorter, 2003) which can be due to intra-specie

difference. Cx40 in SMCs has been rarely been reported and onlyat small artery

to arteriolar scale (Burt et al., 2001; Kwak et al., 2002; Little et al., 1995; van

Kempen and Jongsma, 1999; Zhang and Hill, 2005).

Propagation or spread of a local stimulus in the intercellular network of an

artery is oriented either longitudinally (i.e. parallel tothe vessel axis, upstream

and downstream) or transversely (into the wall to the SMCs, which are connected

to the ECs via MEJs). Homocellular coupling enables the longitudinal transmis-

sion where as the heterocellular coupling enables the transverse signalling. Both

the homocellular and heterocellular gap junctions have been implicated in patho-
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Figure 2.16: Myoen-
dothelial gap junction.
Transverse section of
an artery viewed by
electron microscopy
showing the projection
of an EC through the
internal elastic lamina
(IEL) to an underlying
SMC (SM). Arrow heads
indicate homocellular
and heterocellular gap
junctions (Sandow and
Hill , 2000).

genesis of atherosclerosis. MEJs provide means of physicalcontact between ECs

and SMCs. Projections of ECs protrude from the perforated internal elastic lamina

to come in close apposition to the underlying SMC, as shown in Figure2.16.

Advancement in experimental technique has enabled identification of the con-

stituency of these gap junctions in a variety of specie specific vascular beds. Using

TranswellTM (Corning) insert (see Figure2.17a), mouse ECs and SMCs were co-

cultured and allowed to form the MEJs, Figure2.17bshowing the cell cell contact

between EC and SMC and the relevant fluorescent membrane markers forming

a MEJ in IEL. In this study (Isakson and Duling, 2005) aimed at examining the

constituent connexins and gap junctional communication between ECs and SMCs

via the MEJs. Both Cx40 and Cx43 were significantly expressed at the MEJ level.

Cx37 was absent in this domain but was abundantly found when homocellular

EC-EC or SMC-SMC populations were allowed to grow in these TranswellsTM.

Using a charge neutral dye, biocytin(MW=357Da), intercellular communication

was monitored. The authors confirmed that both Cx40 and Cx43 contributed in

transfer of the dye from ECs to SMCs and eliminated the presenceor role of Cx37

in MEJ domain. Figure2.17cshows the status of transfer of biocytin from EC to

SMC in the presence and absence of all gap junctional blocker18α Glycyrrhetinic

acid (18α-GA). In the same study, using connexin specific gap junctioninhibitors

Gap2740 and Gap2737,43 and letting a charged dye, Cy3 (MW=767Da, Z=-1), pass
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through the MEJs, the authors suggested that the formed hemichannles might be

heterotypic and their conductance could depend on the stoichiometry of Cx40 and

Cx43. Thus this indicates a possibility that this stoichiometry may alter the extent

of heterocellular coupling with varying connexin specific stimuli or in different

vascular beds.

(a) A TranswellTM

(Corning) insert.ECs
cultured on top side and
SMCs at the bottom.

(b) A: formed myoendothelial re-
gion. B: physical EC and SMC
projections . C: EC (red) and
SMC(green) membrane marker as
we go down vertically in the tran-
swell from top to bottom.

(c) Effect of gap junction inhibitor
18α-GA on biocytin transfer from
EC to SMC.

Figure 2.17: Gap junctional communication via MEJ (Isakson and Duling, 2005)

2.5.2 Effect of hemodynamics on local connexin expression

Blood flow has been shown to alter connexin expression in both ECs and SMCs.

(Rummery et al., 2002) did a 12 week long study to examine endothelial connexin

expression (for Cxs 37,40&43) in caudal artery of spontaneously hypertensive

male rats (SHR) and compared the results with Wistar-Kyoto (WKY) type nor-

motensive rats, using immunohistochemistry. The onset of hypertension in SHR

was observed at the age of 9 weeks with significant increase insystolic blood pres-

sure. Cx40 expression in ECs was significantly low in SHR at 3 weeks, well be-
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fore the onset of hypertension. After 12 weeks their was significant decrease in the

expression of all the Cxs with prominent decrease in the density of Cx40 plaque

(cell-cell contacts forming gap junctions between cells).In ECs from WKY, there

was no change in amount of Cx expression over this period of time, thus showing a

link between flow characteristics and Cx expression. Reduction of Cx37 and Cx40

was also demonstrated in aortic ECs of hyperlipidemic mice (Yeh et al., 2003) of

which Cx37 expression recovered after certain pharmaceutical intervention.

In diseased the alteration of Cx expression in normal and pathological tissue is

most evident. The extent of alteration is not an abrupt jump from on constituency

of Cxs to another but is more differential. (Kwak et al., 2002) studied the ex-

pression of connexin in ECs and SMCs of in three segments of an atheroscle-

rotic plaque, non diseased, early atheroma, and advanced atheroma in aorta of

LDL receptor deficient mice fed with high fat diet for 14 weeks. Figure2.18is a

schematic representation of the differential pattern of connexin expression found

in different parts of the atherosclrotic plaque. Antibodies of respective Cxs were

Figure 2.18: Schematic draw-
ing of an artery containing
an atherosclerotic lesion is
shown. Expression patterns of
the 3 connexins are indicated
for the nondiseased part of
the vessel, the shoulder of the
plaque, and the centre of the
advanced lesion.(Kwak et al.,
2002)

used for immunolabeling the tissue for the analysis, thus this would label the mem-

brane presentation of the relevant connexin in intimal, neointimal or medial layer.

Cx37 and Cx40 but not Cx43 were present in nondiseased endothelium, whereas

only Cx43 was found in the medial tissue. At the shoulder of theatheroma, EC

layer presented Cx43 only and no expression of Cx37 and Cx40 was found. Cx37

was expressed by SMC of medial layer near this region. In mature atheroma,

no connexin expression was found in endothelium however, Cx43 was present in

SMCs of neointima (the newly formed intimal layer consistingof endothelial and
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one or two layers of SMCs recruited from medial layer). For details of the Cx

expression please see Table of (Kwak et al., 2002).

(Gabriels and Paul, 1998) studied the connexin expression in EC at arterial

bifurcation. Aortic ECs of mice generally expressed Cx40 in abundance where as

Cx37 was also present in most if not all the ECs from regions considered atherore-

sistant. At points where abdominal aorta either branched into renal artery or bi-

furcated into common illiac arteries, Cx43 was strikingly upregulated. These sites

are associated with disturbed flow. Figure2.19a& (b) show Cx43 immunofluo-

rescence at these sites. Of interest is the observation thatCx43 was expressed

immediately downstream of the ostium (opening) in the branch vessel and ex-

tended further for short distance after which the expression vanished. In the case

of flow divider, Cx43 was most localized at the apex and nonexistent downstream

in the daughter branch. Another important finding was the coexpression of Cx40

and Cx43 upstream of the ostium but the absence of Cx37. Cx37 resumed its ex-

pressed downstream of the ostial edge where Cx43 expression subsides. This was

confirmed by inducing flow disturbance in the aortic arch by surgical coarctation

(deliberate narrowing of vessel by surgical ligature). These sites were originally

negative for Cx43 but after the coartation, the Cx43 was signidicantly upregulated.

These results strongly suggest that Cx43 is upregulated by disturbed flow.

In vitro studies examining flow mediated connexin regulation has given greater

insight into the their relationship with the WSS. (DePaola et al., 1999) used a

parallel plate flow chamber with backward facing step geometry to obtain flow

dynamics exhibiting disturbed flow with flow separation and recirculation zones.

A monolayer of bovine thoracic aortic ECs was cultured on a glass cover slip

and fluid was allowed to pass over the cells. Four zones of shear stress gradi-

ents (SSGR), progressively decreasing with increasing axial distance, were also

defined in this study, as shown in Figure2.20. Along with Cx43 mRNA, protein,

gap junctional coupling was also monitored by dye transfer between cells of the

monolayer. Lucifer Yellow (LY) (MW=457.3Da, Z=-2) was used for intercellu-

lar dye transfer. Sustained increased in Cx43 mRNA was observed in ECS under

SSGR I&II, 5 and 16 hours after exposure to fluid shear. In cells under SSGR

III&IV the mRNA expression increased at 5 hours but returned to basal level at

16 hours.
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(a) Cx43 expression at the downstream edge of
the ostium of the right renal artery.

(b) Localized Cx43 expression at the apex where
abdominal aorta bifurcates into the right and left
common illiac arteries. Staining for Cx43 was
not evident on the wall of the right common iliac
artery.

Figure 2.19: Cx43 upregulation by disturbed flow (Gabriels and Paul, 1998)

Under no flow condition (control in this case) there was moderate (punctate)

expression of Cx43 protein on the cell membrane. At SSGR I&II,after 5 hours,

the Cx43 protein density increased and localized in perinuclear region. This

means most of the Cx43 was internalized and not making any cell-cell contact.

This disruption in the pattern of Cx43 protein localization was also evident in

SSGR III&IV after 5 hours. After 30 hours the protein expression patter in ECs

under SSGR I&II was still disorganized but in cells experiencing SSGR III&IV,

the punctate pattern was restored. ECs exposed to SSGR III&IVwere elongated

in orientation even at a moderately high WSS of magnitude 13.5dynes/cm2. Af-

ter 5 hours ECs injected with LY either under SSGR I&II or SSGR III&IV passed

the dye to less number of cells compared to control. After 30 hours, cells under

SSGR III&IV passed the dye to farther neighbours compared toECs in region

with SSGR I&II. An EC although under SSGR I&II passed the dye relatively far-

ther compared to its 5 hour reading but the communication wasno as wide spread

as a cell SSGR III&IV or control. Thus Cx43 expression of mRNA orprotein or
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Figure 2.20: Flow stream-
lines in the chamber showing
regions of flow separation, re-
circulation, reattachment, and
recovery. (Lower) The corre-
sponding shear stress distribu-
tion on the coverslip surface.
The average shear stress gra-
dients (slope of shear stress
curve) in regions SSGR I to
IV are 188, 182, 22, and 0
dynes/cm2, respectively. (De-
Paola et al., 1999)

even gap junction formation is not only regulated by magnitude of local WSS but

also the WSS gradient.

This flow mediated connexin regulation was further investigated by (Ebong

et al., 2006) in similar experimental setup but with human aortic ECs. Cellmono-

layer was exposed to laminar flow with a moderately high WSS of 11 dynes/cm2.

The authors used synthetic connexin memtic peptides which serve as connexin

specific gap junction inhibitor to study the intercellular dye transfer (LY) under

flow. Under control (no flow) condition, the intercellular dye transfer was very

limited but increased upon exposure to flow. This increase was time dependent

and kept on increasing for 24 hours. Inhibition of Cx37 and Cx43gap junctions

did not stop the dye transfer. Blockade of Cx40 gap junctions significantly re-

duced the intercellular communication. Thus the study concluded that Cx40 was

significant in establishing intercellular communication between ECs under steady

flow condition. This again points out the differential and stimulus dependent na-

ture of connexin expression in ECs.

From the above information, some corollaries can be driven.ECs generally

express Cx40 and in large number of cases Cx37 in tissue under undisturbed flow.

Cx43 expression is elevated in the ECs at sites where flow disturbance occurs

such as arterial bifurcations and branch points. Reviewing the experimental re-

sults from different groups suggest that at bifurcations, the alteration in connexin

expression from one isoform to another is not abrupt but a gradual decrease in
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Cx40 and Cx37 and an increase in Cx43 with locations where Cx40 andCx43

coexist, as shown by (Gabriels and Paul, 1998).For SMCs, they are coupled pri-

marily by Cx43 and there is some evidence to support the existence of Cx40 in

small arteries and arterioles. Cx37 hemichannels were shownto make homocellu-

lar gap junctions by (Isakson and Duling, 2005) in SMCs. Table2.1 lists possible

scenarios that will implemented later to investigated Ca2+ dynamics in cells under

spatial gradients of stimuli and coupled in configurations listed in this table.

Case Homocellular coupling Heterocellular coupling
SMC EC SMC↔EC EC↔SMC

1 V, Ca2+, IP3 V, Ca2+ V, IP3 V, IP3

2 V, Ca2+, IP3 V, Ca2+ V, IP3 , Ca2+ V,IP3 ,Ca2+

3 V, Ca2+, IP3 V, Ca2+, IP3 V, IP3 ,Ca2+ V, IP3 , Ca2+

4 V, Ca2+, IP3 IP3 IP3 IP3

Table 2.1: The various coupling modes establishing intercellular communica-
tions between cells in stasis and pathology. (V=membrane potential coupling (via
Cx37), Ca2+=Ca2+ coupling (via Cx40), IP3 =IP3 coupling (via Cx43))

2.6 Models of vascular ECs and SMCs

Calcium is central in major cell signalling cascades and plays a pivotal role in

regulation of vascular tone and blood flow. In excitable cells such as SMCs, in-

tracellular Ca2+ concentration can oscillate upon either humoral, nervous or elec-

trogenic stimulation and result in many direct and indirectconsequences. This

free unbound cytosolic Ca2+ can bind to another endogenous molecule calmod-

ulin (CaM) and modulate cytoskeletal contractililty by activating the myosin light

chain kinase (MLCK) which enables the sliding of myosin head.Other intracellu-

lar utilizations of this nascent Ca2+ can be but are not limited to, eNOS activation

to make NO in ECs, binding to regulatory proteins to initiate acascade leading to

exocytosis, binding gated ion channels to allow fluxes of specific ions in and out

of the cell, to name a few. A cellular oscillator is a requirement of the occurrence

of vasomotion, and it is modelled as a series of events forming a feedback loop,
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where inertia in one or more steps in the loop ensures oscillation (Aalkjaer and

Nilsson, 2005).There are three essential components of a cellular oscillator:

1. a cytosolic oscillator to increase intracellular Ca2+

2. a system for removal of Ca2+, and

3. a system of transduction of extracellular stimuli

2.6.1 Cytosolic Oscillator

In SMCs of A7r5 (a cell line of rat thoracic aorta) (Blatter and Wier, 1992)

showed the Ca2+ wave, which moved in the direction of longitudinal axis was

a consequence of oscillations in intracellular Ca2+ concentration. Blockade of

sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pump in an SMC inhibited

this Ca2+ wave pointing out a pivotal role of SR Ca2+ release in Ca2+ oscillations

(Iino et al., 1994). Ca2+ wave is when Ca2+ upon release from ER/SR traverses to

other compartments in the cytoplasm and propagates in the form of a spiral wave.

These finding suggest that the primary origin of Ca2+ resides in intracellular do-

main. In rabbit portal vein voltage operated Ca2+ channels (VOCC), Na-Ca2+ ex-

changer (NCX) and a current through non-selective ion channels is involved in

inducing an oscillatory increase in intracellular Ca2+ concentration (Lee et al.,

2001).

Of vital importance is the influence of agonist mediated IP3 receptor activa-

tion, an ER/SR membrane bound receptor, followed by release of ER/SR lumi-

nal Ca2+ in rat portal vein myocyte (Boittin et al., 1999). This increase in intra-

cellular Ca2+ is dose dependent and exhibited frequency and amplitude modula-

tion (Berridge, 2007). Blockade of IP3R completely inhibited the oscillations in

Ca2+ concentration (Boittin et al., 1999). Following the activation of receptors,

spread of this Ca2+ release from intracellular stores is not by simple diffusion but

involves a regenerative release of Ca2+by a process called Ca2+ induced Ca2+ re-

lease (CICR). Ryanodine receptors, also ER/SR membrane bound receptors, con-

tributes in the release of Ca2+ via CICR from ER/SR upon activation and blockade

of these receptors also significantly inhibit the Ca2+ wave in an SMC (Iino et al.,

1994). In some instances the emphasis on inclusion of ryanodine as essential
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mediator in inducing CICR has been relaxed and is suggested that adequate IP3
availability alone is sufficient to produce intracellular Ca2+ oscillations (Aalkjaer

and Nilsson, 2005).

In SMCs from some small calibre vessels, the ER/SR Ca2+ release in conjunc-

tion with Ca2+ removal mechanisms is sufficient to induced intracellular Ca2+ os-

cillations but in relatively larger bore arteries such as mesenteric artery where ag-

onist activation predominantly induces vasomotion, VOCCs are required. These

L-Type voltage gated Ca2+ channels open on depolarization of plasma membrane

and allow influx of extracellular Ca2+ into the cytosolic space (Nelson et al., 1990).

For VOCCs to open, the membrane depolarization can be an external stimulus

originating from electrical coupling between two adjacentSMCs or the intracel-

lular rise in Ca2+ concentration following CICR can trigger the opening of these

channels. It has been demonstrated by a number of studies that membrane de-

polarization precedes a large Ca2+ transient in SMCs (Haddock and Hill, 2005).

The increase in cytosolic Ca2+ concentration makes intracellular side more posi-

tive compared to the extracellular side of the plasma membrane thus depolarizing

(or making more positive) and reduce the electrostatic gradient across the plasma

membrane. This allows the opening of VOCCs and extracellular Ca2+ rushes into

the cell. The open channel probability of VOCCs in excitable cells is high, i.e.

maximum number of channels existing in the plasma membrane will open simul-

taneously thus allowing a large influx of Ca2+. Thus this is a fast channel and the

response time after depolarization is quick.

2.6.2 Removal of cytosolic calcium

Excessive retention of Ca2+ in the cytosol is toxic to the cell therefore, all the ad-

ditional Ca2+ released as consequences of different signalling pathways, must go

somewhere or be utilized to regain basal Ca2+ concentration and membrane poten-

tial. Ca2+ is constantly removed from the cytosol by three main active and passive

pathways: (i) Na+/Ca2+ exchanger, (ii) extrusion via plasmalemmal Ca2+ATPase,

and (iii) and the refilling of intracellular stores of Ca2+ in SR through a sarcoplas-

mic/endoplasmic Ca2+ATPase pump, also called the SERCA pump. Ca2+ can also

be removed via gap junctions. High Ca2+ concentration is a driving force for dif-
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fusion of Ca2+ and other monovalent ions and some neutral molecules (molecular

weight <1000 Da) through to a neighbouring cell connect via intercellular gap

junction.

2.6.3 Signal Transduction

The influence of the extracellular environment must be transduced into an “in-

tracellular friendly” form via signalling pathways. This is crucial to be able to

responds to the external stimuli. For this, plasma membranecontains membrane

bound receptors which can either induce conformational changed in some ion

channels and activates them, or it can induce a cascade of reactions which result

in the production of asecond messenger moleculesuch as IP3 in the cytosol. Fig-

ure 2.21shows one such membrane bound apparatus that has been identified in

increasing intracellular IP3 concentration in a number of cell types, upon binding

of the receptor to its specific agonist. Agonist such as ATP, binds to the puriner-

gic (P2Y) receptors expressed on the EC surface, activatingthe G protein coupled

receptor complex (GPCR) which then activates the membrane bound phospholi-

pase C(PLC). PLC activation allows phosphorylation of phosphatidylinositol 4,5-

bisphosphate (PIP2) generating IP3 that is then released in the intracellular space.

Multicellular models constructed from single vascular cell models have been

used in previous studies, investigating various function consequences in networks

of coupled cells. The scale of these models, however, has been limited to that of

microvasculature and its physiology. Some examples of suchstudies have been

cited in the following literature review.

Jacobsen et al.(2007) investigated the role of cyclic guanosine monophos-

phate (cGMP) in arterial vasomotion. Vasomotion is the cyclic variation of the ar-

terial diameter induced by Ca2+ oscillations in the SMCs. The significance of this

cyclic alteration of arterial radius plays a vital role in altering the peripheral vascu-

lar resistance and thus plays an important part in control ofarterial blood pressures.

Single cell model of SMC was employed here to construct a coupled network of

SMCs. In addition to the standard Ca2+ influx and efflux pathways, their SMC

model included Ca2+ buffering in both SR domain and cytosolic domain. In addi-

tion to that, a cGMP sensitive Ca2+ activated chloride channel was also included.
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Figure 2.21: Simplified schematic diagram of the steps leading from receptor acti-
vation to Ca2+ release from the SR. Transmitter noradrenaline (NAd) binds to the
receptor which then interactswith the G-protein (G), leading to the replacement
of GDP with GTP and the subsequent dissociation of the G-protein into subunits.
The subunit GαGTP binds to a site on PLCβ and this activated unit initiates an in-
teraction with membrane-bound PIP2; catalysed by Ca2+; leading to the hydrolysis
of PIP2 and the production of IP3 : This diffuses into the cytosol where it opens
IP3 -sensitive channels in the SR, allowing the release of Ca2+ into the cytosol.
(adapted fromBennett et al.(2005)).

Chapter2/Figures/gpcr.eps
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From the perspective of the computational layout, the number of intercellular gap

junctions coupling the SMCs was a function of the surface areaoverlapping be-

tween two SMCs, hence resulting in an asymmetric coupling strength for each

SMC with its nearest neighbours. Figure2.22. The gap junctional transfer of

ions was modelled as a function of both the potential difference and concentration

difference between two coupled SMCs.

This study tested the effects of cGMP on Ca2+ dynamics of coupled SMCs

simulating a microvascular arteriole. Their results showed a permissive role of

cGMP in establishing the intercellular synchronization ofthe Ca2+ oscillations. It

was suggested that cGMP activates cGMP sensitive Ca2+ activated chloride chan-

nels which causes tight synchronization between SR Ca2+ release, the membrane

potential depolarization, and the influx of extracellular Ca2+.

(a) (b)

Figure 2.22: Cell and vessel model. (a) the compartments considered in the
model are the plasma membrane, the cytoplasm, and the sarcoplasmic reticulum
(SR). The picture shows the components related to each of these compartments:
Na+/K+-ATPase (1), Na+/Ca2+exchanger (2), plasma membrane Ca2+-ATPase (3),
sarco(endo)plasmic reticulum Ca2+-ATPase (4), SR calcium release channel (5),
cytoplasmic calcium buffer (6), SR calcium buffer (7), cGMPsensitive calcium
dependent chloride channel (8), calcium activated potassium channels (9), volt-
age operated Ca2+ channel (L-type calcium channel; 10), and gap junction (11).
(b) Vessel model. Example of a single layered cell plate usedin the simulations
is shown. The plate forms a tube by making end-to-end contact. Each spindle-
shaped cell couples to neighbouring cells through gap junctions (black double-
barrel structures) (figure and caption adapted from (Jacobsen et al., 2007))

Coupled cell models comprising computationally coupled single EC and SMC

models have been used to study the physiological basis of vasoreactivity in small

arteries and arterioles. (Diep et al., 2005) coupled ECs/SMCs where each cell

was modelled as a capacitor coupled to a nonlinear resistor and the intercellular

gap junction was modelled by an ohmic resistor, as shown in the Figure2.23.

Chapter2/Figures/jacobsen07.eps
Chapter2/Figures/jacobsen07b.eps
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Using this multicellular structure simulating a resistance artery, they investigated

the spread of the electrical signal following a local agonist stimulation, initiating

either in the endothelium or the SMC layer. Their results revealed that mem-

brane potential changes did not spread equivalently to all unstimulated cells but

depended heavily on the orientation and the strength of coupling. Membrane po-

tential responses originating in endothelium conducted more efficiently (i.e. to

farther distances) than the SMC layer initiated signal. In asubsequent study by

Tran and Welsh(2009), using the same multicellular infrastructure modelling a

skeletal muscle feed artery, a dominant mechanism was proposed for the poor

conduction of membrane potential change initiating in SMC layer. The authors

attributed this to the loss of charge due to intercellular electrical coupling between

SMCs for which the local agonist stimulation could not elicita global membrane

potential change. Furthermore, the spread of focal phenylephrine (a potent vaso-

constrictor) stimulation which resulted in a global vasoconstriction, was proposed

to be membrane potential independent. The dominant mechanism in the spread of

this vasoconstrictive response was suggested to be the SR Ca2+ mobilization and

the activation of IP3 receptors on the SR in SMCs.

Similarly, Kapela et al.(2010), coupled very detailed models of ECs and

SMCs to construct a multicellular unit of rat mesenteric arteriole coupled by non-

selective gap junctional transfer. The study was aimed at the conducted vasore-

activity and the role of myoendothelial junctions. With respect to the membrane

potential dependence of the spread of the signal, their results were in agreement

with Diep et al.(2005) and endothelium dependent spread was more efficient in

the case when myoendothelial coupling was strong. In the case of weak myoen-

dothelial coupling, the SMCs showed poor conductivity but the unstimulated cells

became sensitive to any further extracellular current. They also suggested that the

conduction amongst ECs was favoured by IP3 coupling rather than the intercellu-

lar Ca2+ diffusion between ECs.

Coupled EC/SMC models have also been used byKoenigsberger et al.(2005)

to study the role of endothelium in arterial vasomotion. Single ECs and SMCs

modelled by ODEs were used to construct multicellular modelof an arteriole

coupled via heterocellular and homocellular coupling. These models are further

elaborated in Chapter3 and5 where the computational infrastructure has been
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Figure 2.23: (A) the virtual artery was 2.2 mm long and comprised of one layer
of endothelium (red) and one layer of smooth muscle (black).Each arterial seg-
ment (n = 44) consisted of 48 endothelial cells and 30 smooth muscle cells. Cells
were treated as discrete elementswith defined physical dimensions, gap junctional
coupling and ionic conductance. Neighbouring smooth muscle cells were elec-
trically coupled to one another as were neighbouring endothelial cells. Every
smooth muscle cell was randomly coupled to two endothelial cells (red dot de-
notes myoendothelial contact site). (B) equivalent circuitrepresentation of the
virtual artery. Each cell was modelled as a capacitor coupled in parallel with a
non-linear resistor representing ionic conductance of theplasma membrane; gap
junctions were represent by ohmic resistors. (Diep et al., 2005)

Chapter2/Figures/diep05.eps
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discussed.Koenigsberger et al.(2005) found that the presence of endothelium

modulated the oscillatory behaviour of underlying SMCs. Theeffects of endothe-

lium derived factors were tested and the endothelial hyperpolarization was found

to be a significant factor in this modulatory effect of endothelium on the SMC

layer and abolished vasomotion.

In a subsequent study,Koenigsberger et al.(2006) used the same computa-

tional infrastructure (coupled circumferentially to forma tube, as shown in the

Figure2.24) to test the role of pressure in modulating the vasomotion inarterioles.

In this study the SMC single cell model was extended to have radius as a variable.

This was done by couplingHai and Murphy(1988) myosin light chain kinase

(MLCK) to the Ca2+ dynamics of a SMC. This addition implemented to make a

compliant arterial model. The results of study showed that pressure increased cy-

tosolic Ca2+ concentration in the SMCs. This increase was capable of inducing

vasomotion in an artery with steady state radius or it can abolish vasomotion in

the case where arterial radius oscillated.

All the models of coupled vascular cells discussed above, and others not in-

cluded in this review, address the scale of 1st order arteriole or small arteries, in

the case ofKoenigsberger et al.(2006). The present study is intended to em-

ploy the mathematical model coupled cells to investigate cellular dynamics in

atherosclerosis. Atherosclerosis is prevalent in muscular arteries and the diameter

of muscular arteries is in the order of millimetres comparedto the diameter of an

arteriole which is of the order of few hundredµm. Amongst other objective, this

project aims at providing a computational framework which is capable of simu-

lating physiologically relevant scale in the case of atherosclerosis. The chapters

following this literature review is an effort to achieve theaim in a scalable manner.



2.6 Models of vascular ECs and SMCs 49

Figure 2.24: A cylindrical grid of SMCs (outer layer) superposed on a cylindrical
grid of ECs (inner layer) simulates an arterial section. ECs are arranged parallel
and SMCs perpendicular to the vessel axis. Cell geometry is approximated by a
rectangle. The width of an EC is taken as twice that of an SMC, and the length of
an EC 1.3 times that of an SMC (Sandow and Hill, 2000). With a size of a single
SMC of 5 mm and a mean vessel diameter in the order of 150 mm, nine SMCs are
necessary to surround the arterial lumen. Each cell is connected with its nearest
neighbours on the same layer (homocellular connection) andwith the cells on the
other layer directly superposed on it (heterocellular connection) (Koenigsberger
et al., 2006).

Chapter2/Figures/koeingsberger06.eps
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Chapter 3

Computational Method:
Single Cell Models

To simulate a physiologically valid arterial segment, appropriate mathematical

models of contributing entities are required. These modelsare then put together

in a computational layout representing the desired geometry and are solved us-

ing a robust numerical solver and integrated over a given range of an independent

variable(s). This chapter presents the mathematical modelof EC and SMC used to

study the coupled vascular cell populations, the numericalmethod and numerical

solver of choice and lays out the programming infrastructure which is used to lay-

out appropriate geometric aspects in order to simulate a straight arterial segment.

3.1 Background

In a cell, the transport of charged species ,ions, through the plasma membrane are

often at the very core of the complex cellular processes. Theplasma membrane,

a phospholipid bilayer, is an interface for the cell with theextracellular space.

Chemical species, e.g. molecules and ions, charged or neutral, move into and

out of the cell through the plasma membrane, though gates called channels. Nu-

merous groups of these channels have been characterized until now and many are

to be investigated. One thing is clear is that the propertiesof these channels vary,

thus their function significance and their roles in intracellular and intercellular pro-

cesses also vary according to the properties they exhibit. These properties include

51
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conductance, permselectivity, facilitation of active or passive transport, size exclu-

sion to allow selective molecules, voltage gating and receptor mediated gating, etc.

Despite such complex nature of its existence, the cells electrical behaviour can be

modelled, in its simplified form, as aRCcircuit, as shown in Figure3.1. This can

help investigate the conductance of the plasma membrane to various ionic charges

with time and hence look at their current voltage relationship.

Figure 3.1: The equivalent electrical circuit for an electrically active membrane.
The capacitance is due to the phospholipid bilayer separating the ions on the inside
and the outside of the cell. The three ionic currents, one forNa+, one for K+,
and one for a nonspecifc leak, are indicated by resistances.The conductances
of the Na+ and K+ currents are voltage dependent, as indicated by the variable
resistances. The driving force for the ions is indicated by the symbol for the
electromotive force, which is given in the model by the difference between the
membrane potentialV = Vin −Vout and the reversal potential (Fall et al., 2002).
Iapp is a current that can be experimentally applied using patch clamp technique
to study the current/voltage characteristics of an ion channel.

The model utilizes the cell phospholipid bilayer as acapacitance, accumulat-

ing ionic charge,ionic permeabilitiesare modelled as variable resistors and the

electrochemical driving forces, modelled as batteries. Often we are interested in

the dynamics of how the concentrations of ions, moving in andout of the cell,

reach their steady states. This information gives insight of the interaction of the

Chapter3/Figures/RCcircuit.eps
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membrane boundion channelthrough which it is transported and the transported

species. For instance, for K+, the current flow through a single K+ ion can be

written, using Ohm’s law, as

IK =−gK(V −VK) (3.1)

where gK is the conductance of K+ channel and VK is what is called therever-

sal potentialor Nernst potentialof K+. In the real world, there are more than one

ions passing through an ion channel, with varying conductances. Thus total ionic

current through an ion channel can be approximated as a sum ofall the currents

or ionic fluxes through the channel, such that,

Iion = ∑−gi(V −Vi) (3.2)

Employing Kirchoff’s law, equation3.2 can be translated into anordinary dif-

ferential equationor ODE. Since the membrane is modelled as a capacitor, the

capacitative current through it can be given by

Icap=C
dV
dt

(3.3)

But Kirchoff’s current law states that sum of all the currentsin the circuit be

zero, so

Icap= Iion+ Iapp (3.4)

where Iapp is a current that can be experimentally applied using patch clamp

technique to study the current/voltage characteristics ofan ion channel. Therefore,

C
dV
dt

=−∑gi(V −Vi)+ Iapp (3.5)

In order to solve the equation3.5, which is an ODE in time, the dependence of

gi on V must be known, formally calledvoltage dependent gatingproperty of

an ion channel. To model the activation and inactivation of an ion channel (i.e.

whether if it is in conductance or non-conductance mode), let us suppose that an

ion channel can assume either of the two states,open(denoted byO or activation
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) or close(denoted byC or inactivation ). The transition between these two states

is reversible hence,

C
k+
⇌
k−

O (3.6)

wherek+ andk− are the reaction rates or the rate of transition from closed

state to open state and vice versa. Let the rate of transitionO→C be given by

j+ = k+[C]

, where[C] denotes concentration of channel molecules in closed state. Similarly,

the transitionC→ O can be given by

j− = k−[O]

, where the rates of transition,k, have units ofs−1. Let [O] = fO and[C] = fC be

the fractions of channels open or closed respectively, suchthat fo+ fc = 1, then

j− and j+, the fluxes of transition between states, can be written as

j− = k− fO (3.7)

j+ = k+(1− fO) (3.8)

In terms of these fluxes, the rate of change ofopen channle fractionor fO can be

written as,

d fO
dt

= j+− j− (3.9)

=−k− fO+k+(1− fO)

=−(k−+k+)( fO−
k+

k−+k+
)

Let 1
k−+k+ = τ and f∞ = k+

k−+k+ , then equation3.9becomes,

d fO
dt

=−
fO− f∞

τ
(3.10)
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Ion channels composed of proteins with charged amino acids side chains re-

side on both the intracellular and the extracellular sides of the plasma membrane.

The potential difference across the membrane potential, caused by the charge dif-

ferent of the side chains, can influence the rates of opening and closing of the

ion channels. Arrhenius expression for the rate constant says that the membrane

potentialV contributes to the energy barrier for the transitions (Fall et al., 2002):

k+ ∝ exp(
−∆V+

RT
) (3.11)

k− ∝ exp(
−∆V−

RT
) (3.12)

For the expression in equation3.9, the rate constants will have the form,

k+ = k+o exp(−αV) (3.13)

k− = k−o exp(−βV) (3.14)

where constantk+o andk−o do not depend onV. Substituting these new forms of

k+ andk− in equation3.9, after rearraging, gives,

f∞ =
1

1+(k−o /k+o exp((α −β )V))
(3.15)

and

τ =
1

k+o exp(−αV)
·

1

1+(k−o /k+o exp((α −β )V)
(3.16)

Let

So =
1

β −α
(3.17)

and

Vo =
ln(k−o /k+o )

β −α
(3.18)

then, by substituting these definitions in equations3.15and 3.16, we get,

f∞ =
1

1+exp(−(V −Vo)/So)
(3.19)
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and

τ =
exp(αV)

k+o
·

1
1+exp(−(V −Vo)/So)

(3.20)

At membrane potentialV, f∞ is the fraction of channels open at the equilibrium.

τ is the characteristic time (ins−1) that fO takes to reach this equilibrium.

Depending on the sign ofSo, the ion channel opens or closes upon depolariza-

tion of membrane potential. “+” sign ofSo implies the activation of the channel

on depolarization where as “-”So characterizes inactivation of the channel on de-

polarizing membrane potential. Figure3.2a show examples of the open channel

fraction at equilibrium of an activation and inactivation gating with depolarizing

membrane potential. Figure3.2b shows how the dependence of characteristic time

constantτ on membrane potentialV. The peak ofτ is determined by the value of

Vo where as the spread of the curve is determined by the value ofSo. In the case

(a) (b)

Figure 3.2: (a) Equilibrium open fractions (f∞) for an inactivation gate (Vo =
−50mV) and (So = −2mV) and activation gate (Vo = −50mV) and (So = 5mV)
as a function of voltage. (b) The characteristic relaxationtimesτ for the activation
and inactivation gates in (a) as a function of voltage, whichare peaked around the
values ofVo and have a width determined bySo (Fall et al., 2002).

whereα =−β ,

τ =
φ

cosh((V −Vo)/2So)
(3.21)

where

φ =
1

2
√

k−o k+o

Chapter3/Figures/gateA.eps
Chapter3/Figures/gateB.eps
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The expressions forf∞ andτ can be written in terms of hyperbolic expressions,

f∞ =
1
2
(1+ tanh(

V −Vo

2So
)) (3.22)

and

τ =
exp(V(α+β

2 ))

2
√

k−o k+o cosh((V −Vo)/2So)
(3.23)

The above expressions model the dynamics of voltage dependent ion chan-

nels. In the mathematical models discussed in the followingsection, the voltage

dependent ion channels are modelled by equations3.22and3.23.

3.2 Mathematical model

(Koenigsberger et al., 2005) published a mathematical model for coupled ECs and

SMCs as a system of first order nonlinear differential equations (ODEs). This is

a sufficiently detailed model covering all essentials set out in Section2.6. Essen-

tially for a mesenteric artery EC and SMC, it efficiently accounts for the essential

mechanisms of IP3 induced cytosolic Ca2+ release and the cascade of events fol-

lowing it, in both cell types. The set of ODEs describing SMC cell dynamics in

the Koenigsberger model compare well with the experimentalresults published

by Lamboley et al.(2003), where rat mesentric arteries were stimulated with

phenylephrine (PE), a potent vasoconstrictor. The set of ODEs describing the

EC Ca2+ dynamics inKoenigsberger et al.(2005) model comes fromGoldbeter

et al.(1990) & Schuster et al.(2003) and the cytosolic Ca2+ response upon stim-

ulation by Bradykinin (a vasoconstrictor) fits well to the experimental results by

Frieden et al.(1999).

There are three major component models that work together toform a func-

tional coupled cell model; a single EC and SMC model, coupledby equations

modelling gap junctional coupling of homocellular and heterocellular nature be-

tween the cells. Each component is discussed here separately.
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3.2.1 Single cell SMC model

A single SMC is modelled by a set of 5 ODEs in time. The state variables consid-

ered for a SMC are:

1. Free/unbound cytosolic Ca2+ concentration (c)

2. SR Ca2+ concentration (s)

3. plasma membrane potential (v)

4. open state probability of Ca2+ activated potassium channels (ω)

5. cytosolic IP3 concentration (I )

All concentrations are in micromoles (µM), membrane voltage in millivolts (mV)

and open channel probability is dimensionless. Values and definitions of the rate

constants are listed in TableA.1.

A linear combination of individual transmembrane ionic fluxes and transport-

ing in and out of the SR constitute a time dependent expression for each state

variable. At any time t, these a balance of these ionic fluxes dictates the instanta-

neous value of unboundc in µM. These ionic currents or fluxes can be grouped

together according to the location of their their respective channels which they

pass through. IP3 induced Ca2+ release, CICR, SR uptake by SERCA pump and

Ca2+ leak from SR are associated to SR membrane bound channels. Influx of

Ca2+ via VOCCs, Ca2+ activated potassium channels, Na/Ca exchanger and all

other monovalent ionic current mentioned here pass throughchannels which re-

side in plasma membrane.

IP3 induced Ca2+ release, denoted by JIP3
is a function of IP3 concentration

available in the cytosol as a consequence of its agonist dependent formation and

degradation/metabolism by IP3 kinase A. Equation3.24 gives the dependence

of the proportion of maximal rate of IP3 induced Ca2+ release from intercellular

stores on the cytosolic IP3 concentration and JIP3
can be modelled by Hill equa-

tions as

JIP3 = F
I2

K2
r + I2

(3.24)
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Adequate increase in Ca2+ in the cytosol following the its release from SR initiates

Ca2+ induced Ca2+ release (CICR), modelled by equation3.25. JCICR is a function

of both the Ca2+ in cytosol and in SR. Because SMC is an excitable cell, the

rate constantC for this Ca2+ flux is kept substantial as compared to the EC thus

small variations in concentration of either cytosolic or SRCa2+ will result in an

amplified response. With high affinity binding capacity of Ca2+ on the inside

and low affinity binding on the cytosolic side of the SR membrane, JCICR can be

expressed as a product of two Hill equations

JCICR =C
s2

s2
c +s2

c4

c4
c +c4

(3.25)

Removal of cytosolic Ca2+ is done by three pathways (Ca2+ATPase, SERCA pump

and Na/Ca exchanger) and together with the cytosolic oscillator, it forms the basis

of oscillatory mechanism of cytosolic Ca2+ concentration. JSR uptakemodels the

replenishment of SR luminal Ca2+ by pumping in the cytosolic Ca2+ back into

SR via SERCA pump. This is a Ca2+ ATPase that resides in the SR membrane

and equation3.26models this refill. JSR uptakehas been shown to have a sigmoidal

dependence on cytosolic Ca2+ concentration with a Hill coefficient of 2 (Fall et al.,

2002), thus

JSRuptake= B
c2

c2
b+c2

(3.26)

Again, in order to maintain oscillatory behaviour of the SMC,the authors have

kept the Ca2+ uptake rate in SR, relatively high than what is set an EC. The cytosol

is never devoid of free Ca2+ and there is a basal concentration that is maintained.

JLeak models Ca2+ leak as a linear function of the SR luminal Ca2+ s, as follows

JLeak= Ls (3.27)

Here, L is the maximal rate of leak from SR.

Although a number of plasma membrane bound ion channels contribute differ-

ent proportions of extracellular Ca2+ into the cytosol, most significant channels

are included in this model. In equation3.28 JVOCC models the influx of extra-

cellular Ca2+ through voltage gated Ca2+ channels and is a function of the SMC
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membrane potentialv. Notice the negative sign in equation3.35preceding JVOCC.

Relative to the Ca2+ Nernst potential (vCa1), the more positive or depolarized the

membrane potential, the more the channel allows Ca2+ to pass through into the

cytosol from extracellular space. Closure of these channelsis controlled either by

hyperpolarization induced by KCa channels (described in equation3.31) or inacti-

vation of VOCC (when denominator in equation3.28becomes large), thus dimin-

ishing the flux through these channels. JVOCC channels can therefore be modelled

by

JVOCC = GCa
v−vCa1

1+e−[(v−vCa2
)/RCa]

(3.28)

In addition to SERCA pump, few plasma membrane channels also take part in

removal of cytosolic Ca2+. JNa/Ca, in equation3.29models the plasma membrane

Na/Ca exchanger. The influx of Na+ versus the efflux of Ca2+ via this channel is

driven by both the cytosolic Ca2+ concentration and the plasma membrane poten-

tial. Therefore, at higherc, Ca2+ will be pushed out of the cell but at the same

time the rate of this efflux will also be limited by the extent of depolarization of

membrane potentialv and with more negativev increasing the rate of efflux, such

that

JNa/Ca= GNa/Ca
c

c+cNa/Ca
(v−vNa/Ca) (3.29)

Plasma membrane bound Ca2+ATPase pushes out the cytosolic Ca2+ unidirection-

ally to extracellular space. In equation3.30the rate of efflux of Ca2+ is a function

of v andc. JEff models the Ca2+ efflux through Ca-ATPase as

JEff = Dc

(
1+

v−vd

Rd

)
(3.30)

Influx of Ca2+ into the cytosol either from intracellular stores or extracellular

space, depolarizes the membrane potential. Because of this newly created im-

balance of the charges inside the cell relative to the outside, their exists a gradient

driven force or potential to neutralize the charge imbalance. In response, K+ions

move out of the K+specific channels which, upon activation by Ca2+ ions, open

and let K+pass through to extracellular space. This repolarizes the membrane po-

tential close to its resting state to regain electrostatic equilibrium. These channels,
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known as Ca2+ activated K+ channels or KCa, thus rectify the membrane depolar-

ization caused by the Ca2+ signalling in response to an exogenous stimulus. Since

this compensatory response kicks in with a delay i.e. after when cytosolic Ca2+ has

increased to a certain level, they are also called delayed rectifiers. Equation3.31

models the efflux of K+ ions from the KCachannels under the membrane poten-

tial gradient where as the activation of open state of these channels, ,modelled by

Kactivation in equation3.32, is a function of both thec andv, therefore

JK = GKω (v−vK) (3.31)

and

Kactivation=
(c+cω)

2

(c+cω)
2+βe−[(v−vCa3

)/RK ]
(3.32)

Other ionic currents include trafficking of monovalent ionssuch as K+, Na+ and

Cl-. Membrane bound Na/K pump pushes out K+and brings in Na+ from extracel-

lular space, where as chloride channels are influenced byv as follows:

JCl = GCl(v−vCl) (3.33)

and

JNa/K = FNa/K (3.34)

Cytosolic Ca2+ concentration can now be stated as a sum of all the contributing

ionic currents either adding to or removing the free unboundCa2+ from cytosol.

The ODE forc in time can be written as

dc
dt

= JIP3 −JSRuptake+JCICR−JEff +JLeak−JVOCC+JNa/Ca (3.35)

Similarly, with respect to the inside of the SR, Ca2+ dynamics in SR will be a sum

of currents leaving the SR domain and currents refilling it. Therefores can be

written as
ds
dt

= JSRuptake−JCICR−JLeak (3.36)

An ODE for the membrane oscillator of a SMC can also be formulated from the

constitutive ionic currents from membrane bound channels,either entering or leav-
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ing the cell, with intracellular side as reference and the measured side being extra-

cellular, time dependentv can be written as

dv
dt

= γ (−JNa/K−JCl −2JVOCC−JNa/Ca−JK) (3.37)

The open channel probability of KCachannels, the main indigenous source of hy-

perpolarization in a SMC, with respect to time can be written in the form of an

ODE as
dω
dt

= λ (Kactivation−ω) (3.38)

And finally, cytosolic IP3 concentration, not bound to receptors on SR, can be ex-

pressed as a balance of its agonist dependent formation and IP3 kinase dependent

metabolism or degradation. The dependence of formation of IP3 on the activation

of membrane bound PLC by agonist is considered as a parameter, JPLCagonist, where

rate of the dynamics of the conversion from agonist stimulation to formation are

deemed much faster than the time scale at which agonist concentration changes

on the extracellular side. Also, the degradation of IP3 has also been modelled as a

linear function of instantaneous IP3 concentration. Together, these two can form

the intracellular IP3 dynamics as

dI
dt

= JPLCagonist−Jdegrad (3.39)

where Jdegraderelated to the cytosolic IP3 concentration as

Jdegrad= kI (3.40)

where k is the rate constant for IP3 metabolism. Later we eliminate the JPLCagonistterm

from equation3.39 when simulating the effects of spatial variation on coupled

cells. (Koenigsberger et al., 2005) used this term to simulate the sympathetic ner-

vous stimulation applied to the SMC layer in the coupled cells case to account

for the action of agonists such as acetylcholine. Followingthis stimulation, the

authors demonstrated the effects of endothelial derived hyperpolarization factor

(EDHF) on the Ca2+ oscillation in SMCs. Here, since the effects of blood borne

vasoconstrictor, ATP, is examined, its more logical to eliminate the parameter that
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can locally stimulate a SMC.

3.2.2 Single cell EC model

Principally, an EC model will have the a similar constituency as a SMC model but

with a few differences to make it a relatively non-excitablecell, as it physiologi-

cally is. Ca2+ and membrane potential dynamics can not sustain oscillations but

do show transient behaviour.Koenigsberger et al.(2005) also included a moder-

ately comprehensive model for a single EC. It IP3 and SR dynamics resemble that

of the SMC model described above. Ca2+ dynamics, with a few inclusions such

as, Ca2+ influx through nonselective ion channels and a constant Ca2+ influx from

channels which contribute a very small proportion of Ca2+ compared to the other

ions passing through them, and exclusions such as elimination of VOCCs, differs

from the SMC model. The authors have employed the membrane potential model

published bySchuster et al.(2003) which was used to examine electrophysiology

of an porcine coronary EC upon stimulation of a potent vasodilator, Bradykinin.

An important feature contributed by the membrane potentialmodel ofSchuster

et al. (2003) is the hyperpolarization of membrane potential which plays a vital

role in endothelial dependent relaxation, as an alternative to NO pathway. Param-

eters or rate constant, defined in TableA.2, are set so that the EC cannot sustain

oscillation.

A single EC is modelled by a set of 4 ODEs in time. The state variables

considered for an EC are:

1. Free/unbound cytosolic Ca2+ concentration (̃c)

2. SR Ca2+ concentration (̃s)

3. plasma membrane potential (ṽ)

4. cytosolic IP3 concentration (̃I )

The Ca2+ dynamics of an EC, similar to that of a SMC, can be defined as a sum of

constitutive ionic currents evaluated instantaneously, such that:

dc̃
dt

= J̃IP3 − J̃ERuptake+ J̃CICR− J̃Eff + J̃Leak+ J̃cation+ J̃0 (3.41)
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where, similar to the SMC model,̃JIP3 is modelled as Hill equation iñI in equa-

tion 3.42, J̃CICR is modelled as a product of two Hill equations ins̃ andc̃ respec-

tively in equation3.43 , with different cooperativities or Hill’s coefficients, and

J̃Eff and J̃Leak are modelled as linear functions ofc̃ and s̃ respectively in equa-

tions3.44and 3.45.

J̃IP3 = F
Ĩ2

K̃2
r + Ĩ2

(3.42)

J̃CICR = C̃
s̃2

s̃2
r + s̃2

c̃4

c̃4
c̃ + c̃4

(3.43)

J̃Eff = D̃c̃ (3.44)

J̃Leak= L̃s̃ (3.45)

Refilling of cytosolic Ca2+ in ER by SERCA pump is defined in as function of

c̃ with a Hill’s coefficient of 2 (because it has two Ca2+ binding sites at the cy-

toplasmic face), as in SMC model, but the term̃B is set so as to suppress any

oscillatory response, and can be written as

J̃ERuptake= B̃
c̃2

c̃2
b+ c̃2

(3.46)

J̃cation is the Ca2+ influx from nonselective cation channels. With the relative

permeability PNa:PK:PCa (1:1:0.7) the Ca2+ influx through these channels is con-

stituted by extracellular Ca2+and is essentially sensitive to log[c̃], as modelled

by equation3.47. Originally modelled by (Schuster et al., 2003) and adapted by

(Koenigsberger et al., 2005), the hyperbolic tangent was used to fit the data for

the porcine coronary EC, whose open channel probability follows a sigmoidal

curve. The opening of the channel is highly sensitive to intracellular Ca2+ and is

relatively independent of the membrane potential except for the influence caused

by the electrostatic gradient on hyperpolarization. The hyperpolarization of the

membrane potential encourages the opening of the channel and the Ca2+ influx

through these nonselective ion channels. Other than this effect, the membrane po-

tential and Ca2+ influx through these channels is uncoupled.J̃cation therefore can



3.2 Mathematical model 65

be modelled as

J̃cation= G̃cat(ECa− ṽ)
1
2

(
1+ tanh

(
log10c̃− m̃3cat

m̃4cat

))
(3.47)

Intracellular Ca2+ dynamics in this EC model is a balance of three major ionic cur-

rents,̃JER uptake, J̃cation andJ̃Eff. The influence of extracellular Ca2+ on the cytosolic

Ca2+ concentratioñc is largely depicted by the availability of̃Jcation as this is the

only source of influx of extracellular Ca2+ contribution in this model. Keeping this

in view, thẽJEff must be greater than both̃JER uptakeandJ̃cationcombined at all times

to ensure that Ca2+ entering the cell from outside, under any stimulus, dose not

retain intracellularly. Thus̃c could reach a peak value as a transient increase when

stimulated, which then decreases to a basal level after the removal of the stimulus.

With respect to the interior of the ER, Ca2+ dynamics consist of a summation

of CICR and a constant Ca2+ leak currents leaving the ER domain whereas refilling

by SERCA pump is the only means to restore luminal Ca2+ load inside ER. Thus

ER Ca2+ dynamics represented bỹscan be written as

ds̃
dt

= J̃ERuptake− J̃CICR− J̃Leak (3.48)

Membrane potential dynamics in this model come from (Schuster et al., 2003).

In their study on porcine coronary EC, they found that the on agonist stimulation,

the reversal/Nernst potential (the equilibrium potentialwhere net current across

the membrane becomes zero) was very close to that of K+ and was predominantly

contributed by K+ transmembrane flux, other ionic species contributing a negligi-

ble share to it which they calledresidualcurrent. This residual current comprised

of an inward Na+ orK+ current and an outward Cl- current and is modelled by

ĨResidual= G̃R(ṽ− ṽrest) (3.49)

Upon agonist stimulation, the outward hyperpolarizing K+ current was con-

tributed by two distinct Ca2+ activated K+ channels (KCa),a large conductance

BKCa channel, activated by cytosolic Ca2+ and membrane potential, modelled
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by

ĨBKCa
=

0.4
2

(
1+ tanh

(
(log10c̃−z)(ṽ−y)−x

m̃3b(ṽ+x(log10c̃−z)−y)2+ m̃4b

))
(3.50)

and a small conductance SKCa channel which was sensitive to intracellular Ca2+ only,

and modelled by

ĨSKCa
=

0.6
2

(
1+ tanh

(
(log10c̃− m̃3s)

m̃4s

))
(3.51)

Thus the total current outward K+ current through KCa channels is a sum of the

currents from these two KCa channels is different conductances and therefore can

be written, along with a membrane potential activation function, as

ĨK = G̃tot(ṽ− ṽK)
(

ĨBKCa
+ ĨSKCa

)
(3.52)

Since voltage across the plasma membrane, which acts like a capacitor, is

dV
dt

=
Ic
C

therefore by summing all the transmembrane fluxes the membrane potential dy-

namics can be written as

dṽ
dt

=−
1

Cm

(
ĨK + ĨResidual

)
(3.53)

The intracellular IP3 dynamics are similar to that modelled for a single SMC

in section3.2.1. Agonist induced IP3 formation is modelled by a free parameter

J̃PLCagonistwhereas intracellular IP3 degradation is modelled bỹJdegrad andĨ there-

fore can be written as
dĨ
dt

= J̃PLCagonist
− J̃degrad (3.54)

In the case of an EC, the term̃JPLCagonist is retained and is varied spatially in the

later chapters to simulate the variation of agonist concentration and the consequent

PLC induced intracellular IP3 generation.
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3.3 Numerical method

In several cases, analytical solution to a set of ordinary differential equations dose

not exist. For these cases, numerical approximations to theexact solutions are

used. Each ODE of the the two sets representing a SMC and an EC respectively,

is of the form,

y′ = f (t,y(t)), y(t0) = y0 (3.55)

where t is time betweena≤ t ≤ b and rate of change ofy is not only dependent

on time but also on itself. From (Koenigsberger et al., 2005) it is known that the

cell models have oscillatory response to a particular rangeof the stimulus or in-

put parameter. This is a result of some constituent fast and slow processes and

the time varying dominance of a slow or fast process at different times, making

the set of ODEs stiff in nature. Thus in an oscillatory state,it is expected that

the rise time will be contributed by certain very fast processes followed by their

saturation, and consequent dominance of fast and then slow processes accounting

for the refractory period before the next oscillation arrives. In addition to that, the

dependence of each variable on other state variables, established by the negative

or positive feedback mechanisms obtained from underlying physiology, also make

the ODEs nonlinear due to difference in time scales. Examples of it can be the

interaction of SR Ca2+ with intracellular Ca2+, intracellular Ca2+ with the mem-

brane potential and the delayed rectification by KCa in response to depolarized

membrane potential. Together these equations present a computationally expen-

sive problem because of variable cost of computation withina time interval and

the computation expense dictated by the speed of the dominant processes.

In practice, higher order Runge Kutta (RK) methods are used to solve such

problems because of their superior convergence and stability features. 4th order

explicit RK method is a common choice. Other higher order explicit methods can

also be used and some implicit methods will also produce results with stability

and accuracy. Using other methods adds to the computationalcost. To solve an

ODE such as equation3.55, an explicitpth order RK uses the present value of the

y at time stept to approximatey(t +∆t) at the next time step(t +∆t), ∆t being a
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small increment in time such that

y(n+1) = y(n)+
s

∑
i=1

biki (3.56)

where

k1 = h∗ f (tn,yn)

k2 = h∗ f (tn+c2h,yn+a21k1)

.

.

ks = h∗ f (tn+csh,yn+as1k1+ ......+as,s−1ks−1)

Heren is thenth iteration,h is a constant time step size,s is the number of stages,

a,b&c are the coefficient corresponding as given in the Butcher tableau (a method

for writing the coefficients for a given method) of the methodbeing used. An

implicit method uses the value ofy both at the present time stept and the next

time step(t +∆t) to approximatey(t +∆t), such that the following equation is

satisfied

G· (y(n)+y(n+1)) = 0 (3.57)

From the above condition it is noticeable that there is an extra step involved in ap-

proximating the solutiony(t +∆t). This extra step ensures stability while dealing

with stiff ODEs of the sort

y′ = |l |y+ f (t) (3.58)

wherel is large, therefore the derivative is heavily dependent ony. Thus implicit

methods do ensure solution of such an equation in proposed time interval but at the

expense of additional computational cost of an added step. Also, these methods

are algorithmically complex to write as computer programs.On the other hand,

when dealing with equations like3.58, an explicit method takes small time steps

to ensure a stable solution which is well within the defined error bounds. These

methods however are relatively easier to code.
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Explicit methods can be made faster by use of extra stages, while maintaining

the order of the method, i.e. its characteristic accuracy toproduce a reliable ap-

proximation in comparison to its exact solution (if it exists). Embedded methods

are constructed to estimate the local truncation error of each RK step taken. The

local truncation error is the error caused by one iteration while computing an ap-

proximation to the exact solution ofy(t). To achieve this estimate in an embedded

method, an extended Butcher tableau is constructed by halving of two methods

one with orderp and another with orderp−1. The(p−1) order step is given by

y(n+1) = y(n)+
s

∑
i=1

b∗i ki (3.59)

and k is identical for both thepth and(p− 1)th order methods (* relates to the

lower order method). The local truncation error for such a scheme is the difference

of the approximations from both the methods

εn+1 = yn+1−y∗n+1 = h
s

∑
i=1

(bi −b∗i )ki (3.60)

which isO(hp) (i.e. ε scales ashp). Given the error tolerance, a new step sizehnew

can be calculated using the estimatedεn+1. This makes the step size calculation

adaptive to the complexity of the latest approximation thusknown as adaptive step

size control. The idea is that the solver should carefully select many small steps

where solution exhibits stiffness, as we go forward in time,and may take large

steps when the solution behaves relatively smooth. Based on the performance of

the solver and the nature of the problem, the improvement in efficiency can be

tens to hundred folds (Press et al., 1992). Given the information onε the attempt

would be to keep it in desired bound for accuracy of the solution. For an embedded

RK5(4), if h1 is the step taken by the solver to produce an error,ε1, then the step

sizeh0 that would have produced an errorε0 can be calculated by

h0 = h1

∣∣∣∣
ε0

ε1

∣∣∣∣
1/p

(3.61)

Here ε0 represents desired accuracy, also termed astoleranceor tol. Thus if
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ε1 > ε0, the equation tells how much to decreaseh0 and if ε1 < ε0, it tells how

much can the next step be safely increased. Generally, in cases where embedded

methods are solvers of choice, the solutiony(t) is a vector representing the vari-

ables in a system of ODEs, as in our case. The magnitudes of these representative

members of this vector may be several orders different from one another. In this

case, desired accuracy,ε0, may differ. To include this feature of defining accuracy

control of individual elements of the solution vector,absolute toleranceis defined.

C implementation of 4th order Runge Kutta (RK4) was tested on single cell

models for an EC and SMC respectively. The algorithm was ableto solve the

systems of ODEs with a fixed step size of 1e−2. For the coupled systems of

ODEs, a the maximum step size of 1e−4 was required and this was irrespective of

the simulated number of cells.

To solve the coupled system of ODEs, a embedded RK pair BS(4,5),derived

by Bogacki and Shampine(1996), was also tested. RKSUITE, described in detail

in Section3.4 is a software written in C++ that implements BS(4,5). This is a 7

stage method with an accuracy of fifth order and is acclaimed to be more efficient

than the popular Erwin Fehlberg ’s (RKF(4,5)) and J R Dormand and P J Prince’s

(DP5(4)) pairs. Generally, when a RK code is implemented, theuser defined in-

stances of independent variable (time in our case) may not exactly be met because

of the adaptive step size selection which estimates next step size dictated by the

local truncation error of the last successful step. In orderto get the solution at

user specified points, interpolation is usually used, the cost of is problem depen-

dent. An interesting feature of BS(4,5) is the lack of dependence of local error

of the interpolant on the problem. The local truncation error of the interpolant is

a function of local error of the last step (or end of the step).Mathematical intri-

cacies proving the superiority of this method over RKF(4,5) and DP5(4) can be

reviewed in (Bogacki and Shampine, 1996). RKSUITE, in addition to BS(4,5)

pair also implements BS(2,3) and BS(7,8). BS(2,3), also implemented asode23

in MATLAB, is popular for computation of mildly stiff problems. BS(7,8) is an

efficient higher order method which is used when high accuracy is required of

BS(4,5), thus making it a computationally expensive choice.BS(7,8) in that case

is more efficient.
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3.4 Numerical Algorithm: RKSUITE

RKSUITE is a robust numerical solver written by (Brankin et al., 1991) to solve

initial value problems for a first order system of ODEs of the form 3.55. Both

Fortran and C++ versions are available and the later is used inthis study.y is a

vector ofN solution components for a system of ODEs andt is the independent

variable, time in the present case, for which interval is user defined. RKSUITE

has two integration codes to choose from UT and CT. Depending on the nature of

the problem and/or algorithmic approach to solve it, one of the two options can

be used. UT stands for ‘Usual task’ and is employed when solution at sequence

of specific points is required, whereas CT, acronym for ‘Complicated task’, is for

integrating for a solution betweentstart andtend. Another way of using CT is to

reset thetend repeatedly to obtain relatively short time intervals to ensure solution

of mildly stiff problems.

RKSUITE implements 3 RK methods, namely BS(2,3), BS(4,5) and BS(7,8).

Depending on how tight the global error tolerance is required, one method is su-

perior than the other in terms of its efficiency. In the case ofsolving the ODEs

presented in section3.2, the BS(4,5) was found most efficient. It was able to

solve the coupled systems of ODEs 10 times faster than solving the same set of

equations with a4th order Runge Kutta (RK4). RKSUITE is an object oriented

algorithm where an instance of class RKSUITE must first be invoked. Call to

founding function, namelysetup, is mandatory before any other function is called.

Some compulsory initialization parameters ofsetupinclude:

• neq: Integer number of equations or state variables

• tstart: lower bound of time interval (double precision)

• ystart: an array of initial values of each state variable (double precision)

• tend: lower bound of time interval (double precision)

• tol: relative error tolerance (double precision)

• thres: an array of threshold applied on the value ofy(L) whereL = 1...neq

at every time step, below whichy(L) is insignificant (double precision).
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• method: An integer number representing the RK pair to be used for integra-

tion. 1 for BS(2,3) pair, 2 for BS(4,5) pair and 3 for BS(7,8).

• task: selection for executing either using UT or CT code

• errass: a parameter of type boolean, which if settruewill enable estimation

of global error for each solution componenty(L) whereL = 1...neq.

• hstart: initial step size to be taken (double precision). Ifset to 0.0, the code

will automatically select an appropriate first step size which is the choice

in the present study case when using using CT. While using UT in parallel

code where equal step size is taken at each iteration, the first step size is

nonzero.

• message: a parameter of type boolean, which if settruewill enable printing

the error message on stdout.

tol is the desired relative accuracy in the solution and must be set >0.01. The

smallertol is, the more correct significant figures we get, thus more computation

is usually required. Error tolerance is applied on the solution value by test the

conditiontol ∗max(size(L), thres(L)), wheresize(L) is the average magnitude of

y(L) over one time step. Ifthres(L) is smaller than the present value ofsize(L), the

value oftol is considered so that the solution is correct to those many significant

figures (e.g. iftol = 10−4, then the code will make the effect to minimize the

error to 4th significant figure). In the case whensize(L) is smaller thanthres(L),

than the tolerance will be matched totol ∗ thres(L). This is very helpful when the

solution components are varying at different orders of magnitudes. In the present

study,tol = 10−4 to 10−6 should be sufficient to include any significant change of

magnitude in any state variable.thres(L) has also been set to 1 which helps retain

a uniform criteria of tolerance as the fluctuation in the values in all the solution

components is relatively of the same order of magnitude. Moreover, as nominated

in the RKSUITE manual (Brankin et al., 1991) as relative tolerance test, this is a

recommended criteria that should be implemented.

The accuracy criteria discussed in the above paragraph enables selection of

appropriate step size as the solution proceeds in time. As the CT task is opted
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to solve the system of ODEs under consideration, this adaptive step size selection

helps proceed in the solution in time, swiftly. In the later section where we discuss

the parallelization of the code, UT is the task of choice because of its suitability

on the parallel platform and will be discussed their.ystart is a double precision

array of the same size asy holding the initial values for each solution component

in y. Initial values of each state variable greatly influence thetime evolution of

the solution towards its steady state or bistable/oscillatory response. The steady

state or oscillatory behaviour remains unaffected by changing the initial values.

Since the steady state or oscillatory behaviour is the majorfocus of the study, we

assume solution components have initial values as if they were at physiological

equilibrium. We present the effect of initial values on the solution in each cell

both in single cell models and in coupled cells later in Chapters 4 and 5.

Once thesetuphas been called and parameters are set, the solver can be called

recursively. In the serial algorithm programming our system of ODEs CT is used

to integrate. The function CT has following mandatory arguments:

• ComputeDerivatives(t,y,dxdt): This is a function to evaluate all the deriva-

tives. In our case, call to this function by CT will invoke evaluation of the

right hand side of equations like3.35or 3.41etc. t is the current time after

taking the step. Depending on the accuracy set in thesetup, the expense of

computation is judged by the calls made by CT to this function.Inside the

body of the function ComputeDerivatives, call to another function, namely

fluxes, is made which holds expressions for all the individual currents men-

tioned in the single SMC or EC model.y updated at previous step is passed

as argument to this function which then evaluates all the currents and re-

turns their updated values to ComputeDerivatives. These updated currents

are then used to update a derivative vectordxdt (where the size of this array

is same asy) and returned back to CT.

• tnow: Current time (double precision)

• y: Solution vector where the updated values of the solution components are

returned .

• yp: A vector to hold the solution vectory from previous time step (double
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precision array).

• cflag: This is an integer in which error (from 1 to 6) is returned. This can

be monitored and decisions can be made according to the incurring error.

To ensure stable and accurate solution CT is called repeated over a short time

interval. The span of this interval is betweentnowandtend. At the completion of

first iteration,tend, which was set insetup, is incremented and CT is called again

betweentnowandtend, until t f inal is reached. After completion of each iteration,

the updatedy can be written in files to record the results. Within the time interval

defined by the user, CT may take numerous small steps accordingto the stiffness

of the problem. If the solution is consistently smooth over first few small step, CT

inherently calls UT to do the integration over a large time step. This mixing of CT

and UT increases efficiency in compute time when dealing withstiff problems.

Importantly,fluxes(A,y)is a function called byComputeDerivatives(t,y,dxdt)

to evaluated individual ionic currents, as stated in sections 3.2.1 & 3.2.2, each

time ComputeDerivatives is called by CT. Results of these evaluations are stored

in a double precision arrayA of length equal to the total number equations ex-

pressing the ionic currents.y in the input vector to this function, which hold the

values of solution components from latest step. Upon returnto the calling func-

tion, ComputeDerivatives, the components of the arrayA are used to evaluated

the rate of change of each state variable which is a sum of corresponding ionic

currents (as given in respective equation ofc,c̃...). This rate of change at timet is

stored in arraydxdt[], whose length is equal to the number of solution components

or neq. Flowchart3.3gives a schematic of the C code implementing RKSUITE to

solve either SMC or EC single cell model mathematically expressed in previous

sections.
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Figure 3.3: Execution of C code for solving system of ODEs with RKSUITE for
either a single SMC or EC.
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Chapter 4

Cellular Dynamics of Single Cell

Models

In previous chapters the physiological processes and the mathematical model ex-

pressing the Ca2+ dynamics of a single vascular SMC and EC were discussed.

These physiological processes are interconnected throughnegative and positive

feedback mechanisms and give rise to complex, agonist concentration dependent

responses. The time evolution of cytosolic Ca2+ concentration becomes signifi-

cant when considered to have a direct influence on downstreamprocesses where

cytosolic Ca2+ concentration regulated cell processes, e.g. cytoskeletal reorien-

tation, growth, apoptosis and development. The present focus onc and c̃ in a

single vascular SMC and EC is to elaborate the cellular dynamics of an uncoupled

cell under agonist stimulation. Single cell dynamics are particularly responsible

for morphological reorientation of an EC and regulation of contractililty of SMC

which signifies the importance of understanding the Ca2+ dynamics in the two cell

types in uncoupled environment. This chapter, therefore, is intended to translate

the cellular dynamics approximated by the models to the responsible physiologi-

cally cellular processes in each cell type.

77
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4.1 The Basis of Ca2+ Oscillations in an Uncoupled

Vascular SMC

Vasoactive substances such as blood borne species, neurotransmitters and biome-

chanical stimuli such as fluid shear stress and circumferential stretch, can induce

Ca2+ transients in cytosol of vascular cells, both ECs and SMCs. This cytosolic

Ca2+ increase, especially in response to vasoacticve agonists such as acetylcholine

and ATP etc.., is via IP3 dependent pathway in both types of cells. Purinorecep-

tors (P2Y) on SMC cell membrane bind to specific agonists on their extracellular

side which stimulates the G protein complex and consequent activation of mem-

brane phospholipid PLCβ . The activation of PLCβ catalyses the hydrolysis of

PIP2, another membrane bond phospholipid PIP2 resulting in the formation of IP3
. This is a fast process compared to the time scales over whicheither the down-

stream intracellular processes operate (Meyer and Stryer, 1988) or the transport of

agonist on the extracellular side takes place. It is therefore modelled as a lumped

parameter which when increases, simulates the increase in the agonist stimulation

on extracellular side and consequent IP3 production on cytosolic side. The in-

creasing intracellular IP3 concentration is regulated by the activity of IP3 kinase

(IP3K), which phosphrylates it to IP4 which dose not bind efficiently to IP3R on

the SR membrane. Figure4.1 is a schematic of the intracellular events following

the new presence of IP3 upon agonist stimulation.
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Figure 4.1: Schematic of a single SMC showing cellular dynamical processes.
(1)Agonist binds to the purinoreceptors (P2Y) on the SMC cell membrane activat-
ing the G protein complex, which then activates membrane bound Phospholipase
C (PLC). PLC activation catalyses the hydrolysis of PIP2 to form (2) IP3 that is
then release in the cytosol. This nascent IP3 binds to the SR membrane bound
IP3 receptor (IP3R). (3)IP3 bound to IP3R enables release of Ca2+ ions from
the SR into the cytosol. (4) The Ca2+ release from intracellular store sensitizes
the IP3R further which releases more Ca2+ referred to as CICR, thus making a
Ca2+ rich domain in the cytosol of the SMC. The excess of intracellular Ca2+ de-
polarizes the membrane potential. (5)The IP3 induced and CICR Ca2+ depolarizes
the membrane potential.(6) SR has low affinity Ca2+ binding sites on the cytosolic
side of a channel which passively (fuelled by ATP) pumps Ca2+ back inside the
SR, by SERCA. Cytosolic Ca2+ encourages the replenishment of the intracellular
stores via this pathway. (7) Ca2+ leaks from SR consistently under concentration
gradient between cytosolic and SR luminal Ca2+ and keep the Ca2+ in equilibrium
during non-stimulated state of the cell. (8)The membrane depolarization result
in the influx of Ca2+ from VOCCs which will close upon repolarization in the
following steps. (9) CaATPase pushes out cytosolic Ca2+ to extracellular space.
(10)Ca2+, in addition to other pathways, is pushed out into extracellular space via
Na/Ca exchanger. (11) Binding of Ca2+ ions to KCa opens BKCa channels in SMC
causing K+ efflux and membrane repolarization. (12) Influx of Cl- ions add to the
repolarization.
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For investigation of the response of a dynamical system represented by set of

ODEs, to the change in a parameter value (e.g. JPLCagonistin this case), a bifurcation

diagram is a common representation. The solution may reach to anequilibrium

point or fixed pointas the independent variable (time in our case) progress, or

it may enter aperiodic orbit (a solution that repeated itself in time). AHopf

bifurcation is said to have occurred when solution of a dynamical system departs

from an equilibrium solution to a stable periodic orbit, or vice versa, with a smooth

variation in the parameter value. Such behaviour is a commonplace while dealing

with nonlinear dynamical system.

Examining the response of the model of SMC with changing JPLCagonist , two

Hopf bifurcations occur. For a change of 0.065≤JPLCagonist≤ 0.19 µM/s, the SMC

model is simulated for a time interval of 0≤ t ≤ 1000 seconds. Figure4.2aplots

the peak maximum and minimum ofc between time interval 0≤ t ≤ 1000 seconds

against JPLCagonist. In Figure4.2a, the solution reaches to an equilibrium before the

JPLCagonist is increased to 0.075µM/s. Here, the first Hopf bifurcation occurs and

the solution starts to oscillate with respect to time. Theseoscillation are sustained,

i.e. they do not dampen as time increase. This oscillatory behaviour of the cy-

tosolic Ca2+ concentration persists until JPLCagonist=0.160µM/s, where the second

Hopf bifurcation occurs and the solution changes its response from oscillatory to

assuming a steady state equilibrium, with respect to time. This gives rise to three

domains of the solution, with respect to the parameter JPLCagonist. In domains 1 and

3 the solution attains equilibria, and the domain 2 is oscillatory. Time course of

cytosolic Ca2+ concentration is depicted in Figure4.2bat a JPLCagonist value from

each domain.

The three domains occurring in the bifurcation diagram are comparable to

Koenigsberger’s model results(see Figure 2 (Koenigsberger et al., 2005)) for an

uncoupled SMC. The results of Koenigsberger’s model have been validated with

the experiments conducted byLamboley et al.(2003), where the plot identifies

three distinct domains of responses corresponding to low, moderate and high ago-

nist concentration.

The negative and positive feedback mechanisms working in individual pro-

cesses shown in Figure4.1and the difference in their time scales because of their

differential cooperativities (i.e. the number of ions required to be attached to cer-
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(a) Bifurcation diagram showing the response of the solution ofsystem of ODE represent an uncoupled SMC. The re-
sponses can be divided into three disticnt domains with respect to the parameter values JPLCagonist

. Two Hopf bifurca-

tions occur at JPLCagonist
=0.075µM/s and JPLCagonist

=0.160µM/s respectively, and is named domain 2 (demarcated

by dashed lines). In domains 1 and 3 (solid lines), the cytosolic Ca2+ concentration of a SMC attains an equilibrium with
distinct steady state values.

(b) Time evolution of cytosolic Ca2+ concentration in a SMC stimulated with (A)0.07µM/s, (B)0.1µM/s and
(C)0.19µM/s, from solution domains 1,2 and 3 respectively.

Figure 4.2: Cytosolic Ca2+ concentration in SMC versus JPLCagonist.
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tain ion gated channels to increase the open channel probability) gives rise to the

three domains witnessed in Figure4.2a. Thus to understand the basis of oscil-

lations, it is important to review how the individual currents respond to a certain

level of stimulation. Nascent IP3 , upon binding to the IP3R activate the release of

luminal Ca2+ from SR, JIP3
. The rate of this Ca2+ release follows the rate at which

cytosolic IP3 concentration is maintained. Cytosolic IP3 is regulated by the its

generation and its metabolism by IP3K, as expressed in equation 3.39. Figure4.3a

shows the proportional increase in JIP3
as cytosolic IP3 increases. The difference

in the slopes of the two curves comes from the fact that a certain number of IP3
molecules is required to bind to the IP3R to activate the channel. This model con-

siders two IP3 molecules as the requirement for release of Ca2+ from SR where

as other models (Kapela et al., 2008; Meyer and Stryer, 1988) model this current

with three ip molecules. This newly added cytosolic Ca2+ further sensitized the

IP3R to cytosolic IP3 which results in an enhanced release of SR Ca2+ denoted

as JCICR in equation3.25(also shown in Figure4.3a), although other models in-

clude Ca2+ dependence to express the IP3R sensitization via cytosolic Ca2+ con-

centration (Kapela et al., 2008). Notice that the JCICR increases rapidly soon as

JIP3
reaches a steady state value corresponding to the cytosolicIP3 availability.

After JCICR reaches a peak, the decreasing slope can be attributed to therefilling

of the intracellular stores via SERCA pump, its rate denoted byJSR uptakein equa-

tion 3.26. Figure4.3bshows the time evolution of JSR uptakein conjunction with

the dynamics of the luminal or SR Ca2+where loss ofscoincides with the increase

in JCICR. A Ca2+ leak current operates at all times from SR into the cytosol and

is dependent on cytosolic Ca2+ concentration (also shown in Figure4.3b). This is

important to maintain the equilibrium Ca2+ concentrations both in the cytosol and

SR in the absence of any extracellular stimulation.

The increase in cytosolic Ca2+ depolarizes the membrane potential (v) which

otherwise was at a resting potential (approximately -40mV)governed by an equi-

librium of ionic concentrations inside and outside the cell. This depolarization

enables the opening of plasma membrane bound voltage operated Ca2+ chan-

nels (VOCC), denoted by JVOCC, through which extracellular Ca2+ moves into the

SMC cytosol and further depolarizes the membrane potential. Figure4.3cshows

the time evolution of JVOCC andv. Notice that the depolarization in membrane
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potential, i.e extracellular side is more negative than intracellular side, makes

JVOCC more negative. Since the term JVOCC in the ODE for cytosolic Ca2+ dy-

namics, equations3.35and3.37, is preceded by a negative sign, this implies that

the more negative the extracellular side relative to the cytosolic side, more the

open state probability of VOCCs, therefore higher the influx ofCa2+through them.

Conversely, the repolarization of membrane potential towards its resting voltage

reduces JVOCC. This becomes significant when considering the forced hyperpolar-

ization (i.e. exacerbated negativity of extracellular side) of the membrane poten-

tial in the EC-SMC heterocellular electrical coupling scenario.

In order to bring the cytosolic Ca2+ concentration to its basal state, Ca2+ efflux

currents continuously remove Ca2+ from cytosol to the extracellular space. Plasma

membrane bound CaATPase, denoted as JEff actively transport Ca2+ from cytosol

to extracellular space where as Na+/Ca2+antiporter, denoted as JNa/Ca brings in

two Na+ ions and removes three Ca2+ ions in exchange from cytosol. Both these

currents are shown in Figure4.3d. Equations3.30and3.29, modelling JEff and

JNa/Ca are dependent on bothc andv, therefore the maximum efflux occurs when

cytosolic Ca2+ is maximum and membrane potential is depolarized.

Increased cytosolic Ca2+ concentration and the membrane depolarization cou-

pled to it has an effect on the cytosolic K+ concentration. Plasma membrane

bound, large conductance Ca2+ activated K+ channels (KCa) are responsible for

efflux of K+ from cytosol to extracellular space. This efflux of K+ ions with sin-

gle positive charge has a significant effect on the membrane potential. As the

name suggests, two Ca2+ ions attach to the cytosolic side of this channel and equa-

tion 3.32models the activation of this channel. Figure4.3eshows the time course

of the K+ current through this channel along with its open state probability ω. Ef-

flux of K+ ions from this channel tends to repolarize the membrane to its resting

potential and in doing so, the Ca2+ influx through VOCCs also decrease. Simulta-

neously, Ca2+ efflux through CaATPase also increase and the consequence is the

decrease in cytosolic Ca2+ concentration, as shown in Figure4.3f. Correlating

the time courses of the above processes provides a better understanding of their

influence on the cytosolic Ca2+ concentration of the SMC.
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(a) Time evolution of cytosolic IP3 ,JIP3
and JCICR. As JIP3

reaches its steady state value correspondingly set by

cytosolic IP3 , JCICRrapidly increases.

(b) Time evolution of JSR uptake,JLeak and SR Ca2+. Notice that JCICR in (a) leads JSR uptake. Also, the decrease in

SR Ca2+ (s) coincides with simultaneous increase in JCICR. Since JLeak depends ons, it therefore follows that curve.

Figure 4.3
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(c) Time evolution ofv and JVOCC.

(d) Time evolution of JEff and JNa/Ca. Both currents arec andv dependent and in addition to JSR uptakefrom (b), they

are the main pathways of efflux of cytosolic Ca2+ to bring it back to basal concentration.

Figure 4.3
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(e) Time course of KCa open state probability (ω) and K+ efflux from KCa, JK. Notice that the channel opening and

K+ efflux follows the rate of increase of cytosolic Ca2+ in fig:osicllationF.

(f) Time evolution of cytosolic Ca2+ concentration.

Figure 4.3: Intracellular dynamics of the Ca2+,membrane potential and IP3 in a
SMC stimulated by JPLCagonist=0.1µM/s.
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Figure 4.4: Number of Ca2+ oscillations in cytoslic Ca2+ concentration at equil-
librium as a function of increasing JPLCagonist with range corresponding to the os-
cillatory domain of Figure4.2a. Number of oscillations per minute, or frequency,
increases with increasing JPLCagonist.

4.2 Agonist Effects On SMC Ca2+ Oscillations

The bifurcation diagram in Figure4.2ahighlights the steady state responses as

three domains those are elicited by the different ranges of JPLCagonist. The cytosolic

Ca2+ concentration in domain 2 oscillates upon stimulation by JPLCagonist between

the range 0.075µM/s, where the first Hopf bifurcation occurs, and 0.160µM/s,

where the second Hopf bifurcation is seen. For domains 1 and 3, the cytosolic

Ca2+ concentration attains a steady state equilibrium. The oscillations produced

in the cytosolic Ca2+ concentration are sustained and do not wane with time. The

frequency and amplitude of the Ca2+ oscillations seen in domain 2, are inversely

related. The amplitude of the Ca2+oscillations, as shown in the Figure4.2a, in-

creases with enhanced sensitivity to JPLCagonistbut as the parameter values increase

further, the amplitude decrease. The frequency of the Ca2+ oscillations, which is

the inverse of the period of an oscillation, increases with the increasing JPLCagonist,

Chapter4/Figures/JplcVsFrequency.eps
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as shown in Figure4.4. A depiction of the relationship of amplitude and fre-

quency of the oscillations is presented in Figure4.5. Upon occurrence of the

first Hopf bifurcation, where domain 2 starts from, the increase in the amplitude

of the oscillations is steep. The frequency decreases initially, with increasing

amplitude, and then increases gradually, until JPLCagonist=0.105µM/s, where the

Ca2+ concentration oscillates with an amplitude of 0.74µM. Progressive increase

in JPLCagonist from that point on results in consistent decrease in amplitude of the

Ca2+ oscillations and an increase in their frequency. At JPLCagonist=0.160µM/s

the second Hopf bifurcation occurs and the steady state response of the system

changes from an oscillatory to equilibrium behaviour.

Figure 4.5: Amplitude and frequency relationship of the sustained Ca2+ oscilla-
tion (calculated when the system has attained equilibrium)of a SMC stimulated
by a range of JPLCagonist, (0.075≤ JPLCagonist≤ 0.160µM/s). The red markers rep-
resent the start and end of Hopf bifurcation seen in Figure4.2a. The arrowheads
indicate the direction the curve takes with increasing JPLCagonist. Amplitude first
increase, then decreases, as frequency of oscillations increase with increasing
JPLCagonist, until oscillation ultimately cease. The maximum number ofoscilla-
tion with largest amplitude is observed at stimulation by JPLCagonist=0.105µM/s
(highlighted by blue marker).
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Figure 4.6: Figures (a to d) show the effect of increasing agonist on the waveform
of the cytosolic Ca2+ oscillations in a SMC. Oscillations in (a to c) are sustained
oscillations where as those in (d) damp to a steady state value with time.

A cell is said to beexcitableif an induced membrane depolarization, which

perturbs the plasma membrane from its resting potential, results in generation of

anaction potential. The cell tends to regain the resting membrane potential and

in that effort allows passage of ions into or out of the cell topull the polarity of

the cell membrane back to its resting state, a process known as repolarization,

there by producingrepolarization currents. In the case of the agonist stimulating

a SMC, it perturbs the established equilibrium of the membrane potential by initi-

ating a depolarization phase via IP3 induced Ca2+ release from intracellular stores

and following downstream cascade. Several cellular processes, described in Fig-

ure4.1at part in this effort. The oscillations in Ca2+ concentration is a result of the

attempt by the system to regain that equilibrium. The transition of the system from

steady state equilibrium response to an oscillatory domainis due to the difference

in time scales of the fast membrane potential kinetics and the relatively slow ion

channel kinetics. This is responsible for the influx and efflux of Ca2+ into and

from the cytosol. The major contributor to the membrane depolarization is the

opening of voltage operated Ca2+ channels which exhibit fast kinetics, i.e. they

open and let extracellular Ca2+ in the cytosol upon slight depolarization caused
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by IP3 induced Ca2+ release from SR. The major participant to the membrane

repolarization, the KCa channels, are strongly dependent on cytosolic Ca2+ con-

centration, i.e. each BKCa channel requires binding of two Ca2+ ions to open and

allow K+ efflux, thus are known as delayed rectifiers. Th dependence ofKCa on

Ca2+ ions makes the membrane repolarization a slower process compared to the

membrane depolarization.

Increasing JPLCagonist increases the IP3 induced Ca2+ release from SR, and

also increases the subsequent JCICR. The elevated availability of Ca2+ ions in the

SMC cytosol increases the probability of opening of KCa(represented by state

variableω), thus enabling a relatively fast repolarization response. Increasing

JPLCagonist values further results in reaching an equilibrium state where the cytoso-

lic Ca2+ availability has increased so much that the repolarizationis simultaneous,

thus eliminating the time difference between the two processes, hence no Ca2+ os-

cillation.

4.3 Ca2+ Dynamics of an Uncoupled Vascular EC

Unlike a vascular SMC, an EC is not an excitable cell. Following induced mem-

brane depolarization or agonist stimulation, cytosolic Ca2+ concentration increases

transiently but does not oscillate. A reason, for this inability of cytosolic Ca2+ to

oscillate, could be the absence of high conductance VOCCs (such as L type chan-

nels) in the endothelial plasma membrane(Nilius and Droogmans, 2001).

Both P2X and P2Y receptors are expressed on the luminal side of the endothe-

lial surface. P2X allows influx of extracellular Ca2+ into the EC cytosol upon

simultaneous activation by shear stress and ATP binding. P2Y, however, is a G pro-

tein coupled receptor and is stimulated by a range of agonists including ATP. The

agonist induced IP3 generation following the agonist binding to the P2Y receptor,

causes IP3 induced Ca2+ release from intracellular stores. This Ca2+ release and

the subsequent Ca2+ induced Ca2+ release results in membrane depolarization and

opening of a nonselective cation channel. An influx of monovalent and divalent

cations from these channels (with the relative permeability PNa:PK:PCa (1:1:0.7)),

allows further depolarization. In the presence of excess cytosolic Ca2+, the Ca2+ ac-

tivated K+ channels (KCa) open and pump out K+ to the extracellular space. Based
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on their conductances, two types of vascular endothelial KCa have been charac-

terized. BKCa or large conductance KCa have higher K+ conductance (160-240

pS) than SKCa, the small conductance KCa (10-40pS) (Ledoux et al., 2006; Nilius

and Droogmans, 2001). Efflux of K+ repolarizes the membrane potential which

further becomes negative, upon loss of cytosolic Ca2+ via refilling of intracellular

stores and efflux of Ca2+ via plasma membrane bound Ca2+ ATPase and Na/Ca

exchanger. This excessively negative membrane potential is termed as hyperpo-

larization. Figure4.7provides a schematic of the cellular processes involved and

their permissive or inhibitory effects on other intracellular or membrane bound

processes.

Using the model described in Section3.2.2 for an uncoupled EC the time

course of the processes in Figure4.7 can be analysed, following agonist stimula-

tion, modelled bỹJPLCagonist. Four state variable, cytosolic Ca2+, ER Ca2+ , mem-

brane potential and cytosolic IP3 , are considered in the case of an EC. Figure4.8

compares the cellular dynamics of an EC, stimulated withJ̃PLCagonist=0.1µM/s, at

which the cytosolic Ca2+ concentration of a single SMC would oscillate. In the

case of an EC, the cytosolic Ca2+ transiently increases following the IP3 binding

to IP3R, followed by the CICR. This produces two rates of increase in cytosolic

Ca2+ curve (as seen between 0 to 10 seconds and 10 and 40 seconds in Figure4.8),

first corresponding to the IP3 induced Ca2+ release (JIP3
in Figure4.8and the sec-

ond corresponding tõJCICR). With the increase in cytosolic Ca2+, the K+ efflux also

increases, thereby hyperpolarizing the membrane potential to ≈-67.0 mV, which

is more negative than the value attained by a SMC stimulated with the same ag-

onist level. The hyperpolarized plasma membrane causes encourages replenish-

ment of the ER luminal Ca2+ and extracellular Ca2+ influx through nonselective

cation channels. Since the rate constants forJ̃ER uptakeandJ̃CICRare lowered for EC

(in TableA.2) as compared those used for SMC (in TableA.1), the resulting time

scales for the two expressions are so long that neither the membrane potential nor

the cytosolic Ca2+ concentration, oscillates.
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Figure 4.7: Schematic of an uncoupled EC showing cellular dynamical processes.
(1)Agonist binds to the purinergic (P2Y) receptors on the EC surface, activating
the G protein coupled receptor (GPCR) which then activates membrane bound
Phospholipase C (PLC). PLC activation allows phosphorylation of PIP2, (2)PIP2

gives rise to IP3 that is then release in the intracellular space. This nascent IP3

binds to IP3 receptor (IP3R) on the ER surface. (3)IP3 bound IP3R induce release
of Ca2+ ions from the ER into the cytosol. (4) The Ca2+ release from intracel-
lular store sensitizes the IP3R further which releases more Ca2+ thus making a
Ca2+ rich domain in the cytosol in both EC and SMC. The excess of intracellular
Ca2+ depolarizes the membrane potential. (5) ER has low affinity binding sites
on the cytosolic side of a channel which constitutes a pump called the SERCA
pump. Cytosolic Ca2+ encourages the replenishment of the intracellular stores via
this pathway. (6) Ca2+ leaks from ER consistently under concentration gradient
between cytosolic and ER luminal Ca2+ and keeps the Ca2+ in equilibrium dur-
ing non stimulated state of the cell. (7) The increase in cytosolic Ca2+ favours
the influx of extracellular Ca2+ from nonselective cation channels. (8) CaATPase
pumps out cytosolic Ca2+ to extracellular space. (9 and 10) In ECs activation of
KCa, upon binding to Ca2+ ions intracellularly at BKCa and SKCa, let K+ move
out of the cytosol. This hyperpolarizes the membrane potential. (11) Although
K+ efflux is the main repolarizing current, residual current (mainly consisting of
monovalent ions) also contribute to membrane potential repolarization.

Chapter4/Figures/EC.eps


4.3 Ca2+ Dynamics of an Uncoupled Vascular EC 93

(a) Cytosolic Ca2+ (b) Cytosolic IP3

(c) ER Ca2+ (d) Plasma membrane potential

(e) Currents adding to cytosolic Ca2+

Figure 4.8
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(f) Currents removing cytosolic Ca2+

Figure 4.8: Time course of the state variables of an EC model, following the con-
sistent stimulation of̃JPLCagonist=0.1µM/s. Cytosolic Ca2+increases on the expense
of ER Ca2+. Increase in cytosolic Ca2+ concentration coincides with hyperpolar-
ization in membrane potential. Ionic currents responsiblefor increase in cytosolic
Ca2+ are shown in (e) where as those removing it from the cytosol are in (f).

4.4 Agonist Effects on EC Cellular Dynamics

In Section4.2 it was shown that the agonist stimulation produced an oscillatory

Ca2+ response in a SMC in which amplitude and frequency of the oscillation

were inversely related. In a single EC, the Ca2+ concentration does not oscil-

late at any agonist level. At anỹJPLCagonistvalue, a Ca2+ transient is followed by

a steady state equilibrium value, as shown in the Figure4.9a. Both, the peak of

the Ca2+ transient and the steady state equilibrium Ca2+ concentration initially in-

creases with increase iñJPLCagonist. At relatively higher̃JPLCagonist(approximately at

J̃PLCagonist=0.160µM/s onwards), this trend changes and the peak of Ca2+ transient

and the steady state equilibrium concentration of the cytosolic Ca2+ starts to de-

crease. Figure4.9b depicts these trends. With the increasingJ̃PLCagonistvalues, the

period of the transient, highlighted by the arrowheads in Figure4.9a, decreases.

This is because of the dependence of Ca2+ concentration on Ca2+ influx through

nonselective cation channels, denoted asJ̃cation in the model.

The membrane potential hyperpolarization can be attributed to the involve-

ment of the BKCa and SKCa channels. As equation3.50suggests, K+ efflux through

BKCa depends on both the cytosolic Ca2+ concentration and the membrane poten-

tial. Both, membrane depolarization and high cytosolic Ca2+ concentration favour

Chapter4/Figures/ECeffluxFluxes.eps


4.4 Agonist Effects on EC Cellular Dynamics 95

the K+ efflux through the BKCa channels. The outward K+ current through BKCa

channels is more sensitive to membrane potential than the cytosolic Ca2+. Two

Ca2+ ions are required to bind the Ca2+ specific sites on the BKCa channel located

on the intracellular face. Following the agonist stimulation and sudden increase in

the cytosolic Ca2+, this channel opens and repolarizes the membrane via K+ efflux.

Simultaneously, the Ca2+ removal takes place consistently via plasma membrane

Ca2+ ATPase and refilling of SR. The progressive repolarization ofmembrane po-

tential results in closure of the BKCa channels. Thus, although the conduction of

these channels is large, the open time is not prolonged.

SKCa channels, which are sensitive to Ca2+ concentration such that higher

Ca2+ concentration increases the K+ efflux from these channels. This channel

is kept open and K+is pushed out constantly, so long as there are enough Ca2+ ions

in the cytosol to activate its gates, irrespective of the state of the membrane poten-

tial. SKCa channels are, therefore, the source of hyperpolarization of membrane

potential. The impact of the residual current, as expressedin the equation3.49, is

trivial on the total K+ efflux.
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(a) Time course of cytosolic Ca2+ concentration at various̃JPLCagonist
.As the stimulation level

increases, the peak transient Ca2+ first increases and then decreases. The period of the transient,
highlighted by the arrowheads, decreases with increase inJ̃PLCagonist

value.

Figure 4.9
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(b) Following the first Ca2+ transient, the cytosolic Ca2+ concentration attains an equilibrium
state. The steady state equilibrium values are plotted against thẽJPLCagonist

values. The dashed

lines demarcate thẽJPLCagonist
that corresponds to JPLCagonist

values in domain 2 of Figure4.2a.

Figure 4.9: Eeffects of increasing̃JPLCagonist on the cytosolic Ca2+ response of an
uncoupled EC.
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Chapter 5

Computational Method and

Ca2+ Dynamics of Coupled EC/SMC

Model

Previously, the single cell models of a SMC and an EC, and theircellular dy-

namics were discussed. Anatomically, an EC and SMC which serve as structural

building blocks of the vascular tissue are structurally interconnected through inter-

cellular gap junctional. Cell cell contact is necessary for the formation of the gap

junctional plaques. Specific proteins called connexins form the structural unit of

a gap junction, a hemichannel or connexon, which traverses from the intracellular

domain (golgi complex) into the plasma membrane domain of each apposing cell.

When the two hemichannels come in contact, a process called ‘docking’, con-

formation changes occur in the constituent connexin protein and functional gap

junction is formed. This gap junction allows passage of ionsas well as neutral

molecules of limited molecular weight (<1000 Da), including but not limited to

Ca2+,Na+,K+,IP3 etc. Three connexins (Cx37,Cx40 and Cx43) are commonly ex-

pressed in the human vasculature. The single channel gap junctional conductance

varies with the constituent connexins and in most instancesis voltage independent

(Fall et al., 2002; Johnstone et al., 2009), although many new models are consid-

ering voltage dependent gating properties in modelling some heteromeric (having

multiple connexin stoichiometry) gap junctions.

99
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When modelling the gap junctions on a cell level, the net conductance can be

represented by a constant which is equal to

mean number of open channels× the single channel conductance.

Two cytosolic oscillators of cells connected via intercellular gap junctions can

synchronize by including a gap junctional current. Let us, for example, consider

two cells idealized as isopotential(having uniform potential across the whole cell)

compartments. For cell 1, the gap junctional current from cell 1 to cell 2 can be

written as

I1,2 =−gc(V1−V2) (5.1)

and for cell 2 it will be

I2,1 =−gc(V2−V1) (5.2)

wheregc is the net conductance from all existing gap junction between the two

cells andV1 andV2 are their membrane potentials, respectively. This currentis

added to the current balance equation for both the cells suchthat

Cm
dV1

dt
=−Iion,1+ I1,2 (5.3)

for cell 1 and

Cm
dV2

dt
=−Iion,2+ I2,1 (5.4)

for cell 2, whereIion,1 is the sum of all transmembrane ionic currents in theith

cell, andCm is the cell membrane capacitance. As the direction of gap junctional

transfer is from cell 1 to cell 2, the added term,I1,2 will work as a sink in equa-

tion 5.3 andI2,1 as source term in equation5.4. Hence cell 1 and cell 2 are said

to beelectrically coupled(electrical being the medium of coupling as the quan-

tity, the difference of which establishes the drive for the gap junctional current, is

membrane potentialV in this case). Subtracting equation5.3from 5.4yields

τ
d(V1−V2

dt
≈−(V1−V2) (5.5)

whereτ = Cm/gc is a time constant such that if cell 1 was perturbed (e.g. by
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an exogenous current influx), the two oscillators will re-establish uniformity or

synchronize with an effective time constant ofτ. If after the perturbation, the two

cells are such thatV1 =V2, then the cells are said to be tightly or strongly coupled.

For this to happen,gc should be large. Itgc is small, i.e cells are weakly coupled

then the response by the cellular oscillator, at best, can beantiphase, but not in

phase (i.eV1 6=V2 even afterτ seconds).

5.1 Incorporation of intercellular coupling in single

cell mathematical models

(Koenigsberger et al., 2005) models intercellular gap junctional coupling in the

similar to the equation5.1or 5.2. The media of coupling, however, are not limited

to electrical coupling but Ca2+ and IP3 coupling are also established between

cells. This is because of the existence of Cx37, Cx40 and Cx43 gapjunctions

between the populations of ECs and SMCs and coupled EC SMC populations.

There are two possible topologies of coupling between the two cells, homocellular

and heterocellular coupling, as shown in Figure5.1.

Cells are said to have homocellular coupling if the adjoiningcell is of the

same type i.e an EC coupled to another EC, or a SMC to another SMC.If an EC

is coupled to a SMC or vice versa, it is termed as heterocellular coupling.

For n number of SMCs or ECs, eachith cell is homocellularly coupled to a

nearest neighbourkth cell electrically by an expression modelled as

VSMC↔SMC =−g∑
k

(v−vk) (5.6)

whereVSMC↔SMC is the electrical coupling between anith andkth SMC. g is the

electrical coupling coefficient (equivalent to 1/τ) and is related to the net electrical

coupling conductanceG asg= G/Cm with unit (s−1), whereCm is the cell mem-

brane capacitance of the coupled SMCs.v andvk are the membrane potentials

of the ith andkth neighbour SMC respectively. Similarly for an EC, the electrical
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Figure 5.1: Schematic of a coupled EC and SMC showing Ca2+, IP3 and mem-
brane potential dynamics. (1)Agonist binds to the purinergic (P2Y) receptors on
the EC surface, activating the G protein coupled receptor (GPCR) which then
activates membrane bound Phospholipase C (PLC). PLC activation allows phos-
phorylation of PIP2, (2)PIP2 gives rise to IP3 that is then release in the intra-
cellular space. This nascent IP3 binds to IP3 receptor (IP3 R) on the ER/SR
surface. (3)IP3 bound IP3 R induce release of Ca2+ ions from the ER/SR into the
cytosol. (4) The Ca2+ release from intracellular store sensitizes the IP3R further
which releases more Ca2+ thus making a Ca2+ rich domain in the cytosol in both
EC and SMC. The excess of intracellular Ca2+ depolarizes the membrane poten-
tial. (5) ER/SR has low affinity binding sites on the cytosolicside of a channel
which constitutes a pump called the SERCA pump. Cytosolic Ca2+ encourages
the replenishment of the intracellular stores via this pathway. (6) Ca2+ leaks from
ER/SR consistently under concentration gradient between cytosolic and SR/ER
luminal Ca2+ and keeps the Ca2+ in equilibrium during non stimulated state of the
cell. (7) In an EC, the cytosolic Ca2+ favours the influx of extracellular Ca2+ from
nonselective cation channels. (8) CaATPase pushes out cytosolic Ca2+ to extra-
cellular space. (9 and 10) In ECs activation of KCa, upon binding to Ca2+ions
intracellularly at BKCa and SKCa, let K+ move out of the cytosol. This hyperpo-
larizes the membrane potential. (11) Although K+ efflux is the main repolarizing
current, residual current (mainly consisting of monovalent ions) also contribute to
membrane potential repolarization. (12) The IP3 concentration increases in SMC
cytosol via transmission of IP3 from coupled EC. This IP3 attached to IP3 R to
activated downstream IP3 induced Ca2+ release. (13) The IP3 induced and CICR
Ca2+ depolarizes the membrane potential. (14) The membrane depolarization re-
sult in the influx of Ca2+ from VOCCs which will close upon repolarization in
the following steps. (15) Ca2+, in addition to other pathways, is pushed out via
Na/Ca exchanger. (16) Binding of Ca2+ ions to KCaopens BKCa channels in SMC
causing K+ efflux and membrane repolarization. (17) Influx of Cl- ions add to the
repolarization. (18) Medium for intercellular communication via homocellular
gap junctions can either be Ca2+, IP3 or membrane potential coupling. (19)Hete-
rocellular gap junctions can couple an EC and SMC via Ca2+, IP3 or membrane
potential coupling. Hyperpolarized EC membrane potentialcan hyperpolarized
SMC plasma membrane and consequently close VOCCs.

Chapter5/Figures/coupled.eps
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coupling to theℓth EC neighbour is modelled by

VEC↔EC =−g̃∑
ℓ

(ṽ− ṽℓ) (5.7)

The values ofCm andC̃m are taken as constant and are listed in TablesA.1 andA.2.

In addition to the electrical coupling, second messenger species such as Ca2+ (40

Da) and IP3 (≈ 220 Da) can also pass through the gap junctional pores.Homotypic

(i.e whose hemichannels are made up of one connexin isoform)Cx40 gap junc-

tions prefer the passage of Ca2+, a divalent cation (Heyman et al., 2009) where as

homotypic Cx43 gap junctions have large pores and are least charge selective of

the three vascular connexins constituted gap junctions so they allow passage of IP3
molecules, a bigger and charge neutral molecule(Harris, 2007). Although Cx43

gap junctions have low single channel conductance (≈90pS) compared to the ho-

motypic gap junctions formed of either Cx37 or Cx40 but the range of species

that can pass through these pores is extended compared to theCx37 and Cx43 gap

junction, including Ca2+ ions and other monovalent molecules(Rackauskas et al.,

2007b). Ca2+ and IP3 coupling, driven by the concentration gradient between an

ith SMCs and a neighbouring coupledkth SMC, is established by

JSMC↔SMC
Ca =−pCa∑

k

(c−ck) (5.8)

JSMC↔SMC
IP3

=−pIP3 ∑
k

(I − Ik) (5.9)

wherepCa andpIP3 respectively are the Ca2+ and IP3 coupling coefficients between

SMCs. Thec andck are the cytosolic Ca2+ concentrations andIand Ik are the

cytosolic IP3 concentrations in theith and the neighnouringkth SMC. Similarly,

intercellular Ca2+ and IP3 fluxes between coupledith and the neighnouringℓth

ECs can be written as

JEC↔EC
Ca =−p̃Ca∑

ℓ

(c̃− c̃ℓ) (5.10)

JEC↔EC
IP3

=−p̃IP3 ∑
ℓ

(Ĩ − Ĩℓ) (5.11)
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To establish heterocellular coupling between an EC and SMC and vice versa,

electrical, Ca2+ and IP3 coupling are taken into account. From the physiological

aspect, myoendothelial junctions exist in the intimal layer of the arterial tissue.

Projections of EC plasma membrane protrude from the perforations present in the

internal elastic lamina and come in close contact with te plasma membrane of the

underlying SMCs (Sandow and Hill, 2000). Homotypic gap junctions consisting

of Cx37, Cx40 and Cx43 hemichannels have been demonstrated in various vas-

cular beds of a number of mammalian and human arterial tissues (Isakson and

Duling, 2005; Lamboley et al., 2005) which lets second messengers (Ca2+ and IP3

) pass bidirectionally (i.e SMC to EC and vice versa). Therefore, heterocellular

electrical, Ca2+ and IP3 coupling from anith SMC to annth nearest neighbouring

EC can be mathematically expressed respectively, as

JSMC↔EC
Ca =−PCa∑

n
(c− c̃n) (5.12)

VSMC↔EC =−G∑
n
(v− ṽn) (5.13)

JSMC↔EC
IP3

=−PIP3 ∑
n
(I − Ĩn) (5.14)

Heterocellular coupling between an EC and nearest neighbouring mth SMC can

be written as

JEC↔SMC
Ca =−P̃Ca∑

m
(c̃−cm) (5.15)

VEC↔SMC =−G̃∑
m
(ṽ−vm) (5.16)

JEC↔SMC
IP3

=−P̃IP3 ∑
m
(Ĩ − Im) (5.17)
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5.2 Values for intercellular coupling coefficients

There is not much information available in the literature regarding the whole cell

conductance or the mean number of formed channels on the surface of coupled

cells compared to single channel conductance of homotypic gap junctions which

is rather well documented. The reason behind this is the limitation of methodolo-

gies to do such experimentation. Furthermore, the expression of connexins differs

in vitro in a dual voltage clamp experiments or evenin situmethods when using ar-

terial segment thanin vivo. There is no suitable live cell or dynamic measurement

technique available yet which can quantitate the number of formed gap junctions

in a cell appropriately, either in ECs or SMCs, in a physiological environment.

In the case of electrical coupling the macroscopic mean conductanceG has been

estimated byVan Rijen et al.(1997) to be 30nS whereasLidington et al.(2000)

estimated the macroscopic homocellular electrical resistance in ECs to be 3MΩ
(or G=1/3MΩ = 333nS). For structural characterization or localizationof the gap

junction, Van Rijen et al.(1997) used staining (immunofluorescence) of human

umbilical cord vein and artery endothelial cells, in situ and in vitro (cultured). For

functional characterization, dye coupling using Lucifer Yellow was used. Double

voltage patch clamp technique was used to measure the singlegap junction con-

ductance.Lidington et al.(2000) grew a monolayer of microvascular endothelial

cells in vitro and mRNA and the connexins expressions were tested for presence.

This was validated by the immunocytochemistry for the gap junctions. For evalu-

ating functional cell coupling, hyperpolarization current was injected in a cell on

one side of the monolayer and recorded on the other extremity. Bessel function

was used to predict the spread of electronic signal and intercellular resistance was

computed using the recording of the propagated currents.

As g = G/Cm, Van Rijen et al.(1997) results yield ag, one order of magni-

tude less than achieved by usingLidington et al.(2000) evaluation ofG. Therefore

in the interest of coherent use of the parametersG=30nS is used here, also cho-

sen by (Koenigsberger et al., 2005). The membrane capacitance value between

ECs is≈ 30pF (Schuster et al., 2003) and for SMCs it is 10pF (Parthimos et al.,

1999). Thus, for homocellular electrical coupling between SMCs,(Yamamoto

et al., 2001) calculated the macroscopic gap junctional resistance of 90MΩ (or
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G=1/90MΩ = 11nS). Therefore the value of homocellular electrical coupling co-

efficientsg andg̃, for SMC and EC respectively, is 1000s−1.

Although there has been some information on the single channel conductance

of Cx40 and Cx43 formed gap junctions, to the best of our knowledge the infor-

mation on a cell’s macroscopic or net conductance of intercellular Ca2+ and IP3

transfer is not available. (Koenigsberger et al., 2006) treat these values as free

parameters and set the coefficients such that homocellular Ca2+ coupling between

SMCs is able to synchronize the Ca2+ oscillations of five coupled SMCs in con-

junction with the electrical coupling. SMCs are essentially, weakly coupled,pCa

set to 0.05. EC homocellular Ca2+ coupling coefficient,̃pCa has also been set to

0.05.

For heterocellular coupling, ECs and SMCs are coupled via the same three

media. Macroscopic intercellular resistance across myoendothelial junction has

been estimated by (Yamamoto et al., 2001) to 900MΩ, with the net capacitance

between the two cells being≈20pF, therefore making the heterocellular electrical

coupling coefficient 50s−1. For Ca2+ and IP3 transport across myoendothelial

junction, information on permeability is scarce and (Koenigsberger et al., 2005)

set coupling coefficient to 0.05s−1 for Ca2+ and IP3 . (Kapela et al., 2009) re-

duce the heterocellular IP3 coupling coefficient by dividing it with the number

of heterocellular nearest neighbours coupled to an EC or SMC.This argument is

plausible and same logic may apply to heterocellular Ca2+ coupling. In the lat-

ter chapters, we test the effects of weakening the heterocellular coupling strength

between ECs and SMCs according to the number of nearest neighbours coupled

to each cell of each type. Other studies such as (Jacobsen et al., 2007) modelled

the gap junction current as a function of the effective contact surface area, the ion

specific permeability (distinguished by its valency) and the membrane potential

difference between the two cell. This study confines to having static gap junction

coupling coefficients as the first step towards understanding the dynamics of the

response of the coupled cell however the dynamic aspects introduced by (Jacobsen

et al., 2007) can be incorporated in the future work.
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5.3 Coupling topology

The layout of the cells in the anatomical layer, tunica intima, of an artery dictates

the intercellular coupling topology of each cell, i.e the number of homocellular

and heterocellular nearest neighbours and their locations. In the present study,

SMCs or ECs are homocellularly coupled in Van Neumann’s nearest neighbour

topology with a range 1. Therefore, each cell, EC or SMC, is coupled homocellu-

larly with 4 other nearest neighbours cells of the same type,as shown in Figure5.2.

(a) (b)

Figure 5.2: Topology for computationally interconnecting SMC-SMC in (a) and
EC-EC in (b) via homocellular coupling.

Anatomically, an endothelial cell, while stretched under flow conditions, lies

longitudinally or parallel to the axis of the artery. A SMC, onthe other hand, lies

circumferentially, wrapping the artery around its longitudinal axis. An endothe-

lial cells is≈ 50-141µm long and 5-10µm wide (Haas and Duling, 1997; Sandow

and Hill, 2000; Sandow et al., 2003). A SMC is≈ 50-100µm long (based on the

state of their contractililty, either contracted or relaxed) and 2-8µm wide (Haas

and Duling, 1997; Sandow and Hill, 2000). In the present case the the aspect ra-

tio of the two cells is set such that an EC is approximately 1.3times as long and

twice as wide as a SMC. The cells are approximated as a rectangle and with the

Chapter5/Figures/hmSMC.eps
Chapter5/Figures/hmEC.eps
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aspect ratio set above, 13 SMC are coupled to one EC longitudinally and 5 ECs

are coupled to one SMC circumferentially via heterocellular coupling. Figure5.3

depicts a single block of coupled ECs and SMCs which is creates aunit segment

which can be extended longitudinally as well as circumferentially for a longer or

thicker arterial segment. Cells on the circumferential boundaries are periodically

coupled to simulate a closed arterial loop circumferentially. This enables the com-

putation algorithm to implement spatial gradients of agonist stimulus not only in

the longitudinal direction but also in circumferential direction.

Figure 5.3: 1 EC long coupled block of cells with 13 SMCs longitudinally cou-
pled to an EC and 5 ECs circumferentially coupled to 1 SMC. The arrow (with
dashed black line) depicts the homocellular periodic coupling of SMCs or ECs
situated on boundary. C shaped arcs in blue are SMCs wrapping around, the rect-
angular slab like structures in grey, the ECs. The red interconnections represent
homocellular couple and the green ones represent the heterocellular coupling. For
simulating a wider diameter, the number of cells will increase circumferentially,
however, the nearest neighbour number of each cell type willremain conserved
(i.e. 1 EC coupled to 13 SMCs longitudinally and 1 SMC coupled to 5 ECs cir-
cumferentially).

5.4 Numerical Algorithm

A structured C program uses the basic computational infrastructure, described

in Section3.4, to numerically integrate the intercellular dynamics of each con-

stituent cell of a coupled population of ECs and SMCs. Based on the user defined

length and diameter of the desired arterial segment, the algorithm generates two

Cartesian grids, one for ECs and SMCs each. Each element of the grid is a cell.

Chapter5/Figures/fullcoupling.eps
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Each cell is defined as a structure with members including theinformation of the

row and column, the boundary tag, the place holders for the state variables and

transmembrane ionic and gap junctional currents, and in thecase of EC, the local

values of the stimulus, i.e. JPLCagonist. the boundary tag is an identifier for each

cell encoding the information about where the cell resides in the Cartesian grid.

Figure5.4 shows the possible boundary tags and the locations of the cells iden-

tified by them. The boundary tags help identify how many nearest neighbours a

cell will have. Corner cells will couple to only two nearest neighbours. Cells in

color coded in red and blue will have 3 nearest neighbours. The cells color coded

with green and yellow have four nearest neighbours such. Each cell at jth column

of the green row couples to the cell atjth column of the yellow row. This creates

the periodic boundary condition and the vessel is a closed loop, circumferentially.

All the cells in grey, in Figure5.4are coupled in the same way as in Figure5.2.

5.4.1 Non-reflective boundary conditions

At JPLCagonist values in domain 2 of Figure4.2a, the cytosolic Ca2+ concentration

of a SMC oscillates. The frequency of these oscillations depends on the value of

the JPLCagonist stimulating the SMC. For a population of homocellularly coupled

SMCs in a longitudinal setting, the oscillation may be reflected back into the com-

putational domain. This reflection can be caused by the cellsat the boundaries,

(tagged 1,2,3 and 4,5,6 of Figure5.4) as they have no adjacent cell to couple to

(see cation of Figure5.4for description of boundary tags). A boundary condition

is therefore required which can safely lets the oscillations exit the computational

domain. To this end, these boundary cells have been made sinks such that the flux

from them to a preceding cell in the longitudinal direction is zero. Thus, ifIcouple

is the gap junctional flux form acell(i, j) with boundary tag 3, to thecell(i, j−1) with

boundary tag 9 then
dIcouple

dt
= 0 (5.18)

Thus,cell(i, j−1) will always be a source for the coupling boundary cell and this is

shown by the unidirectional black arrows in Figure5.4. Same rule applies to the

EC Cartesian grid in the longitudinal/axial direction. At the compilation stage of

the results, these boundary cells with tags 1 to 6 are discarded and only the cells
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with boundary tag 9 is written into the files containing the results.

Figure 5.4: Homogeneous populations of either ECs or SMCs are set in a Carte-
sian grid. Each element of the grid is a structure containingrelevant information
for that cell regarding its location, the state variables, arrays for transmembrane
ionic and coupling currents, the boundary tag, and the localstimulus value in the
case of an EC. The cells at the boundaries are tagged with boundaries identifiers.
1,2,4 and 5 means that a cell (i,j) is a at one of the four corners of the Cartesian
grid. Tags for other color codes are shown at the bottom of thegrid. Red and blue
cells are tagged as 3 and 6 respectively whereas green and yellow color code the
cells with boundary tags 7 and 8 respectively. The cells belonging to the interior of
the grid, colored grey, are all tagged as 9. Notice that the corners cells communi-
cate with only two nearest neighbours, whereas either 3 or 6 communicate with a
maximum of three nearest neighbours. Cells with tags 7 and 8 are coupled to four
nearest neighbours such that a cell with tag 7 has its forth nearest neighbouring
cell with tag 8 and vice versa. This creates the periodic boundary condition.

5.4.2 Solving Coupled Cells Model with RKSUITE

After demarcating the boundaries of the computational domain, RKSUITE is

called to solve the system of coupled ODEs. The basic procedure of this call has

been discussed previously in Section3.4 for a single cell model and Figure5.5 is

Chapter5/Figures/cartgrid.eps
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a schematic representation of the implementation of the algorithm for the system

of coupled ODEs. The solution vector used by the RKSUITE is a 1Darray of type

doubleand it can hold as large a number of elements as the memory of the comput-

ing platform can accommodate. The vector length is the totalnumber of equations

neq, or total number of state variables of SMC population + total number of

state variables of EC population.The relative and absolute tolerances are set to

1e−4 for enhancing the accuracy for the case of simulating coupled cells. The com-

pute time for solving the computational domain depends on the size of the domain

(i.e the cell load) and the spatial profile of the agonist concentration. Excessively

high tolerance values may also result in longer compute timedue to unnecessary

addition of compute cycles, without any notable change in accuracy. Figure5.6

relates the increase in compute time with the increasing computational load (i.e

total number of cells).

Noteworthy is the asymptotic increase in the compute time asthe payload or

number of cells in the computational domain, increase. In the case of serial ex-

ecution on one processor ofp5 575is able to simulate a computational domain

consisting of 1000 cells (ECs+SMCs) acceptably quickly. A computational do-

main of 1000 cells will have 18500 ODE to solve. Thus cell loadis a bottle neck

when executing the application on a serial platform. Other means such as mul-

tithreading will can be employed to reduce the compute time but the results may

still be insufficiently satisfying when the goal is to simulate very large populations

of coupled cells. The is due to the inherent dependencies of the functions evident

in the Figure5.5 where the core body of the program computing the single cell

and coupling fluxes at each time step, are not mutually exclusive. This implies

that no threads can be initiated to solve these two functionssimultaneously. The

significance of these two functions in terms of the contribution towards compute

time has been highlighted in Figure5.7, which shows that most of the compute

time is spent in these two function while solving the computational domain for

100 real time seconds. Following the hierarchy, each function call made tocom-

puteDerivativesby the RKSUITE, is followed by a call to the functionsingle cell

andcouplingsuccessively. This can be confirm by comparing the number of calls

in the Figure5.7. Each call tosingle celland a subsequent call to the function

couplingresults in the evaluation of ionic current for each cell, followed by the
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Start

J_PLC , t_final, 
# of cells

Initialize parameters of ’setup’

These are command
line arguments

call ’setup’

Globally declare instances
 of structures
smc and ec

e.g. number of equations (NEQ),
t_now,t_end, tol, 
thres, y_start

while 
t_now< t_final

close all I/O files 

True

False

call CT for solution between 
tnow <= t <= t_end

call ComputeDerivatives
recurssively until the 

step size is successful

check ’message’ returned 
from CT

resides in
rksuite.h

resides in
rksuite.h

if catastrophic 
(cflag=6)

print to stdout 
"RKSUITE failure"

else

write array ’y’ into 
output files

increase t_end 
some predefined interval

call ’reset’ 
to tell the code about

new t_end 

ComputeDerivatives(t,y,dxdt)
Input: t, y[]
Return: dxdt[]

call single_cell(y,t)

evaluate dxdt[]
as linear combination of respective 

ionic and coupling currents 

End of program

Return

single_cell(y,t)

Declare and define constant 
double precision representing 
rate, dissociation constants 

and half maximal values 
(listed in Table A1&A2)

Evaluate expression of 
indvidual currents 

call my_boundary()

Declare instance of 
class RKSUITE

Structure definition contains
variables, storage for single cell
and coupling fluxes and local 
J_PLC values

call coupling(t)

Evaluates ionic 
currents for each cell 

Evaluates intercellular coupling 
currents for each cell 

coupling(t)

Evaluate the net intercellular 
gap junction flux in or 

out of the cell with respect 
to each existing 

homocellular and heterocellular 
nearest neighbour

my_boundary()

Tags each cell with a boundary tag
which encodes the cell’s location in the

computational grid

Figure 5.5: Execution of C code for solving coupled systems of ODEs for cells in
populations of SMCs and ECs interconnected with intercellular specie and electri-
cal coupling.

Chapter5/Figures/flowchart2.eps
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evaluation of the respective coupling currents, which makes these two functions

computationally expensive.

Figure 5.6: Figure shows CPU time versus the size of the computational domain
in terms of cell load. The execution time increases after a cell load of ≈ 1000
cells is reached. A comparison between low level (-O3) and highest level (-O5)
compiler optimization shows the reduction in the compute time. The simulations
were executed on a single core (processor) of IBMp5 575system.

Another method of speeding up the execution is using a code optimization op-

tion that comes with most of the standard compilers. In the present case IBM’s

XL C , an C++ compiler for AIX or Linux operating systems, is used tocompile

the code. Depending on the level of the optimization chosen,the compiler can

apply changes to memory management and consider architecture specific param-

eters (on which the program is being compiled) to maximize the use of resources,

while compile the code. Figure5.6shows the effect of selecting increasing levels

of code optimizations performed by the compiler.

Chapter5/Figures/cpuVStotalCells.eps


114 Computational Method and Ca2+ Dynamics of Coupled EC/SMC Model 5.4

(a)

Figure 5.7

Chapter5/Figures/profNOPT.eps
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(b)

Figure 5.7: Callgraphs showing the computationally expensive functions in the
two cases of code optimization (-O3 and -O5) by the compiler.Functions high-
lighted in yellow are related to the main program, green called by the class in-
stance RKSUITE, and those highlighted by light blue are math functions listed
in math.h, called by other external functions iteratively.In both callgraphs, the
function couplingandsingle cellare two of the three most expensive functions.
Notice that the number of calls to the functionscomputeDerivatives, single cell
andcouplingare same in both cases, with or without optimization. The time, how-
ever, accounted for by the calling function (denoted byself seconds) shows that
most of the total time is spent in either the functioncouplingor single cell, both
of which are called by the functioncomputeDerivatives.

Chapter5/Figures/profOPT.eps
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Although the reduction in execution time is significant, it increases as a func-

tion of number of cells in the same manner. Other methods thatmay speedup the

execution time of the code are, compiling with math.h and memory management

libraries specifically designed for the machine architecture on which the code is

to execute.

Also, the implementation of spatial non-uniformity in the agonist stimulation

will result in the solver taking smaller steps because of theincreased computa-

tional complexity. The reason for the increase in complexity is the contribution

of gap junctional current from neighbouring cells which is updated and taken into

account at each time step. A more innovative solution to thisproblem is discussed

in the next chapter.

5.5 Cellular Dynamics in Coupled ECs/SMCs

In Chapters 3&4 the cellular dynamics of a single, uncoupled,SMC and EC were

discussed. The aim was to understand how the dynamical statevariables inter-

acted with each other and result in a time course of intracellular Ca2+ dynamics

that is agonist level dependent. In this section, the focus is upon the Ca2+ dynamics

of cells when coupled to their nearest neighbours via homocellular and/or hetero-

cellular coupling. Small homocellular populations of SMCs and ECs are coupled

as a first step to investigate how homocellular coupling can affect the cellular dy-

namics in each cell type. Later, single SMC is coupled to an ECfor studying the

effects of heterocellular coupling.

5.5.1 Homocellular SMC coupling effects

Physiologically, intercellular gap junctional plaques can be found between vas-

cular SMCs. To incorporate such homocellular coupling in thepresent computa-

tional environment, intercellular coupling is modelled bythe equations5.6, 5.8

and 5.9, for membrane potential, Ca2+ and IP3 homocellular coupling. To under-

stand how cellular dynamics evolve upon agonist stimulation, cells are coupled in

the manner shown in Figure5.8. SMC or EC, shaded in grey, is stimulated with

JPLCagonist=0.1 µM/s, from 100-200 seconds of the total 300 second simulation,
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0 1 2 3 4

(a)

0 1 2 3 4

(b)

Figure 5.8: SMCs (a) and ECs (b) are connected via homocellular coupling. The
cells on the extremities (drawn in dashed line) serve as permanent sinks to make
the computational domain non-reflective and are not included in the results pre-
sented in later figures. Cells may exchange current information about membrane
potential, Ca2+ and IP3 .

whereas other adjoining cells are at JPLCagonist=0.01µM/s over the whole duration.

Cells on either ends, in both the computational grids, are coupled to their near-

est neighbours as sinks and are neglected while analysing the results. Figure5.9

shows the time evolution of cytosolic Ca2+ concentration and the membrane po-

tential of three SMCs demarcated by solid lines in Figure5.8.

Four intercellular coupling cases are considered to see howenabling different

coupling media affect the Ca2+ dynamics of these three cells. In the first case, Fig-

ure5.9a, the intercellular coupling between the SMCs is completelydisabled, i.e.

the cells are uncoupled. Only in Cell 2 (in blue) the Ca2+ concentration oscillates

upon stimulation (between 100 and 200 seconds) compared to the adjacent cells

1 and 3 in which the Ca2+ concentration takes a low steady state value. The corre-

sponding membrane potentials depicts similar responses. For cell 2 the membrane

potential oscillates while it is at steady state for the other two adjacent cells. In

comparison, in the second case where the SMCs are coupled via the membrane

potential only, oscillations in the Ca2+ concentration concentration occur in all

cells, as shown in Figure5.9b. On close inspection, the Ca2+ oscillations in the

stimulated cell (cell2 in blue) and the two adjacent cells (cells 1 & 3 in red and

green respectively) are antiphase. When compared to the no coupling case in

Figure 5.9a, the frequency of oscillations has increased and the magnitude has

decreased, except for the first transient which is larger than that in Figure5.9a

for cell 2. Unlike, the Ca2+ oscillations, the membrane potential oscillations of

all three SMCs are synchronized and have identical magnitude. Also, unlike Fig-

ure5.9a where cells were uncoupled, the peak to peak voltage of the oscillating

Chapter5/Figures/fiveSMCs.eps
Chapter5/Figures/fiveECs.eps
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membrane potential of cell 2 is more positive. Therefore, byestablishing the elec-

trical coupling between SMCs, the membrane potential isstronglycoupled, while

the Ca2+ concentration isweaklycoupled.

Upon enabling the Ca2+ coupling in Figure5.9c, along with the electrical cou-

pling, the oscillating Ca2+ concentration in the three SMCs attain similar peak to

peak magnitude while the DC component of the cell 2 remains approximately at

higher offset, similar to the Ca2+ concentration in Figure5.9b. The membrane

potential, in the present case, remains synchronous with a peak to peak voltage

which is relatively smaller the previous case in Figure5.9b,. Thus the addition

of Ca2+ coupling strengthens the overall synchrony of the cells. InFigure5.9d,

SMCs are coupled via IP3 in addition to electrical and Ca2+ coupling which does

not produce any significant difference in the response than that seen in Figure5.9c.

In Figure5.9b, in the case of membrane potential coupling alone, the steady

state oscillations are attained att=125 seconds and the frequency of oscillations

becomes more stable. Inclusion of Ca2+ and IP3 coupling Figures5.9c & d results

in attaining the steady state response with a delay as opposed to the membrane

potential coupling alone. In Figures5.9c & d, the transient response ends at ap-

proximatelyt=150 seconds and steady state oscillations are observed beyond this

time point. This is due to the selection of low Ca2+ and IP3 coupling coefficients

(listed in TablesA.1 & A.2)which establish weak species coupling environments.
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(a)

(b)

(c)

(d)

Figure 5.9: An array of homocellular coupled 5 SMCs , as shown in Figure5.8a
(cells on the flanks not shown in the results) was simulated for 300 real time sec-
onds, stimulated with JPLCagonist=0.01µM/s over this time span. Cell 2 (shaded in
gray in Figure5.8a) was stimulated with JPLCagonist=0.1µM/s from 100 to 200 sec-
onds. Four modes of intercellular coupling were implemented, (a) no coupling, (b)
electrical coupling, (c) electrical and Ca2+ coupling, and (d) electrical, Ca2+ and
IP3 coupling.

Chapter5/Figures/Homocellular/noCoupleN.eps
Chapter5/Figures/Homocellular/VcoupleN.eps
Chapter5/Figures/Homocellular/JandVcoupleN.eps
Chapter5/Figures/Homocellular/JandVandIPcoupleN.eps
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5.5.2 Homocellular EC coupling effects

Similar to the homocellular coupled SMCs, a population of 5 ECs, as shown in

Figure5.8b, is simulated for 300 seconds, withJ̃PLCagonist=0.01µM/s. Again, cell

2 of Figure5.8b is stimulated with̃JPLCagonist=0.1 µM/s from 100 to 200 seconds.

To incorporate the homocellular coupling between ECs, the equations5.7, 5.10

and 5.11, modelling membrane potential, Ca2+ and IP3 homocellular exchange.

In the Figure5.10a, with no intercellular coupling, the cytosolic Ca2+ concentra-

tion in the stimulated EC rises to a higher value in response to the step increase

in J̃PLCagonist from 0.01µM/s to 0.1µM/s. The membrane potential hyperpolar-

izes with increasing cytosolic Ca2+ concentration, while the adjacent cells 1 & 3

continue to retain a steady state value of more positive membrane potential and

low Ca2+ concentration. Enabling electrical coupling between ECs, the membrane

potential of the cells tends to synchronizes, as shown in Figure5.10b. Because of

the coupling, the more positive membrane potential of the adjacent cells 1 & 3,

influence the hyperpolarized membrane potential of cell 2 and makes it slightly

positive. The Ca2+ concentration, however, remains unaffected by the homocellu-

lar electrical coupling.

With Ca2+ coupling switched on, the Ca2+ concentration of the coupled ECs

also tends to synchronize, as shown in Figure5.10c. Upon stimulation of cell 2

with increased̃JPLCagonistat the 100 second mark, the Ca2+ concentration increases

in the three ECs with a transient increaser in the Ca2+ concentration at first, and

then assuming a steady state. The magnitudes however of the Ca2+ concentration

in the EC, directly stimulated is higher then the and the adjacent ECs 1 & 3. No

significant change between membrane potentials, in the presence or absence of

Ca2+ coupling, is evident, except for the hyperpolarizing transients around the

100 second mark, which correspond to the transient increasein Ca2+ concentration

around that time stamp. Intercellular exchange of Ca2+ enables the CICR and the

successive refilling of ER stores, which makes up this Ca2+ transient in each EC.

In addition to the electrical and Ca2+ couplings, IP3 coupling is also enabled

and results shown in Figure5.10d. Contribution of IP3 from EC 2 to ECs 1 & 3

aids in increasing the cytosolic Ca2+ concentration by adding Ca2+ the IP3 induced

Ca2+ release from the ER or̃JIP3, to the cytosol. The membrane potential also
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follows the same pattern and becomes relative more negativebecause of the added

cytosolic Ca2+, as compared to either Figure5.10b or c.

Conclusively, in the case of ECs, the intercellular electrical coupling is not as

strong as in SMCs but can still be categorized asstrongcoupling as the membrane

potential of acceptor cells follow the membrane potential of the donor cells closely.

Ca2+ coupling, on the other hand, can still be characterized asweakcoupling, how-

ever, enabling all there coupling modes improves the extentof synchronization of

Ca2+ concentration of the coupled ECs.

5.5.3 Effects of heterocellular coupling on an EC/SMC unit

Now that there is some awareness on how homocellular coupling affects the Ca2+ and

membrane potential of SMCs or ECs in a homocellular population, let us turn

our attention to the influence of heterocellular coupling between SMCs and ECs.

For this, a single unit consisting of an EC, heterocellularlycoupled to a SMC,

is considered. To implement heterocellular coupling, the heterocellular electrical,

Ca2+ and IP3 currents, from a SMC to and EC, modelled by equations5.12,5.13,5.14,

and from an EC to a SMC, modelled by equations5.15,5.16,5.17, are added to

the respective ODEs modelling the membrane potential, cytosolic Ca2+ concen-

tration and cytosolic IP3 concentration of each cell type, described in detail in

sections3.2.1and3.2.2.

Section4.1established that in an uncoupled SMC, a range of JPLCagonist (0.08-

0.19µM/s) produces oscillations in the cytosolic Ca2+ concentration and the mem-

brane potential, with respect to time. It is important to understand how the hete-

rocellular coupling with an EC influence this oscillatory behaviour. Since the

eventual interest lies in the study of spatially varying agonist concentration on the

luminal side or the EC surface of an arterial segment, only the EC of this SMC/EC

unit is stimulated, as shown in Figure5.1. Figure5.11shows the effect of increas-

ing J̃PLCagonist on the cytosolic Ca2+ concentration of the SMC from the coupled

SMC/EC single unit. Unlike an uncoupled SMC, the Hopf bifurcation starts at

J̃PLCagonist≈0.365µM/s and ends at≈0.95µM/s. Thus, compared to the response

of an uncoupled SMC shown in Figure5.11a, the oscillatory effect in Figure5.11b

for a SMC of single unit has shifted significantly to the righton x axis. Since SMC
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(a)

(b)

(c)

(d)

Figure 5.10: An array of homocellular coupled 5 ECs , as shown in Figure5.8b
(cells on the flanks not shown in the results) was simulated for 300 real time
seconds, stimulated with̃JPLCagonist=0.01µM/s over the whole time span. Cell 2

(shaded in grey in Figure5.8b) was stimulated with̃JPLCagonist=0.1µM/s from 100
to 200 seconds. Four modes of intercellular coupling were implemented, (a) no
coupling, (b) electrical coupling, (c) electrical and Ca2+ coupling, and (d) electri-
cal, Ca2+ and IP3 coupling.

Chapter5/Figures/Homocellular/noCoupleECN.eps
Chapter5/Figures/Homocellular/VcoupleECN.eps
Chapter5/Figures/Homocellular/JandVcoupleECN.eps
Chapter5/Figures/Homocellular/JandVandIPcoupleECN.eps
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is not being stimulated directly, it solely depends on the IP3 transport from the

coupled EC. Another reason is the closure of VOCCs in SMCs due to the hyper-

polarization of the plasma membrane. VOCCs contributes to thecommencement

of Ca2+ oscillations in an uncoupled SMC by adding the extracellular Ca2+to its

cytosol, thereby aiding the Ca2+ induced Ca2+ release. Closure of VOCCs under

hyperpolarization disables this pathway of Ca2+ entry thus increasing the depen-

dence of Ca2+ oscillations on the cytosolic availability of IP3 . Another important

difference between the two cases is the span of the oscillatory behaviour that has

extended significantly in Figure5.11b. This feature is dictated by the strength of

heterocellular IP3 coupling (the value of coupling coefficient). Another distinc-

tion between the two response is the maximum Ca2+ concentration which is lower

in the case of uncoupled SMC in Figure5.11a than in b.

(a) (b)

Figure 5.11: A comparison of the cytosolic Ca2+ concentration of (a) an uncou-
pled SMC and (b) a SMC from a single EC/SMC coupled unit. In (b),EC and
SMC are heterocellular coupling via electrical and IP3 coupling and the agonist
stimulation takes place only at the EC surface. The Hopf bifurcation has shift to
the right on x axis in (b) compared to (a).

Figure5.12shows the influence of different media of heterocellular coupling

affect the Ca2+ dynamics in a SMC, in (a) and (b) and an EC in (c) and (d).

J̃PLCagonist is increased from 0.01µM/s to 0.4µM/s at 100 second mark. In the

case electrical coupling only (dynamics shown in red), it alone fails to elicit an

increase in the SMC Ca2+ concentration (Figure5.12a). There is a prominent

increase in the Ca2+ concentration of the EC in Figure5.12c which apparent is

biomodal, first peak around 100 seconds and the second one is beyond 200 sec-

onds. The second peak is by virtue of decreasing IP3 in the cytosol of the EC

Chapter5/Figures/SingleUnit/BifurcationUncoupled.eps
Chapter5/Figures/SingleUnit/Bifurcation(VIPcouple).eps
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due to removal of the stimulus,J̃PLCagonist, at 200 seconds. The membrane poten-

tial, however, is hyperpolarized in both cells. SMC membrane potential, although

relatively less negative than that of EC’s, follows the pattern of EC’s membrane

potential faithfully, suggestingstrongelectrical coupling.

Enabling two way Ca2+ coupling between the EC and SMC allows flow of cy-

tosolic Ca2+ of EC, into the cytosol of SMC, under concentration gradient. Thus

a corresponding slight increase in the SMC Ca2+ concentration can been see in

Figure5.12a (dynamics shown in blue). Even though Ca2+ via coupling enters the

SMC cytosol, it is unable to produce a marked increase in the cytosolic Ca2+ con-

centration, primarily because of the inavailability of cytosolic IP3 . The membrane

potential is hyperpolarized but relatively less negative than in the case of electri-

cal coupling only. This is due to increased Ca2+ concentration in the SMC, which

tends to depolarize the SMC’s membrane potential while the ECmembrane poten-

tial tends to make it more negative. The resultant membrane potential, therefore,

is less negative than the previous case of electrical coupling alone.

In the third case (dynamics shown in green), enabling the passage of IP3 be-

tween the two cells has a significant impact on the SMC Ca2+ concentration. In-

flux of IP3 from the EC cytosol to SMC encourages the IP3 induced Ca2+ release

from the SR. Combined with the Ca2+ influx from the coupled EC, the cytoso-

lic Ca2+ concentration is enough to put the cytosolic oscillator into an oscillatory

state. Thus, the presence of IP3 is an enabling factor to induce Ca2+ oscilla-

tions in the coupled SMC. Before examining the EC Ca2+ concentration, let us

first probe the status of membrane potential in the two cells.In SMC, in Fig-

ures reffig:EC/SMCdynamicsa & b, the membrane potential oscillations are in

phase with the Ca2+ oscillations and also with EC’s membrane potential in Fig-

ures reffig:EC/SMCdynamicsd. Note that in Section4.1, it was shown in the

Figure4.3 that the oscillations in the Ca2+ concentration and membrane potential

of an uncoupled SMC are anti-phase. The cytosolic Ca2+ concentration of the EC

also oscillates, which is a significant feature since the cytosolic Ca2+ concentra-

tion of an uncoupled EC can not oscillate at any stimulation level, as shown in

Figure4.9a & b. This behaviour in the EC can be attributed to both, the oscil-

lating membrane potential of the EC and also the Ca2+ coupling with the neigh-

bouring SMC, whose oscillating Ca2+ concentration, at times surpasses the maxi-
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mum Ca2+ concentration of the EC, thus reversing the direction of gap junctional

Ca2+ flux, i.e. Ca2+ flowing from SMC to EC on those instances. The downstream

consequence of the oscillations in EC’s Ca2+ concentration of and membrane po-

tential have not been addressed in detailed in this thesis but it is probable that

this behaviour can contribute to fluctuating activation of adownstream process,

such as activation of eNOS, and elicit responses which are unlike those seen in an

uncoupled or homogeneously coupled populations of ECs.

(a) (b)

(c) (d)

Figure 5.12: A single unit consisting of an EC and a SMC coupled via electrical
(red), electrical and Ca2+ (blue), and electrical, Ca2+ and IP3 coupling (green).
(a) and (c) shows the cytosolic Ca2+ concentrations of a SMC and EC respec-
tively. (b) and (d) show the time course of membrane potential for a SMC and
EC respectively. Only the EC is stimulated withJ̃PLCagonist=0.4 µM/s between

100.0< t ≤ 200.0, and̃JPLCagonist=0.01µM/s elsewhere. Only in the case of adding
IP3 coupling between the two cells, the SMC Ca2+ concentration and membrane
potential oscillates. These oscillation also induce a similar and in phase response
in the cytosolic Ca2+ concentration and membrane potential of the neighbouring
EC.

Chapter5/Figures/SingleUnit/SMCca.eps
Chapter5/Figures/SingleUnit/SMCv.eps
Chapter5/Figures/SingleUnit/ECca.eps
Chapter5/Figures/SingleUnit/ECv.eps
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Chapter 6

Parallelization for Large Scale

Computational Domain

The length of an atherosclerotic lesion in muscular arteries such as internal carotid

or coronary arteries, ranges from an order of millimetres toa few centimetres

(Ryan et al., 1988). A high incidence of these plaques occur near the bifurca-

tion areas in of the arteries. These regions experience complex blood flow pro-

files, termed as disturbed flow, with consequent substantialspatial gradients in the

wall shear stress. Accompanying the spatially varying wallshear stress bound-

ary layer, is the spatial variation in the concentration boundary layer of the blood

borne species (e.g. ATP), which are agonist to specific receptors expressed on the

endothelial surface of the arterial wall. Thus the areas with disturbed flow and ac-

companying impaired mass transport, where atherosclerosis occurs (Cheng et al.,

2006), form the computational domain of interest for the presentstudy.

6.1 Motivation for Parallel Computation

In order to make the computational domain of interest physiologically relevant, it

is important to match the scale over which the physiology andpathophysiology

takes place. Considering the morphology of the cells (i.e. the cell length, width

and volume) and the orientation in which these cells sit in a small section of an

arterial tissue, suggests that a mere centimetre (1 cm) contains the number of cells

127
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ranging from hundreds of thousands, to millions of cells. The basis of this notion

is the length scale of a single EC or SMC, which is of the order ofa few tens of

micrometers (µM) and each cell contains 4 to 7 and some times 8 nearest neigh-

bours. From the computational point of view, each single cell model expressed

as 4 ODEs in the case of an EC and 5 ODEs for a SMC. Considering the charac-

teristic lengths of single EC or SMC and coupling topology asdescribed in the

Section5.3, an arterial segment of length 1 cm and a diameter of 4 mm (of the

order of a coronary artery diameter) can have 220320 cell (159120 SMCs and

61200 ECs). This gives rise to a computational domain with over 2.362 million

degrees of freedom or ODEs to evaluate the solution at each time step. Solving

this computational domain clearly needs extensive computational resources and

a very fast CPU speed to compute practically long time scales which can demon-

strate the evolution of slow cellular processes locally andglobally across the axial

and circumferential planes.

Figure6.1 highlights the increase in the computational expense with increas-

ing cell load (i.e. number of cells in the computational domain), in terms of the

compute time. The exponential increase in the compute time with increasing num-

ber of cells can not promise acquiring the solution for a computational domain of

the sort described above, for a time scale of at least hundreds of seconds. For the

same computational ensemble, the computational expense isexpected to exacer-

bate when the agonist stimulation or JPLCagonist in non-uniform, across the axial of

circumferential plane. Spatial nonuniformity in stimulusin circumferential direc-

tion has not been included in this thesis and it is only confined to variation in the

axial dimension. Thus on a serial platform executing a structured program, com-

pute time becomes a bottleneck to simulate large, physiologically relevant length

of an arterial segment.

Another important parameter to consider is the virtual memory allocated to

the program by the operating system (OS). Upon compiling (and linking) of a pro-

cedural or structured C program, an Executable and Linking File (ELF) generates

which is in binary format. Soon as this ELF is executed, some memory space is

allocated to it by the OS in the global memory space. This space is segmented

into four virtually contiguous segment or frames viz, text,data, heap and stack,

as shown in Figure6.2. Textcontains all the instructions (in binary for) written
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Figure 6.1: (A repeatation of Figure5.6) Figure shows CPU time versus the size
of the computational domain in terms of cell load. The execution time increases
after a cell load of≈ 1000 cells is reached. A comparison between low level (-O3)
and highest level (-O5) compiler optimization shows the reduction in the compute
time. The simulations were executed on a single core (processor) of IBM p5 575
system.

Chapter6/Figures/cpuVStotalCells.eps
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in the source code. The access permission to this segment isread and execute

only. Stacked upon this is another segment calledData, which actually is divided

into two segments,data and BSS(BSS = Block Started from Symbol, this name is

now depreciated), which contain initialized variable and constant declared in the

global scope and uninitialized variables, respectively. The access of this segment

is read and write.

Soon as the execution of the program starts, the memory allocated to the pro-

gram istext+dataand some overhead. The program memory, however, can ex-

pand if calls to function for dynamic memory allocation, such asmalloc(), are

there in binary of the source code . This dynamic memory allocation is located

above the data segment and is calledheap. Heap and expand or contract with the

allocation and deallocation of the dynamic memory.

Figure 6.2: Memory map of a structure C program’s virtual memory. Solid lines
represent that the segment size cannot vary where as the dashed line represent
that the segment can expand or contract according to the dynamic allocation or
deallocation or pushing new temporary variables belongingto functions called
subsequent to themain() function. Note that this contiguous map is of virtual
memory allocated to the program, which is related to the physical or real mem-
ory space (may or may not be contiguous) by a lookup table, called page table,
maintained by the operating system.

Structured C programs have a local hierarchy of function calls. Each calling

function passes arguments to the function called. The called function may also

Chapter6/Figures/memmap.eps
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have some temporary variables, initialized or uninitialized, that are declared in the

local scope of that function. These are stored at the top of the virtual memory in

the segment calledcall stackor juststack. Stack can also expand but the direction

of its expansion is from top to bottom and data is access by LIFO or last in first

out basis.

In the program flowchart shown in Figure5.5each cell, either an EC or SMC,

is a C structure with members including all state variables,ionic and coupling cur-

rents and other local information such as location in the matrix and local hemo-

dynamic variables e.g. JPLCagonist or WSS. Multiple instances of these structures

form the populations of EC or SMC by dynamically allocating the memory using

malloc(). Also, the solver RKSUITE requires multiple arrays of the same length

as the number of equations (remembering that each SMC is 5 ODEs and an EC is

4 ODEs). While setting up the solver to solve withmethod 2or Runge Kutta(4,5),

it requires allocation of memory as big as 32×neq(whereneqis the total number

of ODEs), for its own use. Thus increasing the cell load (number of cells) will

increase the number of instances of these structures and theoverheads that come

with the solver, and stored in the heap segment. While dealingwith very large

populations of cells, the memory resource thus can be a serious limitation.

In order to avoid these bottleneck when dealing with physiologically relevant

cell population size, related to memory resource or impractically long compute

time to simulate the system for a physiologically relevant time scale, alternative

computing options must be sought. Parallel computing can provide an answer to

these limitations. Pooling of computational resources to solve a single problem or

run the same C program over a multiprocessor machine is a promising prospect for

solve large scale computational problems. The next sectiondiscusses some plat-

forms and the pros and cons of their use. Later sections elaborate the development

and implementation of the parallel code on the computing platform of choice.

6.2 Architecture for High Performance Computing

Flynn’s Taxonomy, presented by Micheal J Flynn in 1966 (Flynn, 1972), classify

the multi-processor computer architectures along two independent dimensions, in-

struction and data and each of these two dimensions can have either of the two
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states, single or multiple. Computers can either be:

(a) (b)

(c) (d)

Figure 6.3: Theoretical single processor and multiprocessor architectures de-
scribed by Flynn’s Taxonomy. (a) Programs execute sequentially on an SISD ma-
chine irrespective of the dependencies. (b) Multiple data streams can be worked
upon at a time on a SIMD machine. This can be a multiprocessor or multithreaded
approach. (c) Real world realization of a MISD machine, wheremultiple instruc-
tions can be executed on the same data stream, has not been possible. (d) The
most common multiprocessor architecture used today is MIMD, where multiple
instruction streams can work simultaneously on multiple data segment.

• Single Instruction, Single Data (SISD):As shown in Figure6.3a, this is a

serial computer with one instructions stream is executed bythe CPU at a

time, acting upon a single data stream. The execution of sucharchitecture

is deterministic i.e. predictable. Right from the olden day to this date, this

architecture is used even in most of the modern day PCs.

• Single Instruction Multiple Datat (SIMD) : A type of parallel computer, as

shown in Figure6.3b, where all processors in a multicore or multiprocessor

machine execute the same instruction on different chunks ofdata. This type

of computing architecture is an appropriate choice for problems where data

is highly regular/structure (i.e. arranged in a matrix) andthe data elements

Chapter6/Figures/sisd.eps
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are coupled. This also gives rise to the requirement of synchronization in

communication thus making the execution deterministic.

• Multiple Instruction Single Data (MISD) :Theoretically these machines

should be able to execute multiple instructions on a single data stream. To-

date, no such architecture has been realized. For this to happen, each pro-

cessor should be able to access the same data location at a time and since

every processor is executing different sets of instructions, they should all be

able to manipulate the same data location at a time. This, in practicality, not

possible.

• Multiple Instructions Multiple Data (MIMD) : Several instruction sets

can be executed on different data sets, at a time by several processors on

a multiprocessor machine. As shown in Figure6.3d, this architecture is

best suited for the problems were the data is mutually exclusive and has

no dependencies. Thus making subtask executing on segmentsof mutually

exclusive data can shorten the time of computation significantly. MIMD

system cannot be adequately classified by Flynn Taxonomy alone. This

is because both small (few processors) and large (thousandsof processors)

clusters of processors capable of such multitasking fall into the MIMD cat-

egory and they behave differently. Another dimension to addin classifying

the MIMD systems efficient is the memory where the data is kept.

Shared Memory Systems: With multiple CPUs, these systems share

the same memory address space. Thus the user need not be awareof the

location of data when accessing it by any of the member processors of the

cluster. Shared memory systems can be both SIMD or MIMD. A vector

processor (a single CPU capable of executing single instruction set on an ar-

ray of data simultaneously) is an example of shared memory SIMD class or

(SM-SIMD). Shared memory MIMD subclass is implemented bySymmet-

ric Multiprocessing(SMP) where identical CPUs or processors share the

main memory address space. Interestingly, a SMP machine canbe made

to work as a SM-SIMD by using specialised vector operation libraries de-

signed to implement simultaneous operations on large arrays and eliminated

the need for excess use of loops, but the vice versa is not possible. This can
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be achieved by using software protocols such asOpenMP. The programs

written using OpenMP are compiled by specialized compiler.Multithread-

ing is another way to exploit the capabilities of such architectures. Fig-

ure6.4a elaborated the SM-MIMD architecture.

Ideally, the memory access to all CPUs should be direct and uniformly

quick, which can be best achieved if all processors are on chip. Unfortu-

nately, the progress in adding multiple cores or processorson a single chip

and high performance memory hardware has not been as fast as the increas-

ing speed of a single core/processor. Large shared memory clusters are

made of connecting two or more SMP machines through fast interconnect

buses. Although a processor from one SMP unit may access the memory of

another SMP unit, the access is not as fast as the local memoryaccess.

Distributed Memory Systems: Figure6.4 shows the layout of a dis-

tributed memory machine. Each CPU in this case has its own associated

memory space and other CPUs in the cluster cannot have direct memory

access to its memory address space. The user, therefore, must be aware of

the location of the data before accessing it and this access is explicit, un-

like the SM-MIMD case where CPUs can access memory address space

directly. A distributed machine can either be of SIMD or MIMDarchitec-

ture i.e. DM-SIMD or DM-MIMD. DM-SIMD machines are also known

asprocessor arraymachines because they operate in a lock step where all

CPUs execute the same instruction set on different data elements, at the

same time and interprocessor synchronization is required.A master proces-

sor issues the instruction sequence to the processor array.This processing

layout is best suited for applications with no data exchangebetween the

processors, therefore no interprocessor synchronizationwill be required. In

case where applications require data exchange between processors, it has to

be sent, upon request, explicitly from the local memory via external network

routers. This can be done using message passing protocols such asMessage

Passing Interfaceor MPI, a standard library for interprocessor communi-

cation in distributed memory architectures. This can significantly limit the

performance of the machine. This makes a DM-SIMD machine nota fea-
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sible choice for applications were interprocessor exchange is required. A

DM-MIMD machine provides the option of implementing multiple instruc-

tion streams by several processors on multiple data streamsin their local

memory address space, at a time. For applications with no requirement of

data exchange, several tasks can be performed autonomouslyon different

individual processors or sets of processors, on different data segments. This

gives significantly enhancement in performance.

Formally put, thememory bandwidth(the rate at which data can be read from or

stored into the memory by a processor) should increase linearly with the number

of processors. The major advantage of having distributed memory or shared mem-

ory is that the memory bandwidth scales up with the number of processors. The

major disadvantage in the case of distributed memory is thatthe latency (formally

defined as the delay in sending 0 bytes of data from one processors to another)

increases, as compared to a shared memory architecture. Implementation of high

bandwidth and low latency communication links for interconnection of processors

has bridged this gap and put DM-MIMD machines as front runners. For transfer

of data from one processor to another, MPI protocol is implemented in software,

and is ade factomessage passing standard. Despite the obvious advantages of

simpler programming on SMP clusters and faster memory access compared to the

a distributed memory architecture, the lack of memory and CPUscalability makes

them an inferior choice for problems that are large scale andrequire substantial

amount of interprocessors data exchange. On the expense of relatively slower

interprocessor communication, distributed architectures, especially DM-MIMD

machines provide scalable bandwidth over very large numberof processors. Al-

though the programming is tougher than for shared memory architectures, the gain

is worth the effort since the local memory access is fast, andthe isolation of local

memory from the memory of other processors eliminates the need for maintain-

ing cache coherency (the need for updating the data brought to L3 cache from

the main memory by a processor, while another remote processor does a write

operation on it), which is important in a SMP machine.

Hybrid architectures where shared memory and distributed memory are simul-

taneously implemented, have made computation possible on petascale and show
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(a) (b) (c)

Figure 6.4: MIMD machines can be classified into to categories based on the
hard-wired permission of client to the memory address of thehost. a Processors
in a Symmetric Multiprocessing (SMP) machine can shared common memory ad-
dress space, making the data location transparent to the user. Multiple SMP units
can be connected via high performance buses allowing directaccess to memory
space of each other. The communication between two SMP unitsis slower than
when processors of the same SMP communicate. (b) In case of distributed mem-
ory, each processors (either single core or multicore) havetheir own associated
memory to which direct access by another processor is not allowed. Processors
are networked through high performance (high bandwidth, low latency) intercon-
nect and the processors communicated via exclusive calls made in the program
using message passing protocols such as the Message PassingInterface or MPI.
(c) A hybrid shared-distributed memory machine physicallywidens the extends
the memory address scape of a processor by increasing the number of cores per
processor. Each core can aces the associated memory space while other remote
processors have to make an exclusively call/request to access data in the memory
address space residing in its memory using MPI.

Chapter6/Figures/Shared_memory.eps
Chapter6/Figures/Distributed_mem.eps
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promise in to achieve exascale performance. Figure6.4c shows the memory ad-

dress arrangement in hybrid distributed-shared memory architecture.

BluefernR©, UC’s supercomputing facility formally known as Universityof

Canterbury Supercomputer (UCSC), houses two supercomputers.One is a sym-

metric multiprocessing machineIBM p5 575 and the other is a massively paral-

lel DM-MIMD machineIBM Blue Gene L. Salient features of these two parallel

computers are discussed in the following sections.

6.2.1 IBM p5 575

An example of a distributed shared memory MIMD machine, IBM System p5
TM

575 is a member of IBM’sp Series and uses IBM Power5+
TM

microprocessor

as its core building block. Eight Power5 processors, operating at 1.9GHz clock

frequency and sharing a total of 32 GB of memory (4GB associated with each

processor), make asymmetric multiprocessing nodeor SMP node, shown in Fig-

ure 6.5. Power5+ is a dual core processor and both cores share a L3 (orlevel

3) cache of 36MB and L2 cache of 1.9MB and each has its local L1 instruction

(64KB) and data (32KB) cache. A 16 core version is also available where both

cores of the dual core Power5+ processor are active. Each processor can read from

the L2 or L3 cache of another processor but can only store or write on its local L2

or L3 cache. At BluefernR©, the p5-575 serve consists of 10 such nodes.

A mix of interconnect networks (e.g. Gigabit Ethernet and dual channel Infini-

band, which is, theoretically, 10 times faster than GigabitEthernet) connect these

nodes to provide a sustained bandwidth of 105.5 Gigabytes/sec. This is considered

a high bandwidth and provides the backbone of internode communication. Hence,

each p5 575 node can aces a total of 15.2MB of L2 cache, 288MB ofL3 cache

and 32GB or main memory (expandable to 256GBs as the node card provides

64 slots for DDR2 memory DIMMs i.e. 4GB×64=256GBs). Each of the avail-

able nodes in the UCSC’s p5-575 system are logically partitioned (virtually made

as a separate computer) into LPARs or Logical Partitions. Each LPAR runs its

own Operating System Instance (OSI). Some of the LPARs run AIX5.3, IBM’s

UNIX based operating system, while others run SUSE Linux Enterprise Server

9 (SLES9). Depending on the requirement of memory resources, the user can
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choose to use a development node which serves a standalone 8 processor shared

memory or SMP machine with 32GB memory. It is worth noting here that de-

spite the high bandwidth and low latency of the network interconnect, Infiniband,

the intranodecommunication is much superior in efficiency and speed. Thusone

could expect a drop in performance when doing internode communication than

executing an application on a single node.

(a) (b)

Figure 6.5: (a) Schematic of a Power5+
TM

chip. (b) An open node case of p5-575
showing the memory, the dual chip module (DCM) and the fans.

6.2.2 IBM Blue Gene/L

Blue Gene/L (BG/L), is an example of distributed memory MIMD architecture, is

the first of IBM’s Blue Gene series. The goal of the Blue Gene design was to make

ecofriendly, a power miser, yet extremely fast supercomputers to enable compu-

tation of the complex problems that are limited by the availability of computing

power. A node, in the case of BG/L, constitutes a 700 MHz dual core Power PC

440 (PPC440) processor (Gara et al., 2005). A compromise on the processor speed

comes with a gain on lower power consumption. Depending of the preferential use

of the two cores, either incoprocessor mode, where the computation and commu-

Chapter6/Figures/p575a.eps
Chapter6/Figures/p575b.eps
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nication are handled by two separate cores, or invirtual node mode, where each

core handles both its computation and communication independently, thus virtu-

ally presenting itself as an independent processors or another node. Figure6.6a

shows the PPC440 schematic of internal resources. It is basedon system-on-chip

design where each of the two cores has separate L1 instruction and data caches

(32KB), a separate L2 cache (2KB) for each core and a shared highbandwidth,

low latency embedded DRAM serving as a 4MB L3 cache which provides fast

compensation to the L1 caches in the case of a cache miss. Thismakes each core

a high performance core on its own. The second core, in thecoprocessor mode

serves as an I/O processors to handle communication whereasthe other core does

the computation simultaneously. Unlike the standard PowerPC440 processors,

the ones used in BG/L are modified to have an on-chipfloating point unitor FPU,

code nameddouble hummer. It has two FPU functional units that are capable

of performing 64 bit arithmetic operations such as multiply-adds, divisions and

square-roots thus provided high performance precision arithmetic facility that is

on-chip and avoids limitations caused by bandwidth issues.In the coprocessor

modethe node has an exclusive access to 512MB main memory whereasin vir-

tual node mode each core orvirtual nodecan access 256MB. Again, the gain of

have a system on chip comes with a trade-off of how much can be put on a chip.

The dual core compute chip is used to horizontally scale and make a many core

system. Here it is important to realize that the system on chip design means that no

other processor has direct access to the memory of a processors and the only way

to exchange interprocessor information is through external routing, as per nature

of a distributed memory architecture. In order to exploit the computational accel-

eration provided by the on-chip resources of a node/computechip, the network

should also be of high performance. Nodes are connected via ahigh bandwidth,

low latency network, 4X InfiniBand. It is a point to point, bi-directional serial link

(sending one bit at a time) between nodes and is designed to bescalable. The 4X

stands for the signalling rate or data rate which is 4 times asfast as the signalling

rate of the standard serial connection via InfiniBand. 4X Infiniband has become a

standard implementation today and is popular in internode communication within

distributed machine or connecting nodes with high performance peripherals such

as file systems or high speed disk drives.
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(a) (b)

Figure 6.6: (a) The dual core Power PC 440 processor is the computationalunit
of BG/L. Schematic shows the internal resources of the PPC 440processor. (b)
Schematic shows how the system is scale out (horizontally scaled) to make arack
or cabinetof BG/L consisting of 1024 processors (i.e 1024 dual core PPC440
modules) or 2048 cores. BG/L at the BluefernR© is a two rack system with a total
of 2048 compute nodes or 4096 cores.

Internode communication may involve the transit of the message through many

other nodes in the system. BG/L nodes are connected in such a way so as to re-

duce the displacement of the message from one node to another. Each node is

connected in six different directions for nearest neighbour communication in3D

torus configuration. Nodes not located on the boundaries form a 3D mesh with

their six nearest neighbours. Nodes on the edges are looped back, as shown in the

Figure6.7, thus ensuring that each not has identical number of nearestneighbours.

In 3D torus connection, each node support an aggregate bandwidth of 2.1 Giga-

bytes/s and a latency od 100 nanoseconds. In addition to this, two other network

configurations are implemented;collective networkand thebarrier network or

global interrupt. The collective network handles the interprocessor communica-

tions ofone to all, all to oneor all to all nature. These broadcast communications

are used in parallelizing, via software, the global arithmetic operations such as

max, min, global sum or mere updatesfor interprocessor synchronizations. The

barrier network implements a global boolean operation “OR” on all the nodes.

This is very useful while implementing barrier synchronization of processors in

Chapter6/Figures/BGLa.eps
Chapter6/Figures/BGLb.eps
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the software. The physical network ensures the parallelization such operation so

as to match the performance with other networks when they areused in combina-

tion.

Figure 6.7: 3D torus network is the backbone of the BG/L interprocessor com-
munication. Each node is connected six way to its nearest neighbours. Figure
shows how the nodes on the edges are wrapped to avoid edge effect which map-
ping a problem. Red, blue and green lines are the physical links by 4X InfiniBand
interconnect.

6.3 Parallel Algorithm

Granularity is an qualitative measure of the ratio of computational versus interpro-

cessor communication in a multicore environment. Acoarse grain parallelism

suggests that in a period where one unit of work is completed the computation

dominates and interprocessor communication is less in comparison, whereasfine

grain parallelismindicates a higher communication to computation ratio. In the

present scenario, the intent is to solve a problem containing very large number

of arterial coupled cells exchanging information in a pointto point manner rather

than globally. Although the information exchange is between the nearest neigh-

bours in this case, the very nature of intercellular coupling call for the completion

of information exchange over the whole problem set before heading forward in the

next time step set by the solver’s (RKSUITE’s) adaptive step size controller. Thus

Chapter6/Figures/torus.eps
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there exists an implicit barrier synchronization of all thecells, in time. Shared

memory architecture such as IBM p5 575 can hold large sets of data because of

the processors can access vast memory address space.Automatic parallelization

is a method of testing the potential of parallelism in an application on a symmet-

ric multiprocessor. When compiling with IBM’s XL C/C++ compiler, optimized

for AIX operating system that runs on IBM pSeries machine, an option -qsmp

is used for generating a binary/executable file that is optimized to run on a SMP

machine. Compiling the serial C program, whose flowchart has been shown in

the Figure5.5, gives no performance enhancement when executed on the UCSC’s

p5-575. Table6.1 shows the CPU times for a simulation of 10 seconds of a cou-

pled cell population constituting a straight arterial segment, 1.6 cm in axial length,

100 µm in diameter, and contains 7680 ECs and 19968 SMCs. The CPU time

remains more or less unaffected with either mapping the problem on to one node

or multiple nodes. Also, increasing the number of processors has no effect on the

CPU time. It should be noted that in a shared memory system, more than one pro-

cessors cannot access a data location in the memory. While oneprocessor reads

this data location, others will have to wait. Members of the structures holding

local information of a cell is required to be accessed by morethan one processors.

This situation occurs more frequently in the case ofcouplingfunction, where an

ith cell may have its nearest neighbours mapped on different processors or nodes

and each these processors attempts to read the contents of the ith cell.

Worth mentioning is that the compile time automatic parallelization tends to

find the iterative loops, e.g.for or while loopswhich are not dependent on one

another. Once sighted, the-qsmpoption directs the compiler to make these loops

thread safe (i.e make the loops capable of running simultaneously without effect-

ing the integrity of the code). Loops which are mutually exclusive but address the

same data locations are not suitable for parallelization bythe-qsmp option. This

is applicable to the present case where loops in multiple functions in Figure5.5,

such assingle cellor coupling, address the same data location and thus cannot be

parallelized.

Parallel programming model based onOpenMPexploits the shared memory

architecture to its fullest but in the instances such as the present case where many

processors may access a data location at a time, blocking or semaphore technique
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Total no. of processors No. of nodes No. of processors per node CPU Time
1 1 1 2024.00
8 1 8 2064.00
8 4 2 2031.00
8 8 1 2018.00
32 8 4 2044.00
64 8 8 2066.00

Table 6.1: Compute times of different scenarios of mapping the problem on nodes
of IBM p5-575 machine compiled with automatic parallelization.

is used where the data location is made accessible to one processor at a time.

Performance may increase substantially in the case where the data is seldom ac-

cessed in an iteration by the processors. In the present casehowever, the memory

locations holding the state variables of each cell are accessed frequently espe-

cially while the functioncouplingis called, this may limit the performance yield.

Restructuring from functional or data flow aspect of the algorithm may make it

conducive for multithreaded program. This can make a significant improvement

when targeting hybrid computing architectures (i.e. shared and distributed mem-

ory working together) is employed.

Close inspection of the pattern of information exchange between the cells

reveals resemblance with the architecture of the Blue Gene/L. As has been dis-

cussed in the previous section, a 3D torus connection in BG/L enables connecting

a process to six nearest neighbours in x, y and z directions. The management of

interprocessor communication adheres to a standard message passing protocol im-

plemented by Message Passing Interface (MPI), a library of Cfunctions the calls

to which are embedded in the program. This parallel programming model is thus

called themessage passing model. Although not being the only one, MPI has be-

come thede factoindustry standard for message passing. Although suits mostto

distributed memory systems, the use of a message passing model is not limited to

these architectures. Data exchange between two processorsis cooperative, unlike

shared memory. Asendoperation by more processor must be complemented by a

receiveoperation or call by the receiving processor. The interprocessor can be in

either of the three mode:



144 Parallelization for Large Scale Computational Domain 6.3

• one to one

• one to many, and

• many to one

• all to all

All except the first are characterized as collective communication, where as the

first one is apoint to pointcommunication operation.

A problem can be decomposed on the basis of two aspect, computational do-

main or function.Domain decompositionimplies dividing the complete computa-

tional domain into small chunks and mapping them onto various processors. On

the other hand, if a program application is segmented such that smaller chunks

of tasks/instructions are mapped onto multiple processors, this is termed asfunc-

tional decomposition. When one program is executed on all processors containing

a domain decomposed data set, this is called a SPMD orsingle program multiple

data approach to parallel programming. Domain decomposition and SPMD are

employed here, in the case of coupled cells, the details of which are covered in the

following sections.

6.3.1 Problem Decomposition

Coupled matrices of cells with different aspect ratios is to be mapped on a number

of processors. In the program executing on a serial platform, the numerical solver,

RKSUITE, takes a solution vector of lengthneq, which is the total number of

ODEs in the computational domain, to solve the computational domain at each

time step taken. Moreover, the time step selection is adaptive to the steepness or

stiffnessof the solution, i.e. morestiff the solution, smaller the next step, until the

global error is within a user defined range. This summarizes the salient feature

that are to be dealt with when mapping the problem onto many processors of

BG/L.

The strategy for parallelizing the arterial segment is by domain decomposing

the computational domain in axially direction and mapping each chunk onto one

BG/L node. This is shown in the Figure6.8. Each BG/L node then calls an in-

stance of the C++ object numerical solver, RKSUITE, which thensolves for the

ODEs in time, corresponding to the cells mapped locally. Thecells on the edges
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of subdomains on each node communicate there coupling information the their

immediate neighbours (adjacent nodes in this case) and thisinternode communi-

cation is handelled by point to point MPI communication at each time step. The

parallel C code executing on each BG/L node is discussed in detail in Section6.3.2.

A straight arterial segment of length and diameters that were impractical to solve

with a serial C code, discussed in Sections5.4.2, can be mapped onto several

processors. How well the algorithm scales on BG/L is discussed in Section6.4.

6.3.2 Implementation of SPMD

Figure6.9depicts the algorithm that each BG/L node executes on the subdomain

allocated to from theglobal computational grid. The subdomaining is managed

by amaster node, node 0 in this case, which calculates the total size of the compu-

tational domain from the information received from the user, such as axial length

and the required diameter of the arterial segment. The algorithm executed by

the master node corrects the actual axial length and circumference of the arterial

based on the hardcoded information on the morphology of eachcell (i.e the length

and the width of an EC or SMC). Based on this information, an integer number

of the ECs accommodatable in the new axial length, the number of ECs axially

per node and therefore the subdomain size is decided. This information is then

communicated to each processor in the global scope of existence, called commu-

nicator, namely MPI_COMM_WORLD. From here on, all further instructions are

executed by each node in MPI COMM WORLD. upon receiving the subdomain

information, each node creates instances of each cell of thecomputational sub-

domain as a C structure whose members include state variables, information on

location on the grid and local stimuli values e.g JPLCagonist. Each node also allocates

memory of Send and Receive buffers where the coupling information is stored or

received at each time step.

Once the memory allocation is complete, each node initiatesa local instance of

C++ object of the solver, RKSUITE, which will have to deal with acomputational

domain of size Global computaional domain
number of nodes in the communicator MPI COMM WORLD. Unlike the serial

program explained in Section5.4.2where RKSUITE was used in “CT” mode, it

is setup in “UT” orUsual Taskmode in the present case. In the UT mode, RK-
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Figure 6.8: Schematic shows the domain decomposition strategy to map the com-
plete computational domain on several Blue Gene/L nodes. Thegrid in (a) rep-
resents the computational domain simulating a straight arterial segment, decom-
posed in the axial direction (demarcated by the black dashedline). The cells in
green at the bottom are coupled to the cells in in green on top,implementing
the periodic coupling (closing the circumferential loop).The cells in yellow are
sinks to the effective computational domain (comprised by cells in grey and green)
making the boundaries non reflective. Each chunk, such as theone encircled by
dashed grey line an magnified in (b) consists of blocks of cells populations, ECs
and SMCs homocellularly and heterocellularly coupled where, the minimum sege-
mentable axial distance is equivalent to the length of 1 EC or13 SMCs. The num-
ber of SMCs or ECs circumferentially depends on the diameter ofthe simulated
arterial section, which is user defined. Each such periodically coupled segment
is then mapped to on BG/L node. The bidirectional arrows in (c)represent the
exchange of coupling information between the cells on the edge of each segment,
using MPI calls by each processor.

Chapter6/Figures/domaindecomp.eps


6.3 Parallel Algorithm 147

SUITE is given short time intervals between which it attempts to integrate the

solution for ODEs using its adaptive step size selection. Using UT in a loop al-

lows incrementing the solution by a defined interval. This aides in synchronizing

the internode communication which sends and receives the coupling information

necessary for integrating the solution at each time step. After completion of every

successful step, statistics report of RKSUITE is called by calling an RKSUITE

function STAT, which, amongst other things, reports the next step size. Each node

then communicates its locally estimated new step size to allnodes, where the min-

imum step size is selected as new step size to proceed the solution in time. This

way all the nodemarchforward in time, in synchrony. MPI_Alltoall is one of the

functions of the MPI library which can do amany to manyor broadcast commu-

nication and is an example of collective communication. Thus at the end of each

time step,the intercellular coupling data is exchange between two neighbouring

nodes viapoint to pointMPI calls and the each BG/L node subsequently broad-

casts the next step size suggested by its local instance of the RKSUITE, to all the

processors of MPI_COMM_WORLD. Once all the nodes have received the step

size of all other nodes, every node then evaluates the minimum step size and sets

it as the next step size for the RKSUITE.

Point to point MPI communication between two nodes can be implemented in

eithersynchronousor asynchronousmode. In synchronous mode, each MPI_Send

must have a matching MPI_Recv posted on the destination node.If there is a mis-

match, the code will be stuck waiting for the appropriate action to be taken by

the other node. This is called a “deadlock”. The computational domain decom-

position, as shown in the Figure6.8, each node, except for the first and the last

node, has to communicate with two adjacent nodes, one on eachside. In the case

of synchronous point to point messaging, at the end of each time step, each node

will posts an MPI_Send to two nodes it is communicating to andthen posts a

MPI_Recv, expecting a message from each adjacent node. This is bound to pro-

duce a deadlock because each processor is going to expect amessage received

acknowledgement from the destination nodes it has sent its message to. One way

around this is implementing one sided communication where each preceding node

posts a MPI_Send and the following node post a correspondingMPI_Recv. Once

it is completed in one direction, i.e. from node1 to n, the same should be imple-
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mented in the reverse direction, i.e. fromn to 1, thus noden sends first andn-1

posts a corresponding receive.

Load balancing is a term used to refer to extent of evenness ofthe work (com-

putation) distribution to each node in the MPI_COMM_WORLD. Inthe present

case, load imbalance can occur in two scenarios; either a node is mapped with

more number of cells compared to other nodes, or a node has to compute more

than other node. The later can occur when simulating the spatial gradient in ago-

nist concentration, where RKSUITE on one node may decide to take smaller steps

than other nodes in MPI_COMM_WORLD. If the internode communication is

one sided communication in synchronous mode, a load imbalance may result in

slower execution of the code and the speed will be dictated bythe slowest node

amongst the group.

In nonblocking or asynchronousmode communication between nodes allows

a node to post a MPI_Isend for the destination node or MPI_Irecv for the source

node (I being the prototype for calling MPI send and receive asynchronously)

and continue the computation without waiting forreceiveacknowledgement by

the destination node or arrival of the message from the source node . In the

case of uneven subdomain mapping or excessive computation by a node of the

MPI_COMM_WORLD, asynchronous communication helps in preserving the

performance of the code by avoiding the wait time while communication is car-

ried out. The parallel algorithms presented in this thesis employed asynchronous

point to point MPI communication.

In the case of implementation of spatial gradient in the agonist concentration,

there is a possibility that the solution on a nodeN may be more stiff than others.

In this case, the adaptive step size selection of nodeN may result in dictating

unnecessarily small step size to all the nodes in MPI_COMM_WORLD. Another

issue that the above presented algorithm may present is the increase in communi-

cation overhead due to the repeated calls to collective communications while using

MPI_Alltoall for broadcasting of the local step size. The flowchart in Figure6.10

shows a modification in the algorithm to avoid this from happening. Instead of

selecting the minimum step size broadcast by all the nodes toall the node, the in-

ternode communication for transmitting the intercellularcoupling information is

done at every 1e−2 or 100th of a second. During this interval, RKSUITE on each
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node adaptively selects the step size depending on the stiffness of the solution

locally. This comes with no significant compromise on the validity of the com-

putational results, as shown in Figure8.1, and will be discussed in the8 where

the results of different intercellular coupling scenario are considered. The perfor-

mance gain by using the improved version of the algorithm wasnon-existent in

the case where intercellular coupling was trivial and had nomajor influence on

the computation of the destination node, but it did matter non-trivial intercellular

coupling environment was implemented. The improvement in the performance

has been discussed in Section8.1.
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Start

J_PLC , t_final, 
# of cells

Initialize parameters of ’setup’
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 j =   columns or grid nodes for ECs or SMCs  

initialize file pointer
in write mode

t_now = 0

call " update ( ) " and 
communicate

MPI  Barrier ( )

write results to files

free memory 
and

close files

MPI Finalize

T_end + new step size

update ( )

This is a function which 
executes the point to point 
interprocessor / internode

MPI communication

Brodcast my stepsize to all
and receive from all
with MPI_Alltoall ( )

calcularte minimum step size = 
my new step size

ComputeDerivatives(t,y,dxdt)
Input: t, y[]
Return: dxdt[]

call single_cell(y,t)

evaluate dxdt[]
as linear combination of respective 

ionic and coupling currents 

Return

call coupling(t)

Evaluates ionic 
currents for each cell 

Evaluates intercellular coupling 
currents for each cell 

Figure 6.9: Flowchart shows the C code for every BG/L node. All work in boxes
bounded by black solid lines is executed by all the processors, where as work in
blue box (dashed line) is to be carried out by themaster nodeexclusively. The
boxes in green are function that are further highlighted in red boxes bounded by
dashed lines. The grey circle specifies the time synchronizations of the nodes
existing in the global instance of the communicator “MPI_COMM_WORLD”.
After receiving the subdomain information, each node creates its own sets of uni-
tary structures encoding either an EC or SMC. Each node than initiates a local
C++ object instance of RKSUITE to solve its computational subdomain. Upon
successful completion of the step, every nodes communicates to all the nodes, the
step size for the next step reported by its local RKSUITE instance. The minimum
step size of all the nodes is then taken as the new step size by all the nodes.
Magnified version of this flowchart can be found on page 211.
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my_boundary()

Tags each cell with a boundary tag
which encodes the cell’s location in the

computational grid

Calculate the 
computational domain

Calculate the number of ECs & SMCs
constituting the computational domains/
grids in user defined dimensions of the 
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Send subdomain info to 
corresponding processors

Receive my subdomain 
info

allocate
memory

- allocate memory blocks containing C 
structures for each EC or SMC in 
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write results to files
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and
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MPI Finalize
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Figure 6.10: Comparing with the flowchart in Figure6.10, the box encircled in
grey is the ammendment where INTERVAL= 1e−2 is a constant increment made
to the T_end, during which RKSUITE on each node can select the next step size
adaptively within this interval.
Magnified version of this flowchart can be found on page 212.
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6.4 Distributed memory SPMD implementation per-

formance

Scalabilityis a property of a system, or a software application (algorithm) in the

present case, that relates the performance of the algorithmwith the expansion of

the hardware resources or the workload (problem size). A code is said toscaleif

it performs linearly when resources (compute nodes or memory) are added to the

system executing it. Scalability is a measure of the performance of an algorithm,

especially when mapping it on multicore computers. A scalable code is always

desired as adding more computing resources improves the performance of such a

code. In the light of this fact, it is useful to analyse how thetwo parallel programs

discussed in Section6.3.2scale.

Two notions of scalability are of interest which determining the performance

of a code, especially the one built on message passing model.Defining hardware

resource as nodes on BG/L,Strong scalingis how the solution time varies with

increasing number of nodes for a fixed problem size. Strong scaling tells us how

fast can an application run as number of nodes increase. In this context,speedup

is ratio of the compute time of a computational domain of sizeN on 1 node and

compute time of running the same computational domain onp number of nodes.

Speedup=
T1

Tp
(6.1)

whereT1 andTp are compute times for running the application/code on 1 andp

nodes.

Weak scalingis how the solution time scales with increasing problem size, for

a fixed amount of work per node. Weak scaling is tested by keeping the prob-

lem size per node constant and increasing the number of nodes. While the strong

scaling is a qualitative indication of how the parallel overhead varies with number

of nodesn, weak scaling shows how fast or slow these overheads vary with the

growing amount of work per node. Figure6.11 shows the performance of the

two codes. As a fixed problem size for strong scaling, an artery of axial length

13.312cm (2048 ECs axially) and of 50µm radius, comprising a total of 61440

ECs and 159744 SMCs were simulated. The arterial segment was stimulated with
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J̃PLCagonist=0.4 µM/s on ECs, a rate of PLC known to cause oscillations in the un-

derlying SMCs, as was shown in Section5.5.3. The intercellular coupling was

switched off when simulating the artery in the case of both code. This was done

to avoid the possible bias caused by the smaller time step taken by the numerical

solver because of Ca2+ oscillation in SMCs, especially in the improved version of

the code, where the internode communication is allowed at every 100th of a sec-

ond, which effectively means that the adaptive step size control of the numerical

solver, RKSUITE, has been switched off.

Figures6.11a & b show the strong scaling of the two codes, original and im-

proved versions, respectively. The intercellular coupling data is exchanged be-

tween the nodes using the point to point MPI implementation in asynchronous

mode, as described in Section6.3.2. The coupling coefficients of the intercellular

coupling environments (i.e. membrane potential, Ca2+ and IP3 ) have been set

to zero thus making the influence of intercellular coupling trivial. This makes

the computation, independent of the intercellular coupling and each node can

now do same amount of computation. This is important to do to assess the in-

crease in communication cost as the size of the system (i.e. number of nodes in

MPI_COMM_WORLD) increases.

In the case of strong scaling in Figure6.11a & b, both codes scale strongly

on BG/L nodes. The linear scaling in the case of trivial intercellular coupling

highlights that the communication cost does not increases severely with increase

in the system size. This means that the mapping of larger datasets on bigger

number of nodes is plausible and comes with negligible communication cost and

any additional cost will be arising from the computational aspect of the problem.

Thus both codes are scalable.

Weak scaling results, shown in Figures6.11c & d for original and improved

versions of the MPI code respectively, suggest that the change in the cost of com-

munication with increase in number of nodes is trivial. Thisis essentially the

because of the nature of the MPI communication implemented in the algorithms,

i.e. thepoint to point communication. Because of the3D torusinterconnect of the

BG/L nodes and because of the dimension in which the computational domain is

decomposed (i.e. axially), each node can physically talk tothe two adjacent nodes.

The collective communication in the original code dose not add significantly to the
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(a) Strong scaling of original code

(b) Strong scaling of improved code

Figure 6.11

Chapter6/Figures/strongAll2all.eps
Chapter6/Figures/strongDefault.eps
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(c) Weak scaling of original code

(d) Weak scaling of improved code

Figure 6.11: Figure shows scaling results of mapping the problem on the Blue
Gene/L nodes. Figures a & b show strong scaling of the two codes, the original
and the improved versions respectively. Both are comparablyfast and scale lin-
early. Figures c & d, in the same order, depict the weak scaling of the two codes.
Both codes scale well on many nodes with little communicationcost.

Chapter6/Figures/weakAll2all.eps
Chapter6/Figures/weakDefault.eps
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communication cost, as suggested by the constant plot linesin Figure6.11c.

The scaling results presented in this chapter indicate the possibility of simu-

lating large systems of coupled nonlinear equations by mapping them on many

nodes of BG/L. The speedups demonstrated in the figures provides with an expec-

tation that physiologically relevant time scales can be simulated with in practical

compute times. The infrastructure developed in this chapter, therefore, is put to

test in Chapter7.



Chapter 7

Spatial Effect of Coupled Arterial

Cells

The knowledge of the mechanics of networks of cells is becoming increasingly

important to further the understanding of how, and mainly why, systems work

they way they do. This need is not limited to human physiologybut extends

to more diverse domains such a plant biology, zoology and insect biology, with

applications of varying significance. Simulating coupled units, which are often

small scale systems in themselves, need computational power that was not avail-

able to man before this day and age. In many problems where theunits being

coupled have nonlinear dynamics, it is sometimes difficult to extrapolate the ex-

pected behaviour of a large scale (physiologically relevant) system on the basis of

simulation results of smaller spatial or temporal scale model. Large scale simula-

tions become necessary to gain insight into the mechanisticunderstanding of the

physiological observations.

In the last chapter parallel algorithms were presented to simulate coupled pop-

ulations of ECs and SMCs on multiple Blue Gene/L nodes. The scaling results

promised the viability of mapping large populations of cells over a large number

of compute nodes. This provides pertinent grounds to investigate physiological

hypotheses which require the analysis of behaviours of large scale systems and an

attempt to understand the mechanistic reasoning of pathophysiologies orpatho-

genesis, thus contributing to the therapeutic enhancement of the diseases caused

157



158 Spatial Effect of Coupled Arterial Cells 7.1

by these pathophysiologies. One such attempt is made in thischapter.

We begin by implementing an arterial segment comprising of large popula-

tions of coupled ECs/SMCs, represented by systems of nonlinear coupled ODEs

and stimulate them with spatially uniform agonist concentration. The Ca2+ dy-

namics of ECs and SMCs will be presented and analysed. In order to understand

the system’s response stimulated by spatially non-uniformbiochemical signal, we

simulate apoint stimulationscenario, where a finite part of arterial segment is

stimulated by a high agonist concentration axisymmetrically. This is a nonphysio-

logical scenario, commonly conducted inin vitro studies of conducted vasomotion,

to observe the system’s response in terms of it “connectedness”, or its ability to

propagate information. Lastly, a physiologically relevant scenario is considered

where the agonist concentration profile is an approximationof the spatial varying

time averaged ATP concentration at the arterial wall. Here,the variation of inter-

cellular coupling is also considered to represent the states of the arterial segment

ranging from normal to early atherosclerosis and finishing with coupling in ma-

ture atherosclerotic plaque. Again, Ca2+ dynamics of ECs and SMCs is observed

in these cases to argue the mechanics of the responses reported.

7.1 Coupled ECs/SMCs Ca2+ Dynamics Under Spa-

tially Uniform Agonist Concentration

A straight arterial segment as shown in Figure7.1a, coupling via heterocellular

and homocellular coupling, is simulated to investigate theresponse of coupled

cells under a spatially uniform agonist concentration. Between time interval 100≤

t ≤ 200,̃JPLCagonist increases from 0.2µM/s to 0.4µM/s. The agonist stimulates the

artery axisymmetrically from the luminal side, i.e. only ECsare stimulated by the

agonist which models the binding of ATP in peripheral blood to the purioreceptors

P2Y4, which activates the G protein coupled receptor cascade thus generating

IP3 in the EC cytosol. The details of downstream intracellular processes and

the mathematical expression modelling them have been presented in Chapters3

and5. The schematic representation of the cells are coupled has been shown in

the Figure5.1.
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Figure 7.1: A straight arterial segment consisting of longitudinally stretched en-
dothelial cells, circumferentially wrapped around by contractile smooth muscle
cells. Cells are coupled with one another either homocellularly or heterocellularly,
as suggested by the colour code.

Chapter7/Figures/vessel.eps
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Heterocellular Homocellular
EC SMC EC SMC

V Ca2+ IP3 V Ca2+ IP3 V Ca2+ IP3 V Ca2+ IP3

1 X X X X X X

2 X X X X X X X X

3 X X X X X X X X X X

4 X X X X X X X X X X X X

Table 7.1: By setting up various intercellular coupling configurationsthe effects
of spatially uniform agonist concentration on the Ca2+ dynamics of the two cells
is considered. The homocellular coupling was altered in Sections5.5.1and5.5.2.
Here heterocellular coupling is enabled or disabled to see how the many cells
scenariois different than the response ofsingle unit or homocellular coupled
isolated populationsto spatially and temporally uniform agonist concentration.

The simulated arterial segment is 0.416 cm long, 50µm in radius, and com-

prise of 4992 SMCs and 1920 ECs. Although the dimensions are approximately

of the order of 1st order arteriole, it is shown later in the chapter that the diameter

dose not matter in the case when the agonist stimulates the arterial in an axisym-

metrical manner. Four cases of altered intercellular couplings are investigated

here, tabulated in Table7.1.

In the first case, heterocellular coupling between ECs and SMCsis disable

completely. Figure7.2a shows the Ca2+ concentration in SMCs and ECs laid out

parallel to the longitudinal axis. The Ca2+ concentrations are taken at t=100 sec,

when the systems of equations have evolved to their steady states. The ECs in the

case of disabled heterocellular coupling assume a high steady cytosolic Ca2+ con-

centration, uniform axially. The SMCs on the other hand, attain a steady state

Ca2+ concentration which is low, similar to what they will attainwhen stimulated

by low or no agonist (i.e. IP3 generation=0). In Figure7.2b, only heterocellu-

lar membrane potential coupling is enabled. The hyperpolarized EC membrane

potential has now an influence on the membrane potential of SMCs, making it

more negative. The effect is increase in the activity of the membrane bound

Na+/Ca2+exchanger which is responsible for efflux of Ca2+ from cytosol to the

extracellular space and brings in the Na+ ions in a ratio of 1 : 3, hence the color of

SMC Ca2+ concentration is mapped as dark blue compared to the former case in
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Figure7.2a.

(a)

(b)

(c)

Figure 7.2

Figure 7.2c presents the case where heterocellular membrane potential and

Ca2+ coupling are enabled between the ECs and SMCs whereas the two cell types

are coupled homocellularly via Ca2+, IP3 and membrane potential. Stimulating

with the samẽJPLCagonistvalue of 0.4µM/s, the Ca2+ concentration in the cytosols

of the ECs is low compared what was observed in Figures7.2a & b. The SMC

Ca2+ concentration has risen in comparison to that seen in Figure7.2b where

only membrane potential coupling existed. Ca2+ diffuses from high concentra-

tion pool in ECs to the low concentration pool in SMCs in this case. The effect

of the intercellular Ca2+ transport is controlled, between the two cells because of

the coexistence of hyperpolarized membrane potential coupling. The hyperpolar-

Chapter7/Figures/exp1.eps
Chapter7/Figures/exp2.eps
Chapter7/Figures/exp3.eps
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(d)

(e)

Figure 7.2

Chapter7/Figures/exp4smc.eps
Chapter7/Figures/exp4ec.eps


7.1 Coupled ECs/SMCs and Uniform Agonist 163

Figure 7.2: Results show Ca2+ dynamics of ECs and SMCs of a straight arterial
segment stimulated bỹJPLCagonist=0.4µM/s. The step increase iñJPLCagonist takes
place between 100< t < 200 seconds. (a) Heterocellular coupling is disabled as
the first case of simulation. (b) As a second case, heterocellular membrane po-
tential is enabled. (c) Heterocellular Ca2+ coupling in also enabled in this case,
in conjunction with the membrane potential coupling. (d) shows the time evo-
lution of cytosol Ca2+ concentration on the axial scale at time stamps 48,52 and
56 seconds. The color map at the three time steps suggests therise and fall of
the Ca2+ concentration in all the cells synchronously. The last bar is a Ca2+ con-
centration plot versus time of a SMC located at 0.204 cm on thelongitudinal
axis of the artery, which shows the Ca2+ oscillations clearly. (e) shows a similar
behaviour in ECs which do not oscillate as isolated cells or inhomocellular pop-
ulation. The Ca2+ oscillations are demonstrated by the varying color in the top
three bars, suggesting a rise and fall of the Ca2+ concentration (the peak to peak
difference is smaller than what was witnessed in SMCs in (d)).The following plot
at the bottom shows the time evolution of an EC located at 0.204cm axially. The
Ca2+ oscillations are in phase with the SMC Ca2+ oscillations.

ized SMC membrane potential promotes the efflux of Ca2+ through Na+/Ca2+ ex-

changer while the Ca2+ contributed by ECs tends to increase cytosolic Ca2+ in the

neighbourhood SMCs. The net Ca2+ concentration in the SMC cytosol is thus

relatively higher than seen in Figure7.2b.

Enabling heterocellular IP3 coupling, bidirectionally (i.e. from EC to SMC

and vice versa), produces Ca2+ oscillations in SMCs, as shown in the Figure7.2d.

Similar oscillations are also observed in the cytosol Ca2+ concentration of the

ECs in Figure7.2e. IP3 generated in the ECs, in response to the agonist stimula-

tion at̃JPLCagonist=0.4µM/s diffuses through heterocellular junctions, modellingthe

anatomical occurrence of myoendothelial junctions between ECs and the SMCs.

The resultant IP3 increase in SMC cytosol enables SR Ca2+ release and down-

stream processes. The oscillations in the EC Ca2+ concentration (as shown for a

single cell located at 0.204cm on the axis, are not indigenous but an effect of the

coupled membrane potential. The membrane potential of the SMC also oscillates

with the Ca2+ oscillation, thus producing oscillation in the EC membranepotential

too. Such effect was also observed in the case of single unit in Section5.5.3and

shown in the Figure5.12. Thus in the case of stimulation with spatially uniform
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agonist concentration, the ECs and SMCs behave in synchrony over the complete

axial length. The significance of heterocellular IP3 coupling has been highlighted

by the results. In the absence of heterocellular IP3 coupling, the SMC Ca2+ con-

centration does not evolve to an oscillatory state. Heterocellular membrane po-

tential coupling is shown to play an important role in hyperpolarizing the SMC

membrane potential and closing thevoltage operated Ca2+ channels. Hyperpo-

larized membrane potential also inhibits the sustained increase in the Ca2+ con-

centration by promoting the efflux of cytosolic Ca2+ into extracellular space via

Na+/Ca2+ exchanger.

7.2 Effects of point stimulation on arterial coupled

cells

As the first step towards simulating the spatially non uniform agonist profiles,

point stimulation is considered here to investigate how coupled cells react to

such stimulus pattern. For this, a straight arterial section, 3.328 cm long and

of 50µm radius, is mapped with a uniform basalJ̃PLCagonist=0.2µM/s. A local

step change is induced whereJ̃PLCagonist value increases to a higher value between

time interval 100> t > 200 seconds on ECs located at axial distance between

1.475< x < 1.846cm. Two cases are simulated with two different values of

step increase iñJPLCagonist, 0.4µM/s and 0.7µM/s. The choice the value of step

increase is dictated by the fact that in coupled ECs/SMCs,J̃PLCagonist=0.4µM/s

stimulation of ECs is capable of inducing low frequency high magnitude whereas

J̃PLCagonist=0.7µM/s stimulation induces high frequency and low magnitude cytoso-

lic Ca2+ oscillation in underlying SMCs. This has been shown previously in Sec-

tion 5.5.3. The stimulus is removed at time=200 seconds and theJ̃PLCagonist value

resumes to the basal level in both cases. Figure7.3shows the SMC Ca2+ dynamics

at different times and also the time course of cytosolic Ca2+ in three cells, in each

case, chosen from upstream , downstream and from the middle of the location

where stimulus is applied.The status of the intercellular coupling is such that all

homocellular and heterocellular couplings are enabled.
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(a) J̃PLCagonist
=0.4µM/s

Figure 7.3

Chapter7/Figures/pointstm1newnew.eps
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(b) J̃PLCagonist
=0.7µM/s

Figure 7.3: Figure shows the Ca2+ dynamics of the SMCs in axial direction, at
different time steps. ForTime < 100.0 secondsthe ECs of the arterial segment
are stimulated bỹJPLCagonist=0.2µM/s. The ECs between axial distance 1.475<

x< 1.846cm experience a step increase inJ̃PLCagonist value (a)̃JPLCagonist=0.4µM/s

and (b)̃JPLCagonist=0.7µM/s, atTime = 100.0 seconds)simulating point stimulation
for a time interval. SMCs underlying the stimulated ECs attaineither steady state
oscillations or a equilibrium Ca2+ concentration, as is the case in (a) and (b) respec-
tively. This change in response cannot propagate to the upstream and downstream
cells. SMCs coupled to the ECs stimulated with highJ̃PLCagonist oscillate. The im-
mediate neighbours coupled to the first and the last cell of this block of oscillating
SMCs tend to synchronize their Ca2+ concentration. The bottom plots in (a) and
(b) show time course of Ca2+ concentration in SMCs at locations, stated in the
legends of the plot. The Ca2+ concentration of the immediate neighbours, color
coded in purple, oscillates prominently whereas in those farthest, color coded in
black, Ca2+ concentration assumes a low steady state value.

Chapter7/Figures/pointstm2newnew.eps
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In both cases point stimulation fails to elicit an altered response in the neigh-

bouring cells, both upstream and downstream. Soon after the100 seconds mark,

wherẽJPLCagonistassumes a high value in cells between axial distance 1.475< x<

1.846cm (wherex denotes axial distance), a boundary layer builds at the edge

on either sides of the block of cells collocated and coupled with stimulated ECs.

This boundary layer also contains SMCs which are coupled to the ECs spatially

experiencing the basalJ̃PLCagonist value of 0.2µM/s. These SMCs fail to attain a

higher Ca2+ concentration. The Ca2+ concentration, however, oscillates, producing

nearly the same number of Ca2+ oscillation in the 100 seconds interval (between

100> t > 200 seconds). This process is observed in both cases in Figure 7.3a&b.

J̃PLCagonist=0.7µM/s is a value of stimulus which produced sustained Ca2+ oscil-

lations in SMC of the single EC/SMC unit (see Figure5.11). The SMCs under-

lying the ECs directly experiencing the step change inJ̃PLCagonist from 0.2µM/s

to 0.7µM/s, attains a steady state Ca2+ concentration, well before the stimulus is

removed. This is because both, the heterocellular Ca2+ and IP3 couplings, are

enabled simultaneously. In addition to the contribution ofIP3 from ECs, the ad-

dition Ca2+ entering the cytosol of underlying SMC elevates the Ca2+ such that

it switches off the cytosolic oscillator. On disabling the heterocellular Ca2+ cou-

pling, an oscillatory state, similar to that seen in the Figure7.3a, was observed but

with higher frequency oscillations and diminished magnitude.

Raising the basal level of agonist activity toJ̃PLCagonist=0.25µM/s prolongs the

oscillatory behaviour, even after the step increase inJ̃PLCagonist is removed. As

shown in the Figure7.4, the oscillatory behaviour in the SMCs stimulated with

step increase iñJPLCagonist and in the neighbourhood cells at the constant basal

J̃PLCagonist is sustained for longer time compared to the cells at the samelocations

with basal̃JPLCagonist=0.2µM/s.



168 Spatial Effect of Coupled Arterial Cells 7.2

Figure 7.4: Figure shows the effect of raising the basalJ̃PLCagonist from 0.2µM/s
to 0.25µM/s. The top three plots show time course of Ca2+ concentration in SMCs
located at axial distances stated in the legends of the plots. The bottom three plots
are showing the Ca2+ dynamics at the same axial locations but with raised basal
J̃PLCagonist. Note that the SMCs color coded in red are the ones coupled to their re-

spective EC neighbours experiencing step increase inJ̃PLCagonist=0.4µM/s, in both

the cases of basalJ̃PLCagonist. The Ca2+ oscillations in non stimulated neighbours

are sustained for longer at higher basalJ̃PLCagonist(in bottom plots).

Chapter7/Figures/pointstm3.eps


7.3 Spatially Varying Agonist and Macroscale Phenomena in Arterial Coupled Cells 169

7.3 Spatially Varying Agonist and Macroscale Phe-

nomena in Arterial Coupled Cells

Lastly, a straight arterial segment computational layout is considered for mapping

a physiologically relevant agonist profile that has been shown to occur at the ar-

terial bifurcations of muscular arteries (e.g. carotid artery or anterior descending

coronary arteries). These regions are known to have a strongcorrelation of altered

hemodynamics (low wall shear stress), altered connexin expression and formation

of early atherosclerotic lesion which develop into plaquesas the pathology pro-

gresses over a long time period, subject to the environmental influences such as hy-

pertension, genetic predisposition, hypercholestrimia,smoking, obesity, diabetes

etc (Cheng et al., 2006). The arterial wall is reactive to local hemodynamics in

normality. This reactivity is partly via the Ca2+ pathway, described in Section2.6,

which play a significant role in the regulation of blood flow and maintains the per-

fusion of the downstream vital organs. In altered hemodynamic patterns, usually

observed at the arterial bifurcations in the vasculature, the state of Ca2+ dynamics

is a relatively unknown territory for experimental scientists because of limitations

in in vitro techniques. Computational studies such as the present one provides an

opportunity to include physiologically valid mathematical models and map them

with physiological relevant hemodynamics to acquire mechanistic understanding

of the pathobiology that underlies atherosclerosis. An attractive prospect in this

practice is the ability to visualize the effects of global change on local Ca2+ dy-

namics (as local as in single cell) and the alteration in the global response of the

system because of the additive changes caused by the single cells.

Results in this section have been published inShaikh et al.(2011). To sim-

ulate areas within the arterial segment where flow separation and variation of

agonists (ie atheroprone areas and lesion growth) occur, a spatial gradient of ag-

onist concentration (whose scale length is much larger thana single cell) in the

axial direction was simulated by altering theJ̃PLCagonist in a sigmoidal fashion (Fig-

ure7.5) on EC layer. The choice of this particular function reflected two impor-

tant facts. Firstly work byComerford and David(2008) has shown that even in a

time-dependent solution the ATP concentration can be well represented by a time-

averaged profile in areas known to be prone to atherosclerosis, as described in
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Figure 7.5: Axial profile of theJ̃PLCagonist flux on the EC layer. From 1.25cm to

3.75cm, ECs experience a steep change in theJ̃PLCagonistwhere as at the extremities
it is almost uniform.

Chapter7/Figures/gradient.eps
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Section2.4and shown in the Figure2.13. Secondly that we wished to investigate

areas of the arterial segment where there existed both constant and “linearly vary-

ing” ATP concentrations . Our reasoning behind this is that careful examination

of the neighbourhood of fluid stagnation points (where lesions have been shown

to exist as noted previously) shows a wall shear stress of linear form followed

downstream by a constant shear stress profile as shown in the work of Plank et al.

(2006a) andComerford and David(2008) in the Figure2.12. Indeed the areas of

constant ATP flux also helped in developing a pair of non-reflecting boundaries

which allowed waves of Ca2+ concentration to properly exit the computational do-

main. Although in atheroprone regions cells experience lowWSS and the mass

transfer characteristics are complex it can be shown that the concentration bound-

ary layer of mass transfer thickens in these areas and does not change much with

pulsatile flow due to the high Peclet number (Comerford et al., 2008) therefore the

simplification of a sigmoid agonist profile seems plausible.

Figure5.11in Section5.5.3showed the cytosolic Ca2+ concentration for a sin-

gle coupled unit of an EC and an SMC as a function of the agonistflux J̃PLCagonist.

There existed three different areas as noted byKoenigsberger et al.(2005). These

correspond to areas of constant Ca2+ concentration separated by a range where

the Ca2+ undergoes oscillatory behaviour and whose amplitude is also a function

of the J̃PLCagonist value (essentially a monotonic decreasing function). It will be

shown below that for large macro-scale coupled simulationsthis relatively simple

3 domain state does not occur and a far more complex dynamic scenario is present

along the arterial segment both in time and space.

Firstly, two prospective scenarios (Case 1 and 2) of intercellular communica-

tion corresponding to a healthy arterial segment within a region of disturbed flow

and attempt to investigate the Ca2+ dynamics in the underlying SMCs.

To avoid confusion it should be noted that there exist two oscillatory phenom-

ena occurring during any one time. Firstly that of the SMC itself (in the time

domain) and secondly that of a spatial wave, where at some specified time a con-

centration gradient exists between adjoining cells due to aphase lag in oscillation

of the adjoining cells thus forming a wave in space. For case 1, Figure7.6shows

the cytosolic Ca2+ concentration in SMCs laid out in the axial direction (left isup-

stream) for eight (8) different times (a - h) in an arteriole of radius 50µm. For the
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case of a spatially uniform agonist concentration (resultsshown in Section7.1),

cells give a well coordinated Ca2+ response, oscillatory or non oscillatory, depend-

ing on the value of the agonist concentration orJ̃PLCagonist value experienced by

the ECs as expected when comparing with Figure5.11. In Figure7.6however, in

the presence of homocellular Ca2+,IP3 and membrane potential coupling between

SMCs, Ca2+ and membrane potential coupling between ECs and heterocellular

IP3 and membrane potential coupling across the MEJ, cells show spatially dif-

ferential intracellular Ca2+ responses as a function of axial distance. Bands of

varying Ca2+ concentration (a Ca2+ wave) are visible in the middle of the arterial

segment in Figure7.6a & b where steep gradient exists in the agonist concen-

tration. Units of cells on either sides of this steep gradient region respond in

a non-oscillatory behaviour with different steady state intracellular Ca2+ concen-

trations. The Ca2+ waves however decrease their wavelength as time increases.

Figure7.6c,d & e show the thinning of these oscillatory bands and by definition

an increase in their wave number. In Figure7.6f, we see this Ca2+ wave effect

moving towards cells which were originally at low agonist concentration and in a

non-oscillatory state. Noteworthy is the fact that an SMC from a single isolated

EC SMC pair would not normally oscillate at these concentrations as would be the

case from comparing with Figure5.11. Moreover, thinning of the bands is a req-

uisite to this propagatory response and is a consequence of the cells undergoing

oscillatory desynchronisation where cells show a phase lagbetween neighbours.

Hence at any time there exists a concentration gradient capable of transferring

Ca2+ ions across gap junctions.

To test the relationship between the radius of the artery andthe phenomenon

noted above a simulation was completed for an artery with 2000 µm radius which

allowed 3.5 million cells coupled together and mapped on to 384 Blue Gene/L

nodes. Figure7.7shows Ca2+ concentrations for the 2000µm radius artery. Direct

comparisons can be made to Figure7.6for the first 60 minutes. It is clear that there

exists no difference in the concentration distribution. This is to be expected given

the problem definition since we assume an axisymmetric condition.

Figure7.8 shows the time evolution of intracellular Ca2+ concentration in 12

selected SMCs co-located in groups of 4 at three upstream and downstream space

domains (I, II & III), each at three different time durations(each 50 seconds long).
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Figure 7.6: (a) to (h) show cytosolic Ca2+ concentration in SMCs at time steps
2.5, 4,10,20,30,60,120 minutes and 2.75 hours for an arteryof radius 50µm. The
colour in each graph corresponds to the amplitude of cytosolic calcium concentra-
tion in each SMC ranging from red (high Ca2+ concentration) to dark blue (low
concentration), as depicted by the colorbar. Oscillationspropagate to upstream
cells in (h) where they were absent in (a) to (e).

Figure 7.7: (a) to (f) show cytosolic Ca2+ concentration in SMCs at time steps 2.5,
4,10,20,30 and 60 minutes for an artery of radius 2000µm. The colour in each graph
corresponds to the amplitude of cytosolic calcium concentration in each SMC ranging
from red (high Ca2+ concentration) to dark blue (low concentration), as depicted by the
colorbar. Oscillations propagate to upstream cells in (h) where they were absent in (a) to
(e)

Chapter7/Figures/case1.eps
Chapter7/Figures/case1b.eps
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SMCs located in space domain I do not oscillate until the oscillations in the down-

stream SMCs desynchronize and Ca2+ is therefore transported differentially via

gap junctions due to the concentration gradient existing atany specific time. Also

notable was the observation that absence of homocellular Ca2+ coupling between

SMCs caused a cessation of the Ca2+ propagation to upstream cells. The proposed

mechanism driving this behaviour is touched upon further inthe Discussion sec-

tion.

Figure 7.8: Time evolution of intracellular Ca2+ concentration in adjoining SMCs
at selected axial distances from three space domains, I,II&III, of the arterial seg-
ment in oscillatory state. Domain I extends from 1.225cm to 1.234cm, II from
1.472cm to 1.478cm and III from 2.226cm to 2.232cm, axially.Four SMCs from
each domain are color coded as black(solid line), grey(solid line), black(dashed
line) and grey(dashed line)(cell with Ca2+ concentration in black (solid line) being
most upstream in each domain) . Ca2+ concentration in these SMCs is compared
at three 50 seconds long time intervals, 2.08 to 2.92 minutesin a,d and g; 19.6 to
20.416 minutes in b,e and h and 34.6 to 35.42 minutes in c,f andi. These time
intervals correspond to the state of the vessel segment shown in Fig7.6(a,d&e). In
the first time interval cells either assume a steady state or oscillate in phase locked
loop, as shown in a,d and g. In the latter time intervals the Ca2+ oscillations in
individual cells from domains II and III desynchronize, prior to the appearance of
Ca2+ oscillations in SMCs located in domain I.

In the second case of intercellular communication in a healthy vessel, hetero-

cellular Ca2+ coupling was enabled in addition to the previously described config-

uration of intercellular coupling whilst stimulated with the same agonist profile as

Chapter7/Figures/propagationvstime.eps
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before. Figure7.9shows the cytosolic Ca2+ concentration in the SMCs along the

arterial segment at three (3) different times (a - c). Compared with the Ca2+ dy-

namical response in case 1 where heterocellular Ca2+ coupling was disabled, the

propagation of Ca2+ wave to the upstream SMCs is rapid in case 2. Similar to

case 1, SMCs at axial locations corresponding to the steep spatial gradient in ag-

onist concentration show bands of varying Ca2+ concentration. These bands in

Figure7.9a and b, precedes an increase of Ca2+ concentration in upstream cells in

Figure7.9c. However, the extent of the thinning of the oscillatory bands (ie the de-

gree of oscillatory desynchronisation in adjoining cells)is not as severe as in case

1. Also, a comparison of Figure7.6(f-h) with Figure7.9c shows that the spatial

wave in upstream cells is synchronized in case 2 as compared to case 1 despite

the fact that the Ca2+ concentration is oscillating temporally in the SMCs of an

upstream region in both the cases. More SMCs attain a steady state Ca2+ concen-

tration on the downstream side than in case 1. Thus the Ca2+ response in SMCs

in the intercellular coupling configuration of case 2 is moredefinitive and rapid,

compared to the case 1 where heterocellular Ca2+ coupling was disabled.

Figure 7.9: (a) to (c) show cytosolic Ca2+ concentration in SMCs at time steps 2.5,
4 and 6 minutes for an artery of radius 50µm with heterocellular coupling enabled
(case 2). The colour in each graph corresponds to the amplitude of cytosolic
Ca2+ concentration in each SMC ranging from red (high Ca2+ concentration) to
dark blue (low concentration), as depicted by the colorbar.Oscillations propagate
to upstream cells in (c) where they were absent in (a) to (b).

Inclusion of homocellular IP3 coupling between ECs, which simulates the

first of the two pathological cases (case3 in TableA.3) did not change the Ca2+ dy-

namical response in the SMCs and was not substantially different from the second

healthy case as given in Figure7.9. Thus upregulation of Cx43 in the presence of

unaffected heterocellular Ca2+ coupling does not alter the spread of homogeneity

Chapter7/Figures/case2new.eps
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in amongst the SMCs axially.

Implementation of case4 of TableA.3 however had a different outcome com-

pared to other cases. Figure7.10shows the Ca2+ concentration in SMCs in the

axial direction at time intervals of 2.5, 10 and 30 minutes inthe simulation. SMCs

along the axial distance show moderately high Ca2+ concentration, either steady

state in cells located at distance>2.25cm or oscillating with time in the rest of

the vessel segment (upstream). Figure7.10a when compared to Figure7.6a is

notably different. Case1 at time step 2.5 minutes (Figure7.6a) was piecewise ho-

mogeneous compared to what is seen in Figure7.10a. We see Ca2+ concentration

waves from the start of the simulation which leads to a globalspatially oscillatory

state in Figure7.10a & b, except for the part of the arterial segment where there

exists coupling to ECs experiencing a relatively higher agonist concentration and

thus attaining a steady state Ca2+ concentration early in simulation. The homocel-

lular coupling between ECs is limited to IP3 coupling only in this case and the

heterocellular coupling is also restricted to IP3 transfer through MEJs (refer to

case4 in TableA.3). SMCs however remain homocellularly coupled via all three

media. This simulates intercellular coupling in an advanced atheroma especially

at the shoulder of the atheroma where expressions of Cx37 and Cx40 are severely

downregulated and Cx43 is upregulated in ECs (Brisset et al., 2009; Burnier et al.,

2009). Thus we see the propagation of a Ca2+ wave from SMCs provided with

a relatively higher amount of agonist flux to those at positions where overlying

ECs experience low agonist concentration. This propagationhowever was much

faster when compared with case1; notably Figure7.6f corresponds to 2.75 hrs. We

discuss the mechanism behind this accelerated response in the Chapter8.
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Figure 7.10: (a) to (c) show cytosolic Ca2+ concentration in SMCs at time steps
2.5, 10 & 30 minutes for case 4. The color in each graph corresponds to the
amplitude of cytosolic calcium concentration in each SMC ranging from red (high
Ca2+ concentration) to dark blue (low concentration), as depicted by the colorbar.

Chapter7/Figures/case4.eps
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Chapter 8

Discussion

There are two basic aspects on which the aims and objectives of this thesis are

based, one is physiological and the other is the computational aspect. In this chap-

ter, the attempt will be to analyse these aspects separatelyand join them together

in Chapter9, Conclusion.

8.1 Comparison of Parallel Algorithms

In Chapter6 two Single Program Multiple Data(SPMD) implementations were

presented. Noteworthy were the almost perfectly linear speedups observed in the

strong scaling in Figure6.11, for the original and the improved versions of the

codes. These results highlight the economic use of the MPI communication im-

plemented in both codes. Thus increasing the problem size and mapping it to a

larger number of nodes will not severely hamper the efficiency of the code because

of the added communication overheads. Thus it is safe to say that the performance

of the code will become a function of computational expense only and mapping of

the same problem over larger number of processors will increase the performance

the two algorithms.

When mapping bigger segments of the computational domain on anode, gig

data portions would reside in the main memory and in the case of a cache miss

(when data addressed by L1 cache is not present in L2 or L3 cache and is to be

fetched from main memory) a delay will be produced. This is a perpetual issue

179
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when the data portion allocated to a node is big and these delays, per iteration, pile

up and result in added resultant compute time. With increasing number of nodes,

the data size is per node becomes smaller. Ultimately the whole data size can fit

into L3 cache and the no cache miss takes place. Thus one way ofreducing the

computational cost could be to make the problem size per nodesmall enough to

let it fit in L3 cache. Based on the scaling results, this can be achieved with the

two algorithms.

Physiologically relevant problems, such as addressed in Chapter 7, seldom

present spatially uniform agonist conditions. In the case of non trivial coupling

coefficients with spatially varying̃JPLCagonist, the computational expense increases

dramatically because of the increased computational complexity. In such a case,

adaptive step size selection in RKSUITE ends up selecting unnecessarily small

step sizes, thus increasing the compute time to reach theTendof the solution. Since

the techniques used for selection of the next time step are different in the two im-

plementations, original and the improved versions of the code (for details see Sec-

tion 6.3.2) it is important to test the validity of the results and performance gains

obtained from the two codes. For this purpose, intercellular coupling of Case 1,

simulating a healthy vessels was considered. The coupling coefficient of this in-

tercellular coupling case are tabulated in TableA.3. Sigmoidal̃JPLCagonist profile

was imposed on an arterial section, 5 cm long with a 50µm radius. Figure8.1

compares the SMC Ca2+ dynamics at different time steps, (a) solved by the orig-

inal code and (b) by the improved version. Notice that there is no significant

difference between the two results but the time taken by the original version of

algorithm is twice as much as the compute time of the improvedversion of the

code. Figure8.2benchmarks the two versions of the algorithm to demonstratethe

superior performance of improved version of the algorithm while simulating the

spatially nonuniform case of stimulation.
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(a) Case 1 solved with original version of parallel algorithm

(b) Case 1 solved with improved version of parallel algorithm

Figure 8.1: Figure compares the SMC Ca2+ dynamics simulated using the orig-
inal and improved versions of the algorithm in the case of intercellular coupling
corresponding to Case 1 in TableA.3, at time steps, 2.5, 4, 10, 20, 30 and 90 min-
utes. The qualitative comparison reveals no anomaly in the results from the two
codes. The compute time of the improved version, however, was half of that taken
by the original algorithm, while the problem size, number ofnodes (384 nodes)
and the dimensions of the arterial segment were the same.

Chapter8/Figures/Case1All2all.eps
Chapter8/Figures/Case1Default.eps
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Figure 8.2: Figure depicts the compute time taken by the two codes, plot in red
is for original and the in blue is for the improved version of the algorithm. In the
case of spatially varying agonist conditions, keeping the problem size constant,
the improved version is approximately twice as fast.

Chapter8/Figures/algcompare2.eps
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8.2 Point Stimulation and Its Spatial Effects

From the physiological aspect, the goal was to employ coupled populations of

ECs and SMCs, arranged in a computational layout representinga straight arterial

segment, and simulate mass transport characteristics, specifically the near wall

ATP concentration, prevalent in the areas of arterial bifurcation. By nature, this

concentration profile is of spatially varying nature, as hasbeen established in lit-

erature review in Chapter2 and in Chapter7, where the choice the profile for

J̃PLCagonisthas been explained.

As the first step towards understanding how Ca2+ dynamics differ in spatially

non-uniform conditions, simulations of point stimulations with localized high

J̃PLCagonist was implemented. Point stimulation simulations gave an idea of how

the cells respond to spatially non-uniform agonist stimulation. Stimulating a small

number of ECs with a step increase in the stimulation level fora finite time inter-

val, could elicit a response locally as the Ca2+ concentration of underlying SMCs

oscillated. With a stronger stimulation (step increase ofJ̃PLCagonist=0.7µM/s), the

heterocellular Ca2+ coupling between the cells shifted the behaviour from oscillat-

ing to non-oscillating SMCs. Disabling heterocellular Ca2+ coupling reverted the

non-oscillating response to an oscillating Ca2+ concentration in SMCs. An addi-

tional concentration of Ca2+ entering the SMC cytosol via heterocellular transfer

from ECs saturates the cytosolic oscillator and puts the intracellular Ca2+ stores

into replenishment mode, thus ceasing the Ca2+ induced Ca2+ release (CICR).

The effects of increasing the basalJ̃PLCagonistand implementing the point stim-

ulation on top of it indicated that a threshold exists above which the oscillatory re-

sponse in one SMC can propagate to a non stimulated SMC in coupled cells. Rais-

ing the basal̃JPLCagonist produced longer oscillatory behaviour in coupled SMCs,

thus prolonging the decay process. Because of higher indigenous IP3 generated

by higher local̃JPLCagonist stimulation (basal̃JPLCagonist=0.25µM/s), less IP3 is re-

quired from the adjacent SMC (coupled to an EC stimulated by astep increase in

J̃PLCagonist) to get into the oscillatory mode. Thus the rate of diffusionof IP3 will

be slower in this case and the system will take more time to damp to the level

where all cells stop oscillating. This may also increase thereach of the oscillatory

signal to the cells further upstream and downstream from thestimulated SMC in
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Figure7.4, compared to the response of the SMCs at the same location whenthe

stimulation occurs lower basalJ̃PLCagonist=0.2µM/s. This observation also strength-

ens the idea of the existence of a threshold level over which an SMC, adjacent to

another oscillating SMCs, with low local̃JPLCagonist may adapt to an oscillatory

response.

8.3 Macroscale Phenomena in Arterial Coupled Cells

In Section7.3 four cases of intercellular communication were investigated with

the endothelial cell layer experiencing an axial variationin ATP concentration

simulated by a parameterJ̃PLCagonist, modelling a proportional change in the pro-

duction of PLC serves as a precursor to IP3 dependent increase in intracellular

Ca2+ in ECs. In Case 1 (coupling configuration tabulated in TableA.3), down-

stream Ca2+ dynamics played a vital role in eliciting a response in upstream SMCs

in a time dependent manner.

The Ca2+ waves (see Figure7.6a) observed in the first few seconds after the

application of an agonist gradient(Figure7.5) in areas of steep spatial variation of

stimulus was found to be solely gradient dependent.

Homocellular Ca2+ coupling between SMCs had a fundamental role in the in-

crease of the wave number (the number of oscillatory bands seen in Figure7.6) of

these Ca2+ waves and the eventual propagation to upstream SMCs. These SMCs

were coupled to ECs that were in an environment of low agonist concentration (i.e

would not necessarily oscillate if uncoupled). Low wave number of the Ca2+ os-

cillations in Figure7.6 are representative of synchronized Ca2+ oscillations in

“bunches” of SMCs experiencing a relatively uniform heterocellular IP3 transmis-

sion from ECs that are coupled to them. Thinning of these bands(higher wave

numbers) at later time steps suggests the desynchronisation of these Ca2+ oscilla-

tions in neighbouring cells . In these SMCs it is found that desynchronisation is a

requisite to the propagatory behaviour shown in Figure7.6.

We suggest that the mechanism behind such propagation behaviour involves,

due to the desynchronisation of Ca2+ oscillations, at a specific moment in time, a

difference in concentration between adjoining cells and thus a flux of extracellular

Ca2+ through gap junctions. This is followed by the stimulation of the CICR de-
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Figure 8.3: Time evolution of component fluxes in a SMC situated at 1.303cm
axial distance. (a) shows the Ca2+ flux through gap junction, positive being influx
of Ca2+ from adjacent SMC and negative represents efflux to an apposing SMC.
(b)Curve plotted with dashed line shows rate of CICR productionand solid line
represents rate of Ca2+ pumped into SR via SERCA pump. (c) cytosolic Ca2+ con-
centration in SMC.

pendent cytosolic Ca2+ increase in SMCs. Figure8.3shows the temporal relation-

ship between components of this process for one SMC located at an axial distance

of 1.303cm downstream. Note that the Ca2+ flux through the gap junction pre-

cedes all other fluxes in time. The flux of CICR and SERCA activity continuously

changes in time and correspondingly affects the cytosolic Ca2+ concentration in

Figure8.3c. The influx of Ca2+ from an adjacent SMC enters the intracellular

domain and is pumped back into the SR via a SERCA pump immediately. With

an increase in the rate of change of Ca2+ via the SERCA pump, an increase in the

rate of change of CICR and subsequent elevation of cytosolic Ca2+ can also be

observed. Furthermore, disabling the CICR function caused a cessation of desyn-

chronisation and thus the propagatory effect. SMC VOCCs are not involved in

this process because of the continual closure due to membrane hyperpolarization

induced by neighbouring hyperpolarized ECs. Membrane coupling alone could

not elicit the desynchronisation process and thus no propagation was seen for this

case. Homocellular IP3 coupling between SMCs caused the thinning of bands (in-

crease in the Ca2+ wavenumber) but was unable to produce a propagatory effect

Chapter8/Figures/CICR.eps
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since it could not activate the CICR mechanism in cells that were in a low agonist

environment. The thinning was not via the CICR dependent process stated above,

but mainly due to redistribution of IP3 from enabled homocellular IP3 coupling

in this case.

In Case 2 of TableA.3, enabling the heterocellular Ca2+ coupling had a rapid

effect on intracellular Ca2+ concentration in SMCs. The response showed trends

similar to those seen in case 1 but the propagation of the Ca2+ wave needed less os-

cillatory desynchronization amongst adjoining cells. This is shown in Figure7.9.

This is a much more definitive vasoconstrictor response. Elevated intracellular

Ca2+ in upstream SMCs, although oscillatory, increases actomyosin activity pro-

portionally and hence mediates SMC contraction with a resultant reduction in

arterial radius. Addition of Ca2+ from ECs via heterocellular Ca2+ coupling sensi-

tizes the underlying SMCs to any further injection of Ca2+ from an adjoining SMC.

This process was observed in the point stimulation simulation where the step in-

crease iñJPLCagonist=0.7µM/s stimulated a block of ECs. This extra Ca2+ aids the

spatial wave originating in the cells under the steep agonist gradient to reach the

upstream cells relatively quickly. Each upstream SMC now needs only a small

homocellular Ca2+ influx from an adjoining SMC to induce Ca2+ oscillations in

it (via the CICR pathway shown in Figure8.3) thus producing a spatially syn-

chronized Ca2+ response. The heterocellular Ca2+ coupling, therefore, abates the

temporal desynchronisation of intracellular Ca2+ oscillations in the SMCs whilst

achieving the propagation of a high agonist concentration signal to upstream cells.

We thus suspect that heterocellular Ca2+ coupling could be an integral part of the

vascular apparatus eliciting a rapid global response to alterations in the local ag-

onist concentration. This should help in preserving the structural integrity of the

intima by reducing the effect of hemodynamically induced gradients acting on the

endothelial surface by homogenizing the contractile activity of SMCs axially. It

is yet to be investigated how circumferential gradients cause arterial responses in

such cases.

Case 3 simulates a pathological scenario where the inclusionof homocellular

IP3 coupling between ECs simulates the upregulation of connexinCx43 in athero-

prone areasBurnier et al.(2009); DePaola et al.(1999). No difference was seen in

the response of the intercellular Ca2+ for case 3 compared to the response in case
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2. The presence of heterocellular Ca2+ coupling in both cases inhibits the gradient

effects and resulting in a diffused spatial Ca2+ wave and synchronized temporal

oscillations of intracellular Ca2+ concentrations in SMCs located upstream. This

highlights the importance of heterocellular Ca2+ coupling between SMCs and ECs

in arterial segments.

Case 4, where EC homocellular coupling and EC/SMC heterocellular cou-

pling was severely restricted, provided a different response to any of the above

three cases. In cases 1 to 3 the presence of heterocellular membrane potential

coupling suppressed the entry of Ca2+ into the SMCs via their VOCCs due to EC

mediated hyperpolarization of the SMC membrane potential.In this case, due to

the inhibition of heterocellular membrane potential and the consequential disabled

hyperpolarization it allows the Ca2+ influx via VOCCs into the SMCs following

adequate IP3 stimulation. This offsets the Ca2+ concentration globally in the

whole population of SMCs in the axial direction. Further exchange of Ca2+ via

homocellular gap junctions in SMCs, as we go forward in time, elicits the same

response as seen in case 1. However for an SMC the time to reachan oscillatory

behaviour in case 4 is much less than that observed in case 1. This observation

points out the role and extent of coupling between two populations of cells. In

case 4, where both cell types had weak heterocellular coupling and ECs were also

weakly coupled homocellularly, the response resembles a condition where the EC

layer was non existent and SMCs were experiencing the agonistdirectly onto their

cell membrane. Relatively lower agonist concentrations stimulating ECs in this

case would also produce a similar response suggesting that,unlike cases 1 to 3,

the arterial segment with such intercellular coupling becomes hypersensitive and

would contract even at low agonist concentrations.

In the coupling configuration cases representing a healthy arterial segment the

presence of homocellular Ca2+ coupling between SMCs ensures the propagation

of a high agonist concentration signal to upstream cells at low agonist concentra-

tion. This is achieved rather slowly in the absence of heterocellular Ca2+ coupling,

as in case 1 (Figure7.6) compared to case 2 (Figure7.9), where heterocellular

Ca2+ coupling between ECs and SMCs ensures a rapid and spatially definitive

response. In both the cases the intracellular Ca2+ concentration in each SMC (sit-

uated axially at<2.5cm) oscillates in a temporally desynchronized fashion,the



188 Discussion 8.3

degree of which is much greater in case 1 than in case 2. This desynchronisation

is the main source of the propagation of the Ca2+ wave in both the cases in the

upstream direction and is CICR mediated between SMCs, as suggested by the re-

sults above. This behaviour ceases in the absence of homocellular Ca2+ coupling

between SMCs.

When considering the cases of a pathological nature of intercellular coupling

in the presence of an agonist gradient, case 3 was not different from case 2. Case

4 however highlights the inhibitory effect of hyperpolarized EC membrane poten-

tials on SMC Ca2+ dynamics. In the absence of such a leash, the intracellular

Ca2+ concentration oscillated in each SMC (situated at<2.5cm) in similar fash-

ion as observed in case 1 but the response was much more rapid.We suggest that

because the cells become sensitive, even to the presence of low agonist concentra-

tions, the vessel segment will be in a contracted state more frequently than in other

cases. Thus the presence of heterocellular membrane potential coupling seems to

be essential for imposing a range of agonist concentration where vasoconstrictor

effects are seen.

Of all the intercellular coupling cases, Case1 was computationally most expen-

sive as it took longest time to compute a problem size. As Figure 7.6showed the

propagation of the oscillatory process, the problem becomes increasingly stiff and

the numerical solver is bound to take small steps. Cases 2 and 3were relatively

less intensive computationally. For the sake of comparing the computational cost

of simulating an arterial segment of 2mm radius implementing an intercellular

coupling of Case 1 for 100 seconds, took 36294.89 CPU seconds tocomplete.

An arterial segment of same length but of 24µm radius, implementing Case 1 in-

tercellular coupling, took 394.12 CPU seconds. 384 BG/L nodeswere used in

Coprocessor mode to compute each simulation. Therefore, with an axisymmet-

ric agonist concentration profile, the narrow radius artery(simulating an arteriole)

was computed 80 times faster than a arterial section with larger radius.
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Conclusion

The main objective of the project was to build a computer model capable of investi-

gating the effects of physiologically relevant cases of hemodynamics (specifically

ATP concentration), within an arterial segment, on the cellular dynamics of cou-

pled populations of arterial ECs and SMCs. This chapter summarizes the current

findings from the physiological and computational aspects.

Ca2+ wave propagation has been demonstrated previously in hepatocytes (Dupont

et al., 2000; Tordjmann et al., 1997) and pencreatic acinar cells (Sneyd and Tsaneva-

Atanasova, 2003; Straub et al., 2000). The mechanism suggested in these coupled

cells is either Ca2+ induced Ca2+ release mediated (in the pancreatic acinar cells)

or intercellular IP3 diffusion dependent (in hepatocytes). In the present study, in

the case of spatial variation of agonist on the intercellular coupling cases simu-

lating healthy vessel, the desynchronization in the Ca2+ oscillations of SMCs is

the main source of the propagation of Ca2+ wave in the upstream direction. This

phenomenon of regenerative Ca2+ wave is mediated by the CICR mechanism dis-

cussed in Chapter8. Case 4 highlighted that in the absence of the hyperpolariza-

tion induced by the ECs, the underlying SMCs become sensitizedand respond in

an oscillatory behaviour to low local agonist concentrations of agonist. Thus hy-

perpolarization has a vital role in thresholding the oscillatory response to a range

of local agonist concentration.

Thus heterocellular Ca2+ and membrane potential coupling could, on the basis

of our results, have anatheroprotective effect in an arterial segment stimulated

189
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by a time averaged agonist gradient in coupled EC/SMC populations. Homocel-

lular Ca2+ coupling between SMCs also has acompensatory effectand helps

in homogenizing the response on a global scale in response tosuch gradients, the

rapidness of which is heavily influenced by the presence or absence of appropriate

heterocellular coupling.

Through the use of massively parallel simulations our results have shown that

there existmacro-scale phenomenawhich indicate the propagation of Ca2+ dy-

namics upstream within arterial segments.It is believed that this is one of a

number of possible explanations of how lesions may grow upstream in oppo-

sition to convective transport effects.

From the above conclusions, the reasoning for the use of large scale multi-

cellular coupled models is highlighted for computationally investigating coupled

micro-scaleevents which elicit amacro-scaleresponse. This is the first time that

a computational infrastructure has been introduced which is capable of accommo-

dating a computational domain, as long as 5 cm in axial length, and can cover

arterial radii, from 16µM/s (of the order of a 1st or 2nd order arteriole), up to

2mm, the order of a left main coronary artery, right and left descending and cir-

cumflex arteries. Because of the choice of an axisymmetric profile of the agonist

effect, the observed marco-scale phenomena were found insensitive to the radius

of the arterial segment, however, selection of more complexagonist profiles, with

spatial variations in more than one direction are expected to produce different re-

sults in arterial segments of different radii. The use of computational architectures

such as Blue Gene in this project have demonstrated the ability to simulate highly

complex cellular effects on a scale large enough to be seen with the naked eye.

It can be safely deduced from the scaling results on Blue Gene/L that more

computationally intensive problems comprising a larger number of cells and more

dynamical variables then simulated at present, by horizontally scaling the compu-

tational resources (i.e. adding more BG/L nodes). The limitations can only be

revealed by conducting larger strong and weak scaling tests.

From the simulated results it is evident that the perpetual influx of Ca2+ through

gap junctions contributed by the adjacent cells is capable of raising stiffness of the

solution of set ODEs of a cell, SMC or EC, from a coupled population of cells un-

der spatially varying agonist. This potentially motivatesthe attempt to use a stiff
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solver such asbackward differentiation formulaor BDF instead of using an adap-

tive step size nonstiff solver such as RKSUITE, hence is one ofthe future goals.

In the light of current findings, the need for implementing cell models in-

cluding arterial compliance has been highlighted. The EC and SMC models can

also include physiological realistic models ofNitric Oxide production and diffu-

sion pathways to test the hypotheses that exist regarding the modulatory role of

“Endothelium Derived Relaxing Factor” (EDRF). This may also help quantitate

the importance of EDRF versus “Endothelium Derived Hyperpolarizing Factor”

(EDHF), included in the present models as Ca2+ activated potassium channels.

Using the existing parallel algorithm, and with the inclusion of arterial compli-

ance, the effects of various coupling environments on the myogenic response can

be demonstrated in muscular arteries under pressure gradient. The compute time

for simulating arteries of large radius (millimetre radius) approximately hundred

times longer than for simulating an artery of a radius on micrometer scale. Since

the domain decomposition is applied only in the axial dimension, there is a need

to decompose the problem in the circumferential direction.This modification in

the existing algorithm is expected to enhance its performance.

Ca2+, in its ionic state, is a reactive specie and it binds to various intracellular

proteins with different affinities. The binding of free cytosolic Ca2+ with these

substrates is termed as Ca2+ buffering. One of the known Ca2+ buffering reac-

tions is Ca-CaM or Ca2+ Calmodulin complex. Calmodulin (CaM) is a cytosolic

protein which has four Ca2+ binding sites. In SMCs, this Ca2+ binding activates

an enzyme callmyosin light chain kinaseor MLCK which then phosphorylates

mysoin light chain and allow crossbrige formation and alters the cytoskeleton so

the SMC contracts. Ca2+ buffering, is a rapid process (Hofer et al., 2001) and most

of the Ca2+ arriving in the cytosolic domain is buffered quickly. In thesingle cell

models used in the present study, this effect has been modelled implicitly. More

to this, a possibility has been demonstrated that large molecules like Ca-CaM

complex (molecular weight=≈17 kDa) can pass through gap junction in inver-

tebrates (Richard, 2005), and recently it has been validated in some vertebrate

speciesin vitro (Curran and Woodruff, 2007). In such case, the intercellular trans-

port of Ca2+ in nonreactive state (i.e. as Ca-CaM complex) may not contribute

significantly to the intracellular Ca2+ concentration, but may have a considerable
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influence on the membrane potential. This is due to the fact that Ca2+, even in

Ca-CaM complex form, will bare a charge (as valency of Ca2+ is 2+). This ef-

fect has not been included in the present intercellular coupling model. Future

work will include addition of the buffered Ca2+ transport in the intercellular cou-

pling model and testing for the hypothesis considered in thepresent investigation.

More to that, by altering coupling coefficient, strengthening or weakening those

intercellular couplings which are proposed as driving mechanisms of the propaga-

tory behaviour seen in SMCs, the validity of the current results can be partially

tested. Future work will include considering such couplingscenarios.

Portability of an algorithm is desired so as to be able to enhance its perfor-

mance on vertical scaled computing architectures (i.e. more computing resources

added on one node) such as IBM Blue Gene/P. Modifications in the existing al-

gorithm will be required to fully exploit the computing power of a hybrid (shared

distributed) memory system such as BG/P.

Furthermore, the existing computational layout has the potential to add the

geometric enhancement to build a computation model for complete arterial bifur-

cation. This can be used to demonstrate the effects of complex tangential wall

shear stresses acting on the cytoskeleton of the cell and concentration patterns

associated with arterial bifurcations. Combining the numerical solution of fluid

component (blood phase) with the solution of coupled cell models may aid in im-

plementing physiologically relevant circumferential gradients in wall shear stress

and agonist concentrations. These are expected to be computationally intense

problems, with high complexity due to involvement of spatial effects in a substan-

tial than one direction (i.e. longitudinal and circumferential).
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Appendix A

Table A.1: Table lists parameters used in describing single cell SMC model byKoenigs-
berger et al.(2005)

F Maximal rate of activation-dependent calcium influx 0.23µM/s
Kr Half saturation constant for agonist dependent calcium entry 1µM
GCa Whole cell conductance for VOCCs 0.00129µM/mV/s
vCa1 Reversal potential for VOCCs 100.0mV
vCa2 Half point of the VOCC activation sigmoidal -24.0mV
RCa Maximum slope of the VOCC activation sigmoidal 8.5mV

GNa/Ca Whole cell conductance for Na+/Ca2+ exchange 0.00316µM/mV/s

cNa/Ca Half point for activation of Na+/Ca2+ exchange by Ca2+ 0.5µM

vNa/Ca Reversal potential for the Na+/Ca2+ exchanger -30.0mV
B SR uptake rate constant 2.025µM/s
cb Half point of the SERCA activation sigmoidal 1.0µM
C CICR rate constant 55µM/s

sc Half point of the CICR Ca2+ efflux sigmoidal 2.0µM
cc Half point of the CICR activation sigmoidal 0.9µM

D Rate constant for Ca2+ extrusion by the ATPase pump 0.24 s−1

vd Intercept of voltage dependence of extrusion ATPase -100.0mV
Rd Slope of voltage dependence of extrusion ATPase 250.0mV
L Leak from SR rate constant 0.025s−1

γ Scaling factor relating net movement of ion fluxes to the membranepotential(inversely re-
lated to cell capacitance)

1970mV/µM

FNa/K Net whole cell flux via the Na+-K+-ATPase 0.0432µM/s
GCl Whole cell conductance for Cl− current 0.00134µM/mV/s
vCl Reversal potential for Cl− channels -25.0mV
GK Whole cell conductance for K+ efflux 0.00446µM/mV/s
vK Reversal potential for K+ -94.0mV
l Rate constant for net KCa channel opening 45.0

cw Translation factor for Ca2+ dependence of KCa channel activation sigmoidal 0µM
b Translation factor for membrane potential dependence of KCa channel activation sigmoidal 0.13µM2

vCa3 Half point for the KCa channel activation sigmoidal -27.0mV
RK Maximum slope of the KCa activation sigmoidal 12.0mV
k Rate constant of IP3 degradation 0.1s−1

209



210

Table A.2: Table lists parameters used in describing single cell EC model byKoenigs-
berger et al.(2005)

F̃ Maximal rate of activation-dependent calcium influx 0.23µM/s
K̃r Half saturation constant for agonist dependent calcium entry 1µM
B̃ SR uptake rate constant 2.025µM/s
c̃b Half point of the SERCA activation sigmoidal 1.0µM
C̃ CICR rate constant 55µM/s

s̃c Half point of the CICR Ca2+ efflux sigmoidal 2.0µM
c̃c Half point of the CICR activation sigmoidal 0.9µM

D̃ Rate constant for Ca2+ extrusion by the ATPase pump 0.24 s−1

L̃ Leak from SR rate constant 0.025s−1

k̃ Rate constant of IP3 degradation 0.1s−1

G̃cat Whole cell cation channel conductivity 0.66µM/mV/s

ẼCa Ca2+ equilibrium potential 50 mV
m̃3cat -0.18µM
m̃4cat 0.37µM
J̃0 Constant calcium influx 0.029µM/s
C̃m Membrane capacitance 25.8pF
G̃tot Total potassium channel conductivity 6927pS
ṽK K+ equilibrium potential -80mV
x 53.3µMmV
y -80.8mV
z -0.4µM
m̃3b 1.32×10−3µM/mV
m̃4b 0.30µM/mV
m̃3s -0.28µM
m̃4s 0.389µM
G̃R Residual current conductivity 955pS
ṽrest Membrane resting potential -31.1mV

Table A.3: Table lists coupling coefficients in different intercellular communication con-
figurations considered here; cases 1 & 2 simulate healthy whereas 3 & 4 simulate patho-
logical states, early and progressive atherosclerotic lesion, respectively. Tilde represents
parameters for ECs.

Case 1 Case 2 Case 3 Case 4

H
om

oc
el

lu
la

r g 1000.00 1000.00 1000.00 1000.00
g̃ 1000.00 1000.00 1000.00 0.00

pCa 0.05 0.05 0.05 0.05
p̃Ca 0.05 0.05 0.05 0.00
pIP3

0.05 0.05 0.05 0.05
p̃IP3

0.00 0.00 0.05 0.05

H
et

er
oc

el
lu

la
r G 50.00 50.00 50.00 0.00

G̃ 50.00 50.00 50.00 0.00
PCa 0.00 0.05 0.05 0.00
P̃Ca 0.00 0.05 0.05 0.00
PIP3

0.05 0.05 0.05 0.05
P̃IP3

0.05 0.05 0.05 0.05
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