

Nutrient returns from pasture litterfall during grazing

Presenter: Pranoy Pal

Department of Soil and Physical Sciences, Faculty of Agriculture & Life Sciences,

Lincoln University

Supervisors: Prof. Tim Clough, Prof. Fracis M. Kelliher, Assoc. Prof. Rob Sherlock

Outline

- Introduction
 - New Zealand pastures
 - Litterfall
 - Carbon cycling
- Objective of the survey
- Procedure
- Results and conclusion

Introduction

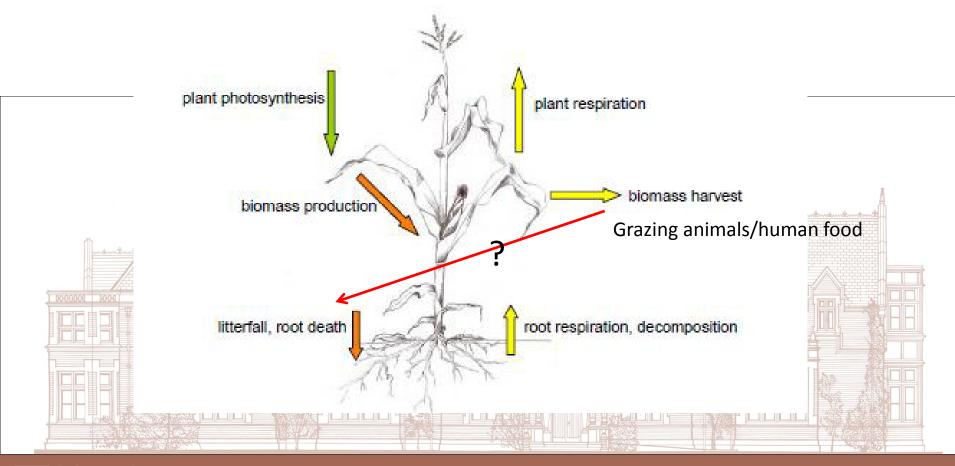
New Zealand Pastures:

- ☐ 90% of the total farm area is under pastoral system
- Dominated by perennial clover-ryegrass systems
- There are about 13,860 dairy farms in New Zealand
- 6 M cows managed on 1.3 M ha, producing about 11,000 M litres milk,
- ☐ After consuming 12 M tonnes of pasture dry matter (Holmes et al. 2007).
- ☐ Follow **Rotational grazing -** animals are offered a fresh area of pasture at
- regular intervals (after 20-30 days)
- ☐ Animals graze for 24 h in each paddock
- Variations with management factors.

Litterfall occurs???

Close observation of dairy animals during grazing showed that herbage

- although harvested, could fall from their mouth onto the soil,
- could be sheared due to hoof movement and fall onto the soil.
- these processes are termed 'litterfall' which creates pasture 'litter'.



The carbon cycle

- ☐ Under 'ideal' conditions, the C lost and gained in the system remains same, i.e. The system is 'neutral'.
- ☐ However, research indicates that understanding C cycling is crucial.
- ☐ The cycle has been disturbed in the recent past due to human activities and hence, need for Carbon sequestration to put the C back into the soil.
- ☐ This again emphasises that C sources need to be understood further.
- ☐ Litterfall has **NOT** been quantified in **Pastures** which can be a probable source of C.

Rationale

- ☐ To quantify litterfall during grazing and,
- ☐ To find its relation to other factors such as herbage on-offer, post-grazing residual.

Procedure

Pre-grazing herbage = 'herbage on-offer'

Procedure (contd.)

Post-grazing herbage

Procedure (contd.)

Separation of fresh and senesced litter after vacuuming

All herbage was dried at 65°C for 48 h and converted to kg DM/ha

Procedure (contd.)

- ☐ Combination of each of pre- and post-grazing measurements was termed as an 'observation'.
- ☐ Total 150 observations were made over the 2010-2011 period at the Lincoln University Dairy Farm (LUDF).
- ☐ Each paddock was grazed 12 times per year (excluding dry period)
- ☐ The pre- and post-grazing herbage and the vacuumed litter analysed for C and N contents
- Expected utilisation = (on-offer) (post-grazing residuals)
- ☐ Actual utilisation = (on-offer) (post-grazing residuals + *litterfall*)

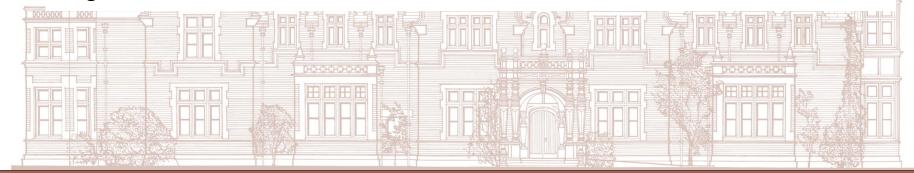
Results

51% DMI

Table 1. Details of the litter fractions <i>per grazing event</i>	54% DMI
--	---------

	Quantity (kg DM/ha)	fotal C (mg/g)	Total N (mg/g)
Pre-grazing on-offer	2516 ± 636ª	396	28*
Post-grazing residuals	1167± 265	320	20
Intake per cow	12.3 ± 4.8 kg DM		
Litter fractions			
Post-grazing-Fresh	53 ± 24	398	25*
Post-grazing-Dead	19 ± 18	397	15
Litterfall per cow	0.8 ± 0.5 kg DM (0.6 kg as fresh litter)		
# Significant differences			

Results (contd.)


- ☐ Total litterfall was 72 kg DM/ha per grazing event i.e. 3% of the expected intake.
- ☐ Litterfall per year = 864 kg DM/ha/yr (= 345 kg C/ha/yr)
- □ Litterfall was NOT affected by herbage on-offer or the post-grazing residuals

- \square Emissions of N₂O contributed 32-76% to the total greenhouse gas budget.
- ☐ The N budget was compiled in a Manuscript submitted to *Journal of Environmental Quality* in Aug, 2011.

Conclusions

- ☐ Total litterfall was 72 kg DM/ha per grazing event i.e. 3% of the expected intake.
- ☐ Litterfall per year = 864 kg DM/ha/yr
- ☐ Litterfall was NOT affected by herbage on-offer or the post-grazing residuals
- ☐ The study shows that a small but important fraction of pasture litter can contribute to C and N returns in pastures.
- ☐ Litter is like pangea separating to islands, over a yr it might be a few mm but over long time, its several meters.

Future research

- > Can grazing time influence litterfall quantities?
- Any effect of climate on litterfall?
- More number of animals = more litterfall?

CHRISTCHURCH•NEW ZEALAND

Acknowledgements:

- Prof. Clough and Prof. Kelliher
- Shreeparna Pal for herbage collection
- Vicky Zhang for herbage analysis
- Neil Smith and Myles Mackintosh for technical

assistance

Thank you!!!

Questions please

