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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy 

Abstract 

Plant-derived nitrous oxide emissions from intensively grazed dairy 

pastures 

 

by 

Pranoy Pal 

 

The Intergovernmental Panel on Climate Change (IPCC) includes above- and below-ground 

residues of all non-N and N-fixing crops in its definition of crop residues. Residues from 

pastures and from perennial forage crops are only accounted for during pasture renewal. The 

IPCC also confirms that the nitrogen (N) contained in crop residues in arable systems can 

contribute significantly to N cycling and be a significant source of nitrous oxide (N2O) 

emissions. Despite the fact that 70% of the world’s agricultural area and 90% of New 

Zealand’s total farm area are pastoral systems, the current IPCC methodology does not 

consider the potential contribution of pasture residues outside of the renewal period with 

respect to N2O emissions. Nitrous oxide is an obligate intermediate in the denitrification 

process and a by-product of nitrification. These microbial processes cause N2O to be released 

from soil into the troposphere. Rates of N2O emission and microbial pathways for production 

are dependent, amongst other factors, on soil water content and inorganic N in the soil. 

Therefore, the questions posed here were: Do pasture residues (collectively called 

‘litter’) occur in significant quantities during grazing? And what is the role of herbage 

embodied-N with respect to N2O emissions? The overall objective of the research was to 

quantify the contribution of such plant-derived N2O emissions in intensively grazed dairy 

pastures to New Zealand’s agricultural greenhouse gas emissions inventory. 

Experiment 1 (Chapter 4), was a field survey performed at Lincoln University Dairy 

Farm (LUDF), to quantify grazing-induced litter-fall i.e. the fraction of freshly harvested but 

un-ingested litter dropped by dairy cattle while grazing. Each paddock at the LUDF was 

grazed 12 times annually. This research showed, for the first time, that the rate of fresh 

litter-fall equated to 53 ± 24 kg DM ha
–1

 per grazing event in an intensively grazed dairy 

pasture and was equal to 4% of the apparent dry matter consumption of the dairy cattle. 
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Annually, fresh and senesced litter equated to N application rates of 15.9 kg N ha
–1

 y
–1

 and 

3.5 kg N ha
–1

 y
–1

, respectively. The aforementioned quantities of litter-fall formed the 

rationale for further experiments. 

Experiment 2 (Chapter 5), a field study conducted in two parts (A and B), examined 

the effect of simulated animal treading on herbage decomposition and its implications on N2O 

emissions. Presence or absence of herbage did not affect the N2O emissions with N2O 

emissions increasing regardless of the herbage presence. Soil NO3
–
 levels declined due to 

treading, presumably due to induced anaerobic conditions and denitrification. The results 

were confirmed using a 
15

N technique (part B) which showed that a major fraction of the N2O 

emitted under herbage-trodden pasture originated from the soil inorganic N pool. However, 

the 
15

N enrichment of the inorganic N pool also showed that the size of the soil inorganic-N 

pool was diluted due to N being released from either the herbage or the soil organic matter 

pools as a consequence of treading. 

Experiment 3 (Chapter 6) investigated the effect of incorporating litter of the dominant 

New Zealand pasture species (clover and ryegrass) and a pasture supplement (maize) with 

soil, at two soil water contents (54 and 86% water-filled pore space (WFPS)), incubated at 

20
o
C. At field capacity (86% WFPS), the emission factor (EF) of N2O equated to 2–3% of the 

litter-N with no differences due to litter species, while at 54% WFPS, the EF was significantly 

less with 1.7% > 0.7% = 0.5% for clover, ryegrass and maize, respectively. The 

decomposition rates were also similar at 86% WFPS. The differences in N2O emissions were 

attributed to the biochemical properties of the species’ litter, especially cellulose 

concentrations and their differing C: N ratios. 

To further investigate the role of biochemical composition, specifically the C: N ratio 

of the plant litter to contribute to N2O emissions, increasing amounts of cellulose were mixed 

with a constant mass of clover litter and incorporated into a pastoral soil (Experiment 4; 

Chapter 7). Increasing the C: N ratio via cellulose addition enhanced N2O emissions, 

indicating that the incorporated cellulose acted as a labile C source favouring denitrification. 

Higher N2O emissions from the highest C: N ratio treatments showed that the biochemical 

availability of C played a critical role in litter-derived N2O emissions. Therefore higher 

emissions observed from the clover litter incorporated in Experiment 3 were most likely due 

to the labile forms of C embodied in the clover leaf tissues and not just attributable to the 

amount of N in the litter.  

In Experiment 5 (Chapter 8), 
15

N-labelled ryegrass was placed on the surface of a 

pastoral soil in litterbags at the rate of 213 kg N ha
–1

 (simulating litter-fall) and N2O and CO2 

emissions were measured. This current study is the first to report soil N dynamics and N2O 
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emissions using 
15

N-labelled pasture litter placed in situ. Approximately 70% of the N2O 

originated from the litter when surface-applied. Emissions of N2O likely resulted from 

ammonification followed by a coupling of nitrification and denitrification during litter 

decomposition on the soil surface. The litter contributed to both the 
15

N enrichment of soil 

NO3
–
 and N2O emissions which originated from litter-N. The 

15
N enrichment of the soil NO3

–
 

pool showed that litter-N enhanced the soil inorganic N pool, verifying the conclusions drawn 

in Experiment 2 (part B), where in situ treading of herbage led to an increase in the soil 

inorganic N pool as evidenced by the decrease in 
15

N enrichment of the NO3
–
 pool. The EF of 

the in situ placed litter was 0.9%; similar to the IPCC default EF value of 1%. 

This suite of experiments has shown that the contribution(s) of herbage-N to N cycling 

and N2O emissions are significant, yet, not considered within the current IPCC methodology. 

If the litter-fall data is extrapolated using the various N contents and EFs measured in this 

thesis, litter-fall accounts for 4.5–10.9% of the total N2O-N emitted due to dairy cattle. This 

thesis has also shown that 4% of the total pasture on-offer can be lost as litter-fall resulting in 

lower dry matter intake (DMI) of dairy cattle. If this is worked through the inventory 

calculations, the DMI remains unaffected. However, including the litter-fall-derived N2O 

emissions in inventory calculations provides a more accurate and refined accounting of the 

N2O-N released from grazed pasture N cycling. Before solid recommendations can be made 

to alter the IPCC inventory methodologies, further data on the effects of different grazing 

managements, animal and pasture species, and climate are needed. 

 

Keywords: Litter-fall, nitrous oxide, carbon dioxide, pasture, litter, animal treading, surface 

decomposition, clover, ryegrass, maize, IPCC methodology 
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     Chapter 1 

Introduction 

Pastoral agriculture in New Zealand continues to intensify. Between 1989 and 2009, the 

dairy cattle numbers in New Zealand increased from 3.3 million to 6.2 million (Statistics New 

Zealand 2011). Grazing animals increase nutrient cycling and nitrous oxide (N2O) emissions. 

Numerous studies have helped to quantify greenhouse (GHG) emissions resulting from cattle 

urine and excreta deposition in New Zealand pastures. However, the role of pasture litter, 

which contains both carbon (C) and nitrogen (N), has not been studied with respect to N2O 

emissions. 

Close observation of the grazing behaviour of dairy cattle shows that a portion of the 

harvested pasture vegetation remains unconsumed and falls from the animal’s mouth during 

grazing. This results in the formation of pasture plant litter. The process of pasture plant litter 

production by this mechanism is hereafter termed ‘litter-fall’. Plant litter may consist of fresh 

and senesced herbage. After grazing, this herbage remains where it falls until it decomposes. 

The review of literature (Chapter 2) that follows shows that only three studies have attempted 

to quantify litter-fall. Moreover, the contribution of litter decomposition and animal treading 

to N2O emissions in pastoral conditions has not been investigated in detail. Litter-fall rates 

have not been quantified for intensive dairying operations and they are NOT considered in the 

Intergovernmental Panel on Climate Change (IPCC) best practice guidelines as a source of 

N2O; moreover, the fate of this litter formed from litter-fall is unknown. Hence, the rationale 

for experiment 1 (Chapter 4) was to quantify litter-fall in pastures grazed by dairy cattle and 

determine if relationships existed with pasture management factors (Figure 1.1). 

Litter may either be partially incorporated into the soil via anthropogenic activities 

such as animal treading/vehicular traffic or it may sit on the soil surface. In both cases, 

various biotic and abiotic factors aid in the decomposition of litter and this can potentially 

contribute to soil N and C cycling pools.  

Results from experiment 1 (Chapter 4) were ‘unique’ – with significant quantities of 

litter-fall measured, that may potentially contribute to anthropogenic N2O emissions. Hence 

the fate of this litter-fall was further investigated in two studies that examined partial 

(Chapters 5 and 8) or complete (Chapters 6 and 7) litter incorporation. The potential for 

litter-fall to contribute to N2O emissions due to partial incorporation from animal treading was 

studied (Chapter 5, field study), and the fate of surface-applied, fresh ryegrass litter was also 

examined for N2O emissions (Chapter 8, field study). For Chapter 5 it was observed that 

during simulated animal treading, the plant litter was only partially incorporated into the soil 
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which may not allow complete decomposition of the litter. Moreover, if the soil water content 

was not maintained at field capacity, treading damage to herbage was minimal, also indicating 

the significance of soil water content. This led to the lab study (Chapter 6), where litter from 

three dominant pasture species was thoroughly incorporated in soil at two moisture levels and 

N2O emissions measured. Contrasting soil water contents were selected so as to simulate in 

situ conditions and evaluate litter decomposition and N2O emissions. The results revealed that 

the emissions were governed by the biochemical composition, especially cellulose, of the 

litter. Based on the results of Chapter 6, Chapter 7 dealt with incorporating litter and cellulose 

in various proportions and its response to N2O emissions. Figure 1.1 shows a flowchart of the 

experiments with the associated rationale. 

The main objectives of the thesis were to: 

1. Quantify pre- and post-grazing litter-fall under field conditions (Chapter 4), 

2. Evaluate the effect of animal treading and its contribution to inducing plant-derived 

GHG emissions in pastures (Chapter 5),  

3. Examine how common pasture litter materials (clover, ryegrass and maize) affect N2O 

emissions and determine their decomposition rates at different moisture levels 

(Chapters 6 and 7), 

4. Determine the N2O emissions of incorporated clover residues with varying cellulose 

concentrations (Chapters 6 and 7), and 

5. Determine the effect of surface-placed, fresh plant litter on N2O emissions under field 

conditions (Chapter 8).

 

Figure 1.1 Interrelationships of plant litter to different experiments.

Pasture 
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     Chapter 2 

Literature review 

2.1 Introduction 

Grasslands are defined as terrestrial ecosystems consisting of plant communities, in 

which grasses and/or legumes, including harvested forages, make up the dominant vegetation 

(Barnes and Nelson 2003). About 3.5 billion ha, representing 26% of the world land area, and 

70% of the world agricultural area, are under pasture and fodder crops (FAOSTAT 2000). 

Pastures exist under diverse topography and management. Hence annual pasture production 

can vary from 1000 kg DM ha
–1

 in arid regions to ~20,000 kg DM ha
–1

 in warm, fertile 

temperate climatic zones (McDowell 2008). 

Introduced pasture species, relatively high stocking rates, and grazing management are 

the key drivers which regulate C and N cycling in anthropogenic grassland ecosystems via 

plant litter returns; excreta deposition and management practices such as pasture renewal. 

Pasture plant litter is a generic term. It has three main components that are in continuous 

transition viz. ungrazed mature vegetation attached to a plant as standing residue, herbage 

detached from the plant and lying on the soil surface, and decomposing residues in the soil 

(Molinar et al. 2001). This thesis, however will define pasture plant litter as the harvested but 

unconsumed pasture vegetation which falls from the animal’s mouth during grazing. This 

harvested but unconsumed herbage is collectively termed litter and the process of its creation, 

litter-fall. Plant litter deposits created from litter-fall may stay on the soil surface and start to 

decompose, contributing to previous litter already decomposing in the soil; and/or get 

partially or completely incorporated in the soil due to animal treading and then decompose 

further (Hutchinson and King 1989; Molinar et al. 2001). Decomposition of litter, either on 

the soil surface or incorporated in soil, leads to the mineralisation/immobilisation of nutrients 

contained in the litter and hence these are returned back to the soil. These nutrients may then 

be further transformed in the case of N, and potentially be lost from the grazed pasture as 

discussed below (Section 2.2.2). 

Greenhouse gases such as nitrous oxide (N2O) and carbon dioxide (CO2) are 

atmospheric trace gases that absorb infra-red radiation reflected from the Earth’s surface, thus 

trapping radiated heat and contributing to increases in global temperatures. The mean global 

surface temperature has increased by 0.74 ± 0.18°C between 1905 and 2005 (Trenberth et al. 

2007). The rate of warming over the last 50 years is almost double that over the last 100 years 
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(0.13 ± 0.03°C vs. 0.07 ± 0.02°C per decade, respectively) with 2005 one of the warmest 

years on record.  

The greenhouse gas – N2O is a precursor to compounds involved in stratospheric ozone 

depletion (Crutzen 1981) and has a global warming potential (GWP) of 298 over a 100 year 

timeframe (Forster et al. 2007). Its atmospheric concentration is increasing linearly 

(0.26% y
−1

), rising from 270 nL L
–1

 in 1750 to 319 nL L
–1

 in 2005 (Forster et al. 2007). 

Agriculture is the largest source of N2O accounting for about 60% of the total global 

anthropogenic N2O emissions (Kroeze et al. 1999; Mosier et al. 1998). Among other 

anthropogenic ozone-depleting-substances, N2O is currently rated as having the highest ozone 

depleting potential (Ravishankara et al. 2009). 

Approximately 90% of New Zealand’s total farm area is considered to be a pastoral 

ecosystem (Statistics New Zealand 2003) and the agricultural sector accounted for 46.6% of 

New Zealand’s GHG inventory in 2008 (Ministry for the Environment 2011). New Zealand 

agriculture is dominated by grazed pasture systems. Such systems have been identified as 

significant sources of N2O (Flessa et al. 1996; Oenema et al. 2005). Nitrous oxide accounted 

for 16% of New Zealand’s GHG inventory in 2008; an increase of 21.8% since 1990 

(Ministry for the Environment 2011) i.e. approximately 85% of the total anthropogenic N2O 

emissions come from grazed pastures (Cameron et al. 2000).  

The Intergovernmental Panel on Climate Change (IPCC) best practice guidelines 

account for N2O emissions occurring from livestock and manure management, fertiliser 

additions, and cropping residues
*
 but they do NOT account for the possibility of litter-fall, or 

supplementary feed litter contributing to anthropogenic N2O emissions (IPCC 2006). The 

only mention the IPCC guidelines make with respect to pasture, is when considering the 

potential for emissions as a result of pasture renovation. 

The following literature review describes the rates and pathways for N cycling in grazed 

pastures, possible effects of pasture plant litter and identifies the dearth of knowledge with 

respect to plant litter and N2O emissions.  

  

                                                 
*
 Cropping residues in this thesis will be defined as the materials remaining in the field after a crop has been 

harvested in agricultural and horticultural systems. These residues include stalks, stubbles, stems, leaves and 

seed pods.  
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2.2 N cycling in grazed pastures  

Nitrogen (N) is an essential element for plant functions. It is a primary constituent of 

basic amino acids (the building blocks of proteins such as enzymes) and nucleic acids (Kapal 

2008). Nitrogen is primarily obtained from the atmosphere, through N fixation by legumes 

and microbially-mediated mineralisation processes in the soil (Cameron 1992). 

Nitrogen transformations occur through a variety of processes within the 

soil/plant/atmosphere system which is generally referred to as the ‘nitrogen cycle’. There is a 

high abundance of N in pasture soils but not all forms are plant available. In addition to the N2 

in the soil atmosphere, the three main forms of N in the soil are: (i) organic compounds 

contained in plant matter, soil organisms and humus; (ii) ammonium (NH4
+
–N) ions fixed to 

clay minerals; and (iii) mineral N i.e. NH4
+
–N, NO3

–
–N (nitrate); and NO2

–
–N (nitrite)) in the 

soil solution (McLaren and Cameron 1996). Mineralisation and immobilisation are the 

biological transformations of soil N which determine the abundance of mineral N in the soil.  

 Soil-N is also subject to mineralisation and immobilisation processes. Nitrogen 

mineralisation is the conversion of organic N contained in soil organic matter (SOM), plant 

matter or microbial biomass, into more available forms of mineral N. In the case of NO3
–
–N, 

it is more susceptible to leaching from the soil profile, if not assimilated into microbial tissue, 

or taken up by vegetation (Stevenson 1982). Mineralisation thus governs the plant available N 

supply (Monaghan and Barraclough 1997). 

Nitrogen immobilisation is the process of assimilation of mineral forms of N into the 

microbial biomass thereby rendering it unavailable for plant uptake (Whitehead 1995). 

Nitrogen is immobilised when conditions favour microbial growth. In a steady state, these 

two processes are balanced. 

Factors affecting the rate of mineralisation and immobilisation are substrate quality 

(C: N ratio); environmental parameters (such as soil aeration, soil temperature and moisture), 

fertiliser application, soil texture and soil pH (Haynes 1986). Soil rewetting and drying cycles, 

freezing and thawing are also of particular importance as they cause a "flush" of microbial 

activity, and consequently N mineralisation. Cultivation affects may also affect the degree of 

N immobilisation in the soil (Jarvis et al. 1996).  

Various N transformation processes occurs as a result of natural/anthropogenic N 

inputs. Inputs of N in pastures can occur as a result of biological nitrogen fixation (BNF), 

atmospheric deposition, fertiliser, slurry applications and animal excreta (animal urine and 

dung deposition). Other processes assist to transform N within the pasture soil, such as 

nitrification, denitrification, volatilisation and leaching. These processes are discussed further 

below. 
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2.2.1 N inputs 

2.2.1.1 BNF and atmospheric deposition 

There are several N-fixing organisms which are symbionts and enzymatically convert 

atmospheric dinitrogen (N2) to ammonia (NH3) (Esser et al. 2011). This process is called 

biological nitrogen fixation (BNF) and amounts to about 130 Tg y
–1

 globally (Galloway et al. 

2004). Traditionally, legumes are the basis of New Zealand’s pastoral system. Legumes such 

as clover (Trifolium repens L.) have special root nodules created by N2-fixing bacteria 

(Rhizobium sp.) that facilitate BNF. The rate of BNF by clover ranges from 100 to 350 kg N 

ha
–1

 y
–1

 depending on the pastoral dominance of clover, clover growth rate, soil fertility, soil 

moisture and temperature (Menneer et al. 2004). Ledgard (2001) estimated that BNF from 

clover-grass pastures ranged from 20–270 kg N ha
–1

 y
–1

. In white clover-based pastures, 

ideally 25−35% of the total pasture is sown with clover in order to ensure adequate rates of N 

fixation (Ledgard et al. 1990; White and Hodgson 1999). 

A small input of reactive N into the biosphere, equal to about 2–5% of the global BNF 

inputs, comes from the oxidation of N2 by lightning (Lelieveld and Dentener 2000). 

Atmospheric N compounds cycle to the land and water through atmospheric deposition. Wet 

deposition, predominantly rain and snow, carries NH4
+
 and NO3

–
 while dry deposition 

involves complex interactions between airborne N compounds and plant, water, soil, rock, or 

building surfaces (Churkina et al. 2007). Wet deposition via rainfall onto New Zealand soils 

ranges from 1–5 kg N ha
–1

 y
–1

 while dry deposition at 14 sites in the Waikato and Manawatu 

regions, adjacent to dairy farms ranged from 5–10 kg N ha
–1

 y
–1

 (Parfitt et al. 2006). 

2.2.1.2 Typical fertiliser rates in dairy pastures 

Fertiliser application has greatly increased pasture production in New Zealand over the 

last few decades (Christie and Grundy 2008). Typical fertiliser rates in New Zealand and 

Australian clover-ryegrass pastures are 100–150 kg N ha
–1

 y
–1

. Pasture growth responds 

almost linearly up to 200–400 kg N ha
–1

 y
–1

 (Whitehead 2000). Commonly used fertilisers in 

New Zealand pastures include urea (46% N), ammonium sulphate (AS, 21% N) and 

diammonium phosphate (DAP, 18% N). Emissions of N2O from fertiliser depend on fertiliser 

type and soil conditions, e.g. in wet conditions, NO3
–
 fertilisers cause higher emissions than 

urea or NH4
+
-based fertilisers, while the converse is true in warm and dry conditions (Smith et 

al. 1997). The choice of fertiliser depends mainly on its cost but optimised application 

strategies aim to minimise losses via NH3 volatilisation, denitrification and leaching, and 

maximise plant N uptake. Approximately 0.30 M t of fertiliser N is applied to New Zealand 

pastoral soils on a yearly basis (Saggar et al. 2004). 
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2.2.1.3 Effluents 

Dairy farm effluents (DFE), comprising animal excreta, urine and wash-down water 

(Clough and Kelliher 2005), are generated when the milking sheds and holding yards in a 

dairy farm are cleaned with high-pressure hoses, at the rate of approximately 50 L effluent 

cow
–1

 d
–1 

(Saggar et al. 2004). The predominant constituents of the DFE are urine and dung. 

The composition of DFE varies according to animal numbers, feed quality, and volume of the 

wash-down water. Effluents contain valuable nutrients (Longhurst et al. 2000) and hence are 

applied onto land to improve soil fertility (Cameron et al. 1997). It is estimated that about 70 

million m
3
 of DFE are generated from dairy farms in New Zealand annually (Saggar et al. 

2004). Studies report that dairy and piggery effluents in New Zealand can annually supply N, 

P and K equivalent to 17,500 t of urea, 12,500 t of single super-phosphate, and 28,300 t of 

potassium chloride, respectively (Bolan et al. 2003; Roberts et al. 1992).  

2.2.1.4 Urine and dung 

Grazing livestock returns N to the soil via the excretion of both dung and urine. The 

amount depends on the type of animal, the type of herbage consumed and its N content, and 

total dry matter intake (Whitehead 1986). Moir et al. (2010) reported that approximately a 

quarter of a grazed paddock may be covered by urine patches on an annual basis. In an 

intensively grazed pasture, it was calculated that more than half of the consumed N was 

excreted as urine (Haynes and Williams 1993). The area over which a typical urination event 

occurs may receive the equivalent of 1000 kg N ha
–1

 (Ball and Ryden 1984; Cameron 1993), 

and cover an area of between 0.16–0.49 m
2
 (Haynes and Williams 1993). Such a high loading 

rate of N within a urine patch may potentially lead to large N losses from the grazed system 

via N leaching, denitrification, and NH3 volatilisation (Ball et al. 1979). Inputs of N from 

animal excreta to New Zealand pastoral soils can be about 1.5 M t annually (Saggar et al. 

2004). 

2.2.1.5 Pasture litter inputs 

During grazing, animals consume a large proportion of the herbage on-offer, but the 

remainder (post-grazing residuals) along with all dead root material ultimately undergoes 

decomposition in situ which returns N back to the soil (Whitehead 2000). Nitrogen returns via 

pasture litter decomposition can be a dominant source of N for new herbage growth if there is 

little N input from anthropogenic sources. These N returns depend on the N content of the 

litter which is related to the rates and types of N inputs. Parsons (1988) indicated that the 

amount of herbage decomposing in situ each year was broadly similar to the amount 
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consumed by grazing animals or harvested for hay or silage in an intensively managed 

pasture.  

Senesced litter typically has a C: N ratio of >20: 1 (Whitehead 2000). Depending on 

the intensity of management, the total amount of herbage material decomposing in situ may 

range from 1000 to 10,000 kg DM ha
–1

 y
–1

 (Whitehead 2000). However, in most intensively 

managed pastures, unlike residues from cropping systems, litter deposition rates have rarely 

been measured, let alone been considered an N source, hence, no studies have been performed 

to study N inputs from pasture litter and residual herbage incorporation. Pasture residues 

when ploughed-in can cause N mineralisation, e.g. Vinten et al. (2002) reported N 

mineralisation rates of 87 kg N ha
–1

, one year after ploughing clover-ryegrass swards in a ley 

cropping system while Eriksen (2000) found 90–100 kg N ha
–1

 in a sandy loam soil after 

ryegrass leys were ploughed. However, there is a dearth of studies measuring C and N cycling 

from pasture litter and actual litter-fall rates in pasture systems grazed by dairy cattle. 

Residues in cropping systems
†
 are a significant N source and can influence soil 

quality, N cycling and microbial processes (Vigil and Kissel 1991). The literature review on 

the contribution of crop residues to N cycling, however, is ambiguous because N in the crop 

residues is supposedly more protected than that of fertilisers and hence N losses from 

leaching/volatilisation may not always occur from crop residues (Whitehead 2000). Legume 

crop residues, when incorporated into soil decompose rapidly and release mineral N and 

organic C into the soil (Aulakh et al. 1991b); this mineral N may potentially be lost into the 

atmosphere via various pathways (Section 2.2.2). Conversely, high C: N ratio crop residues 

can promote immobilisation of the available N in the soil organic matter (Delgado et al. 2010; 

Delgado et al. 2004). Smit et al. (1995) reported that sugar beet residues after harvest could 

contain 100–160 kg N ha
–1

, Brassica residues >200 kg N ha
–1

 (Fink et al. 1999), and field pea 

residues, 30–100 kg N ha
–1

 (Evans et al. 1991). Vigil and Kissel (1991) reported that applying 

residues with a low C: N ratio encouraged N mineralisation, but applying residues with higher 

C: N ratios increased N immobilisation. Dendooven et al. (1996) indicated that studies using 

crop residues in field conditions are fewer due to the difficulty in assessing C and N 

availability in these complex C and N sources i.e. crop residues (Beauchamp et al. 1989). No 

study has so far reported pasture litter decomposition in situ and associated N cycling fluxes. 

  

                                                 
†
 Cropping residues in this thesis will be defined as the materials remaining in the field after a crop has been 

harvested in agricultural and horticultural systems. These residues include stalks, stubbles, stems, leaves and 

seed pods. 
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2.2.1.6 Conclusion (N inputs) 

It is clear that numerous studies in pastures have focused on animal urine, dung and 

fertiliser N inputs but no studies have been performed with respect to litter-fall. This might 

have been due to the lack of recognition of the concept of litter-fall. The literature review 

shows that crop residues can make significant contributions to N inputs. The nutrient 

composition of pasture litter is comparable to that of cropping residues, hence, pasture litter 

decomposition may potentially contribute to N and C cycling and its significance needs to be 

determined. 

2.2.2 N transformations and losses 

2.2.2.1 Nitrate Leaching 

Nitrogen is leached mainly as NO3
–
, largely because NO3

–
 ions are highly soluble and 

are not retained by the soil’s exchange complex (Hillel 1998). Nitrate leaching occurs when 

there is an accumulation of NO3
–
 in the soil profile that coincides with, or is followed by a 

period of high drainage (Di and Cameron 2002a). Factors affecting intensities of leaching are 

rates of rainfall and irrigation, evaporation, soil type, and plant cover (Di and Cameron 2002a; 

Haynes 1986). Excessive fertigation, DFE application and animal urine excretion can 

therefore have a major impact on NO3
–
 leaching from grazed pastures. This can have 

deleterious impacts on the environment causing eutrophication in water bodies and 

groundwater contamination.  

2.2.2.2 Ammonia volatilisation and urea hydrolysis 

Urea in fertiliser and urinary-N undergoes rapid hydrolysis to NH4
+
–N (Equation 2.1) 

and may be completely hydrolysed within 2 d (Holland and During 1977; Sherlock and Goh 

1984). The optimum conditions for urea hydrolysis are a pH >6.5 and elevated soil 

temperatures (Jarvis and Pain 1990).  

 

CO(NH2)2  +  2H2O    
urease

           NH4
+
  +  NH3  +  HCO3

–
    

Urea           

          Equation 2.1 

Urease is an enzyme ubiquitous in pastoral environment that catalyses the hydrolysis 

of urea. Urease enzyme activity generally increases with increasing temperature (Moyo et al. 

1989). A fraction of the NH4
+
 is also converted to ammonia (NH3) (Equation 2.2). 
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The process of NH3 loss to the atmosphere is termed ammonia volatilisation. This is a 

physico-chemical process requiring an alkaline pH unlike urea hydrolysis which is a 

biochemical reaction (Sherlock et al. 2002). 

 

NH3   +   H2O                  NH4
+
   +   OH

–
 

          Equation 2.2 

In pastures, NH3 volatilisation occurs from urine patches because of the presence of 

both high pH and NH4
+
 (Haynes and Williams 1993); the production of NH3 increases with 

increasing pH. The proportion of total urinary-N volatilised as NH3–N can range from 3 to 

52% (Petersen et al. 1998). Factors governing NH3 volatilisation are soil pH, cation exchange 

capacity (CEC), soil moisture and soil temperature and relative concentrations of NH3 and 

NH4
+
 in the soil solution (Haynes and Sherlock 1986). 

2.2.2.3 Nitrification 

Nitrification is the biological oxidation of NH4
+
 to NO3

– 
which occurs in two steps 

(Figure 2.1). The first step is the oxidation of NH3 to NO2
–
 by ammonia-oxidising bacteria 

(AOB, mainly Nitrosomonas sp. and Nitrosococcus sp.), and ammonia-oxidising archaea 

(AOA, Nitrosopumilus maritimus) (Leininger et al. 2006; Prosser and Nicol 2008) and certain 

fungi (Laughlin et al. 2008). The second step is the oxidation of NO2
–
 to NO3

–
 by 

nitrite-oxidising bacteria such as Nitrobacter sp. (Figure 2.1; Equation 2.3). Both these groups 

of bacteria are autotrophic, obligatory aerobic members of the gram-negative bacterial 

phylum Proteobacteria (Kowalchuk and Stephen 2001).  

 

NH3
 
   + 

  
 O2  + 2H

+
  +  2e

– 
              NH2OH     +    H2O               NO2

–   
 +   5H

+
   +   4e

– 

Ammonia                   Hydroxylamine          Nitrite 

 

NO2
–
   +   H2O              NO3

– 
  +   2H

+
   +   2e

–
  

Nitrite   Nitrate 

          Equation 2.3 

Nitrification produces H
+
 ions which results in a decrease in the soil pH. Nitrous oxide 

is produced during nitrification as a by-product (Figure 2.1). In pastures, following a urine 

deposition event, nitrification is enhanced due to the presence of substrate and moisture.  

Both nitrification steps are highly dependent on the pH; both Nitrosomonas and 

Nitrobacter sp. are inhibited by high concentrations of NO2
–
 at a pH ≤ 7.5 (Hunik et al. 1993) 

while Nitrobacter sp. can be inhibited by NO3
– 

at a pH range of 6.5–7.5 and by NH4
+
 at pH 

6.5 (Hunik et al. 1993). 
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Soil water content and aeration affect the rate of nitrification and subsequent N2O 

production from nitrification. The rate of N2O production is normally low at < 40% WFPS 

(water-filled pore space) but increases rapidly up to 55–65% WFPS. Above 60–70% WFPS, 

soil aeration is reduced (limited oxygen diffusion) and denitrification may dominate N2O 

production at >70% WFPS (Dalal et al. 2003). 

Another factor affecting the rate of nitrification is temperature with an optimum range 

of 25–35
o
C (Whitehead 1995) but indigenous nitrifier species may adapt rapidly to local 

conditions (Malhi and McGill 1982). 

 

 

Figure 2.1 Transformations of mineral N in soil (Wrage et al. 2001) 

 

2.2.2.4 Denitrification 

Denitrification is the dissimilatory reduction of NO3
–
 to NO2

–
 and its sequential 

reduction via nitric oxide (NO) and N2O to N2 (Figure 2.1). Reductase enzymes occur at each 

step of the entire process (Equation 2.4).  

 

NO3
–
  

nitrate reductase
     NO2

– 
 
nitrite reductase

      NO  
nitric oxide  reductase

    N2O  
 nitrous oxide  reductase

   N2 

Nitrate           Nitrite    Nitric oxide  Nitrous oxide  Dinitrogen 

                   Equation 2.4 

           

Denitrifiers are facultative, anaerobic, usually gram-negative bacteria of the phylum 

Proteobacteria (Philippot et al. 2007) having the ability to utilise NO3
–
 and NO2

–
 as electron 

acceptors when oxygen is unavailable (Firestone 1982). Fungi may also play a denitrifying 

role in grassland soils (Laughlin and Stevens 2002). Microbial denitrification occurs 
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predominantly in wet soils, but may also occur in anaerobic microsites in drier soils (Muller 

2003; Whitehead 1995). 

Denitrification rates and the rates of production of denitrification products (e.g. 

N2O: N2) are affected by various factors including oxygen diffusion; soil moisture which 

affects gas diffusion, temperature, pH and availability of C and NO3
–
 substrates (Weier et al. 

1993). 

Soil water content is one of the most important factors regulating denitrification 

because of its influence on terminal electron acceptor (TEA) supply (O2, NO3
–
, NO2

–
, N2O) 

(Firestone and Davidson 1989). Denitrifiers prefer O2 over other TEAs because its reduction 

yields more energy (Fazzolari et al. 1998). Denitrification increases with increasing WFPS 

(>60% WFPS), reaching a maximum at 95% WFPS (Drury et al. 2003). Increasing WFPS up 

to a value of 95% also decreases the proportion of gaseous N lost as N2O (i.e. reduces the 

N2O: (N2O+N2) ratio) (Bateman and Baggs 2005; Weier et al. 1993). The decrease in this 

ratio occurs through two mechanisms. First, N2O-reductase activity is inhibited at lower 

WFPS due to increased O2 availability, making N2O the principle product of denitrification 

(Weier et al. 1993). Second, the rate of diffusion of N2O from the site of denitrification is 

decreased at higher WFPS (Peterson and Anderson 1996), thereby increasing the opportunity 

for N2O to be reduced to N2 (Weier et al. 1993). 

Denitrifiers are heterotrophs therefore C substrate availability is another important 

factor governing denitrification (Knowles 1982). Increased C availability increases 

denitrification directly by increasing the energy and electron supply to denitrifiers, and 

indirectly through enhanced microbial growth and metabolism thereby stimulating high O2 

consumption (Beauchamp et al. 1989; Gillam et al. 2008). Denitrification rates vary with the 

type of C substrate from simple compounds such as glucose to complex crop residues (Aulakh 

et al. 1991a; Weier et al. 1993). 

Denitrification rates and N2O emissions increase with increasing soil NO3
–
 

concentrations because NO3
–
 is used preferentially to N2O as a TEA under anaerobic 

conditions (Firestone 1982). This is only true when other factors (O2 diffusion and C 

availability) are optimised and NO3
–
 may not become limiting until after the addition of a C 

source (Weier et al. 1993). 

The optimal rate of both nitrification and denitrification occur at a pH range of 7–8 

(Haynes 1986). Salinity usually inhibits both processes. Rates of denitrification are highest at 

60–70°C (Bremner and Shaw 1958; Keeney et al. 1979), although non-biological reactions 

(such as chemodenitrification) probably contribute at these high temperatures (Firestone 

1982). In terms of pH, denitrification yields relatively more N2O at lower soil pH, however, 
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the overall rate of production and emission of N2O and N2 is relatively higher in neutral to 

slightly alkaline than acidic soils (Simek et al. 2002). 

2.2.2.5 Other N2O production pathways in pasture ecosystems 

Emissions of N2O are mainly governed by nitrification and denitrification, although 

other pathways such as nitrifier-denitrification, DNRA (dissimilatory nitrate reduction to 

ammonium) and chemodenitrification cannot be ignored (Anderson et al. 1993; Chalk and 

Smith 1983; Papen et al. 1989). However, the latter processes may contribute only partly to 

the total N2O emissions in pastoral systems (Bowden 1986; Kaplan and Wofsy 1985).  

Nitrifier-denitrification is the nitrification pathway governed by autotrophic nitrifiers 

(Figure 2.1) in which NH3 is oxidised to NO2
–
 followed by the reduction of NO2

–
 to NO, N2O 

and N2 (Ferguson et al. 2007). It is carried out by AOB such as Nitrosomonas under O2 

depleted conditions. This process was previously thought to be of minor importance in soils 

(Dalal et al. 2003) but recent studies (Kool et al. 2011; Wrage et al. 2005) have shown that 

significant N2O emissions from nitrifier-denitrification can occur, especially under moisture 

conditions that are sub-optimal for heterotrophic NO3
–
 denitrification (Kool et al. 2011). 

Dissimilatory nitrate reduction to ammonium (DNRA) also called nitrate 

ammonification, is the process where NO3
–
 is reduced directly to NH4

+
 (Kelso et al. 1997; 

Mohan et al. 2004). Previously DNRA was only thought to be favoured in intensively 

reduced, C-rich environments (Tiedje 1988). Recent studies show that it is not restricted to 

reduced environments; it can also occur in rice paddies (Yin et al. 2002), calcareous 

agricultural soils (Wan et al. 2009) and in temperate arable soils where it was shown to be 

limited by low-molecular weight C source (Schmidt et al. 2011). 

Chemodenitrification is the term used to describe NOx emissions resulting from 

chemical reactions between NO2
–
 and soil organic matter. Haynes and Sherlock (1986) 

estimated NOx losses from chemodenitrification to be in the order of < 1 kg N ha
–1

 y
–1

 and 

hence not environmentally significant.  

2.2.3 Emissions of N2O in pastures 

Nitrogen cycling in livestock farming systems is often considered ‘leaky’ because of 

the many potential routes for the loss of N (Hatch et al. 2004; Jarvis and Pain 1997). Only 

5−45% of the plant protein consumed by the animals is transformed into animal proteins, 

depending on animal age, animal species and management (Oenema et al. 2008). The 

remainder is excreted as urine and dung and is subject to subsequent N transformations and 

possible loss from the ecosystem as N2O, N2, NH3, NO3
–
 and dissolved organic N. Several 
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studies have focussed on factors affecting N2O emissions from animal excreta (Clough et al. 

1998; Sherlock and Goh 1983; Sherlock et al. 2002) and possible mitigation strategies (De 

Klein et al. 2003; Di and Cameron 2002a; b; Di et al. 2007); however the mitigation strategies 

are outside the scope of this thesis. 

 

Figure 2.2 Schematic diagram of the N cycle and N2O emission pathways in a grazed 

system. Dotted lines are pathways resulting in indirect N2O losses from 

grazing systems (McDowell 2008). 

 

Intensively grazed pasture ecosystems contribute significantly to N2O emissions 

(Oenema et al. 2005) due to regular N inputs in the form of fertiliser and excreta-N (urine and 

dung) deposited by grazing animals (De Klein et al. 2003).  

Annual emissions of N2O from animal production systems and animal waste have 

been estimated at 2.7 Tg N [range 0.7–4.2; (Mosier et al. 1998)]. Annual N2O emissions from 

dairy pasture soils in New Zealand and Australia range from 6 to 12 kg N2O-N ha
–1

 y
–1

 (Dalal 

et al. 2003; Luo et al. 2008b; Saggar et al. 2008). Emissions of N2O from pastures vary 

depending on various factors such as rainfall and management. The proportion of urinary-N 

emitted as N2O varies widely, between 0.1% (Di et al. 2007) and 13.3% (Kool et al. 2006). 

Luo et al. (2008a) reported seasonal effects from urine application to soils at 1000 kg N ha
–1

 

with an EF (i.e. the proportion N2O-N emitted per unit of N applied) of 0.02–1.52% and 

concluded that N2O emissions were reduced under wet conditions. When bovine urine was 

applied at 500 kg N ha
–1

 to a grazed pasture soil, N2O emissions accounted for 0.3–3.9% of 

the applied N when the water-filled pore space (WFPS) of the soil varied from 40–87% 

respectively (Uchida et al. 2008). Clough et al. (2004) showed a strong exponential 

relationship (r
2
 = 0.8) between the N2O emissions from urine (500 kg N ha

–1
) and the soil’s 

WFPS. When synthetic urine was applied at 1000 kg N ha
–1

 to different soil types, N2O 

emissions were 0.8–1.9% of the N applied from silt loam and clay soils, respectively (Clough 

et al. 1998). 
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Higher N2O emissions can also occur as a result of pasture renovation (Davies et al. 

2001; Mori and Hojito 2007) due to an increase in soil mineral N content, following the 

mineralisation of pasture root and shoot material once it is incorporated into the soil (Luo et 

al. 2010). Velthof et al. (2010) found higher N2O emissions following pasture renovation in 

spring than in autumn and suggested that the lower emissions in autumn were probably due to 

a lack of soil mineral N as a result of enhanced NO3
–
 leaching and denitrification under wet 

conditions. 

Volatilisation of NH3 from agricultural systems is a major source of NH3 emissions 

that accounts for 10–30% of fertiliser and excreta N (Bouwman et al. 2002). Typically 

10−25% of the N in urea can be lost as NH3 (Harrison and Webb 2001) but may be as high as 

52% (Petersen et al. 1998). The emitted NH3 can be redeposited back to land or water and 

contribute to indirect N2O emissions. The IPCC stipulates a default EF of 1% for these 

indirect N2O emissions (Mosier et al. 1998).  

As noted earlier, N can also be lost via leaching down the soil profile. The amounts of 

NO3
–
 leaching/runoff from grazed pastures have been quantified (Di and Cameron 2002a) but 

the fraction of this leached N that is converted to N2O is not reported widely. Clough et al. 

(2000) reported that the fate of N2O in the soil profile is unknown and it can potentially be 

further denitrified in the subsoil. This is the reason for the wider range of EF of 0.05 to 2.5% 

for the leached N (IPCC 2006).  

Emissions of N2O in pastures are enhanced following the application of fertilisers, 

animal manures, effluents and slurries and they vary due to type of application and soil type, 

e.g. EF for effluents can range from 0.03 to 4.93% (Bhandral et al. 2007a; Luo et al. 2008a). 

Approximately 2–4% of the N in NH4
+
 fertilisers and 5–12% of the N in NO3

–
 fertilisers are 

emitted as N2O when applied to wet soils (Stevens and Laughlin 1997; Velthof et al. 1997). 

Emissions of N2O were higher when slurry and inorganic fertiliser were applied together 

compared to separate applications (McTaggart et al. 1997).  

It is clear that rates of N2O emissions from pastures can vary due to soil type and 

rainfall, and rate and the form of N inputs, and seasonally. These emissions therefore have 

been divided into direct and indirect emissions by the IPCC best practice guidelines.  
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2.2.4 IPCC methodology 

The IPCC guidelines divide anthropogenic N2O emissions into direct and indirect 

pathways. Direct N2O emissions account for the emissions directly from the soils where the N 

input occurs while indirect N2O emissions result from leaching and runoff of N (mainly as 

NO3
–
) from managed soils; and NH3 and NOx volatilisation from managed soils, fossil fuel 

combustion and biomass burning, and the subsequent redeposition of these gases and/or salts. 

The N sources which are included in the IPCC methodology (IPCC 2006) for estimating 

direct N2O emissions read as: 

 synthetic N fertilisers; 

 organic N applied as fertiliser (e.g., animal manure, compost, sewage sludge, 

rendering waste); 

 urine and dung N deposited on pasture, range and paddock by grazing animals; 

 N in crop residues (above-ground and below-ground), including from N-fixing crops 

(via BNF) and from forages during pasture renewal (The N residue from perennial 

forage crops is only accounted for during periodic pasture renewal, i.e. not necessarily 

on an annual basis as is the case with annual crops); 

 N mineralisation associated with loss of soil organic matter resulting from change of 

land use or management of mineral soils; and 

 drainage/management of organic soils (i.e., Histosols). 

 

Emissions of N2O associated with BNF are substantially lower and are comparable to 

background N2O emissions from agricultural crops (Rochette and Janzen 2005). Hence these 

emissions are not included in the recent (2006) IPCC guidelines. 

New Zealand’s pastoral agriculture is dominated by year round grazing of clover-ryegrass 

pastures. As a result, the IPCC inventory methodology identifies animal excreta to be the 

single largest source of N2O in New Zealand (De Klein et al. 2001). The IPCC methodology 

estimates N2O emissions based on emission factors (EF, i.e. the proportion N2O-N emitted per 

unit of N applied) for all anthropogenic N inputs to the system. The IPCC has stipulated an 

EF range of 0.5–3.0% for animal excreta. However, following extensive field monitoring at 

representative sites across the country, New Zealand has adopted a country-specific EF value 

of 1% for animal excreta (IPCC 2001).  

The IPCC methodology therefore accounts for the N losses from fertiliser, manures, crop 

residues, and N released via mineralisation associated with soil organic matter losses 

(mineralised N) when assessing direct and indirect emissions of N2O-N (Eggleston et al. 

2006). The IPCC suggests a default EF of 1% with an uncertainty range of 0.3–3.0% for all 
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anthropogenic N additions (mineral fertilisers, organic amendments and crop residues) as 

direct N2O emissions (IPCC 2006). This methodology also assumes that 30% of the fertiliser 

N from these sources is leached and/or lost in runoff of water to streams and rivers, and 

0.75% of this N is indirectly emitted as N2O-N beyond the original site of the N additions (De 

Klein et al. 2006a; Eggleston et al. 2006). It further assumes that 10% of the fertiliser and 

manure N applied to agricultural fields is lost through NH3–N volatilisation and NOx–N 

emissions, and about 1.0% of this N is later emitted as N2O-N.  

The IPCC guidelines account for direct N2O emissions from both above ground and below 

ground crop residues
‡
. However, the IPCC Good Practice Guidelines state, “The nitrogen 

residue from perennial forage crops is only accounted for during periodic pasture renewal, i.e. 

not necessarily on an annual basis as is the case with annual crops” (IPCC 2006). Despite the 

IPCC noting “Care should also be taken to ensure that the emission estimates developed 

through the use of models or measurements account for all anthropogenic N2O emissions” 

(IPCC 2006), the IPCC methodology does not account for N2O emissions from the 

decomposition of pasture residues created as a result of litter-fall. It is also clear that the IPCC 

methodology does NOT differentiate between crop residues and pasture residues. Abiven and 

Recous (2007) investigated the decomposition kinetics of surface-placed crop residues that 

included rice, soybean, sorghum and wheat (0.4–2.0% N range) and concluded that residues 

with lowest C: N ratio increased net N mineralisation. Ambus and Jensen (1997) measured N 

mineralisation and denitrification rates from barley (44% C, 0.9% N) and pea residues (45% 

C, 2.1% N). Over 60 d, 42 and 63 mg N kg
–1

 soil was immobilised, respectively, and 

relatively higher N2O emissions were recorded from pea residues in the first 3 d of incubation. 

Delgado et al. (2010) concluded that, with respect to crop residues, the IPCC methodology 

should be re-evaluated to determine if the direct and indirect N2O-N emission coefficients 

needed to be lowered to reflect lower emissions from high C: N crop residue N inputs. 

Relatively high spatial variations have been reported in EFs of N2O depending on the type of 

crops used, e.g. Velthof et al. (2002) reported EFs from vegetable crop residues in the range 

of 0.13–14.6% while it was 0.1–1.0% for layers of grass mulch (ryegrass and fescue) and 

alfalfa (Larsson et al. 1998). 

The N contents of senesced ryegrass herbage with nil fertiliser and high fertiliser were 

reported to be 1.1 and 2.5%, respectively (Whitehead 1995) while corresponding values for 

ryegrass roots were 1.1 and 1.6% (Whitehead 1970). Nitrogen contents of white clover roots 

and herbage were 2.7% (Whitehead 1995) and 3.8% (Whitehead 1970), respectively. 

                                                 
‡
 Cropping residues in this thesis are defined as the materials remaining in the field after a crop has been 

harvested in agricultural and horticultural systems. These residues include stalks, stubbles, stems, leaves and 

seed pods. 
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Decomposition of roots is also important as it has also been reported that root mortality is 

increased followed by heavy defoliation by grazing animals (Eason and Newman 1990; Evans 

1973). It is clear that the N and C contents of both above- and below-ground pasture residues 

is similar to crop residues and hence has the potential to contribute to N cycling and N2O 

emissions. However, this is NOT accounted for in the IPCC guidelines.  

Another common scenario in pastoral systems is soil compaction of urine patches 

resulting from animal treading which has been shown to significantly elevate N2O emissions 

(Bhandral et al. 2007b; Thomas et al. 2008; Van Groenigen et al. 2005). This topic is 

discussed further in Section 2.5. These elevated emissions resulting from the combined effects 

of compaction and animal excreta are also not specifically addressed in the IPCC best practice 

guidelines. 

2.2.5 Background N2O emissions 

The current approach for estimating an EF is based on the difference in cumulative 

emissions from treated plots and non-treated ‘background’ control plots (Bouwman 1996). At 

steady state, the fraction of the total N2O that is emitted from the soil-plant system is termed 

the ‘background’ N2O emission implying a “natural” origin (Bouwman 1996). However, the 

IPCC guidelines (IPCC 2006) dismiss this concept stating they are “...not ‘natural’ emissions 

but are mostly due to contributions of N from crop residue. These emissions are 

anthropogenic and accounted for in the IPCC methodology” and are set at a default value of 

1.0 kg N2O-N ha
–1 

y
–1 

(IPCC 2006). In some recent studies these emissions have been 

attributed to anthropogenic effects such as soil cultivation (Van Beek et al. 2011), nitrification 

of native soil N following rainfall events (Rafique et al. 2011) and/or the ‘carryover’ effect of 

previously deposited animal urine/excreta. A study by Van Beek et al. (2011) attributed 

10−22% of the cumulative emissions to background emissions from grazed peat pasture soils 

while it was 61% in the study of Rafique et al. (2011) from a grazed grassland. Petersen et al. 

(2006) reported annual background emissions of 1.4 ± 0.3 kg N2O-N ha
–1

 y
–1

 over a 12-month 

period from dairy crop rotations in European countries. Losses of N2O from unfertilised 

clover-ryegrass pasture equalled 6 kg N ha
–1

 y
–1

 in an Australian study (Eckard et al. 2003) 

while Ruz-Jerez et al. (1994) and Ledgard et al. (1999) reported total denitrification losses of 

3.4 and 3–7 kg N ha
–1

 y
–1

 from unfertilised plots, respectively, in New Zealand pastures. A 

silt loam beneath a mixed herb ley sward at Lincoln, New Zealand, yielded an estimate of 0.2 

kg N2O-N ha
–1 

y
–1

 (Van der Weerden et al. 1999; 2000). A grass sward on a loamy sand near 

Giessen, Germany, produced an average 0.2 kg N2O-N ha
–1 

y
–1

 (Kammann et al. 1998) while 

Galbally et al. (2010) reported an average of 0.4 kg N2O-N ha
−1 

y
–1

. It is clear that significant 
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background emissions can occur from grazed pastures and these are attributed to carryover 

effects of fertilisers with no clear consideration given to the background emissions resulting 

specifically from surface decomposition of pasture litter or pasture trodden into the soil. 

2.3 Litter-fall quantities in field conditions 

Whitehead (2000) states that quantifying the herbage material from grasslands and its 

decomposition in situ, is difficult partly because some of the herbage is consumed during the 

senescent stage by soil fauna and partly because of wide spatial variability in decomposition 

rates due to temperature, rainfall and management. Defoliation by grazing animals can affect 

the size of plants or plant parts, plant biodiversity, plant density and consequently, N2 fixation 

and photosynthesis (Barger et al. 2004; Campanella and Bisigato 2010; Whitehead 2000). It is 

also controlled by the foraging behaviour and management of the cattle e.g. selective grazing 

by the animal (of certain plants or plant parts) and the frequency, timing and intensity of 

grazing (Menneer et al. 2004). 

Naeth et al. (1991) appears to be the first study to have measured pasture litter-fall rates 

following full season grazing events finding that season and grazing intensity significantly 

affected the amounts of litter; it decreased with increasing grazing intensity. In another study 

(Mapfumo et al. 2002), litter C and N pools were investigated with litter-fall also decreasing 

with increasing grazing intensity. Lodge et al. (2006) found that Merino wethers produced a 

mean 111 kg DM ha
–1

 over 4 to 6 week of continuous grazing on forage grasses in New South 

Wales, Australia. In these three studies discussed above, litter-fall decreased with increasing 

stocking rates because higher stocking rate led to higher removal of green herbage. Litter-fall 

in these studies was not measured following each grazing event, so the numbers reported were 

cumulative values. In these studies, the species under investigation were prairie forage grasses 

and the grazing animals were sheep. Campanella and Bisigato (2010) reported litter-fall rates 

of 60−160 kg DM ha
–1

 y
–1

, collected on a monthly basis using litter traps from arid, extensive 

rangelands that adopted set-stocked sheep grazing (0.11–0.14 sheep ha
–1

) and were dominated 

by forage and perennial grasses such as Larrea divaricata, Chuquiraga hystrix, Stipa tenuis 

and Poa ligularis. Carrera et al. (2008) reported litter-fall rates of 260–310 kg DM ha
–1

 y
–1 

from similar rangeland systems including shrubs (Larrea spp. and Stipa spp.) grazed by 

sheep (0.14 sheep ha
–1

). In these studies, either the litter-fall rate was not measured following 

each grazing event (the rates reported are cumulative values) or the animals were set-stocked 

over time. It might be expected that litter might have decomposed prior to measuring litter-fall 

rates in these studies, hence the lower rates. Lodge et al. (2006) has indicated that litter-fall 

has the potential to contribute to N cycling. However, no consideration has been given to N2O 
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emissions resulting from pasture litter decomposition. Clearly, no study has so far attempted 

to quantify litter-fall in dairy pasture cattle and define potential N2O emissions due to pasture 

litter decomposition.  

  

Figure 2.3 Fresh herbage being dropped during grazing by animals. 

2.4 Plant litter and N2O emissions 

Litter-fall may stay on the pasture soil surface and decompose, contributing to previous 

litter already decomposing in the soil; and/or get partially or completely incorporated in the 

soil due to animal treading and decompose further; while the standing senesced material may 

move downwards via abscission, lodging, and animal treading (Hutchinson and King 1989; 

Molinar et al. 2001). Plant litter in pastures contributes significantly to nutrient cycling 

(Hoorens et al. 2003) since it is continuously being deposited due to the abscission, lodging 

and trampling of above-ground plant parts (Lodge et al. 2006). The decomposition of the 

above- and below-ground litter supposedly causes the mineralisation of C and N (Molinar et 

al. 2001). A few studies have examined N2O emissions from pasture litter under arable 

conditions. For example, McKenney et al. (1993), in a lab study, determined the effect of 

anaerobic periods on NO + N2O emissions from annual ryegrass and red clover and found 

25.1 and 47.1 mg N kg
–1

 soil after a 5 d incubation at 20
o
C, respectively. Gillam et al. (2008) 

examined the effects of red clover and barley straw as a C source following NO3
–
 addition to 

an arable soil while Larsson et al. (1998) determined N2O losses following the application of 

mulches to the soil surface that comprised of low- and high-N grasses, and alfalfa, and found 

N2O losses in the range of 0.1–1.0% of the N loading. Kaiser et al. (1998b) reported higher 

and prolonged N2O emissions after the incorporation of ryegrass and red clover residues in a 

barley cropping system due to an increase in soil available N resulting from the mineralisation 

of the forage residues, but these emissions were not influenced by the C: N ratio of the 

residues. Baggs et al. (1996) incorporated ryegrass and clover residues by rotary tillage and 
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recorded short-lived N2O emissions ranging from 14–23 g N2O-N ha
–1

 d
–1 

that correlated with 

rises in soil temperature. However, these studies were performed in arable systems and no 

studies have examined pasture litter and associated N2O emissions. To date, litter-fall 

quantities have NOT been quantified from single grazing events, using dairy cattle in clover-

ryegrass pastures that dominate in humid temperate countries such as New Zealand and 

Australia. 

In cropping systems, residues have been shown to affect N2O emissions (Bouwman 

1996) by supplying easily mineralisable N and C, which can enhance denitrifier activity and, 

thereby, N2O emissions from both soil mineral N and crop residue N (Paul and Beauchamp 

1989; Velthof et al. 2002). According to crop species, residues differ in biochemical 

composition in terms of total C and N (Constantinides and Fownes 1994; Trinsoutrot et al. 

2000a), cellulose, lignin (Melillo et al. 1982) and soluble polyphenol contents (Palm and 

Sanchez 1991). Differences in the biochemical composition of plant residues can influence 

litter decomposition kinetics and ultimately affect N mineralisation and immobilisation rates 

(Aulakh et al. 2000; Baggs et al. 2000; Hadas et al. 2004; Palm and Rowland 1997).  

Litter decomposition in soil is a complex process which generally reflects soil 

respiration rates. Soil respiration in pasture ecosystems is a function of root respiration, 

rhizosphere respiration, soil organic matter (SOM) oxidation and litter decomposition (Luo 

and Zhou 2006). Microbial decomposition of litter and SOM oxidation are major contributors 

to soil respiration (Coleman et al. 2004). Nutrient cycling via litter decomposition is a major 

process in temperate pasture ecosystems, with about 70% of net primary production being 

associated with the activity of microbial decomposers in the litter and soil (Hutchinson and 

King 1982; Whitehead 1995).  

Mineralisation of incorporated plant litter is mainly governed by various factors such as 

litter treatment characteristics such as plant species; rate, form, placement and biochemical 

composition of the litter (Aulakh et al. 1991a; Loecke and Robertson 2009); soil temperature 

(Devevre and Horwath 2000) and soil water content. It is well recognised that agricultural 

cropping residues can contribute to N2O emissions (Huang et al. 2004; Mori et al. 2005; 

Potthoff et al. 2005). However, emissions of N2O differ significantly due to litter 

characteristics, as detailed below. 

2.4.1 Biochemical composition 

Biochemical composition has been shown to be one of the most crucial governors of 

N2O emissions during decomposition of plant litter in cropping systems (Palm and Rowland 

1997; Toma and Hatano 2007). Several studies have reported that emissions of N2O were 
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negatively correlated with the C: N content of the residues (Baggs et al. 2000; Kaiser et al. 

1998b). Aulakh et al. (1991a) incorporated crop residues of varying C: N ratio (8–82) and 

incubated these with soil at 25
o
C for 35 d. They observed short-lived N2O fluxes in the initial 

period (8 d) that accounted for 94% of total emissions from hairy vetch. Aulakh et al. (1991a) 

concluded that denitrification losses as well as intensity of denitrification in the initial 8 d 

period were related to the C: N ratio of the crop residues. Breland (1994a) conducted a study 

on mineralisation and denitrification from clover shoots and indicated that both the readily 

decomposable and the recalcitrant fraction of organic C from the clover shoots decomposed at 

faster rates than those of SOM. The study of Breland (1994a) found that 38–56% of the 

clover-N (and 57–69% C) was mineralised during the initial phase (52 d) of rapid 

mineralisation. Studies such as Baggs et al. (2000) and Huang et al. (2004) demonstrated that 

high N2O and CO2 emissions corresponded to relatively low C: N ratios of incorporated crop 

residues (such as lettuce, rapeseed, potato, maize, wheat and sugarcane) and that the N 

mineralisation rates of the residues were dependent on their C: N ratios (Aulakh et al. 1991a; 

Eichner 1990). De Neergaard et al. (2002) found that net N mineralisation of white clover and 

perennial ryegrass was correlated with the C: N ratio and N content of litter and inversely 

proportional to lignin content when incubated at 9
o
C for 94 d.  

2.4.1.1 Litter carbon 

Studies show that when easily decomposable C and N sources are added to soil, the 

microbial biomass switches from the more recalcitrant SOM to more readily available C and 

N sources (Cheng 1996; Gentile et al. 2008; Soon and Arshad 2002; Sparling et al. 1982). 

Soil C and litter-bound C act as substrate for most microbially mediated processes, 

particularly N mineralisation, N losses (mainly denitrification) and SOM decomposition. 

Quality of C in this context is particularly important as it constrains the supply of energy for 

enzyme production and growth (Fontaine et al. 2003). Toma and Hatano (2007) investigated 

N2O emissions using low C: N ratio crops like onion leaf (C: N, 11.6) and soybean plant parts 

(C: N, 14.5) concluding that the decomposition process actually mineralises the C and N from 

the plant residues and thus enhances the N2O and CO2 emissions. Other studies (Gunnarsson 

and Marstorp 2002; Trinsoutrot et al. 2000b) have shown the concept of ‘sequential 

degradation’ where over the initial few days of litter decomposition in soil, soluble 

carbohydrates are decomposed together with the most readily degradable N-rich components. 

After this time, proteins, and to a large extent the non-cellulose structural carbohydrates such 

as pectic substances, hemicellulose constituents and cellulose, are sequentially degraded 

(Gunnarsson and Marstorp 2002; Henriksen and Breland 1999; Martin and Haider 1986). 
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Litter-bound C may be present as glucose, cellulose, hemicellulose and/or lignin; the 

proportions of which vary according to plant species. Cellulose is almost an intermediate in 

terms of its microbial degradation potential with glucose and lignin at the extremes. Cellulose 

(C6H10O5), an unbranched, –(1,4)-linked, linear polymer of glucose, is a carbohydrate 

synthesised by plants and the most abundant organic polymer in nature (Figure 2.4). 

Biodegradation of cellulose requires a distinct set of extracellular enzymes viz. cellulase, 

cellobiohydrolase and –glucosidase, which hydrolyse the –1,4 bonds of cellulose to glucose 

for further energy generation processes (Clark 1997; Geisseler and Horwath 2011). Activity 

of these extracellular enzymes is believed to be the rate-limiting step in the decomposition of 

recalcitrant forms of C (Schimel and Weintraub 2003). Cellulolytic microorganisms, mainly 

fungi (Penicillium sp., Aspergillus sp.) and some bacteria (Cellulomonas sp., Streptomyces 

sp., Pseudomonas sp.), aid in the extracellular cleavage of cellulose. The biochemistry of 

cellulose, so far, has been studied in great detail but its interaction with various parameters in 

nature is still unexplored. With respect to N2O emissions, recalcitrant compounds such as 

cellulose and lignin generally decrease the emissions and N turnover because the 

decomposers and denitrifiers both prefer an easily degradable C source for microbial growth 

and activity (Dendooven et al. 1996; Goek and Ottow 1988; Mengel and Schmeer 1985). 

Lygnolytic and cellulolytic microbes also require an easily available C source other than 

lignin and cellulose, at least in the initial growth phase (Swift et al. 1979). 

 

Figure 2.4 Polymeric structure of cellulose molecule. 

 

2.4.2 Particle size and placement of litter 

Litter decomposition is influenced by depth of incorporation in soil, rate and time of 

residue incorporation and form of residues (Ambus and Jensen 1997; Velthof et al. 2002). 

Ground or finely chopped residues are more susceptible to microbial interaction than intact 

plant parts due to improved soil-residue contact and increased surface area (Angers and 
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Recous 1997) and a decreased lignified barrier tissue (Summerell and Burgess 1989). 

However, ground particles may also be protected against decomposition through physical 

protection by clay and other particles (Breland 1994a; Stickler and Frederick 1959). Ambus 

and Jensen (1997) investigated the effect of particle size on N dynamics and found that 

short-term N immobilisation was higher for ground residues than coarse residue incorporation 

of barley and pea. Fine residues also caused more denitrification than coarse residues, but 

only on a short-term basis. Loecke and Robertson (2009) reported similar results with higher 

N2O emissions from finer particles of red clover residues.  

In terms of residue placement, Aulakh et al. (1991a) reported significantly higher N 

mineralisation rates and N2O emissions from an incorporated residue treatment, while Abiven 

and Recous (2007) reported that surface-placed residues had slightly higher net N 

mineralisation rates. They did not find significant effects of residue placement on C 

mineralisation kinetics. Breland (1994a) reported that layered red clover litter decomposed 

faster than uniformly incorporated litter because the microbial biomass was ‘protected’ 

against mineralisation in the latter case. 

2.4.3 Soil moisture content 

As mentioned earlier, N2O emissions occur via nitrification in the range of 45–60% 

WFPS while at higher soil moisture, N2O emissions mainly occur due to denitrification (Dalal 

et al. 2003). Aulakh et al. (1991b) reported substantial litter-N immobilisation, from crop 

residues with C: N ratios ranging from 8–82, at 60% WFPS, whereas, at 90% WFPS 

significant denitrification losses occurred. Shelton et al. (2000) found a linear relationship 

between denitrification and soil water content with 60% WFPS as a threshold for 

denitrification during decomposition of surface-placed hairy vetch residues. Gillam et al. 

(2008) showed higher N2O emissions from wetter soils due to reduced aeration. Potthoff et al. 

(2005) reported that aerobic decomposition of crop residues decreased O2 availability due to 

microbial respiration, thus favouring denitrification at higher soil water contents. 

2.4.4 Conclusion (plant litter) 

It is clear that studies have examined N2O emissions resulting from arable crop residues 

(Aulakh et al. 1991b; Aulakh et al. 2001; Baggs et al. 2000), however, there is a dearth of 

information with respect to the effects of perennial pasture species and supplementary feed 

litters on N2O emissions in grazed systems. The few studies that have examined potential N2O 

emissions from pasture litter (Trifolium sp., Lolium sp., Vicia sp., Zea sp., Hordeum sp.) have 

done so under arable/ley conditions (Gillam et al. 2008; Larsson et al. 1998; McKenney et al. 
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1993). Nowhere, however, does there appear to be any work that has focused directly on 

grazed pasture litter and their associated direct N2O emission factors and thus the potential for 

such emissions to contribute to the grazed grassland N2O inventory is unknown. 

2.5 Animal treading and N2O emissions 

Intensification of livestock-based agriculture has become a major global phenomenon. 

However, it can lead to detrimental environmental consequences such deforestation, 

overgrazing, soil degradation, soil compaction, soil erosion, and water pollution (Steinfeld et 

al. 2006). Approximately 20% of the world’s pastures and rangelands are considered 

degraded through overgrazing and compaction (Steinfeld et al. 2006). The magnitude of 

compaction depends on the stocking rate, soil type, moisture content and animal species 

(Naeth et al. 1990; Warren et al. 1986), e.g. grazing cattle and sheep can exert static pressures 

of 160–192 and 83 kPa on the soil, respectively (Di et al. 2001; Willatt and Pullar 1983) 

which is comparable to the compaction caused by vehicular traffic. Soil compaction by 

animal treading can therefore, have severe impacts on soil physical conditions and pasture 

production. Moreover, N2O emissions from the dung and urine patches are exacerbated due to 

reduced soil aeration occurring as a result of animal treading-induced soil compaction (De 

Klein et al. 2006b). Animal treading has received sparse attention with respect to soil N2O 

emissions (Oenema et al. 1997). 

2.5.1 Animal treading 

Poaching/puddling occurs under saturated soil conditions when animal treading 

induces the soil to become slurry-like under very wet conditions (usually in winter-grazed 

management systems); and pugging occurs in wet, soft soil causing deep hoof imprints and is 

often associated with considerable pasture damage (Drewry et al. 2008). Both of these 

processes cause soil compaction and pasture damage which disrupts the ongoing biological 

processes in the soil. The extent of compaction and damage depends on the soil wetness, 

animal species and age, vegetation cover, stocking rate and management conditions such as 

rotational grazing or set grazing (i.e. grazing intensity) (Bilotta et al. 2007; Drewry et al. 

2008). 

2.5.2 Effect on soil physical conditions 

The depth of soil compaction due to treading varies from 2–12 cm below the soil 

surface depending on the above factors (Butler and Adams 1990; Scholefield and Hall 1985). 

This creates an increased soil bulk density layer and decreased pore space, restricting the 
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movement of water and air through the soil (Greenwood and McKenzie 2001), leading to 

water logging and decreased aeration within the compacted zone. Severe treading damage can 

have long-lasting effects (>18 months) on physical soil characteristics such as hydraulic 

conductivity, aggregate size, total porosity, pore size distribution, and bulk density (Singleton 

et al. 2000). Increased bulk density, as a result of treading can result in decreased infiltration 

rates (Mulholland and Fullen 1991) and hydraulic conductivities of soil (Greenwood et al. 

1997). Daniel et al. (2002) reported increased resistance to penetration and bulk density 

values, but only in 0–10 cm from the soil surface, due to long-term (10 yr) livestock grazing. 

Grazing at high stocking rates reduced surface soil macroporosity by 10–40%, although it 

reached 60% under wetter conditions (Drewry et al. 2008; Singleton et al. 2000). 

Treading damage is exacerbated in wetter soils (McDowell 2008; Mullen et al. 1974) 

since wet soil is more readily compacted than dry soil (Di et al. 2001) however, Schofield and 

Hall (1985) reported that treading damage was independent of soil water content over a wider 

range. For soils with higher clay contents, treading damage can occur even at relatively low 

soil moisture contents because of the plastic nature of clay soils. 

2.5.3 Effect on pasture growth 

Animal grazing and treading, particularly in wet soil conditions, can affect pasture 

yields directly through leaf burial in mud, crushing, bruising, and decreased dry matter 

production (Hamilton and Horne 1988; Ledgard et al. 1996; Nie et al. 2001). Research on 

pasture growth impedance due to animal treading was first performed by Edmond (1963) who 

later on, tested the effects of treading using different animals, pasture species and soil 

moisture levels on pasture growth. However, this research only explored the effects on pasture 

growth.  

Shearing movement of the hooves of grazing animals can directly cause plant damage 

via crushing, bruising and burial and alter the rhizosphere by compaction. Indirect effects 

include impeded root growth. This can decrease soil biodiversity and vegetative cover making 

the soil prone to erosion (Bilotta et al. 2007). Severe treading damage can decrease pasture 

plant growth significantly (Drewry et al. 2001; Drewry and Paton 2005; Menneer et al. 

2005c) and may also alter species and herbage composition (Haynes and Williams 1993). 

Ledgard et al. (1996) reported a 20–80% decrease in pasture production from a single 

treading event during winter (relatively wetter conditions) on a silt loam soil while values of 

40–42% were reported under medium to heavy animal treading (Nie et al. 2001). Annual 

herbage production decreased by 16% and 34% under moderate (450 cows ha
–1

 for 1.5 h on 
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15 m
2
 plots) and severe (450 cows ha

–1
 for 2.5 h) animal treading, respectively, for a 

clover-ryegrass pasture (Menneer et al. 2005b).  

2.5.4 Effect of animal treading on the N cycle and N2O emissions 

Van Groenigen et al. (2005) noted a dearth of knowledge with respect to animal 

treading and associated N2O emissions in situ. As stated above, animal treading disrupts soil 

physical conditions and soil microbial processes. Studies have shown that animal treading can 

affect BNF, denitrification rates and N2O emissions (Menneer et al. 2005a; b; Oenema et al. 

1997; Simek et al. 2006; Thomas et al. 2004; Thomas et al. 2008) resulting from urine and 

excreta deposition. Earlier studies (Carran et al. 1995; Luo et al. 1999; Ruz-Jerez et al. 1994) 

have speculated that higher denitrification rates and N2O emissions, under field conditions are 

observed soon after grazing. The reasons suggested include increased soil NO3
–
–N 

concentrations due to limited plant N uptake after defoliation and also resulting greater N 

substrates due to excreta and urine deposition. Thomas et al. (2004) observed higher 

denitrification rates and higher cumulative N2O emissions (14.9 kg N ha
–1

) after 90 d from 

intensively tilled soil receiving urine and trodden at >field capacity. Ball et al. (1999) 

associated increased N2O emissions from compacted soils (using farm vehicles) due to 

increased soil wetness and resulting reduced diffusivity. Moreover, heavier compaction gave a 

greater N2O emission response. Thomas et al. (2008) and Bhandral et al. (2007b) reported 

two- to seven-fold increases in N2O emissions following treading and urine application in 

New Zealand pastoral soils during spring and early summer. Also, soil tillage without 

compaction did not affect N2O emissions. Relatively higher N2O emissions are expected from 

more severe animal treading, however this was not true in the study of Simek et al. (2006) 

who reported lower N2O emissions from severely-trodden plots than moderately trodden 

plots. They suggested that conditions in severely-trodden plots were more conducive to 

produce N2 rather than N2O. Most of these studies dealt with emissions resulting from a 

combination of soil compaction (animals and/or vehicular traffic) and excretal depositions. 

Moreover, emissions of N2O did not differ between trodden and untrodden plots that were 

devoid of urine application (Thomas et al. 2008; Van Groenigen et al. 2005). 

Menneer et al. (2005a; b) reported the first studies that showed the impacts of animal 

treading on N2 fixation and N2O emissions in the absence of animal excreta. Menneer et al. 

(2005a) reported reductions of 13% and 53% in annual N2 fixation under moderate and severe 

treading, respectively, devoid of the influence of animal urine. The decrease in N2 fixation 

was due mainly to substantial losses of annual clover DM production that occurred under 

moderate and severe treading (9% and 52%, respectively). Menneer et al. (2005b) measured 
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3–6 fold higher N2O emissions at 8 d after severe treading compared to nil-treading. They 

reasoned the higher emissions were due to the fact that treading caused a compaction of soil 

thereby reducing soil aeration causing higher denitrification. Moreover, due to treading, plant 

growth was reduced which increased soil NH4
+
–N and NO3

–
–N concentrations (due to 

reduced N uptake) thus contributing to denitrification.  

2.5.5 Conclusion (animal treading)  

The above studies show that higher N2O emissions occur due to soil compaction from 

animal treading and are elevated under the combined effect of animal excretion and high soil 

water content. However, none of the studies considered the possibility that animal treading 

may increase N2O emissions due to enhanced plant damage and subsequent release of plant-

derived N and C into the soil.  

2.6 Summary 

About 3.5 billion ha of the total world area, representing 26% of the world’s land area 

and 70% of the world’s agricultural area are under pasture and fodder crops. Pasture plant 

species, farm animals and anthropogenic activities are the key drivers which regulate C and N 

cycling in grassland ecosystems via plant litter returns; urine and faeces deposition and, 

management practices. Pastures are recognised sources of significant GHG emissions. 

Greenhouse gases, such as N2O are atmospheric trace gases that absorb infra-red 

radiation reflected from the Earth’s surface, thus trapping radiated heat and contributing to 

increases in global temperatures. The GHG – N2O is a precursor to compounds involved in 

stratospheric ozone depletion and has a global warming potential of 298 times over a 100 year 

timeframe. 

Approximately 90% of the total New Zealand farm area is considered as a pastoral 

ecosystem and the agricultural sector accounted for 46.6% of New Zealand’s GHG inventory 

in 2008. New Zealand agriculture is dominated by grazed pastures and they are an important 

source of N2O. Nitrous oxide contributed 16% to New Zealand’s GHG inventory in 2008 

which has increased by 21.8% from 1990 levels. 

Inputs of N in pastures generally occur from biological nitrogen fixation (BNF) and 

atmospheric deposition; fertiliser, manure and effluent applications and animal excreta 

(animal urine and dung deposition) while N losses occur due to nitrification, denitrification, 

volatilisation and leaching. In New Zealand pastoral soils, N inputs result from about 1.5 M t 

of N originating from animal excreta, 1.1 M t of N through BNF, 0.30 M t of fertiliser N and 

about 0.01–0.015 M t of atmospheric N deposition. 
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Close observation of the grazing behaviour of dairy cattle reveals that harvested but 

un-ingested litter falls during grazing. After grazing finishes, this litter remains where it falls. 

Litter-fall rates have so far not been quantified. Litter-fall is NOT accounted for as an N2O 

source in the IPCC best practice guidelines; moreover, the fate of this unconsumed litter is 

unknown. 

Decomposition of litter is mainly governed by its biochemical composition while 

other factors such as litter treatment characteristics (plant species; rate, form, placement) and; 

soil temperature and soil water content, are also equally important. It is well recognised that 

agricultural cropping residues can contribute to N2O emissions but the contribution of pasture 

residues to N2O emissions have been studied sparsely and only under arable conditions. 

The IPCC methodology estimates N2O emissions using human-induced net N additions 

to soils (e.g. synthetic or organic fertilisers, deposited manure, crop residues, sewage sludge), 

or from mineralisation of N in soil organic matter following drainage/management of organic 

soils, or cultivation/land-use change on mineral soils. The residues from forages by the IPCC 

are only accounted for during pasture renewal. The literature review demonstrates that 

pastures are significant N2O sources mainly resulting from fertiliser inputs and animal 

excrements. Emissions of N2O resulting from litter-fall-, or supplementary feed litter-

decomposition and the emissions resulting from animal treading not influenced by excretal 

depositions, are not accounted for in the IPCC methodology for calculating N2O inventories 

and hence require further investigation. 
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     Chapter 3 

Generic materials and methods 

3.1 Herbage collection and analyses 

For the laboratory incubation experiments 3 and 4 (Chapters 6 and 7), fresh leaves of 

white clover (Trifolium repens L.), ryegrass (Lolium perenne L.) and maize (Zea mays L.) 

were collected and dried in an oven at 65°C for 48 h. These plant materials were then finely 

ground (200 m) in a ball mill and their chemical characteristics (total N, total C, cellulose, 

hemicellulose, lignin and C: N ratios) were determined using standard procedures (Rowland 

and Roberts 1994; Section 3.1.1).  

Total C was determined by Dumas combustion and total N was determined by near 

infrared reflectance spectroscopy (NIR) which was calibrated using Dumas combustion. 

3.1.1 Biochemical components 

For herbage analysis, three different fractions were analysed viz. NDF (neutral 

detergent fibre), ADF (acid detergent fibre) and lignin. The NDF fraction is the sum of 

hemicellulose, cellulose and lignin while ADF is the sum of cellulose and lignin fractions 

only. The individual components were computed by taking the differences between NDF, 

ADF and lignin fractions. 

3.1.1.1 Acid detergent fibre 

A sub-sample of the dried and ground herbage (0.5 g, W1) was weighed into a 250 mL 

conical flask to which 100 mL CTAB reagent (50 g cetyltrimethyl ammonium bromide in 

5.0 L, 0.5 M H2SO4) and three drops of octan-2-ol (antifoaming agent) were added, the whole 

solution was then simmered on a hot plate for 1 h. This was filtered hot through an ignited 

and pre-weighed porous no. 2 sinter (W2) under gentle suction. The residue was washed three 

times using boiling deionised (DI) water (50 mL aliquots) and then using acetone until no 

more colour from the residues was removed. The residue was sucked dry and the sinter was 

further dried for 2 h at 105
o
C, cooled in a desiccator and weighed (W3). Percentage ADF was 

calculated using Equation 3.1 below. 

      
     

  
 

   

 
 

          Equation 3.1 
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3.1.1.2 Lignin 

Following on from the procedure above, the cooled sinter, after recording the weight 

(W3), was half-filled with 72% H2SO4, and stirred with a glass rod to make a smooth paste. 

The acid was allowed to drain. This was repeated again. After 3 h, the acid was filtered using 

a Buchner apparatus, washed three times with hot water and once with acetone, followed by 

oven-drying at 105
o
C for 2 h (W4) and then charred at 500

o
C for 2 h to determine the ash 

content (Wa). Percentage lignin was calculated using Equation 3.2 below. 

         
     

  
  

   

 
 

          Equation 3.2 

 

3.1.1.3 Neutral detergent fibre 

A sub-sample of the dried and ground herbage (1.0 g, W1) was weighed in a beaker to 

which 50 mL of the neutral detergent solution (95 g EDTA, 135 g ammonium pentaborate and 

150g sodium lauryl sulphate in 5.0 L water) was added. The beakers where placed on a hot 

plate and connected to a condenser, and refluxed for 1 h. The contents were transferred into 

preconditioned Gooch crucibles (oven-dried at 105
o
C for 2 h and cooled in a dessicator) and 

the aliquot was drained using a Buchner apparatus followed by rinsing 3 times with hot DI 

water and once with acetone. The contents of the crucibles were oven-dried at 105
o
C for 12 h, 

cooled in a dessicator and weighed (W2) followed by charring at 500
o
C for 2 h to determine 

the ash content (Wa). Percentage NDF was calculated using Equation 3.3 below. 

      
     

  
 

   

 
  

          Equation 3.3 

3.2 Gravimetric soil water content 

A sub-sample of field moist soil (10 g) was weighed into a container of known weight 

and dried in an oven for 24 h at 105
o
C. Then it was cooled in a dessicator and reweighed. The 

gravimetric soil water content (θg) was calculated using Equation 3.4 (Blakemore et al. 1987). 

The volumetric soil water content (θv) was obtained by multiplying θg by the soil bulk density. 

Soil water content was expressed as water-filled pore space [WFPS, (θg/porosity)] in Chapters 

6 and 7 where the soil porosity = [1 – (bulk density/2.65)] and 2.65 Mg m
–3

 was the assumed 

soil particle density. 
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          Equation 3.4 

where; 

θg = gravimetric soil water content (g water g
–1

 oven dry soil) 

Mm = mass of field moist soil (g) 

Md = mass of oven dry soil (g) 

3.3 Soil surface pH measurement in situ 

Soil surface pH for the field experiments was measured using a Hanna HI 9025C 

portable pH meter fitted with a soil surface probe (Broadley-James Corporation, Irvine, CA, 

USA), after moistening the soil surface with a drop of DI water. The pH meter was calibrated 

using buffer solutions ranging from 4.0–7.0 (source standards) prior to each measurement 

(Blakemore et al. 1987). 

3.4 Soil bulk density 

 Soil bulk densities were determined in the animal treading experiments (Chapter 5). 

Soil was collected using a soil core (0.09 m diameter × 0.12 m deep) followed by drying at 

105
o
C for 48 h to determine its gravimetric moisture content prior to calculating the bulk 

density. Soil bulk density measurements were performed at depths of 0–3, 3–6, 6–12, and 

0−12 cm. 

3.5 Anaerobically mineralisable N  

The anaerobically mineralisable N (AMN, expressed in g g
–1

) was measured using near 

infrared reflectance spectroscopy (NIR). Calibration was performed with soil that had been 

anaerobically incubated at 40
o
C for 7 d, followed by extraction with 2M KCl for 15 min and 

analysed using Berthelot colorimetry (Hinds and Lowe 1980; Keeney and Bremner 1966). 

3.6 Inorganic N 

Inorganic N extractions were performed using 2 M KCl with a 1: 10 ratio (soil: KCl) on 

an end-over-end shaker for 1 h followed by centrifuging the extractant at 2000 rev min
–1

 

(480g) for 10 min, and filtering (Whatman No. 41) into 30 mL plastic containers before 

storage at 4
o
C. Analyses of ammonium (NH4

+
–N), nitrate (NO3

–
–N) and nitrite (NO2

–
–N) 
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were performed on an Alpkem FS3000 twin channel Flow Injection Analyser (FIA) (Alpkem, 

College Station, TX, USA). The diffusion technique of Brooks et al. (1989) was employed for 

determining the 
15

N enrichment of the inorganic N detailed in Section 3.8.2. The 

concentration of inorganic N was calculated using Equation 3.5. 

 

   
      

  
 

          Equation 3.5 

where; 

Ns = inorganic N content (µg g
–1

 dry soil) 

Ne = inorganic N concentration of sampled extract (µg mL
–1

) 

V = volume of solution (KCl + soil moisture) (mL) 

Md = mass of oven dry soil (g) 

3.7 Microbial biomass C 

Treated samples for the second laboratory experiment (Chapter 7) were analysed for 

microbial biomass C (MBC) using the chloroform fumigation extraction (CFE) method 

(Vance et al. 1987) as detailed below. 

3.7.1 Purification of chloroform 

Commercially available chloroform (Analar grade) contains ethanol, a stabiliser 

(Jenkinson et al. 2004). To remove the ethanol, chloroform (200 mL) was shaken with 5% 

H2SO4 (400 mL) in a separating funnel. The lower layer, containing acid, was discarded and 

the process repeated two more times followed by rinsing with 400 mL of DI water. The 

purified chloroform was stored at 5
o
C, after adding 10 g anhydrous Na2SO4, (to remove the 

traces of water) until required for analysis. A further addition of 5 g anhydrous Na2SO4 may 

be required if it had not clumped; clumping indicating removal of water. 

3.7.2 Extraction 

Duplicate soil sub-samples (5 g) were used. One fumigated (as described below) and 

the other non-fumigated was extracted with 20 mL, 0.5 M K2SO4 (1: 4, soil: extractant ratio) 

for 2 h on an end-over-end shaker at 15 rev min
–1

. The extractant was centrifuged at 750g for 

10 minutes and filtered (Whatman No. 41) into 30 mL plastic containers before storage at 4
o
C 

until analysis.  
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3.7.3 Fumigation 

The samples to be fumigated were placed in a vacuum chamber. A beaker containing 

~25 mL of purified chloroform and three boiling chips were placed at the bottom of the 

vacuum chamber. After sealing, evacuation of the vacuum chamber commenced until the 

chloroform started to boil whereupon evacuation ceased. The vacuum chamber was then 

covered and the samples were allowed to fumigate in the dark for 24 h. Before starting the 

extraction of the fumigated samples, the vacuum chamber was flushed (2–3 times) with fresh 

air to remove any remaining chloroform vapour. 

3.7.4 Calculation of MBC 

Extracts from both fumigated and non-fumigated samples were analysed for total 

organic carbon (TOC) using a Shimadzu Total Organic Carbon Analyser TOC 5000A 

(Shimadzu Oceania Pty Ltd, Sydney, Australia) fitted with a Shimadzu ASI-5000A 

autosampler. Microbial biomass C was calculated as the difference between the values for 

fumigated and non-fumigated samples and the difference was divided by the kEC value of 0.45 

(Jenkinson et al. 2004). This value is considered a constant and accounts for the efficiency of 

the soil microbial biomass extraction. The difference in TOC values between the fumigated 

and non-fumigated samples is assumed to be due to the release of organic C from the lysed 

microbial cells (Jenkinson 1976). Equation 3.6 was used to calculate the concentration of 

MBC in the filtered samples: 

    [
         

   
 

           

    
]     ⁄  

          Equation 3.6 

where; 

MBC = microbial biomass carbon (µg g
–1

 dry soil) 

TOCF = total organic carbon concentration of extract after fumigation (µg mL
–1

) 

VF = volume of solution for fumigated samples (K2SO4 + soil moisture) (mL) 

MFd = mass of oven dry soil for fumigation (g) 

TOCNF = total organic carbon concentration of non-fumigated extract (µg mL
–1

) 

VNF = volume of solution for non-fumigated samples (K2SO4 + soil moisture) (mL) 

MNFd = mass of oven dry soil for non-fumigated samples (g) 
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3.8 Microbial biomass N using stable isotope – 15N 

Measurement of the isotopic enrichment of 
15

N in the microbial biomass (MB
15

N) was 

performed in Chapter 8 for the soil samples collected at different depths using methods of 

Templer et al. (2003). Prior to isotopic analysis, inorganic N (NH4
+
–N and NO3

–
–N) 

concentrations of the MBC extracts were determined using FIA (Section 3.5). Further analysis 

was performed in two phases viz. alkaline persulphate oxidation, which converted the total N 

in the samples to the NO3
–
 form, for determining the total N in the microbial biomass extracts 

(Cabrera and Beare 1993); and secondly, the 
15

N diffusion technique (Brooks et al. 1989) to 

measure 
15

N in the microbial biomass using the extracts obtained from phase 1.  

3.8.1 Alkaline persulphate oxidation 

The extracts obtained from the MBC procedure above (Section 3.7) were used for 

further analysis. One litre of oxidising solution was prepared by dissolving 50 g K2S2O8, 30 g 

H3BO4 and 7.5 g NaOH in a volumetric flask. Digestion of the extracts was done using soil 

extract: oxidising agent in 1: 1 ratio and autoclaved at 120
o
C for 1 h. The resultant extracts 

were cooled and analysed for total dissolved N (TDN). 

3.8.2 Microbial biomass – 15N measurement 

The diffusion technique of Brooks et al. (1989) was employed for determining the 
15

N 

enrichment of the microbial biomass. Discs of Whatman GF/D filter paper (7 mm diameter) 

were cut using a paper punch and suspended on stainless steel wire placed inside a 120 mL 

vial. Immediately before commencing, 10 µL of 2.5 M KHSO4 was pipetted on to each disc. 

Sufficient extract (obtained in Section 3.7.2) to give a total of 50–100 µg N in the solution, 

was placed in the vial. After adding 0.2 g MgO and 4 mm glass beads, the vial was 

immediately sealed and left for 6 d. The wire along with the filter paper disc was then 

removed and dried overnight at 40–50
o
C; and transferred to tin capsules for analysis by 

Continuous Flow Isotope Ratio Mass Spectrometer (IRMS) (PDZ Europa Ltd, Crewe, UK) 

(Section 3.12). 

      
            

   
 

              

   
 

                   Equation 3.7 

where;  

MB
15

N = microbial biomass 
15

N (µg 
15

N g
–1

 dry soil) 

TNF = total dissolved N of fumigated soil (µg N g
–1

 dry soil) 

Atom%F = atom% of the total dissolved N of the fumigated soil (atom%) 
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TNNF = total dissolved N of the non-fumigated soil (µg N g
–1

 dry soil) 

Atom%NF = atom% of the total dissolved N of the non-fumigated soil (atom%) 

3.9 Water soluble C 

For Chapter 5 (field study), soil samples were analysed for water soluble C (WSC) by 

extracting with DI water (1: 10, soil: water ratio) on an end-over-end shaker at 30 rev min
–1

 

for 30 min followed by centrifuging the extractant at 3500 rev min
–1

 for 20 min, and filtering 

(through 0.45 µm cellulose nitrate membrane filter) into 30 mL plastic containers before 

storage at 4
o
C until analysis (Ghani et al. 2003). The filtered samples were analysed for WSC 

using a Shimadzu Total Organic Carbon Analyser TOC 5000A (Shimadzu Oceania Pty Ltd, 

Sydney, Australia) fitted with a Shimadzu ASI-5000A autosampler. Equation 3.8 was used to 

calculate the concentration water soluble carbon in the filtered samples. 

    
       

  
 

          Equation 3.8 

where; 

WSC = water soluble carbon (µg g
–1

 dry soil) 

TOC = total organic carbon concentration of extract (µg mL
–1

) 

VF = volume of solution (DI water + soil moisture) (mL) 

Md = mass of oven dry soil (g) 

3.10  Headspace gas sampling and analyses 

The closed-chamber technique (De Klein et al. 2003) was used for all N2O and CO2 

field measurements (Chapters 5 and 8). The details of the headspace chambers are provided in 

the later chapters. In Chapters 6 and 7 (laboratory studies), an infrared gas analyser (IRGA) 

was used to measure instantaneous CO2 fluxes from the soil cores. At each gas sampling 

event, a portable soil respiration chamber (SRC) was placed directly onto each PVC 

(polyvinyl chloride) container that was connected to an infrared gas analyser (SRC–1 and 

EGM–3, PP Systems, Hitchin, UK; Figure 6.2) and the emissions were determined over a 2 

min period. Variable climatic conditions in the field studies limited the use of IRGA and 

interpretation of data in field conditions, hence for the field studies, CO2 emissions were 

determined using gas chromatographic analyses.  

Common to all experiments were gas sample vial sizes and analyses. For Chapters 6, 7 

and 8, a gas-tight, screw-on PVC lid containing a rubber septum was attached to the top of the 
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PVC containers (internal diameter 8.0 cm, 4.5 cm depth, total height 10 cm; part no. D05880, 

iPlex pipelines, New Zealand). For the field experiment (Chapter 5), steel ring bases were pre-

installed to a soil depth of 10 cm. These were covered with insulated, steel chambers (45 cm 

diameter, 12 cm height) which contained a rubber gas sampling septum.  

At each gas sampling event, gas samples (8 mL) were collected at 0, 10 and 20 min for 

the laboratory experiments (Chapters 6 and 7) and 0, 30, and 60 min for the field studies 

(Chapters 5 and 8), after lid closure using a hypodermic needle, attached to a 20 mL glass 

syringe via a three-way tap, and placed in 6 mL Exetainer
® 

vials (Labco Ltd, High Wycombe, 

UK); the over pressurisation prevented ambient air diffusing into the Exetainer
®
. The gas 

vials were reduced to ambient atmospheric pressure immediately prior to analysis using a 

double-ended needle to release the extra pressure into a beaker of water. Samples of ambient 

air were also collected at each experimental location before commencing headspace gas 

sampling.  

For N2O–
15

N gas sample (15 mL) collection in the field studies (Chapters 5 and 8), the 

headspace chamber was kept closed for another 3 h after gas collection for N2O-N prior to 

taking a 15 mL sample. Gas samples were transferred to pre-evacuated, 12 mL Exetainers
®
, 

the over pressurisation prevented ambient air diffusing into the Exetainer
®
. Analyses were 

carried out as in Section 3.12.3. 

3.11  Gas chromatographic analysis 

The gas samples were analysed on an automated SRI 8610 gas chromatograph (GC) 

(SRI Instruments, Torrance, CA, USA) interfaced with a Gilson 222XL liquid autosampler, 

configured as in Clough et al. (1998) and similar to the configuration used by Mosier and 

Mack (1980). To enable gas analyses a purpose-built double concentric injection needle 

replaced the liquid sample sipper on the autosampler, allowing rapid purging of the gas 

sample for injection. A 1 m long pre-column preceded a 6 m long analytical column, both 3 

mm OD stainless steel packed with Haysep Q. An automated 10-port gas-sampling valve on 

the GC sent the oxygen-free N2 carrier gas (40 mL min
–1

) through both the pre-column and 

analytical column in series (in inject mode) or back-flushed the pre-column. At the posterior 

end of the analytical column a 4-port gas-sampling valve was synchronised to send the gas 

stream to the detector. The electron capture detector (ECD) was also supplied with a 10% 

CH4/Ar – ‘makeup gas’ to enhance the detector’s response to N2O and to effectively eliminate 

any complications due to varying CO2 levels in the stored headspace samples (Zheng et al. 

2008). The ‘makeup gas’ flow was regulated at 7 mL min
–1

. 
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3.11.1 Nitrous oxide 

Nitrous oxide concentrations were analysed using a 
63

Ni electron capture detector 

(ECD) at 310°C. Each batch of N2O samples was preceded by a series of standards (1.2, 2.5, 

5.8 and 9 µL L
–1

) and interspersed with 1.2 µL L
–1

 reference standards. Nitrous oxide flux 

determination was performed by using two concentration values on each occasion and one of 

those values at time 0 was the mean of three background concentrations. By employing this 

method of flux calculation, the departure of most of the flux values from linearity was within 

the analytical uncertainty (2–5%) of the gas chromatograph. Emissions were calculated using 

Equation 3.9: 

     
[                               ]

              
 

          Equation 3.9 

where; 

FN2O = N2O flux (µg N2O-N m
–2

 h
–1

) 

C1 = N2O concentration at time 1 (µL L
–1

) 

C0 = background N2O concentration at time 0 (µL L
–1

; n = 3) 

Vh = headspace volume (L) 

CL = conversion factor for µL to L [0.000001 L µL
–1

] 

P = atmospheric pressure [1 atm] 

MWN2O-N = molecular weight of N2O-N [28.01 g mol
–1

] 

Cµg = conversion factor for g to µg [10
6
 µg g

–1
] 

R = Universal gas constant [0.0821 L atm K
–1

 mol
–1

] 

T = temperature in Kelvin (K) 

t = sampling time (h) 

As = soil surface area (m
2
) 

 

3.11.2 Carbon dioxide 

The gas sample was separated on the GC column and the CO2 was subsequently 

converted to CH4 in a methaniser by a Ni catalyst at 380°C and measured with a flame 

ionisation detector (FID). Preceding each batch of samples a series of CO2 standards (0.2, 0.5, 

1, 2 and 3% v v
–1

) were analysed, and used to create a standard curve. Interspersed with the 

samples were 1% reference standards. Fluxes of CO2 were determined in a similar fashion to 

N2O emissions using Equation 3.10: 
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[                               ]

              
 

          Equation 3.10 

The terms used here are same as in Equation 3.9 except for the following. 

FCO2 = CO2 flux (µg CO2-C m
–2

 h
–1

) 

MWCO2-C = molecular weight of CO2-C [12.0107 g mol
–1

] 

3.12  Isotopic 15N enrichment of plant material 

3.12.1 Isotope enrichment 

Ammonium sulphate ((NH4)2SO4), enriched with 
15

N (10.4 atom%; Isotec Inc., 

Matheson, USA) was added to ryegrass plants (Chapter 8) to achieve a final 
15

N enrichment 

of 5.4 atom% in the growing herbage. All isotopically labelled herbage samples and 
15

N 

enriched soil samples were analysed (Section 3.12.2) on a Continuous Flow Isotope Ratio 

Mass Spectrometer (IRMS) (PDZ Europa Ltd, Crewe, UK). 

3.12.2 Soil and herbage analyses for 15N enrichment 

Ground (< 200 µm) and dried samples (either soil or plant) were weighed into tin 

capsules, sealed and loaded into the autosampler of the PDZ Europa (Crewe, UK) GSL 

elemental analyser. A reference material was also weighed out in the same manner to match 

the composition and abundance of the samples. The samples were combusted in the presence 

of oxygen to convert the N in the material to a NOx mixture of gas. The resultant NOx species 

are reduced to N2 by passing through a packed copper column at 600
o
C before being resolved 

on a gas chromatograph packed column and passed into the PDZ Europa 20-20 IRMS, where 

the ion beams of the N2 species 28, 29 and 30, were measured and the blank corrected ratios 

of 29/28 and 30/28 were used to determine 
15

N enrichment. Both references and samples were 

analysed in a batch process, whereby a number of samples are bracketed between references. 

The samples were measured with a duplication rate of 1 in 8.The working reference material 

used during analysis of all samples was EM-WHEAT (δ
15

Nair = 1.66 ‰; Elemental 

Microanalysis Ltd, Devon, UK) which was also used to run dummy samples in order to check 

precision and accuracy. This working reference standard (EM-WHEAT) had been normalised 

against the international reference material IAEA-N-1 (Ammonium Sulphate, δ
15

Nair = 0.4 

‰). 
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3.12.3 IRMS analyses of N2O 

Prior to analysis, the 12 mL Exetainers
®

 were reduced to ambient pressure using a 

double-ended needle to release the extra pressure into a beaker of water (Section 3.10). The 

gas samples were automatically injected into the TGII trace gas system using a similar double 

concentric needle to that described earlier (Section 3.11) and the N2O in the gas sample was 

concentrated by cryo-trapping and focusing. The gas was then transferred in the He carrier 

flow to the IRMS where the reduction column was bypassed and ion currents at m/z 44, 45, 

and 46 was integrated separately at an electron current of 300 µA. Total ion beams for each 

m/z were calculated relative to the blank signal obtained from leading and trailing zero 

observation periods before and after peak collection. The ion currents were compared to 

relative m/z ratios followed by calculation of the 
15

N enrichment (Stevens et al. 1993). Each 

run was bracketed by N2O standards (35  L L
–1

) and interspersed with 2 standards after every 

9 samples analysed. 

3.13  Statistical analysis 

Statistical analysis of all data was performed using Minitab
®
 (version 15.1; © 2006, 

Minitab Inc.). Gas emission data for each sampling was tested for skewness using the 

Anderson-Darling test and if required, the data were log-transformed to ensure normality. 

Analysis of variance (ANOVA) was performed with 95% confidence limits (P <0.05) to 

indicate the level of significance. Statistical significance was indicated using standard 

deviation (sd) or least significant differences (lsd). Pearson’s correlation coefficient was used 

to test the relation(s) between various data in Chapter 4. Graphs were designed using 

SigmaPlot
®
 (version 11.2.0.5; © 2008, SPSS Inc.). 
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     Chapter 4 

Quantification of pre- and post-grazing litter-fall 

4.1 Introduction 

New Zealand’s exports are dominated by dairy products from pastoral systems (Holmes 

et al. 2007). Until 2007, there were about 13,860 dairy farms in New Zealand with 3.4 million 

cows managed on 1.3 million ha, producing about 11,000 million litres of milk per annum 

while consuming 12 million tonnes of pasture dry matter (Holmes et al. 2007). Between 1989 

and 2009, New Zealand’s dairy cattle numbers have increased from 3.3 million to 

approximately 6.2 million (Statistics New Zealand 2011). The strength of New Zealand’s 

pasture industries is based on the efficient utilisation of ryegrass (Lolium perenne L.) and 

white clover (Trifolium repens L.) pasture, grazed in situ; pasture management strategies are 

planned to balance the seasonal variations in pasture supply and demand. New Zealand dairy 

farmers generally follow rotational grazing practices. Thus animals are offered a fresh area of 

pasture at regular intervals (i.e. rotation lengths). After every grazing event, each area has a 

period when it is not grazed. This allows simplified grazing control, conservation of pasture 

and minimises pasture wastage.  

The rationale for this study came from observing dairy cows failing to ingest all their 

harvested pasture. While grazing, some freshly harvested herbage was seen to fall from the 

animal’s mouth on to the soil surface (Figure 4.1). Hoof movement may also cause 

shearing-off of herbage, further adding to litter. These two pools of harvested but unconsumed 

herbage are collectively termed ‘litter’ and the process of its creation, ‘litter-fall’. Previous 

studies have shown that plant leaf materials can contribute to N2O emissions when in contact 

with soil but none of them have considered litter-fall effects on N2O emissions in intensively 

grazing dairy pasture systems. From the literature review (Chapter 2), it is apparent that no 

study has so far attempted to quantify litter-fall resulting from single grazing event(s) with 

respect to grazing dairy cattle. Hence, the rationale for the present study was to quantify 

litter-fall during dairy cattle grazing events. 
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Figure 4.1 Dairy cow in the process of dropping freshly harvested pasture (litter) while 

grazing. The highlighted part shows litter just before landing onto the soil 

surface. 

4.2 Materials and methods 

4.2.1 Site description 

A field survey was conducted on the Lincoln University Dairy Farm (LUDF), located 

near Lincoln, New Zealand (43°38’41” S, 172°26’31” E). The LUDF utilises a rotational 

grazing system based on white clover (Trifolium repens L.) and perennial ryegrass (Lolium 

perenne L.) pasture, grazed by Friesian cows, with an effective grazing area of 159 ha split 

into 21 paddocks, producing 1630 kg milksolids ha
–1

 y
–1

 (further details in Table 4.1). The 

quantity of pre-grazing and post-grazing herbage as well as the litter-fall rate during grazing 

was measured on 30 occasions (as described in Section 4.2.2) during the 315-d-long milking 

season between December 2010 and April 2011. The period between grazing events, a 

grazing interval, ranged from 21 d (14 Sept 2010 – 1 March 2011) to 30 d (1 March – 31 May 

2011). The cows grazed for 24 h in each fenced paddock at an average stocking density of 

84 cows ha
–1

. For context, a mean daily herbage dry matter intake rate 

(DMI, kg DM cow
−1

 d
−1

) was determined using the farm’s weekly measurements of pre- and 

post-grazing pasture herbage DM, the area grazed and the number of cows. 
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Table 4.1 Mean climatic parameters and management factors at the Lincoln University 

Dairy Farm during 2010–2011. 

Climate parameters  

Maximum temperature 32
o
C 

Minimum temperature 4
o
C 

Days of screen frost 36 d 

Mean average bright sunshine 2040 hours 

Rainfall 666 mm 

Evapotranspiration 870 mm 

  

Management factors  

Irrigation per annum 450 mm 

Urea fertiliser application  250 kg N ha
–1

 y
–1

 in split dressings of 50 kg N ha
–1

 

Effluent application 100 kg N ha
–1

 

Lime application  400 kg ha
–1

 

Stocking rate 4.1–4.4 cows ha
–1

 

Average daily dry matter intake* ~16 kg DM cow
–1

 d
–1

 

*Daily DMI was calculated by using the LUDF’s farm data measured by a rising plate meter. 

4.2.2 Litter collection procedure 

Before grazing, litter was collected to determine if any remained from the previous 

grazing event. Three 1 m x 1 m quadrats were randomly placed in the paddock to be grazed, 

avoiding excreta patches. These areas were sampled using a vacuum pump (STIHL BG 75, 

Virginia, VA, USA). Afterwards, the standing herbage was trimmed with electric clippers 

(Oster Shearmaster
®

, USA) to a height of 0.5–1.0 cm. Post-grazing (POG), the procedure was 

repeated in five 1 x 1 m plots (Figure 4.2a). The litter collected using the vacuum pump was 

sieved (1 mm) to enable the separation and removal of dust, seeds and stones. By colour, the 

total POG litter-fall (POGTot) was segregated (Figure 4.2b) into fresh (green, POGF) and 

senesced (brown, POGS) material. The POGF fraction was further segregated into ryegrass 

and clover. After litter collection, the remaining unharvested herbage (i.e. post-grazing 

residuals) was trimmed to a height of 0.5–1.0 cm (Figure 4.2c). The litter and standing 

herbage samples were dried at 65
o
C and analysed for total C and N contents using standard 

procedures [Section 3.1; (Rowland and Roberts 1994)]. Dry matter and litter data were 

analysed using an analysis of variance (ANOVA) approach with two factors (paddocks and 

dates, where the date factor was nested within the paddock factor). Since these analyses 
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detected significant temporal differences (date effects) in addition to the paddock effects, each 

plot datum (combination of paddock and date) was used as an individual sample for 

calculating statistics. 

Statistical analyses of dry matter and litter data were performed using the statistical 

software Minitab
®
 (version 15.0). Statistical significance for all data was indicated using 

standard deviation (sd). 

 

 

 

Figure 4.2 Litter-fall collection and litter separation, (a) litter-fall collection using a 

vacuum pump from a single 1 x 1 m quadrat following a grazing event, (b) 

The vacuumed litter separated to fresh (green) and senesced (brown) litter 

from the same quadrat, and (c) the same quadrat after clipping the 

remaining herbage to estimate post-grazing residual DM. 
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4.3 Results 

Using the LUDF’s weekly farm data [measured with a rising plate meter (F200, 

Farmworks Ltd., Fielding)] over the 315-d milking season, the mean daily DMI of the cattle 

was calculated to increase from 6 kg DM cow
–1

 in August, 2010, when the calves were born, 

up to 18 kg DM cow
–1

 in November and December, declining thereafter to 10 kg DM cow
–1

 

by the end of May, 2011, when milking ceased (Figure 4.3b).  

Pasture DM on-offer (pre-grazing) ranged from 1405 to 4086 kg DM ha
–1

 (Figure 4.3a) 

with no significant differences over time, with a mean pre-grazing DM value of 

2516 ± 636 kg DM ha
–1

 (± sd, n = 90). The mixed pasture had C and N contents of 396 ± 29 

and 28 ± 7 mg g
–1

, respectively. Pre-grazing, no litter was recovered from the pasture surface 

at any time. 

Post-grazing the pasture DM residuals ranged from 647 to 1849 kg DM ha
–1

 

(Figure 4.3a) with no significant differences over time, and a mean value of 1167 ± 265 kg 

DM ha
–1

 (± sd, n = 150). Carbon and N contents of this post-grazing DM were 320 ± 72 and 

20 ± 4 mg g
–1

, respectively. Subtracting post-grazing residual DM from the pre-grazing dry 

matter gave an average apparent consumption of 1349 kg DM ha
–1 

equal to 53% of the pasture 

on offer pre-grazing. Post-grazing, the fresh litter-fall (POGF) had a ryegrass: clover ratio of 

9: 1 by dry mass. The POGF litter-fall rate averaged 53 ± 24 kg DM ha
–1

 per grazing event 

with no differences due to sampling time (Figure 4.3a), and had average C and N contents of 

398 ± 14 and 25 ± 5 mg g
–1

, respectively. There were 12 grazing events per annum, thus the 

POGF, N application rate equated to 1.3 ± 0.7 kg N ha
–1

 per grazing event, or 15.9 kg N 

ha
−1

 y
–1

. The post-grazing senesced litter-fall (POGS) averaged 19 ± 18 kg DM ha
–1

 per 

grazing event with mean C and N contents of 397 ± 16 and 15 ± 3 mg g
–1

, respectively, and 

on an annual basis, POGS litter deposited 3.5 kg N ha
–1

 y
–1

.  

Post-grazing, litter-fall did not correlate with either DMI, or pre- and post-grazing levels 

of DM. On average, the litter-fall rate was 4 and 5% of the cattle dry matter intake rate on a 

fresh or fresh + senesced basis, respectively. The actual DM consumption by the dairy cows 

accounted for 49% of the herbage on-offer, when litter-fall was accounted for in the 

calculations. This indicated that 4% of the DMI was lost as litter-fall.  
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Figure 4.3 Herbage on-offer and litter-fall rates for 30 grazing events over an annual 

lactation period, (a) herbage dry matter and litter-fall per grazing event, (b) 

DMI and litter-fall on an individual cow basis. POGF and POGS are the post-

grazing-fresh (green) and -senesced (brown) litter, respectively. POG Res is 

the residual dry matter remaining after grazing, and ‘on-offer’ is the dry 

matter present at start of grazing. DMI denotes the calculated daily dry 

matter intake of a cow. Data are mean ± sd. 
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4.4 Discussion 

The lack of any differences, over time, in either the DM on-offer or post-grazing DM 

residuals demonstrated that the aims of the LUDF rotational grazing management were 

achieved. Prior to grazing, there was no litter on the soil surface. Thus, litter-fall from the 

previous grazing event(s) had decomposed, releasing C and N to the soil (Sanaullah et al. 

2010). This study has shown, for the first time, that in intensively grazed dairy pastures 

significant litter-fall occurs. In this study it accounted for 4% of what was the apparent DM 

consumption of the cows. While DM on offer did not affect litter-fall rates in the grazing 

system studied here, it is possible that grazing management, animal species and pasture 

dynamics may affect litter-fall rates. For example, a study of grazing cattle (Soder et al. 2009) 

found DM per bite differed with sward structure. It may be that bite size could also affect 

litter-fall rates. While the litter-fall rate did not vary with cow DMI, on average, it was 

equivalent to 4 and 5% of a cow’s apparent DMI on a fresh and fresh + senesced basis, 

respectively. The examination of animal species and sward structure effects and interactions 

on litter-fall are the outside the scope of this study but potential influences on litter-fall clearly 

warrant further study.  

Naeth et al. (1991) measured litter-fall following full season grazing events (ranging 

from 1–5 months) by beef cattle in prairie- and fescue-grasslands (dominated by Fescuta, 

Agropyron and Stipa sp.) in Canada, and found that season and grazing intensity significantly 

affected the amounts of litter; it decreased with increasing grazing intensity. Mapfumo et al. 

(2002) investigated litter C and N pools after beef heifers grazed perennial pastures for 1–3 

times under light and heavy grazing intensities which included smooth bromegrass (Bromus 

inermis L.), meadow bromegrass (Bromus riparius Rhem.), and the annual grass, winter 

triticale (Triticosecale W.). In these studies litter C and N pools decreased with increasing 

grazing intensity; however, the grazing density was relatively high (270 beef heifers ha
–1

) 

when compared to the present study (84 dairy cows ha
–1

). Lodge et al. (2006) manually 

collected litter after full season grazing events (4–6 weeks continuous grazing) of Merino 

wethers which declined seasonally and ranged from 32 to 66 kg DM ha
–1

 at light and heavy 

grazing intensities using forage grasses in New South Wales, Australia. They recorded the 

highest value of 508 kg DM ha
–1

 for Manilla grass which is comparable to the annual 

litter-fall value of 864 kg DM ha
–1

 y
–1

 measured in this study.  

Campanella and Bisigato (2010) reported litter-fall rates of 60–160 kg ha
–1

 y
–1

, 

collected on a monthly basis using litter traps from arid, extensive rangelands that adopted 

set-stocked sheep grazing (0.11–0.14 sheep ha
–1

) and were dominated by forage and perennial 

grasses such as Larrea divaricata, Chuquiraga hystrix, Stipa tenuis and Poa ligularis. Carrera 
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et al. (2008) reported litter-fall rates of 260–310 kg ha
–1

 y
–1 

from similar rangeland systems 

including shrubs (Larrea spp. and Stipa spp.) grazed by sheep (0.14 sheep ha
–1

).  

In these last two studies discussed above, annual litter-fall values were relatively lower 

compared to the present study which decreased with increasing stocking rates with stated 

reasons being that higher stocking rates led to higher removal of green herbage. In both 

studies, either the litter-fall rate was not measured following each grazing event (the rates 

reported are cumulative values) or the animals were set-stocked over time. It is expected that 

some litter must have decomposed already, hence the lower litter-fall rates.  

In all the studies reported above, the plant species on-offer were prairie/forage 

grasses/shrubs which are managed differently and which have different morphological and 

growth characteristics when compared to clover-ryegrass pastures. Furthermore, the grazing 

animals in the past studies were not dairy cattle (beef heifer/sheep). It is recognised that litter-

fall has the potential to contribute to nutrient cycling but no consideration has been given to 

N2O emissions resulting from pasture litter decomposition in any previous studies. 

Typical fertiliser rates in New Zealand and Australian clover-ryegrass pastures are 

100−150 kg N ha
–1

 y
–1 

in split applications of 25–50 kg N ha
–1

. The annual N application 

from litter-fall in this study was ~16 kg N ha
–1

 y
–1 

which may not be as high as a fertiliser 

application but is comparable to a split application rate.  

Forster et al. (2007) note that the nitrous oxide (N2O) molecule is a potent greenhouse 

gas (GHG). It is currently also the dominant stratospheric ozone depleting substance 

(Ravishankara et al. 2009) . Intensively managed agricultural soils are a significant 

anthropogenic global source of N2O with grazed pasture a major component of this, via 

ruminant excreta and fertiliser (De Klein et al. 2003; Mosier et al. 1998; Oenema et al. 1997). 

The current IPCC inventory guidelines includes N from crop residues (aboveground and 

belowground), N from BNF and from residues that occur during pasture or forage crop 

renewal (IPCC 2006). It is clear that the IPCC methodology does NOT account for the 

potential emission of N2O from the decomposition of pasture plant litter (i.e. resulting from 

litter-fall). Presumably this omission has occurred due to a lack of recognition of the concept 

of litter-fall and its potential contribution to N2O emissions. 

The total C and N contents of the litter collected in this study are, however, comparable 

to some cropping residues that are usually incorporated in soil to improve soil quality and 

fertility (not stubbles e.g. wheat and maize); litter therefore is highly likely to contribute to C 

and N cycling in pastures and hence there is a need to examine it further with respect to litter 

decomposition rates and N2O production. 
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4.5 Conclusion 

Some herbage harvested by dairy cattle is not ingested but ends up on the soil surface in 

the form of litter-fall. For the first time, this study has quantified litter-fall in intensively 

grazed dairy pastures. On average, litter-fall rate equated to 4 and 5% of the cattle dry matter 

intake rate on a fresh or fresh + senesced basis, respectively. Litter-fall was not related to dry 

matter intake of animals or post-grazing residuals during the measurement period of April 

2010–2011. The N content of the post-grazing fresh litter was 25 mg g
–1

 and this at 12 grazing 

events per paddock per year, equated to an N application rate of 15.9 kg N ha
−1

 y
–1

, 

comparable in magnitude to a typical fertiliser application. It is hypothesised that during its 

decomposition it may contribute to N cycling and N2O emissions. The results of this study 

warrant further investigation of the fate of litter-fall under field conditions and the potential to 

contribute to N2O emissions. 



 51 

     Chapter 5 

Plant-derived N2O emissions resulting from animal 

treading in pastures 

5.1 Introduction 

Intensively managed grazed pastures are significant sources of N2O due to regular 

anthropogenic N inputs (fertiliser and BNF), animal excreta and soil compaction resulting 

from animal treading (Oenema et al. 1997). Emissions are exacerbated under wet and 

saturated soil conditions (De Klein et al. 2006b; Luo et al. 2008a). Animal treading can create 

anaerobic soil conditions as a result of compaction, often with animal excreta present which 

provides abundant C and N substrates. However, studies on emissions involving animal 

treading in the absence of animal excreta or fertilisers are scarce (Menneer et al. 2005b). 

Menneer et al. (2005b) showed that animal treading, in the absence of animal urine and dung, 

produced 3–6 fold higher N2O emissions 8 d after severe treading compared to nil-treading. 

They reasoned the higher emissions were due to treading causing compaction of soil and 

thereby reducing soil aeration which resulted in higher denitrification rates. Moreover, they 

reasoned that due to treading, plant growth was reduced which increased NH4
+
–N and 

NO3
−
−N availability (due to reduced N uptake) for soil microorganisms responsible for N2O 

production. However, consideration was not given to the possibility that N embodied in 

pasture leaf tissues was released into the soil to contribute to N2O emissions and/or 

inorganic-N pools. No previous studies have reported N2O emissions as a result of animal 

treading releasing N embodied in the herbage. 

Results from Chapter 4 revealed that intensively grazed dairy cattle can produce 

significant amounts of litter-fall. During and after grazing events, this litter along with the 

unharvested herbage, could potentially become incorporated into the soil due to animal 

treading, especially under winter conditions when saturated soil conditions prevail. This 

partially incorporated herbage may decompose and contribute to N2O emissions. The 

following experiment was designed to examine the effect of animal treading on N2O 

emissions and potential herbage effects. 

It was hypothesised that trodden herbage would act as a source of C and N for the 

microorganisms and contribute to N2O emissions. 
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5.2 Materials and methods 

5.2.1 Experimental site and preparation 

Two experimental sites were located on two separate paddocks at the Lincoln 

University Dairy Farm (LUDF) (43°38.59'S, 172°26.21'E; elevation 13 m). The soil at both 

sites was a strongly gleyed, Temuka clay loam [Typic Orthic Gley; (Hewitt 1998)] with 

impeded subsoil drainage. The pasture species were perennial ryegrass (Lolium perenne L.) 

and white clover (Trifolium repens L.) which were grazed regularly by dairy cows (Section 

4.2.1, Table 4.1). To avoid antecedent effects of grazing animals, an area of pasture 

(approximately 15 m × 20 m) was surrounded by an electric fence six months prior to the start 

of the experiment. Part A (Experiment 1) was performed at paddock 1 in July-October, 2010. 

This paddock was sown in February, 2007 with a mixture of ‘Arrow’ and ‘Alto’ perennial 

ryegrass cultivars. Part B (Experiment 2) was performed at paddock 2 in April-May, 2011 

which was sown in March, 2003 with ‘Bealey’ perennial ryegrass and managed in an identical 

fashion to paddock 1. The stable isotope technique (
15

N-enriched fertiliser) was used in Part B 

of this experiment to better understand the source(s) of the N2O emissions i.e. to separate soil-

derived- and herbage-derived N2O emissions. 

5.2.2 Experimental design and treatments  

5.2.2.1 Part A (no fertiliser addition) 

The experimental design was a randomised block design with 4 treatments; two levels 

of herbage (present/absent i.e. H1/H0) and two levels of treading (present/absent i.e. T1/T0), 

each replicated 5 times (Figure 5.1). The treatment combination – H1T0 was the control for 

part A. For soil gas emission measurements, headspace chamber bases (45 cm diameter, 

stainless steel), which protruded 12 cm into the soil, were installed, in such a way that each 

sub-plot was 1 m apart and 1 m away from the fence. These chamber bases contained an 

annular water-filled trough which provided a seal when chambers were placed in position 

when, gas measurements were taken. During gas sampling events, stainless steel chambers 

(insulated with polystyrene foam; 45 cm diameter, 10 cm high) created a 19.1 L headspace 

when placed on the bases. The chamber was placed on the annular water-filled trough, 

creating a gas-tight seal. Further non-chamber areas were set-up and treated in an identical 

fashion but used for soil sampling and pH measurements. The gas chambers were of the same 

dimensions in both parts A and B.  
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Figure 5.1 Field layout of paddock 1 for part A showing the position of the gas chambers 

and soil sampling plots for the treading and herbage treated plots. 
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5.2.2.2 Part B (15N-labelled fertiliser addition) 

 Part B was also a randomised block design with the same treatments as in part A 

replicated 5 times (Figure 5.2). Each subplot received 50 kg N ha
–1

 in the form of 

15
N-double-labelled ammonium nitrate [(

15
NH4

15
NO3), Section 5.2.3.2 below] except an 

additional ‘control’ plot was included where no fertiliser or treading were imposed. Other 

parameters such as headspace volume, soil type and pasture species were identical to part A. 

 

Figure 5.2 Field layout of paddock 2 for part B showing the position of the gas chambers 

and soil sampling plots for the treading and herbage treated plots. 
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5.2.3 Treatment application 

For both parts A and B, prior to the start of the experiments, the paddocks were mown 

to a herbage height of 10 cm and then left undisturbed for 1 month. Prior to imposing the 

treatments paddock 1 had 1584 ± 110 kg DM ha
–1

 (n = 10) on-offer. At paddock 2, 

corresponding values were 1636 ± 335 kg DM ha
–1 

(n = 10). This herbage height simulated 

post-grazing residual DM in pastures which ranged from 700 to as high as 1600 kg DM ha
–1

 

at the LUDF during 2010–2011 (Chapter 4). 

5.2.3.1 Part A (no fertiliser addition) 

For the H0 treatment, the herbage within the subplots was clipped using electric 

clippers (Oster Shearmaster
®
, USA) to a height of 0.5–1.0 cm (Figure 5.3a) immediately prior 

to imposing the treading treatments and then dried at 65
o
C for 48 h (to determine 

kg DM ha
−1

), ground and analysed for total C and N contents using standard procedures 

[(Rowland and Roberts 1994); Section 3.1]. 

For imposing the treading treatment (T1), a mechanical hoof [hoof print area 90 cm
2
; 

(Di et al. 2001)] was used that mimicked the hoof of an adult (2 year old) Friesian cow 

(weighing 450 kg), delivering a pressure of 220 kPa on the soil surface. The T1 treatment 

received 60 hoof-treads (377 hoofs m
–2

) within the soil surface of each subplot that equated to 

339.6% of the total area (Figure 5.3b).  

5.2.3.2 Part B (15N-labelled fertiliser addition) 

At paddock 2, immediately prior to imposing treading treatment, 
15

N-labelled 

15
NH4

15
NO3 enriched with 10 atom% 

15
N, at an N rate of 50 kg N ha

–1
 in a water solution at 

300 mL subplot
–1

, was added to all subplots except the control treatments (Figure 5.2). The 

herbage and treading treatments were then imposed in a similar fashion as part A. Additional 

control plots were introduced which did not receive fertiliser-N or treading treatments. 

 

5.2.4 Soil-, herbage- and gas-sampling and micrometeorological 
measurements 

General soil properties were tested by a commercial laboratory (Hill Laboratories, 

Hamilton, New Zealand). Thirty soil cores were taken from each paddock (1 and 2), prior to 

the start of each experiment. These were collected at a depth of 0 to 7.5 cm from the 

experimental site, bulked, and submitted for individual analysis (n = 1). For part A, soil 

analyses for inorganic N and WSC were performed on 11 occasions (days 1, 2, 3, 4, 6, 11, 14, 

17, 28, 38 and 47) after treatment application while for part B these analyses were also 

performed on 11 occasions (days 1, 2, 3, 4, 6, 9, 12, 13, 16, 23 and 30) after treatment 
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application. For part B, enrichment of 
15

N in soil inorganic N pools was determined using the 

diffusion technique of Brooks et al. (1989) (Section 3.8.2) for days 1 to 4 after treatment 

application (depending on the soil inorganic N concentrations and availability of KCl 

extracts).  

Field-moist soil samples were taken in duplicate, using a soil corer (7.5 cm deep × 

2.5 cm diameter), from each treated subplot (4 replicates treatment
–1

) and analysed for 

inorganic N, 
15

N enrichment and WSC (Sections 3.6, 3.8.2 and 3.9, respectively). Surface soil 

pH was determined on all gas sampling occasions (Section 3.3). Soil bulk densities (5 

replicates) were determined (Section 3.4) before and after imposing the treading treatments. 

Soil temperature, air temperature and rainfall data were attained from a meteorological 

station, 1 km away from Lincoln University. The harvested herbage from the ‘herbage 

clipping’ treatment was dried at 65
o
C and analysed for total C and N contents using standard 

procedures [Section 3.1; (Rowland and Roberts 1994)]. 

Soil N2O sampling was performed on 17 occasions for both parts A and B over 

experimental periods of 47 and 30 d, respectively. On each gas sampling event, 10 mL gas 

samples were manually drawn using glass syringes fitted with three-way taps and compressed 

into 6 mL Exetainer
® 

vials (Labco Ltd, High Wycombe, UK) at 0, 30, and 60 min, after 

positioning the headspace cover. The gas samples were analysed, within 48 h, for N2O and 

CO2 using gas chromatography (Sections 3.10 and 3.11). For part B, three hours after gas 

sampling, a further 15 mL headspace gas sample was drawn into 12 mL Exetainer
® 

vials and 

equilibrated to atmospheric pressure, before analysis for N2O-
15

N enrichment using IRMS 

(Sections 3.10 and 3.12.3, respectively).  

5.2.5 Statistical analysis 

Gas emission data on each gas sampling occasion and the cumulative emissions were 

tested for normality using the Anderson-Darling test and skewed data was log transformed 

[ln(flux+1)] (Press et al. 1989). Analysis of variance (ANOVA) was performed with 95% 

confidence limits (P <0.05) to indicate the level of significance. Treatment differences were 

calculated using Tukey’s test. Statistical analyses were performed using Minitab (version 

15.1; © 2006, Minitab Inc.).  
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Figure 5.3 Photograph showing (a) the ‘herbage clipped-treading present’ (H0T1) 

treatment after herbage clipping, (b) after the H0T1 treatment had received 

the treading treatment, and, (c) the treading treatment being imposed in the 

‘herbage present-treading present’ (H1T1) treatment using the mechanical 

hoof.  
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5.3 Results 

5.3.1 Part A – no fertiliser addition 

5.3.1.1 Soil properties and meteorological data 

Chemical properties of the soil at the experimental site (paddock 1) are shown in 

Table 5.1.  

Table 5.1 Chemical properties of the soils used during the study at paddock 1. 

 

Soil properties Paddock 1 

(July, 2010) 

pH (1: 2) 6.0 

Total C (g kg
–1

) 39.0 

Total N (g kg
–1

) 4.1 

Anaerobically mineralisable N (µg g
–1

) 162 

Available N (kg ha
–1

) 198 

Olsen P (mg kg
–1

) 25 

Potassium (cmolc kg
–1

) 0.58 

Calcium (cmolc kg
–1

) 10.9 

Magnesium (cmolc kg
–1

) 2.81 

Sodium (cmolc kg
–1

) 0.29 

Cation exchange capacity (cmolc kg
–1

) 20 

Total base saturation (%) 73 
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During the experimental period (47 d) at paddock 1, day 38 recorded the highest 

rainfall of 23.3 mm, followed by day 8 and day 21 with 3.7 and 7.1 mm, respectively. The 

average daily air temperature ranged from 1.2 to 14.7
o
C and the average daily soil 

temperature ranged from 2.4 to 9.3
o
C over the same period (Figure 5.4). 

 

 

Figure 5.4 Meteorological data during the experimental period – 1 July to 17 August, 

2010, at paddock 1 for Part A. Rainfall, air temperature and soil temperature 

are daily average values. Gravimetric water content was measured at 7.5 cm 

soil depth. 

 

5.3.1.2 Herbage on-offer and regrowth 

Nitrogen and C contents of the herbage that was clipped from the H0 plots at the start 

of the experiment contained 37 ± 5 mg g
–1

 and 388 ± 9 mg g
–1

 (n = 10), respectively. Three 

months after treading treatment, herbage regrowth from the trodden plots was significantly 

lower (P <0.05; n = 5) than the non-trodden plots with 1333 ± 273 and 2257 ± 135 kg 

DM ha
−1

, respectively. Corresponding values for the nil-herbage treatment (H0) after 

3 months averaged 808 ± 144 and 937 ± 202 kg DM ha
–1 

and did not differ significantly. 
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5.3.1.3 Soil pH, soil bulk density and soil gravimetric water content 

Treatments had no significant effect on soil pH throughout the experimental period 

and average pH values ranged from 6.4–7.2 units (n = 20 on each occasion).  

Gravimetric soil water content (θg) was significantly affected by the treatments until 

day 6 with higher values (P <0.05) in the H0T0 and H1T1 treatments ranging from 

0.59−0.72 g water g
–1

 dry soil and lower values (0.43–0.55 g g
–1

) for H0T1 treatment over the 

same period. By assuming an average bulk density of 0.87 Mg m
–3

, corresponding values of 

volumetric soil water content for H0T0 and H1T1 treatments ranged from 0.51–0.63 m
3
 water 

m
–3

 soil and 0.37–0.48 m
3
 m

–3
 for the H0T1 treatment. 

No significant treatment differences occurred in soil bulk density values which, 

averaged over all treatments were, 0.74 ± 0.14, 1.0 ± 0.10, 1.07 ± 0.05, and 0.97 ± 0.07 

Mg m
–3

 (mean ± sd; n = 12) in the 0–3, 3–6, 6–12, and 0–12 cm depths, respectively. 

 

5.3.1.4 Soil inorganic N and WSC 

Soil NH4
+
–N concentrations were significantly higher in the control (H1T0) than the 

other treatments until day 6 and from day 11 onwards, concentrations did not differ due to 

treatments until day 47 (Figure 5.5a). On day 1, NH4
+
–N concentrations were 14.8 ± 1.9 = 

13.5 ± 1.7 > 11.4 ± 0.8 = 9.8 ± 2.2 µg g
–1

 dry soil (P <0.05; mean ± sd; n = 4) for the H1T0, 

H1T1, H0T1 and H0T0 treatments, respectively. Concentrations from both treading 

treatments did increase on day 2 but did not differ from the control treatment due to high 

variability. During days 1 to 6, a significant herbage effect was observed on days 1, 3 and 4 

with higher values in the absence of herbage. During the same period, the treading effect 

became significant on days 2, 4 and 6 with higher concentrations from non-trodden 

treatments. Maximum concentrations were observed on day 3 with minimum and maximum 

values of 8.5 ± 1.3 and 41.2 ± 27.9 µg g
–1

 in the H0T0 and H1T0 treatments, respectively. 

Soil NO3
–
–N concentrations were higher from the control treatment on most soil 

sampling occasions (Figure 5.5b). The treading treatment lowered (P <0.001) soil NO3
–
–N 

concentrations over the entire experiment irrespective of the presence or absence of herbage. 

Significant herbage and interaction effects were observed on days 38 and 47 with higher 

NO3
−
−N concentrations recorded in the presence of herbage. Average soil NO3

–
–N 

concentrations over the experimental period for the H0T1 and H1T1 treatments were 3.5 and 

3.5 µg g
–1 

soil, respectively, while in the H0T0 and H1T0 treatments, the respective values 

were 9.2 and 10.0 µg g
–1

 soil (Figure 5.5b). 
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Figure 5.5 Inorganic N concentrations after treading at day zero for part A. Data are 

mean ± sd. Treatment abbreviations are discussed in the text (Section 5.2.2.1 

and Figure 5.1). 
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Concentrations of water soluble C were significantly higher (P <0.001) on days 2, 4, 6 

and 14 (Figure 5.6) in the H0T1 treatment while concentrations in the other treatments did not 

differ. Maximum concentrations from the H0T1 treatment were observed on day 6 and they 

averaged 390 ± 10, 236 ± 22, 288 ± 19 and 271 ± 19 µg g
–1

, in the H0T1, H1T0, H1T1 and 

H0T0 treatments, respectively. 

  

 

Figure 5.6 Concentrations of WSC after treading at day zero for part A. Data are mean 

± sd. Treatment abbreviations are discussed in the text (Section 5.2.2.1 and 

Figure 5.1). 

 

 

5.3.1.5 Nitrous oxide emissions 

The emission data did not follow a normal distribution and were log transformed prior 

to statistical analyses (Section 5.2.5). On day 1.1 (27 h after treatment application), N2O 

emissions did not differ with treatments (Figure 5.7a). From days 1.9–14.1, treading caused 

higher N2O emissions (P <0.05) than the control (Figure 5.7a). The highest N2O emissions 

were observed at 2.2 d and averaged 98 ± 68 = 46 ± 37 > 5 ± 3 = 5 ± 12 µg N2O-N m
–2

 h
–1

 

(± sd, P <0.05) for the H0T1, H1T1, H0T0 and H1T0 treatments, respectively. From days 

17.1–47.1, no treatment differences occurred in N2O emissions (Figure 5.7a). Emissions of 

N2O integrated over 47 d averaged 16.7 ± 11.1 = 9.3 ± 5.5 > 5.5 ± 4.8 > 2.2 ± 

1.1 mg N2O-N m
–2

 for the H0T1, H1T1, H0T0 and H1T0 treatments, respectively. As 

treatment differences occurred only till day 14.1, on average, this period accounted for 

33−75% of the total N2O emissions. 
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Figure 5.7 Emissions of (a) N2O, and (b) CO2, after treading at day zero for part A. Data 

are mean ± sd. Treatment abbreviations are discussed in the text (Section 

5.2.2.1 and Figure 5.1).  

 

5.3.1.6 Carbon dioxide emissions 

Emissions of CO2 were higher (P <0.001) from the control treatments (H1T0) than the 

other treatments at almost all gas samplings until day 47 while lower emissions throughout 

this period were recorded from the H0T1 treatment (Figure 5.7b). Overall, treading caused 

lower CO2 emissions. Emissions of CO2 on day 1 averaged 20.8 ± 11.5, 33.8 ± 2.6, 12.3 ± 4.7 

and 21.1 ± 3.9 mg CO2-C m
–2

 h
–1

 (± sd, P <0.05) for the H1T1, H1T0, H0T1 and H0T0 

treatments, respectively. Average emissions by day 47 were 20.1 ± 3.1, 45.8 ± 6.0, 21.4 ± 3.7 
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and 29.5 ± 3.5 mg CO2-C m
–2

 h
–1

 for the H1T1, H1T0, H0T1 and H0T0 treatments, 

respectively. Cumulative CO2 emissions over 47 d were significantly lower from the trodden 

plots than non-trodden plots and equated to 20.6 ± 2.0, 16.7 ± 3.4 and 24.8 ± 1.6 g CO2-C m
–2

 

from the H1T1, H0T1 and H0T0 treatments respectively, with the highest emissions from the 

control with values of 41.2 ± 6.7 g CO2-C m
–2

 over the same period.  
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5.3.2 Part B – 15N-labelled fertiliser addition 

5.3.2.1 Soil properties and meteorological data 

Chemical properties of the soil at the experimental site (paddock 2) are shown in 

Table 5.2. During the experimental period at paddock 2, day 30 recorded the highest rainfall 

of 15.8 mm, followed by day 9 and day 10 with 7.0 and 14.8 mm, respectively. The average 

daily air temperature ranged from 5.3 to 17.6
o
C and the soil temperature ranged from 7.9 to 

14.5
o
C over the same period (Figure 5.8). Soil water contents fluctuated naturally at both 

paddocks following rainfall events.  

 

Table 5.2 Chemical properties of the soil used during the study at paddock 2. 

 

Soil properties Paddock 2 

(April, 2011) 

pH (1: 2) 5.9 

Total C (g kg
–1

) 56.0 

Total N (g kg
–1

) 5.5 

Anaerobically mineralisable N (µg g
–1

) 256 

Available N (kg ha
–1

) 287 

Olsen P (mg kg
–1

) 62 

Potassium (cmolc kg
–1

) 0.94 

Calcium (cmolc kg
–1

) 16.1 

Magnesium (cmolc kg
–1

) 3.67 

Sodium (cmolc kg
–1

) 0.51 

Cation exchange capacity (cmolc kg
–1

) 29 

Total base saturation (%) 73 
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Figure 5.8 Meteorological data during the experimental period – 8 April to 8 May, 2011, 

at paddock 2 for Part B. Rainfall, air temperature and soil temperature are 

daily average values. Gravimetric water content was measured at 7.5 cm soil 

depth. 

 

5.3.2.2 Herbage on-offer and regrowth 

Herbage present in the subplots before imposing the treading treatment had 1636 ± 

335 kg DM ha
–1

 with N and C contents and a 
15

N enrichment of 33 ± 7 and 402 ± 6 g kg
–1

, 

and 0.367 ± 0.02 atom%, respectively (n = 10). Three months after the treading treatment, 

herbage regrowth from the trodden plots was significantly lower (P <0.05; n = 5) than the 

non-trodden plots with 1807 ± 379 and 2608 ± 341 kg DM ha
–1

, respectively. Corresponding 

values for the nil-herbage treatment (H0) after 3 months averaged 1080 ± 261 and 990 ± 218 

kg DM ha
–1 

but they did not differ from each other. Herbage regrowth (after 3 months) from 

the treated plots had N and C contents of 36 ± 5 and 388 ± 10 g kg
–1

, respectively, while the 

15
N enrichment of the herbage of the subplots that had received 

15
N fertiliser was 

1.57 ± 0.25 atom% while the 
15

N enrichment of the control remained 0.367 ± 0.01 atom%. 

 

5.3.2.3 Soil pH, soil bulk density and soil gravimetric water content 

Treatments had no significant effect on soil pH throughout the experimental period 

and ranged from 6.1–7.9 units (n = 20 on each occasion).  
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Bulk density values did not differ due to treatments at any depth and averaged 

0.69 ± 0.23, 0.99 ± 0.11, 1.05 ± 0.07, and 0.91 ± 0.14 Mg m
–3

 (n = 12) in the 0–3, 3−6, 6–12, 

and 0–12 cm depths, respectively.  

Mean gravimetric soil water content (θg) from the H1T0 treatment equalled 0.53 g g
–1 

soil (θg = 0.45 m
3
 m

–3
) and was higher (P <0.05) than in the H1T1 treatment (θg =0.44 g g

–1
; 

θv = 0.37 m
3
 m

–3
) on days 2, 9, 12 and 30 due to rainfall. On the remaining days, values did 

not differ with treatment ranging from 0.54 to 0.60 g g
–1

 which is equivalent to θv of 

0.45−0.50 m
3
 m

–3
. 
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5.3.2.4 Soil inorganic N and WSC 

Concentrations of soil NH4
+
–N were higher (P <0.05) in the H1T0 treatment than in 

the H0T0 treatment on most days except days 3 and 4 (Figure 5.9a). By day 30, NH4
+
 

concentrations had increased in the H1T0 treatment (i.e. 1.6 times its value on day 1) but did 

not differ statistically from other treatments. Analysis of 
15

N enrichment for NH4
+
 was not 

performed as the soil extract concentrations and extract volumes were not sufficient. 

 

Figure 5.9 Inorganic N concentrations after treading at day zero for part B. Data are 

mean ± sd. Treatment abbreviations are discussed in the text (Section 5.2.2.2 

and Figure 5.2). 
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Concentrations of soil NO3
–
–N were lowest in the H0T1 treatment on almost all days 

except days 2, 3 and 9 when concentrations did not differ due to treatments (Figure 5.9b). 

From day 16 onwards, concentration differences were only significant in the H0T1 and H1T1 

treatments with lower concentrations in the H0T1 treatment. By day 30, concentrations in the 

H1T1 treatment were significantly higher than the control and H0T0 treatment, which were 

higher than the H1T0 and H0T1 treatments and equated to 53 ± 2 > 13 ± 6 = 13 ± 2 > 2 ± 1 = 

2 ± 1 µg g
–1

, respectively. The 
15

N enrichment of the NO3
–
 –N was lower (P <0.001) in the 

H0T1 treatment on days 1, 2 and 4 (Table 5.3). 

 

Table 5.3 Enrichment of 
15

N in soil NO3
–
 in treatments over time. 

Treatment  

combination 

Enrichment of 
15

N-NO3
–
 (atom%) 

 Day 1 Day 2 Day 3 Day 4 

Control 0.38 ± 0.03
c
 0.38 ± 0.00

c
 0.36 ± 0.01

b
 0.37 ± 0.03

d
 

H0T0 2.5 ± 1.5
a
 1.9 ± 1.0

ab
 2.5 ± 1.6

a
 4.0 ± 0.8

a
 

H0T1 1.0 ± 0.3
b
 1.7 ± 0.6

b
 2.2 ± 0.2

a
 1.2 ± 0.6

c
 

H1T0 3.3 ± 0.5
a
 2.3 ± 0.8

ab
 1.5 ± 0.4

a
 2.1 ± 0.8

b
 

H1T1 4.3 ± 0.2
a
 3.4 ± 0.2

a
 2.1 ± 0.7

a
 3.4 ± 0.1

a
 

Significant differences (P <0.05) are shown by different letters in the same column using 

Tukey’s test. Data are mean ± sd. 
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Water soluble C concentrations in the H0T1 treatment was higher (P <0.001) than the 

concentrations in the other treatments until day 12 and they did not differ until day 30 

(Figure 5.10). However, at day 3, concentration from the control treatment was significantly 

higher than the other treatments. 

 

 

Figure 5.10 Water soluble C concentrations after treading at day zero for part B. Data 

are mean ± sd. Treatment abbreviations are discussed in the text (Section 

5.2.2.2 and Figure 5.2). 

 

5.3.2.5 Nitrous oxide emissions and 15N enrichment 

The emission data did not follow a normal distribution and were log transformed prior 

to statistical analyses (Section 5.2.5). Emissions of N2O from the control were lower 

(P <0.05) than the other treatments throughout the experimental period. Treading treatments 

decreased (P < 0.05) the N2O emissions at days 0.8, 10.9 and 11.7 d while the presence of 

herbage decreased the emissions on days 1.0 and 11.7 (Figure 5.11a). The herbage treatment 

did not affect N2O emissions on any other day over the experimental period. Emissions at 

0.8 d averaged 5 ± 4, 14 ± 3, 11 ± 5, 13 ± 4, and 0.05 ± 0.05 mg N2O-N m
–2

 h
–1

 in the H0T0, 

H0T1, H1T0, H1T1 and control treatments, respectively. Cumulative N2O emissions over 

30 d were significantly lower from the control treatment but the values from other treatments 

did not differ and averaged 1.9 ± 0.6, 2.0 ± 1.3, 1.6 ± 0.5, 1.6 ± 0.8, and 0.5 ± 0.2 g N2O-N 

m
−2

 in the H0T0, H0T1, H1T0, H1T1 and control treatments, respectively.  
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Enrichment of N2O-
15

N remained significantly higher in the H0T0 treatment than all or 

mostly the H0T1 treatments (Figure 5.11b) during day 5 to day 30 with an average of 

4.2 atom% over this period. Enrichment of N2O-
15

N from the control was at natural 

abundance throughout the experimental period ranging from 0.36 to 0.38 atom% and was 

lower than all the treatments over the entire experimental period. Mean 
15

N enrichment of the 

N2O over the experimental period equated to 5.3, 4.0, 4.3, 4.0 and 0.37 atom% in the H0T0, 

H0T1, H1T0, H1T1 and control treatments, respectively. 

 

Figure 5.11 Emissions of (a) N2O, (b) 
15

N enrichment of N2O, after treading at day zero 

for part B. Data are mean ± sd. Treatment abbreviations are discussed in the 

text (Section 5.2.2.2 and Figure 5.2). 
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5.3.2.6 Carbon dioxide emissions 

Emissions of CO2 did not differ due to treatments on most of the days except on days 

1.8 and 5.9 when the treading treatment suppressed the CO2 emissions (Figure 5.12). The 

emissions peaked at day 1.0, averaging 366 ± 396, 285 ± 346, 694 ± 502, 491 ± 560, and 

296 ± 355 mg CO2 m
–2

 h
–1

 in the H0T0, H0T1, H1T0, H1T1 and control treatments, 

respectively. Cumulative CO2 emissions over 30 d averaged 61 ± 4, 44 ± 12, 76 ± 21, 70 ± 14, 

and 65 ± 10 g CO2 m
–2

 in the H0T0, H0T1, H1T0, H1T1 and control treatments, respectively 

with the lowest emissions in the H0T1 treatment. 

 

Figure 5.12 Emissions of CO2 after treading at day zero for part B. Data are mean ± sd. 

Treatment abbreviations are discussed in the text (Section 5.2.2.2 and Figure 

5.2). 

5.4 Discussion 

Treading stimulated N2O emissions irrespective of the presence or absence of herbage 

until 14 d (part A). Treading might have created partially anaerobic conditions in addition to 

the mineralisation of soil-N, due to disturbance of the upper soil layer (0–12 cm), and 

ultimately, transformation of the mineralised soil NO3
–
 to N2O. This theory is supported by 

the depleted soil NO3
–
 levels under treading (parts A and B), while the 

15
N enrichment of the 

NO3
–
 (part B) showed that treading resulted in a release of soil-N and/or herbage-N that 

contributed significantly to the N2O emissions. The suppression of the CO2 emissions due to 

treading (parts A and B) indicated that anaerobic conditions prevailed in the trodden plots 

thereby increasing the chances of denitrification contributing to N2O emissions. 
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5.4.1 Nitrous oxide and CO2 emissions 

Many studies have shown elevated N2O emissions soon after grazing events in field 

conditions (Bhandral et al. 2007b; Carran et al. 1995; Luo et al. 1999; Ruz-Jerez et al. 1994). 

However, the emissions are generally attributed to animal excreta or N application. Other 

factors that may contribute are increased soil NO3
–
–N due to reduced N uptake after 

defoliation, increased soil C from excreta deposition and reduced soil aeration due to treading 

(Menneer et al. 2005b). Menneer et al. (2005b) measured N2O emissions following treading 

in the absence of animal excreta or N additions. Moderate to severe treading was imposed by 

walking dairy cattle at 4.5 cows 100 m
–2

 for 1.5 and 2.5 h, respectively and N2O emissions 

were measured over 28 d. They observed 3–6 fold higher emissions for 21 d after treading 

with a maximum of 52 g N2O-N ha
–1

 d
–1

 on day 8 while in the current study (part A), 

emissions due to treading treatments were significant (10–20 fold higher) till 14 d with 

maximum values ranging from 2.2–39.9 g N2O-N ha
–1

 d
–1

 (P >0.05) from the herbage and nil-

herbage, respectively, 2.2 d after imposing treading. The emissions from the treatments were 

higher than the control treatment throughout the experimental period (part A) in the current 

study. The N2O emission data are comparable to the study of Menneer et al. (2005b). 

Menneer et al. (2005b) observed elevated soil inorganic N concentration (10–16 mg 

NO3
–
–N kg

–1
 soil) in the first 3 d after treading. In Menneer et al. (2005b)’s study, NO3

–
–N 

concentrations were comparable and higher in the first 6 d ranging from 8.9–18.0 mg kg
–1

 soil 

from the non-trodden and trodden plots, respectively. However, treading treatments in the 

current experiment, lowered NO3
–
 concentrations during this period when compared to non-

trodden treatments in contrast to the Menneer et al. (2005b) study where higher NO3
– 

concentrations were recorded due to treading. Menneer et al. (2005b) indicated that severe 

treading increased inorganic N concentrations due to increased soil-N mineralisation activated 

by the disturbance of soil as well as burial of organic matter during treading. Bhandral et al. 

(2007b) performed a simulated treading trial on New Zealand pasture soil using various N 

sources and observed that N2O emissions during the initial period did not directly result from 

N addition rather from the mineralisation of soil N and the N-induced solubilisation of soil C 

(Williams et al. 1999). The current study also showed higher WSC concentrations in the 

H0T1 treatment supporting the findings of Bhandral et al. (2007b) and Williams et al. (1999). 

In this current study (part B), treading was shown to dilute the NO3
–
-
15

N pool presumably due 

to the release of soil-N and/or herbage-N.  

In the current study higher levels of NH4
+
 were observed in the absence of herbage 

treatment. MacDuff and Jackson (1992) showed that defoliation of Italian ryegrass (Lolium 

multiflorum L.) and white clover in hydroponic culture increased root-efflux of NH4
+
– and 
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NO3
–
–N. Bardgett et al. (1998) suggested that defoliation causes mineralisation of soil N and 

C allocation which in turn may reduce regrowth but improve subsequent herbage quality. 

Mikola et al. (2001) also found that defoliation of perennial ryegrass and white clover in New 

Zealand pastures led to an increase in the belowground nutrient pool of C and N for faster 

regrowth of shoots. Laboratory experiments on grasses found that clipping led to an 

accumulation of assimilates (inorganic N and water soluble C) in the roots and rhizosphere 

and increased root respiration and exudation (Bokhari and Singh 1974; Dyer and Bokhari 

1976). In the current study (parts A and B), the elevated NH4
+
 concentrations in the H0T1 

treatment indicated that the treatments evidently created a combined effect of mineralisation 

of soil-N and/or residual plant-N and C due to defoliation.  

Thus the N2O emissions from the nil-herbage-trodden (H0T1) treatment were higher, 

firstly because of anaerobic conditions due to a higher soil water content and treading; and 

secondly, because defoliation along with treading might have caused the mineralisation of 

inorganic N (due to soil disturbance and burial of residual herbage in the soil during treading) 

thus providing substrate for denitrification. 

In part B, the emissions trend was different with treading or presence of herbage 

decreasing N2O emissions, but only on the days following rainfall events (days 0, 10 and 11). 

Adding fertiliser-N might have created an artefact by priming the microbial community; 

however this was not investigated in this experiment. Treading, on average, decreased the 
15

N 

enrichment of the N2O compared to the non-trodden treatment (4.0 vs.4.8 atom%). This has a 

two-fold explanation; firstly, most of the N2O might have been converted further to N2 

(Simek et al. 2006) over the entire experimental period except after periods of rainfall i.e. the 

denitrification process was pushed towards completion in the presence of NO3
–
 and WSC and 

second, because of lower 
15

NO3
–
 in the H0T1 treatment, the residual plant-N (stubbles and/or 

roots) also might have contributed to the soil-N pool and consequently lower 
15

N enrichment 

in N2O emissions. Ruser et al. (2006) reported conversion of N2O to N2 in compacted 

treatments at soil WFPS ≥90%. Ruser et al. (2006) also observed that CO2 emissions were 

suppressed due to soil compaction similar to the present study (both parts A and B) thus 

indicating anaerobic conditions that are conducive for denitrification. Treading in the H1T1 

treatment might not have been sufficient to cause herbage decomposition and subsequent N 

release because abundant herbage might have protected the soil against treading damage 

(Climo and Richardson 1984) and hence the reported soil 
15

NO3
–
 values were similar to the 

H0T0 treatment in the absence of treading (3.4 vs.4.0 atom%, P >0.05).  

Part A of the study indicated that antecedent soil NO3
–
 was a key precursor to N2O 

formation after treading since NO3
–
 concentrations decreased in the treading treatments while 
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part B, using a 
15

N technique, proved the 
15

NO3
–
 pool was converted to N2O-

15
N but 

additionally the 
15

NO3
–
 pool was also being diluted by the natural abundance 

14
N originating 

from soil organic matter and/or residual plant-N. Moreover, in part B, compaction due to 

treading may have enhanced the denitrification of N2O to N2 because soil compaction reduces 

the soil gas diffusivity thereby increasing the residence time of N2O in the soil pores (Simek 

et al. 2006; Yamulki and Jarvis 2002).  

Soil moisture has been shown to be an important factor influencing soil compaction 

processes; increasing soil moisture reduces the internal soil strength (Hamza and Anderson 

2005), and the ability of the soil to resist the pressure exerted by animal hooves (Bilotta et al. 

2007). In the present study, N2O emissions from the treatments (H0T0 and H1T1) with higher 

water contents (90–100% WFPS) had relatively lower N2O emissions compared to the 

treatment (H0T1) having lower soil water content (66–84% WFPS). Reported threshold 

values of soil WFPS causing denitrification differ according to soil type, but for soils similar 

to those used in the current study (silt loams), threshold soil WFPS ranging from 50 to 74% 

have been reported (Nelson and Terry 1996; Sexstone et al. 1988). 

Several studies in the recent past have focussed on N2O emissions due to treading; 

however, in these studies, treading was either imposed using farm traffic (Bell et al. 2011; 

Van Groenigen et al. 2005) or in the presence of N sources such as fertilisers, urine or slurry 

(Bhandral et al. 2007b). The cumulative emissions from the trodden plots in the present study 

(Part A, 0.7–1.3 kg N2O-N ha
–1

 y
–1

) were only comparable to the control plots in these prior 

studies, e.g. Bhandral et al. (2007b) observed 4.5–10.4 kg N2O-N ha
−1

 y
−1

 from controls of 

non-trodden and trodden plots, respectively. However, compaction in their study (using farm 

vehicle) was 3 times higher than the present study (220 vs. 632 kPa).  

5.4.2 Treatment effects on herbage yields 

Reduced herbage yield from the trodden plots was in accordance with past studies 

which showed adverse effects of treading on shoot and root yields (Cook et al. 1996; Nadian 

et al. 1996), legume production (Edmond 1958; 1962) and pastoral growth and plant 

morphological development (Drewry et al. 2001; 2008; Menneer et al. 2005c). Brown and 

Evans (1973) reported 63% reduction in herbage yields from high stocking rates in wet soil 

conditions while the present study had an average reduction of 59% in herbage yield. 

Vegetation cover offers protection to soil damage from animal treading, however, the degree 

of protection depends on the quality and quantity of herbage (Climo and Richardson 1984). 

Studies have shown that perennial ryegrass was found to be the most tolerant to heavy 

treading treatments when compared to 10 pasture species at five treading rates (Brown and 
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Evans 1973; Edmond 1964). Age of a pasture (i.e. time since sowing/renovating) may also 

play an important role in protection against treading damage. Well established plants have 

deeper roots and lower quality herbage which may offer better protection against soil damage 

due to treading. Moreover, treading damage is often confined only in the top 2–12 cm 

[(Scholefield and Hall 1985); (Section 2.5.2)]. Paddock 1 of this study was a recently sown 

and renovated pasture (4 yr old pasture), evidently more prone to treading, while paddock 2 

was a well-established 8 yr old pasture which also helps explain the non-significant 

differences in the N2O emissions in the treatments. Treading, therefore, in the presence of a 

substantial herbage mass or turf may meet a ‘cushion’ effect that protects the soil from 

damage. In the current study, herbage in the H1T1 treatment (both parts A and B) was 

damaged due to treading but not detached from the plant and hence was only partially 

incorporated in soil allowing only limited decomposition of the plant shoots. This also might 

have decreased the vigour of regrowth of the plots receiving treading. Moreover, the average 

temperature (8
o
C) during the experimental period at both paddocks was relatively low, which 

again, was not conducive for decomposition. This may explain the lower and non-significant 

N2O emissions from the herbage treatment when trodden. 

5.4.3 Treatment effects on soil properties 

Soils with higher clay contents can behave in a plastic manner even at lower soil 

moisture contents which makes them particularly susceptible to treading damage. The current 

study (both parts A and B) used a clay loam soil but presence of vegetation, particularly 

ryegrass herbage [(Edmond 1964); Section 5.4.2] must have protected it from compaction. 

Scholefield and Hall (1985) found that over a wide range of water contents, soil deformation 

due to treading was independent of soil water content. In the present study, treading damage 

was significantly higher even at lower soil water contents, especially in the absence of 

herbage, when observed visually. Soil type may also play a major role in resistance to damage 

(Patto et al. 1978). Soil bulk density in the present study (both parts A and B) was not 

affected due to treading at both paddocks which was in accordance with findings of Menneer 

et al. (2005b). The amount of soil damage due to treading also depends on the hoof pressure 

of the animal. The cow hoof used in this study delivered a hoof pressure of about 220 kPa (Di 

et al. 2001). However, in reality hoof pressures vary and will depend on factors including the 

type and size of the animal, and whether the animal is moving or stationary. Cattle hoof 

pressures of up to 300 to 400 kPa have been reported for walking cows (Scholefield and Hall 

1985). Moreover, the frequency of the same spot receiving a hoof impact may also play an 

important role.  
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5.5 Conclusion 

Maximum N2O emissions occurred 2 d after imposing simulated animal treading to nil-

herbage plots (part A). Presence or absence of herbage did not affect the N2O emissions due 

to treading. In the 47 d experimental period (part A), emissions were significantly higher from 

the trodden plots till day 14 and contributed 33–75% of the cumulative emissions ranging 

from 9–17 mg N2O-N m
–2

. These higher emissions also corresponded with lower NO3
–
–N 

concentrations. Emissions of N2O from the nil-herbage-trodden (H0T1) treatment were 

higher, firstly because of anaerobic conditions due to high soil water contents and treading, 

and secondly, because defoliation along with treading might have caused the mineralisation of 

inorganic N (due to soil disturbance and burial of residual plant-N in the soil during treading) 

thus providing substrate for denitrification. These results were confirmed using a 
15

N 

technique (part B) which showed that a major fraction of the emitted N2O originated from 

soil-N and/or from plant-N decomposition, in the treading treatments. Further studies should 

be performed using 
15

N-labelled herbage and using live animals, to further delineate the 

contribution of herbage-N and/or soil-N to N2O emissions as a consequence of treading. 
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     Chapter 6 

Contribution of pasture plant litter to N2O and CO2 

emissions 

6.1 Introduction 

Intensively grazed pasture ecosystems contribute significantly to N2O emissions 

(Oenema et al. 2005) due to regular N inputs of fertiliser and excreta-N (urine and dung) 

deposited by grazing animals (De Klein et al. 2003). It is also recognised that the application 

of crop residues
§
 to soil can produce N2O emissions (Huang et al. 2004; Mori et al. 2005). 

These emissions are generally proportional to the biochemical composition, rate and/or 

placement of the crop residues (Aulakh et al. 2000; Baggs et al. 2000).  

Results from Chapter 4 revealed that a significant quantity of litter is formed due to 

litter-fall in intensively managed pastures grazed by dairy cattle but the fate of this litter has 

not been explored. From visual observation, this litter may stay on the soil surface and 

decompose or it may get partially and/completely incorporated due to animal treading. The 

effect of partial incorporation via treading was explored in Chapter 5. The effect of complete 

incorporation of pasture litter with respect to N2O emissions has not been studied.  

In a grazed pasture system, litter sources include the pasture species grazed in situ and 

also litter that might occur during the feeding out of supplements. According to a decision 

support system for organic residues (Palm et al. 2001), clover and ryegrass are classified as 

high quality – class I (high N, >2.5% N; low lignin, <15% lignin; <4% polyphenols) while 

maize is classified as being of medium quality, class II (i.e. <2.5% N; <15% lignin; >4% 

polyphenols). Clover and ryegrass litters were selected based on their C: N ratio and their 

dominance as pasture species. Maize, a species with a comparatively higher C: N ratio was 

also selected because it is commonly used as a feed supplement for grazing ruminants, where 

it is fed out onto the pasture surface. 

As noted earlier (Section 2.4), direct N2O emissions from pasture litter incorporation 

have not been quantified. The emission patterns from pasture litters are expected to differ 

from cropping residues because of differences in the biochemical composition, management 

conditions and naturally fluctuating moisture regimes. The following laboratory experiment 

was therefore performed to measure direct N2O emissions in response to litter (clover, 

                                                 
§
 Cropping residues in this thesis will be defined as the materials remaining in the field after a crop has been 

harvested in agricultural and horticultural systems. These residues include stalks, stubbles, stems, leaves and 

seed pods. 
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ryegrass and maize) incorporation with soil, incubated at two different levels of soil moisture. 

Emissions of CO2 were also measured in this study because they provide an indication of the 

relative litter decomposition rates as a function of soil microbial respiration. 

The soil moisture content affects microbially mediated N dynamics, with denitrification 

occurring in anaerobic sites while nitrification requires aerobic conditions (Bateman and 

Baggs 2005). Therefore the soil moisture treatments chosen for this study were 86% water-

filled pore space (WFPS) (θv = 0.63 m
3
 m

–3
) as field-capacity and another contrasting soil 

water content of 54% WFPS (θv = 0.40 m
3
 m

–3
) which indicates the potential soil moisture 

deficit during summer when rainfall is less than evaporation as also observed in the field 

study in Chapter 5 where soil water contents (θv) ranged from 0.37–0.63 m
3
 m

–3
 across 

various treatments. These two soil moisture contents were also selected on the basis that 

denitrification and nitrification dominate at high and low WFPS, respectively (Section 2.4.3). 

The objective of this study was to evaluate N2O emissions from the decomposition of 

litter from dominant pasture and supplementary feed species and determine the effect of 

complete incorporation of litter on litter decomposition under controlled conditions, and 

extrapolate the results using litter-fall rates measured in Chapter 4. 

The hypotheses tested were, 

1) clover would have higher N2O emissions than ryegrass followed by maize because of the 

differences in the C: N ratios and biochemical compositions. 

2) higher emissions of both N2O and CO2 would occur from the 86% WFPS treatment as a 

result of anaerobic conditions (and in the absence of soil compaction (Chapter 5)) and 

enhanced litter decomposition.  

6.2 Materials and Methods 

6.2.1 Experimental design and treatments  

The experimental design was a 2 × 4 factorial randomised block design. Factors 

included litter amendments (clover, ryegrass, maize and a control) and two soil water contents 

(54% WFPS, sub-field capacity and 86% WFPS, field capacity), replicated 5 times, thereby 

giving a total of 40 soil cores (4 treatments × 2 soil water contents × 5 replications). Each 

replicate consisted of a PVC container (Section 3.8) randomly allocated within blocks in an 

incubator. 

6.2.2 Soil preparation and treatment procedure 

A poorly drained Temuka silt loam soil [Fluvaquentic Endoaquept, (Hewitt 1998)] 

was collected from a clover-ryegrass grazed pasture (0–10 cm depth) near Lincoln, New 
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Zealand (43
o
38.70’S, 172

o
28.62’E, 8 m above sea level) in autumn (April), 2008. The key 

properties of the soil are described in Table 6.1. The collected soil was sieved (4 mm) within 

48 h of collection, and any obvious organic material was removed. The sampled (field moist) 

soil had gravimetric water content, volumetric water content, bulk density, and porosity 

values of 0.36 kg water kg
–1

 soil, 0.25 m
3
 water m

–3
 soil, 0.69 Mg m

–3 
and 0.74 m

3
 pores m

–3
 

soil, respectively (Section 3.2). The soil had 1.0 mg NH4
+
–N kg

–1
 soil and 98.0 mg NO3

–
–N 

kg
–1

 soil. The sieved soil was then stored at its field moisture content in sealed plastic bags at 

4
o
C before being packed into PVC containers. To obtain the plant litter, fresh leaves of clover, 

ryegrass and maize were dried (65
o
C) and ground (<200 m). The chemical characteristics of 

the litter are presented in Table 6.2. 

 

Table 6.1 Chemical properties of the Temuka silt loam soil. 

Soil properties April, 2008  

pH (1: 2) 5.8 

Total C (g kg
–1

) 90.0 

Total N (g kg
–1

) 9.0 

Anaerobically mineralisable N (µg g
–1

) 327 

Available N (kg ha
–1

) 444 

Olsen P (mg kg
–1

) 63 

Potassium (cmolc kg
–1

) 0.57 

Calcium (cmolc kg
–1

) 20.6 

Magnesium (cmolc kg
–1

) 3.93 

Sodium (cmolc kg
–1

) 0.53 

Cation exchange capacity (cmolc kg
–1

) 35 

Total base saturation (%) 74 

 

The plant litter was applied on a mass basis, with 5 g of litter added to 165 g dry
 
soil 

(3% by weight). These unrealistically high application rates were used to quantify a detectable 

response of the gas emissions and also to compare the results with that of Kelliher et al. 

(2007) who used a similar litter application rate. Equal amounts of the litter were applied to 

ensure that the soil matrix was similar and that constant rates of C were applied across the 

plant residue treatments (13 g C kg
–1

 soil) since C can also affect denitrification rates.This 

litter was thoroughly mixed with the field moist, sieved soil and then immediately packed to a 

depth of 4.5 cm in the PVC containers (internal diameter 8 cm, height 10 cm). The base of 

each PVC container was covered by fine nylon mesh to prevent loss of soil material. Since the 
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plant litter was incorporated on a mass basis, the rate of litter-C added was constant between 

litter species. However, since C: N ratios differed between litter species, the mass of N added 

differed, with N rates equal to 1.5, 1.0 and 0.6 g N kg
–1

 soil for clover, ryegrass and maize, 

respectively. Deionised water was added to obtain either 54% WFPS (θv = 0.40 m
3
 m

–3
) or 

86% WFPS (θv = 0.63 m
3
 m

–3
). The soil water contents were then maintained by daily misting 

the soil surface to a pre-determined mass. Soil samples were incubated at 20
o
C for 42 d except 

for brief periods (30 min) during gas measurements. 

 

Table 6.2 Chemical properties of the plant species’ litter that were incorporated into the 

soil. 

Plant 

material 
Lignin 

Hemi-

cellulose 
Cellulose Total N Total C C: N ratio Class

a
 

(g kg
–1

)   

Clover 23
b
 83 203 50 439 8.8 I 

Ryegrass 19 153 400 34 418 12.3 I 

Maize 19 215 449 20 409 20.6 II 

a
According to a decision support system for organic residues (Palm et al. 2001). 

b
Values are 

the mean of 3 replicates; sd <0.01 are not shown. 

 

6.2.3 Gas sampling 

The N2O emissions were determined on 10 occasions over the first 14 d of the 

experiment using the closed-chamber technique (Section 3.10). Gas samples were collected at 

0, 10 and 20 min on each occasion. The gas samples were analysed, within 48 h, for N2O 

using gas chromatography (Section 3.11.1). 

 

Figure 6.1 Gas collection from litter-treated PVC containers. 
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Soil CO2 emissions were measured on 24 occasions over the 42 d duration of the 

experiment from the same soil cores 10 min after the N2O measurements. At each gas 

sampling event, a portable soil respiration chamber (SRC) was placed directly onto each PVC 

container that was connected to an infrared gas analyser (SRC–1 and EGM–3, PP Systems, 

Hitchin, UK; Section 3.10, Figure 6.2) and the emissions were determined over a 2 min 

period. 

 

Figure 6.2 Portable chamber with an infrared gas analyser. 

 

6.2.4 Data analysis 

Gas emission data on each gas sampling occasion and the cumulative emissions were 

tested for normality using the Anderson-Darling test and skewed data was log transformed 

[ln(flux+1)] (Press et al. 1989). Analysis of variance was used to determine if differences 

between treatments occurred and significant differences between treatments were compared 

using Tukey’s test. The associated errors are expressed as ± sd. All data were analysed using 

the statistical software Minitab (version 15.1; © 2006, Minitab Inc.). Emission factors 

(expressed as a percentage of the N or C applied) were calculated by determining the 

cumulative mass of N or C emitted (as N2O-N or CO2-C, respectively), subtracting the 

integrated control values, and dividing the difference by the mass of N or C applied to the soil 

in the form of leaf litter. The mean treatment responses were expressed as differences with 

respect to the unamended soil (control). To quantify the temporal response of the CO2 

emissions to litter application and their decline over time (t, hours after litter application), a 

model (as used by Kelliher et al. 2007) was fitted to the data using Equation 6.1. 
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2COF (t) = a + br
t 

                   Equation 6.1 

where; 
2COF = CO2 flux (mg CO2 kg

–1
 soil h

–1
)  

a = an asymptote which provides an estimate of the ‘C priming effect’, if any 

b = a scaling factor 

r = the response parameter that indicates the rate of decline in CO2 emissions 

t = time since litter incorporation (h)  

The r value was also expressed as K = –ln(r), which shows the relative decomposition 

rate of the litter. The K value also enabled a comparison with the results of Kelliher et al. 

(2007). The cumulative N2O emissions were converted to CO2-eq kg
–1

 soil by multiplying by 

298, the global warming potential (GWP) of N2O, (Forster et al. 2007) thus enabling 

comparisons with the cumulative CO2 emissions. 
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6.3 Results 

6.3.1 N2O emissions 

Maximum N2O emissions occurred 0.5 d after incorporation of plant litter irrespective 

of soil water content (Figure 6.3). At 54% WFPS, respective maximum N2O emissions for the 

control, clover, ryegrass and maize treatments were 4 ± 3, 1531 ± 111, 786 ± 66 and 303 ± 43 

µg N2O kg
–1

 h
–1

 (± sd, n = 5) while at 86% WFPS, they were 4 ± 2, 2430 ± 181, 1439 ± 185 

and 1008 ± 136 µg N2O kg
–1

 h
–1

 (Figure 6.3a,b). These maximum emissions differed 

(P <0.001) due to plant species with the clover treatment having the highest N2O emission at 

both soil water contents (while the controls did not differ between the soil water contents). 

The N2O emissions, when averaged over all plant species at 0.5 d were higher (P <0.05) at 

86% WFPS than at 54% WFPS. By day 1.0 in the maize and ryegrass treatments a 10-fold 

decrease in N2O emissions had occurred in the 54% WFPS treatment and ~1.5-fold decrease 

in the 86% WFPS treatment (Figure 6.3a, b). By day 1.0, N2O emissions in the clover 

treatment had also declined but only by a factor of 2 when compared to their earlier maximum 

in both WFPS treatments. On day 1, N2O emissions from all the treatments were higher 

(P <0.001) at 86% WFPS than at 54% WFPS. The clover treatment had significantly higher 

N2O emissions until day 10 regardless of soil water content. By day 12, the N2O emissions in 

the litter amended treatments at 54% WFPS did not differ from the control (P >0.05) but they 

remained higher (P <0.001) at 86% WFPS until day 14. 
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Figure 6.3 Soil N2O emissions at (a) 54% WFPS and, (b) 86% WFPS, during incubation 

after incorporation of plant litter; dried, ground shoots of clover, ryegrass or 

maize. Data are mean ± sd (n = 5). 

 

The cumulative N2O emissions (over 14 d) from the control, clover, ryegrass and 

maize treatments averaged 0.2 ± 0.1, 25.3 ± 2.6, 7.6 ± 0.7 and 3.3 ± 0.5 mg N2O-N kg
–1

 soil 

respectively, at 54% WFPS, while at 86% WFPS the corresponding values were 5.3 ± 4.9, 

43.4 ± 10.8, 32.5 ± 5.1 and 19.3 ± 4.8 mg N2O-N kg
–1

 soil, respectively. Approximately 

92−95% of the total cumulative N2O under both soil water contents was emitted within 2 d of 

plant litter incorporation. 
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The N2O emission factor ( ON2
EF , calculated as a % of N applied and corrected for the 

control) at 54% WFPS, for clover, was significantly higher (P <0.001) than for the ryegrass 

and maize treatments. Further, at 54% WFPS, the ryegrass ON2
EF was higher (P <0.05) than for 

maize (Table 6.3). At 86% WFPS, ON2
EF did not differ (P >0.05) with litter species. 

Table 6.3 Nitrous oxide emission factor ( ON2
EF ) at 54% and 86% WFPS, as a % of N 

applied, over 14 d after incorporation of plant litter into soil samples. 

Plant species g N kg
–1

 soil 
ON2

EF (%) 

54% WFPS 86% WFPS 

Clover 1.5 1.7 ± 0.2
a
 2.9 ± 0.7

d
 

Ryegrass 1.0 0.7 ± 0.1
b
 3.1 ± 0.5

d
 

Maize 0.6 0.5 ± 0.1
 c
 2.3 ± 0.8

d
 

The data are mean ± sd (n = 5). Significant differences are indicated by different letters in the 

same column or row (P <0.05) 

 

6.3.2 CO2 emissions 

After 0.5 d, at 54% WFPS, average CO2 emissions for the control, clover, ryegrass and 

maize treatments were 2.8 ± 1.7, 37.7 ± 6.4, 71.3 ± 12.2 and 71.2 ± 13.1 mg CO2 kg
–1

 h
–1

, 

(± sd) respectively, while at 86% WFPS, the corresponding values were 3.8 ± 1.1, 39.9 ± 5.4, 

68.6 ± 16.0 and 55.5 ± 14.6 mg CO2 kg
–1

 h
–1

, respectively (Figure 6.4). For ryegrass and 

maize, at both soil water contents, maximum CO2 emissions occurred at 0.5 d and gradually 

decreased over time (Figure 6.4b,c). In contrast, the CO2 emissions from the clover treatment 

increased (P <0.001) by a factor of 3 at 0.9 d at 54% WFPS and by a factor of 2 at 86% 

WFPS (compared to 0.5 d) and then decreased rapidly. From 4.7–17.8 d, the daily CO2 

emissions from the litter treated soils were higher (P <0.05) than the control at any given time 

but they did not differ due to litter species or WFPS treatment. From days 0.5–2.7, the clover 

treatment had higher CO2 emissions irrespective of the soil water content (P <0.05). Soil 

water content had no significant effect on CO2 emissions between 0.5–6.7 d but it did induce 

a significant effect from 12.9–37.9 d when higher emissions from the 86% WFPS treatment 

occurred. By day 42, soil water content and litter species had no effect on the CO2 emissions.  
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Figure 6.4 Soil CO2 emissions 54% and 86% WFPS, during incubation after 

incorporation of plant litter; dried, ground shoots of (a) clover, (b) ryegrass 

or (c) maize and (d) control. Also shown is the time-response model, 
2COF (t) = 

a + br
t
, where a, b and r are parameters fitted to the CO2 emissions over time 

(t). Data are mean ± sd (n = 5). Values of the parameters are reported in 

Table 6.6 but expressed as g CO2 kg
–1

 s
–1

. 

 

Cumulative CO2 emissions over time (42 d) at 54% WFPS for the control, clover, 

ryegrass and maize treatments were 0.6 ± 0.1, 3.0 ± 0.2, 3.3 ± 0.3, and 3.3 ± 0.3 g CO2-C kg
–1

 

soil, respectively, while at 86% WFPS the corresponding values were 0.6 ± 0.1, 4.7 ± 0.4, 

4.9 ± 0.3, 4.4 ± 0.5 g CO2-C kg
–1

 soil, respectively. Cumulative emissions at 86% WFPS were 

higher than at 54% WFPS (P <0.05). 

The 
2COEF values were higher at 86% WFPS (P <0.001) than at 54% WFPS (Table 

6.4). At 54% WFPS, the
2COEF of clover was lower than the 

2COEF of ryegrass and maize 
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(P <0.05), while at 86% WFPS there were no significant differences between litter species 

(Table 6.4). When cumulative N2O and CO2 emissions were considered on a CO2-eq basis, 

over the first 14 d of the experiment, the N2O emissions contributed 18–59% of the total 

emissions from the litter treatments at 54% WFPS and 52–67% at 86% WFPS (Table 6.5). 

Table 6.4 Carbon dioxide emission factor (
2COEF ) at 54% and 86% WFPS, as a % of C 

applied, over 42 d after incorporation of plant litter into soil samples. 

Plant species g C kg
–1

 soil 
2COEF (%) 

54% WFPS 86% WFPS 

Clover 13.3 18.9 ± 1.7
b
 30.4 ± 2.8

c
 

Ryegrass 12.7 21.9 ± 2.3
a
 33.9 ± 2.5

c
 

Maize 12.4 22.7 ± 2.3
a
 30.7 ± 4.0

c
 

The data are mean ± sd (n = 5). Significant differences are indicated by different letters in the 

same column or row (P <0.05). 
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Table 6.5 Fourteen day cumulative N2O (in CO2-eq), cumulative CO2 and total emissions 

at 54% and 86% WFPS. The data are mean ± standard error (n = 5). 

Plant species 

Cumulative 

N2O emission 

Cumulative 

CO2 emission 

Total 

emission
a
 

Contribution of 

N2O to total 

emission 

(%) 

 

(CO2-eq) 
 

(CO2+N2O) 

(CO2-eq) 

  (g kg
–1

 soil)   

54% WFPS 

Clover 11.8 ± 0.5 8.3 ± 0.2 20.1 ± 0.7 58.9 

Ryegrass 3.6 ± 0.1 8.0 ± 0.3 11.6 ± 0.4 30.8 

Maize 1.6 ± 0.1 7.0 ± 0.3 8.6 ± 0.4 18.3 

Control 0.1 ± 0.0 0.6 ± 0.1 0.7 ± 0.1 13.7 

86% WFPS 

Clover 20.3 ± 2.3 10.3 ± 0.4 30.6 66.5 

Ryegrass 15.2 ± 1.1 10.6 ± 0.3 25.8 58.9 

Maize 9.0 ± 0.1 8.2 ± 0.5 17.2 52.4 

Control 2.5 ± 1.0 0.7 ± 0.1 3.1 79.0 
a
Total emission (CO2-eq) is the sum of the cumulative N2O emission (CO2-eq) and 

cumulative CO2 emissions. After 42 d, the cumulative CO2 emissions for clover, ryegrass, 

maize and control at 54% WFPS were 11.1 ± 0.4, 12.1 ± 0.5, 12.2 ± 0.5 and 1.9 ± 0.2 g CO2 

kg
–1

 soil, respectively. At 86% WFPS, the corresponding cumulative CO2 emissions were 

17.1 ± 0.7, 18.1 ± 0.5, 16.2 ± 0.8 and 2.3 ± 0.2 g CO2 kg
–1

 soil). 

 

For the first 3 d after clover, ryegrass and maize litters had been incorporated at 54% 

WFPS, the CO2 emissions declined at broadly similar rates (P <0.05) according to the term 

K = –ln(r) in the model fitted to the data (Figure 6.4, Table 6.6). Proportionally, a 

significantly greater value of K meant that the corresponding CO2 emissions declined more 

rapidly after incorporation of the maize litter. All model parameters a, b and r had 

significantly higher values for the treated soils than the controls at both WFPS treatments. At 

54% WFPS, the asymptote parameter a for clover > ryegrass > maize (P <0.001) and clover > 

ryegrass = maize for the scaling parameter b. However, the litter treatment effects at 86% 

WFPS were statistically indistinguishable (Table 6.6). 
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Table 6.6 The decline of soil CO2 emissions over time after litter amendment (t, hours) 

determined using a model written as 
2COF (t) = a + br

t
, where parameter a is 

an asymptote, parameter b is a scaling factor and r is the rate of decline of 

the CO2 emissions. 

Plant species 
a b r 

54% WFPS 

Clover 0.96 ± 0.24
d
 26.96 ± 2.90

g
 0.988 ± 0.001

i
 

Ryegrass 1.62 ± 0.25
e
 19.78 ± 2.63

h
 0.990 ± 0.002

i
 

Maize 2.43 ± 0.16
f
 17.79 ± 3.06

h
 0.984 ± 0.005

i
 

86% WFPS 

Clover 2.34 ± 0.33
x
 16.26 ± 2.61

y
 0.993 ± 0.002

z
 

Ryegrass 2.80 ± 0.89
x
 15.42 ± 2.00

y
 0.993 ± 0.002

z
 

Maize 3.44 ± 0.85
x
 13.44 ± 6.28

y
 0.988 ± 0.007

z
 

The data are mean ± sd (n = 5). Significant differences are indicated by different letters in the 

same column or row (P <0.05). Values reported here are expressed as g CO2 kg
–1

 s
–1

 for 

comparison with that of Kelliher et al. (2007). 

 

6.4 Discussion 

The relatively high emissions of N2O immediately after litter incorporation (which had 

been ground to a fine powder) is in accordance with previous studies [(Aulakh et al. 1991b) – 

10 d after legume residue incorporation; (McCarty and Bremner 1992) – 3 d after maize and 

soybean incorporation], indicating rapid mineralisation of plant litter-N and subsequent 

utilisation by nitrifiers and/or denitrifiers (Baggs et al. 1996; Kaiser et al. 1998a). The very 

low N2O emissions in the control at both soil water contents demonstrated that disturbance 

due to repacking and rewetting was not responsible for the elevated N2O production following 

plant litter incorporation. Smith and Tiedje (1979b), studying the effect of reduced aeration in 

four different soils, postulated that the maximum activity of denitrifiers occurs within 4–8 h 

of N substrate addition under anaerobic conditions and in the presence of available C. The 

maximum N2O emissions observed at 0.5 d in the present study suggests that pre-existing 

enzymes had been activated and enhanced by the addition of the readily available C and N 

sources added to the soil in the form of litter. Such activity is also in accordance with previous 

studies (Aulakh et al. 1991b; Baggs et al. 2000), where short-lived N2O emissions followed 

the incorporation of arable and horticultural crop residues to soils, but these short-lived 

emissions occurred over a range of 8–14 d as opposed to 2 d in the present study. Aulakh et 

al. (1991a) incorporated (and/or surface-placed) cereal and legume crop residues (dried and 
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chopped to 5–7 mm) in soil at 2.5 g residue kg
–1

 and incubated these at 25
o
C for 35 d at 

90% WFPS and recorded cumulative emissions of 50 and 46 mg N kg
–1

, from hairy vetch and 

soybean, respectively. These results are comparable to the clover litter applied in the current 

study (43 mg N2O-N kg
–1

) at 86% WFPS. The prolonged occurrence of the maximum N2O 

emission observed by Aulakh et al. (1991a) at 8 d was probably due to differences in species, 

particle size, placement of the crop residues and incubation temperature. The relatively higher 

N2O emissions that occurred in the current study, at day 2, when compared to other studies 

may have also been due to higher soil C and N contents in the sampled soil. Moreover, the 

native soil microbes were probably adapted to regular litter-fall but the litter application was 

comparatively large, hence the higher emissions. Ambus and Jensen (1997) measured N 

mineralisation and denitrification rates from barley (44% C, 0.9% N) and pea residues 

(45% C, 2.1% N) incorporated into soil at the rate of 3.5 g DM kg
–1 

soil. Over 60 d, 42 and 

63 mg N kg
–1

 soil was immobilised and relatively higher N2O emissions were recorded from 

pea residues in the first 3 d of incubation, with maximum emission rates similar to those of 

the current study. 

The addition of litter to a soil can stimulate higher oxygen consumption both directly, 

by increasing C availability to denitrifiers, and indirectly by enhancing microbial growth and 

metabolism (Beauchamp et al. 1989; Gillam et al. 2008). Thus in the present study, the higher 

initial N2O emissions suggest that anaerobic conditions may have been created in the soil due 

to litter addition. Further, there were higher CO2 emissions at 86% WFPS. 

In this study, the N2O emissions were highest from the clover litter which had the 

lowest C: N ratio. This corresponded with its biochemical composition i.e. relatively lower 

cellulose (203 g kg
–1

), hemicellulose (83 g kg
–1

), and C: N ratio (8.8). These properties 

indicate a relatively more labile source of C when compared with the ryegrass and maize 

litters. When easily decomposable C and N sources are added to soil, the microbial biomass 

can switch from more recalcitrant SOM to more readily available C and N sources (Cheng 

1996; Sparling et al. 1982). A study by Breland (1994b) on clover shoots suggested that the 

organic C from the clover shoots decayed at faster rates than those of SOM when incubated at 

15
o
C because clover shoots are more readily decomposable than SOM. 

The immediately enhanced, yet rapidly decaying N2O emissions may also have occurred 

as a result of the destruction of the cell walls (lignified tissues), as a result of plant litter 

grinding, and this may have increased the availability of N to the soil microorganisms. The 

thorough mixing of the litter with soil may also have contributed to the early occurrence of 

peak N2O emissions since the mixing could have activated aerobic decomposition resulting in 

enhanced mineralisation of the organic C which in turn may have further favoured N2O 
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production. Decomposition also may have enhanced O2 consumption and this would increase 

anaerobic conditions and denitrification. 

The higher N2O emissions recorded from the higher soil water content strongly suggest 

that the emissions originated predominantly via denitrification although nitrification and 

nitrifier-denitrification cannot be ruled out (Russow et al. 2009). Higher N2O emissions from 

the 86% WFPS (θv = 0.63 m
3
 m

–3
) treatment reflected the reduced soil aeration at field 

capacity of the sampled soil since a greater proportion of the pore space was water-filled than 

at 54% WFPS (θv = 0.40 m
3
 m

–3
), thereby enhancing the potential for denitrification. Watt 

and Burgham (1992) reported similar field capacity values (θv = 0.54 m
3
 m

–3
 for Wakanui 

deep silt loam and θv = 0.59 m
3
 m

–3
 for Temuka clay loam) near Lincoln area, Canterbury, 

indicating higher water holding capacity of the sampled soil in the current study and hence 

more anaerobic conditions. Bateman and Baggs (2005) concluded that in the 35–60% WFPS 

range, nitrification produced N2O while at a higher WFPS, denitrification dominated. The 

present findings were in accordance with other studies (Gillam et al. 2008; Potthoff et al. 

2005) which showed higher N2O and CO2 emissions from wetter soils. In contrast, Aulakh et 

al. (1991a) found significantly lower CO2 emissions at 90% WFPS than 60% WFPS in the 

first 8 d, arguing lower microbial activity due to restricted aeration and diffusion as the 

probable reason. The differences between the current study and that of Aulakh et al. (1991a) 

may have been due to differences in litter type, soil type, soil sieving and repacking 

procedures, all of which could have resulted in differences in aeration and O2 diffusion. These 

are not simply proportional to WFPS because of different soil pore size distributions 

(Farquharson and Baldock 2008). 

The clover treatment received more labile C compared to the ryegrass and maize 

treatments and this was mineralised earlier as indicated by the higher CO2 emissions 

measured, while the lower but consistent CO2 emissions over an extended period of 42 d 

evidently indicated the mineralisation of the recalcitrant pools (from all the litter treatments). 

Cellulose, hemicellulose and lignin (in increasing order of recalcitrance) are considered to be 

recalcitrant forms of C and these fractions were comparatively lower in clover. The initial 

stages of plant residue decomposition are characterised by the mineralisation of labile C, 

leaving the recalcitrant components intact; the recalcitrant components such as cellulose and 

lignin are mineralised later (Kogel-Knabner 1993). Trinsoutrot et al. (2000a) and Gunnarsson 

and Marstorp (2002) showed that during the first few days of litter decomposition in soil, 

soluble carbohydrates are decomposed along with the most readily degradable N-rich 

components. After this, proteins followed by hemicellulose and cellulose, are sequentially 

degraded (Gunnarsson and Marstorp 2002; Henriksen and Breland 1999; Martin and Haider 
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1986). If the incubation in the current study had lasted longer, other slower phases of 

decomposition may have taken place. 

The response of soil microbial respiration to ryegrass litter and urea has also been 

reported by Kelliher et al. (2007). The soil used by Kelliher et al. (2007) was sampled from 

the same farm as the current study, but from a depth of 0–5 cm while 0–10 cm was the depth 

sampled in the current study. Kelliher et al. (2007) applied ryegrass (dried and ground) at the 

same rate of ~30 g litter kg
–1

 soil at 70% WFPS, incubated at 20
o
C for 24 d. The results were 

comparable to this current study. At 1.5 h after ryegrass litter application Kelliher et al. 

(2007) found, the CO2 emissions averaged 25.0 ± 1.7 g CO2 kg
–1

 s
–1

 while 12 h after 

ryegrass litter incorporation in the current study, CO2 emissions were 19.8 ± 1.5 and 19.1 ± 

2.0 g CO2 kg
–1

 s
–1

 at 54% and 86% WFPS, respectively. Over 24 d, for ryegrass, cumulative 

CO2 emissions were 12.7 ± 0.4 g CO2 kg
–1

 for Kelliher et al. (2007) and 9.9 ± 0.4 and 14.0 ± 

0.4 g CO2 kg
–1

 at 54% and 86% WFPS, respectively, in this study. Thus, the combination of 

results from the two studies suggests that ryegrass decomposition rates were proportional to 

the WFPS.  

The K value of 0.007 (which shows the relative decomposition rate of the litter) for the 

clover and ryegrass treatments at 86% WFPS, was equal to that of Kelliher et al. (2007) at 

70% WFPS, but in their study, the K value was applied to incubation days 2 to 24, while in 

the current study, it applied to days 0–42. Kelliher et al. (2007) used a multi-component 

time-response model and for days 0–2, K was 0.019. While in the current study, the K values 

indicated that clover and ryegrass had similar decomposition rates, at 54% and at 86% WFPS, 

the asymptote values were higher for ryegrass at both WFPS treatments. Furthermore, like 

ryegrass, clover had decomposition rates that were proportional to the WFPS. 

The parameter r which is also an indirect measure of the so called r-strategist activity of 

rapid catabolism of the fresh organic matter in soil (Fontaine et al. 2003); was the same for all 

the litter treatments at 86% WFPS thus indicating a uniform trend of decomposition of the 

added litter. At 86% WFPS, parameter a values were significantly higher than the control but 

not different among the litter species indicating that there was evidently a positive 

‘C priming effect’ when compared to the controls. However, the ‘priming effect’ did not 

differ due to the plant species. This is an important indication that in situ residue 

decomposition occurs at similar rates (regardless of the pasture species) under considerably 

wet soil conditions while at drier water contents decomposition rates can vary (in phases 

and/or related to litter type). 
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The IPCC (2001) best practice guidelines for inventory building stipulate an ON2
EF

range of 0.5–3.0% for animal excreta in grazed pastures. The ON2
EF  range for clover at both 

WFPS levels (1.7–2.9%) and for maize and ryegrass at 86% WFPS was high (2.3–3.1%) 

when compared to New Zealand’s country specific ON2
EF value of 1.0% for total excreta 

(MAF 2007). However, the current study was conducted under optimal conditions; incubation 

at 20
o
C, high soil water content and relatively high rates of C and N input via the plant litter. 

This study demonstrates, however, the potential for litter deposition to be a component of 

grazed pasture N2O inventories. To extend this work and assess the practical implications of 

the current study, in situ experiments with litter are required in conjunction with further 

measures of litter deposition rates. These in situ studies should also incorporate 
15

N 

methodologies to establish the potential for N priming as a consequence of litter deposition 

and to provide a direct measure of the litter’s contribution to the N2O emissions under varying 

conditions. 

6.4.1 Extrapolation of N2O emissions with respect to litter-fall 

Litter resulting from litter-fall during grazing event(s) contains N (Chapter 4) and hence 

its decomposition may contribute to C and N cycling in soil (Sanaullah et al. 2010). Under the 

right conditions, some of this N applied to soils transforms to N2O and is emitted to the 

atmosphere according to the above results of the incubation study. The emission factor (EF) 

of N2O varied with soil water content, being significantly greater under very wet conditions 

(Table 6.3). Annually, the Lincoln University Dairy Farm (LUDF) receives ~1100 mm in the 

form of irrigation (~450 mm) and rainfall (~650 mm) and the soil being a Temuka silt loam, it 

can be estimated that the soil should be at field capacity 80% of the time. Also, at the LUDF, 

litter comprised 90% ryegrass and 10% clover (Chapter 4). Using the pastoral dominance of 

ryegrass and clover, their EFs (Table 6.3), and the soil water contents, a weighted mean EF 

from the current incubation experiment would be 1.3%. This is similar to the IPCC default 

value of 1%, with a quoted uncertainty range of 0.03–3%, for anthropogenic N applications to 

soils including fertiliser, organic amendments and crop residues (IPCC 2006). Combining 

fresh and senesced litter rates of 19.4 kg N ha
–1 

y
–1

 from the field survey and 1.3% EF from 

the incubation experiment, and converting units, estimated N2O emissions attributable to 

litter-fall would be 0.4 kg N2O ha
–1 

y
–1 

(see Appendix, Table A). This also assumes that the 

EF from the incubation is not litter rate dependent. 

This extrapolation shows that intensive grazing by dairy cattle, which produce litter-fall, 

has the potential to contribute to N2O emissions. For context, this estimate of 0.4 kg N2O 
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ha
−1 

y
–1

 will be compared to annual N2O emissions from unfertilised soils beneath grass. 

Bouwman’s seminal review (1996) included 11 studies, but unlike Bouwman (1996), who 

evidently considered timothy (Phleum pratense L.) a weed, two of his reported studies where 

timothy was the vegetation, have been included because it is a common grass species in 

pastures throughout the north-eastern USA. Since this review, there have been three 

additional studies with unfertilised soils beneath grass. For a silt loam beneath a mixed herb 

ley sward at Lincoln, New Zealand, integration and extrapolation yielded an estimate of 

0.4 kg N2O ha
–1 

y
–1

 (Van der Weerden et al. 1999; 2000). On a loamy sand beneath 12 species 

of grass, two legumes and 15 herbs located near Giessen, Germany, the N2O emissions 

averaged 0.3 kg N2O ha
–1 

y
–1

 (Kammann et al. 1998). While for a sandy loam beneath annual 

ryegrass and clover located near Wagga Wagga, Australia, the N2O emissions averaged 

0.6 kg N2O ha
–1 

y
–1

 (Galbally et al. 2010). On average, from these 14 studies, the N2O 

emissions were 1.4 ± 1.9 kg N2O ha
–1 

y
–1 

and the median was 0.6 kg N2O ha
–1 

y
–1

. 

Bouwman (1996) suggested the N2O emissions from unfertilised soils were 

“background” emissions, implying a “natural” origin. However, the IPCC guidelines (IPCC 

2006) dismiss his concept stating they are “...not ‘natural’ emissions but are mostly due to 

contributions of N from crop residue. These emissions are anthropogenic and accounted for in 

the IPCC methodology”. In terms of intensive pasture grazing, the N embodied in the litter 

may have been derived from the soil mineralised N, fertiliser or excreta inputs. A discussion 

on the contribution of litter-fall to anthropogenic N2O emissions is made in the concluding 

chapter (Chapter 9). 

6.5 Conclusion 

The soil microbial community responded rapidly and significantly to the incorporation of 

dried, ground plant litter with maximum N2O and CO2 emissions obtained within 0.5 d, and 

N2O emissions were virtually complete within 2 d. At field capacity (86% WFPS), ON2
EF

equated to 2–3% of the incorporated N with no significant litter species differences. At 54% 

WFPS, ON2
EF was significantly less with 1.7% > 0.7% = 0.5% for clover, ryegrass and maize, 

respectively; these differences being attributed to the biochemical properties of the species’ 

litter including their differing C: N ratios. At 86% the 
2COEF was greater than at 54% WFPS, 

mean 32% and 21%, respectively, with no significant differences due to litter amendments but 

the litter incorporation effect lasted 38 d. A time-response model fitted to the CO2 emissions 

showed no significant differences in the estimated treatment response decay rate at 86% 

WFPS, but at 54% WFPS the estimated asymptotic emissions were in the order maize > 
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ryegrass > clover. Expressing N2O emissions on a CO2-eq basis, the N2O emissions 

contributed half of the total CO2-eq emissions for clover, about 0.5 and 0.3 for ryegrass and 

0.3 and 0.1 for maize for the 86% and 54% WFPS treatments, respectively. The significant 

contribution of N2O emissions, especially for clover and ryegrass, warrants further study 

under in situ pasture conditions. Combining ON2
EF and the field survey of litter-fall data, it is 

estimated that N2O emissions attributable to litter-fall could be 0.4 kg N2O ha
–1 

y
–1

. 
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     Chapter 7 

Nitrous oxide emissions following clover litter 

incorporation at varying levels of cellulose 

incorporation  

7.1 Introduction 

Recalcitrant forms of carbon (C) such as cellulose may have determinant effects on soil 

C and nitrogen (N) dynamics in terms of N2O emissions (Section 2.4.1.1). Studies examining 

N2O emissions from plant residues have concluded that the emissions are proportional to the 

biochemical composition; mainly the C: N ratio of the residues (Section 2.4.1). Results from 

Chapter 6 showed that N2O emissions were higher from clover litter incorporation due to a 

lower C: N ratio (i.e. a higher N rate) and lower cellulose and hemicellulose contents. 

Emissions of N2O from ryegrass and maize were relatively lower because of lower N contents 

and higher concentrations of cellulose which is a relatively recalcitrant form of C. The 

question that arises from the study in Chapter 6 is whether or not lower cellulose also affected 

the N2O emissions in addition to an N rate effect. The literature review (Section 2.4.1.1) 

shows that lignin can take a relatively long time (>10 yr) to fully decompose and that 

cellulose is intermediary between glucose and lignin with respect to decomposition. Hence, 

cellulose was chosen to manipulate the C: N ratio of clover litter under this study.  

The objective of this experiment was to evaluate N2O and CO2 emissions following the 

incorporation of clover litter with varying levels of cellulose. To study the litter-N interactions 

with the sampled pastoral soil, clover litter was selected for incorporation along with analar 

grade cellulose powder at a relatively higher soil water content of 86% WFPS. 

It was hypothesised that increasing cellulose rates would cause lower N2O emissions 

since the microorganisms responsible for N2O emissions would not have access to a labile C 

source except to soil C and hence cause lower N2O emissions in the absence of an additional 

C substrate. 
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7.2 Materials and Methods 

7.2.1 Experimental design and treatments  

The experimental design was a randomised block design with four cellulose-litter 

treatments and a control that received no litter or cellulose. Treatments included a 

‘clover only’ treatment that consisted solely of litter and did not receive any cellulose; a 

‘C: N 20’ treatment that received the same amount of clover litter (dry weight basis) along 

with an amount of cellulose that brought the C: N ratio to 20. The treatments ‘C: N 30’ and 

‘C: N 40’ were prepared with different cellulose rates to give C: N ratios of 30 and 40. The 

treatments were replicated 5 times giving a total of 25 cores (5 treatments × 5 replications) for 

gas emission measurement. Each replicate consisted of a PVC container (as used in Chapter 6; 

Section 3.10) randomly allocated within blocks in an incubator maintained at 20
o
C. 

7.2.2 Soil preparation and treatment procedure 

A poorly drained Temuka silt loam soil [Fluvaquentic Endoaquept, (Hewitt 1998)] 

was collected from a clover-ryegrass pasture (0–10 cm depth) near Lincoln, New Zealand 

(43
o
38.70’S, 172

o
28.62’E, 8 m above sea level) in summer, 2009. The key properties of the 

soil are described in Table 7.1. The collected soil was sieved (4 mm) within 48 h of collection 

to remove any obvious organic material. The sampled (field moist) soil had gravimetric water 

content, volumetric water content, bulk density, and porosity values of 0.31 kg water kg
–1

 

soil, 0.23 m
3
 water m

–3
 soil, 0.74 Mg m

–3 
and 0.72 m

3
 pores m

–3
 soil, respectively (Section 

3.2). The sieved soil was then stored at its field moisture content, at 4
o
C, before being packed 

into PVC containers. To obtain the plant litter, fresh clover leaves were dried (65
o
C) and 

ground (<200 m) before being incorporated into the soil samples. 
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Table 7.1 Chemical properties of the Temuka silt loam soil used during the study. 

Soil properties November, 2009  

pH (1: 2) 5.7 

Total C (g kg
–1

) 64.0 

Total N (g kg
–1

) 6.0 

Anaerobically mineralisable N (µg g
–1

) 218 

Olsen P (mg kg
–1

) 48 

Potassium (cmolc kg
–1

) 0.76 

Calcium (cmolc kg
–1

) 14.9 

Magnesium (cmolc kg
–1

) 3.31 

Sodium (cmolc kg
–1

) 0.34 

Cation exchange capacity (cmolc kg
–1

) 27 

Total base saturation (%) 73 

 

The clover litter had a C: N ratio of 9. In treatments receiving cellulose, appropriate 

proportions, were mixed with clover litter (5 g) on a plastic sheet to obtain ‘cellulose-litter’ 

mixtures with C: N ratios of 20, 30 and 40 which represented, ‘C: N 20’, C: N 30’ and 

‘C: N 40’ treatments, respectively. The ‘cellulose-litter’ mixtures were thoroughly mixed with 

175 g dry soil before packing into PVC containers. Pre-mixing prevented possible effects 

(such as localized N rich microsites), on microbial degradation arising due to differences in 

soil-residue contact (Abiven and Recous 2007; Loecke and Robertson 2009). The cellulose-

litter-soil mixture was packed into PVC containers to a depth of 4.5 cm (internal diameter 

8.0 cm, height 10 cm). The base of the containers was covered by fine nylon mesh to prevent 

loss of soil material. Deionised water was added to the treatments to attain field capacity 

(86% WFPS). This WFPS provided a comparison with Chapter 6. The soil water content was 

maintained by daily misting the soil surface to a pre-determined mass. Soil cores were 

incubated at 20
o
C for 145 d. 

7.2.3 Soil analysis and gas sampling 

Soil cores were destructively analysed on days 0, 9, 14, 21, 54 and 145 after treatment 

application for determining inorganic N and microbial biomass C using methods described in 

Sections 3.6 and 3.7, respectively. 

The N2O emissions were determined on 25 occasions over the first 42 d of the 

experiment using the closed-chamber technique (Section 3.10). Gas samples were collected at 

0, 10 and 20 min on each occasion.. The gas samples were analysed, within 48 h, for N2O 
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using gas chromatography (Sections 3.10 and 3.11) and N2O fluxes were calculated using 

Equation 3.9. The cumulative N2O emissions were converted to CO2-eq kg
–1

 soil by 

multiplying them by 298, the global warming potential (GWP) of N2O, (Forster et al. 2007) 

thus enabling comparisons with the cumulative CO2 emissions. 

Soil CO2 emissions were measured from the same soil containers, approximately 

10 min after the N2O measurements, on 47 occasions over the experimental period of 145 d 

(Section 3.11). For each CO2 sampling event, a portable soil respiration chamber (SRC), 

connected to an infrared gas analyser (SRC-1 and EGM-3, PP Systems, Hitchin, UK; 

Figure 6.2), was placed directly onto the PVC container and the emissions were determined 

over a 2 min period.  

Emission factors (expressed as a percentage of the N or C applied) were calculated by 

determining the cumulative mass of N or C emitted (as N2O-N or CO2-C, respectively), 

subtracting the integrated control values, and dividing the difference by the mass of N or C 

applied to the soil in the form of leaf litter. The mean treatment responses were expressed as 

differences with respect to the unamended soil (control). 

7.2.4 Data analysis 

Statistical analysis of all data was performed using Minitab
®
 (version 15.1; © 2006, 

Minitab Inc.). Gas emission data for each sampling was tested for skewness using the 

Anderson-Darling test and if required, the data were log-transformed to ensure normality. 

Analysis of variance (ANOVA) was performed to determine if differences between means 

occurred. If they did, significantly different treatments were found using Tukey’s test. 

Statistical variation is indicated using standard deviation (sd) or least significant differences 

(lsd). Calculation of the emission factors and conversion of cumulative N2O emissions to 

CO2-eq kg
–1

 soil were calculated using same method used in Section 6.2.4. 

7.3 Results 

7.3.1 Soil inorganic N 

Soil NH4
+
–N concentrations increased in all treatments immediately after treatment 

application (Figure 7.1a). On day 0, NH4
+
–N concentrations from the treatments were 

significantly higher than the control with ‘clover only’ = ‘C: N 20’, while the ‘C: N 30’ and 

‘C: N 40’ treatments showed higher concentrations compared to the other treatments. 

Concentrations increased further in the ‘clover only’ and control treatments at day 9. 

However, at this time NH4
+
–N concentrations in the other treatments had declined. From 

day 9 onwards, NH4
+
–N concentrations continued to decline and from days 21 to 145, they 
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did not differ from the control in any treatment. Concentrations recorded on day 9 were 

221.0 ± 38.4 > 101.3 ± 17.0 = 100.6 ± 20.9 = 97.1 ± 18.2 > 58.0 ± 16.3 µg N g
–1

 dry soil from 

‘clover only’ > ‘C: N 20’ = ‘C: N 30’ = ‘C: N 40’ > control. 

 

 

Figure 7.1 Soil inorganic N concentrations of (a) NH4
+
–N, and (b) NO3

–
–N, after a 145 d 

incubation following incorporation of clover litter with varying levels of 

cellulose. Data are mean ± sd (n = 5). 

 

By day 9, NO3
–
–N concentrations in the cellulose-amended treatments (‘C: N 20’ to 

‘C: N 40’) increased and were higher than the ‘clover only’ and control treatments 

(Figure 7.1b). After this they declined rapidly before they increased again at day 54, with 

concentrations at day 145 significantly higher in the ‘C: N 20’ and ‘C: N 30’ treatments. 

However, in the ‘clover only’ treatment, NO3
–
–N concentrations were significantly higher on 

days 14, 21 and 54 but they then returned to levels observed in the controls thereafter. 
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7.3.2 Microbial biomass C 

On day 0, microbial biomass C (MBC) did not differ with treatment but then MBC 

concentrations were higher in the non-control treatments on days 9, 21 and 54 (P <0.05). A 

steep decline in MBC was observed on day 21 with no differences among treatments 

(Figure 7.2). Concentrations had increased by day 54 but did not differ from the controls on 

145 d except ‘C: N 40’ treatment which was higher (P <0.001) from other treatments with 

recorded concentration of 4216 ± 125 µg C g
–1

 dry soil. 

 

 

Figure 7.2 Soil microbial biomass C concentrations after a 145 d incubation following 

incorporation of clover litter with varying levels of cellulose. Data are mean ± 

sd (n = 5). 

 

7.3.3 N2O emissions 

Maximum N2O emissions were recorded 8 h after treatment incorporation, with N2O 

emissions increasing with C: N ratio at this time and differing with treatment (P <0.05, 

Figure 7.3). After 8 h, the maximum emissions were 548 ± 81, 352 ± 104, 164 ± 61, 78 ± 25 

and 28 ± 20 µg N2O kg
–1

 h
–1

 (± sd, n = 5) for the ‘C: N 40’, ‘C: N 30’, ‘C: N 20’, ‘clover 

only’ and the control, respectively. After 11 h (0.8 d), N2O emissions had decreased 

significantly and although emissions from the ‘C: N 40’ and ‘C: N 30’ treatments were higher 

than in the ‘C: N 20’ and ‘clover only’ treatments which were in turn higher than those of the 

control (Figure 7.3) these emissions had decreased by a factor of ~2, 6, 4 and 2, respectively, 

when compared to their earlier maxima (i.e. at 8 h). Emissions of N2O then gradually declined 
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over time and had returned to levels found in the control by 12.4 d in all treatments. After this 

time, until day 42, the N2O emissions from the treatments did not differ from the controls. 

 

Figure 7.3 Soil N2O emissions at 86% WFPS, during a 42 d incubation after 

incorporation of plant litter; dried, ground shoots of clover and/or increasing 

proportions of cellulose. Data are mean ± sd (n = 5). 

 

Nitrous oxide emissions from the control did not remain constant but increased 

(P <0.05) at 1.3, 2.3 and 3.4 d when compared to the other treatments (Figure 7.3). At 1.3 d 

this represented a 10-fold increase in the control while the emissions from the other 

treatments decreased. Emissions from the control peaked at 3.4 d and decreased thereafter. 

Cumulative N2O emissions from the ‘C: N 40’, ‘C: N 30’, ‘C: N 20’, ‘clover only’ and 

the control were 14.3 ± 0.5, 12.4 ± 1.2, 8.0 ± 0.6, 8.7 ± 1.2 and 9.1 ± 0.9 mg N2O kg
–1

 soil, 

respectively (Figure 7.4) with differences between treatments as follows: control = 

‘clover only’ = ‘C: N 20’ < ‘C: N 30’ < ‘C: N 40’ (P <0.05). While the cumulative N2O 

emissions from the control treatment did not differ from the ‘clover only’ and ‘C: N 20’ 

treatments, the time courses of these three treatments differed significantly with 90% of the 

cumulative emissions occurring within ~7, 38 and 9 d, respectively. Corresponding N2O 

emissions from the ‘C: N 30’ and ‘C: N 40’ treatments had evolved 90% of the total N2O 

emissions by 9 d (Figure 7.4). 
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Figure 7.4 Cumulative N2O emissions from (a) ‘control’ and ‘clover only’ treatments; 

(b) ‘C: N 20’, ‘C: N 30’ and ‘C: N 40’ treatments during a 42 d incubation; 

(c) error bars are least significant differences of mean (at 5% level of 

significance). 
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The ON2
EF  values (Figure 7.5) for the ‘C: N 40’, ‘C: N 30’, ‘C: N 20’ and 

‘clover only’ were 0.23 ± 0.02, 0.14 ± 0.05, –0.05 ± 0.03 and –0.02 ± 0.05, respectively, with 

the ON2
EF of ‘C: N 40’ significantly higher (P <0.001) than the other treatments. 

 

Figure 7.5 Emission factor (%) of N2O and CO2 after a 145 d incubation following 

incorporation of clover litter with varying levels of cellulose. Data are mean ± 

sd. 

 

7.3.4 CO2 emissions 

Four hours after treatment application the CO2 emissions were 43.3 ± 3.2 < 62.8 ± 8.7 

= 54.2 ± 17.4 = 42.0 ± 8.3 > 6.7 ± 1 mg CO2 kg
–1

 h
–1

 (± sd, n = 5) from the ‘C: N 40’, 

‘C: N 30’, ‘C: N 20’, ‘clover only’ and the control treatments, respectively (Figure 7.6). The 

maximum CO2 emissions occurred after 1.4 d with emissions of 86.2 ± 5.4 < 90.2 ± 6.6 > 

80.7 ± 20.5 > 64.9 ± 14.3 > 4.9 ± 2.8 mg CO2 kg
–1

 h
–1

 from the ‘C: N 40’, ‘C: N 30’, 

‘C: N 20’, ‘clover only’ and the control treatments, respectively. The CO2 emissions then 

declined steadily until 10.3–11.2 d when a further increase in CO2 emissions was observed in 

all the treatments (Figure 7.6) but this increase was relatively small in the ‘clover only’ 

treatment. Furthermore, the ‘secondary peak’ in those treatments with cellulose additions was 

dependant on the rate of cellulose applied (i.e. ‘clover only’ < ‘C: N 20’ < ‘C: N 30’ = 

‘C: N 40’). The ‘secondary peak’ emissions were 60.3 ± 2.7, 58.1 ± 3.3, 52.1 ± 5.4, 27.5 ± 4.5 

and 4.8 ± 0.5 mg CO2 kg
–1

 h
–1

 from ‘C: N 40’, ‘C: N 30’, ‘C: N 20’, ‘clover only’ and the 

control, respectively which accounted for 3–4% of the total CO2 emissions integrated over the 

145 d. The emissions from the ‘secondary peak’ were significantly higher (P <0.05) from the 

non-control treatments but they did not differ between cellulose treatments, with the ‘clover 
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only’ treatment intermediate between these treatments. At 145 d, except ‘C: N 40’ treatment, 

the emissions from the other treatments had reached control levels.  

 

Figure 7.6 Soil CO2 emissions from ‘clover only’, ‘C: N 20’, ‘C: N 30’ and ‘C: N 40’ 

treatments and controls during a 145 d incubation. Data are mean 

± sd (n = 5). 

 

A significant ‘C dose effect’ (P <0.05) was observed when CO2 emissions were 

integrated over the entire incubation period, with the ‘clover only’ and ‘C: N 20’ treatments 

equalling the control treatment levels at 112 d followed by the ‘C: N 30’ treatment at 145 d. 

The cumulative CO2 emissions over 145 d averaged 98.5 ± 3.0, 83.8 ± 2.3, 66.4 ± 0.9, 

42.0 ± 1.4 and 16.6 ± 2.5 g CO2 kg
–1

 soil from the ‘C: N 40’, ‘C: N 30’, ‘C: N 20’, 

‘clover only’ and the control, respectively and were significantly different from one another. 

Over the period 42 or 145 d, CO2 emissions from the controls averaged 4 and 17 g kg
–1

 soil 

and the ‘C dose effect’ was 0.15 and 0.38 g CO2 g
–1

 C, respectively. Over 42 d, on a 

CO2-equivalent basis, CO2 emissions were 90% of ‘CO2 + N2O’ emissions following clover 

and cellulose incorporation into the soil (Table 7.2). The 2COEF values were 38.3 ± 1.4, 

41.9 ± 1.5, 46.6 ± 0.8 and 56.4 ± 3.1 in the order of ‘C: N 40’ = ‘C: N 30’ > ‘C: N 20’ << 

‘clover only’, respectively (P <0.05). 
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Table 7.2 Cumulative N2O (in CO2-eq), cumulative CO2 and total emissions at 86% 

WFPS integrated over 42 d. The data are mean ± standard error (n = 5). 

Treatment 

Cumulative 

N2O emission 

 

Cumulative 

CO2 emission 

 

Total 

emission
a 

(CO2+N2O) 

Contribution of 

N2O to total 

emission 

 

(%) 

(CO2-eq)  (CO2-eq) 

 (g kg
–1

 soil)  

C: N 40 4.3 ± 0.1 36.3 ± 0.6 40.6 ± 0.7 10.6 

C: N 30 3.7 ± 0.4 36.6 ± 0.3 40.3 ± 0.7 9.2 

C: N 20 2.4 ± 0.2 34.3 ± 1.0 36.7 ± 1.2 6.5 

Clover only 2.6 ± 0.4 21.3 ± 1.0 23.9 ± 1.4 10.9 

Control 2.7 ± 0.3 4.2 ± 0.2 6.9 ± 0.5 39.1 

a
Total emission (CO2-eq) is the sum of the cumulative N2O emission (CO2-eq) and 

cumulative CO2 emissions. After 145 d, the cumulative values for ‘C: N 40’, ‘C: N 30’, 

‘C: N 20’, ‘clover only’ and the control were 98.5 ± 3.0, 83.8 ± 2.3, 66.4 ± 0.9, 42.0 ± 1.4 and 

16.6 ± 2.5 g CO2 kg
–1

 soil. 

 

7.4 Discussion 

7.4.1 N2O emissions 

The incorporated cellulose acted as a more labile C source apparently favouring 

denitrification since higher N2O emissions were observed from the highest C: N ratio 

treatments, hence the hypothesis was rejected. 

Relatively higher inorganic N concentrations on day 9, a decrease in N2O emissions 

after 12.4 d, and an increase in MBC concentrations during day 9 to day 14, showed that 

microbial activity was maximum during the initial period (0–14 d) of incubation. Increases in 

NH4
+
–N concentrations from day 0 in all but the control and in the ‘clover only’ treatment at 

day 9 indicated ammonification of the plant litter (Wei et al. 2011). The subsequent decline in 

NH4
+
 was due either to nitrification of NH4

+
 or immobilisation. The increase in NO3

–
 

indicated that nitrification occurred. The rapid decline in NO3
–
 and lower levels until day 54 

in the cellulose-added treatments demonstrate a period of NO3
–
–N consumption which given 

the additional C source was probably the result of immobilisation, since NO3
–
 concentrations 

in ‘clover only’ remained higher at that time. The N2O concentrations were also higher while 

NO3
–
 was declining. Cumulative N2O increased with increasing C: N ratio which indicated 

denitrification of NO3
–
, originating from plant litter which was the source of the N2O.  
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Kuzyakov et al. (2000) suggest that when an organic substrate has a C: N ratio >16, N 

immobilisation occurs as a result of micro organisms using the available N for their own 

growth in cells and tissues. Such a relation was not found in this study, since in the treatments 

with C: N >16, NO3
–
–N increased 10-fold during 0–9 d indicating N mineralisation which 

corresponded well with higher N2O emissions. However, a part of this mineralisation from the 

treatments can be attributed to a ‘disturbance effect’ (caused due to soil sieving) since a large 

increase in NH4
+
–N and NO3

–
–N levels was also observed in the control during the same time 

period. Presumably the soil disturbance effect was enhanced in the control treatment because 

the soil was subject to mechanical sieving which might have exposed the N in the soil 

aggregates, however, this might not have happened in the control treatment in Chapter 6 

because the sampled soil was manually sieved. Nevertheless, clover litter caused an increase 

in NH4
+
–N and NO3

–
–N concentrations. Goek and Ottow (1988) applied oat straw and 

cellulose at two rates (0.5 and 1.0%) and found that denitrification losses were similar for 

both of their treatments but suppressed after straw and cellulose incorporation. Their 

treatment also increased CO2 production and NH4
+
 immobilisation. Mengel and Schmeer 

(1985) also observed that N2O emissions decreased after incorporating straw, cellulose or 

lignin to soil because of N immobilisation under the influence of the added substrates. 

Immobilisation may also have occurred in the present study but N2O emissions were 

enhanced with increasing rates of cellulose in this study as opposed to the aforementioned 

studies. 

Cellulose occurs naturally in plant tissues and forms the basis of plant cell walls. The 

extracellular enzymes have to catabolise/cleave the bound cellulose to simpler sub-units i.e. 

glucose, for use in energy generation processes (Clark 1997). In the present study, cellulose 

was applied in a pure, uncleaved form, which potentially allowed the microorganisms to use it 

as a readily available source similar to glucose. 

Cellulolytic microorganisms’ activity is enhanced under anaerobic conditions (Clark 

1997). In this study, incorporating abundant cellulose-C and litter may have aided in creating 

anaerobic conditions by blocking soil pores and reducing the O2 diffusion rate. The high soil 

moisture content (86% WFPS) would also have produced conditions that were conducive for 

the cellulolytic organisms. This would produce higher CO2 emissions due to enhanced 

decomposition of the incorporated cellulose; this is in fact what was observed (Figure 7.6). 

Higher CO2 emissions in turn, may have contributed to the generation of anaerobic conditions 

within the microsites, thus further stimulating denitrifying activity, and as a consequence, this 

could have contributed to the higher N2O emissions. Moreover, under partially anaerobic 

conditions and in the presence of labile C substrate, the denitrification process could be 
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pushed towards completion and more N2 may have been produced from the treatments rather 

than just N2O. This may explain the decline in cumulative N2O emissions with increasing 

cellulose (Figure 7.4c).The control treatment had less labile C and the higher N2O emitted 

until 3.4 d from the control may have been a consequence of incomplete denitrification 

The presence of available C can increase denitrification, directly, by increasing energy 

and electron supply to the denitrifiers, and indirectly, by enhancing microbial growth and 

metabolism, thereby stimulating higher O2 consumption (Beauchamp et al. 1989; Gillam et 

al. 2008) which creates anaerobic conditions. The current results cannot delineate the N2O 

production mechanism but given the soil moisture content and the fact that cellulose was 

being utilised as evidenced by higher CO2 in the treatments, and that the N2O emissions were 

lower than the control during 2.3–4.3 d; it is likely that the C substrate further enhanced 

denitrification and permitted the further reduction of N2O to N2 (Firestone and Tiedje 1979). 

7.4.2 CO2 emissions 

The CO2 emissions curve peaked twice during the course of incubation presumably 

due to ‘sequential degradation’ (Gunnarsson et al. 2008) and ‘preferential substrate 

utilisation’ (Kuzyakov and Bol 2006; Sparling et al. 1982). 

Previous studies have shown that during the first few days of litter decomposition in 

soil, soluble carbohydrates are decomposed along with the most readily degradable N-rich 

components. After this, proteins and cellulose are sequentially degraded followed by lignin 

(Gunnarsson and Marstorp 2002; Henriksen and Breland 1999; Martin and Haider 1986; 

Trinsoutrot et al. 2000a). The first CO2 peak (at 1.4 d) was presumably due to the 

decomposition of the most labile C pools supplied from the litter and mineralisation of the 

native soil C. This trend in N2O emissions was similar to the previous lab experiment 

(Chapter 6) using plant litter only. The second (smaller) peak was evidently due to the 

decomposition of cellulose since the emissions followed a linear C dose effect. This was also 

apparent from the increase in MBC concentrations from days 9 and 14 possibly due to an 

increase in cellulolytic microorganisms. The higher emissions from the ‘C: N 40’ treatment 

also coincided with higher MBC concentrations at the end of the incubation period indicating 

the availability of cellulose for the cellulolytic microbes. The protracted and continuous CO2 

emissions (greater than the control) over time suggest that these emissions were from the 

recalcitrant pools such as hemicellulose and lignin. The above results are similar to Dalenberg 

and Jager (1989) who also observed two peaks in the CO2 curve after addition of cellulose (as 

pulverised filter paper (Whatman
®
 1)), wheat straw or sewage sludge. The explanation for the 

two peaks was the same in their study however their first peak was smaller than the second 
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and they attributed it to the faster decomposition of cellulose. There is no obvious explanation 

for this discrepancy other than it may reflect differences in soils or treatment procedures. 

The higher CO2 emissions from the treatments also suggest that the soil microbial 

biomass may have switched from the recalcitrant SOM to the incorporated and more readily 

available substrates (Cheng 1996; Sparling et al. 1982). These higher emissions can be 

accounted for by r-strategists; the microorganisms specialised in rapid catabolism of the fresh 

organic matter in soil (Fontaine et al. 2003), i.e. litter and cellulose in this case. When the 

most easily utilisable substrate is almost completely consumed, the activated microorganisms 

target the remaining substrates with the highest utilisability and use these until there is no 

substrate, otherwise known as ‘preferential substrate utilisation’ (Kuzyakov and Bol 2006). 

Naturally occurring lignin present in the plant tissues physically protects, and therefore 

retards the catabolism of the bound cellulose but absence of lignin may aid in faster 

decomposition of cellulose (Fuller and Norman 1943; Swift et al. 1979). Grinding of the plant 

litter in the present study may have exposed the labile forms due destruction of the lignified 

barrier tissue (Ambus and Jensen 1997). Hence, the grinding process, evidently promoted 

cellulose decomposition in the presence of very low and destroyed lignin content due to 

grinding.  

Available N can also stimulate decomposition rates by increasing the activity of 

enzymes responsible for carbohydrate hydrolysis (Carreiro et al. 2000; Geisseler and Horwath 

2011). The mineralisation of N from all the ‘treatments’ during 0–9 d of destructive sampling, 

suggest that the labile-N originating from the plant litter in the present study, may have 

stimulated the cellulose decomposition and hence caused higher CO2 generation with an 

additive effect on N2O generation. 

Nicolardot et al. (1994) found that cellulose can be rapidly decomposed under optimal 

conditions but its decomposition is roughly 3–5 times slower than that of glucose. Nicolardot 

et al. (1994) also showed a rate constant of 0.2–0.3 d
–1

 at 28
o
C for cellulose decomposition 

i.e. cellulose was virtually completely decomposed in 15–25 d. In the current study, the 

secondary peak of CO2 emissions, which is assumed to be the result of cellulose 

decomposition, was nearly complete in ~15 d which is accordance with Nicolardot et al. 

(1994). 

Geisseler and Horwath (2011) incorporated 2, 4 or 6 g cellulose kg
–1

 soil along with 

(NH4)2SO4 to obtain C: N ratios of 10 and 40 and incubated soils at 22
o
C for 30 d. They 

observed 2COEF values of 34–40% and cumulative emission of 1.6 g CO2-C kg
–1

 soil (from the 

6 g cellulose kg
–1

 soil treatment). In the present study, the 2COEF range was 38–56% and the 

cumulative emissions were 4.2–6.8 g CO2-C kg
–1

 when integrated over 27 d which is only 
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2−4 times higher than that observed by Geisseler and Horwath (2011), in addition to the fact 

that the present study included a much higher (i.e. about 6.3–17.2 times, 38–103 g cellulose 

kg
–1

 soil) cellulose incorporation rate. They also found enhanced cellulase activity under the 

influence of added N. Fontaine et al. (2004) applied 0.5 g cellulose-C kg
–1

 soil and incubated 

at 28
o
C. In their study, after 70 d, cumulative CO2 emissions accounted for 0.9 g CO2-C kg

–1
 

from cellulose-amended soil. When compared to their study, nearly 7 times less CO2-C was 

evolved kg
–1

 soil in the present study. This difference was apparently due to the fact that they 

also amended their soils with cellulase enzyme amendments and hence better and quicker 

cellulose degradation was observed. Gillam et al. (2008) observed 0.54, 0.26 and 0.15 g 

CO2-C g
–1

 C from glucose, red clover and barley straw, respectively while we got a C dose 

effect of 0.38 g CO2 g
–1

 C in the present study. 

7.5 Conclusion 

Over 42 d, cumulative N2O emissions from the controls were statistically 

indistinguishable from the ‘clover only’ and ‘C: N 20’ treatments. However, time courses of 

the N2O emissions differed significantly; 90% of the total emissions were complete in ~7, 38 

and 9 d for controls, ‘clover only’ and ‘C: N 20’ treatments, respectively. Corresponding 

cumulative N2O emissions from the ‘C: N 30’ and ‘C: N 40’ treatments were nearly 50% 

greater and 90% of the total N2O emissions were completed in 9 d. Thus, clover 

incorporation produced the most rapid N2O emissions response and increasing the C: N ratio 

using cellulose to ≥ 40 significantly enhanced the rate of N2O emissions and total emissions, 

when compared to the response to clover incorporation. 
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     Chapter 8 

Determine the effect of surface-placed, fresh plant litter 

on N2O emissions in field conditions 

8.1 Introduction 

Chapter 4 of this thesis showed that significant litter-fall occurs during a grazing event 

(Pal et al. 2012). However, the in situ contribution of this litter to N2O emissions is unknown. 

Litter may either sit on the soil surface and decompose or it may become partially 

incorporated into soil via animal treading. Surface decomposition of pasture litter in 

conjunction with N2O emissions has not been researched in pastoral soils. A few studies 

(Brunetto et al. 2011; Larsson et al. 1998) have investigated surface decomposition using 

pasture litter as a mulch in arable systems; De Ruijter et al. (2010) measured NH3 emissions 

from surface decomposition of ‘pasture topping’, but no studies have reported N2O emissions 

in pastoral systems resulting from pasture litter.  

Previously, in Chapter 6, the complete incorporation of litter species dominant in New 

Zealand pastures was investigated. The N2O emissions increased with lower C: N ratios and 

labile biochemical components. However, the experiment was performed under controlled 

conditions and the litter was ground and thoroughly incorporated into soil. Litter, in field 

conditions is not incorporated to this extent and certainly not ground. Also, temperature and 

soil water contents fluctuate under field conditions. Studies investigating pasture litter 

decomposition in pastoral conditions are also scarce (Kuzyakov et al. 1999; Vinten et al. 

2002). Brunetto et al. (2011) investigated the fate of common New Zealand pasture species 

(clover, Trifolium repens L. and ryegrass, Lolium perenne L.) by placing litterbags on the soil 

surface, and used a 
15

N technique to show that the grasses decomposed relatively rapidly, 

however, N2O emissions were not measured in their study and this study was performed in 

vineyards. Pasture management and soil nutrient parameters are considerably different to 

conditions found in vineyards.  

Since no study has examined the fate of pasture litter with respect to N2O emissions 

under field conditions the following experiment was conducted to quantify N2O emissions 

resulting from surface-placed litter of ryegrass shoots in order to investigate the contribution 

of such litter, to soil N cycling and N2O emissions.  

The study performed here includes defoliation treatments in order to simulate grazing. 

Studies such as Bardgett et al. (1998) and Mikola et al. (2001) have shown that defoliation of 
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pasture plant species can also influence N and C cycling. Macduff and Jackson (1992) showed 

that defoliation of Italian ryegrass (L. multiflorum) and white clover in hydroponic culture 

increased root-efflux of NH4
+
– and NO3

–
–N. Root decomposition may also contribute to N2O 

emissions due to effects on N cycling (Smith and Tiedje 1979a). To differentiate any artefact 

of defoliation that could contribute to N2O emissions, treatments in this experiment also 

included defoliation and root removal. The choice of ryegrass was based on it being the 

dominant pasture species. The hypothesis tested was: 

Surface decomposition of litter will result in N2O emissions over and above those found in 

non-litter affected soil. 

8.2 Materials and methods 

8.2.1 Experimental site and soil preparation 

The field site was located at a pasture site of Lincoln University (43°38.50'S, 

172°27.17'E; elevation above sea level 10 m). The soil was a Temuka clay loam [Typic Orthic 

Gley; (Hewitt 1998)]. Pasture species included perennial ryegrass and white clover grazed 

regularly by sheep. To avoid antecedent effects of animal grazing, the experimental site 

(approximately 15 m x 20 m) was surrounded by an electric fence one year prior to the start of 

the experiment. The experiment was conducted in summer, 2011 (January-February). To 

maintain typical fresh pasture growth, the fenced-off area was mown to a 5 cm height at 30 d 

intervals with all the mown herbage removed (Figure 8.1). For ease of gas sampling during 

the experimental period, the pathways surrounding the gas chambers were mown to ground 

level as shown in Figure 8.1. 
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Figure 8.1 View of the experimental site with treatments in preparation. 

 

Ryegrass seeds were sown in washed sand with five seeds per pot (14 cm diameter, 10 

cm height) and fed with 20 mL, 1x Hoagland’s solution (Hoagland and Arnon 1950) everyday 

for 3 months in a glasshouse (Figure 8.2). The plants were then enriched with a solution of 

15
N enriched, ammonium sulphate [(NH4)2SO4); 10.4 atom%; Isotec Inc., Matheson, USA] at 

the rate of 50 kg N ha
–1 

(i.e. at 15 mL pot
–1

; 77 mg N pot
–1

) in two split applications over a 

15 d period (Section 3.12.1). Shoots of the ryegrass plants were cut at ground level and 

chopped into 1 cm pieces using scissors on the day of litter treatment application at the field 

site. Roots of these plants were also washed thoroughly removing any sand and debris, and 

also chopped into 1 cm pieces and inserted into litterbags as explained below. Subsamples of 

the litter (shoots and roots) were dried at 65
o
C for 48 h and analysed for hemi-cellulose, 

cellulose, lignin, total C, total N (Section 3.1) and 
15

N enrichment (Section 3.12.2) and the 

results are shown in Table 8.3. 
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Figure 8.2 Ryegrass seedlings in pot cultures in the glasshouse prior to shoot and root 

harvest for litter treatment application. 

 

8.2.2 Experimental design and treatment application 

The experimental design was a randomised block design with 6 treatments (Figure 8.3, 

Table 8.1) each replicated 5 times. The fresh shoots or roots, as applicable (Section 8.2.1), 

were inserted into circular litterbags (1 mm mesh size, 7 cm diameter; Figure 8.4) made of 

fibreglass mesh and stapled at the ends to avoid loss of litter and then pinned to the soil 

surface. The mesh size and material were selected to allow optimum access to soil 

invertebrates and had been previously used (Hobbie and Vitousek 2000). Soil PVC containers 

(internal diameter 8 cm, height 10 cm) were installed at the field site to a depth of 5 cm. The 

litterbags were then placed on the soil surface (or buried, as applicable) within the PVC 

containers’ surface area. Further, identical treatments, replicated 3 times, were also installed 

to allow destructive sampling of soil at days 66 and 139 after treatment application.  
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Figure 8.3 Field layout of the experimental site showing the position of the gas 

chambers. Treatment abbreviations are discussed in the text (Section 8.2.2 

and Table 8.1). 
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Figure 8.4 Litterbags made from ryegrass shoots (left) and roots (right). 

 

Treatment 1 was the ‘true’ control where neither the pasture was clipped nor 
15

N 

shoots/roots were added into the litterbags. Hence, for the ‘control’ the pasture within the 

PVC cores was 5 cm high at the time of treatment application. For treatment ‘C’, the pasture 

was clipped to ground level but no shoot/root material was added into the litterbag. This 

treatment simulated field conditions immediately after a grazing event devoid of litter being 

deposited onto the soil surface. For treatment ‘CL’, the pasture was clipped to ground level 

and the 
15

N-enriched, freshly-chopped ryegrass shoot litter (51.7 mg g
–1

, total N; 5.35 atom%; 

412 g DM m
–2

), inside the litterbags, was placed on the surface of the soil inside the PVC 

cores. This equated to a rate of 9 g bag
–1

 i.e. 1.8 kg fresh shoots m
–2

 (resulting in an N 

application rate of 213 kg N ha
–1

). This ‘shoots only’ treatment simulated a situation where 

litter falls onto an area of harvested pasture. However, the application rate of the litter was 

about 4 times the rate of litter-fall per grazing event previously measured [Chapter 4; (Pal et 

al. 2012)]. This rate was used to ensure that N2O gas emissions were above the detection limit 

of the gas chromatograph (GC). For treatment ‘SL’, the native soil was dug out to a depth of 5 

cm (Figure 8.5) and then sieved to remove roots (4 mm sieve size) which might potentially 

have contributed to N2O emissions via root decomposition (Smith and Tiedje 1979a). This 

soil was then packed, to a previously determined field bulk density (1.08 ± 0.03 Mg m
–3

), 

back into the PVC containers to the same initial depth of 5 cm. Litterbags, were then placed 

on the soil surface of the repacked soil cores for the SL treatment. The PVC containers were 

covered by a fine mesh at the base to avoid migration of soil material as a result of irrigation.  

Since pasture was clipped to ground level in the ‘C’ and ‘CL’ treatments, it was 

considered possible that N cycling could be enhanced as a result of root decomposition and 

thus N2O emissions might be enhanced, hence, root treatments were also introduced to 

evaluate the net effect of root decomposition on N2O emissions in the absence of litter. For 
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treatments SR0 and SR2, soil was sieved in a similar manner as for the ‘SL’ treatment, and 

litterbags containing roots (5 g bag
–1

 i.e. 1.0 kg fresh roots m
–2

 (6.4 mg g
–1

, total N; 3.99 

atom%; 229 g DM m
–2

), that resulted in an N application rate of 15 kg N ha
–1

; were placed on 

the soil surface or buried to a depth of 2 cm, respectively. 

 

Table 8.1 Treatment details used in the present study. 

Treatment 

notation 

Pasture clipping Litter addition 

  Shoots Roots 

Control × (pasture–5cm high) × × 

C  × × 

CL  
 

 (chopped–1cm) × 

SL × (sieved soil–4mm)  × 

SR0 × (sieved soil) × - surface applied 

SR2 × (sieved soil) ×  - buried (2cm) 

× denotes absence of pasture clipping and/or litter addition. 

 denotes presence of pasture clipping and/or litter addition. 

 

 

 

 

 

 

 

Figure 8.5 The sieved soil treatment in preparation at the field site. 
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8.2.3 Soil-, herbage- and gas-sampling and micrometeorological 
measurements 

   General soil properties at the field site were determined using a commercial 

laboratory; Hill Laboratories, Hamilton, New Zealand. Thirty soil cores (2.5 cm diameter, 7.5 

cm deep) from the experimental site were collected, bulked, and submitted for analysis 

(n = 1).  

Destructive analysis of the soil within the PVC cores was performed on 3 occasions 

(day 0 – 21
st
 January, day 66 – 27

th
 March and day 139 – 8

th
 June) after treatment application. 

Field-moist soil cores were collected using a soil corer (7.5 cm deep × 2.5 cm diameter) from 

within each PVC core (3 replicates per treatment), sub-divided to depths of 0–2, 2–4 and 

4−6 cm, and analysed for inorganic N, microbial biomass nitrogen (MBN) and WSC 

(Sections 3.6, 3.8 and 3.9, respectively). In the sieved soil treatments (SL, SR0 and SR2), the 

sieved soil was not deep enough to be collected at 4–6 cm; hence it was only collected at the 

first two depths. The soil extracts taken for MBN analysis were further analysed for 
15

N 

enrichment of the microbial biomass [(MB-
15

N); Section 3.8.2] using the method of Templer 

et al. (2003) and calculated as follows (Equation 8.1). 

  

      
            

   
 

              

   
 

                   Equation 8.1 

where;  

MB
15

N = microbial biomass 
15

N (µg 
15

N g
–1

 dry soil) 

TNF = total dissolved N of fumigated soil (µg N g
–1

 dry soil) 

Atom%F = atom% of the total dissolved N of the fumigated soil (atom%) 

TNNF = total dissolved N of the non-fumigated soil (µg N g
–1

 dry soil) 

Atom%NF = atom% of the total dissolved N of the non-fumigated soil (atom%) 

 

Soil temperature (107-L; Campbell Scientific, USA) and soil water content (CS616-L; 

Campbell Scientific, USA) were monitored using sensory probes inserted in the soil at 2.5 and 

5.0 cm depths. Air temperature and rainfall data were monitored on a daily basis with data 

logged accordingly (CR23X; Campbell Scientific, Logan, Utah, USA). 

Gas sampling for N2O and CO2 emissions was performed on 16 occasions from 21 

January (day 1) to 10 March, 2011 (day 49) when the emissions had reached control levels. 

On each gas sampling occasion, 10 mL gas samples were manually drawn, using glass 

syringes fitted with three-way taps, and compressed into 6 mL Exetainer
® 

vials (Labco Ltd, 
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High Wycombe, UK) at 0, 30, and 60 min, after positioning the headspace cover. The gas 

samples were analysed, within 48 h, for N2O and CO2 using gas chromatography (Section 

3.11, Equation 3.9). Three hours after gas sampling, a further 15 mL headspace gas sample 

was drawn and put into 12 mL Exetainer
® 

vials. These samples were equilibrated to 

atmospheric pressure immediately before analysis for N2O-
15

N enrichment using IRMS 

(Section 3.12.3). Emission factors (expressed as a percentage of the N applied) were 

calculated by determining the cumulative mass of N2O-N emitted, subtracting the integrated 

control values, and dividing the difference by the mass of N applied to the soil in the form of 

either shoots or roots. 

8.2.4 Statistical analysis 

Gas emission data on each gas sampling occasion and the cumulative emissions were 

tested for normality using the Anderson-Darling test and if the data was skewed then it was 

log transformed [ln(flux+1)] to attain normality (Press et al. 1989). The statistical software 

Minitab (version 15.1; © 2006, Minitab Inc.) was used to perform the analysis of variance 

(ANOVA) on the emission data to determine if treatment means were equal. Treatment 

differences were tested using Tukey’s test. All data presented here are mean ± sd. 
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8.3 Results 

8.3.1 Meteorological measurements and soil and herbage characteristics 

Volumetric water content (θv) of the soil ranged from 0.20 to 0.46 m
3
 water m

–3
 soil at 

5 cm soil depth and fluctuated with irrigation and rainfall. The highest daily rainfall event 

recorded during the experimental period was 32.3 mm (Figure 8.6). The average daily soil 

temperature (5 cm depth) ranged from 5.1 to 27.9°C, following trends in the average daily air 

temperature which ranged from 5.0 to 34.5°C (Figure 8.6). General properties of the soil at 

the field site are shown in Table 8.2. 

 

Table 8.2 Chemical properties of the soil at the field site. 

Soil properties Lincoln university 

(Jan, 2011) 

pH (1: 2) 6.0 

Total C (g kg
–1

) 31 

Total N (g kg
–1

) 2.8 

Anaerobically mineralisable N (µg g
–1

) 61 

Available N (kg ha
–1

) 89 

Olsen P (mg L
–1

) 13 

Potassium (cmolc kg
–1

) 0.34 

Calcium (cmolc kg
–1

) 6.9 

Magnesium (cmolc kg
–1

) 1.19 

Sodium (cmolc kg
–1

) 0.18 

Cation exchange capacity (cmolc kg
–1

) 14 

Total base saturation (%) 60 
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Figure 8.6 Meteorological data during the experimental period (20 January – 9 June, 

2011) at the field site. 
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Ryegrass shoots that were placed into the litterbags had 408 mg C g
–1

, 51.7 mg N g
–1

, 

191 mg g
–1

 hemi-cellulose, 398 mg g
–1

 cellulose, 26.3 mg g
–1

 lignin and a C: N ratio of 8 

while the ryegrass root material had 237 mg C g
–1

, 6.4 mg N g
–1

, 188 mg g
–1

 hemi-cellulose, 

318 mg g
–1

 cellulose, 94.1 mg g
–1

 lignin and a C: N ratio of 37: 1, respectively. The pasture at 

the field site contained 410 mg C g
–1

, 28.5 mg N g
–1

, 183 mg g
–1

 hemi-cellulose, 387 mg g
–1

 

cellulose, 23.2 mg g
–1

 lignin and a C: N ratio of 14. Enrichments of 
15

N in the ryegrass shoots, 

roots and pasture on the day of treatment application were 5.35 ± 0.01, 3.99 ± 0.06, and 

0.3668 ± 0.02 atom%, respectively. Over time, N contents of the shoot material decreased by 

3-fold and 2-fold of its value on day 0 in the ‘CL’ and ‘SL’ treatments, respectively 

(Table 8.3). However, the N contents from the respective treatments did not change between 

days 66 to 139. The N content of the root treatments had doubled by day 66 when compared 

to day 0 values but values at day 66 did not differ from day 139 for the root treatments. 

Compared to day 0 values, the C content of the shoot material decreased significantly 

(P <0.05) over time in the shoot treatments but it did not differ in the root treatments on any 

day of destructive sampling. The fastest decline in 
15

N enrichment of the shoot material 

occurred in the ‘CL’ treatment (Table 8.3) and on day 66 it was half its original value on day 

0, and by day 139, it had decreased to 0.90 atom%. The values decreased by a factor of 3 in 

the root treatments by day 139 when compared to values at day 0. 

Dry matter loss of the shoot material from the litterbags showed that 82 ± 7 and 

46 ± 11% was lost from the ‘CL’ and ‘SL’ treatments by day 66, respectively. Litter mass in 

these treatments at day 139 was 0.7 ± 0.5 g bag
–1 

and 1.2 ± 0.1 g bag
–1

, respectively. 

Corresponding values for roots in the ‘SR0’ and ‘SR2’ treatments were 50 ± 8 and 57 ± 5% at 

day 66 which increased to be 53–84%, respectively, at day 139.  
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Table 8.3 Characteristics of the residual litter in the litterbags over time. 

Treatment 
15

N (atom%) C content (mg g
–1

) N content (mg g
–1

) 

Day 0 

Shoot litter 5.35 ± 0.01
a
* 408 ± 20.2

a
 51.7 ± 0.6

a
 

Root litter  3.99 ± 0.06
A
 237 ± 11.1

A
 6.4 ± 1.5

A
 

Existing pasture 0.367 ± 0.02 410 ± 15.0 28.5 ± 1.7 

Day 66 

Control(s)† 0.36 ± 0.00 376 ± 23.7 21.9 ± 2.6 

CL 2.13 ± 0.30
b
 286 ± 21.2

b
 16.7 ± 0.9

b
 

SL 4.37 ± 0.33
c
 360 ± 16.4

c
 27.1 ± 1.2

c
 

SR0 1.92 ± 0.11
B
 245 ± 16.9

A
 12.7 ± 2.2

B
 

SR2 1.77 ± 0.20
C
 276 ± 10.7

B
 11.2 ± 0.4

C
 

Day 139 

Control(s) 0.37 ± 0.00 383 ± 25.9 21.9 ± 1.8 

CL 0.90 ± 0.38
d
 282 ± 31.6

b
 14.4 ± 3.2

b
 

SL 3.47 ± 1.00
e
 326 ± 56.4

d
 25.1 ± 4.1

c
 

SR0 1.27 ± 0.39
D
 255 ± 15.4

A
 12.4 ± 2.2

B
 

SR2 1.14 ± 0.11
E
 246 ± 19.6

A
 12.9 ± 0.9

D
 

*Data are mean ± sd (n = 3). 

†Reported values are calculated from the chemical analysis of regrown pasture from the 

control and ‘C’ treatments. 

NB: Significant differences (P <0.05) over time (days 0, 66 and 139) between the shoot 

treatments (‘CL’ and ‘SL’) are shown vertically by lower case superscripts and the root 

treatments (‘SR0’ and ‘SR2’) in upper case superscripts. Control treatments are not included in 

the statistical analyses and comparisons are made against day 0 shoot and root variable values. 

Treatment abbreviations are discussed in the text (Section 8.2.2 and Table 8.1). 
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8.3.2 Soil analyses 

8.3.2.1 Inorganic N and MBN  

Soil NH4
+
–N concentrations increased over time (P <0.05) at all depths and on both 

days 66 and 139 in the ‘control’ and ‘C’ treatments (Table 8.4). In the ‘CL’ and ‘SL’ 

treatments NH4
+
–N concentrations were elevated in all depths at day 139 (P <0.05; Table 

8.4). In the treatments receiving root material, NH4
+
–N concentrations fluctuated but had 

generally increased by day 139. There were no treatment effects on concentrations of NH4
+
–N 

at day 0. On days 66 and 139, the ‘control’, ‘C’ and ‘CL’ treatments generally had higher 

NH4
+
–N concentrations than the other treatments (Table 8.4). After day 0, concentrations of 

NH4
+
–N did not differ with depth on day 66 but decreased with increasing soil depth 

averaging 17.5 and 12.2 mg kg
–1

 soil at 0–2 and 2–4 cm, respectively on day 139. A 

significant interaction effect (P <0.001) of treatment with depth was observed at both days 66 

and 139 where higher concentrations occurred at lower soil depth in all treatments except in 

the ‘SR2’ treatment which had higher concentration at a lower depth on day 66. Enrichment of 

15
N for NH4

+
 is not reported here because the volume of soil extract was insufficient. 
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Table 8.4 Soil NH4
+
–N at 0–2, 2–4 and 4–6 cm from control, shoot and root treatments 

over time following surface application of ryegrass litter. 

NH4
+
–N (mg kg

–1
) 

0–2 cm 

 Day 0 Day 66 Day 139 

Control 6.5 ± 0.8
aA

 9.8 ± 0.7
aB

 26.1 ± 5.4
aC

 

C 6.5 ± 0.8
aA

 9.9 ± 0.5
aB

 21.5 ± 5.5
abC

 

CL 6.5 ± 0.8
aA

 7.3 ± 1.4
abA

 19.9 ± 1.9
abB

 

SL 6.5 ± 0.8
aA

 5.2 ± 0.6
bcA

 10.9 ± 0.2
cB

 

SR0 6.5 ± 0.8
aB

 4.4 ± 1.0
cA

 11.8 ± 1.0
cC

 

SR2 6.5 ± 0.8
aB

 6.0 ± 1.1
bcA

 15.1 ± 1.6
bcC

 

2–4 cm 

Control 5.2 ± 1.2
aB

 7.2 ± 1.2
abA

 15.5 ± 1.7
aC

 

C 5.2 ± 1.2
aA

 7.8 ± 1.3
abB

 12.8 ± 2.7
abC

 

CL 5.2 ± 1.2
aA

 5.3 ± 1.3
bA

 12.4 ± 0.6
abB

 

SL 5.2 ± 1.2
aA

 5.4 ± 0.2
bA

 11.0 ± 1.1
abB

 

SR0 5.2 ± 1.2
aA

 4.5 ± 0.6
bA

 11.9 ± 2.1
abB

 

SR2 5.2 ± 1.2
aA

 11.0 ± 2.9
aC

 9.8 ± 0.7
bB

 

4–6 cm 

Control 4.7 ± 0.2
aA

 6.7 ± 0.2
aB

 12.5 ± 2.8
aC

 

C 4.7 ± 0.2
aA

 6.5 ± 0.6
aB

 10.9 ± 0.8
aC

 

CL 4.7 ± 0.2
aA

 5.6 ± 1.1
aA

 20.7 ± 11.6
aB

 

SL 4.7 ± 0.2
a
 -n.a- -n.a- 

SR0 4.7 ± 0.2
a
 -n.a- -n.a- 

SR2 4.7 ± 0.2
a
 -n.a- -n.a- 

Significant differences between treatments (vertical comparison) for any given depth are 

shown by lower case superscripts (Tukey’s test; P <0.05). Significant differences due to time 

(across rows) are shown by upper case superscripts (Tukey’s test; P <0.05). Data are mean ± 

sd. Treatment abbreviations are discussed in the text (Section 8.2.2 and Table 8.1). 
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Concentrations of soil NO3
–
–N had increased at all depths in the control by day 66 

(P <0.05; Table 8.5) and then by day 139, had declined to levels less than those initially 

present at day 0. Soil NO3
–
–N had also increased in the ‘C’ treatment by day 66 but 

concentrations had also decreased by day 139, returning to similar values observed at day 0. 

In the remaining treatments, soil NO3
–
–N concentrations again increased by day 66 generally 

following the trend observed in the ‘C’ treatment. At day 66, soil NO3
–
–N was lower in the 

treatments receiving root litter (SR0 and SR2) at 0–2 cm, with no differences due to treatment 

at 2–4 cm depth while at 4–6 cm depth, NO3
–
–N was higher in the ‘CL’ treatment at day 66. 

On day 139, soil NO3
–
–N was higher in the SR2 treatment at both 0–2 and 2–4 cm depths 

(Table 8.5). A significant interaction effect (P <0.001) of treatment with depth was observed 

on day 66 where higher concentrations occurred at lower soil depth in all the treatments 

except the ‘SR2’ treatment. 
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Table 8.5 Soil NO3
–
–N at 0–2, 2–4 and 4–6 cm from control, shoot and root treatments 

over time following surface application of ryegrass litter. 

NO3
–
–N (mg kg

–1
) 

0–2 cm 

 Day 0 Day 66 Day 139 

Control 5.2 ± 2.1
aB

  53.2 ± 8.1
aC

 0.9 ± 0.1
cA

 

C 5.2 ± 2.1
aA

 55.1 ± 21.3
aB

 2.6 ± 1.5
bcA

 

CL 5.2 ± 2.1
aB

 63.3 ± 15.2
aC

 1.9 ± 0.5
bcA

 

SL 5.2 ± 2.1
aA

 47.5 ± 9.0
aB

 3.6 ± 0.7
bA

 

SR0 5.2 ± 2.1
aB

 23.2 ± 0.3
bC

 2.2 ± 0.7
bcA

 

SR2 5.2 ± 2.1
aA

 11.2 ± 2.9
cB

 14.9 ± 4.8
aB

 

2–4 cm 

Control 3.0 ± 1.1
aB

 26.0 ± 5.0
aC

 0.8 ± 0.0
bA

 

C 3.0 ± 1.1
aA

 21.6 ± 7.6
aB

 1.3 ± 0.8
bA

 

CL 3.0 ± 1.1
aB

 43.9 ± 21.8
aC

 1.2 ± 0.3
bA

 

SL 3.0 ± 1.1
aA

 31.5 ± 3.1
aB

 2.1 ± 0.4
bA

 

SR0 3.0 ± 1.1
aA

 25.3 ± 3.9
aB

 1.8 ± 0.3
bA

 

SR2 3.0 ± 1.1
aA

 23.7 ± 3.1
aB

 14.5 ± 6.1
aB

 

4–6 cm 

Control 3.0 ± 1.2
aB

 20.0 ± 3.2
bC

 1.0 ± 0.2
aA

 

C 3.0 ± 1.2
aA

 22.2 ± 6.0
bB

 1.3 ± 0.5
aA

 

CL 3.0 ± 1.2
aA

 43.7 ± 10.0
aB

 2.2 ± 1.4
aA

 

SL 3.0 ± 1.2
a
 -n.a- -n.a- 

SR0 3.0 ± 1.2
a
 -n.a- -n.a- 

SR2 3.0 ± 1.2
a
 -n.a- -n.a- 

Significant differences between treatments (vertical comparison) for any given depth are 

shown by lower case superscripts (Tukey’s test; P <0.05). Significant differences due to time 

(across rows) are shown by upper case superscripts (Tukey’s test; P <0.05). Data are mean ± 

sd. Treatment abbreviations are discussed in the text (Section 8.2.2 and Table 8.1). 
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On day 66, 
15

N enrichment of the soil NO3
–
–N in the shoot treatments was higher than 

in the root treatments while 
15

N enrichment of the NO3
–
–N in all treatments (both shoot and 

root treatments) was significantly higher (P <0.001) than that of the control at 0–2 cm depth 

(Figure 8.7). At 2–4 and 4–6 cm, both shoot treatments were significantly higher than the 

control but root treatments did not differ from the control (Figure 8.7). Values for the ‘CL’, 

‘SL’ and ‘SR0’ treatments were also higher (P <0.01) at 0–2 cm than at 2–4 cm depth 

(Figure 8.7).  

 

Figure 8.7 Enrichment of soil NO3
–
–

15
N on day 66 after treatment application. Data are 

mean ± sd. Treatment abbreviations are discussed in the text (Section 8.2.2 

and Table 8.1). 

 

Microbial biomass N (MBN) did not differ with treatment on days 66 and 139. 

However, the overall treatment mean at 0–2 cm depth on day 66 (1.41 mg kg
–1

 soil) was 

higher (P <0.05) than the overall treatment mean (0.77 mg kg
–1

) at day 139. Microbial 

biomass-
15

N enrichment in the shoot treatments was significantly higher (P <0.05) than the 

remaining treatments at 0–2 cm depth on day 66 (Figure 8.7) and accounted for 0.04 ± 0.02 

and 0.04 ± 0.01µg 
15

N g
–1

 for the ‘CL’ and ‘SL’ treatments, respectively. Corresponding 

values of total MBN on day 66 were 1.7 ± 0.6 and 1.3 ± 0.6 mg kg
–1

, respectively. Thus, 2.4 

and 3.1% of the total MBN on day 66 had come from the shoot litter in the ‘CL’ and ‘SL’ 

treatments, respectively. Microbial biomass-
15

N did not differ due to root treatment at any 

depth, averaging 0.003 µg 
15

N g
–1

 soil which accounted for 0.3% of the total MBN. 
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8.3.2.2 Water soluble C 

On days 66 and 139, concentrations of water soluble C (WSC) at 0–2 and 2–4 cm 

depths from the control treatment did not differ from the shoot litter treatments (CL and SL) 

but both were higher (P <0.05) than in the root treatments (SR0 and SR2). On average, WSC 

concentrations in the shoot and root treatments on day 66 were 111.5 ± 12.2 and 86.4 ± 8.3 

mg kg
–1

 soil), respectively which then decreased significantly over time with corresponding 

values on day 139 of 84.6 ± 27.0 and 55.8 ± 15.7 mg kg
–1

, respectively (Figure 8.8). A 

significant ‘depth effect’ was observed in the shoot treatments on day 66 (P <0.05) with 

higher concentrations at 0–2 cm (111.5 ± 12.2 mg kg
–1

) than at 2–4 cm (87.7 ± 6.6 mg kg
–1

). 
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Figure 8.8 Water soluble C at (a) 0–2 cm, (b) 2–4 cm, and (c) 4–6 cm, over time following 

surface application of ryegrass shoots and roots. Data are mean ± sd. 

Treatment abbreviations are discussed in the text (Section 8.2.2 and Table 

8.1). 
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8.3.3 Nitrous oxide emissions 

 Emissions of N2O did not follow a normal distribution and hence were transformed 

[ln(flux+1); Section 8.2.4]. Statistical differences were calculated on log transformed data and 

were then back transformed for reporting below. On day 1 (17 h after treatment application), 

N2O emissions from all treatments did not differ from the ‘control’ and were 21 ± 6, 28 ± 11, 

30 ± 11, 35 ± 20, 36 ± 15 and 38 ± 25 µg N2O-N m
–2

 h
–1

 (± sd, P >0.05) for the control, ‘C’, 

‘CL’, ‘SL’, ‘SR0’ and ‘SR2’ treatments, respectively (Figure 8.9a). Emissions were 

significantly lower from the control than in other treatments until day 4. Emissions of N2O 

from the ‘CL’ treatment increased on days 5, 6 and 9 with maximum emissions occurring on 

day 6, significantly higher (P <0.001) than in the other treatments. Emissions of N2O on day 6 

were 2992 ± 2184, 774 ± 882, 177 ± 107, 168 ± 82, 111 ± 95 and 103 ± 76 µg N2O-N m
–2

 h
–1

 

from the ‘CL’, ‘SL’, ‘C’, ‘SR0’, ‘SR2’ and ‘control’ treatments, respectively (Figure 8.9a). 

From day 5, N2O emissions from all treatments were significantly higher than from the 

control until day 16 and did not differ thereafter until day 49. Cumulative N2O emissions 

integrated over 49 d were 26 ± 12, 27 ± 17, 213 ± 47, 82 ± 34, 46 ± 13 and 78 ± 28 

mg N2O-N m
–2

 for the ‘control’, ‘C’, ‘CL’, ‘SL’, ‘SR0’ and ‘SR2’ treatments, respectively. 

Approximately 37–71% and 18–27% of the total emissions occurred during the 4–10 d period 

of maximum activity from the shoot and root treatments, respectively. The emission factor 

(EF) for N2O from the ‘CL’ treatment was significantly higher than in the ‘SL’ treatment 

(0.9 ± 0.2 > 0.3 ± 0.2%) over the 49 d period. The EF of the SR2 treatment (3.6 ± 1.9%) was 

higher (P <0.001) than the other treatments while the ‘SR0’ treatment was lower (1.4 ± 0.9%) 

than the ‘SR2’ treatment. 
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Figure 8.9 Emissions of (a) N2O, and (b) N2O-
15

N enrichment, over time following 

surface application of ryegrass shoots and roots. Data are mean ± sd. 

Treatment abbreviations are discussed in the text (Section 8.2.2 and Table 

8.1). 

 

 The 
15

N enrichment of the N2O-N from the ‘CL’ treatment was higher (P <0.001) than 

in the controls from day 2 through to day 49 (and day 5 to day 25 for the ‘SL’ treatment; 

Figure 8.9b). Maximum 
15

N enrichment of the N2O emission occurred on day 9 for the ‘CL’ 

treatment and day 6 for the remaining treatments and these values were 0.37 ± 0.02, 

0.37 ± 0.01, 4.13 ± 0.18, 2.47 ± 1.11, 1.00 ± 0.44 and 0.55 ± 0.10 atom% in the ‘control’, ‘C’, 

‘CL’, ‘SL’, ‘SR0’, and ‘SR2’ treatments, respectively. Mean atom% values for the ‘control’, 

‘C’, ‘CL’, ‘SL’, ‘SR0’, and ‘SR2’ treatments over 49 d were 0.367, 0.367, 2.01, 1.09, 0.47 and 

0.40, respectively. 
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8.3.4 Carbon dioxide emissions 

Emissions of CO2 did not differ significantly with treatments. Emissions from all 

treatments initially peaked during days 6 and 7 which also coincided with the peak N2O 

emissions (Figure 8.10). However, maximum CO2 emissions were recorded at 49 d with 

values of 217 ± 72, 123 ± 48, 163 ± 58, 156 ± 50, 174 ± 72 and 206 ± 44 mg CO2-C m
–2

 h
–1

 

(mean ± sd) for the ‘control’, ‘C’, ‘CL’, ‘SL’, ‘SR0’ and ‘SR2’ treatments, respectively, with 

no differences due to treatments (P = 0.174). Cumulative CO2 emissions over 49 d equated to 

106.9 ± 23.8, 69.7 ± 7.4, 96.0 ± 9.5, 95.4 ± 15.1, 87.8 ± 14.9 and 98.4 ± 12.0 g CO2-C m
–2 

for 

the ‘control’, ‘C’, ‘CL’, ‘SL’, ‘SR0’ and ‘SR2’ treatments, respectively. 

 

Figure 8.10 Emissions of CO2 over time following surface application of ryegrass shoots 

and roots. Data are mean ± sd. Treatment abbreviations are discussed in the 

text (Section 8.2.2 and Table 8.1). 

8.4 Discussion 

8.4.1 Nitrous oxide emissions 

Surface decomposition of ryegrass shoots and roots stimulated higher N2O emissions 

than in the control. These emissions did not become significant until day 5 and this delay may 

have been due to increases in the microbial growth and biomass, temporarily immobilising 

soil mineral N (Larsson et al. 1998; McKenney et al. 1995) or the time required for 

mineralisation. Perennial ryegrass has a relatively high soluble carbohydrate content (Aldrich 

1984), a lower C: N ratio and higher enzymatic activity during decomposition (Dilly et al. 
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2007) and this, along with rainfall on day 2, might have accelerated the process of soil-N and 

litter-N mineralisation and subsequent N2O emissions (Larsson et al. 1998). The 
15

N 

enrichment of the N2O emissions demonstrates that ryegrass litter was the dominant source of 

N2O in the ‘CL’ treatment with approximately 70% of the N2O originating from litter during 

peak N2O emissions on days 5 to 10 while in the ‘SL’ treatment the value was reduced to 

40−50%.  

Generally, any plant residue – surface-placed or incorporated into the soil, primarily 

undergoes ammonification i.e. the process where mineralisation of plant proteins occurs, 

forming NH4
+
 via microbial decomposition. This NH4

+
 can further be transformed to NO3

–
 via 

nitrification (Flessa et al. 2002) or it can be volatilised to NH3 into the atmosphere (De Ruijter 

et al. 2010). The soil pH at the field site makes the possibility of the latter process unlikely 

(Table 8.2). Nitrous oxide is an intermediate product of both nitrification and denitrification, 

and the N2O emissions in this study may have resulted from a coupling of these processes 

during litter decomposition on the soil surface. The 
15

N enrichment of the soil NO3
–
 was still 

elevated at ca.1.8 atom% at day 66. This demonstrates that litter-
15

N was transformed and 

available as inorganic-N for denitrifiers. And, although not measured directly, this NO3
–
–

15
N 

would have originated from litter derived NH4
+
–

15
N. Determining the exact microbial process 

responsible for N2O emissions from the decomposing litter requires more detailed study and 

was not the aim of the current study. Nevertheless, the mechanism may be speculated upon. 

Soil water content (46–52% WFPS) during the period of maximum emissions (5–10 d) in this 

study, was not ideal for denitrification, however, studies have shown that aerobic 

denitrification can occur in soils with WFPS values as low as 20% (Bateman and Baggs 2005) 

and that N2O emissions may also occur from anaerobic micro-sites within soil aggregates over 

a wide range of soil WFPS (Ambus and Christensen 1994; Novosad and Kay 2007).  

Flessa et al. (2002) measured N2O emissions from surface-placed fresh grass leaves 

(Poa pratensis L.) at the rate of 9.2 g N m
–2

 and concluded that the emissions occurred due to 

a coupling of nitrification and denitrification of litter-derived N. The present study is the first 

study that reports soil N dynamics and N2O emissions using a 
15

N technique with pasture 

litter in situ. The 
15

N enrichment of N2O in this study proved that N2O emissions originated 

from litter derived N. The soil used in this study was a fertile pasture soil with high available 

N (Table 8.2) which was demonstrated by the presence of higher NH4
+
 and NO3

–
 in the 

control treatment. Soil NO3
–
 concentrations in the shoot treatments did not differ from the 

control treatment on days 66 or 139 but 
15

N analysis of soil NO3
–
 showed that it was 

15
N-enriched as a result of litter treatment and that N mineralisation of plant litter significantly 
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contributed to the soil NO3
–
 pool and hence could be used as a substrate for N2O emissions 

although by day 66, N2O emissions had decreased.  

8.4.2 Emission factors 

Flessa et al. (2002) found cumulative N2O emissions of 25 mg m
–2

 and an EF of 0.3% 

over 50 d from surface-placed grass leaves applied at a rate of 9.2 g N m
–2

. Larsson et al. 

(1998) applied ryegrass onto soil surface at the rate of 34.8 g N m
–2

 and incubated over a 92 d 

period but emissions of N2O did not differ from a control soil and the reported EF was only 

0.1%. Aulakh et al. (1991a) used dried and chopped, surface-placed residues of hairy vetch 

(C: N ratio of 8, similar to the ryegrass shoots used here) and corn (C: N, 39; similar to root 

treatments in this study) showing that cumulative N2O emissions were 6.1 and 3.2 mg N kg
–1

 

soil at 90% WFPS at 25
o
C for 35 d. In the present study, cumulative emissions from the shoot 

litter treatments were almost 3–10 times higher compared to that of Flessa et al. (2002) and 

Aulakh et al. (1991a); however, the rate of N applied was almost double (21.3 g N m
–2

) in the 

present study. Moreover, in the study of Flessa et al. (2002), the emissions commenced a 

week after treatment application which was similar (5 d) to the present study but they 

observed elevated emissions over 28 d as opposed to 10 d in this study. Aulakh et al. (1991a) 

and Pal et al. (2012) also observed short-lived, elevated N2O emissions after 4 and 8 d from 

pasture and crop residue incorporation, respectively, similar to the present study. 

Emission factors in this current study, for the shoot litter treatments ranged from 0.3 to 

0.9% which is broadly similar to the above studies after considering the factors such as N 

content of litter applied, soil type and climate. Soil water content (θv) in the current study 

ranged from 0.22 to 0.40 m
3
 m

–3
 that equates to a mean value of 0.31 m

3
 m

–3
. Chapter 6 in 

this thesis reported EF values of 0.7 and 1.7 % for clover and ryegrass (Table 6.3; mean 1.2%) 

at 0.40 m
3
 m

–3
 (54% WFPS). On this basis, both the lab study and the current study had 

similar results for the EF values (1.2% vs. 0.9 ± 0.2%). The EF of 0.9 ± 0.2% from the ‘CL’ 

treatment was also close to the default EF (of 1%) stipulated by IPCC best practice guidelines 

for crop residues; it does not account for pasture residues.  

8.4.3 Biochemical composition 

The ‘SL’ treatment had relatively lower N2O emissions compared to the ‘CL’ treatment 

(EF of 0.3 vs. 0.9%), in addition to the average 
15

N enrichment of N2O being half that of the 

‘CL’ treatment (1.09 vs. 2.01 atom%). This difference might be because a greater proportion 

of the emitted N2O in the ‘SL’ treatment originated from mineralised soil-N rather than 

litter-N. Soil sieving and repacking into the PVC cores and the consequent disturbance of the 
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microbial biomass in the surface layers (0–10 cm) may also have reduced the microbial 

activity thereby causing lower N2O emissions. The relatively lower N2O emissions in the ‘C’ 

treatment compared to the litter treatments showed that potential artefacts as a result of 

defoliation did not significantly enhance N2O emissions. Thus, any release of NH4
+
 and NO3

–
 

from defoliated plants did not result in significant N2O emissions. In the root treatments, 

where N2O emissions were recorded over a more protracted period, most of the N2O came 

from the mineralisation of the soil-N as indicated by the lower 
15

N enrichment of N2O from 

the root treatments.  

Further, the root treatments did not produce an ‘immediate’ short-lived, N2O effect as in 

the shoot treatments; rather they showed a protracted response probably because of their 

recalcitrant biochemical composition which included a higher C: N ratio and lignin content 

[Section 8.3.1; (Aulakh et al. 1991a; Huang et al. 2004)]. Studies have shown that recalcitrant 

materials such as stubbles and roots (Cusack et al. 2009) with high C: N ratios, can take 

relatively long periods to mineralise (Gentile et al. 2008; Kuzyakov et al. 1999). The highest 

EF (3.6%) in the ‘SR2’ treatment showed that a delayed yet continuous mineralisation of the 

recalcitrant root material (94 mg g
–1

 vs. 26 mg g
–1

 lignin in shoot material) occurred and this 

might have been enhanced due to its incorporation at 2 cm. 

Aulakh et al. (1991a) concluded that differences in the N2O emissions from plant 

materials were due to differences in the C: N contents of the plant residues used. They also 

indicated that incorporation or surface placement of wide-C: N-ratio residues could cause a 

significant immobilisation of mineral N for several weeks, and this was possibly the reason 

for lower inorganic N concentrations in the root treatments in this study. Dilly et al. (2007) 

compared decomposition rates of wheat (Triticum sp.), rye (Secale sp.) and ryegrass and 

found that ryegrass decomposed relatively rapidly (maximum in first 2 months) compared to 

the other grasses because of higher ammonification rates and a low C: N ratio. The direct 

relation of C: N ratio on N2O emissions has been documented widely (Baggs et al. 2003; 

Velthof et al. 2002) and therefore plant species under investigation can be a governing factor 

for N2O emissions e.g. EF for horticultural crop residues was 14.6% as reported by Velthof et 

al. (2002). 

8.4.4 Carbon-, nitrogen- and mass-loss of the litter 

Mass loss and N content of the shoot litter material showed that litter-N mass was 

already depleted due to microbial utilisation by day 66. In the present study the increasing soil 

NH4
+
 concentrations over time appear to have come from the soil-N pool since this effect was 

also seen in the control. Geisseler and Horwath (2011) also found higher NH4
+
 concentrations 
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from a control treatment, 60 d after surface application of an oats-legume cover crop (C: N, 

30) at different moisture levels and indicated that lower NH4
+
 concentrations from the cover 

crop was due to N immobilisation in the initial 5 d. 

Brunetto et al. (2011) tracked the decomposition of 
15

N-labelled ryegrass and clover in 

vineyards over 16 weeks and found 45% mass loss after 56 d of incubation when using 

surface-placed litterbags. Mass loss in the present study on day 66 from the ‘SL’ treatment 

was similar (46%) to Brunetto et al. (2011) however the values were almost double (82%) for 

the ‘CL’ treatment on the same day. This might be because in the ‘CL’ treatment, presence of 

undisturbed plant roots and associated microbes might have aided in decomposition of the 

added litter. However, in the present study, soil analyses was not performed during the initial 

period (10–20 d after treatment), when the microbial activity was assumed to be maximum. 

Tutua et al. (2002) surface-placed a mixture of ryegrass and clover in a New Zealand 

apple orchard and found that about 60% of the initial mass was lost after 90 d from the 

placement of litterbags; the faster rate of decomposition was attributed to irrigation and soil 

burial of the litterbags. The ‘SR0’ treatment had similar values (50% at day 66) compared to 

the results of Tutua et al. (2002) but the value of 53% on day 139 was presumably due to the 

recalcitrant biochemical composition of the root material (Glasener et al. 2002; Wang et al. 

2010). Tutua et al. (2002) reported higher decomposition rates from the buried litterbags than 

the surface-placed litterbags. Mass loss from the ‘SR2’ and ‘SR0’ treatments in this study were 

similar by day 66 but it increased significantly to 84% by day139 – the maximum loss 

compared to all the treatments thus showing the effect of incorporation, similar to the results 

of Tutua et al. (2002). However, the observed increase in the litter mass of the shoot 

treatments at day 139 in the current might be an artefact due to new herbage growing through 

the mesh of the litterbags in the ‘CL’ and ‘SL’ treatments.  

Recent studies using litterbags (Sanaullah et al. 2010; Wang et al. 2010) have reported 

changes in the C and N composition of the litter over time. Wang et al. (2010) investigated 

the decomposition of dried leaf litter of forest tree species in litterbags and found that the C 

content of the litter decreased over 12 months while the N content increased over the same 

period while Sanaullah et al. (2010) reported reductions in the C and N contents of leaf litter 

of ryegrass over 11 months. Kriauciuniene et al. (2008) reported similar results from root and 

shoots of rape (Brassica napus L.), winter wheat (Triticum aestivum L.) and red clover 

(Trifolium pratense L.) with maximum reduction during 33–63 weeks. The present study 

showed reductions in C and N contents from both shoot and root treatments with an exception 

that the N content of root material increased over time, similar to Wang et al. (2010). This 

may have been due to N immobilisation as reported by Wang et al. (2010).  
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Unlike the current study, others have found that surface application of plant material 

increases the CO2 emissions (Geisseler and Horwath 2011). However, in this current study the 

CO2 emissions peaked at days 6 and 7 irrespectively of the soil temperature and soil water 

contents, which coincided with peak N2O emissions. This may have been due to higher 

microbial activity in the initial phase of treatment application, when soil analyses were not 

performed. Flessa et al. (2002) reported elevated CO2 emissions immediately after grass 

mulch application and concluded that CO2 was emitted from the combination of soil and plant 

respiration and activity of decomposer organisms.  

8.5 Conclusion 

Surface decomposition of ryegrass shoots and roots stimulated N2O emissions with 

maximum emissions 5–10 d after treatment application with emissions continuing for a period 

of 49 d. The 
15

N analyses showed that litter-N made a significant contribution to the N2O flux 

and approximately 70% of the total N2O in the ‘CL’ treatment and 40–50% in the ‘SL’ 

treatment originated from the litter in the surface-placed shoot litter (‘CL’ and ‘SL’) 

treatments. The elevated emissions in the shoot litter treatments are attributed to the lower 

C: N ratio and rich biochemical composition of the ryegrass. The N2O emissions most likely 

resulted from a coupling of nitrification and denitrification of the litter-derived-N. An 

emission factor of 0.9 ± 0.2% was calculated for the ‘shoot only’ (CL) treatment which is 

similar to the EF values in the lab study (Chapter 6) and to the default EF of 1% stipulated by 

the IPCC for crop residues. This treatment (CL) also most closely resembles the effect of in 

situ litter-fall onto grazed pasture. The implications of a 0.9% EF for litter-fall are discussed 

in Chapter 9. Litter treatments did not affect CO2 emissions. Dry matter loss from the 

litterbags ranged from 46–82% for the shoot treatments and 50–57% for the root treatments. 

The C and N contents of the litter from litterbags decreased over time. Investigation using 

pasture litter of varying biochemical composition is warranted to further consider the impacts 

of litter rates and the microbial processes responsible for the N2O emissions observed 

following litter deposition onto the soil surface. 
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     Chapter 9 

Conclusions and recommendations 

9.1 Introduction 

The Intergovernmental Panel on Climate Change (IPCC) confirms that crop residues
**

 

in arable systems can contribute significantly to C and N cycling (Section 2.2.4) and also 

cause significant N2O emissions – a potent greenhouse gas (Section 2.2.2). A national, annual 

emissions inventory compiled according to the IPCC Guidelines accounts for direct N2O 

emissions from crop residues both above and below ground (IPCC 2006). The guidelines 

state, “The nitrogen residue from perennial forage crops is only accounted for during periodic 

pasture renewal, i.e. not necessarily on an annual basis as is the case with annual crops” 

(IPCC 2006). Despite the fact that 70% of the world agricultural area (FAOSTAT 2000) and 

90% of New Zealand’s total farm area is considered to be pastoral ecosystem (Statistics New 

Zealand 2003), the IPCC does not consider the potential contribution of pasture residues, if 

any, to be significant with respect to N2O emissions. Therefore, the questions posed in this 

thesis were firstly: Do pasture residues (collectively called ‘litter’) occur in significant 

quantities during grazing? And secondly, what is the role of herbage embodied-N with respect 

to N2O emissions? The overall objective of the research was to quantify the contribution of 

plant-derived N2O emissions in intensively grazed dairy pastures to New Zealand’s 

agricultural greenhouse gas inventory. 

This chapter summarises the key results of the experiments performed (Section 9.2) and 

discusses the implications of the research findings (Section 9.3). 

9.2 Overall summary 

9.2.1 Litter-fall: significant quantities in intensively grazed dairy pastures 

The rationale for this study came from observing grazing dairy cattle dropping freshly 

harvested plant material onto the soil surface, hereafter called litter-fall. For the first time, this 

study (Chapter 4) quantified litter-fall in intensively grazed dairy pastures. During grazing the 

fresh litter-fall rate was 53 ± 24 kg DM ha
–1

 per grazing event. This equated to an annual N 

application rate of 15.9 kg N ha
–1

 y
–1

 and 3.5 kg N ha
–1

 y
–1

 for fresh and senesced litter, 

respectively. The amount of N contained in the annual litter-fall rate was comparable in 

                                                 
**

 Crop residues in this thesis is defined as the materials remaining in the field after a crop has been harvested in 

agricultural and horticultural systems. These residues include stalks, stubbles, stems, leaves and seed pods. 
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magnitude to a typical fertiliser application rate (~25 kg N ha
–1

). Litter-fall accounted for 4% 

of the apparent dry matter consumption of the dairy cattle. This has implications for dry 

matter budgeting i.e. budgets not accounting for litter-fall may overestimate DMI of the 

animals. Since this litter contained N, it was hypothesised that during its decomposition it 

could contribute to N cycling and N2O emissions. The litter-fall rates measured also raised 

further questions. 

 Would grazing management change litter-fall rates? For example, pasture utilisation, 

stocking rate, pasture and animal species, climate, grazing intensity, could all 

potentially affect litter-fall. 

 Could litter-fall at the above measured rates contribute to N2O emissions? 

 If so, are N2O emissions affected by the biochemical composition of the litter? 

 If litter-fall contributes to N2O emissions, are there implications for the IPCC 

methodologies or assumptions? 

The answers to some of these questions were obtained in this current work. 

9.2.2 Animal treading increases N2O emissions irrespective of the presence of 
herbage 

Approximately 20% of the world’s pastures and rangelands are considered degraded 

through overgrazing and compaction (Steinfeld et al. 2006). The magnitude of compaction 

depends on the stocking rate, soil type, moisture content and animal species (Naeth et al. 

1990; Warren et al. 1986). Chapter 5 investigated the effect of partial incorporation of pasture 

herbage due to animal treading on N2O emissions. Results showed that: 

 Treading lowered soil NO3
–
–N concentrations and increased N2O emissions, 

irrespective of the presence or absence of herbage indicating utilisation of NO3
–
 by 

N2O producing microorganisms. In Chapter 5 (part B), treading diluted the 
15

N 

enrichment of the soil NO3
–
 pool presumably due to the release of unlabelled soil-N 

and/or herbage-N. 

 The suppression of the CO2 emissions due to treading (parts A and B) indicated an 

enhancement of anaerobic conditions in the trodden plots thereby increasing the 

chances of denitrification contributing to N2O emissions. 

 To further understand the effect of herbage treading on N2O emissions given the 

results of Chapter 5 and other work (Chapter 8) in this thesis, 
15

N labelled herbage 

should be used in further studies to determine the extent of the increase in the soil 

inorganic N pool following treading. 
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9.2.3 Pasture litter – a significant, anthropogenic N2O source 

Studies have shown that N2O emissions occur from incorporation of crop residues into 

soil (Section 2.4) and the magnitude of these emissions has been shown to depend on the 

biochemical composition, rate and placement of litter into the soil (Section 2.4). Chapter 4 

showed that litter-fall was significant in pasture. Chapter 6 was a laboratory study to quantify 

N2O emissions using two pasture species and a winter supplement that dominate in New 

Zealand. Ground shoots of clover, ryegrass and maize were incorporated into soil. Results 

showed that: 

 Maximum N2O emissions occurred relatively rapidly (0.5 d) after litter incorporation 

indicating rapid mineralisation of plant litter-N and subsequent utilisation by nitrifiers 

and/or denitrifiers. 

 Emission factors (EF) for N2O equated to 2–3% of the incorporated N at 86% WFPS 

while at 54% WFPS, EF was significantly less with 1.7% > 0.7% = 0.5% for clover, 

ryegrass and maize, respectively; these differences between species were attributed to 

the biochemical properties of the litter species including their differing C: N ratios.  

 Cumulative emissions from these, albeit unrealistically high rates of litter-N 

incorporation ranged from 63–209 kg N2O-N ha
–1

 y
–1

 at 54% WFPS and 269–359 kg 

N2O-N ha
–1

 y
–1

 at 86% WFPS, respectively. The significant N2O emissions, especially 

for clover and ryegrass, warranted further study (Chapters 7 and 8). Combining the EF 

results and the in situ litter-fall data, it was estimated that N2O emissions, attributable 

to litter-fall alone, could be 0.4 kg N2O ha
–1 

y
–1

, which is similar to the reported values 

of ‘background’ emissions from grazed pasture soils (Section 2.2.5). But unlike these 

so called ‘background’ emissions, these litter-fall-derived N2O emissions are clearly 

anthropogenic and therefore should be acknowledged and accounted for in the IPCC 

methodology. 

9.2.4 Biochemical composition of litter: effect of cellulose on N2O emissions 

Results from Chapter 6 showed that the biochemical composition of the litter could 

determine the N2O emissions. Clover had a lower C: N ratio (of 9) and lower cellulose and 

hemicellulose contents. To investigate the role of the C: N ratio with respect to N2O 

emissions, increasing amounts of cellulose were incorporated with a constant amount of 

clover litter (in Chapter 7) since it was rationalised that the lower C: N ratio of the clover litter 

in Chapter 6 may have meant a lack of a C substrate for denitrifiers to complete the reduction 

of N2O to N2. Results showed that: 
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 Clover incorporation into soil rapidly produced N2O emissions and adding increasing 

quantities of cellulose significantly enhanced those N2O emissions, indicating that the 

incorporated cellulose acted as a labile C source for the heterotrophic organisms 

responsible for denitrification. 

 Increases in soil inorganic N concentrations from the treatments indicated that 

ammonification of the plant litter occurred followed by nitrification of the NH4
+
 to 

NO3
–
 and its further consumption in the presence of the added C substrate i.e. 

cellulose. 

 Over 42 d, 50–90% of the total N2O was emitted in ~9 d from the cellulose-amended 

treatments. An important implication from this study was that higher C: N ratios did 

not necessarily mean that the material was recalcitrant with respect to decomposition 

and N2O emissions; rather it was the biochemical composition, relative concentrations 

and the form of the recalcitrant compounds in the plant litter which played key roles. 

 Emissions of N2O increased with increasing C: N ratio of the litter and cellulose 

combinations. 

 Further investigation should be performed using 
15

N-labelled plant materials to further 

establish associated N2O emissions and N cycling during their decomposition. 

9.2.5 Surface-placed litter stimulates N2O emissions 

In Chapter 8, 
15

N-labelled ryegrass was placed on the surface of a pastoral soil in 

litterbags at an unrealistically high rate of 213 kg N ha
–1

 and N2O and CO2 emissions were 

measured. This study is the first study that reports soil N dynamics and N2O emissions using a 

15
N technique with pasture litter in situ. Results showed that: 

 Approximately 70% of the N2O came from the shoots with peak N2O emissions 5 to 

10 d after litter placement. 

 Emissions of N2O may have resulted from ammonification followed by a coupling of 

nitrification and denitrification during litter decomposition on the soil surface. The 
15

N 

enrichment of soil inorganic N (NO3
–
) and the evolved N2O demonstrated that the 

emissions originated from litter-N. These processes supported the hypotheses 

established in Chapters 6 and 7. 

 The EF of the in situ placed litter was 0.9%. This result in conjunction with the litter-

fall rates measured (Chapter 4) has implications for background N2O emissions and 

this is discussed further below. 
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9.3 Implications of this research 

9.3.1 Introduction  

Figure 9.1 summarises the various facets of research that comprise this thesis. The 

frequency and timing of pasture grazing by livestock is determined primarily by DM on-offer 

and this is a function of management practices, climate and pasture species. The duration and 

intensity of grazing depends on the required degree of pasture utilisation. 

Grazing induces litter-fall (Chapter 4) and the associated animal treading affects both 

soil and pasture characteristics (Chapters 5 and 8). Decomposition of litter-fall on the soil 

surface results in N release from the harvested but un-ingested litter and this contributes to the 

soil inorganic N pool (Chapter 8). The rate and total contribution of litter-fall to the soil 

inorganic N pool will depend on pasture species and the biochemical composition of the litter. 

It is highly likely that the stocking rate, ruminant species and pasture utilisation rates will also 

affect litter-fall but further work is required to assess this. The N input from litter-fall to the 

soil inorganic N pool then has the potential to contribute to N2O emissions. The exact 

mechanisms for these N2O emissions are unknown but coupled nitrification-denitrification is 

highly probable. Competition for this soil inorganic N will occur from soil microorganisms 

and plant N uptake if grazing animals have left the pasture in a stage that is suitable for rapid 

regrowth. 

Grazing causes animal treading of the pasture and soil, with the degree of physical 

damage dependent on pasture cover and species and on the nature of the grazing animal (i.e. 

sheep or cattle). It would be expected that lower C: N ratio species such as clover, would be 

more susceptible to treading damage. One of the experiments (Chapter 5) in this thesis 

showed that herbage presence had no effect on net soil inorganic N concentrations with 

depletion in NO3
–
–N while N2O-N emissions increased. However, repeating this experiment 

with prior 
15

N labelling of the soil NO3
–
 pool showed that there was a flux of N being added 

to the soil. This source was unidentified, but could have been from damaged pasture shoots or 

roots and/or soil organic matter exposed as result of treading. Any contribution of herbage 

damaged by treading, to the soil inorganic N pool will again depend on biochemical 

composition, competition for N released, the degree of soil physical damage and other 

parameters such as soil type and soil water content. Further studies need to determine the 

source and rate of N inputs to the soil inorganic N pool following treading. 
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Figure 9.1 Summary of this thesis, key findings and raised questions 

NB: Recognised pathways, thesis-oriented research and pathways requiring further research 

are shown in green, red and blue, respectively. 

Dry matter  

on-offer 

Grazing 
- Stocking rate 

- Animal species 

- Pasture utilisation rate 

Pasture 

species 
Climate 

N release to soil  

Inorganic pool 

Biochemical 

composition 

Litter-fall 

Treading-induced soil 

damage/herbage burial 

Soil inorganic-N 

removal 

- Compaction 

- Anaerobic 

conditions 

N2O production 

mechanisms 
Plant N uptake 

Pasture 

species 

Management 

practices 

Climate and 

Management 

practices 

Microbial N 

pool 

SOM exposure/release of fixed NH4 

Decomposition 

e.
g

. 
ce

ll
u

lo
se

 c
o

n
te

n
t 

Other N loss 

pathways 

Soil type 

and 

drainage 



 148 

9.3.2 Inventory implications 

Nitrous oxide emissions are expressed as an emission factor (EF) that is calculated by 

determining the cumulative mass of N emitted (as N2O-N) over a period, subtracting the 

cumulative emissions from non-treated ‘background’ control plots, and dividing the 

difference by the mass of N applied to the soil (in the form of residues, fertiliser or excreta). 

The IPCC methodology states that “...The so-called ‘background’ emissions...are 

anthropogenic and are accounted for in the IPCC methodology”. These emissions are assumed 

to mainly originate from the contribution of N in crop residues (IPCC definition) and/or 

antecedent effects of animal excreta and fertiliser. The IPCC also assumes that the emissions 

from managed and unmanaged lands are equal and are set to 1 kg N2O-N ha
–1

 y
–1

 under zero 

fertiliser N addition based on estimates of Bouwman (1996) while Kelliher et al. (2010) 

reported a value of 0.3 kg N2O-N ha
–1

 y
–1

 for background emissions for New Zealand 

pastures. In the absence of country specific data for background emissions for New Zealand, 

there has been discussion on ways to include background emissions. 

9.3.2.1 Relative magnitude of litter-fall emissions at the urine patch scale 

Fresh litter-fall at the rate of 53 kg DM ha
–1 

d
–1

 on a headspace chamber area of 

0.16 m
2
 yielded 0.39 mg N2O-N chamber

–1
 over 7 d (mean of peak emissions during 4–10 d). 

Assuming an EF of 0.9% and dry matter N content of 51.7 mg N g
–1

, this equates to a daily 

flux of 0.35 mg N2O-N m
–2

 d
−1

. Studies have reported daily N2O fluxes from urine application 

in the range of 7–8 mg N2O-N m
–2

 d
–1

. For example, De Klein et al. (2003) applied cow urine 

(at 655 kg N ha
−1

) to a silt loam pasture soil in New Zealand and recorded peak N2O fluxes of 

7.2 mg N2O-N m
–2

 d
–1

 while Clough et al. (1998) recorded a peak N2O flux of ~8 mg N2O-N 

m
–2

 d
–1

 when urine was applied at the rate of 1000 kg N ha
–1

. Thus the litter-fall-derived daily 

N2O flux is approximately 4.4–4.9% of a daily urine-derived flux. Thus, compared to the 

emissions from urine, litter-fall-derived emissions are small in magnitude, but they are likely 

to occur daily for about 10 d after litter-fall. 

9.3.2.2 Relative magnitude of litter-fall emissions at the national scale 

New Zealand’s total (direct and indirect) N2O inventory from agricultural soils was 

reported to be 19.5 Gg N2O-N y
–1

 in 2009 (Ministry for the Environment 2011). The dairy 

industry has 6.2 million dairy cattle (Statistics New Zealand 2011) and is responsible for 4.67 

Gg N2O-N y
–1

 (direct emissions) or 32% of the total, direct emissions from agricultural soils. 

Approximately 0.6 kg DM cow
–1

 is dropped as litter-fall per grazing event i.e. per day 

(Chapter 4). Assuming 6.2 million cows graze for 365 d on pasture with an N content of 51.7 

mg N g
–1

 and litter-fall has an EF of 0.9%, then 0.63 Gg N2O-N y
–1

 will be emitted from 
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litter-fall annually. As a proportion of the total N2O-N (5.780 Gg N2O-N y
–1

) emitted from 

dairy cattle in 2009 (4.668 Gg N2O-N y
–1

 directly; 1.112 Gg N2O-N y
–1

 indirectly), emissions 

from litter-fall equates to 10.9%. This simple calculation uses the pasture N content of 51.7 

mg N g
–1 

based on the fertilised litter used in Chapter 8. Using a pasture N content value of 37 

mg N g
–1

 and an EF of 1% adopted by the national N2O inventory calculations (CSIRO 2007), 

this value equates to 8.7%. However, in the field survey (Chapter 4), litter N content was 

roughly half this value i.e. 25 mg N g
–1

. Furthermore, the calculation assumes that cattle 

grazed pasture for 365 d. In reality, this is more likely to be about 315 d, based on the 

LUDF’s management. During the remaining period, dairy cows may either graze forage crops 

or be fed supplements. Revising the litter-fall’s contribution based on a shorter grazing period 

(315 d) and lower N content (25 mg N g
–1

) gives 0.26 Gg N2O-N y
–1

 which equates to 4.5% 

of the total dairy cattle emissions.  

National N2O inventory calculations for direct and indirect N2O emissions derived 

from dairy cattle is determined as a back calculation of an animal’s annual production rate and 

weight gain. Production data are utilised for the inventory and annual weight gain estimated in 

order to estimate the animal’s energy requirement. This requirement is then converted into a 

DMI based on the energy content of the pasture (CSIRO 2007). This thesis has shown that 4% 

of the total pasture on-offer is actually lost as litter-fall. However, dropping freshly harvested 

pasture would not affect the inventory determination of DMI for dairy cattle but by neglecting 

the contribution of litter-fall-derived N2O emissions, there would be a systematic error of 4% 

(that is NOT an uncertainty using a litter-fall-N application rate of 15.9 kg N ha
–1

 y
–1

) in New 

Zealand’s inventory of agricultural soils N2O emissions; this has been identified by this 

research. Thus, including the effect(s) of litter-fall in inventory calculation provides a more 

accurate and refined accounting of the N2O-N released from grazed pasture N cycling. 

However, the above implications are based on one field survey of litter-fall (Chapter 4) and 

one in situ measurement of N2O-N emissions (Chapter 8). Before solid recommendations can 

be made to alter IPCC inventory methodologies, further data on the effects of different 

grazing managements, animal and pasture species, and climate are needed (Figure 9.1). 

9.3.3 Implications for methodology of N2O flux measurement 

Currently N2O fluxes are commonly measured using static chambers deployed after 

the application of a fertiliser or excreta treatment (Figure 9.2a). The measurements are 

typically made after fencing-off an area of pasture >1 month prior to application of the 

treatment (urine/fertiliser), to prevent antecedent effects of urine/dung deposition. The 

untreated plots (control) do not receive the treatment and any emissions of N2O from the 
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control plots are assumed to be arising from the antecedent effects of N cycling. The litter-fall 

deposited onto the surface prior to fencing off the experimental area will have decomposed 

and N2O emissions may be complete (Chapters 5 and 8). However, contributions to the soil 

inorganic N pool may still exist after 30 d (Chapter 8). Thus, the daily fluxes from the control 

will be equal to background N2O emissions [0.08 mg N2O-N m
–2

 d
–1

; (Kelliher et al. 2007)] 

which are then deducted from the treatment fluxes. Figure 9.2a shows that the ‘net’ emissions 

from the urine treatment would be 7.92 mg N2O-N m
–2

 d
–1 

after this deduction using the 

existing N2O flux measurement method. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2 Existing and alternative methodologies for N2O flux measurement 
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An alternative methodology for flux measurement is proposed. Following grazing, if 

an area of pasture devoid of excreta patches is fenced-off >1 month prior to treatment 

application onto ‘treatment’ plots (except the control plots), would the measured and 

calculated emissions be the same or different from those deduced using existing 

methodology? 

I propose that the emissions would be different because of the decomposing litter-fall on 

the soil surface. This is explained as follows. After a single grazing event, approximately 3% 

of the grazed area has urine deposited on it (Moir et al. 2011; Williams and Haynes 1994). 

This means that 97% of the grazed area was not subject to urine deposition. On this basis, for 

Figure 9.2b, it can be argued that there would be a 97% chance that litter would fall onto a so 

called control area and only a 3% chance it would fall onto an area to which urine has been 

applied during the grazing event. In Figure 9.2b, the emissions from the control plots would 

be 0.35 mg N2O-N m
–2

 d
–1

 (from litter-fall, Section 9.3.2.1) plus the daily background flux of 

0.08 mg N2O-N m
–2

 d
–1

 giving 0.43 mg N2O-N m
–2

 d
–1

. Emissions of N2O from the urine-

treated plots would be the same i.e. 8.0 mg N2O-N m
–2

 d
–1

 giving net emissions of 7.57 mg 

N2O-N m
–2

 d
–1

. Thus, it can be argued that N2O emissions from the control in Figure 9.2b 

have been correctly estimated by including the contribution of litter-fall-derived N2O 

emissions, but this should not be done for the urine patch because of the very small chance of 

litter falling onto such areas. Thus, including a litter-fall effect would increase N2O emissions 

from the controls, and hence this alternative methodology would yield a smaller N2O 

emission factor (0.96%) than the existing methodology (1%). 

Are potential N2O emissions from litter-fall already captured elsewhere in the IPCC 

guidelines? In terms of intensive pasture grazing and litter-fall, the pasture’s grass N content 

may have derived from fertiliser or biological N fixation (BNF), since biologically fixed N 

can ultimately be used by non-legumes. The IPCC guidelines recognise that the actual BNF 

process does not result in significant N2O emissions. However, the guidelines do not consider 

the fate of symbiotically fixed N in grazed pastures cycling via litter-fall prior to any pasture 

renewal operation. Legumes grown specifically for their ability to fix N in anthropogenic 

farming systems are designated as an anthropogenic activity. If the N in the litter-fall is 

derived from fertiliser N or anthropogenic BNF, as is the case in intensive anthropogenic 

systems, then any additional N2O emission resulting from litter-fall containing these N 

sources should strictly be included in inventory calculations. 

The current research concludes that potential contribution(s) of litter-N cycling to N2O 

emissions are significant, yet, not considered by the IPCC and hence, the IPCC methodology 
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should be re-evaluated. However, in order to do this, there is a need to further understand the 

influence of grazing management on litter-fall fate and quantities.  

9.4 Conclusions 

It can be concluded that: 

 Pasture litter is a complex source of C and N. The mineralisation (i.e. ammonification) 

of C and N from litter is a slower process compared to fertiliser- or urine-N and it is 

dependent on the litter’s biochemical composition, soil type and climatic parameters, 

mainly soil water content and soil temperature. 

 Significant quantities of litter are produced in pastures following grazing events and 

this has the potential to contribute to N2O emissions: Previously unrecognised and not 

accounted for in the IPCC best practice guidelines. 

 Presently, there is no EF of N2O for pasture residues. The emission factor for pasture 

residues in situ was determined to be 0.9% but should be further evaluated under 

different pastoral management. 

 Peak N2O emissions following pasture litter incorporation, surface decomposition and 

animal treading are generally short-lived and range from 4–10 d after application. 

 The effect of pasture litter on the whole greenhouse gas budget should be investigated 

in the future studies. 
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Appendix 

This section compares N application resulting from litter-fall in Appendix 1 and the 

publications from this thesis are shown in Appendices 2 and 3. 

 

Appendix 1. 

The IPCC suggests a default emissions factor of 1% (i.e. 0.01) with an uncertainty range 

of 0.003−0.03 for anthropogenic additions (mineral fertilisers, organic amendments and crop 

residues). In Chapter 6 (experiment 3) when clover-ryegrass was incorporated into soil, an EF 

of 3% was recorded at an application rate of 313 kg N ha
–1

. To estimate annual N2O 

emissions from the fresh litter, the annual litter-fall rate of 15.9 kg N ha
–1 

y
–1

 was multiplied 

by the EF of 3% and the N2O molecular ratio (44/28). The direct N2O emissions from the 

fresh grazing-induced litter-fall were 0.75 kg N2O ha
–1 

y
–1

. When the default EF of 1% was 

used for the above calculations, N2O emissions were 0.25 kg N2O ha
–1 

y
–1

. The corresponding 

values for the senesced litter were 0.16 and 0.05 kg N2O ha
–1 

y
–1

 using an EF of 3 and 1%, 

respectively (Table A). 

Based on measurements made at four sites in New Zealand, for lowland soils grazed by 

dairy cattle, mean and median values for background N2O emissions were 1.0 and 0.6 kg N 

ha
–1

 y
–1

, respectively (Kelliher et al. 2010) which had corresponding background N2O 

emissions of 1.6 and 0.9 kg N2O ha
–1 

y
–1

, respectively. Comparing these mean and median 

values with estimated annual N2O emissions in this study, N2O emissions from green 

litter-fall were equivalent to 48 and 80% of the annual background N2O emissions while using 

1% as the EF, the corresponding contributions were 16 and 27%, respectively (Tables A and 

B for a N and C budget). The potential contribution of the green litter to background N2O 

emissions can remain unaccounted for in the definition of crop residues of the IPCC best 

practice guidelines. 
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Table A. Compilation of the N budget from litter-fall and comparison of estimated 

values with published studies. Data are mean ± sd. 

Component of calculation Fresh litter-fall 

(POGF) 

Senesced litter-fall 

(POGS) 

Each grazing event (kg DM ha
–1

) 53.0 ± 24.4 19.4 ± 17.6 

N content (%) 2.5 ± 0.5 1.5 ± 0.3 

N deposition per grazing event (kg N ha
–1

) 1.3 ± 0.7 0.3± 0.2 

Annual litter deposition (kg N ha
–1 

y
–1

) 15.9 3.5 

Mean DMI (kg DM cow
–1

) 12.3 ± 4.8 - 

Mean litter-fall (kg DM cow
–1

) 0.6 ± 0.3 - 

Direct N2O emissions from POGF 

annually, EF 3% and 1% (kg N2O ha
–1 

y
–1

) 

0.75, 0.25 0.16, 0.05 

Percent contribution to background N2O, 

mean = 1.6 kg N2O ha
–1 

y
–1

, EF 3% and 

1%  

48, 16 25, 3 

Percent contribution to background N2O, 

median = 0.9 kg N2O ha
–1 

y
–1

, EF 3% and 

1% 

80, 27 17, 5 

 

 

Table B. Compilation of the C budget from litter-fall and comparison of estimated 

values with published studies. Data are mean ± sd. 

 Component of calculation Fresh litter-fall 

(POGF) 

Senesced litter-fall 

(POGS) 

Each grazing event (kg DM ha
–1

) 53.0 ± 24.4 19.4 ± 17.6 

C content (%) 39.8 ± 1.4 39.7 ± 1.6 

C deposition per grazing event (kg C ha
–1

) 21 7.7 

Annual litter deposition (kg C ha
–1 

y
–1

) 253 92.4 

Direct CO2 emissions from POGF annually, 

EF 32% (kg CO2 ha
–1 

y
–1

) 

296.8 108.4 

CO2-eq of N2O emissions at 86% WFPS  

(kg CO2-eq ha
–1 

y
–1

) 

223.5 223.5 

Total annual CO2 emissions (kg CO2 ha
–1 

y
−1

)  520.3 331.9 

Percent contribution of N2O to total CO2 

budget (%) 

43 67 
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Appendix 2. 

Pal P, Clough TJ, Kelliher FM, Van Koten C, Sherlock RR (2012) Intensive cattle grazing 

affects pasture litter-fall – an unrecognised nitrous oxide source. Journal of Environmental 

Quality 41, 444–448. doi: 10.2134/jeq2011.0277 
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Appendix 3.  

Pal P, Clough TJ, Kelliher FM, Sherlock RR (2010) N2O and CO2 emissions following clover 

and cellulose incorporation into a New Zealand pastoral soil. In 'Proceedings of the 19
th

 

World Congress of Soil Science; Soil Solutions for a Changing World'. (Eds RJ Gilkes, N 

Prakongkep) pp. 154–157. (IUSS: Brisbane, Australia) 
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Abstract 

Clover (Trifolium repens L.) and clover + different proportions of cellulose were incorporated into soil and 

the nitrous oxide (N2O) and carbon dioxide (CO2) emissions measured. Ground, dried clover shoots and 

cellulose were mixed to carbon: nitrogen (C: N) ratios of ~9 (‘clover only’), 20, 30 and 40. Soil samples 

were incubated at water–filled pore space (WFPS) of 86% and 20
o
C. Over 42 d, N2O emissions from the 

controls averaged 9 mg/kg soil (6 g total N/kg soil), indistinguishable from the ‘clover only’ (1.5 g N 

incorporated/kg soil) and ‘C: N 20’ treatments. Corresponding N2O emissions from the ‘C: N 30’ and ‘C: N 

40’ treatments averaged nearly 50% greater (P <0.05) and these two treatment effects were indistinguishable. 

Over 42 d, CO2 emissions from the controls averaged 4 g/kg soil.  There was a linear C (incorporation rate) 

‘dose effect’ on CO2 emissions (0.15 g CO2/g C, R
2
 = 0.80) with no difference between clover and clover + 

cellulose.  Over 145 d, CO2 emissions from the controls averaged 17 g/kg soil and the C ‘dose effect’ was 

0.38 g CO2/g C (R
2
 = 0.98).  Incorporating different plant materials into soil affected the N2O and CO2 

emissions differently.  

 

Key Words 

‘Dose effect’, plant litter, C: N ratio, decomposition, nitrous oxide, carbon dioxide. 

 

Introduction 

Plant litter is a complex C and N source, so its biochemical composition may affect mineralization rate. For 

example, plant litter of a lower C: N ratio may be more susceptible to decomposition and mineralization (Pal 

et al. 2010). Plant litter mainly contains soluble carbohydrates, cellulose, hemicellulose and lignin (in 

increasing order of recalcitrance) (Melillo et al. 1982), as well as N. Cellulose (C6H10O5), an unbranched, β–

(1,4)–linked, linear polymer of glucose, is a carbohydrate synthesized by plants and the most abundant 

organic polymer. Biodegradation of cellulose requires a distinct set of extracellular enzymes viz. cellulase, 

cellobiohydrolase and β–glucosidase, which act synergistically to hydrolyse the β–1,4 bonds of cellulose to 

glucose  for further energy generation processes (Clarke 1997). Fungi including Penicillium sp. and 

Aspergillus sp. and bacteria such as Streptomyces sp. and Pseudomonas sp. aid in the extracellular cleavage 

of cellulose. The effect of cellulose in plant litter on N2O emissions has received little attention.  A potent 

greenhouse gas, N2O has a global warming potential of 298 over 100 years and it is a precursor molecule 

involved in stratospheric ozone depletion (Forster et al. 2007). This paper reports the results of an 

experiment to measure N2O and CO2 emissions following clover and cellulose incorporation into soil 

sampled beneath pasture grazed by dairy cattle near Lincoln, New Zealand. 

 

Methods 

Litter incorporation and measurements 

Temuka silt loam soil was sampled at a grazed pasture site (0–10 cm) and sieved to ≤ 4 mm. Dried, ground 

clover shoots and cellulose (in different proportions) were incorporated into the soil to achieve C: N ratios of 

~9, 20, 30 and 40 representing ‘clover only’, ‘C: N 20’, C: N 30’ and C: N 40’ treatments, respectively. After 

treatment, soil was packed into PVC containers (internal diameter 8.0 cm, total height 10 cm) to a depth of 

4.5 cm with the bottom covered by fine nylon mesh. The soil was incubated at 86% water filled pore space 

(WFPS) and 20
o
C for 145 d. Emissions of N2O and CO2 were measured using a chamber technique with gas 

chromatography and infrared gas analysis, respectively. 

 

Results and Discussion 

Soil and litter properties 

The θg, θv, ρb, and φ  were 0.31 kg water/kg dry soil, 0.23 m
3
 water/m

3
 dry soil, 736 kg soil/m

3
 soil and 0.72 
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m
3
 pores/m

3
 soil. The pH was 5.7, and there was 64 g/kg total C and 6 g/kg total N. The clover shoots had 51 

g N/kg, 430 g C/kg, a C: N ratio of 8.5, 155 g cellulose/kg, 37 g hemicellulose/kg, and 23 g lignin/kg. 

 

N2O emissions 

The maximum N2O emissions were 8 h after treatment at 152.3 ± 10.1, 97.6 ± 12.9, 45.6 ± 7.6 and 21.7 ± 3.1 

ng N2O/kg soil/s (mean ± standard error of the mean, n = 5) for the ‘C: N 40’, ‘C: N 30’, ‘C: N 20’ and 

‘clover only’ treatments, respectively (P <0.05, Figure 1). Eleven hours later, N2O emissions from the ‘C: N 

40’ and ‘C: N 30’ treatments remained significantly greater than the ‘C: N 20’ and ‘clover only’ treatments, 

in turn greater than the controls. Over 42 d, when N2O emissions measurements ceased, the cumulative 

emissions from the ‘C: N 40’, ‘C: N 30’, ‘C: N 20’, ‘clover only’ and the control were 14.3 ± 0.5, 12.4 ± 1.2, 

8.0 ± 0.6, 8.7 ± 1.2 and 9.1 ± 0.9 mg N2O/kg soil, respectively. These emissions were in the order of control 

= ‘clover only’ = ‘C: N 20’ < ‘C: N 30’ < ‘C: N 40’ (P <0.05). While, unexpectedly, cumulative N2O 

emissions from the controls were indistinguishable from the ‘clover only’ and ‘C: N 20’ treatments, the time 

courses differed significantly with 90% of the corresponding totals completed in ∼38, 7 and 9 d. 

Corresponding N2O emissions from the ‘C: N 30’ and ‘C: N 40’ treatments included 90% of the total 

completed in ∼9 d.  Thus, clover incorporation produced the most rapid N2O emissions’ response and adding 

the largest quantities of cellulose significantly enhanced the N2O emissions response to clover incorporation. 

 

The dry, ground clover and cellulose incorporated into the soil evidently blocked the soil pores, reducing 

oxygen diffusion rate and contributing to the attainment of anaerobic conditions. Higher N2O emissions 

would be expected under more anaerobic conditions. The presence of available C can increase 

denitrification, directly, by increasing energy and electron supply to the denitrifiers, and indirectly, by 

enhanced microbial growth and metabolism, thereby stimulating higher O2 consumption (Beauchamp et al. 

1989; Gillam et al. 2008). The current results cannot delineate the N2O production mechanism but given the 

soil moisture content and the fact that cellulose was being utilised, and that the N2O emissions were lower 

than the control during 2.3–4.3 d; it is likely that the C substrate further enhanced denitrification and 

permitted the further reduction of N2O to N2 (Firestone and Tiedje 1979). 

 

CO2 emissions 

Four hours after treatment the CO2 emissions were 12.0 ± 0.4 < 17.5 ± 1.1 = 15.0 ± 2.2 = 11.7 ± 1.0 > 1.9 ± 

0.1 µg CO2/kg soil/s from the ‘C: N 40’, ‘C: N 30’, ‘C: N 20’, ‘clover only’ and the control, respectively 

(Figure 2). The maximum CO2 emissions occurred at 1.4 d with 23.9 ± 0.04 > 25.1 ± 0.05 > 22.4 ± 0.17 > 

18.0 ± 0.12 > 1.4 ± 0.01 µg CO2/kg/s from ‘C: N 40’, ‘C: N 30’, ‘C: N 20’, ‘clover only’ and the control, 

respectively. The relatively low CO2 emissions from controls suggest disturbance was not responsible for the 

higher emissions of treated soil; rather, the soil microbial biomass may have switched from the recalcitrant 

soil organic matter to the incorporated substrate (Sparling et al. 1982; Cheng 1996). Moreover, these higher 

emissions can be accounted for the so called r–strategist activity of rapid catabolism of the fresh organic 

matter in soil (Fontaine et al. 2003).  

 

The CO2 emissions steadily declined after 1.4 d but at 10.3–11.1 d, a further increase in CO2 emissions was 

observed (Figure 2) but this increase was very minor in the ‘clover only’ treatment. Furthermore the 

‘secondary peak’ in those treatments with cellulose additions was dependant on the rate of cellulose applied 

(i.e. ‘clover only’ < ‘C: N 20’ < ‘C: N 30’ = ‘C: N 40’) which indicated cellulose utilisation as an energy 

source. The ‘C: N 30’ and ‘C: N 40’ emissions did not significantly differ at 1.4 d probably because of the 

abundant amount of added cellulose already present in the soil. A significant ‘C dose effect’ was observed 

over the entire incubation period since the ‘clover only’ and ‘C: N 20’ treatments reached the control levels 

at 112.2 d followed by ‘C: N 30’ at 145.3 d. The cumulative CO2 emissions over 145 d averaged 98.5 ± 3.0, 

83.8 ± 2.3, 66.4 ± 0.9, 42.0 ± 1.4 and 16.6 ± 2.5 g CO2/kg soil from ‘C: N 40’, ‘C: N 30’, ‘C: N 20’, ‘clover 

only’ and the control, respectively and were significantly different from one another.  There was a linear ‘C 

dose effect’ (incorporation rate) on CO2 emissions with no difference between the incorporation of clover 

and clover + cellulose into the soil (data not shown).  Over 42 and 145 d, CO2 emissions from the controls 

averaged 4 and 17 g/kg soil and the ‘C dose effect’ was 0.15 and 0.38 g CO2/g C, respectively.  Over 42 d, 

on a CO2–equivalent basis, CO2 emissions were ∼90% of ‘CO2 + N2O’ emissions following clover and 

cellulose incorporation into the soil. 

 

Cellulose occurs naturally in plant tissues and forms the basis of plant cell walls. It requires more energy to 

catabolise/cleave the bound cellulose for use in energy generation processes. Moreover, lignin present in the 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 
156 

plant tissues physically protects, and therefore retards the catabolism of the bound cellulose but in the 

absence of lignin; it may aid the cellulose to decompose faster (Swift et al. 1979). We incorporated pure 

cellulose powder directly in the soil which although may be a recalcitrant form of C, was labile enough for 

the microbes as an energy source (as it was not required to be cleaved before use). Moreover, N availability 

can stimulate the decomposition rates (Carreiro et al. 2000; Geisseler and Horwath 2009). The labile–N 

originating from the plant litter in the present study may have stimulated the cellulose decomposition and 

hence caused higher CO2 generation with an additive effect with N2O generation.  
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Figure 1.  Cumulative N2O emissions from ‘clover only’, ‘C: N 20’, ‘C: N 30’ and ‘C: N 40’ treatments and 

controls during incubation (see Methods for details). 
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Figure 2. Soil CO2 emissions from ‘clover only’, ‘C: N 20’, ‘C: N 30’ and ‘C: N 40’ treatments and controls 

during incubation. Data are means ± SE (n = 5) (see Methods for details). 

 

Cellulolytic microorganisms thrive well and are enhanced in anaerobic conditions (Clarke 1997). In the 

present study, the high moisture content of the soil (86% WFPS) could also have produced conditions that 

were conducive for the cellulolytic organisms thus causing higher CO2 emissions due to better 

decomposition of the incorporated cellulose. 
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Conclusion 

Over 42 d, unexpectedly, N2O emissions from the controls were indistinguishable from the ‘clover only’ and 

‘C: N 20’ treatments.  However, time courses of the N2O emissions differed significantly; 90% of the total 

was completed in ∼38, 7 and 9 d for controls, ‘clover only’ and ‘C: N 20’ treatments, respectively. 

Corresponding N2O emissions from the ‘C: N 30’ and ‘C: N 40’ treatments averaged nearly 50% greater and 

90% of the total was completed in ∼9 d.  Thus, clover incorporation produced the most rapid N2O emissions 

response and adding the largest quantities of cellulose significantly enhanced the N2O emissions response to 

clover incorporation. There was a linear C dose effect on CO2 emissions with no difference between the 

incorporation of clover and clover + cellulose into the soil.  Over 42 and 145 d, CO2 emissions from the 

controls averaged 4 and 17 g/kg soil and the ‘C dose effect’ (incorporation rate) was 0.15 and 0.38 g CO2/g 

C, respectively.  Over 42 d, on a CO2–equivalent basis, N2O emissions were ∼10% of ‘N2O + CO2’ 

emissions following clover and cellulose incorporation into the soil. 
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