A thesis presented for the degree of Doctox of Philosophy in Chemistry in the University of Canterbury, Christchurch, New Zealand.

by

B.N. McMaster

The mass spectra of a series of m - and p-substituted benzils have been determined at several ionizing voltages below 20 eV , and at 70 eV . The fractional intensities of the molecule-ion (F_{M}), substituted benzoyl ion (F_{X}) and unsubstituted benzoyl ion (F_{H}) were obtained as a function of energy from measured ionization efficiency (IE) curves. Ionization potentials (J.P), and appearance potentials for the substituted ($A P_{X}$) and unsubstituted ($A P_{H}$) benzoyl ions were determined from the IE curves by a semi-logarithmic method. Various correlations of ion intensity and energy parameters with substituent constants $\left(\sigma^{+}, \sigma\right)$ are examined; by the best standards of solution chemistry these are generally poor. Fair correlations are obtained between $\log \left(F_{X} / F_{H}\right)$ or $A P_{X}-A P_{H}$ and $\sigma^{+}(\sigma)$, and these are interpreted in terms of the expected effect of substituent on the stabilities of the product ions in the decompositions. A good correlation is observed between $\log \left(F_{X} / F_{H}\right)$ and $A P_{X}-A P_{H}$; it suggests that substituent mainly affect $\mathrm{F}_{\mathrm{X}} / \mathrm{F}_{\mathrm{H}}$ by changing the activation energies for the competing decompositions of the benzil molecule-ions. The competitive shift has a marked effect on these appearance potentials, and in this system AP - IP is therefore not a good measure of the activation energy for the primary decompositions.

CONTENTS

Page
CHAPTER I INTRODUCTION 1
1.1 Mass Spectrometry 1
1.2 This Work 2
CHAPTER 2 GENERAL PRINCIPLES OF MASS SPECTROMETRY 3
2.1 Instrumental Factors 3
2.1.1 Ion Flight Path 3
2.1.2 Flight Times and Types of Ion Observed 4
2.1.3 Metastable Ions 4
2.2 Theoretical Aspects 6
2.2.1 Ionization Processes 6
2.2.2 Decay Processes 7
2.2.3 Quasi-Equilibrium Theory 3
(i) Basic Assumptions 8
(ii) Unimoleculax Rate Constants 9
(iii) Kinetic and Competitive Shift Effects 11
(iv) Breakdown Graphs 13
(v) Ion Intensities 16
2.2.4 Comparison with Conventional Chemical Reactions 17
2.3 Substituent Effects 18
2.3.1 Substituent Effects on Decomposition Path- ways 19
2.3.2 Substituent Effects on Internal Energy and Rate Constant Functions 20(i) Internal Energy Distribution Functions,$p(E)$20
(ii) Rate Constant Functions, $k(E)$ 23
Page
CHAPTER 3 EXPERIMENTAL 27
3.1 Preparation and Purification of Compounds 27
3.1.1 Reagents and Solvents 27
3.1.2 Deoxybenzoins 27
(i) Preparation of Benzylmagnesium Chloride 28
(ii) Preparative Methods 29
3.1.3 Benzils 34
3.2 Mass Spectrometer 35
3.2.1 Instrumental Modifications 35
3.2.2 Semi-Automatic Digital Recording System 36
(i) Ionizing Voltage Control Unit 36
(ii) CAT Input Signal 37
(iii) CAT Read-out System 37
3.2.3 Sample Introduction 38
(i) Inlet Systems 38
(ii) Sample Preparation 39
(iii) General Procedure 41
3.2.4 Source Focussing 42
3.3 Data Collection 44
3.3.1 70 eV Mass Spectra 44
3.3.2 Low Voltage Mass Spectra 44
3.3.3 Tonization Efficiency Curves 45
3.3.4 Calibration of Multiplier Gain 46
CEAPTER 4 ANAIYSIS OP TONIZATION EFEICIENCY DATA 48
4.1 Least Squares Procedures 49
4.1.1 Smoothing and Differentiation (SMOOTH) 50
4.1.2 Fitting a Straight Line (IINEAR) 50
4.1.3 Fitting a General Function (IINETT) 52
4.2 Preliminary Treatment of Ionization Efficiency Data 53
4.2.1 Decoding and Editing (TAPED) 53
4.2.2 Smoothing and Reduction of Data (RAWFTT) 54
4.3 Appearance Potentials 55
4.3.1 Semi-Logarithmic Method 55
4.3.2 Normalization of Semi-Log Curves (SLOG) 59
4.3.3 Calculation of Appearance Potentials (SLAP) 59
4.3.4 Discussion of Errors 62
4.4 Fractional Ion Intensities (FIX) 63
4.5 A Typical Analysis 66
4.5.1 Program RAWFIT 66
4.5.2 Program SLOG 67
4.5.3 Program SLAP 67
4.5.4 Program FIX 67
CHAPTER 5 RESULTS 69
5.1 Mass Spectra (70 and 20 eV) 69
5.2 Mass Spectra (Low Voltage) 70
5.3 Fractional Ion Intensities 71
5.4 Logarithmic Ion Intensity Ratios 72
5.5 Appearance Potentials 73
5.6 Correlation of Results 74
CHAPTER 6 DISCUSSION 75
6.1 General Description of Mass Spectra 75
6.2 Intexpretation of Enexgy and Intensity Data 85
6.2.1 Correlation of Ionization and Appearance Potentials with Substituent Constants 86
6.2.2 Correlations of Energy Parameters with Substituent Constants 88
6.2.3 Variation of Fractional Ion Intensities with Energy 95
6.2.A Correlations of Logarithmic Ion Intensity Ratios with Substituent Constants 98
(i) $\log \left(F / F_{M}\right)$ 99
(ii) $\log \left(F / 1-F_{M}\right)$ 100
(iii) $\log \left(F_{X} / F_{H}\right)$ 103
6.2.5 Correlations of Logarithmic Ion Intensity Ratios with Energy Parameters 105
6.3 Conclusion 109
REFERENCES 112
APPENDIX A COMPUTER PROGRAMS 120
APPENDIX B ELECTRONICS 121
ACKNOWLEDGEMENTS 122

TABLES

No.TitleFollowing Page
1 Multiplier Gain ($G_{1 /}$) 47
2 Systematic Errors in Appearance Potential
Determinations 62
3
Relative Ion Intensities (70 and 20 eV Mass Spectra) 69
4 Measured Fractional Ion Intensities 70
5 Eractional Ion Intensities 71
6 Iogarithmic Intensity Ratios 72
7 Logarithmic Intensity Ratios (70 eV) 72
8 Ionization and Appearance Potentials 73
9 Energy Parameters in Substituted Benzils 73
10
Correlations of Energy Parameters with SubstituentConstants74
1112Correlations of $\log \left(F / I-F_{M}\right)$ with SubstituentConstants74
13 Comrelations of Log $\left(F_{X} / F_{H}\right)$ with Substituent Constants 74
14 Correlations of $\log \left(F / F_{M}\right)$ with (AP-IP) 74
15 Coxrelation of $\log \left(F / 1-F_{M}\right)$ with (AP-IP) 74
16 Correlations of $\log \left(F_{X} / F_{H}\right)$ with $\left(A P_{X}-A P_{H}\right)$ 74
17
Correlations of Logarithmic Intensity Ratios at 70 evwith Substituent Constants and Energy Parameters74

FIGURES

No.ritie
Following Page
1 Bragmentation Pattern of Benzils 2
2 Ion Flight Path 3
3 Ion Source 3
4 Rate Constant Function, k(E) 10
5 Kinetic and Competitive Shift Effects 10
6 Breakdown Graph $\left(M^{+} \rightarrow A^{+} \rightarrow B^{+}\right)$ 13
7 Internal Energy Distribution and Rate Constant
Functions 20
8 Semi-Automatic Digital Recording system 36
9 Standard Error of Ionization Efficiency 66
10a Program SLog Output: Normalized Semi-Log Curve 67
10b Program SLOG Output: Unnormalized Semi-Log Curve 67
11 Program SLAP Output 67
12 Systematic Errors in Appearance Potential
Determinations 67
13
Normalized Semi-Iog Ionization Efficiency Curves for m-Methylbenzil 67
14
Practional Ion Intensity Curves for m-Methylbenzil 68
15 Effect of Incorrect Zero Threshold on Eractional Ion Intensity Cuxves 68
16
Relative Ion Intensities (70 and 20 eV Mass Spectra) 69
17 Fractional Ion Intensities 71
18 IP versus σ^{+} 86
$19 \quad \mathrm{AP}_{\mathrm{H}}$ versus σ^{+} 87
$20 \quad A P_{X}$ versus σ^{+} 87
$21 \quad A P_{H}-I P$ versus σ^{+} 89
$22 \quad A P_{X}-1 P$ versus σ^{+} 89
$23 \quad A P_{H}-I P$ and $A P_{X}-I P$ versus σ^{+}for Bibenzyls 89
$24 \quad A P_{X}-A P_{H}$ versus σ^{+} 90
$25 \log \left(F_{H} / F_{M}\right)$ versus $\sigma^{+}(E=6.0 \mathrm{eV})$ 99
$\log \left(F_{X} / F_{M}\right)$ versus $\sigma^{+}(E=6.0 \mathrm{eV})$
27
$\log \left(F_{H} / 1-F_{M}\right)$ versus $\sigma^{+}(E=6.0 \mathrm{eV})$
$28 \log \left(F_{X} / I-F_{M}\right)$ versus $\sigma^{+}((a) E=6.0 \mathrm{eV}$,
(b) $\mathrm{V}=70.0 \mathrm{eV})$
$29 \log \left(F_{X} / F_{\mathrm{E}}\right)$ versus $\sigma^{+}((a) E=6.0 \mathrm{eV}$, (b) $V=70.0 \mathrm{eV}) \quad 103$
$\log \left(F_{H} / F_{M}\right)$ versus $\left(A P_{H}-I P\right) \quad(E=6.0 \mathrm{eV})$
$31 \log \left(F_{X} / F_{M}\right)$ versus $\left(A P_{X}-I P\right)(E=6.0 \mathrm{eV}) \quad 105$
$32 \log \left(\mathrm{~F}_{\mathrm{H}} / I-\mathrm{F}_{\mathrm{M}}\right)$ versus $\left(\mathrm{AP} \mathrm{H}_{\mathrm{H}}-\mathrm{IP}\right)(\mathrm{E}=6.0 \mathrm{eV}) \quad 106$
$33 \log \left(F_{X} / 1-F_{M}\right)$ versus $\left(A P_{X}-I P\right)(E=6.0 \mathrm{eV}) \quad 106$
34. $\log \left(F_{X} / F_{H}\right)$ versus $\left(A P_{X}-A P_{H}\right)((a) E=6.0 \mathrm{eV}$,
(b) $\mathrm{V}=70.0 \mathrm{eV}) \quad 107$

35 Motor Drive Unit (Ionizing Voltage Control) 121
36 CAT - Tape Punch Interface 121

INTRODUCTION

1.1 MASS SPECTROMETRY

Mass spectrometry is widely used as an aid to the determination of molecular structure. Because of its importance, considerable research effort has been directed towards discovering how structural changes affect the mass spectra of molecules. Implicit in this research has been the hope that the factors which control mass spectral decompositions will prove to be similar to those involved in ordinary chemical reactions, thus allowing the extensive knowledge of structural effects in ordinary reactions to be applied to the interpretation of mass spectra.

Striking similarities have been observed between mass spectral reactions and some other, more conventional, chemical processes - particularly pyrolysis and photolysis ${ }^{l}$. The similarities suggest ${ }^{2}$ that information obtained from mass spectrometry may help to elucidate the mechanisms of some of these processes, especially the role of carbonium ions (or ion-radicals). Since mass spectral data can be obtained routinely and rapidly on microgram quantities of sample, there are very compelling reasons for exploring the factors influencing mass spectra.

The study of substituent effects has long been an important method of investigating relationships between the structure (both geometric and electronic) of a molecule and its reactions. The pioneering work of Hamett ${ }^{3}$ stimulated a tremendous amount of research into the effects of substituents
on the reactivity of aromatic systems in both solution ${ }^{4}$ and gas-phase ${ }^{5}$ reactions. More recently such investigations have been extended to mass spectral reactions, and a number of correlations between substituent parameters and ion intensities, as well as appearance potentials, have been reported ${ }^{6-8}$.

1. 2 THIS WORK

This thesis describes the effects of substituents on the ion intensities and appearance potentials in the mass spectra of benzils. These were chosen for study because the substituted and unsubstituted primary fragment ions are formed by the competitive scission of the same bond in the moleculeion. In addition, these ions are expected to have the welldefined, comparatively stable benzoyl ion structure. There are generally no competing primary decompositions of the molecule-ion, or any secondary decompositions of the primary fragment ions - at least over a sufficient range of energy above their appearance potentials. The central bond breaks readily to give the substituted and unsubstituted benzoyl ions which only decompose by loss of CO about $\& \mathrm{eV}$ above their appearance potentials (Fig. 1). Only for a few substituents (e.g. $m-\mathrm{NO}_{2}, m-\mathrm{CF}_{3}$) were other, ions formed to any significant extent.

This simple, well-defined behaviour makes the benzils an ideal system for the study of substituent effects in mass spectra, and many of the problems encountered in the interpretation of earlier work ${ }^{9}$ were not evident in this study.

Fig. 1. Fragmentation Pattern of Benzils.

\qquad

GENERAI PRINCIPLES OF MASS SPECTROMETRY

2.1 INSTRUMENTAL FACTORS

The general principles ${ }^{10}$ of the double-focussing mass spectrometer (A.E.I. MS902) used in this work must be understood before the relationship between a mass spectrum and the molecular rate processes occurxing after ionization can be fully appreciated. This section describes some of the instrumental factors which have an imgortant bearing on this relationship; fuller accounts have been given recently in the 1iterature ${ }^{11,12,18}$.
2.1.1 Ion Flight Path

A double-focussing mass spectrometer consists of an ion source, an electrostatic energy analyser, a magnetic mass analysex, and an ion detector, which are all separated by short field-free regions in the Elight path (Fig. 2). Ions formed by electron impact in the souxce may be witharawn by a small repeller voltage to enter a short accelerating region Where they are accelerated from thermal energies co kinetic energies up to $8 \mathrm{kV}(F i g .3)$. Because the high accelerating voltage penetrates the ion source slightly, the efficiency of ion extraction is not impaired greatly if the repeller plate is shorted to the ion block. The average time between initial ion formation and acceleration is called the ion source residence time, which for sources of this Nier-type design is about $1-2 \operatorname{ssec}^{13,14}$.

After acceleration the ions travel through the first field-free region (15.4 cm) before entering the cylindrical 90°

Flg. 2. Ion Flight Path

Plight Region	Ion Glight Distance (cm)	Type of Ion Formed
Ion Source		Pragment Ions
Ion Accelerating plates	0.5	Background
Pirst Drift Region	15.4	Defocussed Metastable Ions
Electrostatic Analyser	60.8	Background
second Drift Region	54.6	Normal Metastable Ions
Mass Analyser	47.9	Background
Third Drise Region	21.9	Molecule-ions
Ion Detector		

Fig. 3. Ion Source

electrostatic energy analysex (60.8 cm), which transmits only those ions with kinetic energies differing from the desired value by less than $\pm 0.66 \%$. The energy-focussed ion beam then passes down the second field-free region (54.6 cm) and enters the 90° magnetic mass analyser (47.9 cm) which separates the ions according to their mass-to-charge (m / e) ratios. The massseparated ions then strike the collector dynode of the electron multiplier ion detector, or alternatively the Faraday-cup collector, after travelling through a third fieldfree region : (21.9 cm).

2.1.2 Fight Times and Types of Ion Observed

The flight velocity of the accelerated ions is given by

$$
\begin{equation*}
\mathrm{v}=1.389(\mathrm{Ve} / \mathrm{m})^{\frac{3}{2}} \mathrm{~cm} / \mu \mathrm{sec} \tag{1}
\end{equation*}
$$

where V is the ion accelerating potential (volt) and m/e is the ion mass/charge ratio (a.m.u.). Since the total flight path from source to collector is 201.1 cm , the total time between formation and detection of the ions may be 15-30 $\mu \mathrm{sec}$ (for the usual range of m / e values of organic ions at 8 kV accelerating voltage). During this time the ions may decompose, and it is possible to experimentally differentiate between ions fomed in the source which do not decompose during their flight time (i.e. the normal molecule-ions and fragment ions observed in a mass spectrum), and those which are formed in either of the first two field-free regions of the flight path (i.e. the socalled "metastable" ions 15,16).

2.1.3 Metastable Ions

Metastable ions are distinguished from the normal ions only by the dissociative lifetimes of their precursors, which span the narrow range of ion flight times required to reach
the field-free regions (e.g. 5-10 $\mu \mathrm{sec}$ and $15-20$ usec respectively).

Two types of metastable ions may be observed in a doublefocussing instrument. These correspond to ions formed in the different field-free regions, and are distinguished by the methods used to detect them. Firstly the "normal". metastable ions are those ions formed in the second field-free region which do not decompose before leaving the magnetic analyser. They are observed as weak diffuse peaks in the mass spectrum; their position on the mass scale (m*) is related to the masses of the precursor $\left(m_{1}\right)$ and daughter $\left(m_{2}\right)$ ions of the "metastable transition" by

$$
\begin{equation*}
m^{*}=m_{2}^{2} / m_{1} \tag{2}
\end{equation*}
$$

The metastable ion is actually the daughter ion of the metastable transition, i.e. an ion which is accelerated and energyanalysed as $m / e=m_{1}$, but is mass-analysed as $m / e=m_{2}$.

The second type of metastable ion - commonly called "defocussed" metastables - are ions, formed in the first field-free region, which again do not decompose before leaving the magnetic analyser. These can be detected by either of the "defocussing" methods 17,18 which unambiguously determine all the precursors from which a daughter ion is formed by such metastable transitions.

Ions which are formed in any other regions of the flight path (e.g. during acceleration, energy focussing, or mass analysis) are generally lost from the ion beam although they may contribute to the background ${ }^{12}$. Those which decompose after leaving the magnetic analyser, but before striking the collector, are detected simply as the original mass-analysed ion.

2.2 THEORETICAL ASPECTS

Several excellent reviews of the ionization and dissociation processes occurring in a mass spectrometer are available $11,19-27$, so only a brief description of the main points relevant to this study will be given here.
2.2.1 Ionization Processes

Ionization by electron impact is an example of an inelastic collision and may occux by two general processes direct ionization and auto-ionization. Auto-ionization refers to multiple-electron excitation of the molecule to an excited metastable state, which then ionizes by spontaneous loss of an electron to form the molecule-ion, usually in an excitec. state. Direct ionization can be considered 22,28 as a limiting case of this process, where the lifetime of the excited metastable state of the molecule is of the same order as that for the collision process (i.e. $10^{-16} \mathrm{sec}$).

Although auto-ionization contributes significantly to the total ionization observed for small molecules (e.g. 90\% for $\mathrm{H}_{2}{ }^{29}$), it is expected to be much less important for large molecules. The density of internal energy levels is so high, and the breakdown of selection rules for ionization ${ }^{22}$ so much more likely in large molecules, that their excited electronic states are unlikely to be metastable with respect to ionization. Direct ionization is a "vertical" transition leading to the formation of molecule-ions which may be in rotationally, vibrationally, and electronically excited states. The nature of these initially formed ionic states will be governed by the transition probabilities from the populated states of the molecule to the accessible states of the ion, and will be determined to a good approximation by the
appropxiate Eranck-Condon factors as in optical spectroscopy ${ }^{21}$. The two ionization processes obey different threshold laws; because these laws are of crucial importance in analysing ionization efficiency curves ${ }^{30}$, it is necessary to decide which type of ionization is occurring.

2.2.2 Decay Processes

The decay of the initially prepared states of the molecule-ions may occur by two general processes involving either radiative or radiationless transitions - 'decay' here refers to spontaneous transitions which are irreversible on the time scale of the experiment, as discussed by Berry ${ }^{29}$. Radiative transitions generally have lifetimes of $10^{-9}-10^{-7}$ sec (for "allowed" transitions) up to $10^{-6}-10^{-3} \mathrm{sec}$ (for "forbidden" transitions). These are generally longer than the lifetimes of the slowest radiationless transitions in polyatomic molecules and so may be ignored.

Radiationless transitions ${ }^{31}$ may be conveniently separated into two categories; those which lead to some type of reaction (e.g. dissociation, isomerization), and those which result in electronic relaxation (e.g. internal conversion, intersystem crossing). Electronic relaxation processes for polyatomic molecules are likely to have Jifetimes not much longer than the period of a vibration ($10^{-13}-10^{-14} \mathrm{sec}$), whereas decomposition reactions of molecule-ions can have much longer lifetimes. Excess energy, which is transferred to excited electronic states of the molecule-ion by the initial ionization process, will therefore be rapidly converted by electronic relaxation processes to excited vibxational and rotational energy in the ground electronic state, or some set
of "isolated" electronic states from which relaxation is comparatively slow.

The internal energy of the molecule-ion is thus assumed to become randomly distributed throughout the vibrational and rotational degrees of freedom of the ground or isolated states in a time which is short compared with the lifetimes of the decomposition processes leading to the formation of the mass spectrum. The assumption that these decompositions could be Considered as rate processes similar to those occurring in ordinary chemical reactions led to the formulation of the quasi-equilibrium theory of mass spectra ${ }^{32}$, which is currently accepted as a sound description of mass spectral reactions ${ }^{23,33}$. 2.2.3 Quasi-Equilibrium Theory
(i) Basic Assumptions

The first principal assumption of the quasi-equilibrium theory is that the molecule-ions may decompose by various paths through different activated complexes, possibly from different electronic states, and the fragment ions so formed may themselves decompose in the same way if they possess sufficient internal energy. Thus the mass spectrum is considered to be formed by a series of competing consecutive unimolecular decomposition reactions.

The second principle assumption is that the microcanonical ensemble ${ }^{34}$ describes the distribution of the activated ions which dissociate. This implies that the state of an ion is described completely by its internal energy alone and that any other constants of motion are randomly distributed amongst all their possible values. The assumption is valid if rapid equilibration of the internal energy occurs by electronic
relaxation processes. A corollary of this assumption is that an ion will decompose only when sufficient internal energy has become localised in the degree(s) of freedom associated with the reaction coordinate, so that the rate of a decomposition will depend on the internal energy of the ion.

(ii) Unimolecular Rate Constants

The dependence of the rate constant for unimolecular ion decomposition on internal energy may be derived from any of the unimolecular rate theories (e.g. those due to slater ${ }^{35}$, Kassel ${ }^{36}$, or Marcus ${ }^{37,38}$), although the quasi-equilibrium assumption leads naturally to the use of Eyring's absolute rate theory ${ }^{39}$. The general form of the rate constant expression obtained from these statistical mechanical formulations of unimolecular decomposition is given by

$$
\begin{align*}
k(E) & =\int_{0}^{E-E_{0}}{ }_{0} \neq\left(E, E_{0}, \varepsilon\right) d \varepsilon / h N(E), \quad E \geqslant E_{0} \tag{3}\\
& =0, \quad E<E_{0}
\end{align*}
$$

where $N(E)$ is the density-of--states of the decomposing ion containing internal energy $E, N^{\neq}\left(E, E_{0}, \varepsilon\right)$ is the density-ofstates of the activated complex for the decomposition having a threshold energy E_{0} and translational energy ε in the reaction coordinate, and h is planck's constant ${ }^{23}$. Since this rate constant expression is an average over all possible rates of passage through the activated complex configuration, it strictly represents a mean lifetime rather than a specific rate.

These dexivations ignore quantum tunnelling and interFerence effects, which recent theoretical studies ${ }^{40}$ suggest may cause the decay of isolated systems to be non-exponential
in certain situations. However, the development of the guantum mechanical formulation of unimolecular decomposition processes is still in its early stages, and the details are too complex to be applied to any but the simplest model systems ${ }^{40-42,45}$.

Computation of the rate constant function $k(E)$ has been described in detail in a recent review ${ }^{43}$, and only the general features of these functions relevant to mass spectral ion decompositions will be discussed. The dependence of $k(E)$ on the internal energy is shown schematically in Fig. 4. Below the threshold energy (E_{0}) the rate constant is zero, but it rises rapidly with increasing energy just above the threshold. At the threshold energy the rate constant has a finite minimum value, $k_{\min }\left(E_{0}\right)$, since the numerator in equation (3) has a minimum value of unity corresponding to a singly degenerate ground state of the activated complex ${ }^{44}$. (More detailed considerations of effects due to the external rotational degrees of freedom suggest ${ }^{45}$ that the minimum rate constant is probably much lower than would be expected from a consideration of only the active internal degrees of freedom.) The existence of a minimum value for the rate constant has important consequences for metastable ions, since these will not be observed if the minimum is greater than about $10^{6} \mathrm{sec}^{-1}$.

All unimolecular decompositions also exhibit a maximum rate constant at high energies which is limited by the time required for the atoms to move through the activated complex configuration - about the period of a vibration for simple bond clcavage reactions $\left(10^{-13}-10^{-14} \mathrm{sec}\right)$. The maximum value is determined by the difference in the density-of-states of the activated complex and the corresponding reactant state,

Fig. 5. Kinetic and Competitive Shift Effects.

and is commoniy termed the "frequency factor". The general shape of the $k(E)$ function between these limits is primarily determined by the magnitude of the activation energy and the number of active degrees of freedom involved in the reaction. The rise in $k(E)$ with increasing energy is slower for larger activation energies and higher numbers of active degrees of freedom.
(iii) Kinetic and Competitive Shift Effects
$=\quad$ The relationship between $k(\mathbb{B})$ and the ion source residence time has a very important bearing on the observed appearance potentials of fragment ions. As Fig. 5 shows, a small excess of internal energy above the activation energy for the decomposition (e.g. E_{0}^{A} for $M^{++} \rightarrow A^{+}$) is required to cause $\mathrm{K}^{\mathrm{A}}(\mathrm{E})$ to be greater than $10^{6} \mathrm{sec}^{-1}$, the approximate value necessary for decomposition to occur before the ion is ejected from the source. This excess energy, ($\left.E_{k}^{A}-E_{0}^{A}\right)$, is cermed the "kinetic shift" ${ }^{46}$ and causes the measure \bar{d} appearance potential $\left(A P_{m}\right)$ for the fragment ion $\left(A^{+}\right)$to be higher than the thermochemical value $\left(A P_{t}\right)$ by approximately $\left(E_{k}^{A}-E_{0}^{A}\right)$; thus

$$
\begin{align*}
A P_{t}\left(A^{+}\right) & =I P\left(M^{+}\right)+E_{0}^{A} \tag{4}\\
C \cdot f \cdot A P_{m}\left(A^{+}\right) & \approx \operatorname{IP}\left(M^{+}\right)+E_{k}^{A} \tag{5}
\end{align*}
$$

Of course if the minimum rate constant for the decomposition $\left(k_{\text {min }}^{A}\right)$ is greater than $10^{6} \sec ^{-1}$, then the kinetic shift will be zero. In this case no metastable ions can be observed for the decomposition, but the reverse argument does not necessarily apply since the metastable ions may simply be too weak to be detected.

When an ion decomposes by competing pathways, a further complication is introduced for all but the lowest energy decomposition. This additional factor is called the "competitive shift" 8,47 and causes the measured appearance potential(s) for the higher energy decomposition(s) (e.g. $A P_{M}\left(B^{+}\right)$for $M^{+} \rightarrow B^{+}$, Fig. 5) to be even higher than expected from the kinetic shift effect; thus

$$
\begin{equation*}
A P_{m}\left(B^{+}\right)>\operatorname{IP}\left(M^{+}\right)+E_{k}^{B} \tag{6}
\end{equation*}
$$

This effect arises because the rate constant for the lowest energy decomposition (e.g. $\mathrm{k}^{\mathrm{A}}(\mathrm{E})$) is usually substantially greater than the rate constant for the competing decomposition (e.g. $\mathrm{K}^{B}(\mathrm{E})$) at the energy $\mathrm{E}=\mathrm{E}_{\mathrm{k}}{ }^{\mathrm{B}}$ where B^{+}should appear. Hence the proportion of B^{+}formed relative to A^{+}is so small as to be undetectable until the magnitudes of the competing rate constants become comparable at higher energies. For the situation depicted in Fig. 5, where the higher energy decomposition has a higher frequency factor (causing the k(\mathbb{E}) curves to cross), B^{+}will appear at an energy somewhere between E_{k}^{B} and E_{C}, where $k^{B}(E)$ is considerably greater than $10^{6} \mathrm{sec}^{-1}$. In the alternative situation where the $k(E)$ curves do not cross, the size of the competitive shift could be very large indeed. The competitive shift effect will always operate, whether or not the kinetic shift effect is involved, since it depents solely on the relative magnitudes of the rate constants for the competing decompositions.

The major factor influencing the kinetic shift is the activation energy which has a large effect on the minimum rate constant for a decomposition; $k_{\min }\left(E_{0}\right)$ being lower for higher activation energies. The activation energy also affects the
slope of the $k(E)$ curve in such a way as to enhance the first effect. The frequency factor and the number of active degrees of freedom also influence the size of the kinetic shift through their respective effects on the shape of the $k(E)$ curve. The kinetic shift will therefore increase with higher activation energies, lower frequency factors, and more active degrees of freedom for the decomposition. Similar considerations apply to the competitive shift, although here it is the relative magnitudes of these factors which are important.
(iv) Breakdown Graphs

When the fragmentation scheme for a molecule-ion and the corresponding rate constant functions are known, a "breakdown graph" can be calculated from an analysis of the first-order kinetic equations, if allowance is made for the source residence and ion flight times ${ }^{48}$. The break-
down graphs give the relative probabilities of the formation of the various ions observed in a mass spectrum as a function of the internal energy of the molecule-ion; they are one of the most useful applications of the quasi-equilibrium theory. An example of the breakdown graph obtained for the consecutive decompositions $M^{+\frac{+}{0}} \rightarrow A^{+} \rightarrow B^{+}$is shown in Fig. 6 . The $k(E)$ curves, which are also shown, were calculated from models using parameters corresponding to decompositions of aromatic molecules, so that the general features of the breakdown graph would be appropriate to this work. A notable feacure is the wide range of internal energies of the molecule-ion over which metastable ions are observed for the secondaxy decomposition ($A^{+} \rightarrow B^{+}$), compared with the range for the primary decomposition $\left(\mathbb{M}^{+} \rightarrow \mathbb{A}^{+}\right)$. This is a direct consequence of the "fluctuation effect" 66,67 on the partitioning

P12. 6. Breakdown Graph ($\mathrm{m}^{+} \longrightarrow \mathrm{A}^{+} \longrightarrow \mathrm{E}^{+}$).

of the excess internal energy of the precursor ion between the decompesition products, which causes A^{+}, for example, to have a range of internal energies for a particular value of E . For the same reason the initial rise in the breakdown curve for a secondary fragment ion at the threshold is much slower than that observed for a primary fragment ion. This is why much longer tails are observed on the ionization efficiency curves of secondary fragment ions, making it more difficult to measure their appearance potentials accurately. Another interesting feature of Fig. 6 is the substantial loss of ions occurring at internal energies corresponding to metastable ion formation, as indicated by the total ion formation probability curve, which is simply the sum of the individual breakdown curves. These so-called "missing metastable" ions 49 are those which form in non-field-free regions of the flight path and are consequently lost from the ion beam.

The relationship between breakdown graphs and ionization efficiency curves is entirely dependent on the threshold laws for ionization. There is some evidence ${ }^{50}$ that the probability of direct ionization varies as the first power of the excess energy of the electron, at least near the threshold. The general theoretical result ${ }^{51}$ is that the probability of ionization is given by

$$
\begin{equation*}
I(E)=\int_{0}^{E} \delta\left(E-E_{C}\right) d E^{n} \tag{7}
\end{equation*}
$$

where $\delta\left(E-E_{C}\right)$ is a delta function centred on the threshold energy E_{C}. Thus for $n>1$,

$$
\begin{equation*}
I(E)=\left(E-E_{C}\right)^{n-1} /(n-1): \quad E>E_{C} \tag{8}
\end{equation*}
$$

where n is the number of electrons leaving the collision complex (i.e. $n=1$ for auto-ionization, and $n=2$ for direct ionization) Following Morrison's analysis ${ }^{52}$, the second derivative of the ionization efficiency curve is proportional to the sum of the transition probabilities for the formation of the ion convoluted with the reversed electron energy distribution, assuming that only direct ionization is important. When the effect of the spread in electron energies is removed by deconvolution ${ }^{53}$, the relative amplitudes of the second derivative ionization efficiency (SDIE) curves give the relative probabilities of formation of the ions as a function of the energy transferred by the ionization process. If these deconvoluted SDIE curves are normalised (relative to their sum), they are equivalent to breakdown graphs except for the definition of the energy axis. Since breakdown graphs are calculated as a function of the internal energy of the moleculeion, they are equivalent to normalised SDIE curves measured at $0^{\circ} \mathrm{K}$; for other temperatures the internal thermal energy of the molecule which will be transferred to the molecule-ion on ionization must be taken into account ${ }^{54}$.

This problem has been discussed by Vestal ${ }^{55}$ who showed that to a fair approximation the thermal energy distribution in the molecule-ion is similar to that in the molecule, but is shifted to higher energies by an amount comparable to the average thermal energy. Using this approximation a modified breakdown graph may be calculated as a function of the transferred energy by convoluting the theoretical breakdown graph with the thermal energy distribution of the molecule.
(v) Ion Intensities

Relative ion intensities are readily obtained by simply measuring the relative peak heights in a mass spectrum. They depend on a number of factors, including ionization crosssections and threshold laws, and the rates of formation and decomposition of the ions - all molecular properties - as well as ion flight times and ion source conditions (including temperature), which are instrument dependent. Mass spectra therefore differ from other types of spectra which generally measure well-defined physical properties of molecules. Because of this much current research effort is directed towards finding improved methods of analysing mass spectral data, especially to provide more reliable information about the structures and properties of the ions which are formed.

According to the quasi-equilibrium theory, the relative ion intensities in a mass spectrum (at any particular ionizing voltage) may be calculated from the breakdown graph by integrating the individual breakdown curves for each ion over the internal energy distribution function of the molecule-ion. This gives the relative ion intensities with the effect of the electron energy spread removed (i.e. a deconvoluted mass spectrum);

$$
\begin{equation*}
I_{j}(V)=\int_{0}^{V} R_{j}(E) P(E, V) d E \tag{9}
\end{equation*}
$$

where $I_{j}(V)$ is the deconvoluted relative intensity, $R_{j}(E)$ is the breakdown curve for the $j^{\text {th }}$ ion, and $P(E, V)$ is the internal energy distribution function of the molecule-ion for the particular ionizing voltage V. The function

$$
\begin{equation*}
P(E, V)=\sigma(E)(V-E), \quad E<V \tag{10}
\end{equation*}
$$

is often called the "excess energy transfer function", and it depends on both the transition probability function for ionization, $\sigma(\mathbb{E})$, and the ionization threshold law, so that it will change with both molecular structure and the ionizing voltage (for direct ionization). $P(E, V)$ can be obtained experimentally from the total SDIE curve assuming that the same threshold law holds over a sufficient range of energy 65,70. 2.2.4 Comparison with Conventional Chemical Reactions

The essential difference between reactions in a mass spectrometer and conventional chemical reactions should be stressed. In the latter, the reacting species are being continuously energized and de-energized by molecular collisions, so that the temperature can be used to describe the distribution of the reactants and activated complexes among their accessible states. This situation does not apply to the rate processes occurring in a mass spectrometer where there are few molecular collisions, and the molecule-ions are energized solely by the initial ionization process. Hence the overall rate constant expressions are quite different, even though the spontaneous dissociation processes occurring in each case are described by the same theory (e.g. RRKM theory 56,57 in unimolecular gasphase kinetics). These differences must be borne in mind when considering apparent similarities between mass spectral and conventional chemical reactions.

Although a complete understanding of the factors determining the mass spectrum of a molecule is difficult to attain, there are several reasons for attempting to do this. In many respects the situation in a mass spectroneter, with isolated reactant species, is much simpler than that pertaining
to reactions under conventional conditions, where higher-order rate laws, molecular interactions (including solvent effects), and diffusion effects must also be considered. Since the theories concerning unimolecular decay processes are more highly developed, a more direct comparison between theory and experiment is possible for mass spectra than for many other types of chemical reaction. The complicating factor in mass spectral reactions is the comparatively wide range of energies involved, leading to a corresponding increase in the number of decay processes which can occur.

2.3 SUESTITUENT EFFECTS

Following McLafferty's original investigation of substituent effects in the mass spectra of aromatic molecules ${ }^{58}$, research in this field has been very active - particularly over the last five years - and several good reviews are now available $6,11,24,26,59$. However, it is only recently that a fuller appreciation of the various factors which may influence ion intensities has become apparent in the literature. There has been an increasing awareness and application, at least qualitatively 24,27 , of the quasi-equilibrium theory to the interpretation of mass spectra, and some recent papers have considerably clarified the effect of substituents on ion intensities 7,8,60.

Early investigations ${ }^{61}$ of the often quite marked variations in ion intensities obtained from aromatic compounds with different substituents, suggested that correlations based on the llamett cquation, used extensively for the rates and equilibria of solution reactions, might also apply to mass spectra. In fact fair correlations between logarithmic
intensity ratios and Hamett sigma constants (o) were observed for some aromatic compounds ${ }^{6}$. Although such correlations were used as evidence for the structures of ions, and even transition states, in some important types of mass spectral reactions (by analogy with conventional substituent effects), recent work has severely criticised this approach on both empirical ${ }^{62}$ and theoretical ${ }^{63}$ grounds.

The remainder of this section reviews the factors contributing to substituent effects in mass spectra, and is intended as a background to discussion of the effects observed in this study.

2.3.1 Substituent Effects on Decomposition Pathways

The most obvious effect which changing a substituent in a molecule can have on its mass spectrum is the introduction of new, or different, pathways for ion decompositions. In the most extreme case competitive loss of part, or all, of the substituent may occur more readily than the decomposition(s) whose substituent effect is being studied. A more common situation arises when competing decompositions of the ions are also affected by the substituent, often to varying degrees depending on the nature of the substituent. These ixregular substituent effects can only be avoided by choosing substrates which are not prone to unclergo alternative competing decompositions. Many of the problems encountered in measuring regular substituent effects in mass spectra arise because such compounds are hard to find.
2.3.2 Substituent Effects on Internal Energy and Rate Constant Functions

When only regular effects of substituents on a particular decomposition pathway are operating, the relative ion intensities obtained will reflect the internal energy distribution functions $p(E)$ and the rate constant functions k(E) for all the decomposing ions, and the effects of substituents on these functions will determine the observed substituent effects on ion intensities. For example the intensity of a primary fragment ion $\left(A^{+}\right)$will depend on:

1) $\mathrm{P}(\mathbb{E})$ function of the molecule-ion $\left(M^{+}\right)$.
2) $k(E)$ function for the formation of A^{+}.
3) $k(E)$ functions for all the competing decompositions of $M^{-\quad+}$,
4) $p(E)$ function of A^{+},
5) $k(E)$ functions fox all the decompositions of A^{+}. The manner in which ion intensities depend on the relationship between the internal energy distribution function of a decomposing ion and its corresponding rate constant functions is shown in Fig. 7, where a reasonable $p(E)$ function and logarithmic $k(E)$ curves are plotted against the internal energy E. For the molecule-ion the $p(E)$ function is given by the excess energy transfer function $P(E, V)$ whose lower limit is determined by the ionization potential, and the upper limit ($E_{\text {max }}$) by the ionizing voltage.
(i) Internal Energy Distribution Functions: $p(E)$

Since ion intensities are determined by the breakdown curves for each ion integrated over the excess energy iransfer function, any substituent effect which alters the relationship between $P(E, V)$ and the breakdown curves will modify the corresponding ion intensities.

This can happen when the ionization potential is lowered relative to the $k(E)$ curves (as illustrated by the dotted function in Fig. 7), causing a large increase in the relative intensity of $\mathrm{M}^{\text {t. }}$ since a higher proportion of molecule-ions now have insufficient energy to decompose. The relative intensities of the fragment ions (e.g. $\bar{A}^{+}, \mathrm{E}^{+}, \mathrm{C}^{+}$in Fig. 7) are also changed in this situation because the values of $P(E, V)$ over which the breakdown curves for these ions have to be integrated, are now different to those of the original $p(E)$ function.

Substituents may also change the shape of the $p(E)$ function of the molecule-ion through their influence on ionization transition probabilities. Although experimental data concerning this is difficult to obtain, some possible effects are indicated by studies of the photoelectron spectra of substituted benzenes ${ }^{64}$. (The transition probabilities observed in photoelectron spectra are not the same as those obtained in electron impact ${ }^{65}$, because different threshold laws are involved and negligible auto-ionization occurs in photoelectron spectra.) The energy bands observed in these spectra may be broadened or split by the electronic interaction of some substituents with certain $\pi-$ and σ-molecular orbitals of the aromatic xing; furthermore the degree of splitting seems to depend on the extent of the conjugative interaction between the substituent and the ring. Substituents with lonepairs can also cause the appearance of new characteristic bands which seem to be due to ionization of these non-bonding electrons.

Since the $p(\mathbb{E})$ functions of primary fragment ions are used in calculating the breakdown curves of the secondary
fragnent ions formed from them, the possible effects of substituents on the $p(E)$ functions of fragment ions must also be considered. A fragment ion acquires its internal energy from the partitioning of the excess internal energy ($\mathbf{E - E _ { 0 }}$) of the precursor ion between the products of the decomposition. Under the quasi-equilibrium hypothesis this partitioning ${ }^{66}$, or "energy fluctuation effect" 67 , is governed by the respective density-of-states functions of the decomposition products. For example, if $M^{+\dagger}$ dissociates to give a charged fragment A^{+} and a neutral radical Bo^{0}, then the probability that an energy between ε and $\varepsilon+d \varepsilon$ remains as internal energy of A^{+}, for a total internal energy E in $m^{\frac{1}{\circ}}$, is given by

$$
\begin{equation*}
p(E, \varepsilon) d \varepsilon=\frac{\mathbb{N}_{A}(\varepsilon) \cdot N_{B}\left(E-E_{0}^{A}-\varepsilon\right) d \varepsilon}{\int_{0}^{E-E_{0}^{A}} N_{A}(\varepsilon) \cdot N_{B}\left(E-E_{0}^{A}-\varepsilon\right) d \varepsilon} \tag{11}
\end{equation*}
$$

where \mathbb{N}_{A} and N_{B} are the density-of-states functions for A^{+} and B^{\cdot} respectively, and E_{0}^{A} is the activation energy for the formation of A^{+}. FOr each value of E there is thus a distribution of internal energies in a fragment ion ranging from zero to $E-E_{0}$, and substituents may subtly alter these $p(E)$ functions through their influence on the relevant density -of-states functions.

A further Eactor which contributes to the form of the excess energy transfer function, and thus influences relative ion intensities, is the ionizing voltage. Referring again to Fig. 7 , if $E_{\text {max }}$ were to take the values E_{1}, E_{2} and E_{3} corresponding to different ionizing voltages, then the relative intensities of the ions $\mathrm{M}^{+}, \mathrm{A}^{+}, \mathrm{B}^{+}$and C^{+}would change markedly, owing to the different $P(E, V)$ functions over
which their respective breakdown curves would have to be integrated. For $E_{m a x}=E_{I}$ only M^{\dagger} and A^{+}would be formed, whereas for $E_{m a x}=E_{2}$ a small amount of $B^{+1}\left(c . E \cdot A^{+}\right)$would also be observed, but probably no C^{+}since its rate constant would be too slow to compete effectively at energies up to ${ }^{2} 2^{\circ}$ For $E_{\max }=E_{3}$ the amount of B^{+}relative to A^{+}would be greater because of its much higher rate constant over a considexable portion of the corresponding $P(E, V)$ function, and C^{+}would also be observed but with a much smaller intensity than A^{+}. Of course the relative M^{\dagger} intensity also decreases with increasing $E_{m a x}$ since an increasing proportion of moleculeions have sufficient energy to decompose. It is therefore important to follow the variation in ion intensities with ionizing voltage, so that this effect can at least be recognized and possibly allowed for, although the advent of new decompositions at higher energies often makes such allowance impracticable.
(ii) Rate Constant Eunctions. k(E)

Substituents alter the rate constant functions mainly through their effect on the activation energy and frequency factor for a decomposition. They may also exext a secondary influence on $k(E)$ curves by changing the number of active internal degrees of freedom, but fox large polyatomic ions this effect is usually minor. A substituent which inoreases only the activation energy E_{0} would cause curve A to change to curve C for example (Fig. 7), where the minimum rate constant and the curvature of the $k(E)$ function are both decreased. Conversely if a substituent increases only the frequency factox, then curve C would change to curve B, this
time causing only a small increase in the rate constant near the threshold but a large increase at higher energies. Thus a change in activation energy will modify breakdown curves strongly near their threshold energies, whereas a change in frequency factox will have a significant effect only at high energies; this combination of effects can lead to large variations in relative ion intensities with changing ionizing voltage.

The activation energy for the simple cleavage reaction of a molecule-ion

$$
[A-B]^{+} \rightarrow A^{+}+B^{0}
$$

is equal to the bond dissociation energy of the ion as given by either of the following thermochemical relationships ${ }^{25,68}$

$$
\begin{align*}
& E_{0}\left(A^{+}\right)=\Delta H_{f}\left(A^{+}\right)+\Delta H_{f}\left(B^{0}\right)-\Delta H_{f}\left([A B]^{+}\right) \tag{12}\\
& E_{0}\left(A^{+}\right)=\operatorname{IP}\left(A^{0}\right)+D(A-B)-\operatorname{IP}(A B) \tag{13}
\end{align*}
$$

where ΔH_{f} is the enthalpy of formation and D is the bond dissociation energy. (These relationships assume that the activation energy for the reverse reaction is negligible, which is reasonable since most ion-radical or ion-molecule recombination reactions have very low threshold energies.) Substituents can therefore be considered to alter activation energies by changing the ionization potentials of the moleculeion and the charged fragment, or by changing the bond dissociation energy of the neutral molecule. The manner in which particular substituents are likely to affect these quantities, especially the bond strength term, might be predictable from the extensive knowledge of substituent effects
available for ordinary reactions. However, unusual effects may operate for the ionization potential terms, since the electronic states involved in the fragmentation process might be different from those in the jonization processes - à situation not usually met in chemical reactions of systems at thermal equilibrium. A Eurther obvious difference conceras the multiplicities of the electronic states involved, which are often doublet (or quartet) states for many of the ions observed in mass spectra compared with the singlet (or triplet) states usually involved in ordinary chemical reactions. Little is known about the differences these factors might make to the extensively studied pattern of substituent effects observed in solution ${ }^{4}$ and gas-phase ${ }^{5}$ reactions.

Since frequency factors depend on the structural differences (e.g. in vibrational and rotational states) between the reactant ion and the activated complex, large changes in frequency factors are expected only for different types of decomposition; e.g. simple dissociations compared with rearrangements. Direct cleavage reactions generally occur via a "loose" activated complex ${ }^{69}$ in which some vibrational degrees of freedom ($\mathrm{e} . \mathrm{g}$. torsional or bending modes) become "loosened" to rotational degrees of freedom in passing to the activated complex. Since rotations have a much higher density-of-states than vibrations, the frequency factor is larger than would otherwise be expected. Conversely rearrangement reactions generally have "tight" activated complexes with lower frequency factors. In such reactions some rotational degrees of freedom are usually constrajned to become weak vibrations in the activated complex because of the incipient bond formation which occurs between the atoms or groups
participating in the rearrangement. Substituents will therefore have a marked effect on frequency factors only if they cause the number of free rotors to change in passing from the reactant ion to the activated complex ${ }^{8}$. This will occur, for example, when a substituent acting as a free rotor in the decomposing ion becomes constrained to undergo torsional vibrations in the activated complex, because of increased conjugation between the substituent and the aromatic ring. Fuxthermore a substituent may affect other free rotors similarly, since conjugative effects can be transmitted across the aromatic system.

EXPERIMENTAL

3.1 PREPARATIOIN AND PURIFICATION OF COMPOUNDS

Melting points axe uncorrected. Infrared spectraiwere recorded on a Shimadzu IR27G spectrophotometer; n.m.x. spectra on a Varian A60 spectrometer $\left(\mathrm{CCl}_{4}\right.$ solvent and TMS internal standard): high resolution mass spectra on an A.E.I. MS902. spectrometer (70 eV , resolving power 10,000) . Analytical g.l.c. analyses were performed on a Varian Aerograph 1200 Hi Fi III using a SE-30 column.

3.1.1 Reagents and Solvents

Thionyl chloride (Riedel de Haen) was distilled from quinoline and the fraction boiling at $76-84^{\circ}$ was redistilled from raw linseed oil ${ }^{72}$; it had b.p. 75.5-76 (lit. $^{71} 78.8^{\circ} / 746$ $\mathrm{mm})$ 。

Benzyl chloride (B.D.H. Lab Reagent) was dried over calcium chloride and distilled, b.p. 73-74 $/ 11 \mathrm{~mm}$ (1it. 71 179 ${ }^{\circ}$).

Diethyl ether was distilled from conc. sulphuric acid and stored over sodium wire ${ }^{73}$.

Benzene was distilled off phosphorus pentoxide and stored ovex sodium wire. 3.1.2 Deoxybenzoins (Scheme 1)

The mono-substituted deoxybenzoins (4) were usually prepared by reacting the substituted benzamide (1), or preferably the benzonitrile (2), with an ether solution of benzylmagnesium chloride (3) according to the method of Jenlins ${ }^{74}$, to give the benzoyl-substituted deoxybenzoin (ring position of the substituent (X) is denoted by meta or para).

Alternatively the substtuted benzylmagnesium chloride was reacted with benzonitrile to give the benzyl-substituted deoxybenzoin (ring position of the substituent (Y) is denoted by meta" or para'). Good yields were obtained only when the Grignard reagent was prepared carefully to avoid formation of the bibenzyl coupling product; the deoxybenzoins were not purified before being oxidized to the benzils (5). For some substituents alternative procedures were necessary, and these involved the modification of substituents on the deoxybenzoin or benzil substrates.

Scheme 1

$$
\begin{gathered}
\mathrm{YC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Cl} \\
\mathrm{Mg}, \mathrm{Et}_{2} \mathrm{O} \\
\mathrm{YC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{MgCl}(3) \\
+
\end{gathered}
$$

$\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{HI}^{1 . \mathrm{SOCl}_{2}} 2 \overbrace{2} \mathrm{NC}_{4} \mathrm{H}_{4} \mathrm{CONH}_{2}(1)$ or $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CN}(2) \stackrel{\mathrm{CuCN}_{1}}{D M E} \mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{Br}$

$$
\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Y}(4)
$$

$$
\mathrm{SeO}_{2}, \sqrt{\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(70 \%)}
$$

$$
\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{COCOC}_{6} \mathrm{H}_{4} \mathrm{Y}(5)
$$

(i) Preparation of Benzylmagnesium Chloride

Magnesium turnings (B.D.H. "for Grignard") (4.86g, 0. 20
mol) wexe placed in a 3 -necked round bottom flask (250 ml) fitted with a strong mechanical stirrer, dropping funnel, and a double-surface condenser, which was connected via a T-joint adapter to allow solvents to be removed, or reagents to be
added, while the system was under reflux. A dry nitrogen atmosphere was maintained at all times. After flame-drying the glass-ware and magnesium turnings under a stream of nitrogen, sodium dried ether (50 ml) was placed in the flask and cooled to 0°. A solution of benzyl chloride ($23 \mathrm{ml}, 0.20 \mathrm{~mol}$) in ether (50 ml) was added dropwise while stiring continuously, and the reaction usually started within a few minutes. The temperature was kept at 0° during the addition of the benzyl chloride and then allowed to rise to room temperature. G.I.c. analysis of a hydrolysed sample of the dark-green benzylmagnesium chloride solution showed that this procedure gave only a few percent of bibenzyl.
(ii) Preparative Methods
(a) m-Methyldeoxybenzoin:
$m-T o l u i c ~ a c i d ~(B . D . H . ; ~ 19.0 g, ~ 0.130 ~ m o l) ~ w a s ~ t r e a t e d ~ w i t h ~$ thionyl chloride (12.5 ml) overnight to give the acid chloride, which was added to a mixture of ammonia (0.880; 50 ml) and ice (50 g). Cxystallization from ether gave m-toluamide as white needles ($13.1 \mathrm{~g}, 70 \%$) m.p. 94-96 (1it. ${ }^{71} 97^{\circ}$). $m \rightarrow$ Toluamide ($6.76 \mathrm{~g}, 50 \mathrm{mmol}$) was slowly added to a refluxing ether solution of benzylmagnesium chloride 10.20 mol) with stirring. The mixture was refluxed for two days, hydrolysed with dil. sulphuric acid, and the organic layer was separated. After washing with water, aqueous sodium carbonate and water, the ether solution was dried (MgSO_{4}) and the solvent and toluene removed to give m-methyldeoxybenzoin as an orange solid ($9.7 \mathrm{~g}, 90 \%$ crude) $\mathrm{n} . \mathrm{m} . \mathrm{x}, \delta 7.69(\mathrm{~m}, 2 \mathrm{H}) ; 7.14(\mathrm{~m}, 2 \mathrm{H}) ;$ $7: 13$ (s, 5H):4.05 (s, 2H); 2.17 (s, 3H)。
(b) m-Methoxydeoxybenzoin:
m-Methoxybenzoic acid (Light; $88.5 \mathrm{~g}, 0.582 \mathrm{~mol}$) was treated with thionyl chloride (50 ml) in dry benzene (100 ml) under reflux, and then amidated to give m-methoxybenzamide, which was crystallized from water as plates ($58.8 \mathrm{~g} .67 \%$), m.p. 132-134 ${ }^{\circ}$ (lit. ${ }^{76}$ 133-133. 5°)。
m-Methoxybenzamide ($8.10 \mathrm{~g}, 55 \mathrm{mmol}$) was refluxed with an ether solution of benzylmagnesium chloride (0.2 mol) for two days. The usual workup gave m-methoxydeoxybenzoin as an orange solid ($12.3 \mathrm{~g}, 98 \%$ crude), nom.r. 87.43 (m, 3H); 7.16 $(\mathrm{s}, 5 \mathrm{H}) ; 7.1-6.9(\mathrm{~m}, 1 \mathrm{H}) ; 4.08(\mathrm{~s}, 2 \mathrm{H}) ; 3.66(\mathrm{~s}, 3 \mathrm{H})$.
(c) m-Chlorodeoxybenzoin:
m-Chlorotoluene (Chemische Fabrik, purum) was converted ${ }^{77}$ to m-chlorobenzoic acid (52% yield), m.p. $155-156^{\circ}$ (lit. 71 155° 。
m-Chlorobenzoic acid was amidated as usual to give m-chlorobenzamide, which was crystallized from water (69\% yield), m.p. 133-135 (1it. ${ }^{71} 134.5^{\circ}$).
m-Chlorobenzamide ($4.85 \mathrm{~g}, 31 \mathrm{mmol}$) and benzene (100 ml) were added to an ether solution of benzylmagnesium chloride (0.13 mol), and most of the ether was distilled off. After. refluxing the mixture for $3 \frac{1}{2}$ days the usual workup gave m-chlorodeoxybenzoin ${ }^{74}$ as a dark orange solid (7.10 g, 94\% crude), n.m.r. $\delta 7.9-7.7(m, 2 H) ; 7.35(t, 2 H) ; 7.17(5,5 H) ;$ 4.18 (s, 2H).
(d) p-Pluorodeoxybenzoin:
p-Fluorobenzoic acid (Light; $10.0 \mathrm{~g}, 71 \mathrm{mmol}$) was reflumed with thionyl chloride (20 ml) and amidated to give p-fluorobenzamide ($6.21 \mathrm{~g}, 63 \%$), which was recrystallized from water, m.p. 152-155 (lit. ${ }^{83} 154.5^{\circ}$) ; identical (i.I.) with an authentic sample ${ }^{76}$.
p-Fluorobenzamide ($4.70 \mathrm{~g}, 34 \mathrm{mmol}$) and benzene (100 ml) were added to an ether solution of benzylmagnesium chloride (0.17mol), most of the ether was distilled off, and the mixture was refluxed for three days. $p-$ Fluorodeoxybenzoin was obtained as a yellow solid ($5.76 \mathrm{~g}, 80 \%$ crude) after the usual workup.
(e) p-Bromodeoxybenzoin:
p-Bromobenzonitrile (Aldrich: $21.7 \mathrm{~g}, 0.12 \mathrm{~mol}$) was refluxed with an ether solution of benzylmagnesium chloride (0.26 mol) for two days, giving p-bromodeoxybenzoin as a white solia ($27.0 \mathrm{~g}, 82 \%$) m.p. 114-115 ${ }^{\circ}$ (1it. ${ }^{85} 114-115^{\circ}$), n.m.r. $\delta 7.87(\mathrm{~d}, 2 \mathrm{H}) ; 7.55(\mathrm{~d}, 2 \mathrm{H}) ; 7.27(\mathrm{~s}, 5 \mathrm{H}) ; 4.21$ ($\mathrm{s}, 2 \mathrm{H}$). (E) p-Phenyldeoxybenzoin:
p-Bromobiphenyl (Light; $10.0 \mathrm{~g}, 43 \mathrm{mmol}$) was refluxed with cuprous cyanide ($5.05 \mathrm{~g}, 49 \mathrm{mmol}$) in N -dimethylformamide (20 ml) with stirxing for one day. Workup according to Friedman and Shechter's method ${ }^{79}$ gave p-cyanobiphenyl ${ }^{82}$ as discoloured plates (8.6 g , 100% crude) which were treated with decolourising charcoal.
p-Cyanobiphenyl ($7.5 \mathrm{~g}, 40 \mathrm{mmol}$) was refluxed with an ether solution of benzylmagnesium chloride (86 mol) for $1 \frac{1}{2}$ days giving p-phenyldeoxybenzoin as a white solid (8.0 g, 73\%) which was recrystallized from methanol as colourless plates, m.D. $146-148^{\circ}\left(1 i t .^{84} 140^{\circ}\right)$.
(g) m-Trifinoromethyldeoxybenzoin:
m-Trifluoromethylbromobenzene (Koch-Light; 22.5 9. 0.10
mol) was refluxed with cuprous cyanide (l0.3 $\mathrm{g}, 0.11 \mathrm{~mol}$) in N-dimethylformamide (20 mI) for 8 hr . Vacuum distillation of the brown liquid obtained after workup ${ }^{79}$ gave m-trifluoromethylbenzonitrile as a clear liquid ($8.87 \mathrm{~g}, 52 \%$), b.p. $84^{\circ} / 34 \mathrm{~mm}$ (lit. ${ }^{80} 94-95^{\circ} / 40 \mathrm{~mm}$) 。
m-Trifluoromethylbenzonitrile ($8.85 \mathrm{~g}, 52 \mathrm{mmol}$) was refluxed with an ether solution of benzylmagnesium chloride (0.16 mol) for one day, giving m-trifluoromethyldeoxybenzoin as an orange oil (13.4 g, 98\% crude), n.m.r. $\delta 8.2-8.0(m, 2 H)$; 7.7-7.4 (m, 2H); $7.16(\mathrm{~s}, 5 \mathrm{H}) ; 4.13(\mathrm{~s}, 2 \mathrm{H})$.
(h) m-Bromodeoxybenzoin:

The complex obtained by adding benzonitrile (80 ml , 0.78 mol) to anhydrous aluminium trichloride ($233 \mathrm{~g}, \mathrm{l} .55 \mathrm{~mol}$) with vigorous stirring, was brominated ($20 \mathrm{ml}, 0.78 \mathrm{~mol}$) at 80° for $12 \mathrm{hr}^{78}$. The dark oil obtained on hydrolysis in conc. hydrochloric acid (100 ml) and ice (1 Kg), was extracted with ether and the extracts were washed and dried (MgSO_{4}). After distilling off the ether and unreacted benzonitrile (0.36 mol), the residue was dissolved in hexane and treated with decolourising charcoal, giving colourless prisms of m-bromobenzonitrile at $0^{\circ}(20.0 \mathrm{~g}, 0.12 \mathrm{~mol}, 27 \%), \mathrm{m} . \mathrm{p} .37-39^{\circ}\left(\right.$ lit. ${ }^{78} 37-38^{\circ}$). m-Bromobenzonitrile (7.28 g .40 mmol) was reflured with
an ether solution of benzylmagnesium chloride (85 mol) for 12 hr, to give m-bromodeoxybenzoin as a yellow solid (ll.0 g, 40 mmol, 100% crude), n.m.r. $\delta 8.00$ ($t, 111$); 7.74 (doublet of triplets, 1H); 7.47 (doublet of triplets, 1H); 7.13 (d, 1H); 7.12 (s, 5H): 4.01 (s, 2H).
(i) m-Cyanodeoxybenzoin:
m-Bromodeoxybenzoin (50.0 g .0 .18 mol) was refluxed with cuprous cyanide ($19.5 \mathrm{~g}, 0.21 \mathrm{~mol}$) in N-dimethylformamide (50 ml) for 6 hr . The brown solid obtained on workup ${ }^{79}$ was purified by eluting it through an alumina column with petroleum ether (50-70)-benzene mixtures, giving m-cyanodeoxybenzoin ($23.3 \mathrm{~g}, 58 \%$) as white prisms from alcohol, m.p. 86.5$87.5^{\circ}, \nu_{\max } 2230,1690 \mathrm{~cm}^{-1} ; \mathrm{nom.r} . \delta 8.20(\mathrm{~d}, 1 \mathrm{H}) ; 8.09$ $(t, 2 H) ; 7.7-7.5(\mathrm{~m}, 2 \mathrm{H}) ; 7.22(\mathrm{~s}, 5 \mathrm{H}) ; 4.18(\mathrm{~s}, 2 \mathrm{H})$.
(j) m-Formyldeoxybenzoin:
m-Cyanodeoxybenzoin ($3.00 \mathrm{~g}, 13.5 \mathrm{mmol}$) was reacted with anhyorous stannous chloride ${ }^{81}$ (75 mmol) in a solution of hydrogen chloride in ether ${ }^{82}(75 \mathrm{ml})$, and the resulting aldimine stannichloride complex was decomposed in boiling water to give m-formyldeoxybenzoin as a white solid. (2.50 g, 82\%) , $\nu_{\max } 1710,1670,1600 \mathrm{~cm}^{-1} ; \mathrm{n} . \mathrm{m} . \mathrm{r} . \delta 10.07(\mathrm{~s}, 1 \mathrm{H}) ; 8.50$ (t, IH); 8.26 (doublet of triplets, 1 H); 8.06 (doublet of triplets, 1 H$) ; 7.68(\mathrm{~d}, \mathrm{LH}) ; 7.29(\mathrm{~s}, 5 \mathrm{H}) ; 4.33$ (s, 2H). (k) m'-Fluorodeoxybenzoin:
$m-F l u o r o b e n z y l$ bromide (Aldrich; $10 \mathrm{ml}, 87 \mathrm{mmol}$) was converted to m-fluorobenzylmagnesium bromide by the usual procedure, and refluxed with benzonitrile ($4.1 \mathrm{ml}, 40 \mathrm{mmol}$) for $2 \frac{1}{2}$ days, to give $m^{\prime m}$ filuorodeoxybenzoin as a redmbrown oil (10 g) , n.m.x. $83.00-7.83(\mathrm{~m}, 2 \mathrm{H}) ; 7.43(\mathrm{~d}, 2 \mathrm{H}) ; 7.34$ (d, 1H); $7.00(\mathrm{~m}, 3 \mathrm{H}) ; 6.85(\mathrm{~m}, ~ 1 \mathrm{H}) ; 4.13$ ($\mathrm{s}, 2 \mathrm{Fi})$ 。
(1) $m^{\text {i }}$-Nitrodeoxybenzoin:
$m^{\text {- }}$ Nitrodeoxybenzoin was obtained from a sample prepared by Fischer ${ }^{89}$ which had m.p. 82°.

3.1.3 Eenzils

The mono-substituted benzils were prepared by oxidation of the deoxybenzoins with 1.1 equivalents of selenium dioxide (B.D.H.) according to the method of Corey and schaefer ${ }^{85}$. No impurities were detected in their mass spectra.
(a) Benzil (Hopkin and Williams) was recrystallized from alcohol to give yellow needies, m.p. 95-96 (1it. ${ }^{71} 95^{\circ}$). (Found: m/e 210.0682; $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2}$ requires mol. wt. 210.0681.) (b) m-Fluorobenzil was chromatographed on a silica gel column with petroleum ether (50-70) -benzene mixtures, and gave pale yellow needles from alcohol, m.p. 101.5-102.5 (1it. ${ }^{87}$ 100.5101 ${ }^{\circ}$) (Found: $m / e 228.0589 ; \mathrm{C}_{14} \mathrm{H}_{9}{ }^{\mathrm{O}} 2^{\mathrm{F}}$ requires mol. wt. 228.0587.)
(c) p-Fluorobenzil was chromatographed on a silica gel column with petroleum ether (50-70)-benzene mixtures, and gave yellow prisms from methanol, m.p. 62-62. 5° (1it. ${ }^{87} 63.5-64.5^{\circ}$). (Found: m/e 228.0584; $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~F}$ requires mol. wt. 228.0587.)
(d) m-Chlorobenzil was purified by column chromatography and gave yellow prisms from alcohol, m.p. 89-90 (1it. ${ }^{\circ} 866^{\circ}$). (Found: m / e 244.0293; $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Cl}$ requires mol. wt. 244.0291.)
(e) m-Bxomobenzit gave yellow prisms from alcohol, m.p. 82-83 ${ }^{\circ}$. (Found: $m / e 287.9782 ; \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}$ requires mol. Wt. 287.9786.)
(f) p-Bromobenzil gave pale yellow needies from alcohol, m.p. 86.5-87 ${ }^{\circ}$ (lit. ${ }^{85} 86-87^{\circ}$). (Found: $m / e 287.9780 ; \mathrm{C}_{2.4} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}$ requires mol. wt. 287.9786.)
(g) m-Methytbenzil gave pale yellow prisms from alcohol, m.p. 93.5-94.5 5° (Found: $m / e 224.0834 ; C_{15} 5_{12}{ }_{2}$ requires mol. wt. 224.0837.)
(h) m-Methowybenzit gave pale yelilow prisms from alcohol, m.p. 90-91 ${ }^{\circ}$. Found: $m / e 240.0783 ; \mathrm{C}_{15^{\mathrm{H}}} 12^{0}{ }_{3}$ requires mol. wt. 240.0786.)
(i) p-Phenylbenzil was chromatographed on a silica gel colum with petroleum ether (50-70)-benzene mixtures, giving a yellow oil which crystallized from cold petroleum ether (50-70) as a pale yellow powder, m.p. 96-97 (lit. ${ }^{88}$ 104-105). (Found: m/e 286.0995: $\mathrm{C}_{20} \mathrm{H}_{14}{ }^{\mathrm{O}}$ 2 requires mol. wt. 286.0994.)
(j) m-FormyZbenzit was purified by column chromatography and gave pale yellow prisms from alcohol, m.p. 84.5-85 . (Found: $\mathrm{m} / \mathrm{e} 238.0630 ; \mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}$ requires mol. wt. 238.0630.)
(k) m-Cyanobenzit gave orange-yellow prisms from alcohol, m.p. $86.5-87.5^{\circ}$. (Found: $m / e 235.0629 ; \mathrm{C}_{15} \mathrm{H}_{9} \mathrm{NO}_{2}$ requires mol. wt. 235.0633.)
(1) m-Trifluoromethylbenzit gave yellow plates from alcohol, m.p. 67-68号 (Found: m/e 278.0560; $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~F}_{3}$ requires mol. wt. 278.0555.)
(m) m-Nitrobenzil gave pale yellow prisms from alcohol, m.p. 120-121 ${ }^{\circ}$ (1 it. ${ }^{90} 120^{\circ}$). (Found: $m / e 255.0525 ; \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{4}$ requires mol. wt. 255.0532.)

3.2 MASS SPECTROMETER

3.2.1 Instrumental Modifications

The instrument used was an A.E.I. MS902 double-focussing high resolution mass spectrometer, which was equipped with some standard modifications designed to improve and extend its capabilities. The most important of these for this work, was a modified ion beam focussing system for the source ${ }^{91}$. Prior to the introduction of this modification, it was very difficult to obtain optimum focussing of the ion beam - a prerequisite
to obtaining good ionization efficiency data. The original focussing controls were interdependent and their range of adjustment was sometimes insufficient. The new system showed a much reduced degree of interdependence between the focussing controls, and a maximum in the ion current could always be obtained if the source was clean.

Other modifications included a head amplifier gain kit, which provided a ten times increase in amplification of the ion detector signal, and a digital read-out for the collector meter. This was obtained by connecting a digital voltmeter (International Electronics; Type DSV4), reading to four significant figures, across the scaling resistor of the collector meter. A semi-automatic digital recording system for measuring ionization efficiency data was also constructed, and is described in the next section.

3.2.2 Semi-Automatic Digital Recording System

This data collection system was designed to obtain
ionization efficiency data, and was based on a 1024 channel time-averaging-computex (Varian C1024, CAT) which was used to digitise and store the ion signal at constant time intervals while the ionizing voltage was scanned mechanically (Fig. 8).
(i) Ionizing Voltage Control Unit

The potentiometer controlling the electron beam voltage was replaced by a very free-running 10 -turn helipot (Beckman; Series A, lok, $\pm 0.5 \%$ lineaxity) giving a 9 volt change in the ionizing voltage per revolution. An electromagnetic clutch (Oliver Pell; MC7) connected the helipot spindle to the arive. unit of a synchronous motor (Phillips; AU 5100/91); which was powered by a continuously variable Exequency supply (Appendix B). The motor shaft speed was $250 \mathrm{rev} / \mathrm{min}$ (at a frequency of

Pig. 8. SemioAutomatio Digital Recording System.

50 Hz), and this was reduced to $3 \frac{1}{3}$ rev/min by a 75:1 reduction gear unit (Phillips; AU 5300/80 DP). The voltage scan rate was decreased to a convenient value of $6 \mathrm{volt} / \mathrm{min}$ (2/3 rev/min) by reducing the supply frequency, so that a 5 volt scan was obtained using the 50 sec scan setting on the CAT. The electron beam voltage was displayed on a digital voltmeter (Weston; Model 1290) which replaced the original meter, and read to 0.01 volt over the range $0-25$ volt. (A switching device was incorporated to enable it to read to 0.1 volt over the range $0-100$ volt.)
(ii) CAT Input Signal

In order to match the input impedance of the CAT, the ion signal output from the bandwidth filter was fed through a high-to-low impedance voltage follower; to reduce the multiplier gain required to obtain a sufficient ion signal, an amplifier (x 10) was inserted between the voltage follower and the CAT input. In this way the signal was amplified after removing most of the noise with the bandwidth filter, rather than by incxeasing the multiplier gain which gave unacceptable noise levels at high multipliex settings.
(iii) CAT Read-out System

Once stored in the CAT, the ionization efficiency data was punched on 7 -track paper tape using a Creed Model 25 punck unit. The binary values of each channel address and its contents were transmitted to the punch through a specially designed interface unit (Appendix B). The two numbers (for each channel) were punched in a compact binary format, enabling a complete scan (1024 chamels) to be stored on about 45 feet of tape. Although the maximum speed of the punch was 28 characters/sec, it was run at about $1 / 3$ this rate to
avoid the punching errors which occurred at higher speeds; a complete scan (5120 characters) therefore took about 6 minutes to punch. At the end of each tape record (i.e. a scan) an "end-of-record" character (middle 5 tracks punched) was punched manually.
3.2.3 Sample Introduction
(i) Inlet systems

This instrument possessed three standard systems for introducing samples into the ion source: a cold inlet system for gases, an all-glass heated inlet system (AGHIS) for liquids, and a heated direct insertion system (HDIS) for solids. Extra introduction ports were provided in the source housing for alternative inlet systems, and one of these was used for a modified gas inlet system to introduce a reference gas (xenon) into the source at a constant, readily controlled pressure.

This inlet system consisted of a backing pump connected to an oil diffusion pump, which evacuated a small vacurm line containing two inlet ports and an exit line to the ion source. The flow of gas through the exit line was controlled by a variable needle-valve (Granville-Phillips; Series 203), and could be adjusted to any desired value. The operation of this system was quite simple. A small reservoir (250 ml), filled to a few mtorr pressure with zenon, was connected to an inlet port and the line was evacuated until no residual gases were detected on opening the needle-valve to the source. The vacuum line was then isolated from the diffusion pump and the stop-cock to the gas reservoir was opened (with the needle-valve closed). The xemon was then admitted to the source by opening the needle-valve until the desired flow-
rate was attained. A constant source pressure of about 5×1.0^{-6} torr could be maintained over a long period using this technique. However, it was noticed that the source ionization gauge reading (pressure) slowly increased to about I麦 times its initial reading over a period of $\frac{1}{2}-1$ hour: the ion current did not change during this time. The reason for this effect is not known, but the xenon pressure was always allowed to equilibrate for at least one hour before its reading was taken.

The AGHIS was only used to introduce the reference compound (N-heptacosatrifluorobutylamine) to the source for high-resolution mass measurements. Attempts were made to use it for some of the benzils, but sufficient source pressures could not be obtained, even at temperatures (250-300 $)$ which were apparently high enough to cause pyrolysis of the samples. At these temperatures much higher $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}\right] /\left[\mathrm{M}^{+}\right]$ intensity ratios were observed than when using the direct insertion system. A constant source pressure could not be maintained with the unheated direct insertion probe, but when the HDIS became available a technique was devised to overcome this critical problem with the introduction of the solid samples.
(ii) Sample Preparation

The ionization efficiency curves of all the major ions in the mass spectra of the benzils, usually five or more ions at low ionizing voltages (not counting isotopic species), had to be measured for the purposes of this study. The most efficient way to do this was to obtain all the curves for a compound in one experiment, keeping the ion source conditions constant throughout, so that only one reference curve (xenon)
was required for each experiment. Contact potentials between the electron-gun filament and the ion chamber block can change markedIy with different source pressures 92 and it was important that these changes be kept to a minimum so that the calibration of the ionizing voltage scale with the reference curve was correct. Since it took 8-10 minutes to record and punch a single ionization efficiency curve, the source pressure had to be kept constant for up to $1 \frac{1}{2}$ hours. This requirement posed a major problem when introducing solid samples with the FDIS.

The usual method with the HDIS was to pack the sample in a melting point tube cut to the requisite length, and push it into the cup on the probe tip, which was packed with silica wool (previously heated at 400° overnight), so that it protruded about $\frac{1}{4}$ ". This method enabled the sample pressure in the source to be kept constant for only a few minutes, since it proved very difficult to control the rate of vaporization of the sample by varying the temperature of the probe tip. However, a simple modification of this procedure enabled a constant sample pressure to be maintained for up to two hours.

About $\frac{1 / 4}{4}$ of sample was packed into a melting point cube cut to the correct length, and just melted over a hot lamp. A $\frac{1}{2}^{\prime \prime}$ plug of silica wool was pushed into the molten sample so that the wool was impregnated with the sample. Care was taken that none of the sample rose above the top of the wool plug. The sample was allowed to cool, and a further plug (传") of silica wool was pushed in. the tube was then placed in the cup of the HDIS probe as usual, and inserted into the source. When the probe temperature was gradually raised the
sample vaporized smoothly off the silica wool on melting, and its pressure could be controlled by adjusting the temperature of the probe. Over the period of an experiment, minor adjustments to the probe temperature were required to maintain the constant source pressure. These adjustments were made while the previous scan was being punched, allowing enough time for the pressure to reach equilibrium at the desired value for each scan.
(iii) General Procedure

A clean ion source was essential to obtain satisfactory Ionization efficiency data. Sometimes an apparently clean source gave unsatisfactory results, and this was usually traced to small ion burns around the electron-gun assembly; replacement of the filament with a clean one generally rectified this problem. Whenever an ion source (or part) was replaced, it was baked overnight in the instrument (100$150^{\circ}$). If the source was baked between each experiment for a few hours, and overnight about every two days, it often proved satisfactory for a week or more if not used for any other work. The general procedure followed in introducing a sample for ionization efficiency experiments is described below.

The source housing and ion chamber block were allowed to equilibrate at temperatures of $80(\pm 10)^{\circ}$ and $120(\pm 10)^{\circ}$ respectively, depending on the melting point of the sample (generally in the range $80-100^{\circ}$). These temperatures were high enough to prevent any condensation of the sample on the source, but not so high that they caused the sample to melt when it was inserted in the HDIS probe and so prevent control of its pressure with the probe heater. The AGHIS and direct
insertion lock wore kept at similar temperatures to avoid condensation on their inlet ports. The xenon was admitted through the varjable leak and allowed to equilibrate at about 5×10^{-6} torr pressure. The sample was then introduced and. the probe temperature adjusted to give a total source pressure of about 1×10^{-5} torr. The temperature required to do this was often considerably higher than the melting point of the sample owing to the efficient insulation provided by the silica wool surrounding the sample tube. It was generally found that the probe temperature had to be gradually increased during an experiment to maintain a constant source pressure, since the sample slowly sublimed through the silica wool, moving further away from the probe heater.

3.2.4 Source Focussing

Good source focussing is essential to obtain reproducible ionization efficiency data. Precautions were taken to minimise the variable effects on ion chamber potentials due to cross-fields and space-charge ${ }^{92,93 . ~ A l l ~ i o n i z a t i o n ~}$ efficiency and ion intensity data were measured with the ion repellex plate shorted to the ion chamber block, and at a trap current of $10 \mu \mathrm{a}$ - the lowest setting available. Although the low electron beam current produces a considerable sacrifice in sensitivity, and kence the attainable signal-tom noise ratio of the ion current, it is necessary to accept this in view of the variable space-charge effects observed at higher currents ${ }^{93}$. Since the most sensitive maximum in the ion current is obtained near an ion repeller setting of zero potential difference between it and the ion chamber block, practicaly no loss in sensitivity is suffered by shorting them. Variations in the penetration of the ion accelerating
potential into the ion chamber were minimised by measuring all data at a constant voltage (8 kV).

The source focussing controls were optimized using the most intense peak present in the mass spectrum. Except for high resolution measurements, the source exit slit was set just under the maximum width, and the collector slit was set to give a flat-topped peak. The ion beam was set in the middle of the monitor valley using the " ΔV " control to trim the ion accelerating voltage, and the beam focussing controls were adjusted. The "beam centring", "Z-deflection", "Y-defiection", and "source focus" controls were optimised in that order; the ΔV control was then readjusted to make the top of the peak flat (adjustment of the Y-deflection control can cause this to become skewed). This cycle of adjustments was repeated until the maximum ion current was obtained, then the "analyser focus" and magnet horizontal settings were checked. These are particularly important for high resolution work. The focussing was performed at the ionizing voltage at which the measurements were to be mane (e.g. 15 eV for ionization efficiency data), since the focussing changed considerably at different voltages - especially above 20 ev.

The focussing was tested for ionization efficiency work by recording the curve for xenon (m / e l32), and displaying it on the CAI oscilloscope. If the ionization efficiency curve appeared to be linear above the threshold, the source focussing was considered acceptable. If not it was refocussed and if no improvement was obtained, the source was removed for inspection and cleaning.

3.3 DATA COLEECTIOR

3.3.1 70 eV Mass Spectra

The standard 70 ev mass spectra were recorded at low resolving power ($M / \Delta M \approx 1,000,10 \%$ valley) and $100 \mu a$ trap current; the background spectrum was checked to be negligible. The multipliex gain was set so that the base peak gave less than half the full-scale deflection on the galvonometer trace (x I) of the chart recorder, to ensure that the recorded ion intensities did not suffer from saturation of the multiplier response. Saturation occurred for the largest penks if the gain was much higher than this, and it was indicated by excessive values for the ${ }^{13} \mathrm{C}$ isotope peak. The ion intensities were digitized and avexaged from two or three chart recordings by manual measurement of the peak heights. Spectra were also recorded at high multiplier gains to enable weak normal metastable ion peaks to be detected. Mass measurements were performed at high resolution ($M / \Delta M \approx 15,000,10 \%$ valley) by the "peak-matching" procedure, using N-heptacosatrifluorobutylamine as the mass standard; all measured masses were within 5 ppm of the required values.

3.3.2 Low Voltage Mass Spectra

Low resolution mass spectra were also recorded at nominal ionizing voltages of $20,18,16,14,12$ and 10 ev . The purpose of these measurements was to obtain accurate relative ion intensity data, which could be used to apply corrections to the relative ion intensities calculated from ionization efficiency curves. This was necessary because of the small variations in source pressure which occurred when different curves were being measured. The following method
of measuring ion intensities gave acourate data, and was also Fast enough to ensure that variations in the source pressure at each ionizing voltage were negligible. The time required to perform the measurements at each voltage was 5-10 minutes, depending on the number of peaks to be measured.

At each ionizing voltage the source focussing was checked, and the major ions present (i.e. intensities greater than $\sum_{s}=0.1 \%$ were tuned onto the collector in turn. The multiplier was adjusted to give a suitable reading on the digital voltmeter connected in parallel with the collector meter, and the peak was then just detuned so that the collector meter zero could be set correctly. On retuning the peak the ion signal was read from the digital voltmeter, and a correction was made for the multiplier gain. Although isotopic peaks were not measured, the ${ }^{13} \mathrm{C}$ peak was checked to ensure that the gain used was low enough to avoid saturation of the multipliex response.
3.3.3 Ionization Efficiency Curves

Ionization efficiency curves were obtained for the major ions present in the mass spectra at low ionizing voltages, and for the reference ion (Xe ${ }^{+}, m / e$ 132), in the following manner. The ion was tuned onto the collector and the ionizing voltage was decreased below the threshold voltage of the ion, so that the collector zero could be adjusted to give a digitized value ca. 100 for the sub-threshold region of the ionization efficiency curve. The ionizing voltage was set to the desired staxting value (e.g. 5 ev above the threshold); and the multiplier gain was adjusted to give the maximum ion signal accepted by the CAT on its most sensitive input range (approx. 2.8 volt on a CAT "attenuator" setting 1); this
gives a digitized value ca. 1200. The CAT "scan time" was set to 50 sec , and the frequency control for the ionizing voltage drive unit was adjusted to ramp down the required voltage (e.g. 6 eV), so that the last 100 or so data chanels recorded the flat sub-threshold region of the curve. The CAT scan was triggered automatically when the clutch was switched on: when the scan had finished (as indicated on the oscilloscope display) the clutch was switched off manually. Ieaving the final value of the ionizing voltage displayed on the digital voltmeter. (This recording system could be improved by making the "end-of-scan" pulse generated in the Cat trigger a relay to switch off the clutch automatically).

Exnerience showed that the optimun signal-to-noise (S / N) ratio was obtained with a bandwidth filter setting of 50 Hz . A lower setting caused the curves to have low frequency " noise which could not be removed with the analytical smoothing methods used in the data analysis. In principle the S/N ratio could be improved by accumulating many scans in the CAT memory, but the ratio increases only as the squaxe root of the number of scans. The present method of scanning was too slow to allow any significant improvement to be made in this way; there was usually only just sufficient time to record and punch all the ionization efficiency curves before the sample eventually $x a n$ out.
3.3.4 Calibration of Multiplier Gain

The multiplier gain had to be calibrated so that relative ion intensities could be obtained from the measured intensities, which invariably employed different multiplier gains for different ions. This was carried out using the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$ion (m / e 105) in the mass spectrum of benzil. The source pressure and ionizing voltage were adjusted so that

no saturation of the multiplier response occurred at the highest gains used. The ion signals at both the HRP (multiplier) and LRP (Faraday Cup) collectors were measured from the digital voltmeter at various multiplier settings, care being taken to ensure that the collector zero was correctly adjusted before each reading. The multiplier gain was then calculated (as a function of the multiplier setting) as the ratio

$$
\begin{equation*}
G_{M}=I_{H R P} / I_{L R P} \tag{14}
\end{equation*}
$$

and is given in Table 1 . These values were used to convert the measured ion intensities to the same relative scale, assuming that discrimination effects in the multiplier response for the various ions were negligible ${ }^{94}$.

CH AP PER 4

ANALYSIS OF TONTZATION EEFTCTENCY DATA

One of the principal aims of this work was to develop numerical data analysis procedures which would extract the maximum amount of useful information from the experimental ionization efficiency (IE) curves. In view of the direct relationship between theoretically calculated breakdown curves and nomalized, deconvoluted second-derivative ionization efficieacy (SDIE) curves (see Chapter 2.2 .3 (iv)), attempts were first made to compate SDIE curves riom the experimental data. However, the accuracy of the data measured using the present system was too low for such computations to be satisfactory; this was due to the low signal-to-noise (S / N) ratio obtained when measuring the very weak ion signal near the threshold voltage. It was recentiy shown ${ }^{95}$ that data of sufficient precision to derive reliable SDIE curves could be obtained using a much more sophisticated computer-operated system, which performed time-averaging of the experimental IE curves over several thousand scans.

Because of the insurmountable problems encountered with the "derivative" method 52,92 of analysing the experimental IE curves, a less sophisticated approach was used to extract ionization and appearance potentials from the measured IE curves. The conventional methods for doing this have been extensively discussed ${ }^{93,96}$, and generally depend on various interpretations of the shape of an iE curve near its chreshold. These include the "vanishing current" methods of Smyth 97 and. Warren ${ }^{98}$, and the "logarithmic methods" due to Honig and

Wanier ${ }^{99}$, Lossing et al. ${ }^{100}$, and Dibeler and Reese ${ }^{101}$. A modification of the logarithnic methods was used in this work because these are the ones generally favoured in studies of this type.

Fractional ion intensities were also calculated from the IE curves because then the energy scale could be corrected to its true value, rather than using intensities measured at a number of nominal ionizing voltages. Furthermore this method allowed the fractional ion intensities to be calculated at any desired energy intervals (up to several volts above the threshold voltage), so that the variation of the relative intensities with ionizing voltage could be analyzed in more detail than would otherwise be possible.

This chapter describes the numerical procedures which were used to analyse the experimental data, with reference to the computer programs which were developed specifically for this work. After a general discussion of the various programs, a brief description of the diffexent stages of a typical analysis is given in section 4.5 to illustrate the use of the programs with examples of the outputs obtained from them. A complete listing of the computer prograns is given in Appendix A.

4.1 LEAST SQUARES PROCEDURES

The method of least squares ${ }^{102}$ was used extensively to overcome the problems associated with the processing of data containing considerable random noise. Three different least squares programs were used in the data analysis; two had simple applications xequiring only a single cycle of refinement. and the third was a general least squares program adapted from

ORGLS ${ }^{103}$. They were all written as subrovtines for use with the other data analysis programs, and are briefly described below.

4.1.1 Smoothing and Differentiation (SMOOTH)

Data obtained at uniformly spaced values of the independent variable can be fitted to a polynomial function of any desired order by a simple convolution procedure ${ }^{104}$, described by

$$
\begin{equation*}
\hat{y}_{j}=\sum_{i=-m}^{m} c_{i} y_{j+i} / \Delta, \quad j=m+1, \ldots, n-m \tag{15}
\end{equation*}
$$

where $y_{j}\left(j=I_{1} \ldots, n\right)$ is an observed point, \hat{y}_{j} is the corresponding value estimated by a least squares fit over $2 m+1$ points, c_{i} is the set of convoluting integers, and N is the associated normalizing constant. The set $\left\{c_{i}\right\}$ may be chosen such that the \hat{y}_{j} values give the least squares estimate of the $k^{\text {th }}$ order derivative of the polynomial fitted to the observed values $\left(y_{j-m} \cdots y_{j+m}\right)$, where k may range up to the ordex of the polynomial. It is merely necessary to judge what degree polynomial gives the best fit to the observed data over segments of $2 m+1$ points, m being chosen as desired. A second order polynomial was considered to be sufficient for the IE curves obtained in this work, and the subroutine SMOOTH performs quadratic smoothing or differentiation using this method.
4.1.2 Fitting a Straight Line (IINEAR)

The data points $\left(y_{i}, x_{i} ; i=1, \ldots, n\right)$ were fitted to the straight Ine

$$
\begin{equation*}
\hat{y}_{i}=\hat{a}+\hat{b} x_{i} \tag{16}
\end{equation*}
$$

using least squares estimates for the linear parameters (\hat{a}, \hat{b}) which minimise the sum of the weighted squares of the residuals

$$
\begin{equation*}
E=\sum_{i} w_{i}\left(y_{i}-\hat{y}_{i}\right)^{2} \tag{17}
\end{equation*}
$$

where w_{i} is the weight of the $i^{\text {th }}$ point. The parameter estimates were obtained from the equations

$$
\begin{align*}
& \hat{a}=\underset{i}{\left(\sum w_{i} x_{i}\right.}{ }^{2} \cdot \sum_{i} w_{i} y_{i}-\underset{i}{\left.\sum w_{i} x_{i} \cdot \sum w_{i} y_{i}\right) /\left(\sum w_{i} \cdot \sum w_{i} x_{i}^{2}-\underset{i}{2}\left(\sum w_{i} x_{i}\right)^{2}\right)} \tag{18a}\\
& \left.\hat{b}=\underset{i}{\left(\sum w_{i}\right.} \cdot \sum w_{i} x_{i} y_{i}-\sum w_{i} x_{i} \cdot \sum w_{i} y_{i}\right) /\left(\sum w_{i} \cdot \sum w_{i} x_{i}^{2}-\left(\sum w_{i} x_{i}\right)^{2}\right) \tag{18b}
\end{align*}
$$

and the standard deviations (\hat{s}_{a}, \hat{s}_{b}) of these estimates, together with the correlation coefficient (x), from the expressions

$$
\begin{align*}
& \hat{s}_{a}^{2}=s^{2} /\left(\sum w_{i} x_{i}^{2}-\underset{i}{\left.\left(\sum w_{i} x_{i}\right)^{2} / \sum w_{i}\right)} \underset{i}{\hat{s}_{b}^{2}=s^{2} \cdot \sum_{i} w_{i} /\left(\sum_{i} w_{i} \cdot \sum_{i} w_{i} x_{i}^{2}-\left(\sum w_{i} x_{i}\right)^{2}\right)}\right. \tag{19a}
\end{align*}
$$

$$
\begin{equation*}
r=\frac{\sum_{i} w_{i} \cdot \sum_{i} w_{i} x_{i} y_{i}-\sum_{i} w_{i} x_{i} \cdot \sum_{i} w_{i} y_{i}}{\left(\sum w_{i} \cdot \sum w_{i} x_{i}^{2}-\left(\sum w_{i} x_{i}\right)^{2}\right)^{\frac{T}{2}}\left(\sum_{i} w_{i} \cdot \sum_{i} w_{i} y_{i}^{2}-\left(\sum w_{i} y_{i}\right)^{2}\right)^{\frac{T}{2}}} \tag{19c}
\end{equation*}
$$

Although this subroutine has provision for weighting the data, unit weights were generally employed since IINEAR was only used
when simple straight line Eits were required without iterative refinement to discard points lying well off the line (e.g. see 4.3.2).
4.1.3 Fitcing a General Function (LINETT)

The general least squares method ${ }^{1020}$ uses a Taylor expansion about a point in parameter space to refine initial estimates of the parameters of an arbitrary function to give the best fit to a set of observations. More than one cycle of refinement is required to converge on the final solution, unless the function fitted to the data is linear in the variable parameters. Although the applications in this work involved such linear functions, the refinement was continued over a few cycles so that observations could be rejected if their weighted residuals were too high; new estimates of the parameters were then computed with these points excluded from the least squares analysis.

Subroutine LINFIT was set up in the same way as ORGLS to allow a number of options using the subroutines PREIIM, CALC, and TEST, which were called at different stages by LINFIT. PRELIM was called before the least squares analysis started and set up the data arrays, computed the standard deviations used to weight the data, and provided initial estimates for the parameters and other associated variables. For each cycle of refinement, the contribution of each observation to the matrix and vector of the normal equations was calculated after calling CALC, which computed the value of the function from the current values of the parameters and the independent variables associated with each observation, and also obtained the derivatives of the function with respect to the variable
parameters. The matrix was then tested for singularities and inverted by MATINV which used the Choleski matrix-inversion procedure ${ }^{105}$. At the end of each refinement cycle, after computing the revised estimates of the parameters and their standard deviations, TEST was called and could be used to check the parameters (modifying them if necessary), or the convergence of the refinement by testing the agreement factor. Unless the refinement was terminated by TEST (or because of a singular matrix), it was continued for the specified number of cycles and a final calculation of the parameter estimates was performed. These estimates were then printed out, together with their standard deviations, the correlation matrix, and the agreement factor.

4.2 PRELIMINARY TREATMENT OF IONIZATION EFFICIENCY DATA 4.2.1 Decoding and Editing (TAPED)

The paper tape data was decoded using a special Assembler subroutine (BNMCM), written in the department by R.J. Dellaca. which translated the characters read from the paper tape, and stored the decoded values of the digitized ion signal in the elements of a data array according to their channel number. Because of occasional mispunchings on the tapes and recurring problems with reading the tapes into the computer, it was convenient to have the decoded data punched on cards in an easily readable integer format (20 points per card, 52 cards per tape record), so that spurious data could be corrected by simply repunching a card. A listing of the raw data was edited menually for this purpose; although time-consuming, this process had to be done only once, and it avoided having to inciude data-checking routines in the computer programs.

A.2.2 Gmoothing and Reduction of Data (RAWFIT)

Analytically smooth ionization efficiency curves were reguired fox the calculation of the fractional ion intensities (see 4.4), and originally for the attempted calculations of the SDIE curves. Since the low signal-to-noise ratio of the experimental IE data allowed only the broad features of these curves to be discerned, the smoothing was done by fitting a sequence of linear segments to the experimental IE curves using the general least squares subroutine (IINFIT). Each linear segment spanned 0.2 eV (i.e. about 34 data points for the usual 6 eV scan), giving thirty segments in all, and the ordinate values at the end-points of each segment were the parameters adjusted by least squares. This simple technique possessed a number of advantages over other smoothing methods for the data obtained in this work. Most importantly it successfully removed all the noise from the experimental data (except for very low frequency noise), and the smoothed IE curves which could be reconstructed from the linear segments with subroutine DATCOM (using quadratic smoothing to even out the changes in slope between successive segments) reproduced the broad features of the original curves very closely. Further advantages were that the data files were reduced from over 1000 points per scan to only 35 parameters or less (including the voltage scan parameters), and that the ionization efficiency could be calculated at any desired intervals of the ionizing voltage by simple linear interpolation procedures.

The estimated standard deviations (σy) of the end-points (y) of each linear segment provide a measure of the variation in the error of the ion signal with its magnitude. Plots of $\log \sigma y$ against $\log y(F i g .9)$ showed that the relation between
σ_{y} and y was well described by

$$
\begin{equation*}
\sigma_{y}=c y^{\alpha}, \quad \alpha=0.50(\pm 0.01) \tag{20}
\end{equation*}
$$

This has important consequences in deciding on the correct weighting scheme to use when estimating parameters from the experimental data (e.g. appearance potentials, see 4.3). The relation

$$
\begin{equation*}
\sigma_{y}=c y^{\frac{1}{2}} \tag{21}
\end{equation*}
$$

was used in all cases where weighting schemes were employed in estimating parameters by least squares.

4.3 APPEARANCE POTENTIALS

4.3.1 Semi-logarithmic Method

The semi-logarithmic method 100,101 for determining ionization and appearance potentials is generally performed by measuring the intensities (I_{V}) of the sample and reference ions relative to their respective intensities at $50\left(I_{50}\right)$ or 70 eV (I_{70}), over the xange of ionizing voltages (V) where these relative intensities (e.g. I_{V} / I_{50}) lie between 0.1 and 1\%. Plots of the logarithm of these normalized ion intensity curves (e.g. $\log \left(I_{V} / I_{50}\right)$) against the ionizing voltage are generally linear and paxallel (with suitable choice of the reference ion) over this range, and the appearance potential is obtained from the voltage difference between the parallel sections of the two curves. This method is easy to perform experimentally since intensity-voltage measurements need be taken only at several selected values lying in the range $I_{V} / I_{50} \approx 0.1-1 \%$. However, this arbitrary nomalization procedure is simply equivalent to the subtraction of a
constant value (e.g. $\log I_{50}$) from the unnomalized logarithmic IE curve ($\log I_{V}$). It therefore merely shifts the $\log I_{V}$ curve down the ordinate scale, and assumes that this will make the linear portions of these curves coincide (on the normalized ordinate scale). This assumption supposes that the IE curves have the same shape from the threshold right up to an ionizing voltage of 50 (70) ev; it is not justified, especially for different types of ions (e.g. fragment ions compared with molecule-ions), but is necessary when complete ionization efficiency curves are not available.

In this work, IE curves were availabie up to about 5 eV above the threshold energy and a normalization procedure which avoided the disadvantage of the standard method was developed: This procedure scales the logarithmic IE curves to the same size over the short energy range from just below the threshold to about 5 eV above the threshold; it thus shows up differences in the shapes of the $\log I_{\mathrm{V}}$ curves near the threshold but does not make assumptions about the behaviour of the IE curves at higher energies. These differences in the $\log I_{V}$ curves arise from the expected changes in the functional dependence of the ionization efficiency on the ionizing voltage for different types of ions, and they must be recognized if estimates are to be obtained for the systematic exrors they cause in using the semi-log method.

The normalization procedure adopted was carried out as follows. The multiplier gain was set to give the same ion signal for each $I E$ curve at an ionizing voltage about 5 ev above the threshold. This starting energy for the deareasing voltage scan was such that the last 100 channels of the CAT
recorded the Elat sub-threshold region of the IE curve (see section 3.3.3) . Since the $\log I_{V}$ curve increases with energy only slowly at this point (Fig . lob), the precise starting voltage used is not critical for this nomalization procedure, but it should be about the same energy above the threshold for each curve. Before recording the IE curve the ion signal in the flat sub-threshold region was adjusted to give a measurable value (I_{0}), which then has to be adjusted to the same value $\left(I_{Z}\right)$ for all the IE curves. I_{Z} was set to 1.0 so that the logarithm of the normalized IE curve $\left(I_{V}^{\mathbb{N}}\right)$ was zero for the sub-threshold region (if I_{Z} was set to zero, $\log I_{V}^{N}$ would be minus infinity in this region). The normalized IE curves were thus obtained from the expression

$$
\begin{equation*}
I_{V}^{N}=I_{V}-I_{0}+1.0 \tag{22}
\end{equation*}
$$

and examples of the semi-log plots $\left(\log I_{V}^{N}\right)$ are shown in $F i g$. 13. The advantages of this normalization procedure are that the normalized semi-log plots are referenced correctly to their zero ordinate value, and are also scaled to the same size. This procedure hence gives a more correct correspondence between the ordinates of the different $\log I_{V}$ curves than does the standard method, which does not reference the semi-log curves to the same zero value (unless the IE curves have exactly the same shapes from the threshold to $50(70) \mathrm{ev}$). The problem is now to decide the value of the nomalized logaxithmic intensity scale at which the voltage differences between the semi-log curves should be measured to derive the appearance potentials. For ions of the same type (e.g. molecule-ions), the ionization efficiency should show the same functional dependence on the ionizing voltage; the corresponding
normalized semi-log curves will therefore have the same shapes. In particular the normalized ionization efficiency near the threshold may be described by an exponential of the Eorm

$$
\begin{equation*}
I_{V}^{N}=C \exp (B V) \tag{23a}
\end{equation*}
$$

where C is a constant representing the zero correction factor, and the exponent β gives the degree of dependence on the ionizing voltage V; β is therefore expected to vary with the type of ion. Hence a linear region whose slope depends on the value of β will be observed near the threshold of the normalized semi-log curve

$$
\begin{equation*}
\log _{e} I_{V}^{N}=\log _{e} c+\beta V \tag{236}
\end{equation*}
$$

and this behaviour was found for all the IE curves measured in this work (e.g. Fig. 13). The linear regions generally spanned ordinate values centred around $\log I_{V}^{N}=1.0$, and their slopes were the same for the reference ion and the molecule-ion, and slightly less for the primary fragment ions. The slopes observed for the secondary fragment ions were always much less than that for the reference ion - behaviour expected from a consideration of typical breakdown curves for these ions (see. section 2.2.3(iv)).

The appearance potentials reported in this work were determined from the voltage difference between the normalized semi-log curves measured at an ordinate value of $\log I_{V}^{N}=1.0$ (on the arbitrary scale applying to this data), because this corresponded to the middle of the linear regions of the curves. The ion intensity at this point ($I_{V}^{N}=10$) is approximately 1% of the intensity 5 eV above the threshold
$\left(I_{V}^{N} \approx 1000\right)$, so these appearance potentials can be described as 1\% values measured with reference to the ion intensity 5 eV above the threshold. The systematic errors introduced by this arbitrary choice of ordinate value are discussed in section 4.3 .4.
4.3.2 Normalization of Semi-log Curves (SLOG)

Because the experimental IE data was so noisy, it was necessary to use a trial-and-error method to determine the best value of the normalizing constant (I_{0}) to subtract from the IE curve to adjust its zero intensity value. The raw IE curve was first smoothed (SMOOMH) and a straight line was fitted to the first 50 points (IINEAR) to obtain an approximate normalizing constant. This value was then corrected by an input parameter and the normalized semi-log curve was calculated and plotted on the line-printer (SPLOT). Visual inspection of this plot (Fig. 10) showed whether the normalization was satisfactory, i.e. giving the sub-threshold region a value close to zero.

Straight line segments were also fitted to overlapping portions of this semi-log curve (e.g. 40-point segments starting at every 20th point), and the values of the intercepts and gradients of these line segments were printed out. Together with the genexal appearance of the plot, these parameters were used to decide where the end-points of the linear region of the semi-log curve were situated; these endpoints were required for the next program (SLAP). 4.3.3 Calculation of Appearance Potentials (SLAP)

The straight line

$$
\begin{equation*}
y=p_{1}+p_{2} z \tag{25}
\end{equation*}
$$

was fitted to the selected linear portion of the semi-log curve using LINFIT; y is the logaxithm of the normaizized, quadratically moothed IE curve (obtained from sLoG) at a nominal ionizing voltage x. The data points were weighted according to the estimated standard deviations of y, calculated to within a scaling factor c from the expression

$$
\begin{equation*}
\sigma_{y}=\frac{c\left(x^{1}\right)^{-\frac{1}{2}}}{2.303} \tag{26}
\end{equation*}
$$

where y^{\prime} is the normalized ionization efficiency (i.e. $\left.y^{\prime} \equiv I_{V}^{\mathbb{N}} y=\log y^{\prime}\right)$. The agreement factor calculated by LINFIT is the weighted average of the deviations between the observed and calculated points, and may be regarded as the average ratio of the observed deviations to the corresponding estimated standard deviations obtained from equation (26). The scaling factor (c) in this equation was adjusted to make the agreement factor close to unity so that the estimated standard deviations closely represented the actual observed deviations, assuming that these deviations were due to random experimental exror. Pojnts which deviated from the line by more than $30 y$ were then given zero weight (the usual criterion for eliminating occasional spurious data points), and the refinement of the parameters $\left(p_{1}, p_{2}\right)$ was continued until the agreement factor did not change in successive cycles. The nominal ionizing voltage (x) at $y=1.0$ and its estimated standard deviation $\left(\sigma_{X}\right)$ were calculated from the least squares estimates of the parameters (p_{1}, p_{2}) and their standard deviations $\left(S_{1}, S_{2}\right.$) using the expressions ${ }^{102 a}$,

$$
\begin{equation*}
x=\left(1.0-p_{1}\right) / p_{2} \tag{27a}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\mathrm{x}}=x\left[\left(\frac{S_{1}}{1.0-p_{1}}\right)^{2}+\left(\frac{S_{2}}{\rho_{2}}\right)^{2}\right]^{\frac{1}{2}} \tag{27b}
\end{equation*}
$$

Fig. In shows an example of the output from program SLAP.
The corrected appearance potential (v) was obtained by adding to the derived value (x) the diffexence between the ionization potential of xenon (12.130 eV) and the measured value (x_{r}) of the xenon reference curve, so that

$$
\begin{align*}
& v=x-x_{r}+12.130 \mathrm{eV} \tag{28a}\\
& \sigma_{V}=\left(\sigma_{x}^{2}+\sigma_{x}^{2}\right)^{1 / 2} \tag{28b}
\end{align*}
$$

Weighted means (\bar{v}) of the appearance potentials ($v_{i}, i=1, \ldots, n$)
measured for each ion, and estimated standard deviations of the means $\left(\sigma_{-}\right)$, were calculated from the following expressions ${ }^{102 b}$,

$$
\begin{align*}
& \bar{v}= \frac{\sum_{i} W_{i} v_{i}}{\sum W_{i}} \tag{29a}\\
& \sigma_{\bar{v}}=\left\{\begin{array}{l}
\frac{1}{\left(\sum W_{i}\right)^{\frac{1}{2}}} \\
i{ }_{i} \\
\left.\frac{\sum\left(v_{i}-\bar{v}\right)^{2}}{n(n-1)}\right]^{\frac{1}{2}}
\end{array}\right. \tag{29b}
\end{align*}
$$

where the weights (w_{i}) of the individual determinations were given by

$$
\begin{equation*}
w_{i}=\frac{1}{\sigma_{v_{i}}}, \quad i=1, \ldots, n . \tag{29d}
\end{equation*}
$$

The larger of the alternative estimates of $\sigma_{\bar{v}}(29 b, 29 c)$ has been guoted in the results, and the individual measurements $\left(v_{i}\right)$ were usually within $2 \sigma_{v}$ of the mean value (Table 8).

4.3.4 Discussion of Errors

The estimates of the standard deviations of the appearance potentials determined in the previous section (4.3.3) reflect only the errors due to the random noise on the experimental IE curves. Further systematic exrors are introduced because of differences in the slopes of the linear regions of the normalized semi-log curves for different types of ions (fig. 13). These differences in the slopes for the reference ion, compared with the fragment ions, cause the measured appearance potentials (v) to depend on the value of the ordinate (y) chosen to determine x and x_{r} (see equations (27) and (28)). For example, Fig. 12 shows the typical case where the slope for the reference ion is greater than that for the fragment ion. If the appearance potential $\left(v^{\circ}\right)$ is determined at a value of the ordinate (y^{\prime}) lower than 1.0 (used in this work), then the measured voltage difference $\left(x^{r}-x_{r}{ }^{\prime}\right)$ between the lineax regions of the semi-log curves is smaller, causing v^{\prime} to be less than v by the same amount. Upper limits to the systematic errors in the appearance potentials due to this effect can be obtained by determining \bar{v}^{\prime} for $y=0$ and comparing these values with those obtained at $y=1$. These calculations were performed for a few of the compounds and the results are presented in Table 2. The differences (Δv) observed for the ionization potentials are of the same order as the estimated standard deviations, and are therefore of little consequence. Significant differences (about $0.1-0.2 \mathrm{eV}$) are observed for the primary fragment ions, and large differences (about 0.5-1.0 eV) for the secondary fragment ions. Since the appearance potentials of the secondary fragment ions were not

Systematic Errors in Appearence Potential Determinationsa.
Compound $m / \mathrm{v}\left(\sigma_{V}\right)^{b} \quad \stackrel{v}{v}\left(\sigma_{v}\right)^{c} \Delta v^{d}$
(a) Benzil

210	$9.20(.03)$	$9.22(.04)$	0.02	
105	$9.87(.03)$	$9.81(.06)$	-0.06	
77	13.8	$(.1)$	13.4	$(.1)$
0.4				

(b) muFluorobenzil

228	$9.23(.02)$	$9.25(.03)$	0.02	
123	$10.42(.05)$	$10.15(.05)$	-0.27	
105	$9.76(.05)$	$9.56(.05)$.0 .20	
95	13.7	$(.2)$	13.2	$(.2)$
77	13.8	$(.2)$	13.4	-0.5
	$(.2)$	-0.4		

(c) m-Methylbenzil $\begin{array}{rcccc}224 & 9.05(.03) & 9.01(.02) & -0.04 \\ & 119 & 9.57(.03) & 9.45(.03) & -0.12 \\ & 105 & 9.93(.03) & 9.76(.03) & -0.16 \\ & 91 & 13.60(.04) & 13.18(.03) & -0.42 \\ & 77 & 14.01(.05) & 13.2(.1) & -0.8\end{array}$
(a) m-Formylbenzil $238 \quad 9.14$ (.05) 9.13 (.05) -0.01
$133 \quad 10.34(.05) \quad 10.12(.05) \quad-0.22$
$105 \quad 9.88(.04) \quad 9.70(.03) \quad-0.18$
$77 \quad 13.67(.05) \quad 13.12(.04) \quad-0.55$
a All values in electron volts (eV).
b Mean and e.s.d. determined at $\log (n o r m a l i z e d ~ I E)=1$.
© Mean and ens.d. determined at $\log (n o m m a l i z e d ~ I B)=0$.
$a \quad \Delta v=\bar{v}^{\prime}$ - \bar{v} (approx. upper Inmit for the systematio error) .
used in the correlations of the results they are not considered further, except to note that the tabulated values may be subject to large systematic excors - as is usually the case for such measurements.

The systematic errors in the appearance potentials of the primary fragment ions must be considered because they are significant, and because they form the basis of the conclusions reached in this work. Where correlations involve the differences between the appearance potentials for the substituted $\left(A P_{X}\right)$ and unsubstituted ($A P_{E}$) ions, the systematic errors (Δv) are about the same and hence will cancel (to within the estimated standard deviations of the measurements). Where the corxelations involve the appearance potentials themselves, the systematic errors will have practically no effect on the slope and the degree of the correlation because the ΔV values for these ions have the same sign and are of similar magnitude. The same remarks will apply to correlations involving the differences between the appearance potentials and the ionization potentials.

4.4 FRACTIONAL ION INTENSITIES (FIX)

The fractional ion intensities of the major ions in the low voltage mass spectra were calculated as a function of energy from the smoothed ionization efficiency curves, obtained from the program RAWFIT (see section 4.2). A number of correction factors had to be applied to these calculated IE curves (DATCOM) to obtain the fractional ion intensities. The voltage scan parameters were adjusted to make the measured appearance potential obtained from the normalized IE curve (see section 4.3) coincide with the mean value determined for the particular ion. The curves were coxrected for the
multiplier gain (Table 1), and also for the contributions of the other isotopic peaks of the ion. A final correction was applied by comparing the calculated fractional ion intensities with the values measured directy at sevexal ionizing voltages. Before this could be done, the corrected IE curves for the molecule-ion and the primary fragment ions had to be extrapolated to higher energies so that the fractional intensities of these ions could be calculated up to 9-10 eV above the ionization potential. A simple linear extrapolation gave satisfactory agreement with the measured fractional intensities.

The measured fractional intensities (Table 4) were plotted as a function of the nominal ionizing voltage so that they could be compared with plots of the calculated curves obtained as a function of the corrected ionizing voltage (electron energy) using the subroutines FLOG and PLOT. Since these two energy scales may differ by a constant (but unknown) amount, the plots were shifted relative to each other along the energy axis until the chreshold energies were in best agreement. Correction factors for the fractional intensity curves of each ion were then obtained by comparing the relative heights of the curves over the whole energy range. An example of the agreement generally obtained is shown in Fig. 14.

An important factor in calculating these fractional ion intensity curves was the determination of the correct threshold energies of the IE curves. These values were difficult to determine from the corrected IE curves because of the asymptotic approach to the zero level of the ion signal. However, the trial-and-error method employed was facilitated by using the fractional ion intensity scale, especially Eor
the important primary fragment ions, because their threshold energies usually occurred where the total ion intensity was still low, so that small errors in their calculated intensities (caused by using an incorcect value for the zero intensity were greatly magnified in their fractional intensities. This effect caused large fluctuations to occur near the thresholds of the fractional intensity curves for these ions (e.g. Fig. 15), but had no effect at higher energies. The correct threshold energy was therefore taken as the value which gave the fractional intensity curve showing a smooth increase with energy near the threshold. This factor was much less important for the secondary fragment ions since their fractional intensities were so low that a small error in the zero intensity level had no observable effect. The caloulated fractional ion intensity curves were used to obtain the various ion intensity ratios employed in the analysis of this data. The curves had two advantages for this purpose - they referred to the true ionizing voltage (rather than the nominal voltage, as for the directly measured intensities), and the intensity ratios could be computed at any desired energy intervals, thus permitting a detailed analysis of the variation in these ratios with enexgy.

To make the energy scales comparable for the different compounds, the scales were converted from the (true) ionizing voltage (V) to an "excess enexgy" scale (E) defined by

$$
\begin{equation*}
E=V-I P \tag{30}
\end{equation*}
$$

Where Ip is the ionization potential. This scale gives the mean excess energy of the electron beam above the ionization
potential and should not be confused with the internal energy of the molecule-ion. No allowance has been made for the energy distribution of the electron beam (which has a half-width of about 0.6 eV) , and therefore the ionizing energy at $\mathrm{E}=0$ does not represent the energy where the moleculemion has zero internal energy, negative values of E reflect the width of the electron energy distribution.

4.5 A TYPICAL ANALYSIS

This section illustrates the procedure followed in analysing the ionization efficiency data obtained from a typical experiment with m-methylbenzil (M-MBZ1). The outputs from the various computer programs are shown graphically where possible.

4.5.1 Program RAWFIT

The least squares estimates of the end--points (y) of the linear segments fitted to an experimental IE curve are punched on cards, together with the voltage scan parameters. These parameters are used as input data to compute smooth replicas of the noisy experimental IE curves when such smoothed curves are required, for example in the calculation of fractional ion intensities or for plotting purposes.

The relation between the root mean square value of the noise and the magnitude of the ion signal is illustrated in fig. 9. This is a plot of $\log \sigma_{y}$ against $\log y$ (obtained from RAWEIT, section 4.2.2) for the reference ion and the major ions in the mass spectrum of m-methylbenzil, and it shows that σ_{y} varies as the square root of y. The values of α (equation 20) are given by the slopes of the Lines.

Fic. 9. Standard Error of Ionization Efriciency.
(IE Curves for momethylbenzil)

4.5.2 Program SLOG

A specimen output from this program is shown for the molecule-ion (m / e 224) of m-methylbenzil in Fig. 10a. The unnormalized semi-log curve ($\log I_{V}$, without the zero threshold correction) is shown (Fig. lob) for comparison with the nomalized curve $\left(\log I_{V}{ }^{N}\right)$. The intercept (CONST) and slope (SLOPE) values for the overlapping linear segments (INTERVAL) fitted to the semi-log curve are also tabulated.

4.5.3 Program SLAP

The input parameters for this program are given under the heading (Fig. 11) EXPERIMENTAL DATA, and include the scaling factor C (EST ERROR CONST) for the estimated standard deviations σ_{y} of the semi-log values y (see equation 26), and the approprjate zero threshold correction and the interval for fitting the straight line obtained from program SLOG (c.f. Fig. 10). The output parameters include the agreement factor referred to in section 4.3.3 (SQRTF), and the uncorrected voltages (x) at which $y=0$ and 1 (EPT and VPT respectively, c.f. Fig. 12).

Fig. 13 illustrates the differences in the slopes of the Ineax regions of the nomalized. semi-log plots for the different types of ions formed by m-methylbenzil. The semilog curves were computed from the smoothed IE curves obtained from RAWFIT using the same normalization procedure as SLOG. 4.5.4 Program EIX

The calculated fractional ion intensities obtained from this program are cabulated as a function of the coraected ionizing voltage for comparison with the measured values in Table 4 . Fig. 14 shows a plot of these fractional intensity

ElG． $10(a)$ Program SLOG Output：Normalized Semi－Log IE Curve

INTTAL SCAN VOLTAGY＝＝ 2.00

2ERO THRESMOLO SURPECTILA－
ADJUSTER 2ERC VALUE $=1.00$
CALCULATED CERQECTICN＝77．0A

SAM－LGG PLOT PARAMETERS－
LOEAOATEE．AT VFT $=2.00$
MININUK SLOPE VALUC $=0.10$
PLCT SCALE FACTOR $=30.00$

	CONST（－S0）	StCPF（Esc）		CORR	EPT	YPi
\therefore－ 0		9．23239	C0（O－2604 $5-01)$	C．EAzs	7.52	1．8．8
－ 2 －		9．4．630		C．t 7 ？	7.47	14．3i
－5－		9．72912	co（0．50， 5 5－ct	0.3171	7． $\begin{array}{r}\text { \％}\end{array}$	9.2
－－${ }^{2}$		TA67 0 Co	coco－360－5－8t	Q． 5.0 c		
		C． 36.7 74．		0.75	7．4 1	e．
		$0 \cdot 71575$		6． $5 \cdot 5$	1，-	
\％－ 203	－ S_{4}			$0 \cdot 8$	7．20	
48.380		9．12707		0.9740	¢0	
－ 3 an		－ 4.379		0．4353		
－ 320		C．1．4．3 ${ }^{\text {a }}$	Ei5．029 \％－62）	C．4532	－ 7	
－${ }^{2}$				$0.95{ }^{\text {cose }}$	－ 6	
边 $3 * 0$		＇1． 13400		Q．crae		
－－		U．134．7		0．S5．7？	3 \％	
		$9+12603=$		O． 9.5 .74	5	
\therefore－4－2		$9.14476=$		0.9579 0.957	7.97	
$\cdots{ }^{*}$				0.35%	7.76	
$\therefore \therefore \therefore$－ 48		$3 .-5415$		1．ce 0	7＊＊	
		9．0．0330		0．7）	7＊${ }^{*}$	\％． C
$\therefore \mathrm{ra}$－\because		0． $0.7407=$		0.3783	4．74	¢
				0.5692	6.24	
：－				0.2573	E．77	
5－3－30，		9．965tic		0.9535	5.1	
天or mir		0．4．4596		0．95it	$4 \cdot 8$	
3rbof 20		$0.43344=$		2．5c5\％	5． 0	7.
$\therefore \mathrm{O}$－ O		－隹		3－1 ${ }^{\text {a }}$	．	6.7
\cdots－－t，${ }^{\text {a }}$		9．3 2078		0.201	－．4．4	t.
\＆，\％for		$0.3 \pm 53 \mathrm{At}$		0.963	3.11	
F，\because－		0.31146	＊）（t，1746－53）	i）． 95.54	2．4	
亿吅		）．？¢ ¢4ta＊		0.05		
：－$\because:$			0710.2833^{-631}	万． 5.51	2．${ }^{2}$	
－				$0.5 ¢ 71$	－${ }^{\text {a }}$	
：－\％				0.9614	C．7	4.
\cdots		1． 12018	in（1，1174t－0？）	$0.3<35$	－ 6.5	
－．\quad ，				6．9．959	＊	
－${ }^{\text {a }}$		13．3 11	¢0（0．	0．0¢\％	：	
－				2.514	－\％＊	
－－：		11．301478		20393	；	
－				7－3ty	－1－1	
－${ }^{-7}$		9．1．alta	$00(6.1074-20$	$0 \cdot r_{2} 5_{4}$	－ 5.4 ？	
－ 7 7．		） 5 cos 1 i	$001(6,44)$	$0.5 \% 1 \%$	－5．t．i	
$\cdots 20-0$	A．atari	G－3 3 les		0.45	－4． 1	
$\cdots \mathrm{cm}$		0．154tht		0.357	－ 08	
		$0.12+3 y^{2}$	00（0．8137\％－03）	0.5655	－e．<6	C

Mace
Logla.e.
Value

LENETH OF INTERVAL FOR QUADRATIC SMOOTHING OF C-gRDER OERIVATIVE = 4l. PQINTS

ZERO THRESHOLD CORRECTIUN -
AOHISTEC ZEKO VALUE $=73.0$ A
CALCUIATEC CORAECTIDH $=0.00$

SEMZ-LOS PLOT PARAMETERS -
LOG10(1.E.) AY VPT $=1.00$
MINLHEA SLCPE VALUE $=0.10$
PLOT STALE FACTOR $=30.00$

\qquad

FlG. 11 Program SLAP Output


```
MNTYAL SCAN VOLTMNY = 7.00
```

EEGUH TF INTGPVAL GOR RUADPATIG SMDOTHING OF O-OROER OERIVATIVE 4 . POINTS

Nomirq of cycees 【h THIS Job IS \&

NIME-a OF 3AMAETERS TO RE VARIED IS 2
NUPEER OF OGSEQVAIICNS READ IS 161
fAPUT DATA
$: \quad$: 111 KIt!) DP(I)

HASAMTERS OFTER LEAST SQUTRES CYCLE \&
CLD CHANCE NEh ERQCR

ESTIMMPO AMEEMEVT FACYORS BASEO CA DARANETEQS AFTER CYCLE 1

CACAAYEO Y BASEO OU PAGAHETERS DEFRRE CYしLE 2

OLy EHANOE HES ERAOR
\therefore -

Wumber of D.O.F. ir \quad bu.

AGEFEAKN: FAGFORS BASED OU PAOAWETSRS REFRRE CYCLE 3
Numbert of D.0.f. 15157.
50, (4) : (0-C)**2) is 0.171E 03

PARAMETERS AFTF4 LEAST STURPES CYCLE 3
CLB GHNMES - NER EROR

ESTHATER AGRETMENG FACTORS DSSEO TA PARANETERS AFTER CYCLE 3

sum (4* (0-6)**2) 15 0. 189503

GALCUEATED Y BASED ON PARAMETEQS REFDRE CYCLE 4

KGOEENE:T FACTMRS NASED ON PAKAMETERS DEFCRE CYCLE A

PARA以HTEOS AFPEA LEAST SOLNAES CYCLE 4
CLO CHANGE VEh ERRCR


```
ESTHAATEO AGREENENT FACTORS FSSED ON PARAFETERS AFTER CYCLE 4
```


ACXGAMENT FACTORS GASES OM PAPARETERS BEFGRE CYCLE 5

CORRELATION MATEIA
\$ 1.000-:.000
.2 i.000
CALCULATED APPEARANGE POTEATIAL EPT (E.S.DA) VPT (E.S.O.)

Pte. 12. Systematic Errors in Appearance Potental Deterainations:

Pie. 13. Nomalized SemimLog Ionization Eficiency Curves for mmethylbenzil.

curves for the major ions in the mass spectrum of m-methylbenzil (some of the curves are multiplied by a scale factor). The measured fractional intensities are marked by the crosses to illustrate the agreement obtained between the calculated and measured values.

Fig. 15 illustrates the effect of using an incorxect value for the threshold of the ion intensity, partioularly for the primary fragment ion having the lowest appearance potential (i.e. $m / e 119(2)$ for m-methylbenzil).

Fig. 14

Fig. 15 Effect of Incorrect Zero Threshold Intensity

RESULTS

5.1 MASS SPECTRA (70 and 20 eV).

The mass spectra of the benzils, measured at nominal ionizing voltages of 70 and 20 ev as described in section 3.3.1, are shown in Fig. $16(a-m)$. These plots show the mean values of the ion intensities measured relative to the base peak (100%) from at least three separate chart recoraings. They have not been corrected for isotopic contributions. The relative ion intensities ($I_{r e l}$) tabulated in Table 3 (a-m) wexe obtained from the same data, but the intensities for each ion have been corrected for isotopic contributions (the tabulated m / e value refers to the isotope of lowest mass). The estimated standard deviations $\left(\sigma_{\bar{y}}\right)$ of the mean relative intensities (\bar{y}) were calculated from the expression ${ }^{102 b}$

$$
\begin{equation*}
\sigma_{\bar{y}}=\left(\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n(n-1)}\right)^{\frac{1}{2}} \tag{31}
\end{equation*}
$$

Where the composition of an ion was in doubt it was detemined by mass measurement.

Relative Ion Intensities (70 and 20 eV Mass Spectra)
(a) Benzil

m / e	Ion	70 eV		20 eV	
		$I_{\text {rel }}$	(e.s.a.)	$I_{\text {rel }}$	(e.s.d.)
210	$\mathrm{C}_{14}{ }^{\mathrm{H}} 10^{\mathrm{O}}{ }^{\text {t }}$	5.6	(0.4)	4.9	(0.9)
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	100		100	
77	$\mathrm{C}_{6} \mathrm{H}_{5}+$	37.7	(0.5)	10.9	(0.8)
76	$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}$	1.2	(0.1)		
75	$\mathrm{C}_{6} \mathrm{H}_{3}{ }^{+}$	0.7	(0.2)		
74	$\mathrm{C}_{6} \mathrm{H}_{2}{ }^{+}$	0.8	(0.2)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$	13.9	(0.5)	0.3	(0.1)
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$	3.6	(0.3)		

Relative Ion Intensities (70 and 20 eV Mass Spectra)
(0) m-Fluorobencil

m / c	70 V			20 eV	
	Ion	Irel	(e.s.d.)	$\mathrm{Irel}_{\text {rel }}$	(e.s.d.)
228	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O} \mathrm{F}^{\text {t }}$	$2: 3$	(0,4)	2.5	(0.4)
123	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{OF}^{+}$	15.0	(0.4)	12.0	(0.4)
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	100		100	
95	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}^{+}$	16.0	(0.4)	3.9	(0.6)
94	$\mathrm{C}_{6} \mathrm{H}^{\mathrm{F}}{ }^{+}$	0.7	(0.1)		
77	$\mathrm{C}_{6} \mathrm{H}_{5}^{+}$	37.6	(0.9)	15.0	(1.1)
76	$\mathrm{C}_{6} \mathrm{H}_{4}^{+}$	1.3	(0.2)		
75	$\mathrm{C}_{6} \mathrm{H}_{3}{ }^{+}$	6.8	(0.5)		
74	$\mathrm{C}_{6} \mathrm{H}_{2}{ }^{+}$	1.5	(0.2)		
69	$\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~F}^{+}$	1.2	(0.1)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}^{+}$	12.5	(0.4)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$	4.0	(0.2)		

Fig.16 (b) M-Fluorobenzil

Table 3

Relative Ion Intensities (70 and 20 eV Mass Spectra)

Fig. 16 (c) P-Flluorobenzil

(d) m-Cnlorobenzil

me	Ion	$\begin{gathered} 70 \mathrm{eV} \\ I_{r e I} \quad\left(e_{0} s_{0} d_{0}\right) \\ \hline \end{gathered}$		$\begin{gathered} 20 \mathrm{eV} \\ I_{\text {rel }} \quad\left(e . s, d_{0}\right) \\ \hline \end{gathered}$	
244	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Cl}^{+}$	2.4	(0.2)	2.3	(0.3)
139	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{OC1}{ }^{+}$	15.7	(0.8)	10.6	(0.5)
111	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}^{+}$	11.1	(0.6)	2.8	(0.5)
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	100		100	
77	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$	29.7	(0.6)	5.9	(0.0)
76	$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}$	1.7	(0.2)		
75	$\mathrm{C}_{6} \mathrm{H}_{3}{ }^{+}$	5.9	(0.4)		
74	$\mathrm{C}_{6} \mathrm{H}_{2}+$	1.5	(0.2)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$	9.2	(0.5)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}+$	4.2	(0.3)		

Fig. 16 (d) M-Chlorabenzil


```
Relative Ion Irtensities (70 and 20 eV Mass Spectra)
```

(e) m-Bromobenzil

m / e	70 eV			20 eV	
	Ion	$I_{\text {rel }}$	(e.s.d.)	$I_{\text {rel }}$	(e.s.d.)
288	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}{ }^{+}$	1.7	(0.0)	1.9	(0.0)
183	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{OBr}{ }^{+}$	12.0	(0.1)	9.7	(0.0)
155	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}^{+}$	8.1	(0.0)	3.3	(0,0)
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	100		100	
77	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$	21.2	(0.2)	$7 \cdot 2$	(0.2)
76	$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}$	4.2	(0.0)		
75	$\mathrm{C}_{6} \mathrm{H}_{3}^{+}$	3.6	(0.0)		
74	$\mathrm{C}_{6} \mathrm{H}_{2}^{+}$	1.0	(0.0)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}^{+}$	5.2	(0.1)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$	3.5	(0.0)		

Fig. 16 (e) M-bromobenzil

(f)	p-Bromobenzil	70 eV		20 eV	
m/e	Ion	$I_{\text {rel }}$	(e.s.d.)	$I_{\text {rel }}$	(e.s.d.)
288	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}^{\text {t }}$	4.7	(0.4)	5.2	(0.4)
183	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{OBr}{ }^{+}$	38.4	(0,5)	34.4	(0.3)
155	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}^{+}$	14.8	(0.4)	3.6	(0.1)
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	100		100	
77	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$	29.3	(0.7)	5.3	(0.5)
76	$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {+ }}$	8.5	(0.3)		
75	$\mathrm{C}_{6} \mathrm{H}_{3}{ }^{+}$	$7 \cdot 3$	(0.3)		
74	$\mathrm{C}_{6} \mathrm{H}_{2}{ }^{+}$	2.6	(0.2)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$	8.3	(0.1)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$	2.8	(0.0)		

Fig. 16 (i) p-bromobenzil

Relative Ion Intensities (70 and 20 eV Mass Spectra)

m / e	70 eV			20 eV	
	Ion	$\mathrm{I}_{\text {rel }}$	(e.s.d.)	$I_{r e l}$	(e,s.d.)
224	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}^{\text {t }}$	6.1	(0.8)	6.6	(0.9)
119	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}^{+}$	100		100	
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	37.7	(0.9)	30.0	(1.3)
91	$\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}$	30.2	(0.9)	12.7	(0.6)
90	$\mathrm{C}_{7} \mathrm{H}_{6}{ }^{\text {º }}$	1.1	(0.3)		
89	$\mathrm{C}_{7} \mathrm{H}_{5}{ }^{+}$	1.8	(0.3)		
77	$\mathrm{C}_{6} \mathrm{H}_{5}^{+}$	19.7	(0.9)	3.5	(0.8)
76	$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}$	0.9	(0.2)		
65	$\mathrm{C}_{5} \mathrm{H}_{5}{ }^{+}$	9.4	(0.8)	0.7	(0.6)
63	$\mathrm{C}_{5} \mathrm{H}_{3}{ }^{+}$	1.9	(0.4)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$	7.7	(0.8)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$	2.2	(0.4)		
41	$\mathrm{C}_{3} \mathrm{H}_{5}{ }^{+}$	1.2	(0.2)		
39	$\mathrm{C}_{3} \mathrm{H}_{3}^{+}$	3.8	(0.4)		

Relative Ion Intensities (70 and 20 eV Mass Spectra)

m / e	70 eV			20 eV	
	Ion	$I_{r e l}$	$\left(e . s . d_{0}\right)$	$I_{r e l}$	(c.s.d.)
240	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}^{\text {t }}$	11.0	(0.1)	13.0	(0.0)
135	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}^{+}$	100		100	
107	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}^{+}$	17.5	(0.2)	9.8	(0.1)
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	41.8	(0.4)	32.6	(0.0)
92	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{+}$	$7 \cdot 1$	(0,2)	0.8	(0,0)
77	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$	28.8	(0.4)	5.8	(0.0)
76	$\mathrm{C}_{6} \mathrm{H}_{4}+$	1.4	(0.0)		
64	$\mathrm{C}_{5} \mathrm{H}_{4}{ }^{+}$	3.4	(0.1)		
63	$\mathrm{C}_{5} \mathrm{H}_{3}{ }^{+}$	2.1	(0.1)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$	5.3	(0.1)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$	1.9	(0.0)		

Fig. 16 (h) M-METHOXYBENZIL

$$
100
$$

$$
30
$$

Relative Ion Intensities (70 and 20 eV Mass Spectra)

Relative Ion Intensities (70 and 20 eV Mass Spectra)
(j) m-Formylbenzil

m/e		70 eV		20 eV	
	Ion	$I_{\text {rel }}$	(e.s.d.)	$I_{\text {rel }}$	(e.s.d.)
238	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}{ }^{\text {t }}$	2.1	(0.1)	1.6	(0.2)
133	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{2}^{+}$	11.9	(0.3)	8.1	(0.4)
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	100		100	
77	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$	28.3	(0.0)	6.6	(0.2)
76	$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}$	2.0	(0.1)		
75	$\mathrm{C}_{6} \mathrm{H}_{3}{ }^{+}$	0.9	(0.1)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$	9.3	(0.2)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$	2.6	(0.2)		

Fig. 16 (j) M-formimenzil

Relative Ion Intensities (70 and 20 eV Mass Spectra)
(k) m-Cyanobenzil

m / e		70 eV		20 eV	
	Ion	$\mathrm{I}_{\mathrm{rel}}$	(e.s.d.)	$I_{\text {rel }}$	(e.s.d.)
235	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ON}$	0.6	(0.1)	0.6	(0.3)
130	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ON}^{+}$	4.8	(0.2)	2.9	(0.4)
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	100		100	
102	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}^{+}$	8.2	(0.0)	1.2	(0.3)
77	$\mathrm{C}_{6} \mathrm{H}_{5}^{+}$	37.3	(0.3)	15.7	(0.3)
76	$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {² }}$	2.9	(0.2)		
75	$\mathrm{C}_{6} \mathrm{H}_{3}{ }^{+}$	3.5	(0.3)		
74	$\mathrm{C}_{6} \mathrm{H}_{2}+$	1.2	(0.2)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$	13.1	(0.4)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$	4.1	(0.2)		

Fig. 16 (k) M-CYPMOBEnZIL

(1) m--Trifluoromethylbenzil

m / e	Ion	$I_{\text {rel }}{ }^{70}$	$\begin{aligned} & \mathrm{eV} \\ & \left(e . s, d_{0}\right) \end{aligned}$	$I_{r e l}^{20}$	$\begin{aligned} & e v \\ & \left(e, s, d_{0}\right) \end{aligned}$
278	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~F}_{3}{ }^{\text {+ }}$	2.5	(0.8)	1.6	(0.2)
259	$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{P}^{+}$	2.4	(0.5)		
173	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{OF}_{3}{ }^{+}$	9.9	(1.0)	1.9	(1.0)
145	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~F}_{3}{ }^{+}$	9.7	(0.5)		
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	100		100	
95	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~F}_{3}{ }^{+}$	1.8	(0.3)		
77	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$	25.9	(0.9)	4.1	(0.1)
76	$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{+}$	1.1	(0.1)		
75	$\mathrm{C}_{3} \mathrm{HF}_{2}{ }^{+}$	1.6	(0.3)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$	6.2	(0.6)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{+}$	2.0	(0.4)		

Fig. 16 (1) M-Trifluoromethileenzil

Relative Ion Intensities (70 and 20 eV Mass Spectra)
(m) m~Nitrobenzil

m / e	Ion	$I_{\text {rel }}{ }^{7}$	$\begin{aligned} & \mathrm{eV} \\ & \left(e \cdot s_{0} d_{0}\right) \end{aligned}$	$I_{\text {rel }}$	$\begin{aligned} & e V \\ & \left(e . s . d_{0}\right) \end{aligned}$
255	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}^{\text {+ }}$	0.5	(0.0)	0.3	(0.0)
150	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3} \mathrm{~N}^{+}$	2.7	(0.0)	1.8	(0.0)
134	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{~N}^{+}$	1.1	(0.0)	1.3	(0.0)
105	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}$	100		100	
104	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}^{+}$	3.4	(0.0)	1.1	(0.0)
77	$\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$	30.7	(0.8)	9.2	(0.4)
76	$\mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {t }}$	5.4	(0.1)		
75	$\mathrm{C}_{6} \mathrm{H}_{3}{ }^{+}$	1.5	(0.0)		
74	$\mathrm{C}_{6} \mathrm{H}_{2}{ }^{+}$	0.8	(0.0)		
51	$\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}$	5.8	(0.2)		
50	$\mathrm{C}_{4} \mathrm{H}_{2}{ }^{\text {\% }}$	3.6	(0.0)		

Fig. 16 (m) Mmatrosenzil

5.2 MASS SPECTRA (IOW VOLTAGE)

Table 4(a-m) gives the measured fractional ion intensities in the mass spectra (section 3.3.2). These values are the means of at least four separate measurements, and have been corrected for the contributions of other isotopes. The estimated standard deviations (given in brackets) were again determined from equation 31. For comparison, the fractional ion intensities calculated from the IE curves as described in section 4.4 are also tabulated; the nominal and corrected Lonizing voltage scales of these two sets of data may differ by up to 0.4 eV .

Table 4

(a) Benzil

Table 4 (b) m-Fluorobenzil

MDMIVAL											
10,1714											
voltage	M/E										
(三V)	229	123		205	95			77			
10.0	0.091 (.002)	0.0	(.0)	0.9091.	. 0021	0.0	1.0)	0.0	1.0	1
12.0	$0.020 \quad(.003)$	0.017	1.0011	0.9611.	. 0021	0.0	1.0)	0.0	1.0)
14.0	0.0251 .0021	0.030	(.002)	0.9521.	. 0011	0.0	1.0)	0.0	1.0)
16.0	0.012 (.001)	0.048	(.002)	0.9201 .0021		$0.004 \quad .0$)			$0.016(.001)$		
13.0	0.021 1.001)	0.063	(.002)	0.872 (.003)		0.012 (.001)			0.043 (.002)		
20.0	$0.010(.001)^{\circ}$	0.075	(.001)	$0.810 \quad 1.001)$		0.023 (.002)			$0.063(.001)$		
		FRACTIOUAL ION INTENSITIES									
EXCESS	$\begin{gathered} \text { ELEGTRDN } \\ \text { ENERGY } \\ \text { (Ey) } \end{gathered}$	M E							$\begin{gathered} \text { TOTAL } \\ \text { TMTEMSITY } \\ \text { (ASB UNITS) } \end{gathered}$		
$\begin{gathered} \text { EvezGY } \\ (E y) \end{gathered}$		228	123	105	95		77				
0.77	10.00	0.0761	0.0	0.9239	90.0		0.0		0.832502		
2.77	± 2.00	0.0205	0.0172	0.9623	30.0		0.0		0.2207803		
4.77	14.00	0.0148	0.0350	0.9492	20.0002		0.0008		$0.6626 E 03$		
6.77	16.00	0.0135	0.0464	0.9223	$3 \quad 0.0038$		0.0144		0.5124004		
8.77	2.8 .00	0.0120	0.0496	0.3830	0.0117		0.0437		0.1636504		
10.77	20.00	0.0114	0.0510	0.9592	20.0174		0.0610		0.2156504		

Table 4 (c) p-Fluorobenzil

Table 4 (d) m-Chlorobenzil

Table 4 (e) m-Bromobenzil

Table 4 (g) m-Methylbenzil

Table 4 (h) m-Methoxybenzil

Table 4
 （i）P－Phenylbenzi

HOMIVAL IOMIEIM VOLTAGQ （EV）

MEASURED FRACTIDIAL
101
INTEMSITIES

10.0
12.0
14.0
25.0
18.0
20.0

EXCES
ENERG
（EV）
ELECTRON
EMERGY （－v）
1.42
10.00
0.18370 .8139
0.0
0.0025
0.0
0.3366502
$3=4$
12.00
0.0725
0.9159
0.0
0.0116
0.0
$0.3075=03$
5.41
± 4.00
0.0512
0.9237
0.0007
0.0242
0.0003

O．8さ2かも05
7.42
16.00
$0.04 \div 7$
$0.908 \div$
0.0145
0.0313
0.0007
0.136950%
9.42
18.00
0.0409
0.8754
0.0438
0.0333
0.0034
0.1783004
21.41
20.00
0.0390
0.8430
0.0607
0.0337
0.0032
$0.2045 E 04$

Table 4 (j) m-Formylbenzil

Table 4 (k) m-Cyanobenzil

Table 4 (1) m-Trifluoromethylbenzil

NOMTVAL		MEASURED	FRACTIDMAL		108		IMTEMSITIES			
ION1GI发										
$\begin{aligned} & \text { VOLTAOE } \\ & (E V) \end{aligned}$	278	173		$\begin{aligned} & M / E \\ & 145 \end{aligned}$		105		77		
12.0	$0.017(.0)$	0.004	(.0)	0.0	1.0	10	0.976 (.002)	0.0	1.0	1
14.0	0.010 (.001)	0.010	(.001)	0.0	1.0) 0	0.976 (.001)	0.0	1.0	1
16.0	$0.008(.0)$	0.020	(.001)	0.0	1.0	10	0.760 (.001)	0.010	1.001	01)
18.0	0.007 (.0)	0.033	1.0011	0.0021	1.0	10	0.919 (.002)	0.037	1.001	011
20.0	$0.006(00)$	0.042	(.001)	0.008	1.0	10	0.864 (.003)	0.077	1.002	O2)
FRACTIONAL ION INTENSITIES										
ExCESS	$\begin{gathered} \text { ELEGTRON } \\ \text { ENERGY } \\ \text { (EV) } \end{gathered}$	M/E						$\begin{gathered} \text { TOTAL } \\ \text { INTEUSITY } \\ \text { GRB UAITS } \end{gathered}$		
$\begin{gathered} \text { Evergy } \\ (E y) \end{gathered}$		278	1.73	145		105	77			
0.66	10.00	0.0637	0.0	0.0		0.9363	2.0	0.9	67360	02
2.56	22.00	0.0156	0.0052	0.0		0.9792	0.0	0.2	23.80	03
$4.6 t$.	14.00	0.0102	0.0111	0.0000		0.9779) 0.0008	0.4	39200	03
6.60	26.00	0.0078	0.0197	0.0004		0.9587	7 0.0123	0.	73360	04
8.66	12.00	0.0067	0.0214	0.0027		0.921%	0.6417	0.2	6020	$0-$
10.66	20.00	0.0060	0.0225	0.0059		0.9943	30.0634	0.3	5196	OC

Table 4 (m) m-Nitrobenzil

 (シャ)

MEASURED FRACTIONAL
ION
IMTEVSITIES

20.0	$0.155(.004)$	0.0	1.01	0.0	1.01	$0.385(.004)$	0.0	(.0)
22.0	$0.030 \quad(.004)$	0.0	$1.0)$	0.018	1.0011	0.948 (.005)	0.0	$(.0)$
14.0	$0.021(.003)$	0.0	$(.0)$	0.020	(.001)	0.3531 .0051	0.003	(002)
$\therefore 5.0$	0.026 (.002)	0.007	(.002)	0.018	(.001)	0.740 (.001)	$0.01=$	(.003)
28.0	0.014 (.002)	0.013	(.001)	0.017	(.00i)	$0.902(.005)$	0.049	(.005)
20.0	0.0121 .0021	0.017	1.0021	0.014	1.0021	0.847 (.012)	0.105	(.05.2)
		FRAC	TIOMAL	ION		SITIES		

EXCESS	ELECTRON
EEQGY	ENERCY
$(E V)$	(EV)
0.67	10.00
2.67	12.00
6.67	24.00
6.67	16.00
2.67	18.00
10.67	20.00

255	150	M / E 134	105	77	$\begin{gathered} \text { TOTAL } \\ \text { INEVSITY } \\ \text { ARS UNITS } \end{gathered}$
0.1250	0.0	0.0126	0.8624	0.0	0.847280.
0.0302	$0.000 t$	0.0192	0.9500	0.0	0.2970603
0.0198	0.0026	0.0193	0.9565	0.0012	0.2063604
0.0165	0.0068	0.0182	0.9394	0.0101	$0.2032 E 04$
0.9149	0.0098	0.0171	0.9025	0.05 .9	0.3102004
0.0139	0.0097	0.0164	0.8776	0.0766	0.4203604

5.3 ERACTIONAL ION INTENSITIES

The fractional ion intensities of the major ions in the Iow voltage mass spectra of the benzils are tabulated in Table $5(a-m)$ as a function of the excess energy, $V-I p$ (see section 4.4). The corresponding plots of these data are shown in Fig. $17(a-m)$ to illustrate how they vaxy with energy.
FRACTIONAL ION INTENSITIES

EXCESS	ELECTROM			M1E			TOTAL
EYERGY	ENERGY	210		105	77		Intevsity
(EV)	(EV)	(1)	121	(3)	(4)	(5)	(ARE UNITS)
-1.00	8.20	0.0	0.0	0.0	0.0	0.0	0.0
-0.50	8.70	1.0000	0.0	0.0	0.0	0.0	0.2533E-0.
0.0	9.20	1. 0.000	0.0	0.0	0.0	0.0	O.437.E OU
0.50	9.70	0.4004	0.0	0.5996	0.0	0.0	$0.3720 E 01$
1.00	10.20	0.2354	0.0	0.7646	0.0	0.0	0.2702502
1.50	20.70	0.1531	0.0	0.8469	0.0	0.0	0.7892502
2.00	12.20	0.1163	0.0	0.8831	0.0	0.0	0.1632 E 03
2.50	11.70	0.0979	0.0	0.9021	0.0	0.0	$0.2743 E 03$
3.00	12.20	0.0872	0.0	0.9128	0.0	0.0	$0 .+127 E 03$
3.50	12.70	0.0798	0.0	0.9199	0.0004	0.0	0.5839 ± 03
4.00	23.20	0.0729	0.0	0.9264	0.0007	0.0	0.7855503
4.50	13.70	0.0668	0.0	0.9318	0.0013	0.0	$0.3009 E 04$
5.00	14.20	0.0629	0.0	0.9344	0.0027	0.0	$0.1235 E \quad 04$
5.50	1.4 .70	0.0600	0.0	0.9341	0.0060	0.0	0.2464504
6.00	15.20	0.0577	0.0	0.9305	0.0117	0.0	0.1700604
6.50	15.70	0.0557	0.0	0.9241	0.0202	0.0	0.1843604
7.00	16. 20	0.0539	0.0	0.9147	0.0314	0.0	0.2197 c 04
7.50	16.70	0.0524	0.0	0.9047	0.0427	0.0	$0.2457 E \quad 04$
8.00	17.20	0.0511	0.0	0.8963	0.0521	0.0	$0.2719 E \quad 04$
8.50	17.70	0.0501	0.0	0.8901	0.0598	0.0	$0.2978 E 04$
7.00	18.20	0.0492	0.0	0.8840	0.0662	0.0	0.3239604
7.50	18.70	0.0484	0.0	0.8798	0.0717	0.0	0.3497504
10.00	19.20	0.0478	0.0	0.8757	0.0765	0.0	0.3760504

FRACTIONAL ICN INTENSITIES

EXCESS	ELECTROM
EVERGY	ENERGY
(EV)	$(E V)$
-1.00	8.23
-0.50	8.73
0.0	9.23
0.50	9.73
1.00	10.23
1.50	10.73
2.00	12.23
2.50	11.73
3.00	12.23
3.50	12.73
4.00	23.23
4.50	13.73
5.00	14.23
5.50	14.73
6.00	15.23
6.50	15.73
7.00	16.23
7.50	16.73
8.00	17.23
8.50	17.73
9.00	18.23
9.50	18.73
10.00	19.23

		M/E			TOTAL
228	123	105	95	77	INTESSITY
(1)	(2)	(3)	(4)	(5)	(AQD LNITS)
0.0	0.0	0.0	0.0	0.0	0.0
1.0000	0.0	0.0	0.0	0.0	$0.26848-02$
1.0000	0.0	0.0	0.0	0.0	0.642LE-01
0.1153	0.0	0.3847	0.0	0.0	C.2893E Oi
0.0585	0.0	1. 3415	0.0	0.0	0.1614502
0.0362	0.0081	0.9557	0.0	0.0	0.4939E O2
0.0270	0.0122	0.9608	0.0	0.0	0.10375 03
0.0222	0.0155	0.9623	0.0	0.0	$0.278 C E 03$
0.0194	0.0198	0.9619	0.0	0.0	0.2714E 03
0.0176	0.0228	0.9596	0.0	0.0	$0.376:=03$
0.0161	0.027 i	0.9560	0.0	0.0002	$0.4871 E 03$
0.0151	0.0320	0.9523	0.000:	0.0004	0.0015 E 03
0.10145	0.0371	0.9467	0.0004	0.0013	0.7128503
0.0140	0.0408	0.941 i	0.0009	0.003 j	0.8255 E 03
0.01 .36	0.0436	0.9347	0.0018	0.0093	0.9403503
0.0133	0.0455	0.7270	0.0030	0.0111	O.1053E Ois
0.0130	0.0470	0.9180	0.0046	0.0175	$0.1190 E 04$
0.0127	0.0480	0.9073	0.0064	0.0256	0.2306504
0.0124	0.0487	0.3967	0.0085	0.0337	0.1435E 04
0.0122	0.0493	0.3874	0.0107	0.0405	$0.1565=04$
0.0120	0.0498	0.8795	0.0125	0.0462	0.169654
0.0118	0.0502	0.87 ¢ 7	0.0142	0.0512	$0.1926=04$
0.0116	0.0505	0.3669	0.0156	0.0534	0.2956504

FRACTIONAL IOM IHTENSITLES

rxcess	ELECTRO\%
Eleziy	FHERGY
(ニv)	(EV)
- . 00	8.12
-0.50	8.62
0.0	9.12
0.50	9.62
i. 00	10.12
1.50	10.62
2.00	11.12
2.50	12.62
3.00	12.22
3.50	12.62
4.00	13.12
4.50	13.52
5.00	14.12
5.50	14.62
6.00	15.12
6.50	15.62
7.00	16.12
7.50	16.62
8.10	17.12
3.50	17.62
7.00	18.12
9.50	18.62
10.00	19.12

229	M/E			77
	123	105	95	
(1)	(द)	(3)	(4)	(5)
0.0	0.0	0.0	0.0	0.0
1.0000	0.0	0.0	0.0	0.0
1.0000	0.0	0.0	0.0	0.0
0.2032	0.0589	0.7379	0.0	0.0
0.1077	0.0325	0.7976	0.0	0.0
0.0653	0.1101	0.9246	0.0	0.0
0.0457	0.1269	0.9271	0.0	0.0
0.0374	0.1387	0.2238	0.0	0.0
0.0324	0.1476	0.8200	0.0	0.0
0.0295	0.1567	0.8138	0.0	0.0
0.0268	0.1047	0.8084	0.0	0.0
0.0251	0.1739	0.8007	0.0001	0.0003
0.0237	0.1823	0.7927	0.0001	0.0010
0.0230	0.1883	0.7858	0.0004	0.0086
0.0223	0.1923	0.7792	0.0008	0.0053
0.0217	0.1949	0.7724	0.0016	0.0093
0.0212	0.1965	0.7648	0.0027	0.0146
0.0209	0.1972	0.7568	0.0045	0.0207
0.0203	0.1974	0.7487	0.0067	0.0268
0.0139	0.1973	0.7410	0.0092	0.0326
0.0176	0.1971	0.7344	0.0125	0.0373
0.0193	0.1970	0.7288	0.0135	$0.04 i 3$
0.0191	0.1969	0.7239	0.0 .52	0.0448

$\begin{gathered} \text { TEFAL } \\ \text { INTESITY } \\ \text { (4ה゙B UNITS) } \end{gathered}$
0.5894E-02
0.1263000
0.3453801
0.1923502
0.6379 E 02
0.1433 ± 03
0.2527503
0.3317 ± 03
$0.5517=03$
0.7346603
0.9284503
0.11255^{04}
0.1324804
0.1523004
$0.173: \pm 04$
0.1942 E 04
0.2380804
$0.2604=04$
0.2930 ¢ 04
$0.3055-04$
0.3280504

（d）M－chlocabenzil

FRGCTIUHAL ION INTEVSITIES

－xCEss	ELECTRO：			M／E			101AL
Evergy	ENERGY	244	139	105	112	77	INTESGTY
（EV）	（ -V ）	（1）	（2）	（3）	（4）	（5）	（ANB LNITS）
-2.10	8.1 .6	0.0	0.0	0.0	0.0	0.0	0.0
-0.50	8.66	2.0000	0.0	0.0	0.0	0.0	0．927）－02
0.0	9.15	1.0000	0.0	0.0	0.0	0.0	0.1382500
0.50	9.66	0.2436	0.0	0.7564	0.0	0.0	$0.2+72 \mathrm{E}$ OL
1.00	10.16	$0 .: 473$	0.0060	0.8467	0.0	0.0	$0.1487 E 02$
1.50	10.66	0.1000	0.0140	0.8860	0.0	0.0	0.4304502
2.00	11.16	0.0765	0.0200	0.9035	0.0	0.0	0.8067506
2.50	11.60	0.0635	0.024%	0.9120	0.0	0.0	0.2503603
3.00	12.16	0.056 .2	0.0291	0.7147	0.0	0.0	O．とてこのE 03
3.50	12.66	0.0509	0.0345	0.7146	0.0	0.0	0.311 ¢ 03
4.00	13.16	0.0463	0.0402	0.9134	0.0	0.0002	0.4047503
4.50	13.66	0.0430	0.0459	0.7105	0.0002	0.0004	0.5023 E 03
5.00	14.16	0.0407	0.0521	0.9056	0.0006	0.0007	0.6029503
5.50	14.66	0.0290	0.0566	0.7006	0.0017	0.0021	0．704： 03
6.00	15.36	0.0376	0.053	0.8947	0.0034	0.0044	0.8072503
6.50	25.00	0.0365	0.0621	0.8873	0.0057	0.0083	0.9132603
7.00	16.16	0.0354	0.0637	0.8784	0.0080	0.0139	0.1023504
7.50	16.66	0.0344	0.0648	0.8681	0.0118	0.0209	$0.1137=04$
8.00	17.16	0.0335	0.0655	0.4571	0.0152	0.0297	$0.1254=04$
8.50	17.06	0.0329	0.0660	0.8474	0.0183	0.0355	$0.23720^{0 .}$
9.100	18.26	0.0321	0.0664	0.8393	0.0210	0.0411	0.1490604
3.50	18.66	$0.03: 6$	0.0668	0.8324	0.0232	0.0460	0.1607804
± 0.00	29．16	0.0321	0.0671	0.3265	0.0251	0.0502	$0.1727=0-4$

Table 5
（e）$\quad \mathrm{H}-3 R \mathrm{OVRQEIVIL}$

FRACTIOIAL IDN INTENSITIES

ExCESS	ELE：T3，			M／E			Toital
EVERのY	EリE95Y	288	183	105	255	77	10TESSITY
（Eソ）	（こv）	（i）	（2）	（3）	（4）	（5）	$(4 Q D$ LNITS）
－1．00	8．10	0.0	0.0	0.0	0.0	0.0	0.0
-0.50	8.50	1.0000	0.0	0.0	0.0	0.0	0．13705－0．
0.0	3.19	1.0000	0.0	0.0	0.0	0.0	0.3394800
0.50	9.60	0.2582	0.0	0.7418	0.0	0.0	$0.7817 E$ Oi
1.00	10.10	0.1475	0.0027	0.8498	0.0	O．C	$0.3905 E 02$
1.50	10.60	0.0724	0.0070	0.7005	0.0	0.0	$0.2160 E 03$
2.30	12．10	0.0663	0.0127	0.3210	0.0	0.0	0.2432803
2.50	11．60	0.0555	0.0189	0.7257	0.0	0.0	$0.3928 E 03$
3.00	12.10	0.0487	0.025 i	0.9262	0.0	0.0	$0.5722 E 03$
3.50	12.60	0.0437	0.0308	0.9255	0.0	0.0	0.7980 03
4.00	13.10	0.0399	0.0363	0.1237	0.0	0.0001	0.1068 E O4
4.50	13.60	0.0370	0.0425	0.9202	0.0001	0.0002	$0.1363 E 04$
5.00	14.10	0.0350	0.0485	0.9156	0.0002	0.0007	O．16t3E 04
5.50	14.50	0.0336	0.0544	0.7100	0.0006	0.0014	$0.1767 E 04$
0.00	15.10	0.0325	0.0587	0.9043	0.0013	0.0028	0.2275604
6.50	15.60	0.0315	0.0519	0.8974	0.0022	0.0050	0.2586504
7.00	16． 50	0.0308	0.0643	0.3936	0.0034	0.0079	0.2903 E 04
7.50	26．50	0.0302 ．	0.0561	0.9854	0.0049	0.0115	O．3225E 04
8.00	17．30	0.0296	0.0674	0．381：	0.0055	0.0154	0.3552504
8.50	17.60	0.0291	0.0685	0.8751	0.0081	0.0172	0.3982504
3.00	18.10	0.0287	0.0695	$0.870 i$	0.0095	0.0223	$0.4213-04$
9.50	18．6，0	0.0283	0.0703	0.3658	0.0107	0.0250	0.4545804
10.00	27.10	0.0280	0.0709	0.8621	0.0117	0.0273	$0.4973 E 04$

Table 5 （f）o－r．2orgosenlu

ExCESS	ELECTROV			M／E			TOTAL
EvERGY	ENERGY	283	133	105	255	77	INTE：SITY
（EV）	（EV）	（1）	（2）	（3）	（4）	（5）	（ake Lnits）
-1.00	8.11	0.0	0.0	0.0	0.0	0.0	0.0
－0．50	8.61	1.0000	0.0	0.0	0.0	0.0	$0.1039-0 i$
0.0	9.11	1.0000	0.0	0.0	0.0	0.0	0.14898 CO
0.50	9.61	0.1386	0.0343	0.1672	0.0	0.0	0.5467501
1.00	10.11	0.0839	0.1265	0.7396	0.0	0.0	O．27E3E O2
1.50	10.61	0.0593	0.1473	0.7935	0.0	0.0	0.79 － 0 O
2.00	11．12	0.0459	0.1670	0.7872	0.0	0.0	0.1605503
2.50	11.61	0.0387	0.1801	0.7812	0.0	0.0	0.2663503
3.00	12.11	0.0343	0.1013	0.7744	0.3	0.0	0.3982 23
3.50	12.61	0.0316	0.2006	0.7678	0.0	0.0	0.5534 E 0
4.00	13.11	0.0290	0.2090	0.76 .7	0.0	0.0002	0.7321803
4.50	13.61	0.0271	0.2180	0.7542	0.0002	0.0006	0.92500^{-13}
5.00	14.21	0.0257	0.2264	0.7460	0.0006	0.0013	$0.1123 E 04$
5.50	$14_{4} .61$	0.0247	0.2317	0.7390	0.0017	0.0026	0.1323604
6.00	15．11	0.0239	0.2350	0.7317	0.0037	0.0058	$0.1527 E 04$
6.50	15．6？	0.0231	0.2367	0.7234	0.0064	0.0104	0.1738604
7.00	16.11	0.0225	0.2370	0.7140	0.0096	0.0170	$0.1957=04$
7.50	16.61	0.0218	0.2362	0.7034	0.0135	0.0250	$0.2135=04$
9.00	17.11	0.0213	0.2349	0.6926	0.0176	0.0337	0．242： 04
8.50	17.61	0.0209	0.2332	0.6823	0.0220	0.0417	$0.26626 \quad 04$
9.00	18.12	0.0203	0.2317	0.6735	0.0251	0.0433	0.2905604
9．50	18.61	0.0200	0.2305	0.6650	0.0295	0.0540	$0.314 \% 204$
10.00	17.21	0.01 .96	0.2295	0.6576	0．0さこう	0.0588	0.3330504

Table 5
(9) F-NETHYLBEVZIL

		FRACTIUTAL		10n	I.TENSITIES		
EXCESS	ELECTRO:			M/E			TOTAL
EVERGY	Energy	224	119	1.05	92	77	1.TE:S1TY
(EV)	(Ev)	11)	(2)	(3)	(4)	(5)	(ARR UNITS)
-1.00	8.05	0.0	0.0	0.0	0.0	0.0	0.0
-0.50	8.55	1.0000	0.0	0.0	0.0	0.0	0.203:5-0.
0.0	9.05	2.0000	0.0	0.0	0.0	0.0	0.3274500
0.50	9.55	0.3931	0.5380	0.0189	0.0	0.0	$0.5259 E 0$.
1.00	10.05	0.2251	0.7299	0.0450	0.0	0.0	$0.2707=02$
2.50	10.55	0.1551	0.7857	0.0592	0.0	0.0	$0.772 i 502$
2.00	12.05	0.1216	0.3087	0.0694	0.0	0.0	0.250060
2.50	11.55	0.1026	0.8191	0.0783	0.0	0.0	0.2615003
3.00	12.05	0.0906	0.5231	0.0863	0.0	0.0	0.3702 E 03
3.50	12.55	0.0927	0.8234	0.0937	0.0001	0.0	0.5442503
4.00	23.05	0.0756	0.8227	0.1013	0.0003	0.0000	$0.7186 E 03$
4.50	13.55	0.0700	0.8184	0.1107	0.0008	0.0001	0.8928503
5.00	14.05	0.0668	0.8110	0.1199	0.0020	0.0002	0.2057 E 04
5.50	14.55	0.0645	0.8057	0.1248	0.0046	0.0003	0.222504
6.00	15.05	0.0626	0.7978	0.1281	0.0038	0.0007	$0.138+804$
6.50	15.55	0.0610	0.7928	0.1304	0.0146	0.0013	0.1560804
7.00	16.05	0.0595	0.7849	0.1318	0.0217	0.0022	0.1737804
7.50	16.55	0.0581	0.7766	0.1327	0.0272	0.0034	0.179004
9.00	17.05	0.0568	0.7677	0.1330	0.0375	0.0050	0.2106504
c. 50	17.55	0.0557	0.7594	0.2331	0.0450	0.0069	0.2295804
7.00	18.05	0.0547	0.7521	0.1332	0.0513	0.0087	$0.2487 E 04$
7.50	18.55	0.0533	0.7457	0.1333	0.0568	0.0103	0.2677: 04
20.00	29.05	0.0531	0.7405	0.1333	0.0015	0.0216	0.2808 E O4

Table 5
(h) m-netryxyenzil

FPACTIONAL IDA INTENSITIES

2xcess	ELESTROA	M/E					TOTAL
F16RG	Eivergy	240	135	105	207	77	IHTEXSITY
(EV)	(Ev)	(2)	(2)	(3)	(4)	151	(Ase lialts)
-2.00	7.75	0.0	0.0	0.0	0.0	0.0	0.0
-0.50	8.25	1.0000	0.0	0.0	0.0	0.0	$0.4537 E-02$
0.0	8.73	i. 0000	0.0	0.0	0.0	0.0	0.7296-0.
0.50	9.25	0.8034	0.1966	0.0	0.0	0.0	0.5260500
1.00	9.75	0.6012	0.3949	0.0	0.0	0.0	$0.2106 E 02$
2.50	10.23	0.4529	0.5120	0.0343	0.0	0.0	$0.5447 E 05$
2.00	10.75	0.3512	0.5931	0.0557	0.0	0.0	0.1080 E O
2.50	11.25	0.2879	0.6404	0.0717	0.0	0.0	$0.1794=O 2$
3.00	11.75	0.2487	0.6664	0.0849	0.0	0.0	0.266 .502
3.50	12.25	0.2215	0.6831	0.0954	0.0	0.0	0.3727 E 02
4.00	12.75	0.1985	0.5944	0.1071	0.0	0.0	0.4957 E O2
4.50	13.25	0.1787	0.7025	0.1185	0.0003	0.0	0.5310E 02
5.00	13.75	0.1630	0.7064	0.1296	0.0010	0.0	0.7653502
5.50	14.25	0.1516	0.7070	0.1389	0.0024	0.0	0.3079502
6.00	14.75	0.1431	0.7065	0.1455	0.0049	0.0	0.104720
6.50	15.25	0.1364	0.7047	0.1503	0.0085	0.0001	0.1192 E
7.00	1.5 .75	0.1300	0.7015	0.1536	0.0135	0.0000	0.133 ± 03
7.50	10.25	0.1259	0.6973	0.1559	0.0192	0.0015	0.1490803
3.00	26.75	0.1212	0.6925	0.1575	0.0251	0.0032	0.1643603
8.50	17.25	0.1180	0.6868	0.1584	0.0312	0.0057	0.1802003
3.00	17.75	0.1146	0.6803	0.1588	0.0371	0.0012	0.1364503
9.50	18.25	0.1114	0.6730	0.1588	0.0425	0.0137	O.2132E Oj
$\therefore 0.00$	18.75	0.1026	0.6670	0.2586	0.0471	0.0186	0.6301600

Fig. 17 (h) m-rethombenzil

Table 5
（i）P－PHENYLEENZIL

FRACTIONAL ION IGTENSITIES

ExC：5\％	ELECTRIS
EYER，\％	E1t96Y
（三v）	（ $二 ⿰ 冫 欠 口$ ）
-1.00	7．5．7
-0.50	8.09
0.0	8.59
0.53	9.09
1．70	$9.5)$
1.50	10.09
2.00	10.59
2.50	15.27
3．1）	11.57
3.50	12.09
4.00	12.59
4.50	13.09
5.00	13.59
5.50	14.09
6.00	14.57
6.50	15.07
7.00	15.57
7.50	16.07
¢．00	16.59
9.50	17.09
9.00	17.59
9．50	－ 0.07
1．10．00	± 3.59

		N／E		
236	131	205	153	152
（1）	（2）	（3）	（4）	（E）
0.0	0.0	0.0	0.0	0.0
1.0000	0.0	0.0	0.0	0.0
1．0000	（）． 0	0.0	0.0	0.0
0.4239	0.5701	0.0	0.0	0.0
$0.25: 1$	0.7499	0.0	0.0	0.0
$0.17: 0$	0.9253	0.0030	0.0	0.0
0.1222	0.9725	0.0053	0.0	0.0
0.0960	0.9352	0.0077	0.0	0.0
0.0844	0.9055	0.0101	0.0	0.0
0.0709	0.9170	0.0121	0.0	0.0
0.0634	0.921 .6	0.0148	0.0	0.0
0.0576	0.9248	0.0174	0.0	0.0
0.0535	0.9247	0.0213	0.0002	0.0
0.0507	0.9234	0.0247	0.0008	0.0
0.0407	0.4215	C．0272	0.0022	0.0
0.0477	0.9164	0.0291	0.0049	0.0000
0.0457	0.9130	0.0304	0.0094	0.0001
0.0445	0.9072	0.0314	0.0157	0.0002
0.0434	0.8993	0.0322	0.0233	0.0005
0． 14.24	0.8705	0.0327	0.0315	0.0011
0.04 .2	0.2821	0.0330	0.0387	0.0021
0.0406	0.8739	0.0333	0.0448	0.0097
0.0339	0.2657	0.0335	0.0500	0.0061

TOT：
1ソTE S． 17 （A×马 LNTTS）
$0 . \mathrm{C}$
$0.24855-0$
$0.207 \% \quad 00$
0.25330.
$0.1350 \mathrm{E} \quad \mathrm{L}$
0.2771 O2
0.255200
0.1512002
$0.2202=03$
$0.2249=03$
$0.4375=03$
0.3674 足 0
$0.7026 E 03$
0.8371503
0.972 Z 03
0.1110604
$0.1250 \mathrm{O} \quad 4$
0.1395604
$0.154 \therefore 04$
O．1099：O4
0.1 xas 04
0.20120 .04
$0 . \overline{27}, 24$

Fig. 17 (i) p-phemylbenzil

Table 5

(j) A-FRRMYLUE』ZIL

FRACTIOMAL ION IETEMSITIES

-xCES5	EECTRO
FXERGY	FlERSY
(EV)	(EV)
-2.00	8.14
-0.50	8.64
0.0	9.14
0.50	9.64
1. .00	10.14
1.50	i 0.64
2.00	11.14
2.50	12.64
3.00	12.14
3.50	12.64
4.00	13.14
4.50	13.64
5.00	14.14
5.50	14.64
6.00	15.14
6.50	15.64
7.00	10.14
7.50	16.64
8.00	$\underline{17.14}$
8.50	27.6%
2.00	19.14
9.50	ir.6.4
10.00	29.24

		H/E		
¢38	133	105	77	
(1)	(2)	(3)	(4)	151
0.0	0.0	0.0	0.0	0.0
1.9000	0.0	0.0	0.0	0.0
1.0000	0.0	0.0	0.0	0.0
0.4600	0.0	0.5400	0.0	0.0
0.1622	0.0092	0.8286	0.0	0.0
0.9879	0.0135	0.8989	0.0	0.0
0.0611	0.0163	0.9226	0.0	0.0
0.3431	0.0172	$0.73 i 7$	0.0	0.0
0.0422	0.0219	0.9359	0.0	0.0
0.0379	0.0249	0.9371	0.0	0.0
0.0342	0.0286	0.9372	0.0	0.0
0.0311	0.0335	0.9350	0.0003	0.0
0.0291	0.0388	0.1307	0.0011	0.0
0.0277	0.0432	0.9264	0.0027	0.0
0.0266	0.0463	0.9217	0.0054	0.0
0.0257	0.0496	0.1163	0.0093	0.0
0.0250	0.0503	0.7102	0.0145	0.0
0.0244	0.0516	0.3035	0.0205	0.0
0.0238	0.0525	0.8905	0.0273	0.0
0.0233	0.0532	0.9900	0.0335	0.0
0.0229	0.0539	0.8845	0.0387	0.0
0.0226	0.0564	0.3797	0.0431	0.0
0.0223	0.0544	c. 3759	0.0470	

[^0]

Table 5 (K) m-cyanobenzil

FXCESS	ELECTRO*
Everry	EMERGY
(EV)	(9v)
-1.00	8.30
-0.50	8.80
0.0	9.30
0.50	9.80
1.00	10.30
2.50	10.90
2.00	11.30
2.50	11.80
3.00	12.30
3.50	12.80
4.00	13.30
4.50	23.80
5.00	14.30
5.50	14.80
6.00	15.30
6.50	15.00
7.00	16.30
7.50	16.80
8.00	17.30
8.50	17.80
7.00	18.30
9.50	18.30
10.00	19.30

235	$\begin{aligned} & 130 \\ & 120 \end{aligned}$	$\begin{aligned} & 1 / E \\ & 105 \end{aligned}$	102	$\begin{array}{r} 77 \\ 151 \end{array}$	TUTAL IATEASITY
(1)	(2)		(4)		
0.0	0.0	0.0	0.0	0.0	0.0
1.0000	0.0	0.0	0.0	0.0	0.46995-02
1.0000	0.0	0.0	0.0	0.0	0.68935-0:
0.1176	0.0	0.3824	0.0	0.0	0.2757602
0.0555	0.0	0.9445	0.0	0.0	0.1520502
0.0306	0.0002	0.7691	0.0	0.0	0.4743802
0.0210	0.0008	0.9783	0.0	0.0	$0.1116 E 03$
0.0168	0.0012	0.9821	0.0	0.0	$0.1990=93$
0.0143	0.0016	0.9842	0.0	0.0	0.3210503
0.0125	0.0019	0.7855	0.0	0.0	0.4434 E 03
0.0116	$0.002 t$	0.7859	0.0	0.0	$0.5819 E 03$
0.0109	0.0036	0.9851	0.0	0.0004	0.7184503
0.0104	0.0050	0.9831	0.0	0.0014	0.9501805
0.0100	0.0068	0.3797	0.0000	0.0035	0.9960E O3
0.0096	0.0089	0.9743	0.0000	0.0070	$0.1139=04$
0.0094	0.0106	0.9677	0.0001	0.0122	$0.1285=04$
0.0091	0.0123	0.9537	0.0003	0.0190	0.1436 E 04
0.0089	0.0129	0.9505	0.0006	0.0271	0.159:E 04
0.0087	0.0137	0.9399	0.0010	0.0367	0.175.E 04.
0.0084	0.0143	0.9285	0.0017	0.0471	0.2917804
0.0083	0.0148	0.9184	0.0024	0.0560	0.2084E 04
0.0081	0.0153	0.9037	0.0034	0.0635	$0.2231 E 04$
0.0080	0.0256	0.9020	0.0044	0.0700	0.2417004

Table 5
(1) M-TRIFLURRCHETHYLSEMZIL

FRACTIONAL IOH INTENSITIES

ExCESS	ELECTRON
EMEROY	ENERGY
(EV)	(EV)
-1.00	8.34
-0.50	8.84
0.0	7.34
0.50	9.84
1.00	10.34
2.50	$\therefore 0.94$
2.00	11.34
2.50	12.84
3.00	12.34
3.50	± 2.84
4.00	13.34
4.50	13.84
5.00	14.34
5.50	14.84
6.00	15.34
6.50	15.84
7.00	16.34
7.50	36.84
8.00	17.34
8.50	17.84
7.00	18.34
9.50	18.84
\%0.00	19.34

		M/E		
278	173	105	545	77
(1)	(2)	(3)	(4)	(5)
0.0	0.0	0.0	0.0	0.0
1.0000	0.0	0.0	0.0	0.0
1.0000	0.0	0.0	0.0	0.0
0.0735	0.0	0.9265	0.0	0.0
0.0407	0.0015	0.9572	0.0	0.0
0.0270	0.0032	0.9698	0.0	0.0
0.0206	0.0041	0.9752	0.0	0.0
0.0164	0.0050	0.9786	0.0	0.0
0.0142	0.0059	0.9798	0.0	0.0
0.0129	0.0073	0.9300	0.0	0.0
0.0117	0.0088	0.9795	0.0	0.0000
0.0106	0.0105	0.9784	0.0000	0.0005
0.0096	0.0125	0.0763	0.0000	0.0016
0.0089	0.0145	0.9726	0.0003	0.0035
0.0083	0.0169	0.9675	0.0002	0.0067
0.0079	0.0183	0.9611	0.0003	0.0112
0.0075	0.0194	0.3530	0.0006	0.0172
0.0072	0.0202	0.3432	0.0010	0.0242
0.0070	0.0203	0.9343	0.0017	0.0517
0.0067	0.0213	0.9245	0.0024	0.0334
0.0065	0.0216	0.3156	0.0034	0.0464
0.0063	0.0220	0.9051	0.0043	0.0525
0.0062	0.0222	0.9016	0.0051	0.0576

> TOTAL INTEsSITY (ARg UNTS)
> $0.576=5-02$
> $0.6+43 E-0 I$
> 0.5617 E 01
> $0.2553 E 02$
> $0.7170 E 02$
> $0.1470 E 03$
> $0.2453 E 03$
> $0.3694 E \quad 03$
> $0.5164 E \quad 02$
> $0.6883 E 03$
> 0.8779 E 03
> $0.1070 E \quad 04$
> 0.1265 E 04
> $0.14635 \quad 04$
> $0.1666=04$
> 0.1975204
> $0.2099 E \quad 04$
> $0.2310 E 04$
> $0.2526=04$
> $\begin{aligned} & 0.2702 E 04 \\ & 0.299204\end{aligned}$
> $0.2212 \mathrm{E}=04$

Table 5

(m) N-MITRCEENZIL

FRACTIOMAL ION INTENSITIES

ExCESS	ELECTRON			M / E			TOTAL
ENERGY	EnERGY	255	150	105	1.34	77	InTEUSITY
(EV)	(EV)	(1)	(2)	(3)	(4)	(5)	(AXQ LNITS)
-8.00	8.33	0.0	0.0	0.0	0.0	0.0	0.0
-0.50	8.83	1. 0000	0.0	0.0	0.0	0.0	0.85375-02
0.0	9.33	1.0000	0.0	0.0	0.0	0.0	0.1298800
0.50	9.93	0.1559	0.0	0.8348	0.0093	0.0	0.444 20.
1.00	10.33	0.0858	0.0	0.9997	0.0145	0.0	0.2297 E 02
1.50	20.83	0.0535	0.0	0.9238	0.0167	0.0	$0.6957 E 02$
2.00	11.33	0.0309	0.0003	0.9429	0.0179	0.0	O.1466E 03
2.50	11.83	0.0318	0.0005	0.9488	0.0188	0.0	0.2530503
3.00	12.33	0.0274	0.0008	0.9523	0.0195	0.0	$0.3950 \leq 03$
3.50	12.83	0.0246	0.0011	0.7545	0.0196	0.0	$0.5625 E 03$
4.00	13.33	0.0223	0.0016	0.9559	0.0196	0.0002	0.7585603
4.50	13.93	0.0203	0.0023	0.9567	0.0193	0.0008	0.9982E 03
5.00	14.33	0.0189	0.0032	0.9555	0.0194	0.0020	$0.1222 E 0 \leq$
5.50	14.83	0.0280	0.0043	0.9528	0.0190	0.0044	0.1459504
6.00	15.33	0.0173	0.0055	0.9483	0.0187	0.0081	$0.1700 \mathrm{O}_{4}$
6.50	25.93	0.0157	0.0065	0.9429	0.0183	0.0138	0.1942504
7.00	16.33	0.0152	0.0073	0.9340	0.0180	0.0212	0.2202504
7.50	16.83	0.0257	0.0079	0.9250	0.0177	0.0237	$0.2464 E 04$
8.00	17.33	0.0153	0.0083	0.9152	0.0174	0.0373	0.2732 E 04
8.50	17.83	0.0150	0.0087	0.9054	0.0172	0.0490	$0.300 \% 04$
9.00	18.33	0.0247	0.0090	0.3972	0.0169	0.0571	0.2283504
9.50	18.83	0.0144	0.0092	0.8903	0.0168	0.0640	0.3557604
20.00	19.33	0.0142	0.0095	0.8843	0.0166	0.0997	0.3832504

5.4 IOGARITMME ION INTENSITY RATIOS

The various logarithmic intensity ratios used to correlate the results of this work were calculated from the fractional ion intensities of the molecule-ion (F_{M}), and the substituted $\left(F_{X}\right)$ and unsubstituted (F_{H}) benzoyl ions; the logarithmic ratios are tabulated in Table $6(a-m)$ as a function of both the excess energy and the electron energy (i.e. corrected ionizing voltage) for the low voltage mass spectra. The corresponding ratios for the 70 eV spectra are given in Table 7 (a-m).

Table 6

(a) BEN\%IL

Table 6

(b) m-Fludrobenzil

EXCESS
ENERGY (EV)

ELECTRBA Encrgy (EV)

Lggarithmic litensify ratios

FX/FM FH/FM FX/L-FM FH/ $-F A \quad E X / F H$

-1.00	8.23
-0.50	8.72
0.0	9.23
0.50	9.73
1.00	10.23
1.50	10.73
2.00	11.23
2.50	11.73
3.00	12.23
3.50	12.73
4.00	13.23
4.50	13.73
5.00	14.23
5.50	14.73
6.00	15.23
6.50	15.73
7.00	16.23
7.50	16.73
3.00	17.23
8.50	17.73
9.00	18.23
9.50	18.73
10.00	29.23

0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.86
0.0	1.21

0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.00	0.0
0.0	0.00	0.0
-2.07	-0.00	-2.07
-1.90	-0.01	-1.90
-1.80	-0.02	-1.79
-1.72	-0.01	-1.71
-1.63	-0.01	-1.62
-1.56	-0.01	-1.53
-1.49	-0.01	-1.47
-1.42	-0.02	-1.41
-1.38	-0.02	-1.36
-1.35	-0.02	-1.33
-1.34	-0.03	-1.31
-1.32	-0.03	-1.29
-1.31	-0.04	-1.23
-1.31	-0.04	-1.27
-1.30	-0.05	-1.20
-1.30	-0.05	-1.25
-1.29	-0.05	-1.24
-1.29	-0.06	-1.23

-1.23	8.00
-0.73	8.50
-0.23	9.00
0.27	9.50
0.77	10.00
1.27	10.50
1.77	$1 . .00$
2.27	$1 . .50$
2.77	12.00
3.27	12.50
3.77	13.00
4.27	13.50
4.77	14.00
5.27	14.50
5.77	25.00
6.27	15.50
6.77	16.00
7.27	16.50
7.77	27.00
8.27	17.50
9.77	18.00
0.27	19.50
7.77	39.00
10.27	19.50
40.77	20.00

0
0
-0
-0
-0
-0
0
0

.0	0.0
0.0	0.0
0.0	0.0
0.0	0.51
0.0	2.08
-0.90	1.33

0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	-0.00	0.0
0.0	-0.00	0.0
-2.24	-0.00	-2.23
-1.97	-0.00	-1.96
-1.34	-0.01	-1.62
-1.76	-0.01	-1.75
-1.67	-0.01	-1.66
-1.60	-0.01	-2.58
-1.52	-0.01	-1.51
-1.45	-0.02	-1.43
-1.40	-0.02	-1.39
-1.37	-0.02	-1.34
-1.34	-0.03	-1.32
-1.33	-0.03	-1.30
-1.32	-0.03	-1.28
-1.31	-0.04	-1.27
-1.30	-0.04	-1.26
-1.30	-0.05	-1.25
-1.30	-0.05	-1.24
-1.29	-0.06	-1.24
-1.27	-0.06	-1.23
-1.29	-0.06	-1.23

Table 6

(c) p-fluorobenzil

$\begin{aligned} & \text { ExCESS } \\ & \text { IERGY } \end{aligned}$	$\begin{gathered} \text { ElEGTROM } \\ \text { Eugrgy } \end{gathered}$	Logarimhmic		mtensity qatins		
(EV)	($\mathrm{V}^{\text {V }}$	FX/FM	FH/FM	FX/L-FM	$\mathrm{FH} / 1-\mathrm{FH}$	$\mathrm{FX} / \mathrm{FH}$
-1.00	8.12	0.0	0.0	0.0	0.0	0.0
-0.50	8.62	0.0	0.0	0.0	0.0	0.0
0.0	9.12	0.0	0.0	0.0	0.0	0.0
0.50	9.62	-0.54	0.50	-2.13	-0.03	-2.10
1.00	10.12	-0.07	0.87	-0.98	-0.05	-0.94
1.50	10.62	0.23	2.10	-0.93	-0.05	-0.87
2.00	11.12	0.44	2.26	-0.38	-0.06	-0.81
2.50	11.62	0.57	2.34	-0.84	-0.07	-0.77
3.00	12.12	0.66	1.40	-0.82	-0.07	-0.74
3.50	12.62	0.73	1. 4.4	-0.79	-0.08	-0.72
4.00	13.22	0.79	1.48	-0.77	-0.08	-0.63
4.50	13.62	0.84	1.50	-0.75	-0.09	-0.66
5.00	14.12	0.88	1.52	-0.73	-0.09	-0.64
5.50	14.62	0.91	1.53	-0.72	-0.07	-0.62
6.00	15.12	0.94	2.54	-0.71	-0.10	-0.61
6.50	15.62	0.95	1.55	-0.70	-0.10	-0.60
7.00	16.12	0.97	1.56	-0.76	-0.11	-0.59
7.50	16.62	0.93	1.56	-0.70	-0.21	-0.58
8.00	27.12	0.94	1.57	-0.70	-0.12	-0.59
8.50	17.62	1.00	1.57	-0.70	-0.12	-0.0.57
9.00	18.12	1.00	1.57	-0.70	-0.13	-0.57
9.50	18.62	2.01	1.58	-0.70	-0.13	-0.57
20.00	19.12	2.92	1.58	-0.70	-0.13	-0. 57
-1.22	8.00	0.0	0.0	0.0	0.0	0.0
-0.62	8.50	0.0	0.0	0.0	0.0	0.0
-0.22	9.00	0.0	0.0	0.0	0.0	0.0
0.38	7.50	-0.85	0.45	-1. 32	-0.02	-1.30
0.83	10.00	-0.16	0.80	-1.01	-0.04	-0.06
2. 33	10.50	0.17	1.06	-0.95	-0.05	-0.0.
1.84	11.00	0.40	1.23	-0.88	-0.06	-0.93
2.36	11. 50	0.54	1.33	-0.85	-0.07	-0.78
2.88	12.00	0.64	2.39	-0.82	-0.07	-0.75
3.34	2.250	0.71	1.4 .3	-0.80	-0.08	-0.78
3.98	13.00	0.77	1.47	-0.78	-0.08	-0.70
4.38	13.50	0.83	1.50	-0.7 ,	-0.08	-0.67
4.88	14.00	0.87	1.52	-0.73	-0.09	-0.64
3.38	14.50	0.91	2.53	-0.72	-0.09	-0.62
5.83	$\underline{15.00}$	0.93	1. 54	-0.71	-0.20	-0.62
0.38	15.50	0.95	1.55	-0.70	-0.20	-0.60
6.98	16.00	0.96	1.56	-0.70	-0.11	-0.59
7.38	16.50	0.98	1.56	-0.70	-0.11	-0.57
7.93	17.00	0.97	1.57	-0.70	-0.0.2	-0.5.
8.38	17.50	0.99	2.57	-0.70	-0.12	-0.58
9.82	18.00	2.00	1. 57	-0.70	-0. 0.2	-0.57
7.38	28.50	2.02	1.58	-0.70	-0.12	-0.57
7.88	19.00	1.01	2.58	-0.70	-0.0.13	-0.57
10.38	19.30	1.02	1.58	-0.70	-0.13	-0.5t
10.88	20.00	1.02	1.58	-0.70	-0.14	-0.56

Table 6

(d) M-CHLOROUENzil

$\begin{gathered} \text { ExCESS } \\ \text { (EvGY } \\ \text { (Ever } \end{gathered}$	$\begin{gathered} \text { Electron } \\ \text { Evergy } \\ (E v) \end{gathered}$	LOGARITHMIC		Threysit	y gatros	
		FXIFM	FH/FM	$F X / 2-F W$	FH/ - -FH	$\mathrm{FX} / \mathrm{FH}$
$=1.00$	3.16	0.0	0.0	0.0	0.0	0.0
-0.50	8.96	0.0	0.0	0.0	0.0	0.0
0.0	9.16	0.0	0.0	0.0	0.0	0.0
0.50	9.66	0.0	0.49	0.0	0.00	0.0
1.00	10.10	-1.39	0.76	-2.15	-0.00	-2.25
2.50	10.66	-0.85	0.95	-1.81	-0.01	-1.80
2.00	11.16	-0.53	1.07	-1.66	-0.01	-1.65
2.50	12.6.6	-0.41	1.26	-2.52	-0.0i.	-1. 57
3.00	12.16	-0.29	1.21	-1.5?	-0.01	-1.50
3.50	12.66	-0.17	1.25	-1.44	-0.02	-1.42
4.00	13.15	-0.06	1. 30	-1.38	-0.02	-1.30
4.50	13.66	0.03	2.33	-1.32	-0.02	-2.30
5.00	14.16	0.11	1.35	-1.2?	-0.02	-1.24
5.50	14.66	0.16	1.36	-1.23	-0.03	-1.20
6.00	15.16	0.20	1.38	--2.21	-0.03	-1.17
6.50	15.66	0.23	1.39	-1.19	-0.04	-1.15
7.00	16.36	0.26	2.39	-2.12	-0.04	-1.14
7.50	16.66	0.27	1.40	-1.27	-0.05	-1.13
8.00	17.16	0.29	1.41	-1.17	-0.05	-1.12.
8.50	17.66	0.30	1.41	-1.17	-0.06	-1.11
9.00	13.16	0.32	1.42	-1.16	-0.06	-1.10
9.50	18.66	0.33	1.42	-1.16	-0.07	-1.10
10.00	19.16	0.33	1.42	-1.16	-0.07	-1.09
-1.36	8.00	0.0	0.0	0.0	0.0	0.0
-0.66	8.50	0.0	0.0	0.0	0.0	0.0
-0.10	9.00	0.0	0.0	0.0	0.0	0.0
0.34	9.50	0.0	0.30	0.0	0.00	0.0
0.84	10.00	0.0	0.68	0.0	-0.00	0.0
1.34	10.50	-2.00	0.89	-2.90	-0.01	-1.89
1.84	11.00	-0.36	2.04	-1.75	-0.01	-1.70
2.34	12.50	-0.46	2. 13	-i.61	-0.01	-1.60
2.84	22.00	-0.33	1.20	-1.54	-0.01	-1.52
3.34	12.50	-0.21	1.24	-1.46	-0.02	-1.4.4
3.84	13.00	-0.09	1.28	-1.39	-0.02	-1.3e
4.34	13.50	-0.00	1.32	-1.34	-0.02	-1.3?
4.84	14.00	0.08	1.34	-1.28	-0.02	-1.2\%
5.34	54.50	0.15	1. 36	-1.24	-0.03	-1.21
5.84	15.00	0.19	1.37	-1.21	-0.03	-1. 29
6.34	15.50	0.22	1.38	-1.19	-0.03	-1.16
6.8.84	26.00	0.25	1.39	-1.18	-0.04	-1. 24
7.34	16.50	0.27	1.40	-1.18	-0.04	-1.23
7.84	17.00	0.29	1.41	-1.17	-0.05	-1.12
8.34	17.50	0.30	1.41	-1.17	-0.06	-1.12
8.84	18.00	0.31	3.42	-1.16	-0.06	-1.20
7.34	18.50	0.32	1.42	-1.16	-0.06	-1. 10
7.84	19.00	0.33	1.42	-2.16	-0.07	-2.07
20.34	19.50	0.34	1.43	-1.16	-0.07	-2.09
10.84	20.00	0.35	1.43	-1.26	-0.07	-2.08

Table 6

(e) M-brumbienhla

$3 \times C 555$	GLECTRMA	LOCARITHMIC	IMTECSITY	2170S
- VERGY	Edegey			
(EV)	(5v)	$\mathrm{FX} / \mathrm{FW} \quad \mathrm{FH} / \mathrm{P} \mathrm{S}^{\text {a }}$	FX/L-FM FH/	F FX

-1.00	8.10	0.0	0.0	0.0	0.0	0.0
-0.50	8.60	0.0	0.0	0.0	0.0	0.0
0.0	9.10	0.0	0.0	0.0	0.0	0.0
0.50	9.60	0.0	0.46	0.0	0.0	0.0
1.00	20.10	-2. 74	0.76	-2. 20	-0.00	-2.50
1.50	10.60	-1.12	0.79	-2.11.	-0.00	-2.11
2.00	12.10	-0.72	2.14	-1.87	-0.02	-1.86
2.50	12.t.0	-0.47	i. 2 ?	-i.70	-0.0i	-1.63
3.00	-2. 20	-0.29	1.28	-1.56	-0.0i	-2.57
3.50	12.00	-0.15	1.33	-1.49	-0.01	-1.48
4.00	-3.10	-0.04	1.37	-i.42	-0.02	-1.41
4.50	13.60	0.05	1.40	-1.35	-0.08	-2.34
5.00	14.10	0.14	1.42	-1.30	-0.02	- -29
5.50	14.60	0.25	1.43	-1.25	-0.03	-1.22
5.00	25.10	0.26	1.45	- . 22	-0.03	-1.19
6.50	15.60	0.23	$\therefore .45$	-1.19	-0.03	-2.16
7.00	10.10	0.32	1.46	-1.18	-0.04	-1.14
7.50	10.60	0.34	1.47	-i.17	-0.04	-1.13
9.00	17.10	0.35	1.47	-1.16	-0.04	-1.12
E. 50	27.60	0.37	1.48	-1.15	-0.05	-I.
9.00	13.10	0.33	2.46	-2.15	-0.05	-1.10
9. 50	18.60	0.39	1.49	-1.14	-0.05	-1.09
20.00	29.10	0.40	1.49	-1.14	-0.05	-2.08

-1.20	8.00	0.0	0.0	0.0	0.0	0.0
-0.60	8.50	0.0	0.0	0.0	0.0	0.0
-0.20	9. 00	U. 0	0.0	$0 \cdot 0$	0.0	0.0
0.40	9.50	0.0	0.30	0.0	-0.00	0.0
0.70	20.00	-2.03	0.71	-2.74	-0.00	-2.74
1.40	20.30	-1.22	0.95	-2.17	-0.00	-2.1e
1.90	11.00	-0.79	1.12	-1.7i	-0.05	-2.60
2.40	-1.50	-0.5:	1.21	-1.75	-0.0.	-1.72
2.90	12.00	-4.32	1.27	-2.60	-0.02	-2.57
3.40	12.50	-0.1.	1.32	-1.5i	-0.02	-1.4;
3.90	23.00	-0.00	1. 36	-2.44	-0.02	42
4.40	13.70	0.04	1.39	-1.37	-0.02	. 35
4. 7 :	14.00	0.13	1.42	$- \pm .31$	-0.02	-1.29
5.40	14.50	0.20	1.43	-1.26	-0.03	-23
5.90	-5.00	0.25	1.44	-1.22	-0.03	-1.19
6.40	15.50	0.27	1.45	-1.20	-0.03	-1. -17
5.90	16.00	0.31	1.46	-1.14	-0.03	-3.12
7.43	20.50	0.34	1.47	-1.17	-0.04	-1.23
7.90	± 7.00	0.35	1.47	-1.16	-0.04	-2.12
8.40	17.50	0.37	1.48	-1.15	-0.04	-1.
8.90	18.00	0.35	2.49	-1.13	-0.05	- . 1.10
9.40	28.50	0.37	2.4)	-1.14	-0.05	$-2.0)$
7.90	19.00	0.40	1.49	-1. 24	-0.05	--.0\%
10.40	19.50	0.42	1.49	-1.13	-0.05	-1.02
(i). 00	20.00	0.42	1.49	-1.1.	-0.06	-2.08

Table 6

(f) P-BRCMOBEHZIL

EXCESS	ELECRRUN
EREROY	EUERGY
(EV)	$(E V)$

-1.00	8.11
-0.50	8.61
0.0	4.11
0.50	9.61
1.00	10.11
1.50	10.61
2.00	11.12
2.50	11.61
3.00	12.11
3.50	22.61
4.00	13.11
4.50	13.61
5.00	14.11
5.50	1.4 .61
6.00	15.11
6.50	15.61
7.00	16.11
7.50	16.62
8.00	17.11
8.50	27.61
7.00	18.11
9.50	18.61
10.00	19.11

-1.13	8.00
-0.61	3.50
-0.11	9.00
0.39	9.50
0.99	10.00
2.39	10.50
1.89	11.00
2.39	22.50
2.89	12.00
3.39	12.50
3.89	13.00
4.39	1.3 .50
4.39	14.00
5.39	14.50
5.89	15.00
4.39	25.50
6.39	16.00
7.39	16.50
7.39	27.00
8.39	17.50
2.89	18.00
9.39	18.50
9.39	29.00
10.39	19.50
10.39	20.00

LOGARITHMIC INTENSITY
RATIGS
 FX/FM FH/FM FX/I-FMFH/L-FM FX/FH

$\begin{gathered} \text { Excess } \\ \text { Evergy } \\ (-y) \end{gathered}$	$\begin{gathered} \text { ElEGTRON } \\ \text { Encrgy } \\ (E v) \end{gathered}$	logarithmic		INTESSITY mi		attos
		＊＊＊＊＊	为为为为为	为束为为品	为为书家为为	粉为为为米
		FX／FM	$\mathrm{FH} / \mathrm{FM}$	$F X /-F m$	FH／-FF	$\mathrm{FX} / \mathrm{FH}$
－1．00	8.03	0.0	0.0	0.0	0.0	0.0
－0．30	8.55	0.0	0.0	0.0	0.0	0.0
0.0	9.05	0.0	0.0	0.0	0.0	0.0
0.50	9.55	0.19	-1.31	－0．02	－1．52	1.50
2.00	20.05	0.51	－0．70	-0.03	-1.24	1.21
2．50	20.55	0.70	－0．42	－0．03	-1.85	1.12
2.00	11.05	0.82	－0．24	－0．04	－1．10	1.07
2.50	11． 55	0.90	－0．12	－0．04	－1．06	1．02
3.00	22.05	0.96	－0．02	－0．04	-2.02	0.98
3.50	22.55	1.00	0.06	-0.05	－0．99	0.94
4.00	13.05	2.04	0.13	－0．05	－0．96	0.91
4.50	13.55	1． 07	0.20	－0．06	-0.92	0.87
5.00	14.05	1．08	0.25	－0．06	－0．89	0.83
5.50	14.55	1． 10	0.29	－0．06	－0．87	0．8？
6.00	15.05	1． 11	0.31	－0．07	－0．86	0.80
6.50	15.55	1.11	0.33	－0．07	－0．86	0.78
7.00	16.05	1.12	0.35	－0．08	－0．85	0.77
7.50	16.55	1． 13	0.36	－0．08	－0．85	0.77
3.00	17.05	1.13	0.37	－0．09	－0．85	0.76
8.50	27.55	1.13	0.38	－0．09	－0．85	0.76
9.00	1.8 .05	i． 14	0.39	－0．10	－0．85	0.75
2.50	18.55	1.1 .4	0.39	－0．10	－0．85	0.75
20.00	19.05	1．14．	0.40	－0．11	－0．85	0.74
-2.05	8.00	0.0	0.0	0.0	0.0	0.0
－0．55	8.50	0.0	0.0	0.0	0.0	0.0
－0．05	9.00	0.0	0.0	0.0	0.0	0.0
0.45	9.50	0.16	-1.32	－0．01	-1.49	1.48
1．95	2.0 .00	0.47	－0．72	－0．03	－1．24	1.21
2.45	10.50	0.69	－0．4．4	－0．03	－1．16	1.13
1.95	11.00	0.81	－0．26	－0．04	-1.12	2.07
2.45	11.50	0.90	－0．1．3	－0．04	－1．06	2.02
2.95	12.00	0.95	-0.03	－0．04	－1．03	0.98
3.45	12.50	0.93	0.05	－0．05	－0．97	0.95
3.75	－3．00	$\therefore .03$	0.22	－0．05	－0． 0.76	0.92
4.45	13.50	2.07	0.19	－0．0．05	-0.93	0.87
4.95	24.00	2.08	0.25	－0．06	－0．89	0.82
5.45	1.4 .50	i． 20	0.28	-0.00	-0.88	0.81
5.95	13．00	1.11	0.31	－0．07	－0．87	0.80
6.45	15.50	1.11	0.33	－0．07	－0．86	0.78
6.05	1.6 .00	1.22	0.34	－0．08	－0．85	0.78
7.45	16.50	1.13	0.35	－0．08	－0．85	0.77
7.15	27.00	2.13	0.37	－0．09	-0.85	0.76
8.45	27.50	1.13	0.33	－0．09	－0．85	0.76
8.45	18.00	1． 14	0.39	－0．10	-0.85	0.75
0.45	88.50	5.14	0.39	－0．10	－0．85	0.75
7.95	29.00	1.14	0.40	－0．11	－0．85	0.74
10.45	19.50	1.15	0.40	-0.12	－0．85	0.74
10.35	20.00	2.15	0.42	－0．11	-0.85	0.74

Table 6

(h) m-retmoxybenzll

EXCESS
EUERGY
$(E V)$
ELECTRON ENERGY (EV)
 FX/FM FH/FM FX/L-FM FH/L-FH FX/FH

-1.00	7.75	0.0	0.0	0.0	0.0	0.0
-0.50	8.25	0.0	0.0	0.0	0.0	0.0
0.0	8.75	0.0	0.0	0.0	0.0	0.0
0.50	9.25	-0.61	0.0	0.0	0.0	0.0
1.00	9.75	-0. 18	0.0	0.00	0.0	0.0
L. 50	10.25	0.05	-1.12	-0.03	-1.20	1. 17
2.00	10.75	0.23	-0.80	-0.04	-1.07	1.03
2.50	11.25	0.35	-0.60	-0.05	-1.00	0.95
3.00	11.75	0.43	-0.47	-0.05	-0.95	0.89
3.50	12.25	0.49	-0.37	-0.06	-0.91	0.85
4.00	12.75	0.54	-0.27	-0.06	-0.87	0.81
4.50	-3.25	0.57	-0.18	-0.07	-0.0.84	0.77
5.00	13.75	0.54	-0.10	-0.07	-0.81	0.74
5.50	14.25	0.67	-0.04	-0.08	-0.79	0.73
6.00	14.75	0.67	0.01	-0.08	-0.77	0.69
6.50	15.25	0.71	0.04	-0.09	-0.76	0.57
7.00	15.75	0.73	0.07	-0.09	-0.75	0.66
7.50	16.25	0.74	0.09	-0.10	-0.75	0.65
8.00	16.75	0.75	0.11	-0.10	-0.75	0.64
8.50	17.25	0.76	0.13	-0.11	-0.75	0.64
9.00	17.75	0.77	0.14	-0.11	-0.75	0.63
9.50	18.25	0.78	0.15	-0.12	-0.75	0.63
20.00	18.75	0.79	0.16	-0.13	-0.75	0.62
-0.75	8.00	0.0	0.0	0.0	0.0	0.0
-0.25	8.50	0.0	0.0	0.0	0.0	0.0
0.25	9.00	0.0	0.0	0.0	0.0	0.0
0.75	9.50	-0.34	0.0	0.0	0.0	0.0
1.25	10.00	-0.06	-1.38	-0.02	-1.34	2.32
1.75	10.50	0.15	-0.92	-0.04	-1.10	1.06
2.25	11.00	0.29	-0.69	-0.04	-1.03	0.39
2.75	11.50	0.39	-0.54	-0.05	-0.97	0.92
3.25	12.00	0.46	-0.43	-0.05	-0.93	0.87
3.75	22.50	0.52	-0.32	-0.06	-0.8.)	0.83
4.25	13.00	0.57	-0.22	-0.07	-0.85	0.79
4.75	13.50	0.62	-0.14	-0.07	-0.0.23	0.76
5.25	84.00	0.65	-0.07	-0.02	-0.80	0.72
5.75	14.50	0.65	-0.01	-0.08	-0.78	0.70
6.25	15.00	0.70	0.03	-0.00	-0.70	0.69
6.75	25.50	0.72	0.06	-0.09	-0.76	0.65
7.25	i6.00	0.74	0.08	-0.30	-0.75	0.65
7.75	10.50	0.75	0.10	-0.10	-0.75	0.65
Fi. 25	17.00	0.70	0.12	-0.1.	-0.75	0.64
3.75	$\cdots 7.50$	0.77	0.14	-0.1.	-0.75	0.63
9.22	28.00	0.73	0.15	-0.12	-0.75	0.62
9.75	$\therefore 8.50$	0.78	0.16	-0. 0.2	-0.0.75	0.63
10.25	29.00	0.79	0.17	-0.13	-0.75	0.62
10.75	19.50	0.80	0.18	-0.13	-0.75	0.62
11.25	20.00	0.80	0.19	$=0.14$	-0.76	0.62

Table 6

(i) paphenylbenzil

Exces5 Evergy (EV)

ELECTRTN ENERGY (ev)

LOSARITHMIC INTERSITY RATIOS
 FK/FM FH/FM FX/X-FM FH/S-FM FX/FH

-1.00	7.59	0.0	0.0	0.0	0.6	0.0
-0.50	8.09	0.0	0.0	0.0	0.0	0.0
0.0	8.59	0.0	0.0	0.0	0.0	0.0
0.50	9.07	0.12	0.0	-0.00	0.0	0.0
1. 00	9.59	0.47	0.0	-0.00	0.0	0.0
2.50	1.0 .07	0.68	-1.75	-0.00	-2.44	2.43
2.00	30.59	0.85	-1.36	-0.00	-2.22	2.22
2.50	11.09	0.97	-1.10	-0.00	-2.07	2.07
3.00	11.59	1.03	-0.92	-0.00	-1.96	1.95
3.50	12.09	1.11	-0.77	-0.01	-1.29	i.88
4.00	12.59	1.16	-0.63	-0.01	-1.80	1.73
4.50	13.09	1.21	-0.52	-0.01	-1.73	2.73
5.00	13.59	1. 24	-0.40	-0.01	-3.65	1.64
5.50	14.09	1.26	-0.31	-0.02	-1.50	2.57
6.00	14.59	1.23	-0.25	-0.01	-1.54	2.53
6.50	15.09	1.29	-0.21	-0.02	-1.52	1.50
7.00	15.59	1.30	-0.18	-0.02	-1.50	1.40
7.50	16.09	1.31	-0.15	-0.02	-1.48	1.46
8.00	16.59	1.32	-0.13	-0.03	-1.4.7	1.45
8.50	17.09	3.32	-0.11	-0.03	-1.47	1.64
9.00	17.59	1.33	-0.10	-0.04	-1.46	1.43
9.50	18.09	1.33	-0.07	-0.04	-2.40	1. 42
10.00	28.59	1. 34	-0.00	-0.04	-1.40	2.43
-0.59	8.00	0.0	0.0	0.0	0.0	0.0
-0.09	8.50	0.0	0.0	0.0	0.0	0.0
0.41	7.00	-0. 10	0.0	0.0	0.0	0.0
0.31	9.50	0.43	0.0	-0.00	0.0	0.0
1.4!	10.00	0.63	-1.86	-0.00	-2.51	2.93
2. 21	10.50	0.83	-1.42	-0.00	-2.25	$2 \cdot 24$
2.41	12.00	0.93	-1. 14	-0.00	-2.09	2.0)
2.72	11.50	1.0.	-0.95	-0.00	-1.97	2.97
3.41	12.00	2.10	-0.90	-0.01	-1.70	1.90
3.72	12.50	5.2.5	-0.66	-0.01	-1.82	1.8. ${ }^{\text {a }}$
4.48	13.00	1.20	-0.54	-0.01	-1.75	2.74
4.92	13.90	1.23	-0.42	-0.01	-1.66	1.65
$5 \cdot 42$	44.00	1.26	-0.33	-0.01	-1.59	1.58
2.91	14.50	6.27	-0.26	-0.01	-1.55	1.34
6.41	15,00	1.27	-0.22	-0.02	-1. 52	2. 50
6. 91	1.5 .50	2.30	-0.18	-0.02	-1.50	1.48
$7 \cdot 41$	16.00	1.31	-0.16	-0.02	-1.46	i, 24.
7.91	16.50	1.32	-0.13	-0.03	-1.47	1.45
4.41	17.00	1.32	-0.12	-0.03	-1.47	1. 4.40
9.71	1.7 .50	1.33	-0.10	-0.04	-1.46	1.4.2
9.41	28.00	1. 033	-0.09	-0.04	-1.42	2.42
3.92	18.50	2.34	-0.09	-0.04	-1.46	1.41
319.42	19.00	i. 34	-0.07	-0.05	-1.46	1.41
10.91	49.50	1.34	-0.06	-0.05	-1.46	1.40
11.41	20.00	1-35	-0.05	-0.06	-3.46	1.40

Table 6

(j) m-fogmylbenzil

ExCEss Eneroy (Ev)

ELECTROH Enegoy (Hy)
logarithmic lafensity ratios
 FX/FM FH/FM FX/I-FM FH/L-FM FXIFH

-1.00	8.24
-0.50	8.64
0.01	9.14
0.50	9.64
1.00	10.14
2.50	10.64
2.00	11.14
2.50	11.64
3.00	12.14
3.50	12.64
4.00	13.1 .4
4.50	13.64
5.00	14.14
5.50	14.64
6.00	15.14
6.50	15.64
7.00	16.14
7.50	16.64
9.00	17.24
8.50	17.64
7.00	18.14
7.50	18.64
10.00	19.14

0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.07	0.0	0.0	0.0
-1.25	0.71	-1.96	-0.00	-1.95
-0.83	1.01	-1.34	-0.01	-1.84
-0.57	1.18	-1.76	-0.02	-1.75
-0.41	1.28	-1.64	-0.01	-1.64
-0.29	1.35	-1.64	-0.01	-1.63
-0.16	1.39	-1.59	-0.01	-1.56
-0.08	1.44	-1.53	-0.01	-1.52
0.03	1.48	-1.46	-0.02	-1.45
0.12	1.50	-1.40	-0.02	-1.38
0.19	1.52	-1.35	-0.02	-1.33
0.24	1.54	-1.32	-0.02	-1.30
0.28	1.55	-1.30	-0.03	-1.28
0.30	1.56	-1.29	-0.03	-1.26
0.33	1.57	-1.28	-0.03	-1.24
0.34	1.58	-1.27	-0.04	-1.28
0.36	1.58	-1.26	-0.04	-1.22
0.37	1.59	-1.26	-0.04	-1.22
0.33	1.59	-1.25	-0.05	-1.21
0.39	1.60	-1.23	-0.05	-1.20

-1.14	8.00
-0.64	3.50
-0.14	9.00
0.30	9.50
0.86	10.00
1.36	10.50
2.36	11.00
2.36	11.50
2.30	12.00
3.36	12.50
3.80	13.00
4.36	13.50
4.86	14.00
5.36	14.50
5.80	15.00
6.36	15.50
6.80	16.00
7.30	16.50
7.36	17.00
3.30	17.50
8.80	18.00
9.36	18.50
9.36	19.00
20.36	19.50
10.86	20.00

0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
-1.39	0.62	-2.02	-0.00	-2.0
-0.9	0.94	-2.86	-0.01	-1.88
-0.63	1. 24	-2.75	-0.01	-1.78
-0.45	1.26	-2.72	-0.01	-1.70
-0.32	1.33	-2.6.	-0.01	-1.65
-0.21	1.33	-2.60	-0.01	-8.59
-0.11	1.42	-1.54	-0.01	$-1.5 \pm$
0.01	1.4.7	-2.48	-0.01	-1.46
0.10	1.50	-1.41	-0.02	-1.40
0.13	1.52	-2.30	-0.02	-1. -34
0.23	1.54	-1.33	-0.02	-1.31
0.27	1.55	-1.31	-0.03	-1.28
0.30	1.56	-1.29	-0.03	-1.26
0.22	1.57	-1.23	-0.03	-2.25
0.34	1. 57	-1.27	-0.04	-1.24
0.35	1.58	-1.27	-0.04	-1.23
0.37	1.59	-1.20	-0.04	-1.22
0.33	1.57	-1.26	-0.04	-1.21
0.39	1.59	-1.25	-0.05	-1.20
0.40	1.60	-1.25	-0.05	-1.20
0.41	1.60	-3.25	-0.05	-1.20

(K) m-cyanobenzil

ELECTROM
EMERGY
(EV)

LOGARITHMIC INTENSITY RATMOS
 FX/FM FH/FM FX/I-FM FiH/I-Fi FX/FH

-1.00	8.30
-1.50	8.80
0.0	9.30
0.50	9.80
1.00	10.30
1.50	10.80
2.00	11.30
2.50	11.80
3.00	12.30
3.50	12.80
4.00	13.30
4.50	13.80
5.00	14.30
5.50	14.80
6.00	15.30
6.50	15.80
7.00	16.30
7.50	16.80
8.00	17.30
8.50	17.80
4.00	18.30
9.50	18.80
10.00	1.3 .30

-1.30	8.00
-0.30	8.50
-0.30	9.00
0.20	9.50
0.70	10.00
1.20	10.50
1.70	11.00
2.20	11.50
2.70	12.00
3.20	12.50
3.70	13.00
4.20	23.50
4.70	14.00
5.20	14.50
5.70	16.00
6.20	15.50
6.70	16.00
7.20	16.50
7.70	17.00
2.20	17.50
8.70	18.00
9.20	28.50
4.70	13.00
10.20	19.50
10.70	20.00

0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.68
0.0	1.03
0.0	2.36
-1.69	1.58
-1.31	2.72
-1.06	1.80
-0.90	1.86
-0.75	1.91
-0.59	1.94
-0.42	2.96
-0.25	1.93
-0.11	2.00
0.01	2.01
0.03	2.02
0.14	2.03
0.18	2.03
0.21	2.04
0.24	2.04
0.26	2.05
0.28	2.05
0.30	2.05
0.31	2.06

0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	-0.00	0.0
0.0	0.00	0.0
0.0	0.00	0.0
-3.27	-0.00	-3.27
-3.02	-0.00	-3.03
-2.86	-0.00	-2.80
-2.76	-0.00	-2.76
-2.60	-0.00	-2.66
-2.53	-0.00	-2.53
-2.38	-0.00	-2.36
-2.24	-0.00	-2.24
-2.12	-0.02	-2.12
-2.02	-0.01	-2.00
-1.95	-0.01	-1.94
-1.92	-0.02	-1.89
-1.37	-0.02	-1.89
-1.85	-0.03	-1.83
-2.33	-0.03	-1.80
-1.82	-0.04	-1.76
-1.31	-0.04	-2.77
-1.80	-0.04	-1.76
-1.79	-0.05	-1.74

Table 6

(1) m-TRifluoromethylgenzil

ExCESS
EvERSY
(EV)
ELECTROM
EvERGY
(EV)
LOBARITHMTC INTENSTTY GATICS
 FX/FM FH/FM FX/I-FM FH/I-FM FX/FI
-1.00
-0.50
0.0
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
5.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50
10.00

-1.34	3.00
-0.84	8.50
-0.34	9.00
0.16	9.50
0.66	10.00
1.16	10.50
1.66	11.00
2.16	11.50
2.60	12.00
3.16	12.50
3.66	13.00
4.16	13.50
4.66	14.00
5.16	14.50
5.16	15.00
6.16	15.50
6.66	16.00
7.16	16.50
7.60	17.00
8.16	17.50
8.60	18.00
9.16	18.50
9.60	19.00
10.16	19.50
10.66	20.00

0.0	0.0
0.0	0.0
0.0	0.0
0.0	1.10
-1.42	1.37
-0.92	1.56
-0.70	1.67
-0.52	1.77
-0.33	1.84
-0.24	1.89
-0.12	1.92
-0.00	1.97
0.12	2.01
0.22	2.04
0.30	2.07
0.36	2.09
0.41	2.10
0.45	2.12
0.48	2.13
0.50	2.14
0.52	2.15
0.54	2.16
0.55	2.16

0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.00	0.0
-2.79	-0.00	-2.79
-2.48	-0.00	-2.48
-2.38	-0.00	-2.32
-2.30	-0.00	-2.30
-2.22	-0.00	-2.22
-2.13	-0.00	-2.13
-2.05	-0.00	-2.05
-1.97	-0.00	-1.97
-1.90	-0.01	-1.89
-1.83	-0.01	-1.82
-1.77	-0.01	-1.76
-1.73	-0.01	-1.72
-1.71	-0.02	-1.69
-1.69	-0.02	-1.67
-1.66	-0.03	-2.65
-1.67	-0.03	-1.04
-1.60	-0.04	-1.63
-1.66	-0.04	-1.62
-1.65	-0.04	-1.62

0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.81	0.0	0.00	0.0
0.0	1.17	0.0	0.0	0.0
-1.16	1.43	-2.59	-0.00	-2.59
-0.83	1.60	-2.44	-0.00	-2.44
-0.64	1.71	-2.35	-0.00	-2.35
-0.48	1.80	-2.28	-0.00	-2.28
-0.34	2.85	-2.19	-0.00	-2.19
-0.20	1.90	-2.11	-0.00	-2.10
-0.09	1.93	-2.02	-0.00	-2.02
0.04	1.96	-1.95	-0.01	-1.94
0.15	2.02	-1.87	-0.01	-1.27
0.25	2.05	-1.81	-0.02	-1.80
0.33	2.07	-1.76	-0.01	-1.75
0.39	2.09	-1.73	-0.01	-1.71
0.42	2.11	-1.70	-0.02	-1.69
0.46	2.12	-1.69	-0.02	-1.66
0.48	2.13	-1.62	-0.03	-1.65
0.51	2.14	-1.67	-0.03	-1.63
0.53	2.15	-1.66	-0.04	-1.62
0.54	2.16	-1.63	-0.04	-1.63
0.56	2.16	-1.65	-0.04	-1.61
0.57	2.17	-1.64	-0.05	-1.60

Table 6

(m) m-Mitroben/il

EXCESS	ELECTROM
EVRGY	ENRRGY
$(E V)$	$(E V)$

ErTPGY
(EV)

LOCARITHMIC . INTENSITY RATIOS
 FX/FM FH/FM FX/I-FM FH/I-FM FX/FH

-8.00	8.33	0.0	0.0	0.0	0.0	0.0
-0.50	8.83	0.0	0.0	0.0	0.0	0.0
0.0	9.33	0.0	0.0	0.0	0.0	0.0
0.50	9.83	0.0	0.73	0.0	-0.00	0.0
1.00	10.33	0.0	1.02	0.0	-0.02	0.0
$\underline{2.50}$	10.93	0.0	1. 24	0.0	-0.01	0.0
2.00	11.33	-2.14	2.38	-3.54	-0.01	-3.53
2.50	12.83	-2.78	1.47	-3.27	-0.01	-3.26
3.00	12.33	-1.53	1.54	-3.08	-0.01	-3.07
3.50	12.83	-1.33	2. 5.5	-2.93	-0.01	-2.92
4.00	13.33	-1.14	1.63	-2.79	-0.01	-2.77
4.50	13.83	-0.94	1.67	-2.63	-0.01	-2.62
5.00	14.33	-0.77	1.70	-2.47	-0.02	-2.47
5.50	14.93	-0.62	1.72	-2.36	-0.01	-2.35
6.00	15.33	-0.50	1.74	-2.26	-0.02	-2.24
6.50	15.33	-0.42	1.75	-2.16	-0.02	-2.16
7.00	16.33	-0.35	1.76	-2.13	-0.02	-2.11
7.50	16.83	-0.30	1.77	-2.10	-0.03	-2.07
8.00	17.33	-0.26	1.78	-2.07	-0.03	-2.04
3.50	17.83	-0.24	1.78	-2.05	-0.04	-2.02
9.00	18.33	-0.21	1. 1.79	-2.04	-0.04	-2.00
9.50	18.83	-0.19	1.79	-2.03	-0.04	-1.93
10.00	2.9 .33	-0.18	1.79	-2.02	-0.05	-1.97
-1.33	8.00	0.0	0.0	0.0	0.0	0.0
-0.83	8.50	0.0	0.0	0.0	0.0	0.0
-0.33	9.00	0.0	0.0	0.0	0.0	0.0
0.17	9.50	0.0	0.36	0.0	0.0	0.0
0.67	10.00	0.0	0.84	0.0	-0.01	0.0
1.8 .7	10.50	0.0	1.10	0.0	-0.01	0.0
1.67	11.00	0.0	1.30	0.0	-0.01	0.0
2.17	12.50	-1.97	1.42	-3.40	-0.02	-5.37
2.67	12.00	-1.07	1.50	-3.13	-0.0.	-3.17
3.17	32.50	-1.46	1.56	-3.03	-0.01	-3.02
3.67	23.00	-1.26	1.60	-2.87	-0.01	-2.86
4.17	13.50	-1.07	. 6.65	-2.72	-0.02	-2.71
4.67	14.00	-0.83	1.68	-2.58	-0.01	-2.57
5.17	14.50	-0.0.72	1.72	-2.44	-0.01	-2.42
5.67	± 5.00	-0.58	1.73	-2.32	-0.03	-2.3%
6.17	$\therefore 5.50$	-0.47	1.74	-2.23	-0.02	$-2.2 ?$
6.67	16.00	-0.37	1.75	$-2 \cdot 16$	-0.02	-2.14
7.17	16.50	-0.33	1.76	-2.12	-0.0 ?	-8.09
7.67	27.00	-0.21	1.77	$-2.0)$	-0.113	- - - 0)
8.17	17.50	-0.25	$\cdots .78$	-2.07	-0.03	-2.03
8.67	18.00	-0.23	1.78	-2.05	-0.04	-2.01
9.87	18.50	-0.21	1.79	-2.04	-0.04	-1.99
9.67	19.00	-0.29	1.79	-2.02	-0.05	-1.98
10.17	19.50	-0.3. 7	1.80	-2.01	-0.05	-1.97
10.67	20.00	-0.16	1.80	-2.01	-0.09	-1.96

Table 7

Logarithmic Intensity Ratios ${ }^{\text {a }}$ for Substituted Benzils (70 el)

a $F_{M}=$ fractional intensity of M^{+};
$\mathrm{F}_{\mathrm{X}}=$ fractional intensity of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$;
$F_{\mathrm{H}}=$ fractional intensity of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$.

5.5 APPEARANCE POTENTIALS

The individual measurements of the appearance potentials and their mean values (section 4.3) are given in Table 8 (a-m). The ionization potentials (IP), the appeazance potentials of the substituted $\left(A P_{X}\right)$ and unsubstituted $\left(A P_{E}\right)$ benzoyl ions, and their differences ($A P_{X}-I P_{1}, A P_{H}-I P^{\prime}, A P_{X}-A P_{H}$) used in correlating the results are tabulated in Table 9 ($a-m$). The estimated standard deviations of all these values are given in brackets.

Table 8

Ionization and Appearance Potertials

(a) Benzil

210	$9.19(.05)$	$9.18(.08)$	$9.27(.07)$	$9.16(.05)$	$9.20(.03)(11 t .8 .78)$		
105	$9.88(.05)$	$9.93(.04)$	$9.82(.04)$		$9.87(.03)(114.9 .70)$		
77	$14.06(.07)$	$14.00(.10)$	$13.66(.07)$	$13.60(.06)$	13.8	$(.1)$	$(11 t .9(15.1)$

(b) m-Flucrobenzil

| 228 | $9.16(.08)$ | $9.28(.05)$ | $9.25(.05)$ | $9.21(.04)$ | $9.23(.02)$ |
| :---: | ---: | ---: | ---: | ---: | ---: | :--- |
| 123 | $10.42(.09)$ | $10.42(.05)$ | | | $10.42(.05)$ |
| 105 | $9.70(.05)$ | $9.89(.06)$ | $9.75(.03)$ | | $9.76(.05)$ |
| 95 | $13.95(.07)$ | $13.56(.06)$ | | $13.7(.2)$ | |
| 77 | $14.03(.06)$ | $13.63(.04)$ | | 13.8 | $(.2)$ |

E. Wetalis ani J. L. Eranklin. J. Chem. Phys. 69. 2943 (1965).

Table 8
Ionization and Appearance Potentials
$\frac{\text { Ion }}{m / e} \frac{\text { Individual Measurements }\left(e . s_{0} d_{0}\right)}{v_{i}\left(\sigma_{i}\right)} \quad \frac{M e a n\left(e . s . d_{0}\right)}{\vec{v}(o-i)}$
(c) P-Fluorobenzil

| 228 | $9.17(.05)$ | $9.15(.05)$ | $9.10(.05)$ | $9.09(.04)$ | $9.12(.02)$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 123 | $10.14(.05)$ | $10.02(.04)$ | | $10.07(.04)$ | |
| 105 | $9.77(.04)$ | $9.70(.03)$ | | $9.73(.02)$ | |
| 95 | $14.20(.05)$ | $13.87(.07)$ | | 14.1 | $(.1)$ |
| 77 | $13.82(.04)$ | $13.60(.05)$ | | 13.7 | $(.1)$ |

(d) m --Chlorobenzil

| 244 | $9.00(.08)$ | $9.29(.08)$ | $9.12(.06)$ | $9.22(.05)$ | $9.16(.05)$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 139 | $10.36(.08)$ | $10.29(.05)$ | | $10.31(.05)$ | |
| 105 | $9.80(.09)$ | $9.74(.05)$ | | $9.76(.04)$ | |
| 111 | $14.21(.09)$ | $13.51(.07)$ | | $13.8(.3)$ | |
| 77 | $14.63(.07)$ | $13.77(.04)$ | | $14.0(.4)$ | |

Table 8

Ionization and Appearance Potentials

Ion	Individual Measurements (e.s.d.)	$\operatorname{Mean}\left(\operatorname{cosed}^{\text {a }}\right.$)
m / e	$v_{i}\left(\sigma_{i}\right)$	$\overline{\mathrm{v}}$ (σ_{v})

(a) m-Bromobenzil

228	$9.14(.07)$	$9.13(.09)$	$9.17(.05)$	$9.02(.05)$	$9.10(.03)$	
183	$10.38(.07)$	$10.33(.10)$	$10.55(.05)$		$10.47(.06)$	
105	$9.69(.07)$	$9.86(.06)$	$9.64(.05)$		$9.72(.06)$	
155	$14.20(.09)$	$14.10(.09)$	$14.19(.07)$	$13.66(.05)$	$13.9(.1)$	
77	$13.86(.09)$	$13.38(.10)$	$13.88(.04)$	$13.61(.05)$	13.7	$(.1)$

(i) p-Bromobenzil

288	$9.12(.06)$	$9.24(.06)$	$8.96(.03)$	$9.11(.08)$
183	$9.84(.05)$	$9.93(.04)$		$9.90(.05)$
105	$9.59(.05)$	$9.62(.03)$		$9.61(.03)$
155	$13.83(.08)$	$13.94(.04)$	$13.90(.06)$	
77	$13.58(.07)$	$13.57(.09)$	$13.58(.05)$	

Table 8

Ionization and Appearance Potentials
$\frac{\text { Ion }}{m / e} \frac{\text { Individual Measurements }\left(e_{0} s_{0} d_{i}\right)}{v_{i}\left(\sigma_{i}\right)} \quad \frac{\text { Mean }\left(e_{0} s_{0} d_{0}\right)}{\overline{\mathrm{V}}\left(\sigma_{-}\right)}$
(g) m-Methylbenzil

224	$9.08(.06)$	$9.06(.05)$	$9.04(.04)$	$9.05(.03)$
119	$9.60(.04)$	$9.55(.04)$		$9.57(.03)$
105	$9.95(.06)$	$9.92(.04)$		$9.93(.03)$
91	$13.59(.05)$	$13.61(.05)$		$13.60(.04)$
77	$13.97(.06)$	$13.99(.05)$	$14.13(.08)$	$14.01(.05)$

(h) m - Methoxybenzil

240				
135	$8.72(.06)$	$8.78(.09)$	$8.76(.04)$	$8.75(.03)$
105	$9.64(.07)$	$9.51(.04)$	$9.46(.06)$	$9.52(.04)$
107	$9.93(.07)$	$9.89(.08)$		$9.91(.05)$
77	$13.55(.07)$	$14.25(.10)$	$13.47(.06)$	$13.6(.2)$
$(.04)$	$15.40(.07)$	$14.54(.08)$	$15.1(.2)$	

Ionization and Appearance Potentials
$\frac{\text { Ion }}{m / e} \frac{\text { Individual Measurements }\left(e . s . d_{0}\right)}{v_{i}\left(\sigma_{i}\right)} \quad \frac{\text { Mean }\left(e_{0} s_{0} d_{0}\right)}{\bar{v}(\sigma \ldots)}$
(i) p-Phenylbenzil

286	8.59	$(.03)$
181	9.25	$(.08)$
105	10.12	$(.06)$
153	13.78	$(.04)$
152	15.8	$(.1)$
77	13.3	$(.1)$

$$
\begin{aligned}
8.59 & (.03) \\
9.25 & (.08) \\
10.12 & (.06) \\
13.8 & (.1) \\
15.8 & (.2) \\
13.3 & (.2)
\end{aligned}
$$

(j) m-Fommylbenzil

238	$9.03(.06)$	$9.17(.08)$	$9.19(.04)$	$9.14(.05)$
133	$10.34(.08)$	$10.34(.06)$		$10.34(.05)$
105	$9.86(.06)$	$9.89(.05)$		$9.88(.04)$
77	$13.67(.07)$	$13.67(.06)$	$13.67(.05)$	

Table 8

Ionization and Appearance Potentials
$\frac{\text { Ion }}{m / e} \frac{\text { Individual Measurements }\left(e_{0} s_{0} d_{0}\right)}{{ }_{v i}\left(\sigma_{i}\right)} \quad \frac{\text { Mean }\left(e_{0} s_{0} d_{0}\right)}{\overline{\mathrm{V}}\left(\sigma_{\mathrm{v}}\right)}$
(k) m-Cyanobenzil

235	$9.13(.04)$	$9.34(.06)$	$9.53(.06)$
130	$11.13(.08)$	$11.44(.05)$	$10.81(.10)$
105	$9.96(.07)$	$10.07(.05)$	$9.99(.05)$
102	$15.30(.09)$	$15.61(.10)$	$15.19(.14)$
77	$14.31(.07)$	$14.29(.09)$	$13.93(.07)$

```
9.3(.1)
11.2 (.2)
10.01(.03)
15.4 (.1)
14.2 (.1)
```

(1) m-Txifluoromethylbenzil

278	$9.31(.15)$	$9.26(.08)$	$9.40(.07)$
173	$10.55(.08)$	$10.78(.06)$	
105	$10.11(.07)$	$9.74(.06)$	$9.91(.04)$
145	$14.77(.12)$	$14.31(.06)$	$14.95(.05)$
77	$14.34(.08)$	$13.81(.05)$	$14.12(.08)$

```
9.34(.05)
10.69(.1)
9.9, (.1)
14.7 (.2)
14.0 (.1)
```

Ionization and Appearance Potentials
$\frac{\text { Ion }}{m / e} \quad \frac{\text { Individual Measurements }\left(e_{0} s_{0} d_{0}\right)}{v_{i}\left(\sigma_{i}\right)} \quad \frac{\text { Mean }\left(\varepsilon_{0}, s_{0} d_{i}\right)}{\bar{v}\left(\sigma_{V}\right)}$
(m) m-Nitrobenzil

255	$9.32(.05)$	$9.34(.04)$	
150	$11.54(.09)$	$11.53(.10)$	
134	10.10	$(.07)$	$10.14(.05)$
105	$9.96(.04)$	$10.07(.04)$	
104	$12.88(.06)$	$12.71(.05)$	
77	$13.92(.05)$	$13.76(.05)$	

```
.9.33(.03)
11.54 (.07)
10.13(.04)
10.01(.04)
12.78(.08)
3.84(.08)
```


Table 9

Energy Parameters in Substituted Benzils

Substituent	$I P^{2}$	$A^{A P}{ }^{\text {b }}$	$A \mathrm{P}_{\mathrm{H}}{ }^{\mathrm{C}}$	$A P_{X}-\mathrm{IP}$	$A P_{H}-I P$	$A P_{X}{ }^{-A P_{H}}$
(a) H	$9.20(.03)$	9.87 (.03)	$9.87(.03)$	0.67 (.04)	0.67 (.04)	0.00
(b) mm	$9.23(.02)$	10.42 (.05)	9.76 (.05)	$1.19(.05)$	$0.53(.05)$	0.66 (.07)
(c) $p \cdots \vec{F}$	9.12 (.02)	10.07 (.04)	$9.73(.02)$	$0.95(.04)$	$0.61(.04)$	$0.34(.05)$
(d) m-cl	$9.16(.05)$	10.31 (.05)	$9.76(.04)$	$1.15(.06)$	$0.60(.06)$	$0.55(.06)$
(e) $m \cdots B r$	$9.10(.03)$	$10.47(.06)$	$9.72(.06)$	1.37 (.08)	$0.62(.08)$	0.75 (.10)
(f) $p-\mathrm{Br}^{\text {c }}$	$9.11(.08)$	9.90 (.05)	9.61 (.03)	$0.79(.09)$	$0.50(.09)$	$0.29(.06)$
(g) $\mathrm{m}-\mathrm{CH}_{3}$	9.05 (.03).	$9.57(.03)$	9.93 (.03)	$0.52(.04)$	$0.88(.04)$	-0.36 (.04)
(h) $m-\mathrm{CH}_{3} \mathrm{O}$	8.75 (.03)	$9.52(.04)$	9.91 (.05)	$0.77(.05)$	$1.16(.06)$	-0.0.39 (.06)
(i) $p-\mathrm{C}_{6} \mathrm{H}_{5}$	$8.59(.03)$	$9.25(.08)$	$10.12(.06)$	$0.66(.09)$	$1.53(.07)$	-0.87(.10)
(j) m-CHO	9.14 (.05)	$10.34(.05)$	9.88 (.04)	1.20 (.07)	$0.74(.06)$	0.46 (.06)
(k) $m \mathrm{CN}$	9.3 (.1)	11.2 (.1)	$10.01(.03)$	1.9 (.2)	0.7 (.1)	1.2 (.2)
(a) $m-\mathrm{CF}_{3}$	$9.34(.05)$	10.7 (.1)	$9.9(.1)$	$1.35(.1)$	$0.57(.1)$	0.78 (.14)
(m) $\mathrm{m}-\mathrm{NO}_{2}$	$9.33(.03)$	11.54 (.07)	10.01 (.04)	2.21 (.08)	$0.68(.04)$	$1.53(.08)$

a Ip is the ionization potential of the substituted benzil.
b AE X_{X} is the appearance potential of the substituted benzoyl ion ($\mathrm{KC}_{6} \mathrm{~F}_{4} \mathrm{CO}^{+}$).
c $A P_{H}$ is the appearance potential of the masubsticuted benzorl ion ($\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{co}^{+}$).
(The ©. sud of each value is given in brackets.)

5.6 CORRELATION OF RESULTS

The linear correlations of the results were obtained. from a standard least squares program (IINEAR) which calculated the intercept and slope parameters (and their standard deviations) of the regression line. The correlation coefficient (r), and the standard deviation (e) of a point of unit weight from the line were also computed to provide measures of the agreement obtained. All points were given unit weight in these correlations, and the results are tabulated in Tables 10-17. The substituent constants ($0, \sigma^{+}$) were obtained from the compilations by Brown $106,107$.

Table 10

Correlation of Bnergy Parameters ${ }^{2}$ with Substituent Constants.

Comelation $r^{b} \quad e^{c}$| Slope |
| :---: |
| $($ e.s.d. $)$ |

(a)	IP vs.o	0.64	0.17	0.6 (.2)	$8.95(.08)$
	IP VS. σ^{+}	0.73	0.16	0.6 (.2)	$8.97(.06)$
(b)	$A P_{H}$ vs. σ	0.04	0.15	$0.0(.2)$	$9.86(.06)$
	APH VS. ${ }^{+}$	0.00	0.15	$0.0(.2)$	$9.86(.06)$
(c)	$A P_{X}$ vs. σ	0.94	0.24	2.6 (.3)	9.6 (.1)
	APX vs. 0^{+}	0.93	0.26	2.2 (.3)	9.7 (.1)
(d)	$\left(A P_{H}-T P\right)$ vs. σ	-0.47	0.27	$-0.6(.3)$	$0.9(.1)$
	$\left(A P_{H}-I P\right)$ vs. 0^{+}	-0.55	0.25	-0.6(.3)	0.9 (.1)
(e)	($A P_{X}=I P$) Vs. of	0.95	0.16	$2.0(.2)$	$0.60(.07)$
	$\left(A P_{X}-I P\right)$ Vs. σ^{+}	0.90	0.22	$1.6(.2)$	$0.74(.08)$
(i)	$\left(A P_{X}-A P_{H}\right)$ vs. 0	0.92	0.28	$2.6(.3)$	-0.3 (.1)
	$\left(A P_{X}-A P_{H}\right)$ vs. σ^{+}	0.92	0.27	$2.2(.3)$	-0.2 (.1)

a $I P$ ionization potential;

$$
\begin{aligned}
& A P_{\mathrm{H}}=\text { appearance potential of } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+} \\
& A P_{X}=\text { appearance potential of } \mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}
\end{aligned}
$$

b $x=$ correlation coefricient.

0 e $e=$ standard deviation.
(a) Comelation of $\log \left(F_{H} / F_{M}\right)^{\text {a }}$ with Substituent Constants as a Fumction of the Excess Energy, $\mathrm{E}^{\text {b }}$.

E (eV)	Const.	m^{c}	e^{d}	$\begin{gathered} \text { Slope } \\ (\text { e.S.d. }) \\ \hline \end{gathered}$	Intercept $\left(e_{0} \sin _{0}\right)$
2.00	σ	0.70	0.73	$2.9(.9)$	$0.0(.3)$
	σ^{+}	0.74	0.69	2.6 (.7)	$0.2(.3)$
4.00	σ	0.73	0.60	2.6 (.7)	$0.4(.3)$
	0^{+}	0.76	0.57	2.3 (.6)	$0.5(.2)$
6.00	\bigcirc	0.75	0.53	$2.4(.6)$	0.6 (.2)
	σ^{+}	0.78	0.50	$2.2(.5)$	$0.7(.2)$
8.00	\bigcirc	0.76	0.50	$2.3(.6)$	$0.7(.2)$
	σ^{+}	0.79	0.47	2.1 (.5)	$0.8(.2)$
10.00	σ	0.76	0.49	2.3 (.6)	$0.7(.2)$
	σ^{+}	0.79	0.46	2.1 (.5)	$0.8(.2)$

a $F_{\mathrm{H}}=$ Iractional intensity of $\mathrm{O}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$; $F_{M}=$ fractional intensity of M^{+}.
b $B=V-I P$ (see section 4.4).
c $r=$ correlation coexficient.
d $e=$ standard deviation.
(b) Correlation of $\log \left(\mathbb{T}_{\mathrm{X}} / \mathrm{F}_{\mathrm{M}}\right)^{\text {a }}$ with Substituent Constants as a Function of the Excess Energy, \mathbb{E}^{b}.

E (eV)	Const.	$x^{\text {c }}$	$e^{\text {d }}$	$\begin{gathered} \text { Slope } \\ \left(e .5 . d_{0}\right) \end{gathered}$	Intercept (e.s,a.)
2.00	σ	-0.97	0.24	-3.7(.3)	$0.8(.1)$
	0^{+}	-0.95	0.31	-3.2(.3)	$0.5(.1)$
4.00	σ	-0.96	0.20	-2.8(.2)	$1.0(.1)$
	0^{+}	-0.95	0.23	$-2.4(.2)$	$0.8(.1)$
6.00	σ	-0.95	0.17	$-2.1(.2)$	1.1 (.1)
	σ^{+}	-0.94	0.18	-1.8(.2)	1.0(.1)
8.00	\bigcirc	-0.94	0.17	-1.8 (.2)	1.1 (.1)
	σ^{*}	-0.93	0.17	-1.5 (.2)	$1.0(.1)$
10.00	σ	--0.93	0.17	-1.7(.2)	1.1 (.1)
	σ^{+}	-0.93	0.17	-1.4 (.2)	1.0(.1)

a $F_{X}=$ fractional intensity of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$; $F_{M}=$ fractional intensity of $M+$
b $E=V-I P$ (see section 4.4).
c r = correlation coefricient。
d $e=$ standard deviation.
(a) Correlation of $\log \left(F_{H} / \uparrow-F_{M}\right)^{\text {a }}$ with Substituent Constants as a Punction of the Excess Energy, E. ${ }^{\text {b }}$

E (eV)	Const.	n°	e^{d}	$\begin{gathered} \text { Slope } \\ \left(\mathrm{e}, \mathrm{~s}, \mathrm{a}_{0}\right) \end{gathered}$	Intercept (s.s.en.)
2,00	σ	0.64	0.55	1.8 (.7)	-0.9 (.2)
	${ }^{+}$	0.70	0.51	1.7 (.5)	-0.8(.2)
4.00	σ	0.66	0.43	1.6 (.5)	-0.7(.2)
	0^{+}	0.72	0.40	1.4 (.4)	-0.7(.2)
6.00	σ	0.68	0.36	1.4 (.4)	-0.7 (.1)
	σ^{+}	0.73	0.34	$1.3(.4)$	-0.6(.1)
8.00	σ	0.69	0.34	1.3 (.4)	-0.7(.1)
	σ^{*}	0.74	0.32	1.2 (.3)	-0.6(.1)
10.00	σ	0.69	0.33	1.3 (.4)	-0.7(.1)
	0^{4}	0.74	0.31	1.2 (.3)	-0.6 (.1)

a $F_{\mathrm{H}}=$ fractional intensity of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$;
$F_{M}=$ fractional intensity of M^{t}.
b

```
        E = V - IP (see section 4.4).
```

${ }^{c} \quad \bar{x}=$ correlation coefficient.
a

```
        e = standard deviation.
```

(b) Correlation of $\log \left(F_{X} / 1-F_{M}\right)^{a}$ with Substituent Constants as a Function of the Excess Energy, E^{b}.

\pm (eV)	Const.	x^{c}	e^{d}	$\begin{gathered} \text { Slope } \\ (\mathrm{e}-\mathrm{s}, \mathrm{~d} .) \end{gathered}$	Intercept $(e . s . d .)$
2.00	σ	-0.96	0.33	-4.8(.4)	-0.1(.1)
	0^{+}	-0.95	0.38	-4.1 (.4)	$-0.4(.1)$
4.00	σ	--0.96	0.29	-3.8(.4)	-0.1 (.1)
	σ^{+}	-0.95	0.32	$-3.3(.3)$	$-0.4(.1)$
6.00	σ	-0.96	0.24	$-3.1(.3)$	-0.2(.1)
	σ^{*}	-0.95	0.25	$-2.6(.3)$	$-0.4(.1)$
8.00	σ	-0.95	0.22	$-2.8(.3)$	$-0.2(.1)$
	${ }^{+}$	-0.95	0.22	-2.4(.2)	-0.4(.1)
10.00	σ	-0.95	0.22	-2.7(.3)	$-0.2(.1)$
	0^{+}	-0.95	0.22	--2.3(.2)	$-0.4(.1)$

a $F_{X}=$ fractional intensity of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$; $\mathbb{F}_{M}=$ Iractional intensity of M^{\dagger}.
b $E=V-I P($ see section 4.4$)$.
$c x=$ correlation coefficient.
d $e=$ standard deviation.

Table 13

Correlation of Log $\left(\mathrm{F}_{\mathrm{X}} / \mathrm{F}_{\mathrm{H}}\right)^{\text {a }}$ with Substituent Constants as a Function of the Excese Energy, F^{b} 。

E (eV)	Const.	$r^{\text {c }}$	$e^{\text {d }}$	$\begin{gathered} \text { Slope } \\ (\mathrm{e} \cdot \mathrm{~s} \cdot \mathrm{~d} . \end{gathered}$	Interoept $\left(0,3 . d_{0}\right)$
2.00	σ	-0.92	0.71	-6.6(.9)	$0.8(.3)$
	σ^{+}	-0.93	0.65	$-5.8(.7)$	$0.4(.2)$
4.00	0	-0.91	0.59	$-5.4(.7)$	$0.6(.3)$
	0^{+}	-0.93	0.54	$-4.7(.6)$	0.3 (.2)
6.00	σ	-0.91	0.51	$-4.4(.6)$	0.5 (.2)
	0^{+}	-0.92	0.46	$-3.9(.5)$	$0.2(.2)$
8.00	\bigcirc	-0.90	0.49	$-4.1(.6)$	$0.5(.2)$
	σ^{+}	-0.92	0.44	$-3.6(.5)$	$0.2(.2)$
10.00	\bigcirc	-0.90	0.48	-4.0(.6)	$0.4(.2)$
	σ^{+}	-0.92	0.43	$-3.5(.5)$	$0.2(.2)$
a $F_{X}=$ fractional intensity of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$;					
$F_{H}=\text { iractional intensity of } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$					
b $\quad \mathrm{E}=\mathrm{V}-\mathrm{IP}$ (see section 4.4).					
c r = correlation coefficient.					
$\mathrm{a} e=$	ard dev				

Tabie 14

(a) Comelation of $\log \left(P_{H} / T_{M}\right)^{2}$ With $\left(A P_{H}-I P\right)^{b}$ as a Function of the Excess Thergy, E. ${ }^{\text {C }}$

E	x^{d}	e^{e}	$\begin{aligned} & \text { Slope } \\ & \text { (e.s.d.) } \\ & \hline \end{aligned}$	Intercept $\left(e .5 .0_{0}\right)$
2.00	-0.92	0.41	-3.1(.4)	3.1 (.3)
4.00	-0.89	0.41	$-2.6(.4)$	3.0 (.3)
6.00	-0.86	0.40	$-2.3(.4)$	$2.9(.3)$
8.00	-0.85	0.40	$-2.2(.4)$	$2.9(.3)$
10.00	-0.85	0.40	$-2.1(.4)$	2.9 (.3)

$$
\begin{aligned}
\text { a } F_{H} & =\text { fractional intensity of } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+} ; \\
\mathrm{F}_{\mathrm{M}} & =\text { fractional intensity of } \mathrm{M}^{+} .
\end{aligned}
$$

b $A P_{H}=$ appearance potential $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$;
$I P=$ ionization potential.
c $E=V-I P$ (see section 4.4).
d \quad = correlation coefficient.
${ }^{e} e=$ standard deviation.

Table 14

(b) Correlation on $\log \left(F_{X} / P_{M}\right)^{a}$ with $\left(A P_{X}-I P\right)^{b}$ as a Function of the Excess Energy, $\mathbb{E}^{\text {o }}$

E (eV)	$r^{\text {d }}$	$e^{\text {e }}$	$\begin{aligned} & \text { Slope } \\ & \left(\mathrm{e} . \text { Su. }{ }^{2}\right) \end{aligned}$	Intercept $\left(e_{, ~ 5}, \alpha_{0}\right)$
2.00	-0.98	0.20	-1.8(.1)	$1.8(.9)$
4.00	-0.97	0.19	$-1.3(.1)$	$1.8(.1)$
6.00	-0.94	0.19	$-1.0(.1)$	1.6 (.1)
8.00	-0.92	0.19	$-0.8(.1)$	$1.6(.1)$
10.00	-0.91	0.19	-0.8(.1)	1.6 (.1)

a $\mathrm{F}_{\mathrm{X}}=$ fractional intensity of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$; $F_{M}=$ fractional intensity of M^{+}。
b $A P_{X}=$ appearance potential of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$;
$I P=$ ionization potential.
c $E=V-I P$ (see section 4.4).
d $r=$ correlation coefficient.
e $e=$ standard deviation.
(a) Correlation of $\log \left(\mathbb{P}_{\mathrm{H}} / 1-\mathbb{T}_{\mathrm{M}}\right)^{\text {a }}$ with $\left(A P_{\mathrm{H}}-\operatorname{IP}\right)^{b}$ as a Function of the Excess Energy, E. ${ }^{\circ}$

E (6 V)	$r^{\text {d }}$	e^{e}	$\begin{gathered} \text { Slope } \\ (\mathrm{e}, \text { s.d. }) \end{gathered}$	$\begin{array}{r} \text { Intercept } \\ (\mathrm{essan}) \end{array}$
2.00	-0.95	0.23	$-2.2(.2)$	1.3 (.2)
4.00	-0.94	0.20	$-1.8(.2)$	1.0(.2)
6.00	-0.93	0.19	-1.5 (.2)	$0.9(.2)$
8.00	-0.92	0.18	-1.4(.2)	$0.8(.1)$
10.00	-0.92	0.18	$-1.4(.2)$	$0.7(.1)$

a $F_{H}=$ fractional intensity of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$;
$F_{M}=$ fractional intensity of M^{+}。
b $A P_{\mathrm{H}}=$ appearance potential of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$;
$I P=$ ionization potential.
c $E=V-I P$ (see section 4.4).
d $\quad r=$ correlation coefficient.
e $e=$ standard deviation.
(b) Correlation of $\log \left(F_{X} / 1-F_{M}\right)^{a}$ with $\left(A P_{X}-I P\right)^{b}$ as a. Function of the Excess Energy, \mathbb{R}°

E (eV)	$r^{\text {d }}$	e^{e}	$\begin{aligned} & \text { Slope } \\ & (\mathrm{e} . \mathrm{s.d.}) \end{aligned}$	Intercept $(0 . s, 0,0)$
2.00	-0.97	0.30	-2.3 (.2)	1.2 (.2)
4.00	-0.96	0.28	$-1.8(.2)$	$0.9(.2)$
6.00	-0.95	0.26	$-1.5(.2)$	$0.7(.2)$
8.00	-0.94	0.26	$-1.3(.2)$	0.5 (.2)
10.00	-0.93	0.25	-1.3 (.2)	$0.5(.2)$

a

$$
\begin{aligned}
& F_{X}=\text { fractional intensity of } \mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+} ; \\
& F_{M}=\text { fractional intensity of } \mathrm{M}^{\dagger}
\end{aligned}
$$

${ }^{b} \mathrm{AP}_{\mathrm{X}}=$ appearance potential of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$; $I P=$ ionization potential.
c $E=V-I P \quad($ see $\sec t i o n 4.4)$.
a

```
    r correlation coefficient.
```

$e \quad e=$ standard deviation.

Table 16

(a) Correlation of $\log \left(F_{X} / F_{X}\right)^{a}$ with $\left(A P_{X}-A P_{H}\right)^{b}$ as a

Function of the Excess Energy, E. ${ }^{\text {C }}$

$E(e V)$	r^{d}	e^{e}	Slope $(e . S . d)$.	Intercept $\left(\right.$ e.e. $\left.0_{0}\right)$
2.00	-0.990	0.26	$-2.6(.1)$	$-0.06(.08)$
3.00	-0.985	0.27	$-2.3(.1)$	$-0.06(.09)$
4.00	-0.984	0.26	$-2.1(.1)$	$-0.06(.09)$
5.00	-0.982	0.25	$-1.9(.1)$	$-0.05(.08)$
6.00	-0.979	0.25	$-1.7(.1)$	$-0.05(.08)$
7.00	-0.975	0.25	$-1.6(.1)$	$-0.05(.08)$
8.00	-0.975	0.25	$-1.6(.1)$	$-0.05(.08)$
9.00	-0.974	0.25	$-1.6(.1)$	$-0.05(.08)$
10.00	-0.974	0.25	$-1.6(.1)$	$-0.04(.08)$

a $F_{X}=$ fractional incensity of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$;
$\mathrm{F}_{\mathrm{H}}=$ Practional intensity of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{\circ}$.
b $\mathrm{AP}_{\mathrm{X}}=$ appearance potential of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$;
$A P_{\mathrm{H}}=$ appearance potential of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$.
$c E=V-I P$ (see section 4.4).
d
$r=$ correlation coefficient.
e
$e=$ standard deviation.

Table 16

(b) Correlation of $\log \left(P_{X} / F_{\mathrm{H}}\right)^{a}$ with $\left(A P_{X}-A P_{H}\right)^{b}$ as a Function of the Ionizing Voltage, V. ${ }^{\text {c }}$

$V(\mathrm{eV})$	r^{d}	e^{e}	Slope $(e . S . d)$.	Intercept $($ e.s.d.
12.00	-0.986	0.27	$-2.3(.1)$	$-0.09(.09)$
13.00	-0.984	0.26	$-2.1(.1)$	$-0.08(.09)$
14.00	-0.983	0.25	$-1.9(.1)$	$-0.07(.08)$
15.00	-0.980	0.25	$-1.7(.1)$	$-0.05(.08)$
16.00	-0.977	0.25	$-1.7(.1)$	$-0.05(.08)$
17.00	-0.975	0.25	$-1.6(.1)$	$-0.05(.08)$
18.00	-0.974	0.25	$-1.6(.1)$	$-0.05(.08)$
19.00	-0.974	0.25	$-1.6(.1)$	$-0.05(.08)$
20.00	-0.973	0.25	$-1.5(.1)$	$-0.05(.08)$

a $F_{X}=$ iractional intensity of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$;
$\mathrm{F}_{\mathrm{H}}=$ fractional intensity of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$.
b $A F_{X}=$ appearance potential of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$;
$A P_{H}=$ appearance potential of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$.
c
$V=$ corrected ionizing voltage.
d $r=$ correlation coefficient.
${ }^{e} \quad=$ standard deviation.
(a) Conrelation of Logarithmic Intensity Ratios at 70 ev with Substituent Constants.

$\begin{array}{cl} \log \left(E_{H} / F_{M}\right) & \text { vso o } \\ & \text { VS. } \sigma^{+} \end{array}$	0.86 0.80	0.27 0.32	$\begin{aligned} & 1.9(.3) \\ & 1.5(.3) \end{aligned}$	$\begin{aligned} & 1.0(.1) \\ & 1.1(.1) \end{aligned}$	
$\begin{array}{cl} \log \left(F_{X} / T_{M}\right) & \text { vs. } \sigma \\ " & \text { vs. } \sigma^{+} \end{array}$	$\begin{aligned} & -0.64 \\ & -0.73 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.24 \end{aligned}$	$\begin{aligned} & -0.9(.3) \\ & -0.9(.3) \end{aligned}$	$\begin{aligned} & 1.3(.1) \\ & 1.2(.1) \end{aligned}$	
$\begin{array}{cl} \log \left(F_{H} / 1-F_{M}\right) & \text { Vs. } \sigma \\ \\| & V S S: ~_{l} \sigma^{+} \end{array}$	0.75 0.79		$\begin{aligned} & 0.9(.2) \\ & 0.8(.2) \end{aligned}$	$\begin{aligned} & -0.65(.09) \\ & -0.61(.07) \end{aligned}$	
$\begin{array}{cl} \log \left(F_{X} / 1-F_{M}\right) & \text { Vs. } \sigma \\ \text { " } & \text { Vs. } \sigma^{+} \end{array}$	$\begin{aligned} & -0.97 \\ & -0.95 \end{aligned}$	0.12 0.16	$\begin{array}{ll} -1.9 & (.15) \\ -1.6 & (.16) \end{array}$	$\begin{aligned} & -0.41(.05) \\ & -0.54(.06) \end{aligned}$	
$\begin{array}{cl} \log \left(F_{X} / F_{H}\right) & \text { vs. } \sigma \\ n & \text { vs. } \sigma^{+} \end{array}$	-0.93 -0.94	0.26 0.26	$\begin{aligned} & -2.8(.3) \\ & -2.4(.3) \end{aligned}$	$0.2(01)$ 0.1	

a $F_{M}=$ iractional intensity of M^{+T};
$\mathrm{F}_{\mathrm{X}}=$ fractional intensity of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$;
$F_{H}=$ Practional intensity of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$.
b $\quad r=$ correlation coefficient.
$c \quad e=$ standard devtation.
(b) Correlation of Logarithmic Intensity Ratios at 70 eV with Energy Parameters. ${ }^{\text {b }}$

Correlation	r^{c}	e^{d}	$\begin{gathered} \text { Slope } \\ \text { (e.s.d.) } \end{gathered}$	$\begin{array}{r} \text { Intercep } \\ (\mathrm{e} . \mathrm{s.e.a}) \\ \hline \end{array}$
$\log \left(\mathrm{F}_{\mathrm{H}} / \mathrm{T}_{\mathrm{M}}\right)$ vs. $\left(A P_{H}-\mathrm{IP}\right)$	-0.47	0.47	-0.8(.5)	2.1 (.4)
$\underline{\log }\left(\mathrm{F}_{\mathrm{X}} / \mathrm{F}_{\mathrm{M}}\right)$ vs. $\left(A P_{X}-\mathrm{IP}\right)$	-0.52	0.30	-0.4 (.2)	1.4 (.2)
$\log \left(F_{H} / 1-F_{M}\right)$ vs. $\left(A P_{H}-I P\right)$	-0.89	0.14	-0.9 (.1)	$0.3(.1)$
$\log \left(F_{X} / 1-F_{M}\right)$ vs. $\left(A P_{X}-I P\right)$	-0.96	0.13	-0.9 (.1)	0.1 (.1)
$\log \left(F_{X} / \mathrm{F}_{H}\right)$ vs. $\left.A P_{X}-A P_{H}\right)$	-0.98	0.14	-1.06 (.06)	-0.11(.04)

a $F_{M}=$ iractional intensity oi $M^{ \pm}$;
$\mathrm{F}_{\mathrm{X}}=$ iractional intensity of $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$;
$\mathrm{F}_{\mathrm{H}}=$ fractional intensity of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$.
b

$$
\begin{aligned}
& I P=\text { ionization potential; } \\
& A P_{X}=\text { appearance potential of } \mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+} ; \\
& A \mathrm{P}_{\mathrm{H}}=\text { appearance potential of } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+} .
\end{aligned}
$$

c r correlation coefficient.
a

```
    e = standard deviation.
```


DISCUSSION

6.1 GENERAE DESCRIPTION OE MASS SPECTRA (TabIE 3)

The fragmentation patterns (Scheme 2) of the monosubstituted benzils studied in this work were generally straightforward. The primary fragmentations of the molecule-ion occurred by scission of the central carbon-carbon bond to give the substituted and unsubstituted benzoyl ions. Weak normal metastable ions corresponding to the more favourable of these decompositions were observed for all the compounds. The benzoyl ions decomposed by losing $C O$ to form the substituted and unsubstituted phenyl ions, $\mathrm{XC}_{6} \mathrm{H}_{4}{ }^{+}$and $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}$; these decompositions were always accompanied by intense metastable ions. Further decomposition of the unsubstituted phenyl ions involved the loss of $\mathrm{C}_{2} \mathrm{H}_{2}$ to give $\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}(\mathrm{m} / \mathrm{e} 51)$ - a process which is observed quite generally for aromatic compounds. However the substituted phenyl ions often decomposed by different pathways, usually involving the loss of part, or all, of the substituent. For example when the substituent (X) was a halogen or cyano group, HX was lost to give the ion $\mathrm{C}_{6} \mathrm{H}^{+}(m / e=75)$. Normal metastable ions, often very weak, were observed for nearly all of these tertiary decompositions. Some of the spectra warrant further comment, and these are discussed below.

For m-formylbenzil (j), the structure of the ion ($m / e 105$) formed from the m-formylbenzoyl ion (m / e 133) by loss of co is not known. It is represented by the m-formylphenyl structure
(by analogy with the other benzils), but may in fact have the benzoyl ion structure. The two possibilities cannot be dism tinguished with the information available.

In m-cyanobenzil (k), a weak metastable ion is observed for the decomposition

$$
\begin{array}{cc}
m-\mathrm{CHC}_{6} \mathrm{HA}_{4}^{+} \frac{*}{25.5}>\mathrm{C}_{4} \mathrm{H}_{3}^{+} \\
m / e ~ & \\
m / e 2 & m / e 51
\end{array}
$$

This fragmentation corresponds to the loss of cyanoacetylene, and competes with the loss of HCN which gives a ten-fold stronger normal metastable ion (m* 55.1). Normal metastable ions corresponding to the loss of a substituted acetylene fragment from the substituted phenyl ions were not observed for the other benzils, so this fragmentation may be specific for m-cyanobenzil. A study of the defocussed metastable ions for the formation of the $\mathrm{C}_{4} \mathrm{H}_{3}^{+}$ion ($\mathrm{m} / \mathrm{e} 5 \mathrm{I}$) would be required to confirm this.

The $m-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$ion (m / e 135) formed in the mass spectrum of m-methoxybenzil (h), decomposes by two routes. The major one corresponds to the usual loss of co by a direct cleavage reaction to give $m-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}{ }^{+}\left(\mathrm{m} / \mathrm{e} 107, \mathrm{~m}^{*} 84.8\right)$. The competing decomposition, which is much less favourable, gives the ionradical $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{+}(\mathrm{m} / \mathrm{e} 92, \mathrm{~m} * 62.7)$, and possibly occurs by the consecutive loss of $\mathrm{CH}_{3}{ }^{\circ}$ and CO . However, the intemediate ion in this pathway ($m-\mathrm{OC}_{6} \mathrm{FH}_{4} \mathrm{CO}^{+\mathrm{t}}, \mathrm{m} / e$ 120) is not observed, and decomposition may occux by rearrangement loss of an acetyl radical. Such a rearrangement is more likely to give rise to the observed weak metastable ion in competition with the more favourable direct cleavage reaction ${ }^{26}$. The ion-radical $C_{6}{ }_{4}{ }^{0}$. decompases further by the expulsion of Co to give $\mathrm{C}_{5} \mathrm{H}_{4}{ }^{\text {t }}$ (m/e

64, m* 44.5); a similar loss of $C 0$ from phenoxy ions is observed in substituted anisoles ${ }^{108}$.

$$
\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}^{+} \xrightarrow{-\mathrm{CH}_{3}} \mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{O}^{+} \xrightarrow{-\mathrm{CO}} \mathrm{XC}_{5} \mathrm{H}_{4}^{+}
$$

The $m^{-C H} \mathrm{OC}_{6} \mathrm{H}_{4}^{+}$ion (m / e 107) , formed from the m methoxybenzoyl ion (m / e 135), loses CH_{2} O to give $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}\left(\mathrm{m} / e 77, \mathrm{~m}^{*} 55.4\right.$) : this rearrangement reaction is characteristic of methoxy-substituted aromatic compounds 60,108 .
$m-T r i f l u o r o m e t h y l b e n z i l(1)$ loses a fluorine atom from the molecule-ion to give the ion $m / e 259$, as observed in other trifluoromethyl-substituted compounds ${ }^{109}$. It is of minor importance compared to the usual decompositions of the benzil molecule-ions. The m-trifluoromethylphenyl ion ($m / e \quad 145$) shows an unusual loss of $\mathrm{C}_{4} \mathrm{H}_{2}$ to form $\mathrm{C}_{3} \mathrm{H}_{2}{ }^{\mathrm{F}} 3^{+}(\mathrm{m} / e 95, \mathrm{~m}$ * 62.3), which decomposes further by loss of HF to $\mathrm{give} \mathrm{C}_{3} \mathrm{HF}_{2}^{+}$(m/e75, m*59.2).
m-Nitrobenzil (m) was the only compound to give important primary or secondary fragmentations which differed from the usual fragmentations for the other benzils. These unusual decompositions can only be explained by assuming that they are controlled by the nitro group rather than the carbonyl group(s). The m-nitrobenzoyl ion (m / e 150) loses the NO_{2}. radical to give the ion-radical $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}\left(\mathrm{m} / \mathrm{e} 104, \mathrm{~m}^{*} 72.1\right)$, rather than expelling $C O$ as do the other substituted benzoyl ions. This behaviour has been observed for m-nitrobenzoyl ions generated From other compounds ${ }^{110}$, and is readily understandable since the activation energy for the formation of the unstable $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}{ }^{+}$ion would be expected to be much higher than that for the formation of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}{ }^{+}$. In agreement with previous
observations ${ }^{110}$, decomposition of $\mathrm{maNO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$by rearrangement loss of NO to give $m-\mathrm{OC}_{6} \mathrm{~F}_{2} \mathrm{CO}^{\text {t }}(\mathrm{m} / \mathrm{e}$ 120) is negligible. The ion-radical $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$decomposes by losing CO to give $\mathrm{C}_{6} \mathrm{H}_{4}$ t. ($\mathrm{m} / \mathrm{e} 76$, $\mathrm{m}^{*} 55.6$), which then Ioses $\mathrm{C}_{2} \mathrm{H}_{2}$ to form $\mathrm{C}_{4} \mathrm{H}_{2}{ }^{\dagger}(\mathrm{m} / \mathrm{e}$ 50. m^{*} 32.9). A more unusual decomposition of the m-nitrobenzil molecuie-ion involves the formation of the m-nitrosobenzoyl ion, $m-\operatorname{NOC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}(\mathrm{m} / \mathrm{e}$ 134). Since its appearance potential is lower than that for the m-nitrobenzoyl ion (Table $7(\mathrm{~m})$), it cannot be formed by the loss of an oxygen atom from $m / e 150$ (at least at its threshold energy). It is probably formed by a rearrangement process resulting in the loss of the benzoyloxy radical $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}{ }^{\circ}\right)$ from the molecule-ion. The $m-\mathrm{NOC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$ion loses NO to give $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}\left(\mathrm{m} / \mathrm{e}\right.$ l04, $\mathrm{m}^{*} 80.7$). Although these proposed fragmentation schemes are consistent with all the available information, the lack of defocussed metastable ion data leaves the possibility of alternative pathways open to question. A metastable scan device was constructed in this department but the results obtained in this and other work so far were not reliable enough to be useful.

Scheme 2

(a) Benzil:

(b) m-Fluorobenzil:

3 (c) p-Fluorobenzil:

Scheme 2

A (d) m-Chlorobenzil:

5 (e) m-Bromobenzil:

6 (f) p-Bromobenzil

7 (g) m-Methylbenzil

9 (i) p-Phenylbenzil:

lo (j) m-Formylbenzil:

Scheme 2

U(k) m-Cyanobenzil:

(1) m-Trifluoromethylbenzil:

B (m) m-iNitrobenzil:

6. 2 INTERPRETATTON OF ENERGY AND INTENSTRY DATA

The behaviour of the monosubstituted benzils (see section 6.1) is ideally suited to a detailed investigation of substituent effects in mass spectra. The molecule-ions decompose by only two well-defined pathways to give the substituted and unsubstituted benzoyl ions (except for m-nitrobenzil which undergoes a competing rearrangement decomposition). This lack of alternative competing decompositions of the molecule-ions removes many of the complications which have interfered with the interpretation of other work on substituent effects $9,26,111$. Secondary decompositions of the primary fragment ions do not become significant in the benzils until energies at least 5 eV above the ionization potential are reached; they occur by the same loss of co for all the benzoyl ions (except for $m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$and $m-\mathrm{NOC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$). Hence at low voltages the ion intensities reflect solely the effects of the substituents on the competitive formation of the substituted and unsubstituted primary fragment ions. This very simple situation should allow definitive conclusions to be reached about the way in which substituents influence mass spectral reactions.

A number of approaches have been used to interpret substituent effects on ion intensities, ionization potentials, and appeaxance potentials $6-8,61-63,111-127$. In this section the results of this study are used to examine these treatments; which include the correlations of substituent constants (σ, σ^{+}) with: ionization potentials (IP), appearance potentials of the primary fragment ions $\left(A P_{X}, A P_{H}\right)$, energy parameters $\left(A P_{X}-I P_{,} A P_{H}-I P, A P_{X}-A P_{H}\right)$, and the loganithms of the intensity
$\operatorname{ratios}\left(\mathrm{F}_{\mathrm{X}} / \mathrm{F}_{\mathrm{M}} ; \mathrm{F}_{\mathrm{H}} / \mathrm{F}_{\mathrm{M}} 61 ; \mathrm{F}_{\mathrm{X}} / 1-\mathrm{F}_{\mathrm{M}} ; \mathrm{F}_{\mathrm{H}} / 1-\mathrm{F}_{\mathrm{M}}^{7} ; \mathrm{F}_{\mathrm{X}} / \mathrm{F}_{\mathrm{H}}^{116}\right)$. An alternative approach involving the relationship between relative ion intensities and energy parameters $60,63,68,125,131$ is then examined for the same logarithmic intensity ratios. 6.2.1 Correlation of Ionization and Appearance Potentials With Substituent Constants

The ionization potentials of the benzils are not strongly affected by the substituents used in this study; except for the p-phenyl and m-methoxy derivatives, the $I P$ values lie within a range of $0.3 \mathrm{eV}\left(m-\mathrm{CH}_{3} \rightarrow m-\mathrm{NO}_{2}\right)$. This range is smaller than that observed for other similarly substituted aromatic compounds (e.9. 0.6-0.7 ev for acetophenones 7,115 and phenyl benzyl ethers $\left.{ }^{63}, m-\mathrm{CH}_{3} \rightarrow m-\mathrm{NO}_{2}\right)$, suggesting that the benzil molecule-ions are stabilized primarily by the α-dicarbonyl group with the ring substituents having a smaller influence than usual. The correlation of the fonization potentials with σ or σ^{+}is poor (Eig. 18; Table $10(a)$). A similar lack of correlation for meta-substituted aromatic compounds was observed by Pignataro et al. 115 , who found that the ionization potentials of metorsubstituted acetophenones and toluenes gave satiscactory linear correlations with $\sigma_{p}{ }^{+}$, whereas the correlations with $\sigma_{m}{ }^{+}$were widely scattered. They also noted that the IP values for the para and meta-isomers were nearly equal and attributed this lack of a meta-para orientation effect to an ionization mechanism involving the loss of a melectron from the aromatic ring (rather than a non-bonding electron from the carbonyl group, for example). A sufficient number of para-substituted benzils have not been studied in this work to make a similar comparison between the

Fig. 13. IP versus σ^{*}

meta- and para-isomers, however the correlation of IP with $\sigma_{p}{ }^{+}$ $(x=0.75, e=0.15)$ for the benzils is not significantly better than that observed with $\sigma^{+}(r=0.73, e=0.16)$. The argument that the lack of a meta-para orientation effect is due to ionization of an electron from a molecular orbital of the ring π-system requires that this orbital be symmetrical with respect to the meta and para ring positions. This is unlikely to be true, particularly if the delocalized π-system extends over the carbonyl group adjacent to the (substituted) ring, since the symmetry of the meta and para positions differ with respect to the carbonyl group.

No substituent effect is observed on the appearance potential ($A P_{H}$) of the unsubstituted benzoyl ion (Fig. 19; Table $10(b)$): $A P_{H}$ has an almost constant value of 9.86 (e.s.d. $0.06) \mathrm{eV}$. The same behaviour was observed for the appearance potential of the benzyl ion in a series of monosubstituted phenyl benzyl ethers ${ }^{63}$ and bibenzyls ${ }^{8}$, but only for those bibenzyls in which the formation of the unsubstituted benzyl ion was favoured over the competitive formation of the substituted benzyl ion. This distinction between the results for the bibenzyls and the benzils is believed to be due only to the lack of substituents with large negative σ^{+}values (e.g. $p-\mathrm{NH}_{2}, p-\mathrm{CH}_{3} \mathrm{O}$) in the series of benzils which were studied. Further comment about the likely effect this will have on the observed correlations is made in the next section (6.2.2). When the unsubstituted benzyl ion is the less favoured primary fragment ion in the bibenzyls ${ }^{8}$, its appearance potential is much higher (about $2-4 \mathrm{eV}$) than in the opposite case. This is believed to be due to the competitive

shift effect, and this aiso is discussed in section 6.2 .2
after further consideration of the energy data for the benzils.
In contrast to the lack of variation in $A P_{H}$ for the benzils, there is a marked variation in the appearance potential ($A P_{X}$) of the substituted benzoyl ion with change in substituent (Fig. 20; Table 9(c)); although the corcelation between $A P_{k}$ and σ^{+}is fair $(~ I ~=0.93, ~ e=0.26)$, thexe is considexable scatter about the regression ine. A similar, but even larger, variation with change in substituent was observed for the appearance potentials of the substituted benzyl ions from bibenzyls ${ }^{8}$ (e.g. a difference of about 4 ev from $p-F$ to $m-C N$. The results for the benzils cleaxly demonstrate that chese substituents exert theix major effect on the appearance potential of the substituted benzoyl ion, rather than the unsubstituted benzoyl ion or the molecule-ion. However, the apparently ambiguous results for the bibenzyl series indicate that further consideration of this energy data is necessary. This is done in the next section, where the energy parameters obtained from the differences between the appearance and ionization potentials are discussed.

6.2.2 Correlations of Energy Parameters with Substituent

 ConstantsThe difference between the appearance potentiat of a primary fragment ion and the ionization potential (Ap-IP) has been taken as a measure of the activation energy for the corsesponding primary decomposition of the molecule-ion 19 . This approximation ignores the contributions to the appeaxance potential of the kinetic and competitive shift effects (see section $2.2 .3(i 1 i)$, as well as any ercess energy requited in the decomposition process ${ }^{26}$, but has been used $19-125$ in the
absence of better measurements of activation energies.
The effect of substituents on these "activation energies". $\Delta E_{H}\left(=A P_{H}-I P\right)$ and $\Delta E_{X}\left(=A P_{X}-I P\right)$, for the formation of the unsubstituted and substituted benzoyl ions are shown in Figs 21 and 22 respectively. The fair correlation observed between ΔE_{X} and σ^{+}(or σ) with a positive slope (Table lo(e)) contrasts directly with the poor correlation observed for ΔE_{H} which has a small negative slope (Table lo(d)). These results for the benzils are opposite to those expected by Einolf and Munson for the similax benzophenone series ${ }^{117}$. They argued by analogy with the appearance potential data for a series of substituted acetophenones ${ }^{7}$, where it was found that $\mathrm{AP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}\right)-\operatorname{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{3}\right)$ was approximately constanc for most substituents. Einolf and Munson therefore expected that AP-IP would show only a small variation with change in substituent for the formation of the substituted benzoyl ion in the benzophenone series, but a large variation for the unsubstituted benzoyl ion, with Ap-IP decreasing with increasing σ^{\dagger}. However no appearance potential data were reported, and their arguments ignore the competitive shift effect.

A recent study of a series of unsubstituted bibenzyls ${ }^{8}$ can be usefully compared with the present results for the closely similar benzils, and $\operatorname{Eig} .23(\mathrm{a}, \mathrm{b})$ shows plots of $\Delta \mathrm{E}_{\mathrm{H}}$ and ΔE_{X}^{\prime} vexsus σ^{+}for the formation of the unsubstituted and substituted benzyl ions respectively from monosubstituted bibenzyls (using IP and AP data xeported by Mchafferty ${ }^{\circ}$). The most striking feature of these plots is the opposite effect of the substituents on ΔE_{H}^{\prime} compared with ΔE_{X}^{\prime}; where ΔE_{H}^{\prime} is almost constant with change in substituent $\left(\sigma^{+}>0\right), \Delta E_{X}^{\prime}$ varies

F1g: 21. $A P_{H}-I P$ versus σ^{+}.

Fig. 22. $A P X^{-I P}$ versus σ^{+}.

Fig. 23(a) $A F^{\prime}-I P^{\prime}$ versus σ^{t} for Bibenzyls.

Ple. 23(b). AP X_{X}^{\prime} IP versus $\sigma^{+\quad}$ for Bibenzyls.

markedy. The reverse is true when $\sigma^{+}<0$. Furthemore, the value of $\triangle E$ for the more favourable primary decomposition of each substituted bibenzyl molecule-ion is approximately constant (about 1.5 eV). These observations are confirmed by the results for the benzils. Comparison of Fig. 21 and 22 shows that ΔE for the more favourable primary decomposition of the substituted benzils has an almost constant value of 0.65 eV. For most of the substituents used in this work, this decomposition corresponds to the formation of the unsubstituted benzoyl ion, i.e. $\Delta E_{H}<\Delta E_{X}$ (Table 9). However $\Delta E_{X}<\Delta E_{H}$ for the p-phenyl, m-methoxy and m-methyl substituents, and in these cases ΔE_{X} is also about 0.65 eV . Hence the apparent correlation between $\Delta \mathrm{E}_{\mathrm{X}}$ and $\sigma^{+}(\sigma)$ probably reflects only the 1imited range of σ^{+}values covered by these substituents. If substituents with large negative σ^{+}values were available, the plot of ΔE_{X} against σ^{+}would probably show two distinct regions - a line with zero slope for $\sigma^{+}<0$ joining a curve of positive slope for $\sigma^{+}>0$ (c.f. Figs 22 and $23(b)$). Conversely the plot of ΔE_{H} versus σ^{+}would show a line of zero slope for $\sigma^{+}>0$ joining a curve of negative slope for $\sigma^{+}<0$ (c.E. Figs 21 and 23(a)).

The energy parameter $A P_{X}-A P_{H}$, which is equivalent to $\Delta \mathrm{E}_{\mathrm{X}}-\Delta \mathrm{E}_{\mathrm{H}}$, might be expected to measure the difference in the activation energies for the formation of the substituted (E_{X}^{0}) and unsubstituted (E_{H}^{0}) benzoyl ions from the molecule-ions of the substituted benzils. A fair linear correlation $(x=0.92, e=0.27)$ is observed between $A P_{X}-A P_{\mathrm{H}}$ and $\sigma^{+}(\sigma)$ (Fig. 24; Table $10(f)$), however comparison with the corcelation of $A P_{X}$ with $\sigma^{+}(0)(F i g .20$; Table $10(c)$) indicates that the observed variation of $A P_{X}-A P_{H}$ with change in substituent is

entirely due to the variation in $A P_{X}$. If the differences in the activation energies $\left(\mathrm{E}_{\mathrm{X}}^{0}-\mathrm{E}_{\mathrm{H}}^{0}\right)$ for the competins primary cecompositions of the benzil or bibenzyl molecule-ions were in fact as large as $\Delta E_{X}-\Delta E_{X_{i}}$ (see Figs 2l-24), then the less favourabie primary fragment ion would not contribute significantly to the total ion current because its formation could not compete effectively with the more favourable decomposition for most of the substituents.

For this reason the unusual behaviour of $\Delta \mathrm{E}_{\mathrm{H}}$ and $\Delta \mathrm{E}_{\mathrm{X}}$ with change in substituent (Figs 21-23), and the large slope of the regression line of $A P_{X}-A P_{H}$ against $\sigma^{+}(F i g .24)$ are believed to be dependent on the large variation of the competitive shift effect with (small) differences in the activation energies, $\mathrm{E}_{\mathrm{X}}^{0}-\mathrm{E}_{\mathrm{H}}^{0}$. Suppose that the activation energy for the formation of the substituted primary fragment ion (E_{X}^{0}) actualiy followed a linear correlation with σ^{+}having a small positive slope, and that E_{H}^{0} was independent of substituent. Fox substituents with positive. σ^{+}values, E_{X}^{0} would then become progressively greater than E_{H}^{0} with increasing σ^{+}. The competitive shift effect on $A P_{X}$ would magnify this difference, so that ΔE_{X} would become increasingly greater than E_{X}^{0} with higher σ^{+}values. Hence a plot of $\Delta \mathrm{E}_{\mathrm{X}}$ against σ^{+}would show a linear portion of small positive slope for $\sigma^{+}<0$ (where the formation of the substituted ion would be the more favourable decomposition, so that $\Delta \mathrm{E}_{\mathrm{X}}$ would approximately parallel $\mathrm{E}_{\mathrm{X}}^{0}$), with the slope becoming increasingly greater for $\sigma^{+}>0$ (where the formation of the substituted ion would now be the less favourable decomposition, so that ΔE_{X} would become progressively greater than $\mathrm{E}_{\mathrm{X}}^{0}$). Similar arguments would apply to the correlation of ΔE_{H} with σ^{+}, though here the deviations would occur for
negative values of σ^{+}. Some of the factors contributing to the size of the competitive shift for these types of ion decompositions have been discussed by NcLafferty ${ }^{8}$ (see aiso section 2.2 .3 (iii)). The large size of the compecitive shift effect compared with the differences in the activation energies for competitive decompositions, as indicated by this and other worls $8,120,126,132$, makes it almost impossible to dexive activation energies from ionization and appearance potential measurements.

The competitive shift effect has genexally been ignored by other workers who have used $A P-I P$ as a measure of the activation energies for decompositions of molecule-ions 60,63,119125. Fair correlations of $A P-I P$ with σ or σ^{+}were obtained by Brown for apparently competing direct cleavage and rearrangement decompositions of substituted anisoles 121 and nitrobenzenes ${ }^{122}$. However his interpretation of these correlations; in terms of substituent effects on the activation energies For these competing decompositions is hazardous because of the unknown magnitude of the competitive shift which presumably affects the appearance potentials. The absolute values for the slopes of the regression lines of $A P-I P$ against σ^{+}were greater for the energetically less favourable competing primary decomposition in both the nitrobenzene 122 and phenyl benzyl ether 63,121 series. These results axe consistent with the conclusions of this work as being due, at least in pant, to the operation of the competitive shift effect. On the other hand, Brown observed ${ }^{121}$ that $A P-I P$ for the rearrangement reaction, $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}{ }^{+} \frac{-\mathrm{CH}_{2} \mathrm{O}}{-} \mathrm{XC}_{6} \mathrm{H}_{5}{ }^{\dagger}$, was always less than that for the apparently competing cleavage reaction,
$\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}{ }^{+}-\frac{-\mathrm{CH}_{3}}{} \rightarrow \mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{O}^{+}$, yet the slope of the regression line of AP-IP against σ^{+}was greater for the energetically more Favourable rearrangement process $(+0.62)$ than for the direct cleavage process (+0.45). Such a result would not have been expected if the competitive shift effect were operating, and suggests that these appaxently conpeting decompositions of the anisole molecule-ions may be occurring from separate electronic states.

Neglecting excess enexgy tems, the activation energies for the competing primary decompositions of the benzils are given by the respective bond dissociation energies of the molecule-ions ${ }^{68}$ (see section $2.3 .2(i i)$),
$\mathrm{E}_{\mathrm{H}}^{0}=\operatorname{IP}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{\circ}\right)-\operatorname{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{COCOC}_{6} \mathrm{H}_{5}\right)+\mathrm{D}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}-\mathrm{COC}_{6} \mathrm{H}_{5}\right)$
$E_{X}^{O}=\operatorname{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{\circ}\right)-\operatorname{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{COCOC}_{6} \mathrm{H}_{5}\right)+\mathrm{D}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}-\mathrm{COC}_{6} \mathrm{H}_{5}\right)$

Using this approximation the differences in these activation energies are given simply by the differences in the ionization potentials of the substituted benzoyl radicals,

$$
\begin{equation*}
E_{X}^{0}-E_{H}^{0}=\operatorname{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{\circ}\right)-\operatorname{IP}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{\circ}\right) \tag{33}
\end{equation*}
$$

Unfortunately values are not available for these ionization potentials, so that this measure of the activation energy differences due to the substituents cannot be compared with that using $A P_{X}-A P_{E}$ to gain an indication of the size of the competitive shift effect on the appeaxance potentials. However, such data has been obtained for some substituted benzyl radicals and provides an intexesting compaxison with the analogous data for the bibenzyls ${ }^{8}$; $\operatorname{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{\circ}\right)$ gives a
reasonable lineax comelation with σ^{+}, with a slope of about $3.2 \mathrm{ev}^{127}$. The large errors in the appearance potentials $A P_{X}{ }^{\prime}, A P_{X}$) of some of the (substituted) benzyl ions formed from the bibenzyls make it impossible to accurately determine the slope of the regression line of $A P_{X}{ }^{\prime}-A P_{H}{ }^{\prime}$ against σ^{+}, but it is about five times greater than that for $I P\left(X_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{\circ}\right)$. This result gives some idea of the size of the competitive shift to be expected for these ion decompositions - it is much larger than the corresponding differences in the activation energies. The same data also shows how $\mathrm{E}_{\mathrm{X}}^{0}$ and $\mathrm{E}_{\mathrm{H}}^{0}$ are expected to vary with change in the substituent for symmetrical systems like the bibenzyls and berzils. Referring to equations $32(\mathrm{a}, \mathrm{b})$, the activation energies will be determined mainly by the differences in the ionization potential terms, since the bond strength term is not expected to vary much with change in the substituent ${ }^{128}$. E_{H}^{0} will therefore decrease slowiy with increasing σ^{+}(i.e. more electron-withdrawing substituents), due solely to the effect of the substituent on the molecular Sonization potential. On the other hand the variation of E_{X}^{0} with substituent will be determined by the differences between the ionization potentials of the substituted radical and molecule. For the substituted benzyl radicals and bibenzyls. $\operatorname{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{\circ}\right.$) increases more rapidly with 0^{+}(slope $\approx 1.2 \mathrm{eV}$) than does $\operatorname{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ (slope $\approx 0.5 \mathrm{eV}$), so that $\mathrm{E}_{\mathrm{X}}^{0}$ increases with increasing σ^{+}and does so more rapidiy (slope 0.7 eV) than $\mathrm{E}_{\mathrm{H}}^{0}$ decreases (slope $\approx-0.5 \mathrm{eV}$). These conclusions conflict with those of Einolf and Munson 117 who expected that $\mathrm{E}_{\mathrm{X}}^{0}$ would show a smaller variation with change in substituent than $\mathrm{E}_{\mathrm{H}}^{0}$, because $\mathrm{E}_{\mathrm{X}}^{0}$ involved the difference between two terms
which varied in the same direction. They apparently did not recognize how large this difference might be compared with the generally small variation in the molecular ionization potentials. It is expected that the activation energies in the benzil series will follow the same trends as observed for the bibenzyls, because the substituent effect on the ionization potentials of the benzils is considerably smaller than that observed for the bibenzyls, causing the variation of $\mathrm{E}_{\mathrm{H}}^{0}$ with change in substituent to be correspondingly smaller. For the same reason the variation of $\mathrm{E}_{\mathrm{X}}^{0}$ with change in substituent should be similar to, or laxger than, that observed in the bibenzyl series, unless the ring substituents happen to have a very much smailer effect on $\operatorname{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}{ }^{\prime}\right)$ compared with $\mathrm{IP}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{\circ}\right)$ 。
6.2.3 Variation of Fractional Ion Intensities with Energy

The fractional ion intensities (F) of the major ions in the mass spectra of the benzils are shown (Fig. 17 (a-m); Table $5(a-m))$ as a function of the excess energy, $E(=V-I P$, see section 4.4). This quantity measures the amount of the ionizing energy which is available as internal energy in the molecule-ion to cause fragmentation; for each value of E there will be an internal energy distribution in the moleculeion extending from zero to about $\mathrm{E}+0.6 \mathrm{eV}$ (the extra 0.6 eV is due to the energy spread of the electron beam). This energy scale was used to correct for the differences in the ionization potentials, so that the intensity data for each compound are directly comparable at equal values of E.

Although this corcection from the true ionizing voltage (V) is not large for these compounds, because of the small
differences in their ionization potentials (Fig。 18; Table 8),
it might well be significant for other compounds and therefore affect correlations of ion intensities at low ionizing voltages.

The fractional intensity curves (Fig . $17(\mathrm{a}-\mathrm{m})$) clearly show the effect of the competition between the formation of the two primary fragment ions on their relative intensities. The more favourable primary fragment ion shows a very rapid increase in fractional intensity (with a corresponding decrease in the fractional intensity of the molecule-ion), which then graduaily falls off as the less favourable primary fragment ion competes more effectively at higher energies. This behaviour is expected from the quasi-equilibriun theory since the rate constants for similar competing decompositions become more comparable at higher energies (see section 2.3.2(ii)). The rate of increase of the fractional intensity of the less favourable primary fragment ion with increasing energy depends markedly on the differences in the threshold enexgies of the two ions. For substituents where this difference is small (e.g. $p-F(c), p-B r(f))$, these fractional intensity curves rise rapidly to a value which then increases very slowly with energy. On the other hand, for substituents with a larger difference between threshold energies of the two curves 10.9. $m-\mathrm{Br}$ (e), $m-\mathrm{CN}(k), m-\mathrm{CF}_{3}$ (1)), the rate of increase of the fractional intensity of the less favourable primary fragment ion with increasing energy is much slower and smoother. The points of inflection observed in some of these curves (e.g. m-formylbenzil (j)) are probably not significant; they may be artificially introduced by the linear extrapolation used to extend the measured IE curves to higher energies (see section 4.4). The measured fractional ion intensities were not
obtained at close enough energy intervals to decide whether the effect was real or artificial.

The fractional intensities of the molecule-ions drop very quiclely to a low value with the onset of the primary decompositions. The most notable exception to this behaviour occurs for m-methoxybenzil (h), where the fractional intensity of the molecule-ion (F_{M}) decreases quite slowly with increasing energy and has an unusually large value of about 12% at $\mathrm{E}=8.0 \mathrm{eV}$. Similax, though less maxked, behaviour is shown by m-methylbenzil (g) and p-phenylbenzil (i), and this may reflect an increased stability towards decomposition for these molecule-ions. Howe (ref. 59, p.67) has suggested that the overall effect in the majority of cases is for electrondonating substituents to increase the difference between the ionization potential and the lowest (fragment ion) appearance potential. This generalization was based on IP and AP data for the energetically most favourable decompositions of acetophenones 7,113 , methyl benzoates ${ }^{60}$, phenyl benzyl ethers ${ }^{63}$ and methyl butyrates ${ }^{111}$. The quantity $A P-I P$, for the lowest appearance potential $\left(A_{\mathrm{min}}\right)$, is closely related to the fraction of molecule-jons with insufficient energy to decompose (i.e. "sub-decomposition energy" ions) given by $\mathcal{F}_{\mathrm{M}} A_{\min } \mathrm{mp}^{-I P}$ is expected to be largest for those molecule-ions having the greatest value of F_{M} in a series of similar compounds $8,60,63$. However, in the benzil (and bibenzyl) series, $A P_{m i n}-I P$ is practically constant (see Figs 21-23), whereas the fractional intensities of the molecule-ions do vary significantiy (as noted above). This suggests that complicating effects due to changes in the internal energy distributions of the moleculewions with different substituents ${ }^{8,124}$ may be operating,
and discernabie, in these cases: similar conclusions have been reached from results for other compounds containing meta electron-donating substituents ($e .9, m-0 C H_{3}, m-O H$, and $m-\mathrm{NH}_{2}$) 60,63 (see also section 6.2.5).

The fractional intensity curves for the secondary fragment ions are also shown in order to indicate the excess energies at which decompositions of the primary fragment ions start (usually about $E=6 \mathrm{eV}$). For the range of energies considered in this work they make only a small contribution to the total ion intensity, and their effect on the correlations of the primary fragrent ion and molecule-ion intensities can be ignored.

6.2.4 Correlations of Logarithmic Ion Intensity Ratios with Substituent Constants

The various logarithmic intensity ratios used in this section were calculated from the fractional ion intensities (Table $5(a-m)$), and are given as a function of the excess energy (E) and the corrected ionizing voltage (V) in fable 6 $(a-m)$. The asymptotic trend of these ratios towards apparently constant values with increasing energy is easily seen in these tables; theix values at the higher enexgies le.g. $\mathrm{V}=20.0 \mathrm{eV}$) may be compared with the corresponding values calculated from the 70 eV spectra (Table $3(a-m)$) and presented in Table 7. Such comparison shows that the advent of further decompositions of the primary fragment ions at higher energies causes the ratios at 70 eV to differ significantly from those at 20 ev (for example) in many cases. No consistent trend in the differences between the ratios at high and Iow voltages is apparent; this is expected in view of the many and varied decomposition processes which may occur at high energies, and
which will often be quite different for different substituents.
Al1 the correlations of the logarithmic ion intensity ratios with various parameters were tested at several energies. Uniess they changed significantly with energy, che regression parameters are quoted for an excess energy $\mathrm{E}=6.0 \mathrm{eV}$ because at this energy secondary decompositions of the primary fragment ions axe still insignificant ($<1 \%$ of total ion intensity). Above this energy the change in the ratios with energy is fairly slow, so that the regression parameters do not change much at higher energies.
(i) $\log \left(E / F_{M}\right):$

The original pioneering worls of Bursey and MoLafferty ${ }^{61}$ tried to obtain mechanistic information on mass spectral reactions by studying the effects of substituents on ion intensities. They observed fair corselations between log $\left(E / F_{M}\right)$ and substituent constants $\left(\sigma, \sigma^{+}\right)$for some series of compounds ${ }^{6}$, where F is the fractional intensity of a primary fragment ion and F_{M} that of the molecule-ion (F / F_{M} is equivalent to their Z-values). In attempting to relate these correlations to substituent effects on the rate constants for the corresponding fragmentation reactions, they used a "steady-state" treatment of the kinetics of ion decompositions which is now well-recognized to have severe Imitations ${ }^{9,11,26,59,117,131 . ~ T h e s e ~ l i m i t a t i o n s ~ a t i s e . ~}$ because it takes inadequate account of the competition between the decompositions of the molecule-ion, and the further decomposition of the fragment ions - factors which are correctly dealt with by the quasi-equilibriun theory (see section 2.2.3). The correlation of $\log \left(\mathrm{E}_{\mathrm{H}} / \mathrm{F}_{\mathrm{M}}\right.$) with σ^{+}or σ (Table 11(a): Fig. 25) for the benzils is poor at all energies. On the other

hand, $\log \left(P_{X} / F_{M}\right)$ gives a fair correlation with both σ^{+}and σ (Table $11(b)$; $\operatorname{Fig} .26$) ($e . g . r=-0.94, e=0.18$ at $E=6.0$ ev) at low energies, but is much worse at 70 ev (Table $17(a)$). These results serve to stress the ambiguous nature of the correlations obtained using this treatment, and since the substituent effect on these $\log \left(F / F_{\mathbb{M}}\right)$ values can be influenced by a number of factors ${ }^{9,26}$ (see section 2.3.2) which cannot be separated, they are not discussed further. By the usual standards of solution chemistry these correlations would be considered poor. Critical workers have suggested that correlation coefficients of 0.99 (or greater) shoula be the requisite criterion for an acceptable correlation ${ }^{129}$. Hardly any of the published correlations of mass spectral data (including those obtained in this work) approach this high standard, emphasizing the need for caution in the interpretation of such results.
(ii) $\log \left(F / I-F_{M}\right):$

A theoretically more sound, quantitative formulation of the factors determining the effect of substituents on ion intensities ${ }^{9,26}$ has been given by Chin and Harrison ${ }^{7}$. This treatment is based on the quasi-equilibrium theory (see section 2.2.3), but includes many simplifications in order to make the kinetic analysis of the ion decompositions tractable. In particular the so-called rate constants which appear in their treatment should not be interpreted literally, since they actually represent very complicated average values. The expression obtained for the relative ion intensities in the general fragmentation scheme:

is given by

$$
\begin{equation*}
\frac{\left[A^{+}\right]}{\left[M_{0}{ }^{+}\right]}=\frac{k_{1}}{k_{t}}(I-f) f^{\prime} \tag{34}
\end{equation*}
$$

where F is the fraction of total molecule-ions, $\left[M_{0}{ }^{t}\right]$, with insufficient energy to decompose (i.e. $\left.f=\left[M^{+}\right] /\left[M_{0}^{+}\right]\right)$, f^{\prime} is the fraction of total A^{+}ions, $\left[A_{0}{ }^{+}\right]$, with insufficient energy to decompose further (i.e. $f^{\prime}=\left[A^{+}\right] /\left[A_{0}^{+}\right]$), and $k_{t}=k_{1}+k_{f}$. This equation may be conveniently written in terms of fractional ion intensities as

$$
\begin{equation*}
\frac{\mathrm{F}}{\mathrm{I}-\mathrm{F}_{\mathrm{M}}}=\frac{\mathrm{k}_{1}}{\mathrm{k}_{\mathrm{t}}} \mathrm{E} \tag{35}
\end{equation*}
$$

where F is the fractional intensity of a primaxy fragment ion, i.e. $\mathrm{F}=\left[\mathrm{A}^{+}\right] /\left[\mathrm{M}_{0}^{\dagger}\right]$, and $\mathrm{F}_{\mathrm{M}}=\left[\mathrm{M}^{++}\right] /\left[\mathrm{M}_{0}^{\dagger}\right]=\mathrm{E}$. Since further decomposition of the primary fragment ions is negligible at the low ionizing voltages used in this study, $f^{\prime}=1$, so that

$$
\log \left(E / l-E_{M}\right)=\log \left(k_{1} / k_{t}\right)
$$

Also, if competing decompositions of the molecule-ion are eliminated (e.g. at energies near the threshold of the most favourable primary fragmentation), $k_{t}=k_{1}$, so that $\log \left(P / \lambda-T_{M}\right)=0$.

The lack of correlation between $\log \cdot\left(T_{H} / 1-T_{M}\right)$ and $\sigma(\sigma)$ (Table $12(\mathrm{a})$; Fig. 27) appears to be due to this competition effect. For most of the substituents used in this work the

$\left.\log _{X} / 1-F_{M}\right)$

more favourable primary fragmentation gives the unsubstituted benzoyl ion, and $\log \left(\mathrm{F}_{\mathrm{H}} / \lambda-\mathrm{F}_{\mathrm{M}}\right)$ is therefore close to zeco for all except the p-phenyl, m-methyl and m-methoxy substituents. Again, the apparently fair correlation observed between $\log \left(F_{X} / 1-F_{M}\right)$ and $\sigma^{+}(\sigma)(T a b l e 12(b)$; Fig. $28(a))$ is almost certainly obtained only because of the limited range of $\sigma^{+}(\sigma)$ values covered by these substituents. If data were available for substituents with large negative o^{+}values (i.e. strongiy electron-releasing para-substituents), these would have $\log \left(F_{X} / l-F_{M}\right)$ values close to zero - as observed for the p-phenyl, m-methyl and m-methoxy substituents. This would cause the correlation of $\log \left(F_{X} / 1-F_{M}\right)$ with $\sigma^{+}(\sigma)$ to show two linear regions - one with zero slope for $\sigma^{+}<0$ and another with negative slope for $\sigma^{+}>0$ (as observedin Fig. 28). A similar effect would be expected to occur in the correlation of $\log \left(F_{H} / l-F_{M}\right)$ with $\sigma^{+}(\sigma)$, giving a region of zero slope for $\sigma^{+}>0$ (as observed in Fig. 27) joining a region of positive slope for $\sigma^{+}<0$. The degree of correlation observed at 70 eV is similar to that at low energies (Table 17(a); Fig. $28(b))$, indicating that this treatment gives a more reliable measure of substituent effects on fragnent ion intensities than does the previous "steady-state" treatnent ${ }^{61}$. However, these results also show that direct information on the rate of a specific fragmentation reaction cannot be obtained from such intensity ratios, because of the unavoidable effect of competing reactions. For this reason, it is suggested that the satisfactory linear correlation observed between $\log \left(E\left(\mathrm{CH}_{3} \mathrm{CO}^{+}\right) / 1-\mathrm{F}_{\mathrm{M}}\right)$ and σ for a sexies of substituted acetophenones ${ }^{7}$ was fortuitous, and obtained only because the $\mathrm{CH}_{3} \mathrm{CO}^{+}$ion was always less abundant than the $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}$ion
formed in competition with it. $\log \left(\mathrm{P}\left(\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{CO}^{+}\right) / 1-\mathrm{F}_{\mathrm{M}}\right)$ for the acetophenones showed practically no variation with change in substituent., further confirmation that this treatment has limited usefulness in analyzing the effects of substituents on ion intensities because it scales all the fragment ion intensities relative to their total intensity. Consequently the most abundant fragment ion generally has a value for $\mathrm{F} / 1-\mathrm{F}_{\mathrm{M}}$ near unity, and variations in its relative intensity for different substituents are masked. Similar conclusions about the limited applicability of this approach for obtaining mechanistic information have been reached by Brown ${ }^{121,122}$. (iii) $\log \left(F_{X} / F_{H}\right):$

The ratio of the fragment ion intensities for two competing decompositions of the same molecule-ion is expected to provide a measure of the relative rate constants for the two processes ${ }^{117}$ - although these "rate constants" again correspona to complicated average values. This intensity ratio should also show the effect of substituents on product ion stability alone - one of the major factors influencing activation energies for ion decompositions ${ }^{9}$ - when the competing decom positions involve the formation of substituted and unsubstituted. ions of the same type. This has been demonstrated for the monosubstituted bibenzyl ${ }^{116}$, benzophenone ${ }^{117}$ and $\mathbb{N}_{8} \mathbb{N}^{\text {B-diaryl- }}$ ethylenediamine ${ }^{118}$ series.

The degree of correlation of $\log \left(F_{X} / F_{H}\right)$ with $\sigma^{+}(\sigma)$ for the benzils (Table 13, Fig. 29(a)) is only Eair (e.g. $x \approx-0.92$, $e \approx 0.5)$, and remains about the same at all enexgies - even at 70 eV (Table 17(a); Fig. 29(b)). The major difference is the increasing magnitude of the negative slope of the regression

E1g. 29(a). $\log \left(\mathrm{F}_{\mathrm{X}} / \mathrm{F}_{\mathrm{H}}\right)$ versus $\sigma^{+}, \mathrm{E}=6.0$ ev.

Iine with decreasing energy (e.g. -2.4 at $70 \mathrm{eV}, \mathrm{C} . \mathrm{F}_{\mathrm{E}}-\mathrm{-5.8} \mathrm{at}$ $E=2.0 \mathrm{eV})$. These slopes may be compaced with those observed for the bibenzyls ${ }^{116}$ (-3.3 at 15.3 ev), benzophenones $^{117}(-1.5$ at 15 eV$)$, and $\mathbb{N}, \mathbb{N}^{9}$-diarylethylenediamines ${ }^{118}$ $(-1.0$ at 20 eV$)$. In view of the variation of these "p-values" with energy, and because the correlations are not of high precision, it would be unwise to draw any conclusions about the respective mechanisms of these mass spectral reactions from such comparisons. However, it may be noted that the substituent effects on the formation of the benzoyl ions from the benzils, as measured by this intensity ratio, are at least as large as those observed for any other mass spectral reactions. A significant improvement in the correlation of $\log \left(\mathrm{F}_{\mathrm{X}} / \mathrm{E}_{\mathrm{H}}\right)$ with substituent constants for the monosubstituted N, N-diarylethylenediamines was obtained when Taft's σ^{0} values ${ }^{130}$ were used $(~ x=-0.98, e=0.13$) instead of $\sigma(x=-0.92, e=0.28)$ or $\sigma^{+}(x=-0.87, e=0.35)^{118}$. Because very few para substituents were available in the . benzil series, a similar investigation was not attempted in this work.

Some of the deviations from the regression lines appear to be due to the or or σ^{+}values not correctly describing the effects of substituents on ion stabilities in mass spectral reactions. For example the m-methoxy substituent is observed to stabilize the benzoyl ion (relative to the hydrogen substituent), yet it has σ and σ^{+}values greater than zero denoting a destabilizing influence (e.g. Fig. 29). The same stabilizing effect of the m-methoxy substituent is observed in the $\mathbb{N}^{\prime} \mathbb{N}^{-d i a r y l e t h y l e n e d i m i n e ~ s e r i e s ~}{ }^{118}$, and in its effect
on the ionization potentials of various compounds $7,115,121,122$. Similarly the p-fiuoro substituent may exhibit a destabilizing effect (e.g. this work and ref. 118) or a slightly stabilizing influence ${ }^{8,117}$, leading to confusion as to the correct substituent constant to use $\left(\sigma(p-F)>0, \sigma^{+}(p-F)<0\right)$. Athough σ^{+}values are intuitively expected to be more suitable for mass spectral reactions (because they are derived from reactions which exhibit a similar strong electron demand 106,107 , they do not necessarily describe the effects of substituents in ion decompositions with the precision required to allow mechanistic conclusions to be drawn from such correlations. It is therefore pertinent to consider the correlations of ion intensity functions with alternative parameters which may more adequately descxibe the effects of substituents in mass spectral reactions. This is done in the next section.
6.2.5 Correlations of Logarithmic Ion Intensity Ratios with Energy Parameters

The importance of "subdecomposition energy" ions (i.e. ions possessing insufficient energy to decompose $11,26,59$) in determining the relative intensities of molecule-ions has been stressed by several workers $7-9 ; 60,63,111$. Howe and Williams recently suggested that $A P_{\min }{ }^{-I P}$ ($A P$ min is the lowest appearance potential for the fragment ions) would provide a measure of the fraction of such molecule-ions, assuming that the shapes of the internal energy distributions wexe similar for different molecule-ions 60,111 . Although this assumption is open to question ${ }^{8,124}$, they observed that $\log \left(\mathbb{F} / \mathbb{E}_{\mathrm{M}}\right)$ correlated to some extent with AP-IP for the formation of the major

Fig. 30. $\log \left(F_{H} / F_{H}\right)$ versus $\left(A P_{H}-I P\right) . E=6.00 \mathrm{~V}$

Fig. 31. $\log \left(F_{X} / F_{H}\right)$ versus $\left(A P_{X}-I P\right), E=6.0 \mathrm{eV}$.

Eragment ion from monosubstituted benzenes at low energies $(18 \mathrm{eV})^{60}$. A similar correlation has been observed for the loss of the substituent from ortho-substituted thioacetanilides ${ }^{125}$ both of these correlations show the same trend of decreasing $\log \left(E / F_{M}\right)$ with increasing $A P-I P$, but the standard deviations of the regression lines are high.

Similar results are obtained for the benzil series. The correlation of $\log \left(F_{H} / F_{M}\right)$ with $A P_{H}-I P(T a b l e 14(a)$; Fig. 30) is not good ($x=-0.86 ; e=0.40$) - most of the points are concentrated in a small region of the plot because of the lack of variation in $A P_{H}-I P$ for most of the substituted benzils (see section 6.2.2). On the other hand $\log \left(F_{X} / F_{M}\right)$ shows a reasonable correlation with $\mathrm{AP}_{X^{-I P}}$ ($r=-0.94, \mathrm{e}=0.19$) (Table l4(b); Fig. 31). It is noticeable that although $A P_{m i n}$-IP for the more favourable fragmentation remains fairly constant (about 0.6 eV), the corresponding values of $\log \left(E / F_{M}\right)$ vary significantly (by up to 0.5 log units). The reasons for this are not obvious but may reflect differences in the internal energy distributions of the subdecomposition energy ions, leading to unpredictable variations in the fractional intensities of the molecule-ions. These results indicate that the interpretation of such correlations in terms of simple smoothed energy distributions $60,111,131$ should be treated with caution particularly since the correlations are not very precise and become much worse at higher energies (see Tabie $17(b)$) - confirming that the relation of fragment ion to molecule-ion intensities is a very complicated one depending on many factors 59,60 .

The correlations of $\log \left(F_{H} / 1-F_{M}\right)$ with $A P_{H}-I P$ (Table 15(a); Fig. 32) and $\log \left(P_{X} / 1-F_{M}\right)$ with $A P_{X}-I P$ (Table $15(b)$; Pig. 33) are quite good ($x \approx-0.94, \mathrm{e} \approx 0.25$) and give almost identical regression lines, although the small spread of the points in $F i g{ }^{\prime}, 32$ requires that this be treated with caution. The meaning of these results is not obvious. The intensity ratio, $F / I-\mathrm{F}_{\mathrm{M}}$, measures the fraction of the decomposing molecule-ions which form a particular fragment ion, and it might intuitively be expected to be related to the activation energy for the particular fragmentation. However, it was earlier concluded (section 6.2.2) that the quantity AP-IP does not provide a reliable measure of these activation energies; because of the competitive shift effect which can drastically affect the appearance potentials of fragment ions. Some aspects of these correlations may be explained by the special features of the decompositions of the benzils (i.e. competitive formation of only two primary fragment ions). For the more favourable primary fragmentations, AP-IP is approximately constant (see section 6.2 .2) and $\log \left(F / 1-F_{M}\right)$ is also close to zero (see section 6.2 .4 (ii)), so these points are clustered around the same coordinates $(0.6,0.0)$ of Figs 32 and 33. Hence the similar regression lines observed in each case really reflect the differences between these quantities for the two competing fragmentations.

These considerations therefore suggest that interpretation of the correlation between $\log \left(\mathrm{F}_{\mathrm{X}} / \mathrm{F}_{\mathrm{H}}\right)$ and $\mathrm{AP} \mathrm{X}^{-A P_{\mathrm{Fi}}}$ (Table 16: Fig. 34(a)) might be more significant. Cextainly the agreement factors observed for this correlation ($r=-0.98$, $e=0.25$) are quite good, even at 70 eV (Table $17(\mathrm{~b})$; Fig. 34(b)), and are better than any of the other correlations examined in

$$
\log \left(F_{X} / F_{H}\right)
$$

$$
A P_{X}-A P_{H}
$$

Fig. $34(b) . \log \left(F_{X} / F_{H}\right)$ versus $\left(A F_{X}-A F_{H}\right), V=70.0 \in \mathbb{V}$

this work. The explanation of this result must lie in the fact that both these quantities depend largely on the relative stabilities of the two primary fragment ions. The effect of product ion stability on rate constants is reflected in $\log \left(F_{X} / F_{H}\right)^{116,117}$, and on the energetics of the competing decompositions of the same molecule-ion in $A P_{X}-A P_{\mathrm{F}}$. In view of the earlier conclusions about the probable large competitive shift effect on $A P_{X}-A P_{H}$ (section 6.2.2), it would be unwise to extend this argument and suggest that this correlation demonstrates especially the effect of the differences in the activation energies of the competing fragmentations on their relative intensities. Such an argument presumes that the . competitive shift effect on $A P_{X}-A P_{\mathrm{F}}$ is proportional to the activation energy difference. $\mathrm{E}_{\mathrm{X}}^{0}-\mathrm{E}_{\mathrm{H}}^{0}$; this is possible but as yet unproven.

Similar correlations between the relative intensities of fragment ions and their appearance potentiais have been observed by other workers 60,68 , although only in a qualitative Eashion, and not with the good precision obtained in this work. This is probably because the special features of the decompositions of the benzils eliminate a number of the other factors, besides ion stability, which can affect the relative intensities of fragment ions (see section 2.3.2). Harrison et al. ${ }^{68}$ note that the differences in the activation energies for competing primary fragmentations are determined by the differences in the ionization potentials of the corresponding free radicals (see equation (33), section 6.2.2). If the ionization potentials of the substituted benzoyl radicals were available, it would be interesting to compare the correlation of $\log \left(F_{X} / F_{H}\right)$ against $A P_{X}-A P_{H}$ with that against $I P\left(X_{6} H_{4} C O^{\circ}\right)$ -
$\operatorname{IP}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)=\mathbb{E}_{\mathrm{X}}^{0}-\mathrm{E}_{\mathrm{H}}^{0}$ (neglecting excess energy terms). This would show whether the variations in $\log \left(F_{X} / F_{H}\right)$ with change in substituent were in fact due to differences in the activation energies of the corresponding primary decompositions.

The view that $\log \left(F_{X} / F_{H}\right)$ is determined by the differences in the activation energies is supported by the observation that the absolute magnitude of the slope of the regression line of $\log \left(F_{X} / F_{H}\right)$ against $A P_{X}-A P_{H}$ increases with decreasing energy (Table 16). It changes smoothly from a constant value of $-1.6 \mathrm{eV}^{-1}$ at $\mathrm{E}=10.0-7.0 \mathrm{eV}$ to a value of $-2.6 \mathrm{eV}^{-1}$ at $E=2.0 \mathrm{eV}$. This behaviour is consistent with the increasing importance of the activation energy in determining the relative rate constants for ion decompositions, and hence the relative ion intensities, at low energies (see section 2.2.3).

6.3 CONCLUSION

This work clearly demonstrates that substituents have a strong influence on the mass spectra of the substituted benzils. The relative intensities of the substituted (P_{X}) and unsubstituted (F_{H}) benzoyl ions vary by more than a factor of 10^{4} with change in substituent. The substituents also have large effects on the energetics of the ion decompositions studied. The appearance potentials of the substituted benzoyl ions $\left(A P_{X}\right)$ differ by up to 2.5 eV , whereas those of the unsubstituted benzoyl ions ($A P_{\mathrm{F}}$) are almost constant. The variation in the ionization potentials with change in substituent is quite small.

The effects of substituents on both ion intensity and energy parameters can be described with reasonable success
using substituent constants (σ, σ^{+}) derived from reactions in solution. For example, fair linear corcelations of $\log \left(F_{X} / \mathbb{F}_{\mathrm{H}}\right)$ and $A P_{X}-A P_{H}$ with $\sigma^{+\quad(\sigma)}$ are obtained, and the signs of the slopes of the regression lines are those expected if the decompositions are controlied by the stabilities of the product ions. Thus F_{X} / F_{H} increases, and $A P_{X}-A P_{H}$ decreases, with increasing electron-donating ability of the substituent. However, even in the benzils, with their particularly simple mass spectral behaviour, these results do not give unambiguous information about the effects of substituents on the rate constants for the fragmentation reactions. The benzils were chosen for study because they have the special feature that the benzoyl ions are formed by competing decompositions of the same molecule-ion. This should mean that the major factors determining the benzoyl ion intensities are the rate constants for the competing decompositions, with other factors being less important. This advantage is still a limited one, since their relative intensities depend in a complicated way on the rate constants (averaged over the energy transfer function for the molecule-ion). It is therefore difficult to interpret the effects of substituents on $\mathrm{F}_{\mathrm{X}} / \mathrm{F}_{\mathrm{H}}$ in terms of specific changes in the activation energies and frequency factors for the competing reactions. A major disadvantage with this approach is that the differences in the activation energies cannot be determined from the differences in the appearance potentials $\left(A P_{X}-A P_{H}\right)$, because the appearance potentials are markediy dependent on the competitive shift. The correlation observed between $A P_{X}-A P_{I}$ and σ^{+}, for example, appears to be due almost entirely to the compotitive shift effect. However, the observed increase in the size of the
substituent effect on E_{X} / F_{H} with decreasing energy does suggest that the substituents are affecting the rate constants For the primary decompositions mainly by changing cheir activation energies.

It is now becoming clear that fuxther progress in this field will reguire a more rigorous approach based on a detailed analysis of ionization efficiency curves using the quasiequilibrium theory. To this end, time was spent during this stuay attempting to obtain reproducible second-dexivative ionization efficiency curves which could be compared with theoretically calculated breakdown curves (section 2.2.3). A few intense ions gave satisfactory second-derivative ionization efficiency curves, but in most cases the results were not usable because the signal-tomoise ratio of the ionization efficiency curves was too low. For this reason the work has not been described; the approach should be a useful one if better raw data can be obtained from the MS902. By simulating experimental breakdown curves obtained in this way, it should be possible to derive good estimates of activation energies and frequency factors for the ion decompositions. Another approach, which appears to be capable of providing important information about the dependence of ion decompositions on the internal energy of the moleculemion, is the determination of mass spectra using the charge-exchange technique ${ }^{133,134}$.

REPERENCES

1. A. Maccol1, "Modem Aspects of Mass Spectrometry" ed. R.I. Reed, Plenum Press, New York (1968), p.143.
2. A. Maccoll, "Mass Spectrometry", ed. R.I. Reed, Academic Press; London (1965), p.429.
3. L.P. Hammett, "Physical Organic Chemistry", McGraw-Hill, New York (1940), Ch.7.
4. C.D. Ritchie and W.F. Sager, Progr. in Phys. Org. Chem. 2. 323 (1964).
5. G.G. Smith and E.W. Kelley, Prog. in Phys. Org. Chem. 8, 75 (1971)。
6. M.M. Bursey, Org. Mass. Spectrom. 1, 31 (1968).
7. M.S. Chin and A.G. Harrison, Org. Mass Spectrom. 2, 1073 (1969).
8. , F.W. McLafferty et a1., J. Am. Chem. Soc. 92, 6867 (1970).
9. B.W. McLafferty, Chem. Commun. 956 (1968).
10. J.H. Beymon, "Mass Spectrometry: Applications to Organic Chemistry", Eisevier, Amsterdam (1960).
11. T.W. Bentley and R.A.W. Johnstone, Adiv. in Phys. Org. Chem. 8, 151 (1970).
12. P. Schulze and A.L. Burlingame, J. Chem. Phys. 49,4870 (1968).
13. W.A. Chupka, J. Chem. Phys. 30, 191 (1959).
14. J. H. Beynon and A.E. Fontaine, Z. Naturforsch. 22ar 334 (1967)。
15. J.A. Eipple and E.U. Condon. Phys. Rev. 68, 54 (1945).
16. J. H . Beynong Advances in Mass Spectrometry , ed. E. Kendrick, Institute of Petroleum, London, 4 , 123 (1968).
17. M. Banber and R.M.Elliott, l2th Anmual AsTM-El4

Conference on Mass Spectrometry, Pittsburgh, Pa., May (1968).
18. J. ${ }^{2}$. Coutant and F.W. Mchafferty, Int. J. Mass Spectrom. Ion Phys. 8, 323 (1972).
19. H.M. Rosenstock and M. Krauss, "Mass Spectrometry of Organic Ions", Ed. F.W. McLafferty, Academic Press, New York, (1963), p.1.
20. M. Krauss and V.H. Dibeler, ibid, p. 117 (1963).
21. M.E. Wacks, "Modern Aspects of Mass Spectrometry", ed. R.I. Reed, Plenum Press, New York (1968), p.323.
22. J.E. Collin, "Modern Aspects of Mass Spectrometry", ed. R.I. Reed, Plenum Press, New York (1968), p. 231.
23. A.I. Wahraftig, "Mass Spectrometry", ed. R.I. Reed. Academic Press, New York (1965), p.137.
24. F.W. McLafferty, "Topics in Mass Spectrometry"; ed. A.I. Burlingame, Wiley-Interscience, New York (1970), p.223.
25. A.G. Harrison, "Topics in Mass Spectrometry", ed. A.I. Burlingame, Wiley-Interscience, New York (1970), p.121.
26. R.G. Cooks, I. Howe and D.H. Williams, Org. Mass Spectrom. 2, 137 (1969)。
27. D.H. Williams, Advances in Mass Spectrometry, ed. A. Quayle, Institute of Petroleum, London, 5. 569 (1971).
28. R.S. Berry, J. Chem. Phys. 26, 714 (1957).
29. R.S. Berry, Rec. Chem. Progress 31, 9 (1970).
30. J.D. Morrison, J. Chem. Phys. 34, 578 (1961).
31. J. Jortner, S.A. Rice and R.M. Hochstrasser, Advances in Photochem. 7, 149 (1969).
32. H.M. Rosenstock, M.B. Wallenstein, A.L. Wahraftig, and H. Eyring, Proc. Natl. Acad. Sci. U.S. 38, 667 (1952):
33. H. M. Rosenstock, Advances in Mass Spectrometry, ed. E. Kendrick, Institute of Petroleum, London, 4, 523 (1968).
34. R.C. ToIman, "Principles of Statistical Mechanics", Oxford University Press, London (1938), pp.56, 345, 486.
35. N.B. Slater, "Theory of Unimolecular Reactions", Cornell University Press, New York (1959).
36. L.S. Kassel, "Kinetics of Homogeneous Gas Kinetios", Chemical Catalog Co. New York (1932).
37. R.A. Maxcus, J. Chem. Phys. 43, 2658 (1965).
38. R.A. Marcus and O.K. Rice, J. Phys. and Colloid Chem. 55, 894 (1951).
39. S. Glasstone, K.H. Laidler and H. Eyring, "The Theory of Rate Processes", McGraw-Hill, New York (1941).
40. F.H. Mies and M. Krauss, J. Chem. Phys. 45, 4455 (1966).
41. F.H. Mies, J. Chem. Phys. 51, 787 (1969).
42. R.D. Levine, J. Chem. Phys. 44, 2046 (1966).
43. W. Forst, Chem. Rev. 71, 339 (1971).
44. M. Wolfsberg, J. Chem. Phys. 36, 1072 (1962).
45. F.F. Newstubb, Int. J. Mass Spectrom. \& Ion Phys. 6, 217, 229 (1971).
46. W.A. Chupka, J. Chem. Phys. 30, 191 (1959).
47. C. Lifshitz and F.A. Long, J. Chem. Phys. 41, 2468 (1964).
48. E.P. Hills, J.H. Futrell and A.t. Wahraftig, J. Chem. Phys. 51. 5255 (1969)。
49. B. Steiner, C.F. Giese and M.G. Inghram, J. Chem. Phys. 34, 189 (1961).
50. F.H. Doman and J.D. Morrison, J. Chem. Phys. 34, 578, 1407 (1961).
51. S. Geltman, Phys. Rev. 102, 171 (1956).
52. J.D. Morrison, J. Chem. Phys. 21, 1767 (1953).
53. J.D. Morrison, J. Chem. Phys. 39, 200 (1963).
54. W.A. Chupka, J. Chem. Phys. 54, 1936 (1971).
55. M.L. Vestal, J. Chem, Phys. 43,1356 (1965).
56. B.S. Rabinovitch and D.W. Setsex, Advances in Photochem. 3. 1 (1964)。
57. D.L. Bunker and M.D. Pattengill, J. Chem. Phys. 48,772 (1968).
58. F.W. McLafferty, Anal. Chem. 31, 477 (1959).
59. I. Howe, Mass Spectrometry, The Chemical Society, 1, 31 (1971).
60.6 I. Howe and D.H. Williams, J. Am. Chem. Soc. 91, 7137 (1969).
61. M.M. Bursey and F.W. McLafferty, J. Am. Chem. Soc. 88, 529, 4484 (1966): 89, I (1967).
62. T.W. Bentley, R.A.W. Johnstone and D.W. Payling, J. Am. Chem. Soc. 91, 3978 (1969).
63. R.S. Ward, R.G. Cooks and D.H. Williams, J. Am. Chem. Soc. 91, 2727 (1968).
64. A.D. Baker, D.P. May and D.W. Turner, J. Chem. Soc. (B), 22 (1968).
65. H. Ehrhardt, F. Linder and T. Tekaat, Advances in Mass Spectrometry, ed. E. Rendrick, Institute of Petroleun, London, 4,705 (1968).
66. M.L. Vestal, J. Chem, Phys. 43, 1356 (1965).
67. M.B. Wallenstein and M. Krauss, J. Chem. Phys. 34, 929 (1961).
68. A.G. Harrison, C.D. Finney and J.A. Sherk, Org. Mass Spectrom. 5, 1313 (1971).
69. O.K. Rice, J. Phys. Chem. 65, 1588 (1961).
70. W.A. Chupka and M. Kaminsky, J. Chem. Phys. 35, 1991 (1965).
71. Handbook of Chemistry and Physics, 48th Ed. (1967).
72. J. Cason and H. Rapoport, "Laboratory Text in Organic Chemistry", 2nd Ed. (1962), p.415.
73. L. F. Fiesex, "Experiments in Organic Chemistry", 2nd Ed., P. 361 (1941).
74. S.S.Jenkins, J.Am. Chem. Soc. 55, 703 (1933).
75. R.R. Otter anả R.L. Shriner, J. Am. Chem. Soc. 73, 889 (1951)。
76.
A. Jart, Acta polytech. Scand., Ser. A 42, I (1965).
77. A.I. Voge1, "Practical Organic Chemistry", 3rd Ed. (1956), p.758.
78. D.E. Pearson, W.E. Stamper and B.R. Suthers, J. Org. Chem. 28. 3149 (1963).
79. L. Friedman and H. Shechter, J. Org. Chem. 26, 2522 (1961).
80. Chem. Abs. 6I, 9418 f (1964).
81. Organic Syntheses, Coll. Vol. 3, 627 (1955).
82. C.H. Dahi and K.G. Lewis, Austr. J. Chem. 18, 1307 (1965).
83. Beilstein's Handbuch der Organischen Chemie, EII37 (1942).
84. C.V. Ferris and E.E. Turner, J. Chem. Soc. 1149 (1920).
85. E.H. Corey and J.E. Schaefer, J. Am. Chem. Soc. 82, 928 (1960).
86. M.T. Clark, E.C. Kendley and O.K. Neville, J. Am. Chem. Soc. 77. 3283 (1955).
87. G.G. Smith and G.O. Larson, J. Am. Chem. SoC. 82, 104 (1960).
88. H.H.Hatt, A. Pilgrim and W.J. Hurran, J. Chem. Soc. 94 (1936).
89. A. Fischer, B.A. Grigor, J. Packer and J. Vaughan, J. Am.

Chem. Soc. 83, 4208 (1961).
90. F.D. Chattaway and E.A. Coulson, J. Chem. Soc. 2084 (1928).
91. T. Sigmond and R.S. Sigmond, A.E.I. 7th Users Confererce (1967), p. 31.
92.
93.
94.
95.
96.
97.
98. J.W. Warren, Nature 165,810 (1950).
99. R.E. Honig, J. Chem. Phys. 16, 105 (1948).
100. F.P. Lossing, A.W. Tickner and W.A. Bryce, J. Chem. Phys. 19, 1254 (1951).
101. V.H. Dibeler and R.M. Reese, J. Res. Natl. Bur. Stand. 54, 127 (1955).
102. W.C. Hamilton, "Statistics in Physical Science", Ronald Press, New York, (a) p.33, (b) p.42, (c) p.124, 150 (1964).
103. W.R. Busing and H.A. Levy, "ORGLS, A.General Fortran Least Squares Program", Oak Ridge National Laboratory U.S.A.E.C., ORNL-TM-271 (1962).
104. A. Savitzky and M.J. Golay, Anal. Chem. 36, 1627 (1964). 105. J.S. Rollet (Ed.), "Computing Methods in Crystallography", Pergamon Press (1965), p. 20.
106. H.C. Brown, J. Org. Chem. 23, 420 (1958).
107. H.C. Brown and Y. Okamoto, J. Am. Chem. Soc. 80, 4979 (1958)。
108. F.W. McIafferty and M.M. Bursey. J. Org. Chem. 33, 124 (1968).
109. J.I. Cottex, J. Chem. Soc. (B), 1162 (1967).
110. R.H. Shapiro and J.W. Serum, Oxg. Mass Spectrom. 2. 533 (1969).
111. 7 I. Howe and D.f. Williams, J. Am. Chem. Soc. 90, 5461 (1968).
112. G.F. Crable and G.L. Kearns, J. Phys. Chem. 66, 436 (1962).
113. A. Buchs, G.P. Rossetti and B.P. Susz, Helv. Chim. Acta 47. 1563 (1964).
114. A. Foffani, S. Pignataro, B. Cantone and F. Grasso, Z. Physik. Chem. (Exankfurt) 42, 221 (1964).
115. S. Pignataro, A, Foffani, G. Inorita and G. Distefano, Z. Phyzik. Chem, (Frankfurt) 49, 291 (1966).
116. M.M. Bursey and F.W. McLafferty, J. Am. Chem. Soc. 90 , 5299 (1968).
117.7 N. Einolf and E. Munson, Org. Mass Spectrom. 5, 397 (1971).
118. H. Giezendanner, M. Hesse and H. Schmid, Org. Mass Spectrom. 4.405 (1970).
119. R.A.W. Johnstone and D.W. Payling, Chem. Commun. 601 (1968).
120. P. Brown, Org. Mass Spectrom. 3, 639 (1970).
121. P. Brown, Org. Mass Spectrom. 4. 519 (1970).
122. P. Brown, Oxg. Mass Spectrom. 4. 533 (1970).
123.9 R.E. Shapiro, J. Turk and J.W. Serum, Org. Mass Spectrom. 3. 171 (1970).
124.20 J. Turk and R.Fi. Shapiro, Org. Mass Spectron. 6.189 (1972).
125.21 M.A. Baldwin and A.G. Loudon, Org. Mass Spectrom. 2, 549 (1969).
126. P. Brown, Org. Mass Spectrom. 3, 1175 (1970).
127. A.G. Harrison, P. Kebarle and F.P. Lossing, J. Am. Chem. Soc. 33, 777 (1961).
128. T.L. Cottrell, "The Strength of Chemical Bonds?, 2nd Ed., Butterworths, London (1958).
129. H.V. Bekkum, P.E. Verkade and B.M. Webster, Rec. Trav. Chim. (Pays-Bas) 78, 815 (1959).
130. R.W. Taft, J. Phys. Chem. 64, 1805 (1960).
131. R.P. Buck and M.M. Bursey, Org. Mass Spectrom. 3, 387 (1970).
132. R.D. Hickling and K.R. Jennings, Org. Mass Spectrom. 3, 1499 (1970).
133. J. Turk and R.F. Shapiro, Org. Mass Spectrom. 6, 189 (1972).
134. B. Andlauer and Ch. Ottinger, J. Chem. Phys. 55, 1471 (1971)。
135. A. Causer, "PLomAA Subroutines for the 1627 Plotter": Memo. University of Canterbury Computer Centre (1970).

APPENDIX A

COMPUTER PROGRAMS

Listings of the computer programs used extensively in this work are given below. They are written in the Fortran IV language, and were executed on an IBM System $360 / \mathrm{Model} 44$ computer. Plots were drawn by an IBM 1620 computer with a Calcomp $1627 \mathrm{X}-\mathrm{Y}$ plotter attachment, using the PLOTAA subroutine paclsage ${ }^{135}$.

SMOOTH

LINEAR

SUBROHTTME LIYEAR（NSTART，NL RHE IFAT，TFNPT）
SURPQOGRAM TC FIT A STRATGHT LTNE TD AN INTERVAL OF CATA QY LTAEA 1F4ST SOUARTS．

COMWR／LIVAR／CONST，SLOPE，ESOCUESOS．ESDFCORR
JTUBLE pRECISTON WW，WX，WY，SW，SX，SY，SXX，SYY，SXY，DX，DY，XI，YI
OBSERVFO DEPENDEMY VARTABLE（ORDTNATE）STOREO IN ARRAY VY： LGDGEMDENT VARTABLE（ABSCISSA）IN ARRAY XV WETGHTING FACTORS （IF USEU）IN ARRAY FW．

TAPUT PARAMETERS－
BSTART＝IL－I WHERE IL IS THE FYRST POTNT OF THE INTERVAL． ULIHE＝WUBRER OF POTMTS IN THE INTERVAL．
TFMT＝WEIGHT INOICATCR－ZERO IF UNITALEICHTS TO BE USED，
IFMPT＝ERROR INDICATGR－TMEERQRER OF GEGREES OF FREEDRM DUTPUT PARAMETERS－

```
        COQST = GNTERCEPT QF REGRESSION LINE. ESDC = E.S.D.
```


CORR = LINEAR CORRELATION COFFFICIENTIDF REGRESSION.
$T \pm=$ NSTART +1
IZ=NSTART+MLINE
nि $F=-2$.
力口=足。
$\mathrm{Su}=0$.
$5 x=0$
$5 y=0$.
$5 x=0$.
$8 y=0$.
$8 y=0$
(i) $60 \quad 1=1.12$
$x y=x([)$
$Y I=Y([)$
C CALCULATE meighted values df data.
IF(IFUT.ME.O) GOTO 10
$n x=x 1$
$4 y=y t$
607030
$\because 0$ EF(W).EO.0.) 907040
$01=4(1)$
Wx=x(1) कu(1)
$4 Y=Y(1)+4(1)$
$5 y=5 n+40$
$S x=5 x+1 x$
$S Y=S Y+1 H Y$
$5 X x=5 X X+4 X * X 1$
$5 y=5 y y+4 y x y$
$5 y=5 x+4 x y y$
$\angle 0$ COMT 4 UE
FAGQF.LT: \quad GQ TO 100
C
CALCULATE LINEAR LEAST SOUARES ESTIMATES FOR PARAMETERS IVTTH
STOUARD DEVIATIONSI AND AGREEMENT FACTORS OF THEREGRESSION.
$0 X=5 * * 5 x X-5 x+5 x$
$D y=5 x * S y y-5 y * 5 y$


```
    nh=1 \(y / 0 x\)
    S10pent
    CHEST-1 108
    IF (DY. 0.0 .1 OU 7080
```



```
    \(5 \mathrm{cos}=14\)
    \(\ln 5-6 \cos / 5\)
    s shay 4.0 F
    \(\operatorname{snc}=\operatorname{th} \boldsymbol{x} x+\)
    SOESDRT(ESO/DOF)
    \(550-50 R T(G S D S / D N F)\)
    \(S S D C=S O R T(E S D C / D O F)\)
    Sn TO 90
    BO CORR= -
    SLDPE=0.
    \(59=0\).
    \(5 n 5=0\).
    \(5 \mathrm{SOC}=0\)
    20 RTURE
100 IFMPT=1
    WPITE \((6,99)\)
    GORTOTG, IX, NUMBER OF D.D.F. IS INSUFFICIENT FOR LINEAR L-S ANAL
    CSTS'
```


LINFIT

```
SUPRDUTIHE LIGFIT(NG,NP,ISTART,LSTOP,SIGMA,DTEST,ISTOP)
SUBPROGRAM TP FIT & FUNOTIGN TO AN INTERVAL OF OATA BY THE GENGRA
LGST SUUNES TEGHVIQUE (ADAPTED FROM VORGS:, A GENERAL FORTRAN
LEAST SUUARES PRBGRAMI:
GOMMC4 /INFD/ YO(3024),SIGYO(1024), X(1024),P(60),SP(60),K1(60),
COP(60),Y(60),OC(60),DV(60),DO(60),DIAG(60),PO(60),ROW(60),AM120OC
C,50516(2)
    INTEGER RDR,PTR,PCH
    ORSLRVFD DEPEMDENT VARIABLE STORED IN ARRAY YOQ ITS ESTIMATEO
    STANDARO DEVIATIDN IN ARRAY SIGYE, AND THE INDEPENDENT VARIABLE
    IN ARRAY X
        HO = NUMRER GF ORSERVATIONS PAR GE VARIEO.
    INPUT PARANETERS -
    NC = NUNPER OF CYCLES OF REFINEMENT.
    MP = TOTAL NUMEER OF FUNCTION PARAMETERS.
    LSTART,LSTOP = INPUT PARAMETERS FOR S/R PPRELIM' TO OEFTNE
                                    THE YNTERVAL DF ORIGINAL DATA TO BE FITTGD.
    SISMA = SCALIAG FACTOR FOR ESTIMATED STANDARD DEVIATIONS.
    OTEST = TEST PARAMETER TO REJECT DATA IF NEIGHTED RESIOUAL
    ISTOP = EXROEDSNGTESTGOR. I IF MATRIX IS SINGULAR, O OTHERWIS
OUTPUT PAPAMETERS -
    P = ESTIMATED VALUES OF FUNCTION PARAMETERS.
    SP = ESTINATED STANDARD DEVIATIONS DF FUNCTION PARANETERS.
```



```
     PEJECTEO DATA POINTS).
    SIG=SUM OF SQUARES OF WEIGHTED RESIDUALS.
    SQSIG= ERROR DF FIT, SQRT(SIGIDOF).
SET CONTROL PARANETERS.
808=5
PTP=6
    0}=
    IP=0
    PF(SIGMA.1E.0.) ru=1
    BDTER USERS SUBROUTINE TO SET UP DATA ARRAYS, AND OBTAIN VARIABLE
    GAiNV,MOLIT(LSTAQT,LSTOP,SIGMA,NP,NV,NO,IT,IZ)
    IF(10)206,204:206
        WOITE(PTR,5g)
        GO T0 207
        wRITE(P(R,5y)
    IF(1, 210,208,210
        <-(PTQ,61)
        102,
    |(1P)RE(P,2,0,5)4
        GOTE(PTS,63)
        GO TH 2SG
    TE|(T1 EIPTR多4ilP
    TF(1T-1)210,216,221
        AR(TE(PTR,94)
        GOTG(SOR,95)
```

```
        G010 301
    ARTTE(PTR,5G} MC,NP,NV,NO
    IF(MC) 2605 % 602%1301
    RE40(ROR,G6) ((KI(I),OP(I)),I=2,NP)
        G0TC 1621
        00 1602 1=15NP
        k[(1)=0
        00 tक1? I=1, NP
        IP( 1)=0.0
    HTTMALIZE PROULEM.
    NA=(N%:(NV+1))/2
    90Syg(2)=0.0
    GTGUUT TRIAL PARAMFTFRS, KEY INTEGERS, AND PARAMETER INCREMENTS
    N&T{(PTR,'2)
    DO 1553 I= I,NP
            WPITE(PTK,93)I,P(I),KI(I),DP(I)
    START LDOP TE PERFORM NC CYCLES AND ONE FINAL CALCULATION OF Y
    NCY=NC+1
    00 8501 IC=1,NCY
    CLEAR ARRAYG AM ANO V EXCEPT ON LAST CYCLE
    IF(1C-NCY)1851,2001,2001
            00 135? 1=7, NM
            00 
    INITIALIZE FDR CVCLE IC
            SGS1G(2)=S0STG(1)
OOF=MD-NV
            WRITE(PTR.72)IC
    TF(IC.GT.1) WRITEIPTR,74)
            START LDOP THROUGH NO DBSERVATIONS
    DO 510J I=G,MO GUPODUTINE TO COMPUT
    CALL CALC(NP,O,VC,DC)
            OBTAIM WEIGHT AND CALCULATE QUANTITIES FROM Y(OBS)-Y(CALC)
            IF(IW)260L,2501,260%
                SORTW=1.O/SIGYO(I)
                    G0 T0 2701
                SORTH=:O
        OY=YC(1)-YC
    C TEST NEIGHTED RESIDUALS TD REJECT POOR DATA.
```



```
    DOF=OOF-L.
    SQNTH=0.
    y=12+1
    WRITC(PTR,75) J,I,YO(I),YC,OY,WDY
    (G) TO 2901
    2801 STG=516+W0Y*w0Y
    COPYOASS OERIVATIVE AND MATRIX SET-UP ON FINAL CALC OF Y
    IF(IC-NCY) 3001.5102,5%01
    IF(SQRTw) 3101:5101:3101
        START LOUP TO STORE AN ARRAY OF NV DERIVATIVES
```



```
                                IF(OST34G1, D3OIVA4OE FROM THOSE PROGRAMMEO BY USEK
    OV(J)=SQRTW%DC(K)
        G0T04001
        OBTAIH DERIVATIVE NUMERICALLY UNLESS PARAMETER
        OPK=DP(K)
                                IF(OPK)3601,3301,3601
```

 \(30=\)
 2701


```
                RECOQPUTE AOREEMENT FACTOR USING PODIFIEO SIG
    }(S1G.LT.O.) SIG=0.
    SNSTG(2)=50RT(SIS/OOF)
            GUT OUT CAPTION FOR LIST OF CORRECTEO PARANETERS
                    MEITE(PTR,B6)IG
                            START LOOP TO CORRECT AND PUT OUT PARAMETERS
                            J=?
                            8001 I= 2,NP
                            IF(K1(1)
7008
7703
                                    *ETF(口TR,E8)I,P(I)GP(1)
                                    GOTO 9002
                                    POLD=P(I)
                                    P(I)}=POLOLPD(J
    SIGP=SQRT(DIAG(J))*SGSIG(I)
    SP(I)=SIGP
                                WRITE(PTR,89)I,PULD,PD(J),P(I),SIGP
                                J=J+1
    M00:
                COMTINGE
                ENO LOMP TO CORRECT AND PUT OUT PARAMETERS
    HRITEPTR PIUT OUT ESTIMATEO AGREEMENT FACTORS
        URITE(PTR, BI) ENTEROFSSIGPSQSIG(1)
        GSTOP=OGT(NP,MSTOP)
    GF(SSTOP) 8101,88201,8101
        00TO 970L
    HRITG CHRRECTFO PARAMETERS ON CARDS IF DESIRED
    IF(IT-1) 8501,830%,9401
    conTymut
    WRITH(PCH,O) ((P(I),SP(I)), [=|,NP)
                CONTINUF
                    ENU LOOP THROUGH NC CYCLES AND FINAL CALC DF Y
    TGRNINATE JOH
    IF(NC)10501210501,3801
    WRITE(PTPGTE, AND PUT OUT CORRELATICN MATRIX
        DAO(I)=0/SQkT(DIAG(I))
            J=SONTIMUE
        IJ=1.0201 T=1,NV
            00 9602 J=1,YV
                RCN(J)=0.O
    IL=1-1
```



```
T0001 CONTINUE
    JJ=NV-IL
    WRITE(PTR,qg)I:(ROW(J),J=1,J1).
        CDNTINUE
&020% 60T0 CO501,
1050: fifTURO
FGOQWATI3BHOWUMBER OF CYGLES IN THIS IOB IS IS/3OHONUNBER OF PARA
    CTEQS READ IS IB/3RHONUNBFR DF PARAMETERS TO BE VARIED IS I3/32HO
    CMGER DE DRSERVATIONS READ IS I5S
    G8 FORMAT (SIHODERIVATIVES PROGRAMMEO BY USER)
    G FGRMAT(STHOMUMERICAL DERIVATIVES UNLESS PARAMETER INCREMENT IS Z
    11)
    FMRNAT(ZIHONEIGHTS TO BE SUPPLIED BY USER)
    FORNAT(34HOUMIT WEIGHTS TO QE SET BY PROGRAM)
    FORUAT(4IHOPARAMETERS TO BE ESTIMATEO FROM RAN DATA)
    FSPMAT (34HOPARAMETERS TO BE TAKEN FROM CYCLEIZ, IGH ÓF PREVIOUS J
    ])
    5 FORMAT(OF10.3)
    ,6 FOPMAT (13,F7.3)
    72 FORMAT(4GHOCALCULATED Y BASED ON PARAMETERS BEFORE CYCLEM2)
```



```
    HORNATGOOHDESTIMATED AOREEMEMT FACTORS BASED ON DARABETERS AFTER C
```



```
        AN-TESY'1GH OF THOSE VAETED)
R% HO&NAT(4OHOSTHGULARITY RETURN FRON MATRIX GNVEETER)
GO FRQMAT B/HOPARAMETERS AFTGR LEAST SQUARES CYCLEIS//14X, OLDO,1IX,
```



```
O7 FORMAT(XX: DUE TO ELEMENT: I4,* OF MATRIX:)
&& FORMAT (IX,T5,F15.A,DEX,E15.4)
0, FORMAT (IX,I5,4E15,6)
OO FIMWATGGHOSUHSDUTINE TEST INDICATES THAT JOB IS TO BE TERMINATEG
    #FOS PEASONE2)
```



```
% FORMAT(XX,2(TS.F25.6))
G&FOMAT (FHOCORRECTED GARAMETERS NOT TO BE SAVED FOR LATER USE)
3) FORMAT(SIHOCORRECTED PARAMETERS TO BE WRITTEN ON PRTVATE TAPE)
GA FORMAT SIHOCORRECTED PARAMETERS TO BE WRITTEN FOR CARD OUTPUT)
37 FORMAT(YGHOCORRELATION MATRIX)
98 F(GRAAT(IHOI3,2X,20F6.3/(6X,20F6.3))
    ENO
```

SUBRQUTLHE MATINV（AM，N，MFATL）
SUBPROGKAM TO ORTATH INVERSE OF A SYMMETRIC MATRIX BY CHCLESKI PROCEDURE．

DTHENSION AH（2000）

为 $\%$ FACTOR MATRIX TMTO LGUER TRIANGLE X TRANSPOSE＊＊$\%$ \％
$k=1$
IF（N－1）10：8，9

$9007 \quad 7=14 \mathrm{~N}$
$1 M A X=M-1$
C \quad ，
［1）$b L=N$ ，N
$51 M A=0.0$
$K L=L$
$K L$

$S U P A=S U M A+4 M(K L I): A H(K M I)$
$1=11-1$
$G L=K L T+J$
？$\quad \mathrm{Km}=\mathrm{k}=\mathrm{M} \mathrm{L}+\mathrm{J}$

23 T以RU＝4M（K）－SUNA
IF $(1-8) 3,3,5$
3 IF（TFRM）10g 1024

\＆DF HOM＝SQRT（TERM）
An（t）$=$ Denom
ढด 106
10 NFAIL＝K


```
    \(\therefore A M(k)=\) TER \(\because\) OGADM
    \(6 x=k+\)
    7 Cnaltyut
000
```



```
    100 N(1) \(=1.0 / A M(1)\)
    xum=
```



```
        \(00104 \mathrm{~L}=2, \mathrm{~V}^{4}\)
        KRO=KOTHN \(L+2\)
\(\therefore\) *
        TCQN \(=\mathrm{BC} / \mathrm{AM}(\mathrm{KDN})\)
        \(A_{1}(K O M)=T E S M\)
        kiI = 0
        \(\mathrm{KLI}=\mathrm{L}\)
        T- \(4 x=1-2\)
```



```
        [1) \(103 \mathrm{H}=2\), IMAX
        \(K=K L\)
```



```
        \(\operatorname{SUMA}=0.0\)
        On \(10^{2}=H_{1}\) IMAX
        \(I I=K M+I\)
        S(MA=5UMA-AM(KLY)*AM(II)
    302 kLI \(=k L+M=I\)
```



```
    \(A\) I \((K)=\) SUMA \(2 T E R M\)
    \(J=1-1\)
    \(K L=K+J\)
\(103 \mathrm{KLI}=64 I+J\)
LO4 CONTINUE
```



```
    ** * *PREMULTIPLY LDWER TRIANGLE BY TRANSPOSE*****
    \(k=1\).
    (1) \(203 \mathrm{H}=1, \mathrm{H}\)
    KL=K
    De 2O? L=M,N
    \(K N I=K\)
    \(1 H A X=H-L+1\)
    \(\operatorname{sun} A=0.0\)
    जn 20! \(I=1\), INAX
    SUMA \(=5 U M A+A M(K L I) * A M(K M I)\)
    \(k I I=k L I+1\)
\(202 \mathrm{KM} 1=\mathrm{KMI}+1\)
    \(A M(K)=\) SUMA
\(202 k=k+1\)
203 CONTITUE
204 NFGIL=0
300 PETURN
```


TAPED

```
G PMORAM TO PEAD AMY HOMBER OF TAPES ANO PUNCH DATA DN CARDS.
    C(194M/TMFO/ ARQAY(3072),ROATA(1024),DATA(2050)
    Is!TGEQ*? IMATA(1024)
    L0MBAL T1TLG(20)
C
    IF1=150
    CALL BSTART(AQQAY,bOOO,NRESTO)
120 CSLL PSTART(ARRAY(ICH),6000,NRESID)
    f(%0ESDD) 504,503,240
    GH= M1:(rH%1200,3000)
    MR+an=6000-MREST0
    IF(68EA0) 120,502.150
    45 D0 460 I=1,1024
-6% 2AO4(1)=0.
    DECDDE PAPER-TAPE DATA AND STORE RAW-DATA VALUES IN VRDATA..
    CALL BMMEM(ARQAY(ICH),NREAD,ROATA)
    00 <00 T=1,1024
180 IOATA(I)=ROATA(2025-I)
    READ(5,94) TITLG
    PGTMT AND PUNCH OECOOED DATA.
    GRTE(6,73) TITLE
    WRTE (6,96) InATA
    WRMTE(7.DE) IDATA
    60 10 2.20
50% STOP
50% M&TTG(6.79)
    Sr(TP=2
50% WPTTE (6,78)
504 STMP 4
    G GOROMT(//IX,"INPUT RFCORO EMPTY')
    OG EDRMAT(//IX;"INPUT RECGRD TOO LARGE')
    96 FORMAT (X,20I6)
    95 FJRM4T (2014)
    94 FORMAT (20A4)
    FORMAT(1H8/1H1,25x,2044/26X,80(8**)////)
    EVO
```

 SUBROUTINE "TRANS TO DEGODE PAPER TAPE DATA FRDM MSgO2
 acher

TRANSLATION ROUTINE FOR PAPER TAPE FROM THE MS9

USAGE - CALL RNMCM (ARRAY NODATA) ARRAY IS THE ADDRESS OF THE P. T. RECORO N IS THE NO. OF CHARACTERS IN THE RECORD DATA IS THE ADDRESS OF THE DATA ARRAY

EACH DATUM DN THE TAPE OCCUPIES 5 CHARS. THE FIRST DF THESE HAS BIT 1 BLANK THE CHANNEL NO. IS IN EITS $2-6$ DF THE FIRST TWO CHARS. YAS THE BTNARY COMPLEMMEMT)
THE DATA NORD IS IN RITS 2-7 OF THE last three characters (also as the BINARY COMPLEMENT)
THE DECODED DATA WORD IS PLACED IN THE DATA ARRAY ACCORDING TO THE CHANNEL NO.

RAWFIT

```
    PROCRAH TO FIT A SGMOFNGE OF LIAEAR SEGMENTS TO OBSERVED T.E.
    ClHEVS BY LIEAST SOUARES.
    C(18mOM / NOMR/ RY (1024) , RX (1024)
```



```
    LGGTCAL TTLE(20)
    DMENSTGY IDATA (1024)
    EOUTVALEVCE (MATA(L),RY(L))
    GOATROL PARAMETERS -
        MRUY = NUMER DF B.EA CURVES IN DATASET.
        - Experimevtal parameters -
        VMIN, VMAX = CORRECTEO IONIZING VOLTAGE AT START AND FINISH OF
            SIGMA = SCALE FACTURVEOR E.S.D. OF TON CURRENT.
            UTEST = TEST PARAMETER FOR REJECTION OF PODR DATA.
            VPIGVPF = INITIAL AND FINAL VOLTAGES FOR SEQUENCE OF LINEAR
            \(V P X=V\) VLTAGE LENGTH OF A SEGMENT.
    READ CONTRDL PARAMETEQS.
    WR TE (6,88) NRUN
    IRUN \(=0\)
2 TO IRUA=IRUY+1
    IF (IRUB.GT:YRUA) GO TO 100
C SEAB OQSERVED I. DATA ANO EXPERIMENTAL PARAMETERS.
    READ \((5,57)\) TITLE:IDATA
    PEAO (5.85) VMIM, VMAX,SIGMA, DTEST
    READ \((5,65)\) VPI, VPE, VPX
    WRITE \((6,86)\) IRUN, TITEEIDATA
    WRITE (6,84) VMINQVMAX SIGMA,DTEST
    VOEL= (VMX-VMIN)/1023.
    RY(L) =IDATA(1)
    \(R X(1)=V 1 I N\)
    \(00,20 \quad I=2,1024\)
    \(\mathrm{RY}(\mathrm{I})=\mathrm{IDATA}(\mathrm{I})\)
C2O CXICOLATE IMIVDEL AND FINAL INDICES FOR INTERVAL OF DATA TO BE
C FALCOLA
    \(1=0\)
\(140 \quad I=I+1\)
    IF(VPI:LE.RX(I)) GO TO 150
    GOTO 140
150 LSTART \(=1\)
    \(I=1.025\)
\(160 \quad=1-1\)
    GF(VOF.GEORX(1)) OOTO 170
\(170-5 T P P=\)
C GTER S/R 'LIMFTT'TO CALCULATE LEAST SQUARES ESTIMATES OF
    GM-PMINT GF LINAR SEGMENTS L LEAST SQUARES ESTIMATES
    IF (FSTOP \(202,200,202\)
C PGMCHEIYAL PAPAMEPER ESTIMATES ON CARDS.
200 USITE(7,91) VPI:VPF:VPX,NPAR, (FP(I) I I=1, MPAR)
    60 Tn 110
208 ST"
```



```
RG FMRMAT 148 , DATASET CONTAINS *IS. RECORDS*)
```



```
    CVED T.E CURVE'/(5X.2016))
05 FOQMAT (SF5.2)
```


Q EnRMT(3F5.2,15/(10F8.2))

```
    SUBPOUTINE PRELIMULSTART,LSTOP,SIG,NP,NV,NO,IT,III
6
6
6
SURPROGRAM TO SET UP DATA ARRAYS AND INITIALIZE PARAMETERS FOR
S/R "LINFIT:。
Cnvan /woRk/ RY(1024),RX13024)
GOMMOH / INFD/ YO(1024), STGYO(1024), X(1024), P(60), SP(60), KI(60)
C
    \(T=0\)
\(1 D=L S T A R T-1\)
\(N=L S T O P-1\)
C TRAGSFER OBSERVED DATA AND CALCULATE ESTIMATED STANDARD DEVIATIONS
    \([060 \quad 1=1,10\)
    \(1=12+1\)
    \(X(I)=2 X(1)\)
    \(Y O(1)=R Y(1)\)
    STGYO(I)=STG*SQRT(RY(II))
    EGSTGYO(I).EQ.O.) S[GYO(I)=1.0
    C CO CALTULE CUL NUMBER OF PARAMETERS (MP), AND OBTAIN TRIAL VALUES.
    \(N P=(V P F-V P I) / V P X+1.5\)
\(N=O P\)
    \(I X=V P X / V O E L+0.5\)
    \(X I=(V P I-R X(1)) / V \cap E L+1.5\)
    \(11=X I\)
    IF(XI:LT.O.) II-II-1
    a. \(100 \quad N=1, N P\)
    \(K I(4)=1\)
    \(S P(1)=0\).
    \([F(1) \cdot G T \cdot 0) \quad 607070\)
    \(P(11)=R Y(1)\)
    60 TO 100
    70 PF(TP (T. 1025) GO TO 90
        \(P(M)=R Y(1024)\)
    GOTO 109
    10 \(P(4)=R Y(I I)\)
\(100 \quad 11=1+1 \times\)
    RETURN
    (11)
```

 SURROUTIUE CALG(NP, IX:Y:D)
 C
COMMON / TAFO/ DUMMY(2049), X(1024).P(60)
GOMOY GPARAMS/ FP(60), SFP (60),VPL,VPF,VPX,VDEL
C
$F=(X(I X)-V P T) / V P X$
$11=5$
$F=F-T$
$1 \begin{aligned} & 1=1+1 \\ & y\end{aligned}$
$12=1+5$
$Y=P([1)+(P([2)-P(I D)) * F$


```
C SUBROUTINE TEST (NP, ISTOP)
COMMON/INFO/ DUMMY (3072) FP(60),SP(60)
    COMMON /PARAMS/ FP(60),SFP(60)
C
```



```
    \(20 S P P(1)=S P(I)\)
    BETURH
    EVB
```


SLOG

PRORRAM TO VORMALTGE SEMILOG PE CURVES FOR DETRRMTMATION OF APREARANCF POTENTIALS.

C.4MO/AIDPAR COMST,SLOPE,ESOC,ESOS,ESO,CORR

LOGTCAL TITE(zO)
DTGMSIOA [万4TA(3024)
EquTVAEVCE (YOTA(1), Y(1))
COVTROL PABABETERS -
AQUY = MUMBER OF DEE CURVES IN DATASET. $M P T=$ SMOOTHING PARAMETER.

EXPERIMEVTAL PARAMETERS -

VMIN.VMAX = VOMINAL IDAIZING VOLTAGE AT START AND FINISH OF LSTART, LSTOP = INITIAL AND FINAL INOICES DE REGION OVER WHTCH

LINEAR SEGMENTS ARE FITTED TO SEMILOG CURVE.
LLIVE $=$ LENGTH OF IINEAR SEGMENTS BEMILOG CURVE
SLIM = LIMITING VALUE FOR SLOPE OF SEMILOG CURVE
DPT = DROINATE VALUE AT WHICH VPT: IS CALCULATED. DLERD = ZERD CORRECTICN PARAMETER FOR SEMILOG CURVE.

READ COMTROL PARANETERS.
AEAO (5.87, END=201) NRUN,MPT
WRTTE 6,88) NRUN
IRU4=0
110 1RUN=IQUv+1
IF (IRUU. ST MRUN) 60 TO 100
C READ DRSERVED I, DATA AND EXPERIMENTAL PARAMETERS.
PEAO $(5,87)$ TITLE,IDATA
PEAD $(5,63)$ VMIN VMAX
REAO $(5,81)$ LSTART,LSTOP,LLINE,SCALE,SLIM,DPT,DZERO
WR ITE $(6,36)$ TITLE

$[10120 \quad 1=1,1024$
$220 \quad Y(1)=10 A T A(1)$
CALL SMODTH(O,MPT:1024)
$X(1)=V M I V$
$09040,1=2,1024$
C GALCULATE NDRMALIZING CONSTANT, AND OBTAIN NORMALIZEO SEMILOG I.E.
CURVE LIGEAR10,50,0, IFHPT)
CALERDESLOPE VMINOOGIFNPT)
$\mathrm{Y}(1)=Y(1)-82024$
$\operatorname{IF}(Y(1) .1 T-1) \quad Y.(1)=1.0$
$160 \quad Y(1)=A L 0510(Y(1))$
WRITE $(6,3 \hat{3})$ DZERO,YZERO
C FTT LIMEAR SEGMENTS TO SEMILOG CURVE AND OETATV APPROXIMATE
C VALUES ETR VVPT' AND EPTV.
$190 \quad-1-2-20$
$L 2=G+L L M E$
F (L2.6T. LSTOP) GO TO 200
CAL LIXEAS (LI,LLINE,O,IENPT)
EFSLOPE.LT.SLIAS GO TO 190
EPT $=-6$ GNST/SLOPE

C plGI NORMALTZEO SEMILOG CURVE ON LINE-PRINTER.
ZOG GALE SPLOT(SCALE, $15.10 .1000,10)$


```
    F FMAT(%OA4/ (201&)
```



```
    FGMAAT(2F5.2)
```



```
& E,QNT($[5,4FG,2)
```



```
    C,s女*Vp;%)
```


SURROUTINE SPLOT(SCALE,ZERD, ISTART, ISTOP, ISTEP)
E
c
SURPRJGRAM TO PLOT VORMALIZED SEMILOG I。E CURVE ON LINE-PRINTER.
COMMON/WORK/ Y(1024) X $\times(1024)$

c
WRITG(6.97)

WRITE(6.79) LINE
$0020 \quad=1.101$
20 LINE(T)=BLANK
DO $40 K=1$ START, ISTDP, ISTEP
LPOINT=Y (K) :SCALE+ZERO
LIG(LPOIVT)=PQINT
WHIE (6,97) K, LIAE, $Y(K), X(K)$
40 LTHE (LPOIMT) $=$ RLANK
RETURX

CRON1/2X TI26, ENERGY/ /

97 FGRMAT(1X, $4, \%=101 A 1,1=1, E 12.5, F 10.2)$
510

SLAP.

PROGRAM TO CALCULATE UOMIMAL APPEARANCE PGTENTTALS FROM THE MORMALIRED SEMMLGG.E. CURVES (OBTAINED FROM PROGRAM SLOG:.

CTHMY/LIVPAR/ COMST,SLOPE, ESDCESDS,ESO,CORR
OMmDD /DARAMG/ FP(60) y SFP(60)
LOGCAL TITLE(20)
DIMESTON DATA(2024)
GGUPVALEVGE (IGATA(1) RY(1))
COMTROL PARAMETERS -

```
YRUY = MMBER OF I E CURVES IN DATASET.
MCYC = NWMRER DF REFINEMENT CYCLES.
MPT = SMDOTHING PARAMETER.
OPT = ORMINATE VALUE AT WHICH A.P. IS CALCULATED.
```

EXPERIMEVTAL PARAMETERS -
VMIV, VMAX = NOMINAL IONIZING VOLTAGE AT START ANO FINISH DF I.E. CURVE.

SIGMA = SCALING FACTOR FOR E.S.ODOF ION CURRENT.
DTEST = TEST PARAMETER FOR REJECTION OF POOR DATA.
LSTART\&LSTOP = INITIAL AND FINAL INDICES OF LINEAR REGION OF SENILCG I : EO CURVE:
DZERO = ZERO CORRECTION PARAMETER FOR SEMILOG I.E. CURVE.
READ CONTROL PARAMETERS.
OO READ (5,39, END=2O1) NRUN, NCYC,MPT,DPT
WRITE $(6,88)$ NRUN
TRUN=0
110 दRUA=IRUN+3
TF (IRUN.GT.MEUN) GOTO 100
C READ DRSERVEDI.E: DATA, AND EXPERIMENTAL PARANETERS.
READ (5,87) TITLE, IDATA
READ (5,85) VMMNGMAX, SIGMA, DTEST
REAT (5, 83) LSTART,LSTOP,DZERO
WRITE (6.96) IRUN.TITLE
WRITE $6, G 4$ VMIN:VMAX, SIGMA, DTEST
$V O E=(V H A X-V M I N) / 1023$.
$02 \quad 20 I=1,1024$
220 RY(I) $=1$ OATA(I)
CALL SMOOTH(O,MPT, 1024)
PK(2) = VMIN
$00+40 \quad 1=2,1024$

CALCULATE NORMALIZING CONSTANT, AND OBTAIN NORMALIZED I E E CURVE.
CALL LINEA $(O, 50, O$ IFNPT)
CALL LINEAR (O,50, O, IFNPT)
YTERO=SLOPE*VMIN+CONST-DZERO
110 $20 \mathrm{I}=1,1024$
$R Y(1)=R Y(I)-Y Z E R O$
IF (RY(I).LT. 3.0$) R Y(I)=1.0$
360 COMTMNUE
WRTE (G, Q2) DIERO, YZERD, DOT,LSTART,LSTOP
C CALGULATGLEAST SGUARES ESTTMATES DF STRAIGHT LINE PARAMETERS FOR
GALAR REGITN DF SEMILDG IGE CURVE SIGMA, DTEST, IFSTOPI
IF (FSTDP) 202,170,202
CALCULATE MOMTMAL VALLES OF APPEARANCE POTENTIAL (ANDE.S.O.).
70 EPT= $=F P(2) / F P(2)$
S1-SFP(1)/FP(1)
$S=S F P(2) / F P(2)$
$S E P=D T H O R T S$
$S P T=E T * S O R T(S I * S I+S 2 * S 2)$
$W T=D P T-F P(1)$
$S \#=S F P(1) / V P T$
VPT=VPT/FP(2)
SVPT二VPT*SQRT(SI*SI+S2*S2)
QRE(G, Q0) EPT, SEPT,VPT,SVPT
GRTE (7,78) EPT:SEPTVVPT,SVPT
GOTO 110

```
2Qs &TM, 绍
    &, -2,NAT(315,F5,2)
```



```
    G|&AAT(EGAG/(2OL&)
```



```
    T.G/2GX,FIVAL SCAN VOLTAGE = FG.2/27X, EST ERROR CONSTANT =, FG
```



```
        COTTT=GIG/LHB/HH, LEAST-SQUARES FIT OF STRAIGHT LINE TO SEMI LO
        I.E.CURVE - - %/7/7)
    O FDRMAT(///OOCALCULATED APPEARANCE POTENTTAL - EPT (E.S.O.)
```



```
    7% EOQMAT(4F10.5)
```

 SURROUTINE PRELIMILSTART,LSTOP,SIG,NP,NV,NO,IT,LI)
 | C |
| :--- |
| C |
| 6 |

SURPROGRAM TO SET UP DATA ARRAYS AND INITIALIZE PARAMETERS FOR
S/R 'LINFIT'.
COMMON / WDRK/ RY(1024), RX(1024), W(1024)
COMMON /INFO/ YO(1024),SIGYO(2024): $10(1024), 9(60), S P(60), K I(60)$
C
$I T=0$
$L=L S T A R T-1$
UO=LSTOP-LT
SRGLOG=STG/2 2026 DATA AND CALCULATE ESTIMATED STANDARO DEVIATIONS
On 20 I $=1$, NO
$\mathrm{L}=\mathrm{I}+\mathrm{L}$?
$X(1)=8 \times(L)$
IF $(R Y(L), E Q: 3: O)$ GO TO 10
$Y O(1)=A L O G 10(R Y(L))$
SIGYC(I)=SIGLOG/SQRT(RY(L))
607020
10 YO $(1)=0$.
SMGYO(I)=1.0
C^{20} CALCULATE NUNBER of papameters (nP), and obtain trial values.
$\mathrm{nv}=2$
no $40 \quad I=1$, NV
$S P(1)=0$ 。
$40 \mathrm{KY}(\mathrm{y})=1$
$1 P=$
$p(5)=-10$.
$p(\overrightarrow{2})=1$.
RETURS

SUPROUTIME CALC (AP, IX,Y,D)
COMAOM /TNFO/ DUMNY (2048): X (1024), P(60)
DTHENSIO4 D(60)
6
$Y=P(1)+P(2) * X(Y X)$
$0(2)=\frac{1}{2}(I X)$
QETuR息
BM
SURROUTIVE TEST(NP ISTOP)

COMMOM / [AFO/ DUMMY(3072), P(60),SP(60) CUMMON/PARAMS/ FP(60),SFP(60)
$\mathrm{DO}\left(\underset{\mathrm{FP}}{\mathrm{D}} \mathrm{O}=\mathrm{P}=\frac{1}{1}\right)^{N P}$
20
$S E P(I)=S P(I)$
ENO

FiX

```
&mos
```

```
    PSMS日AM TO CALCULATE FRACTIDNAL IDN INTEMSTTGES AVO LOGAETTHMIC
```

 PSMS日AM TO CALCULATE FRACTIDNAL IDN INTEMSTTGES AVO LOGAETTHMIC
 HTUGTY RATIGS USTNG SMOUTHED I.E. CURVES GGTARGED FROM PROGRAM
 HTUGTY RATIGS USTNG SMOUTHED I.E. CURVES GGTARGED FROM PROGRAM
 ?AHFTT:
 ?AHFTT:
 S240Q%/XDATA/ DATA(1024,8)
 Cumm/wnRK/ y(zo34), (1,0<4)
    ```

```

 (onm,\/PakAys/ P(b0), VPT,VPE,VPX,NP
 LGMCAL TITLE(Z0), DONAME(LO,8),BLANK/* %/
 0!m-MSION MM(10)
 &AL कUTV,ISOTOP
 CTHTROL PARAMETERS --
 YRUY = UUMRER OF IONS CONTRIBUTIVG TO TOTAL ION IVTEVSITY
 I= NUMBER OF i.E. CURVES IN DATASET).
 MPT = SADOTHING PARAMETER.
 VJNR = ENERSY INCREMENT.
 VIP= IOVLGATMOM BOTEMTIAL EMFRGY SCALE
 VG= SHILFTPARAMETER FOR ENFRGY SCALERGISTOP FINITAL AND FINAL TNDICES FOR CALCULATION OF
 GRACTIONAL ION TNTENSITIES.
 ISTEP = VUHRER OF ENERGY IVCREMENTS BETWEEV CALCULATEO
 FRACTIONAL ION INTENSITIES.
 EXPERIMEVTAL PARAMETERS -
    ```

```

 COR2 = IVTENSITY CORRESTION.
 VMIN,VMAX = INITIAL AUO FINAL VALUES OF IGVIZING VOLTAGE FOR
 OOTEOT I = & %OM
 0,120 }\quad\textrm{l}=1,
 \$20
OMAVE(T,J)= BLAVK
RAD(5,8%,GNO=501)}\mathrm{ (TTLE,NRUY,MPT,VINCR
NEGD(5,33) VIP,VEE,ISTART, ISTOP.ISTEP
W\& IE(0,30) TITLE,NRUN
H2U:=0
250 TRUN=IRON+1

```

```

C READ EXPERIMENTAL PARAMETERSQ ANO PARANETERS TO CALCULATE SMODTHEO

```

```

 REA0(5,SS) (P(I),I=1,NP)
 READ(5,82) VMIN,VMAX
 WRITE(6,95) IRUA, (IONAME(I,IRUN),I=1,10)
    ```

```

O COMVERT GALCULATED I.E CURVE TO SAME RELATIVE INTENSITY SEALE,
BO STORE CORRFGTED YE. CURVE.
DFACT=ISOTOP*CORR/GAIN
00220= = 1;107
Q2O Y(1)=Y(1) WOFAO
GR1TE(6,马2) (Y(Y),I=I,IOT)
GARA(1, री|{)=Y(1)

```

```

 LOMARITMMIO INTEMSITY RATIOS.
 BO (ALL FLGO(VIP,VFEYVNCR,NRUM,ISTART,ISTOP,ISTEQ)

```


```

 O(AD(5,H) 1, 12,13,N4
 GMLHLIT(11,12,13,MN, VIACR)
 GO TH 100
    ```
```

0; STMP %

```


```

C1G98:

```






```

HSOXAAT(2F5.2,315)

```

```

 (.)
 S) FOMAT(3IS,1OI2)

```
```

 SURROUTIVE DATCOM (IRUV, MPT,VIP,VEE,VMIN, VMAX,VIVER, IPT)
 SURPROGZAM TO RECOMSTRUCT SMODTHED I EE CURVES JVER ANY DESIRED
 EGERGY RANGE, USIMG LIMEAR SEGMENTS Fitted to obSERVED lo e cURVE
 IY PROGRAM RRAWFIT.
 GOwnV \(/ X 0 A T A /\) DATA \((10248)\)
 COMMON/WORK/RY(1024),RX(1024)
 COMODS /PARAMS/ P(6O) , VPI,VPF,VPX, MP
 6
VYITALISE ENERGY PARAMETERS AND TNDTCES.
$V O=V i p-V E$
$V x=V O-V P I$
$I=(V 11-V O) / V I V R+0.5$
$I=(V M A X-V O) / V I N C R+3.5$
VTMIT $=V O+I I \times V I N C R$
VFIMAL $=V 2+12 \times V I N C R$
$I P T=12-11+\frac{1}{2}$
$P=H O=P(N P)-P(N P-1)$
$F W=\| P-$?
C EECDUSTRUCT EE CURVE USING LINEAR SEGMENTS.
D3 $20 \quad 1=1$ IMAX

```

```

 IF (F.SE.FM) GO TO 10
 IP=F
 IF (IP:LT.O) IP=0
 \(\vec{F}=F-I P\)
 \(\mathfrak{G Y}(1)=P(I P+1)+(P(I P+2)-P(I P+1)) * F\)
 69 TO 20
 $2 O R Y(I)=P(V P)+P E N D *(F-F M)$
C^{20} comtarueg syothen C E E GURVE.
Call SMODTH(0, MPT: MAX)
$I Z=14-$.
$0440 \quad 1=2.1 P T$
$60 \mathrm{BY}(\mathrm{I})=\mathrm{BY}(13+1)$
C FTME MIVMUM OF I.E. CURVE AND SET TO ZERO.
$y z \mathrm{CO}=\mathrm{RY}(1)$
$\begin{aligned} 1 \mathrm{M} & =1\end{aligned}$
I
19 60 $1=2,13$
IERY(I).GTOYZERO) OO TO 60
YZERO=RY(1)
$y=1$
to GQUTINUE
$0080 \quad 1=2,14$
EO PY(1)=0.
$1+1+1+2$

```
```

 Q4,00 = M,MPT
 W, (G,7\ VMIM,VMAX,VIP,VEE,VINIT,VFIVAL,VIVCQ,IPT
    ```

```

 "0.4T(102!:IR(1Y)=VINTT
 OATA(TOSE,|RUA)=VFTMAL
 1ATA(1023, (R04)=V1NC
 200 RETURO

```

```

 G. VFINAL VINCR///26X,5F10.2///VONO. CALCULATEO POINTS
 QRGK,GAT(////LX,CALCULATED I.E.CURVE - (UNCORRECTED)://(5X,2OF6
 SUQROUTIVE FLOG(VIP,VEF,VINCR,NRUN,ISTART, ISTIP, ISTEP)
 C
SUGPROGRAN TO CALCULATE FRACTIONAL IOV INTEVSITIES AND LDGARITHMIC
INTENSITY RATIOS AS A FUNCTION OF ENERGY.
COMMON/XDATA/ DATA(2024.3)
COWMIM /YNG/ FAX(500,8),FTOT(500),VXS(500),FAMX(10),FASX(10),
CTITLE,IOVAME
LOG1CML*1 TITLE(40),IOMAME(40.8)
QINESIOY ID(10), INM(10),RA(5)
C
VO=VIP-VEE+0.1E-05
00 20 1=1,500
vx(})=0.
VxS(1)=0
FTOT(I)=0.
00 20 J=1:8
20 FAX(1, 1)=0.
C CALCULATE PARAIETERS TD CONVERT INOICES FOR CIRRECTEO I.E. GURVES

```

```

 OM=(DATA(2O21,N)-VO)/VINCR
 TF(DI.GE.O.1 GOTO 30
 IJ(O)=0I-0.5
 00TO-40
 30 ID(N)=01+0.5
 C STORE CORRECTEN I.E. CURVES AS A FUNCTION DF SAME ENGRGY SCALE.
0Ot0 }==1,\mp@code{LSTOP
T:=1-10(V)
HAX(M,GT=EDAR,IN,GT.INM(N)) GO TO.50
S0 cotm mav
VX(I)=VOtVINCR\&(I-1)
60 V\timesS(1)=Vx(I)-VIO
C COTAGG TOTAL IOA TNTEASITY AT EACH ENERGY. AND VDRMALIZE I:E.
GRVESO}1=~, ISTO
SU4=0.
=, MRUM
*0 SUK-SUN+FAX(I,G) TO (SM, 100
G(SuM.ED.g.) GO TO 100
09 AX(1,4)=FAX(1,4)/5Um
1OO FrOT(1)=5Um
PRIUT-OUT FRACTIMNAL ION INTENSITIES AS A FUNCTION OF ENERGY.

```
```

 WITE(6,#) TITLE
    ```


```

 HTTE(0,90) TTTLE
    ```

```

 FHA-Gn,FK/FH, FRACTMOAAL, IGN IHTE
 OOO I=ISTART,ISTOP,ISTEP
 G0 PA(N)=0.
If(f:(1,2).LT.0.i.6-03) GOTO 200
1F(1.-4(1),1):LT:0.1E-03) 60 T0 200
O=ALOGOg (A: -FAX(1
IF{:AX(1,2).LT:O.)\&-03) GO TO 1.70
F2=AL!01)(FAX(1,2))
\&(i)=F+m02
Aa(3)=F--03
OTO i4)
40+5=00
OG IF (FAX(I.3):LT.0.1E-03) GO TO 200
FR=ALOGS)(FAX(1,3))
RA(2)=F2-0?
RA(4)=F2-D3
IF(E.GT.O:) GO TO 200
G PQTAT-OUT LOGARITHMIC ION IVTENSITY RATIOS AS A FUNCTION OF ENERGY
200 URITE(6,87)V VS(I):VK(1),RA
RETURA
99 FOPMAT(5+4/1H1///1//////T45,40A1//)

```



```

 G7FORMAT (I7X,2F10.2,4X,5F9.4,E17.4)
 80 FOPHAT(I+8/1H///////////T30,40A1//)
    ```

```

 CFM FH/FMFFX/1-FHFFH/I-FM FX, F/FH'//)
 97 FORMAT(27X,2F10.2,2X,5FQ.2)
 EMD
 SUUPRTGQAM TO MBTAIMPLDT OF FRACTIONAL ION IVTENSITY GURVES OR OALCTMP 1627 PLOTTER。

```

``` CTMAME
LTGGAL
```




```
OTEMETOY Y(500), (500), MAX(20), LABEL(5), NN(20)
\(C\)
EVSOAESTGP/2O\&
UR1TE(6,81) [1,12,13,V(11),V(12),ENSPAC
\(3006 \mathrm{~K}=1,10\)
H=N(K)
IF(N.EQ.J) 60 TO 6
FARX=-3.
\(174^{4} T=11,12.13\)
IF \((G A(I, V)=B t: F N A X) F M A X=F A(I, N)\)
```

```
& EONTN|H
 GAR(A)=FHAX
 f(FNAX:LT.0.15-05) GO TO 5
 M&(0)=-4LD940(F,AX)
 Fasc(y)=10.*WMAX(A)
 ITE(6,32) N,FMAX,FASC(N)
 67 106
 b FASC{1)=0.0
 A(16)=0
 C0111+15=
 k =1-13
 A=v(k4)
 HA=EA+EDEL
 TF(A.GT.O.) NA=EA-EDFL
 EA=ABS(EA-NA)
 TF(FA.LT.O.1E-0t) GO TO 20
 IF(KA.GT.IZ) GOTO 101
 OMT!
ZU LLAR=KA
 1SP=(2-1L)/5
20 LAB=TLAB*-ISP
 PE(ILABagF,IT) GOTO 30
 LAREL(1)=ILAB+ISP
 00 50 10=2,5
0 LA(EL(10)=LABEL(ID-1)+150
 1%SP=(Iz-11)/13
 15C=500/4OSP
 CALL AINTT(IOOO)
 CALL ADRIG(200,250)
 CALL ABRID(0,0,1,1,600,500, #,2)
 CALL GRID (0,0,6,10,100,50,
 CALL ASCA(-70,45,0,50,10,10,10,1,2)
 IX=-2.5
 00 60 J=2,5
 EENMNS I
 VSITE(I,96) V(LADEL(J))
 {EAD(%,57) (NAME(II),II=1,5)
tO CALL ALAB (IX,-3O,NAMEq,5,1,2)
 CALL ALAB (1.00, -60,NAMEX,40,1,2)
 CALL ALAB(-60,50,NAMEY,40,1,4)
 CALL ALAB(100,520,TITLE,40,1,2)
 MSPL=ISP-(LABCL(L)-1%)
 ISPI=15PD/13*15C
 CALE AORIG(200+1SP2,250)
 00 70, 12=1,20
 #=11(11)
 TF(MEEO.2) GO TO 70
 k=0
 1090 I=I],I?.13
 kl=k
 k=kt?
 x(0)=k1*150
90 Y(&)=FAS5(N)%FA(I,N)
 CALL ALINE(X,Y,NOSP+1,0.,0.,100.,.2,1)
 cal aAEvO
 (All nAlYIT(LOOO)
 (AlG AnRIG(200+15P1,250)
70 com51446
 CALL MORIG(210.250)
 CELL AORIO(0,0,1,1,170,200,2,2)
 CALE ALAQ(10.170,NAMEA:25,1.2)
 07 2 < k=1,10
 15=04(<5)
 FEMGEY.O) ¢OTO 12
```

```
 H2TE(1,Q4) TO, (IMNAME(I,N6),I=34,36),FASC(N6)
 (2(1),05) (H1ME([3), 13=1.15)
 GALLALAE(0,350-12,20,MA有E,'15,2,2)
 L}=[2+
 CHL AEND
 ()- U-14
 - 1+(0,77)
 G) GRMAT//IX, IMTGGRAL ENERGY VALUE CANNOT BE FMUND",
 % FRMAT(SA1)
```




```
 G% FORMAT}({1,\mp@subsup{X}{9}{\prime},10,F10.6,E1O.2
 AS ESKMAT(ISAL)
 -5
C
 SURROUTIYE GQIO(IX,IY,NX,NY,IXINC,IYINC,IHIGH)
 DMENSIOY X(2),Y(2)
c
 Y(Z)=IY-IHIGH
 Y(z)=Y
 XOR=1X
 YOR=IY
 IF(NX.E0.0) GO.TO 40
 00 10 T=1,0X
 x(1)=1X+1; *XINC
 x(z)=x()
 CALL ALIVE(X,Y,Z,XOR,YOR,SO0.,100.,1)
 X(,)=IX-IHIOH
 X (z)=1X
 40 TV(NY.EO.O) GO TO 50
 \1 20 1=1, \y
 Y(i)=1Y+1*IYINC
 Y(B)=Y(1)
 ZO CALI AL,UG(X,Y,E,XOR,YOR,100.,100.,11
 x(:)=NX&1XINC+1HIGH
 X(z)=NX*IXINC
 O-30 I=1, MY
 Y(1)=IY+1 *IYINC
 Y(2)=Y(2)
 =O(ALLALLYE(X,Y,2,XOR,YOR,100.,100.,1)
 SO RETURA
 E\
```


## APPENDIX B

ELECRRONICS

1. Ionizing Voltage Control Unit

This motor control unit (Fig. 35) was designed and built by $\mathbb{A} . M$. Ferguson and $C \cdot R$. Rowe in this department. It consists of a variable freguency, unijunction transistor pulse generator which drives a flip-flop. The flip-flop modifies, the pulses to square-wave pulses of equal mark space ratio, and these drive the motor switching transistors.
2. CAT-Tape Punch Interface

This interface (Fig. 36) was designed and built by C.R. Rowe in this department.


Components Listing:
Note, First statement in line is for low voltage/poner version ( $10-20$ ) volto Other versions requize lower drive resistances where indicated*.


## F1G. 36

7 DATA EITS
aymers


## ACKNOWLEDGEMENTS

I am particularly indebted to my supervisor, Dr G.J. Wright, for providing every help and encouragement in this study. I also appreciate the skilled efforts of Mr C.R. Rowe and MiA. A. Perguson of the technical staff of this department, who developed the data collection system which made much of this work possible.

The work described in this thesis was carried out during the tenure of a U.G.C. (N.Z.) Post-Graduate Scholaship.


[^0]:    TOTAL
    MTEGSITY
    (far (Nits)
    0.0
    $0.11675-02$
    $0.156 \div=0.5$
    0.166900.
    0.1302502
    $0.4432=02$
    0.100403
    0.173 ge 03
    $0.2644 E 03$
    0.2754 E 03
    0.505 SE 0
    $0.048 \angle E \quad 03$
    0.7914 E 03
    $0.936 i 602$
    0.1092504
    $0.1231 E 04$
    $0.1383 E 04$
    0.1537604
    0.169504
    0.1954 E 0.
    $0.2013=0$
    $0.2172 t 04$
    0.23 Br

