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Abstract 

This thesis details the development, construction and operation of a Doppler 

wind facility as an upgrade of the existing meteor radar, AMOR operated by the 

Department of Physics and Astronomy, Canterbury University, New Zealand. It 

also describes the initial interpretation of wind-field measurements so as to ascertain 

the potential for a more sustained survey. 

An overview of atmospheric dynamics is presented in order to provide a summary 

of wind motions accessible to meteor radar techniques. Tidal analysis methods 

applied to the data confirm a dominant semidiurnal tide with seasonally varying 

amplitude. The height resolution of the radar enables analysis of vertical structure, 

i.e., the semi diurnal tide's vertical wavelength. 

Echo analysis techniques which enable wind measurements with uncertainties 

< 3 ms-1 to be achieved from meteor echoes having duration times down to only 

0.03 s are discussed. The method allows a line of sight wind measurement to be made 

from 90% of echoes. A transmitted beam which is narrow in azimuth combined 

with a dual interferometer and range determination locates the echo point within a 

8 km3 3 dB box. Approximately 70% of the line of wind measurements produce 

a spatially located horizontal wind speed. 

A method of reducing wind speed measurement errors introduced by the 

netic field is given which relies on both meridional and zonal components of the 

wind-field being measured. 

The AMOR winds data are compared with other wind measuring instruments 

that are geographically close and the results are discussed. Comparisons are also 

made with global model data. Analysis of the wind speeds as a function of ground 

range from the radar gives good evidence supporting the presence of gravity wave 

activity at meteor detection heights. A seasonal gravity wave dependence is also 

suspected. 
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Chapter 1 

Introduction 

The Earth's atmosphere conveniently divided into height intervals based on the 

vertical structure of the temperature profile (figure 1.1). These intervals called 

the troposphere, stratosphere, mesosphere and thermosphere are separated by the 

tropopause, stratopause etc. The term middle atmosphere is used to describe the 

region between the tropopause and homopause (the atmosphere between vertical 

heights of about 10 and 110 km) and the term upper atmosphere often refers to the 

region above the homopause. 

100 
THER 

Mas 
90 

. PHE 
RE 

0.001 
0.002 

0.005 

80 M 
E 
S 

0.01 
0.02 

70 
a 
S 

0.05 

P 
H 

0.1 

60 E 
R 

E E 

0.2 
:a 

0.5 .§ 
~ 50 
'l-

S J: 
Q 40 T 
w R 
J: A 

I w 
0:: 
:::> 

2 ~ w 
5 

0:: 
Q. 

T 
30 a 10 

s 20 
P 

20 H 
E 
R 

50 
100 

E TROPOPAUSE 
10 

TRo 
POSPHERE 500 

a 180 200 220 240 
1000 

TEMPERATURE (KI 

Figure 1.1: The atmosphere is divided up into layers based on the vertical temperature structure. 

(After Andrews et al., 1987) 
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2 Chapter 1. Introduction 

As far back as Lord Kelvin, in the mid 19th century, physicists have tried to gain a 

greater understanding of the dynamics that govern the atmosphere's motion. More 

recently remarkable advances have been achieved in atmospheric physics primar­

ily due to the greater general awareness prompted by phenomena such as global 

warming and the depletion of Antarctic ozone. Many methods for measuring the 

atmosphere's movement, or winds, have been developed ranging in complexity from 

simple anemometers for wind measurements at ground level, to instruments such 

as HRDI (High Resolution Doppler Interferometer) on the Upper Atmosphere Re­

search Satellite (UARS). Winds measurements at heights ranging from the ground 

to the top of the troposphere have been made with balloons and in more recent 

times Very High Frequency (VHF) radars. Some of the higher power VHF radars 

are capable of probing the atmosphere to mesospheric heights and are called MST 

(Mesosphere Stratosphere Troposphere) radars. The Doppler shifts of night time 

airglow measured by Fabry-Perot Interferometers (FPI) are used to obtain winds 

at two distinct heights of approximately 90 and 100 km. Medium Frequency (MF) 

radars infer winds speeds at heights from 70-100 km from the ground level motion 

of diffraction patterns caused by partial reflections from upper middle atmosphere 

ionisation. A further technique, one which is the primary focus of this thesis, uses 

meteor radars and measures wind speed from the change in frequency of radio 

waves which have reflected back from meteor trains at altitudes between about 80 

and 120 km. 

There are many meteor radars measuring atmospheric winds at various locations 

in the world today. Some southern hemisphere meteor radars are situated at Gra­

hams town , South Africa; Adelaide, Australia (35°S 138°E); Jakarta, Indonesia and 

Amundsden-Scott Station South Pole. The South African meteor radar [Poole 1988] 

(33°S 26°E) operates at a frequency of near 28 MHz with a pulse repetition fre­

quency (prf) of 500 Hz. The main lobe of the transmitted beam is at an elevation 

angle of 45° and radiation is transmitted in all azimuths. The system does not 

measure meteor detection heights; instead it assumes all echoes to have come from 

a height of 95 km. The Jakarta meteor radar [Tsuda 1995] is located at coordinates 

60 S 107°E illuminating regions of atmosphere between 50 S 107°E and 70 S 107°E. 

Echo height is determined with an interferometer and approximately 800 meteors 

are detected each day. The meteor radar at the South Pole [Forbes et al. 1999] has 

been in operation since 1995 making wind measurements near 2° from the South 

Pole along the four meridians 0 degrees, 90 degrees E, 90 degrees Wand 180 degrees. 
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As with the South African radar those heights are assumed to be at 95 km. North­

ern hemisphere radars include sites in Trivandrum, Durham in the USA, Sheffield 

in England, Christmas Island, the CLOVAR radar system in London Canada and a 

recently modified MU radar in Shigaraki, Japan. The system in Trivandrum (8.5°N, 

77°E) operates at a frequency of 54.95 MHz generating a 280 Its pulse with a prf 

of 500 s-1 [Raghava Reddi et al. 1993]. The elevation angle of received echoes is 

measured allowing height determination for individual echoes. 'Vind measurements 

can be made in both the zonal (east-west) and meridional (north-south) directions. 

The Durham and Sheffield radar systems are both computer controlled coherent 

pulsed systems; the Durham radar [Salah et al. 1997] is at coordinates 43°N 71 oW 

and the Sheffield radar [Mitchell et al. 1996] is at 52.5°N 2°W. For the Sheffield 

system echo heights are again assumed to be at 95 km whereas the Durham radar 

determines echo location with an interferometer. The meteor radar at Christmas 

Island [Averyet al. 1990] operates at a frequency of 50 MHz at location 2°N 158°W. 

Finally the CLOVAR (Canadian at London Ontario VHF atmospheric radar) is an 

instrument which has been in operation since 1993 at location coordinates 43°N 

81°W. The system operates at a frequency of nearly 41 MHz and is operated by the 

University of Western Ontario in London, Canada [Hocking 1997]. The Middle and 

Upper atmosphere (MU) radar at coordinates 34.9°N 136.1°E in Shigaraki, Japan 

is a VHF MST radar recently modified to measure winds from the drift of meteor 

trains. This system generates 1 Its pulses with an interpulse period 400 itS (a PRF 

of 2500 s-1). Interferometry techniques enable the measurement of echo arrival 

angles and sampling at 1 million samples/s enables a range resolution of 150 m 

[Nakamura et aL 1997]. 

There are a few other meteor radars operating around the world today and the 

list presented is not intended to be complete. It does however indicate that there 

are a large number of varied meteor radar systems. There are nevertheless subtle 

differences in the techniques adopted and each has its own advantages. 

1.1 Thesis Layout 

This thesis discusses the development of a meridional wind speed measuring com­

ponent, at meteoric heights as an addition to the existing Advanced Meteor Orbit 

Radar (AMOR) meteor orbit radar at Birdlings Flat (172° 39 'E, 43° 34 'S) near 
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Christchurch in the South Island of New Zealand. The system uses a dedicated 

computer with specialised software to capture data from the radar's receivers dur­

ing meteor events. Additional hardware between receivers and the new dedicated 

winds computer was required to transform the signal from the receivers into in-phase 

and phase-quadrature components that can be analysed to produce wind speeds. 

Wind speed is then inferred from the Doppler shift of the transmitted pulse having 

been reflected from the meteor train and the measurement position is determined 

from the elevation angle and range of the returned pulse (refer figure 1.2). 

Meteor Train 110 km 

Neutral Wind 

<If=:======::::!(> 
<l [> 

cos(~) 

80km 

Figure 1.2: A meteoroid entering the Earth's atmosphere ionises the surrounding gases at heights 

between about 80 and 110 km. In the presence of wind this train of electrons [noves at the wind's 

velocity and t he radial wind speed (v r ) can be obtained from the Doppler shift of radiation reflected 

from the train. Assuming no vertical wind the horizontal wind speed can be simply derived. The 

location of the wind measurement is achieved from the range and elevation angle (<1)). 

The introductory chapter discusses areas of dynamics which are appropriate to, 

and whose features have been observed by the radar in, the atmosphere at meteoric 

heights (80-120 km). The formation of a meteor train, the atmospheric tracer 

probed by AMOR, is then considered and finally an overview of the AMOR system is 

given. 

A description of additional hardware and software required to provide AMOR 

with wind speed measuring capability is given in detail in chapter 2. This chapter 

discusses the Doppler module; the unit which decomposes the AMOR signal into in­

phase and phase-quadrat.ure components, and the digital hardware which controls 
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the operation of accessing computer memory directly for the storage of meteor 

echoes. The approach to data analysis and the computer programmes which apply 

this analysis to derive wind speed measurements from meteor radar data are also 

explained in this chapter. 

The effect of the Earth's magnetic field on the meteor train's drift is considered 

in chapter 3. 

A discussion of data preparation for time series analysis and the effects of diurnal 

sampling are discussed in chapters 4 and 5 and results of harmonic analysis are 

presented in chapter 6. A comparison of these results with measurements made by 

other land-based instruments and model simulations is provided in chapter 7. 

Finally chapter 8 discusses ideas for continued research with the winds compon­

ent of the AMOR meteor radar. 

The thesis has two appendices. The first provides a reference for the computer 

software which was developed during the AMOR winds project. These programmes 

have either been written in Borland Turbo Pascal (7.0) or standard ANSI C. A brief 

description is provided with each procedure or function to detail its purpose. The 

second appendix provides additional tables which were considered interesting yet 

would have interrupted the general flow of the thesis. 

1.2 Introduction to Middle Atmosphere Dynamics 

Measurements of the Earth's atmospheric motion, U (u, v, w ) (where u, v, ware com­

ponents in the west-east, south-north, and vertical respectively) have shown it to 

be extremely complex, however Fourier analysis enables this motion to be approx­

imated by a mean value and the expansion of a series of Fourier harmonics: 

(1.1 ) 

where Ao(¢,z) is the mean value at a particular latitude (¢) and height (z) and 

Am(¢,z) is the amplitude of the mth harmonic where O'.m(¢,z) is its phase. Har­

monics with periods greater than one day are called Planetaryl waves [Salby 1996] 

whereas harmonics of the 24 hour oscillation with periods less than or equal to one 

day are referred to as atmospheric tides. 

1 vVestward propagating planetary waves are generally called Rossby waves. 
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Atmospheric movements which cannot be attributed to tides, planetary waves 

or mean wind are likely to be due to gravity waves which have propagated into 

the meteor zone (80-110 km) depositing their momentum and creating turbulence 

(essentially the quasi-random movement of air particles). 

1.2.1 Atmospheric Tides 

An atmospheric tide is defined to be a world-wide pressure, density, temperature 

or wind velocity oscillation with a period of m- 1 of a solar or lunar day (m = 

1,2,3, ... ). These oscillations are due to the gravitational and thermal forcing of 

both the Moon and Sun as the Earth rotates on its axis. Atmospheric forcing has 

been shown to be dominated by periodicities associated with the absorption of solar 

radiation by water vapor (H20) and ozone (03 ) in the lower stratosphere [Chapman 

& Lindzen 1970]. This is in contrast to oceanic tides which are a gravitational effect 

dominated by the lunar cycle. The 0 3 and H2 0 heating rates vary with season and 

latitude but an average height for the 0 3 heating maximum is at 50 km with a 

FWHM of 20 km. The heating rate for H2 0 is maximum near ground level and 

decreases with height. 

Solar heating of the atmosphere can be approximated by the function shown 

in figure 1.3 which has a width of 12 hours centered at noon. Fourier analysis of 

this function gives a mean value, 24 hour and 12 hour components called in terms 

of atmospheric motion the mean wind, diurnal tide and semi diurnal tide. Other 

components are also present but they have much smaller amplitudes. 

As the Earth rotates on its axis the region of maximum heating moves westward. 

Tides produced by this mechanism are called migrating tides. 

There are several modes of atmospheric oscillation which can occur on the sur­

face of the spherical Earth. These modes are denoted by the parameters (n,m). The 

zonal wavenumber, n, is the number of cycles per day i.e., n = 2 for the semi diurnal 

tide. The difference m - n (m ~ n) gives the number of nodes between the Earth's 

poles (excluding the poles themselves). As an example the (2,6) mode would be a 

semidiurnal tide with 4 nodes between the north and south poles and graphs show­

ing spherical harmonics for n=5 and m=O, 1,2,3,4,5 are given in figure 1.4. The 

modes which have a maximum at the equator are predominant since solar heating 

is greatest in the equatorial region. 
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o Noon 24 

Time 

Figure 1.3: The solar heating can be approximated by such a function. (After Andrews et al., 

1987) 

Assuming that the earth spherical, rotating at a constant angular velocity 

n and the acceleration due to gravity g is constant independent of altitude and 

latitude, the atmosphere can be described by the distribution of static pressure po, 

density Po and temperature To. With these assumptions Laplace [1799] shows tides 

to be solutions to Laplace's equation 

(1.2) 

where L is a second order ordinary differential operator in Jt = sin cjJ, dependent on 

zonal wavenumber sand (J (where the period is 2(J-l) taking the form 

L d [1 Jt2 d 1 
dJt ((J2 - Jt2) dJt Jt 2 ' 

(1.3) 

and 'Y is Lamb's parameter 

(1.4) 

In this expression a is the Earth's radius and h is the atmosphere's equivalent 

depth. 

The physically imposed condition that <I> be bounded at the poles Jt 

allows this eigenvalue problem to be solved numerically. Specifying sand (J as 

for the theory for thermally forced tides produces the eigenvalue solutions 'Y (or 
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Antisymrnetric Symmetric 

Figure 1.4: The patterns of positive and negative regions for the spherical harmonic functions 

with n=5 and m=O,l,2,3,4,5. 

mean depths h) along with their corresponding eigenfunctions 8~,8) called Hough 

Functions. Properties of these Hough functions have been extensively documented 

[Longuet-Higgins 1968]. 

Some tidal modes propagate vertically and this can be observed by measuring 

a change of phase with height. The vertical wavelength of these tidal modes is the 

vertical distance through which the phase of the oscillation changes by 27r. 

From the basic properties of the vertical structure equation derived in Andrews 

et al. [1987] 

d
2
W [N2 1 1 --2 + - - --2 W = Forcing Terms, 

dz gh 4H 
(1.5) 

it can be seen that when 0 < h < 4N2 H2 / 9 a sinusoidal solution exists and Andrews 

et al. [1987]shows the wavelength ofthis sinusoid and hence vertical wavelength (Av) 

is given locally by 

(1.6) 

where h is the equivalent depth parameter, N a buoyancy frequency and H is 
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the scale height. If h is negative (or > 4N2 H2/ g) then the wave is evanescent 

(vertically trapped) and the oscillation can only exist near the forcing region (lower 

stratosphere). The diurnal tide's vertically propagating modes are all evanescent 

poleward of 30° [Longuet-Higgins 1965, Chapman & Lindzen 1970] and hence should 

not be observed at meteoric heights over New Zealand. The equivalent depth h is 

positive for the semi diurnal tide and the (lower stratosphere) dominant mode (2,2) 

has h ~ 7.S5 km. For this value N 2 /gh ~ 1/4H2 and large vertical wavelengths 

exist. At meteoric heights (SO-110 km) the dominant mode of oscillation has been 

shown to be (2,4) with a vertical wavelength of ~ 40 km [Lindzen & Hong 1974]. 

These higher modes tend to dominate due to the presence of vertically varying 

background winds and meridional temperature gradients causing mode coupling of 

the lower modes (2,2) and (2,3). 

In general a number of modes, each with a different vertical wavelength, may ex­

ist and, as a consequence, the tide's vertical phase profile may not display a constant 

change with height and appear rather complicated. Reflection characteristics in the 

region, due to temperature or density changes, may cause a mode to propagate 

downwards further altering the apparent model content [Fellous et al. 1974]. 

Studies by Forbes [19S2] and Manson et al. [19S9] have shown strong seasonal 

variations in both the amplitude and phase of the semi diurnal tide. 

1.2.2 Planetary Waves 

Planetary (including Rossby) waves are a group of zonally propagating atmospheric 

waves of a global scale and hence are the most important for large-scale meteorolo­

gical processes. These waves have periods of more than one day and are unlike the 

thermally driven tides of the previous section as they do not appear to be main­

tained by any forcing effects [Andrews et al. 19S7]. Holton [1992] says that the 

Rossby wave is an absolute vorticity conserving motion, owing its existence to the 

latitudinal variation in the Coriolis force. 

Holton [1992]describes Rossby wave propagation by considering a closed chain 

of eastward moving fluid parcels which are initially aligned along a circle of constant 

latitude (<Po). 

Defining absolute vorticity fI to be given by fI = ( f where ( is the relative 

vorticity and f is the planetary vorticity, it is apparent that if the chain of air parcels 
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(in the northern hemisphere) undergoes a sinusoidal meridional displacement then, 

for displacement towards the equator the air parcel experiences reduced planetary 

vorticity. Therefore, in order to conserve absolute vorticity, the air parcel spins up 

cyclonically (refer figure 1. 5). 

The northward motion induced ahead of the parcel then deflects its motion 

poleward, through its undisturbed latitude (cPo). Once poleward of latitude cPo, the 

parcel spins up anticyclonic ally and southward motion ahead of the parcel deflects 

the parcel back towards, and eventually through, latitude cPo. Thus the air parcel 

cycles back and forth about its undisturbed latitude due to the variation in f, 
with latitude, exerting a torque on the displaced air. The direction that Rossby 

waves propagate can be deduced from figure 1.5. The southward motion behind the 

cyclonically spinning parcel displaces that section of the contour equatorward and 

thereby shifts the wave trough westward. Increased northward motion west of the 

anticyclonic parcel generates the same effect. 

Figure 1.5: The reaction of an air parcel to meridional displacement. Displaced equatorward 

an eastward moving air parcel spins up cyclonically to conserve absolute vorticity. Northward 

motion ahead of the parcel then deflects the parcel polewardback toward and then through its 

undisturbed latitude (dashed line). The reverse process then occurs. (After Salby [1996]) 

Planetary waves which are observed by the AMOR winds system and discussed 

later in this thesis include the 2-day, 4-day, 5-day and lO-day oscillations. 
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1.2.3 Geostrophic Winds 

The reference frame in which atmospheric motion is observed (the Earth) is rota­

tional. In such frames scalar quantities (pressure, temperature etc.) appear the 

same as they would in an inertial reference frame, however vector quantities do not. 

The vectors which describe an air parcel's motion must be corrected to accolmt for 

the acceleration of the Earth's reference frame [Salby 1996]. 

By considering a reference frame rotating with an angular velocity n it becomes 

apparent that a vector A which is constant in that frame must rotate when viewed 

in an inertial frame (figure 1.6). 

Figure 1.6: A vector A, which is fixed in a rotating reference frame, changes in an inertial 

reference frame. (After Salby, 1996) 

During an interval dt, A will change by a vector increment dA, which is perpen­

dicular to the plane of A and n and has a magnitude of 

IdAI = AsinO· ndt, (1.7) 

where 0 denotes the angle between A and n. Therefore in an inertial reference frame, 

the vector A changes at a rate given by 

I ~~I = AnsinO, (1.8) 

in a direction as described earlier. It is evident from this expression that the time 

rate of change of A apparent in an inertial reference frame is described by 

(1.9) 
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This expression can be expressed more generally to account for a 

change dAj dt in the rotating frame as 

(
dA) dA 
dt i = dt + n X A, 

in the inertial reference frame. 

rate of 

(1.10) 

By considering the position T of an air parcel, from equation 1.10 it is apparent 

that the parcel's velocity U = d1' j dt is given by 

Ui = u+ n X T, (1.11) 

and the acceleration apparent in the inertial frame is similarly given by 

( dd~i ) i = dd~i + n X Ui· (1.12) 

By incorporating the velocity apparent in the inertial frame equation 1.12 is 

(dUi) (dU ) dt i = dt + n X U + n X (u+n X 1') , 

du dt + 2n X U +n X (n X T) . (1.13) 

The expression given in equation 1.13 indicates that two correction for 

the acceleration of an air parcel arise as a result of the Earth's rotation. The term 

2n X U is called the Coriolis acceleration. This acceleration is perpindicular to both 

the motion of air parcel and the Earth's angular velocity. The other correction 

term n X (n X 'f) is called the centrifugal acceleration and is generally absorbed 

into effective gravity. 

The Navier-Stokes equation (1.14), for describing the acceleration (with respect 

to a frame rotating with a frequency n) of an air parcel of velocity u, considers all 

forces on the air parcel 

Du 
Dt 

2n X u 
1 

--Vp n X (n X r) - gk+F. 
p 

(1.14) 

In addition to terms already described, _lVp arises from pressure gradients and p 

-gk accounts for the influence of true gravity acting on the parcel. The final term 

F is a friction per unit mass term. 

A scale analysis of equation 1.14 at midlatitudes reveals that the Coriolis and 

pressure gradient forces are in approximate balance. As a consequence the following 
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much simpler equations which are called the geostrophic wind expressions may be 

used in these regions. 

1Bp 
fVF:::3 -

pBx' 
1Bp 

pBy' 
(1.15) 

where f 20 sin ¢ is the Codolis parameter and u and v are the mean winds in 

zonal (west-east) and meridional (south-north) directions respectively. 

These equations show that, at midlatitudes, longitudinal and latitudinal tem­

perature gradients generate meridional and zonal winds respectively. 

1.3 Meteor Theory 

Meteors can often be observed as streaks of light in the night's sky when a meteoroid 

impacts upon the Earth's atmosphere at a large velocity imparting some or all of its 

energy as heat, light and ionisation. The primary source of meteoroids are comets. 

At perihelion comets are heated by solar radiation and the volatile components are 

evaporated and ejected from the comet. Meteoroids are particles of dust which are 

dislodged from the comet as the gas evaporates from its surface. Some of these 

meteoroids eventually collide with the Earth, ablating in our atmosphere over a 

range of heights, from 70 - 110 km, depending on their size and velocity. 

Meteor ionisation trains can be categorised into either of two types: overdense 

or underdense. Most of the echoes observed by the AMOR system belong to the 

underdense class where the electron density in the train is low enough that secondary 

radiative and absorptive effects on the incident wave can be neglected allowing the 

electrons to be thought of as independent scatterers. During ambipolar diffusion the 

diameter of the trail approaches the radar wavelength, interference occurs between 

the reflections from electrons at the near and far sides of the meteor train causes 

the returned power to be reduced. 

IT the electron density within the meteor train is large enough, then secondary 

scattering from electron to electron becomes important and the electrons can no 

longer be thought of as independent scatterers. As a result, the incident wave 

cannot penetrate freely and the dielectric constant, defined for an ionised gas as 

N).2 
K = 1- --Te , 

Ii 
(1.16) 
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(where N is the number of electrons per cubic meter, re = (o-e/47f)1/2 is the classical 

electron radius and>' is the wavelength of the incident radiation) is negative. Such 

meteor trains are classified as overdense. 

The transition from underdense to overdense meteor trains occurs at a critical 

line density, qtr. The critical volume density, Nc, is defined to be that which gives 

K, = O. From equation 1.16 and the following expression for the electron volume 

density: 

N(r, t) = (4D q 2) exp - [r2/ (4Dt + r;)] , 
7f t + ro 

(1.17) 

(where ro is the initial radius, at time t = 0, of the trail, D is the ionic diffusion 

coefficient and q is the electron line density) one obtains the expression 

(1.18) 

and the transitional value of q, qtr, is found by setting the square of the critical 

radius2 r~ = 4Dt + r5 = >.2/47f2 to give 

exp(l) 14 1 
qtr = c:::: 2.4 X 10 electrons m- . 

4re 
(1.19) 

A meteor train with a line density q > qtr is defined to be an overdense trail and 

will yield overdense type echoes. Meteor trains with q < qtr produce underdense 

type echoes. 

As underdense trails diffuse, the returned power decreases exponentially over a 

time period typically lasting a few tenths of a second. The echoes received from 

over dense trains may last for several seconds and generally become quite distorted 

as they are acted on by local wind and turbulence. As a probe for measuring winds 

the underdense echoes produced good results (because the ionisation trains retain a 

linear shape) however only wind velocities calculated from the initial, 0.3 seconds, 

of overdense type echoes were used in measurements later described. 

1.3.1 The Formation of a Meteor Thain 

As the meteoroid enters the atmosphere it encounters the atmosphere's increasing 

density. Heat from atmospheric collision causes atoms to be vaporized from the 

surface of the meteoroid. In the case where the meteor's radius is less than the mean 

2The radius within which K, ::; O. 
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free path of the air particles, the impact momentum and energy are transferred to 

the meteor by direct hits of the air particles. As no air cushion is produced there 

is a relatively high coefficient of heat transfer and only a small percentage of the 

meteor's kinetic energy is needed for complete vaporisation. Hence these meteors 

disintegrate in a relatively short time. A second scenario relates to larger meteors 

whose radius is much larger than the mean free path of the air molecules. Under 

this condition a hydrodynamic cushion or air cap forms in front of the meteor which 

reduces the heat transfer coefficient3 allowing the meteor to penetrate more deeply 

into the Earth's atmosphere. 

Considering an ablating meteoroid with mass m and density Pm) it is possible to 

define a dimensionless shape factor, A, such that the effective cross-sectional area 

of the meteor is given by 

(1.20) 

A ~ 1.2 for a sphere4 • In general, irregularly shaped meteoroids may have a 

mean A similar to that for a sphere due to the meteoroid's rotation , A ~ 1.0 

for any meteor. 

The meteoroid's momentmn is transferred to the air particles that it encounters 

along its path. IT a meteoroid moves with a velocity V for a time dt the mass of air 

(dmo.) intercepted by the body will be 

1 

dmo. = A (:) 3 Po. vdt, (1.21) 

where Po. is the density of air. 

The air particles in this volume will therefore gain momentum at a rate of 

rvdmo. 
dt 

(1.22) 

per second where r is the dimensionless drag coefficient, which generally lies between 

0.5 and 1.0. 

The meteoroid will lose momentum at a rate of m~; per second and therefore 

the rate of momentum per lmit mass gained by the air particles, is given by 

3The heat transfer coefficient may decrease by as much as two orders of magnitude . 
.1 

<Iofor a sphere A (is) 3 ~ 1.2. 



16 

dv (m)i 7TL- = fA - P V
2 

dt a , Pm 
and dividing both sides by m gives 

dv 

dt 
fA 2 

2 sr;;;: Pa V , 
~~m 

which is commonly referred to as the Drag Equation. 
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(1.23) 

(1.24) 

Along the meteoroid's path much of the kinetic energy is converted to heat; how­

ever usually this energy also produces light and the ionisation of the surrounding 

atmosphere. There are many processes which govern the ablation of the met­

eoroid and these are dependent on the meteoroid's size, composition and height5
• 

Independent of process is relevant for a particular meteoroid at a particular 

time, equation 1.25, called the differential mass equation, can be obtained if it is 

assumed that the rate of loss of mass is proportional to the kinetic energy given to 

the surrounding air mass. 

dd7 = -~: G:)' Pav ', (1.25) 

where ~ is the heat of ablation per unit mass of the meteor and A is the heat transfer 

coefficient. 

As the ablated atoms are moving at the same velocity as the meteoroid, their 

kinetic energies will range from a few tens, up to several hundred electron volts 

(due primarily to their large range in masses). These energies are sufficiently large 

enough to ionise the surrounding gases and the energy of the ionisation created per 

second is 

(1.26) 

where T q is a dimensionless ionisation efficiency factor and ry is the mean ionisation 

potential per atom. 

Again substituting for in the differential mass equation (1.25) the ionisation 

equation which describes the number of electrons produced per unit of path length, 

q, is obtained 

q 
---------------------------

~A (m,)i 4 

Tq 4~rl Pm PaV
. 

(1.27) 

5The atoms which form the meteoroid may leave the body surface without ml'>n.a"""u,,.W interfer­

ence when the mean free path of the air particles is greater than the meteor's radius. 
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It is this train of electrons that reflects the electro-magnetic pulse transmitted 

by the radar. 

1.3.2 Radio Wave Reflection from a IVleteor Train 

Underdense meteor echoes are characterised by a rapid increase to maximum amp­

litude level, followed immediately by an exponential decay, often with Fresnel dif­

fraction oscillations superimposed on the decay. Figure 1.7 shows the geometry of 

a meteor train relative to a transmitter and receiver assumed close together. The 

following analysis of radio wave reflection from meteor trains assumes they are com­

posed of stationary electrons and the diameter of the train is much smaller than 

the wavelength of the radar. 

Meteor Path 

Transmitter / Receiver 

Figure 1. 7: The geometry of a meteor train relative to the radar transmitter I receiver station. 

The scattering cross-section of a free electron is a e = 7rr; sin2 r where r e is 

the classical radius of the electron and r is the scattering angle. backscatter 

r = 7r 12, implying a e ~ 1 X 10-28 m2
• The power flux incident on the train is 

<Pi = PT GT /47rR2 where PT is the transmitted power, GT is the antenna gain in 

that direction relative to an isotropic radiator and R is the range to the train. The 

effective absorbing area of the receiving antenna is GR A2/47r, where GR is the gain 

of the receiver relative to an isotropic radiator. Thus the power appearing at the 
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input of the receiver due to the backscattered signal from one electron is 

PrGT O"e GR ..\2 

41f R2 4 1f R2 4 1f 

PT GT GR ..\20"e 

64-rr3R4 
(1.28) 

As all the electrons a line element, ds, will scatter in phase (assuming the 

width of the train at formation is much smaller than ..\) the field vectors, rather 

than the power fluxes be added. At the receiver peak amplitude of the 

field due to a single scattering electron is (21' Pe)1/2, where T is the receiver input 

impedance. The absolute phase of the returning wave, which has covered a distance 

2R, is included in the time varying expression sin (21fJt 41fR/..\) , in other words 

the change in R produces a modulation in the phase of the returning wave. Now 

an expression for the instantaneous amplitude of the received signal from all the 

electrons in the line elem~mt ds, may be written as 

ds, (1.29) 

where q( t) is the number of electrons per meter path (the electron line density). 

From integration of above expression the total field due to the electrons in 

the trail between Sl and 8 can be obtained. 

(1.30) 

For simplicity q( t) is assumed constant along the train and R is approximated by 

R ~ Ro + 8 2
/ 2Ro. In addition following transforms are made X 21f jt - 41f Ro/ ..\ 

and 2s = x (Ro..\)1/2 which 

AR = (2 T Ro ..\) ~ (t) i X 

• ( 1f x2) d 
2 q Xl sm X - -2- x. 

The Ftesnel integrals of optical diffraction theory are 

jx (1fe) j'r (1fe) C = -00 cos -2- de and S = -00 sin T de· 

Substituting these into equation 1.31 gives 

1 
"2 

AR = -'---2 ----'-- q(t) [C sin X - S cos xl . 

(1.31) 

(1.32) 

(1.33) 

Because the maximum oscillation frequency of the Fresnel integrals is much less 

than the radio frequency J a time-average over an interval which is small compared 
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to the smallest oscillation period of C and S is taken. This gives an expression for 

the quasi-instantaneous power, PRJ received from the electrons in the trail between 

sand S1 

PR = 
2r 

(1.34) 

which upon substituting equation 1.28 and parameters in 81 units yields (in units 

of watts) 

(1.35) 

This is the basic expression governing the echo power from an under dense train 

and it has exactly the same form as that describing the optical diffraction pat­

tern produced from a Fresnel straight edge optical experiment (neglecting any time 

dependence of q). 

The term 

(1.36) 

has the value of unity when evaluated from s -00 to +00. Although the ap-

proximation of R doesn't hold true for parts of the train that are far from the to 

(specular reflection) point, this term is close to unity when taken over a few Fresnel 

zones either side of to. As a consequence the more remote sections of the train do 

not contribute significantly to the echo power. 

The Fresnel behaviour of received echoes limits the resolution with which to can 

be located to the length of one Fresnel zone. The length of the first Fresnel zone is 

given by 

VRA 
2 ) (1.37) 

which equates to a length of ~ 1 km for the AMOR system. 

Hence the limitation in height resolution can be approximated by cos¢ (km) 

where ¢ is the elevation angle. For typical values of ¢ the associated maximum 

height resolution ranges between 0.5 and 0.9 km. 

1.4 The AMOR Meteor Radar 

The AMOR winds system is an additional development to the AMOR meteor orbit 

radar which has been in operation for nine years at Birdlings Flat near Christch-
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in the South Island of New Zealand at 172° 39 'E, 43° 34 'So To date AMOR has 

1"O""T?10r! the heliocentric orbits for almost one million Earth-intersecting 

oids. Unique to the AMOR system is its narrow fan shaped radiation pattern which 

V<LaU.L"''' the implicit location of the meteor train target. The radar gain obtained 

from COllC€mlJrat all the transmitted power into a narrow beam enables echoes to 

be recorded from meteors down to a limiting diameter of about (the value is 

dependent) 80 {tm [Baggaley & Bennett 1996]. 

UUVLC'~'" between the occurrence of echoes on spaced receivers allow the calcu­

lation of meteor velocities and gives a significant increase in the number of 

velocity measurements when compared with previous methods which relied entirely 

on diffraction analysis. Data from the remote sites (with an approximate 

separation of 10 km) are transmitted back to the Home site via FM Data links which 

operate at 39.0 MHz (vertically polarised) and 39.3 MHz (horizontally polarised) 

for the and Nntt sites respectively. The meteor signal data from all receiving 

antennas are stored on the computer's hard disk for later reduction. 

1.4.1 Transmitter 

The AMOR transmitter building is located approximately 500 m from the building 

containing control equipment and receivers and generates a 60 kW 66 {J,S duration 

pulse at 26.2 MHz when triggered by the transmitter trigger signal sent from the 

receiver building 2.64 ms. 

1.4.2 ilerials 

The transmission aerial is a 40 wavelength long co-linear broadside array (refer 

figure 1.9) which confines the transmitted radiation power to a :=:::::i 2° (FWHM) fan 

shaped pattern providing equal coverage in both the North and South directions. 

Although the radiation pattern is constrained in azimuth it is broad (15°- 75°) in 

elevation with north/south symetrical radiated power maximum at elevation 

angles of about 30° and 120°. 

There are five aerials in total of which three are located at the Home 

site (refer figure 1.10) and provide interferometry for measuring the elevation angle 

of the returned signaL The remaining two receiver aerials are at the remote sites, 
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Nutt and Spit, and are used in making meteor orbit and time of flight speed meas­

urements. 

1.4.3 Receivers 

There are five 26.2 MHz receivers in the AMOR radar system each of which has an 

input impedance of 50 n. The three Home-site elevation measuring receivers are 

fed via underground 50 n coaxial cables from the receiving antennas. Each FM 

receiver is fed via 50 n coax from a 39 MHz 6 element Yagi antenna. A 24.6 MHz 

crystal provides a local oscillator reference with which the received signals are mixed 

then low-pass filtered to produce signals at an Intermediate Frequency (LF.) of 

1.6 MHz. The receivers (with bandwidths of 30 kHz) are partially blanked during 

the transmitter pulse. This prevents damage to the receiver circuits whilst still 

allowing sufficient signal to capture the phase of the grolmd pulse. 
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Figure 1.8: The amplitude of a meteor echo (top) from diffraction theory displaying a Fresnel 

oscillation (diffusion has been neglected). The amplitude and of the echo can be expressed 

simultaneously with a Cornu Spiral (bottom). The length of a vector anchored at point A with 

its head following the curve indicates the echo's amplitude and the vector's direction indicates the 

phase. 
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Figure 1.9: The transmitter array running east-west for approx 500 m. 

Figure 1.10: One of the three receiver antennas located at the Home site. Antenna 1 is in the 

foreground with the receiver building to its right. Two other identical antennas running parallel 

to antenna 1 can be seen in the left background. 
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Chapter 2 

The AMOR Meteor Winds System 

The AMOH. meteor radar, located at Birdlings Flat near Christchurch on the South 

Island of New Zealand, has been measuring meteoroid orbits since 1990 (refer figure 

2.1). There are two buildings at the Birdlings Flat Home site, one houses the radar 

control systems and receiver equipment while the other houses the transmitter. 

The transmitted signal is radiated in both northward and southward directions 

from a broadside array at the Home site and any subsequent echo can be detected 

on three local receiving antennas, forming a dual interferometer, located near the 

receiver building. For meteoroid orbit studies two remote sites called Nutt and 

Spit located approximately 10 km from the Home site enabled the measurement of 

parameters from which meteoroid orbits could be derived, namely the meteoroid'p 

speed, direction and elevation angle. 

Prior to the work presented in this thesis, measurement of meridional wind 

speeds at meteoric heights by AMOH. was not possible as the phase and hence the 

frequency of the returned signal was not measured. Hence the Doppler shift of 

the transmitted signal, which is interpreted for a wind measurement, could not be 

obtained. To ensure that the current system remained unaffected by the addition 

of a meteor winds component, it was decided to implement the winds facility as 

a pseudo stand alone feature having as small an impact on AMOH. as possible. A 

separate computer with its own dedicated software was required to control the data 

collection process. 

The signal, taken from the intermediate frequency output of receiver 1 (refer 

figure 2.3), is decomposed into its in-phase and phase-quadrature components with 

the addition of new hardware referred to in thesis as the Doppler module. Data 

from the Doppler module are then transferred into the winds control computer 

through a process called Direct Memory Access (DMA). 

Where it seemed advantageous, use was made of the existing AMOH. system. As 

25 
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Figure 2.1: The local area of the AMOR meteor winds radar showing the location of the two 

remote sites relative to the Home site. 

a result the detection of an echo and the determination of its spatial location is 

achieved with the original AMOR system; hence the winds system is reliant on the 

orbit system being operated simultaneously. Communication lines between the orbit 

and winds control computers enable synchronised data capture and the transference 

of an identification number which is stored along with the echo data to be used in 

the analysis process when matching the orbit and wind echo data. 

The line of sight (radial) velocity of the wind measurement is directly propor­

tional to the Doppler shift experienced by the transmitted pulse. By measuring 

the elevation angle of the wind measurement the horizontal wind velocity can be 

obtained, by projection (refer figure 1.2), if no vertical motion is assumed. This 

assumption is discussed in more detail in section 2.3.5. 



2.1. Hardware for Doppler System 27 

2.1 Hardware for Doppler System 

The new meteor winds system required the development of the following additional 

hardware to the existing AM OR radar system. 

• A Doppler module which resides in the receIver rack and produces phase 

components of the received signal. 

• An 80386 computer with 8 MBytes of RAM and a 650 MByte hard disk drive 

for data storage. 

• An analogue to digital converter / direct memory access card fitted inside the 

computer enabling storage of data to computer memory. 

The first and last components were constructed during this work and are dis­

cussed in detail in this chapter. The computers are housed inside metal boxes and 

stacked vertically in a frame (refer figure 2.2). 

2.1.1 Doppler Module 

The circuitry which takes as input the analogue signal from one of the AMOR re­

ceivers and produces digital phase and phase-quadrature values is referred to as the 

Doppler module. The Doppler module (refer figure 2.3) operates at the receiver 

intermediate frequency (LF.) of 1.6 MHz and is located in the AMOR receiver rack 

(refer figure 2.4). 

The Doppler module makes use of two phase sensitive detector (Motorola's 

MC1496) components to decompose the signal, as received by AMOR, into two 

orthogonal components, in-phase and phase-quadrature. Each phase sensitive de­

tector (PSD) requires two input signals, producing output voltages which are pro­

portional to the signal amplitudes and the cosine of the phase difference between 

them. Should the two signals be at the same frequency they would have a constant 

phase difference and the output voltage would be constant: however if the two input 

signals have different frequencies then the PSD produces a varying voltage at the 

frequency difference (figure 2.5). 

The in-phase component is obtained by comparing the amplified signal at the 

LF. from receiver 1 and a beat oscillator at a frequency near 1.6 MHz. To get the 
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Figure 2.2: AMOR and Winds Control computers at the field station. 

quadrature component the beat oscillator is moved in phase by 900 (figure 2.6). 

The receiver local oscillator circuits are separate from the transmitter frequency 

control circuits and the effective reference frequency (the sum of the 24.6 MHz local 

oscillation and the 1.6 MHz beat oscillation frequencies) is adjusted to be close to 

that of the transmitter. Unless methods were adopted to ensure oscillator stability, 

drift could cause the frequency sum to vary significantly - up to a few hundred hertz, 

which case the transmitter frequency (h) and the reference frequency (fref) may 

differ by an amount .6..f which can be decomposed into an integer multiple of the 

sampling frequency (nfs) and a residual .6..fr (h = fref ± nfs + .6..fr ). Provided .6..fr is 

not near to the Nyquist frequency (fN) the Doppler shift (fD) is unambiguous (refer 

2.7). 

Prevention of wind speed ambiguities is accomplished by phase locking the 

1.6 MHz beat oscillator to the transmitter frequency. This is achieved by com­

paring the intermediate frequency signal of a low gain receiver (discussed in section 
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Figure 2.3: The mixer and low pass filter inside the radar receivers provide the signal at an 

intermediate frequency of 1.6 MHz to the Doppler module. The Doppler module produces phase 

and quadrature components. 

2.1.3), connected to a low gain antenna with the 1.6 MHz beat oscillation using 

exclusive-or logic as a PSD. The output of this, during the transmitter pulse, is 

integrated and then applied to a variable capacitance diode which controls the 

6.4 MHz oscillator. The 1.6 MHz beat oscillation is produced by frequency divi­

sion of the 6.4 MHz oscillation using a Johnson counter. Further circuitry in the 

Doppler module provides a 95 reference frequency offset to prevent wind speed 

ambiguities. 

2.1.2 Analogue to Digital Converter and Direct Memory Access Card 

The Analogue to Digital Converter (A/D) and Direct Memory Access (DMA) card 

(refer circuit diagram, figure 2.14) resides inside the winds control Pc. The ana­

logue data for both phase channels are converted into their 8-bit digital equivalent 

values, at 20 ~s intervals, with two 7821 analogue to digital (A/D) converters. The 

conversion is applied to both channels simultaneously, the values are buffered before 

being read sequentially and stored in the computer's memory. 

The microprocessor controlled Direct Memory Access (DMA) card reads data 

from the A/D cards for writing to memory. Before a DMA transfer can be achieved 

the microprocessor requires initialisation by the data capture software. Once ini­

tialised the DMA transfer process waits until bit #8 on the DMA card's output 

port goes high; this is for timing purposes. For each transmitter pulse 100 D:\IIA 

transfers at 20 ~s intervals are initiated for each channel. The 20 ~s timing is 

achieved on the DMA card with the circuit shown in figure 2.13. 
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Figure 2.4: AMOR receiver rack showing the location of the Doppler module. Co-axial connec­

tions from the receivers video outputs are connected to the four channel oscilloscope for viewing 

echoes. From left to right the middle rack houses the local oscillator outputs, the three interfero-

meter the two link receivers and finally the Doppler module. 

2.1.3 Ground Pulse Receiver 

The transmitted ground pulse signal is required by the AM OR winds system to 

lock the 1.6 MHz beat oscillation and is received at the receiver 

building via a simple antenna (single folded dipole) and low gain receiver (refer 

circuit diagram figure 2.15). A MOL SBL-1 mixer produces the 1.6 MHz LF. from 

the 26.2 MHz received transmitter ground pulse signal and the 24.6 MHz local 

oscillator. The output of this receiver is a square wave with a 1:1 mark to space 

ratio at LF (refer figure 2.8). 

2.1.4 Oscillator Lock and Frequency Offset 

It was found advantageous to prevent drift of the 1.6 MHz beat oscillator as it may 

cause the transmitter frequency to appear near the Nyquist frequency (fN of figure 
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Figure 2.5: Schematic of a phase sensitive detector. The frequency of the output 

to the frequency difference between the two input signals. 
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is equal 

2.7) and subsequent wind measurements may become ambiguous. The solution 

required that the beat oscillator be phase-locked to the transmitter and this was 

achieved using the circuit detailed in figure 2.16. This section details how this 

circuit works. 

The signal from the Ground Pulse Receiver (GPR) is applied to one input of an 

exclusive-or gate (52) which acts as a phase sensitive detector. (The GPR output 

circuit is designed to give a square wave output with a 1:1 mark to space ratio.) 

The other input is derived by a complicated divide by 4 circuit from the 6.4 MHz 

controlled oscillator (the divider circuit is explained below). The Transmitter Trig­

ger Pulse (TTP) is applied to the first of two monostable delay circuits (56), which 

triggers the second (57) approximately 100 ILS after the leading edge of the TTP. 

The output of the second, 60 /LS long, enables the tri-state inverter (55) for this 

period, in the middle section of the transmitter pulse as received from the GPR. 

The initial (rv 100 /Ls) delay is to compensate for delays occurring in the cable to the 

transmitter, the transmitter itself, the ground path and the GPR and is adjustable. 

effect of this is to apply the output of the XOR gate (52) to the integrator 

(54) only during the TX pulse, at other times the integrator input is isolated. If 

the input to the integrator is not enabled at all the integrator output level will 

return to the central value of 2.5 V with a time constant of 0.1 s. The output 

of the XOR gate depends on the phase relationship between its two inputs. If 

these are exactly in phase the output is zero, if they are at 1800 it is 5 V and at 
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Phase-Quadrature 

Receiver 1 

In-Phase 

Figure 2.6: Phase detector arrangement as used by AM OR to provide wind data. 

intermediate phase angles it consists of a train of pulses whose mark to space ratio 

and the average level of which varies linearly with phase angle at values 

of between 0 and 5 V, i.e., at a phase relation of 900 the average output is 2.5 V 

(refer figure 2.11). At other phase angles (and hence average values) the output 

of the integrator is increased or decreased during the 60 f-ts sampling time and 

then remains approximately constant during the interval between pulses, relaxing 

towards 2.5 V with the 0.1 s time constant mentioned above. The circuit constants 

and timing intervals etc. mean that the output will vary by approximately ±10 V 

over the range of phase angle if this is kept constant. 

This output is applied through an inverting buffer (85) to the variable capacit­

ance diodes in the '"'-'6.4 MHz crystal oscillator which provides a variation range of 

approximately 4 kHz. The 330 kO resistor is connected to cause the input signal 

to the gain of the oscillation transistor when positive voltages are applied 

to maintain the oscillation at a sufficient level as, under this condition, the small 

capacitance of the diodes leads to reduced feedback in the oscillator circuit. (The 

other two operational amplifiers, 88 & 89, connected to the buffer play no part 

during normal functioning and their operation is described below). The output of 

the oscillator is passed through buffers (810 & 811) to the twisted ring counter (819 

& 820) which divides the frequency by four, but in addition supplies two signals 

having a 900 phase difference which are reference signals in quadrature to be used in 

the frequency generator (821 & 822). In addition the buffer, 812, supplies a 
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Tx 

Echo 

fT fE 
Frequency 

Figure 2.7: The transmitter frequency (f.r) and the reference frequency (fref) may vary. However 

fT and echo frequency (fE) will both be aliased preserving the Doppler frequency (.6.fD ). 

6.4 MHz reference signal to a similar twisted ring counter on the two channel phase 

and quadrature phase sensitive detector. The frequency offset generator comprises 

815,816,817,818,821 and 822. Its function is to advance the phase of the 1.6 MHz 

signal that is applied to the XOR, 82, by 90° each TTP. The effect of this is that the 

reference signal as applied to 82 at the sampling intervals appears to be increased 

in frequency by one quarter of the transmitter pulse rate with the result that when 

the circuit locks the crystal oscillator to the 1.6 MHz output of the ground pulse 

receiver the 1.6 MHz reference frequency it provides is lower by this amount. This 

circuit may be disabled by taking pin 5 of 816 to ground so that the phase shifter 

0.61-15 

Figure 2.8: The output of the ground pulse receiver is a square wave with a frequency equal to 

the transmitter frequency (at an I.F. of rJ 1.6 MHz). 
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816, 817, 821(a-d) and 822(a-c) remains fixed in one state. 

The integrator (84) produces an average output dependent on the phase dif­

Tar,O""I'a between the input pulses and the effective 1.6 MHz reference which, when 

applied to the varactor diodes, corrects the 6.4 MHz oscillator frequency so that 

it remains locked. The main integrator capacitor and resistor circuit (with a time 

constant of 0.1 s) is augmented by a short time constant (50 /1.s) circuit to provide 

a short correction pulse to assist maintaining lock. However the circuit will not 

capture the oscillation if more than a very small frequency difference exists. The 

circuit of 88 is provided for this purpose; 89 is just a buffer. The 88 circuit incor­

porates a "'iVien Bridge" network in a way that makes it a broadband filter peaking 

at about 0.3 Hz, and high frequency and dc components of the input are not trans-

to the output of 89. 'When the circuit is locked the output is essentially a 

dc signal with high frequency components which are too small to affect the circuit 

significantly when applied back to the input of 85. But when the circuit is not 

locked the phase relation is random and the average of the phase signals applied by 

83 to the input of 84 is constant at 2.5 V. In this state the only effective input to 

85 comes from 88 and the loop 85 to 88 is an oscillator circuit with a frequency of 

approximately 0.3 Hz. The oscillation builds up until limited by the diodes (at the 

of some distortion). The output of 85 sweeps the crystal oscillator across 

frequency range of approximately 4 kHz at a slow rate, When the reference 

and received frequencies become nearly equal the phase differences are similar for 

several successive samples and the average outputs from 83 cause the integrator to 

produce a correction signal which maintains the oscillator frequency constant and 

rise to a locked condition in which the whole locking circuit reacts to reduce 

the gain of the buffer, 85, to zero so far as external "perturbing" signals from 88 

are since the phase detector and integrator produce a signal to cancel 

0.3 oscillation stops abruptly and the RC circuits discharge slowly. 

If the transmitter pulses are not received for any reason, the circuit immediately 

begins searching back and forward and lock is reestablished in about 1 s once the 

signal re-appears. 
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2.1.5 Phase Sensitive Detectors 

Motorola MC1496 Phase Sensitive Detector (PSD, [Motorola 1990]) when oper­

ated under its normal conditions takes as input two signals and provides an output 

voltage in the range 0 5 V which is proportional to the signal amplitude and 

cosine of the phase difference between the signal and the reference oscillation. A 

constant voltage is produced if the signal is at the same frequency as the reference 

oscillation, however if they are different the PSD output voltage varies at the 

quency difference of the two input signals. By having a second 1496 whose reference 

oscillation is at 90° to the other, two outputs are obtained which are respectively 

proportional to the in-phase and phase-quadrature components of the input. 

The 6.4 MHz clock pulses from the oscillator locking circuit of the previous 

section are applied to a twisted ring (refer figure 2.12) which not only divides the 

frequency by four but produces two signals which are 90° out of phase with respect 

to each other. The outputs A & B are in phase with the clock pulses and lead the 

outputs C & D by 90°, providing reference signals for in-phase and phase-quadrature 

channels respectively. Pins 8 and 10 are the positive and negative inputs and pins 

6 and 12 are the positive and negative outputs. 

2.1.6 DMA 

The PC offers Direct Memory Access (DMA) via the DMA controller chip (Intel 

8237-5) on the PC motherboard, to allow high-speed data transfer of up to 476 

kBytes per second. The analogue to digital converter along with the necessary DMA 

circuitry to operate in byte transfer mode by winds PC is given in 2.14. 

To transfer a byte of data (assuming that the DMA devices have been initialised) 

the data are applied to the input port from the AID converters and a DMA Request 

signal is sent via bit #4 of the output port to the DMA controller which sends a 

hold request to the CPU. At the end of the current bus cycle the CPU sends back a 

hold acknowledged signal to the DMA controller indicating that the bus is no longer 

being used. The DMA controller can now have control of the system bus to drive 

the address bus and control bus which enables transfer of data from the AIDs to 

memory. When the data has been copied to memory a Data Acknowledge (DACK) 

signal returns and the request is reset. are two AIDs on the board (one 

for each channel) so two DACK pulses are returned from the DMA controller for 
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every request sent and two bytes are stored in memory (refer figure 2.9). One sweep 

(pulse interval) consisting of 100 of these two byte transfers is initiated by sending 

DMA request pulses until the DMA counter reaches zero. The DMA Request pulse 

goes low at the negative edge of the second DACK pulse and stays low until driven 

high from the 20 fJ,S clock pulse produced by the circuit in figure 2.13. 

f----- 20 ilS -----i 

DMA Request ____ ~rl ----------~ __________ ~ 
DMA Acknowledge 

_------J~L.....--__ ~_ 
.. 

Time 

Figure 2.9: DMA Request timing diagram showing the two bytes transferred per DMA Request. 

For DMA transfers to occur, first the DMA controller must be informed of the 

following: 

• Whether data are to be written to or read from computer memory 

• Type of data transfer i.e., burst, byte or demand transfer mode 

• DMA channel to be used 

• Memory address for start of transfer 

This is achieved using I/O port out instructions from the CPU in the control 

software. 

2.1. 7 Communication Lines 

There are four communication lines which go from the AMOR system into the winds 

PC and these are summarised in figure 2.10. A line between bit #0 on the AMOR 
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PC output port and bit #0 of the winds PC input port indicates the presence of 

a meteor echo. The transmitter trigger pulse from the AMOR AID box connects to 

bit of the wind PC input port for timing purposes. The BIOS clock is updated 

from an external GPS clock via an RS 232 connection into COM #1. A connection 

between COM #2 of the AMOR PC and COM of the winds PC enables the 

transference of a meteor identification number (one byte). 

The radar control software (to be described in Chapter 2.2) refers to the external 

GPS clock when it is first run, as well as at the start of every hour, to update the 

PC's BIOS clock. This was considered necessary as the BIOS time tended to drift. 

The AMOR PC also updates its BIOS clock from the same GPS source, synchronising 

the echo times on the AMOR and winds systems. 

Winds PC M t p ts' I AMOR PC Bit #0 e eor resen Ig na ( Bit #0 -,--____ -, 

I ( J [com #2 Mereor Number ( Com #2 0 
Bit#1~1 {IRQ#3 
Com #1 . . Com #1-'-------' 

:-_ -_ -_ -_ -_-_-_~ ~ AID Box 1:-_-_-_ -_ -_-_-_~ 

I I Clock I-

Figure 2.10: Communication lines between the AMOn. and winds PCs in the control section in 

the receiver building. Clock and transmitter pulse conneetions are also shown. 
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Figure 2.11: A represents the I.F. signal from the GPR and B is the local 1.6 MHz oscillation. 

The average voltage (produced by an integrator) of the series of output pulses is indicative of 

the phase difference between the two input signals (A and B). For A and B in-phase the average 

output is 0 V (top), for A and B 180° out of phase the average output is 5 V (bottom). There is 

a linear average output voltage dependence with phase difference between the two extremes, i.e., 

90° phase difference results in a 2.5 V average output (middle). 
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2.2 Data Collection Software 

The meteor winds PC control software is called DopRad and can be run from the 

root directory by typing DopRad<RETURN>. Should the winds control computer ac­

cidentally be turned off, then, upon restarting the system, the control programme is 

automatically restarted (via AutoExec. Bat). The control programme can be halted 

at any time during the data collection process by pressing the'S' key, whereupon 

control of the computer is returned to DOS. 

While data collection is in progress the monitor display indicates the system 

is running along with details of the last recorded echo. The data file being cur­

rently accessed and the AMOR defined meteor number are also displayed on the 

monitor. Displaying this information is advantageous as it can indicate if there are 

any problems with the system. 

The identification of a meteor echo's presence is done by the AMOR observation 

software. AMOR then informs the winds system that an echo exists by raising the 

voltage on bit #0 of the AMOR output port; this is connected to bit #0 of the 

winds input port. The winds control software, DopRad observes this line and when 

this echo present signal is detected, 128 DMA start pulses are sent to bit #7 of the 

DMA cards output port to signal the start of DMA transfers. The timing of these 

DMA start pulses is controlled by the transmitter trigger pulse from bit #1 of the 

DMA input port. Each start pulse initiates one sweep of 100 DMA transfers 20 fJ,S 

apart for each of the two channels (in-phase and phase-quadrature). Both the echo 

and transmitter ground pulse are extracted from the DMA memory storage and 

written to hard disk. 

2.2.1 DMA Transfers 

Initialising the DMA Controller 

As was discussed in section 2.1.6 the process of DMA data transference requires 

that the DMA controller be initialised prior to any transfers being carried out. 

The winds control software configures the DMA controller to enable DMA trans­

fers from the A/Ds on DMA channel 3 in byte transfer mode. The DMA counter 

is set to expect the transfer of 200 bytes before requiring re-initialisation. The 
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memory location of the first byte is defined by the values in variables Page, MSB and 

LSB and subsequent bytes are automatically written to the next address in memory. 

DMA transfers are initialised by the procedure DMASetup with the following lines 

of PascaL 
procedure DMASetup; 

begin 

with SweepAddresses [SweepNumber J 

port [$82 J Page; 

port [$Oc J o· , 
port [$06] LSBj 

port [$06] : =l\1b13; 

port [$07 J 199 ; 

port [$071 O' , 
end; 

do begin 

{ Page Reg set} 

{ Reset the Byte Ptr F IF } 
{ Set Base address LSB} 

{ Set Base address 11SB} 

{ Set DMA Count LSB to 199 } 

{ Set DMA Count MSB to 0 } 

As each sweep is sampled 100 times at 20 JLS intervals, referred to as "range 

bins") is only 0.6 ms available for the sweep of DMA transfers to be 

initialised (to ensure there are no missed transmitter pulses). Tests! have shown 

that DMASetup takes much less than the available time and no transmitter pulses 

are being missed. 

Initialising AID Memory 

The memory locations for DMA transfers are calculated only once and this is at the 

beginning of the data collection run by Procedure SetAtoDMemory. This reduces 

initialisation time between transmitter pulses and prevents any sweeps from being 

missed. A DMA address table contains the 128 starting addresses that are required 

to store an echo in memory. locations are reused for all echoes that are detec­

ted during the run. The Pascal type SweepAddr is defined as a record of the DMA 

start address specifiers Page, Most significant byte (MSB) and Least significant byte 

(LSB) , and SweepAddresses (refer figure 2.17) is an array of SweepAddr holding all 

the start memory locations for an echo. To facilitate the extraction of data to disk 

the memory page segment and offset for these DMA start memory locations were 

assigned at this time as type AtoDLocations. The AtoDLocations a sweep are 

IThe time to initialise DMA can be measured by raising the voltage on one of the unused bits 

on the output port at the beginning of DMASetup then lowering the voltage at its completion. 
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referenced from the array AtoDMemIRQ. 

SweepAdd resses 

SweepAddr [1] 

I Page I MSB I LSB 

SweepAddr [2] 

Page I MSB I LSB 

SweepAddr [3] 

I Page I MSB I LSB 

SweepAddr [4] 

I Page I MSB LSB 

SweepAddr [128] 

I Page I MSB LSB 

Figure 2.17: The variable SweepAddresses is an array of SweepAddr which contain Page, MSB 

and LSB values. 
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The following Pascal Procedure calculates the 128 start memory locations for 

the DMA transfers. 

Procedure SetAtoDMemory; 

Begin For sweepnumber : 1 to NoOfSweeps do 

begin 

Getmem(P, 200); 

Pseg := seg(P~); 

Offset := ofs (P~); 

AtoDMem[SweepNumber l:= ptr (Pseg, Offset) ; 

with AtoDMemIRQ [SweepNumber 1 do begin 

Segm : = Pseg; 

Offsm := Offset; 

end; 

1, : = seg (P A
) * sixteen+ofs (P A); 

with Sweep Addresses [sweepnumber 1 do 

begin 

Page 

LSB 

lYfSB 

end; 

end; 

end; 

.-
1, shr 16; 

L and $FF; 

(1, shr 8) and $FF 

2.2.2 Identifying a Meteor Echo in Phase Data 

The collection software scans through the 100 range bins recorded per sweep de­

tecting those range bins which contain the grOlmd pulse and echo. The echo and 

ground pulse phase data are then extracted to be stored on the hard disk. 

As echoes are extremely unlikely to be detected in a range bin with a bin number 

less than #15, only range bins numbered to 100 are inspected for an echo. 

Likewise the locality of the transmitter array results in a grolmd pulse which can 

not be in a range bin later than #142. To locate the range bins containing signal 

information the signal amplitude in each range bin for the first 25 sweeps is summed. 

2 Although the ground pulse is consistently found in bin #7 it was considered advantageous 

to search for it as the back-up transmitter may have a different response time to the transmitter 

trigger pulse and hence the ground pulse bin may change. 
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Only the first 25 sweeps are used as it is during this time that the amplitude of the 

echo is likely to be at its largest and hence most distinct from noise. 

The range bin above #14, the sum of whose signal amplitudes is the greatest, 

contains the echo and the range bin below #15 with the largest amplitude sum 

contains the ground pulse. 

2.2.3 Data Storage Format 

All echoes for date yymmdd detected in hour <hh> (NZST) are written to disk in 

a file named Drive: \Data \yymmdd\ Wind_<hh>. The hourly binary files contain 

many echoes and the 521 bytes which define each echo are described in figure 2.18. 

B I Mon~1 EJ B EJ EJ 881Numberl 

Echo In-Phase 1 .. 128 

Edlo Phasa-Quadralure 1 .. 128 

Ground Pulse In-Phase 1 .. 128 

Ground Pulse Phase~auadrature 1 .. 128 

Figure 2.18: The record structure for each meteor echo stored on the AMOR winds PC. 

Each record is time-stamped and contains the AMOR defined meteor number 

(read from the communications port) for matching with AMOR data. The Echo 

range bin and the ground range bin from which the data are extracted are also 

written to the echo record. 

2.3 Obtaining Wind Velocities 

In this work methods have been developed which allow a wind speed to be produced 

from a meteor echo which has a lifetime as small as 1/40 of a second. As the echo is 

reflected from a very localised meteor train, any wind measurements made from it 

can be associated with a small region of atmosphere and the radar's narrow beam 
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width (:=:::l 2° FWHM) enables the location of this ionisation to be determined within 

a region bounded by a box of approximately 8 km3 (at typical ranges of 200 km). 

The location of the measurement is found from the echo range and elevation 

angle; these are obtained from analysis of the interferometer data recorded in the 

AMOR NZSL<hh> data The horizontal wind velocity is measured by first 

calculating the line of sight (radial) velocity from the change in echo phase with 

time (using data in the Wind_<hh> files) and then projecting it on to the horizontaL 

System is the name of the programme which does the analysis of AMOR wind 

data which has been collected at the Birdlings Flat field station. 

2.3.1 Determining Radial Velocity 

When radar pulses (of frequency 1) are reflected from stationary targets they return 

at the transmitted frequency. If however the reflector is moving then, as a result 

of the Doppler eifect, the frequency of the returning pulse is altered by an amount 

llf given by 

(2.1) 

Here j3 = vs / c , where c is the speed of light and Vs is relative speed of separ­

ation of the moving target and the detector (j3 positive for target moving towards 

observer). For a typical wind speed of 50 ms-1 and at the radar's frequency of 

26.2 MHz, equation 2.1 indicates the Doppler shift is r-..J 9 Hz. From the same 

expression it is apparent that a velocity precision of 1 m S-1 (such precision is re­

quired as the speed of atmospheric motion can be of the order of only a few metres 

per second) requires a frequency resolution of than 0.2 Hz and this can only 

be obtained from Fourier analysis if the echo lasts for 5 seconds or more. As a 

typical meteor echo lasts only a fraction of a second the Fourier spectrum would 

provide harmonics with a wind speed resolution of m and hence it can not 

be applied directly to echo data to obtain a precise wind measurement. 

Methods of interpolating between spectral harmonics were developed based on 

the premise that the Fourier spectrum of the echo, when sampled over a short period 

of time, is the convolution of the data's Fourier spectrum with a sinc function (refer 

figure 4.1), to give a better estimate of the spectrum's peak. If a is the value of 

the largest harmonic (at a distance Xo from the maximum of the sinc function) and 

b the value of the larger neighbouring harmonic (which is implicitly at a distance 
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1- Xo from the maximum of the sinc function as the harmonics are separated by a 

distance 1) then by putting 'r/ = ~ it is apparent from figure 2.19 that 

which is equivalent to 

and rearranging gives 

sinc(xo) 
'r/ = . (1 )' SInc - Xo 

sin('iTxo) 

'iTXo 
'r/ = sin'iT(l - xo) 

'iT(1 - xo) 

sin( 'iTXo) 'iT(1 - xo) 
'r/ =. (1) , sm'iT - Xo 'iTXo 

which can be simplified to give 

1 - Xo 1 
'r/= =--1 

Xo Xo 

and further rearranging finally gives 

1 
x ---
0- 1 +'r/' 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

and hence a shift Xo = 1~1) from the main harmonic towards the larger neighboring 

harmonic is a better estimate of the signal frequency. Although this method of 

harmonic interpolation provided a good method for improving frequency resolution, 

the use of Fourier analysis still required that the echo exist for a large fraction of a 

second (more than 0.25 s) and as a large proportion ofthe meteor echoes recorded by 

the AMOR system are shorter lived than this many might still be rejected. Naturally, 

echoes which exhibit a rapid decay then the interpolating function should not be 

the sinc function but one derived from the envelope of the echo pulses. However 

it was decided that this approach would suffer the same limitation and was not 

persued. 

The method of analysis used here, which when tested did not have this limita­

tion, measures frequency from the time rate of change in phase over the duration 

of the echo. With it, a Doppler shift and hence radial velocity can be measured 

from echoes lasting only a few transmitter pulses. Computationally this method 

also offers significant speed advantages over using a Fourier transform. 
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b 
x=-1 

Figure 2.19: The above diagram is part of a sinc function and two harmonics of a spectrum 

produced from Fourier analysis of finite time evenly sampled data. The true Doppler frequency 

is at x = O. The sinc function defined as sin(1rx) equals zero at x = ±1 where x, in units of 
1rX 

frequency, is equivalent to the Fourier harmonic frequency spacing and is determined from 1/7 

where 7 is the sampling duration. 

Radial wind speeds (Vr ) can be interpreted from the echoes' 

phase (¢) with equation 2.7 
.:\ d¢ 

Vr = - 47r dt J 

where 
-1 Phase-Quad Comp 

tan . 
In-Phase Comp 

of change of 

(2.7) 

(2.8) 

This equation can be easily derived from the change in phase of the received 

signal by noting that the signal shifts by 27r radians for a train drift of .:\/2. 

The AMOR receivers directly observe and record the transmitter ground pulse 

and its phase profile enabling a direct comparison between transmitted and received 

signals. If ¢E and ¢T are the echo and transmitter ground pulse phase respectively 

a modified expression for obtaining radial wind speeds is 

v = ~ (d¢E 
r 47r dt 

d¢T) 
dt J 

(2.9) 

providing the advantage that drift in the transmitter frequency does not affect 

the calculated wind speed. The expression retains the convention of northward 
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meridional wind speeds having a positive sign for echoes detected in the southern 

beam only3. 

For a wind speed to be obtained System removes the DC level inherited from the 

AjD conversion process then the phase of each pulse is found for both transmitter 

ground pulse and echo. Phase data are unwrapped (a process that changes absolute 

phase jumps that are greater than 7r to their 27r complement) and the gradients of 

this unwrapped echo and transmitter data are determined by linear regression (these 

are the values d~t; and d~T of equation 2.9 respectively). 

Phase Profile Analysis Window 

The phase profile, calculated from equation 2.8, is always 128 transmitter pulses 

long. Not all data in the profile will necessarily contribute to a wind measurement 

as data towards the end of the profile may have been recorded when the echo 

had decayed into noise and data from the beginning of the profile may have been 

contaminated by reflections off the meteoroid itse1£4. These contaminating data are 

rejected by only accepting the data within a window which bounds data of steadily 

changing phase (refer figure 2.20). 

The constant phase region is determined by differentiating the phase profile and 

searching for a region which, on analysis, is judged to have remained constant. 

This method proved more successful than simply bounding the accepted region 

to coincide with the echo amplitude maximum and a pre-determined amplitude 

minimum as the chosen method compensates if the noise level varies. 

Tests showed that an accurate measurement can be usually made if the echo 

duration is longer than 6 transmitter pulses. Echoes shorter than this tended to 

produce inaccurate results and have large uncertainties associated with them. In 

practise only echoes which exist longer than 10 pulses were used for a wind meas­

urement as they provided a more reliable data set. 

A temporary file called PhVels. dat is generated in the E: \Analysed\yymmdd 

subdirectory into which the calculated wind velocities are written. 

The algorithm was tested thoroughly with test data to ensure that expected 

3 A sign change is required for echoes detected in the northern beam. 
4Hence a wind velocity measurement would be contaminated by an aliased rv 30 kms- I . 
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Figure 2.20; Amplitude and phase profile of echo. Measurements of wind speed can only be 

made during the region of constant phase advance. Careful inspection of the phase during the 

initial of the echo shows curvature of the echo's phase and the phase wanders randomly 

when the echo amplitude has decayed into noise. 

results were obtained. Additionally, the AMOR winds system occasionally observed 

a persistent meteor and more than one wind measurement was made from it. It 

could be expected that two or more wind measurements that were spatially and 

temporally similar should give near-identical results and analysis supported this. 

Note that in practice only the initial signal from persistent echoes are used in winds 

as wind shear can deform the train resulting in multiple reflection points which 

contaminate the measurement5 . 

2.3.2 Spatial Location of the Wind J\rleasurement 

The fan shaped radiation pattern of the AMOR system confines echoes to R::j 2° 

(FWHM) in the meridian and this has the advantage that the reflector's position 

5The speed of expansion of the ovm'dense train is superimposed on the background wind res­

ulting ill an error in the wind measurement. However, as few overdel1se echoes are detected and 

the induced error is only a few meters per second the effect is minimal. 
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can be easily determined from its range and elevation angle only. The meteor 

train's specular reflection point (refer figure 2.21) cannot be measured precisely 

but rather it can be determined as being within a volume, and at a typical range 

of 200 km, approximately 80% of echoes would be located in a cell with sides 

approximately 1 km in height 1 km in latitude and 8 km in longitude (refer figure 

2.22). Approximately 97% of echoes (those remaining in the main lobe plus echoes 

in the first side lobe) would be confined to a 27 km3 cell. 

Specular Reflection 
Point 

Meteor 

Elevation Angle 

Figure 2.21: The returning pulse is sampled every 40 Jl$ which provides range bins that are 6 km 

wide. Determining the range bin with maximum echo amplitude provides an estimate of range 

and analysis of the maximum amplitude and amplitude of neighbouring range bins improves range 

precision. 

The range bins for the AM OR orbit system are 40 f.LS long providing a coarse 

initial range measurement with an uncertainty of ±3 km, however techniques used 

allow the range to be measured with an accuracy of ±0.5 km. This improvement 

is achieved by applying a fitting function to the values in the range bin with the 

largest echo amplitude and its neighbours to estimate where the true echo maximum 

is [Taylor 1991]. 

Elevation angle ¢, with an uncertainty of 0.30 at a typical value of 300 [Baggaley 

& Bennett 1996], is measured with a dual interferometer of spacings 3.0 and 10.5 

wavelengths (figure 2.23) and is the solution to the expressions 
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Meteor Train 

From Transmitter 

Figure 2.22: AMOR's narrow beam width combined with interferometry enables the location of 

the echoes specular reflection point to be determined within a 3dB volume of 8 km3 with the 

above dimensions. 

cPo. nl+-
coscP= --.=.!.:-

3.0 
(2.10) 

and 

(2.11) 

where nl and n2 are integer. The phase differences measured on the 3.0 and 10.5 

wavelength interferometers are cPo. and cP{3 respectively. 

The lines of zero phase difference, between the two received signals, for each 

interferometer are shown in figure 2.24 where the light and dark lines represent the 

10.5 .\. and 3.0 .\. spacing interferometers respectively. From this figure it can be 

seen than a more precise measurement of cP can be made with the 10.5 .\. inter-

ferometer, however it 

satisfy equation 2.11. 

many more possible solutions, i.e., values of n2 which 

The unique elevation angle solution is achieved by comparison with the possible 

solutions obtained by the 3.0 .\. spacing interferometer. Should an ambiguity still 

exist, then often the correct solution can obtained with the a priori knowledge 
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South 

10.5A 

Figure 2.23: The dual interferometer antenna spacings of 3.0 A adn 10.5 A as viewed from the 

west side of the Home site. 

that the meteor height must be in the meteor zone. 

The direction in which the meteor echo was observed (either north or south) 

IS generally determined from the difference in the relative timing of the echo's 

detection at the Homes site and the two remote sites. For echoes that were not 

detected at the remote sites this approach cannot be used. Instead, techniques 

using the interferometer are used to determine the meteor direction, as well as the 

elevation angle, of the meteor echo. 

Range calibration required the accurate measurement of system delays and was 

achieved by measuring the time interval between generating a transmitter trigger 

pulse and receiving the ground pulse. Calibration of the elevation angle is achieved 

with calibrated cables of known phase delay in conjunction with a signal detector 

[Baggaley & Bennett 1996]. An overall calibration is also regularly carried out by 

astronomical means: comparing shower radiant coordinates with those published in 

catalogues. 

A temporary file called Heights. dat is generated in the E: \Analysed\yymmdd 

subdirectory into which the calculated meteor elevation angles, ranges and heights 

are written. 
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Figure 2.24: The elevation angle for meteor echoes can be unambiguously obtained from a 

dual interferometer. The elevation angle (¢) is the unique solution to the expression: cos¢ 
¢c.. ¢{3 

nl+- n2+-27r _ __ ::.!.i... 
3.0 - 10.5 

2.3.3 Combining AMOR and Wind Files 

Radial wind speeds in the PhVels. dat file are merged with their corresponding 

spatial locations in the Heights. dat file primarily by the meteor's AMOR assigned 

meteor number. number has a value between 0 and 255 and is sent from the 

AMOR observation PC to the ·WIND's computer via a serial connection included in 

the WIND echo record. Echoes in both WIND_hh and NZSLhh files are said to be 

from the same meteor event if they have the same meteor number and occurred at 

similar times6
• A range check is also done to enSllre both echoes occurred at similar 

ranges (in the event of simultaneolls echoes at different ranges). Finally the radial 

velocity (vr ) is projected onto the horizontal to get the horizontal wind velocity (Vh) 

with the relationship 
Vr 

Vh = ----;., (2.12) 
cos 'f' 

6The meteor identification number is the key to ensuring the correct matching. As the period 

for meteor number repetition is large (tens of minutes) the echo's time plays only a minor role. 
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where q; is the elevation angle (refer figure 1.2). The temporary PhVels. dat 

and Heights. dat are replaced with the file Graphs. dat in the E: \Analysed\yymmdd 

subdirectory ",:mrn'.,. being deleted. Echoes which exist for fewer than 

pulses are rejected at this stage as the uncertainties associated with 

echoes tended to be high (2-10 ms- I
). 

2.3.4 Uncertainty in Speed Measurement 

The radial velocity is obtained from the following expression 

_ A (dq;E dq;T) Vr -- ----- . 
47f dt dt 

transmi tter 

short-lived 

(2.13) 

The values dt and dt are determined from a linear squares fit to 

the phase data and uncertainties for these values are determined by multiplying 

the residual's standard deviation by the factor where X2 is computed from 

x2(a, b) ) [Bevington 1969]. From standard techniques it can be 

shown that the uncertainty in the radial velocity is given by 

(2.14) 

The horizontal wind velocity Vh is then obtained by projecting the radial velocity 

onto the horizontal, 
Vr 

Vh = cosq;' (2.15) 

where q; is the elevation angle and has an uncertainty of "",0.3°. Therefore the 

uncertainty in Vh is fully described by 

(
6.vr)2 2 ---;;: + (tan q; 6.q;) , (2.16) 

where, for this expression, 6.q; must be expressed in radians. 

From equation 2.16 it is apparent that as q; tends to 90° the uncertainty in 

Vh increases dramatically. Horizontal wind velocity uncertainties for a horizontal 

velocity of 40 m ,obtained from a radial velocity with an lllcertainty of 1 m s-lare 

shown in 2.25. 
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Figure 2.25: The uncertainty in the derived horizontal wind varies as a function of elevation 

angle. This graph displays trend and values for a calculated horizontal velocity of 40 

obtained from a radial velocity with an uncertainty of 1 m . Typically the AMOR meteor radar 

detects meteor echoes from elevation angles between 15 and 55 degrees. 

2.3.5 Errors Introduced by Assumptions 

All Echoes From Within the Main Beam 

From a theoretical antenna radiation pattern of the AMOR system (essentially a sine 

function) it can be estimated that approximately 10% of echoes detected will be 

outside of the main beam. As AMOR has no means, an azimuthal interferometer, 

for identifying these echoes they are treated as if they were detected in the main lobe 

introducing a wind speed error (wind speed magnitudes of echoes in the side lobes 

will be consistently underestimated). If the measured wind speed Vm is actually at 

an angle () in azimuth with respect to the centre of the main beam then the true 

wind speed, Vt) could be found from the equation 

Vm 

Vt = cos (). (2.17) 

The difference between Vm and Vt has been expressed (as a percentage of vm ) 

figure 2.26 for the first four side lobes. As virtually no echoes are detected out-
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side the second side lobe, the largest introduced error is only 0.6% and considered 

insignific ant. 
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Figure 2.26: All meteors are assumed to have been detected in the main beam. Wind measure­

ments from meteors outside this beam contain percentage errors given by this graph. For example 

the absolute value of wind speed measured from meteors detected in the centre of the first side 

lobe are underestimated by 0.13%. 

No Vertical Wind 

Analysis throughout this work has assumed no vertical wind [Smith 1998]. However 

studies have indicated the presence of a vertical component of the wind field at 

meteoric heights which can occasionally be as large as 2-3 ms-1 [Mitchell & Howells 

1998]. As a result, measurements of wind directed away from the radar during 

large vertical velocity episodes are either overestimated (when the vertical motion 

is upward) or underestimated when the motion is downward. For winds directed 

toward the radar the reverse applies. 

Referring to the upper diagram of figure 2.27 if the true wind vector, Vtl or Vt2, 

contains a horizontal component Vht and a vertical component Vvt (directed upwards 

or downwards) then the radial velocity observed by the meteor radar at elevation 
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¢ is given by Vr and is simply the projection of the wind vector onto the 

of observation. The method adopted in this work then projects the measured radial 

velocity on to the horizontal and obtains horizontal components Vh1 during upward 

moving vertical winds and Vh2 during downward propagating vertical winds. 

From the bottom diagram of figure 2.27 it is apparent that for an echo detected 

at an elevation angle ¢ the difference (b in units of m ) between the true horizontal 

velocity Vht and the interpreted horizontal velocity Vhl (or Vh2) in the presence of a 

vertical wind Vvt is given by 
b = Vvt 

tan(90 ¢)' 
(2.18) 

Figure 2.28 shows the dependence of b on ¢ and Vv for values of Vv between 0.5 m s-l 

and 3 m s-l. The error introduced can be seen to climb rapidly for larger elevation 

angles. For a typical elevation angle of 30° and a large vertical velocity of 3 m 

b equates to a value of 1.7 ms-l . 

This value provides an indication of the upper limit for the uncertainty associ­

ated with horizontal wind speeds from individual echoes of 3 msl. 
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Figure 2.27: Analysis for the horizontal component of the wind assuming no vertical motion 

incorrectly estimates the true horizontal component Vht in the presence of a vertical component 

Vvt by an amount 8 as shown in the diagram. In the case when Vvt is directed upwards and the 

wind direction is away from the radar the obtained horizontal velocity Vh1 is overestimated and 

conversely for Vvt downwards Vh2 is underestimated. For wind towards the radar the opposite 

applies. ¢ is the echo's elevation angle. 
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Figure 2.28: The response of the error induced into horizontal winds at elevation angles 10-60 

degrees due to the assumption that no vertical winds (vvt) exist for Vvt = 3 ms-1(solid line), 

2 ms-1 (dotted line), 1 rns-l(dashed line) and 0.5 ms-l(dash dot). 
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Chapter 3 

The Drift of a Meteor Train in the Earth's 

Atmosphere 

The meteor train is only useful as a wind tracer if the electron train movement is 

directly indicative of the wind's motion. This chapter discusses the train's motion 

under the influence of a magnetic field and background wind. It is shown that the 

train movement is directly indicative of the wind at heights below 100 km. Above 

100 km the introduced errors, due to the train drifting in a direction orthogonal to 

the wind, become increasingly larger. 

An algorithm is derived which, it is proposed, can correct for errors introduced 

by the orthogonal drift. This algorithm requires that both zonal and meridional 

wind measurements are made and hence has not been applied to the AMOR data 

set. 

3.1 Parallel and Orthogonal Drift Components 

At meteoric heights particles in the meteor train are subjected to the influence of 

a weak electric field E, a geomagnetic field, B, and friction due to collisions, mvv. 

The general motion of a particle of charge q and mass m in a background wind u 

can be described by the relation 

(dV) m dt =q(E+vxB) mv(v- u), (3.1) 

where v is the particle's collision frequency. Forces on these particles accelerate 

them until the increased friction produces equilibrium at a velocity, v 

meteor train is a quasi-neutral weak plasma and external fields have 

negligible effect. Should charge separation within the train occur, an internal E 

field is generated which opposes this separation. Thus the meteor train undergoes 

65 



66 Chapter 3. The Drift of a Meteor Train in the Earth's Atmosphere 

ambipolar diffusion and forces on the particles from the E field are negligible and 

neglected in any further analysis. 

Particle drift is collision dominated when I q (v X B) I «mvv, or, assuming B 

and v orthogonal 
qB 
-«v. 
m 

quantity on the left hand side of the above expression is called 

gyTOfrequency and denoted w. 

(3.2) 

particle's 

At equilibrium equation 3.1 equates to zero and Kaiser et al. [1969] show that 

electrons, moved by a wind of velocity ll, would drift so the components parallel, 

vII, and orthogonal, Vi, to the wind vector are given by 

and 

u 

w 
u-

v 
v~ = --=---;:­w 2 • 

1+­
v2 

(3.3) 

(3.4) 

As trains experience ambipolar diffusion the train will drift at a rate 

which is controlled by the heavier ions. Only a few ms after formation the ions and 

electrons are at similar temperatures, so, if one neglects any Coulomb interaction, 

the ratio, {J, of ion diffusion D+ to electron diffusion D_ will be height independent, 

{J 

and the components for meteor train drift will be given by 

and 

where wand v are for alo"i-"I"Yrl 

1 
u 

--!::..--;:- U = c~ u, 

1 + ,82
2 v 

(3.5) 

(3.6) 

(3.7) 
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Kaiser et aL [1969] determine a value for {3 from experimental measurements 

of v~ [Hall & Bullough 1963], temperatures from the CIRA standard atmosphere 

[Kallman-Bijl et al. 1961] and D+ from observations of meteor echo train decay 

[Greenhow & Hall 1960]. The dimensionless quantity, {3, was shown to be 3.1x10 4
• 

The height dependence of Ell and E1- for January (solid line) and July (dashed 

line) are shown in figure 3.1, the seasonal difference being due to the height at which 

particular electron collision frequencies occur decreasing in winter. The electron 

collision frequencies were derived from a model fit to CIRA 86 data [von Biel 1995]. 

Wind measurements are likely to incur error if either VII is not representative 

of the wind speed or v 1- l of particles blown by a wind perpendicular to the line of 

observation, is large. 

Cbrtho~onal Component Parallel Component 

0.2 0.3 0.4 0.5 0.6 0.7 
Fraction of True Wind Speed 

Figure 3.1: The magnetic field has an increasing influence on the motion of a blown meteor train 

with increasing height. This graph shows that the component of the train parallel to the direction 

of the background wind, ell, is approximately unity at heights up to 90 km. Between 90 and 

105 km, ell reduces to 0.9. The component of the train velocity orthogonal to the wind vector, e,L, 

increases from a at heights above about 75 km and by 105 km has a value of approximately 0.25. 

This graph details the worst possible scenario of perpendicular wind and magnetic field vectors. 

As Ell and E,L assume u and B orthogonal, for u and B at an angle W, E1- needs to 
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be multiplied by sin wand q needs to be multiplied by '17(w) = 1+(1/811-1) cos W. 

The angle between the meridional component of a wind field and the magnetic field 

is denoted a where from figure 3.2 

a = cos -1 (cos e cos CT) . (3.8) 

The angle between the zonal component and the magnetic field is denoted ry and 

again from figure 3.2 this is seen to have a value of 

ry = cos -1 (cos e sin CT) . 
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Figure 3.2: The magnetic field line vector B is at angles () with respect to the x-y plane and 

a with respect to the y-z plane. The angle between the meridional component (aligned with the 

y-axis) of the wind vector and B is shown on the diagram as a. The angle between the zonal 

component (aligned with the x-axis) of the wind vector and B is shown on the diagram as "y. The 

vector orthogonal to both the meridional component and the magnetic field is at an angle 8 to 

the x-axis. 

Decomposing a general wind vector in to meridional, uy , and zonal, U x , com:­

ponents allows consideration of each independently. Considering the meridional 

component first, the motion of the train, due to this component only, Vmm , is given 

by 

(3.10) 
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As the radar observes the train's drift at an angle, ¢m' called the elevation angle 

(where m indicates a meridional observation and z a zonal observation), the drift 

observed by the radar is its projection on to the line of observation. The line of 

sight drift is given by 

(3.11) 

A meridional component in a northward direction will generate an orthogonal 

component, Vzm , to the train's drift which moves eastward and downwards, while a 

southward meridional component will cause a drift which is westward and upwards. 

The direction of U y X B, is at an angle, 6, to the horizontal where 6 (refer figure 

3.2) is given by 

6 -1 [sinrT] tan --e' tan 
(3.12) 

From figures 3.3 and 3.4 the line of sight observation of this drift is given by 

Vzm = C..L u y sin a cos (¢z 6) , (3.13) 

where the sign in the brackets IS 

eastward observation. 

, for a westward observation and '+' for an 

When the train is blown by wind with a zonal component, the expression for 

the parallel drift of the train due to this component, Vzz , is given by 

(3.14) 

The orthogonal drift of the train due to an eastward component is upwards 

and towards the south. For a westward component the drift is downwards and 

towards the north. Synonymous with equation 3.13 magnitude of this motion is 

C..L Ux sin 'Y. As can be seen from figures 3.5 and 3.6 the influence of the train's drift 

on the measurement velocity is different for each observation direction. line of 

sight orthogonal drift velocity of the zonal component is given by 

(3.15) 

where the sign in the brackets is '-' for a northward observation and '+' for a south­

ward observation. This equation has a negative sign to comply with the convention 

that northward and eastward winds have positive sign. 
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Figure 3.3: A northward wind (into the page) component will cause the train to move in the 

direction of ux B with magnitude € JUy sin a thereby altering the radial velocity of the meteor 

train. The magnitude of this introduced error is given by the projection of the vector €~ uy sin a 

onto the line of observation which is inclined at an angle.p. A southward wind would introduce 

an error of the same magnitude but opposite direction. This diagram details the geometery for 

an echo observed in a westward direction. 

3.2 Correction Algorithm 

It is apparent from equations 3.13 and 3.14 that the measured (line of sight) zonal 

component, UM, is a function of the true zonal component, UT, and the true meri­

dional component, VT, by the relation 

(3.16) 

and from equations 3.11 and 3.15 the measured (line of sight) meridional component, 

VM, is a function of VT and UT by the following relation 

(3.17) 
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Figure 3.4: Same as for previous diagram however this detail" the geometery for an echo observed 

in an eastward direction. Again if the zonal wind was directed out of the page the magnitude 

of e.L uy sin a projected onto the line of observation would remain the same, however its direction 

changes by 1800
• 

From equations 3.16 and 3.17 it can be seen that 

and 

UMH vT 
-- ex: 

uT uT 

VMH -- ex: 
VT VT 

(3.18) 

(3.19) 

where VMH and UMH are the horizontal projection of the observed meridional and 

zonal components respectively. 

To illustrate the effect of the wind field's zonal component on the measured 

meridional component, figure 3.7 shows simulations of the ratio of measured and 

meridional values as a function of the ratio of true zonal to true meridional 

values. The influence of a meridional component on measurements of a zonal com­

ponent are displayed in figure 3.8. In this simulation values for the orientation of 

the Earth's magnetic field have been extracted from the geomagnetic reference field 

model (IGRF)l. The value used for the inclination of the Earth's magnetic field 

over Christchurch, () J is 68° at an angle of (J 22° to geographic north. 

1 Program which generate magnetic field values are available to the public from the World Wide 



72 Chapter 3. The Drift of a Meteor Train in the Earth's Atmosphere 

Figure 3.5: An eastward wind (into the page) component will cause the train to move in the 

direction of uxB with magnitude e~uxsin'y thereby altering the radial velocity of the meteor 

train. The magnitude of this introduced error is given by the projection of the vector S . .L u'" sin "I 

onto the line of observation which is inclined at an angle 4;. A westward wind would introduce an 

error of the same magnitude but opposite direction. This diagram details the for an 

echo observed in a northward direction. 

Considering the effect of the zonal component on the measured meridional com­

ponent first, only a small effect is apparent at 90 km and that is only when zonal 

and meridional components are of the same sign and the zonal component is of 

comparatively large amplitude. Increasing altitude sees this become more 

pronounced. Large amplitude zonal winds with the same as the meridional 

wind cause the measured meridional component to be underestimated. Conversely 

when the signs are opposite, the meridional component is measured too large. 

The meridional wind influence on measured zonal winds displays a similar height 

behaviour. However, for this component, comparatively large amplitude meridional 

winds of same or opposite sign cause the measured zonal component to be overes­

timated or underestimated respectively. 

The following simultaneous solution to equations 3.16 and 3.17 suggest that wind 

speed components obtained from a meteor observed simultaneously from orthogonal 

vVeb server of the World Data Center at 

http://www.ngdc.noaa.gov /seg/potfid/ geomag.html 
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Figure 3.6: Same as for previous diagram however this details the geometery for an echo observed 

in a southward direction. Again if the zonal wind ~'as directed out of the page the magnitude 

of IS ~ u'" sin'Y projected onto the line of observation would remain the same, however its direction 

changes by 1800
• 

directions (refer figure 3.9) could be corrected to account for magnetic field effects. 

and 

which can be expressed in matrix form 

1 [ 17( 0: )cl cos ¢m 

r C.l sin'Y sin(o: ± ¢m) 

~ C.l sin 0: cos(¢z 

1](ry)cl cos ¢z 

(3.20) 

(3.21 ) 

(3.22) 

Such observation conditions are difficult to obtain and therefore the full benefit 

of this approach may seldom be achieved. Nevertheless, intuition suggests that 

improved hourly wind velocity averages may be obtained, from the application of 

this correction algorithm, by meteor radar systems which observe in both meridional 

and zonal directions (refer figure 3.10). 

To test this theory a simple Monte-Carlo simulation was used. Components, 

VT and UT, at a of 110 km, were randomly generated with values between 
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o ± 40 m s-l. Meridional and zonal elevation angles, ¢m and ¢z, associated with 

these wind measurements were randomly assigned values between 15 and 60°. For 

each pair of zonal and meridional components, equations 3.16 and 3.17 predict the 

radar line of sight measured velocities, VM and UM' Calculating averages of VM 

and UM, for n of these measurements, provides the simulated hourly wind speed 

averages generally calculated from individual measurements. These averages are 

then compared with the average values of VT and UT as an indicator of good or 

poor agreement. 

The corrected values of VM and UM are then obtained by applying equation 3.22 

to hourly averages VM, UM, ¢m and ¢z (and the remaining values appropriate for a 

height of 110 km). These were also compared with VT and UT. 

Graphs showing the distribution of the variation from the true values (error) are 

shown in figure 3.11. From these it is immediately apparent that the spread in the 

error is greatly reduced when the correction is applied. This is confirmation that 

the correction algorithm can be applied to hourly averaged values in an effort to 

reduce the effect of magnetic field induced train drift at greater heights. 

At the time of writing this thesis the AMOR radar system measured the meridi­

onal component only and hence the correction algorithm could not be applied2 . In 

response to the results presented in this section, wind speed measurements presen­

ted in this thesis are confined to heights less than 105 km. 

3.3 Mutual Influence by Zonal and Meridional Semidiurnal 

Tides 

As has been discussed, the meteor radar observed meridional wind velocity is af­

fected by zonal winds at large heights. It was also shown that the relative affect 

was proportional to the tatio of the true zonal and meridional velocities. 

Section 1.2 states that the semi diurnal tide is, in general, the most prominent 

feature of mid-latitude wind measurements. The phase of the zonal semi diurnal tide 

leads the meridional tide by near 3 hours and consequently, the times of maximum 

zonal motion due to the semi diurnal tide coincide precisely with zero velocities in 

2Work has just begun constructing an orthogonal array which will eventually provide zonal 

wind measurements. It will also enable the testing/application of this method. 
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the meridional component of that tide. The effect, as a function of height, of a zonal 

semidiurnal tide on an equal amplitude meridional semidiurnal tide is displayed in 

figure 3.12. 

As expected measured values are most affected at greatest heights. There is 

virtually no effect at 90 km, however as height increase from 100 to 110 km, the 

profiles show an increasing change in the phase of the tide; this can be explained 

from work detailed earlier. Regions where the zonal component is non-zero, and 

of the same sign as the meridional component, will have meridional wind speeds 

which are underestimated. Conversely, when the zonal component is of opposite 

sign to the meridional component the meridional component will be overestimated. 

The measured and true wind speeds are most similar when the ratio of the true 

meridional and zonal velocities is greatest. It is also apparent that the measured 

amplitude is virtually unaffected. 

The effect of a meridional semi diurnal tide on the, same amplitude, zonal semi­

diurnal tide is shown in figure 3.13. Again the phase is shown to be delayed at 

greater heights: however this time, the amplitude is also shown to reduce. 

If the amplitude of one of the components is much larger than the other then it 

has a greater influence on the other tide and both the phase difference and measured 

amplitude become larger. 
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Figure 3.7: The simulated ratio of measured and true meridional values are graphed as a function 

of the ratio of true zonal to true meridional values. In this model the elevation of the Earth's 

magnetic field, e, is 68° and it is at an angle of 22° to geographic north. 
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Figure 3.8: 'rhe simulated ratio of measured and true zonal values are graphed as a function 

of the ratio of true meridional to true zonal values. In this model the elevation of the Earth's 

magnetic field, e, is 68° and it is at an angle of 22° to geographic north. 
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Zonal Observation 

Meridional Observation 

Figure 3.9: The simultaneous observation of the same meteor train from orthogonal stations 

would enable the calculation of corrected wind component velocities at large heights. 
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Figure 3.10: In general, meteor radars which measure both zonal and meridional components 

make these measurements by sampling orthogonal regions of space. 



3.3. Mutual Influence by Zonal and Meridional Semidiurnal Tides 

Meridional Component 

-5 0 15 

Meridional Component Corrected 

~ 
~ 
~ 
,f 

35c--------~-············ ---~--~--~--------,_------_.------__, 

20~ 

15L 
I 

10 

5 

-q5 

12 

10 

8 

6 

4 

2 

~ -~5 
1: 
(]) 

e 

-10 

-10 

-5 0 5 10 15 
Wind Speed Error (m/s) 

Zonal Component 
...I- I 

,-- ,.. 
~ 'c-

r-
r-

r- r-

c- r-' 

r>nl:n !nOn". 
-5 o 5 10 15 

(]) Zonal Component Corrected 
~bU,---------.---------.,--------.,--------.,---------,---------

-10 -5 0 5 10 15 
Wind Speed Error (m/s) 

79 

Figure 3.11: Simulated velocity measurements for meridional and zonal winds components at 

110 km show a spread about the true wind speed due to magnetic field effects. A technique 

described in the text reduces this spread considerably. 
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Figure 3.12: The effect of the zonal component of the semidiurnal tide on the meridional semi­

diurnal tide. The dashed line shows the undisturbed wind velocities, describing a 12 hour period 

semidiurnal tide. The solid line shows the wind velocities one would expect to measure if the 

measurements were being affected by a zonal semidiurnal tide of equal amplitude. The dotted line 

indicates the zonal semidiurnal tide profile. 
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Figure 3.13: The effect of the meridional component of the semidiurnal tide on the zonal semi­

diurnal tide. The dashed line shows the undisturbed wind velocities and the solid line shows the 

wind . velocities one would expect to measure if the measurements were being affected by a meri­

dional semidiurnal tide of equal amplitude. The dotted line indicates the meridional semidiurnal 

tide profile. 



82 Chapter 3. The Drift of a Meteor Train in the Earth's Atmosphere 



Chapter 4 

Time Series Analysis 

Harmonic analysis is the process of transforming data from the time to the frequency 

domain, and as the atmosphere's motion contains many features which are periodic 

(refer section 1.2.1), is an important tool for analysing the AMOR winds data set. 

4.1 Data Preparation for Harmonic Analysis 

For analysis the wind data are grouped according to temporal and spatial location 

and the dimensions of these data bins are varied depending on the atmospheric 

parameters being studied. 

With the AMOR system it is beneficial to group data which are either similar in 

height yet varied in ground range, or similar in ground range yet varied in height. 

The first of these two schemes is applied in this work when searching for phenomena 

that are height critical, such as the vertical wavelength of the semi-diurnal tide, and 

the second approach is used when observing ground range variations, such as the 

influence of orographic gravity waves on wind measurements. 

The accuracy with which range and elevation angle can be determined by the 

AMOR system enables the height and ground range of echoes to be found to the 

kilometre, thus setting a lower limit on spatial resolution. Although the 

event time for individual meteors can be measured accurate to seconds, harmonic 

analysis is applied to hourly mean velocities primarily as this reduces any bias 

introduced into the harmonic analysis caused by the uneven distribution of meteor 

events across each day. The mean wind speed is then associated with the mean 

event time of meteors during that hour, as opposed to associating the mean wind 

speed with the middle of the hour. 

Hourly averaging also reduces any high frequency ( < 1 hr) variation in the wind 

83 
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speed measurements which is considered noise in tidal analysis. For this purpose 

no benefit was observed by reducing the averaging interval, however it may prove 

better to perform 10 (or so) minute averages when using the AMOR data set for 

studying gravity wave (high frequency) processes. 

4.2 Fourier Analysis 

An approach for extracting any periodic nature in the meteor winds data set is 

to apply Fourier analysis to the data. However this method cannot be directly 

used as the Discrete Fourier transform (DFT, or FFT) requires that the data are 

both complete and regularly spaced. To fulfil these requirements it is possible to 

construct an equivalent day which consists of 24 hourly averaged values from the 

data period. If gaps still exist in the data then linear interpolation across the gap 

is acceptable; however should more than one hour be vacant then other methods, 

which are discussed in this chapter, may need to be considered. 

4.3 Lomb-Scargle Periodogram and Least Squares 

A combination of the Lomb-Scargle Periodogram and Linear Least Squares tech­

niques enables the extraction of harmonic amplitude and phase from data which are 

unevenly spaced. The Lomb-Scargle Periodogram [Scargle 1982] has been widely 

used in astronomy and identifies the dominant period in the data while linear least 

squares calculates the amplitude and phase of the period found. 

Linear least squares provides a method of summarising a given set of observa­

tions (Xi, Yi) by fitting it to a model of the form 

m 

Y(X) = L akXk(X), ( 4.1) 
k=l 

that depends on adjustable parameters ak where Xk(x) are m specified functions 

called basis functions which, for harmonic analysis, are sines and cosines. The 

parameters of the model are adjusted to achieve a minimum in the sum of squared 

differences between measured and modelled values thereby obtaining a best fit es­

timate for the values ak. 

Once the dominant frequency component of the data has been determined by 
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the Lomb-Scargle Periodogram and parameterised with linear least squares, it is 

extracted from the data and this modified data set is then re-searched for the next 

dominant component. This process is continued while periodicities are being found 

at the 95% confidence level. Having found all significant frequencies, a best fit linear 

least squares process is applied to the original data (along with a mean value) to 

obtain the best estimates of the tidal parameters. 

4.4 The Lomb-Scargle Fourier Transform 

The Lomb-Scargle Fourier Transform (LSFT) [Scargle 1989] provides a further 

method of obtaining a Discrete Fourier Transform (DFT) for data which are lill­

evenly spaced. Unlike the Lomb-Scargle Periodogram, amplitude and phase in­

formation can be obtained directly from its spectrum. Like the DFT, frequencies 

analysed by this process are integer multiples of the fundamental frequency, however 

for reasons of speed, slight modifications were made to the LSFT algorithm so that 

it analyses a pre-determined set of frequencies only, producing an algorithm called 

LSFT2 (detailed in Appendix A). This modification was only a minor adjustment, 

the frequencies for the harmonics returned by LSFT are effectively pre-calculated 

depending on the time duration over which the data were sampled and the number 

of data points. LSFT2 relies on the user supplying these frequencies in advance. 

Naturally, when using LSFT2 care needs to be exercised to ensure that only fre­

quencies which would have been members of the frequency set calculated by LSFT 

are requested. 

4.5 Sliding Window 

If any of the above harmonic analysis techniques were applied directly to a time 

of data, the returned spectra would only detail the average amplitudes and 

average phases of the Fourier components, and the presence of any short lived 

(albeit possibly large amplitude) oscillations may go undetected. A sliding window 

(or moving average) is an effective method for observing such short duration events, 

and also provides a record of the changing tidal parameters present in the time series. 

The sliding window method selects only a fraction of the available data (centered 

at a time to) for harmonic analysis and the spectrum returned from the data subset 
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is likely to be a more accurate representation of the conditions around to than the 

spectrum obtained from the complete data series. By sliding the window so it is 

centered at different values of to different spectra are calculated, and an examination 

of the varying spectra can be used to detail changes in tidal amplitude and phase 

with time. 

Because returned spectra contain average harmonics within the window, its 

length is an important consideration. The window length must be chosen to contain 

an integer multiple of the periods of interest (c.f. Fourier analysis which only 

selects integer multiples of the fundamental frequency) otherwise amplitudes for 

the harmonics returned will be incorrectly estimated. 

Shorter windows (around 10-30 days) provide good resolution for observing 

short term data fluctuations such as the changing semidiurnal tide amplitude but 

the presence of any long period planetary waves will remain undetected possibly 

influencing the mean value. Conversely longer windows (approximately 60 days) 

are necessary for observing large planetary waves [Beard et al. 1999], but details 

concerning the short period oscillations will be reduced. Naturally a window 10 

days wide cannot resolve fluctuations with periods larger than 10 days, however 

Vial [1989] suggests that tidal analysis on data within shorter length windows may 

contain effects which are non-global (gravity waves etc.) and also that for a clima­

tological study 30 day (monthly) long windows are most appropriate. 

The presence of frequencies within the data window which are not an integer 

multiple of the window length tend to spread power throughout the spectrum. This 

can be appreciated by considering an infinite time series of data points which are 

sampled from a signal of single frequency f with amplitude A. After harmonic 

analysis, the spectrum, from f = 0 Hz to the Nyquist frequency, would consist of a 

single delta function at frequency f with amplitude A. However, harmonic analysis 

of a finite (T seconds) section of these data would produce a spectrum which is the 

convolution of the infinite series transform with a sinc function (defined as sinJ:x), 

see figure 4.1) which has a maximum at x = 0 and nulls at frequencies which are 

integer multiples of liT. 

From this it can be seen that if the signal frequency f is an integer multiple of 

liT then convolving the two spectra will result in all power being at that frequency's 

component of the signal spectrum, if however f does not equal an integer multiple of 

liT then the transform ofthe signal will produce a delta function which lies between 
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Figure 4.1: The sinc function as defined in section 4.5 has a maximum at x = a and nulls at 

frequencies which are integer multiples of l/T. 

nulls of the sine function and convolution which will spread power throughout the 

spectrum. 

The power deposited into incorrect harmonics can be reduced by applying, to 

the finite data series, a window function which has the property of reduced side 

lobes in the frequency domain. For this work a tapered cosine window has been 

applied to winds data. The window has a cosine lobe width of (et/2)N where N is 

the number of data points and et a value between a and 1. (This function evolves 

from a rectangular to a Hanning window as et varies from a to 1). In this work 

et 0.5 (refer figure 4.2) was selected providing reduced sidelobes, the first three 

of which are 15 dB, 25 dB and 35 dB down on the main lobe [Harris 1978]. 

Sliding the tapered cosine window across wind data in hourly steps and 

performing harmonic analysis on these data at each step produces a series of spectra 

which can be inspected for tidal variation. 
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o +1.0 

Figure 4.2: The tapered cosine window applied to data prior to harmonic analysis to reduce 

power incorrectly appearing in harmonics. The ends are tapered in the shape of a cosine hence 

its name. The region of tapering displayed is for an a value of 0.5. 

4.6 Comparing the Analysis Methods 

A comparison of the harmonic analysis techniques (Lomb-Scargle Fourier Trans­

form, Fourier Transform and Lomb-Scargle Periodogram-Least Squares) was per­

formed by generating a model function which contained a tidal period of 12 hours 

with an amplitude which varied throughout the year, along with a diurnal com­

ponent and a random (noise) value. The data were gradually deteriorated in steps 

by randomly removing 240 data points. The data were then analysed for harmonic 

components before removing a further 240 points. This process was continued until 

effectively all data were removed. By correlating the tidal amplitudes returned by 

the three harmonic analysis techniques with the known amplitude values which were 

entered into the simple model, as a function of missing data points, an indication 

of how well each method performed was obtained. 

Figure 4.3 displays results from this test and indicates that all methods produced 

calculated amplitude values which correlated well (coefficient > 0.8) with actual 

values at the 95% confidence level provided more than 50% of the data points were 

available for analysis. 

The Lomb-Scargle Periodogram and least squares technique produced correla:­

tion coefficients slightly higher than the other two methods, especially when the 

number of removed data was between about 40 and 80%, however computation 

speed for this method was very slow. 

Although the equivalent day method calculated amplitudes which correlate well 
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Figure 4.3: A comparison showing how well variou.'l harmonic analysis techniques perform as 

increasing amounts of data are removed from a time series. The red trace is for the Lomb-Scargle 

Fourier Transform, green is for the Lomb-Scargle Periodogram and Least Squares technique and 

the blue line arises from a Fast Fourier Transform on an equivalent day. 

with those of the other methods when the data was reasonably complete, it failed 

altogether when the number of removed data increased beyond about 60%. This, 

combined with the fact that this technique does not resolve periods which are greater 

than one dayl meant that this method was not used in this work. 

The Lomb-Scargle Fourier Transform technique performed consistently welL Al­

though it performed slightly poorer than the Lomb-Scargle Periodogram and least 

squares technique in the 40 and 80% removed data region, the algorithm ran ex­

tremely quickly and speed was an important consideration. Hence this technique 

was utilised, for this work, as the preferred technique for harmonic analysis. Nev­

ertheless on occasion the Lomb-Scargle Periodogram and least-squares method was 

considered to have advantages over the Lomb-Scargle technique and the thesis in­

dicates when this is so. 

Based on the poor performance of all techniques when the majority of data has 

been removed, tidal parameters are only calculated if fewer than 70% of the data 

are missing. 

1 Although perhaps an equivalent week could be used. 
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4.7 LSFT Harmonics Uncertainties 

As has been discussed, the majority of harmonic analysis performed in this work 

uses the Lomb-Scargle Fourier Transform (LSFT or LSFT2) based on the algorithm 

given in Scargle [1989]. This section details the derivation of uncertainties for the 

returned parameters which arise due to uncertainties in the input hourly mean 

values. Uncertainties for the input values are the standard error of the mean for 

time and velocity in each time-height bin. These values are propagated through 

the LSFT algorithm providing uncertainties for the amplitude and phase of each 

harmonic. 

The following uncertainty calculations have been derived using the standard 

approach to find the uncertainty, 6.j(x, y), of a function j(x, y) due to uncertainties 

in both x and y) given by 

6.j(x, y) (4.2) 

Uncertainty analysis of the LSFT routine (where the variables in this analysis 

are defined in Scargle [1989] and the C translation upon which this analysis is done 

has been provided in Appendix A) gives the uncertainty in the amplitude, 6.A, of 

a harmonic to be 

6.A= 

with a phase uncertainty (6.¢) of 

jtip26.jtrp2 + jtrp26.jtip2 
(ftrp2 + jtip2)2 ,+ ... 

[ (
6.wrun) 2 (6.tzero) 2] h 2 A 2 + P ase + L.l. wtnew . 
wrun tzero 

(4.3) 

(4.4) 

(4.5) 

Equations 4.3 and 4.5 have been derived through the definition of a variable 

work which is the complex exponential defining the harmonic at the shift point2 

2 A time shift of T is applied to ensure the data are time invariant, i.e., shifting the time 

origin would produce spcctra which are unchanged except for a phase factor. Lomb [1976] also 

introduces the shift parameter, T from a least-squares approach to ensure that cosine and sine 

terms are orthogonal at the frequency of interest. 
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and Lrnp which describes the position to which the shift is made. To obtain the 

correct phase for the particular harmonic it is necessary to transform from the shift 

point back to the origin and this is achieved by multiplying work by trnp. If work 

and Lrnp are defined as (W ~W) ei(¢w±~¢w)tand ei(¢T±~¢T)t respectively then the 

product can be expressed as 

(4.6) 

From this expression it can be seen that the harmonic amplitude uncertainty is 

solely dependent on ~W and the harmonic's phase uncertainty is given by the sum 

~4>w + ~4>T . To obtain the value of ~ W it is convenient to revert back to complex 

notation in which work is defined as: 

work = (ftrp + ~ftrp) + i(ftip ~fl;ip), (4.7) 

where fLrp means Fourier Transform Real Part etc. The amplitude of work, W, is 

then given by J ftrp2 + ftip2 and its uncertainty can be shown to be 

~W (4.8) 

and the uncertainty in phase due to uncertainties in calculating work with equation 

4.7 can also be shown to be 

(4.9) 

The uncertainty in the phase at the shift point is given by 

[ (~wrun) (~tzero) 2] h 2 A 2 + p ase + l....lwLnew , 
wrun Lzero 

(4.10) 

however this expression simplifies to ~4>T ~wLnew when using the L8FT2 al-

gorithm as both ~wrun and ~Lzero = O. The more complicated expression arises 

as a result of the calculation of harmonic frequencies in L8FT. 

uncertainties in the real and imaginary components of each harmonic (~fLrp 

and ~ftip) are obtained from the following two calculations: 

~fLrp = constl ( ~surnr2) scos2 
(4.11) 
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and 

Do/tip = const2 (
!::..sumi2) (Stlmi2) A • 22 + usszn 

ssin2 4ssin2 3 
, 

( 4.12) 

or under certain circumstances in the LSFT algorithm the simpler equation is ob­

tained 

(
!::..sumx) !::..ftip = ftid. 
sumx 

(4.13) 

Table 4.1 summarises the miscellaneous calculations required for the previous 
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f:lwtnew = f:lwtau = D.watanwtau watan ' 

f:lscos2 V 4 cos qi sin qi f:l¢, 

f:lsumr = 

f:lsumx VI:i xstddev[iJ2 ) 

f:lwatan 

f:lwatan 

f:l¢ = f:larg (
tStddeV[i]) 2 2 
ts amp [i] arg f:lwtnew 2 , 

f:lsumtc 

f:lsumts V 2 2 2 sin ¢ f:lt2 + t 2 cos ¢ f:l¢ , 

f:larg ( L'.wTUn) + (L'. ttt) 2 arg 
WTun ttt ' 

f:lsumt VI:i tstddev[i)2, 

f:lftrp[O] L'.sumx ftrp[O] 
sumx ' 

Table 4.1: Miscellaneous equations required in the calculation of uncertainties for the Lomb­

~v'H""<v Fourier Transform. 



94 Chapter 4. Time Series Analysis 



Chapter 5 

Atmospheric Sampling by AMOR 

The meteor radar's temporal and spatial sampling of the atmosphere is determined 

by the combination of the radar's sampling volume along with the quasi-randomness 

of meteor events. Typically the radar detects around 3000 meteor echoes per day 

and from these an average of 2250 wind measurements are made. The main reasons 

for echo rejection are difficulty in unambiguously locating the meteor train or poor 

echo phase information. During Sporadic-E episodes the AMOR system records 

multiple echoes which are not easily useful; hence data from these times are rejected. 

5.1 Sampling Volume 

The AMOR broadside transmitter array operating with horizontal polarisation is at 

a height of 0.5 wavelengths above ground which should produce a main beam at 

an angle of 30° to the horizontal (elevation angle). To reduce power in azimuthal 

sidelobes a nonuniform current distribution is provided along the arrayl which has 

an additional effect of slightly broadening, azimuth, the main antenna beam by 

about 17%. Approximately 0.3% of echoes can be associated with reflections the 

sidelobes which, at 2° from the main beam and at typical meteor train ranges, can be 

treated as being in the main beam without producing significantly different «0.5%) 

wind speeds2 • As meteors only ionise in the atmosphere to form meteor trains in 

the relatively narrow band of heights from 70 - 120 km, the AMOR atmospheric 

sampling volume can be represented by figure 5.l. 

Figure 5.2 shows the number of echoes recorded as a function of ground range 

IThe angular distribution of field is the Fourier Transform of the antenna feed current distri­

bution across the aperture. 
2If necessary it would be possible to detect sidelobe echoes by splitting one of the home site 

receiver antennas in the middle making an azimuth measuring interferometer. 

95 
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Figure 5.1: The radar sampling volume as viewed from east to west (upper) and a layer at 70 km 

from above (lower). 

for 2.5 years of data. Ground range (GR) is the projection of the range, to the 

echo reflection point, onto the ground. The zero ground range point is located at 

the Home site, negative Ground Ranges (GRs) are echoes northward of whereas 

positive GRs are southward of the Home site. 
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Figure 5.2: Ground range distribution of echoes recorded by AMOR. Data are grouped into 5 km 

ground range bins. 

There is an obvious difference in the total number of echoes recorded from 

each direction and this is attributed to the location of the main meteor source. 

For detection by the AMOR radar, the transmitted pulse must undergo specular 
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reflection from the meteor train. To satisfy this condition echoes detected in the 

southern beam must have come from meteors which have a source northward of the 

Birdlings Flat field station and vice versa. As meteors are predominantly caused 

by meteoroids which have orbits lying near the ecliptic plane, more meteors arrive 

from north of the radar than from the south, and hence more echoes are detected 

in the southern beam. 

Another feature of figure 5.2 is a reduction in data at ranges of about -100 and 

100 km. Two reasons could explain this; either echoes are being rejected due to 

difficulties in unambiguously determining elevation angles at these ground ranges, 

or, the antennas are at an effective height of 0.7 .\ thereby producing a null at 45°. 

The latter explanation was rejected as the height of the antennas was measured 

as 0.6 ). from physical ground and previous work in the department indicated that 

electrical ground was at the same height at the Birdlings site. Additionally, if the 

data reduction were due to the radiation pattern it would seem unlikely that the 

data rate would change as dramatically as indicated in figure 5.2. Therefore the 

sudden reduction in data at ground ranges of about -100 and 100 km is deliberate 

to remove ambiguous elevation angle measurements. 

The reduction of recorded echo numbers with distance is consistent with that 

expected from the radar equation (1.35) which suggests that the power received 

from a meteor train at a distance Ro is proportional to 1/ Rg. The received power 

dependence on range makes the detection of echoes from smaller meteors less likely 

at large distances, and hence the number of echoes detected reduces with such 

distance. 

The explanation for why there are few echoes close to the Home site (within 

100 km) is evident from AMOR's theoretical antenna radiation pattern the 

relative electric field (E) at a large distance and angle (B) is given by 

where h is half the distance between the antenna and its image (this is equivalent 

to the antenna's height if it is situated above ground which is a perfect conductor) 

and ). is the wavelength of the transmitted radiation. Assuming ground to be a 

perfect conductor, from figure 5.3 it is evident that for an antenna such as AMOR's 

located at a height h 0.6), above ground, very little radiation is transmitted in 
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the main lobe at elevation angles greater than 600
• This implies that few echoes are 

going to be detected at grolmd ranges less than approximately 50 km. 
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Figure 5.3: The theoretical radiation pattern for the AMOR transmitter antenna, The pattern 

assumes the antenna to be 0.6 wavelengths above a perfectly conducting ground plane. 

The effective antenna height of 0.6 .\. also introduces a minor lobe radiating 

vertically (between 60 0 and 90 0
). To detect a meteor in. this lobe specular refection 

requires the statistically less favourable condition of the train being near horizontal 

to the ground3
. In addition, the first 16 range bins are not sampled and the min­

imum range at which echoes can be detected is approximately 96 km. In the rare 

event that a vertical echo is detected it is often rejected due to the possibility of 

range alliasing combined with elevation angle ambiguities. Utilising echoes received 

from horizontal trains could be a valuable means for measuring the atmosphere's 

vertical motion which has been assumed negligible throughout this work. 

A polar plot showing the relative number of echoes detected as a function of 

elevation angle is given in figure 5.4. Although this diagram cannot be taken directly 

to imply the antenna's radiation pattern as the number density is biased towards 

being larger for smaller elevation angles4 , and there are more echoes detected to 

3This is due to ionisation density being proportional to the cosine of the angle to the zenith at 

which the meteor enters the atmosphere. 
4This is evident from figure 5.5 which shows that for a range of elevation angles tle about an 

elevation angle e the horizontal sampling region is greatest for small e, 
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the south, it does indicate that very few echoes are recorded from elevation angles 

greater than about 50°. There is an obvious absence of echoes which have elevation 

angles that are less than about 15°. This is due to such echoes requiring a range 

which is beyond that sampled by the winds systemS, 
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Figure 5.4: The relative number of meteor echoes detected as a function of elevation angle. 
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Figure 5.5: The number of meteors detected at smaller elevation angles will be biased larger due 

to the larger sampling regions associated with them 

The spatial number density of meteor wind measurements made between 19 

April 1997 and 21 June 1999 is displayed in figure 5.6 and shows a distribution 

5The AMOR orbit system does record f'.,choes from ranges greater than 300 km. However, as 

very few echoes are detected at these extreme ranges the extra effort of enabling the wind'3 system 

to utilise these echoes was not considered. 
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similar to that predicted by the top diagram of figure 5.1. The height distribution 

of meteor echoes varies between the two observation directions. Echoes measured 

in the southern beam are on average detected at greater heights than those in the 

northern beam due to meteors detected in the southern beam having, on average, 

higher speeds6 . 
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Figure 5.6: The spat ial number density of echoes from which wind mea.sureme nts were derived 

by the AMO R winds radar . The region of largest echo count is at approximately 97 km in the 

southern beam a nd 92 km in the northern beam. This height difference is explained by differe nce; 

in meteor speeds for each direction . 

5.2 Sampling Times 

The sampling times for atmospheric measurements with the meteor radar are de­

termined by the random occurrence of meteor events. In addition there is a diurnal 

variation in the data rat.e which is maximum in the morning. This is when the apex 

of the Earth 's orbital motion is near the local prime meridian. To establish whether 

the sampling characteristics (sampling function) of the AMOR meteor winds radar 

influence the tidal parameters that are calculated with harmonic analysis , semi­

diurnal tide amplitude and phase were calculated from Stratospheric Mesospheric 

Model [Lawrence 1997] data. These values were then compared with amplitude 

and phase values obtained when these data were filtered to coincide with the met­

eor radar 's atmospheric sampling function . 

6Meteors detected in t he southern beam are generally headed in a direction opposed to the 

Eart h 's motion. Hence they have higher speeds in the atmosphere 's reference fra me and ionise 

higher up in t he a t mosphere. 
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To access the data within the Stratospheric Mesospheric Model's (SMM) binary 

output files, routines modified from the Middle Atmosphere Dynamics Project at 

Oxford (MADPO) program suite were generated. These routines produced a text 

file called ModelDataC . dat (C for continuous sampling) which contained meridional 

wind speeds produced every four minutes at 80 km and 45° S for a simulation of 

approximately 2 years. 

A second file called ModelDataS. dat is produced from the ModelDataC. dat file. 

For a wind speed in ModelDataC. dat to also be in ModelDataS. dat (S sampled) 

the time of the measurement has to coincide within two minutes of an AMOR de­

tected meteor event. The selection process can also require that the height of the 

meteor be within a certain range. Thus, the number of SMM wind speeds in the 

file ModelDataS. dat will reflect how well the AMOR radar sampled the atmosphere, 

as a function of time, over a particular height range. 

A reference file containing AMOR meteor event times and heights, called Amor _WND . dat, 

was produced in advance and enabled the SMM model data selection. 

A 30 day sliding window LSFT harmonic analysis of the data in ModelDataC . dat 

produces a reference amplitude and phase profile of the SMM's semidiurnal tide. 

These profiles are then compared with the profiles obtained from the identical ana­

lysis applied to the data in the ModelDataS. dat files. 

Sampling the data in ModelDataC. dat to coincide with AMOR meteor events 

which occurred over the range 95±0.5 km, and applying LSFT harmonic analysis 

produced the semi diurnal tide amplitude profile shown as a light line in figure 

5.7. The dark line is the calculated semi diurnal amplitude profile when all data 

within ModelDataC. dat were analysed. The phase comparison is presented in 

figure 5.10. The good agreement shown between profiles generated from sampled 

and continuous data indicates that the AMOR sampling function is acceptable for 

this type of analysis at 95±0.5 km. 

From figure 5.7 it can be seen that there are times when agreement between the 

two profiles is better than at other times. Some of these differences can be attributed 

to the diurnal nature of the sampling function; this is explained in section 5.4. 
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2000 4000 6000 8000 10000 12000 14000 16000 
Time (Hours since 1 April 1997) 

Figure 5.7: Amplitude profile of semidiurnal tide present in SMM at 80 km. The dark line shows 

the amplitude profile obtained with harmonic analysis for the complete hourly averaged data set 

whereas the light line is the amplitude profile obtained from hourly averaged data which have been 

selected to coincide with times for actual meteor wind velocity measurements from 95±0.5 km. 

5.3 Height Dependent Sampling 

Due to the decrease in atmospheric density with height and the mass distribution 

function of meteors, the number of echoes varies with height. The height distribu­

tion of wind measurements made by the AMOR radar is shown in figure 5.8. Echoes 

are rejected by the system if their heights are calculated outside of the range of 70 

120 km. The figure displays the height distribution by giving the percentage of 

"""' .... r.""e< for both the northward (dashed line) and southward (solid line) beams for 

each at one kilometre height intervals. 

previous section concluded by showing that the semi diurnal tide's amp­

litude and phase were well recovered from the SMM when the SMM data were 

sampled at times consistent with the meteor radars sampling of the atmosphere at 

95±0.5 km. However, at heights away from 95±0.5 km the number of AMOR detec­

HH:'v",\.!J. echoes reduces and hence a repetition of the previous section's analysis 

at other heights would produce a ModelDataS . dat file with fewer SMM mean wind 

This section shows that harmonic analysis of the ModelDataS. dat 

data for sampling heights between 80 and 110 km gives good agreement. 

To whether AMOR samples adequately at other heights, the SMM me-

ridional wind measurements were sampled to be consistent with AMOR wind me as­

raYYla'"lTC over a series of heights at 5 km intervals from 75±0.5 km to 110±0.5 km. 

semi diurnal tide amplitude and phase profiles for these heights are given 
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Figure 5.8: The percentage of wind measurements recorded by the AM OR system as a function 

of height. The solid line peaking at 97 km shows the distribution of wind mf'Alsurements detected 

in the southern beam and the dashed line peaking at 92 km shows the distribution detected in the 

northern beam. Echoes which appear to be outside of the 70-120 km height interval are rejected 

by AMOR. 

in figures 5.9 and 5.10 The dark lines are profiles from the continuous SMM data 

and the lighter lines are from SMM data sampled relative to meteor activity. The 

top graphs of figures 5.9 and 5.10 are produced from data sampled at times which 

correspond to meteor events at 110±0.5 km, the remaining graphs step down in 

intervals of 5 km to the lowest height of 75±0.5 km. The acceptance thickness 

for each height is 1 km. 

These graphs show that the atmospheric sampling by the meteor radar at heights 

between 80 and 110 km is high enough to produce semi diurnal tide amplitude 

and phase profiles which are similar to profiles produced from continuous· SMM 

data. Correlation coefficients (at a 95% confidence level) between semi diurnal tide 

parameters for sampled and continuous data are given if table 5.1. The amplitude 

correlation values are maximum with a value of 0.92 at heights between 90 and 

100 km. The amplitude correlation values reduce with increased height to a value 

of 0.82 at 110 km. The amplitude correlation values also decrease with decreasing 
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height. The poorest amplitude correlation is 0.80 at 75 Ian. 

The trend for the semi diurnal tide phase correlation coefficients is similar to 

that for the amplitude correlations. Maximum correlations of 0.96 and 0.97 are 

obtained between heights of 90 and 100 km. The phase correlation reduces to 0.85 

as the height increases to 110 km. Again the poorest correlation is at 75 Ian with 

a value of 0.67. 

semi diurnal tide parameters for the meteor radar sampled data display high 

correlation with those for the homogeneous data, it is proposed that the meteor 

radar sampling function is sufficient for analysing oscillations with periods equal to, 

or greater than, the semidiurnal tide for heights between 80 and 110 km. 

Height Amplitude Phase 

(km) Corr Coeff Corr Coeff 

110 0.82 0.85 

105 0.83 0.92 

100 0.92 0.97 

95 

90 

85 0.90 0.92 

80 0.82 0.86 

75 0.80 0.67 

Table 5.1: This table provides values for the correlation coefficient between full model data set 

and meteor event sampled model data set as a means of quantifying how well the meteor radar 

retrieves amplitude and pha'le values for the semidiurnal tide at vdrious heights. 

5.4 Influence of Diurnal Sampling on Tidal Amplitudes 

This section investigates whether tidal amplitudes are affected by the inherent di­

urnal variation in the sampling rate of the AMOR meteor radar. This is achieved by 

defining a sampling function for hourly averaged data containing either a value of 

one or zero. Hours for which a mean wind velocity has been calculated are associ-
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ated with the value one, and hours for which no wind measurement has been made 

are associated with a value of zero. 

Harmonic analysis (LSFT) was applied to this sampling function representing 2.5 

years AMOR winds data to identify whether any sampling periodicities were evident. 

The power spectrum from this is shown in figure 5.11 and indicates a strong mean 

wind along with a diurnal component. As this analysis was applied to all available 

data the returned spectrum shows average values for sampling periodicities. These 

values possibly indicate that there are times where the sampling function is highly 

periodic and that there are other times when it is not. 

Further inspection reveals that there are also harmonics of the diurnal compon­

ent, however their amplitudes are not as significant and are not considered further. 

The effect of sampling the atmosphere in a periodic fashion is that each peri­

odicity (of frequency 11 with units of cycles per day, where W1 = 27rit) within the 

sampling function will combine with periodicities in the hourly averaged data (of 

frequency 12) and put power into the sampled wind speed spectrum at frequencies 

it + 12 and it - 12. In other words beat frequencies will be generated; this is evident 

from the trigonometric relationship 

(5.1) 

Therefore, in the presence of a semidiurnal tide (12 2) and diurnal (11 = 1) 

sampling, equation 5.1 indicates that harmonic analysis would introduce (spurious) 

components at frequencies of 1 cycle per day and 3 cycles per day. Likewise, diurnal 

sampling in combination with a diurnal tide (12 1) would produce harmonics at 

"dc" (mean wind) and 2 cycles per day. 

Should harmonic analysis of the sampling function reveal only a mean value) 

I.e. the data are continuously sampled, then it 0 and the frequencies 12 appear 

correctly with no false harmonics. 

The spectrum obtained from data of a periodic nature which has been sampled 

with a sampling function which is periodic also can be represented with the expres-

Slon 

q p 

Spectrum = L L coswmtcoswnt, 
m=l n=l 

(5.2) 
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where p and q are the number of significant harmonics in the sampling function and 

wind speed data respectively. 

As discussed section 1.2.1 the dominant signature of mid-latitude atmospheric 

motion is the semi diurnal tide with a frequency of 2 cycles per day. In the pres­

ence of diurnal sampling it would be expected that the terdiurnal component and 

mean value would be affected. Additionally, should the diurnal tide be of a reas­

onable amplitude then spurious power would contaminate the semi diurnal tide. To 

observe these effects, the amplitudes of the semi diurnal and terdiurnal tides are cal­

culated from meteor event time sampled and continuous data from the SMM 

for comparison (refer graphs 4 and 6 of figures 5.1;3 to 5.16). 

Taking as an example results from 95 km, the top graph figure 5.15 shows 

the amount of diurnal sampling. This was achieved with a sliding window Lomb-

Scargle Fourier Transform of the sampling function. The influence on the 

terdiurnal tide, due to diurnal sampling and the semi diurnal tide's amplitude, is 

likely to occur when their product is greatest. Graph 5 of 5.15 is the product 

of the diurnal sampling component with the semi diurnal tide amplitude (sampled 

data) which, when large, should indicate regions of terdiurnal contamination and 

when small should identify where the terdiurnal tide remains unaffected. Graph 

5 of figure 5.15 suggests that terdiurnal contamination should be relatively small 

between elapsed hours 4000 and 7500 and graph 6 reflects this. In contrast graph 5 

indicates that the influence on the amplitude on the terdiurnal tide should be large 

in the 9500 - 11000 elapsed hours. Again this is observed in graph 6. 

Similarly the semi diurnal tide's amplitude, calculated from the sampled data, is 

seen to differ most from that calculated from the continuous data when the product 

of the diurnal component of the sampling function and the diurnal tide's amplitude 

is greatest. This is apparent at times about elapsed hours 8000 and 9700 in graph 

4 of 5.15. 

The of diurnal sampling can be reduced by either increasing the sampling 

volume,thereby increasing the likelihood of detecting a meteor echo and hence de,. 

termining a mean value, or increasing the time interval. Naturally, each of these 

methods results in a reduced resolution of the parameter increased. 

Since the number of echoes varies with height as a result of the meteor ionisation 

process (refer figure 5.8), it is expected that diurnal sampling would increase at 
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Influence on S2 Influence on S3 

Height (km) Corr Coef (r) % Explained (r2) Corr Coef (r) % Explained (r2) 

75 0.1696 2.9 0.3021 9.1 

85 -0.0302 .09 0.4223 17.8 

95 0.1033 1.1 0.3514 12.3 

105 0.2582 6.7 0.5921 35.1 

Influence on Mean Wind 

Height (km) Corr Coef (r) % Explained (r2) 

75 -0.2461 6.1 

85 0.2368 5.6 

95 -0.0694 0.5 
! 

105 -0.1413 2.0 
I 

Table 5.2: The top table correlation coefficients for calculated tidal amplitude differ­

ences and product of sampling function with lower frequency tide. The lower table presents the 

correlation with mean wind differences. 

heights where there are fewer echoes. Figure 5.12 shows the hannonic spectra of 

AMOR's sampling function at heights of 105, 95, 85 and 75 km. Diurnal sampling 

is shown to be greatest at the extreme ranges of 105 and 75 km and therefore it is 

expected that the greatest tide contamination will be evident at these heights. 

Figures 5.13 to 5.16 show the influence of diurnal sampling in combination 

with diurnal and semi diurnal tides on semidiurnal and terdiurnal tides for heights 

between 75 and 105 km. The effect on calculated mean wind values is shown in 

figure 5.17. By inspection it can be seen that poor tidal (of frequency n cycles per 

day) amplitude agreement occurs at times consistent with a large product of diurnal 

sampling function and amplitude of tide with frequency n - 1 cycles per day. 

Correlating continuous and sampled amplitude difference values for tide n with 

the diurnal sampling and tide n - 1 product, produces the correlation coefficients 

presented in table 5.2. Values are significant at 95% confidence level. 

It is evident from results that diurnal sampling has a greater affect on the 

calculated amplitude for the terdiurnal tide as such sampling explains more of the 

differences in the profiles. Diurnal sampling explains over 35% of the differences in 

amplitude profiles for the terdiurnal tide at 105 km. It is interesting to notice that 
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this effect only explains g% of the profile variation at 75 km. It was expected that a 

value nearer to that obtained at 105 km would be returned as the diurnal sampling 

power indicated in figure 5.12 shows a value comparable with that at 105 km. 

diurnal sampling/semi diurnal tide interaction is not evident in calculated 

mean wind comparisons as only data from 85 km show a positive correlation. 
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Figure 5.9: The dark lines show, for comparison, the amplitude of the semidiurnal tide as 

calculated for the complete model generated data set. The light lines show the semi-diurnal tide 

amplitude when the model data set is sampled according to timing of meteor events. The sampling 

heights, with a spread of ±O.5 km, are indicated on each graph. 
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Figure 5.10: The dark lines show, for comparison, the phase ofthe semidiurnal tide as calculated 

for the complete model generated data set. The light lines show the semi-diurnal tide phase when 

the model data set is sampled according to timing of meteor events. The sampling heights, with 

a spread of ±O.5 km, are indicated on each graph. 
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Figure 5.11: A harmonic transform for the 2.5 yp.ars of hourly averaged sampling times present 

in the AMOR winds data set. The dominant mean value exists although a diurnal component is 

also present. 
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Figure 5.12: Harmonic analysis of AMOR's sampling function at 10 km height intervals. The top 

graph is at 105 km and the bottom panel is at 75 km. The dominant (non de) term at each height 

is the diurnal sampling rate. 
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Figure 5.13: 'The effect of diurnal variation in data sampling on the harmonic analysis of model 

data which has been sampled at times consistent with meteor events at 75±0.5 km. For reference 

the graphs are numbered from 1 to 6 (upper to lower). Dark and light lines represent analysis for 

the homogeneous and meteor event sampled data respectively. 0 hours is 0:00:00 1 April 1997. 
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Figure 5.14: The effect of diurnal variation in data sampling on the harmonic analysis of model 

data which has been sampled at times consistent with meteor events at 85±0.5 km. For reference 

the graphs are numbered from 1 to 6 (upper to lower). Dark and light lines represent analysis for 

the homogeneous and meteor event sampled data respectively. 0 hours is 0:00:00 1 April 1997. 
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Figure 5.15: The effect of diurnal variation in data sampling on the harmonic analysis of model 

data which has been sampled at times consistent with meteor events at 95±0.5 km. For reference 

the graphs are numbered from 1 to 6 (upper to lower). Dark and light lines represent analysis for 

the homogeneous and meteor event sampled data respectively. 0 hours is 0:00:00 1 April 1997. 
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Figure 5.16: The effect of diurnal variation in data sampling on the harmonic analysis of model 

data which has been sampled at times consistent with meteor events at 105±0.5 km. For reference 

the graphs are numbered from 1 to 6 (upper to lower). Dark and light lines represent analysis for 

the homogeneous and meteor event sampled data respectively. 0 hours is 0:00:00 1 April 1997. 
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Figure 5.17: Mean wind comparisons for complete (dark) and meteor sampled (light) data SMM 

at heights from 105 (top) to 75 (bottom), 
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Chapter 6 

AMOR Winds 

In this chapter results from the analysis of wind measurements during the period 

19 April 1997 to 21 June 1999 from the AMOR meteor winds radar are presented. 

These results are included to indicate the capabilities of the instrument; they are 

not intended as a detailed surveyor analysis of dynamics in the meteor zone of the 

Earth's atmosphere. 

A selection of raw wind measurements are presented in figure 6.1 from the 

period 2-7 May 1997. From these data two observations can be made. The first 

observation is that the data density appears to vary throughout the day; this diurnal 

variation, and its implications on tidal analysis, has been discussed in 5.2. 

The second observation is that the data clearly follow a sinusoid with a period of 

approximately 12 hrs. This oscillation, the semi diurnal tide (82), is generally the 

strongest signature in AMOR wind speed measurements and is the initial focus of 

this chapter. 
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Figure 6.1: Individual wind measurements for the period 2-7 ::Vlay from 95±2 km are presented, 

The semidiurnal tide is clearly seen along with a diurnal variation in data rate, The uncertainties 

for each measurement are typically 1-3 m s 1. 
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6.1 Tides in Meteor Winds Data 

Normalising the Lomb Scargle Fourier Transform (LSFT) power spectrum of hourly 

averaged AMOR meteor winds data at 95±O.5 km from the period 19 May 1997 to 21 

June 1999 produces the spectrum given in figure 6.2. The dotted line, at the level of 

Siegel's test statistic [Siegel 1980], indicates which harmonics (up to a maximum of 

three) are statistically significant at a 99% level. The spectrum in figure 6.2 shows 

the 2 cycles per day semi diurnal tide to be the most significant oscillation. From 

Siegel's statistic the 3 cycle per day terdiurnal tide and a 1 cycle per day diurnal 

tide also appear as significant features in the AMOR winds data set. 

Tentative evidence, from the broadening of the harmonic peak at 2 cycles per 

day, also suggests that the frequency of the semi diurnal tide (S2) may change slightly 

throughout the year. 
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Figure 6.2: Spectral analysis of meteor winds data from 95±O.5 km. The dotted lines show 

Siegel's statistic calculated for the spectrum and indicates a cutoff for significant frequencies. 

6.2 Amplitude of the Semidiurnal Tide 

Changes in the amplitude of the semi diurnal tide were observed by applying a 

30 day sliding window to hourly averaged AMOR data at 1 km height intervals in 

the range 91±0.5 km up to 104±0.5 km. This ensured that each meteor echo wind 

measurement could only be included in the analysis at one of the analysed heights, 

and data at each height were independent of data at other heights. 

It is evident from the amplitudes of the semi diurnal tide derived from the meteor 

winds data as given in figure 6.4 that, at any particular time, they all displayed sim-
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ilar amplitudes. This obviously important result was very positive as it confirmed 

that consistent results were being obtained from the analysis of wind measurements 

derived from independent sets of meteors. 

For heights between 93 and 103 km there was a cyclic repetition in the semi­

diurnal tide's amplitude. The most obvious feature of these graphs was the large 

amplitude consistently observed during autumn months. 

Inspection of the semi diurnal tide's amplitude during autumn 1997 revealed that 

the peak amplitude of this tide was maximum at 99 km and steadily decreased at 

heights away from 99 km; this feature may be explained by the presence of more 

than one tidal mode (see section 6.4). 

The amplitude of the semidiurnal tide obtained from AMOR winds data when 

analysed with a 30 day window has been summarised in figure 6.3. 

50 

Figure 6.3: Amplitude of the semidiurnal tide measured by AMOR with a 30 day window. 
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Figure 6.4: Amplitude of semidiurnal tide as determined at the heights indicated in each graph. 

The mean uncertainty at each height (2 s.d.) is also indicated. 
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6.3 Phase and Period of the Semidiurnal Tide 

The phase (defined as time of maximum northward motion) of the semi diurnal 

tide was seen to be height dependent (refer figure 6.6). The phase was generally 

measured as being earlier at greater heights, i.e., for May 1997 the phase at 104 km 

the phase was measured as 11.5 hours NZST1 whereas at 91 km the phase was 15 

hours NZST. 

The phase of the semi diurnal tide also exhibited seasonal variation throughout 

the year. Inspection of the available data from year 1997 showed the phase 

gradually increased to a maximum in winter months. The phase then tended to 

decrease slowly towards the 1997/1998 summer. Late summer 1998 phase decreased 

throughout February, to a yearly low for heights above 99 km, before increasing 

again in March. The phase then steadily increased until late April or early May 

where it remained near constant until June. During June the phase decreased 

slowly before a dramatic phase increase during July. This sudden phase increase 

was also seen in the 1997 data. For the period of July 1998 through to the end 

of September 1998 the phase below 100 km was seen to steadily increase; above 

100 km it steadily decreased. At heights below 99 km, October 1998 results showed 

the phase of the semidiurnal tide increasing to the extent that it went through 12 

hours (27r) and appears as a smaller phase; this is possibly as a consequence of the 

S2 amplitude being particularly small during this time (refer figure 6.4). At heights 

above 99 km the 1998 phase slowly decreased and continued to decrease through 

till the end of that year. phase was then seen to increase rapidly throughout 

October to values consistent with those of the previous year. A sudden temporary 

phase increase was observed in December 1998 at all heights. January 1999 phase 

at heights between 93 and 103 km showed unusual behaviour. It is not certain why 

the phase should experience such a height dependent shift. However, this time of 

year does coincide with the two-day planetary wave which may have caused the 

(note however, that such an event was not observed the previous year) or it 

may have originated as a result of several days missing data (the missing data is 

evident from figure 6.8). 

The measured phase values tended to lie within the values 0800 and 1600 hours 

NZST and were rarely seen to exist outside of this range. Occasions when phase 

1 New Zealand Standard Time, equivalent to UT + 12 hours. 
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did go beyond this range briefly were generally coincident with small 

diurnal amplitudes and may be evidence for interference between more than 

one tidal mode coexisting with similar amplitudes and different phases. Annual 

phase variations with similar seasonal trends to those described here have also been 

reported from radar measurements by Vincent et al. [1988] and optical wind meas­

urements by Fauliot et al. [1995]. 

The phase of the semi diurnal tide obtained from AMOR winds data when ana­

lysed with a 30 day window has been summarised in figure 6.5. 
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Figure 6.5: Phase (NZST) of the semidiurnal tide as measured by AMOH. with a 30 day window. 
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Figure 6.6: Phase (NZST) of semidiurnal tide as determined at the heights indicated in each 

gI·aph. The mean uncertainty at each height (2 s.d.) is also indicated. 
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As the phase of the semi diurnal tide gradually changed over successive 24 hour 

periods, its period couldn't have remained constant at 12 hours. To observe this 

frequency variation the Lomb Periodogram [Scargle 1982] was applied to 30 day 

windowed hourly averaged wind data and the largest amplitude period, near 12 

hours, was taken as the semidiurnal tide's period at that time. 

Variation in the period of the semi diurnal tide within AMOR data at heights from 

91-104 km is shown in figure 6.7. For consistency the phases in figure 6.6 should 

increase during episodes when the period of the tide is greater than 12 hours, and 

conversely the phases should decrease when its period is less than 12 hours. Regions 

of constant phase only occur when its period is precisely 12 hours. Inspection of 

figures 6.6 and 6.7 confirms this consistency. 
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Figure 6.7: Period of the semidiurnal tide as determined at the heights indicated in each graph. 
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Figure 6.8: Percentage of observation period for which hourly means were determined. 
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6.4 Semidiurnal Tide Vertical Wavelength 

The AMOR system measures a change in the phase of the semidiurnal tide with 

height. This is indicative of a vertically propagating component of the tide with 

a vertical wavelength equal to the distance through which the phase changes by 

2". The vertical wavelength (Av, km) has been obtained by calculating the gradient 

(m, hrkm-l) of the semi diurnal tide's phase with height, using a linear least squares 

fit (refer figure 6.9) and the relationship 
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Figure 6.9: An example of the linear fit to semidiurnal tide phase as a function of height. In 

this example the stmight line gradient is -3.9±0.1 kmhr--1 (m. = -0.26 hrkm-l) which implies a 

vertical wavelength of 47±1 km. 

A negative value for m occurred more than 70% of the time and simply indicated 

that the wave was propagating upwards. The vertical wavelength of the semi diurnal 

tide obtained from AMOR meteor wind data during the period 19 March 1997 to 

21 June 1999 is shown in figure 6.10. 

Figure 6.11 from Andrews et al. [1987] shows the relationship between the 
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Figure 6.10: The vertical wavelength of the semidiurnal tide. Uncertainties in the wavelength 

are drawn on the graph and appear as a thickening of the line. From these values dominant tidal 

modes can be interperated. 

semidiurnal tide's vertical wavelength (.\v) and the atmosphere's equivalent depth 

or scale height (h). In addition table 6.1 [Lindzen & Chapman 1969] shows the 

dependence of the dominant tidal mode on h. Therefore a measurement of the 

semi diurnal tide's vertical wavelength can be used to interpret the dominant tidal 

mode at that time. From figure 6.10 the vertical wavelength was in the order of 35-

45 km during autumn and winter months and reference to figure 6.11 and table 6.1 

suggests that the most probable modes present were (2,4) and (2,5). On occasions 

.\V increased to a value nearer 80 km (Aug 1997, Oct 1998) and indicates that (2,3) 

was the dominant mode for the semidiurnal tide during those times. 

Interestingly, at no stage was .\V measured as being large enough (>200 km) 

to indicate the presence of the preferred state due to thermal excitation, mode 

(2,2); this suggests that at lower heights the exponential growth of (2,2) was being 

interrupted and 'coupled' (Lindzen & Hong [1974], Walterscheid & Venkateswaren 

[1979a]'Walterscheid & Venkateswaren [1979b]' Walterscheid et al. [1980]) into higher 

order modes [Forbes 1982]. 
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Figure 6.11: Vertical wavelength as a function of equivalent depth (After Andrews et al. [1987]). 

Mode h (km) Mode h (km) 
I 

(2,2) 7.85 (2,3) 3.67 

(2,4) 2.11 (2,5) 1.37 

(2,6) 0.96 (2,7) 0.71 

(2,8) 0.54 (2,9) 0.43 

(2,10) 0.35 (2,11) 0.29 

I (2,12) 0.24 (2,13)~ 
(2,14) 0.18 (2,15) 0.16 

(2,16) 0.14 (2,17) 0.12 

Table 6.1: Equivalent depths for different m0ges of semidiurnal tide (After Lindzen & Chapman 

[1969]). 

6.5 Acceptance Layer Thickness 

As a consequence of the semidiurnal tide generally having such a short vertical 

wavelength, analysis of its amplitude can produce values which are smaller than 

they should be if the thickness of the height layer from which the data are hourly 

averaged is significant in relation to the vertical wavelength. 
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Amplitudes obtained for the semidiurnal tide at 95 km from meteor winds data 

averaged over a variety of height layer thicknesses are shown in figure 6.12. The blue 

line shows the amplitude obtained when the acceptance layer is 1 km; the highest 

resolution possible with the AMOR system. This amplitude is constantly greater 

than that obtained when the acceptance height layer thickness was broadened to 

9 km (the red line). Extending the acceptance layer such that all meteors (70-

120 km) are included in the calculation of the hourly mean values results in the 

green amplit ide profile. 

From these data it can be seen that the 9 km and 1 km acceptance layer thick­

nesses did give good general agreement, however when all data were included the 

calculated amplitude was greatly reduced; occasionally down to a factor of 0.5. 

There are occasions indicat.ed in figure 6.12 when the three layer acceptance thick­

nesses produced amplitudes which were consistent with each other, e.g. November 

1997, July 1998 and March 1999. These appeared to be when the tide's amplitude 

was small and, more importantly, coincided with times of large vertical wavelength 

(refer figure 6.10). Conversely the largest differences in calculated semidiurnal tide 

amplitude occurred when the vertical wavelength was calculated as small, e.g., 

April - June 1998. 

Figure 6.12: Amplitude of the semidiurnal tide as measured from layers of various thicknesses 

at a height centered at 95 km. The blue line has been obtained from an acceptance layer only L 

km thick, the red line is the amplitude measured if the acceptance layer is extended to 9 krn thick 

and the green line fTorn analysis of data at all heights. 
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6.6 Planetary Waves 

Planetary or Rossby waves are global scale oscillations with periods of a few days. 

Possible planetary wave activity has been detected in the AMOR winds data set 

from analysis with the Lomb-Scargle Periodogram on 20 day windowed data2 • Least 

squares was used to parameterise and remove the dominant component and then 

the process was repeated to obtain the second most dominant (sub dominant ) com­

ponent. Figure 6.13 shows the dominant (top graph) and second most dominant 

(bottom graph) periodicities obtained from this process and identifies the presence 

of occasional short lived atmospheric oscillations which have periods of 2, 4 and 5 

days. 

From this figure it can be seen that in general the dominant behaviour was 

the semi diurnal tide, however, during November 1997 four-day wave activity was 

seen gradually to gain dominance over the semi diurnal tide; appearing first as a 

subdominant signal prior to becoming the clearly dominant signal for about one 

week. Its amplitude then receded and the semi diurnal tide returned as the dominant 

oscillation. 

During January 1998 the two-day wave was clearly evident for about one month 

(The apparent length of this event was extended by the window width). onset 

of the two-day wave appeared to occur very quickly as it gained dominance over 

the semidiurnal tide in a short period of time, however there is a suggestion that 

the decay of the two-day wave was slower as it appeared as a sub dominant once the 

semi diurnal tide regained dominance. 

There was a possibility that a six or eight-day wave was in a formation phase 

during November 1998 but the period of any signal appeared erratic and further 

analysis would be required to confirm its existence. Furthermore, weak five-day 

wave activity was also apparent as a subdominant in February 1998. This feature 

was seen again, though slightly later, the following year. 

The amplitude profiles for possible planetary waves with periods of 2, 4, 5, 

6, 8 and 10 days were calculated with a sliding window LSFT2 and are shown in 

figure 6.14. The two-day wave was clearly evident during 1998 however its existence 

was doubtful for 1999; this was most likely caused by reduced data, due to radar 

21n this case a 20 day window was used because of the a priori knowledge of four and five day 

wave existence. 
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down-time, coinciding with its expected maximum. 

The amplitude of the four-day component was shown in figure 6.14 to generally 

vary quite erratically over short time periods. However during November 1997, the 

time identified as containing a four-day component in figure 6.13, the amplitude 

profile shows a slowly amplitude varying signal. This is good evidence for the 

existence of a stable four-day wave during this time and appeared to be the only 

four-day wave event detected by the AMOR system during the observation period. 

The five-day wave amplitude profile shown in figure 6.14 shows large stable 

amplitudes at times consistent with times identified in figure 6.13 and confirmed 

the possibility of a five-day wave occurring during February 1998 and March 1999. 

Amplitude profiles for six and eight-day components have been produced in 

figure 6.14, however, from inspection, it appears most unlikely that these planetary 

waves exist in the AMOR winds data set as there isn't any clear indication that 

either of the six or eight-day wave amplitude profiles ever show any stability3. The 

possible ten-day event identified in July 1997 by figure 6.13 seems unlikely to be 

physically real, considering this evidence alone, as it appears to occur over such 

a short time period. However, an inspection of the ten-day amplitude profile in 

figure 6.14 does suggest a large amplitude was stable during that time and provides 

tentative support for its presence. 

3Six and eight-day wave amplitude profiles were obtained with 18 and 24 day windows respect­

ively. 
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6.7 Mean Wind 

The mean wind profiles obtained from the AMOR wind data set at heights between 

91±O.5 and 104±O.5 km are shown in figure 6.16. These graphs indicate that the 

mean wind has no significant height dependency as all graphs show good general 

agreement. A general description of the measured mean wind would be that it was 

generally directed towards the north and that the amplitude of this motion was 

largest in summer and smallest in winter. During winter months the mean wind 

was small and appeared to change direction frequently. 

The maximum northward mean wind (rv 15 m s-l) was measured during the 

summer months of December and January each year. The mean then decreased in 

February and March down to a value of rv-5 m s-l in late March or early April. 

The mean wind was then seen to exhibit fairly erratic behaviour during the months 

of April through to October before returning to a stable large northerly. The 

transition from the erratic winter behaviour to the large amplitude stable summer 

behaviour occurred around late October in both 1997 and 1998 and the transition 

back occurred during March for both 1998 and 1999. 

The mean wind obtained from AMOR winds data, when analysed with a 30 day 

window, has been summarised in figure 6.15. 
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Figure 6.15: The mean wind as measUTed by the AMOR meteor radar with a 30 day sliding 

window. 
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window at various heights. 



138 Cha.pter 6. AMOR Winds 



Chapter 7 

Data Comparisons with the AMOR Winds Data 

Set 

In this chapter data from the Fabry-Perot Interferometer (FPI) at Mount John and 

the Medium Frequency (MF) Radar at Birdlings Flat are compared with data from 

the AMOR meteor radar. The three instruments sample different volumes of the 

atmosphere (refer figure 7.1) using different methods. 

The FPI [Hernandez 1986] measures wind by observing the Doppler shift of 

the night-time sky emission of the OH(6-2)Pl(2) transition at 840 nm and the 

atomic oxygen line (01) at 557.7 nm. The instrument observes in the four cardinal 

directions at an angle of 20° as well as in the zenith. 

The NIF radar measures wind by the partial-reflection technique [Fraser 1984]. 

Winds are calculated from the grOlmd level observed motion of diffraction patterns 

caused by partial reflections from ionisation in the 70-105 km height region of the 

atmosphere. The observation field for the MF radar is a vertical cone with a half­

power full-beam width of 32° by 18° perpendicular and parallel to the north/south 

direction resulting in a sampling volume of 48 by 37 km at a height of 95-100 km 

located directly above the Birdlings Flat site [Smith 1996]. 

This chapter also details the intra-comparison of AMOR meteor radar data, which 

are grouped into bins by ground range, thus removing any systematic differences 

present in the inter-experiment comparisons. number of Ground Range Bins 

(GRBs) is variable and results for sixteen GRBs, 32.5 km wide, eight in each dir­

ection ranging from 40 km either side of the Home site to a maximum of 300 km 

in both north and south directions, are presented here. The few echoes detected 

at ranges than 40 km from the Home site are included in the bins nearest the 

Home site. 

Finally, semidiurnal tide amplitude and phase values are compared with data 

139 
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Figure 7.1: The South Island of New Zealand showing the relative sampling volumes of the three 

wind measuring methods. 

produced by the Global Scale Wave Model (GSWM) [Hagan et al. 1999] at equinox. 

7.1 Meteor Winds and FPI Comparison 

7.1.1 FPI Height Measurements 

As shown in Chapter 6 wind speed varies with height and hence good agreement 

from wind measurement comparisons requires that the data are sampled from sim­

ilar heights. As the FPI cannot directly measure air-glow layer heights, data from 

the green (557.7 nm) line of atomic oxygen and the red (840 nm) hydroxyl (OH) 

line are typically assumed to be from heights of 97 km and 87 km respectively. For 

the wind comparisons with data from the FPI in this work [Plagmann et al. 1998], 

a more accurate estimate of the airglow layer heights has been obtained by com­

paring the phase of the semidiurnal tide calculated at each airglow height from FPI 

data with the phase ofthe semidiurnal tide over a range of heights from 80-110 km 

(with a 1 km height resolution) obtained from the AMOR meteor radar winds data. 

This technique takes advantage of the semidiurnal tide's phase being height depend­

ent (refer section 6.4) and the airglow layer height is defined as being the height, 

measured by AMOR, for which the semidiurnal phases are nearest. 

Heights produced by this method were seen to vary slightly on a daily basis. 
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Heights fluctuated arOlmd 100 km for the atomic layer and 92 km for the 

OH layer. The heights obtained were slightly higher than is usually quoted (+3 

km and km for the green and red lines respectively) however they do lie within 

the range of heights obtained from rocket measurements [Baker & Stair 1988]. In 

addition, increased heights measured in this way were to be expected as these 

airglow layer heights are indicative of the layer's emission height and this 

is greater than the height of the profile peak: the value which is most often quoted 

in the literature. 

As an FPI wind measurement is made from the received emission integrated over 

a layer several kilometres thick (refer figure 7.2), data are selected from the AMOR 

data set for comparison weighted to approximate this. O'Brien et al. [1965]describes 

the airglow layers as similar in shape to a Pascali an triangle with a FWHM of 6-

10 km. Therefore, a Pascalian weighted vertical profile function which is 9 km thick 

and centred at the height identified with semi diurnal phase matching is applied to 

the AMOR meteor winds data. For comparison the 557.7 nm night airglow profile of 

O'Brien al. [1965]and the applied weighting flmction are presented in figure 7.3. 
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Figure 7.2: Sampling regions for meteor radar and FPI. The radar makes a localised wind 

measurement (within an 8 km3 3 dB box) whereas the FPI measurement represents the wind 

speed integrated throughout a volume. 

Wind speed measurements cannot be made by the FPI during daytime hours 

due to saturation of the interferometer by solar radiation and as a consequence 

comparisons for full day's data cannot be achieved. FPI wind measurements are 
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further reduced during cloudy periods due to clouds diffusing the airglow v~~'w.".>~'-'~u.> 

data comparison presented in this work has been confined to data collected 

during period 2-6 May 1997 during which there were five consecutive clear sky 

Comparisons of AMOR and FPI data from an additional eleven days hai-n"''' ..... 

1997 and April 1995 were presented and discussed in Plagmann et al. [199S]. 



7.1. Meteor Winds and FPI Comparison 143 

4~----------~----------~----------~---------, 

3 

-3 

105 

100 

---ez 
Q) 

Q) 
E 
0 

95 g 
Q) 

"0 .a 
+:: « 

90 

100 200 300 400 500 600 

Emission rate (photons/em sec) 

Figure 7.3: The top shows the weighting fum:tion applied to the meteor winds data. The 

bottom figure shows altitude profile of 557.7 nm night airglow [O'Brien et a1., 1965]. 



144 Chapter 7. Data Comparisons with the AMOR Winds Data Set 

7.2 Meteor Winds and MF Radar 

Like the AMOR meteor radar) the MF radar is capable of winds 24 hours 

per day, however poorer signal to noise is experienced at night (the noise level is 

20dB greater at night [Smith 1996] and is due to increased coupled 

with less ionisation) and a poorer data rate results. As a result best agreement 

between the AMOR meteor winds and the MF radars is to be expected during 

daytime hours and much poorer agreement may be expected at night. 

Similar to AMOR system, the MF radar can measure winds over a range of 

heights (70-105 km) with height measuring ability. The MF radar is capable of 

measuring winds in both zonal and meridional directions; a feature which is shared 

with the FPI (the AMOR meteor radar can measure the meridional component only). 

Again, for comparison with the FPI, an airglow emission profile weighting function 

has been applied to the MF data. 

7.3 Results 

Wind speeds as measured by the two Canterbury University radars and FPI 

at Mount John are shown in the following figures. The data presented are hourly 

means where blue are from the meteor radar, the green traces the MF radar 

and red traces are from the FPI. Time of day is given in hours UT to centralise the 

FPI data set in the time period. 
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Figure 7.4: Comparison of AMOR (blue line) FPI (red line) and MF radar (green line) hourly 

( ZST) mean winds for 2 May 1997. 
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(NZST) mean winds for 4 May 1997. 
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(NZST) mean winds for 5 May L997. 
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Figure 7.8: Comparison of AMOR (blue line) FPI (red line) and MF radar (green line) hourly 

(NZST) mean winds for 6 May 1997. 
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Generally the three instruments show good agreement; however the FPI and 

meteor radars agreed best. Statistically this is evident from the correlation coeffi­

cients shown in table 7.1. Column 3 presents the correlation coefficients calculated 

for the comparison of meteor and MF radar data for the day time only. Values for 

the correlation coefficient range from being not significant (NS) for 5 values through 

to a maximum of 0.82 on day 4. Comparing data for both day and night gave poorer 

agreement as is indicated by the best correlation coefficient being reduced to 0.71 

and a not significant value is now returned on seven occasions. 

The FPI data (night time only) gives the best agreement with the meteor data 

set returning correlation coefficients which range from 0.84 to 0.95 with no NS 

correlations. All data are significant at the 95% confidence level. A comparison of 

FPI and MF data was not justified as each operates best during times when the other 

experiences poor signal to noise. The last two rows show correlation coefficients for 

all five days when averaged to give a representative day for the comparison period. 

One sees again that on average the meteor radar agrees better with the FPI and is 

not significant with the MF radar at greater heights. Both instruments show better 

agreement with the meteor radar at lower heights. This is primarily due to the FPI 

and MF radars recording more data at these heights. 

Date Height (km) MR-MF (day) MR-MF all MR-FPI 

2 93 0.56 NS 0.85 

101 NS NS 0.89 

3 94 0.80 NS 0.86 

103 0.58 NS 0.90 

4 93 0.82 0.71 0.95 

102 0.63 0.57 0.89 

5 93 NS NS 0.89 

98 NS NS 0.86 

6 92 NS NS 0.84 

98 NS 0.56 0.93 

all lower 0.82 0.63 0.95 

higher 0.61 NS 0.85 

Table 7.1: Correlation coefficients for wind comparison. NS refers to no significant correlation 

at the 95% level. 
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7.4 Wind Speed Variability with Ground Range 

Correlation analysis of hourly mean winds has been applied to wind measurements 

grouped into 16 Ground Range Bins (GRBs). reduce any effect of the semidi­

umal tide's vertical structure, only meteors detected at heights between 92±O.5 km 

and 102±O.5 km have been included in this analysis. In addition GRB compar­

isons hourly mean values were only calculated if six or more echoes were used in 

determining its value. 

The 8 GRB centres for each direction are situated 32.5 km apart with the bin 

nearest the Home site centred 56 km north and south and the furthest centred 

284 km north and south of Birdlings Flat. Data from the northern beam are 

grouped as a mirror image of the south (refer figure 7.9). The closest two GRBs 

centres either side of the Home are separated by the larger distance of 112 km. 

This is because the radar detects very few echoes at high elevation angles. 

If one assumed a near isotropic atmosphere then hourly means of data in these 

GRBs should correlate well. Conversely poor correlation could either indicate flaws 

in the measurement technique or identify inhomogeneities in the measured wind 

field. 

Tabulated values of correlation coefficient, gradient of line of best fit and number 

of coincident hourly means for all available data are presented in Appendix B. For 

perfect agreement between GRBs the correlation coefficient and the best fit gradient 

should both equal one. 

GRBs located near either end of the sampling volume (GRBs 2 and 15) are 

defined as "reference bins" . remaining bins which are to be compared with the 

reference bins are called "comparison bins". By observing the changes in correlation 

between reference and comparison bins one can determine the ground range wind 

speed variability. The GRBs second from the ends of the sampling volumes were 

selected in preference to GRBs 1 and 16 simply because they provided more wind 

measurements. In this thesis the derived correlation values between each reference 

bin and the comparison bins has been termed a reference bin correlation profile. 

Naturally correlation analysis is only applied to hourly means for reference and 

comparison bins which are coincident. 

Reference bin correlation profiles for AMOR winds data classified by season are 
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Figure 7.9: The South Island of New Zealand showing the positioning of, and distance to, ground 

range bin centres along the north/south line. SCALE: lcm = 60 km. 

shown in figure 7.10. In these graphs the solid circles and open circles indicate 

whether the reference bin was GRB 2 or 15 respectively. The uncertainties for 

these correlation coefficients were calculated by applying a Fisher transformation 

to the correlation coefficients. This produced a statistic Z = ~ In (i~;) which has a 

distribution nearly gaussian and a mean given by Jjz = ~ In (~~p) and standard de­

viation CYz = ';:-3 where T and p are sample and population correlation coefficients 

respectively and n is the number of independent data points. 

Correlation values have only been displayed in figure 7.10 if there were more than 

20 hourly means available for analysis. This explains why GRBs near the Home 

site (ground range = 0) do not provide correlation coefficients during winter1. 

IThere is an annual variation in meteor rate such that the number of meteors is greatest in 

autumn and smallest in spring (southern hemisphere). 
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The graphs in figure 7.10 show, as expected, that the correlation coefficient 

gradually reduces as the distance to the comparison bin increases. However, perhaps 

the most obvious feature of graphs is the sudden reduced correlation with 

GRBs at the near north side of the Home site. The cause of this feature is not 

completely understood; however several possibilities will be discussed later in this 

section. 

Another feature of these graphs is a seasonal effect. The southern correla­

tion coefficients for the southern reference GRB (solid circles) remained consistent 

at approximately O.S±O.l throughout the year, yet the correlation coefficients for 

southern comparison GRBs with the northern reference GRB displayed a seasonal 

cycle. In summer months the correlation coefficients between southern comparison 

GRBs and the northern reference GRB had values of 0.7±0.1, this value decreased 

in autumn to 0.6±0.1. In winter the correlation coefficient values decreased further 

to 0.4±0.2 before increasing in spring back to a value of 0.6±0.1. Gravity waves are 

a possible explanation for this effect. 

Gravity waves of horizontal phase velocity, c, cannot propagate upwards through 

a background wind, 11" of the same velocity. Orographic gravity waves are phase 

locked to their source so their phase speed, cOm S-l and they cannot propag­

ate upwards through regions where the background wind 11, 0 m s-l. That is 

to say that orographic ally generated gravity waves should not be detected above 

boundaries between westerly and easterly flow. 

Zonal mean winds (and temperature) under both solstice and equinox condi­

tions as measured by the Upper Atmosphere Research Satellite (UARS) are shown 

in figures 7.11 and 7.12. At a latitude of 45°S the January zonal mean wind profile 

exhibits a westerly to easterly transition at a height of approximately 25 km and as 

a result theory predicts gravity waves will not be observed at meteoric heights. Sim­

ilarly the October profile prevents gravity waves travelling m1.:lch higher than 60 km. 

April and July show constant westerly behaviour to the top of the mesosphere and 

would permit gravity waves to travel to approximately 100 km unaffected. 

This process of gravity wave filtering is therefore a possible mechanism to explain 

the observed seasonal correlation dependence. Seasons which coincided with allowed 

vertical propagation of gravity waves into the high mesosphere showed reduced 

agreement between southern comparison GRBs and the northern reference GRB 

and conversely seasons which do not facilitate vertical gravity wave propagation 
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showed good agreement. 
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Figure 7.11: UARS temperature and zonal mean wind measurements for January and April. 
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As was briefly mentioned earlier in this section wind measurements from echoes 

in the northern near Home site GRBs exhibit poor correlation with measurements 

in all other GRBs. Three possible explanations for this poor agreement are: 

• that the meteor radar contains a systematic error which becomes apparent 

for echoes measured in this region. 

• that the values simply reflect the poorer statistics in this region. 

• that this region is experiencing extreme, local turbulence due to gravity wave 

breaking. 

The first of these explanations is unlikely mainly as if it were then similar 

behaviour would be expected in the southern near Home site GRBs. Nor can this 

effect be explained by u X B meteor train plasma drift as it would be expected that 

any effect of train drift orthogonal to wind direction would become steadily more 

apparent as the sampling volume tended further south. 

The second possible explanation is considered by refering to figure 7.13 which 

shows that the region of interest does consistently collect the least number of echoes. 

This is due to a combination of fewer echoes being detected in the northern beam 

and these echoes being required to be at a high elevation angle; where the trans­

mitted power is small in comparison with lower elevation angles. However there are 

occurrences of low measurement count outside of the region of interest which have 

nevertheless produced high correlation coefficients. Examples are the four northern 

beam winter correlations and the three northern beam spring correlations with the 

northern reference GRB. In these cases, despite the number of measurements being 

comparable to the number of measurements generally obtained for the near Home 

site northern GRBs, the correlation coefficients were of the order of 0.8±0.2. 

To explore the theory that the low correlation coefficients could have been pro­

duced by the low data rates, 30 mean values were randomly sampled from each 

G RB and the correlation analysis was repeated. Although the uncertainties on the 

values increased, as a reflection of there being fewer points, the results (figure 7.14) 

still indicated good correlation for all data except those in near Home site northern 

G RBs. These results were repeatable and suggested that the low data rate in the 

northern near Home site GRBs is not the cause of the poor correlations. 
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Figure 7.13: Seasonal dependence of number of hourly means available for correlalation analysis. 

Solid circles give the number of means for GRB 2 correlation and open circles are for GRB 15 

correlations. 
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The third possible explanation for the reduced correlation at northern ground 

ranges less than 100 km is gravity waves. This variation can be explained by 

the presence of gravity waves which have been produced by the Southern Alps. 

Airflow over mountains can generate gravity waves which are capable of propagating 

high into the Earth's atmosphere and it is believed that they would interact with 

the atmosphere at meteoric heights many kilometres downstream of the mountains 

[Schoeberl 1985]. 

A two-dimensional model simulation based on approximations to Navier-Stokes 

equations [Garcia & Prusa 1997] showed short horizontal wavelength gravity wave 

activity appearing at meteoric heights downstream of the forcing region under con­

ditions of isotropic wind speed2 (refer figure 7.15). These waves are seen to generate 

vigorous overturning of the atmosphere over a range of many kilometres centred at 

approximately 60 km downstream of the forcing region. 

For the AMOR data set the likely orographic source for gravity waves is the 

Southern Alps which lie as a ridge in a south-westjnorth-east direction (refer figure 

7.9) west of the Home site. The distance from the Southern Alps to the radar 

illuminated regions is largest at the southern extreme of the radar beam. This 

distance decreases as one moves northward and at ("V 154 km north of the Home 

site the radar beam and Southern Alps cross and wind measurements are taken 

from directly above the mountain range. Moving further north the radar samples 

westward of the direction of the Southern Alps. Westward of the radar beam, at 

ground ranges between ("V 70 and 154 km north of the Home site, the Southern 

Alps have reduced in height and gravity wave production is likely to be less in this 

region. The Southern Alps are at their largest west of the beam at ground ranges 

between ("V 56 km north and ("V -89 km south of the Home site. 

The region of poorest correlation in figure 7.10 is the GRB centred 56 km north 

of the Home site. This sampling volume lies approximately 110 km east of the 

Southern Alps and Garcia & Prusa [1997] would suggest that highly turbulent 

gravity wave activity in this region is plausible. Their results would also suggest 

large gravity wave induced turbulence in neighboring GRBs further north (but 

not south as these sampling regions are too far downstream). There is tentative 

observational evidence in support of this from the next northern bin (centred at 

2It should be realised that this assumption is unlikely to be true. However this model still 

provides general gravity wave behaviour and can be used as a comparison in this work. 
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Figure 7.15: Potential temperature field at vanous times during simulation of Garcia & 

Prusa [1997] in which lower boundary forcing is located at x=O km and the (westward) background 

wind is -50 (After Garcia & Prusa [1997]). 
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89 km) but no others. 

It is possible that the effects are not observed in more northern bins because the 

height of the Southern Alps is less west of these more northern GRBs and hence less 

gravity wave activity is expected. Good correlation coefficients are obtained from 

comparisons with GRBs north of 121 km as the Southern Alps no longer feature and 

hence there is no clear ridge for gravity wave production. All GRBs south of the 

Home site display consistently good correlation coefficients; this is to be expected 

as the southern sampling volume is well downstream of the gravity wave source and 

would not contain regions of large turbulence. 

Increased confidence that orographically generated gravity waves are indeed the 

driving mechanism for reducing correlations with the first northern GRB could be 

obtained by filtering the data as a function of ground level wind velocity. It is 

proposed that correlations of GRBs with the first northern GRB should increase 

during ground level easterlies and decline during ground level westerlies. 

Figure 7.16 displays the seasonal effects on the gradient of the least-squares 

regression line of best fit for ground range binned data from reference bins GRB 2 

and 15 with all other comparison bins; again the solid circles and open circles are 

for reference bins GRB 2 and 15 respectively. 
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7.5 GSWM Comparison 

The amplitude and phase of the meridional component of the semi diurnal tide from 

the Earth's surface to an altitude of 120 km are shown in figure 7.17. data 

were generated by the Global Scale Wave Model (GS\VM) [Hagan et al. 1999] at a 

latitude of 45°S during equinoctial conditions. Semi diurnal amplitudes calculated 

12 • 

60 

40 

20 

o~~~~~~~~~~ 

1~ 1~ 1d 1d 
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o 2· 4 6 8 10 12 
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Figure 7.17: Amplitude and phase of the semidiurnal tide's meridional component as generated 

by the Global Scale Wave Model (GSWM) [Hagan et a1. 1999] at a latitude of 45° south. 

from the AMOR data set between heights of 90 and 110 km at equinox (top graph) 

and one month after equinox (bottom graph) are shown in figure 7.18 for comparison 

where the solid are the GSWM data at meteoric heights. The semidiurnal 

amplitudes were obtained with the Lomb-Scargle Fourier Transform (LSFT2) 

a 10 day window and 1 km height layer thickness. At equinox the meteor winds and 

model data show good agreement between 90 and 107 km however AMOR data at 108 

and 109 km do not with the model and suggest the semidiurnal tide amplitude 

is smaller than predicted by the GSvVM at these heights. One month after equinox 

a vertical height of similar shape to that predicted by the model is measured 

but at a height approximately 10 km lower down in the atmosphere. Comparing 

AMOR semi diurnal tide phase data with the GSWM at equinox (upper graph of 
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figure 7.19) shows phase change with height to be consistent with that produced by 

the model. Comparing the same GSWM data with AMOR data obtained one month 

after equinox indicates phase differences of approximately one hour throughout the 

meteor region. 
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Figure 7.18: Comparison of semidiurnal tide amplitude measured by AMOR with that modelled 

by Hagan [1999] (solid line). The top graph contains AMOR data from 21 March 1998 and the 

bottom graph is from 21 April 1998. 
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Figure 7.19: Comparison of semidiurnal tide phase measured by AMOR with that modelled by 

Hagan [1999] (solid line). 'The top graph contains AMon data from 21 March 1998 and the bottom 

graph is from 21 April 1998. 
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Chapter 8 

Further Work 

8.1 Long Term Variation of Airglow Layer Heights 

Wind speeds are measured with a Fabry-Perot Interferometer (FPI), at the Uni­

versity of Canterbury's Mount John observatory, by observing the Doppler shift of 

light emitted from two airglow layers at heights of approximately 87 and 97 km. 

Work presented in this thesis, and published in Plagmann et al. [1998], enabled 

airglow heights to be established by phase matching the semidiurnal tide's phase 

measured by the FPI, at the two airglow heights, with the range of phase values 

measured at the heights probed by AMOR. The monitoring of these heights over a 

limited time period suggested that there was a seasonal height variation. A more 

extensive survey over a time period of several years would provide an improved 

understanding of these airglow layer heights. 

This analysis could have been done by combining the data output from the 

programme GroundRangeAnalysis. c into one large (height x time) hourly mean 

wind matrix (HMWM) with the Mat LAB programme VertProfile.m. Next a 

vertical averaging window could be applied to the HMWM to emulate the vertical 

averaging inherent in the FPI instrument as it samples through the airglow layer. 

This would produce a new matrix called FPIVM. The shape of this window should 

indicate the airglow layer profile and for the work published in Plagmann et al. 

[1998]a Pascalian layer was used; this should suffice as an initial estimate [O'Brien 

et al. 1965]. 

The Lomb Scargle Fourier Transform (LSFT2) technique applied to the data 

matrix FPIVM would result in 3 tensors: time indices, amplitude and phase values. 

Comparison of the values in the phase values tensor (at times in tensor time indices) 

with the calculated FPI semidiurnal tide phases to find the height of best agreement 

would yield estimates of airglow layer height. 
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8.2 Detection of Orographically Generated Gravity Waves 

In this thesis it has been proposed that orographically generated gravity waves are a 

possible explanation for the lack of correlation between hourly mean winds detected 

in near site northern ground range bins and all other ground bins. 

At time of the writing of this thesis work is in progress to construct an east-

west looking array. From a wind-delineating point of view this will enable the zonal 

component of the wind to be measured. Additionally data sampled from this ortho­

gonal observation will allow a more conclusive analysis of orographic ally generated 

gravity waves as the western beam will sample the atmosphere along a column close 

to the Southern Alps gravity wave source. Any gravity wave contamination along 

this sampling volume should be identifiable as a region, approximately 100 km from 

the Southern Alps displaying poor correlation with other ground bins. 

Selecting AMOR wind measurements based on ground level wind and dir-

ection over the Southern Alps for ground range correlation analysis would provide 

valuable information for confirming whether the radar is detecting gravity wave 

induced turbulence. Should more turbulence be detected by AMOR during ground 

level westerlies than there is during ground level easterlies then this would be good 

evidence to support the detection of gravity wave induced turbulence. 

8.3 Application of Correction Algorithm 

Chapter 3 discussed the effect of the Earth's magnetic field on the drift of the meteor 

train. this chapter it was concluded that the influence of the magnetic field was 

minor for wind measurements below 100 km, but above approximately 105 km the 

introduced error becomes progressively larger. A method of correcting for this error 

was proposed which, however requires that both zonal and meridional components 

were measured. Once the orthogonal array is constructed it could be beneficial to 

apply the correction and compare the results. 
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Conclusion 

The existing meteor orbit radar, AMOR, has been modified to enable measurements 

of the meridional component of atmospheric winds in the meteor zone of 80-110 km. 

This has been achieved by the addition of new electronic hardware which provides 

both phase and phase quadrature components of the received echo to be stored on 

a dedicated winds control computer. The AMOR orbit control software has been 

modified to inform the winds computer when an echo event occurs and developed 

software collects the echo profile from the two winds dedicated analogue to digital 

converters and writes the data to memory in the winds control computer through 

the process of Direct Memory Access (DMA). Data are regularly (weekly) collected 

from the radar site for analysis. 

The line of sight (radial) wind velocity has been inferred from the Doppler shift 

of the radar pulse as it returns from the meteor train blown at the speed of the wind. 

Analysis techniques have enabled wind speed measurements to be made from echoes 

which are as short as 0.03 s. Approximately 2000 wind measurements are obtained 

each day from a possible 3000 meteor echoes. Rejection of echoes is mainly due to 

an inability to fix the measurement's location (only 10% of the echoes are rejected 

due to a non-linear phase behaviour). Assuming no vertical wind, radial velocities 

have been calculated with uncertainties which are less than 1 m (for heights 

less than 95 km). To account for the possibility of vertical wind conditions and 

magnetic field effects the uncertainty in individual horizontal wind measurements 

is estimated as 3 m (for heights less than 100 km). 

A method of reducing wind speed errors due to the effect of the Earth's magnetic 

field, requiring measurements of both zonal and meridional components, has been 

derived. 

Harmonic analysis of hourly averaged wind measurements revealed a 

dominant semidiurnal tide. The amplitude and phase of this tide clearly exhibited 
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a seasonal behaviour. The vertical wavelength of the semi diurnal tide was also 

measured and enabled the identification of various tidal modes throughout the year. 

Occasionally the dominant behaviour of the semidiurnal tide was suppressed by 

the presence of oscillations, known as planetary waves, with periods of a few days. 

Analysis revealed 2, 4, 5 and possibly la-day planetary wave events within the 

observation period. The mean wind was also shown to display behaviour consistent 

with general circulation theory. 

Hourly mean winds from the AMOR winds radar were compared with those from 

two other instruments measuring winds at similar heights over the South Island of 

New Zealand. Comparisons with the Fabry-Perot Interferometer at Mount John 

revealed an excellent agreement with correlation coefficient values up to 0.95. Dur­

ing the comparison process, a method of estimating the airglow layer heights by 

matching the measured values of the phase of the semidiurnal tide was developed. 

Comparisons with the second instrument, a Medium Frequency (MF) radar at Bird­

lings Flat consistently provided a poorer agreement. 

Grouping the AMOR data by radar ground range allowed an intra-comparison 

of the data to be performed. Correlating data in the two extreme ground range 

bins (GRBs) with all other GRBs showed a gradual reduction in correlation as the 

distance between the compared GRBs increased. Two results were identified which 

may be attributable to gravity wave interaction. 

The first result was a seasonal effect giving low correlations between southern 

GRBs and a northern GRB in winter and high correlations in summer. It was pro­

posed that the poorer correlations were consistent with times of year when gravity 

waves could propagate to heights of the meteor region and induce turbulence. 

The second result was a sudden decline in correlation between all GRBs and 

the near Home site northern GRBs. The location of these near Home site northern 

GRBs, with respect to the Southern Alps mountain range, puts them in the place 

likely to be influenced the most by orographically generated gravity waves. 

Comparisons of amplitude and phase for the semi diurnal tide under equinox 

conditions were compared with the Global Scale Wave Model (GSWM) and showed 

good agreement. 
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Appendix A 

Data Collection and Reduction Source Code 

A.l Program Dop 128. pas 

The Borland Turbo Pascal programme, Dop128. pas, controls the collection of wind 

data at the radar site. Monitoring of a line from the AMOR meteor orbits pc indicates 

the presence of meteor echoes and initiates the data collection process. Phase data 

for both echo and ground pulse are extracted from the DMA memory storage and 

written to disk. A meteor identification munber, determined by the orbits pc, is 

sent to the winds pc via the serial port. 

PrograIll Dop128; 

{ } 
{ } 
{ } 
{ } 
{ } 
{ for Use at Birdling' s Flat to Control Doppler Radar } 

{ } 
{ } 
{ } 
{ Programmed By S H Marsh } 

{ } 
{ Mar/97} 

{ } 
{ Data saved to c: \ drive } 

{ To allow ComPort usage have mode com2: 98, n, 8,1 } 

{ in autoexec.bat file } 

uses dos, crt, graph, genutil, set clock ; 

const 
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ComPort :Word=$2f8 ; 

N ocursor=$2020 ; 

FullCursor=$010A; 

NoOfSweeps=128; 

sixteen: longint = 16; 

P300 byte $22; 

P301 byte 100; 

P302 byte $80 ; 

Appendix A. Data Collection and Reduction Source Code 

{Communications port #2} 

{ RxGain = hi } 

{ Total no of Heights} 

{ Enables the DMA req F/F (DMA3)} 

type 

var 

byteRec= record 

Year, Month, Day, Hour, Min, Sec, TxBin , Bin , Number : byte; 

EchCos, EchSin, TxCos, TxSin: array [1 .. NoOfSweeps 1 of byte; 

end; 

byteRecFile=fil e of byteRec; 

sweepAddr = record 

Page 

LSB 

MSB 

end; 

AtoDLoca tions=record 

byte; 

byte; 

byte; 

Segm word; 

Offsm: word; 

end; 

P 

ch, c 

for Ever 

n, code 

counter, metcnt 

time 

bin, TxBin, hc 

BFlatFile 

BFlatRecData 

filename, subdir, dir, storedir, starttime 

start, hourcheck 

cntr, check, timeadj, hourstr, fileext ,date 

L 

pointer; 

char; 

boolean; 

integer; 

integer; 

text; 

longint; 

byteRecFile; 

byteRec; 

string; 

integer; 

string; 

longint; 

longint; Pseg, offset ,y, a 

AtoDmem array [1 .. NoOfSweeps 1 of pointer; 
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Sweepaddresses 

sweepnumber 

meteor, count 

AtoDMemIRQ 

Dmmnyread 

array [1 .. NoOfSweeps 1 of sweepaddr; 

integer; 

integer; 

array [1 .. NoOfSweeps 1 of AtoDLocations; 

byte; 
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{**************************************************************} 

{$M 64000,0 )300000} 

{$R-} 

{ Allows the cursor to be made invisible} 

procedure setcursortype (numver: word); 

inline ($59 /$B4/ $01 /$CD/ $10) ; 

{Sets up the A/D memory space} 

procedure SetAtoDMemory; 

begin for sweepnumber : = 1 to NoOfSweeps do 

begin 

end; 

end; 

Getmem (P ) 200 ) ; {NoOfSweeps * 200 byte mernoryblocks} 

Pseg:= seg (P ~); 

Offset := ofs (P A); 

AtoDMem[SweepNurnber]:= ptr (Pseg, Offset); 

with AtoDMernIRQ [SweepNurnber 1 do begin 

Segrn:= Pseg; 

Offsrn:= Offset; 

end; 

L : = seg (P~) * xteen+ofs (P ~); 

with Sweep addresses [sweepnumber J do 

begin 

Page: L shr 1 6 ; 

LSB L and $FF; 

MSB := (L shr 8) and $FF 

end; 

{Initialises Dl\IIA trans rs} 

procedure DrnaSetup; 

begin 

with Sweepaddresses [sweepnurnber 1 do begin 

port [$82] : Page; {Set Page Register} 
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end; 

end; 

port [$OC] 

port [$06] 

port [$06] 

port [$07] 

port [$07] 

port [$Ob] 

port [$Oa] 

:=0; { 
:=LSB; { 

:=MSB; { 
:=199; { 
:=0; { 
:=$47 ; { 
:=3; { 

Appendix A. Data Collection and Reduction Source Code 

reset the byte ptr F/F } 

Set Base address LSB} 

Set Base address MSB} 

Set Word Count LSB to 199 } 

Set Word Count MSB to $0 } 

Set Mode Reg to $47 Byte Transfer} 

Unmask Channel 3 } 

{Sends pulse to initiate the DMA transfer process} 

procedure StartDmaTransfers; { Starts each run} 

var delay longin t ; 

begin 

port [$300] .- P300 or $01 ; { reset F/F } 

{for delay 1 to 10 do;} { only for faster machine} 

port [$300] P300 and $fe; 

port [$300] .- P300 or $80; { Send start pulse} 

{for delay .- 1 to 10 do;} 

port [$300] .- P300 and $7f; 

end; 

{Coordinates timing for initiation of DMA transfers} 

procedure RecordEcho; 

begin 

end; 

port [$300] 

port [$301] 

port [$302] 

repeat 

.-

.-

P300; 

100 ; 

O' , 

inc (SweepNumber) ; 

DMAsetup; 

{is $22} 

{Sets the number of range bins} 

{was $80} 

{Sets up DMA process} 

repeat until port [$300] 

repeat until port [$300] 

and 2 =O;{Wait during pulse} 

and 2 =2;{Wait for pulse} 

StartDmaTransfers; 

repeat until port [$07] =255; {all range bins counted} 

until SweepNumber = NoOfSweeps; 

{Defines the time stamped file name for echoes} 

procedure FindName(var time: string); 

var 
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hours, mins, seconds, overtime 

h,m,s 

longin t ; 

byte; 

longint; 

string; 

secs , ta ,temp 

timestr 

function LeadingZero (w byte) string; 

var 

s : string; 

begin 

end; 

begin 

Str(w:O,s); 

if Length ( s ) 

s := '0' 

LeadingZero 

1 then 

+ s; 

s' , 

timestr :=cmosTime (h ,m, s ) ; 

val (copy (timestr ) 1, 2) , hours, code) ; 

val (copy (timestr ,3,2) ,mins, code) ; 

val (copy (timestr ,6,2) , seconds, code) ; 

overtime: o· , 
if hours > 12 then 

begin 

hours hours -12; 

overtime 12; 

end; 

secs:= (hours *3600) +( mins *60)+ seconds; 

val (timeadj , ta, code); 

if abs(ta) < secs then secs:= secs +ta; 

temp:= sees; 

hours := overtime + secs div 3600; 

temp:=temp (( hours-overtime) * 3600); 

secs :=temp; 

mins:= sees div 60; 

seconds: temp-(mins *60); 
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time : = (leadingzero (hours )+leadingzero (mins) 

+leadingzero (seconds)) ; 

end; 

{Defines the time stamped directory into which files are written} 

procedure findDir (var date: string); 

const 

months: array [1..12] of string[9] 



178 

('.Jan', 'Feb', ',Mar', 

'Apr' , 'May' " .Jun' , 

, .J ul ' , ' Aug' , ' Sep' , 

, Oct' , Nov' , Dec' ) . , , , 

Appendix A. Data Collection and Reduction SOUl'ce Code 

var 

y, m, d, dow byte; 

string; day, month, year, da test r 

begin 

da testr :=cmosDate (y ,m, d); 

y: y mod 100; {prog needs to be modified in 2095 :-) } 

str(d:O,day); 

if d<10 then day : = '0' +day; 

str(y:O,year); 

date: (day+months [m]+year); 

end; 

{Locates from within the Il\1A memory space the 

ground pulse and echo signals} 

procedure FindBins; 

var 

hc 

binamps 

tot al 

max 

: longint; 

:array[1 .. 2500] of real; 

: array [1 .. 1 00] of real; 

real; 

begin 

for hc: 1 to 100 do total [hc] :=0; 

for Sweep::'Jumber := 1 to 25 do 

begin 

end; 

with AtoDMemIRQ [SweepNumber] do begin 

for hc:= 1 to 100 do 

max: O' , 
bin: 0; 

begin 

BinAmps [ hc ] : = 

sqrt (sqr (Inern[ segm: +(2*hc) 1] 124) 

+sqr (mem[ segm: offsm+(2*hc) ]-124)); 

total [hc]:= total [hc]+Binamps[hc] 

end; 

for n 1 to 14 do 

begin 
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if tot al [nl >max then 

begin 

max:=total [n]; 

TxBin:=n; 

end; 

end; 

max: o· , 

end; 

end; 

bin: 0; 

for n: 15 to 100 do 

begin 

if total [n]>max then 

begin 

max:=total [nl; 

bin:=n; 

end; 

end; 

{Creates the data fi lefor subsequent echoes to be written to} 

procedure OpenNewDataFile; 

begin 

findD i l' (SubDir ) ; 

StoreDir 'c: \ data' ; 

{$I-} 
MkDir( StoreDir); 

StoreDir: StoreDir+' \' +SubDir; 

MkDir ( StoreDir ); 

if IOResult = 0 then begin end; 

FindName( fileext ); 

{$I+} 

fileext: copy(fileext ,1,2); 

val (fileext ,hourcheck, code); 

assign(BFlatFile,Storedir + '\WIND_'+fileext+'.'); 

{$I-} 
reset (BFlatFile); 

if IOResult = 0 then Seek(BFlatFile, FileSize(BFlatFile)) 

{Find the end of the file if it exists} 

else rewrite ( BFla t File) ; 

{$I+} 
end; 
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{Checks to see if meteor present signal exists} 

function Dataready : boolean; 

var a: byte; 

begin 

a:=Port [ $2fd 1 ; 
if a and 1 = 1 then Dataready True 

else Dataready False; 

end; 

{writes data to hard disk} 

procedure SaveData; 

var tempstr: string; 

begin 

findBins; 

finddir (date) ; 

findname (fil eex t ) ; 

with BFlatRecData do begin 

val (copy( date, 6,7), Year, code); 

tempstr:=copy(date ,3,3); 

if tempstr=' Jan' then Month:=Ol; 

if tempstr=' Feb' then Month:=02; 

if tempstr=' Mar' then Month:=03; 

if tempstr=' Apr' then Month:=04; 

if t e m pst r=' May' then Month:=05; 

if tempstr=' Jun' then Month:=06; 

if tempstr=' Jul' then Month:=07; 

if tempstr=' Aug' then Month:=08; 

if tempstr=' Sep' then Month:=09; 

if tempstr=' Oct' then Month:=10; 

if t e m pst r= ' Nov' then Month:=ll; 

if tempstr=' Dec' then Month:=12; 

val (copy ( da te ,1,2) , Day, code) ; 

val (copy (file ext ,1,2) , hour, code); 

val(copy(fileext ,3,2),min,code); 

val(copy(fileext ,5,2),sec,code); 

end; 

BFlatRecData. bin:= bin; 

BFlatRecData. TxBin:=TxBin; 

for SweepNumber: = 1 to NoOfSweeps do 

begin 
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with AtoDMemIRQ [SweepNumber] do begin 

with BFlatRecData do begin 

EchCos [SweepNumber] :=mem[segm: offsm+(2* bin 1) 1; 
EchSin [SweepNumber] :=mem[segm: offsm+(2*bin) 1; 
TxCos [SweepNumber] :=mem[segm: offsm+(2*TxBin 1) 1; 
TxSin [SweepNumber] :=mem[segm: offsm+(2*TxBin) 1; 

end; 

end; 

end; 

repeat until Dataready; 

rWaiting for Flag to indicate byte sent from Ai\tOR} 

BFlatRecData. Number:=Port [ComPort 1 ; 
if HOUl'check = BFlatRecData. hour then 

end; 

write (BFlatFile ,BFlatRecData) 

else 

begin 

end; 

close (BFlatFile); 

OpenNewDataFile; 

DoClockSet ; 

MetCnt:=O; 

{Finds the time for start of observation run} 

procedure sttime (var s t : integer) ; 

var stt, ststr : string; 

begin 

end; 

findname (stt ); 

ststr:= copy(stt ,1,2); 

val(ststr,st,code); 

{Tasks that need to be performed when stopping the programme} 

procedure ShutDown; 

begin 

end; 

close (BFlatFile ) ; 

ClrScr; 

writeln ( 'Complete' ) ; 

SetCursOTtype (FullCursor ) ; 

halt 
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{The user in t erf ace} 

procedure Display; 

var hr ,mn, sc: string [3] ; 

begin 

clrscr; 

for counter := 1 to 6 do writeln; 

with BFlatRecData do begin 

s t r (hour, hr ) ; 

if hour<10 then hr:= 'O'+hr; 

s t r (min, mn) ; 

if min<10 then mn:= 'O'-tmn; 

str(sec,sc); 

if sec<10 then sc:= 'O'+sc; 

end; 

writeln ( , 

writeln; 

writeln; 

Last meteor found at: , ,hr+' : '+nm+' : ' +sc ); 

writeln ( , 

writeln; 

, ,metcnt J' meteors saved this hour'); 

writeln ( , 

writeln; 

writeln; {( , 

writeln; 

writeln; 

Press "S" to Stop'); 

Press ' 'C" for Clock Adjustment');} 

writeln ( , Transmitter Ground Pulse Found In Range Bin: " TxBin) ; 

writeln; 

writeln ( , Last Echo Found III Range Bin 

end; 

begin {Of Main Program} 

Dummyread:=Port [ComPort] ; 

SetAtoDMemory; 

SetCursortype (NoCursor); 

DoClockSet; 

OpenNewDataFile; 

forever := False; 

filename:=' , 

TxBin:=O; 

Bin:=O; 

sttime (st art); 

clrscr; 

, Bin)' J , 
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metcnt :=0; 

BFlatRecdata. hour :=0; 

BFlatRecData. min:=Oi 

BFlatRecData. sec :=0; 

repeat 

begin 

Display; 

while port [$3001 and 2 0 do; {Ensures Tx pulse exists} 
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while port [$3001 and 1 - 0 do {Look for meteor present I I } 
begin 

if keypressed then 

begin 

c readkey; 

if upcase(c)='S' then ShutDown; 

end; 

end; 

SweepN umber: = 0 ; 

RecordEcho ; 

SaveData; 

inc (metcnt ) ; 

end; 

until forEver; 

end. 

A.L1 Unit SetClock 

The Borland Tmbo Pascal Unit, SetClock. pas, is called from programme Dop128. pas 

and reads the time from the serial output of a local clock and writes it to the CMOS 

clock of an IBM_AT. 

Unit SetClock; 

interface 

procedure DoClockSet; 

implementation 

{This program is designed to read and set the CMOS clock on an IBM-AT 

using either the keyboard or an external time pip source attached to 

<DMM2 (bell ring line) } 

uses Dos 1 Crt; 

const Cmos Port $70; 
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On 8709; 

Off 82020 ; 

var TimeOut, Hths, Minutes, Seconds, Hours 

CmosPackedTime, PackedTime ,Drift, DriftTime 

Drift Seconds 

ComPort, Year, Month, Day, DayOfWeek 

Error 

longint; 

Ion 

real; 

word; 

boolean; 

string [16]; 

{ ..................................... , , , , . , .... , . , .. , .......... } 
function Dataready: boolean; 

var a : byte; 

begin 

Dataready : = false; 

a: port [ComPort +5] ; 

if a and 801 = 1 then Dataready ,- true; 

end; 

procedure SetComl ; 

Registers; a var Regs 

begin 

ComPort := $3£8; 

with regs do 

begin 

byte; 

{ Select Initialise Serial port} ah 00; 

al :=SE3; 

dx := 00; 

{ 
{ 

E3=9600baud,no parity,l stop bit,8 data bits} 

Select Coml } 

intI' (814, regs); { Use Bios int14 to send the byte} 

end; 

a: port [ComPort] ; {Do ULLlIllH'y read} 

end; 

function CmosRam( adr : byte ): byte; 

var i :word; 

begin 

if CmosPort=870 

then begin {AT or PS/2 CMOS} 

i nli n e ($F A) ; 

Port [CmosPort]:=adr; 

CmosRam:= Port [$71] ; 

i nli n e (SFB ) ; 

{ eli 

{ out 

{ In 

{ sti 

Disa bleIn terril pts 

70h,adr 

CmosRam, 71 h 

Ena bleIn terrupts 

} 
} 
} 
} 
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end 

else begin 

i n li n e (SF A) ; 
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{cli Disablelnterrupts} 

Port [CmosPort+adr]; {read twice in case port strange} 

if i<>Port [CmosPort+adr] then {worry}; 

i n li n e (8FB ) ; { s tiE nab 1 e I n t err u p t s } 

CmosRam:=i; 

end; 

end; 

procedure SetCmosRam( adr J NewContents 

var i : byte; CheckSum : word; 

byte ); 

begin 

if CmosPort=S70 

then begin {AT or PS/2 a..10S} 

i n li n e ($F A) ; 

Port [$70]:= adr; 

{ eli ; Disablelnterrupts } 

{ out 70h,adr } 

Port [$71] :=NewContents; { out 71h, NewContents } 

i nline ($FB) ; { s t i ; Ena bleln terrupt s } 

end 

else begin 

Port [CmosPort+adr I :=NewContents; 

if NewContents<>Port [CmosPort+adr I then {worry}; 

end; 

if adr in [810 .. S2D] 

then begin 

CheckSum: 0 ; 

end; 

for i :=$10 to 82D do inc (CheckSum,CmosRam( i)); 

SetCmosRam ( $2E , hi ( CheckSum) ) ; 

SetCmosRam($2F, 10 (CheckSum)); 

end; 

type s t r i n g 2 = s t r in g [2] ; 

function TwoDigits (n : byte) : string2; 

begin 

TwoDigits:=char(48+n div 10)+char(48+ n mod 10); 

end; 

type string16 = string [16]; 

fUIlction 

begin 

Cmos Time : string16; 

Hours :=CrnosRam( 4) ; 

Minutes :=CrnosRam(2); 
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Seconds : = CmosRarn ( 0); 

if (CmosRarn($OB) and 4)=0 

then begin 

Hours :=( Hours and $OF) + 10*(Hours div 

Minutes :=( Minutes and $OF) + 10*(Minutes 

Seconds :=(Seconds and $OF) + 10*(Seconds 

end; 

CmosTime TwoDigits (Hours)+ ' : '+TwoDigits (Minutes) 

+' : '+TwoDigits (Seconds); 

end; 

procedure SetCmosClock (Hrs, Mins, Sees : integer); 

begin 

SetCmosRam( $0, Sees); {already converted to BCD/hex} 

SetCmosRam( $02, Mins ) ; 

SetCmosRam( $04, Hrs ) ; 

write ( #7); 
end; 

procedure GetSerialTime; 

var a,b,c, Secs,Mins,Hrs 

begin 

TimeOut : = 0; 

repeat 

integer; 

repeat inc (TimeOut); if TimeOut=1000000 then exit; 

until Dataready; 

a : = port [ComPort 1 ; 
until a=$FF; 

repeat inc (TimeOut); if TimeOut=500000 then exi t ; 

until Dataready; 

Hrs : = port [ComPort 1 ; 
repeat inc (TimeOut); if TimeOut=500000 then exi t ; 

until Dataready; 

Mins : = port [ComPort] ; 

repeat inc (TimeOut); if TimeOut=500000 then exit; 

until Dataready; 

Sees := port [ComPort]; 

Error : = false; 

if Hrs> $23 then begin Error := true; exit; end; 

if Mins> $59 then begin Error . - true; exit; end; 

if Sees> $59 then begin Error . - true; exit; end; 

SetCmosClock (Hrs ,Mins, Sees) ; 

end; 

16) ; 

div 16) ; 

div 16) ; 
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{***************************************************************} 
procedure DoClockSet; 

begin 

clrscr; 

SetComl ; 

GetSerialTirne; 

if Error then GetSerialTime; 

end; 

begin {no in it i ali sat ion} 

end. 

A.2 Program System.pas 

The Borland Turbo Pascal programme, System. pas, coordinates the data reduction 

process. There are three stages to this process. first stage determines line of 

sight velocities from the WIND_<hh> files. The second stage locates the position of 

the measurement from NZSL <hh> files and finally the third stage combines the line 

of sight velocity with its location, generating a wind measurement. 

uses Dos, crt, speeds, igh t s , Match, Sort, Defns 

const MaximumNllmberOfFiles=100; 

type 

ra array [1 .. MaxirnurnNurnberOfFiles] of string [13]; 

var 

S , chk , month 

Db'Info 

FileDir, DatesFile 

Overwriting 

Date, DoRFDate 

string; 

SearchRec; 

text; 

boolean; 

string7 ; 

{Checks for the presence of file Graph. dat for a particular date} 

function NoGraphFile (Date: string7): boolean; 

var ChkFile: text; 

Temp: s t ri n g [1 0 1 ; 
begin 

NoGraphFile:=False; 

assign (ChkFile, 'E: \ ANALYSED \ '-tDATE+'\GRAPH.DAT' ); 

{$ 
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reset ( ChkFile ) ; 

{$I+} 

if IOResult = 0 then begin 

{$I-} 
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read (ChkFile ,Temp) ; 

end; 

if Temp=" then NoGraphFile:= True; 

{Checking that file isn't empty} 

close (ChkFile); 

{$I+} 

end 

else NoGraphFile :=True; 

{Checks to see if there are orbit data available for 

analysis on a particular date} 

function AMORDataExists (Date: str ing7 ) : boolean; 

var search ,month: string; 

DirInfo : SearchRec; 

SearchFile: File; 

Found: boolean; 

begin 

Found:=False; 

search:=Drive+': \AMORDATA\ '+Date+'\NZST_*.' ; 

FindFirst (search, Archive, Dirinfo ); 

while (doSERROR=O) and (l\DT Found) do begin 

assign (SearchFile ,Drive +': \AMORDATA\ '+DATE+-' \ '+DirInfo . Name ); 

FileMode : = 0; 

reset (SearchFile ); 

if FileSize (SearchFile) > 0 then Found:='IRUE; 

close (SearchFile); 

FindNext (Dirlnfo ); 

end; 

AMORDataExists:=Found; 

end; 

{Checks to see if there are winds data available 

for analysis on a particular date} 

function DoRFDataExists (Date: string7 ): boolean; 

var search: string; 

SearchFile: File; 

Dirlnfo : SearchRec; 
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Found: boolean; 

begin 

Found:=False; 

search :=Drive +': \ DorfDATA \ '+Date+'\ WIND-*.' ; 

FindFirst (search, Archive, Db'info ); 

while (doSERROR=O) and (NJI' Found) do begin 
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ass i gn (SearchFi Ie, Drive +': \ DorfDATA \ '+Date+' \ '+Dirlnfo . Name ); 

reset (SearchFile ); 

if FileSize(SearchFile) > 0 then Found:='IRIJEi 

close ( SearchFile ) ; 

FindNext (DirInfo ); 

end; 

DoRFDataExists:=Found; 

end; 

{Generates a Graph.dat file} 

procedure MakeGraphFile (Date: s t ring 7) ; 

var DirInfo: SearchRec ; 

begin 

FindFirst (Drive+': \ Analysed \ '+Date+' \ Ph Vels. Dat ' , Archive, DirInfo ) ; 

if (doSERROR=O) and (Overwriting) then FindWindSpeeds(Date,Date); 

if (doSERROR<>O) then FindWindSpeeds (Date, Date) ; 

FindFirst (Drive +': \ Analysed \ '+Date+'\Afu:K)R. Dat' , Archive, DirInfo ); 

if (doSERROR=O) and Overwriting then FindHeightsEtc (Date); 

if (doSERROR<>O) then FindHeightsEtc (Date); 

ComBine VelsAndHeights (Date); 

end; 

begin 

cIrscr; 

OverWriting 

SortDates; 

assign (DatesFile , 'c: \ Dop128\ Dates. dat' ) i 

reset (DatesFile ); 

while not eof (Dates File) do 

begin 

readln (DatesFile, Date); 

if NoGraphFile(Date) and AMORDataExists(Date) and 

DoRFDataExists (Date) then MakeGraphFile (Date) 

else if AMORDataExists(Date) and DoRFDataExists(Date) 
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and Overwriting then MakeGraphFile(Date); 

end; 

writeln; 

writeln('All Available Data Have Been Analysed'); 

repeat until keypressed; 

end. 

A.2.1 Unit Speeds 

The Borland Pascal Unit, Speeds. pas, is called from the control programme System. pas 

to derive line of sight wind speeds from the raw WIND_<hh> files. 

Unit Speeds; 

interface 

uses Dos, Crt, Defrls , D iff ; 

procedure FindWindSpeeds (Dir , SaveDir: string7) ; 

implementation 

{This program takes as input files produced at the Birdlings' Flat 

field station. These data are analysed to produce line of sight 

velocities of meteor trail drift in the atmosphere at heights of 

80 120 kms. 

The method used invloves determining the time rate of change of 

phase for both transmitter and echo} 

Programmed by: Steven H Marsh 

} 

University of Canterbury 

11 Nov 96 

const MaximumNumberofFiles=24; 

{ ndatap 128;} 

wavelength=2.998e+8 / 26.2e+6; 

N ocursor=$ 2020 ; 

FullCursor=$010A; 

prf 
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MinNumOfTransPulses 5; 

type 

{ realarrayNDATA:::::ARRAY[ 1 .. ndatap 1 of real;} 

var 

byteRec= record 

Year, Month, Day) Hour) Min) Sec) TxBin ) Bin) Number: byte; 

EchCos) EchSin, TxCos) TxSin: array [1 .. 128] of byte; 

end; 

byteRecFile=file of byteRec; 

tempfile 

byteRF 

Bflatfile 

BFlatRecData 

leD i r , d ate file, mi s c , vel sou t 

text; 

byteRecFile; 

byteRecFile; 

byteRec; 

text; 

Phase, sine, cosine, hyp, ra tio ,txsine , txcosine ) lastphase ) thisphase , 

temp, tot al ,sineav, cosav, txsineav, txcosav) av, bv, txgrad) 

echgrad) velocity, firsthf) sechf, txuncertainty, echouncertainty, 

totuncertainty, veluncertainty : real; 

a, n, count, Stop, Start, N oOfDates) FileNo, NoOFFiles : integer; 

FilesExist) DayFi Left, HourFileFinished) fancy, 

DataAvailable : boolean; 

date, Path, AccFileStr : string; 

t, txph, PartialEchPh, echph ,amp,EchPhW,TxPhW: realarrayNDATA; 

c 

AccFile, RejFile, FilesOpened 

NoAnalF 

LastNumber 

SaveDate 

char; 

longint; 

integer; 

byte; 

string7 ; 

{Initialisation routine} 

procedure Setup; 

begin 

end; 

assign(tempfile, 'c:\temp.dat'); 

ass i g n ( mi s c, ' c : \ mi s c . d at' ) ; 

DayFilesLeft :=true; 

FileNo :=0; 

for a:=1 to 128 do t [a]:=a/prf; 
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{Determining average values for phase and quad components} 

procedure FindAverages; 

var costotal,sintotal:real; 

begin 

with BFlatRecData do begin 

sintotal := 0; 

costotal := 0; 

end; 

end; 

for a:=1 to 128 do 

begin 

sintotal 

costotal 

sintotal + EchSin [a]; 

costotal + EchCos [a]; 

end; 

sineav:=sintotal/128; 

cosav:= cost ot al / 128; 

{Derive amplitude profile from phase data} 

procedure MakeAmps; 

var x: integer; 

a,b:byte; 

begin 

with BFlatRecData do begin 

for x:= 1 to 128 do 

begin 

end; 

end; 

end; 

av:=echcos [x]-cosav; 

bv:= echsin [x]- sineav ; 

amp [x]: = sqrt (av*av+bv* bv) ; 

{Arctan from -Pi: Pi} 

function Atan2 (Y ,X: real) : real; 

var ax, ay ,Phi: real; 

begin 

if (X=O. 0) and (Y=O .0) 
then Atan2:=0.0 

else 

begin 
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end; 

ax:= abs(X); ay:= abs(Y); 

if (ax>ay) then Phi:= Arctan (ay I ax) 

else Phi:=(Pi/2) Arctan(ax/ay); 

if(X<O.O) then Phi:=Pi-Phi; 

if(Y<O.O) then Phi:= Phi; 

Atan2: Phi; 

end; 

{Remove AID induced IX1 and unwraps the phase data} 

procedure CalcPhases; 

begin 

with BflatRecData do begin 

for a:=l to 128 do 

begin 

end; 

end; 

n:=O; 

cosine [a] cosav; 

sine :=Echs [a] sineav; 

txcosine:=txcos [a]-cosav; 

txsine txsin [a]- sinea v; 

EchPhvV[ a]: Atan2 (sine) cosine); 

TXPhvV[a]: Atan2( txsine, txcosine); 

txph [1] : =TXPhW [ 1] ; 

a:=2; 

while a<129 do 

begin 

if TXPhW[a]-TXPhW[a-l] > Pi then n:=n 1; 

if TXPhW[a]-TxPhvV[a-l] <=-Pi then n' 1; 

TxPh[ a]: =TXPh\V[ a] + (n*2* Pi ); 

inc(a); 

end; 

n:=Oj 

echph [1]: =F.chPhW [1] ; 

a:=2; 

while a<129 do 

begin 

if EchPhW[a]-EchPhW[a 1] > Pi then n:=n 1; 

if EdlPhW[a]-EchPhW[ <=-Pi then 
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end; 
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EchPh [a] : = EchPhW [ a] +(n*2*Pi); 

inc(a); 

end; 

{Calculates sign of a number} 

function Sign (Number : real) : real; 

{returns -1 if Number < 0,01' +1 if Ncunber >= 0 } 

begin 

end; 

if Number= 0.0 

then Sign:= 1 

else Sign :=Abs (Ncunber) /Number 

{Determines boundaries of good phase data from within which 

good wind measurement can be made} 

procedure FindScanLimits; 

const 

var 

alittlebit =1.5; 

EchDeriv , Ech2Deriv 

i,stp,stt ,range, biggest range 

foundst art 

begin 

Differen t i ate (EchPh, EchDeriv ,Ech2Deriv ) ; 

FoundStart:= false; 

stt:=l; 

biggestrange :=0; 

for i:= 2 to 127 do begin 

realarrayNData; 

integer; 

boolean; 

if (abs(EchDeriv[i]-EchDeriv[i+1]) < alittlebit) 

and (sign(EchDeriv[i])=sign(EchDeriv[i+1])) then 

{ if abs(Ech2Deriv[i])<2 then} 

begin 

if i =127 then begin 

stp:=i; 

range:=stp-stt ; 

if range>biggestrange then begin 

start:=stt; 

stop:= stp ; 

stt:=i; 

BiggestRange :=Range; 

end; 
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end 

else 

begin 

stp:=i; 

range:=stp-stt; 

end; 

if range>biggestrange then begin 

end; 

end; 

end; 

{Refer Numrieal Recipes} 

function gammln( xx: real): real; 

const 

stp 2.50662827465; 

var 

x, tmp, seT: double; 

begin 

x := xx-l.O; 

tmp .- x+5.5; 

tmp . - (x+0.5)* In (tmp)-tmp; 

start stt; 

stop:=stp; 

stt:=i; 

Biggest Range:=Range; 

end 

else stt i . , 
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seT .- 1. 0+ 76.18009173/ (x +1.0) -86.50532033/ (x+2.0)+24.01409822/ 

(x +3.0) 1. 231 739516/ (x+4.0) +0.120858003e -2/ (x+5.0) 

0.536382 e -5/(x +6.0); 

gammln . - tmp+ln ( st p * s er ) 

end; 

{Refer Numrieal Recipes} 

procedure gcf ( a ,x: real; 

val' gammcf, gin: real); 

label 99; 

const 

itmax = 100; 

eps = 3.0e 7; 
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var 

n: integer; 

gold,g,fac,b1,bO,anf,ana,an,a1,aO: real; 

begin 

99: 

gIn : = gammln( a) ; 

gold := 0.0; 

aO 

a1 

bO 

b1 

fac 

for 

.- 1. 0; 

.- x' , 

.- 0.0; 

.- 1. 0; 

.- 1. 0; 

n .- 1 to it max do begin 

an 

ana := an-a; 

aO .- (a1+aO*ana)* fac; 

bO := (b1+bO*ana)*fac; 

anf := an*fac; 

a1 .- x*aO+anha1; 

b1 := x*bO+anf*b1; 

if a1 <> 0.0 then begin 

fac := 1.0/ a1; 

end 

g := bhfac; 

if abs (( g-gold) / g) < eps then GOto 99; 

gold .- g 

end; 

writeln ( , pause in GCF - a too large, itmax too small'); 

readln; 

gammcf 

end; 

exp(-x+a* In (x)- gIn) * g 

{Refer Numrical Recipes} 

procedure gser (a, x: real; 

var gamser, gIn: real); 

label 99; 

const 

var 

itmax = 100; 

eps = 3.0e-7; 

n: integer; 
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sum, del) ap: real; 

begin 

gIn : = gammln ( a ) ; 

if x <= 0.0 then begin 

if x < 0.0 then begin 

writeln(' pause in GSER - x less than 0'); 

readln 

end; 

gamser .- 0.0 

end 

else begin 

ap := a; 

sum . - 1. 0 / a ; 

del .- sum; 

for n 1 to itmax do begin 

ap .- ap+1.0; 

del := del*x/ap; 

sum := sum+del; 

if abs(del) < abs(sum)*eps then GOto 99 

end; 

writeln ( 'pause in GSER - a too large, itmax too small'); 

readln; 

99: gamser.- sum*exp(-x+a*ln(x)-gln) 

end 

end; 

{Refer Numrical Recipes} 

function gammq( a, x: real): real; 

var 

gamser , gammcf, gIn: real; 

begin 

if (x < 0.0) OR (a < = 0.0) then begin 

writeln( 'pause in GMt.INQ - invalid arguments'); 

readln 

end; 

if x < a+l. 0 then begin 

gser (a, x) gamser, gIn) ; 

gammq : = 1.0 gamser 

end 

else begin 

gcf (a, x, gammcf, gIn) ; 
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gammq gammcf 

end 

end; 

{Least squares fi t routine: refer Numrical Recipes} 

procedure fit (var x, y: realarray NDATA ; 

var 

ndata: integer; 

var sig: realarrayNDATA; 

mwt: integer; 

var a, b, siga: real; 

var sigb, chi2 ,q: real); 

i: integer; 

wt, t ,sy, sxoss ,sx, st2 , ss , sigda t: real; 

begin 

sx 0.0; 

sy 0- 0.0; 

st2 := 0.0; 

b := 0.0; 

if mwt < > 0 then begin 

ss := 0.0; 

end 

for i . - 1 to ndata do begin 

wt . - 1. 0 / s q r ( s i g [ i ] ) ; 

end 

ss ss+wt; 

sx . - sx+x [i] * wt; 

sy .- sy+y[i]*wt 

else begin 

for i . - 1 to ndata do begin 

sx . - sx+x [ i ] ; 

sy . - sy+y [ i ] 

end; 

ss ndata 

end; 

sxoss := sx/ sS; 

if mwt < > 0 then begin 

for 1 : = 1 to ndata do begin 

t := (x[i]-sxoss)/sig[i]; 

st2 := st2+t*t; 

b:= b+t*y[i]/sig[i] 



A.2. Program System.pas 

end 

end 

else begin 

for i : = 1 to ndata do begin 

t := x[il~sxoss; 

st2 := st2+t*t; 

b b+Uy[i] 

end 

end; 

b : 

a .-.-
b/st2 ; 

(sy~sx*b)/ ss j 

siga 

sigb 

chi2 

sqrt ((1.0+sx*sx/(ss*st2 ))/ ss); 

sqrt (1.0/ st2); 

0.0; 

if mwt = 0 then begin 

for i := 1 to ndata do 

chi2 := chi2+sqr(y[il~a-b*x[i])j 

q 1.0; 

sigdat := sqrt(chi2/(ndata-2)); 

siga siga*sigdat; 

sigb := sigb*sigdat 

end 

else begin 

for i := 1 to ndata do 

chi2 := chi ((y[i]-a-b*x[i])/sig[i]); 

q gammq(0.5*(ndata~2),0.5*chi2) 

end; 

end; 

{Determines the phase gradient} 

procedure FindGradients; 

val' middle, i ) ndata ,mwt 

x,y,sig 

a,b, siga, sigb, chi2 ,q 

begin 

i f stop~s tart> MinNumOfTransPulses then 

begin 

mwt:=O; 

for i:=l to NDataP do x[i]:=i/379; 

ndata:=ndatap; 

integer; 

realarrayNdata; 

real j 

199 
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end; 

end; 
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fit (x, txph , nda t a , s i g , mwt , a , b , s i g b , s i g b , chi 2 , q ) ; 

TxGrad:=b; 

TxUncertainty:=SIGb; 

for i:= st art to stop do begin 

ndata:= stop-st art +1; 

x [i-start +l]:=i /379; 

PartialEchPh [i-st art +l] : = EchPh [i ] ; 

end; 

fi t (x, PartialEchPh, ndata, sig ,mwt, a, b, sigb , sigb , chi2 , q); 

EchGrad:= b ; 

Echo Uncertainty :=SIGb; 

Totuncertainty:= Echouncertainty + txuncertainty; 

{Coodinates wind velocity calculation} 

procedure FindVelocity; 

val' p: real; 

hourstr, minstr, secstr : string; 

begin 

if stop-s t art <MinNumOfTransPulses then 

begin 

end 

else 

begin 

if stop-st art >=0 then 

begin 

if not fancy then write(path,' [' ,stop-start,'] 

Too noisy to compute: ') 

end 

else 

begin 

if not fancy then 

write (path,' [0] Too noisy to compute: '); 

end; 

p:=(100*((FileNo) / NoOfFiles)); 

if not fancy then writeln(p:3:2,' % HourFileFinished'); 

inc (FIlesOpened ) ; 

inc (Rej File) ; 

v elo ci t y : = ( wavelength / (4* pi)) * ( echgrad-txgrad ) ; 



A.2. Program System.pas 201 

vel u n c e l' t a i n t y : = (0. 5 * ( w a vel en gt h / ( 2 * pi) ) * tot un c e r t a i n t y ) ; 

if not fancy then writeln(path, , [', stop-start, '] 

velocity:4:1,' , ,chr(241),' ',veluncertainty:4:1 " m/s'); 

with BFlatRecData do 

end; 

end; 

begin 

end; 

str (hour, hourstr); 

str (min, minstr); 

stl' (sec, secstr ); 

if hour<10 then hourstr:=' 0 '+hourstl'; 

if 10 then minstl':='O'+minstr; 

if sec<10 then secstr:= 'O'+secstr; 

if Vel Uncertainty < ,1 then begin 

write(velsout ,date,' '); 

write (vel sou t ) hourstr+minstr+s ecs t r " '); 

end; 

if VelUncertainty < 4 then 

begin 

write (velsout , veloci ty : 10: 1); 

write (velsout , veluncertainty : 10: 1); 

write (velsout , BFlatRecData. Bin: 6) ; 
write (velsout , BFlatRecData. ~umber: 5) ; 
write (VelsOut , Stop-St art: 5) ; 

write (VelsOut , St art: 5) ; 
writeln (V elsOut , Stop: 5 ) ; 

inc ( AccFile ) ; 

inc (FilesOpened ) ; 

end; 

if veluncertainty>=4 then inc(RejFile); 

lastnum ber :=BFlatRecData. Number; 

{Determines available files} 

procedure FindFiles; 

type 

ra = array [1.. MaximumNumberOfFiles] of string [13] ; 

var 

S,chk 

Temp 

Store 

: string; 

:string[13]; 

: array[0 .. 23] of ~ ra; 
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best, 

i , j , k 

N 

integer; 

array [0 .. 23] of integer; 

Dirlnfo : SearchRec ; 

begin 

assign (FileDir , 'c: \ Dop128\ Files. Dir' ); 

rewrite (FileDir); 

chdir (Drive+' : ' ); 

chdir ( '\ ' ) ; 

chdir ( , DorfData' ) ; 

{$I-} 
chdir (date); 

if IOResult <> 0 then 

begin 

writeln; 

writeln ( 'Can' 't find " Drive, ': \ DorfDATA \' , date) ; 

FilesExist .- False; 

end 

else 

begin 

FilesExist := true; 

FindFirst ( 'WJNI)*. *', Archive, DirInfo); 

GetDir (DriveN 0, S ) ; 

fill c h a r (N, s i z e 0 f (N) ,0) ; 

for k:=O to 23 do 

getmem( Store [k], MaximumNumberOfFiles*14); 

while doSERROR=O do 

begin 

val(copy(Dirlnfo .Name,6,2), i,j); 

inc(N[i]) ; 

Store [i ] ~ [N[ i]]: = Dirlnfo . Name ; 

FindNext (Dirlnfo ); 

end; 

N oOfFiles: =0; 

for k:=O to 23 do 

begin 

for i :=1 to N[k]-l do 

begin 

best:= i ; 

for j :=i+1 to N[k] do 
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if Store [k] ~ [j]<Store [kJ ~ [best J then 

best :=j ; 

end; 

end; 

if best<>i then 

begin Temp: = Store [k] A [best J ; 

end; 

Store [k] A [best]:= Store [kJ A [i J; 
Store[k]A[iJ: temp; end; 

for i: 1toN[kJ do 

end; 

begin 

inc (N oOfFiles ) ; 

writeln ( leDir ,S, '\' , Store [k 1 A [ i ] " '); 

inc (NoAnaIF); 

end; 

close (Fi1eDir ); 

reset (Fi Dir); 

for k: 0 to 23 do 

freemem (Store [k] ) MaximumNumberOfFiles * 14) ; 

{Initialising files} 

procedure Setvariab 

begin 

{ $1 

s' , 

Mkdir ( 'E: \ analysed' ) ; 

MkDir( 'E:\ analysed \'+SaveDate); 

if IOResult <> 0 then writeln ( , , ) ; 

assign (velsout , ' E: \ analysed \ '+SaveDate+'\ Phvels. dat' ); 

rewrite (velsou t ) ; 

end; 

{Allows invisible cursor} 

procedure setcursortype (numver: word) ; 

inline ($59/$B4/$Ol/$CD/SI0); 

{Produces a nice gui for program 

procedure dofancy; 

var 

mettime, metdate: string; 

begin 

not good for testing} 
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SetCursortype (NoCursor) ; 

textBackground (Black) ; { Clear screen } 

ClrScr; 

metdate :=copy (path, 13,6) ; 

writeln ('DATE: ',metdate); 

mettime:=copy (path, 20,7) ; 

writeln(' Meteor File: ',mettime); 

writeln ( , Tot al No of File s: ',NoAnalF); 

writeln; 

writeln; 

writeln ('No of Files Opened: ',FilesOpened); 

writeln( 'No of Files Accepted: ',accfile); 

writeln{( 'No of Files Rejected: ',RejFile)}; 

if filesOpened <>0 then writeln (' Success Percentage: 

',( accfile dOO) div (filesOpened ), '%'); 

writeln; 

writeln ( 'Computing ... ' ); 

end; 

{Determines next file for analysis} 

procedure N ext File ; 

begin 

if not eof( filedir) then 

begin 

DoFancy; 

Hour File Finished := false; 

FileNo := FileNo+1; 

{ $I-} 

close (BFlatFIle ); 

{$I+} 
if IOResult <>0 then begin end; 

readln( FileDir, path); 

FileMode :=0; 

assign (BFlatFile ,Path); 

reset (bflatfile ); 

DayFilesLeft :=true; 

end 

else 

begin 

{ $I-} 
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close (BFlatFIle); 

{$1+} if 10Result <>0 then begin end; 

{$ 
close (velsout ); 

{$1+}if 10Result <>0 then begin end; 

{ $1 

close (FileDir ); 

{$1+} if 10Result <>0 then begin end; 

DayFilesLeft:= false; 

HourFileFinished true; 

{$1 

if eof ( da t efile) then 

close (datefile ); 

{$1+} if 10Result <>0 then begin end; 

end; 

end; 

{Extracts meteor data from hourly fi 1 e s } 

procedure OrganiseData; 

var time) date: string; 

begin 

{$1-} 

read( BflatFilc, BFlatRecData); 

{$1+} 

if 10Result=O then 

begin 

if eof (BFlat File) then Hour FileFinished :=true; 

DataAvailable:=true; 

end 

else begin 

repeat 

NextFile; 

DoFancy; 

{HourFileFinished: true; } 

{$1-} 

read ( BflatFile, BFlatRecData); 

{$1+} 

until (10Result ) or (DayFilesLeft=False); 

if 10Result=O then DataA vailable :=True; 

if DayFilesLeft=False then DataAvailable:=False; 

end; 
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if not fancy then 

begin 

writeln; 

writeln ( 'Range Bin No: ',bfla trecda t a . bin) ; 

end; 

end; 

{Coordinates wind speed calculation for a days files} 

procedure Do Analysis ; 

var day: integer; 

a: integer; 

begin 

SetCursortype (NoCursor); 

FindFiles; 

if FilesExist then 

begin 

Setvariables; 

repeat 

N ext File ; 

{organisedata ;} 

if DayFilesLeft then 

begin 

if(fancy) and ((FileNo=l) or (FileNo= 

NoAnalF) or (( FilesOpened) mod 100=0)) 

then do fancy ; 

repeat 

OrganiseData; 

if DataA vailable then 

begin 

end; 

if Bflatrecdata. number<>lastnumber 

then begin 

FindAverages; 

MakeAmps; 

CalcPhases; 

FindScanLimits; 

FindGradients; 

FindVelocity; 

end; 

if not (fancy) then begin 

repeat until keypressed; 
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if keypressed then 

begin 

c readkey; 

if upcase(c)='S' then 

begin 
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Hour FileFinished :=true; 

DayF ilesLeft false; 

end; 

end; 

end; 

until HourFileFinished; 

end; 

until not DayFilesLeft; 

end; { 0 f file sex is tin g } 

end; 

{Routine called from outside of Unit} 

procedure FindWindSpeeds(Dir, SaveDir: string7); 

begin 

date Dir; 

SaveDate:= SaveDir; 

fancy: true; 

N oAnalF : 0 ; 

AccFile :=0; 

FilesOpened :=0; 

RejFile: 0; 

LastNumber:=O; 

Clrscr; 

Setup; 

DoAnalysis ; 

DoFancy; 

end; 

begin {No Initialisation} 

end. 

A.2.2 Unit Heights 

The Borland Turbo Pascal Unit, Heights. pas, is called from the control programme 

System. pas and calculates range, elevation angle and height of the meteor echo's 
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specular reflection point. 

Dnit Heights; 

interface 

uses OrbDef93, {PhaseReN,} PhaseReZ, Dos, GtlStv, Crt, Defns; 

procedure FindHeightsEtc (Dir: string7 ); 

implementation 

{GtlStv is same as genutil except that format for datestr 

and timestr has been changed slightly i. e. the removal of 

unwanted spaces S. Marsh sep 95} 

{label} {999;} {777;} {Reject= True, Imax to range 20 120} 

const 

type 

DeltaCalib = 0; 

Radius 6468; 

AeriaiSpacing14 = 3.00; 

AerialSpacing15 = 11.3; 

CosElevWindow = 0.036;{Allowed window of acceptance between 

e.g. CosElev142 and CosElev1510 to con which phase15 

lobe the echo Elev lies in. value 0.020 means 20% of 

angular dist to next lobe limit, 0.025 31 %, 0.030 40% } 

F15 1.0; {to get final AltitudeTru and ElevationTru from 

the two measuremments using Phase14 & Phase15 we average 

with weighting the two values. F15 is weight for Phase15 so 

(1 F15) is weighting for Phase14 (quite apart from 

4 used to narrow down correct Phase15} 

array250 array [0 .. 250] of longin t ; 

array360 array [ 0 .. 360] of longin t ; 

array180 array [0 .. 180] of longint; 

array7_12 array[70 .. 120] of longint ; 

var DirName,FileName: string; {Location of input data file} 

HOlll'Name : string; {File name less the extension} 

StartDir, endDir, SearchDir string; 

StartlFile, endlFile, Start2File, end2File string; 
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StartHour, endHour, StartFiIe, endFile : string; 

InName , OutName 

InData, OutFile 

PostName 

S Ie, DFile 

SearchName 

string; 

file of Observation; 

string; 

SearchRec; 

string; 
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Dirl , Dir2 , Dir3 , Dir4 , Dir5 , Dir6 , Dir7 , Dir8 , Dir9 string; 

Answer 

i , j 

InFiIe 

Buffer 

char; 

word; 

file of Observation; 

ReducedData; 

SmoothBuff Observation; 

RecNum Iongint; 

Outtext , Outtextl ,Outtext3 , Outtext4, Outtext5 , 

Outtext6 Intext 

Ilimi t ,Num14Low, Num14High ,Nurn14Mid 

Sum14Low, Sumlt1High, Sum14Mid 

Mean14Low, Mean14High, Mean14Mid 

SLow, Shigh, SurnSqrLow, SumSqrHigh, StandDevLow, 

StandDevHigh, StandDev14 , StandDev15 

Phaselt1Low, Phase14High, Phase14Mid 

MeanTinLowV, MeanTinHigh V, MeanTinMidV 

DiffMeans14, DiffMeans15, DiffPhase14 

NumPhase14 

SurnPhase14 , SurnSqrPhase14, MeanPhase14 

StandDevPhase14 ,SS, MeanPhase14Uncert 

Phaz14, Phase14, ErrPhase14, Phase14Diff, Phase15Diff 

Num15Low, Num15High, Nmn15Mid 

Mean15Low, Mean15High , Mean15Mid 

Phase15Low, Phase15High ,Phase15Ylid, Phaz15, Phase15 , 

ErrPhase15 , Phazz15 

Outtext2 

Range,Lag23 

CosEIev141 ,CosElev142, CosElev140 

AItFlat 

EIev141 ,Alt141 ,Elev142, Altl42 ,Elev140 ,Alt140 , 

AItl4Tru, Elev14Tru, Alt142_R 

Al tl42array 

Alt141array 

Alt140array 

AltTruearray 

text; 

text; 

byte; 

real; 

real; 

real; 

real; 

real; 

real; 

real; 

byte; 

byte; 

real; 

real; 

byte; 

real; 

real; 

real; 

text; 

real; 

real; 

real; 

real; 

array250 ; 

array250 ; 

array250 ; 

array250 ; 
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NumAlt141 ,NumAlt142, NumAlt140, NumAltTru 

Phase14array 

Phase15array 

ElevXYarray 

HomeAltarray 

Total 

AutoScale 

NumPhases 

Reject14, Reject15, Accept 

ValueR 

Value 

Numl ,Nuru2, NumNot, Num14 , Num15 

DetNutt , DetSpit 

Method14, Method15 

Elev1510, Elev159, Elev158, Elev157, Elev156, Elev155, 

154, Elev153, Elev152, Elev151, Alt1510, Alt159, 

Alt158 , Alt157, Alt156 , Alt155 , Alt154, Alt153 , Alt152, 

Alt151 

ElevTru, AltTru 

ElevTry2 ,ElevTry1 ,ElevTryO 

AltTry2, AltTry1 , AltTryO 

~umBadTry2 ,NumBadTry1 ,NumBadTryO , N umBadSelect 

Count142,Count141 

St art, Limit 

,Elevmax 

10 

Ca114Phasel ,Ca114Phase2, Ca114Phase3, Ca114Phase4, 

Ca114Phase5 , Ca114Phase6 

, DateLine ,Date~ow 

got 

code 

TotalCount 

Error 

Di rence 

Ion nt; 

array360 ; 

array360 ; 

array180 ; 

array7 12; 

longint; 

boolean; 

Ion 

boolean; 

real; 

byte; 

longint ; 

real; 

byte; 

real; 

real; 

real; 

real; 

integer; 

longint; 

byte; 

integer; 

real; 

integer; 

real; 

string; 

boolean; 

integer; 

integer; 

word; 

real; 

D ection) Elevdirection real; 

Ph14const, Ph15const, Alt142F) AltTruF, Alt142B, AveFdeg: real; 

Da teAnalysing longin t ; 

, PhaseExpectU, PhaseExpectL, Phase14B 

CommentF , ComrnentB 

RatioF , RatioB 

real; 

string; 

real; 
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{$R+} 
{$S+} 

forwardOK) Circuits) Se ction 

Toty1) Toty2, Toty3, Losttot 

LagGood) Front, Back, Ambiguous) AgreeFront ) AgreeBack , 

GoodFront , GoodBack 

Tot1, Tot2, Tot3, Tot4, Not12, FrontTotal, BackTotal 

Altl42Av1 ,Alt142Av2 ,Alt142Av3 ,Altl f12Av4, Alt142A v5) 

Elev15, Alt142PkF) AltTruPkF, Alt142PkB, ElevTruS, 

ElevTruN , AltTruS , AltTruN 

Numfor ,NumTl'U,Nmnbak 

countAltTru3S ,countAltTru3K ,countAltTr1l4S ,count 

AltTru4N 

ElevTry2S, ElevTry1S ,ElevTryOS, AltTry2S, AltTry1S) 

AltTryOS 

ElevTry2N, ElevTry1N, ElevTryOK ,AltTry2N, AltTry1N , 

AltTryON 

Elev142S, Elev141S, Elev1510S, Elev159S) Elev158S, 

Elev157S, Elev156S, Elev155S, Elev154S, Elev153S, 

Elev152S, Elev151S, Elev150S 

Elev142N) Elev141N ,Elev1510N ,Elev159N, Elev158N, 

Elev157N ,Elev156N, Elev155N, Elev154N ,Elev153N , 

Elev152K ,Elev151N J Elev150N 

Alt142ModeF ,AltTruModeF ,Alt142ModeB 

loop 

Elev150, Alt150, Phazz14, Diff2 , Diff1 ,DiffO 

procedure WhlchWay(var Range: integer; 

val' x : integer; 

val' y: real; val' PhaseExpect U : real; 

val' PhaseExpectL: real) ; 

bott ,U,L : real i 

begin 

{case 1 of front echo:} 

x:=Range; 

bott:= x*( 0.5/1 + «x-168)/(137))*0.16 ); 

y:= 32 (sqr(222-x))/bottj 

y: x + Yj 

U:= 1.82/(raise«0.Ohx),3))j 

L: = 1. 80/ ( r ai s e ( (0.01 * x) ,3) ) ; 
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byte; 

integer; 

boolean; 

integer; 

real; 

longint; 

longint; 

real; 

real; 

real; 

real; 

real; 

shortint; 

real; 

{because the elevation given by Elev14 is too,low lower than 

about 21 deg (see change in GetElev Alt 1415 PhaseRed) then 
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need to increase upper limit} 

if (x > 250) then U: = U + (0. 07) ; 

PhaseExpectU:= y + (x*U); 

PhaseExpectL:= y - (x*L); 

end; 

procedure FindHeightsEtc (Dir: string7 ); 

label 999; 

var month: string; 

begin 

StartDir :=Dir; 

endDir:=Dir; 

{$I-} 

MkDir( 'E: \ Analysed \ '+Dir); 

{$I+} 

if IOResult <> 0 then writeln ( 'Directory already created'); 

assign (Outtext2 , 'E: \ analysed \ '+Dir+' \Amor. dat ' ); 

rewrite (Outtext2 ) ; 

StartlFile:='NZST_OO' ; 

end2File:= 'NZST_23' ; 

AutoScale :=True; 

endlFile:= 'NZST_x' ; 

Start2File:= 'NZST_y'; 

assign (Intext , 'C: \Dop128\ CalNew14. cal' ); 

ClrScr; 

writeln; 

writeln; 

writeln ( , Calcula ting Height Information for: ',Dir); 

FillChar (Alt142array, SizeOf( Alt142array) ,#0); 

FillChar (Alt141array, SizeOf( Alt141array) ,#0); 

FillChar (Alt 140array , SizeOf (Alt140array), #0) ; 

FillChar (AltTruearray , SizeOf (Alt Truearray), #0); 

FillChar (Phase14array , SizeOf (Phase14array), #0); 

FillChar (ElevXYarray , SizeOf (ElevXYarray) ,#0); 

FillChar (HomeAltarray, SizeOf (HomeAltarray) ,#0); 

FillChar (Phase15array , SizeOf (Phase15array), #0); 

TotalCount:= 0; error :=0; 

StartFile:=StartlFile; endFile:=end2File; 

SearchDir:= Drive +': \AMJRDATA\ *' ; 

FindFirst (SearchDir , Directory, DFile ) ; 

while DosError = 0 do if (DFile . Name < StartDir) 

or (DFile . Name > endDir) then FindNext (DFile) 
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else begin 

DirName: Drive+': \AMORDATA\' + DFile .Name; 

reset (Intext ); 

got:= false; 

readln(Intext);readln(Intext);readln(Intext);readln(Intext); 

readln(Intext);readln(Intext);readln(Intext);readln(Intext); 

readln (Int ex t ) ; readln (In text) ; readln (In text) ; 

readln (Intext ); {the Date, Ph14 etc line ... } 

while (not eof(Intext)) and (not got) do begin 

readln( Intext ,DateLine); 

DateNow:=copy (DateLine, 1 ,6) ; 

if (DateNow DFile.Name) then got:= true; 

end; 

val (copy (DateLine, 10,3), Ph14const ,code); 

val (copy (DateLine, 16,3) , Ph15const , code) ; 

val (copy (DateLine, 26,5), Alt142F ,code); 

val (copy (DateLine, 33,5) , AltTruF , code) ; 

val (copy (DateLine, 40,5) ,Alt142B ,code) ; 

val (copy (DateLine, 47,5) ,AveFdeg, code) ; 

SearchN arne: = DirN arne + '\ NZST _ * . ' ; 
FindFirst (SearchN arne, Any File , SFile ) ; 

while DosError = 0 do 

if (SFile.Name + '1' >= StartlFile) 

and (SFile . Name <= end2File) 

then begin 

assign (InFile ,DirName +' \' + SFile . Name ); 

{$I-} 
reset (InFile ) ; 

{$I+} 
10 lORe suit ; 

if 10 <> 0 then begin 

write (' Problem at line 257 of Heights'); 

write ( , IOResult = ',io); 

halt ; 

end; 

writeln('Processing file: ',DirName+'\'+ SFile.Name); 

while not eof (I ile) do begin 

Recl"\Tum:= FilePos (InFile ); 

read(InFile ,0bsvBuff); 

FillChar (Buffer, SizeOf (Buffer), 0); 

TransferObsvData (ObsvBuff, B r ); 
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with ObsvBuff do 

DeSpikeProfile (Home. Profile ,N1); 

TriSmooth (ObsvBuff. Home, SmoothBuff. Home, 3) ; 

with Buffer. Home do FindMax ( SmoothBuff . Home, Imax , Max, 250) ; 

GeLRanges (Obsv Buff, Buffer, Error) ; 

case Error of 

23: Comment:='Range < 50 or > 400 kms';end; 

if Error = 23 then goto 999; 

{This section finds the Phases and so elevation angle.} 

Phase14:=99; Phase15:=77; 

ErrPhase14:=0; ErrPhase15:=0; 

with Buffer do 

GetPhase (ObsvBuff. Tin, Home. Imax, {Value, } Num14Low , 

Num14High, Nmn14Mid, Phaz14 , Phase 14Diff , 

ErrPhase14, Phase14Low, Phase14High, Phase14Mid, 

Mean14Low, Mean14High, DiffMeans14, Mean14Mid, 

StandDev14, Method14, Reject 14); 

if (Reject14 = True) then begin 

Phase14 :=999; 

Elev142 :=999; 

Alt142 :=999; 

Elev141 :=999; 

Alt 141 :=999; 

GoTo 999; 

end; 

Phase14:=(360-Phaz14)+ph14const +(8*AveFDeg) ; 

if (Phase14 < 0) then Phase14:= 360+Phase14; 

if (Phase14 > 360) then Phase14:= Phase14 - 360; 

with Buffer do 

GetPhase (ObsvBuff. Tos, Home. Imax, {Value, } Num15Low , 

Num15High, Num15Mid, Phaz15 , Phase 15Diff, 

ErrPhase15, Phase15Low, Phase15High, Phase15Mid, 

Mean15Low, Mean15High, DiffMeans15 , Mean15Mid, 

StandDev15, Method15, Reject15); 

if (Reject15 = True) then begin 

Phase15 :=999; 

Elev152 :=999; 

Alt 152: =999; 

Elev151 :=999; 

Alt151 :=999; 

GoTo 999; 
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end; 

Phase15: (360 Phaz15) + Ph15const; 

if (Phase15 < 0) then Phase15: 360+Phase15; 

if (Phase15 > 360) then Phase15:= Phase15 - 360; 

{Check that meteor is not travelling closely east-west} 

if (( Buffer . Home.Max > 5) and ( Buffer .Home. range >= 100) 

and (Phase14 >= 0) and (Phase14 < 360) 

and (Phase15 >= 0) and (Phase15 < 360)) 

then begin 

error: 0; 

if ( (Phaz14 >=25) and (Phaz14 < 325)) and 

(StandDev14 > 8) then error:= 1; 

if ( (Phaz14 >=325) or (Phaz14 < 25)) and 

(StandDev14 > 15) then error: = 1; 

if ( (Phaz15 >=25) and (Phaz15 < 325)) and 

(StandDev15 > 12) then error:= 1; 

if ( (Phaz15 >=325) or (Phaz15 < 25)) and 

(StandDev15 > 18) then er1'or:= 1; 

if (error> 0) then goto 999; 

inc (TotalCount ) ; 

ElevDirection:= - Direction; 

val ( St art Dir , DateAnalysing ,Code) ; 

{if the range is > 140 we can decide the approx elevation 

by comparing t actual range and Phase14 .... } 

WhichWay( Buffer. Home. Range, PhaseExpect , 

Phase Expect U, PhaseExpectL); 

Phase14B :=360- Phase14 ; 

if (( Phase14 - PhaseExpect) > 0) then 

RatioF: (Phase14-PhaseExpect) / 

(PhaseExpectU-PhaseExpect ) ; 

if (( Phase14 PhaseExpect) < 0) then 

RatioF: (Phase14-PhaseExpect) / 

( PhaseExpect-PhaseExpectL ) ; 

if (( Phase14B - PhaseExpect) > 0) then 

RatioB: (Phase14B-PhaseExpect) / 

(PhaseExpect U-PhaseExpect ) ; 

if (( Phase14B - Phase Expect ) < 0) then 

RatioB: (Phase14B-PhaseExpect) / 

(PhaseExpect-PhaseExpectL) ; 

{Test if we have obvious on t /back/both} 

Front: False;Back:= False; Ambiguous:= False; 
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CommentF:=' Fbefore ' ; CommentB:=' Bbefore ' ; 

if ( Abs(RatioF) <= 1.25) and (Abs(RatioB) > 1.25) 

then begin 

Front:='IRDE; Comment:= 'FRONT'; end 

else CommentF:=' NOTfront' ; 

if ( Abs(RatioB) <= 1.25) and (Abs(RatioF) > 1.25) 

then begin 

Back: = 'IRUEj 

Comment:= 'BACK'; end 

else CommentB:=' NOTback' ; 

if ( Abs(RatioF) <= 1.25) and (Abs(RatioB) < 1.25) 

then begin 

Ambiguous:= 'IRDE; Comment:= ' Ambiguous'; end; 

{ whether Lag23 is good} 

LagGood: FALSE; 

with Buffer do begin 

if (Home. Ma'{ > 4*Home. Noise) 

and (Nutt .Max > 4* Spit. Noise) 

and (S pit . Max > 4 * S pit . No i s e ) 

and (Lag23 < 200) and (abs(Lag23) > .4) then 

LagGood: ='IRUE; 

end; 

{case I} 

if LagGood then begin 

Selection: 1; Circuits:=I; inc(Totl);end 

{case 2} 

else if (Buffer.Home.Range >= 140) and (not LagGood) 

and (not Ambiguous) then begin 

Selection:=2; Circuits:= 1; inc(Tot2); end 

{case 3} 

else if (Buffer . Home. Range >= 140) and (not LagGood) 

and (Ambiguous) then begin 

Selection: 3; Circuits:= 2; inc(Tot3); end 

{case 4} 

else if (Buffer .Home. Range < 140) and not LagGood then 

begin 

Selection:= 4; Circuits:= 2; inc(Tot4); end 

{case 5} 

else begin 

Selection:= 5; inc(LostTot); goto 999; end; 

inc (Toty3 ) ; 
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ElevTruS: 0.5; ElevTruN: = 0.5; AltTruS: = 0.5; 

AltTruN: 0.5; ElevTry2S:=0.3j evtry1S:=0.3j 

ElevTryOS: 0.3 j ElevTry2N: 0.3; Elevtry1N :=0.3; 

ElevTryON : 0 . 3 j 

for loop: 1 to Circuits do begin 

if (Selection = 1) then begin 

Buffer. Lag23:= Buffer. Lag23; 

end; 

if (Selection 2) then begin 

if Front then Buffer. Lag23: 

if Back then Buffer. Lag23: 

end; 

if (Selection = 3) then begin 

100; 

+100; 

if (loop 1) then Buffer.Lag23:= -100; 

if (loop 2) then Buffer.Lag23:= +100; 

end; 

if (Selection = 4) then begin 

if (loop 1) then Buffer.Lag23: 

if (loop 2) then Buffer. Lag23:= 

end; 

-100; 

+100; 
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GetElev Alt1415 (Buffer. Lag23 ,Phase14) Phase15 , Buffer. Home. 

Range, Elev142, Elev141 ,Elev140, ElevTry2) ElevTry1) ElevTryO, 

AltTry2 ,AltTry1 ,AltTryO ,Elev 1510) Elev159 , Elev158 , Elev157 ) 

Elev156, Elev155, Elev154, Elev153, Elev152, Elev151 ,Elev150 , 

Alt142, Alt141, Alt140, Alt142_R, Alt1510) Alt159, Alt158, 

Alt157, Alt156, Alt155, Alt154, Alt153, Alt152 , Alt151 ,Alt150, 

Phazz14, Phazz15, Diff2 , Diff1 , DiffO ); 

GetTruElev Alt (ElevTry2 ,ElevTry1 ,ElevTryO ,AltTry2 ,AltTry1 , 

AltTryO, Alt142_R, ElevTru, AltTru ,NumBadTry2,NumBadTry1) 

NumBadTryO) NumBadSelect); 

if (S elect ion <= 2) and (AltTru > 70) and (AltTru < 120) thel 

begin 

ElevTru:=ElevTru; AltTru: AltTru; Elev142 Elev142; 

Elev141 :=Elev141 ; ElevTry2 ElevTry2; ElevTry1 :=ElevTry1 ; 

ElevTryO :=ElevTryO ; AltTry2 :=AltTry2; AltTry1 :=AltTry1 ; 

AltTryO AltTryO; Elev1510 Elev1510; Elev159 :=Elev159 ; 

Elev158:=Elev158; Elev157 Elev157; Elev156: Elev156; 

Elev155 Elev155; Elev154:=Elev154; Elev153: Elev153; 

Elev152:=Elev152; Elev151 :=Elev151; Elev150: Elev150; 

end; 

if (Selection = 3) or (Selection = 4) then 
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begin 

if (Loop = 1) then begin 

{USE SO{mI 1 AND NORTH 2... } 

ElevTruS:= ElevTru; AltTruS:= AltTru ; Elev 142S:= Elev142 ; 

Elev141 S :=Elev141 ; ElevTry2S :=ElevTry2; ElevTry1S 1 ; 

ElevTryOS :=ElevTryO ; AltTry2S :=AltTry2; AltTry1S :=AltTry1 ; 

AltTryOS:=AltTryO; Elev1510S:=Elev1510; Elev159S Elev159; 

Elev158S :=Elev158; Elev157S :=Elev 157; Elev156S Elev156 ; 

Elev155S:= Elev155; Elev154S:=Elev154; Elev153S:=Elev153; 

Elev152S:=Elev152; Elev151S:=Elev151; Elev150S: Elev150; 

end; 

if (Loop = 2) then 

begin 

ElevTruN:= ElevTru; AltTruN:= AltTru; Elev142N :=Elev142; 

Elev141N:=Elev141 ; ElevTry2N:=ElevTry2; ElevTry1N ElevTryl; 

ElevTryON :=ElevTryO ; AltTry2N:=AltTry2; AltTry1N: AltTry1; 

AltTryON:=Alt TryO ; Elev1510N :=Elev1510; Elev159N: Elev159; 

Elev158N:=Elev158; Elev157N:=Elev157; Elev156N Elev156; 

Elev155N:= Elev155; Elev154N:=Elev154; Elev153N Elev153; 

Elev152N:=Elev152; Elev151N:=Elev151; Elev150N:= Elev150; 

end; 

end; {of the one or two loop-----------} 

if (Selection = 3) or (Selection = 4) then begin 

GoodFront:=False; GoodBack:= False; 

if (AltTruS > 70) all.d (AltTruS < 120) and (AltTruN < 70) 

then GoodFront :=True; 

if ( AltTruS > 90) and (AltTruS < 102) and ( AltTruN > 110) 

then GoodFront :=True; 

if ( AltTruS > 90) and ( AltTruS < 102 ) and ( AltTruN < 80) 

then GoodFron t: =True ; 

if ( AltTruN > 70) and ( AltTruN < 120) and ( AltTruS < 70) 

then GoodBack:=True; 

if ( AltTruN > 90) and (AltTruN < 102) and (AltTruS > 110) 

then GoodBack:=True; 

if (AltTruN > 90) and (AltTruN < 102) and ( AltTruS < 80) 

then GoodBack: =True ; 

if GoodFront and not GoodBack then begin 

ElevTru:=ElevTruS; AltTru:= AltTruS; Buffer. Lag23:= 100; 

Elev142:=Elev142S; Elev141 :=Elev141S; ElevTry2:=ElevTry2S; 

ElevTry1 :=ElevTry1S; ElevTryO:=ElevTryOS; AltTry2:=AltTry2S; 
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AltTryl :=AltTrylS ; AltTryO :=AltTryOS ; Elev1510 

Elev159 :=Elev159S ; Elev158 :=Elev158S ; Elev157:= 

Elev156:=Elev1568; Elev155. E;Iev1558; Elev154 

Elev153:=Elev153S; Elev152:=Elev152S; Elev151 

Elev150: Elev150s; 

end; 

if GoodBack and not GoodFront then begin 
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Elev15108 ; 

1578; 

Elev1548 ; 

Elev1518; 

ElevTru:=ElevTruN; AltTru:= AltTruN; Buffer. Lag23:= +100; 

Elev142:=Elev142N; Elev141 :=Elev141N; ElevTry2 ElevTry2N; 

ElevTryl :=JDlevTry1N; ElevTryO:=ElevTryON; AltTry2:=AltTry2N; 

AltTryl :=AltTrylN; AltTryO :=AltTryON ; Elev1510 Elev1510N; 

Elev159:=Elev159N; Elev158:=Elev158N; Elev157:=Elev157N; 

Elev156 :=Elev156N; Elev155 Elev155N; Elev154 :=Elev154N; 

Elev153 :=Elev153N; Elev152 Elev152N; Elev 151 :=Elev151N; 

Elev150: Elev150N; 

end; 

if GoodBack and GoodFront then begin 

ElevTru: =0 .4; AltTru:= 0.4; end; 

if (not GoodBack) and (not GoodFront) then begin 

ElevTru: =0.4; AltTru: = 0.4; end; 

end; 

Difference:= rand(0,200jElevTru); 

if (ElevTru > 10) and (ElevTru < 60) then begin 

inc (Count142) ; 

end; 

inc (NumPhases) ; 

inc (Phase14array [trunc (Phase14 ) 1) ; 
inc (Phase15arl'ay [trunc (Phase15 ) 1) ; 
if (ElevTru > 5) and (ElevTru < 180) then 

inc (Elev XYarray [round (ElevTru ) 1) ; 
with Obsv Buff do begin 

if (ElevTru > 5 . 0) and (Alt Tru > 5.0) then 

begin 

if Buffer.Lag23<=Othen Direction:=l; {Looking South} 

if Buffer.Lag23>0 then Direction:=-l;{Looking North} 

if Direction=-l then ElevTru:=180-ElevTru; 

write (Outtext2 , Datestr (Year, Month, Day) " '); 

write (Outtext2 , Timestr (Hour, Min, Sec) )' '); 

write (Outtext2 , ElevTru : 8: 1) ; 

write (Outtext2 ,AltTru : 8: 1) ; 

write (Outtext2, Buffer . Home. Range: 8); 
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write (Outtext2, Direction: 8: 0) ; 

writeln (Outtext2 ,Number: 4,' , ) ; 

end; 

end; 

if (AltTru >= 70) and (AltTru <= 120) then 

inc ( HomeAlt array [round (Alt Tru ) 1 ) ; 

999: 

end; 

end; 

close (InFile ); 

FindNext (SFile ) ; 

end else FindNext (SFile ); 

end; 

close (In text) ; 

close (Outtext2); 

{$I+} 
if IOResult<>O then begin end; 

end; 

begin 

end. 

{No in it i ali sat ion} 

A.2.3 Unit Match 

The Borland Turbo Pascal Unit, Match. pas, is called from the control programme 

System. pas and combines meteor echo range, elevation angle and height informa­

tion from Unit Heights. pas with the wind speed measurements from Unit Speeds. pas. 

Unit Match; 

interface 

uses Dos, Crt, defns ; 

procedure Combine VelsandHeights (Dir : string7 ) ; 

implementation 

{ 
{ 
{ 

{ 
{ 
{ 

{ 

This program IS designed to combine data 

from Orbit and Winds files. 

A matching Number IS required to be present 

in both files. 

} 
} 
} 
} 
} 
} 

} 
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const MaxPosRange: integer 300 {Ian} ; 
MinDuration=10{Sweeps containing echo info}; 

var OutPutFile, AMORFile, DoRFFile 

Date 

Time 

Height, Angle, Range, Velocity 

Uncertainty 

MfORTime, DoRFTime 

Bin, Duration, D ction 

DorfEchoStart ,DorfEchoend 

OutDate 

text; 

string[7]; 

longin t i 

real; 

real; 

longint; 

integer; 

integer; 

string[6]; 

{Returns true if meteor time and number match} 

function .:\1atehFound(AH,DH,AN,DN: integer) : boolean; 

begin 

if (AH DH) and (AN DN) then MatehFound .- True 

else MatehFound .- False; 

end; 

{writes data to output fil e} 

procedure writeOutput; 

var 

RelVelUne, RelCosAngle Une, TotalRelUnc, Veloci tyHoriz 

begin 

write (OutPutFile ,OutDate,' '); 

write (OutPutFile ,AMORTime: 6,' '); 

write (OutPutFile , Height: 6: 1,' '); 
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: real; 

VelocityHoriz velocity /( cos (0.01745*Angle)); {Pi/ISO =0.01745} 

write (OutPutFile , Veloci tyHoriz : 6: 0,' '); 

write (OutPutFile ,Angle: 6: 1,' '); 

if Velocity <> 0 then RelVelUnc Uncertainty / Veloci ty 

else RelVeIUnc:= 0.0; 

if cos (0.01745*Angle) <> 0 then 

RelCosAngleUnc: (sin (0.01745* Angle) * (0.01745* 0.5)) 

/(cos(0.01745*Angle)) {0.5deg is delta theta} 

else RelCosAngleUnc :=0.0; 

TotalRelUnc abs (ReIVeIUnc)+abs (ReICosAngleUnc) ; 

Uncertainty :=abs (TotaIReIUnc* Velocity); 

write (OutPut , Uncertainty: 6: 1); 
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end; 
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write (OutPutFile , Direction: 4) ; 

write (OutPutFile, Duration: 5,' '); 

write (OutPutFile ,Range: 6: 1 ) ; 

writeln (OutPut File ) ; 

{reads a meteor record from orbit data file} 

procedure readAMORData(var AMORHour,AMORNumber: integer); 

begin 

end; 

read (AMORFile ,Date); 

readead(AMORFile,AMORTime) ; 

AMORHour := AMORTime div 10000; 

read (AMORFile , Angle) ; 

read (AMORFile , Hei gh t ) ; 

read (AMORFile , Range) ; 

read (AMORFile, Direction) ; 

readln (AMORFile ,AMORNumber) ; 

{reads a meteor record from winds data file} 

procedure readDoRFData(var DoRFHour,DoRFNumber: integer); 

var code: integer; 

Date: string [7]; 

begin 

end; 

read (DoRFFile, Date) ; 

read (DoRFFile ,DoRFTime ) ; 

DoRFHour: =DoRFTime div 1 0000 ; 

read (DoRFFile , Veloci ty ); 

read (DoRFFile , Uncertainty); 

read (DoRFFile , Bin) ; 

read (DoRFFile ,DoRFNumber ) ; 

read (DoRFFile , Dura tion ) ; 

read (DoRFFile , DorfEchoStart ) ; 

readln (DorFFile, DorfEchoend); 

{Returns true if meteor duration is long enough} 

function LongEnough(Duration: integer): boolean; 

begin 

if Duration>=MinDuration then LongEnough:=True 

else LongEnough:=False; 
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end; 

procedure CombineDataFiles; 

var AH, AN, DH, DN integer; 

Option : integer j 

begin 

readAMORData(AH,AN) ; 

readDoRFData (DH,DN) j 

repeat 

if MatchFound (AH,DH,AN,DN) then begin 
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if (Range < MaxPosRange) and (LongEnough( Duration)) then 

write Output j 

end; 

readDoRFData (DH,DN) ; 

end 

else begin 

if AH> DH then option:=l; 

if DH > AH then option :=2; 

if DH = AH then option :=3; 

case option of 

1: readDoRFData(DH,DN); 

2: readAMORData(AH,AN); 

3: begin 

end; 

end; 

if (kvl0RTime >= DoRFTime) then 

readDoRFData (DH ,DN) 

else if (DoRFTime > AMORTime) then 

readAMORData(AH,AN) ; 

end; 

un til Eof (AMORFile) or Eof (DoRFFile ) ; 

{Initialises files} 

procedure Setup; 

begin 

as sign (OutPutFile, 'E: \ Analysed \ '+date+' \ Graph. dat ' ); 

assign (AIvlORFile, 'E:\Analysed \'+date+'\Amor, dat'); 

assign (DoRFFile, ' E: \ Analysed \ '+date+'\ Ph Vels. dat ' ) ; 

reset (DoRFFile); 

reset (AMORFile); 

rewrite (OutPutFile ) ; 
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end; 

{closes open files} 

procedure ConClude; 

begin 

end; 

close (OutPutFile); 

close (DoRFFile); 

erase (DoRFFile); 

close (AMORFile); 

erase (AMORFile); 
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{Routine called from outside of Unit} 

procedure CombineVelsandHeights (Dir: string7); 

begin 

end; 

date:=dil'; 

OutDate:=Dir; 

writeln; 

writeln ( , Combining File for " , date); 

writeln; 

Setup; 

CombineDataFiles; 

ConClude; 

begin {No Initialisation} 

end. 

A.2.4 Unit Sort 

The Borland Turbo pascal Unit, Sort. pas, is called from the control programme 

System. pas and sorts the available data into chronological order. 

Unit Sort; 

interface 

uses Dos, Defns ; 

const NoOfDates=365; 

type Dates=string [7]; 

var 

Datesarray : array [1 .. NoOfDates] of Dates; 
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DirInfo 

ou tfi Ie 

SearchRec; 

integer; 

text; 

procedure SortDates; 

Implementation 

procedure GetDates; 

begin 

FindFirst (Drive+' : \ DorfData \ *. *', Directory) DirInfo); 

1: 0; 

while (DosError 0) and (i<-NoOfDates) do 

begin 
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if (dirinfo .name<>'.' )and (dirinfo .name<>' .. ) )then 

begin 

end; 

end; 

inc(i); 

Datesarray [i]:= DirInfo . name; 

end; 

FindNext( DirInfo); 

procedure DateSort; 

var Month string[3]; 

boolean; 

longin t ; 

integer; 

string[7]; 

ValidFile 

MonthVal 

j ) k 

DateStr ,temp 

code integer; 

year, day, MinIndex longint; 

MinDateValue) DateValue: longint; 

begin 

rewrite( outfile); 

for j :=1 to i do begin 

MinDateValue: 999999; 

for Ie:= j to i do begin 

Val i d F i 1 e : = True; 

da testr :=Datesarray [k] ; 

Val ( copy ( dates t r , 1 ,2) ) Year, code) ; 

Val( copy (datestr ,5,2), Day, code); 

Val (copy (DateStr ,3,2) ,MonthVal, code) ; 
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end; 
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dateval ue. year *10000+monthvah100+day ; 

if DateValue<MinDateValue then begin 

end; 

temp' Da tesarray [j 1 ; 

MinDate Value: Date Value; 

Minindex 

end; 

Da tesarray [j l: Da tesarray [Minlndex 1 ; 
Datesarray [Minlndex] :=temp; 

writeln( outfile, datesarray [j 1); 

end; 

close (OutFile ) j 

procedure Sort Dates ; 

begin 

end; 

assign (outfUe,' c:\dop128\dates. dat»); 

Get Dates ; 

DateSort; 

begin {No In i t i a Ii sat ion} 

end. 

A.2.5 Unit Defns 

The Borland Turbo Pascal Unit, Defns. pas, is called by the control programme 

System. pas to define constants and variable types which are shared between Units. 
Unit Defns; 

interface 

const 

type 

Drive='F'; {====> Must be m CAPITALS !!!!!!!! } 
DriveNo=Ord( Drive) -64; 

MaxDataPoints=800; 

128; 

realarray 

Intarray 

string7 

Parray 

= array [0 . . MaxDataPoints 1 of real j 

= array [0 . . MaxDataPoints 1 of integer; 

= string [7]; 

= array [1 . . MaxDataPoints] of real; 
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Frarray 

realarrayNData 

implementation 

begin 

end. 

array [1 .. MaxDataPoints J of integer; 

array [1 .. NDataP 1 of real; 

A.3 Program GroundRangeAnalysis 
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The C programme, GroundRangeAnalysis . c, reads the files generated by System. pas 

and produces hourly averaged wind speeds from individual measurements. Accept­

ance layer thickness, number of ground range bins and height are required as input. 

Program by Steven Marsh July 1998. 

Generates a 3D mat 

to HiHeight Ian. 

#include < stdli b . 

#include < stdio . h> 

#include <string. 

#include <math. 

#include "nrutil.h" 

#define 'IRIJE 1 

#define FAlSE 0 

#define Pi 4* atan (1) 

#define MaxRange 300 

#define MinRange 40 

of velocity values in 

Ilkms 
Ilkms 

ights from LoHeight 

#define AcceptanceLevel 0.5 II ratio data filled hI'S to hI'S 

#define significance_level 0.05 I I for Fisher's test 

#define lambda 0.6 II for Siegel's test 

#define window_width 4 I I days 

#define shortest period window_width*2 tl 

#define DesLDrive 'H' 

#define IGREG (1 31L*(10+12L*1582)) 

I I begin Prototypes 

I I Obtains values from the user 
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void GetInputParameters (long * ThisDate, long * endDate, 

short * NoOfDays ,short * NoOfGroundBins , 

short * LoHeight, short * HiHeight ) ; 

/ / All the re al work is done here 

short GroundRange (float height, float elevangle, short direction, 

short NoOfGroundBins); 

/ / Finds the next data with data a v aila ble 

long GetNextDate (long ThisDate); 

/ / Calculates Julian Day 

long julday (short mrn, short id, short iyyy); 

/ / Applies a cosine tapered window to data 

void win_cost (float * tt, float *yy, short counter, float alpha); 

/ / end Prototypes 

void main () 

{ 
char F i I est r i n g [8 ° 1 = ' , , , , L sf t File s t ri n g [8 ° 1 = ' , , , ; 

long ThisDate, endDate; 

FILE * Input File, * OutputFile ; 

long date, time; 

float height, elevangle, vel unc ,Range, junk2 ; 

short noofpulses, direction, velocity, HalfLayerThickness; 

float * * * Sum VelsTensor, * * * A v VelsTensor ,* * * SumSqrs VelsTensor , 

*** variance Tensor ,* ** AvHoursTensor, * ** varHoursTensor , 

* * * SumHoursTensor ,* * * SumSqrs Hours Tensor; 

short *** CountVelsTensor; 

short SameHour=l, FirstTime=l, FirstDate; 

short * * IndexMa trix , * * Data W asFoundMatrix , index =0; 

short DayCount=O,Hour=O, LastHour=O, GroundRangeInd=O, HtIndex ,junkl ; 

short i =0, j =O,k=O,NoOfDays, NoOfGroundBins , LoHeight , HiHeight ; 

short windowwidth, shortestperiod, temptime, minutes, seconds; 

short Hindex; 

long randomseed=-3; 

short offs = 0; 

printf (' 'Welcome to GroundRangeAnalysis created Feb 1999\n 
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for generating Metxx.Dat files. \nHourly averaging.\n\n"); 

printf (' 'Enter Half Layer Thickness (4 9 km) \n' ') ; 

scanf (" %hd" , & HalfLayerThickness ) ; 

printf (" Layer Thickness = %hd lan\n" ,2* HalfLayerThickness +1); 

GetlnputParameters(&ThisDate, &endDate, &NoOfDays, & NoOfGroundBins , 

&LoHeight,& HiHeight ) ; 

printf("\nNo of days %hd\n",NoOfDays); 

A v HoursTensor= 

f3tensor (1,2* NoOfGroundBins , LoHeight , HiHeight ,0, NoOfDays *24); 

SumHoursTensor= 

f3tensor (1,2* NoOfGroundBins, LoHeight I Hi Height ,0, NoOfDays *24); 

varHoursTensor= 

f3tensor (1, 2* NoOfGroundBins , LoHeight, Height, 0, NoOfDays *24); 

Sum VelsTensor= 

f3tensor (1) 2* NoOfGroundBins) LoHeight I HiHeight ) 0) NoOfDays *24); 

SumSqrs VelsTensor= 

f3tensor (1,2* NoOfGroundBins I LoHeight I HiHeight ) 0) NoOfDays * 24); 

SumSqrsHoursTensor= 

f3tensor (1) 2* NoOfGroundBins l LoHeight , HiHeight ,0, NoOfDays *24); 

varianceTensor= 

f3tensor (1) 2* NoOfGroundBins , LoHeight , HiHeight ,0, NoOfDays *24); 

CountVelsTensor= 

i3t ensor (1) 2* NoOfGroundBins, LoHeight) HiHeight ) 0) NoOfDays *24); 

AvVelsTensor= 

f3tensor (1) 2*NoOfGroundBins) LoHeight) HiHeight ) 0, NoOfDays *24); 

IndexMatrix=imatrix (1,2* NoOfGroundBins I LoHeight, HiHeight); 

DataWasFoundMatrix=ima trix (1,2* NoOfGroundBins, LoHeight, HiHeight); 

FirstDate = 'lRDEj 

//initialise variables 

for (i =1; i <=2*NoOfGroundBins j i++) 

{ 
for (j=LoHeight; j< HiHeight; j++) 

{ 
IndexMatrix [i ] [j 1 1; 

DataWasFoundMatrix [i] [j ]=FAISE; 

for (k=O;k<-NoOfDays *24; k++) 

{ 
SumVelsTensor [i ] [j 1 [k] =( float) 0; 
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} 
} 

} 
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CountVelsTensor[i] [j] [k]=(short)O; 

SumSqrsVelsTensor [i ] [j ] [k] =( short) 0; 

AvVelsTensor [i ] [j ] [k]=( float) 999; 

AvHoursTensor [i .1 [j ] [k]=(short) 0; 

SumHoursTensor [ i .1 [ j ] [k] = (short) 0 ; 

SumSqrsHours Tensor [ i ] [ j :1 [k] = (short) 0; 

/ / end 0 f. i nit i ali s e 

while (ThisDate<endDate) / / s till analyses endDate data 

{ 

} 

do 

{ 
if (! FirstDate) 

{ 

} 

ThisDate=GetNextDate (ThisDate); 

DayCount++; 

Filestring [0]='\0'; 

sprin t f (Files tring , , , E: \ \ Analysed\ \%1 u \ \ Graph. Dat ' , , ThisDate); 

printf("Opening File: %s\n\n", Filestring); 

FirstDate=FAISE; 

while (( Input File=fopen ( Files tring , , , r") ) = = NULL ) ; 

FirstTime-='IRUE; 

SameHour='IR.UE; 

while (! feof (Inpu tFile)) 

{ 
fsc anf (Input File," % 1 u%l u%fo/ohd%f%fo/ohdo/ohd%f " , & date ,&time,& height, 

&veloci ty,& elev angle ,&vel unc,& direct ion,& noofpulses ,&Range) ; 

Hour=(short ) (( DayCount *24) + (time /10000)) ; 

temptime = time % 10000; 

seconds = temptime % 100; 

minutes = (temptime - seconds)/100; 

if (First Time) 

{ 

} 

LastHour Hour; 

FirstTime=FAISE; 
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if (Hour LastHour) 

{ 
for (j=LoHeight ; j<=HiHeight ; j ++) 

{ 
for (i 1; i<=2*NoOfGroundBins; i++) 

{ 
if (Data WasFoundMatrix [ i 1 [j 1) 
{ 

} 
} 

IndexMatrix [i II j 1++; 

DataWasFoundMatrix [i J [j J=FAIEE; 

} / / (j=LoHeight ; j<=HiHeight ; j 

Last Hour=Hour ; 

} / / if (Hour!=LastHour) 

for (offs=-HalfLayerThickness; offs< HalfLayerThickness; offs++) 

{ 
HtIndex=(short) floor (height+offs +0.5); 

if«HtIndex>=LoHeight) && (HtIndex<=HiHeight)) 

{ 
G roundRangeInd= 

GroundRange (height) elev angle) direction, NoOfGroundBins) ; 

CountVelsTensor [GroundRangeInd II HtIndex 1 [IndexMatrix 

[GroundRangeInd 1 [HtIndexll ++; 

junkl=Count VelsTensor [GroundRangeInd II HtIndex 1 [IndexMatrix 

[GroundRangeInd] [HtIndex J 1 ; 
SumHoursTensor l GroundRangeInd II HtIndex II IndexMatrix l GroundRangeInd j 

l HtIndexll +=( (float) minutes /60) + « float) seconds /3600); 

junk2=SumHoursTensor [GroundRangeInd II HtIndex 1 [IndexMatrix 

[GroundRangeInd 1 [HtIndex 11 ; 
SumSqrsHoursTensor [GroundRangeInd 1 [HtIndex 1 [IndexMatrix 

l GroundRangeInd 1 [HtIndex II +=( (( float) minutes /60)+ 

« float) seconds / 3 600)) * (( float) minutes /60)+ 

« float) seconds /3600)); 

AvHoursTensor [GroundRangeInd 1 [HtIndex 1 [IndexMatrix 

[GroundRangeInd] [ HtIndex 11 Hour + 

SumHoursTensor [GroundRangeInd 1 [HtIndex II IndexMatrix 

[GroundRangeInd:1 [ HtIndex 11/ Count VelsTensor l GroundRangeInd 1 
[HtIndex] [IndexMatrix l GroundRangeInd II HtIndex 11 ; 

if (junkl > 1){ 
varHoursTensor l GroundRangeInd II HtIndex 1 [IndexMatrix 
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} 

} 
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[GroundRangelnd 1 [Htlndex 11 =( SumSqrsHoursTensor 

[ GroundRangelnd 1 [ H tIndex 1 [ IndexMa trix [ GroundRangelnd 1 
[Htlndex 11 / Count VelsTensor [GroundRangelnd 1 [Htlndex 1 
[IndexMatrix [GroundRangelnd 1 [HtIndex 1]) pow ( 

(SumHollrsTensor [GroundRangelnd 1 [Htlndex 1 [IndexMatrix 

[ GroundRangelnd 1 [ Htlndex 11/ Count V elsTensor [ GroundRangelnd 1 
[ H tI ndex 1 [IndexM a trix [GroundRangelnd 1 [H tlndex 11 ) , 2) ; 

else varHoul'sTensor [GroundRangelnd:1 [HtIndex 1 [IndexMatrix 

[GroundRangelnd 1 [Htlndex 11 = 0; 

SumVeIsTensor [GroundRangelnd:1 [Htlndex 1 [IndexMatrix 

[ Gl'OundRangelnd 1 [ H tIndex II + = ( fl 0 at ) vel 0 ci t Y ; 

SumSqrs VelsTensor [GroundRangelnd 1 [Htlndex 1 [IndexMatrix 

[GroundRangelnd 1 [Htlndexll +=( (float) veloei ty * 
(float) veloei ty ); 

AvVelsTensor [GroundRangelnd 1 [HtIndex 1 [IndexMatrix 

[ GroundRangelnd 1 [ H tIndex 11 = Sum VelsTensor [ GroundRangelnd 1 
[ 1 [IndexMatrix [GroundRangelndl [Htlndex 11 / 
CountVelsTensor [GroundRangelnd 1 [HtIndex 1 [IndexMatrix 

[ Gl'OundRangelnd 1 [ H tlndex 11 ; 
if (junkl >l){ 

} 

variane ensor [GroundRangelnd 1 [ HtIndex 1 [IndexMatrix 

[GroundRangelnd 1 [HtIndex 11 = (SumSqrsVeIsTensor 

[GroundRange1ndl [ H tlndex 1 [ IndexMa trix [ GroundRangelnd 1 
[Htlndex 11/ CountVeIsTensor [GroundRangelnd 1 [Htlndexl 

[IndexMatrix [GroundRangelnd 1 [Htlndex 11) -pow( 

(SumVelsTensor [GroundRangelnd 1 [Htlndex 1 [IndexMatrix 

[GroundRangelnd 1 [ H tlndex 11/ Count VelsTensor [GroundRangelnd 1 
[Htlndex 1 [IndexMatrix [GroundRangelndl [Htlndex lJ ) ,2) ; 

else varianeeTensor l GroundRangelnd 1 [HtIndex 1 [IndexMatrix 

[ GroundRangelnd 1 [ H tlndex 11 = 0; 

DataWasFoundMatrix l GroundRangelnd] [HtIndexJ='IRIJE; 

} / / for (off 

/ / offs 

alfLayerThiekness; offs fLayerThiekness; 

} / / while (! feof (InputFile)) 

fclose (InputFiIe); 

}/ /while (ThisDate<=endDate) 

/ / beginning of output section 

prin tf (" LoHeight= %hd\ tHiHeight = %hd\n' , , LoHeight, HiHeight); 
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shortestperiod=shortesLperiod; 

for (Hindex=LoHeight; Hindex<-HiHeight; Hindex++) 

{ 
heigh t=( float) Hindex; 

II while ( 1) 

for (GroundRangelnd=l ; GroundRangelnd<=2*NoOfGroundBins ; 

G roundRangelnd ++) 

{ 
windowwidth=window _wid th ; 
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printf (" Analysing Height = %5.2f\tGround Range Bin %hd\n", 

height, GroundRangelnd) ; 

if(height==999) exit (1); 

Filestring [0]='\0'; 

sprin tf (Filestring ," % c: \ \ DataDisk \ \ Meto/Qhdo/Qhd . Dat ' " DesLDrive) 

(short) hei gh t , GroundRangelnd) ; 

if (( Output File = fopen (Filestring , "w") )==NULL) 

{ 

printf (" OutputFile error\n"); 

} 

for (i =1; i<IndexMatrix [GroundRangelnd 1 [( short) height 1 ; i++) 

{ 

} 

if (fabs(AvVelsTensor[GroundRangeInd][(short)height][i]) < 300) 

{ 
fprin tf (Output File ," % 5.2 f\ t %5.2 f\ t %5.2f\ t %5.2 f\ t%2hd\n ' , , 

A v HoursTensor [ GroundRangelnd 1 [ ( short) heigh t 1 [ i 1 , 
AvVelsTensor [GroundRangelnd] [( short) height] [i 1, 

} 

sqrt (varianceTensor [GroundRangelnd 1 [( short) ght 1 [i 1) , 
sqrt (varHoursTensor [GroundRangelnd J [( short) igh t ] [ i ] ) , 

Count VelsTensor [GroundRangelnd 1 [ ( short) hei gh t 1 [ i 1 ) ; 

fclose (OutputFile); 

} I I for G roundRangelnd = 1 to 2 * N oOfG roundRanges 

} I I for height=LoHeight to HiHeight 

II end of output section 

p ri n t f ( , , Done. \ n ' , ) ; 

} Ilmain 

void GetlnputParameters (long * ThisDate) long * endDate, short 

*NoOfDays, short * NoOfGroundBins, 

short * LoHeight, short * HiHeight ) 

{ 
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char DThisDate [ 1 0 1 , DendDate [1 (I 1 ; 
short TYear, TMonth , TDay , EYear , EMonth , EDay ; 

II All initial reading from the keyboard is done here! 

printf (" Enter StartDate: "); 

} 

scanf ("% Iu ", ThisDate); 

printf("\n\nEnter endDate: "); 

scanf("%lu", endDate); 

printf("\n\nEnter Lowest Height of Interest: "); 

scanf (" %hd ' , , LoHeight ) ; 

printf("\n\nEnter Geatest Height of Interest: "); 

scanf("%hd", HiHeight); 

printf("\n\nEnter No of ground bins per direction: "); 

scanf (" %hd ' , , NoOfGroundBins) ; 

s pr in t f (DThisDate ," % I u ' , , * ThisDate ) ; 

sscanf (DThisDate ," %2hd%2hd%2hd", & TYear,&TMonth,&TDay ); 

if (TYear<70) TYear+=2000; 

else TYear+=1900; 

s pr in tf (DendDate," % lu ' , , * endDate ) ; 

sscanf (DendDate ," %2hd%2hd%2hd", & EYear,&EMonth,&EDay); 

if (EYear<70) EYear+=2000; 

else EYear+=1900; 

*NoOfDays=(short) julday (EMonth, EDay, EYear)­

julday (TMonth, TDay, TYear); 

short GroundRange (float height, float elevangle, short direction, 

short N oOfBins ) 

{ 
float GrndRange; 

short GroundRangeInd; 

I I An Approximation that does NOT consider earth's curvature 

GrndRange=fabs ( height 1(( sin ( elevangle * (Pi I 180))) I 
(cos(eIevangle*(Pi/180))))); 

switch ( direction) 

{ 
case 1: II SouthWard 

{ 
if (GrndRange>MaxRange) GroundRangeInd=l; 

else if (GrndRange<MinRange) GroundRangeInd=N oOfBins ; 

else 

{ 
GroundRangeInd=flo or (N oOfBins * (GrndRange-MinRange) I 
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} 

} 

(MaxRange-MinRange ) ) ; 

G roundRangelnd-N 00 fBins-GroundRan gelnd ; 

} 

break; 

case -1: //NorthWard 

{ 

} 
} 

if (GrndRange>MaxRange) GroundRangeInd=2*NoOfBins; 

else if (GrndRange<MinRange) GroundRangeInd NoOfBins+1; 

else 

{ 
G roundRangeInd=fl 0 0 r (N oOfBins * ( GrndRange-MinRange ) / 

(MaxRange-MinRange ) ) + 1; 

GroundRangeInd+ NoOfBins; 

}// else 

if (( GroundRangeInd < 1) II (GTOundRangeInd > 2 * N oOfBins ) ) 

printf ("\n WARNING Ground Range Indicater -> %d\n", 

GroundRangeInd) ; 

return (GroundRangelnd); 

long GetN extDate (long ThisDate) 

{ short Year, Month, Day; 

short MaxDays [13] = {O ,31,28,31,30,31,30,31,31,30,31,30,31 } ; 

char Dmnmy[10]; 

long NewDay; 

sprin tf (Dmnmy," % Iu " , ThisDate); 

sscanf (Dummy," %2hd%2hd%2hd" ,&Year,&Month,&Day); 

if (((Year % 4==0) && (Year % 100! 0))11 (Year % 400 ==0)) 

YlaxDays[2]=29;//leap year test 

Day++; 

if (Day>MaxDays [Month]) 

{ 
Day=l; 

Ylonth++; 

if (Month>12) 

{ 

} 

Year++; 

Month=l; 
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} 

} 
NewDay=Year*10000+Month*100+Day; 

return (NewDay); 

long j ulday (short mn, short id, short iyyy) 

{ 

} 

void nrerror(char error-text []); 

long j ul ; 

short ja, jy=iyyy ,jm; 

if (jy == 0) nrerror (" julday: there IS no year zero."); 

if (jy < 0) ++jy; 

if (mn > 2) { 
jm=nm+1; 

} else { 

--jy; 

jm=nm+13; 

} 
jul = (long) (floor (365.25*jy)+floor (30.600hjm)+id+1720995); 

if (id+31L*(mm+12L*iyyy) >= IGREG) { 

ja=(int )(O.Ol*JY); 

jul += 2-ja+(int) (0.25*ja); 

} 
return j ul ; 

/ * (C) Copr. 1986 - 92 Numerical Recipes Software 51#. * / 

#Undef IGREG 

A.4 Program LSFT2 

The C programme LSFT2. c performs a Lomb-Scargle Fourier Transform analysis 

only at specified frequencies. This programme is designed to be compiled by, and 

then accessed from within, MatLAB. 

#incl ude <math. h> 

#include "mex. h" 

#include "matrix. h' , 

#define Pi 3.1415926 

#define toll 1 e-4 

#define tol2 1e-8 
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#define E 2.7182818 

#define consU 1/ sqrt (2) 

/ / input arguments 

#define tLin prhs [0] 

#define yy _in prhs[l] 

#define pers_in prhs [2] 

#define nn_in prhs [3] 
#define np_in prhs [4] 

/ / output arguements 

#define ftrp_pr plhs [OJ 
#define ft i p_pr plhs [1] 

typedef struct Complex 

{ 
double rp) ip; 

} Complex; 

Complex work) tmp; 

/ / begin Prototypes 

/ / Main procedure 

void 1 s ft 2 (double 

double xx [] ) 

tsamp [] ) / / 

double freqs [1 ) 
/ / sampling 

/ / PERIODS 

sampled times 

data 

to be analysed 

short IlIl , 

short nfreq, 

h of time and data vectors 

ngth of freqs vector 
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/ / Ie 

// 
// short si, 

double ftrp [] , 

double ftip [] ) ; 

sign of transform + 1 for time to freq domain 

/ / real part of Fourier transform 

/ / imag part of Fourier transform 

/ / Complex number multiplication 

Complex cmult (Complex * a, Complex * b) ; 

/ / Converts value to a complex exponential 

Complex cexp (Complex * a) ; 

void win_cost (double * tt) double * yy) short counter, double alpha); 
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I I end Prototypes 

void mexfunction ( 

{ 

int nlhs, mxaI'ray :;: plhs 1:] , 

int nrhs, const mxaI'ray :;: prhs [] 

double :;:ftrp out,*ftip_out,*tt,*yy,*pers,alpha; 

int nn,np, si, i; 

si =1; 

alpha 0.5; 

if (nl'hs! 5 II nlhs !=2) 

mexErrMsgTxt (' 'Input should be as follows: [a b] 

lsft 2dll (tt ) yy l pel'S ,nn,2*np)' '); 

nn=(int) mxGetScalal' (nn_in); 

np=(int) etScalar (np_in); 

ftrp_pr=mxCreateDoubleMatrix(np, 1 ,mxREAL); 
ftip_pl'=mxCreateDoubleMatrix (np, l,mxREAL); 
ftrp_out=(double *) mxGetPr( ftrp_pr); 

£tip out=(double *)mxGetPr( ftip_pI'); 

t t (double *) mxGetPI' ( t Lin) ; 

yy= (double:;: ) mxGetPr ( yy _in) ; 

pers= (double *)mxGetPr(pers_in); 

win_cost (tt , yy, nn, alpha); I I puts a cosine 

I I through data alpha 0.5 

Is ft 2 (tt ,yy , pel'S, nn, np, si , ftrp_ou t , ftip_out ); I I calling c function 

} 

void Is ft 2 (double tsamp [], II sampled times 

double xx I.] , I I sampling data 

double freqs [] , I I PERIODS to be analy 

short nn, II length of time and data vectors 

short q, I I length of freqs vector 

short s i , II sign of transform +1 for time to fTeq domain 

double ftrp [] , II re al part of Fourier transform 

double ftip []) II imag part of Fourier transform 
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{ / / declarations 

double wuse) const2) surnt 1 surnx, tauO, wdel, wrun, tt t, csurn, 

arg) tcos, tsin, watan, wtau, wtnew) ssurn 1 surntc, surnts , 

surnr, surni, scos2) 

nstop, avgdt, tp, 

arnpfactor ; 

ssin2, cross, ,xd, phase, id, ftrd, 

ero, tzero, wz, fny, lfreq, sqrtnn, 

short fnn, i, istop, cnt, iput; 

/ / end of declarations 

[nn-1J-tsarnp [0]) / (nn 1); / / average tirnestep avgdt 

tp=avgdt *nn; 

fzero=l/tp; 

tzero 0.0; 

/ / period of a segment 

/ / fundamental frequency 

/ / set fid ucial origin of time to zero 

/ / Omega wz = 2.0*Pi*fzero j 

fny= 1.0/(2.0*avgdt); 

wuse wz; 

fnn ( double) nn ; 

const2 

surnt 

si*constl; 

O' , 
surnx 0; 

sqrtnn = sqrt (nn); 

/ / average nyquist frequency 

if(si 1) arnpfactor = 2/sqrtnnj 

else arnpfactor sqrtnn /2; 

for (i =0; i<nn; i++) 

{ 

} 

surnt += tsarnp [ i 1 ; 
surnx += xx [ i 1 ; 

// initialise for zero frequency 

tauO surnt/fnn; 

ftrp [O]=surnx/fnn; 

ftip [OJ=O; 

//start frequency loop 

istop = nfreq -1; 

wdel = wuse; 
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cnt = 1; 

wrun = 2 * Pi / f r e q s [ c n t ] ; 

do 

{ 
csum=O; 

ssum=O; 

sumtc=O; 

sumts=O; 

for (i =0; i<nn; i++) 

{ 
ttt = tsamp[i]; 

arg = 2*wrun*ttt; 

tcos cos (arg ) ; 

tsin = sin(arg); 

csum += tcos ; 

ssum+= tsin; 

sumtc 

sumts 

sumtc + ttt * tcos; 

sumts + ttt * tsin; 

} / / for ( i = 0; i <nn ; i ++ ) 

if ((fabs(ssum»toll) II (fabs(csum»toll)) 

watan = atan2(ssum,csLun); 

else watan = atan2(-sumtc, sumts); 

wtau = 0.5*watan; 

wtnew = wtau; 

sumr 0; 

sumi = 0; 

scos2 0; 

ssin2 = 0; 

cross = 0; 

for (i = 0; i <nn ; i ++ ) 

{ 
tim = tsamp [ i ] ; 

arg = wrun * tim -wtnew; 

tcos cos (arg ) ; 

tsin = sin(arg); 

cross cross + tim * tcos * t sin; 

scos2 scos2 + tcos * tcos; 

s sin2 ssin2 + t sin * t sin; 

xd = xx [i]; 

sumr sumr + xd*tcos; 

suml sumi + xd*tsin; 
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} / / for (i ; i <nn; i ++ ) 

ftrd = constl * sumr/ sqrt (scos2); 

if( ssin 011) 

{ 
ft id const2 * sumx/ sqrt (fnn); 

if(fabs(cross) > tol2) 

{ 
ft id o· , 

} 

} / / i f ( s sin 2 <=t 011 ) 

else / / (ssin2 > toll) 

{ 
ftid const2 * sumi/ sqrt (ssin2 ); 

} 

phase wtnew - wrun * tzero; 

work. rp ftrd; 

work.ip ftid; 

tmp. rp 0; 

tmp. ip phase; 

tmp cexp(&tmp); 

work cmult(&work,&tmp); 

ftrp [cnt] work.rp * ampfactor; 

ftip [cnt 1 work. ip * ampfactor; 

cnt 

wrun 2* Pi/ freqs [cnt 1 ; 
}while (cnt <= istop ) ; 

} 

Complex cm ul t (Complex * a, Complex * b ) 

{ 

} 

Complex c; 

c.rp 

c. ip = 

return c j 

* b->rp-a->ip * b->ip j 

p*b->rp+a->rp*b->ip; 

Complex cexp (Complex * a) 

241 
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{ 

} 

Complex c; 

c. rp=pow(E, ) * cos (a->ip ); 

c. ip=pow(E, ~_'''.r.) * sin (a->ip ); 

return c; 

void win_cost (double * tt, double *yy, short counter, double alpha) 

{ 
double * wei s , sumweights , cycle; 

short middle, nlow , nhigh , i ; 

if (counter >0) 

{ 
middle ceil ((tt [counter-l]-tt [0])/2); 

if (( weigh ts (double *) malloc (2 * middle * sizeof (double )+10) 

{ 
printf (" counter %hd middle = %hd malloc error\n", 

exit(l); 

} 

counter) middle) ; 

nhigh middle; 

nlow = ceil(alpha*middle); 

cycle Pi / (nhigh - nlow); 

sumweights 0;. 

/ / calculate end taper 

for ( i=middle+nlow ; t [counter - t t [0] ; i ++ ) 

{ 

} 

weigh ts [i 1=0.5+0.5* cos (( i-nlow-middle) * cycle) ; 

weights[(short)tt[counter 1]-(short)tt[O]-iJ = weights[i]; 

sumweights += weights [i I; 

for (i=rniddle-nlow+l; -1; i++) 

{ 
weights[i]=I; 

} 
sumweights *=2; 

surnweights +=(2*Illow); 

if (surnweights! 0.0) 

for (i =0; i<counter ; i 

{ 
yy[i]*=(weights [(short)(tt [i] tt [0])]*( tt [counter-l]-tt [0])/ 
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sumweights ) ; 

} 
free (weights) ; 

} 
} 

A.4.1 MatLAB LSFT2 
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The MatLAB m-file LSFT2. m performs data checking on data to be processed with 

Lomb-Scargle Fourier analysis via LSFT2. c. 

Computes the Lomb-Scar Fourier Transform 

% for data t t and yy at s pe cifie periods pp. 

% yy are data values and tt times of yy values. 

% 
% A cosine taper window is also applied to the 

% data with alpha=O.5 

% 
% Care needs to be taken as per should NOT 

% be included as it is the nyquist period. 

% also the de component MUST always be included 

% as the first period. 

% Written by Steven Marsh Sept 1998 

% 
% Usage [transform]= 1 sft 2 (tt ,yy, pp) 

function [transform]=lsft2 (tt ,yy,pers) 

if (length ( t t )==length (yy)) 

fin it e _ i n d ice s = i s fin i t e (yy ) ; 

if length (yy ( fi ni t e _i ndi ees ))>1 

[ f t r p f tip] = 1 s f t 2 d 11 ( t t (f in i t e _ in die e s ), yy ( fin it e _ i n die e s ) , 

pel'S, length (tt ( fi ni t e_i ndi ces ) ) , length (pel's) ) ; 

transform=ftr 

else 

transform (1: length (pers) )=~; 

transform=transform ' ; 

end 

else error ( 'Input vectors must 

end; 

the same length.'); 
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Appendix B 

Tabulated Data from Ground Range Bin 

Comparisons 

B.l Correlation Coefficients 

The following graphs detail correlation coefficients from ground range bin compar­

isons for all data and data grouped by season. 
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0.88 0.81 -0.04 0.28 0.73 0.67 0.74 0.71 0.67 0.58 
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0.88 0.87 0.77 

0.87 0.79 
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Table B.1: GRB comparison correlation coefficients - All Data. 



GRB 2 3 4 5 6 7 8 9 10 11 12 

1 0.86 0.85 0.82 0.80 0.77 0.78 0.70 -0.23 0.50 0.66 0.68 

2 0.89 0.89 0.86 0.83 0.82 0.73 -0.04 0.42 0.74 0.69 

3 0.91 0.90 0.87 0.84 0.75 0.07 0.36 0.73 0.70 

4 0.92 0.90 0.88 0.78 0.12 0.38 0.76 0.71 

5 0.92 0.88 0.79 0.08 0.38 0.73 0.70 

6 0.89 0.77 0.03 0.17 0.74 0.69 
~~~~ 

7 0.82 -0.15 NaN 0.76 0.73 

8 0.24 NaN 0.62 0.66 

9 NaN 0.22 0.24 

10 0.71 0.59 

11 0.85 
-------
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13 

14 

15 

Table B.2: GRB comparison correlation coefficients - Summer. 

~~~~~ .--~~~ -----------

13 14 15 
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0.76 0.71 0.64 

0.66 0.69 0.61 
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0.83 0.83 0.82 

0.89 0.89 
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5 6 7 8 9 10 11 12 13 14 15 16 

0.80 0.75 0.71 0.63 -0.08 0.44 0.56 0.52 0.59 0.55 0.50 0.21 

0.87 0.85 0.77 0.68 -0.16 0.33 0.69 0.61 0.69 0.66 0.62 0.41 

0.90 0.87 0.78 0.75 -0.19 0.24 0.71 0.64 0.71 0.65 0.62 0.42 

0.91 0.89 0.83 0.78 -0.12 0.39 0.72 0.65 0.71 0.66 0.62 0.45 

0.91 0.85 0.81 -0.17 0.32 0.72 0.64 0.72 0.66 0.60 0.42 

0.87 0.82 -0.10 0.36 0.71 0.64 0.71 0.65 0.62 0.45 

0.78 -0.35 0.21 0.67 0.66 0.68 0.60 0.59 0.41 

-0.66 NaN 0.66 0.55 0.63 0.61 0.60 NaN 
0.30 0.14 0.08 0.03 -0.13 -0.04 NaN 

0.62 0.51 0.58 0.38 0.45 NaN 
0.81 0.84 0.83 0.79 0.72 

0.82 0.78 0.77 0.75 

0.85 0.85 0.80 

0.84 0.74 

0.85 

Table B.3: GRB comparison correlation coefficients - Autumn. 



-- ----- -----,--

GRB 2 3 4 

1 0.83 0.82 0.81 
-----

2 0.88 0.88 
-------- ----

3 0.90 
---------- f-----

4 
.... - ---------

5 
..... 

6 
------- .... ~ ---------

7 
---------

8 

9 

10 

11 
--------- ---

12 
.... -

13 
----

14 

15 

--- ------

5 6 7 8 9 10 11 12 13 

0.79 0.74 0.76 0.66 NaN NaN 0.55 0.30 0.45 
f---

0.86 0.84 0.81 0.77 NaN NaN 0.62 0.41 0.56 
.-

0.89 0.87 0.81 0.81 NaN NaN 0.62 0.43 0.56 
------

0.91 0.89 0.86 0.81 NaN NaN 0.64 0.42 0.58 

0.90 0.87 0.82 NaN NaN 0.63 0.41 0.59 
f--- ... -

0.88 0.82 NaN NaN 0.65 0.40 0.60 

0.72 NaN NaN 0.50 0.38 0.36 
... - ------

NaN NaN 0.67 0.38 0.55 
----------

NaN NaN NaN NaN 
NaN NaN NaN 

0.66 0.81 

0.72 
--------- .. ---

Table B.4: GRB comparison correlation coefficients - Winter. 
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1 0.66 0.70 0.59 

2 0.81 0.79 

3 0.82 

4 
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6 

7 

8 
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10 
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12 

13 

14 

15 

5 6 7 8 9 10 11 12 

0.61 0.45 0.37 0.39 NaN NaN NaN 0.10 

0.75 0.69 0.57 0.53 -0.38 NaN 0.55 0.55 

0.82 0.75 0.67 0.69 -0.22 NaN 0.61 0.57 

0.85 0.83 0.75 0.75 -0.26 NaN 0.64 0.59 

0.88 0.81 0.81 -0.11 NaN 0.68 0.59 

0.85 0.83 -0.19 -0.02 0.70 0.61 

0.76 -0.12 NaN 0.68 0.63 

NaN NaN 0.57 0.59 

NaN NaN -0.56 

NaN NaN 
0.77 

Table B.5: GRB comparison correlation coefficients - Spring. 

13 14 15 16 

NaN NaN NaN NaN 
0.50 0.71 0.65 NaN 
0.58 0.55 0.64 NaN 
0.59 0.63 0.63 NaN 
0.64 0.68 0.63 0.28 

0.53 0.65 0.62 0.13 

0.54 0.49 0.72 NaN 
0.37 0.61 0.61 NaN 
-0.33 NaN NaN NaN 
NaN NaN NaN NaN 
0.71 0.77 0.81 NaN 
0.68 0.71 0.61 NaN 

0.75 0.67 NaN 
NaN NaN 

NaN 
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B.2 Best Fit Gradients 

The following graphs detail the gradient of the line of best fit from ground range 

bin comparisons for all data and data grouped by season. 
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0.92 0.92 
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5 6 7 8 9 10 11 12 13 14 15 16 
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0.95 0.90 0.85 0.65 
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Table B.6: GRB comparison best fit gradients - All Data. 



-------,----- --- ------------- ,-----

GRB 2 3 4 5 6 7 8 9 10 11 12 
------

1 0.97 0.99 1.00 0.98 0.94 0.95 0.84 -0.26 0.49 0.73 0.70 
-- I-

2 0.92 0.95 0.93 0.91 0.93 0.77 -0.03 0.33 0.74 0.64 
-----

3 0.95 0.94 0.93 0.92 0.81 0.06 0.30 0.72 0.64 
-----

4 0.92 0.93 0.93 0.81 0.11 0.28 0.74 0.64 
-------

5 0.94 0.92 0.80 0.07 0.28 0.72 0.64 
-------

6 0.92 0.78 0.03 0.23 0.73 0.62 

7 0.81 -0.19 NaN 0.68 0.63 
--~ --- -----

8 0.27 NaN 0.56 0.56 
---- --- ----- f-----

9 NaN 0.21 0.23 
--- ----- --1--

10 0.78 0.69 
---1-- ----- -------

11 0.81 
------- -------

12 
--- ----- f-----

13 
----

14 

15 
----- ---- --------

Table B.7: GRB comparison best fit gradients - Summer. 

13 14 

0.87 0.82 

0.82 0.77 

0.81 0.77 

0.80 0.77 

0.79 0.77 

0.77 0.74 

0.75 0.69 

0.65 0.65 

0.27 0.10 

0.50 0.83 

0.90 0.87 

0.94 0.91 
----- r-------

0.86 

-----

15 16 

0.84 0.53 

0.76 0.56 

0.74 0.52 

0.72 0.51 

0.70 0.48 

0.69 0.48 

0.59 0.41 

0.54 0.42 

0.18 NaN 
0.46 NaN 
0.78 0.56 

0.87 0.64 
--~ 
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0.91 0.90 0.90 0.79 -0.11 0.32 0.65 0.52 0.66 0.59 0.52 0.30 

0.92 0.91 0.82 -0.15 0.26 0.65 0.52 0.68 0.60 0.51 0.31 

0.90 0.82 -0.10 0.28 0.63 0.53 0.66 0.60 0.53 0.34 

0.75 -0.35 0.13 0.57 0.52 0.61 0.54 0.50 0.30 

-0.70 NaN 0.66 0.46 0.59 0.61 0.54 NaN 
0.25 0.14 0.08 0.02 -0.10 -0.04 NaN 

0.84 0.56 0.65 0.49 0.46 NaN 
0.7 

0.59 

Table B.8: GRB best fit gradients - Autumn. 



--------- ~~~~~,~~~~ ~~- --~~ ~~~~~~- ------- -- ~~~~~~,~-~~~ 

GRB 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.87 0.92 0.87 0.85 0.84 0.92 0.75 NaN NaN 0.50 0.22 0.51 0.50 

2 0.91 0.88 0.85 0.87 0.82 0.82 NaN NaN 0.51 0.31 0.53 0.54 

3 0.88 0.86 0.87 0.85 0.85 NaN NaN 0.50 0.30 0.53 0.50 

4 0.90 0.91 0.94 0.83 NaN NaN 0.53 0.31 0.58 0.50 

5 0.93 0.92 0.83 NaN NaN 0.53 0.30 0.58 0.51 
~ ~~~~~~- r-~~~ 

6 0.89 0.83 NaN NaN 0.54 0.30 0.57 0.52 

7 0.71 NaN NaN OA6 0.28 0.31 0.38 

8 NaN NaN 0.58 0.27 OA4 0.32 

9 NaN NaN NaN NaN NaN 
10 NaN NaN NaN NaN 
11 0.52 0.88 0.76 

12 0.87 0.78 
~ ~ ~ ~ ------

13 0.69 

14 

15 

Table B.9: GRB comparison best fit gradients - Winter. 
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0.69 0.71 0.69 

0.81 0.81 

0.84 

5 6 7 8 9 10 11 12 

0.71 0.58 0.58 0.55 NaN NaN NaN 0.10 

0.78 0.73 0.64 0.61 -0.32 NaN 0.59 0.53 

0.85 0.80 0.78 0.79 -0.28 NaN 0.76 0.55 

0.84 0.86 0.86 0.87 -0.26 NaN 0.79 0.54 

0.91 0.91 0.95 -0.10 NaN 0.75 0.57 

0.92 0.90 -0.20 -0.01 0.78 0.58 

0.78 -0.11 NaN 0.67 0.50 

NaN NaN 0.63 0.51 

NaN NaN -0.47 

NaN NaN 

0.67 

Table B.lO: GRB comparison best fit gradients - Spring. 

13 14 15 16 

NaN NaN NaN NaN 

0.58 0.79 0.66 NaN 

0.65 0.58 0.61 NaN 
0.64 0.73 0.62 NaN 
0.71 0.72 0.63 0.24 

0.59 0.70 0.62 0.11 

0.53 0.49 0.61 NaN 

0.32 0.62 0.53 NaN 

-0.30 NaN NaN NaN 

NaN NaN NaN NaN 

0.69 0.80 0.68 NaN 

0.75 0.75 0.68 NaN 

0.68 0.75 NaN 

NaN NaN 
NaN 
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B.3 No Of Points 

The following graphs detail the number of data points in ground range bin compar­

isons for all data and data grouped by season, 
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4 5 6 7 8 9 10 11 12 

2373 2300 2186 527 375 101 56 1139 1351 

5514 5428 5204 1247 924 188 126 2274 2746 

6425 6341 6091 1439 1033 213 138 2552 3108 
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58 209 187 
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Table B.ll: GRB comparison number of data points - All Data. 

13 14 15 16 

1137 654 560 172 

2327 1334 1075 271 

2605 1479 1180 289 

2808 1588 1264 300 

2861 1610 1279 303 

2866 1622 1271 306 

774 498 423 113 

570 395 343 104 

162 94 68 0 

110 71 51 0 

2104 1194 896 207 

2397 1344 1058 250 

1292 1009 249 

770 196 

177 



GRBI 2 I 3 4 5 6 7 8 9 10 11 12 13 

1 I 115711197 1205 1146 1054 271 208 58 34 593 713 615 

2124 2190 2108 1974 451 394 87 57 973 1224 1068 

24281234212187149614241 97 162 11060 1344 1153 

4 I I 1429 I 2497 2329 514 458 100 67 11132 

: ml 1 1 1 

123471511 1 460 1 96 I 64 1 1146 1429 

1436 1267 516 I 461 I 96 1 62 11150 
- ----- -------- r------

7 I I I I I I I 146 I 37 I 0 I 319 376 367 

8 37 0 288 344 331 

9 0 106 96 86 

10 70 57 51 

11 

12 

13 

14 

15 

Table B.12: GRB comparison number of data points - Summer. 
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1168 1154 1132 256 167 43 22 546 638 

3322 3318 3228 795 530 101 67 1299 1520 

3995 3997 3902 942 609 116 74 1490 1762 

4677 4608 1056 704 133 83 1647 1926 

4817 1089 717 131 80 1677 1979 

1117 736 148 92 1655 1972 

315 51 34 375 458 

24 0 213 274 

38 103 91 

78 67 

1327 

Table B.I3: GRB comparison number of data points - Autumn. 

13 14 15 16 

522 255 185 37 

1257 610 450 68 

1450 690 507 72 

1554 740 542 76 

1600 749 554 81 

1597 744 544 81 

406 215 176 28 

239 135 100 0 

76 34 24 0 

57 34 22 0 

1077 529 366 44 

1208 563 411 53 

530 374 53 

256 33 

28 



r- -----------

GRB 2 3 4 5 6 7 8 9 10 11 12 13 

1 393 421 424 417 410 76 70 a a 92 139 109 

2 1008 1077 1069 1023 175 170 a a 170 251 201 

3 1282 1263 1210 213 183 a a 185 280 223 

4 1402 230 207 a a 202 298 232 

5 1423 241 211 a a 198 295 234 

6 241 214 a a 196 290 

7 72 a a 44 55 58 

8 a a 44 67 55 

9 a a a a 
10 a a a 
11 81 

12 103 

13 

14 

15 

Table B.14: GRB comparison number of data points - Winter. 
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4 5 6 7 8 9 10 11 12 13 14 15 16 

94 94 97 35 0 0 0 24 0 0 0 0 

651 658 686 311 224 28 0 105 164 137 66 60 0 

856 873 914 399 285 34 0 125 210 179 81 68 0 

1186 1257 480 44 0 177 265 215 92 86 0 

1379 490 352 39 0 184 273 228 100 89 21 

517 367 53 22 204 299 246 101 90 21 

193 27 0 74 119 106 47 42 I 0 

0 0 69 98 81 40 35 I 0 

0 0 23 22 0 0 

49 I 43 

o 
o 

Table B.15: GRB comparison number of data points - Spring. 
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