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ABSTRACf 

Lubrication of the big~end bearing IS re~exarnined under 

elastohydrodynamic assumptions. All current models were found to be in 

someway deficient, motivating the development of a new consistent schema. 

Uniform axial filmwthickness assumptions and parabolic axial pressure 

profiles are combined with curved~beam and planar Finite Element housings to 

produce a single dimensional EHL model. Body-forces due to con-rod motion 

were found to be a necessary part of the elasticity implementation. 

The role of discretisation and surface displacement interpolation errors are 

investigated under steady load conditions. Under dynamic load, ring, housing and 

previous experimental works are compared. 

Increased dynamic journal action from housing distorsion was found to lead 

to film collapses not present in equivalent rigid bearing analyses; these collapses 

are likened to vapour cavitation. Correlation of dynamic film-thickness 

measurements with the elastic solutions are generally improved over rigid 

predictions. 

With regard to minimum film thickness, inertial 'ring' solutions gave similar 

values to housing solutions with and without gas loading; this facilitates 

non-dimensionalisation. Two separate minimum-film regime were subsequently 

identified: one in the con-rod neck and a second, at higher load, in the cap. The 

first condition sees thicker minimum films than the rigid bearing; the second, 

thinner films with an increased sensitivity to load. 

Non-dimensionalisation of this transition along with bearing flexibility and 

load enabled new tribological measures to be developed; the influence of elastic 

geometry on minimum film thickness is sufficiently well portrayed to make these 

useful design tools. 
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1 

ONE 

One of the principle tenets of solid mechanics was enunciated by Hooke[1] 

as the Latin anagram 

, ceiiinosssttuu' 

This was later revealed to be 'as the extension so the force' or, in a more modern 

idio~ structures resist external forces through deflection. 

In many engineering situations dimensional considerations allow such 

deformations to be ignored. Unfortunately lubricating oil-films are not one of 

them: the development over the last 30 years of elastohydrodynamic lubrication 

(EHL) theory is witness to this. Although much of this body of work pertains to 

the counterformal contact problem[2,3], the particular case of the big-end bearing 

is in essence no different. Here the characteristic dimension is that of bearing 

clearance, typically three orders of magnitude less than the basic geometry: oil-film 

forces and con-rod body-forces then exact an influence on dynamic film geometry; 

con-rod bolt forces, bearing shell crushing forces, machining and fixturing forces 

on static film geometry. 

Consequently, the success (or otherwise) of a big-end bearing rests with the 

designer having an appreciation of these diverse interactions; this is demonstrably 

the case for the various static effects. Dynamic interactions and their cyclic 

ramifications are, in comparison, poorly understood if not misunderstood: this 

thesis attempts in some small way to redress this situation. 
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1.1 literature 

Many of the earlier journal bearing researchers recognised defonnation as 

being important: Reynolds [4] discussed the influence of elasticity on bearing 

clearance; Carl[5] attributed reduced experimental peak pressures and positional 

shifts in minimum film thickness to distorsion. However, by 1966, the review 

paper of Campbell[6] on the state of reciprocating bearing research revealed not a 

single elastic analysis. This situation was however about to change, two separate 

approaches having been initiated : 

4111 the flexible liner problem 

4111 the big-end housing problem 

The liner problem began in the work of Higginson[7J and O'Donoghue[8]; 

Higginson used a thin liner or 'Winkler' foundation t, O'Donoghue, thick liner 

geometry; both used long bearing oil-film assumptions. The latter group 

subsequently investigated a variety of effects : validity of thin liner assumptions[9]; 

finite· as opposed to long bearing theory[lOJ; approximate finite length 

solutions[l1]. Conway later tackled the isoviscous assumptions[12] along with a 

short bearing analysis of thin liners in [13]. Benjamin[14] further extended these 

solutions to a liner of finite length, in the process addressing numerical 

convergence problems. The liner problem still attracts interest today[15], 

however it bears little resemblance to the con-rod problem: liners are 

circumferentially symmetric whilst the con-rod has at most, a single circumferential 

symmetry; strong coupling between elasticity and oil-film consequently develop for 

non-symmetric con-rod loadings. 

The second approach, that of elastic housings, was sign-posted by the work 

of Ibra.l1lm[16] : elastic distorsion of static con-rod housings under various load 

configurations were presented and seen to be important. Lubrication analysis of 

deflection is proportional to pressure 
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the problem followed in the thesis of Allen[17]: despite an invalid dynamic 

formulation, sound planar ring solutions were developed on the steady-state 

equation subset[22]. Oh[18] later presented a comprehensive Finite Element 

analysis incorporating the distorsion of a three-dimensional housing on a finite 

length bearing. Fantino[19] presented a similar analysis using planar elastic 

relationships, additionally incorporating a piezoviscous lubricant; the developme,nt 

of oscillatory pressure distributions in this work generated considerable discussion. 

Stafford [20] building on Allen's steady-state approach, presented further planar 

Finite Element solutions. 

Experimental works accompanied these theoretical solutions: Frene[21] 

investigated the distorted forms of an araldite rod using speckle interferometry; 

Bozaci[22] determined pressure distributions and distorted forms on a geometry 

mimicking that of Allen. This latter work verified the multiple pressure peaks 

first observed by Allen. 

With hindsight, it is probably fair to say that research during this period lost 

sight of the fact that the steady state con-rod problem is by-and-large pathological; 

Martin's[23] 1983 review paper on 'Developments in Engine Bearing Design' 

reflects this, eagerly looking towards the then forthcoming con-rod work of 

Fantino[24] . 

This work was the first major attempt at extending the steady-state model 

to the time domain: a short bearing Reynolds equation approximation was coupled 

to planar (two-dimensional) elastic geometry, deformations being determined on 

the basis of mean oil-film pressure. Unfortunately, two major errors mar this 

implementation: Reynolds' equation was applied to a frame of reference in which 

it was not invoked; elasticity loadings were misrepresented by the exclusion of 

body-force displacements. These errors have unfortunately propagated not only 

into their later works[25,26], but also into the wider literature. 
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S mith [27] incorporates both of Fantino's errors in a plane strain, short 

bearing modeL However, he did manage to dispose of one of the offending terms 

in Fantino's equations. LaBouf~28] published finite bearing solutions using a 

correct form of Reynolds' equation, their planar elasticity description only 

including the effects of pressure deflections. 

In an adventurous departure from Fantino's model, Oh[29] incorporates in 

a finite length bearing model, the additional effects of axial deformation. A 

correct form of Reynolds' equation is used however deformations are again 

determined solely on the basis of pressure. This error carries over into their 

subsequent works: in [30], a priori axial pressure distributions are introduced into 

the calculation to reduce computation; [31] uses this improved method to 

investigate 'optimal' con~rod geometries. 

The first work to incorporate body-force deflections was that of van der 

Tempel[32,33]. This work was based on a plane strain elastic model and a short 

bearing approximation; a correct form of Reynolds' equation was invoked 

unfortunately in conjunction with an inconsistent model of body-forces. These 

forces are simulated by attaching point masses to surface nodes, nodes which only 

displace radially: exclusion of the tangential displacements results in only half the 

strain· energy of these actions appearing in the structure. 

To date, none of these dynamic solutions have been verified 

eX'Perimentally; in fact, one has to go back to the work of Butcher[34], 

Hiruma [35] and Goodwin [36] to find relevant experimental measurements. This 

is something of a misdemeanour considering the complexity of the problem. 

Of all the accompanying EHL developments, probably the most telling have 

been in solution techniques. The earlier steady-state works mainly used direct 

iteration[17,18]: these solutions required the use of damping to stabilise the 

iterations which, in turn, slowed convergence. Benjarnin[14] indicated the 

direction of future work; he found Newton-Raphson techniques particularly useful 
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under conditions of heavy load. 

Newton-Raphson has since been eA'Panded by Rohde[37] into a 'unified 

treatment' for EHL problems. Its robustness and rapid convergence are however 

countered by increased computational cost and complexity: many analysts seem 

reluctant to submit to this, damped iterative schemes still being present[24]. 

Oh[38] and Kostreva[39] have since refined RllOde's treatment into a 

complementarity problem. 

More recently, multi-grid techniques have been introduced to the EHL 

problem[40,41]. These techniques promise fast convergent solutions, although to 

be fair, very little effort has gone into optimising the Newton-Raphson schemes: 

Kostreva's use of non-linear optimisation solvers is a first step in this direction. 

All-in-all, the transient EHL con-rod problem is both challenging and 

attractive: challenging experimentally in that the processes are dynamic and the 

films thin; challenging theoretically in that sophisticated numerical procedures are 

necessary to generate any solution at all; attractive in that it quite likely holds the 

key to understanding plain bearing failure phenomena. 

1.2 Scope of the Present Work 

This thesis investigates the elastic con-rod problem on two fronts: 

Firstly, conspicuous discrepancies have arisen in the various forms of 

Reynolds' equation used in the literature. Furthermore, serious misconceptions 

have proliferated regarding con-rod loadings; neither of these issues have been 

addressed by the current literature. Thus, we firstly investigate the question of 

theory: Chapter Two develops a consistent schema for the dynamic con-rod 

problem; Chapters Three through to Six look at the solution and, in particular, 

the verification of this model against existing theoretical and experimental works. 

The second issue to be addressed is that of mechanisms: Despite a 

mounting body of work on the elastic con-rod, very little information has 
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percolated into the literature regarding elastic oil-film behaviour. Moreover, few, 

if any guidelines have emerged for the designer: Chapter Six provides detailed 

information on film mechanisms as affected by elasticity; Chapter Seven presents 

a dimensionless characterisation of elastic bearing 'pedormance'. 

We begin this investigation by looking at the governing equations. 
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CHAPTER TWO 

GOVERNING EQUATIONS 

Analysis of an elastohydrodynamic lubrication problem requires the 

simultaneous solution of fluid-film and elasticity equations. 

develops the relevant expressions for this work. 

This Chapter 

The equations governing lubricating film behaviour are firstly re-examined 

in light of small surface displacements, coordinate systems and film geometry 

specific to connecting rods being introduced. 

Cavitation boundary conditions incorporating traditional gas cavitation 

procedures and a tentative vapour cavitation mechanism are constructed 

completing the fluid-film description. 

Planar elastic relationships, developed in integral form, are then used to 

clarify rod loadings. Simplified consistent loading regimes are presented. The 

particular elastic descriptions used in this work; thick curved beams and isotropic 

plane-stress relationships, are briefly introduced, 

Finally, the two sets of relationships are coupled to complete the EHL 

description. 

Discretisation and solution of these equations are dealt with in Chapters 

Three and Four respectively. 

2.1 Fluid Film Equations 

To outline the inherent assumptions of Reynolds' equation, a schematic 

derivation adopting an isoviscous[19] incompressible approach is firstly presented. 

Detailed treatments have been given elsewhere.[42,43] 
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2.1.1 Generalised Reynolds Equation 

In an inertial reference frame, the equations governing the motion of an 

isoviscous incompressible Newtonian fluid may be written as follows :[44] 

Conservation of mass 

div v = 0 
N 

\I Conservation of momentum 

Dv 
p N == PB -grad p - It curl curl ~ 

where ~, p, p and It represent fluid velocity, density, pressure and dynamic viscosity 

respectively. 

Dv 
We assume that inertial forces P Nand body force PB are small compared 

to forces resulting from pressure and viscosity. This simplifies the governing 

equations to : 

div ~ == 0; grad p == - It curl curl ~ (2.1) 

Reducing the flow geometry to 

that of a thin film, one can assume: (F2.1) 
~----------------------~ 

vo; v > > v z r 

Writing 

v x (V x y) == - V2y 
N N N N 

x 

F2.·1 



and neglecting the curvature of the fluid-film to obtain : 

\J2v ':::. (0 \J2V n. \J2V ) • 
N ' IT Z' 

one then assumes that viscous shear effects dominate, 

giving 

[
[flV () [flV] 

curl curl ~ ':::. - ~ £0 + or!- £z 

The statement of conservation of momentum then becomes : 

[flv 
\Jp = It tv 
N 

Integrating twice and applying the boundary conditions (F2.2) : 

where 

gives 

vi h == V. + n 
N r=. "'1 i'J 

1 

V. = surface velocity with 
"'1 

respect to frame x-y 

g :::: velocity of frame x-y 

relative to frame X-Y 

9 

,2 

(2.2) 



Substituting into (2.1) and integrating through the film : 

J div v dr (v - v ) + J V . v dr provided 
IV f2 II N N r r 

Applying Leibniz's formula[45], Reynolds' equation is obtained in the following 

form :[42] 
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(2.3) 

(2.4) 

Auxiliary conditions (2.3) define families of reference frames in which (2.4) holds: 

rigid body motions satisfy such conditions. 

EJI.'Pressions contained within (2.4) all reference fixed spatial points of the 

film-plane, the fundamental equations being Eulerian. Consequently, terms vri 

represent material surface velocities at fixed points in space. To emphasise the 

. I f hi" '. Dh. matena nature 0 t ese ve oCll1es we WrIte 1 = v rio 
ut 

Rearranging (2.4), Reynolds' 

equation becomes: (h = h2 - h1) 

(2.5) 

All dynamic terms are now contained in the first two e"-'Pressions of the right hand 

side, these constituting the spatial derivative denoted ~: equation (2.5) can then be 

written: 

(2.6) 
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where ah. Dh. 
1 1 ;;;: ~~Vh .. V. 

vt N 1 Nl 

(2.7) 

This is the generalised form of Reynolds' equation to be used in this work. 

Interpretation of spatial film derivative (2.7) can create confusion, Appendix A1 

takes a closer look at its components. 

In the following sections, specific coordinate systems and film-geometry 

assumptions appropriate to connecting~rods are introduced, For further 

information on friction traction and volume flux expressions see Appendices A2 

and A3. 

2.1.2 Film Geometry and Kinematics 

One of the predominant geometric features of big-end bearings is that they 

are of necessity short; length~diameter ratios are typically much less than unity. 

Thus, for the purposes of this analysis, it may be reasonably assumed that the 

journal bearing is perfectly aligned. 

F h 'I'd [21 22] . h f' urt ermore, expenmenta eVl ence' suggests t at, as a lIst 

approximation, an analysis based on mean axial surface displacements would 

suffice. Considerable simplification results, displacements being determined using 

mean axial pressures in conjunction with plane-stress relationships. 

Thus, in the following section, film geometry and kinematics are presented 

on the premise that the film thickness is axially constant, varying only as a function 

of the circumferential coordinate. Geometry then becomes planar and can be 

conveniently analysed using phasor notation. 



12 

(a) Coordinate Systems : 

Two coordinate systems are defined as follows : 

Inertial system X-Y centred on the crankshaft main bearings and aligned with the 

centre of the small-end; translating coordinate system x-y, attached to the centre 

of the undeformed bearing housing (F2.3). 

Translation of the x-y origin 

can be described by 

where 

H = Reiw1t 

R = crank-throw radius 

WI == crank angular velocity 

(eiw1t = coswtt + i Sinwlt). 
F2·3 

This satisfies auxiliary criteria (2.3) on g vindicating the use of Reynolds' form 

(2.6) in reference frame x-yo 

(b) Journal Kinematics : 

Using the coordinate systems 

defined previously, the location of 

a material point on the journal (F2.4) 

with respect to reference frame x-y, is 

given by 

PI == fe i¢ + ei,B(fl +u +iue);,B = Wit + 'If 
rl 1 

(2.8) 



where 

f. 

<P 

r1 

Wi 

url 

uO
l 

(J 

= journal centre eccentricity 

= journal centre attitude 

:::: journal radius 

:::: journal angular velocity 

::::: radial elastic journal displacement 

tangential elastic journal displacement 

;;;; journal angular position (x-y frame) . 
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Differentiating (2.8) with respect to time, one obtains an expression for the 

velocity of the material point: 

(c) Bearing Housing Kinematics: 

The location of a material 

point on the bearing housing (F2.S) 

with respect to the x-y frame is given 

by 

where 

P2 = /\r2 + u + iUa ) ; .-\ = ~t + 0' r2 2 

r 2 == bearing radius 

w2 :::: bearing angular velocity 

u
r2 

== radial elastic bearing deformation 

u0
2

:= tangential elastic bearing deformation 

.-\ == bearing angular position (x-y frame) . 

Surface velocity of the material point is then: 
. . . i'-\ 

P2 (u - ~uO + l(Ua + (r2 + u )w2»e r2 2 2 f2 

(2.9) 

(2.10) 

(2.11) 
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(d) Film Kinematics : 

The kinematic expressions presented thus far all reference actual material 

points. Reynolds' equation (2.6) is however spatially referenced; Idnematic 

eJl:pressions at fixed points in space are required. This discrepancy is corrected 

through Taylor series expansion of the material expressions back to the 

undeformed spatial reference frame. This procedure is aided considerably by 

elastic displacements being geometrically small : 

O(u. ) := OCt:) == 0(r2 = r1) < < OCr) t 12 

Taking equation (2.8) and perturbing by 6./3 : 

Pi ::: Pi(/3 + 6./3) ::;: P1(/3) + 6./3 tt + 0(6.j32) 

P1 is determined at the initially undeformed position by setting : 

-u 0 
6./3 - 1 

r1 + u r1 

[ 
1 ~8u. Assuming 0(6./3) == 0 --""-+_ 11 

r1 Uri 
,then 

P1 ::;: t:ei ¢ + (r1 + u )ei /3 + 0(6.j32) r1 
similarly, for the bearing housing 

P2 :: (r2 + u )eiA + 0(6.j32) r2 

t O( . ) == the order of ( . ) 

(2.12) 

(2.13) 
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Just as position vectors are corrected from material to spatial reference frames, so 

too must velocities (2.9)(2.11) : taking equation (2.9) and perturbing by !::J.fj 

At the initially undeformed position [!::J.fj == _ U! 1 J 
rt Urt] 

(2.14) 

Extension to the bearing housing yields : 

~2 == [Ur + i(uf} + (r2 + u )~)]eiA + O(!::J.,82) 
2 2 r2 

(2.15) 

At this stage housing and journal equations are completely disconnected; 

film-thickness provides the unifying factor: define film-thickness h in relation to 
I 

reference frame x-yat spatial angular coordinate 0 (f) = 0 - w2t), then 
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The imaginary component leads to the identity: 

(2.16) 

which gives on back substitution: 

'0 
e1 [(r2 + u ) - (rl + u ) - fCOS(</J - 0)] + O(ll(J2) r2 rl (2.17) 

Substituting (2.17) into (2.12) and (2.14), the kinematic description of the journal 

to O(ll(3) becomes: 

'" . 
Pi 

Ur + fWlsin( </J-O) + i(uO + (rl + u )Wl)] 
1 1 rl 

bearing housing relationships become : 

. iO . . . 
P2 = e [Ur + l(Un + (r') + ur )W )] 

2 u2 ~ 2 2 

(2.18) 

(2.19) 

. (2.20) 

(2.21) 
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Component-wise Representation: Rewriting the above equations in the vector 

notation of Section 1.1, displacement and velocity terms with respect to 

reference frame x-y (F2.6) become: 

=u r2 

= Uo + (r2 + u )"-'2 2 r2 

= r1 + UrI + fCOS( ¢.()) 

= [cos(¢-O)-f(~-W1)Sin(¢-()) + U r1 

= fSin(¢-O)+ f~COS(¢-())+(rl + Urt)Wl + UO
I 

= V = 0) which are collectively labelled 
Z2 

2.1.3 Reynolds Equation: x-y frame 

F2·G 

(2.22) 

Taking expressions (2.22), Reynolds' spatial e}.'Pression (2.7) to terms 

O( wrf::.(3) becomes: 

whilst the steady-state term to similar order is : 



Reynolds' equation to terms O( wr D.fJ) becomes: 

where 

~.h3 ~p - q ::::: 0 

h:::: c fCOS(¢-O) + u. -u 
12 r1 

h = h( 0, t) = film thicmess 

c r2-r 1 ::::: radial bearing clearance 

jJ ::::: dynamic viscosity 

~ ::::: [;!fm~ 0 + %z £z] ; n == BP 

18 

(2.23) 

This equation is in essence the one developed by Fantino[46J. He however, 

erroneously interprets elastic velocities as : 

. . 
u· == u· fl n w.uO· 1 1 

an assumption which sets the spatial angular coordinate moving with the material 

point during deformation. Such terms only appear if velocity eA'Pressions are not 

corrected to a spatial reference frame as per Section 2.1.2d. 

To alleviate the complications of interpolating material displacements and 

velocities from the rotating con-rod frame to the fixed x-y frame, equations (2.23) 

are now transformed to the x' -y' con-rod frame. 
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2.1.4 ReynoldS' Equation: x/ - y/ frame 

To shift equations (2.23) into the x' -y' frame (F2.6) we move to an 

observation frame rotating at w2 : there 

substituting into h and q one obtains: 

One can alternatively view this as setting w2 to zero and letting Wi be wi - w2, 

¢ be ¢', B be B' in the x-y frame (equation (2.23)). This symmetry does not exist 

in Fantino's interpretation; his additional terms wiuiB are not frame invariant. 

One final assumption remains to be introduced, journal rigidity: we assume 

the journal to be rigid in comparison to the housing. This assumption, discussed 

further in Section 4.2.3, leads to the final specific form of Reynolds' equation used 

in this work : 

(2.24) 



where h == c - teos( ¢ I - (
1

) + u r2 

q == 61t[2(U - fCOS(¢1 - ( 1) + (~/sin(¢1 - ( 1)) 
f2 

h == h( O',t) :::: film thickness 

c == r2 - r l == radial bearing clearance 

s :::: 1 - :::: speed modifying factor [47] 
WI 

It == dynamic viscosity 

~ :::: G ~ £0 + %z £z] ; (') == gp 
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Derivation of this form of Reynolds' equation was first attempted by Alien[17]. 

He unfortunately failed to include elastic squeeze terms ur2, 

In the sections that follow, boundary conditions reflecting a cavitating 

oil-film are introduced, completing the boundary value formulation, Important 

a priori pressure assumptions are introduced in Chapter Three. 

2.1.5 Cavitation Boundary Conditions 

Two forms of cavitation, distinguished by their time scale t, are recognised 

in the literature : 

Gas cavitation[ 48] 

Vapour cavitation[49] 

: t ':::: 

: t < < 

Traditionally these phenomena have been treated collectively using gas cavitation 

theory. However, such implementations proved unsuitable under adverse film 

conditions, necessitating a different approach. 
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(a) Gas CAvitation: 

Transient gas cavitation is treated using a Stieber-Swift boundary condition. 

Whilst agreement with more exhaustive models[50,51] is conditional[48], its 

redeeming feature is that of automatic implementation[52], a consequence of the 

weak fonnulation of Reynolds' equation presented in Section 3.1.1. 

(b) Vapour Cavitation: 

Transient vapour cavitation has largely been ignored in the literature, yet its 

presence in heavily loaded bearings has been both obs~rved[49] and implicated in 

bearing failures[53,54]. Treatment of this phenomena has recently been 

attempted by Brewe[55] using gas cavitation algorithms[51]. Implementation in 

this study is in the form of Sommerfeld type conditions: negative pressures model 

cavity flow without contributing to the film's deformation or load carrying 

capacity. Brewe discusses similar treatments. 

(c) Mathematical Representation: 

To formally define the above conditions, assume initially that the oil film 

cannot sustain sub-atmospheric pressures, that is p > O. Two regions 01 and 02 

can then be defined with the following boundaries (F2.7) : 

fi ex~l bo(,t~ries 

fl infermLr Caui Iah'ol) 
/;o1;frr;Ja r Ies. 

·7 
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The associated boundary conditions are given by : 

r 2 : * :::: p :::: 0 (Stieber-Swift) (2.25) 
N 

where]} is the unit boundary nonnal. 

Relaxing our initial assumption (p > 0), we define sub-atmospheric regions 

0 3 within 0 1 as (F2.8) : 

where II ~ II is some measure of the size of 0 3, The associated boundary 

condition is given by (F2.8) : 

(2.27) 

Once 0 3 reaches critical size scrit' degeneration occurs: 

Discussion of the implementation and choice of parameters for these 

procedures can be found in Section 4.1.2. 
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Elasticity Equations 

Developments in Finite Element Methods have enabled sophisticated 

techniques to be brought to bear upon the' art' of con-rod design[56,57,58]. These 

studies mainly address the question of adequate strength, concentrating on stress 

analysis. However, in terms of bearing performance, strain distribution is equally 

important[59], yet frequently ignored. Importantly, dynamic loading is also often 

mis-represented, however useful work remains, 

Spikes[59], by introducing the concept of 'relative stiffness" presents a 

useful overview of distortion in relation to bearing performance. The detailed 

effects of some static loadings have been parameterised[16,58], however distortion 

under dynamic loading and out-of-plane distortion remain largely unexplored for 

con-rod type geometries. 

In the following sections, elasticity models incorporating consistent dynamic 

loading regime are presented using planar geometry. 

2.2.1 Dynamic Loading 

The con-rod is a rather interesting machine element; body forces and 

tribological tractions perform the dual function of transmitting load whilst 

simultaneously defining its motion (F2.9). 

following relationships are developed : 

(a) Field Equations : 

To clarify these interactions, the 

Assuming small elastic displacements, the field equations for a plane 

isotropic body can be written as[60] : (Navier's Equation) 

p(ii + f) 
N N 

(2.28) 
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where 

11 - elastic displacements Yi N 

r - rigid-body displacements 
N 

pb 
IV 

- body forces 

p - material density 

A,jJ - Lame constants. 

Integrating over the body V, one obtains the Principle of Linear Momentum: [60] 

f pbdV + f t dS == f p(ii + f) dV 
V N S"'n V N N 

(2.29) 

where t is a traction vector on surface S. The separate terms can be quantified Nn 

as follows: 

(b) Traction Forces : f tn dS 
. S'" 

Tractions (1n)b and (1n) f at the big and little ends can be distinguished by 

evaluating surface integral S (F2.9) : 

Each traction vector can be determined as follows (F2.l0) : 

f t dS = f[Cl- r]{c?s()} dS 
S Nn S r Cl s In() 

F2·JO 
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For analysis purposes it is usual to ignore the T contribution since T < < (J 

(Appendix A2). Rewriting in terms of pressure and with respect to the Xl _yl 

frame: 

(2.30) 

where dS = r dO' dz , 01 measured anti-clockwise from x'. 

(c) Inertia Forces: J p(u + r) dV V N N 

Two types of rigid-body motions! contribute to inertia forces: crank throw 

motions and bearing clearance motions. The former are Imown and incorporated 

as body forces P~ within con-rod reference frame Xl _y/. The latter are normally 

neglected as they are small in comparison with crank-throw motions, this being 

vindicated by several studies.[61] 

Elasticity displacement inertias, g, are similarly neglected by assuming (i) 

that the rods operational frequency is much lower than its associated 

eigen-spectrum, and (ii) noting that 1:! < < !. 

Inertia forces are thus transformed into a body force representation in 

reference frame Xl _yl : 

J PBdV = - J p£dV (2.31) 

V V 

(d) Equilibrium Statement: 

Grouping lmown forces together as i and incorporating the above 

assumptions, then in reference frame Xl _yl equations (2.29) become: 
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J {
COSO'} 

p sinO' dSb + ! = 0 (2.32) 

Sb 

where 

! = J (1n)cdSf + J p12dV 

Sf V 

This expression is a statement of linear equilibrium of the con-rod. Resultant 

force ! at the big-end can be determined in any convenient manner, provided it 

satisfies angular equilibrium. Linear and angular equilibrium of the rod are this 

way guaranteed. Appendix A4 presents a lumped mass approach. 

The assumptions outlined in this section result in a considerably simplified 

elastic analysis : plane quasi-static procedures in con-rod reference frame x' -y' 

replace a full dynamic analysis. 

2.2.2 . Elasticity Models 

To facilitate structural analysis, 

it is convenient to invoke St Venanfs 

principle and only model the region of 

* interest to the study, V (F2.ll). 

Body forces p12 are then split into two: 

'" '" * '" 12 on V and (12-12 ) on (V-V). 

* Reactions £i appear at 'suitably 

'" remote l constraints ci introduced F2·JI 

along A-B. 

A consistent treatment of loading is achieved by simultaneously applying 

'" (!n)b' satisfying equilibrium relationships (2.32), and 12 , determined by geometry 

'" '" V (Appendix A4). Reactions r· will then represent tractions (t ) II and Nl Nn ~ 

'" remaining body forces (12-11 ). 



the application of 12 >I< on V* is neglected[24] or misrepresented[32,33], a 

'* >I< 
fictitious reaction to the 12 component of (~n)b will instead appear in £i . 

Erroneous displacement fields will result. 

In the course of this study, two elasticity implementations were pursued. 

Continuity with the· earlier work 

of Allen[17] and Stafford[20] 

was achieved through rigid~elastic 

curved beam models (F2.l2). 

These progressed to full elastic 

descriptions using plane~stress 

theory. 

The equations governing these theories are now briefly outlined. 

(a) Curved Beam Equations : 

. The equations governing technical bending theory of thick curved 

[62] beams can be summarised as follows: 

Field Equations: (Sign convention F2.l3) 

where 

a= Eil 
r 

b == EA. c 
r ' c 

a 
'0 

(2.33) 

and 



E 

G 

- Young's modulus 

- Modulus of Rigidity 

- Shear coefficient 

A Section area 

I - 2nd Moment area 

r. 
1 

- Centroid radius 

- Neutral axis radius 

- Intrados radius 

r e - Extrados fadius 

()' = ~ 
i is a section dependent constant given in Appendix AS. 

Boundary Conditions: 

Ff = f [[... ..] b [.. oJ] r~ a u/
ll

_ uil - a
C 

uO
ll 

+ u/ 

Fe = ~~ b[UOi+ur] 

M 
a [[u/

i 
- uiJ ~c lui + ur]] = 

fC 

[fC [i ] C ] rc 1 = - - u - Uo +-F fO r a r . 

r"f,i1itesimctL 
£Je.tVlefd 
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F2·/.3 

(2.34) 

These equations incorporate deformation due to bending, shear and tension 

effects: Thin Beam Theory[63,64] can be obtained by excluding the effects of 

shear deformation (c := 0, ro re, i =: 1) ; Inextensional Thin Beam Theory[17] by 

further excluding tension effects (a :::: 0). 
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Surface tractions and body forces are incorporated using equivalent work 

concepts (see Section 3.2.1). 

(b) Plane Elasticity Equations : 

Under the assumptions of Section 2.2.1, field equations for a plane isotropic 

body (2.28), become : 

(2.35) 

where b ~r 
N N 

For plane-stress conditions, the Lame constants are: 

/\ = vE/(1 - v2 ) ; j.t E/2(1 + v) ; V :::: Poisson's Ratio 

Surface traction boundary conditions are introduced in Section 3.2.2 using 

Weighted Residual procedures. 

2.3 System Equations 

Previous sections have introduced equations governing separate system 

components. The outcome when coupled, is an unconventional fluid-structure 

interaction problem: fluid cavitation features at the structural interface. 

This fluid 'inhomogeneity' directly influences coupling procedures, the 

equations being constructed in terms of surface pressures so as to accommodate 

cavitation boundary conditions. Solution procedures are consequently restricted, 

1 h h d I ... d ill [3851] . h .. a t oug eve opments m caVItatIOn rno e ng , are easmg suc restnctIOns. 
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Before proceeding with 

rationalisation of notation is in order. 

coupling of these sub-systems, some 

2.3.1 Nomenclature 

The remaining work in this study focuses solely on connecting-rod big-end 

bearings in rotating reference frame x' -y' . For clarity, it is convenient to drop 

the primed notation associated with this frame giving cp cp'. 

Similarly, subscripts of Section 2.2.1 and regions 0 of Section 2.1.5 can be 

reconciled to give : 

o == Sb hence dO = dSb . 

Whilst defining 

allows subscripts distinguishing surface type to be dropped. 

2.3.2 Sub-System Coupling 

g~Y1}olds' equation ~s it stands is under-PI~scrilJ~d~ : two additional 

C()1}stJ:'3:ints are required for a fullsystem prescription. These are traditionally 

provided by rod equilibrium statements (2.32), frequently in reworked 

forrns[24,47,65,66,67] compatible with the system solution techniques employed. 

In this work they are used directly[ 68], the resulting system equations 

become: 



System Equations: 

V ·h3Vp q := 0 
IV N 

Jp {C9sB} dO + f == 0 smB tv 

o 

where h = c ~ t:cos(</> - B) + ur 

and 

q == 6J.t [ 2(ur ~ fCOS( </> - 0) + t: ¢si.n( </> - 0)) 

au 
+ ws [of -t:si.n( </> ~ 0)]] 

t: ::: t:(t) := journal eccentricity 

</> </>(t) = journal attitude 

p := p(O,z,t) == film pressure 

h =:. h(B,z) ::: film thickness 

f = f(t) = external bearing load 
N N 

T7 _ [1 a e + a e] . dO -_ rdBdz . (') ::::: D ( ) 
~ - r 7JIJ N B Oi NZ ' H '---nt 

Spatial Boundary Conditions: 

01 boundaries: r 1 : P ::::: 0 ; r 2 : P == ~ ::::: 0 
N 

02 boundaries: r 1 : P = 0 

Temporal Boundary Conditions: 

Since £(t) £(t + T) (periodicity T) 

then t(t) t:(t + T) 

</>(t) </>(t + T) 

p(t) p(t + T) 
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(2.36) 

(2.37) 

(2.38) 
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To the author's knowledge, no closed form solution incorporating elastic 

deformation exists even for a steadily loaded bearing. Simple steady truncated 

flow constructions such as ConwaY's[13] 'Winkler' foundation and the solutions of 

Higginson[7] and O'Donoghue[8] all require some numerical computation. Less 

restrictive steady-state models[17,18,19,20] have to-date come about through 

increased computational complexity. 

Extension of steady-state procedures to the time domain exacerbates 

computational problems. The simplist and most popular approach[24,27,32] is the 

short bearing approximation flo- == 0 used in conjunction with a circumferentially 

varying displacement field. This is somewhat presumptuous, as it precludes 

coupling between circumferential pressure flows and displacements which only 

vary in the circumferential direction. The alternative finite length solutions[28,29] 

represent a comprehensive but computationally expensive approach. 

This work takes a route occupying the middle ground fluid-film 

discretisation incorporates a full, although approximate complement of flows; 

planar circumferential displacements replace those of a full elastic housing. 

Details of these discretisations form the subject of the following Chapter. 
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THREE 

In this Chapter, Finite Element Methods[69] are used to develop algebraic 

analogues of the differential equations presented previously. Versatile treatments 

of space~time domains are this way fashioned. 

Spatial discretisation of the fluid-film equations Via the Method of 

Weighted Residuals[70] is firstly used to incorporate a priori axial pressure 

dependencies. The resulting approximate expressions, retaining a full 

complement of flows, are one-dimensional facilitating economic solutions. 

Temporal discretisation is developed using a Time Recurrence Scheme[69], the 

fluid-film description being completed by non-dimensionalisation. 

Curved beam elements are next constructed using exact solutions of 

technical beam theory[62], distributed loadings being developed through 

equivalent work relationships. A brief development of plane elasticity is included. 

The resulting expressions are non-dimensionalised and partitioned in accordance 

with the fluid-film equations. 

Finally, discretised matrix expressions of the system equations of Section 2.3 

are presented. 

Solution and validation of these equations is dealt with in Chapters Four 

and Five respectively. 

3.1 Fluid Film Discretisation 

In the following sections, a discretisation of the governing equations over 

spatial domain 0, consisting of circumferential and axial coordinates, and temporal 

domain T, the time coordinate, is presented. 
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3.1.1 Spatial Discretisation 

Spatial domain n is firstly divided circumferentially into sub-domains ne, 

each containing the entire axial coordinate z. n thus becomes a piecewise union 

of sub-domains : 

If the dependent variables are similarly constructed piecewise, 

then the governing equations can be developed in local sub-domains n e and 

conveniently assembled into global form n for solution [69]. 

(a) Method of Weighted Residuals: (MWR) 

Within each subdomain it is usual to approximate the exact solution: 

e "'e p ::::: p , 

pe satisfying the essential boundary conditions. Substituting into system equations 

(2.36) produces residual or error functions Ri : 

"'e qe (3.1) Rl == ~.h3~p -

Rt J cosO pedne + f e (3.2) x 
n e 

R3 == J sinO pedne + f e (3.3) y 
n e 
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Error Rl is then distributed over ne according to weighting function we (also 

satisfying the essential boundary conditions) and set to zero in the following 

integrated sense: 

Scalar residuals R2 and R3 are set identically to zero. 

Continuity requirements on pe can be relaxed by integrating by parts and 

applying the divergence theorem: 

Settirig J h3(£pe·n)wedre = 0 everywhere} the residual expression for Rl 

r e 

becomes: 

(3.4) 

The solution of this expression satisfies the essential boundary conditions 

identically. Natural boundary conditions will be satisfied on all remaining 

boundaries in accordance with the residual expression: 

(3.5) 

The above procedure is the Method of Weighted Residuals[70]. 
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(b) Approximation Functions : 

To maintain a sub domain setting, the dependent variables are constructed 

locally as follows : 

Trial functions <Pie, thus describe the functional variation of p over [le. 

Weights we are similarly defined as : 

Axial Pressure Dependence: Short journal bearings (fr < t) are mown to have 

strong parabolic pressure behaviour in the z coordinate. This dependence is 

incorporated into the trial functions using the 'simplest Ritz approximation' : a 

single trial function g(z) spanning 

the z domain (F3.1) : 

where 

Weighting functions are defined according to Galerkin's method: 

e e 1/J. = <p. • 
1 1 
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One consequence of this Ritz approximation is the constraint in the z dependence 

of the pressure induced flows: From Appendix A3, volume flux 9 can be written 

as: 

Pressure induced circumferential flows thus behave parabolically in the z 

coordinate; pressure induced axial flows behave linearly. Circumferential carried 

flows are constant with respect to coordinate z (F3.2). 

F3·2 

These can be compared to the traditional 'short' bearing model in which the 

circumferential pressure flows are excluded, or the 'long' bearing model .in which 

the axial pressure flows are ignored. 

( c) Spatial Algebraic 

The z dependence in the residual expressions can be eliminated by 

integrating the z terms to yield: 
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(3.6) 

I [,cOsON.ep.e] rdfl + f e :::: 0 
ell X o 

(3.7) 

(3.8) 

where 

Ritz approximation g, a device first presented in variational form by 

Rohde[71], effectively reduces the dimensionality of the equations from O-z to 0 

only.· Such procedures, apparently commonplace in finite-difference work since 

1942[11], offer the economy of a one-dimensional solution without the flow 

truncation associated with 'short' and 'long' bearing models. 

Related information on variational approaches to lubrication problems is 

available in the literature[18,72,73,74,75,76,77,78]. Mathematical aspects of such 

approaches are dealt with in references [52,79,80,81,82]. 

3.1.2 Temporal Discretisation 

As with the spatial domain, the time domain T is split into a piecewise 

union of sub domains, Te. The governing equations are then constructed locally 

but unlike the spatial domain, solved locally using a Time Recurrence Schemer 69]. 

The complete solution over 

subdomains Te. 

is then made up of successive solutions over 
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(a) Time Recurrence Scheme: (TRS) 

MWR can be used to construct a recurrence scheme by choosing a subset 

of the temporal trial functions as weighting functions : Incorporate into the trial 

functions a linear temporal form N : 

where Nl(t) t 
(1~~ 

N2(t) == t 

superscript j denoting time level (F3.3). 

Dependent variable pe can then be written as : 

(3.9) 

Assuming Pjl is known, Pj2 can be determined by the previous residual statements 

using the j weighting constraints : 

e e -
'if1j (B,z,t) == g(z)Nj (O)W(t) . (3.10) 

This gives a Two~point Recurrence Scheme[69]. 

Clearly, function W can take a variety of forms. However, given that the 

system is reputedly 'stiff' [83], a prudent choice would preclude schemes which are 

not unconditionally stable (A~stable)[84]. The Galerldn form W == N2, shown to 

be A-stable on linear equations, is the one chosen for this work. It offers good 

accuracy and a damped oscillatory behaviour[69,85]. 
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Further discussion on stiffness and its implications can be found ill 

references [84], [86]. 

(b) Temporal Algebraic Form : 

Adjusting residual statements (3.6-3.8) to include temporal error residuals 

gtves: 

o (3.11) 

(3.12) 

J [SinIJiNtNkPtJ W dne 
+ J [Nkfy k] W dTe 

= 0 (3.13) 

ne ' Te 

contains several time dependent terms. These are discretised as follows: 

and 
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3.1.3 N on-Dimensionalisation 

As a first step towards a dimensionless analysis, peak axial pressure p is 
rewritten in terms of the mean axial pressure p : 

Constants l1', (1, I can be evaluated to obtain : 

Introducing the dimensionless parameters : 

i" h A f A ur A 'II 
n = . f == -' U :::: -' t wt " t1 == 0 

c' c'r c' 

c and w defined previously, forcing term qe becomes : 

where C) = d (). Rewriting Reynolds' equation (3.11) in terms of p, one 
dt 

obtains : 

where 

A 1 [c 12 - A ~ A 24 [LJ 2 1:1 
p = 6pw q p; q :::: 6jiwc ; l1' == D]; jJ ;D= 
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The force balance equations can be treated similarly 

J [coslJNt NkPtJ W dOe + J [NkixkJ W dt
e 

== 0 (3.15) 

Oe 

J [SinONtNkPtJ W dOe + J [Nkiyk] W dre 0 (3.16) 

Oe 

where 

This form of the discretised fluid-film equations is the final one used in this work. 

Traditional I short-bearing' equations are obtained by setting a = O. 

Matrix representation of these equations is given in Section 3.3. 

Derivation of discretised friction traction and volume flux expressions is performed 

in Appendices A2 and A3 respectively. 

3.2 Elasticity Discretisation 

This section briefly develops discretised versions of the two ,elasticity 

models presented in Section 2.2.2. Comprehensive treatments are presented 

elsewhere[ 62,63,64,69,87]. 

Non-dimensionalisation of the resulting expressions, in particular that of the 

curved beam, introduces useful new dimensionless parameters incorporating beam 

thickness. These are the subject of further investigation in proceeding Chapters. 
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3.2.1 Curved Beam Discretisation 

A finite element discretisation of the curved beam equations is developed 

through the exact solution of the technical beam theory presented earlier. This 

solution is given by the following complementary function in angular coordinate 

0: 

rl 
~ sin8~ cosO -Os inO -Oco s 0 -1 0 

In uo - - cosO sinO (casinO- OcosO)(cacos 0+ OsinO) 0 1 
rc'Y 0 0 C1C4 S inO c 1 c4 cosO c10 c1 

(3.17) 

Constants ci are given in Appendix A5. An expression for the internal forces can 

be similarly detennined : 

g:) 
o 0 c6sinO C6COSO 0 0 

o 0 -c6cos 0 c6s inO 0 0 f:J 

o 0 -c5cos 8 c5s inO -C2 0 (3.18) 

This general solution is used to construct solutions over element domains Oe as 

follows. 

(a) Element Stiffness : 

Using equation (3.17), the six components of f:J are determined in terms of 

the six displacements of the finite element of F3.4. Writing: 



urI 
u0

1 

r e /1 
u ur2 

[X] ~ 
N 

u02 
re /2 

then a: X-1u. 
N N 

Nodal forces are defined similarily : 

F fl 

F 0
1 

f = 
Mdf c 

[Y]~ 
F r2 

= 
N 

C 

F O
2 

M2/rc 

Element stiffness matrix Ke is then given by : 

Matrices X and Yare given in Appendix AS. 

(b) Distributed Loadings : 
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Url) Fn 

I ~U9l,FO}. 
tfl2, d"":J. 

Finite 
Element 

(3.19) 

Equations (3.19) only accept loadings in terms of nodal forces. Equivalent 

work expressions are used to convert distributed loadings to nodal forces. 
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Pressure Tractions: Work performed by pressure acting at the surface is given 

by: 

<P = - r pu dS :;;; P illLJ pu dff . 
w J r e r 

S 0 
Assuming: 

(see F3.4) 
N 

and 

u = <Xl> X-Iu r N 

where <N>e are the pressure shape functions of Section 3.1.1.b and <Xl> the 

first row of equation (3.17), then t: 

Writing W = fl' <Xl> T <N> e dff , then forces !p producing equivalent work <Pw 

o 
are given by : 

(3.20) 
N 

W is given in Appendix AS where < N> are assumed to be quadratic Lagrangian 

shape functions. 

-r superscript T denotes matrix transposition. 
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Body Forces: Work performed by body force P12 :::.: p(br,b e) across housing width 

W is given by : 

writing 

¢w - J £·12 pWr dredae ; £ ::: <ur,uO> 
r,e 

<X2> being the second row of equation (3.17), ¢w becomes: 

J12rdre ~ rct 12c 
r 

Interpolating 12c using the pressure shape functions < N > e 

[
<N> < 0 >] e {12r} 

12c :::': <0> <N> 120 
c 

the equivalent work expression becomes : 

(assuming ,J-small) 
""rc 
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Writing M ::: fl'[ <x1>T<N>, <X2>T<N>]edtf , then equivalent forces ib 
o 

producing work ¢w are given by: 

pr W tveb c IV 
(3.21) 

where (X_l)TM and b ::::: <b ,b(» T 
N NfN C 

M can be constructed from W given in Appendix AS. 

3.2.2 Plane Elasticity Discretisation 

The plane elasticity equations presented earlier are discretised using the 

Finite Element Method[69,87]; the following cartesian form is obtained from a 

Galerkin treatment[88] : 

(u ). 
X] 

(u ). 
Y J 

= (3.22) 
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Body forces and surface tractions are discretised as follows : 

(3.23) 

(3.24) 

Volume and area matrices can then be determined as : 

J[N.M. 0 1 
V == pW b J N.M. dV 

V 1 J 

(3.25) 

A = nL f [ 0 -NiM.] {dx} N.M. oj d 
S 1 J Y 

(3.26) 

Shape functions Ni , Mi, Mi are discussed in Section 4.2.2. 

The complete elastic description then becomes: 

Ku = An + Vb 
N I::i N 

(3.27) 

where M :::: < Jdx'Jdy> T and K, the stiffness matrix of equation (3.22). 
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3.2.3 N on-Dimensionalisation 

Planar Finite Element analyses are notoriously dimensional in nature, 

however a dimensionless approach can be achieved by introducing the following 

parameters: 

"x'" VA t-~ x = -' y ::::::: L' II, = . A r' f''- , 

The global mesh is thus determined in terms of bearing radius r. 

Substituting into equation (3.27) one obtains: 

nL- - -
K B == r w-A E + pr2 VB· (3.28) 

where and are the dimensionless global stiffness, area and volume matrices 

respectively. Assuming: 

then (3.29) 

where 

Similar expressions are obtained for curved beams by assembling the elastic 

statements as follows : 

r:-aK B nLr A E + pWrct 
c 

(3.30) 
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Non-dimensionalising as before : 

(3.31) 

where 

The extra bracketed terms [ ], incorporate the influence of beam thickness t. 

Non-dimensionalisation of the planar analysis in particular, offers 

significant economies in solution ; a 'small' library of dimensionless rods is 

sufficient to enable the analysis of a large variety of physical rods. 

3.2.4 Partitioned Equations 

For any nodal coordinate 0, it is possible to partition from the above 

dimensionless forms the i th equation cOlTesponding to the radial surface 

displacement : 

writing 

then u == <L > n + <G > B r r IV r N 
(3.32) 

au 
The radial displacement slope --Irr [ :::: u~ J can be similarly obtained: 

u ' = <L ' > n + <G ' > B . r r IV r N 
(3.33) 

These expressions fOlTll the basis of the elastic displacement description used in 

the remainder of this work. 



51 

3.3 System Discretisation 

The c1imensionle~s element (;xpressions developed in the previous sections 

can be assemb!~~l into global matrbc form to give the following system of 

equations: 

o 0 Ii .2jE2 ) 0 0 Ii) jE1) j1) ,J '1 ,J '1 tV o 0 m.2 cp2 0 0 m.1 cp1 0 
J A + J + = 

e.2 a.2 r .. 2 PJ·2 e.1 a) r .. 1 p.1 g. 
1 1 1J 1 1 IJ J 1 

(3.34) 

where the Reynolds equation expressions are given by 

r .. == W fi3(a N.'N.' + j1N.N.) N + (2N (L ). + sN (L ').)N. dO ... k J - [ A -k -=-k -k ] 
IJ 1 J 1 J r J r J 1 

o 

et J W[-SNkSin(¢-B) - 2NkCOs(¢-B)]Ni dO 

n 

gi J W[ (2N
k

(Gr)j + SNk(G~')j)Ni] B{ dO 

o 



The force balance terms are determined using : 

where 

m{ = J W [SinBNjNkJ dO 

n 

l ::: J W [Nklk J dt 

t 

t k = <t k t k>T. (L).::: <L > ·N.' dN1./dO. 
N x'y 'r] r' 1 

These time dependent equations are non~linear, reputably I stiff' [83] and 

have moving internal boundaries. To require accurate economic solutions is 

particularly demanding of the solution technique. 

One tempting scheme requiring little extra effort, is direct iteration within 

the time levels of equation (3.34). Such fixed-point iterations are however largely 

unsatisfactory[ 17, 18,20], this being symtomatic of I stiff' equations. 

Techniques incorporating a stiff solution capability which in addition 

accommodate fluid-film boundary motion, are developed in the following Chapter. 
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FOUR 

EQUATION SOLU110N 

Numerical discretisation of the field equations results In two sets of 

algebraic equations of quite different nature : 

e fluid~film equations ; a small set « 100) of non-linear 'stiff' 

equations involving moving internal boundaries and 

.. elasticity equations ; a large set of linear equations undergoing a 

multiplicity of loads. 

In this Chapter, solution techniques separately tailored to each set of 

equations are developed; Newton-Raphson and Continuation procedures for the 

fluid, Sub-Structuring and Influence constructions for the structure. 

Algorithmic details for the modelling of cavitation interface motion are 

developed. The work concludes with the verification of elasticity models and 

subsequent characterisation of elastic displacement behaviour. 

Validation of fluid-film behaviour is performed in the following Chapter. 

4.1 Fluid Film Solution 

The early work of Benjarnin[14]and the more recent approach of 

Rohde[37,68], demonstrated the usefulness of Newton-Raphson on obstinate EHL 

problems. With the realisation that these problems are 'stiff' and knowledge of 

requisite stiff solution techniques[84,86], namely : 

e unconditionally stable discretisation 

e. Newton-Raphson solution of the resulting implicit forms 

a framework, missing from the above works, is established for the development of 

stable fluid-film solutions. 
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4.1.1 Non-Linear Equation Solution 

Having dealt with discretisation in the previous Chapter, we now focus 

attention on iterative Newton-Raphson (N-R) techniques and the attendant 

process of Continuation. Such procedures[89]off~r the desirable feature of 

quadratic convergence/divergence, convergent behaviour of the N~R iteration 

being maintained through accurate initial guesses obtained via Continuation. 

(a) Newton-Raphson (N-R) : 

It is convenient firstly to re-express discretised fluid equations (3.34) in the 

following form : 

R(u, f, b, s) :::: 0 
N N N N 

(4.1) 

where 

and 5, are all 

impliCit functions of tinle. The N-R scheme can then be generated using a 

Taylor's expansion of E: 

Suppose at some fixed t~e t~ initial test point ~differs from the solution by 

.6.}}. If E is sufficiently differentiable at }}. then: 

oR 
E(~ + .6.}},i,8,s) == E(~,i'B's) + 8~ .6.}} + O(.6.~2) == 0 

N 

oR 
Introducing jacobian I :::: 8~ , a first order iterative scheme, the Newton-Raphson 

N 

Method, can be constructed : 

u t ::: u t + .6. u t where 
Nn+ 1 Nn Nn 

R t 
Nn (4.2) 
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(subscdpt n denotes iteration level, superscdpt t denotes time level). Given initial 

guess £0 t, iteration of a solution in the space domain (t fixed) can proceed to the 

desired accuracy, typically satisfying both : 

where II xii = [U.2] t . The heart of such a scheme is the construction of 
N • 1 

1 

jacobian l. 

Jacobian Construction 

by several methods. 

Exact expressions for the jacobian can be determined 

Rohde[37] developed expressions using Frechet 

derivatives[90] which, from a theoretical standpoint are particularly useful. 

i.I!~_p!actice,_ a discr~tis~djacobian can be simply obtained by 

differentiatin~L~9uatio~j3.34) with respect to 22 (21 

enter into the calculations as it is fixed). 

The matrix N-R expression (4.2) then becomes: 

~ ~ ~ tl~~:)t = 

~. f>. 1{~, IIp ,2 
1 1 1J n J n 

_ R t 
Nn 

(4.3) 



where the Reynolds equation derivatives are given by : 

and 

1't. = r .. 2 + JW N2 [Q.(L ).] dn 
1) 1) 1 r ] 

n 

~i = ei
2 + J W N2 [ 2~sin( ¢- B)Ni - cos( ¢- B)Qi] dn 

n 

]\ = ai
2 + J W N2 [(E(2~-S)COS( ¢-B) + 2~sin( ¢-B))Ni 

n 

whilst force balance derivatives are given by 

&. = n.2 
J ) 

lVI. = m.2 

J J 

nl and mj
2 as per (3.34). 

56 

Provided one retains information when constmcting R the additional 
N 

computation required to determine l is not large. 

offer avenues for further computational savings[89]. 

Quasi-Newton updates of J-l 
N 
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(b) Continuation: 

The result of a successful set of N-R iterations is a solution u'" t, 
tv 

estimate of the solution at new time t + ~t is again determined using a Taylor's 

expansion of R : 
N 

t+ 1 R(u + ~u, f + ~f , b + ~b , s + ~s) 
NN NN N N N 

d ( 

Introducing jacobian I* t at M* t, a first order continuation scheme, Euler's method, 

can be constructed : 

(4.4) 

As Q* t)-1 is lmown from the previous N-R iteration, Mot + 1, the initial guess for 

the new N-R iterations can be determined very cheaply_ Evaluating the bracketed 

derivatives above, gives : 

oR [0 1 05-~11:: If 
N 13jk 



where 

:9jk :::: J W [2N2(Gr)k + SN2(Gr')k] Njdn 

!l 
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Interval Halving : In the course of this work, sufficiently accurate .6:~~/ estimates 

were obtained using the influence of I::!. i alone. This is a consequence of using 

interval halving, a procedure whereby N-R iterations deemed 'unsuccessful' (see 

T4.1) are re-commenced using halved step lengths. 

Unfortunately, interval halving is not a panacea. Unduly short time-steps 

« 1 0) were found to lead to ill-conditioning and hence inaccuracy in solution. 

However, by incorporating suitable step-doubling mechanisms (T4.1), time step 

lengths attuned to the required solution accuracy are attained automatically, 5-100 

/ 
! •• 

cran,k-angles bemg typIcal. 
! 

Step halving 

h < 0 

f < 0 
slow conver~ence 
(> 25 iteratIons) 

Step doubling 

rapid convergence 

« 7 N-R iterations) 

T4.1 
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The above processes can be seen in a broader context as follows: dividing 

equation (4.4) by .6.t and taking the limit as .6.t ~ 0, gives: 

Thus, the continuation or prediction phase can be viewed as solving 

R == 0 'lit 
N 

(4.5) 

whilst the N-R or correction phase solves (at fixed t) : 

R == 0 '110 
tv 

(4.6) 

By providing a set of initial conditions and iterating between these two procedures, 

a family of solutions ~ t are marched out in time parameter t, concluding whe~~he 

requiredJ2eriCLc:licJ!y is ;!~hi~ved. 
,..-___ ,'M ___ ~ M" '" ' ----- ~~-,_~ 

g~IllU, __ tbeprQ~~ss i~ fairly insensitive to initial90nditions, any errors 

being typicallydalllped-out within 1800 crank-angle. 

4.1.2 Cavitation Regions and Interfaces 

The predominant mode of bearing operation in this work is that of an oil 

film 01 divided by regions of gas 

cavitation 02 (F4.1). 

The curved cavitation 

interfaces observed 

experimentally are however 

modelled by lines of constant 0, 

~ e EXf€;f(liYlENT 
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a consequence of the axial pressure dependence introduced in Section 3.1.1. 

Subsequently, interface movement or growth becomes a discrete process requiring 

the addition and removal of equations in the 0 coordinate. 

Within oil film 0 1, small transient regions of 'vapour cavitation' 0 3 may 

sporadically appear. 

The processes of identification and growth of these different regions, each 

performed at every Newton-Raphson iteration, are now outlined. 

(a) Region Identification: 

Two regions need to be identified for the solution to proceed: regions 0 

where Reynolds equation is valid, and regions OC, where it is not. Using the 

definitions of Section 2.1.5 

the following 'algorithm' was devised: 

(i) Identify regions 0 1 by a point-wise search of E. Include growth 

regions: any adjacent equation lying in O2, Identify regions 0 3 by a 

point~wise search of E. 

(ii) Check regions 0 3 for blocks larger than scrit" 

If 11 0 311 ~ scrit 

then 0 0 1 ; Oc = O2 U03 

else 0 0lU03 ; Oc = O2 

where 110'1 is the included angle of 0, serit typically 60°. 
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(iii) Identify growth regions 0* by locating equations in region 0 adjacent 

. n C to regIOns ~ t • 

At this stage, a map of the regions will take the following form : 

01' 

Flf·2.. 

The right-hand condition of F4.2 occurs only rarely and causes few 

problems. However, the left-hand condition requires special treatment when 

regions !13 are active. 

(b) Negative Pressure Deactivation : 

Throughout this work, regions !13c!1 are deactivated from the force balance 

and pressure-displacement relationships. Inclusion of these regions leads to 

strong interactions between 0 3 and the pressure-displacement fields, sigllificantly 

affecting journal locus. This was deemed 'un-physical' and on this basis 

deactivated. Thus, pressures within 0 3 contribute only to the pressure induced 

flows of these regions. 

A process of deactivation is performed as follows: if, on the successful 

termination of a of iterations active !13 regions are present, then: 
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(i) the time interval is frozen 

(ii) parameter p, a pressure multiplier, is introduced in regions ft3 of 

the force balance and pressure~displacement equations. 

(iii) a family of p~solutions are 'marched-out\ successively reducing p 

from one to zero, hence deactivating ft3 

(iv) the time interval is incremented and ensuing time steps 

performed with p set to zero. 

Although somewhat involved, large negative pressure magnitudes necessitated this 

step-wise deactivation so as to maintain stability. 

Termination of ft3 regions is typically through degeneration; negative 

pressures revert to positive forms as conditions proceed. Durations in the order 

of 100 crank-angle are typically observed; Section 6.1.3a looks at this further. 

(c) Interlace Growth : 

Having identified regions ft, the governing equations can then be solved 

over domain ft. As ft and ftc are approximately equal in size, significant 

computational savings are achieved over standard Sommerfeld type solutions. 

Partitioning the N-R equations (4.2) into growth equations (B*d1*) and 

non-growth equations (B€(ft-ft*)), one obtains the partitioned system equations 

and their solution ; respectively: 
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(4.7) 

Pressures M >1:, resulting from the growth equations are then checked 

sequentially for positiveness : 

u.* > p 't 1 - en 

Pcrit typically being t% of the maximum centre-line pressure of the previous 

converged time-step. 

the above inequality holds, then the growth equation associated with 

~ui '" is retained. If not, the growth equation is removed and the system 

equations re-solved. This can be achieved very simply through the following 

equality: 

(4.8) 

the first block of equations being manipulated to give : 

(4.9) 

This is known as a Rank-One Update[89]. 

The process of checking and removal proceeds sequentially from regions of 

high pressure gradient to low pressure gradient until all equations in n:l< are 

processed. This then completes the N-R iteration. 
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Currently the above procedures are performed exactly as described; matrix 

inversion and update. More efficient (complex) methods are available through 

the use of matrix factorisation modification[91]. 

4.1.3 N7tmerical Details 

There are clearly a large number of 'hidden' numerical details in the 

procedures outlined thus far. 

implementation of this work. 

(a) Integration: 

This section details those critical to the 

The governing equations of the previous sections are all exrpressed m 

integral form. Evaluation is performed either numerically or analytically as 

follows: 

Fluid:'" Film Equations: Reynolds equation expressions are integrated numerically 

using isoparametric transformations and Gaussian Quadrature[69]. This process 

can be represented element-wise as follows: (F4.3) 
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Throughout this work 3 x 3 quadrature rules were found to strike a good balance 

between accuracy and efficiency, both 2 x 2 and 4 x 4 rules having been tried. 

Force Balance Equations: Force balance expressions are integrated analytically 

as follows: Rewriting equations (3.15)(3.16) in vector form : 

(4.10) 

the temporal integrations can be determined using : 

Ae J W Nk dte == k.6. t 

¥ 
giving 

o (4.11) 

where 

{ <~>} == [C~S(}i ~ Sin(}i] B . B = J {COSO
e
} <N>dif 

<A > sIn(}. COS(}.·N ' N • (}e y 1 1 SIn 
Oe 

«(}i : global angular element coordinate, (}e : local angular coordinate (8= 0i + if». 
All spatial integrations are thus contained in l} which can be conveniently 

re~constructed from W of Section 3.2.1b. 

From the above treatments, it can be seen that in terms of integration, time 

and space dimensions behave as a single continuum. Within this continuum, the 

.6.Ae 
temporal mesh remains constant with respect to fJ, allowing factor t to be 

dropped from both the Reynolds and force balance expressions. 
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(b) Interpolation: 

The theory developed thus far has largely been independent of the shape or 

trial functions. The form these functions take and their accompanying meshes are 

as follows: 

Spatial Trial Functions: 

The spatial trial function 

Ni, used throughout this work is 

the quadratic Lagrangian element 

of F4.4. 

N2., N!j 
1. -\.--......-I-.;:----\-

This element is discouragingly inhomogeneous when used on coarse 

meshes: steadily loaded rigid bearing solutions can vary significantly as the load 

line is moved through an element. However, uniform circumferential meshes of 

around 36 elements have been found to be sufficiently fine to ensure homogeneity. 

(See Section 5.2.3b for further discussion). 

Temporal Trial/ Weight Functions : (~,W). Earlier sections introduced linear 

Lagrangian functions (F4.5) as both 

trial and weighting functions of the 

temporal data. Using these 

functions, temporal mesh divisions 

of up to 100 crank-angle have been 

successfully tested in conjunction 

with inteLVal halving. 

Elastic Displacement Interpolation : 

N 

Having chosen to integrate Reynolds' 

equation numerically, it becomes necessary to interpolate nodal elastic 

displacement data to obtain fluid-film Gauss point data. Fortunately, elastic and 

fluid-film meshes are continuously aligned, however, the form this interpolation 
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takes is found to be important. 

Exact curved beam models posed no problems, interpolation being 

performed using the curved beam shape functions. The resulting displacement 

fields are necessarily smooth, a consequence of their analytic formulation. 

Numerical elastic models are less amenable. Initially Gauss point 

displacements were determined usmg one-dimensional cubic Hermite 

interpolation of the requisite nodal data. However, the resulting displacement 

fields were not sufficiently smooth to be used; it would . seem that 

one-dimensional Hermite interpolation is not a close enough approximation of the 

two-dimensional sub-parametric Hermite displacement variation. Instead, nodal 

ur,u/ data is interpolated individually using linear shape functions, sufficient 

smoothing being obtained this way. 

Repeated interpolation is avoided by performing interpolation once, at 

program initialisation. Subsequent displacement calculations are performed 

entirely on Gauss point data. 

Further discussion on elastic displacement continuity can be found in 

Sections 4.2.2, 5.3.2. 

External Load Interpolation: At any given time, external loads 1x'!y are 

determined using cubic Hermite interpolation of nodal load data, typically 

supplied every 100 crank-angle. The additional nodal derivative data required by 

the Hermite procedure is generated using central difference approximations of the 

'raw' load data. 

4.2 Elasticity Solutions 

This section presents the adaptations of some standard solution procedures 

of linear elasticity Influence matrix constmctions of exact beam theories; 

Sub-Structuring of Finite Element implementations. 
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Trial function selection and its ensuing effects on fluid-film equations are 

discussed. 

Finally, sample elastic displacement fields are presented for radially point 

loaded structures, allowing dimensionless characterisation of elastic behaviour to 

be attempted. 

4.2.1 Curved Beams 

Elasticity models were 

initially constructed using 

rigid sectors and 'built-in' 

elastic sectors (F4.6). 

Careful restrictions on geometry 

, . . 

'F4·6 

allow smooth elastic solutions to be generated very frugally through an influence 

matrix construction, 

(a) Influence Construction: 

Using the exact curved beam element of Section 3.2.1 and uniform spatial 

meshes of constant rectangular cross-section, influence relationships are 

constructed as follows 

The elastic sector is firstly divided into two elements, the division falling on 

the first global element boundary. 

Nodal loads {F r,F 8,M} are then 

applied to the interface (a-b) 

and displacements {ur,u fire I} i 

determined at the required global 

positions (Gauss points) in the 

two elements. (F4.7). 
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This procedure is repeated with division a~b falling on successive global 

element boundaries, structural symmetry being used to afford further economies. 

The resulting influence relationship can be written as follows: 

u= 
N 

f where 
N 

(3.19) 

K-1 is the global influence matrix, the other terms as per Section 3.2.1. 

Global pressure/nodal-force relationships and body-force/nodal-force 

relationships are assembled in the usual manner[69]. The required 

non-dimensional forms, 

(3.31) 

can then be assembled ready for partitioning. 

(b) Sample Results : 

Results for a 3000 curved-beam model with radially applied nodal forces 

are presented in F4.8 t. 
In this figure, neutral-axis displacement fields ur,ur ' ,uo are represented by 

separate families of curves. Successive curves in each family depict dimensionless 

displacement behaviour induced by radial force F r applied sequentially around the 

beam nodes. 

Unless stated othelwise, curved beam models use thick beam theory 

(E/GK=3). 
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One interesting feature characteristic of rings, is the 'geometric stiffening' 

of the structure as load moves 

towards the beam's line of 

symmetry. This is accompanied 

by a general 'pinching' of the 

ring structure (F4.1O). 

The behaviour of a 3600 ring, 

presented in F4.9, is clearly very similar to the 3000 ring of F4.B. The removal of 

the rigid neck approximately doubles deflection. 

4.2.2 Planar Finite Element Models 

To overcome geometrical inadequacies of rigid-elastic sector modelling, F.E 

plane-stress models of constant thickness were constructed. 

These models have impaired continuity when compared to curved beams, 

requiring a judicious choice of displacement trial functions if successful operation 

of the fluid-film equations is to be achieved. Furthermore, to efficiently process 

multiple load cases (N 600) at a small percentage of the total nodes (N 10%), 

selective tailoring of standard solution procedures is required. 

Steps undertaken to achieve these objectives are outlined in the following 

sections : 

(a) Trial Functions 

A variety of functions are used for different purposes in this work: 

Displacem,ent Trial Functions : (Ni) Subparametric cubic Hermite 

elements[69,92]incorporating quadratic Lagrangian geometry are deployed in the 

work presented. 



This element uses a 

12~term displacement polynomial 

in conjunction with an 8-term 

geometry polynomial. (F4.11). 

Implementation details can be 

found in Appendix A6. 

(J) I) 

::=7 U 

(1,-1) 

displctee.m:!t\+ nodes (cp, til) $) 
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o ~tr~ no~eS CX)lj) F.:'f./I 

Earlier attempts to use simpler 8-noded isoparametric element solutions 

were unsuccessful; insufficient derivative continuity impeded the workings of the 

fluid-film equations. Deployment of the Hermite element, with its enhanced 

inter-element continuity, provided sufficient continuity for F.E analogues of the 

curved beam models to run successfully. However, convergence of the fluid-film 

model was impaired when compared to the equivalent curved beam solutions. 

Clarification of the relationship between elastic field continuity and 

fluid-film equations clearly warrants further investigation, however it was 

considered beyond the scope of this work. 

Pressure Trial Functions: (Mi). Pressure tractions are modelled using quadratic 

Lagrangian functions. These functions can be salvaged from the two-dimensional 

geometry functions (Appendix A6) by specifying the traction side[87]. 

Body-Force Trial Functions: (Mi). Body forces are assumed to remain 

constant over each element, variation being element-wise. The applied body 

forces are then determined at the element centroids. Fine spatial meshes 

necessary for overall solution accuracy ensure suitable apportioning of these 

forces. 
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(b) Sub-Structured Solutions : 

In this work, Sub-Structuring techniques[93] are used to 'reduce' the initial 

structure to that of a super-element : 

Sub -SfrlAdurif)J 

o achiJe" rxiJe s 
+ - if'tlch'ue. naJes 

H'r)/7e £lemenfs ~t- £/etYb1t 

Redundant nodes are statically condensed from the structure during element 

assembly, a procedure performed automatically by Frontal-Solvers[87]and adapted 

for this work. 

The resulting 'reduced equations I can then be partitioned to read: 

(4.12) 

where M - active (retained) nodes 

£ -nodes with prescribed displacements. 

This reduced stiffness relation is dense (non-sparse), not unlike relationships 

generated by Boundary Integral Methods[94]t. 

The 'solution' for displacements M can be written as : 

(4.13) 

these would appear to have a promising future in work. 
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whilst reactions £ at prescribed displacements £, are : 

(4.14) 

The efficiency of the above processes rely heavily on there being only a small 

percentage of retained nodes. 

For rigid constraints, expression (4.13) reverts to the form presented in 

Section 3.2.3 : 

(3.29) 

(c) Sample Results : 

As a companion to the earlier curved-beam results, centre-line (.0 and 

surface displacements for F.E curved-beams are presented in figures F4.13, F4.14 

respectively. Nodal interpolation is via one-dimensional cubic Hermite 

polynomials. (See Section 4.1.3b). 

For engineering purposes, curved-beam and F.E. t displacement fields 

(F4.8, F4.13) can be considered to be identical. Surface F.E. displacements are 

however less amenable, ur ' beginning to exhibit undesirable behaviour about the 

applied loads. Fortunately, this behaviour occurs between nodes and is simply 

circumvented using linear interpolation of nodal ur' data. 

Most features of the curved beam model carry over into the planar big-end 

model of F4.15 : geometric stiffening becomes more pronounced, undesirable u/ 

behaviour reappears and is once again circumvented using linear interpolation t. 
As expected, some discrepancy in behaviour is apparent about the palm-end of the 

rod, however by-and-Iarge the full ring model of F4.9 compares favourably with 

llinear interpolated surface displacements are presented. 
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the planar bigQend of F4.1S. The development of a curved beam model 

incorporating variable cross-sections may well be warranted. 

SymmETRIC F·E 
BI(>-END 

(d) Boundary Constraints : 

tAt ve /Ob·66 

lOG·&' l4evB 

-IS 

To complete this section, boundary constraints applied to the EE. planar 

rod models are summarised in F4.16 : 

J)1SPI-ACEtnENT CoNSrf?lIlNTs 

0 ' II - , .... - ou. (] IT _txA - dIT - 0 
• ~- v - o.i OX- - ~j - Jj -

A: IT::::.O 
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4.2.3 Dimensionless Elastic Behaviour 

A natural starting point for the characterisation of elastic behaviour is the 

curved-beam models of Section 3.2.1. 

Taking the 3600 ring of F4.9 and replacing dimensionless parameter 

EL u by EI 11 ~ one finds that displacements accurate to within 10% can be 
c 

accommodated on this single figure for the range of thickness : 

0.4 < tfr < 0.6 

Similarly~ elastic sector size Os' can be incorporated to lesser accuracy using the 

[36~m additional multiplier ~ where 3000 < Os < 3600 , m ~ 4 (3 < m < 5). 

These relationships are summarised in T4.2 as a series of multipliers for the EL u 

ordinate (106.66) of F4.9. 

. Clearly, rigid sector 

size is as important as 

thiclmess ratio in determining 

elastic behaviour, although 

~ 
360 

340 

320 

300 

the above range of Os may be overstated. 

Planar F.E analyses (F4.15) 

0.40 0.45 0.50 0.55 

1.728 1.291 1 0.797 

1.375 1.027 0.796 0.634 

1.079 0.806 0.624 0.498 

0.833 0.623 0.482 0.384 

T4.2 

suggest that, without attempting 

parameterisation of neck geometry, elastic behaviour is analogous to "full-ring 

behaviour (Os = 3600). These similarities allow the full-ring model to form the 

basis of a dimensionless dynamic film-thickness estimate in Chapter Seven. 

To complete this section, it is useful to present a single parameter 

characterisation of displacement behaviour : 

r 3 

o[~ = C (4.15) 
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With this characterisation it is possible to investigate the case of an infinitely thick 

housing, namely tfr == 00 : 

comparison, a typical housing tfr :;;::; t gives : 

thus (4.16) 

Since journal deflection is dimensionally equivalent to infinitely thick housing 

deflection[8], (4.16) represents the ratio of journal to housing deflection; ample 

justification for the rigid journal treatment introduced in Section 2.1.4. 

In closing this Chapter, it will be observed that the preceding work has 

largely involved the collection of various theoretical apparatus maldng up the 

big-end EHL problem. In the remaining Chapters we shift our attention to the 

verification of these techniques and their associated solutions in firstly a 

steady-state, then full dynamic environment. 
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CHAPIER 

the context of connecting~rod bearings~ steady state solutions have little 

intrinsic value, moreover they have largely been responsible for the 

misconceptions present in dynamic work. Despite this, they do however provide a 

convenient means for the verification of the various solution techniques employed 

in this work. 

This Chapter firstly uses the rigid model to verify parabolic pressure 

assumptions and mesh dependencies. Performance over a range of geometry and 

load are investigated. Selected elastic solutions are then reviewed from the 

literature, attention focusing on the work of Allen[17], Stafford [20] , and 

Fantino[19]. Factors affecting oil-film sensitivity and multi-peal<: pressure 

behaviour are studied in detail. Finally, the performance of Fantino's bearing on 

both ring and housing geometries is presented over a broad range of load. 

All results are generated on uniform meshes, solutions to the dynamic 

problem being delayed until Chapter Six. 

Some background on the development of a steady state solution is a useful 

preliminary to the main body of this Chapter. 

5.1 Steady Solution Development 

In this work steady state results are determined as the limit of a dynamic 

solution under steady load: journal locus convergence is achieved through the 

decay of starting error transients to a steady state. This decay is load dependent; 

most rapid for high loadings, tediously slow at low load. 

Such a solution procedure is then load based, the load vector being fixed in 
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magnitude and direction. In comparison, traditional steady state solutions are 

determined by fixing journal position, acquiring a pressure distribution and hence 

load vector. Without considerable load vector alteration, a direct comparison of 

solutions is difficult: modelling differences, most notably film boundary conditions 

for the rigid problem and elasticity models in the elastic case, lead unavoidably to 

discrepancies. 

Bearing these points in mind, rigid then elastic steady state solutions are 

next presented. 

5.2 Rigid Steady State Solutions 

Several studies have implemented parabolic axial pressure approximations 

[11],[71], this section adds to that body of information on F.E. based 

approximations . 

. We firstly compare the parabolic axial pressure assumption against finite 

length solutions, then investigate the effects of quadratic pressure shape functions 

on breakdown boundary interpolation. General results over a range of loads, 

meshes and LID ratios complete the section. 

5.2.1 Specific Cases: Axial pressu',-e dependence 

Verification of axial pressure dependence is carried out against the 

half-Sommerfeld finite bearing solution of Hays [72]. In his work Hays presents 

axial and circumferential pressure distributions for a range of LID, FS.1 presents 

results for LID ratios of 1, t, t at loads t associated with an eccentricity of 0.8 : 

t the loads used are those presented by Cameron[43] 
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As can be expected, circumferential distributions differ, pressure being 'released' 

by the extra boundary flow of the half-Sommerfeld solution. Peak pressures and 

breakdown boundary positions are however quite close to the Reynolds boundary 

condition solutions given by Cameron[43]. 

Axial pressure distributions for the finite L= D solution show distinct 

centre-line pressure flattening leading to a lower load capacity in the parabolic 

approximation. This load carrying deficit, compensated by greater journal 

eccentricity, leads to higher peak pressures in the parabolic model. 

At lower LID ratios, the finite solution develops very parabolic axial 

profiles, flattening being much less pronounced. Under these conditions the 

parabolic model would seem very appropriate. Tests in Section 5.2.3 provide 

broader verification over a range of load, mesh size and LID ratio. 
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5.2.2 Breakdown Boundary Interpolation 

One of the unavoidable consequences of using quadratic pressure shape 

functions is the development of negative pressure at film rupture: consider for 

example a pressure distribution as it is moved across a mesh. In the region of 

film rupture three interpolation scenarios are possible as the varIOUS pressure 

shape functions come into play; F5.2 presents the possibilities: 

\ (a.) \ (b) 
\ 
\ 

(c) 

- ~ 
--I 

Because this behaviour occurs in a critical region of the oil-film, a region of high 

pressure gradients, solutions can develop an acute sensitivity to mesh. This 

sensitivity, explored further in the following section, can be overcome by mesh 

refinement or alternatively by a change to an homogeneous trial function (linear 

trial functions for example). 

For convenience, negative pressures are not plotted in figures presented in 

this work, the exception being the extreme case of F5.5; in this figure, negative 

pressures represent less than 2% of the applied load. 

5.2.3 General Results 

Results covering L/D ratios of 1, t, i, 0 (short bearing solution) and 

loads[43] associated with eccentricities 0.8, 0.9, 0.95, 0.97 are next presented. Two 

sets of solutions on both 24 and 36 element meshes are developed: variable-load 

fixed-direction solutions (Table T5.1) and fixed-load variable-direction solutions 

(Table T5.2). 
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TABLE 5.1: Fixed-Direction Variable-Load Results 

36 Elements 

L{D 0.0 0.25 0.50 1.0 , 0.97 0.95 0.90 0.80 0.97 0.95 0.90 0.80 0.97 0.95 0,90 0.80 0.97 0.95 0.90 0.80 

1 45,73 16.34 4.001 0.955 21.01 9.242 2.883 0.813 8,711 4.496 1.695 0.575 2.796 1.706 0.706 0.297 

tl,(%) -.04 + ,05 -.03 -,03 + .17 + .03 + ,03 +.11 + ,14 + .07 0 -.12 + .20 + ,60 + .30 + .30 
tlq{deg) -0.2 + 0.3 -0.2 -0.1 + 0.4 -0.2 + 0.1 -0.1 -0.5 -fl.7 -0.4 -0.4 -0.2 

tl6(%) +1.J -1.0 + 0.3 + 0.1 -5.6 -0.6 -0,3 -0.5 -4.6 1.3 0 + 0.5 - 8.0 12. - 3.0 -1.0 

tlp(%) -3.0 + 3,0 -0.7 -0.1 -4,0 5.0 -.3 + 1.0 +6.0 + 7,0 + 6,0 + 3.0 + 25. + 27. + 15. + 7.0 

24 Elements 

tl,(%) .01 .03 -,02 -.04 + .08 .06 + .04 + .12 +.,10 + 040 + ,03 - .05 + .20 + .SO + .20 + .20 

tl?(deg) -0,5 -0.2 + 0,1 -0.1 -0.1 -0.2 + 0.2 -0.2 -0.5 -004 -0.3 -0.6 + 0.2 

tl6(%) + 0.3 + 0.6 + 0.2 + 0.2 2.7 + 1.2 -0.4 -0.5 -3.0 -7.6 -0.3 + 0.2 8.0 -16.0 -2.0 -0.9 

tlp(%) -17.0 -2.0 -2.0 -0.6 -9.0 -6.0 -2.0 +0.5 + 3.0 +12.0 + 4.0 + 3.0 +16.0 +23.0 +13.0 + 8.0 

TABLE 5.2 : Fixed-Load Variable-Direction ResuUs (f = 0.97) 

36 Elements 

L{D 0.0 0.25 0.50 1.0 

uOT 1{4 1{2 3{4 I 1{4 1{2 3{4 I 1{4 1{2 3{4 1 1{4 1/2 3{4 1 

A«%) + .01 +.10 + .02 0 -.13 -,12 -.IS 0 + .06 .07 - .03 0 + .01 + .05 -.OS 0 
u;p(deg) -.03 + .50 + .30 + .01 .45 -.56 -.43 + ,01 + ,37 .12 -.13 + ,03 + .10 + .42 - .11 + ,07 

u6(%) -0.3 -3.3 -0.7 0 + 4.6 +4.2 + 2.8 0 2,4 + 2.4 + 1.0 0 -0.4 1.8 + 2,9 0 
Ap(%) -0.1 + 28.0 + 5.0 -0.1 -2.2 1.6 +0.8 -0.1 + 6.0 +1.3 + 3.2 -0.1 1.1 + 4.0 -1.5 + 0.1 

24 Elements 

A,(%) + .21 -.12 + .02 0 + .03 + .30 -.70 0 0 + .20 + .20 0 .06 + .03 + .30 + .01 

AIl'(deg) +1.8 + .20 + .60 + .01 .26 + 1.2 + .10 + .03 .30 + .30 -.90 + .04 -.30 -.30 + .80 + .10 
A6(%) -9.0 + 4.0 -0.7 0 1.0 9.0 +0.7 0 0 -6.0 -7.0 0 + 2,0 1.0 -10.0 -0.4 
Aj)(%) +62.0 +10.0 +14.0 -0.3 + 5.0 +29.0 -7.0 -.01 2.6 + 18. + 8.0 -.02 + 2.0 + 11.0 +26.0 -,12 

tAO. Load shift in element units 



(a) Fixed-direction Variable-Load Results: 

Traditional fixed direction results are presented against the finite Reynolds 

boundary condition results given in Carneron[43], absolute percentage errors 

being recorded in TS.1. 

Journal position and hence nummum film thickness are presented in 

FS.3(a): Positional errors are quite small, .6.'£ < 1 %, .6.~ < 10, there being 

similar errors on both meshes. These translate to maximum hmin errors of 10%. 

The most conspicuous discrepancy in these results is the high eccentricity in 

the D case. This behaviour reflects the lower load carrying capacity of a 

parabolic profile at larger LID ratios. A corresponding increase in peak pressure 

accompanies this trend (FS.3( c)), maximum pressure errors in the order of 20% 

occurring in the L= D case. 

Finer meshes expectedly give better resolution of both peak pressure and 

breakdown boundary location, these points being consistently located to the 

closest nodal division on both meshes. Peak pressures are generally higher on the 

finer grid, the differences reducing with decreasing load and LID ratIo. Figure 

F5.4 presents sample distributions using p [:5j 2 as non-dimensional pressure. 

There is little merit in pursuing further analysis of I fixed-direction' mesh 

dependence; relative motion of mesh and load line can lead to much greater 

sensitivity. 
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(b) Variable-direction Fixed-Load Results: 

Mesh homogeneity as described in Section 4.1.3(b), can be tested by 

shifting the load line through an element: TS.2 presents percentage error 

deviations for ~, ~ ~ and 1 element shifts at loads associated with the eccentricity 

0.97. 

Shifts of one element give an indication of the numerical accuracy 

obtainable on a given mesh: for 36 elements 0.1%, for 24 elements 1% on all 

parameters (.6. E, .6.~, .6.n, .6.p). Condition numbers for these solutions indicate 

-approximately six digits of lost precision. This makes double precision arithmetic 

(8 byte reals) mandatory for all calculations. 
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For smaller shifts, journal positional errors are once again small: 

.6 f < 1%, .6'(p < 20, .6hmin < 10% over both meshes. Peale pressures however 

show considerable deviation: On the finer mesh, accuracy is acceptable (10%) for 

all but the short bearing solution (LjD == 0). This solution has the highest 

non-dimensional pressures (26x the L==D solution) and hence gradients, severely 

limiting solution accuracy. This is more pronounced on the coarser 24 element 

mesh, rendering pressure solutions strictly exploratory for the tested LjD ratios. 

Figure F5.5 shows the degree of pressure distribution distortion possible 

using quadratic shape functions. An additional feature peculiar to this loading, is 

the cusp at 1650• The mechanism for this behaviour is once again quadratic 

interpolation of high gradient pressures on an inadequate mesh. It should be 

emphasised that this is Iworst-case l behaviour: highest load on a coarse mesh. 

Despite these misgivings, journal position and film thickness errors are still very 

acceptable. 
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Summarising, the rigid steady state solutions of this section show the 

parabolic axial pressure assumption to be most appropriate for bearings of 

length-diameter ratios : 

o < L/D < t 

whilst less suitable for L/D > t, it is much more accurate than the traditional 

'short-bearing' approximation, L/D =: O. 

In practice, circumferential pressure behaviour of the quadratic shape 

functions is more likely to cause problems; for work involving relative motion of 

mesh and load line, fine discretisations (100 b.a. maximum t) must be used if mesh 

and hence pressure homogeneity is to be maintained. However, accurate journal 

position can be computed quite confidently on coarser meshes. 

We next look at specific elastic solutions. 

5.3 . Elastic Steady State Solutions 

Two groups of elastic steady state solutions incorporating experimental and 

theoretical aspects are prominent in the literature: the work on housings of 

Fantino [19] and Frene[21] and that of Allen[17], Stafford[20] and Bozaci[22] on 

arcs. We look firstly at the theoretical work of Allen and Stafford then 

re-examine the bearing of Fantino. 

5.3.1 Arc Solutions 

Solutions to the rigid/elastic sector problem have been presented by Allen 

and Stafford. Both works use a constrained journal position, iteration being 

performed on the pressure vector and hence external load. 

t b.a. == bearing angle (circumferential) 
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(a) Allen: 

The work of Allen is based on a finite length solution t incorporating 

Reynolds' boundary condition. This is in-turn coupled to thin inextensional beam 

theOlY, Allen incorrectly claiming the use of thick beam theory. 

The resulting equations, valid only for steady state conditions, provide a 

surprisingly accurate solution verification: and FS.7 show the results of 

Allen's[17] method and the current method for an inextensional 2700 elastic/rigid 

sector. 

Quantitatively, for FS.6 f, ~, h and u are all within 1%, centre-line pressure 

p within 2% for the applied load given by Allen. The results in FS.7 are of 

similar accuracy. Considering the differences in solution techniques: journal 

position constraint; finite element verses finite differences; parabolic axial pressure 

distributions versus axial finite difference representations; mesh differences, 

agreement is exemplary. 

(b) Stafford : 

The results of Stafford continue along the rigid/elastic sector theme of 

Allen with some slight differences: Half-Sommerfeld rather than Reynolds 

boundary conditions are invoked; 8 noded isoparametric elastic elements H replace 

curved beam theory. 

Duplication of this work is made difficult by the difference in' program 

solution modes: considerable iteration on external load vector is required to 

achieve the fixed journal position used by Stafford (TS.3). 

t 64 x 8 grid 

ttno indication of mesh is given 
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': i hmin 
A 

Pmax 

Stafford 0.745 @ - 8.80 0.162@ 2300 0.800 @ 2200 

lnext.Beam 1.250 @ - 5.30 0.129 @ 2360 1.319 @ 

Thick Beam 0.760 @ - 7.20 0.173 @ 2310 0.730 @ 2160 

Hermite Beam 0.778 @ - 7.2 0.174 @ 2300 0.755 @ 2160 

T5.3 

The results presented in F5.8 are for the most heavily loaded condition: 

Case 1, E =: 1.3 @ 1800 of [20]. 

Considerable discrepancy between the results of Stafford and the 

inextensional 'Allen' model is apparent. Stafford claimed that this was due to 

different film boundary conditions, being under the impression that Allen was 

using thick beam theory. On comparison with actual thick beam results, it would 

seem that the major discrepancy is in the elasticity models, film boundary 

conditions being of secondary importance. 

Results for an equivalent Hermite F.E beam (32 x 2 elements) are 

presented in F5.9. These results fall between those of Stafford and the thick 

curved beam, agreeing closely with the latter. Clearly oil-film sensitivity is 

sufficient to detect differences in elasticity model type. However, it is insufficient 

for these differences to create major discrepancies, at least not in this bearing. 

In both Allen and Stafford's work, the development of doubly peaked 

pressure distributions is a consequence of housing 'wrap-around' in association 



92 

1>2 

1,0 
/\. 

P 
0·5 

0,(;:' 
O.b 

1\ 0.+ 
h 

0.4-

0.2. 

0·0 

0.;2. 

0.,+ 

0.6 
F5·8 

20 60 (00 3/.J.O 

}·o 

DB 
A 

P 
0.6 

0.6 

"'- 0·1f h 0.'2 
0.'2 

0.0 0.0 

0,2 

o·lt 

0.6 



with curved-beam 'pinching' 

(F5.1O). This behaviour 

induces an early film build-up 

and delayed film breakdown. 

Pressures developed at film inlet 

decay in the intervening 

'wrap-around' region due 

to reduced constructive 

wedge action. 
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I d I tv(Qp - a roW} 
F5·/0 

Pinching and wrap-around are then the identifying characteristics of ring 

EHL problems, dominating the film-thiclmess equation for anything but the lowest 

loads. The ramifications of this behaviour are investigated further in the 

following section under the more sensitive environment of Fantino's bearing. 

5.3.2 . Housing Solutions 

When first presented, 

Fantino's housing solutions 

were quite controversial, the 

presence of oscillating pressure 

distributions causing some 

. [19] I . consternatIOn . nterpretatIOn 

FarrfjiJo's 
Hou.s/f}!3 

of these results was complicated by the use of coarse elasticity meshes and 

difficult, although realistic, geometry. (F5.11) 

In this work, simple ring type geometries are instead used to re-evaluate 

Fantino's bearing. The question of multiple pressure pealcs and their relationship 

to oil-film sensitivity, discretisation and displacement interpolation are 

investigated. 
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(a) Multiple Pressure Peaks : 

We firstly look at a ring under 20 kN loading: FS.12 shows the 

development of a third pressure peak, this extra peak corresponding closely with 

the film slope (s) behaviour of FS.13. Circumferential mesh size clearly has little 

to do with its presence, results being very similar for 36 and 46 elements. 

For Fantino's bearing, triply pealced pressure distributions first appear at 

IS kN and remain the predominate form through to the maximum tested load of 

40 kN. Physically, the development of successive peaks can be explained as 

follows: 

(eL) I __ L. I 
pir 1CJ/lI1!j 

~~ 
irr.f&.sed 1CCtJ1 

(6) 

A~ observed in the previous section, a combination of wrap-around 

and pinching (FS.14a) produces broad doubly peaked pressure distributions, the 

left and right peaks of FS.12 being of this mechanism In the intervening parallel 

film region, a weak secondary wedge develops (FS.14b): this is not the product of 

'wobbly' housing distortion but is instead due to the relative interaction of surface 

curvatures, probably from the alteration of housing curvature through pinching. 

We will see later that with increased tensioning of the beam around the journal, 

secondary wedge effects can diminish under load. 

Given these mechanisms, the development of multiple peaks is then largely 

dependent on oil~fnm sensitivity. 
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(b) Sensitivity : 

the steady state case, load capacity is generated through film 'wedge' 

. h .. . I k fi I A [" 8fiJ actIOn, ence It IS pertment to 00 T at 1m s opes s: s = OIJ 

operating regime of Fantino's bearing is such that considerable housing 

wrap-around occurs, producing a large section of parallel oil-film. Film slope is 

then the difference of two terms of similar magnitude; the geometric and elastic 

slopes. 

For the 20 kN case of F5.13, the resultant slope through this region is due 

to the third/fourth significant digit of the individual slope terms. In comparison, 

film-thickness is dependent on the second/third significant digit. Clearly any 

untoward behaviour in the third/fourth significant figures of the slope is likely to 

collapse the solution, inexactness in the fourth/fifth figure will lead to spurious 

solutions. 

Two sources of such errors were observed, discretisation and elastic 

displacement interpolation: 

Discretisation: For the curved beam model, both geometric and elastic slope are 

trigonometric functions; 

smoothness is implicit. 

Any errors present are then 

largely due to circumferential 

discretisation (F5.15); 

round-off is approximately in 

the tenth decimal place. F5-IS 

Unfortunately the errors of an inadequate discretisation are sufficient to induce 

spurious yet stable solutions, witness F5.16 at 40 kN. 
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Mesh frequency oscillations have appeared in film-thickness and film-slope 

behaviour: for the 60 and 46 element solutions (FS.17) oscillations are ineffectual, 

the 36 element solution (FS.18) not sufficiently affected to produce a majorly 

spurious solution whilst the 24 element solution (FS.19) is spurious. 

Verification of mesh independence on significantly finer grids is clearly 

important if a converged solution is to be claimed. 

Displacement Interpolation: To illustrate the effect of interpolation error, it is 

informative to induce elastic interpolation 'noise' in the 20 kN curved beam 

example and observe the results. 

For this purpose, 100 nodal ur,ur ' curved beam displacements are 

separately linearly interpolated 

onto 100 fluid element gauss points 

(F5.20). This introduces significant 

interpolation error as exact curved 

beam ur'u 0 displacements are 

intimately coupled. The results are 

shown in FS.21 and FS.22, significant 

differences being apparent. 

Liflear Ifr/erpo ~ Ted 
3 pl. (lauS:5 Rule 

F5'20 

Oscillations are present in both slope and displacement fields, the level of 

'noise' being sufficient to produce a spurious solution (c.f. 19 @ 40 kN). 

Displacement and slope fields have clearly become unsynchronised. 

How well then does an Hermite F.E. ring fare given that the displacement 

fields are linearly interpolated to the Gauss Points? (See Section 4.1.3(b)). 



t/-,o 

-
A 3·0 
h -.z.o 

/,0 

0.0 

1·0 

20 

3·0 

Oil/-

0"2 

A 0./0 
-S 

0·013 

-
O.Ob 

0.01./-

0.02.. 

0·0 

0.02 

0.0,+ 

0.06 

FliNT/NO &fiRING (20 KN) 
1.-11> =;: o,'f21.2, t:/.,... "'- 0.5 

ItJO 

F5·21 

100 

A 

P 

0,20 

0·/13 

a,fh 1\ 

h 
O./I,f 

0,1'2. 

0./0 

O.OB 

0.06 



101 

Interestingly the distinct tertiary pressure peak of the beam ring is not 

evident in the 20 kN ring of F5.23, F5.24. Oscillations in slope and 

displacement are present at slightly lower levels than the interpolated beam 

results, amplitudes in the order of 0.5% of the displacement field being typical. 

This level of noise is sufficient to mask the development of the third pressure 

peak; slope behaviour alludes to third peak pressure mechanisms being present, 

the central peak being merged with the right-hand peak. 

Very similar behaviour is exhibited by the F.E housing solution, F5.25 and 

F5.26 being at 20 kN. Again, no tertiary pressure peak is present although slope 

behaviour suggests the mechanism is present. The stiffer neck of the housing 

produces a pressure distribution of smaller included angle, overall displacement 

behaviour being reduced as evident from journal eccentricity. 

Before concluding this section, some comment on noise attenuation is in 

order. 

Noise Attenuation: It should be emphasised that both elastic displacement and 

slope are outwardly smooth in all the above solutions. Only when geometric 

terms are differenced does noise become apparent, levels being controllable for 

discretisation but unacceptably high for interpolation. Alleviation of this 

noise problem is not altogether straight forward. 

'quick-fix' would be to use more elastic EE's. This however oilly shifts 

the problem to higher loads and increases computational burden. Indiscrirninant 

smoothing, as shown by the interpolated curved beam results, can introduce a 

signature all of its own. 
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The only really satisfactory solution is the use of smooth shape functions 

within the elastic variational principle. use in this work of Hermite 

polynomials is a first attempt in this direction, unfortunately thwarted by the use 

of external linear nodal interpolation. Further effort directed towards extracting 

the exact interpolation may elicit the required outcome, otherwise even higher 

continuity elastic trial functions will need to be devised. 

( c) Load Dependence : 

Performance maps for Fantinos bearing over a range of load are provided 

in FS.27. Elastic trends are similar to those reported by Fantino; reduced 

fi1m~thickness, pressure and attitude angle; increased eccentricity over the rigid 

solution. 

F.E. results indicate sensible behaviour despite increased noise levels, ring 

solutions showing good agreement. Housing solutions are generally consistent 

with increased structural stiffness: reduced eccentricity, increased film-thickness. 

Peal( pressure does not however fit this pattern: reduced primary pinching from 

stiffer neck geometry reduces the peak pressures. 

What is not apparent from this figure is the low loadwconvergence limit of 

the F.E solutions. 

Convergence Limit: From preceding sections, it should be apparent 'that the 

steadily loaded ring problem becomes increasingly ill-conditioned with load; 

'wrap-around' decreases wedge action, in the limit becoming swamped by elastic 

'noise', At this point, the N-R solution technique undergoes a dramatic solution 

collapse: 
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For curved beams and rigid bearings, stable convergent solutions were 

obtained for loads greatly in excess of the design load; FS.16 at 40 kN is a case in 

point. For these solutions, discretisation noise was not found to be a problem. 

For the equivalent rings, this was not however the case. 

As low as kN, unstable oscillatory journal motion occurs, leading to 

solution collapse; lack of load carrying wedge terms is compensated by the 

development of unstable dynamic journal action. Stable load limit then gives 

some measure of the noise level tolerated by the bearing solution; the observably 

higher noise levels in the F.E solutions lead to their early demise. 

So, what can be concluded about Fantino's bearing? 

Given the reluctance of current procedures to converge on F.E geometries, 

it is difficult to comment on the strong oscillatory pressure behaviour observed by 

Fantino. What can be said with certainty is that the generic ring solution 

(t/r == 0.5) exhibits diminishing triple peak behaviour to very high loads. 

Non-uniform geometry in the form of bolt flanges may provide sources for further 

geometry related peaks, however numerical inadequacies, in particular the 

insidious side effects of a coarse elastic discretisation, can lead to many more. 

Extension of Fantino's problem to a full parameterisation was considered 

but rejected; the steady state problem is inefficiently solved by the current 

program and is by-and-Iarge pathologicaL Effort was instead directed to the 

more relevant dynamic problem. 
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SIX 

DYNAMIC SOWTIONS 

The dynamic solutions of this Chapter focus on the Ruston and Hornsby 

(R~H) bearing presented by Campbell[6]. Other bearings could well have formed 

this basis, however the sheer quantity of experimental and theoretical literature 

associated with this bearing make it the de facto standard big6 end test case. 

This Chapter firstly uses inertial loadings to develop an understanding of 

the fundamental film mechanisms; ring solutions are used to illustrate basic 

bearing performance, the additional features of the elastic bearing being 

thoroughly explored. These ring solutions are then ratified against full housing 

solutions. The influence of engine speed on performance, is investigated on both 

elastic geometries. 

The second portion of this Chapter extends loading to incorporate gas 

forces. Solutions to rigid, ring and housing geometries are presented with an 

emphasis on verification: the parabolic rigid solution against state-of-the-art finite 

length solutions; curved beam solutions against full housing solutions. Finally, a 

detailed comparison is made between these theoretical solutions and in situ film 

measurements made by Butcher[34]. 

6.1 Inertial Load : Ruston~Hornsby 

Dynamic big-end bearing loading is fundamentally that of the inertial 

con-rod components, at least this is the case when gas loading is less than five 

times the inertial loading[96]. It is therefore of considerable interest to look at 

the bearings response to such loadings. 
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6.1.1 Load Diagram 

The inertial load diagram 

used for the Ruston-Hornsby, is 

the lumped mass one of F6.1. 

This diagram differs slightly 

from the inertial loop of 

Campbell's[6] gas diagram, the 

R~H engine having a supercharged 

cycle. 

Rate of change of load direction 
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(~) and magnitude (1) are presented in F6.2, these temporal variations being 

useful in interpreting locus behaviour. 

Before looking at the effects of elasticity, it is worth reviewing the basic 

performance of the rigid bearing. 
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6.1.2 Rigid Bearing Solutions 

In this work 'dynamic performance' is taken to be characterised by : 

11 . nun 
A 

Pmax 
A-

t 
N 

These parameters are just a small subset of the available information; friction 

forces, flow losses and bearing surface stains/stresses are also available. Figures 

F6.3, F6,4 show this 'dynamic-performance' over the full 600 rpm R-Hload cycle. 

It is useful to try and isolate cause-and-effect relationships between 

performance and load. 

(a) Causal Relationships: 

Dynamic performance of an elastic bearing is characterised by the reaction 

of the five forcing terms in Reynolds equation (3.14), namely: 

[

A A AA au 
q = 2(Ur - fcos(¢-B) + t~sin(¢-B» + s[af- fSin(¢-B)]] 

to the two external load terms i , i . x y 

(6.1) 

For a rigid bearing these five terms reduce to three, their dimensionless 

forms characterised by the terms 'squeeze's and 'wedge' was follows: 

squeeze t 
A 

wedge f( ~ - s/2) 

Variation of these measures throughout the load cycle is outlined in F6.5. Not 

surprisingly, wedge action dominates: 
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Radial motion is restricted to O( C), angular motion to much larger OCr). As 

shown by F6.4, the predominant film-thickness form is strongly influenced by 
A 

wedge velocity f( ip - s/2), this velocity being in response to the lsweep' velocity of 

the extemalload diagram (;p, F6.2). 

During periods of low whirl velocity, most notably around IDC and BDC-r, 

squeeze action becomes influential; at half-whirl speed (ip == s/2) it is the only 

term. It is the unfortunate consequence of geometry that during these periods 

external load is maximised, minimum film-thickness is then determined by the zero 

squeeze condition : 

f ::: 0 ; min (ip - s/2) , 

load being carried by the remaining wedge terms. This invariably occurs around 

TDC: top dead centre (OOca); BDC : bottom dead centre (1800ca) 
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2700ca for a rigid bearing, although these conditions need not be similar in an 

elastic bearing. 

A strong relationship also exists between maximum film pressure (F6.4) and 

external load magnitude (F6.2). load being integrated pressure. Maximum 

pressures are developed around 'IDC and BDC, 

higher. 

pressures being slightly 

An overview of the various spatial film contributions throughout the load 

cycle is presented in F6.6 : the inner arc represents pressures; centre are, wedge 

action; the outer arc, squeeze action. Shading respectively represents positive 

pressures, constructive wedge action (€( ~-s/2)sin( o-¢)) and closing film squeeze 

velocity (tCos( o-¢)). Half-whirl speeds, predominant film action and resulting 

pressure are all available on this figure. 

We now look at how the major parameters are affected firstly by temporal 

step length, then spatial meshing. 

(b) Temporal Mesh: 

Results of varying time meshes on a fixed 36 element spatial mesh are 

presented in F6.7. Fine meshes (36/2.50) t can be seen to lead to I lumpy I 

pressure behaviour, the mesh homogeneity problems of Section resurfacing. 

These oscillations are of sufficiently small amplitude « 2%) not ,to affect 

film-thiclmess. 

Coarser meshes are not significantly different in either film-thiclmess or 

pressure, however the 36/100 mesh does provide a smoother pressure behaviour. 

A slight .trend towards thicker minimum films is apparent on the coarser meshes. 

36/2.50 == 36 spatial elements, 2.Soca temporal elements 
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Journal squeeze and wedge velocities are presented in the previous figure, 

F6.5. Little perceptible difference is apparent in E over all three meshes ; 
A 

differences in 'f( ~ - s/2) are most notable on the 36/100 mesh. This corresponds 

closely with the film-thickness differences encountered at 900 and 3000 

crank-angle. 

Overall, the three time meshes produce quite satisfactory results, coarser 

meshes sacrificing resolution but not accuracy to any great extent. 

Spatial/temporal mesh matching would seem to be a desirable, although difficult 

feature to implement ; temporal interval halving, although never invoked by the 

rigid model, would complicate such an implementation. 

( c) Spatial Mesh : 

Results for various spatial meshes are presented in F6.8. Base curve 46/50 

shows smooth pressure behaviour throughout the load cycle, film thickness being 

equally well controlled. 

As spatial mesh coarsens, maximum pressure behaviour again becomes 

lumpy: for the 24/50 solutions, amplitudes < 6% ; 36/50 meshes, amplitudes < 

2% (only two perceptible lumps at around 2000ca). Despite this lumpy behaviour, 

film thickness remains largely unaffected, moreover max(Pmax) and min(hmin) 

correspond closely with the 46/50 solution. 
A 

The affect of mesh variation on temporal components E and 'f( ~ - s/2), was 

found to be negligible. 

Absolute verification of the rigid bearing model against other R-H solutions 

is delayed until Section 6.2.2 on gas loadings and the generalised inertial loadings 

of Chapter Seven. At this stage, it is probably sufficient to say that a close 

correspondence was found to exist. 
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6.1.3 Elastic Ring Solutions 

Characterisation of elastic bearing performance is developed through an 

eA'tension of the rigid bearing wedge and squeeze concepts introduced in Section 

6.1.2 : we firstly re-categorise rigid squeeze and rigid wedge terms as journal 

squeeze and wedge action, thus: 

. 
• journal squeeze t 

A 

• journal wedge 'f( ~ - s/2) , 

whilst terms associated with the housing are categorised as ela...;;tic squeeze and 

wedge: 

. 
elastic squeeze ur 

" elastic wedge 2-u~ 
These can in turn be broken down into squeeze and wedge actions due to elastic 

pressure and body-force displacements. The interplay of these six actions, all 

being comparable measures of their respective forcing terms in equation (6.1). 

determine the overall response of the elastic bearing to the dynamic load. 

This section looks at this response using curved-beam ring solutions, firstly 

at 600 rpm then through the speed range of the R-H engine. It is completed with 

a look at discretisation. Housing solutions are investigated in Section 6.1.4. 

(a) Ring Solutions: 600 rpm 

As companions to the earlier rigid solutions, F6.9 and F6.1O contrast elastic 

bearing performance against that of the 600 rpm rigid bearing. This solution is 

based on a 3600 curved-beam ring (t/r :::: 0.5) of 36 spatial elements and a SOca 

nominal time step. 
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Four additional sets of figures capture the salient features of the elastic 

cycle: F6.11, maximum distorsion at TDC (OOca); F6.12, minimum film pressure 

at 900ca; F6.13, maximum film pressure at BDC (1800ca); F6.14, minimum film 

thicImess and film collapse at 270° ca. The first of each pair of figures, (a), give 

circumferential pressure and surface behaviour, the second, (b), presents the 

various film mechanisms: total squeeze (f:.cos(8~¢) - ur) and total wedge 
A A 

(f(~ - s/2)sin(8-¢) - 2-u~) action; elastic squeeze (- iIr) and elastic wedge (- s u~) 

action; film-thicImess and pressure. 

Marked differences between rigid and elastic solutions have appeared, our 

investigation into these differences begins with elastic journal action. 

Journal Action: Journal action in the elastic bearing is presented in F6.15. The 

basic rigid forms (F6.5) have clearly been influenced by cap deflection. 
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As journal locus traverses the rigid clearance circle, journal action increases 

markedly : peak squeeze action is increased 400%; peak wedge action by 150%. 

Increased clearance from housing deflection allows much higher velocities to be 

attained. 

However, overall the journal spends more time below ha1f~whirl speed than 

its rigid counterpart, journal squeeze action maldng a greater contribution to film 

action. 

Housing Action: Elastic housing actions, depicted in F6.11b-14b consist of two 

components: elastic pressure actions and elastic body-force action. To illustrate 

the development of these elastic components, F6.16 outlines the various 

distorsions with crank angle: The outer ring represents body-force distorsion; 

middle ring, pressure distorsion; the inner ring, total distorsion. Shaded sections 

represent outward (positive) deflections. Body-force vector along with journal 

and peak pressure position are depicted in the central circle. 

The dominance of body-force deflection through a large portion of the 

cycle graphically illustrates the error of earlier works in excluding its effects : 

deflected forms 1200ca either side of BDC are predominantly due to this term, 

body-forces contributing significantly to ring flexure. Only when the body-force is 

directed into the ring's neck (600 ca either side of IDC) and pressure acts into the 

cap does pressure distorsion become influentiaL 

It should be noted that there is no elastic equivalent to journal half-whirl 

speed; the elastic components are continuously present throughout the load cycle. 

Total Film Action: We have looked at journal and housing action in isolation, 

however it is total film action, the sum of journal, pressure and body-force actions 

that determine bearing performance. 
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The interplay of the six film actions and the resulting ascendent forms are 

summarised in F6.18 at 200ca intervals : The inner arc represents film pressure; 

centre are, total wedge action; outer arc, total squeeze action. Film actions are as 

defined previously (Section 6.1.3a). Load vector along with journal, peak pressure 

and minimum film-thic1mess positions are presented in the central circle. In 

addition, the major contributions from wedge and squeeze action are categorised 

by a ratio in the central circle thus : 

x represents the largest wedge term: j for journal, p for pressure, b for body-force 

; y represents the largest squeeze term. The only symbol remaining undefined is 

the hatched shading associated with film collapse (negative pressures). 

Comparison of elastic and rigid figures (F6.6, F6.18) reveal significant 

changes in wedge and squeeze phenomena, the overall picture being far more 

complex than the cosine/sine relationships of the rigid bearing. Owing to this 

complexity, it was felt a full description of the various mechanisms was warranted. 

This was aided considerably by the observations of Section 6.1.3b. We start this 

description at BDC with the journal in the ring neck : (F6.9,.1O,.16,.18 are 

pertinent to this discussion). 

At this point in the cycle body-

force actions dominate, firstly 

through squeeze then, from 220-270oca, 

through wedge action; this second 

period of wedge (F6.17) is 

responsible for the noticeably thickened 

minimum film-thickness in the elastic 
F6·17 
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bearing (27%). The associated reduction in peak pressure indicates the strong 

beneficial effect body-force has on load capacity. During the latter stages of this 

period (240-2700ca), elastic discontinuity of the neck restraint fragments wedge 

action, inducing a short film collapse at 2700ca (F6.14); this is the subject of 

discussion in the following section. 

Journal wedge action then increases dramatically; by 2BOoca it has become 

the dominant term. However, by 3000ca the effects of pressure distorsion begin 

to be felt : as journal locus extends beyond the rigid clearance circle and 

approaches TDC, wedge action undergoes a transition from being journal 

dominated to being pressure dominated; peak pressures and minimum film 

thickness decrease substantially on the rigid solution. Ascending pressure squeeze 

action makes a strong contribution by 350oca, significantly thickening the oil-film 

through 10-40oca compared to the rigid solution. Elastic actions are generally 

much stronger during these periods than their rigid bearing counterparts. 

Through the next 100oca, jburnal motion back into the clearance circle 

becomes influential : beginning at around 50oca, journal wedge action firstly 

supplements pressure squeeze action, then comes to dominate film action through 

to 120oca; detrimental journal squeeze action during this period (60-BOOca) 

collapses the oil-film for a second period. 

Finally, through the remaining crank angles (140-1BOOca) body-force 

squeeze action dominates; films get thinner and pressures increase, symptoms of 

reduced load carrying capacity. 

The details surrounding the periods of film breakdown are of some interest. 

Oil-Film Oollapse: Two periods of negative film pressure were observed during 

the 600 rpm load cycle: a very short period, 0.001 seconds (50ca) at 2700ca and a 

longer period, 0.005 seconds beginning at 60oca. The first breakdown was shown 

in F6.14, the second sequence in F6.19. 
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2 

a 

Elastic slopes associated with the neck constraint illduce the first film 

breakdown at 270oca; this disruption does not occur in a full elastic housing, it is 

purely a consequence of a discontinuous 'elastic' neck. 

The second period of disruption is induced by elastic locus distorsion : 

negative squeeze action of the journal retreating into the neck of the rod, 

collapses the oil-film. Although this collapse mechanism is available in the rigid 

model, not a single case was observed; locus distorsion is an integral part of this 

condition. It should be noted that a similar but quite separate disruption is 

ex.-perienced during gas loading; the physical existence and ex.'Perimental evidence 

of such collapses are discussed in Section 6.2.3a. 

Before leaving the 600 rpm solutions, the pathological case of zero 

body-force is briefly presented. 
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Body--Forces: The current work differs from previous elastic works through the 

inclusion of deflections due to the body~forces of con-rod motion. It is interesting 

to observe the effects of neglecting this influence, witness figures F6.20, F6.21. 

Locus behaviour indicates that body-forces significantly stiffen the big~end 

ring perpendicular to the con~rod centre~line. The resulting minimum film 

thickness and maximum pressure forms are significantly altered: min(hmin) is 

reduced by 50%, max@max) increased by 60%; journal wedge velocity never drops 

below half~whirl speed. Clearly this body-force cannot be neglected from either a 

phenomenological or load consistency standpoint. More important however, are 

the serious questions raised about experimental testing procedures. 

Many bearing test-rigs are only dynamic in that they apply a time-varying 

load; dynamic body-force is usually completely neglected. The NEL work of 

Cooke [97] is a case in point. As we have seen, the oil-film regime generated 

under such conditions is quite dissimilar from that in the con-rod, results 

consequently having little meaning within the con-rod context : a comprehensive 

review of experimental test-rig procedures would seem to be well overdue. 

(b) Ring Solutions: Variable Speed 

In an attempt to unravel the variolls mechanisms affecting elastic 

performance, a sequence of solutions-r were developed at increasing engme 

revolutions : 200 and 400 rpm, the previous 600 rpm solution (F6.9) and finally 

one at 700 rpm. These results are presented in 

contained in Appendix A7. 

F6.28, the balance being 

Through this sequence it is possible to trace the development of the various 

film mechanisms. However, before tackling this, an overview of the basic 

performance trends is presented. 

the same curved-beam model was used as in the 600 rpm case. 
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Performance Trends: Significant positional shifts in minimum film thiclmess and 

maximum pressure occur through the operational speed range of the 

Ruston-Hornsby: For the first 600 rpm, min(hmin) is located in the neck of the 

rod; ci'rca 300ba, 2700ca. This is not significantly different from the rigid bearing. 

A thickening trend in minimum film accompanies the speed increase, a product of 

strong body-force wedge action. 

However, by 700 rpm this condition has shifted into the rod cap; circa 

1250ba, 3450 ca. A significantly 

reduced film thickness is then 

determined by elastic pressure action, 

a quite different mechanism 

from that in the rigid bearing: 

F6.22 indicates the gravity of 

the shift and in particular, its 

greater sensitivity to load. 

lbis film thinning condition has 

serious design consequences and 

is the subject of further 

investigation in Chapter Seven. 
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A similar shift is observed in maximum film pressure but at much lower 

revolutions: below 400 rpm, maxcPmax) develops in the cap at around'IDC; in 

the rigid bearing this condition occurs here at all speeds. However, by 400 rpm, 

cap distorsion reduces this peak pressure such that the BDC condition becomes 

critical; rigid results are then a poor indicator of maxcPmax) behaviour. 

Some influence of speed variation on film collapse is also apparent 

sufficient locus distorsion is present by 400 rpm to induce a 600ca film-collapse, its 

duration increasing thereafter. 700 rpm, this collapse shows noticeable mesh 

sensitivity; part ( c) of this section investigates this further. 
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Clearly the picture presented by these elastic results is complex, however 

amidst this complexity two invariant features can be identified; distorted elastic 

form and dominant film action. 

Distorted Elastic Form 

resulting total distorsion 

Pressure dis torsion, body-force distorsion and the 

have, at all speeds, very 

similar forms. (See 

Appendix A7). Moreover, 

two separate periods of 

influence can be identified : 

from 700ca through to 

290oca, distorsion is dominated 

by body-forces; the remaining 

period is dominated by pressure distorsion (F6.29). 

Eoc 

TDC 

This behaviour is not entirely unexpected. The consistency enforced 

between external load and body-force (Section 2.2.2) automatically maintains a 

balance between integrated film pressure and body-force loadings. The 

corresponding deflections are consequently balanced throughout the speed range. 

Dominant Film Action: To a surprising extent, dominant film action is also 

largely invariant with engine speed : F6.30 shows the various periods of wedge w 
and squeeze s and their respective transition angles. 

Within each period, dominant film action is determined by the ratio of 

journal to elastic action; one would expect elastic action to be closely aligned with 

the distorted forms of F6.29: the actual breakdown is given in F6.31, F6.32. 
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In contrast to total film action, wedge and squeeze components show 

considerable variation in transition points. It is the variation of transition points 

at this level which determines the speed dependent performance shifts; 

interpretation of the 600 rpm result of Section 6.1.3a was from these figures. We 

forgo a full description of the remaining speeds; they are either simple eAiensions 

or subsets of the 600 rpm solution, focusing instead on discretisation. 

(c) Discretisation : 

Mesh dependence featured strongly in our discussion of dynamic rigid 

bearings. However, this proved to be much less of a problem in the elastic 

bearings. 

The lumpiness associated with rigid peak pressures was not seen in the 

curved-beam bearing: lower pressure gradients in the elastic problem are less 

demanding of the pressure trial functions. Temporal mesh variation was found to 

have negligible effect on locus shape and velocity (F6.15), as well as on 

film-thickness and pressure. 

Experience from the elastic steady state problem suggested that plausible, 

yet erroneous solutions may be generated through an inadequate discretisation. 

Fortunately, this concern was unfounded in the dynamic problem : F6.10 

presented a 600 rpm verification on a considerably finer mesh( 48 versus 36 

elements), locus differences being so small as to not warrant plotting. Peak 

pressures during neck traversal are the only results to be outwardly affected; finer 

mesh provides a better resolution of displacements about the neck discontinuity. 

Neck effects are again seen at 700 rpm (F6.28). However, the interaction 

of mesh and the 600ca film collapse is of greater concern; changes in 

film-thickness can be seen to propagate forward in time. This interaction 

indicates a need for a more sophisticated cavitation model, particularly under 

conditions of significant film fragmentation. However, despite this carry-over, 
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performance measures remain unaffected: journal locus remams unchanged; 

min(fiIDirJ is sufficiently distant to be unaffected; max(Pmax) is altered only by the 

previously discussed neck effects. 

Overall, the sensitivity to discretisation observed in the steady-state bearing 

was not present to anywhere near the same extent in the dynamic elastic model, at 

least not in the Ruston~Hornsby bearing. 

6.1.4 Elastic Housing Solutions 

To complete this section on inertial loadings, we briefly investigate housing 

solutions using the Hermite elastic element of Section 4.2.2. Detailed 

comparisons with previous rigid and curved-beam solutions are delayed until the 

gas loaded sections of this Chapter. 

However to begi~ we look at a verification of the Hermite element using 

the previous ring geometry. 

(a) Hermite Ring Solution: 

Performance of a 400 rpm Hermite ring is presented in F6.33 and F6.34, 

comparison being drawn against the previous 400 rpm curved-beam ring. Both 

solutions use a 36 element circumferential mesh, two elements deep for the 

Hermite ring; temporal mesh is nominally 50ca. 

The main differences are confined to peak pressure behaviour about BDC : 

boundary conditions at the neck restraint (Section 4.2.2d) are sufficiently different 

for some discrepancy to arise. Otherwise the cycles are reassuringly similar; this 

could not be said of the housing solutions. 
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(b) Hermite Housing Solution: 

A full dynamic housing solution is presented in figures F6.35-F6.38, 

geometry being that described in Section 4.2.2 (90 elements, tlr = 0.5). Here a 

36 element spatial mesh and 50ca nominal time step are in force. 

The stiffening effect of the neck is immediately apparent through reduced 

locus distorsion about TDC; less conspicuous is the shorter 600ca film collapse due 

to weaker journal action, subsequent film conditions developing earlier as a 

consequence. 

Removal of the discontinuous neck constraint can be seen to have several 

beneficial side effects : elastic squeeze action in the neck region is increased, 

reducing peak pressures and thickening the oil-film about BDC; the fragmented 

wedge action and associated film collapse of 2700ca disappear. 

Probably the most striking change is the noticeably thicker oil-film around 

IDC : journal wedge action, the major contributor through 280-300oca, undergoes 

destructive pressure squeeze action during this period; this action is less 

destructive in the case of the stiffer housing. Subsequent periods benefit 

significantly from this initial thickening and through the continuing influence of 

the stiffer geometry; film performance through these angles would seem to be as 

sensitive to elastic geometry as it was to the load (speed) variations of Section 

6.1.3(b). 

Overall, major shifts in our ring performance measures have not occurred; 

min(hmin) is slightly thinner but still positioned at around 270oca; max(Pmax) is at 

BDC although reduced 30% in magnitude compared to the ring solution. Ring 

solutions could thus be concluded as giving good min(hmin) measurements of the 

housing condition, but only a qualitative assessment of housing peak pressures. 
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(c) Speed Dependent Performance: 

Neither of the Hermite solutions deviate significantly in film-thiclmess 

performance from the 600 rpm curved beam solution, nor over the remaining 

speed range (F6.39). Moreover, 

the discrepancy in load 

convergence limit observed in 

the various steady-state models 

is not as marked in the dynamic 

elastic solutions: curved beam 

solutions converge to 700 rpm; 

housing solutions to 600 rpm; 

Hermite ring solutions to 500 rpm. 

Once again this reflects 

the reduced sensitivity of the 

dynamic Ruston~Homsby problem, 

in this case towards the linearly 

interpolated Hermite element 

(c.f. Section 5.3.2( c)). 
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The associated solution breakdowns occur at around 3400ca (min(hmin)) in the 

curved-beam model and at 700ca in the Hermite solution. The specific 

mechanisms of these failures currently remain undetermined; symptoms are 

typically a total reluctance of the solution scheme to step forward in time. 

We next look at how the various Ruston-Hornsby models fare under gas 

loading. 
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6.2 Gas Load: Ruston-Hornsby 

In the sections that follow, performance of the gas loaded rigid, ring 

housing models are investigated. This work culminates with a comparison 

between these theoretical solutions and actual experimental measurements. 

However, before proceeding, we take a brief look at the load diagram itself. 

6.2.1 Load Diagram 

The gas loaded diagram[ 6] 

takes the form of F6.40. 

Here the inertial 

portion differs 

from the lumped-mass 

inertia diagram 

(F6.1) through the engine 

being supercharged : 

inertial load at IDC 

is decreased (5%); 

at BDC it is increased (6%). 

Peak gas load is 

approximately 1.5 times 

the maximum inertial 

load, its application beginning at about 300oca, maximum load being reached 

700ca later. 

6.2.2 Rigid Bearing Solutions 

The results for the gas loaded rigid bearing are presented in F6.41, F6.42. 

These are developed on a 36 element spatial mesh using a 50ca time step. 

Maximum pressure behaviour is again lumpy through the high whirl 
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regions, mesh homogeneity problems resurfacing. Despite this, minimum film 

thiclmess behaviour is smooth, min(hmin) occurring in the inertial portion of the 

cycle close to one of the six half-whirl speed conditions. 

Also shown in F6.42 is the finite length solution of Goenka[98], extracted 

from a review paper of Martin(23]: the parabolic axial pressure model generates 

slightly thicker films, Goenka obtaining: 

Maximum film pressures are also pleasingly close throughout the cycle. It would 

seem that the combination of centre circumferential oil-groove and short geometry 

(LID = 0.28125) are particularly well served by the parabolic pressure model. 

Of greater interest however, are the elastic solutions. 

6.2.3 ' Elastic Bearing Solutions 

Two elastic gas loaded solutions were investigated in this work; a 3600 

curved-beam solution and an Hermite housing solution. We look firstly at the 

beam solution. 

(a) Cwved-Beam Solution: 

The 3600 beam solution is presented in F6.43, F6.44 on a 36 element spatial 

mesh and nominally SOca time step. It is useful to divide this solution into inertial 

and gas loaded portions: 

Inertial loading features through crank angles 560-2800ca; half-whirl speeds, 

600ca film collapse, peak pressure forms and locus are all largely unchanged from 

the previous inertial solution (F6.9, F6.10). Only film-thiclmess response around 

IDe is noticeably affected; a sensitivity to load through these crank angles was 

noted in the inertial solutions of Section 6.1.3(b). Positionally min(hmin) is 
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unaffected at 6300ca (2700ca in F6.10) although reduced 14% in magnitude over 

the inertial solution; previous gas loaded film history is mainly responsible here, 

significant gas forces still being present at 540oca. 

During the remaining gas portion of the cycle, peak pressure and minimum 

film thiclmess forms are very similar to the rigid solution: peak pressures rise 

markedly above those of the rigid model in response to the elastic discontinuity of 

the neck restraint. However, the most interesting difference is the appearance of 

an additional film collapse. 

Gas Induced Film Collapse: At the point of gas locus reversal (3200ca) an 

additional film collapse appears at a spatial angle of 900ba (See F6.47). Although 

of similar duration (180ca) and mechanism to the 600ca collapse, it is much 

stronger in magnitude; higher negative pressures are developed. It is not present 

in the rigid bearing. 

, It would be easy to dismiss this and the earlier 600ca collapse as being 

inconsequential; the associated oil~film conditions are admittedly simplistic. 

However, the strong attendant journal action cannot be ignored, such mechanisms 

having been implicated in the cavitation erosion of dynamically loaded 

bearings [53] . Elastic analyses clearly offer useful additional insight into such 

cases. Unfortunately, much of the associated data is commercially sensitive and 

consequently unavailable in the open literature. 

(b) Housing Solutions : 

The Hermite housing solution is presented in F6.45 and F6.46, again using 

36 spatial elements and a 50c a nominal time step length. 

Performance shifts between ring and housing solutions nurror those 

observed in the inertially loaded bearing: increased elastic stiffness is reflected in 

locus and hmin behaviour around IDe; min(hmin) remains largely unaffected in 
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either magnitude or position; the 600ca film collapse survives the geometry 

change as does the gas induced collapse at 3200 ca. 

Peak: pressures during gas loading are reduced to rigid bearing level by the 

removal of the neck discontinuity; in fact the rigid model provides a good 

estimate of maxcpmax). Other pressures formed in the neck region (1800ca, 

5200ca) are similarly reduced. 

A direct comparison of ring and housing solutions throughout the load 

cycle is provided in F6.47. Here film-thickness and pressure are presented every 

300ca. Development of pressure oscillations in the housing solution at 6300ca 

indicates that this model has about reached its convergence limit. 

Overall, the closeness of ring and housing solutions at this detailed level, 

confirms the usefulness of the ring solution in assessingminirnum film thickness 

and in particular that of min(llmin). 

6.2.4 . Experimental Results 

Evidence from a variety of experimental bearings indicates appreciable 

elastic dis torsion under dynamic loading[34,35,36]: observed back clearance t is 

greater than diametral clearance. This would seem to have intimidated 

theoretical workers from producing detailed comparisons with experimental 

results; it is not for lack of experimental material: Butcher[34] published in situ 

film-thickness measurements of the R-H bearing under dynamic load: Cooke[97] 

at NEL has studied the R-H bearing in a rigid bearing sinmlator. 

(a) Cooke's Work: 

Cooke's work involved the dynamic measurement of pressure, journal locus 

and oil-flows under varying geometry. Unfortunately, this was performed in a 

t maximum film-thickness 
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'massive' test housing and consequently has little relevance to the current elastic 

con-rod problem; the quality of these results do however beg theoretical 

investigation by future workers. 

(b) Butchers 

Butcher's in situ film-thickness measurements are however particularly 

valuable: dynamic film-thickness was measured with capacitance probes at six 

spatial points (510, 1110, 1710, 2310, 291, 3510ba), the probes positioned in the 

centre circumferential groove of the R-H rod. 

Butcher expresses certain reservations about the work, in particular the 

probes, situated in the bearing shell, are unsupported by the oil-groove. Several 

further reservations should also be expressed: journal and housing ovality were 

unmeasured; gas load unmonitored. Moreover, there are synchronisation effects 

in the results: probe measurements were not performed simultaneously; at any 

given crank angle, the various probe measurements are from different load cycles. 

Gas load variability thus enters into these measurements. 

Bearing these points in mind, the results of the rigid solution, Hermite 

housing solution and Butcher's experimental work are gathered together in F6.48 : 

Circumferential variations in film-thickness and pressure are shown every 300ca for 

the full gas cycle. An absolute accuracy of ± 0.03 B (± 0.0001") is claimed for the 

capacitive probes, however the 3600ca result would indicate that repeatability is 

only of the order of 0.15 B. 

For crank angles 570-9QOca, the period of journal traversal through the cap, 

elastic models show a marked improvement in film-thickness prediction over the 

rigid model. This improvement is exemplified by the IDe result; here back 

clearance corresponds closely with measured clearance, wrap-around also shows 

good correlation. 
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From 900ca through to 1600ca poor correspondence of both rigid and 

elastic solutions is evident. However, from 1800ca through to 330oca, elastic 

film-thiclmess again shows good correlation, better than the rigid counterpart. 

Poor correspondence is evident through the remaining gas loaded portions 

of the cycle (360-5400ca) although the rigid solution shows equally poor 

correspondence. TIlls portion of the cycle is open to the greatest variability; 

probe measurements can be from different gas cycles. 

In general measured 

results indicate greater 

film asymmetry about the rod 

centre-line than predicted by 

theory, this asymmetry being 

present throughout the load 

cycle. Comparison of actual 

and theoretical geometries (F6.49) 

shows one possible source: oil-film 

pressure acts at the bearing centre 
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whilst the reacting big-end portion of the body-force acts at the centre of mass; 

any difference in these centres produces a dynamic couple on the big-end 

promoting asymmetric distorsion. 

Clearly, assessment of overall agreement depends on where ones bias lies: 

it is probably fair to say that the elastic solution represents an encouraging 

improvement over the rigid solution, particularly during journal traversal of the 

con-rod cap. It is also clear that there are several periods where neither solution 

is representative of the experimental measurements. 

Given the state of current theoretical tools, a new experimental program is 

probably overdue: rod stiffness could be determined statically to ascertain 

asymmetries; dynamic strain measurements to determine housing motion. A 
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series of motored film~thickness measurements would alone provide valuable new 

insight into this complex problem. 

From the evidence amassed in this Chapter, a sequence of similarities can 

be constructed: experimental film~thickness measurements show encouraging 

correlation with theoretical gas loaded predictions; theoretical gas loaded 

film-thickness can be accurately assessed from inertial loaded solutions; 

film~thickness behaviour of inertially loaded housings is very similar to the 

inertially loaded ring solutions. It would seem then that, regarding min(hmin), 

inertial ring solutions could form the basis of an accurate performance assessment. 

This and the associated non-dimensionalisation are the subject of the following 

Chapter . 

. With regard to oil-film pressure however, ring solutions will not suffice 

the rigid solution is sufficient for determining max(pmax) during gas loading 

however, a full housing solution is necessary for the inertial variations. 
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CHAPTER 

NON-DIMENSIONAL FILM THICKNESS ASSESSMENT 

Both designer and researcher have a common need for bearing 

performance parameterisation: the designer in determining optimal geometries; 

the researcher in establishing modus operandi. 

Until now, 'tuning' of bearings has in this work been performed intuitively; 

load variation through journal speed; stiffness variation through housing thickness. 

However, the difficulty encountered in just establishing elastic solutions, ill 

particular for the beating of Fantino[24], motivated such a parameterisation. 

Several parameterisations of rigid bearing performance are available in the 

literature. In 1967 an important paper was published on big-end bearing design 

by Martin and Booker[96]. The basic thesis of this work was that provided peak 

firing load was less than five times the peak inertial load, minimum film-thickness 

could in general be predicted by considering inertial load alone. This, as shown 

in the previous Chapter, also holds in elastic bearings. 

The result of Martin's assumptions was a simple design chart based on a 

short-bearing approximation. This approximation was later removed in a further 

simplified chart by Uoyd[99]. 

In the following sections we trace the development of a chart similar to 

Lloyd's, but in an elastic environment; F7.1 gathers together the various 

non-dimensional components. 
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(A4.20) 

EQUATIONS 

( 3.14 ) 

A 

( 3.31 ) 

(A4.1B) 

F7.1 



7.1 Load Diagram 

The dimensionless load 

diagram used in this work is 

the one of F7.2. This 

diagram is based on a fixed 

crank-radius to con-rod 

length of 1:4 and equal big 

(mb) and little-end (mf+mp) 

masses. Both Martin and 

lloyd have shown these two 

parameters to be of secondary 

importance in determining 

the load diagram compared to 
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dimensionless load F: for any particular bearing we have from Appendix A4(g) : 

(A4.19) 

where 

F= (7.1) 

This load number is different from that used by lloyd; it is rooted in short, rather 

than long bearing theory. This will be seen to have several benefits. 

7.2 Rigid Bearing Results 

The rigid bearing performance diagram for the parabolic pressure model is 

given in F7.3. These results are based on a 36 element spatial mesh, 50 ca time 

step. 
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Also shown are the finite length results of Uoyd and steady-state short 

bearing perfomlance. Once again, the parabolic axial pressure assumption closely 

matches the finite dynamic solutions of Uoyd. It is also of interest to note the 

'straight line' behaviour of the short bearing solution (LID == 0). This 

relationship, not directly available in Uoyd's non-dimensionalisation, was 

determined to be : 

h . I :::: 0.159 F-0.594; r2 == 0.999"1 
mm L/D=O 

It represents an upper bound to dynamic film thiclmess over all LID ratios. 

Poorer although still quite acceptable fits were obtained for the remaining LID 

ratios: 

h . I = 0.140 F-0.729 ; r2 :::: 0.993 
mm L/D=t 

hminl = 0.102 F O.891 ; r2 = 0.989 . 
L/D=t 

In comparison, short steady-state performance is as follows : 

h . I = 0.194 F-0.494; r2 = 1.000 
mm L/D=O 

Of greater interest however, are the elastic solutions. 

r is the correlation coefficient 
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7.3 Ela. ... tic Bearing Results 

At first appearance, non-dimensionalisation of the elastic bearing would 

seem a pointless task; the addition of two major elastic parameters, A and each 

varying with engine speed, leads to considerable complexity. Fortunately, it is 

fairly easily shown that A, :=: and F are interrelated in a much simpler fashion. 

7.3.1 Primary Parameters 

Two primary elastic parameters were first isolated in Section 3.2.3. 

It A flexibility due to pressure 

It ...... flexibility due to body-force. 

For curved beams, these can be expressed as : 

A = 2i/w [i5r[~3 VJ=-. 12[U3 (1 + t/2r)3 

== 6~w !!f- [~] 3 (1 + t/2r)3 , 

where I is the second moment of area of the beam about the N-A 

These can be related to non-dimensional load F as follows : 

(7.2) 

(7.3) 

(7.4) 

Based on the assumption that big-end mass mb is a ring of internal radius r, 

thickness t and width W, we can write: 

mb == 4np'r3 it~(l + tlZr) , (7.5) 
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here adjusted density pi is determined as per Appendix A4(f). After some 

manipulation (7.1, and 7.4) it is possible to show that: 

(7.6) 

This amounts to exchanging :3 for mb in our non-dimensional parameter set; it 
mt 

offers significant advantages since mb typically varies from 0.3-0.6 whilst :3 varies 
mt 

with engine speed. 

To achieve consistent body-force loadings we set mb in-line with that used 
mt 

in the load diagram : 

mb :;;;: 0.5 
mt 

The influence of this parameter on performance is investigated further in Section 

7.3.2(a). 

(a) Performance Curves . rob :;;;: 05 • rot . 

Our non-dimensionalisation now incorporates just three major parameters: 

LjD, F and A. General elastic performance can now be presented as a series of 

rigid style charts at various flexibilities A : F7.4 shows curves for A 1, 5, 10, 20 

over a range of load and LjD ratio. These solutions are developed' on a 36 

element circumferential mesh using a 50 ca time step. 

Probably the most general observation to be made is that bearing flexibility 

diminishes the LjD performance distinction ; circumferential pressure flows 

decrease with distortion as indicated by the shift towards the short bearing modeL 

At any particular flexibility, performance is very similar to that encountered 

in Chapter Six: film-thickness is increased over the rigid solution while the point 

of minimum film thickness remains in the proximity of the rod neck. this 
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point moves out of the neck, a rapid film-thickness reduction occurs, this transition 

developing at lower loads as flexibility increases. 

Prior to transition, bearing operation is more amicable than the rigid 

bearing; thicker films are developed with lower sensitivity to load. Post transition 

behaviour is more hostile; reduced film thickness with a greater load sensitivity. 

Clearly, the point at which this transition occurs is important. 

(b) Transition Point Determination : 

In the previous Chapter we observed transition as a shift from neck based 

minimum films to cap based minimum films. In the non-dimensionalised bearing 

the situation is slightly more complicated: 

At higher flexibilities (A > 5) transition occurs as in the Ruston and 

Hornsby case; the minimum film shifts from being at 2700 ca (200 ba) to around 

OOca (N 1200 ba). However, at lower flexibilities (A = 1) the shift is to 900 ca 

(2600 ba). Plotting this 

transition load as a 

function of flexibility gives 

F7.5, the different 

mechanism of A = 1 standing 

out from the A > 1 data. 

The latter points can be seen 

to closely obey a relationship 

of the form: 

10 

.1 

1 

Transition Point 

\ 
\ 

10 

A 

100 
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.6. := AF = 9 (7.7) 

The simplicity of this relationship at first came as a surprise, however its 

interpretation is really quite plain: A is a measure of flexibility, F a measure of 

total dynamic load (pressure) ; the product .6., is a measure of dynamic bearing 

deflection due to pressure. The above relationship thus states that when 

non-dimensional pressure deflection reaches nine, a transition in operating regime 

occurs. Bearing performance is then much more sensitive to load· and elastic 

geometry. 

For the current work we treat the A :;; 1 mechanism as if it were a .6. = 9 

condition: future investigations could determine its influence and extent. 

7.3.2 SecondanJ Parameters 

Four secondary parameters are involved ill our non-dimensionalisation. 

We look at each in turn. 

(a) Lumped Mass Ratio: :~ 

In the preceding charts, was set such that big-end and total little-end 
ffit 

masses were equal. It is interesting to observe the effects of altering this ratio : 

:::: is changed according to equation (7.6); load diagram according to Appendix 

A4t. Figure F7.6 shows results for ratios of ~and t (LID = 0.25, A 5). 

The load diagram is altered to maintain a consistent body force. 
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The small overall changes in minimum film-thickness performance illustrate 

the secondary nature 

of this variation: a reduced 

big-end mass thickens the 

minimum oil-film and delays 

the transition of the cap 

condition. 

(b) Obliquity Ratio: R/ l 

Obliquity ratio is quite a 

permeating influence. It is a 

secondary effect in the load 

diagram and body force; it also 

appears in Reynolds equation 

through speed modifier s. 

Figure Fl.7 illustrates its 

influence on minimum film 

thickness. 

Pre-transition solutions 

are hardly altered: min(hmin) 

occurs at around 2700 ca where 

the effects of R/ e are not 

felt - this is the reason why 

rigid bearing analyses are so 

insensitive to obliquity. 

.1 

1 

.01 

.1 

Lumped 

1 10 

Dbnensionless Load 

Obliquity Ratio 

o 
+ 

1 10 

Dimensionless Load 

100 

100 

Post-transition changes are on a par with L/D changes, min (h
min

) 

occurring close to TDC where R/ l effects are greatest: films thicken with 

reduced obliquity; transition points remain unchanged. Much of this change can 
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be attributed to increased journal speed: changing Rf e from 0.2 to 0.4 causes a 

speed and consequent load increase of 17% [i:ij at me. 

(c) Internal Parameters : 

Two elastic parameters 

are required internally by the 

elasticity model: tfr is used 

in the implementation of beam 

theory; ff-to determine the 

position of the centroid through 

which the body-force acts. 

As noted in Section 4.2.3, 

internal dependence of thick beam 

behaviour on tfr is very weak: tests 

1 

.01 

o t/r: 0.4 \ 
+ t/r: 0.6 \. 

.1 1 10 100 

Dimensionless Load 

varying tfr from 0.4 to 0.6 in the LfD = t, A = 5 bearing (F7.8) produced little 

discernible difference. The major influence of this parameter is accounted for in 

A and F; all remaining dimensionless solutions use tfr = t. 

The second parameter is somewhat more arbitrarily chosen to be 0.8: the 

R-H rod is 0.7; Fantino's rod Body-Force ............... "" 

is 0.8. Figure F7.9 shows 

results at 0.6 and 1.0 for 

LfD = i, A 5; very weak 

internal dependence is indicated, 

the major influence of this 

parameter being felt through 

dimensionless load F. 

.1 1 10 

Dimensionless 

100 
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7.3.3 Controlling Geometric Terms 

From the charts and deflection measures of the previous sections, a picture 

of elastic bearing performance has begun to emerge : 

Two primary parameters, load F and flexibility A, have been seen to 

dominate elastic bearing performance. Both these parameters are dynamic, being 

functions of journal speed. They can thus vary several orders of magnitude 

during engine operation. 

For a reasonably flexible bearing (A > 1), length-diameter ratio is relegated 

to a secondary effect along with lumped mass ratio, various internal elastic effects 

and obliquity-r. All these secondary parameters are geometric quantities and 

consequently static; in a first approximation they can be neglected. 

It is useful then to look at a breakdown of the two dominant parameters to 

determine the major geometric influences on elastic bearing performance. 

Taking expressions (7.1), (7.2) and (7.7) and assuming the total rod/piston 

mass· is proportional to the big-end mass, it is possible to extract the following 

proportionalities : 

wRc 2 
F ll' ptWrc tt nrL3 

where 

rc is the section centroidal radius, k the radius of gyration of the section about rc. 

post-transition obliquity effects are assumed to be incorporated by altering 

load. 
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For converuence assume k Qt t1" and re ~ r; Table 17.1 then gives the power 

relationships for the various proportionalities : 

parameter F A .6-

j}, -1 +1 0 

E 0 -1 -1 
p +1 0 +1 
w +1 +1 +2 
R +1 0 +1 

Win +1 -1 0 

c +2 -3 -1 
t +1 -3 -2 
L -3 +3 0 

r 0 +4 +4 
k 0 -2 -2 

'17.1 

It is reassuring that t and w behave as intuition would dictate; t weakly 

increasing load but strongly reducing flexibility; w increasing load and flexibility 

but being detrimental to deflection. Of particular note are parameters c, t and 

L : any variation towards improved performance from a rigid perspective (lowering 

F) has a detrimental effect on flexibility. 

The strongest elasticity determinator however is journal/housing radius, r4 : 

Clearly from an elastic standpoint journal radius should be kept to the minimum 

dictated by crankshaft stress considerations. This is contrary to what one would 

expect from a specific loading basis; it comes about through housing flexibility 

being proportional to re3, 

t true for simple solid sections 
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As a case study for these observations, we ne:A.i look at the troublesome 

bearing of Fantino. 

7.3.4 Case Study: Fantino's Bearing 

Two studies are presented in this section : a verification of chart 

determinations against actual bearing calculations and a study of non-dimensional 

parameter manipulation from a design standpoint. 

However, before beginning it is useful to illustrate the disparity between the 

dimensionless parameters of Fantino's bearing and the Ruston and Hornsby 

bearing of Chapter Six : Table TI.2 presents the data; Appendix AS contains the 

calculations: 

F A .6. 

Ruston and Hornsby (600) 3.S 2.6 10 

Fantino (5500) 1.6 31.3 49 

D.2 

In comparison to the Ruston-Hornsby bearing, Fantino's bearing is lightly 

loaded but extremely flexible. From a rigid bearing perspective one would not 

expect problems, the bearing being so lowly loaded, however problems it definitely 

has. 

, 
(a) Chart Verification: 

From the deflection measures developed in previous sections, transition 

would be expected to occur at a lowly 2500 rpm. Operation is consequently 

mainly in the post-transition regime with all the attendant problems of oil-film 

fragmentation. 
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Performance under' exact', rather than chart conditions is presented in 

F7.1O: transition is observed 

to occur between 2500 and 3000 rpm, 

this corresponding to ~ ::::: 10-15 ; 

convergence is maintained through 

to 4000 rpm or ~ = 23. The mesh used 

is the usual 36 spatial elements, 

50 ca setup. 

Chart results are presented in 1'7.3 

at speeds roughly corresponding to 

flexibilities of 5, 10 and 20. 

w F A 

.1000 0.286 5.68 

2000 0.571 11.37 

3500 0.999 19.89 

'17.3 

1 

.01 
.1 1 10 

Dimensionless Load 

min (exact) llmin (chart) 

0.317 N 0.30 

0.208 tv 0.20 

0.104 N 0.10 

These preliminary results look particularly encouraging although further 

testing over a greater range of geometries would probably be prudent. It is with 

some confidence then, that we can look at a simple design problem. 

(b) Parameter Manipulation: 

Given the disparity between flexibility and load in Fantino's bearing, the 

question arises as to whether we can affect performance gains by trading off 

flexibility with load. Table T7.4 presents some possibilities (Appendix A8 

contains the calculations). 
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Case F A I::. fi . rum 

Standard (5500) 1.6 31 50 

0.89 r 1.7 35 tv 0.01 

k 1.6 20 32 N 0.01 

0.89r, 1.7 13 22 tv 0.03 

17.4 

The strength of radius variation is clearly apparent; a reduction in journal radius 

of 11% produces a similar effect to a 22% increase in the radius of gyration. (k is 

assumed to be obtained without an increase in rod mass). By combining both 

changes it is possible to obtain conditions within the bounds of current 

computational experience (I::. < 20). 

Performance of this stiffened design (r 0.024m, t = 0.0165m) under 

'exact' as opposed to chart conditions is shown in F7.11 ; a full description of the 

5000 rpm solution is given in F7.12, 7.13. Whilst small film-thickness reductions 

have occurred in pre-transition behaviour, substantial improvements in 

post-transition behaviour have Stiffened 

accrued : transition occurs at 

around I::. = 12 (4000 rpm); solution 

convergence is to 5500 rpm; minimum 

film-thiclmess has about doubled. 

Correspondence with chart 

solutions is again close: at 

A !::: 5 (2000 rpm) the chart gives 

0.2 as opposed to 0.182; at 

A!::: 10 (4500 rpm) a chart result 

.1 I 

UlInelrlSl10mess Load 

10 
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h
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mm 
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of O.OB is obtained compared to an 'exact' solution of 0.OB4. 

Finally, results of ± 20% change in radial bearing clearance (c) 

at 5000 rpm are presented in TI.5. 

c 11min h' . nun hmin (ejc') 

O.Be' 0.072 0.057 

c' 0.050 0.050 

1.2e' 0.039 0.047 

TI.5 
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These trends are in~keeping with those observed in rigid bearings[lOO] : increased 

clearance reduces absolute film thickness. 

Summarising, this case study illustrates the usefulness of extending the rigid 

bearing non~dimensionalisation to incorporate primary elastic effects: film 

mechanism transitions, dynamic minimum film-thickness and the interplay of the 

major elastic geometric influences would seem to be sufficiently well portrayed to 

malce this a useful design tool; testing on fmiher bearing geometries will prove its 

worth. 

Additional design charts (Fl.4) at intermediate flexibilities are needed for a 

useful coverage of engine speed ranges. 
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This thesis has embraced the elastohydrodynarnic analysis, solution and 

verification of the dynamic big-end bearing in the aim of providing design level 

information of distorted bearing performance. 

Reynolds' equation has firstly been re-examined in light. of surface 

displacements. A comprehensive evaluation of its application in various con-rod 

reference frames has resulted in a clarified schema for the EHL big-end problem. 

Consistent modelling of the con-rod was found to require the inclusion of elasticity 

body-forces; these additional body-forces provide significant stiffening of the 

big-end eye under dynamic load. All current models were found to be in 

someway deficient in this respect. 

Combining uniform axial film-thickness assumptions with parabolic pressure 

profiles, an approximate hydrodynamic model was constructed: use of the 

parabolic axial profile was subsequently vindicated for bearings of LID < t in 

both rigid and elastic environments. An elastohydrodynamic extension of the 

problem was achieved by coupling either curved-beam or planar Finite Element 

housing models to the previous hydrodynamic equations. 

The curved-beam approach proved instmmental in providing bench mark 

solutions for the F.E. elasticity implementation : the role of discretisation and 

surface displacement interpolation errors were highlighted in the steady-state 

problem; F.E housing solutions were found to be inferior to their curved-beam 

counterparts, increased residual errors restricting convergence at higher load. 

For the dynamic problem, ring, housing and experimental works were 

drawn together to provide a comprehensive verification of dynamic elastic bearing 

behaviour. Journal action in the elastic bearing was found to be much greater 
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than in the rigid bearing due to housing distortion. This increased action leads to 

intense oil-film collapses, likened in this work to vapour cavitation : journal 

motion from the distorted con-rod cap back into the rod neck and rapid journal 

action during load reversal produced short duration oil-film collapses; elastic 

housing discontinuities were also observed to induce such collapses. These 

mechanisms have not been previously observed in theoretical solutions; they were 

not present in the equivalent rigid bearing analyses. 

Strong similarities in film-thickness behaviour were observed between 

experimental and the present elastic housing solutions. These similarities 

extended to the inertial curved-beam solutions, allowing a quite general 

non-dimensional characterisation of minimum film-thickness to be performed. 

With this characterisation, two minimum film regimes were identified : one in 

which the minimum film is located in the rod neck and a second in which the 

minimum film is located in the con-rod cap. 

. The first regime is characterised by a thickening of minimum films over 

their rigid bearing counterparts; this mechanism dominates at low load. The 

second regime is characterised by thinner minimum films and an increased 

sensitivity to load and elastic geometry; this phenomena occurs at higher loads. 

Non-dimensionalisation of the associated transition point, along with bearing 

flexibility and load, enabled quantitative tribological measures of elastic geometry 

to be developed. This characterisation provides useful new insight into con-rod 

design, something that has hitherto been based on intuition; it also marks the 

completion of this work. 

8.1 Future Work 

Extension of the present study should focus on an improved treatment of 

vapour cavitation and the incorporation of axial deformation effects. The work of 

Brewe[55] and Bayada[101] provide a lead for the former effects; Oh's 
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analysis[29] for the latter effects. 

Advancement on either of these fronts will requITe a concomitant 

improvement in solution techniques. The present Newton-Raphson procedures 

are too slow for such extensions : the rigid Ruston and Hornsby gas loaded 

analysis requires around one hour of -1-; the elastic equivalent takes four hours 

of A logical extension would be the use of rank two Quasi-Newton 

Methods[89]. These algorithms would provide faster implementations of the 

present N-R approach without sacrificing its robustness: currently, time stepping 

rarely drops below 2.50 ca, even for gas loaded elastic solutions; less than ten 

solution iterations are typically required at any given time step. 

On the experimental front, initiation of new programs are desperately 

needed : major misconceptions are present in current test-rig procedures, a rigid 

bearing paradigm pervading much of the thinking and consequent hardware of 

experimentalists. Attention would instead be better focused on obtaining 

controlled in situ film measurements. 

i" Digital Micro Vax II 
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APPENDIX 

Equation (2.7) IS a re-organisation of the classical material derivative 

formula [60] : 

Dh = ah + Vh.V ITt Of NN 

This expresses material film derivate g~ (the time rate of change of a quantity at 

a material particle) in terms of the spatial derivative g~ (the time rate of change 

of the quantity at a fixed spatial coordinate) and convective velocity £h.y. (The 

influence of the material point and spatial frame moving with relative velocity V). 
N 

If a reference frame is chosen such that neither surface has spatial 

movement, then spatial derivative -m-is zero and the problem steady-state. 

Material derivative g~ is the spatial velocity one would observe if y = 0, 

for then Dh = 8h This amounts to the velocity of a material point when ITt Of' 
moving with the material frame. 

In all cases, the material point in question is the one coincident with the 

spatial coordinate. 
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.A2 

For an incompressible Newtonian fluid, surface friction tractions are 

determined using[44]: 

(A2.1) 

For thin viscous shear films of negligible curvature, one obtains : 

(A2.2) 

which upon substitution of film velocity (2.2) becomes: 

(A2.3) 

From Section 2.1.2d and 2.3.1 we obtain: 

Vo Vo = wrs[l + 0(£.)] 
2 1 r 

Thus, at the journal surface r = h1. we obtain : 

(A2A) 



The total friction force ff on the journal is given by : 

ff = - JJ TrOI hI rdOdz (+ve anti-clock) 
(}z 

Discretisation: Taking the discretised expressions of Section 3.1.1 : 

friction force becomes : 

aN e 
ff = JJ[~- ~ at- P~ + pWfisj rdOdz 

Oz 
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(A2.5) 

(A2.6) 

Integrating the axial (z) terms and non-dimensional ising according to Section 3.1.3 

gIVes: 

(A2.7) 

where 

A 1 [c] 2 
ff == 6JlwffiL r ff 

Further simplifications result by applying the divergence theorem: 



A2-3 

the latter term being zero. Now from Section 3.1.3 

1"" A an A ,,' 

n ;:; 1 - (cos( <p - 0) + ur ; 7J7J ;:; (sin( <P - 0) + ur 

giving 

== (f t - f t ) - Iu' l' d1l y x x y r 

Thus 

ff~ ~[~ft[[Bf[-~xl] + I[k ~ -[Bfu~1'] d1l~] (A2.8) 

11 

where 

A 

( 
tv [f i + f i] ; t = [t i + t i] Xtv yrJJ N X'" yrJJ (Section 3.1.3) 

Local coordinates e can be introduced into the above integral as per Section 4.1.3. 

Applying order of magnitude arguments to equation (A2.8), it can be seen 

that: 

Oeff) == [~ • O(t,1'). 

Shear tractions are consequently much smaller than external load and normal 

(pressure) tractions. 



A3 

Expressions for the various volume fluxes 9 can be determined by 

integrating velocity expression (2.2) through the fluid film: 

Applying expressions from Section 2.1.2d gives: 

9 - l~:t [; fJlr~8 + ~~ZJ + h (wrs) ~O . 

Discretisation: Taking the expressions of Section 3.1.1 : 

and substituting into the above form gives : 

Non-dimensionalising according to Section 3.1.3 gives: 
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where or component-wise 

where 
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APPENDIX 

Development of connecting-rod kinematic and dynamic relationships is 

undertaken in this Appendix) emphasis being placed upon achieving structural, as 

well as dynamic equivalence. However, before proceeding some notation 

simplification is in order: in this Appendix 

(a) Kinematics 

Picking up the 

notation of Section 2.1.2, 

then with respect to the X-Y 

frame one can write : 

W ::::: Wi; ¢ ;:::;; W2t 

The acceleration at the big and small end is then, respectively : 

£(0,0) 

Ai" 

(A4.1) 

(A4.2) 

(A4.3) 

(A4.4) 

(A4.5) 
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where e is the rod length. Alternatively, III the x/_y' frame the absolute 

acceleration is given by : 

giving big and little end accelerations : 

(A4.6) 

(A4.7) 

These expressions hold for any linkage undergoing circular translatory motion. 

For a connecting rod of length e, the obliquity constraints 

0= ry = fy = ryl(e,o) (A4.8) 

are introduced giving respectively the following <p constraints: 

For a non-oblique rod, <p = ~ = ¥ = 0 . 

(b) Rod Dynamics 

Lineal' lvIomentum : Following Section 2.2.1 we have: 

(2.29) 
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Now for a rigid body: 

J phdV == J P£'dV 
V V 

where m is the total mass of the body~ a ' the absolute acceleration of the centre g Ng 

of mass in reference frame x' -y'. 

Conservation of linear momentum is then given by : 

where t·' == J(t ). dS (See F A4.2) 
Nl Nn 1 

Angula-r Nlomentum : 

Taking moments about 

point s. the expression of 

angular momentum becomes : 

(F A4.2) 

J.~ x phdV + J ~ x (tn) f dS + J ~ x (In)b dS == 0 

V Sf Sb 

Writing,( == g + E and letting ~ == E. we obtain : 

but 

(A4.9) 

F A+''z 

(A4.1O) 
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Now, for a rigid body: 

where Ib = Ig + mlg2 ; Ib and Ig being respectively the mass moment of inertia 

about the big-end and centre of mass; fg the position of the centre of mass from 

the big-end. Conservation of angular momentum then becomes: 

t. D. 

-¢(I + m f 2)k - m fix (] + f(t ')0 k = 0 g g g N g gN;;J- Y ~ N (A4.11) 

(c) . Piston Dynamics 

Linear Momentum: (F A4.3) 

(A4.12) 

where mp is the total piston mass, 

pa the gas forces. 

(d) Rod-Piston Equilibrium (F A4.2, A4.3) 

(t~)p 

'"ffl+~""" tx 

~-? rnf (ix>p 
FA4·3 

t ' - -i¢ _ [COS¢ sin¢] {tX} ~l + ~p' = 0 where Np - e ~X - -sin¢ cos¢ ty 

so (A4.13) 
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(e) >:loVSI:elll Solution 

The above system of five equations (A4.9, .11, .13) in five unlmowns 

(1b' ,1/ ,ty ) is now fully determined. Taking A4.11, one obtains : 

[ 
e 

+ tj] 

or rewriting in terms of A4.7 gives: 

where 

(tY')b can then be determined from A4.9 giving: 

~] 

or, in terms of the big-end acceleration A4.6 : 
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The x I forces are next determined from A4.13 where : 

_ sin~ 1 ( I) ty - cos tx - cos¢> ty e hence 

(t I) - (t I) sin ~ t 1 
x £ - y £ co s - X co s ¢> 

.. £ I 

[ 
R[coswtP </J£ ~ [ L~] = - mr2R cos(wt-¢» + 7 COS¢>l + W2l{ cosqi 1 - 7! -- ml2] 

+ (m + m )W2R[coswt + R[COSWtJ2 + ~£ sin~l + ~ 
£ p COSij) 7 COS¢>l W2l{ co s J co s ¢ . 

Rewriting in terms of the small-end acceleration A4.7 : 

The remaining big-end force is determined from A4.9 giving : 

_ (m + m )W2R[coswt + R [coswtP + ;P0£ sin~l _ ~ 
£ p COSij) 7 COS¢>l W2I{ cos J cos¢ 

Rewriting in terms of the big-end acceleration A4.6 : 
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Summarising, the little-end forces are 

(A4.14) 

(A4.1S) 

whilst the big-end forces are given by : 

(A4.16) 

.. 
(ty? )b mb (ay')b - m>l< ¢l (A4.17) 

where 

These expressions determine three appropriate mass lumpings for a dynamically 

equivalent connecting rod. 

It will be observed that the linear accelerations ~', ;Pe and (f'x)p are all of 

similar magnitude, O(w2.R). The relative contributions to the big-end forces are 

therefore proportional to : 

In practice, mt' mb> > mll< allowing a two mass t lumping scheme to be used with 

little loss of accuracy, 



A4-8 

(f) Structural-Dynamic Consistency 

Section introduced body forces pJt in regions V* to achieve consistent 

structural loadings. Within frame Xl - yl these are given by 

!2*(p,O) :::: (A4.18) 

However, to avoid further inconsistencies, the structural model to which these are 

applied must be of comparable geometry to that used in the dynamic modeL 

To this end, a structurally equivalent rod consisting of a ring of thickness t 

(with or without a neck) is firstly produced. (F A4.4 ii). 

Ph,y.slcaf( 

CovJecfri13 Rod 
smcfuro. R 

£ CpA IUt/( JeA t 

6 * I _ .!!:J1:... 
.-..; I f - fnr/()!J to 

cii; (iii) FA4·4 

Thic1mess t is determined using equivalent cross-section second moments of area. 

The dynamic equivalent is then constructed using a big-end ring of 

thickness t, density pi and small-end point mass mp (F A4.4 iii). Adjusted density 

pI is introduced to bring the ring mass in line with mb, the dynamically 



equivalent big-end mass : 

mb 
P' := m . 

r lllg 
.p 

Such a construction has a small additional 'inertial mass' : 

This can be safely ignored along with the usual 'inertial mass' 

A4-9 

The application of 12* to the structural model is then only on the ring (not 

the neck if one is present) using adjusted density p'. Structural and dynamic 

similarity are this way achieved. 

(g) Non-Dimensional Load 

To complete this Appendix, a non-dimensionalisation in keeping with the 

remainder of the work is presented : 

Comparing forms (A4.9) and (2.30, .31, .32), it is apparent that f := - ~b" 

Non-dimensionalising in accordance with (3.15,.16) we can write: 

m A-

t - t wR [cP t 
N - b JLn r L LJ N 

(A4.19) 
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where m
t 

is the total rod/piston mass t and l, dimensionless external load given by 

-1b/mtw2R. Expanding: 

Am" m 
1> b s in~ >I< IX' == --cos(wt - ¢) + -m t cos m t 

+ 1 
cos¢> 

(A4.20) 

These are the forms used to generate the inertial and non-dimensional loads of 

Chapter Six and Seven. 
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APPENDIX 

Constants ci take on a variety of fonus depending on the type of bending 

theory used : 

c. Ref[62] Thick Beam Thin Beam Theory 
1 

Theory 
Extensional Inextensional 

c1 - (1 +iz)~ [~:l 1 1 

C2 c1 1 1 1 

c3 c4 
1 - izt1 - E7GK~ 1-z 1 I+z 1+iz 1+E GK 

c4 c5 
2 2 1 1 + iz(1 + E/GK) z 

c5 c6 
2i 2 1 1 +iz(1 + E/GK) 1+z 

2i(1+iz) 2 1 c6 C 1 +lZ( 1 + b7GK) 7 +z 

TAS 

For rectangular sections: 

fe ] --1 
r· 

1 

See Timoshenko[95] for other sections (where m ::: iz). 
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Matrices X, Y and W of Section 3.2.1 are as follows: 

X= 0 -1 0 0 -1 0 

-1 0 0 c3 0 1 

0 0 0 C 1 C 4 0 c 1 

-s InG' -COSG' -G'S i nG' -G'cos G' -1 0 

-cos G' sinG' (C3S i nG'- G'cosG') (C3COS G'+ G'sinG') G' 1 

0 0 CIC4SllG' C1C4COSG' c 1 G' c1 

Y= 0 0 0 c 6 0 0 

0 0 c 6 0 0 0 

0 0 -c5 0 -C2 0 

0 0 -c6s1nG' -c6cos G' 0 0 

0 0 -C6COS G' C6 S1nG' 0 0 

0 0 c5cosG' -C5SllG' C2 0 

W= . sin(\' _ ~Q:. _ 1 + ~. 
(\' a Q 

8 + 4s i n(\' + SCOSCl' 
-~ -(\'- cr (1- ~COSCl'- 3si n(\' + ~ (\' (\' a 

_ cos(\' + ~(\' .l. 
(\' (\' (\' 

_ ~n(\' t 4coSCl' t 1. 
(\' (\' (\' 

( 4). 3cos(\' 1 - 1- dT. sm(\'- -(\' -- a 

(12 ). 6cos(\' 6 (4- ~sin(\'+ 16cos(\' + .! 12. 10 2 
~-1 sm(\'· -(\'- - a 

(\' (\' (\' 
-(4- ~)sm(\'-(a-(\')cos(\,- a 

(#-I)CoSCl'+ 6si n(\' _ # + 1 (4 ~ 16sin(\' + 24 10 . 12 P 
(\' (\' a . (\' cosa- -a- ~ -(a- ~sm(\'.(4- ~cosa. cfr 

(\' 2(\' (\' 
-D -r -D 

0 0 0 

where G' IS the included angle of the element. 
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APPENDIXA6 

ELASTIC DISPLACEMENT TRIAL FUNCTIONS 

A function <p. can be 

interpolated from four sets 

G<p. G<p. 
of nodal variables <p., ~ ~ 

1 uU - uv 

through cubic Hermite functions 

N. M. pJ69] 
l' l' 1 : 

(I)~J) 

+ ~is.plqGemz()+ nodes (cp) ~ ) $) 
o ~tr~ nDdes (x)fj) FA6" 

where 1 
Ni = g-(uo + l)(vo + 1)(2 + Uo + Vo - u2 - V2) 

This representation uses nodal derivatives set in the local coordinates u,v. More 

convenient global derivatives are obtained through a Jacobian representation of 

the chain-rule: 
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giving tjJ == -&.tjJ. + lVI. [oQ)l. + P. [(}ljJJ 
11 IOXJl 1000i 

where ~. 
1 

N.; lVI. == M.[~ + P.[~ ; P. 
1 1 1 UUJ. 1 UV]. 1 

1 1 

Jacobian [J] is determined from an 8-nodal quadratic geometry representation[69]: 

x == Q.x. ; y = Q.y. 
J J J J 

G = 1,8) 

where Q j H1 + uo)(l + vo)(uo + Vo 1) at corners. 

H1 - u2)(1 + vo) at mid~sides, Uj O. 

H1 + uo)(l - v2) at mid-sides, Vj O. 

Elastic displacement fields U x and uy are determined analogously: 

OlVIOP 

:&OlVIO ~l. 
1 

~ 
1 
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If instead, nodal cylindrical polar coordinates are preferred, then [J] is evaluated 

with respect to cylindrical nodal coordinates and rotations performed on the pairs 

(u ,u), ~,~ ,. ~,~ . The nodal variables then become[60] [
aU Ou 1 [Ou au 1 . 

x y ox ox oy oy 
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APPENDIXAB 

(a) Ruston Hornsby Bearing[ 6] 

c == 0.00325" == 0.08255 mm 

r :::::: 4" ::: 0.1016 m 

mb ::: 120 lbf 54.43 kg 

m
t 

::: 361 Ibf ::: 163.74 kg 

L::::: 2.25" 

W:::::: 5.2" 

0.05715 m 

== 0.1321 m 

w == 62.84 rad/sec (600 rpm) 

t£ :::::: 2.17xlO-61bfs/in2 :::: 0.01496 Ns/m2 

E == 30x106 Ibf/in2 ::: 2.07xlO11 N /m2 

. t :::::: 2" :::::: 0.0508 m 

e = 30.8" ::: 0.7823 m 

R :::::: 7.2SU :::::: 0.1842 m 

n=2 

L/D = 0.28125 

t/r == 0.5 

R/l == 0.2354 

~~ == 0.3324 

r + il2 = 0.6897 

A - 24(.01496)(62.84) (28125)2 [ 4 J ~ . 96 (1.25)3 
- 2.07 x 1011 . . .00325 ~~ 

== 2.61 

F - 163.74 . (62.84)(.1842) [.00325J2 
- 6 {0N496)2(O.05715)(.1016) 2.25 

::::: 3.79 

S :::::: ~~ . AF /27r ::: 0.5237 

,6. :::: (2.61)(3.79) 9.89 



(b) Fantino's Bearing[24] 

The basic geometric parameters of Fantino's bearing are : 

0.0228 m 

R:::: 0.040m 

r :: 0.027 m 

c == 2x10-5 m 

W :::: 5500 rpm == 576 rad/sec 

J1 :: 0.0055 Ns/m2 

E :::: 2xlO11 N/m2 

p :::: 7860 kg/m3 

Standard : 5500 rpm 

t :::: 0.0135 m t/r =:= 0.5 

r == 0.027 m L/D :: 0.4222 

A = 24(0.0055)(576) (04222)2 [0.027 13 
2x10II . 2x10- 5] 

:::: 31.26 

fip == 0.853 kg 

m£ :::: 0.316 kg 

mb == 0.631 kg 

fit == 1.800 kg 

l = 0.16 m 

n = 1 

W 0.0228m 

R/£ == 0.25 

~~ == 0.351 

1.8 ~576}(0. 040) [2X102~J 2 
F = ow.ooS5)(O.0228)(O.027) 0.02 

== 1.57 

3 == mb AF /27r 2.74 
mt 

.6. == AF == 49.08 

For formulars based on density we note that: 

mring ::: 47r(7860)(0.027)3 K~~~8 (0.5)(1.25) == 0.513 kg 

thus 

pI == ~b. p:::: 1.23p 9668 kg/m3 
!'lug 
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Effect of Reducing Journal Radius : 

Taking the standard case and reducing journal radius 11 % : 

r == 0.024 m t/l' ::: 0.5625 L/D == 0.4750 

t ::: 0.0135 m 

A ::::: 24(0·g~i5if576) (0.4750)2 [0.024 3 [cH~~g5] 3 

::::: 21.0 

An estimate of total mass is obtained as follows : 

mb := 411"(9668)(0.024)3 g:~§8 (0.5625)(1.28125) :::: 0.575 kg 

3 
mt ::::: mb + me + mp ~ 2" mb + mp :::: 1.72 kg 

Hence our mass related numbers are : 

1. 72 (576}(0.040) [2xlO- 5] 2 
F == ~(0.0055)(0.022S)(0.024) 0.0228 

:::: 1.69 

:3 ::: 0.575 (1.69)(21.0)/211" =: 1.89 

,6. 35.49 

A...iLL""..,,,, of Increasing the Radius of Gyration (k) : 

AS-3 

the standard case and increase k (t) by 22% without increasing the 

rod mass, then: 

t 0.0165 m 

r == 0.027 m 

t/r := 0.6111 

m
t 

== 0.631 kg 

A - 24(0.0055)(576) (04222)2 [0.027] 12[1.3055]3 
- 2x101 I . 2xlO- 5 0.6111 

F ::::: 

19.50 

(0.351)(19.5)(1.57)/211' = 1.71 

30.6 



Reduce Radius and Increase Gyration: 

Combining the above two effects we obtain: 

r == 0.024 m 

t 0.0165 m 

t/r :::: 0.6875 

LID::: 0.4750 

A8-4 

Notice that r + t is the same as the standard case; the standard rod is 

bored out to a smaller internal radius. This gives : 

A == 24(0. 00551(576) (04750)2 [g.02\r 12 [1.34375J 3 
2xl01 . x10- ~ 

= 13.28 

F = 1.69 (mass unaltered by gyration increase) 

1.194 

.6. == 22.44 
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