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ABSTRACT

Lubrication of the big-end bearing is re-examined under
elastohydrodynamic assumptions.  All current models were found to be in
someway deficient, motivating the development of a new consistent schema.

Uniform axial film-thickness assumptions and parabolic axial pressure
profiles are combined with curved-beam and planar Finite Element housings to
produce a single dimensional EHL. model. Body-forces due to con-rod motion
were found to be a necessary part of the elasticity implementation. |

The role of discretisation and surface displacement interpolation errors are
investigated under steady load conditions. Under dynamic load, ring, housing and
previous experimental works are compared.

Increased dynamic journal action from housing distorsion was found to lead
to film collapses not present in equivalent rigid bearing analyses; these collapses
are likened to vapour cavitation. Correlation of dynamic film-thickness
measurements with the elastic solutions are generally improved over rigid
predictions.

With regard to minimum film thickness, inertial ;ring‘ solutions gave similar
values to housing solutions with and without gas loading; this facilitates
non-dimensionalisation. Two separate minimum-film régime were subsequently
identified : one in the con-rod neck and a second, at higher load, in the cap. The
first condition sees thicker minimum films than the rigid bearing; the second,
thinner films with an increased sensitivity‘to load.

Non-dimensionalisation of this transition along with bearing flexibility and
load enabled new tribological measures to be developed; the influence of elastic
geometry on minimum film thickness is sufficiently well portrayed to make these

useful design tools.
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CHAPTER ONE

INTRODUCTION

One of the principle tenets of solid mechanics was enunciated by Hookel!!

as the Latin anagram
'ceitinosssituu'

This was later revealed to be 'as the extension so the force' or, in a more modern
idiom, structures resist external forces through deflection,

In many engineering situations dimensional considerations allow such
deformations to be ignored. ~Unfortunately lubricating oil-films are not one of
them: the development over the last 30 years of elastohydrodynamic lubrication
(EHL) theory is witness to this. Although much of this body of work pertains to
the counterformal contact prcblem[z’S], the particular case of the big-end bearing
is in essence no different. Here the characteristic dimension is that of bearing
clearance, typically three orders of magnitude less than the basic geometry: oil-film
forces and con-rod body-forces then exact an influence on dynamic film geometry;
con-rod bolt forces, bearing shell crushing forces, machining and fixturing forces
on static film geometry.

Consequently, the success (or otherwise) of a big-end bearing rests with the
designer having an appreciation of these diverse interactions; this is demonstrably
the case for the various static effects.  Dynamic interactions and their cyclic
ramifications are, in comparison, poorly understood if not misunderstood: this

thesis attempts in some small way to redress this situation.



1.1 Literature
Many of the earlier journal bearing researchers recognised deformation as
being important: Reynelds[4] discussed the influence of elasticity on bearing
clearance; Carl[‘S] attributed reduced experimental péak pressures and positional
shifts in nﬁnimum:filin thickness to distorsion.’ However, by 1966, the review
paper of Campbell[ﬁl on the state of reciprocating bearing research revealed not a
single elastic analysis. This situation was however about to change, two separate
approaches having been initiated :
e the flexible liner problem
e the big-end housing problem
The liner problem began in the work of Higginsonm and O’Donoghue[g};
Higginson used a thin liner or "Winkler' foundationT, O’Donoghue, thick liner
geometry; both used long bearing oil-film assumptions. The latter group
subsequently investigated a variety of effects : validity of thin liner assumptions[g];
finite’ as opposed to long bearing theory[m]; approximate finite length
solutions 1, Conway later tackled the isoviscous a.ssumptionsHZ] along with a
short bearing analysis of thin liners in [13]. Benjanﬁn[14] further extended these

solutions to a liner of finite length, in the process addressing numerical
15]

b

convergence problems. The liner problem still attracts interest today[
however it bears little resemblance to the con-rod problem: liners are
circumferentially symmetric whilst the con-rod has at most, a single circumferential
symmetry; strong coupling between elasticity and oil-film consequently develop for
non-symmetric con-rod loadings.

The second approach, that of elastic housings, was sign-posted by the work
of Ibrahim[lﬁ] - elastic distorsion of static con-rod housings under various load

configurations were presented and seen to be important. Lubrication analysis of

deflection is proportional to pressure



the problem followed in the thesis of A]len[17]: despite an invalid dynamic

formulation, sound planar ring solutions were developed on the steady-state

[22] 18]

equation subset'“, onl later presented a comprehensive Finite Element

analysis incorporating the distorsion of a three-dimensional housing on a finite

length bearing, Fanﬁno[lg]

presented a similar analysis using planar elastic
reiationships, additionally incorporating a piezoviscous lubricant; the development
of oscillatory pressure distributions in this work generated considerable discussion.
Stafford[zol building on Allen’s steady-state approach, presented further planar
Finite Element solutions.

Experimental works accompanied these theoretical solutions: Frenel21]
investigated the distorted forms of an araldite rod using speckle interferometry;
Bozacil??] determined pressure distributions and distorted forms on a geometry
mimicking that of Allen. This latter work verified the multiple pressure peaks
first observed by Allen.

' With hindsight, it is probably fair to say that research during this period lost
sight of the fact that the steady state con-rod problem is by-and-large pathological;

[23]

Martin’s 1983 review paper on 'Developments in Engine Bearing Design’

reflects this, eagerly looking towards the then forthcoming con-rod work of
Fantin0[24].

This work was the first major attempt at extending the steady-state model
to the time domain: a short bearing Reynolds equation approximation was coupled
to planar (two-dimensional) elastic geometry, deformations being determined on
the basis of mean oil-film pressure. Unfortunately, two major errors mar this
implementation: Reynolds’ equation was applied to a frame of reference in which
it was not invoked; elasticity loadings were misrepresented by the exclusion of
body-force displacements. These errors have unfortunately propagated not only

[25,26]

into their later works , but also into the wider literature.



Smithl%7]

incorporates both of Fantino’s errors in a plane strain, short
bearing model. However, he did manage to dispose of one of the offending terms
in Fantino’s equations. I_aBouff[zgl published finite bearing solutions using a
correct form of Reynolds’ equation, their planar. elasticity description only
including the effects of pressure deflections.

In an adventurous departure from Fantino’s model, Oh[29]

incorporates in
a finite length bearing model, the additional effects of axial deformation. A
correct form of Reynolds’ equation is used however deformations are again
determined solely on the basis of pressure.  This error carries over into their
subsequent works: in [30], ¢ priori axial pressure distributions are introduced into
the calculation to reduce computation; [31] uses this improved method to
investigate 'optimal' con-rod geometries.

The first work to incorporate body-force deflections was that of van der

Tempel[32’33].

This work was based on a plane strain elastic model and a short
bearing approximation; a correct form of Reynolds’ equation was invoked
unfortunately in conjunction with an inconsistent model of body-forces. These
forces are simulated by attaching point masses to surface nodes, nodes which only
displace radially: exclusion of the tangential displacements results in only half the

strain energy of these actions appearing in the structure.

To date, none of these dynamic solutions have been verified
[34]

b

experimentally; in fact, one has to go back to the work of But:,cher
Hiruma[35] and Goodwin[z'é] to find relevant experimental measurements. This
is something of a misdemeanour considering the complexity of the problem.

Of all the accompanying EHL developments, probably the most telling have
been in ‘solution techniques. The earlier steady-state works mainly used direct

iteration[ 17,18] :

these solutions required the use of damping to stabilise the
iterations which, in turn, slowed convergence. Benjanﬁn[14] indicated the

direction of future work; he found Newton-Raphson techniques particularly useful



under conditions of heavy load.

[37] into a 'unified

Newton-Raphson has since been expanded by Rohde
treatment' for EHL problems. Its robustness and rapid convergence are however
countered by increased computational cost and complexity: many analysts seem
reluctant to submit to this, damped iterative schemes still being prcsent(%].
011[38] and Kostrcva[sg] have since refined Rhode’s treatment into a
complementarity problem.

More recently, multi-grid techniques have been introduced to the EHL

problff:rnH’O’4 1,

These techniques promise fast convergent solutions, although to
be fair, very little effort has gone into optimising the Newton-Raphson schemes:
Kostreva’s use of non-linear optimisation solvers is a first step in this direction.
All-in-all, the transient’ EHL con-rod problem is both challenging and
attractive: challenging experimentally in that the processes are dynamic and the
films thin; challenging theoretically in that sophisticated numerical procedures are

necessary to generate any solution at all; attractive in that it quite likely holds the

key to understanding plain bearing failure phenomena.

1.2 Scope of the Present Work

This thesis investigates the elastic con-rod problem on two fronts :

Firstly, conspicuous discrepancies have arisen in the various forms of
Reynolds’ equation used in the literature. Furthermore, serious misconceptions
have proliferated regarding con-rod loadings; neither of these issues have been
addressed by the current literature. Thus, we firstly investigate the question of
theory: Chapter Two develops a consistent schema for the dynamic con-rod
problem; Chapters Three through to Six look at the solution and, in particular,
the verification of this model against existing theoretical and experimental works.

The second issue to be addressed is that of mechanisms: Despite a

mounting body of work on the elastic con-rod, very little information has



percolated into the literature regarding elastic oil-film behaviour. Moreover, few,
if any gunidelines have emerged for the designer: Chapter Six provides detailed
information on film mechanisms as affected by elasticity; Chapter Seven presents
a dimensionless characterisation of elastic bearing ' performancc'.

We begin this ihvestigation by looking at the governing equations.



CHAPTER TWO

GOVERNING BOUATIONS

Analysis of an elastohydrodynamic lubrication problem requires the
simultaneous solution of fluid-film and elasticity equations. This Chapter
develops the relevant expressions for this work.

The equations governing lubricating film behaviour are firstly re-examined
in light of small surface displacements, coordinate systems and film geometry
specific to connecting rods being introduced.

Cavitation boundary conditions incorporating traditional gas cavitation
procedures and a tentative vapour cavitation mechanism are constructed
completing the fluid-film description,

Planar elastic relationships, developed in integral form, are then used to
clarify rod loadings. Simplified consistent loading régimes are presented. The
particular elastic descriptions used in this work; thick curved beams and isotropic
plane-stress relationships, are briefly introduced.

Finally, the two sets of relationships are coupled to complete the EHL
description.

Discretisation and solution of these equations are dealt with in Chapters

Three and Four respectively.

2.1 Fluid Film Equations

To outline the inherent assumptions of Reynolds’ equation, a schematic

derivation adopting an isoviscousl 1] incompressible approach is firstly presented.

Detailed treatments have been given elsewhere.[42’43]



2.1.1 Generalised Reynolds Equation

In an inertial reference frame, the equations governing the motion of an

isoviscous incompressible Newtonian fluid may be written as follows 144]

e Conservation of mass
divv = 0
~
@ Conservation of momentum
Dv

Prj%—=pl,3-gradp=ucurlcurlg

where v, p, p and p represent fluid velocity, density, pressure and dynamic viscosity

respectively.

Dv
We assume that inertial forces p ﬁ%and body force pb are small compared

to forces resulting from pressure and viscosity.  This simplifies the governing

equations to :
divy = 0; gradp = - pcurl curl y (2.1)

Reducing the flow geometry to

that of a thin film, one can assume : (F2.1)

V&n,VZ>>Vr Y

Writing

Yx(¥xy) =-Vy

F2l




and neglecting the curvature of the fluid-film to obtain :

3’2\1 1 aQVi QQVH

o +"'2002 A>3

V2y ~ (0, Vv 9 VQVZ) ; Viv, o [
one then assumes that viscous shear effects dominate ,

fﬂvi (92vl 82V

giving
g o

vy v,
curl curl y ~ - {W ot g & }

The statement of conservation of momentum then becomes :

Py
= kgr

where p = p(fzt) ;¥ = ( a—z—e Yy = (vé,e + Ve,

Integrating twice and applying the boundary conditions (F2.2) :

mm%=&+9

where Y, = surface velocity with
respect to frame x-y
q = velocity of frame x-y

relative to frame X-Y

gives

v = Wby + ViR - oy + 4 (22)
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Substituting into (2.1) and integrating through the film :

[divydr=(v_-v )+ [}.ydr provided -
T ~ 2 Iy Pt |

q

divg =0 ;457=0 (2.3)

Applying Leibniz's formulal*>], Reynolds’ equation is obtained in the following

form :[42]

T (yh STp = 6412w, v, )-T(hy +1y). (VoY) (harh)L(Va+ V)] (2.4)

Auxiliary conditions (2.3) define families of reference frames in which (2.4) holds :
rigid body motions satisfy such conditions.

Expressions contained within (2.4) all reference fixed spatial points of the
film-plane, the fundamental equations being Eulerian.  Consequently, terms v i
represent material surface velocities at fixed points in space. To emphasise the

]D;ti = Vi Rearranging (2.4), Reynolds’

material nature of these velocities we write

equation becomes : (h = h, - hy)

V-hoYp = 6u[2(Bn2- Thy- Vo) - 2(p- Thy Vi) + Trh(Va + V)] (2.5)

All dynamic terms are now contained in the first two expressions of the right hand
side, these constituting the spatial derivative denoted %: equation (2.5) can then be

written :

T-h9%p = 6u(2 I+ T-h(Ye + V)] (2.6)

~ n
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dh, Dh,

where i_ i
gt = Dt Y

2.7)

This is the generalised form of Reynolds’ equation‘ to be used in this work.
Interpretation of spatial film derivative (2.7) can éreate confusion, Appendix Al
takes a closer look at its components.

In the following sections, specific coordinate systems and film-geometry
assumptions appropriate to connecting-rods are introduced. = For further
information on friction traction and volume flux expressions see Appendices A2

and A3,

2.12 Film Geometry and Kinematics

One of the predominant geometric features of big-end bearings is that they
are of necessity short; length-diameter ratios are typically much less than unity.
Thus; for the purposes of this analysis, it may be reasonably assumed that the
journal bearing is perfectly aligned.

Furthermore, experimental evidence[21’22]

suggests that, as a first
approximation, an analysis based on mean axial surface displacements would
suffice. Considerable simplification results, displacements being determined using
mean axial pressures in conjunction with plane-stress relationships.

Thus, in the following section, film geometry and kinematics are presented
on the premise that the film thickness is axially constant, varying only as a function

of the circumferential coordinate. Geometry then becomes planar and can be

conveniently analysed using phasor notation.



(a)  Coordinate Systems :

Two coordinate systems are defined as follows :

12

Inertial system X-Y centred on the crankshaft main bearings and aligned with the

centre of the small-end; {ranslating coordinate system x-y, attached to the centre

of the undeformed bearing housing (F2.3).

Translation of the x-y origin
can be described by

q= Reiwlt
where

R = crank-throw radius

w, = crank angular velocity

(eu“}lt = cosw,t + isinwt).

GYA

FZ-3

This satisfies auxiliary criteria (2.3) on g vindicating the use of Reynolds’ form

(2.6) in reference frame X-y.

(b)  Journal Kinematics :

Using the coordinate systems
defined previously, the location of
a material point on the journal (F2.4)
with respect to reference frame x-y, is

given by

Py = eel(b + elﬂ(rﬁurl»l-iuél) A= wt + Y

: Ue

R
Ury
€ 3 © o,
e” R
S
F2:4
(2.8)
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where
€ = journal centre eccentricity
0 = journal centre attitude
] = journal radius
Wy = journal angular velocity
u, = rad%al elastic journal displacement
up = tangential elastic journal displacement
g =  journal angular position (x-y frame) .

Differentiating (2.8) with respect to time, one obtains an expression for the

velocity of the material point :

pi = (e+ied)e'? + (i vy +iCh 91+(r1+ur1)w1))elﬁ (2.9)
J
} 4
(¢)  Bearing Housing Kinematics : Y ’
o ' RIAR S Uz
The location of a material & o
2 Upp
point on the bearing housing (F2.5) " w,
with respect to the x-y frame is given ‘ c"—}\ s’
by =l
F2:5
p2=ei’\(r2+u +iuy ) A = wet + 67 (2.10)
Ty 0y . ’
where

1, = bearing radius

wy = bearing angular velocity

u, = radial elastic bearing deformation

ug, = tangential elastic bearing deformation
A = bearing angular position (x-y frame) .

Surface velocity of the material point is then :

. : oo IA
Py = (ur2 - Ly, + i(u b, + (19 + 1 1~2)wg))el (2.11)
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(d)  Film Kinematics :

The kinematic expressions presented thus far all reference actual material
points.  Reynolds’ equation (2.6) is however spatially referenced; kinematic
expressions at fixed points in space are required. This discrepancy is corrected
through Taylor series expansion of the material expressions back to the
undeformed spatial reference frame. This procedure is aided considerably by

elastic displacements being geometrically small :
0(u;, =m%9=ou)=qu@<<0@ﬁ

Taking equation (2.8) and perturbing by Ag :

Bi = PuB+ AB) = () + AB Y+ 0a)
du u
. : 1 g
= gelé + (ry+ url)elﬁ {1 + Aﬁ[r1+ur1 Oﬁrl T+ &rj

+ i[:férl + Aﬁ{l + r_ﬁl:u_; %H + 0(AR)

p1 is determined at the initially undeformed position by setting :

Ag=—01
rn +u I
. oy
Assuming 0(Af) = 0[1,1 +ur1 -55% , then
@=mm+m+%ﬁﬁmmm 2.12)
similarly, for the bearing housing
Pa=(rp +1u I,z)cl’\ + 0(A?) (2.13)

T 0(+) = the order of (+)
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Just as position vectors are corrected from material to spatial reference frames, so

too must velocities (2.9)(2.11) : taking equation (2.9) and perturbing by Af

b= DulB+AB) = pu(8) + 28 Bv oap
= (¢ + iep)el?

rfli - -ABl0, + (g + )w-aﬁr1+wau0i‘
Iy 11101 u491 1 ur1 1 i){; 1 U,z?

. . ‘9{1{9 é}ur
+ i(Ugi + (rl + url)wl + Aﬁ{url - wluﬁl + BB 1 Tw Bﬂ—l}jl]

u
At the initially undeformed position [Aﬁ - rl—flu—]
Iy
pr = (e+iep)e? + [, + i o+ (+uy Janle P +0(AR) 2.14)
Extension to the bearing housing yields :
L ix
P2 = [ur2 + 1(11‘92 + (rp + urz)wg)]e + 0(AR?) A (2.15)

At this stage housing and journal equations are completely disconnected;
film-thickness provides the unifying factor: define film-thickness h in relation to

reference frame x-y at spatial angnlar coordinate 8§ (¢ "= wyt), then

H= helﬂ = Cig[(l’g + urz) - fei(¢~9) . (I°1 + url)el‘(ﬁ'o)}
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The imaginary component leads to the identity :

ei(ﬂfﬁ) - {1 i sins - g)} + 0(AR) (2.16)
I .
which gives on back substitution :
he'” = el(e, +u,) - (1 4w ) - ecos( - 0] + 0(AR) @17)

Substituting (2.17) into (2.12) and (2.14), the kinematic description of the journal
to O(AS) becomes :

e

Py = eiﬁ[ecos(gb»B) +1n + urj (2.18)
' 131 = eig[(% + ifg'é)ei(@'g)}
fy, + corsin(@-0) + iy + (n + url)wl)} (2.19)

bearing housing relationships become :

[rp +u_] - (220

ps = clé’[ﬁrz +iiy + (0 + 0 0] 2.21)



Component—wise Representation :

17

Rewriting the above equations in the vector

notation of Section 2.1.1, displacement and velocity terms with respect to

reference frame x-y (F2.6) become :
4,
‘ | 4 i S6 e

ho = Tq + ur2 / ﬁ/ f.\ Ori €r
Dhy _ et
Bt— - ul’g sz
V§2 = Uy, + (r2 + urg)wz e . I,L
h, =rtu t ecos($-6) = X
DI = Coos(¢-)-e(f-wy)sing-0) + i Fz:6
v = esin(g-0) + ¢ pcos(p-0) + (ry + url)w1 + 1391
(\fz1 = Vg, = 0) which are collectively labelled (2222)
213 ‘ Reynolds Egquation : 5~y frame

Taking expressions (2.22), Reynolds’ spatial expression (2.7) to terms
O(wrAp) becomes :

Dh . aLlr . .

'Wl' Vh,.V, = u - o WL+ ecos(¢-0) - egsin(¢-6)

whilst the steady-state term to similar order is :

. auI'f) 81’11" .
Th(Y, + Vo) = (@ + w) |- g esin(g-0)|
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Reynolds’ equation to terms 0(wrAf) becomes :
Vh3Vp-q =20 (223)
where

h = ¢~ ecos(¢-0) + up, U

a = 6u[2][iy, - gt - [, - o1 gt - costg-) + csinGé-0)

(o + wy) [8%{92— ?—L;gl- esin(¢!a)ﬂ

-p
il

h(d,t) = film thickness

¢ = 1y-r; = radial bearing clearance

]

dynamic viscosity

= [Hreo+ Grel) 10 = PO

This equation is in essence the one developed by Ifantino

23 m

[46]. He however,

erroneously interprets elastic velocities as :

Uy = - G
an assumption which sets the spatial angular coordinate moving with the material
point during deformation. Such terms only appear if velocity expressions are not
corrected to a spatial reference frame as per Section 2.1.2d.

To alleviate the complications of interpolating material displacements and
velocities from the rotating con-rod frame to the fixed x-y frame, equations (2.23)

are now transformed to the x’-y’ con-rod frame.
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2.14 Reynolds Eguation : z7 — y° frame
To shift equations (2.23) into the x’-y’ frame (F2.6) we move to an

observation frame rotating at w, : there
¢ = Grwgt; 0 = O-wpt; ¢ = ¢ - wy

substituting into h and q one obtains :

h’ = ¢ - ecos(¢’ - 6") + up, " Uy
: ou . )
g = 6;&[2(111,2 i [url - (- @) —551.} ccos(d” - 07) + ebrsin(6 - 9/)}

+(wy - wy) [f%%& ?uggl— esin(¢” - 9’)”

One can alternatively view this as setting w, to zero and letting w, be w, - wy,
¢ be ¢, 0 be 0’ in the x-y frame (equation (2.23)). This symmetry does not exist
in Fantino’s interpretation; his additional terms W are not frame invariant.

One final assumption remains to be introduced, journal rigidity : we assume
the journal to be rigid in comparison to the housing. This assumption, discussed

further in Section 4.2.3, leads to the final specific form of Reynolds’ equation used

in this work :

V-hs¥p-q =0 (2.24)
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where h = ¢~ ecos(¢’ - 6°) + v

q= 6;{2(&1_2 - cos(¢” - 07) + ersin(g” - 67))

; le{%&- esin(g” - (w)” |

h = h(#'t) = film thickness
¢ =1, - r; = radial bearing clearance
s=1- % = speed modifying factor [47]

p = dynamic viscosity

V= mer e O=b

Derivation of this form of Reynolds’ equation was first attempted by Allenl 171,
He unfortunately failed to include elastic squeeze terms u Iy

| In the sections that follow, boundary conditions reflecting a cavitating
oil-film are introduced, completing the boundary value formulation. Important

e priori pressure assumptions are introduced in Chapter Three.

215 Cavitation Boundary Conditions

Two forms of cavitation, distinguished by their time scale t, are recognised

in the literature :

& Gas cavitation[48] 1

Tt 0 —w_{)
e Vapour cavitation[49] t<< 0 zu-}—)

Traditionally these phenomena have been treated collectively using gas cavitation
theory. However, such implementations proved unsuitable under adverse film

conditions, necessitating a different approach.
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(a)  Gas Cavitation :

Transient gas cavitation is treated using a Stieber-Swift boundary condition.

[50,51] [48]

Whilst agreement with more exhaustive models is conditionalt ™, its

redeeming feature is that of automatic implementatioﬁ[szl a consequence of the

weak formulation of Reynolds’ equation presented in Section 3.1.1.

(b)  Vapour Cavitation :

Transient vapour cavitation has largely been ignored in the literature, yet its

presence in heavily loaded bearings has been both observed[49]

bearing failures>34] Treatment of this phenomena has recently been

511

and implicated in
attempted by Brewe[ss] using gas cavitation algorithms[ Implementation in
this study is in the form of Sommerfeld type conditions : negative pressures model
cavity flow without contributing to the film’s deformation or load carrying

capacity. Brewe discusses similar treatments,

(¢)  Mathematical Representation :
To formally define the above conditions, assume initially that the oil film
cannot sustain sub-atmospheric pressures, that is p > 0. Two regions 2, and ),

can then be defined with the following boundaries (F2.7) :

I} external boundaries

1’;- . intermal uitafron
tourdaries

2.7




The associated boundary conditions are given by :

L,:p=0 Py: % = p = 0 (Stieber-Swift) (29)

~

where 1 is the unit boundary normal.
Relaxing our initial assumption (p > 0), we define sub-atmospheric regions

0, within Q, as (F2.8) :

Qg ={a:p <0, sl <st (2.26)

where || s || is some measure of the size of €5, The associated boundary

condition is given by (F2.8) :
I':p=0 (2.27)

Once (4 reaches critical size s crit degeneration occurs :

Fa2-8

Discussion of the implementation and choice of parameters for these

procedures can be found in Section 4.1.2.
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22  Elasticity Equations
Developments in Finite Element Methods have enabled sophisticated

techniques to be brought to bear upon the 'art' of con-rod design[56’5 7,58]

. These
studies mainly address the question of adequate strerig‘th, concentrating on stress
analysis. However, in terms of bearing performance, strain distribution is equally

meortant[sg]

, yet frequently ignored. Importantly, dynamic loading is also often
mis-represented, however useful work remains. 'k

Spikes[sg], by introducing the concept of ‘relative stiffness', presents a
useful overview of distortion in relation to bearing performance. The detailed

effects of some static loadings have been parameterised[léﬁsé%]

, however distortion
under dynamic loading and out-of-plane distortion remain largely unexplored for
con-rod type geometries. |

In the following sections, elasticity models incorpofating consistent dynamic

loading régime are presented using planar geometry.

221 Dynamic Loading

The con-rod is a rather interesting machine element; body forces and
tribological tractions perform the dual function of transmitting load whilst
simultaneously defining its motion (F2.9). To clarify these interactions, the

following relationships are developed :

(a)  Field Equations :
Assuming small elastic displacements, the field equations for a plane

60]

isotropic body can be written as[ : (Navier’s Equation)

[(A + @) ¥ (V) + p¥2u] + pb = p(li+ T) (2.28)
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where

u - elastic displacements

2k

- rigid-body displacements
pb - body forces

p - material density

Mg - Lamé constants. F2°8

Integrating over the body V, one obtains the Principle of Linear Momentum :[6{)]

[ bav + [t a5 = [ o + p) av (229)
\% S \'%

where ta is a traction vector on surface S. The separate terms can be quantified

as follows :

(b)  Traction Forces : J 1,48
, S

Tractions (¢ ), and (§ ), at the big and little ends can be distinguished by
evaluating surface integral S (F2.9) :

é 1dS = gb(in)bdsb ; gf(,gn)gdsf‘

Each traction vector can be determined as follows (F2.10) :

T

o
b
[t = J[7 ) {e5af) os : -

A

F2-10)
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For analysis purposes it is usual to ignore the 7 contribution since 7 << ¢
(Appendix A2). Rewriting in terms of pressure and with respect to the x’-y’

frame :
~ cost ey
g;nds - gp {Sing,} ds = (2.30)
where dS = r df’dz, " measured anti-clockwise from x”.

(¢)  Inertia Forces : J p(i + t) dV
\Y%

Two types of rigid-body motions r contribute to inertia forces : crank throw
motions and bearing clearance motions. The former are known and incorporated
as body forces pb within con-rod reference frame x’-y’. The latter are normally
neglected as they are small in comparison with crank-throw motions, this being
vindicated by several studies.[61]

Elasticity displacement inertias, i, are similarly neglected by assuming (i)
that the rods operational frequency is much lower than its associated
eigen-spectrum, and (ii) noting that u << r.

Inertia forces are thus transformed into a body force representation in

reference frame x’-y’ :

ey

phdv = - | piav (231)
v

<

(d)  Equilibrium Statement
Grouping known forces together as f and incorporating the above

assumptions, then in reference frame x’-y” equations (2.29) become :



cosd’
J P {sinﬁ’} dSp + £=0
S
where
£= [ (s, + | ohav
s, %

This expression is a statement of linear equilibrium of the con-rod.
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(2.32)

Resultant

force f at the big-end can be determined in any convenient manner, provided it

satisfies angular equilibrium. Linear and angular equilibrinm of the rod are this

way guaranteed. Appendix A4 presents a lumped mass approach.

The assumptions outlined in this section result in a considerably simplified

elastic analysis : plane quasi-static procedures in con-rod reference frame x’-y’

replace a full dynamic analysis.

222 Elasticity Models

To facilitate structural analysis,
it is convenient to invoke St Venant’s
principle and only model the region of

interest to the study, 'V*(F2.11).

Body forces pb are then split into two :

EY E * %
b onV and (b-b )on(V-V ).
%
Reactions r i appear at 'suitably
#
remote’ constraints ¢ introduced

along A-B.

(En),

F2-1l

A consistent treatment of loading is achieved by simultaneously applying

(1 n)b’ satisfying equilibrium relationships (2.32), and l{g*, determined by geometry

' (Appendix A4). Reactions 5; will then represent tractions (t n) ¢ and

remaining body forces (Q-}g*).
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32,33]

b

# %
fictitious reaction to the b component of (f n)b will instead appear in r. .

If the application of ‘g$ on V' is neglected[24] or misrepresented[

Erroneous displacement fields will result.

In the course of this study, two elasticity imp'lementations were pursued.

Continuity with the earlier work
of Ajlen{r?] and Stafford[zﬂ]

was achieved through rigid-elastic

curved beam models (F2.12). i .
These progressed to full elastic Bt en
descriptions using plane-stress |

theory. F2:2

The equations governing these theories are now briefly outlined.

(a)  Curved Beam Equations :

" The equations governing technical bending theory of thick curved

beamsléz] can be summarised as follows :

Field Equations : (Sign convention F2.13) (2.33)

(33

a[urm-augﬁ} -b[l + c} {ugﬁ + uri] =0
a[uriv-uﬁiﬁ} + b[l + c] [ugi + ur} = 0

where

=T33 b=Tc=grp and



E - Young’s modulus
G - Modulus of Rigidity
K - Shear coefficient
A - Section area
I - 2nd Mément area
r, - Centroid radius
r, - Neutral axis radius ’ _1,’7{;” itesimal
ry - Intrados radius Element
r, - Extrados radius :
() = %1%1 ~ F2:13

i is a section dependent constant given in Appendix AS.

Boundary Conditions : (2.34)
T oo ii i
Fr = ;O—a[[ur -ug]-a—[ué} +ur”
F = T¢ i
] o b[ug + ur]
M _ ii il bef. 1,
TC = aHur -116):' -é—{ué} + UIJ]
Te i C
TV = '[fo— [ur 'ué’] * -BTFI} .

These equations incorporate deformation due to bending, shear and tension

effects : Thin Beam Theory[63’64]

can be obtained by excluding the effects of
shear deformation (¢ = 0,1y = r o i = 1) ; Inextensional Thin Beam Theoryuﬂ by

further excluding tension effects (a = 0).



Surface tractions and body forces are incorporated using equivalent work

concepts (see Section 3.2.1).

(b)  Plane Elasticity Equations :
Under the assumptions of Section 2.2.1, field equations for a plane isotropic

body (2.28), become :
[(A+ Y .0+ p¥2] +phb=0 : (2.35)
where b=-r
For plane-stress conditions, the Lamé constants are :
A=vE/(1-12);p=E/2(1 + v); v = Poisson’s Ratio

Surface traction boundary conditions are introduced in Section 3.2.2 using

Weighted Residual procedures.

23  System Equations

Previous sections have introduced equations governing separate system
components. The outcome when coupled, is an unconventional fluid-structure
interaction problem : fluid cavitation features at the structural interface.

This fluid 'inhomogeneity' directly influences  coupling procedures, the
equations being constructed in terms of surface pressures so as to accommodate
cavitation boundary conditions. Solution procedures are consequently restricted,

[38,51]

although developments in cavitation modelling are easing such restrictions.
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Before proceeding with the coupling of these sub-systems, some

rationalisation of notation is in order.

23.1 Nomenclature

The remaining‘work in this study focuseé solely on connecting-rod big-end
bebarings in rotating reference frame x’-y’. For clarity, it is convenient to drop
the primed notation associated with this frame giving ¢ = ¢-.

Similarly, subscripts of Section 2.2.1 and regions ) of Section 2.1.5 can be

reconciled to give :
Q0 =S5, hence dQ =dS,
Whilst defining

=1y ) WS wy | =
I=Ty | W 1 U=y

allows subscripts distinguishing surface type to be dropped.

232 Sub—System Coupling
Reynolds’ equation as it stands is under-prescribed :  two_additional
constraints are required for a full system prescription. These are- traditionally

provided by rod equilibrium statements (2.32), frequently in reworked

sl 24:47,65,66,67)

fo compatible with the system solution techniques employed.

[68]

In this work they are used directly'™"?, the resuliing system equations

become :
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System Equations

7-19%p :
0
[P {etaf a0+
Q
where h = ¢- ecos(¢ - ) + u
q= 6;5[2({% - tcos(¢ - 0) + epsin(s - 0))

" ws[%i esin(¢ - 0)]]

] (2.36)

F o R )
il
<

and = ¢(t) = journal eccentricity
¢ = (1) = journal attitude
p = p(fzt) = film pressure
h = h(f,z) = film thickness

f=1(1) = external bearing load

U=[f greo+ e a0 =xatz; ) = P

Spatial Boundary Conditions (2.37)
0

)4 boundaries : Fl:p=0§F23P=8n

), boundaries: T';:p =20

Temporal Boundary Conditions : (2.38)
Since f(t) = £(t + T) (periodicity T)
then e(t) = e(t + T)
| (1) = ¢(t + T)
p(t) = p(t + T)



32

To the author’s knowledge, no closed form solution incorporating elastic
deformation exists even for a steadily loaded bearing. Simple steady truncated
flow constructions such as Ccnway’s[13] 'Winkler' foundation and the solutions of
Higginsonm and O’Donoghue[g] all require some nufﬁerical computation. Less
restrictive steady«staté modcls[17’18’19’20] have to-date come about through
increased computational complexity.

Extension of steady-state procedures to the time domain exacerbates

computational problems. The simplist and most popular approach[24’27’32]

is the
short bearing approximation g% = 0 used in conjunction with a circumferentially
varying displacement field.  This is somewhat presumptuous, as it precludes
coupling between circumferential pressure flows and displacements which only
vary in the circumferential direction. The alternative finite length solutions!28:2]
represent a comprehensive but computationally expensive approach.

This work takes a route occupying the middle ground : fluid-film
discrétisétion incorporates a full, although approximate complement of flows;
planar circumferential displacements replace those of a full elastic housing,

Details of these discretisations form the subject of the following Chapter.
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CHAPTER THREE
NUMERICAI, DISCRETISATION

In this Chapter, Finite Element Mcthods[ﬁg] are used to develop algebraic
analogues of the differential equations presented previously. Versatile treatments
of space-time domains are this way fashioned.

Spatial discretisation of the fluid-film equations via the Method of
Weighted Residuals[70] is firstly used to incorporate « priori axial pressure
dependencies. The resulting approximate expressions, retaining a full
complement of flows, are one-dimensional facilitating economic solutions.
Temporal discretisation is developed using a Time Recurrence Scheme[égl, the
fluid-film description being completed by non-dimensionalisation.

Curved beam elements are next constructed using exact solutions of

technical beam theory[ézl

, distributed loadings being developed through
equivalent work relationships. A brief development of plane elasticity is included.
The resulting expressions are non-dimensionalised and partitioned in accordance
with the fluid-film equations.

Finally, discretised matrix expressions of the system equations of Section 2.3
are presented. |

Solution and validation of these equations is dealt with in Chapters Four

and Five respectively.

3.1  Fluid Film Discretisation
In the following sections, a discretisation of the governing equations over
spatial domain (2, consisting of circumferential and axial coordinates, and temporal

domain T, the time coordinate, is presented.
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3.1.1 Spatial Discrelisalion
Spatial domain © is firstly divided circumferentially into sub-domains Q°,
each containing the entire axial coordinate z. §} thus becomes a piecewise union

of sub-domains ;

Q=u0®;n0%=4¢
€ €

If the dependent variables are similarly constructed piecewise,

p=Up
e

then the governing equations can be developed in local sub-domains Q€ and

conveniently assembled into global form {2 for solution[égl.

(a)  Method of Weighted Residuals : (MWR)

Within each subdomain it is usual to approximate the exact solution :

p® satisfying the essential boundary conditions. Substituting into system equations

(2.36) produces residual or error functions R, :

R; = Lheyp* - q (3.1)
R, = J cost 5od0®  + £° (3.2)
QC

R, = J sing pEdn® 4 £° (3.3)
0° g
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Error R, is then distributed over Q¢ according to weighting function w® (also
satisfying the essential boundary conditions) and set to zero in the following

integrated sense :

J RwSdO® = J (V.08 V32 - q®)wSdQC = 0 .
QC Qe

Scalar residuals R, and R4 are set identically to zero.
Continuity requirements on p° can be relaxed by integrating by parts and

applying the divergence theorem :

J (T13TpE)wedn® = J h3(7pe TwS)d® +
€ €

J h3(E§e.Q)wedI‘e .
Q Q

I\C

Setting J h3(z§e.g)wedl‘e = ( everywhere, the residual expression for R,
re
becomes :

J RwSdOC = - [ MTEIWE + gSwE)dN® = 0. (3.4)
0° 0°

The solution of this expression satisfies the essential boundary conditions
identically.  Natural boundary conditions will be satisfied on all remaining

boundaries in accordance with the residual expression :

L

(WpCmwtdr® =0 . (3.5)
e

The above procedure is the Method of Weighted Rcsidualsﬁo}.
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(b)  Approximation Functions :
To maintain a subdomain setting, the dependent variables are constructed

locally as follows :

5o = 1450251 (02) 0°
0 : (0z) ¢0° .

Trial functions (éie, thus describe the functional variation of P over 0,

Weights w® are similarly defined as :
w® = 4.5(0z)

Azial Pressure Dependence :  Short journal bearings (%— < %) are known to have
strong parabolic pressure behaviour in the z coordinate.  This dependence is
incorporated into the trial functions using the 'simplest Ritz approximation' : a
single trial function g(z) spanning
the z domain (F3.1) :

¢ (02) = g@NF(O)

where

8(2) = (-5

Weighting functions are defined according to Galerkin’s method :
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One consequence of this Ritz approximation is the constraint in the z dependence

of the pressure induced flows : From Appendix A3, volume flux Q can be written

as:

ON.©
_ h3 i ) e J~e  h
Q= -2 [Eghey + FnCe, B + Bersigy

Pressure induced circumferential flows thus behave parabolically in the z
coordinate; pressure induced axial flows behave linearly. Circumferential carried

flows are constant with respect to coordinate z (F3.2).

h° dg newe
g N e glz o PO L
a8 N

F3-2.

These can be compared to the traditional 'short' bearing model in which the
circumferential pressure flows are excluded, or the 'long' bearing model in which

the axial pressure flows are ignored.

(¢)  Spatial Algebraic Form :
The z dependence in the residual expressions can be eliminated by

integrating the z terms to yield :
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IN.© ON.©
: J [hs [%g-—g}g- " ﬁNiﬁNje] B+ »yquﬂ et =0 (3.6)
g@
J {700551\15131-@}1@96 + fxe = (3.7)
ae
J [mn(mffiﬂ rde® +£6 =0 (3.3)
9@ y .

where o= Jdez (B = H%;L] de sy = Jgdz .

Ritz approximation g, a device first presented in variational form by
Rohde[71], effectively reduces the dimensionality of the equations from 6-z to ¢
only.  Such procedures, apparently commonplace in finite-difference work since
1942{11], offer the economy of a one-dimensional solution without the flow
truncation associated with 'short' and 'long' bearing models.

Related information on variational approaches to lubrication problems is

[18,72,73,74,75,76,77,78]

available in the literature Mathematical aspects of such

approaches are dealt with in references [52,79,80,81,82].

3.1.2 Temporal Discretisation

As with the spatial domain, the time domain T is split into a piecewise
union of subdomains, T®. The governing equations are then constructed locally
but unlike the spatial domain, solved locally using a Time Recurrence Schemel®).
The complete solution over T is then made up of successive solutions over

subdomains T,
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(a) Time Recurrence Scheme : (TRS)
MWR can be used to construct a recurrence scheme by choosing a subset
of the temporal trial functions as weighting functions : Incorporate into the trial

functions a linear temporal form N :

45 = g@NSON(@) (=12)

— 1 ) ~2
where Ni(t) = (1 - ZST) /3. /3
N N*=W
1% _t
N(t) = &7
0 >t At
superscript j denoting time level (F3.3). F3:3
Dependent variable p© can then be written as :
B° = gNo [N + o] (9
J ] ] '

Assuming i;jl is known, fijg can be determined by the previous residual statements

using the j weighting constraints :

zpje(e,z,t) = g(z)Nje(a)'w"(t) . (3.10)

This gives a Two-point Recurrence Scheme[égl.

Clearly, function W can take a variety of forms. However, given that the

[83]

system is reputedly 'stiff' "/, a prudent choice would preclude schemes which are

not unconditionally stable (A—stable)[84]. The Galerkin form W = N2, shown to
be A-stable on linear equations, is the one chosen for this work. It offers good

accuracy and a damped oscillatory b@haviour[@’gsl.
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Further discussion on stiffness and its implications can be found in

references [84], [86].

(b)  Temporal Algebraic Form :

Adjusting residual statements (3.6-3.8) to include temporal error residuals

gives :
3 ON;® N, e Jee e qe = '

h .
H [»—g—a—a——glﬁ—a%ﬂN N, }N B aaN, }Wd 0 @3.11)
ae

egkey ki a5e 7k T

cosﬁnyj N P; W o~ + N f WdT® =0 (3.12)
0° T¢
J [sinﬁnyjeﬁkf)jk}W dae +J { NKf k]w dT® =0 (3.13)

where dT° = di% d0° = rdé®di®. Forcing term g%, given by :

du
q° = 6 {2(1'1 o - €cos(g - 0) + egsin(¢-0)) + ws[——ary-» esin(gb-ﬂ)ﬂ
contains several time dependent terms. These are discretised as follows :
KK

;¢ = NK ;5 = WK

o du -k
—x kO oy
u = Nu W‘N[ }

€ =

and u =“ﬁkurk;%=ﬁk€k;é§=ﬁk¢k )
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3.13 Non—Dimensionalisation
As a first step towards a dimensionless analysis, peak axial pressure p is

rewritten in terms of the mean axial pressure p :

p= Hgde) ={p

z

Constants «, f, v can be evaluated to obtain :

G/—HL g = Tr,ﬁ’:%‘L-

Introducing the dimensionless parameters :

C:>

=03
I
o
It

I-’A: M o
=3t wt; 0 =0

C\{m

¢ and w defined previously, forcing term qe becomes :

&€ = 6uwe [2[ flr e cos(d-0) + zésm@-a)] + s[—agy 2sin(<;é-9)”

where (V) = —9 (") . Rewriting Reynolds’ equation (3.11) in terms of p, one
dt :
obtains :
ON.® ON.°© —
J [ [QW—H-};—+ﬁNCN }Nkpk EfNﬂWdQe:o (3.14)
ae
where fi = 1- Zcos(¢-0) + 1 ; dT° = di®; d0° = dBF di®



42

The force balance equations can be treated similarly :

J {cos&Nje N‘kﬁjk] W d0e + J {ﬁk'fxﬂ W dT€ = 0 (3.15)
ne | ° |
J [smmj@ﬁkﬁjk] W d® + [ [ka’fyk] Wt =0 (3.16)
0° 1°

where

’fik = m [a 2fik , 1 the number of journal lands.

This form of the discretised fluid-film equations is the final one used in this work.
Traditional 'short-bearing' equations are obtained by setting @ = 0,

~Matrix representation of these equations is given in Section 3.3.
Derivation of discretised friction traction and volume flux expressions is performed

in Appendices A2 and A3 respectively.

3.2  Elasticity Discretisation
This section briefly develops discretised versions of the two elasticity
models presented in Section 2.2.2. Comprehensive treatments are presented

elsewher 6[62,63,64,69,87]-

Non-dimensionalisation of the resulting expressions, in particular that of the
curved beam, introduces useful new dimensionless parameters incorporating beam

thickness. These are the subject of further investigation in proceeding Chapters.
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321 Curved Beam Discretisation
A finite element discretisation of the curved beam equations is developed
through the exact solution of the technical beam theory presented earlier., This

solution is given by the following complementary function in angular coordinate

f:

uL -sinf - cosff  -fsind ~fcos § -1 0] [ay

U9 L = |-cosf sind (cysind- fcosf)(cgcosf+bsind) 0 1

Te7 0 0 cycysind ciegcosd ¢l ¢ |

(3.17)

Constants ¢, are given in Appendix A5. An expression for the internal forces can

be similarly determined :

F_| 0 0 cgsind cqeosd 0 O

Fol = % 0 0 -cqcos8 cgsind 0 0} a

M c

T, 0 0 -csco88 cgsind -c4 0 (3.18)

This general solution is used to construct solutions over element domains ¢° as
follows. |
(a)  Element Stiffness :

Using equation (3.17), the six components of ¢ are determined in terms of

the six displacements of the finite element of F3.4. Writing :
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{"{T‘x )Frl  e————— Mf‘z) erz
Iy
B o

u R

’ oz, I

1{3 = < [ g B ,

u92
r.72

then a = X’ig .

Finite

Nodal forces are defined similarily : Elemenit;

Fo F3.4

2-n
fi
o]
{
4
<
E3)

Element stiffness matrix K° is then given by :

%K@g = f where K° =YX (3.19)

Matrices X and Y are given in Appendix AS.

(b)  Distributed Loadings :
Equations (3.19) only accept loadings in terms of nodal forces. Equivalent

work expressions are used to convert distributed loadings to nodal forces.
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Pressure Tractions : Work performed by pressure acting at the surface is given

by :
Py = qurdS = - anJ f)urdé’e u
06
Assuming :
p =<N>®p (see F3.4)
and

u. = <x;> X1y

where <N>° are the pressure shape functions of Section 3.1.1.b and <x,> the

first row of equation (3.17), then Jr:

a
By = -HT(X'l)TmLJ <x,> L<N>® de® p
0 nN

a

Writing W = Jf <x;> T
0

are given by :

<N>® d6°, then forces f D producing equivalent work qﬁw
£, = LA where A° = oxnlw | . (320)

W is given in Appendix AS where <N> are assumed to be quadratic Lagrangian

shape functions.

T superscript T denotes matrix transposition.
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Body Forces: Work performed by body force pb = p(br,b 0) across housing width
W is given by :

i R \
¢Ww«J bb pWr dr dae,é-<ur,u§>

1,0
writing

ur <X%;>
,§ = - X"l }Vl
119 <Xp >

<x9> being the second row of equation (3.17), ¢ w becomes :

9, = - BT(Xq)Tpr[jfé;fﬂgrdrﬂdae ,
[ r

Assuming b = by + 1b, , bi = bi(ﬁ,t) , then :
e . _ Lt
j"}grdr ~rth, (assuming zisma]l)
r
Interpolating b o using the pressure shape functions <N>©
b = [<N><0> e (b,
ve [ <0> <N>] by
c
the equivalent work expression becomes :

T e b
_ TronT <xy > <N> <> e |mr
¢ c
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~ o T T € .
Writing M = J [<x1> <N>, <x,> <N>} d¢° , then equivalent forces ty
0
producing work qbw are given by :
£, = pr,W 1 Vo (3.21)
where Ve = (x)TMandp = <p b,> ",

M can be constructed from W given in Appendix AS.

322 Plane FElasticity Discrelisation

The plane elasticity equations presented earlier are discretised using the

Finite Element Mcthod[69’87]

88]

; the following cartesian form is obtained from a

Galerkin treatment[

ONON, AN(ON, 0N AN, N NG T ()
@M g g+ by ay 0 A T Byt My ox

Wav
N; N, 0N, oN, ON; 0N, ON, 0N,
i i 1
R e e e GO b e U I (UW)

B N. b N t
= JPJ[Nl “} nldV + HN‘“ }st : (3.22)
. JN, |

A\ i 1

<




Body forces and surface tractions are discretised as follows :

b M. 07 [(b.):
PR
{"y 0 My |y,
Bdy] [0 -M] [dx] .
5095 =1 pax[ = M, 0| dy[ 1P

Volume and area matrices can then be determined as :

0 -N.M.| [dx
A= nLJ 1)
J NMj- o de}

Shape functions N, M, ﬁi are discussed in Section 4.2.2.

The complete elastic description then becomes :

Ku = Ap + Vb

where u = <}3x’}3y>T and K, the stiffness matrix of equation (3.22).
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(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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323 Non—Dimensionalisation

Planar Finite Element analyses are notoriously dimensional in nature,
however a dimensionless approach can be achieved by introducing the following
param@ters : |

F=La=fi=F.

X =

sl

The global mesh is thus determined in terms of bearing radius r.

Substituting into equation (3.27) one obtains :

tm
ol
2
i<l
o

=T {)lvli_zvé + pr2 (3.28)

where K, A and V are the dimensionless global stiffness, area and volume matrices

respectively. Assuming :

G=Sipe L fe?a g 1
R=PR~ g BB ”“?‘ET
then i=AEA)D + EEIV)D (3.29)

f1

e 3 g = - gD

Similar expressions are obtained for curved beams by assembling the elastic

statements as follows :

=Ky =nlrAp+pWriVh . (3.30)
C
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Non-dimensionalising as before :

i =AKIA)p+EXV)D (3.31)

The extra bracketed terms [ ], incorporate the influence of beam thickness t.
Non-dimensionalisation of the planar analysis in particular, offers
significant economies in solution ; a 'small' library of dimensionless rods is

sufficient to enable the analysis of a large variety of physical rods.

324 Partitioned Fquations

For any nodal coordinate 4, it is possible to partition from the above

dimensionless forms the ith equation corresponding to the radial surface
displacement :
O, = @; = AEA)R + SV
writing <L.> = A@i_—é_)i ; <G> = E(K‘lr_\/__)i
then . =<L>p+<G>5 - (332)

]

du
The radial displacement slope “3%’ {= ﬁi‘] can be similarly obtained :

o =<L/>p+ <G/ >F . (3.33)

These expressions form the basis of the elastic displacement description used in

the remainder of this work.



51

33  System Discretisation

The dimensionless element expressions developed in the previous sections

can be assembled into global mairix form to give the following system of

equations:
0 0 n 7 €2 00 ﬁjl €l i
0 0 i %22 4|0 0 @ P, -0 (3.34)
~ ~ p, A ~ ~ ~
where the Reynolds equation expressions are given by :
sk J‘—V [ﬁa(aN N+ BN NE + @NKL ), + s )N
ij i™ ] I’) T

1)

ek JW[-sﬁksin(gé-ﬁ) - WK cos(4- a)} N, d)
y)

ak = Jﬁ[z'ﬁr'% sin(gb-{))] N, d0
Y)

B = Jv_w[(z"ﬁk(c;r)j ; s"ﬁk(G;,)j)Ni] < a0
0

ﬁ=1-'6(:05((;5-=0)+ﬁr .



The force balance terms are determined using :

where
k kak_T, _ YN =
=<1 ’?y > ’(Lr)j = <L .>; Ny = dN;/d0 .

891 4ng

These time dependent equations are non-linear, reputably 'stiff'
have moving internal boundaries. To require accurate economic solutions is
partiéularly demanding of the solution technique.

One tempting scheme requiring little extra effort, is direct iteration within
the time levels of equation (3.34). Such fixed-point iterations are however largely

117, 18’201, this being symtomatic of 'stiff' equations.

unsatisfactory
Techniques incorporating a stiff solution capability which in addition

accommodate fluid-film boundary motion, are developed in the following Chapter.
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CHAPTER FOUR

EQUATION SOLUTION

Numerical discretisation of the field equations results in two sets of
algebraic equations of quite different nature :

e fluid-film equations ; a small set (<100) of non-linear ‘stiff'
equations involving moving internal boundaries and

e elasticity equations ; a large set of linear equations undergoing a
multiplicity of loads.

In this Chapter, solution techniques separately tailored to each set of
equations are developed; Newton-Raphson and Continuation procedures for the
fluid, Sub-Structuring and Influence constructions for the structure.

Algorithmic details for the modelling of cavitation interface motion are
developed. The work concludes with the verification of elasticity models and
subsequent characterisation of elastic displacement behaviour.

Validation of fluid-film behaviour is performed in the following Chapter.

4.1 Fluid Film Solution

The early work of Benjarnin[14]and the more recent approach of
Rohde[37’68], demonstrated the usefulness of Newton-Raphson on obstinate EHL
problems. With the realisation that these problems are 'stiff' and knowledge of

requisite stiff solution techniques[84’86]

, namely :
e unconditionally stable discretisation
- @ Newton-Raphson solution of the resulting implicit forms
a framework, missing from the above works, is established for the development of

stable fluid-film solutions.
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4.1.1 Non—Linear Equation Solution
Having dealt with discretisation in the previous Chapter, we now focus
attention on iterative Newton-Raphson (N-R) techniques and the attendant

[89]0ffér the desirable feature of

process of Continuation. Such procedures
quadratic convergence/divergence, convergent behaviour of the N-R iteration

being maintained through accurate initial guesses obtained via Continuation.

(a)  Newton-Raphson (N-R) :
It is convenient firstly to re-express discretised fluid equations (3.34) in the

following form :

R(y £ 1,5) = 0 (¢1)
where

y = <'€2,Eb?,§?>T , f = <'t‘X?,'fy2>T , b = <§x2,§y2>T and s, are all
implicit functions of time. The N-R scheme can then be generated using a
Taylor’s expansion of R:

Suppose at some fixed time t, initial test point u-differs from the solution by

Au, If R is sufficiently differentiable at u, then :

aR
R(u+Awfhs) = R@,Lbs) + gr-Au + 0(An?) =0

IR
Introducing jacobian J = ﬂ()g—, a first order iterative scheme, the Newton-Raphson

Method, can be constructed :

) _ i i
uq S U, + Agn where
t i t
JJn Agn = . gn 4.2)
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(subscript n denotes iteration level, superscript t denotes time level). Given initial
guess got, iteration of a solution in the space domain (t fixed) can proceed to the

desired accuracy, typically satisfying both :
1o t .
IRl <1070 and Ay, | < 10

1 . .
where ¥l = {in?} 2 The heart of such a scheme is the construction of

jacobian J.

Jacobian Construction : Exact expressions for the jacobian can be determined
by several methods. Rohde[37]developcd expressions using Frechet
derivatives!”"]

which, from a theoretical standpoint are particularly useful.

However, in practice, a discretised jacobian can be simply obtained by

differentiating equations (3.34) with respect to u? (u! = <'E1,€>1,§1>T does not

enter into the calculations as it is fixed).

The matrix N-R expression (4.2) then becomes :

ooﬁj‘zﬁ?‘
00101]. AR

. D. R.. p.2
El Dl Ru n Ap] n ‘ (4.3)

_ i
= "1311



o0

where the Reynolds equation derivatives are given by :

=T [WRe [Qi(Lr)j] d0
O

B =32 + J'v_v N [zg?zﬁsm(qs-e)Ni-cos(qﬁ-a)Qi] d0
0

1 1

D, =d2 + JW N2 [(E(zgzﬁ-s)cos(gzﬁ-ﬂ) + ?fesin(gzs-a))Ni
Y)

+ Esin(gz&-a)Qi] dQ
- AT AN - =ka k
and Q; = 3h2(aN, Ny + BNiN].)N B,
whilst force balance derivatives are given by :

N. =n2 : M. =m2
e A B
ﬁj2 and fflj2 as per (3.34).

Provided one retains information when constructing R, the additional
computation required to determine J is not large. Quasi-Newton updates of J-!

offer avenues for further computational savings[gg].
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(b)  Continuation :
The result of a successful set of N-R iterations is a solution g*t. An

estimate of the solution at new time t + At is again determined using a Taylor’s

expansion of R :

R(u + Ay, £ + Af, b + Ab, s + As)t T

Introducing jacobian J Fat g*t, a first order continuation scheme, Euler’s method,

can be constructed :

U = Uy + Aun where
- IR R R4t
J* Afl\‘l = - [U—g' Arg + HEAb + Ts AS] (4.4)

t*+1 the initial guess for

As (J ,kt)'1 is known from the previous N-R iteration, u,
the new N-R iterations can be determined very cheaply. Evaluating the bracketed

derivatives above, gives :
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_ | _ At 2
where ij = JW N2 5]-de = 2=, 3—5}.}(
T

By = [W [2NY(G,), + NG, ) I Nt
0

s = JW Nof-Esin(g-0) + 17 ] N0 .
Y

Interval Halving : In the course of this work, sufficiently accurate Agt estimates
were obtained using the influence of Af alone. This is a consequence of using
interval halving, a procedure whereby N-R iterations deemed 'unsuccessful' (see
T4.1) are re-commenced using halved step lengths.

Unfortunately, interval halving is not a panacea. Unduly short time-steps
(< %UO) were found to lead to ill-conditioning and hence inaccuracy in solution,
However, by incorporating suitable step-doubling mechanisms (T4.1), time step

lengths attuned to the required solution accuracy are attained automatically, 5-100

cran‘;lé-angles being typical.
Step halving Step doubling
h <0 rapid convergence
<0 (< 7 N-R iterations)
slow convergence
(> 25 iterations)
T4.1
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The above processes can be seen in a broader context as follows : dividing

equation (4.4) by At and taking the limit as At — 0, gives :

. R R &R
, J*B [Wf"l‘*gg‘b%‘z)—‘i}

Thus, the continuation or prediction phase can be viewed as solving

R=0 Vt ' (4.5)
whilst the N-R or correction phase solves (at fixed t) :

R=0 V{ (4.6)

By providing a set of initial conditions and iterating between these two procedures,

t

a family of solutions u" are marched out in time parameter t, concludmg when the

reqmred_permdlclty is achieved.

Overall, the process is fairly insensitive to initial conditions, any errors

being typically damped-out within 1800 crank-angle.

4.1.2 Cavitation Regions and Interfoces

The predominant mode of bearing operation in this work is that of an oil

film (), divided by regions of gas

cavitation Q, (F4.1). = ///M Z /
The curved cavitation /. /

interfaces observed EXP&@M&NT

experimentally are however Z /// Q, / /7
modelled by lines of constant 4, ' 77 // LLL /

0 THEORY ot |
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a consequence of the axial pressure dependence introduced in Section 3.1.1.
Subsequently, interface movement or growth becomes a discrete process requiring
the addition and removal of equations in the # coordinate.

Within oil film §,, small transient regions of “vapour cavitation' Qg mziy
sporadically appear. |

The processes of identification and growth of these different regions, each

performed at every Newton-Raphson iteration, are now outlined.

(a)  Region Identification :
Two regions need to be identified for the solution to proceed : regions
where Reynolds equation is valid, and regions 0°, where it is not. Using the

definitions of Section 2.1.5
Qep>0; Qp=0; Q:p <0
the following 'algorithm' was devised :

(i) Identify regions Q, by a point-wise search of p. Include growth
regions : any adjacent equation lying in 2,. Identify regions {23 by a

point-wise search of p.

(ii) Check regions {23 for blocks larger than s, ...
IF[| Q] 2 Serit
~ then D=0, QC=Q2UQ3
else 0 =000 ; 0 =0,

where ||| is the included angle of 2, s _;, typically 60°.
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(iii) Identify growth regions Q2* by locating equations in region 2 adjacent
to regions QF,

At this stage, a map of the regions will take the following form :

”._(7:‘-3”“< Serdt | Hagll > Scrie
I T, T .
0t % or // ///
of / JI/

z

I U I B - VA

MGy AR

&

Fi.2.

The right-hand condition of F4.2 occurs only rarely and causes few
problems.  However, the left-hand condition requires special treatment when

regions {1, are active.

(b)  Negative Pressure Deactivation :

Throughout this work, regions ,CQ are deactivated from the force balance
and pressure-displacement relationships.  Inclusion of these regions leads to
strong interactions between (25 and the pressure-displacement fields, sighificantly
affecting journal locus. This was deemed 'un-physical’ and on this basis
deactivated. Thus, pressures within 24 contribute only to the pressure induced
flows of these regions.

A process of deactivation is performed as follows : if, on the successful

termination of a series of N-R iterations active {15 regions are present, then :



(i) the time interval is frozen

(ii) parameter p, a pressure multiplier, is introduced in regions €1, of

the force balance and pressure-displacement equations.

(iii) a family of p-solutions are 'marched-out', successively reducing p

from one to zero, hence deactivating 2,

(iv) the time interval is incremented and ensuing time steps

performed with p set to zero.

Although somewhat involved, large negative pressure magnitudes necessitated this
step-wise deactivation so as to maintain stability.

Termination of (), regions is typically through degeneration; negative
pressures revert to positivé forms as conditions proceed. Durations in the order

of 10° crank-angle are typically observed; Section 6.1.3a looks at this further.

(¢) Interface Growth :

Having identified regions (2, the governing equations can then be solved
over domain Q. As Q and QF are approximately equal in size, significant
computational savings are achieved over standard Sommerfeld type solutions.

Partitioning the N-R equations (4.2) into growth equations (u*¢Q*) and
non-growth equations (ue(Q2-02*)), one obtains the partitioned system equations

and their solution ; respectively :
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n Ry n

Pressures u*, resulting from the growth equations are then checked

0 An* " Raly Ag*f T; ¥,

(4.7)

sequentially for positiveness :

4
W 2 Perit

Peit typically being 1% of the maximum centre-line pressure of the previous

converged time-step.

If the above inequality holds, then the growth equation associated with
Aui* is retained.  If not, the growth equation is removed and the system
equations re-solved.  This can be achieved very simply through the following

equality :

[Jl J?} . rlﬂ ) r 0} 48)
1, 1,) |3,7) (o1

the first block of equations being manipulated to give :
it = 3‘1 - ‘3‘2.3‘4"1.3‘3 . (49)

This is known as a Rank-One Update[ggl.
The process of checking and removal proceeds sequentially from regions of
high pressure gradient to low pressure gradient until all equations in O* are

processed. This then completes the N-R iteration.
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Currently the above procedures are performed exactly as described; matrix
inversion and update. More efficient (complex) methods are available through

the use of matrix factorisation modification[gll.

413 Numerical Detaz’ls

There are clearly a large number of 'hidden' numerical details in the
procedures outlined thus far. This section details those critical to the

implementation of this work.

(a)  Integration :
The governing equations of the previous sections are all expressed in

integral form.  Evaluation is performed either numerically or analytically as

follows :

Fluid-Film Fquations : Reynolds equation expressions are integrated numerically
using isoparametric transformations and Gaussian Quadraturc[69]. - This process

can be represented element-wise as follows : (F4.3)

A (—»l)l) / (l)l) A
© o—o a2\ Gr—{—& RN
riI -—-:—_.""‘*__:"—_> Ez ih’/ﬂl}l wi} gg’éxﬁt‘g r/?
(-1,-1) (1)
%\ LSoppurawetic Gaussian
Tronsfprmation Quadvatung,

J[ $6;8)dat = é:f;.é.@f’j;ﬁ CHILLIES Aﬁ 45° Z“"J fe; )
prLe T

Fie3
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Throughout this work 3 x 3 quadrature rules were found to strike a good balance

between accuracy and efficiency, both 2 x 2 and 4 x 4 rules having been tried.

Force Bolance Equations : Force balance expressions are integrated analytically

as follows : Rewriting equations (3.15)(3.16) in vector form :
? k
} J W NK a1€ = 0 (4.10)

the temporal integrations can be determined using :

==k e  kAT®
[WN q1° = kKol
T
giving
| k
At i <Ak k[N ] (4.11)
2|3 <Ay> R *+311 =0
where

: e
<A > - .
T o PR Dy G
Ay Inf; cost; sinf
0

(0i : global angular element coordinate, §° : local angular coordinate (6’=01+ & ).
All spatial integrations are thus contained in B which can be conveniently
re-constructed from W of Section 3.2.1b.

From the above treatments, it can be seen that in terms of integration, time
and space dimensions behave as a single continuum. Within this continuum, the
se

temporal mesh remains constant with respect to @, allowing factor Aé to be

dropped from both the Reynolds and force balance expressions.
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(b)  Interpolation :
The theory developed thus far has largely been independent of the shape or

trial functions. The form these functions take and their accompanying meshes are

as follows : '
A : A{I Nz Af:’s
Spatial Trial Functions : 4
The spatial trial function
Ni’ used throughout this work is —
the quadratic Lagrangian element -1 o i
¢ Fép-4-
of F4.4,

This element is discouragingly inhomogeneous when used on coarse
meshes : steadily loaded rigid bearing solutions can vary significantly as the load
line is moved through an element. However, uniform circumferential meshes of
around 36 elements have been found to be sufficiently fine to ensure homogeneity.

(See Section 5.2.3b for further discussion).

Temporal Trial/ Weight Functions : (N,W). Earlier sections introduced linear

Lagrangian functions (F4.5) as both

trial and weighting functions of the N’ N2

temporal data. Using these 1

functions, temporal mesh divisions

of up to 109 crank-angle have been |

-1 O i
successfully tested in conjunction 7% Fi-5
with interval halving,
Elastic Displacement Interpolation - Having chosen to integrate Reynolds’

equation numerically, it becomes necessary to interpolate nodal elastic
displacement data to obtain fluid-film Gauss point data. Fortunately, elastic and

fluid-film meshes are continuously aligned, however, the form this interpolation
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takes is found to be important.

Exact curved beam models posed no problems, interpolation being
performed using the curved beam shape functions. The resulting displacement
fields are necessarily smooth, a consequence of their aria]ytic formulation.

Numerical elastic models are less amenable. Initially Gauss point
displacements were determined using one-dimensional cubic Hermite
interpolation of the requisite nodal data. However, the resulting displacement
fields were not sufficiently smooth to be wused; it would seem that
one—dimensional Hermite interpolation is not a close enough approximation of the
two—dimensional sub-parametric Hermite displacement variation. Instead, nodal
u,u.’ data is interpolated individually using linear shape functions, sufficient
smoothing being obtained this way.

Repeated interpolation is avoided by performing interpolation once, at
program initialisation. Subsequent displacement calculations are performed
entirely on Gauss point data.

Further discussion on elastic displacement continuity can be found in

Sections 4.2.2, 5.3.2.

External Load Interpolation : At any given time, external loads f x’/fy are
determined using cubic Hermite interpolation of nodal load data, typically
supplied every 100 crank-angle. The additional nodal derivative data required by
the Hermite procedure is generated using central difference approximations of the

'raw' load data.

4.2 Elasticity Solutions
This section presents the adaptations of some standard solution procedures
of linear elasticity : Influence matrix constructions of exact beam theories;

Sub-Structuring of Finite Element implementations.
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Trial function selection and its ensuing effects on fluid-film equations are
discussed.

Finally, sample elastic displacement fields are presented for radially point
loaded structures, allowing dimensionless characterisation of elastic behaviour to

be attempted.

4.2.1 Curved Beams
Elasticity models were
initially constructed using

rigid sectors and 'built-in'

elastic sectors (F4.6).

F4.-6

Careful restrictions on geometry
allow smooth elastic solutions to be generated very frugally through an influence

matrix construction,

(a) Influence Construction :

Using the exact curved beam element of Section 3.2.1 and uniform spatial
meshes of constant rectangular cross-section, influence relationships are
constructed as follows :

The elastic sector is firstly divided into two elements, the division falling on

the first global element boundary.
Nodal loads {F_F,M} are then
applied to the interface (a-b)

and displacements {u_,u 5r C*’y}i
determined at the required global

positions (Gauss points) in the

two elements. (F4.7).
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This procedure is repeated with division a-b falling on successive global
element boundaries, structural symmetry being used to afford further economies.

The resulting influence relationship can be written as follows :

r 3 _ '
u =g K!f where (3.19)

E‘l is the global influence matrix, the other terms as per Section 3.2.1.
Global pressure/nodal-force relationships and body-force/nodal-force

relationships are assembled in the usual F.E manner[69]. The required

non-dimensional forms,
i=A@ELAD + = EKLV)b (3.31)
can then be assembled ready for partitioning.

(b)  Sample Results :

Results for a 3000 curved-beam model with radially applied nodal forces
are presented in F4.8T.

In this figure, neutral-axis displacement fields u,u.’,u, are represented by
separate families of curves. Successive curves in each family depict dimensionless
displacement behaviour induced by radial force F_ applied sequentially around the

beam nodes.

f Unless stated otherwise, curved beam models use thick beam theory

(E/GK=3).
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One interesting feature characteristic of rings, is the 'geometric stiffening'

of the structure as load moves
towards the beam’s line of F;

symmetry. This is accompanied

by a general 'pinching' of the aw | t:
é . o
ring structure (F4.10). P /flC!’?l/g

FeplO

The behaviour of a 3600 ring,
presented in F4.9, is clearly very similar to the 3000 ring of F4.8. The removal of

the rigid neck approximately doubles deflection.

422 Planar Finite Flement Models
To overcome geometrical inadequacies of rigid-elastic sector modelling, F.E
plane-stress models of constant thickness were constructed.

- These models have impaired continuity when compared to curved beams,
requiring a judicious choice of displacement trial functions if successful operation
of the fluid-film equations is to be achieved. Furthermore, to efficiently process
multiple load cases (~ 600) at a small percentage of the total nodes (~ 10%),
selective tailoring of standard solution procedures is required.

Steps undertaken to achieve these objectives are outlined in the following

sections :

(a)  Trial Functions

A variety of functions are used for different purposes in this work :

Displacement Trial Functions (Ni) Subparametric cubic Hermite

[69,92]

elements incorporating quadratic Lagrangian geometry are deployed in the

work presented.



This element uses a ﬁ
8 A 000
. . (-1,1) (I, _
12-term displacement polynomial A G

in conjunction with an 8-term

geometry polynomial. (F4.11). & O~ ;
Implementation details can be + d(splq et nedes (¢ j%%j U“)

found in Appendix A6, o geote hH nodes (,4) Fa1i

Earlier attempts to use simpler 8-noded isoparametric element solutions

were unsuccessful; insufficient derivative continuity impeded the workings of the
fluid-film equations.  Deployment of the Hermite element, with its enhanced
inter-element continuity, provided sufficient continuity for F.E analogues of the
curved beam models to run successfully, However, convergence of the fluid-film
model was impaired when compared to the equivalent curved beam solutions.
Clarification of the relationship between elastic field continuity and
fluid-film equations clearly warrants further investigation, however it was

considered beyond the scope of this work.

Pressure Trial Functions : (M,). Pressure tractions are modelled using quadratic
Lagrangian functions. These functions can be salvaged from the two-dimensional

geometry functions (Appendix A6) by specifying the traction sidel87],

Body—Force Trial Funclions : (ﬁi). Body forces are assumed to remain
constant over each element, variation being element-wise.  The applied body
forces are then determined at the element centroids.  Fine spatial meshes
necessary for overall solution accuracy ensure suitable apportioning of these

forces.
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(b)  Sub-Structured Solutions :

[93]

In this work, Sub-Structuring techniques are used to 'reduce' the initial

structure to that of a super-element :

= sus - Shucturing

o ~ achye nooes
+ - inchve nades

Finite Elemerts Supet- Element o

Redundant nodes are statically condensed from the structure during element

assembly, a procedure performed automatically by Frontal-Solvers[87]and adapted
for this work.

The resulting 'reduced equations' can then be partitioned to read :

B&6 &L [T
—_— =A|Z|p+ E|Z|D (4.12)
gEll & v,

where }\A} - active (retained) nodes

8 - nodes with prescribed displacements.

This reduced stiffness relation is dense (non-sparse), not unlike relationships
generated by Boundary Integral Methods[%ﬁ.

The 'solution' for displacements Li can be written as :

8= AKTA)R + EE VS - (K Ko)D (4.13)

f these would appear to have a promising future in EHL work.
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whilst reactions g at prescribed displacements :@ are :
T = AAKGK AR + BV KK V)G - KKKy Kp)d (4.14)

The efficiency of the above processes rely heavily on there being only a small
pefccntage of retained nodes.

For rigid constraints, expression (4.13) reverts to the form presented in

Section 3.2.3:
§ = AE)D + Z®T)S (29)

(¢)  Sample Results :

As a companion to the earlier curved-beam results, centre-line (¢) and
surface displacements for F.E curved-beams are presented in figures F4.13, ¥4.14
respectivély. Nodal interpolation is via one—dimensional cubic Hermite
polynomials. (See Section 4.1.3b).

For engineering purposes, curved-beam and F.E. ¢ displacement fields
(F4.8, F4.13) can be considered to be identical. Surface F.E. displacements are
however less amenable, u’ beginning to exhibit undesirable behaviour about the
applied loads. Fortunately, this behaviour occurs between nodes and is simply
circumvented using linear interpolation of nodal u .~ data.

Most features of the curved beam model carry over into the planar big-end
model of F4.15 : geometric stiffening becomes more pronounced, undesirable u :
behaviour reappears and is once again circumvented using linear interpolationt
As expected, some discrepancy in behaviour is apparent about the palm-end of the

rod, however by-and-large the full ring model of F4.9 compares favourably with

f linear interpolated surface displacements are presented.
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the planar big-end of F4.15. The development of a curved beam model

incorporating variable cross-sections may well be warranted.

SYMMETRIC F-E

BIG-END

Fu-1s

(d)  Boundary Constraints :

To complete this section, boundary constraints applied to the F.E. planar

rod models are summarised in F4.16 :

DISPLACEMENT CONSTRAINTS

Usy

L

Fat 16
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423 Dimensionless Flastic Behoviour
A natural starting point for the characterisation of elastic behaviour is the
curved-beam models of Section 3.2.1.

Taking the 3600 ring of F4.9 and replacing dimensionless parameter

EL 1fyby %lg“ 2, one finds that displacements accurate to within 10% can be
r c r

accommodated on this single figure for the range of thickness :
04 <t/r < 0.6

Similarly, elastic sector size 98, can be incorporated to lesser accuracy using the

360m
additional multiplier [_US* where 3000 < EIS <3600, m~4 (3 <m <3).

These relationships are summarised in T4.2 as a series of multipliers for the EL. %-—
. T

ordinate (106.66) of F4.9. r 040 045 050 | oss
. Clearly, rigid sector s
. . 360 1728 1291 1 0.797
size is as important as
340 1375 1.027 0.796 | 0.634
thickness ratio in determining 320 1079 | 0806 0624 | 0498
elastic behaviour, although 300 0.833 0.623 0482 | 0384
the above range of (}S may be overstated. T4.2

Planar F.E analyses (F4.15) suggest that, without attempting
parameterisation of neck geometry, elastic behaviour is analogous to full-ring
behaviour (49S = 3609). These similarities allow the full-ring model to form the
basis of a dimensionless dynamic film-thickness estimate in Chapter Seven.

To complete this section, it is useful to present a single parameter

characterisation of displacement behaviour :

r|3 t

ol
T
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With this characterisation it is possible to investigate the case of an infinitely thick

housing, namely t/r = 00 :

In comparison, a typical housing t/r = { gives :

o], = et (%)

thus 0[”} o[” - [%3 = 08% 4.16
F:oo/ F;]é 1 ( )

Since journal deflection is dimensionally equivalent to infinitely thick housing

[8

deflection ], (4.16) represents the ratio of journal to housing deflection; ample

justification for the rigid journal treatment introduced in Section 2.1.4.

In closing this Chapter, it will be observed that the preceding work has
largely involved the collection of various theoretical apparatus maldng up the
big-end EHL problem. In the remaining Chapters we shift our attention to the
verification of these techm’qﬁes and their associated solutions in firstly a

steady-state, then full dynamic environment.
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CHAPTER FIVE
STEADY STATE SOLUTIONS

In the context of connecting-rod bearingé, steady state solutions have little
intrinsic value, moreover they have largely been responsible for the
misconceptions present in dynamic work. Despite this, they do however provide a
convenient means for the verification of the various solution techniques employed
in this work.

This Chapter firstly uses the rigid model to verify parabolic pressure
assumptions and mesh dependencies. Performance over a range of geometry and
load are investigated.  Selected elastic solutions are then reviewed from the
literature, attention focusing on the work of Aﬂen[17], Stafford[zo], and
Fantino[w]. Factors affecting oil-film sensitivity and multi-peak pressure
behaviour are studied in detail. Finally, the performance of Fantino’s bearing on
both ring and housing geometries is presented over a broad range of load.

All results are generated on uniform meshes, solutions to the dynamic
problem being delayed until Chapter Six.

Some background on the development of a steady state solution is a useful

preliminary to the main body of this Chapter.

5.1  Steady Solution Development

In this work steady state results are determined as the limit of a dynamic
solution under steady load: journal locus convergence is achieved through the
decay of starting error transients to a steady state. This decay is load dependent;
most rapid for high loadings, tediously slow at low load.

Such a solution procedure is then load based, the load vector being fixed in
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magnitude and direction. In comparison, traditional steady state solutions are
determined by fixing journal position, acquiring a pressure distribution and hence
load vector. Without considerable load vector alteration, a direct comparison of
solutions is difficult: modelling differences, most notably film boundary conditions
for the rigid problem and elasticity models in the elastic casev, lead unavoidably to
discrepancies.

Bearing these points in mind, rigid then elastic steady state solutions are

next presented.

52  Rigid Steady State Solutions

Several studies have implemented parabolic axial pressure approximations
[11],[71), this section adds to that body of information on F.E. based
approximations.

"We firstly compare the parabolic axial pressure assumption against finite
length solutions, then investigate the effects of quadratic pressure shape functions
on breakdown boundary interpolation. General results over a range of loads,

meshes and L/D ratios complete the section.

52.1 Specific Cases : Arial pressure dependence

Verification of axial pressure dependence is carried out against the
half-Sommerfeld finite bearing solution of Hays [72]. 1In his work Hays presents
axial and circumferential pressure distributions for a range of L/D, F5.1 presents

results for L/D ratios of 1, 4, 4 at loads Tassociated with an eccentricity of 0.8 :

the loads used are those presented by Cameron[43]
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As can be expected, circurnferenﬁal distributions differ, pressure being 'released’
by the extra boundary flow of the half-Sommerfeld solution. Peak pressures and
breakdown boundary positions are however quite close to the Reynolds boundary
condition solutions given by Cameron[43].

Axial pressure distributions for the finite L=D solution show distinct
centre-line pressure flattening leading to a lower load capacity in the parabolic
approximation.  This load carrying deficit, compensated by greater journal
eccentricity, leads to higher peak pressures in the parabolic model.

At lower L/D ratios, the finite solution develops very parabolic axial
profiles, flattening being much less pronounced.  Under these conditions the
parabolic model would seem very appropriate. Tests in Section 5.2.3 provide

broader verification over a range of load, mesh size and L/D ratio.




82

522 Breakdown Boundary Inte}‘polation

One of the unavoidable consequences of using quadratic pressure shape
functions is the development of negative pressure at film rupture: consider for
example a pressure distribution as it is moved across a mesh. In the region of
film rupture three inferpolation scenarios are possible as the various pressure

shape functions come into play; F5.2 presents the possibilities :

() \ () (c)
\ ‘
= \ T_‘"—;i——> \
\l/ N | % Al \
7K AN C — A

— — actwal pressure  —inferpolated pessure oo o

Because this behaviour occurs in a critical region of the oil-film, a region of high
pressure gradients, solutions can develop an acute sensitivity to mesh.  This
sensitivity, explored further in the following section, can be overcome by mesh
refinement or alternatively by a change to an homogeneous trial function (linear
trial functions for example).

For convenience, negative pressures are not plotted in figures presented in
this work, the exception being the extreme case of F5.5; in this figure, negative

pressures represent less than 2% of the applied load.

523 General Resulls
Results covering L/D ratios of 1, 4, 4, 0 (short bearing solution) and

loads[43]'

associated with eccentricities 0.8, 0.9, 0.95, 0.97 are next presented. Two
sets of solutions on both 24 and 36 element meshes are developed: variable-load
fixed-direction solutions (Table T5.1) and fixed-load variable-direction solutions

(Table T5.2).



Fixed-Direction Variable-Load Results
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TABLE5.1:
36 Elements
L/D 0.0 0.25 0.50 1.0
< 097 085 050 080 0.97 095 090 080 0.97 085 080 080 097 035 098 0.0
3 4573 1634 4001 0955 | 2101 6242 2883 0813 | BT7IL 4496 1665 0575 | 2798 LI06 0706 0.297
AR%) | -0 408 ~03 —03 | +.07 +.03 403 +.01 | +24 +07 0 -12 | 420 +.60 +.30 +.30
Adeg)] —02  +03 02 —01 | +04 -02 +01 [ -01 -05 0.7 | -04 —04 02
AR%) | +13 ~10 403 +01 | —56 ~06 —~03 05 | —-46 ~13 0 +05 | -80 ~12, -30 -10
AR%) | -30 438 -07  —aol —~40 ~50 -3 +10 | +50 +70 +60 +30 +25. 427, 415 +70
24 Elements
AU%) | ~01  ~-03  —.02 .04 +08 ~06 +.04 +.12 +.16 +.40  +.03  -.05 +.20 +.80  +.20 +.20
Addeg)] =05 ~02 401 —01 | —04 ~02 402 | ~02 ~05 -04 | —03 —06 +02
AR(%) 1 +03 406 +02 +02 | -27 412 -04 —05 | -30 -76 ~03 +02{ -80 160 -20 -039
Ap(%) | =170 ~20 =20 -06 | —-60 ~60 20 +05 | +30 120 +40  +30 | 4160 4230 4130 +380
TABLES.2 Fixed-Load Variable-Direction Resulis (7 =097
36 Efements
L/0 0.0 0.25 0.50 1.0
ad Tuys 12 ays 1 s 12 34 1 14 12 34 1 R
AH%) | +01  +.00 402 0 -13 -2 -8 2 +.06 ~-07 —-.03 0 +01 +.05 -08 O
Ad{deg)] ~03  +50 +.30 +.01 | ~-45 —56 -43 +.01 | +.37 -92 —13 403 | 4.0 +42 -1 +.07
ak(%) | ~03  ~33  -07 0 +46 +42  +28 0 ~24 424  +10 0 ~04 —18 +29 O
Ap(%) | ~01  +280 +50 —01 | ~22 -—16 +08 —01 | +68 +13 +32 -0l | ~11 +40 —L5 401
24 Elements
A% t4+21 —-12 4.2 0 +03 +.30 -0 [ [ +.20  +.20 6 -06 +.03 +.30 +.01
Ad(deg) | +18  +.20 +.60 +01 | -2 +12 4.0 +03 | ~30 +.30 -9 +.04 | -30 -30 +.80 +.10
AR(%) | ~90  +40 -07 0 -0 ~98 +07 [ 0  -60 ~70 i +20 ~-18 -100 —04
Ap(%) | +62.0 4100 +140 ~03 | +50 +290 —70 ~.01 [ -26 418 +80 —.02 | +20 +110 +260 ~-.12

t Az Load shift in element units




(a)  Fixed-direction Variable-Load Results :

Traditional fixed direction results are presented against the finite Reynolds
boundary condition results given in Cameron[43], absolute percentage errors
being recorded in T5.1.

Journal positioﬁ and hence minimum ‘film thickness are presented in
F53(a) : Positional errors are quite small, At < 1%, A9 < 19, there being
similar errors on both meshes. These translate to maximum h min &rrors of 10%.

The most conspicuous discrepancy in these results is the high eccentricity in
the L=D case. This behaviour reflects the lower load carrying capacity of a
parabolic profile at larger L./D ratios. A corresponding increase in peak pressure
accompanies this trend (F5.3(c)), maximum pressure errors in the order of 20%
occurring in the L=D case.

Finer meshes expectedly give better resolution of both peak pressure and
breakdown boundary location, these points being consistently located to the
closest nodal division on both meshes. Peak pressures are generally higher on the
finer grid, the differences reducing with decreasing load and L/D ratio. Figure
F5.4 presents sample distributions using p [Ilji] ’ as non-dimensional pressure.

There is little merit in pursuing further analysis of 'fixed-direction' mesh
dependence; relative motion of mesh and load line can lead to much greater

sensitivity.
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(b)  Variable-direction Fixed-Load Results :
Mesh homogeneity as described in Section 4.1.3(b), can be tested by
shifting the load line through an element: 7TS5.2 presents percentage error

deviations for i, %, %—and 1 element shifts at loads associated with the eccentricity

097.

Shifts of one element give an indication of the numerical accuracy
obtainable on a given mesh: for 36 elements 0.1%, for 24 elements 1% on all
parameters (A%, A9, AR, Ap). Condition numbers for these solutions indicate
approximately six digits of lost precision. This makes double precision arithmetic

(8 byte reals) mandatory for all calculations,
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For smaller shifts, journal positional errors are once again small:
At < 1%, AD < 20, Aﬁmjn < 10% over both meshes. Peak pressures however
show considerable deviation: On the finer mesh, accuracy is acceptable (10%) for
all but the short bearing solution (L/D = 0). This solution has the highest
non-dimensional pressures (26x the L=D solution) and hence gradients, severely
h'nﬁting solution accuracy. This is more pronounced on the coarser 24 element
mesh, rendering pressure solutions strictly exploratory for thé tested L/D ratios.

Figure F5.5 shows the degree of pressure distribution distortion possible
using quadratic shape functions. An additional feature peculiar to this loading, is
the cusp at 1650. The mechanism for this behaviour is once again quadratic
interpolation of high gradient pressures on an inadequate mesh., It should be
emphasised that this is 'worst-case' behaviour: highest load on a coarse mesh.
Despite these misgivings, journal position and film thickness errors are still very

acceptable.
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Summarising, the rigid steady state solutions of this section show the
parabolic axial pressure assumption to be most appropriate for bearings of
length-diameter ratios :

0<L/D<4
whilst less suitable for L/D > {, it is much more accurate than the traditional
'short-bearing' approximation, L/D = 0.

In practice, circumferential pressure behaviour of the quadratic shape
functions is more likely to cause problems; for work involving relative motion of
mesh and load line, fine discretisations (10° b.a. maximumf) must be used if mesh
and hence pressure homogeneity is to be maintained. However, accurate journal
position can be computed quite confidently on coarser meshes,

We next look at specific elastic solutions.

53  Elastic Steady State Solutions
Two groups of elastic steady state solutions incorporating experimental and
theoretical aspects are prominent in the literature: - the work on housings of

Fantino 1] and Frene?! and that of AJlenHﬂ, statford!29 and Bozacil?2! on
arcs. We look firstly at the theoretical work of Allen and Stafford then

re-examine the bearing of Fantino.

53.1 Are Solutions
Solutions to the rigid/elastic sector problem have been presented by Allen
and Stafford. Both works use a constrained journal position, iteration being

performed on the pressure vector and hence external load.

f b.a. = bearing angle (circumferential)
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(a) Allen:

The work of Allen is based on a finite length solutionJr incorporating
Reynolds’ boundary condition. This is in-turn coupled to thin inextensional beam
theory, Allen incorrectly claiming the use of thick beam theory.

The resulting equations, valid only for Steady state conditions, provide a
surprisingly accurate solution verification: F5.6 and F5.7 show the results of
Allen’s[17] method and the current method for an inextensional 2700 elastic/rigid
sector.

Quantitatively, for F5.6 ¢, 3, h and U are all within 1%, centre-line pressure
p within 2% for the applied load given by Allen. The results in FS.7 are of
similar accuracy.  Considering the differences in solution techniques: journal
position constraint; finite element verses finite differences; parabolic axial pressure
distributions versus axial finite difference representations; mesh differences,

agreement is exemplary.

(b)  Stafford :

The results of Stafford continue along the rigid/elastic sector theme of
Allen with some slight differences:  Half-Sommerfeld rather than Reynolds
boundary conditions are invoked; 8 noded isoparametric elastic elementsﬁreplace
curved beam theory.

Duplication of this work is made difficult by the difference in program
solution modes: considerable iteration on external load vector is required to

achieve the fixed journal position used by Stafford (T5.3).

T 64 x 8 grid

f Ino indication of mesh is given
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=13 @ 1800 f L. | Prrax

Stafford 0.745 @ - 8.80 0.162 @ 230° | 0.800 @ 2200
Inext.Beam 1.250 @ - 5.30 0.129 @ 236° | 1.319 @ 2230
Thick Beam 0.760 @ - 7.20 0.173 @ 2310 | 0.730 @ 2160
Hermite Beam | 0778 @ - 7.2 0.174 @ 2300 | 0.755 @ 2169
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T5.3

The results presented in F5.8 are for the most heavily loaded condition:
Case 1, ¢ = 1.3 @ 1800 of [20].

Considerable discrepancy between the results of Stafford and the
inextensional 'Allen' model is apparent.  Stafford claimed that this was due to
different film boundary conditions, being under the impression that Allen was
using thick beam theory. On comparison with actual thick beam results, it would
seem that the major discrepancy is in the elasticity models, film boundary
conditions being of secondary importance.

Results for an equivalent Hermite F.E beam (32 x 2 elements) are
presented in F5.9. These results fall between those of Stafford and fhe thick
curved beam, agreeing closely with the latter.  Clearly oil-film sensitivity is
sufficient to detect differences in elasticity model type. However, it is insufficient
for these differences to create major discrepancies, at least not in this bearing,

In both Allen and Stafford’s work, the development of doubly peaked

pressure distributions is a consequence of housing 'wrap-around’ in association
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with curved-beam 'pinching'
(F5.10). This behaviour

induces an early film build-up

W ‘Prching’ 2 ~
JaN

N

< =

and delayed film breakdown.

Pressures developed at‘film inlet
decay in the intervening

'wrap-around' region due t lé\)rqfs- acound’

to reduced constructive F5./0

wedge action.

Pinching and wrap-around are then the identifying characteristics of ring
EHL problems, dominating the film-thickness equation for anything but the lowest
loads.  The ramifications of this behaviour are investigated further in the

following section under the more sensitive environment of Fantino’s bearing,

532 Housing Solutions ‘ Fantino's
When first presented, Hou&'ng

Fantino’s housing solutions

were quite controversial, the

presence of oscillating pressure

distributions causing some
19]

consternation[ 50l

Interpretation
of these results was complicated by the use of cbarse elasticity meshes and
difficult, although realistic, geometry. (F5.11)

In this work, simple ring type geometries are instead used to re-evaluate
Fantino’s bearing. The question of multiple pressure peaks and their relationship
to oil-film sensitivity, discretisation and displacement interpolation are

investigated.
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(a)  Multiple Pressure Peaks :

We firstly look at a ring under 20 kN loading: F5.12 shows the
development of a third pressure peak, this extra peak corresponding closely with
the film slope (8) behaviour of F5.13. Circumferential mesh size clearly has little
to do with its prescncc; results being very similar’ for 24, 36 and 46 elements,

For Fantino’s bearing, triply peaked pressure distributions first appear at
15 kN and remain the predominate form through to the maximum tested load of
40 kN.  Physically, the development of successive peaks can be explained as

follows:

F5 1t

As observed in the previous section, a combination of wrap-around
and pinching (F5.14a) produces broad doubly peaked pressure distributions, the
left and right peaks of F5.12 being of this mechanism. In the intervening parallel
film region, a weak secondary wedge develops (F5.14b): this is not the product of
'wobbly' housing distortion but is instead due to the relative interaction of surface
curvatures, probably from the alteration of housing curvature through pinching.
We will see later that with increased tensioning of the beam around the journal,
secondary wedge effects can diminish under load.

Given these mechanisms, the development of multiple peaks is then largely

dependent on oil-film sensitivity.
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(b)  Film Sensitivity :

For the steady state case, load capacity is generated through film 'wedge'

action, hence it is pertinent to look at film slopes § : ['5‘ = —g%—}

The operating régime of Fantino’s bearing is such that considerable housing
wrap-around occurs, producing a large section of parallel oil-film. Film slope is
then the difference of two terms of similar magnitude; the geometric and elastic
slopes.

For the 20 kN case of F5.13, the resultant slope through this region is due
to the third/fourth significant digit of the individual slope terms. In comparison,
film-thickness is dependent on the second/third significant digit.  Clearly any
untoward behaviour in the third/fourth significant figures of the slope is likely to
collapse the solution, inexactness in the fourth/fifth figure will lead to spurious
solutions.

Two sources of such errors were observed, discretisation and elastic

displacement interpolation :

Discretisation :  For the curved beam model, both geometric and elastic slope are

trigonometric functions;

smoothness is implicit. continuum element

Any errors present are then /(\

largely due to circamferential \ /él\
discretisation (FS.15);

round-off is approximately in Discretrsation

the tenth decimal place. F5:15

Unfortunately the errors of an inadequate discretisation are sufficient to induce

spurious yet stable solutions, witness F5.16 at 40 kN.
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Mesh frequency oscillations have appeared in film-thickness and film-slope
behaviour: for the 60 and 46 element solutions (F5.17) oscillations are ineffectual,
the 36 element solution (F5.18) not sufficienily affected to produce a majorly
spurious solution whilst the 24 element solution (FS.19) is spurious.

Verification of kmcsh independence on significantly finer grids is clearly

important if a converged solution is to be claimed.

Displacement Interpolation : To illustrate the effect of interpolation error, it is
informative to induce elastic interpolation 'moise' in the 20 kN curved beam

example and observe the results.

For this purpose, 10° nodal u_u .’ curved beam displacements are

separately linearly interpolated

onto 100 fluid element gauss points

- - Ut U
(F5.20). 'This introduces significant -

interpolation error as exact curved

beam u ,u ) displacements are element

R

intimately coupled. The results are Linear j}ﬂe[‘po ated
shown in F5.21 and F5.22, significant | 3 p¢. Gayss Rule

F&520

differences being apparent.
Oscillations are present in both slope and displacement fields, the level of
'noise' being sufficient to produce a spurious solution (c.f. F5.19 @ 40 kN).

Displacement and slope fields have clearly become unsynchronised.

How well then does an Hermite F.E. ring fare given that the displacement

fields are linearly interpolated to the Gauss Points? (See Section 4.1.3(b)).
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Interestingly the distinct tertiary pressure peak of the beam ring is not
evident in the 20 kN F.E ring of F523, F524.  Oscillations in slope and
displacement are present at slightly lower levels than the interpolated beam
results, amplitudes in the order of 0.5% of the displécemcnt field being typical.
This level of noise is sufficient to mask the development of the third pressure
peék; slope behaviour alludes to third peak pressure mechanisms being present,
the central peak being merged with the right-hand peak.

Very similar behaviour is exhibited by the F.E housing solution, F5.25 and
F5.26 being at 20 kN. Again, no tertiary pressure peak is present although slope
behaviour suggests the mechanism is present. The stiffer neck of the housing
produces a pressure distribution of smaller included angle, overall displacement
behaviour being reduced as evident from journal eccentricity.

Before concluding this section, some comment on noise attenuation is in

order.

Noise Attenuation : It should be emphasised that both elastic displacement and
slope are outwardly smooth in all the above solutions. Only when geometric
terms are differenced does noise become apparent, levels being controllable for
discretisation but unacceptably high for F.E interpolation.  Alleviation of this
noise problem is not altogether straight forward.

A 'quick-fix' would be to use more elastic F.E’s. This however only shifts
the problem to higher loads and increases computational burden. Indiscriminant
smoothing, as shown by the interpolated curved beam results, can introduce a

signature all of its own.
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The only really satisfactory solution is the use of smooth shape functions
within the elastic variational principle. ~ The use in this work of Hermite
polynomials is a first attempt in this direction, unfortunately thwarted by the use
of external linear nodal interpolation. Further effort directed towards extracting
the exact interpolatioﬁ may elicit the requirc:d‘ outcome, otherwise even higher

continuity elastic trial functions will need to be devised.

(¢) Load Dependence :

Performance maps for Fantinos bearing over a range of load are provided
in F527. Elastic trends are similar to those reported by Fantino; reduced
film-thickness, pressure and attitude angle; increased eccentricity over the rigid
solutiomn.

F.E. results indicate sensible behaviour despite increased noise levels, ring
solutions showing good agreement. Housing solutions are generally consistent
with increased structural stiffness: reduced eccentricity, increased film-thickness.
Peak pressure does not however fit this pattern: reduced primary pinching from
stiffer neck geometry reduces the peak pressures.

What is not apparent from this figure is the low load-convergence limit of

the F.E solutions.

Convergence Limil :  From preceding sections, it should be apparent that the
steadily loaded ring problem becomes increasingly ill-conditioned with load,;
'wrap-around' decreases wedge action, in the limit becoming swamped by élastic
'noise’. At this point, the N-R solution technique undergoes a dramatic solution

collapse :
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For curved beams and rigid bearings, stable convergent solutions were
obtained for loads greatly in excess of the design load; ¥5.16 at 40 kN is a case in
point. For these solutions, discretisation noise was not found to be a problem.
For the equivalent F.E rings, this was not howevgr the ‘case.

As low as 21 kN, unstable oscillatory journal motion occurs, leading to
soiution collapse; lack of load carrying wedge terms is compensated by the
development of unstable dynamic journal action. Stable load limit then gives
some measure of the noise level tolerated by the bearing solution; the observably

higher noise levels in the F.E solutions lead to their early demise.
So, what can be concluded about Fantino’s bearing?

Given the reluctance of current procedures to converge on F.E geometries,
it is difficult to comment on the strong oscillatory pressure behaviour observed by
Fantino. What can be said with certainty is that the generic ring solution
(t/r = 0.5) exhibits diminishing triple peak behaviour to very high loads.
Non-uniform geometry in the form of bolt flanges may: provide sources for further
geometry related peaks, however numerical inadequacies, in particular the
insidious side effects of a coarse elastic discretisation, can lead to many more.

Extension of Fantino’s problem to a full parameterisation was considered
but rejected; the steady state problem is inefficiently solved by the current
program and is by-and-large pathological.  Effort was instead directed to the

more relevant dynamic problem.
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CHAPTER SIX

DYNAMIC SOLUTIONS

The dynamic solutions of this Chapter focus on the Ruston and Hornsby
(R-H) bearing presented by Campbelilm° Other bearings could well have formed
this basis, however the sheer quantity of experimental and theoretical literature
associated with this bearing make it the de facto standard big-end test case.

This Chapter firstly uses inertial loadings to develop an understanding of
the fundamental film mechanisms; ring solutions are used to illustrate basic
bearing performance, the additional features of the elastic bearing bcingi
thoroughly explored. These ring solutions are then ratified against full housing
solutions. The influence of engine speed on performance, is investigated on both
elastic geometries.

- The second portion of this Chapter extends loading to incorporate gas
forces.  Solutions to rigid, ring and housing geometries are presented with an
emphasis on verification : the parabolic rigid solution against state-of-the-art finite
length solutions; curved beam solutions against full housing solutions. Finally, a
detailed comparison is made between these theoretical solutions and in situ film

measurements made by Butcher[34].

6.1  Inertial Load : Ruston-Hornsby
Dynamic big-end bearing loading is fundamentally that of the inertial
con-rod components, at least this is the case when gas loading is less than five

196],

times the inertial loading It is therefore of considerable interest to look at

the bearings response to such loadings.



~€>|

6.1.1 Load Diagram
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The inertial load diagram
used for the Ruston-Hornsby, is

the lumped mass one of F6.1,

This diagram differs slightly
from the inertial loop of
Campbell’s[ﬁ] gas diagram, the :
R-H engine having a supercharged A
cycle.

Rate of change of load direction

(¥) and magnitude (1) are presented in F6.2, these temporal variations being
useful in interpreting locus behaviour.
Before looking at the effects of elasticity, it is worth reviewing the basic

performance of the rigid bearing.
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6.1.2 Rigid Bearing Solutions
In this work 'dynamic performance' is taken to be characterised by :
ﬁmin ' Pax ¢ &
These parameters are just a small subset of the available information; friction
forces, flow losses and bearing surface stains/stresses are also available. Figures
F6.3, F6.4 show this 'dynamic-performance' over the full 600 rpm R-H load cycle.
It is useful to try and isolate cause-and-effect relationships between

performance and load.

(a)  Causal Relationships :
Dynamic performance of an elastic bearing is characterised by the reaction

of the five forcing terms in Reynolds equation (3.14), namely :

A

R o an do.
q= [Z(ur - ecos(¢-0) + egsin(¢-0)) + S[W—" fSln(¢-Q)]] (6.1)

to the two external load terms ?x’ Ty.
For a rigid bearing these five terms reduce to three, their dimensionless

forms characterised by the terms 'squeeze' § and 'wedge' W as follows :

A

squeeze : €

wedge :'E(/&\)-S/Z)

Variation of these measures throughout the load cycle is outlined in F6.5. Not

surprisingly, wedge action dominates :
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Radial motion is restricted to O(c), angular motion to much larger O(r). As

shown by F64, the predominant film-thickness form is strongly influenced by

wedge velocity €(¢ - s/2), this velocity being in response to the 'sweep' velocity of

the external load diagram (%, F6.2).
During periods of low whirl velocity, most notably around TDC and BDCT,

squeeze action becomes influential; at half-whirl speed (¢ = s/2) it is the only
term. It is the unfortunate consequence of geometry that during these periods
external load is maximised, minimum film-thickness is then determined by the zero

squeeze condition :

¢ = 0;min (¢-5/2),

load being carried by the remaining wedge terms. This invariably occurs around

f TDC : top dead cenire (0°a); BDC : bottom dead centre (180°ca)




270%a for a rigid bearing, although these conditions need not be similar in an
elastic bearing.

A strong relationship also exists between maximum film pressure (F6.4) and
external load magnitude (F6.2), load being im:egréted pressure.  Maximum
pressures are developed around TDC and BDC, TDC pressures being slightly
higher.

An overview of the various spatial film contributions throughout the load
cycle is presented in F6.6 : the inner arc represents pressures; cenire arc, wedge

action; the outer arc, squeeze action. Shading respectively represents positive
pressures, constructive wedge action (€(¢-s/2)sin(6-¢)) and closing film squeeze

velocity (ecos(f-¢)). Half-whirl speeds, predominant film action and resulting
pressure are all available on this figure.
We now look at how the major parameters are affected firstly by temporal

step length, then spatial meshing,

(b) Temporal Mesh :

Results of varying time meshes on a fixed 36 element spatial mesh are
presented in F6.7.  Fine meshes (36/2.50)T can be seen to lead to 'lumpy'
pressﬁre behaviour, the mesh homogeneity problems of Section 5.2.2 resurfacing,
These oscillations are of sufficiently small amplitude (< 2%) not to affect
film-thickness.

Coarser meshes are not significantly different in either film-thickness or
pressure, however the 36/10° mesh does provide a smoother pressure behaviour.

A slight trend towards thicker minimum films is apparent on the coarser meshes.

f 36/2.50 = 36 spatial elements, 2.50ca temporal elements




RUSTON HORVSBY 600 (Figid)
jmer: B middle: W oukr: 3
o Journal positior
o Pux PBthon
A load vector 616

113

260




114

Journal squeeze and wedge velocities are presented in the previous figure,

F6.5. Little perceptible difference is apparent in ¢ over all three meshes ;

differences in 'E('&\ﬁ - §/2) are most notable on the 36/10° mesh. This corresponds
closely with the film-thickness differences encountered ‘at 90° and 3000
crank-angle.

Overall, the three time meshes produce quite satisfactory results, coarser
meshes sacrificing resolution but not accuracy to any great extent.
Spatial/temporal mesh matching would seem to be a desirable, although difficult
feature to implement ; temporal interval halv'mg, although never invoked by the

rigid model, would complicate such an implementation.

(¢)  Spatial Mesh :

Results for various spatial meshes are presented in F6.8. Base curve 46/5°
shows smooth pressure behaviour throughout the load cycle, film thickness being
equally well controlled.

As spatial mesh coarsens, maximum pressure behaviour again becomes
lumpy : for the 24/59 solutions, amplitudes < 6% ; 36/50 meshes, amplitudes <
2% (only two perceptible lumps at around 200%a). Despite this lumpy behaviour,
film thickness remains largely unaffected, moreover max(p max) and mm(ﬁmin)

correspond closely with the 46/5° solution.

S

The affect of mesh variation on temporal components ¢ and ?(’&; - §/2), was
found to be negligible.

Absolute verification of the rigid bearing model against other R-H solutions
is delayed until Section 6.2.2 on gas loadings and the generalised inertial loadings
of Chapter Seven. At this stage, it is probably sufficient to say that a close

correspondence was found to exist.
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6.1.3 FElastic Ring Solutions

Characterisation of elastic bearing performance is developed through an
extension of the rigid bearing wedge and squeeze concepts introduced in Section
6.1.2 : we firstly re-categorise rigid squeeze and rigid wedge terms as journal

squeeze and wedge action, thus :

~

e journal squeeze ¢

e journal wedge €(¢-s/2) ,
whilst terms associated with the housing are categorised as elastic squeeze and

wedge :

e elastic squeeze u_
o clastic wedge %ﬁr
These can in turn be broken down into squeeze and wedge actions due to elastic
pressure and body-force displacements, The interplay of these six actions, all
being comparable measures of their respective forcing terms in equation (6.1),
determine the overall response of the elastic bearing to the dynamic load.
This section looks at this response using curved-beam ring solutions, firstly
at 600 rpm then through the speed range of the R-H engine. It is completed with

a look at discretisation. Housing solutions are investigated in Section 6.1.4.

(a)  Ring Solutions : 600 rpm

As companions to the earlier rigid solutions, 6.9 and F6.10 contrast elastic
bearing performance against that of the 600 rpm rigid bearing. This solution is
based on a 360° curved-beam ring (t/r = 0.5) of 36 spatial elements and a 5%ca

nominal time step.
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Four additional sets of figures capture the salient features of the elastic

~cycle : F6.11, maximum distorsion at TDC (00ca); F6.12, minimum film pressure
at 900ca; F6.13, maximum film pressure at BDC (180%3); F6.14, minimum film
thickness and film collapse at 2709ca. The first of each pair of figures, (a), give

circumferential pressure and surface behaviour, ‘the second, (b), presents the

o o

various film mechanisms : total squeeze (ecos(f-¢) - 1 ) and total wedge

(e(qﬁ - s/2)sin( - ) - ——u ) action; elastic squeeze (- u ) and elastic wedge (- Tu )

action; film-thickness and pressure.
Marked differences between rigid and elastic solutions have appeared, our

investigation into these differences begins with elastic journal action.

Journal Action : Journal action in the elastic bearing is presented in F6.15. The

basic rigid forms (F6.5) have clearly been influenced by cap deflection.

Rugmw MS@Y (e

J‘ourf;aﬁ /467‘?0

o




123

As journal locus traverses the rigid clearance circle, journal action increases
markedly : peak squeeze action is increased 400%; peak wedge action by 150%.
Increased clearance from housing deflection allows much higher velocities to be
attained. 4

However, overéll the journal spends more time below half-whirl speed than
its rigid counterpart, journal squeeze action making a greater contribution to film

action.

Housing Action :  Elastic housing actions, depicted in F6.11b-14b consist of two
components : elastic pressure actions and elastic body-force action. To illustrate
the development of these elastic components, F6.16 outlines the various
distorsions with crank angle : The outer ring represents body-force distorsion;
middle ring, pressure distorsion; the inner ring, total distorsion. Shaded sections
represent outward (positive) deflections. Body-force vector along with journal
and peak pressure position are depicted in the central circle,

The dominance of body-force deflection through a large portion of the
cycle graphically illustrates the error of earlier works in excluding its effects :
deflected forms 1200ca either side of BDC are predominantly due to this term,
Body-forces contributing significantly to ring flexure. Only when the body-force is
directed into the ring’s neck (60° ca either side of TDC) and pressure acts into the
cap does pressure distorsion become influential.

It should be noted that there is no elastic equivalent to journal half-whirl

speed; the elastic components are continuously present throughout the load cycle.

Total Film Action : We have looked at journal and housing action in isolation,
however it is total film action, the sum of journal, pressure and body-force actions

that determine bearing performance.
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The interplay of the six film actions and the resulting ascendent forms are
summarised in F6.18 at 20%a intervals : The inner arc represents film pressure;
centre arc, total wedge action; outer arc, total squeeze action. Film actions are as
defined previously (Section 6.1.3a). Load vector along with journal, peak pressure
and minimum film-thickness positions are presented in the central circle. In
addition, the major contributions from wedge and squeeze action are categorised

by a ratio in the central circle thus :

x represents the largest wedge term : j for journal, p for pressure, b for body-force
; y represents the largest squeeze term. The only symbol remaining undefined is
the hatched shading associated with film collapse (negative pressures).

Comparison of elastic and rigid figures (F6.6, F6.18) reveal significant
changes in wedge and squeeze phenomena, the overall picture being far more
complex than the cosine/sine relationships of the rigid bearing. Owing to this
complexity, it was felt a full description of the various mechanisms was warranted.
This was aided considerably by the observations of Section 6.1.3b. We start this
description at BDC with the journal in the ring neck : (¥6.9,.10,.16,.18 are

pertinent to this discussion).

At this point in the cycle body- | 240°ca
force actions dominate, firstly A
through squeeze then, from 220-2700ca,

through wedge action; this second

period of wedge (F6.17) is

responsible for the noticeably thickened

F&:17

minimum film-thickness in the elastic
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bearing (27%). The associated reduction in peak pressure indicates the strong
beneficial effect body-force has on load capacity. During the latter stages of this
period (240-270%a), elastic disbontinuity of the neck restraint fragments wedge
action, inducing a short film collapse at 270%a (F6.14); this is the subject of
discussion in the following section. |

Journal wedge action then increases dramatically; by 280°a it has become
the dominant term. However, by 3000ca the effects of pressure distorsion begin
to be felt : as journal locus extends beyond the rigid clearance circle and
approaches TDC, wedge action undergoes a transition from being journal
dominated to being pressure dominated; peak pressures and minimum film
thickness decrease substantially on the rigid solution. Ascending pressure squeeze
action makes a strong contribuﬁon by 3500ca, significantly thickening the oil-film
through 10-409ca compared to the rigid solution. Elastic actions are generally
much stronger during these periods than their rigid bearing counterparts,

~ Through the next 1000ca, journal motion back into the clearance circle

becomes influential : beginning at around 50%a, journal wedge action firstly
supplements pressure squeeze action, then comes to dominate film action through
to 1200ca; detrimental journal squeeze action during this period (60-800ca)
collapses the oil-film for a second period.

Finally, through the remaining crank angles (140-1809a) body-force
squeeze action dominates; films get thinner and pressures increase, symi::toms of
reduced load carrying capacity.

The details surrounding the periods of film breakdown are of some interest.

Oil-Film Collapse ; Two periods of negative film pressure were observed during
the 600 rpm load cycle: a very short period, 0.001 seconds (5%a) at 2700ca and a
longer period, 0.005 seconds beginning at 60°%a. The first breakdown was shown

in F6.14, the second sequence in F6.19.
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Elastic slopes associated with the neck constraint induce the first film
breakdown at 2700ca; this disruption does not occur in a full elastic housing, it is
purely a consequence of a discontinuous 'elastic' neck.

The second period of disruption is induced by elastic locus distorsion :
negative squeeze action of the journal retreating into the neck of the rod,
collapses the oil-film. Although this collapse mechanism is available in the rigid
model, not a single case was observed; locus distorsion is an integral part of this
condition. It should be noted that a similar but quite separate diéruption is
experienced during gas loading; the physical existence and experimental evidence
of such collapses are discussed in Section 6.2.3a.

Before leaving the 600 rpm solutions, the pathological case of zero

body-force is briefly presented.




Body—Forces : The current work differs from previous elastic works through the
inclusion of deflections due to the body-forces of con-rod motion. It is interesting
to observe the effects of neglecting this influence, witness figures F6.20, F6.21.

Locus behaviour indicates that body-forces signiﬁcantly stiffen the big-end
ring perpendicular to the con-rod centre-lme; The resulting minimum film
thickness and maximum pressure forms are significantly altered : min(ﬁrm.n) is
reduced by 50%, max(f;max) increased by 60%; journal wedge velocity never drops
below half-whirl speed. Clearly this body-force cannot be neglected from either a
phenomenological or load consistency standpoint. More important however, are
the serious questions raised about experimental testing procedures.

Many bearing test-rigs are only dynamic in that they apply a time-varying
load; dynamic body-force is usually completely neglected. The NEL work of
Cooke[97] is a case in point. As we have seen, the oil-film régime generated
under such conditions is quite dissimilar from that in the con-rod, results
consequently having little meaning within the con-rod context : a comprehensive

review of experimental test-rig procedures would seem to be well overdue.

(b)  Ring Solutions : Variable Speed

In an attempt to unravel the various mechanisms affecting elastic
performance, a sequence of Solutions.f were developed at increasing engine
revolutions : 200 and 400 rpm, the previous 600 rpm solution (F6.9) and finally
one at 700 rpm. These results are presented in F6.23 - F6.28, the balance being
contained in Appendix A7.

Through this sequence it is possible to trace the development of the various
film mechanisms.  However, before tackling this, an overview of the basic

performance trends is presented.

the same curved-beam model was used as in the 600 rpm case.
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Performance Trends :  Significant positional shifts in minimum film thickness and
maximum pressure occur through the operational speed range of the
Ruston-Hornsby : For the first 600 rpm, min(h mip) 1 located in the neck of the
rod; circe 30%a, 2700ca. This is not significantly different from the rigid bearing,
A thickening trend in minimum film accompanies the speed increase, a product of
strbng body-force wedge action.

However, by 700 rpm this condition has shifted into the rod cap; circa

125%a, 345%ca. A significantly

reduced film thickness is then 1 F6.22

determined by elastic pressure action,

RPM
i
100

-200
3 i
400
600

a quite different mechanism

from that in the rigid bearing :

F6.22 indicates the gravity of

the shift and in particular, its

greatér sensitivity to load.

Mintmum Film Thickness

g . by 8/ esesesem Rigid
This film thinning condition has " &
—O0— Ring
serious design consequences and ol AR -
1 1 10

is the subject of further
investigation in Chapter Seven.

A similar shift is observed in maximum film pressure but at much lower
revolutions : below 400 rpm, max(p max) develops in the cap at around TDC; in
the rigid bearing this condition occurs here at all speeds. However, by 400 rpm,
cap distorsion reduces this peak pressure such that the BDC condition becomes
critical; rigid results are then a poor indicator of max(p max) behaviour.

Some influence of speed variation on film collapse is also apparent :
sufficient locus distorsion is present by 400 rpm to induce a 60%a film-collapse, its
duration increasing thereafter. By 700 rpm, this collapse shows noticeable mesh

sensitivity; part (¢) of this section investigates this further.
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Clearly the picture presented by these elastic results is complex, however
amidst this complexity two invariant features can be identified; distorted elastic

form and dominant film action.

Distorted Elastic Form : Pressure distorsion, body-force distorsion and the

resulting total distorsion

DISTORSION
BDC

have, at all speeds, very
similar forms. (See
Appendix A7). Moreover,

two separate periods of o
70" co.

290°

influence can be identified ;

from 70%a through to o c.a
2900¢a, distorsion is dominated 700
by body-forces; the remaining Fo-29

period is dominated by pressure distorsion (F6.29).

This behaviour is not entirely unexpected.  The consistency enforced
between external load and body-force (Section 2.2.2) automatically maintains a
balance between integrated film pressure and body-force loadings. The

corresponding deflections are consequently balanced throughout the speed range.

Dominant Film Action : To a surprising extent, dominant film action is also
largely invariant with engine speed : F6.30 shows the various periods of wedge W
and squeeze $ and their respective transition angles.

Within each period, dominant film action is determined by the ratio of
journal to elastic action; one would expect elastic action to be closely aligned with

the distorted forms of F6.29 : the actual breakdown is given in F6.31, F6.32.
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In contrast to total film action, wedge and squeeze components show
considerable variation in transition points. It is the variation of transition points
at this level which determines the speed dependent performance shifts;
interpretation of the 600 rpm result of Section 6.1.3a was from these figures. We
forgo a full description of the remaining speedé; they are either simple extensions

or subsets of the 600 rpm solution, focusing instead on discretisation.

(¢)  Discretisation :

Mesh dependence featured strongly in our discussion of dynamic rigid
bearings. However, this proved to be much less of a problem in the elastic
bearings.

The lumpiness associated with rigid peak pressures was not seen in the
curved-beam bearing : lower pressure gradients in the elastic problem are less
demanding of the pressure trial functions. Temporal mesh variation was found to
have negligible effect on locus shape and velocity (F6.15), as well as on
film-thickness and pressure.

Experience from the elastic steady state problem suggested that plausible;
yet erroneous solutions may be generated through an inadequate discretisation.
Fortunately, this concern was unfounded in the dynamic problem : F6.10
presented a 600 rpm verification on a considerably finer mesh(48 versus 36
elements), locus differences being so small as to not warrant plotting. Peak
pressures during neck traversal are the only results to be outwardly affected; finer
mesh provides a better resolution of displacements about the neck discontinuity.

Neck effects are again seen at 700 rpm (F6.28). However, the interaction
of mesh and the 600ca film collapse is of greater concern; changes in
film-thickness can be seen to propagate forward in time.  This interaction
indicates a need for a more sophisticated cavitation model, particularly under

conditions of significant film fragmentation. However, despite this carry-over,
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performance measures remain unaffected : journal locus remains unchanged;
min(h__. ) is sufficiently distant to be unaffected; max(p max) is altered only by the
previously discussed neck effects.

Overall, the sensitivity to discretisation observed in the steady-state bearing
was not present to anywhere near the same extent in the dynamic elastic model, at

least not in the Ruston-Hornsby bearing.

6.14 Elastic Housing Solutions

To complete this section on inertial loadings, we briefly investigate housing
solutions using the Hermite elastic element of Section 4.2.2. Detailed
comparisons with previous rigid and curved-beam solutions are delayed until the
gas loaded sections of this Chapter.

However to begin, we look at a verification of the Hermite element using

the previous ring geomeiry.

(a) Hermite Ring Solution :

Performance of a 400 rpm Hermite ring is presented in F6.33 and F6.34,
comparison being drawn against the previous 400 rpm curved-beam ring. Both
solutions use a 36 element circumferential mesh, two elements deep for the
Hermite ring; temporal mesh is nominally 5%a.

The main differences are confined to peak pressure behaviour about BDC :
boundary conditions at the neck restraint (Section 4.2.2d) are sufficiently different
for some discrepancy to arise. Otherwise the cycles are reassuringly similar; this

could not be said of the housing solutions.
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(b)  Hermite Housing Solution :

A full dynamic housing solution is presented in figures F6.35-F6.38,
geometry being that described in Section 4.2.2 (90 elements, t/r = 0.5). Here a
36 element spatial mesh and 5%a nominal time step»afe in force.

The stiffening effect of the neck is immediately apparent through reduced
loéus distorsion about TDC; less conspicuous is the shorter 60%a film collapse due
to weaker journal action, subsequent film conditions developing earlier as a
consequence.

Removal of the discontinuous neck constraint can be seen to have several
beneficial side effects : elastic squeeze action in the neck region is increased,
reducing peak pressures and thickening the oil-film about BDC; the fragmented
wedge action and associated film collapse of 2700ca disappear.

Probably the most striking change is the noticeably thicker oil-film around
TDC : journal wedge action, the major contributor through 280-300°ca, undergoes
destr‘ucti{fe pressure squeeze action during this period; this action is less
destructive in the case of the stiffer housing. Subsequent periods benefit
significantly from this initial thickening and through the continuing influence of
the stiffer geometry; film performance through these angles would seem to be as
sensitive to elastic geometry as it was to the load (speed) variations of Section
6.1.3(b).

Overall, major shifts in our ring performance measures have not occurred;
min(fi_. ) is slightly thinner but still positioned at around 2700ca; max(p max) 18 at
BDC although reduced 30% in magnitude compared to the ring solution. Ring
solutions could thus be concluded as giving good min(ﬁrm. n) measurements of the

housing condition, but only a qualitative assessment of housing peak pressures.
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(c¢)  Speed Dependent Performance :

Neither of the Hermite solutions deviate significantly in film-thickness
performance from the 600 rpm curved beam solution, nor over the remaining
speed range (F6.39). Moreover,

the discrepancy in load

convergence limit observed in 1
) ' £6.39!
the various steady-state models ‘
is not as marked in the dynamic =R e i3
i ., |[LE[R1S 98
elastic solutions : curved beam g 8|
‘\
solutions converge to 700 rpm; & \
: . Bl %
housing solutions to 600 rpm; E
L : [
Hermite ring solutions to 500 rpm. S .
Once again this reflects 5
. E o) FE Housing
the reduced sensitivity of the + FE Ring
. . SRR .
dynamic Ruston-Hornsby problem, o1 ) 10
1
in this case towards the linearly Load (F)

interpolated Hermite element
(c.f. Section 5.3.2(c)).
The associated solution breakdowns occur at around 3400ca (min(ﬁmm)) in the
curved-beam model and at 70%a in the Hermite solution. The specific
mechanisms of these failures currently remain undetermined; symptoms are
typically a total reluctance of the solution scheme to step forward in time.

We next look at how the various Ruston-Hornsby models fare under gas

loading.
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‘6.2 Gas Load : Ruston-Hormsby

In the sections that follow, performance of the gas loaded rigid, ring and
housing models are investigated. = This work culminates with a comparison
between these theoretical solutions and actual experimental measurements,

However, before proceeding, we take a brief look at the load diagram iiself.

6.2.1 Load Diagrem
The gas loaded R-H diagram!®]

takes the form of F6.40.

Here the inertial

portion differs

from the lumped-mass

inertia diagram

(F6.1) through the engine

being supercharged :
inertial load at TDC

is decreased (S%);

at BDC it is increased (6%).
Peak gas load is

approximately 1.5 times
the maximum inertial
load, its application beginning at about 300%°ca, maximum load being reached

70°%ca later,

6.2.2 Rigid Bearing Solutions
The results for the gas loaded rigid bearing are presented in F6.41, F6.42.
These are developed on a 36 element spatial mesh using a 5%a time step.

Maximum pressure behaviour is again Inmpy through the high whirl
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regions, mesh homogeneity problems resurfacing. Despite this, minimum film
thickness behaviour is smooth, min(h min) occurring in the inertial portion of the
cycle close to one of the six half-whirl speed conditions.

Also shown in F6.42 is the finite length solution of Goenl{a[gg], extracted

23],

from a review paper of Martin[ : the parabolic axial pressure model generates

slightly thicker films, Goenka obtaining :
min(f_. ) = 0.042; max(p_,.) = 846

Maximum film pressures are also pleasingly close throughout the cycle. It would
seem that the combination of centre circumferential oil-groove and short geometry
(L/D = 0.28125) are particularly well served by the parabolic pressure model.

Of greater interest however, are the elastic solutions.

6.2.3 Elastic Bearing Solulions
Two elastic gas loaded solutions were investigated in this work; a 360°
curved-beam solution and an Hermite housing solution. We look firstly at the

beam solution.

(a)  Curved-Beam Solution :

The 360° beam solution is presented in F6.43, ¥6.44 on a 36 element spatial
mesh and nominally S%a time step. It is useful to divide this solution into inertial
and gas loaded portions :

Inertial loading features through crank anglés 560-2800ca; half-whirl speeds,
60°%ca film collapse, peak pressure forms and locus are all largely unchanged from
the previous inertial solution (F6.9, F6.10). Only film-thickness response around
TDC is noticeably affected; a sensitivity to load through these crank angles was

noted in the inertial solutions of Section 6.1.3(b).  Positionally mjn(ﬁmin) is
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unaffected at 630%a (270°ca in F6.10) although reduced 14% in magnitude over
the inertial solution; previous gas loaded film history is mainly responsible here,
significant gas forces still being present at 5400ca.

During the remaining gas portion of the cycle, f)eak pressure and minimum
f_ﬂm thickness forms are very similar to the rigid solution : peak pressures rise
markedly above those of the rigid model in response to the elastic discontinuity of
the neck restraint. However, the most interesting difference is the appearance of

an additional film collapse.

Gas Induced Film Collapse : At the point of gas locus reversal (3200ca) an
additional film collapse appears at a spatial angle of 90%ba (See F6.47). Although
of similar duration (18%a) and mechanism to the 600ca collapse, it is much
stronger in magnitude; higher negative pressures are developed. It is not present
in the rigid bearing.

" It would be easy to dismiss this and the earlier 600ca collapse as being
inconsequential;  the associated oil-film conditions are admittedly simplistic.
However, the strong attendant journal action cannot be ignored, such mechanisms
having been implicated in the cavitation erosion of dynamically loaded

bearings[sg].

Elastic analyses clearly offer useful additional insight into such
cases. Unfortunately, much of the associated data is commercially sensitive and

consequently unavailable in the open literature.

(b)  Housing Solutions :

The Hermite housing solution is presented in F6.45 and F6.46, again using
36 spatial elements and a 5%a nominal time step length,

Performance shifts between ring and housing solutions mirror those
observed in the inertially loaded bearing : increased elastic stiffness is reflected in

locus and ﬁmin behaviour around TDC; min(hi_, ) remains largely unaffected in



150

I

o

RUSTON HORNSBY 600

- BDC Sp0°

8o

l

°ca

t

ne 376

g
o ,<U/W,“|Wt.s( B
o
o .

i

06

¥ 5

260 3O 440 S0 o 680

200

20

time. (°ca)



151

either magnitude or position; the 600ca film collapse survives the geometry
change as does the gas induced collapse at 320%ca.

Peak pressures during gas loading are reduced to rigid bearing level by the
removal of the neck discontinuity; in fact the rigid model provides a good
estimate of max(p max)' Other pressures formed in the neck region (1800ca,
5200¢a) are similarly reduced.

A direct comparison of ring and housing solutions throughout the load
cycle is provided in F6.47. Here film-thickness and pressure are presented every
300ca. Development of pressure oscillations in the housing solution at 630°ca
indicates that this model has about reached its convergence limit.

Overall, the closeness of ring and housing solutions at this detailed level,
confirms the usefulness of the ring solution in assessing minimum film thickness

and in particular that of rm'n(ﬁmjn).

6.24 Ezperimental Resulls
Evidence from a variety of experimental bearings indicates appreciable

[34’35’36]: observed back CIC&I&HC&T is

elastic distorsion under dynamic loading
greater than diametral clearance. This would seem to have intimidated
theoretical workers from producing detailed comparisons with experimental
results; it is not for lack of experimental material: Butcherl® 4] published in situ
film-thickness measurements of the R-H bearing under dynamic load: Coolce[97]

at NEL has studied the R-H bearing in a rigid bearing simulator.

(a) Cooke’s Work :
Cooke’s work involved the dynamic measurement of pressure, journal locus

and oil-flows under varying geometry. Unfortunately, this was performed in a

maximum film-thickness
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'massive’ test housing and consequently has little relevance to the current elastic
con-rod problem; the quality of these results do however beg theoretical

investigation by future workers.

(b)  Butcher's Work :

Butcher’s in situ film-thickness measurements are however particularly
valuable : dynamic film-thickness was measured with capacitance probes at six
spatial points (510, 1110, 1710, 2310, 291, 351%ba), the probes positioned in the
centre circumferential groove of the R-H rod. |

Butcher expresses certain reservations about the work, in particular the
probes, situated in the bearing shell, are unsupported by the oil-groove. Several
further reservations shounld also be expressed : journal and housing ovality were
unmeasured; gas load unmonitored. Moreover, there are synchronisation effects
in the results : probe measurements were not performed simultaneously; at any
given crank angle, the various probe measurements are from different load cycles.
Gas load variability thus enters into these measurements.

Bearing these points in mind, the results of the rigid solution, Hermite
housing solution and Butcher’s experimental work are gathered together in F6.48 :
Circumferential variations in film-thickness and pressure are shown every 300ca for
the full gas cycle. An absolute accuracy of = 0.03 fi (x 0.0001") is claimed for the
capacitive probes, however the 3600ca result would indicate that repeatability is
only of the order of 0.15 b.

For crank angles 570-900ca, the period of journal traversal through the cap,
elastic models show a marked improvement in film-thickness prediction over the
rigid model. = This improvement is exemplified by the TDC result; here back
clearance corresponds closely with measured clearance, wrap-around also shows

good correlation.



156

F6.48



=

=

N A O N

o

¥6.48 cont.

~]

i

[\

- N W D

o]

O A N I R

(e}

o

s

1587



P S —yy .
N R st
h BRI P
2 4
3
! 12
ay
(‘)‘ o]
7
3 ¢
e 5
h 5P
2 14
3
1 2
|
° % )
3A
h
2
/
°m > @ %
6 (°ka)
. 7
3 &
h 5P
2 4
3
! 2
i
O O

F6.48 cont,

158



159

From 90°ca through to 1609ca poor correspondence of both rigid and
elastic solutions is evident. However, from 180%ca through to 3300ca, elastic
film-thickness again shows good correlation, better than the rigid counterpart.

Poor correspondence is evident through the rcfnaining gas loaded portions
of the cycle (360-5400ca) although the rigid solution shows equally poor
correspondence.  This portion of the cycle is open to the greatest variability;

probe measurements can be from different gas cycles.

In general measured

results indicate greater 1

film asymmetry about the rod

centre-line than predicted by ¢’ gl \
theory, this asymmetry being :
present throughout the load (/
cycle. Comparison of actual \ ' %
and theoretical geometries (F6.49) AVl

shows one possible source : oil-film — — actuaf rod

F&-49

pressure acts at the bearing centre
whilst the reacting big-end portion of the body-force acts at the centre of mass;
any difference in these centres produces a dynamic couple on the big-end
promoting asymmetric distorsion.

Clearly, assessment of overall agreement depends on where ones bias lies :
it is probably fair to say that the elastic solution represents an encouraging
improvement over the rigid solution, particularly during journal traversal of the
con-rod cap. It is also clear that there are several periods where neither solution
is represéntative of the experimental measurements.

Given the state of current theoretical tools, a new experimental program is
probably overdue : rod stiffness could be determined statically to ascertain

asymmetries; dynamic strain measurements to determine housing motion. A
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series of motored film-thickness measurements would alone provide valuable new

insight into this complex problem.

From the evidence amassed in this Chapter, a sequence of similarities can
be constructed : experimental film-thickness measurements show encouraging
correlation with theoretical gas loaded predictions; theoretical gas loaded
film-thickness can be accurately assessed from inertial loaded solutions;
film-thickness behaviour of inertially loaded housings is very similar to the
inertially loaded ring solutions. It would seem then that, regarding min(ﬁmin),
inertial ring solutions could form the basis of an accurate performance assessment.
This and the associated non-dimensionalisation are the subject of the following
Chapter.

' With regard to oil-film pressure however, ring solutions will not suffice
the rigid solution is sufficient for determining max(p rnax) during gas loading

however, a full housing solution is necessary for the inertial variations.
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CHAPTER SEVEN
NON-DIMENSIONAL FILM THICKNESS ASSESSMENT

Both designerr and researcher have a common need for bearing
performance parameterisation: the designer in determining optimal geometries;
the researcher in establishing modus operands.

Until now, 'tuning' of bearings has in this work been performed intuitively;
load variation through journal speed; stiffness variation through housing thickness.
However, the difficulty encountered in just establishing elastic solutions, in

particular for the bearing of Fantino[24]

, motivated such a parameterisation.

Several parameterisations of rigid bearing performance are available in the
literature. In 1967 an important paper was published on big-end bearing design
by Martin and Bookerl2®], The basic thesis of this work was that provided peak
firing load was less than five times the peak inertial load, minimum film-thickness
could in general be predicted by considering inertial load alone. This, as shown
in the previous Chapter, also holds in elastic bearings.

The result of Martin’s assumptions was a simple design chart based on a
short-bearing approximation. This approximation was later removed in a further
simplified chart by Lloydl””],

In the following sections we trace the development of a chart similar to
Lloyd’s, but in an elastic environment; F7.1 gathers together the various

non-dimensional components.
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7.1  Load Diagram

The dimensionless load
diagram used in this work is
the one of F7.2. This
diagram is based on a fixed
crahk—radius to con-rod
length of 1:4 and equal big
(my,) and little-end (m,+m, ) \
masses. Both Martin and
Lloyd have shown these two
parameters to be of secondary
importance in determining
the load diagram compared to

dimensionless load F: for any particular bearing we have from Appendix A4(g) :

t=F} (A4.19)
where
1
F = ELT“"R [CY (7.1)

m, = (mb +me+rnp)

This load number is different from that used by Lloyd; it is rooted in short, rather

than long bearing theory. This will be seen to have several benefits.

72 Rigid Bearing Results
The rigid bearing performance diagram for the parabolic pressure model is
given in F7.3, These results are based on a 36 element spatial mesh, 50 ca time

step.
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Also shown are the finite length results of Lloyd and steady—state short
bearing performance. Once again, the parabolic axial pressure assumption closely
matches the finite dynamic solutions of Lloyd. It is also of interest to note the
'straight line' behaviour of the short bearing solution (L/D = 0). This
relationship, not directly available in Lloyd’s non-dimensionalisation, was

determined to be :

Bnin = 0159 F0-3%4. 12 = 09097
L/D=0

It represents an upper bound to dynamic film thickness over all L/D ratios.

Poorer although still quite acceptable fits were obtained for the remaining L/D

ratios °
= 0140 F 072 . 12 = 0993

-0.891 |

=0.102 F r2 = 0989 .

In comparison, short steady—state performance is as follows :

f . = 0.194 FO49% . 12 = 1,000
mm»L/D=O

Of greater interest however, are the elastic solutions.

1 is the correlation coefficient
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7.3 Elastic Bearing Results

At first appearance, non-dimensionalisation of the elastic bearing would
seem a pointless task; the addition of two major elastic parameters, A and =, each
varying with engine speed, leads to considerable compléxity, Fortunately, it is

fairly easily shown that A, = and F are interrelated in a much simpler fashion.

73.1 Primary Parameters

Two primary elastic parameters were first isolated in Section 3.2.3.

® A flexibility due to pressure

flexibility due to body-force.

@
fx]

For curved beams, these can be expressed as :

A = —Et”—[ } H3 nL 2[%3(1 r 121 (72)
—%fT{}mﬁum | (1.3)

where 1 is the second moment of area of the beam about the N-A.

==f e[} - e[farya’. 4

These can be related to non-dimensional load F as follows :
Based on the assumption that big-end mass my, is a ring of internal radius r,

thickness t and width W, we can write :

myp = 4mp’r3 %%(1 + t/2r), (7.5)
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here adjusted density p’ is determined as per Appendix A4(f).  After some

manipulation (7.1, 7.2 and 7.4) it is possible to show that ;
T = m '
==AF EQ/ZW : (7.6)

This amounts to exchanging = for ?nl—‘lt in our non-dimensional parameter set; it
offers significant advantages since %%typica]ly varies from 0.3-0.6 whilst = varies
with engine speed.

To achieve consistent body-force loadings we set %iﬂ»line with that used

in the load diagram :

The influence of this parameter on performance is investigated further in Section

73.2(2).

(a) Performance Curves : % =05

Our non-dimensionalisation now incorporates just three major parameters :
L/D, F and A. General elastic performance can now be presented as a series of
rigid style charts at various flexibilities A : F7.4 shows curves for A = 1, 5, 10, 20
over a range of load and L/D ratio. These solutions are developed on a 36
element circumferential mesh using a 59 ca time step.

Probably the most general observation to be made is that bearing flexibility
diminishes the L/D performance distinction ; circumferential pressure flows
decrease with distortion as indicated by the shift towards the short bearing model.

At any particular flexibility, performance is very similar to that encountered
in Chapter Six : film-thickness is increased over the rigid solution while the point

of minimum film thickness remains in the proximity of the rod neck. As this
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point moves out of the neck, a rapid film-thickness reduction occurs, this transition
developing at lower loads as flexibility increases.

Prior to transition, bearing operation is more amicable than the rigid
bearing ; thicker films are developed with lower sensitfvity to load. Post transition
behaviour is more hostile ; reduced film thickness with a greater load sensitivity.

Clearly, the point at which this transition occurs is important.

(b)  Transition Point Determination :

In the previous Chapter we observed transition as a shift from neck based
minimum films to cap based minimum films. In the non-dimensionalised bearing
the situation is slightly more complicated :

At higher flexibilities (A > 5) transition occurs as in the Ruston and
Hornsby case; the minimum film shifts from being at 2700 ca (200 ba) to around
00ca (~ 1200 ba). However, at lower flexibilities (A = 1) the shift is to 900 ca
(2600 ba). Plotting this
transition load as a Transition Point

10 i
function of flexibility gives \; F7.

F7.5, the different N\

mechanism of A = 1 standing

out from the A > 1 data.

The latter points can be seen

to closely obey a relationship

P20 <
@

of the form :

Dimensionless Load
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A =AF =9 (7.7)

The simplicity of this relationship at first came as a surprise, however its
interpretation is really quite plain : A is a measure of flexibility, F a measure of
total dynamic load (pressure) ; the product A, is a measure of dynamic bearing
deflection due to pressure.  The above relationship thus states that when
non-dimensional pressure deflection reaches nine, a transition in operating régime
occurs. Bearing performance is then much more sensitive to load and elastic
geometry.

For the current work we treat the A = 1 mechanism as if it were a A=9

condition : future investigations could determine its influence and extent.

732 Secondary Paramelers

Four secondary parameters are involved in our non-dimensionalisation.

We look at each in turn.

(a) TLumped Mass Ratio : %’i—

In the preceding charts, %ﬁ—was set such that big-end and total little-end
masses were equal. It is interesting to observe the effects of altering this ratio :
= is changed according to equation (7.6); load diagram according to Appendix

A4T. Figure ¥7.6 shows results for ratios of %and%— (L/D = 025, A = 5).

The load diagram is altered to maintain a consistent body force.
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The small overall changes in minimum film-thickness performance illustrate

the secondary nature

of this variation : a reduced
big-end mass thickens the
minimum oil-film and'delays
the transition of the cap

condition.

(b)  Obliquity Ratio : R//

Obliquity ratio is quite a
permeating influence. Itisa
secondary effect in the load
diagram and body force; it also
appears in Reynolds equation
through speed modifier s.
Figure F7.7 illustrates its
influence on minimum film
thickness.

Pre-transition solutions
are hardly altered : min(h_. )
occurs at around 2700 ca where
the effects of R/ are not
felt - this is the reason why
rigid bearing analyses are so

insensitive to obliquity.
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Post-transition changes are on a par with L/D changes, min (Bmin)

occurring close to TDC where R/{ effects are greatest : films thicken with

reduced obliquity; transition points remain unchanged. Much of this change can
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be attributed to increased journal speed : changing R/{ from 0.2 to 0.4 causes a

speed and consequent load increase of 17% H—% at TDC.

Thickness Ratio

(¢) Internal Elastic Parameters : F F7.87 ; %%gg;ig N
£ i3
. L/D = 0.25
Two elastic parameters A=5
are required internally by the - Mg
(]
. . . [
elasticity model : t/r is used g ;
&
in the implementation of beam B .1 \
I -
theory; R—Qto determine the 5 -
3
position of the centroid through 5 (
E &,
which the body-force acts. § \
. . 0 t/r=0.4
As noted in Section 4.2.3, o + t/r=0.6 1}
internal dependence of thick beam 1 1 10
Dimenslonless Load

behaviour on t/r is very weak : tests
varying t/r from 0.4 to 0.6 in the L/D = 4, A = 5 bearing (F7.8) produced little
discernible difference. The major influence of this parameter is accounted for in
A and F; all remaining dimensionless solutions use t/r = .

The second parameter is somewhat more arbitrarily chosen to be 0.8 : the

R-H rod is 0.7; Fantino’s rod : Body-Force Ratio
: : ' F7.9: AW 611 B
is 0.8. Figure F7.9 shows b /nuﬂ% Rt
= 0.25
results at 0.6 and 1.0 for A=5
, N i
L/D =4, A = 5; very weak § \\ g
g
internal dependence is indicated, o ‘ﬁ\
= R\
the major influence of this E ! Rt
iy
parameter being felt through i’é £8
dimensionless load F. g F&
g AN
O r/R=06 \
01 b “?“4 LALE r{r&{fj;»? Q\‘
1 1 10 100

Dimensionless Load
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733 Controlling Geomelric Tefms

From the charts and deflection measures of the previous sections, a picture
of elastic bearing performance has begun to emerge :

Two primary parameters, load F and flexibility A, have been seen to
dominate elastic bearing performance. Both these parameters are dynamic, being
functions of journal speed.  They can thus vary several orders of magnitude
during engine operation.

For a reasonably flexible bearing (A > 1), length-diameter ratio is relegated
to a secondary effect along with lumped mass ratio, various internal elastic effects
and obliquity‘r. All these secondary parameters are geometric quantities and
consequently static; in a first approximation they can be neglected.

It is useful then to look at a breakdown of the two dominant parameters to
determine the major geometric influences on elastic bearing performance.

Taking expressions (7.1), (7.2) and (7.7) and assuming the total rod/piston
mass ‘is proportional to the big-end mass, it is possible to extract the following

proportionalities :

= & where

I is the section centroidal radius, k the radius of gyration of the section about r.

post-transition obliquity effects are assumed to be incorporated by altering

load.
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For convenience assume k « tT and ro ~ r; Table T7.1 then gives the power

relationships for the various proportionalities :

parameter | F A A
@ -1 +1 0
E 0 -1 -1
p +1 0 +1
w +1 +1 +2
R +1 0 +1
W/n +1 -1 0
c +2 -3 -1
t +1 -3 -2
L -3 +3 0
r 0 +4 +4
k 0 -2 2

T7.1

It is reassuring that t and w behave as intuition would dictate; t weakly
increasing load but strongly reducing flexibility; w increasing load and flexibility
but being detrimental to deﬂecﬁon. Of particular note are parameters c, t and
L : any variation towards improved performance from a rigid perspective (lowering
F) has a detrimental effect on flexibility.

The strongest elasticity determinator however is journal/housing radius, r4 :
Clearly from an elastic standpoint journal radius should be kept to the minimum
dictated by crankshaft stress considerations. This is contrary to what one would
expect from a specific loading basis; it comes about through housing flexibility

being proportional to r.3.

t true for simple solid sections
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As a case study for these observations, we next look at the troublesome

bearing of Fantino.

734 Case Study : Fanlino's Bearing

Two studies are presented in this section : a verification of chart
determinations against actual bearing calculations and a study of non-dimensional
parameter manipulation from a design standpoint.

However, before beginning it is useful to illustrate the disparity between the
dimensionless parameters of Fantino’s bearing and the Ruston and Hornsby

bearing of Chapter Six : Table T7.2 presents the data; Appendix A8 contains the

calculations :
F A A
Ruston and Hornsby (600) 3.8 2.6 10
Fantino (5500) 1.6 313 49

T7.2

In comparison to the Ruston-Hornsby bearing, Fantino’s bearing is lightly
loaded but extremely flexible. From a rigid bearing perspective one would not
expect problems, the bearing being so lowly loaded, however problems it definitely

has,

(a)  Chart Verification :

From the deflection measures developed in previous sections, transition
would be expected to occur at a lowly 2500 rpm.  Operation is consequently
mainly in the post-transition régime with all the attendant problems of oil-film

fragmentation.
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Performance under 'exact', rather than chart conditions is presented in

Fantinoe: Standard

F7.10 : transition is observed

to occur between 2500 and 3000 rpm, o : wf £ F7.103
this corresponding to A = 10-15 ; WS = ﬁzg %é
- ] fran 4 TJ\M ¥ov i 4
convergence is maintained through % < :
to 4000 rpm or A = 23. The mesh used % N\
- \
is the usual 36 spatial elements, E 1 =
50 ca setup. [ :
Chart results are presented in T7.3 g
at speeds roughly corresponding to g ST RIgd
Elastl
flexibilities of 5, 10 and 20. o1 fod b2 2 ssstaStxc
N 1 10
Dimensionless Load
w F A fi min (exact) fi min (chart)
- 1000 0.286 5.68 0.317 ~ 0.30
2000 0.571 11.37 0.208 ~ 0.20
3500 0.999 19.89 0.104 ~ 0.10

T7.3

These preliminary results look particularly encouraging although further

testing over a greater range of geometries would probably be prudent. It is with

some confidence then, that we can look at a simple design problem.

(b)  Primary Parameter Manipulation :

Given the disparity between flexibility and load in Fantino’s bearing, the

question arises as to whether we can affect performance gains by trading off

flexibility with load.  Table T7.4 presents some possibilities (Appendix A8

contains the calculations).
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Case F A A fi min
Standard (5500) 1.6 31 50 -
0.89r 1.7 21 35 ~ 0,01
1.22 k 1.6 20 32 ~ (.01
0.89r,1.22k 1.7 13 22 ~ 0.03
T4

The strength of radius variation is clearly apparent; a reduction in journal radius
of 11% produces a similar effect to a 22% increase in the radius of gyration. (k is
assumed to be obtained without an increase in rod mass). By combining both
changes it is possible to obtain conditions within the bounds of current
computational experience (A < 20).

. Performance of this stiffened design (r = 0.024m,t = 0.0165m) under
'exact' as opposed to chart conditions is shown in F7.11 ; a full description of the
5000 rpm solution is given in F7.12, 7.13. Whilst small film-thickness reductions

have occurred in pre-transition behaviour, substantial improvements in

post-transition behaviour have Fantino: Stiffened
accrued : transition occurs at 1 = M; T F7.11]
around A = 12 (4000 rpm); solution §§ fé f% éég
convergence is to 5500 rpm; minimum @ MR R
film-thickness has about doubled. é 4

Correspondence with chart E 1 N:\“
solutions is again close : at é oy
A ~ 5 (2000 rpm) the chart gives g
0.2 as opposed to 0.182; at g mmmmm g ‘ 5
A ~ 10 (4500 rpm) a chart result o ,, 1/r=0.6875

1 1 10

Dimensionless Load
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of 0.08 is obtained compared to an 'exact' solution of 0.084.

Finally, results of + 20% change in radial bearing clearance (c)

at 5000 rpm are presented in T7.5.

¢ ﬁmin B,min - Erm'n (c/c)
0.8¢c” 0.072 0.057
¢’ 0.050 0.050
1.2¢” 0.039 0.047
T1.5

These trends are in-keeping with those observed in rigid bearings[loo] : increased

clearance reduces absolute film thickness.

Summarising, this case study illustrates the usefulness of extending the rigid
bearing non-dimensionalisation to incorporate primary elastic effects : film
mechanism transitions, dynamic minimum film-thickness and the interplay of the
major elastic geometric influences would seem to be sufficiently well portrayed to
make this a useful design tool; testing on further bearing geometries will prove its
worth.

Additional design charts (F7.4) at intermediate flexibilities are needed for a

useful coverage of engine speed ranges.
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CHAPTER EIGHT
CONCLUSION

This thesis ha,é. embraced the elastohydrodynanﬁc analysis, solution and
verification of the dynamic big-end bearing in the aim of providing design level
information of distorted bearing performance.

Reynolds’ equation has firstly been re-examined in light of surface
displacements. A comprehensive evaluation of its application in various con-rod
reference frames has resulted in a clarified schema for the EHL big-end problem.
Consistent modelling of the con-rod was found to require the inclusion of elasticity
body-forces; these additional body-forces provide significant stiffening of the
big-end eye under dynamic load. = All current models were found to be in
someway deficient in this respect.

- Combining uniform axial film-thickness assumptions with parabolic pressure
profiles, an approximate hydrodynamic model was constructed : use of the
parabolic axial profile was subsequently vindicated for bearings of L/D < 4 in
both rigid and elastic environments. An elastohydrodynamic extension of the
problem was achieved by coupling either curved-beam or planar Finite Element
housing models to the previous hydrodynamic equations.

The curved-beam approach proved instrumental in providing bench mark
solutions for the F.E. elasticity implementation : the role of discretisation and
surface displacement interpolation errors were highlighted in the steady-state
problem; F.E housing solutions were found to be inferior to their curved-beam
counterparts, increased residual errors restricting convergence at higher load.

For the dynamic problem, ring, housing and experimental works were
drawn together to provide a comprehensive verification of dynamic elastic bearing

behaviour. Journal action in the elastic bearing was found to be much greater
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than in the rigid bearing due to housing distortion. This increased action leads to
intense oil-film collapses, likened in this work to vapour cavitation : journal
motion from the distorted con-rod cap back into the rod neck and rapid journal
action during gas load reversal produced short duration oil-film collapses ; elastic
housing discontinuities were also observed to induce such collapses.  These
mechanisms have not been previously observed in theoretical solutions; they were
not present in the equivalent rigid bearing analyses.

Strong similarities in film-thickness behaviour were observed between
experimental and the present elastic housing solutions. These similarities
extended to the inertial curved-beam solutions, allowing a quite general
non-dimensional characterisation of minimum film-thickness to be performed.
With this characterisation, two minimum film régimes were identified : one in
which the minimum film is located in the rod neck and a second in which the
minimum film is located in the con-rod cap.

" The first régime is characterised by a thickening of minimum films over
their rigid bearing counterparts; this mechanism dominates at low load. The
second régime is characterised by thinner minimum films and an increased
sensitivity to load and elastic geometry; this phenomena occurs at higher loads.
Non-dimensionalisation of the associated transition point, along with bearing
flexibility and load, enabled quantitative tribological measures of elastic geometry
to be developed. This characterisation provides useful new insight into con-rod
design, something that has hitherto been based on intuition; it also marks the

completion of this work.

8.1  Future Work
Extension of the present study should focus on an improved treatment of

vapour cavitation and the incorporation of axial deformation effects. The work of

55] 101]

Brewe[ and Bayada[ provide a lead for the former effects; Oh’s
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analysis[zg] for the latter effects.

Advancement on either of these fronts will require a concomitant
improvement in solution techniques. The present Newton-Raphson procedures
are too slow for such extensions : the rigid Ruston and Hornsby gas loaded
analysis requires around one hour of CPUT; the elastic equivalent takes four hours
of CPU. A logical extension would be the use of rank two Quasi-Newton
Methods!®?],  These algorithms would provide faster implementations of the
present N-R approach without sacrificing its robustness : currently, time stepping
rarely drops below 2.59 ca, even for gas loaded elastic solutions; less than ten
solution iterations are typically required at any given time step.

On the experimental front, initiation of new programs are desperately
needed : major misconceptions are present in current test-rig procedures, a rigid
bearing paradigm pervading much of the thinking and consequent hardware of
experimentalists. Attention would instead be better focused on obtaining

controlled in situ film measurements.

T Digital MicroVax 11
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APPENDIX Al
SPATIAL FIIM DERIVATIVE

Equation (2.7) is a re-organisation of the classical material derivative

fo:rmula[60]

Br =gt t B

This expresses material film derivate %(the time rate of change of a quantity at
a material particle) in terms of the spatial derivative g‘%(the time rate of change
of the quantity at a fixed spatial coordinate) and convective velocity Yh.V. (The
influence of the material point and spatial frame moving with relative velocity V).

If a reference frame is chosen such that neither surface has spatial
movement, then spatial derivative glt]—is zero and the problem steady-state.

Material derivative %—%—is the spatial velocity one would observe if V = 0,
for then % = gltl This amounts to the velocity of a material point when
moving with the material frame.

In all cases, the material point in question is the one coincident with the

spatial coordinate.
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APPENDIX A2
FRICTION TRACTIONS

For an incompressible Newtonian fluid, surface friction tractions are

determined using[44]

@
®

=2 ; € =1[r g v_9+13vr (A2.1)
Trg = Mg T T OF | T r J0 ‘
For thin viscous shear films of negligible curvature, one obtains :
w 0 ,
oo =M g (A2.2)

which upon substitution of film velocity (2.2) becomes :

1 Ve, ~ Ve
Tr0=ﬂ[mg%‘(2r-hi-h2) + KQQJ—T—H?% . (A23)

From Section 2.1.2d and 2.3.1 we obtain :
Vo, "V, =" wrs[1 + O(%;)]

Thus, at the journal surface r = hy, we obtain :

Tegln, = 3% - o] (A2.4)



The total friction force ff on the journal is given by :

ff =~ || 74|, rdédz (+ve anti-clock) (A2.5)
o rf'h, _
z

Discretisation : Taking the discretised expressions of Section 3.1.1 :

p*B° = g@N (OB ; £@) = [1- {%Eﬁ

friction force becomes :

=J {h N e P—T] rdddz (A2.6)

bz

Integrating the axial (z) terms and non-dimensionalising according to Section 3.1.3

gives :

s [0+ B 2

where

Further simplifications result by applying the divergence theorem :

~ D,
[ 55 av = - [%5 a0+ Gilg, |
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the latter term being zero. Now from Section 3.1.3

f = 1-%cos(¢- 0) +ﬁr;g%—=-?sin(gb-§) +ﬁr,

giving
6 5 a0 = [[esino - 0y -5;) 5 ad
= Qb -0y - i pad
Thus
b= B 6« i 2 3 5] @
D
where
= [ad v g5t = [Bd + ) | (Section 3.13)

Local coordinates € can be introduced into the above integral as per Section 4.1.3.
Applying order of magnitude arguments to equation (A2.8), it can be seen

that :

O(F) = [ﬂ L0(Lp).

Shear tractions are consequently much smaller than external load and normal

(pressure) tractions.
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APPENDIX A3

VOLUME FLUX

Expressions for the various volume fluxes Q can be determined by

integrating velocity expression (2.2) through the fluid film :

hy
Q=] yar=-QphPly o by vy
hy

Applying expressions from Section 2.1.2d gives :

_ h3[1 0 h
Q -'m[? 6%90'{-%%52} t pers)gy -

Discretisation : Taking the expressions of Section 3.1.1 :

p=p° = g@NSO)P; ; @) = [1 - [%a 2]

and substituting into the above form gives :

ON.©
h3 d ~e _ h
Q=1 [%" 0}) So t E%Niegz] Py + o (wrs)ey .

Non-dimensionalising according to Section 3.1.3 gives :

0 =~ 30[i] (1] e Geo-2 [P 7] + o



where

where

or component-wise

Q= a9
0y = o = -36 [5
0, = et = o[t 3]
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APPENDIX A4

CONNECTING-ROD DYNAMICS

Development of connecting-rod kinematic ‘and dynamic relationships is
undertaken in this Appendix, emphasis being placed upon achieving structural, as
well as dynamic equivalence. However, before proceeding some notation
simplification is in order : in this Appendix

W= w; ¢ = wt

(a) Kinematics

Picking up the
notation of Section 2.1.2,
then with respect to the X-Y

frame one can write :

rpd) =q+p= R[eiwt + %ci(M QS)} ‘ (Ad.1)
i(p,0) = wRi [ei”t + Rl ‘?’5)] (Ad2)
i(p,0) = - R [em + (- 1) Bt @} = (Fyi'y) (A4.3)

The acceleration at the big and small end is then, respectively :
£(00) = - wR e = § (Ad.4)

F(00) = - R [ei‘*’t - (§2-10) JfR—eiﬂ (A45)
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where { is the rod length.  Alternatively, in the x’-y’ frame the absolute

acceleration is given by :
£ (p0) = - R[4 (2 i) Prel]
giving big and little end accelerations :
P(0,0) = - W'R [ei-(“t'¢)] g (A49)
£ (40) = - w2R[ei(“"'¢) + (82 - 1) 52%] | = 3, (A4.7)

These expressions hold for any linkage undergoing circular translatory motion.

For a connecting rod of length ¢, the obliquity constraints

0= rY = rY = I‘Y| (6,0) (A4.8)

are introduced giving respectively the following ¢ constraints :

1=-%§}?—1%—;¢‘ %%‘fi& QRT%L[ [ﬂﬁ

For a non-oblique rod, ¢ = ¢ = ¢ =0 .

(b) Rod Dynamics

Linear Momentum : Following Section 2.2.1 we have :

JplN)dV + J (1), dS + J (1), S = 0 (2.29)

\% Sy S,



A4-3

Now for a rigid body :

|bav = [pi-av = -mea
Y % .

where m g is the total mass of the body, a g, the absolute acceleration of the centre

of mass in reference frame x’-y’.

Conservation of linear momentum is then given by :

Pl

bt mggg’ =0 (A4.9)

where G = J(;n)i dS (See F A42)

45
(fili)" |

Angular Momentum :

Taking moments abount

point s, the expression of ( yAY

angular momentum becomes :

(F A4.2)
[sx0baV + [ gx (1 pa8 + | gx (1) a5 =0 (A4.10)
\% S Sy

Writing r = g + p and letting § = p, we obtain :

$Xph =-gxpL=- {%f(épr) +§,Xﬂ£ﬂ

dp’

but fg=at—-+ ¢xp’ =¢xp’ , S0



Ad-4

sxph=-[p’ xgxpp’ +p’ xpg

Now, for a rigid body :

oe

JE’ x $ xppdV = (b.Jpp?dV k =1, gk
JE’ x pqdV = (mgfgi) Xq

where I =1 g +m/? ; I, and I, being respectively the mass moment of inertia

£8 g
about the big-end and centre of mass; ¢ o the position of the centre of mass from

the big-end. Conservation of angular momentum then becomes :

I +mlDk-mlixqg+lt), k=0 Ad.11
oy + mybD)-m b ixg + Aty )y K (A4.11)

(¢)  Piston Dynamics

Linear Momentum : (F A4.3)
(ty) +
4°F Y

/ /
ty = m_(ry,) . - pa (A4.12) S
SR ww{

i > tX
where m_ is the total piston mass, T Mp (e

P FA43

pa the gas forces.

(d)  Rod-Piston Equilibrinm (F A4.2, A4.3)

' . . t
t,, + t.- =0 where ‘= c"1¢t = [C(-)Snglr‘lqu X}
N~ T Rp ~p ~ -sing cos ¢ [ty

s0 t el =0 (A4.13)
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(e)  System Solution
The above system of five equations (A4.9, .11, .13) in five unknowns

(L oty ty) is now fully determined. Taking A4.11, one obtains :

(t, ) = - mMR[sin(wt-@) a%[a%ﬁ é&H

I
{
or rewriting in terms of A4.7 gives :
(ty’)f = mg(ay’)g + my Pl
where m=Zng 'm=1-—£m Cm, = |
¢= Fmy 5 my g i me = [
(‘Ey’)b can then be determined from A4.9 giving :
. uf I g
(ty’)b = - mwaR [sm(wt—gb) + ZJ?K [ﬁ—ll;%f ng
or, in terms of the big-end acceleration A4.6 :

(ty )y = my(a, ), - el
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The %’ forces are next determined from A4.13 where :

sing 1 ,
by = cos @ by - cos¢ (ty )y hence

(t )E—(t )Ez(l)lslqﬁ Xcosqﬁ

- mesm ooy + Bl B sing 1 ]

+ (my + mp)L‘)QR [cg:wt@ R[coswat] * ‘%Tz(l)rslg] cosgb

Rewriting in terms of the small-end acceleration A4.7 :

(t,")p = mya, )€+m*¢€ —(—)?a(m€+m)(rx) - pa]

The remaining big-end force is determined from A4.9 giving :
‘ Y, I ¢
(tx’)b = - mwaR [cos(wt - @) + U?F [ m—b%Q—- ZgLH
coswt coswt 5? sin
- (my + mp)wQR[ osg * [ ] os%] os

Rewriting in terms of the big-end acceleration A4.6 :

(tx/)b = my (a, "), - m, ¢! 2(1)151 + Wg‘d ng + mp] [.I.X]p - pa] .
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Summarising, the little-end forces are :

e

(tx’)g =mya,’), + (S;)Isl m, ¢ - EB%? ng + mp] [rX}p - pa] (A4.14)
(ty)g = mya, )y + m, ¢f (A4.15)

whilst the big-end forces are given by :

N = .y _Sin v 1 .
6y = mb(ax b~ cosg Ml + 05§ ng + mp] {rx}p - pa} (A4.16)
(t,)p = My )y - m, ¢ (A4.17)
where

-

These expressions determine three appropriate mass lumpings for a dynamically
equivalent connecting rod.

It will be observed that the linear accelerations a’, g'b‘ff and ('r'X)p are all of
similar magnitude, 0(w2.R). The relative contributions to the big-end forces are

therefore proportional to :

mp, mg, my, m,

In practice, m, m > > m, allowing a two massT lumping scheme to be used with

little loss of accuracy.

T my, (mf + mp)
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()  Structural-Dynamic Consistency
Section 2.2.2 introduced body forces pb* in regions V* to achieve consistent

structural loadings. Within frame x - y” these are given by :

b*(p,0) = w?R[ei(Wt -9) [¢2 : iq’ﬁ] @g’ﬁew} . (A4.18)

However, to avoid further inconsistencies, the structural model to which these are
applied must be of comparable geometry to that used in the dynamic model.
To this end, a structurally equivalent rod consisting of a ring of thickness t

(with or without a neck) is firstly produced. (F A4.4 ii).

Physical | Structurad Qyﬂam{ c
Comnecting Rod Equivalent Equilalent

My, lg Iy, p
an

Thickness t is determined using equivalent cross-section second moments of area.
The dynamic equivalent is then constructed using a big-end ring of
thickness t, density p* and small-end point mass m, (F A44iii). Adjusted density

p* is introduced to bring the ring mass in line with m,, the dynamically
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equivalent big-end mass :

p =
My ing

Such a construction has a small additional 'inertial mass' :

I. m
m, = 198 = zb [(r + 22 - rz} << my,m,

This can be safely ignored along with the usual 'inertial mass' :

m, = {g_,ﬁ_g_

The application of b* to the structural model is then only on the ring (not
the neck if one is present) using adjusted density p’.  Structural and dynamic

similarity are this way achieved.

(g)  Non-Dimensional Load

To complete this Appendix, a non-dimensionalisation in keeping with the
remainder of the work is presented :
Comparing forms (A4.9) and (2.30,’ 31, 32), it is apparent that f = - N

Non-dimensionalising in accordance with (3.15,.16) we can write :

™ WR [e]2%
f= & ol [E] i (A4.19)
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where m, is the total rod/piston massJr and 2, dimensionless external load given by

- gb/mtw?R. Expanding :

sm¢ é’ 1 pa

_ b
%x’ - -ﬁt—cos(wtm 9) + cos¢ m o?R * Sosg m, R
m , +m °2 y ,
+ coégi) [ Iflt p} [coswt + %II% cos¢ + %% sm¢‘}
2 mb L g

These are the forms used to generate the inertial and non-dimensional loads of

Chapter Six and Seven.

f m, = (m, + my + mp)
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APPENDIX A5
CURVED BEAM CONSTANTS AND MATRICES

Constants ¢ take on a variety of forms dcpcnding on the type of bending

theory used :
¢ Ref[62] Thick Beam Thin Beam Theory
Theory
Extensional Inextensional
e
¢ . (1+iz)= H 1 1
)
Cy ¢ i 1 1
e . 1-iz(1-EB/GK 1-z .
3 4 T+iz(T+ T+z
2 2
C4 % T+1z(17 E/GK) Tiz 1
2i 2
% G T+1z(1TE/GK) T+z 1
o . 2i(1+1z 2 1
6 h T+1z(1 +E/GK) T+z
TAS

For rectangular sections :

[95]

See Timoshenko!” = for other sections (where m = iz).



Matrices X, Y and W of Section 3.2.1 are as follows :

0 -1 0 0 -1
-1 0 0 Cy 0
0 0 ‘ 0 Ci1Cy 0
-sina -cosa -asina -aCcos « -1
-cosa  sina  (cgsina-acosa) (cscosa+ asina) o
0 0 ciC4Sina C,C COoSU c

[0 0 0 Cq 0 0]

0 0 Cq 0 0 0

0 0 -Cg 0 -Cy 0

0 0 -CgSinw -cgcosa 0 0

0 0 -CgCOS & ceSinu 0 0

0 0 C5COS -C5Sina Cy 0]
-Si%-“—ggﬂ-l+%ﬁ— _%Q__I_is‘i]ﬂ_'_&_g;g ‘(1-%2—)cosa-§sliyﬂ+%2—

_cosa | 4sina 3
a a? T a

12 . beosa 6
(ET'].)SIHQ- —a E

(%‘;l—-l)cosa+—65:1na - %— +1

S

(=]

24, . 16cosa |, 8
(@ gpsina+ —>—+ &
24 l6sina | 24
4- eose ——+ &
L2«
5
0

where « is the included angle of the element.

4 .. 3cosa 1
'(1' ET)SIDQ" T- E

12, . 10 2
-(4- gpsina-(~-a)cosa- &

10,,. 12 12
-(a- o sina-(4- “r)eosa- or

@
"6
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APPENDIX A6

EIASTIC DISPLACEMENT TRIAL FUNCTIONS

A function ¢, can be

interpolated from four sets

- 09; 09;
of nodal variables ¢,, 7 7o~

through cubic Hermite functions

N.. M.. p.169]
1 1’1 :

o geowetry nodes (xy4) ., .

09; 99 .
¢ = Ni(u,v)gbi + Mi(u,v) gpt P.(u,v) v (=14

wher¢ N, = %{(uo + D(vy + D@ + 1y + vy -u?-v2)
M; = guup + 12 (v - D(vp + 1)
P, = gvi(up + D + D2(vy - 1) |
Up = U 5 Vo = VoV
This representation uses nodal derivatives set in the local coordinates u,v. More

convenient global derivatives are obtained through a Jacobian representation of

the chain=rule :
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giving ¢ = Nig; + Mi[%‘gi ¥ Pi[gﬁi

- . X7 e ’ax é}x . = a
where NimNi,Mi—Miﬁlﬂi-t-Pi[ﬁ(ﬁ]i, Pi—Mi[ ui+Pi[§vl]i

Jacobian [J] is determined from an 8-nodal quadratic geometry representation[é(’)]:
- X, = Y 1 = 1’8
x=Q 5y = Qy, @ )

where Qj = 4(1 + up)(1 + vp)(ugy + v - 1) at corners.
(1 -u2)(1 + v;) at mid-sides, U = 0.

3(1 + ug)(1 - v2) at mid-sides, v; = 0.

Elastic displacement fields u, and u y &€ determined analogously :

{ux} [N oMo 150} Uy )

= u

YY) [oN oMo P, ag’lx
ox
Py
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If instead, nodal cylindrical polar coordinates are preferred, then [J] is evaluated
with respect to cylindrical nodal coordinates and rotations performed on the pairs

The nodal variables then become[éo] :

du, ~] dn, dn ]
x Ty x Ty
Gty L)x ox | L’y oy ]

ou. Ou "Ou ou

r 0 17t 11770
{“w‘les ar  Ir »ﬂaa '“aJ’ ?{BT*%H_
1
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APPENDIX A7

RUSTON HORNSBY - 200, 400, 700 rpm RESULTS

RUSTON HORNSBY 200 (Rigidl)

Cinhec s Bosiddle s W opker £
o jouwad foscfion

hm:‘h ﬁﬁ’ﬁaﬂ

Puwwe  posiion

7 [ead vector FATI

— 4o &0
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RUSTON HORNSBY 200 . (Ring )
e : /5\ middle : W Owler: =

o jownal posifion

X P POSIHON

» Pax  posthon

7' foad vector FA 7.2,







RUSTON HORNSBY 400 (Rig1d)
innec s B wmiddle : @ owler:
o gournal position
\( ﬁm{n P@V’{\O"\
o Puax poschon

A el veclsy  Fany

60
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RUSTON HORNSBY  4.00 (King )
imer: B widdle: & culer: 3
QOug‘m]. F{)S.bﬁaﬁ

wATA PDSI"h@V“\

max  PPSthien

2 Joad veckor  FArs

]
A
@

A
P

AT-5
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RUSTON HORNS BY 400 (Ring )
Elastic Distorsfon
jiner : otal Mldﬁ[g:ﬁ\ outer: b
o jourral poschon
© fs\m FosiNon
7 bdy-force  pazg

0

€O
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KUsTon HORKS8Y 700 (Kigid)
ke p midle : & owlr: &
JOurnad  posifion

o

X ;f;mm o5 thon

o ;’ﬁm Y ,Q’)szﬁbn

7 Joad vector FAL7

60




RUSTON HORNSBY 700 (Kl'nﬁ)
niec: P omidfle : W Outer:

‘// ~
Nwin P{Ef?‘?@h
lé\ﬂm POS:’{?'DP’\

varnal Posifion
A
(ogd weclor  ~  FALB

o
X
7




RUSTON HORVSBY 700 (Ring )
Elastic @/S‘f@fﬁﬁ:@ﬁ
inver: fotal middl: P oukr: b

odoamml [)QSN‘) o

. Pﬁfw«x POS(?')DM
7 Wg force F A7.9

220

AT-9

o 180
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APPENDIX A8

BEARING PARAMETERS

Ruston and Hﬁmsby B@aﬁng{ﬁl
¢ = 0.00325"= 0.08255 mm

r = 4" = ().1016 m
L = 225" = 0,05715 m
W = 52" = 0,1321 m

w = 62.84 rad/sec (600 rpm)
p= 2.17x1076 1bfs/in? = 0.01496 Ns/m?
E = 30x106 Ibf/in? = 2.07x101 N/m?

-t =2" =0.0508 m

¢ =308" = 0.7823 m
R =7.25" = 0.1842 m

A8-1

m, = 120 Ibf = 54.43 kg
m, = 361 Ibf = 163.74 kg

n=?2
L/D = 028125 R/l = 0.2354 I+ L/2 - 06897
t/r = 05 fn@lz- = 0.3324

_ 24(.01496) (62.84) 2 4 1320225
A==507x 1ort(28129)" | G323 % (1.25)°

= 2.61

P 16374 (62.84)(.1842 [
~6  (0.01496)2(0.05715)(.101

= 3.79
o = Mp -
== AF/27 = 0.5237
A = (2.61)(3.79) = 9.89

;



(b) Fantino’s Beaﬁng[24]

The basic geometric parameters of Fantino’s bearing are :

L=0028m m = 0.853 kg
R = 0.040 m m, = 0.316 kg
r = 0.027m my = 0.631 kg
¢ = 2x10%m m, = 1.800 kg
w = 5500 rpm = 576 rad/sec

¢ = 0.0055 Ns/m?2 { =016 m

E = 2x101 N/m? n=1

p = 7860 kg/m3 W = 0.0228 m

Standard Case : 5500 rpm

t = 0.0135 m t/r = 0.5 R/{ = 0.25
1 =0027m L/D = 04222 %’tl = 0351

A = 24(0.0055)(576) (0.4222)2 [0 027 } 12[1 25]

2x1011 2x10°% 0.5 ]
= 31.26
_ 1. 8 é576%%0 040; {2}(10 512
= 1.57
— _ Mp -
= I—n—tAF/Zﬂ' = 2.74
A = AF = 49.08

For formulars based on density we note that :

Myjng = 47(7860)(0.027)% %:%%%8-(05)(1.25) = 0.513 kg

thus

p’ = —P—p = 123p = 9668 kg/m3

mx ing



Effect of Reducing Journal Radius :

Taking the standard case and reducing journal radius 11% :

r = 0024 m t/r = 0.5625 L/D = 04750
t = 0.0135 m |

_ 24(0.0055)(576) 0.024 13 ..,[1.28125)3
A== o (04750 | 5257s) 12| 035625

= 210

An estimate of total mass is obtained as follows :

my, = 4n(9668)(0.024)8 39228 (0.5625)(1.28125) = 0.575 kg

3
m, = my +m£+mpf: Emb+mp = 1.72 kg

Hence our mass related numbers are :

o L2 (576)(0.040 2x10-5)2
= 6 (0:0055)(0.0228)(002%y |0.0228
= 1.69

= = 3395 (169)(21.0) /27 = 1.89

A = 3549

Effect of Increasing the Radius of Gyration (k) :

Take the standard case and increase k (t) by 22% without increasing the

rod mass, then :
t = 0.0165 m t/r = 0.6111

r = 0027 m m, = 0.631 kg

_ 24(0.0055)(576) 0.027 ) 4, (13055]2
A =pqorr—(04222)* |507575] 12| 0%g1T)

= 19.50
F =157
= (0.351)(19.5)(1.57)/27 = 1.71
A =306

{1]
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Reduce Radius and Increase Gyration :

Combining the above two effects we obtain :

r = 0.024 m t/r = 0.6875

t = 0.0165 m L/D = 04750

Notice that r + t is the same as the standard case; the standard rod is

bored out to a smaller internal radius. This gives :

_ 24(0.0055)(576) 0.024 13 . [1.34375]
A==t (047507 | 75es) 12| 0768757

= 13.28
F = 1.69 (mass unaltered by gyration increase)
== 119%
A =2244
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