
Network Forensics and Log Files Analysis:
A Novel Approach to Building a Digital

Evidence Bag and Its Own Processing Tool

Supervisors: Ray Hunt, Malcolm Shore

A thesis submitted in partial fulfilment of the requirements for the Degree

of Master of Computer Science and Software Engineering

at the University of Canterbury

c©by

Ahmed Qaisi

University of Canterbury

Department of Computer Science and Software Engineering

September 30, 2011

Abstract

Intrusion Detection Systems (IDS) tools are deployed within networks to

monitor data that is transmitted to particular destinations such as MySQL,

Oracle databases or log files. The data is normally dumped to these destina-

tions without a forensic standard structure. When digital evidence is needed,

forensic specialists are required to analyse a very large volume of data. Even

though forensic tools can be utilised, most of this process has to be done

manually, consuming time and resources. In this research, we aim to address

this issue by combining several existing tools to archive the original IDS data

into a new container (Digital Evidence Bag) that has a structure based upon

standard forensic processes. The aim is to develop a method to improve the

current IDS database function in a forensic manner. This database will be

optimised for future, forensic, analysis.

Since evidence validity is always an issue, a secondary aim of this re-

search is to develop a new monitoring scheme. This is to provide the nec-

essary evidence to prove that an attacker had surveyed the network prior to

the attack. To achieve this, we will set up a network that will be monitored

by multiple IDSs. Open source tools will be used to carry input validation

attacks into the network including SQL injection. We will design a new tool

to obtain the original data in order to store it within the proposed DEB.

This tool will collect the data from several databases of the different IDSs.

We will assume that the IDS will not have been compromised.

ii

Acknowledgement

First and foremost all thanks go to Allah. I would also like to thank every

one who made this thesis possible starting from my supervisor to all relatives

and friends.

I am indebted to my parents who deserve special mention for their insep-

arable support and prayers. It was my Father, Abdulrheem Jraibi Qaisi, who

made learning a fundamental part of my character. Ever since I was a child

it was he who showed me how a person must work towards his goals with

passion and patience not only through his words but also by his own actions

when studying and working. Two words he always told me which I will never

forget; faith and sincerity. My Mother, Zahra Aljabali who lovingly raised

me with her caring and gently love. Mohammed, Abkr, Norua, Abdullah,

Safiya, Fatima, Somiah and Asmaa, thanks for being supportive and caring

siblings. I also owe my deepest gratitude to my New Zealand mother Patricia

Smith for the unlimited support and love she gave me when I was living with

her and afterwards. I also thank her for proof reading the thesis an every

word she had to check for me. Thank you Mum.

Words fail me to express my appreciation to my wonderful wife Amnah

whose dedication, love and care, has taken such a load off my shoulders. I

owe her so much for being supportive and patient during those long nights I

stayed up working.

I am proud to express my sincere gratitude to Ray Hunt for his supervi-

sion, advice, and guidance from the very early stage of this research as well

as giving me extraordinary knowledge throughout my time at Canterbury

University. This thesis would not have been possible without Ray’s help.

Thank you Ray.

It is also pleasure to thank those who made this thesis possible especially

my dear friend Muteb Alqahtani, Sachin Sebastian, Lim Lin and Michael

iii

Paerce for sharing their knowledge. Many thanks also to those good friends

who kept in touch and always asked about me all the time I have beenin New

Zealand; Yahya Alameer, Mahmoud Hadad and Ali Sawadi. You are good

friends.

Finally, I would like to thank everybody who was important to the suc-

cessful realization of this thesis, as well as expressing my apology that I could

not mention each of you personally one by one

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Network Security and Forensics 3

1.4 Evidence Capturing Techniques 4

1.4.1 Live Incident Response Forensic 4

1.4.2 Typical Capturing Evidence Processes 6

1.5 Issues and Proposed Solutions 13

1.5.1 Strategies for Detection 13

1.5.2 Forensic Solution . 13

2 Contemperary Approach IDS/SIEM Architecture 16

2.1 The Problem . 16

2.1.1 Malware . 16

2.1.2 Hacking . 18

2.1.3 Botnets . 20

2.2 The IDS Solution . 21

2.2.1 NIDS vs HIDS . 22

2.2.2 Honeypot and Honeynet 23

2.2.3 Client Honeypot . 24

vi

Requirements of Forensic Evidence 26

3 Requirements of Forensic Evidence 26

3.1 Overview . 27

3.2 Principles for the Management of IT Evidence 28

3.2.1 The obligation to provide Evidence 28

3.2.2 Design for Evidence . 28

3.2.3 Evidence Collection . 29

3.2.4 Chain of custody . 29

3.2.5 The original, copy and original copy 29

3.2.6 Personnel . 29

3.3 IT Evidence Management Lifecycle 29

3.3.1 Stage1: Design for Evidence 30

3.3.2 Stage 2: Production of Records 34

Design of Analysis Engine and DEB Structure 42

4 Design of Analysis Engine and DEB Structure 42

4.1 Design of Intrusion Detection System Correlation Engine . . . 42

4.2 Fuzzing . 42

4.2.1 Relevant Attacks . 43

4.2.2 Methodology Approaches 53

4.2.3 Methods . 57

4.2.4 Fuzzing Areas . 58

4.2.5 Inputs Identification 60

4.2.6 Vulnerability Approaches and Attack Injection 61

4.3 Design of Digital Evidence Bag 63

4.3.1 A New Approach . 63

4.3.2 DEB Structure . 64

Design of Testbed 69

5 Design and Implementation of a Testbed 69

5.1 Overview . 69

vii

5.2 A Novel Approach . 70

5.2.1 Motivation . 70

5.2.2 Concept . 71

5.2.3 Testbed Architecture 71

5.3 Attack Scenarios . 73

5.3.1 First Scenario . 73

5.3.2 Second Scenario . 75

5.3.3 Third Scenario . 76

5.4 Testbed Tools . 77

5.4.1 Virtual and Physical Machines 77

5.4.2 Hardware Tools . 78

5.4.3 Software Tools . 78

5.5 IDSs and Event Correlation Engine 81

5.5.1 IDS (Snort) . 81

5.5.2 Database Logging (Barnyard2) 84

5.5.3 Web-Interface (Snorby) 89

Tests and Results 92

6 Tests and Results 92

6.1 Overview . 92

6.2 Evaluation Process and Input Data 92

6.3 Multiple IDSs Results . 94

6.3.1 First Time-Frame . 94

6.3.2 Second Time-Frame . 95

6.4 A Proposed Digital Evidence Bag 101

6.5 Conclusion . 102

6.5.1 Thesis Limitations . 103

Conclusion and Future Work 106

7 Conclusion and Future Work 106

7.1 Summary . 106

7.2 Future Work . 108

viii

7.2.1 Performance . 108

7.2.2 Realistic Attacks Data 108

7.2.3 Extensions and Generalisation 109

Appendices 121

8 Appendices 121

8.1 Appendix A . 121

8.1.1 HTTP Status Codes 121

8.2 Appendix B . 125

8.2.1 Coding . 125

8.3 Appendix C . 140

8.3.1 Multiple IDSs Configuration 140

ix

List of Figures

1.1 Logical Methods in the Development of Forensic Practices . . 4

2.1 Basic IDS ArchitectureWhere the IDS Can Be Allocated Ac-

cording to the Network Peripheries 22

3.1 IT Evidence Management Lifecycle 30

4.1 SQL Injection Process . 44

4.2 A C# code executes a SQL query to find a specified name . . 44

4.3 Shows the query that Figure 4.2 code intends to execute . . . 44

4.4 An attacker enters the string “name’ OR ’a’=’a”’ as bad inputs 45

4.5 An attacker enters the string “name’ OR ’a’=’a”’ as bad inputs 45

4.6 An attacker visits http://example.com/items.php?id=2 46

4.7 An attacker visits http://example.com/items.php?id=2 46

4.8 An attacker injects a valid SQL query into a website link . . . 47

4.9 Step 1: The Attacker Sent SQL Injection Inputs and Received

the Response Above, Showing an Error Message Which Indi-

cates an SQL Injection Vulnerability 48

4.10 Step 2: The Attacker Proceeded Further Exploiting the SQL

Injection, Retrieving the Number of the Infected Columns in

the Database . 48

4.11 Step 3:The Attacker Proceeded Even Further Retrieving the

Databases’ Names . 48

4.12 Step 4: The Attacker has Revealed the Database Name that

is in Use by the Web Application 49

x

4.13 Step 5: The Attacker Utilised the Already Retrieved Informa-

tion on Revealing the Available Tables on the Database 49

4.14 Simple XSS Attack Digram 53

4.15 shows the process of a Fuzzer.[9] 56

4.16 Digital Evidence Bag Framework 65

5.1 Testbed Architecture . 72

5.2 The Data Flow of The Attacker Trying The First Scenario . . 74

5.3 The Data Flow of The Attacker Trying The Second Scenario . 75

5.4 The Data Flow of The Attacker Trying the Third Scenario . . 76

5.5 Numeric Status Code Responses of Multiple Attacks (SQL

Injection, XSS ...etc) carried out on HTTP Requests 80

5.6 Response Time of the previous Multiple Attacks(SQL Injec-

tion, XSS ...etc) carried out on HTTP Requests 81

5.7 Response Size of the previous Multiple Attacks(SQL Injection,

XSS ...etc) carried out on HTTP Requests 82

5.8 A Snort Rule that was Implemented on this Testbed to Catch

Potential Attacks on the Database Server 82

5.9 Another Snort Rule that was Implemented on this Testbed to

Catch Potential SQL Injection on the Database Server 83

5.10 Running Snort on eth0 . 84

5.11 Snort (First Sensor) in Action for Logging Snort’s Alerts into

a unified2 format file . 85

5.12 Each IDS has been configured to log alerts to its own individ-

ual ”unified2” . 86

5.13 The database and its tables establishment 87

5.14 The database and its tables establishment 87

5.15 Routine to Enable Barnyard2 for Logging Events on eth1 to

The Database . 88

5.16 Barnyard2 starting up. the ’database’ information is shown . . 89

5.17 Barnyard2 (First Sensor) in Action for Logging Snort’s Alerts

to a Database . 89

xi

6.1 SnortReport Showing Details on Some Alerts Sorted by Sig-

nature . 95

6.2 Severities of Attack During the Second-Time Frame 96

6.3 Severities of Attack During the Second-Time Frame 96

6.4 Protocols Were Used to Attack the Web Application 97

6.5 Top 15 Signatures Occurred During the Month 98

6.6 Another Diagram Showing Largest 12 Occurred Signatures

During the Month . 99

6.7 Top 10 Source Addresses Produced Attacks During the Month 100

6.8 Top 10 Destination Addresses Received Attacks During the

Month . 100

6.9 DEB Interface in Process for Acquiring Evidence and Wrap-

ping it with MD5 Hash . 101

6.10 DEB Has been Created and Wrapped 102

6.11 DEB Composed and Saved with MD5 Hash 103

xii

List of Tables

2.1 Latest Changes of Malware Propagation Techniques 19

8.1 HTTP Response 1xx (Provisional response) 122

8.2 HTTP Response 2xx (Successful) 122

8.3 HTTP Response 3xx (Redirected) 123

8.4 HTTP Response 4xx (Request error)) 124

8.5 HTTP Response 5xx (Server error) 125

xiii

Chapter 1

Introduction

1.1 Overview

etwork security and forensics include the action of monitoring and recording

data in transit in order to discover potential attacks. Intrusion Detection

Systems (IDS) tools are deployed within networks to perform these actions.

The captured data is then examined and analysed possible extraction of the

digital evidence. However, analysing such data to produce the evidence can

be exceedingly difficult and time consuming. This is because data is always

dumped to a log file or databases without a forensic standard structure.

Providing auditing for training purposes can also provide difficulties. For

instance, when performing a security analysis of the data, system adminis-

trators do not have sufficient time to manually record their actions which

could be used for these learning and training purposes.

While there are several forensic tools available (mostly proprietaries),

most of these must be done manually consuming time and resources. In this

research, we aim to address this issue by combining several existing tools.

These tools will consist of multiple entities (hosts, IDSs, databases, firewalls

and attackers). The core purpose of this thesis is to archive the original IDS

data into a new single container from which a unique Digital Evidence Bag

(DEB) will be created. As well as these potential sources, command line tools

1

such as “Net-state”, “dig”, “nslookup”, “traceroute“, ”Whois“...etc can be

also used to put information into the newly created DEB at the same time.

The created DEB will have a structure based upon standard forensic pro-

cesses. The aim is to develop a method to improve the current IDS database

forensic function.

Since the validity of evidence is always an issue, a secondary aim of this

research is to develop a new monitoring scheme. This is to provide the neces-

sary evidence to prove that an attacker had surveyed the network prior to the

attack. To achieve this, we will develop a testbed architecture for this thesis.

Further, open-source tools will be utlised to obtain the original data from

the IDSs’ databases in order to store it within a combined database. Then a

tool is designed to connect to the combined database from which a wrapped

DEB is produced with digital evidence. This tool can collect the data from

several databases of the different IDSs. These IDSs are deployed at different

security levels of the testbed architecture. Their output (databases) will be

compared for any potential matching that could strengthen the validity of

the evidence produced in any court action against the attacker.

1.2 Motivation

The predominant motivation of this thesis is the shortage of research in the

in the combined area of security and forensics. Lookingat them from a prac-

tical perspective it could be said they are even one entity. If a system needs

to be highly secured it also needs to be structured in such a way to enable

investigators to collect evidence. No entity is completely secure and so when

security is violated, there must be a clear system for collection of the evi-

dence. Not all systems will be the same and what system is appropriate will

depend on the type of attack and the type of investigation required. How-

ever, investigators can take the initiative and build their own systems within

a forensic environment.

2

1.3 Network Security and Forensics

Networks are exposed to internal and external threats. These threats can use

the victim’s network as a base for launching attacks on associated networks

such as denial of service (DoS). Another potential threat can be an alteration

of information through the victim’s network. Internal trusted participants

can also launch attacks on the network by abusing their level of privilege[1].

This requires the development and maintenance of proper situational aware-

ness.

Network forensics is defined as the monitoring, recording, and analysis of

network traffic and events. It is performed in order to discover the source

of security breaches as well as providing information to assist in the re-

sponse to recovery from attacks or other potential problems. One key role

of the forensic expert is to differentiate repetitive problems from malicious

attacks[1],[2],[3].

There are three groups of people who are interested in the network foren-

sics area: law enforcement, operators of critical infrastructure and education

systems. The two main types for network forensics are:

1. General network forensics

2. Strict network forensics

The purpose of general network forensics is to obtain malware attack sig-

natures and utilises them for an intrusion detection system (IDS) and as an

aid to firewall configuration. This is to enhance the security posture within

the network; while the strict network forensics obtains the evidence to be

used in a court of law[2],[4]. Currently, forensic methods are known as dead

forensic (after the cybercrime fact); and live forensic (during the cybercrime

fact). This thesis proposes to extend current network forensic techniques by

the introduction of a DEB in order to enhance analysis techniques.This is

shown in Figure 1.1.

3

Figure 1.1: Logical Methods in the Development of Forensic Practices

The condition of multiple IDSs and network forensics has great potential

to address the internal and external threats described above. In particular,

the use of multiple IDSs can trigger network forensics tools in order to pro-

vide an analysis of data flows into and out of a network. IDS problems exist

with the processes of aggregating audit logs and maintaining signatures. The

overlay of network forensic onto IDSs will assist us in addressing these key

problems[5],[6].

The limitation of many forensic audits lies in the lack of real-time (live)

forensic analysis. Normal alerts can indicate the potential for more sophis-

ticated attacks. For example, network scanning attacks are sufficient for

attackers to collect useful information about the network which enable them

to launch further attacks[5]. Such alerts should be categorised and reported

at different stages of their occurrence.

1.4 Evidence Capturing Techniques

1.4.1 Live Incident Response Forensic

When acquiring files selectively from a live system, greater attention should

be given than when creating a forensic duplicate. This is because when ac-

quiring files from a live system action taken may alter the original evidence.

Acquiring data from a system in a live-forensic mode is often necessary to

4

determine whether a malicious code has been installed. It is also important

to gather volatile data at an early stage of a malware incident. This can pro-

vide valuable leads, such as details about remote servers that the malware is

communicating with.

There are various tools in the operating systems themselves which can be

used to obtain volatile data. For instance, Linux commands are useful for

collecting volatile data from a live system. However, one can argue that if a

system can be compromised by malware it cannot be trusted. Therefore, in

reality it can be said no system can be trusted. This makes it necessary to

use a toolkit of utilities for capturing volatile data that has minimal interac-

tion with the subject operating system. The use of such utilities is critically

important and can reveal hidden information by a rootkit.

In this thesis, an overall methodology for preserving volatile data will be

briefly demonstrated on a Linux machine in a forensically sound manner.(See

Chapter 5). This will be implmented by using a case example within the pro-

posed testbed to demonstrate the strengths and shortcomings of useful linux

commands from a forensic perspecive. These commands must be tested and

assessed before trying to achieve the goal of combining them into one group.

Volatile Data Collection Techniques

Existing tools and commands can be utilised when conducting a live forensic

technique to collect volatile data such as uptime, date, time, users logged

into the system, open ports and listening applications, lists of currently run-

ning processes, registry information, attached devices (this can be important

when having a wireless attached device which may not be obvious at the

crime scene) and command history for the security incident. While conduct-

ing this process, it is crucial to generate the date and time to provide an audit

trail. The following are some of the useful Linux commands that can be used

to obtain live evidence although they tend not to perform in a foreniscally

5

sound manner.

Script: The majority of UNIX systems have a script utility that can

record commands that are run as well as the output of each command,

providing the supporting documentation that is the cornerstone of digital

forensics. The script catches data in memory and writes the full recorded

information when a process is terminated. By default, the script commands

save data to the current location.

Who: Identify users logged onto the system. Use who or w to determine

who is currently logged in. Verify that a legitimate user established each

session.

Netstat: Determine network connections and activity. Use netstat to

view open connections to the computer.

Ps: Use ps to view the processes running on the computer, and try to

determine if any unusual processes are running.

Lsof: Use lsof to determine what files and sockets are being accessed.

1.4.2 Typical Capturing Evidence Processes

Selective Capturing Process

Selective imaging is a means of acquiring the evidence on a selective basis.

When acquiring evidence, a decision should not be made to acquire the whole

information of a media but only the required (relevant) amount [7]. This has

not always been so, but now, according to official good practice guidelines

of The Association of Chief Police Officers in the UK (ACPO) it is now

recognised that “partial or selective file copying may be considered as an

alternative” when it may not be practical to acquire everything. For instance,

when the amount of data to be imaged makes this impracticable. However if

6

this approach is adopted, investigators should ensure they are capturing all

relevant evidence [8].

According to [7], there are three types of selective imaging. They are:

1. Manual selective imaging: Is when the investigator manually specifies

the required files in order to obtain them.

2. Semi-automatic selective imaging: Is when the investigator specifies a

particular type of files or few categories. This can be based on the file

extension, file hash or file signature (e.g hex signature).

3. Automatic selective imaging: Is when the investigator specifies the

source and destination of the evidence required and commences the

automatic capturing process.

When obtaining evidence by any of the aforementioned (selective imaging

processes), one of the main difficulties encountered is recording the prove-

nance of an item of information. In order to record such information there

are some metrics that can be used to locate a file. This location can be

specified by one of the following modes [7]:

1. The root folder including partition reference number

2. The logical cluster of the required file

3. The physical sector of the required file on the disk

One of the things to bear in mind with these modes is the attributes of

provenance must meet the following criteria [9] and [7]:

1. Unique

2. Unambiguous

3. Concise

7

4. Repeatable

It can be argued that in its own way each method meets these criteria. It will

depend upon the technical knowledge of the person trying to understand it.

For example the general public, including even a judge or legal professional

is likely to be more familiar with a folder location than a more technical disk

sector or cluster reference.

Intelligent Capturing process

Intelligent imaging which is the process of embedding the knowledge of ex-

perts into an intelligent system is a good option for investigators who are not

technically proficient. In order to obtain the relevant evidence this technique

allows the investigator to select the type of inquiry that is being conducted

[7]. However in the case of a fraud or intellectual property theft, the in-

vestigator may not be able to recognise the type or location of the required

files. The question then becomes how can the expert’s level of intelligence

be recognised and thus be embedded in a tool. Another question is whether

all the relevant data can be captured by the tool.

Digital Evidence Bags (DEBs)

The traditional forensic process is the process of capturing an image of the

original material. This capture of the evidence can be either in static or

real-time - ‘live’ forensics. A new concept for a container for digital evidence

has been recently introduced. This can be used as a wrapper which provides

professionally obtained evidence and an audit trail of previously performed

actions.

When obtaining such evidence the actual forensic task is to capture an

image of the original media. There are two problems that relate to the actual

containers that contain the captured information:

8

1. The tool has to process and analyse the captured forensic image as a

single entity.

2. The forensic utility captures the information into different format con-

tainers. That is not to say a single format container should not be used

to capture evidence but the wrapper (which is the DEB) used must be

consistent when capturing and storing information[10].

It is not uncommon to see a single log file from an architecture of the

form being modeled in this thesis to be of 350 Gb of data over one week.

This is compounded by the fact that forensic tools currently in use are being

stretched beyond their capabilities. This results in the whole network foren-

sic process becoming problematic [11],[10]. The situation is still difficult even

when taking into account the diverse number of devices that process digital

information and which are capable of having digital information extracted

from them. This means that forensic practitioners have to learn, understand

and use even more specialised applications in order to capture the required

information[10].

In a networking environment, tracing attacks or analysing system prob-

lems could lead to losing valuable information. This could occur in a case of

information that had been lost or stolen. Such a problem can happen when

an incident investigator misses the opportunity of recording some valuable

information that was discovered. This opportunity can often not be repeated.

Therefore, people in charge of the system including System Administrator

(SA)1 is in a position of possibly neglecting to obtain important information

[9].

System Administrators have various tools to investigate a system. These

tools are mostly console application and run as command line utilities. The

1must be highly trained so that they can cover all the processes, tasks or operations
performed by the system administrator, system operator, incident investigator, security
administrator, network investigator. Anyone in the role of determining the problem, the
cause or effect of any abnormal or unusual system behaviour

9

problem with these tools is is that they are not able to record either the pre-

formed actions or the fact that these actions were taken or even the results

obtained from them. From a forensic perspective these tools do not provide

information in a forensically sound manner. One can argue that the output

can be logged into a log file; however, this does not insure the integrity mech-

anism in transit. In fact, it is not common or an easy job to record every

action taken or results obtained when examining a system [9]. Even taking

notes can be extremely difficult when real live attacks are in process.

The concept of a DEB can be used in order to address the aforementioned

issues. This is not to say all tools have to be changed but from a forensic

perspective, this should take place. The DEB will enable Systems Admin-

istrator to record information and provide a continuity section to be main-

tained throughout the life of the investigation. DEBs were mainly designed

for the traditional role of static digital forensic investigations [9]. Within

this role DEBs allow more data capture methodologies including selective

and intelligent capturing techniques [7]. Even more so, DEBs can be used to

store forensic images of command line utility output, digital media, memory

dumps, network packet captures and associated meta-data.

The DEB forensic incident response tool permits command line applica-

tions to be executed from a special dialogue box. When the command is

executed the output from each command is captured in the DEB together

with an integrity hash of the data and a time stamp of when the command

commenced and completed. When all the relevant system information has

been captured the DEB is closed and sealed [9].

Traditional Evidence Capture

In the real life of law enforcement, when a crime scene is being investigated,

many elements are brought to the laboratory. It is, although not always, pos-

sible to take away a whole physical crime scene. However, it rarely happens

10

that the investigators dismantle bricks of a building for further investigation.

In contrast, within digital life, forensic investigators are able to capture every

potential evidence from the suspected crime scene. This is the advantage of

the world of digital forensics. The data then is sealed at the scene with a

seal number and, as well, a tag is attached with details such as the following:

1. Property reference number

2. Case/Suspect name

3. Brief description of the item

4. Date and time the item was seized/produced

5. Location of where the item was was seized/produced

6. Name of the person who is taking custody of the evidence

7. Incident/Crime reference

The tag may also include “continuity sections” in which the details of all the

investigators involved are recorded at the time of their actual investigation

of the evidence (chain of custody). This is to ensure that the data is being

recorded from the time the item was seized to the time it is being shown as

a legal evidence. This section shows the following details of the person who

takes custody of the item:

1. Name/Rank

2. Signature

3. Date and time when the custody is being taken by the person.

Bags of different size, type and shape can be sealed at a crime scene. The

actual number will depend on the size of the captured data and its type.

However, using a consistent wrapper allows other specialist laboratories to

process the item. For instance, some items may require DNA analysis while

others may require fingerprint analysis or just an interpretation of their con-

tents by a particular specialist. All of these depend on using a consistent bag

11

wrapper. The question becomes how to create a consistent bag wrapper in a

radically changing digital world such a method can be applied in a radically

changing digital world [10].

Digital Evidence Capture

At present, the processes of “dd”2 image or the proprietary format produced

by the forensic tool vendors, are the equivalent to the physical evidence

capture process. Performing the “dd” file raw capture, there is no defined

technique for attaching basic forensic details such as date and time of cap-

ture, name of the person who carried on the process or even any method for

integrity check [10]. It is however possible to include such details manually

or perform some integrity check separately (e.g. md5 hash). However, this

can be extremely difficulty when dealing with a real-time evidence equation.

Some proprietary forensic tools allow users to enter details at the begin-

ning of the capture process. They also enable users to generate a hash to

maintain the integrity of evidence. These techniques tend to capture the

whole evidence into a single file (one bag), which can become a problem if

the size of evidence is too large. This problem requires a fragmentation of

chunks from which the file is later backed up. Another problem could oc-

cur when the capacity of a single storage device is insufficient and will thus

require using a number of devices for storage proposes. In order to be able

to process the content of either of these types of data capture output, the

fragmented files must be combined back together so that the application can

process the evidence from the whole file [10]. The idea of dividing a file into

chunks could be extremely challenging as one could argue that separating

a content of a file into chunks and combining them again could violate the

integrity of the original file (the evidence).

The above scenario becomes more complicated if data is being captured

in real-time, for example as a network packet capture. This type of appli-

2dd is a common Unix program whose primary purpose is the low-level copying and
conversion of raw data

12

cation is similar in principle of the ‘dd’ capture process but the difference

is that the amount of data to be captured is unknown when the process is

commenced.

1.5 Issues and Proposed Solutions

1.5.1 Strategies for Detection

The traditional intrusion detection system relies on a single IDS to monitor

a whole network. If this IDS misses an attack, which could happen when

receiving multiple attacks, then that attack can get through the network.

Another shortcoming when deploying a single IDS is the possibility of hav-

ing it crash due to the huge traffic of attacks. In this thesis, we evaluate

the idea of having multiple IDSs with multiple servers and look into other

multiple entities in the network. This enables us to have more protection ad-

vantages. For example, when one IDS reports that a bad patterns of attacks

is under way we can therefore react to protect other servers in the network.

This is further discussed in later chapters. (See Chapter 5 and 6)

On the other hand, many IDSs have been implemented only for security

purposes and do not consider the need for forensically sound data storage.

In other words, IDSs monitor attacks in order to prevent them rather than

recording the performed steps for auditing purposes. For this reason, evi-

dence may be not adequate when needed in the future. It will also create

tremendous work for trainees who teach new users to relevant fields.

1.5.2 Forensic Solution

This thesis associates the concept of a DEB with the intrusion detection sys-

tems. It is conducted that a Proof of Concept (PoC) of having multiple IDSs

with a ceneral database. This database is connected with a proposed DEB.

13

This DEB enables users to acquire evidence from IDSs and possibly other

tools at the same time. The main idea is to have a DEB through which we

can access other tools and obtain evidence through each and every step is

being recorded. We can eventually complete the job producing a wrapped

DEB being hashed with data (evidence), index and a tag. This includes all

performed functions from the beginning to the last action taken. (See Section

4.3).

14

Chapter 2

Contemperary Approach

IDS/SIEM Architecture

2.1 The Problem

2.1.1 Malware

Malware is hidden software designed to access a computer in order to manip-

ulate it. It is also used to perform actions on a client’s computer without the

knowledge of that client. The particular actions of this software are designed

by its creator rather than any particular features it may have. Malware in-

cludes computer viruses, worms, trojan horses, spyware, dishonestadware,

scareware, crimeware, most rootkits, and other malicious and unwanted soft-

ware or program. Malware can cause loss of data, personal information

gathering and spam spreading. Few users intend to infect their own ma-

chines and in most cases users’ machines are affected by others (attackers).

Malware propagation varies from spreading by others to self-spreading into

the network. These propagation methods include email attachments, worms

(automatically propagating through the network), Trojan horses (a destruc-

tive software that is hidden or shown as a benign application) or drive-by-

downloads which mean mean one of the following:

• Downloads which a person authorizes but without understanding the

16

consequences (e.g. downloads which install an unknown or counterfeit

executable program, ActiveX component, or Java applet).

• Any download that occurs without a person’s knowledge or permission.

• Download of spyware, a computer virus or any kind of malware that

happens without a person’s knowledge.

Modern Malware Propagation Techniques

Identifying malware propagation has become much more difficult than it

used to be. IDS signatures cannot always detect new malware releases or

polymorphic malware. At the early turn of the millennium, an entirely new

breed of propagation techniques were released into the world with techniques

spawned from the lessons learned from prior malware outbreaks.

Malware trends have evolved to such a point that we now depend on

experts to predict potential new outbreaks or methods while old techniques

may lead to innovations that decrease the damage caused by its predecessors.

New techniques are built upon using system enhancements and feature up-

grades of operating systems and applications against end users. The worms

described in Table 2.1 use newer methods of infection and propagation and

have been the source of significant outbreaks in recent IT history. As shown

in Table 2.1, those worms use more recent changes in malware propagation

methods. These changes have impacted the recent IT history by causing

significant outbreaks.

The worm Conficker (also known as Downup, Downadup and Kido) 1 in

itself has infected over 9 million computers within a week or even less of

its introduction. It is important to evaluate the development of malware

from custom targeted malware against organizations all the way down to

1Conficker: is a computer worm targeting the Microsoft Windows operating system
that was first detected in November 2008. It uses flaws in Windows software and Dictio-
nary attacks on administrator passwords to co-opt machines and link them into a virtual
computer that can be controlled remotely by its authors.

17

simple client-side exploits that execute malicious code in order to remotely

take control of victim computers. Although most of the examples are Mi-

crosoft Windows focused malware and are reported in the press, quantifying

the entirety of all worldwide malware is still the key. All of the techniques

used during malware’s initial evolutionary period can be seen conceptually

in today’s malware releases. damage recount, was mainly due to result of the

advances development of network and routing services which were designed

to ease the network administrator’s daily roles and responsibilities.

Early in the twenty first century, malware authors also started using

techniques that have become increasingly difficult for forensics analysts and

network defenders to identify and mitigate. Historically, their methods have

ranged from very traditional straightforward ones to highly innovative ap-

proaches, which cause significant difficulties for administrators around the

world. In fact, according to Click Forensics, about 16-17% of all advertising

link clicks in 2008 were fake, of which a third was generated by botnets. A

simple calculation will show that botnet owners made $33 million “for clicks”.

2.1.2 Hacking

Hacking is a security vulnerability on a computer system that is being abused

by an attacker. A security exploit is a prepared application that takes ad-

vantage of a known weakness. Common examples of security vulnerabilities

are SQL Injection, Cross Site Scripting which normally result from weak-

nesses on the programming practices. Other exploits would be able to be

used through FTP, HTTP, PHP, SSH, Telnet and some web-pages. These

are very common in website/domain hacking.

In recent years hackers collaborate on groups and threaten not only indi-

viduals but also businesses and governments throughout the world. A good

example for a hacking group is Anonymous (Group)2 who are a group of

2Anonymous (used as a mass noun) is a group initiating active civil disobedience and

18

Malware Year Injection Technique Propagation Techniques
StormWorm 2007 Email attach-

ments/ File execu-
tion

File dropper Overwrite/deletion. P2P
C2 structure and Fast Flux communi-
cation chaining.

AutoIT 2008 File execution Copies generated onto removable drives
by overwriting the autorun.inf

Conficer 2009 File execution File transfer, file sharing, copying itself
across network shares or shares with
weak passwords.

Bacteraloh 2009 File execution Disguised as a crack utility that (P2P
network-based) a user downloads and
executes locally.

Koobface 2009 Client-side exploit Spread through social networking sites
with a loaded URL linked to the mal-
ware through sites such as Facebook,
MySpace, Friendster, and LiveJournal.

Table 2.1: Latest Changes of Malware Propagation Techniques

hackers from all over the world who individually attack one target at the

same time. They announce a particular date for carrying out the actual op-

eration. They also make it easy for other script kiddies by distributing tools

throughout the internet together with demonstrations on how to use them.

The consequences of these attacks are severe, ranging from business sus-

pensions, that cause the loss of millions of dollars for commercial companies

(e.g. Sony), to the publication of sensitive original documents from such or-

ganisations as Vanguard Defense Industries, a Pentagon and FBI contractor

and Police (e.g. Italian cyber-police). One current potential attack is Face-

book Operation (OPfacebook). The aim of this attack is to destroy Face-

book. Anonymous hackers are claiming that Facebook sells users’ private

information to third parties. So far no solutions have been found to prevent

Anonymous from launching their attacks (e.g. DDOS). This is mainly due to

spread through the Internet while staying hidden, originating in 2003 on the image board
4chan, representing the concept of many online community users simultaneously existing
as an anarchic, digitized global brain. It is also generally considered to be a blanket term
for members of certain Internet subcultures, a way to refer to the actions of people in an
environment where their actual identities are not known.

19

the variety of attackers’ demographics. Simply put, it is impossible to stop

random people from all over the world visiting your website. We carry out a

similar simualted attack on the testbed chapter. (See Section 5.3.3, Chapter

5.3.3).

2.1.3 Botnets

Botnets have become one of the greatest security threats to the web. The

term Botnet can mean either a Bot or a BotMaster. The term Bot is an

abbreviation of robot which is also called Zombie 3

It is malware that compromises a host which can then be remotely con-

trolled and manipulated by a BotMaster (the owner or the software source).

The Botmaster runs commands into the bot through a remote command and

control (C&C) infrastructure. Once the robot ”Bot” software has been suc-

cessfully installed in a host, this host becomes a zombie or a drone, unable

to block the commands of the BotMaster. While the aim of all typical mal-

ware including viruses and worms is to attack the compromised host, Bots

can receive commands from the BotMaster and can be used in a distributed

attack platform. This type of BotMaster is also known as a BotHerder and is

a user or a group of users who control the remote Bots. The number of these

remote Bots can be either small or very large depending on the complexity

and sophistication of the Bots used. Botnets are created by the BotMaster

to setup a private communication infrastructure which can be used for ma-

licious activities such as a Distributed Denial-of-Service [12],[13],[14]

Attacks commonly come through an establishment of an IRC from which

the Bot’s channels connect to or listen to the commands from a BotMas-

3A zombie computer is often described as ”a zombie”. It is a computer connected to the
Internet that has been compromised by a cracker, computer virus or trojan horse and can
be used to perform malicious tasks of one sort or another under remote direction. Botnets
of zombie computers are often used to spread email spam and launch Denial of Service
attacks. Most owners of zombie computers are unaware that their system is being used
in this way. Because the owner tends to be unaware, these computers are metaphorically
compared to zombies.

20

ter. HTTP-based Botnets are similar to the IRC-based ones. After infecting

the host the Bots contact a web-based C&C server and notify the server

with their system-identifying information via HTTP. This server sends back

commands via HTTP responses. Although IRC and HTTP based C&C have

been adopted by many past and current Botnets, both of them are vulnerable

to a central-point-of-failure. This is when the central point is disabled which

then disables all the relevant Botnets. However, attackers have removed this

possibility by using a new type of Botnet utilizing decentralized C&C pro-

tocols such as P2P. This type of decentralised C&C infrastructure creates

an enormous problem and makes it very difficult to detect or even mitigate

the problem. Storm and Waledac are both good examples of a hybrid P2P

Botnets which can spread through emails. [12],[13].

The current Botnet detection methods include honeypot and honeynet

for capturing and analysing data for malicious behaviours, and detecting ap-

proaches for different C&C mechanisms such as IRC, HTTP, DNS, or P2P.

However, these methods mainly look into the network traffic and acquire evi-

dence of Botnet activities indirectly. For instance, the evidence for detecting

the upgrade of Bot is acquired by identifying the upgrade binaries in the

traffic, rather than directly obtaining them from the code server which logs

the download event[15].

2.2 The IDS Solution

Two main approaches have been devised to analyse events to detect attacks:

these are detection of signatures and detection of anomalies. The signature

detection is the technique used by most commercial systems. This is where

the signatures of attacks are known and thus detected. Whereas anomaly

detection analyses unusual patterns of activity that are being investigated.

The detection of anomalies is used by a small number of IDSs[16],[17].

Signature-based detectors look for events that could match predefined

21

patterns or signatures of a particular attack. The analysis is based on a com-

parison of patterns (pattern matching). The system has a database of attack

patterns that is used to match similar patterns and when that happens an

alarm will be triggered. The only issue with these types of detectors is the

possibility of generating a large number of false positives which can waste a

lot of time and money[16],[17],[18].

Anomaly detection checks if there is any kind of deviations from normal

patterns. This can be divided into static and dynamic detection. The for-

mer detection is based on monitoring a portion of the system that must be

fixed[18]. For example, operating systems software and data that bootstrap

a computer never change. If any part of these systems changes, an alarm will

be triggered. The latter operates on audit records or on monitored networked

traffic data. This can be detected through the number of files accessed by

a user in a given period of time or the number of unsuccessful attempts to

enter the system[16],[17],[19].

A basic IDS Architecture is shown in Figure2.1.

Figure 2.1: Basic IDS ArchitectureWhere the IDS Can Be Allocated Accord-
ing to the Network Peripheries

2.2.1 NIDS vs HIDS

Intrusion Detection is the process of identifying and responding to malicious

activity targeted at computing and networking resources. In general IDSs are

categorized into the two types network intrusion detection systems (NIDS)

and host-based IDS. A NIDS monitors packets on the network wire and

22

attempts to discover if a hacker is attempting to break into a system. A

typical example is a system that watches for large number of TCP connection

requests (SYN) to many different ports on a target machine thus, discovering

if someone is attempting a TCP port scan [20].

2.2.2 Honeypot and Honeynet

Honeypots are systems used to attract hackers’ attention by enabling known

vulnerabilities. Hackers are likely to spend time around these exposed vul-

nerabilities. These honeypots enable the forensic analyst to view the hackers’

actions and log their activities and techniques. Once these techniques have

been logged, actual servers can be used to trace the hackers’ actions and so

the security of the servers can be enhanced.

Honeypots can be built with different pathways and placed within many

places. The honeypot should have common services running on it in order

to make it appear to be a real server. These common services include Telnet

server (port 23), Hyper Text Transfer Protocol (HTTP) server (port 80),

File Transfer Protocol (FTP) server (port 21) and so on. It should be placed

close to the production server so that the hackers readily assume that it is

a real server. For example, if production servers have Internet Protocol (IP)

addresses 192.168.10.11 and 192.168.10.13, you can assign an IP address of

192.168.10.12 to the honeypot.

Two or more honeypots within a network form a honey net which can

then form a network of high communication honeypots. This is used when

monitoring a large network which requires more than a single honeypot.

Honeynets and honeypots are usually implemented as parts of larger net-

work intrusion detection systems. A honeyfarm is a centralized collection of

honeypots and analysis tools.

23

2.2.3 Client Honeypot

As with traditional server honeypots, there are two types of client honeypots:

low and high interaction client honeypots. A honeypot acts in a particular

way as a client and receives attacks. Client honeypots are classified in two

main types: a low interaction, and a high interaction. The former uses a

simulated client such as “wget”4 that interacts with servers. While this type

performs more quickly than the latter one it can produce false alerts or miss

a malicious server, especially since it does not act as a “real” client and has

programmatic limitations. This type may also fail to fully emulates all vul-

nerabilities in a client application. A high interaction client honeypot uses

a dedicated operating system that has an actual vulnerable client interact-

ing with malicious servers. It includes actual software that a client could

be expected to run. Since no signatures are used, a high interaction client

honeypot is able to detect unknown attacks.

We only briefly discuss honeypots as they are a small part of our project

but we will carry out an experiment on a high interaction honeypot client

(VMware) in order to incorporate their form of alerts into our proposed DEB.

For more details about honeypots refer to [REF22] [REF120].

4GNU Wget (or just Wget, formerly Geturl) is a computer program that retrieves
content from web servers, and is part of the GNU Project. Its name is derived from World
Wide Web and get. It supports downloading via HTTP, HTTPS, and FTPprotocols, the
most popular TCP/IP-based protocols used for web browsing.

24

Chapter 3

Requirements of Forensic

Evidence

This chapter provides guidance on the management of electronic records that

may be used as evidence in judicial or administrative proceedings. Such man-

agement applies whether the evidence is to be used by a plaintiff, defendant

or for referral to appropriate authorities for investigation.

While this chapter provides guidance to the management of electronic

records relating to litigation in New Zealand and Australia, the processes

and procedures of that management of electronic records are consistent with

global industry best-practice and will increase the value of digital evidence

in many other jurisdictions.

It also discusses the main forensic structure that is required in the de-

signing of the DEB architecture. The idea behind this chapter is to have a

universal DEB structure that can be used by any digital investigator around

the glob. A Proof of Concept (PoC) of a novel approach to a DEB design

is further discussed and demonstrated in the tests and results chapter. (See

Chapter 6, Section 6.4).

26

3.1 Overview

IT evidence is a broad term used to describe any records generated by, or

stored on a computer system that may be used as evidence in court proceed-

ings. IT evidence also encompasses computer-generated or stored records

that detail management decisions which may be subjected to regulatory or

judicial scrutiny. IT Evidence can be divided into three categories:

• records that are generated by computers;

• records that are merely computer-stored; and

• both generated records and stored records. The distinction hinges upon

whether a human or a computer created the records’ actual contents.

Records that are generated by computers refer to documents which contain

the writings of users and which happen to be in electronic form. E-mail

messages, word processing files and internet chat room messages are good

examples. The main evidentiary issue is demonstrating that it is a reliable

and trustworthy record of what was stated.

In contrast, computer-generated records contain the output of computer

programs, untouched by human hands. Common examples are log files, tele-

phone records, ATM transaction receipts. The key evidentiary issue here is

demonstrating that the computer program generating the record is function-

ing properly. A third category of IT evidence is a combination of the previous

two records that are both computer-stored and computer-generated. A com-

mon example is a financial spreadsheet that contains both human statements

(input to the spreadsheet program) and computer processing (mathematical

calculation performed by the spreadsheet program).

27

3.2 Principles for the Management of IT Ev-

idence

The principles for the management of IT evidence only give assistance, not

authority. Although individual jurisdictions will have specific evidentiary

requirements, practitioners must ensure that the electronic records produced,

collected, analysed are presented in accordance with these principles in order

for them to be admitted and therefore accepted by courts. The following

defines guiding principles for the management of IT evidence. These relate

to:

3.2.1 The obligation to provide Evidence

Investigators have to keep updated with regulatory, administrative and best-

practice in order to provide forensically sound evidence. It is also important

to understand the steps by which the actual weight of the evidence can be

maximised.

3.2.2 Design for Evidence

The following must be considered when using any tool to create the evidence

necessary for a legal case of evidence:

• The capability of altering electronic evidence;

• The capability of authenticating electronic evidence;

• The reliability of tools generating such evidence;

• The time stamps and the date of creating, accessing and altering evi-

dence;

• The chain of custody of who is taking care of the evidence; what do

you mean by this and;

• The safe custody and handling of the evidence.

28

This also applies to the design or acquisition of new ICT systems or the

upgrade of existing systems.

3.2.3 Evidence Collection

Collecting evidence must be stored in a forensically sound manner. Two

elements must be considered when collecting evidence:

• The evidence must be technologically robust

• The evidence must be legally robust

3.2.4 Chain of custody

There must be a method of recording all access to and handling of evidence.

3.2.5 The original, copy and original copy

It is always crucial to have another copy of the original one in case any the

computer and/or the information and evidence contained therein is damaged.

It is also important to make sure that any performed actions on the original

or a copy are appropriate and are appropriately recorded and documented.

3.2.6 Personnel

From a management perspective it is essential to ensure that personnel who

carry the design, production, collection, analysis and presentation of evi-

dence have appropriate training, experience and qualifications to confidently

perform their roles.

3.3 IT Evidence Management Lifecycle

This section introduces the IT evidence management lifecycle and explains

how the principles can be applied to each of the six lifecycle stages. While ac-

tual evidence is unknowingly generated when a criminal leaves his/her DNA

29

or fingerprints, digital evidence is generated by computer systems which have

the capability of increasing their evidential value. In addition, the computer

generated digital evidence has to be carefully processed and handled in order

to increase its evidentiary weight. The IT evidence management life cycle is

illustrated in Figure 3.1

Figure 3.1: IT Evidence Management Lifecycle

3.3.1 Stage1: Design for Evidence

There are four objectives when designing a computer system to increase the

evidentiary weight of electronic evidence

1. Electronic records must be able to be identified, available and usable;

2. The author of electronic records must be able to be identified;

3. The authenticity of the electronic records; and

30

4. The time stamps and the dates of creating, accessing and altering elec-

tronic records;

5. The reliability of computer programs must be able to be established.

Another important objective is the design of the procedures that are to

be conducted by personnel for collecting, analysing and reporting digital

evidence. Such procedures are discussed in the relevant stage of the lifecycle

and should be;

1. Designed prior to them being necessary; tested to ensure that personnel

are able to carry them out; and

2. The design of each procedure must be clear (unambiguous) and decrease

the amount of decision-making.

The author of electronic records is identified

Identifying human author The author of a computer-stored record

should be able to be identified electronically. Prior to recording the author’s

electronic identity, a user authentication system should be used. Authenti-

cation is any process by which users verify that someone is who they claim

they are. This usually involves a user name and a password, but can include

any other method of demonstrating identity, such as a smart card, retina

scan, voice recognition or fingerprints.

The evidential weight of the recording of the author’s identity will depend

on the strength of the user authentication system. ISO 9798:1977— Entity

Authentication, for example, specifies techniques used by authentication sys-

tems for corroborating user or computer identification.

Identifying the computer author Each computer program generating

elements of the electronic record must be clearly identified in the record. This

may be achieved by, for example:

• Clearly identified, unique and consistent labelling of file names; or

31

• Clearly identified, unique and consistent labelling within the record.

Human and computer authors Because electronic records may con-

sist of both computer-stored and computer generated elements, both must

be identifiable. For instance, a financial spreadsheet includes typical human

numerical entries and the calculation formula. It also includes computer-

created records derived by the spreadsheet program from the computer-stored

records. Therefore, both the human author and the system author must be

able to be identified.

Establishing the authenticity of electronic records

Two elements must be achieved in order to establish the authenticity of

electronic records

1. The original electronic record must be able to be identified; and

2. Each alteration must be identified as to whether it was a human or

computer author and recorded.

The time stamps of electronic records

As electronic records are being generated or altered it is important that man-

agement ensures that time and date stamps exist in their computer system

and are maintained by the organisation. In order to achieve this, a timestamp

must be activated at the time of creation of each record. As the electronic

record is being altered the timestamp must be updated. RFC 3339—Date

And Time On The Internet: this provides the timestamps which specifies

a format for timestamps that may be used. Also see for example ISO/IEC

18014 - Time-stamping Services.

All computer system clocks must be synchronised to a central reference

to ensure the right time is being conducted. Amongst others the Universal

32

Time Coordinated (UTC16)1 provides a central reference for computer sys-

tem clocks.

Establishing the reliability of computer systems

In order to ensure a precise recording of the author’s statement it is im-

portant to establish the reliability of the computer systems that generate

the electronic recordsand that those systems operate correctly and precisely.

Their reliability must be demonstrated by the following:

1. the computer program was built correctly i.e. the output is: i) consis-

tent with its design; ii) predictable; and iii) repeatable.

2. there were no fault or errors in the program when the electronic record

was created, copied or altered. In other words the program was oper-

ating correctly during the capturing process.

Formal design criteria when designing the formal criteria for a soft-

ware program the methodologies of, for example, ISO 15504-Software Process

Assessment or by accreditation to the appropriate level of the Capability Ma-

turity Model17 (CMM) should be adhered to [21]. When buying a software

program the formal assessment criteria of the manufacture can be used to

clarify the reliability the new software.

Source code In order to ensure the reliability of a software program, its

source code has to be analysed by experts. When acquiring an open source

software program or producing it, the source code should be retained. In

order to enable a software demonstration from its source code. However,

when buying a software program the buyer must ensure that a guarantee of

its source code (same version) is available at any time [21].

1Also known as Universal Time Clock or Zulu time

33

3.3.2 Stage 2: Production of Records

At this stage of the life cycle critical operations are performed. The main

objective of this stage is to be able to initiate the following:

• a particular software generated an electronic record ;

• for computer-stored records, the human author ;

• the timestamps of creation; and

• being able to make sure that the software is operating correctly when

the electronic records are being created or altered.

When maintaining electronic records of evidential significance best-practice

controls should be applied to all computer system operations. For instance,

those indicated in ISO 17799 - Code of Practice for Information Security

Management part 8 - Communications and Operations Management

In order to show that a particular software program was performing cor-

rectly when the electronic records were being captured, the following require-

ments have to be met:

• that the computer program was operating; and

• that the computer program is valid as to its reliability.

Circumstantial evidence may also be used to demonstrate that a com-

puter program is operating correctly. For example, a statement by a person

asserting that he/she was using a particular computer program at a particu-

lar time and that he/she observed certain things, could be strong evidence of

the operation of a computer program that produces computer-stored records.

In addition when designing or using a computer software program which

generates electronic records, a record of operational faults must be main-

tained. For further details on this matter see ISO 17799-Code of Practice for

Information Security Management part 8.4 Housekeeping [21].

34

Stage 3: Evidence Collection

Relevant information (evidence) has to be obtained when securing the orig-

inal copies of those obtained of this information.As stated above under the

section Principles for the Management of IT Evidence the process of acquir-

ing evidence must not be performed on the original.

Standards for evidence collection The standard of the evidence col-

lected is one factor determining the evidential weight of electronic records.

Forensically Sound In order to ensure that the evidence presented

is admissible, forensically sound procedures must be followed. These proce-

dures must show the original and every action, whether human or computer

generated, thereafter in order to be admitted as evidence.

Best Evidence The judiciary will decide whether the evidence is ad-

missible. For example, in Australia the judiciary has significant discretion to

recognise records as evidence even when the forensic specialists themselves

have not collected the electronic records admitted as evidence. When forensic

specialists get involved, the value of evidence does increase however, it is not

wise to rely on this judicial discretion. By following the correct procedures

at each and every stage the weight of the evidence will increase and speak

for itself [21].

Contemporary notes Contemporary notes written at the time the evi-

dence was obtained can be relevant even some years later when the investiga-

tors or personnel who made those notes are called to appear before the Court

to give evidence. This may happen years after the evidence collection process

was performed. For this reason contemporaneous notes are very important

and must record any actions that were performed whether on the original

or other copies. These contemporaneous notes may include the process of

decision-making such as why those decisions were taken, persons consulted

and authorities sought. It is necessary that contemporaneous notes include

35

facts such as actions performed and observations made. These observations

must not be opinions. It is also far more important to ensure that those

notes do not interfere with the evidence presented [21].

Chain of custody Any personnel who have gained access to a particu-

lar electronic record at any given time must be identified. This is from the

creation of the electronic records, to the presentation of the evidence. The

electronic records evidential weight will be substantially reduced if the chain

of custody cannot be adequately proved or is discredited. This is to avoid

any potential allegations of data tampering or misconduct which can com-

promise the Court case.

Evidence copy When relevant information is produced as evidence,

a copy of the evidence will be provided to the Court and the other party so

the chain of custody can be demonstrated. An individual can be responsible

for the chain of custody and so monitor all access to it. The copy of evidence

may be created by:

1. regenerating the electronic record of evidence as a hard copy (a printed

document)

2. copying the evidence to another “offline” media (e.g. floppy disk, CD-

rom, backup tape, external hard drive); or

3. utilising system access privileges to control access. When an electronic

record of c) evidence is copied, it is a must provide proof that the copy

has not been tampered. It is recommended that a number of evidence-

copies should be created and a chain of custody be established for each

copy.

Custody log The individual in charge of the evidence copy must

maintain a log recording of:

1. Users who access the evidence;

2. The time stamps, date and purpose for each user’s access; and

36

3. When any copy of the evidence is removed, the time and date of removal

and return must be logged.

4. All activity related to the digital evidence should be documented ac-

cording to the planned procedures for the custody of evidence.

Non-readable electronic records There is data which may be stored

within non-readable files (or even readable) that is evidentially useful but

which can be easily altered or deleted by certain computer software. For ex-

ample, the slack space of a disk drive may include deleted files or encrypted

files that may contain key electronic records. This can be an issue when

reaching the lifecycle stage of analysing electronic records.

Since non-readable files can be easily altered or deleted by computer soft-

ware, investigators need to pay more attention when locating those non-

readable files so as not to tamper with their contents when collecting evi-

dence.

Limitations When collecting evidence, investigators must follow rules

that control the access of or declaration of particular information. If any of

these rules are violated, the credibility of evidence will be comprised. This

could decrease the weight of the evidence and in the worst case scenario

even prevent the evidence from being admitted in Court. Personnel who do

not follow the rules may expose themselves to penalties. For example: The

Telecommunications (Interception) Act (1979) provides for criminal penalties

for the unauthorised interception of a “communication”. Evidence collectors

must be able to determine if an electronic message (e.g. e-mail or IRC19)

constitutes a communication or if it is merely data [21].

Stage 4: Analyse evidence

The objectives of this stage of the lifecycle are to:

1. assemble from IT evidentiary records material facts;

37

2. deduce from IT evidentiary records opinions relating to those facts; and

3. determine what other IT evidence is lacking that will assist the enquiry.

Use evidence copy In order to analyse an electronic record, an evidence

copy of the original must be used while the original remain in a safe condition

(untouched). Only original electronic record is used to certify

• if copies are duplicates of the original; or

• if the original has been altered.

Personnel qualifications The analysis process of the IT evidence

should be conducted by professional people who are appropriately qualified

for the function they are performing. It is important to decide whether an

ordinary or expert witness is required. While ordinary witnesses’ analysis

is on matters of fact only, expert witnesses may provide matters of opinion

from the IT evidence [21].

Completeness of evidence IT evidence is circumstantial. Specialists

conducting analysis of IT evidence must be provided with details of:

• why the evidence is required

• the circumstances in which the electronic records were created; and

• the computer systems creating the electronic records.

Material electronic records may be neglected or their significance diminished

without a thorough understanding of the background.

Stage 5: Reporting and presentation

In this stage of the life cycle, the aim is for investigators to convince decision-

makers (management, lawyer, Judge,standards for evidence collection foren-

sic...etc) of the validity of the facts and opinions retrieved from the evidence.

38

For most IT evidence, the original electronic record consists of electronic

impulses stored on media. It must be converted into human readable format

prior to presentation, either by computer print out or by using a computer

program.

If IT evidence is to be used in legal proceedings, the investigator will be

advised of the suitable manner and form in which the evidence should be

reported and presented.

Stage 6: Determine evidentiary weight

The objective of this stage is to assess the evidentiary weighting of the elec-

tronic records and the reports. Assessment of the evidentiary weighting of

electronic records occurs during all stages of the lifecycle. In earlier stages

of the lifecycle (i.e. one through five) assessment is performed by the partic-

ipants or stakeholders such as lawyers. A final assessment is performed by

an independent arbitrator who may be a Magistrate or Judge; a member of

a tribunal or an arbitrator; or senior organizational management [21].

Two criteria are used to measure the evidential weight of electronic records

1. Probative value: Has the electronic record relevancy, authorship, au-

thenticity, correct operation and reliability been established?; and

2. Rules of evidence: Has the electronic record been collected and handled

correctly in accordance with the rules?

Each of these criteria encompasses many factors.

Probative value Records must relevant and all relevant electronic

records must be presented and more importantly, records must be relevant

to the matter at hand. Organizations must demonstrate that the procedures

used to collect electronic records were reasonable and robust enough to dis-

cover obvious, lost or hidden material. The following must be satisfactorily

established

39

1. Authorship ;

2. Authenticity ; and

3. Correct operation and reliability of the computer program.

Rules of evidence With some exceptions, the aim of the rules of evi-

dence is to exclude evidence that is either irrelevant or unreliable. If orga-

nizations collect and handle IT evidence in accordance with this handbook,

they will minimise the risk of having such evidence excluded by operation of

any applicable rules of evidence.

40

Chapter 4

Design of Analysis Engine and

DEB Structure

4.1 Design of Intrusion Detection System Cor-

relation Engine

4.2 Fuzzing

Web application fuzzing is a specialized form of network protocol fuzzing.

A network protocol fuzzer is a fuzzer that communicates with its target

through a particular form of socket. While the network protocol fuzzer can

mutate any type of network data, a web application fuzzer only mutates in

HTTP packets. Web application technologies include: CGI (Common Gate-

way Interface), PHP (Hypertext Preprocessor), Flash, JavaScript, Java and

ASP.NET [22].

Web application fuzzing can indicate not only the web application vul-

nerabilities but also other associated components’ vulnerabilities such as the

database server or web server [22]. Such vulnerabilities that can be iden-

tified include SQL injection, Cross-site scripting (XSS), Directory Traversal

and Buffer Overflow.

42

We useed fuzzing techniques in this thesis to save time finding potential

vulnerabilities. We also wanted to try all possible ways in order to trigger

alerts of the designed intrusion detection system coloration engine.The aim

was to make our plan more efficient and save time in terms of carrying attacks.

4.2.1 Relevant Attacks

The input validation attacks category is a serious issue for web applica-

tion security. Examples of such attacks are SQL injection and Cross-Site

Scripting (XSS). In this thesis, we look at some Input Validation attacks

including SQL injection and XSS.

Although the majority of web vulnerabilities are easy to understand and

to avoid, many web developers are, unfortunately, not security-aware. Before

commencing these attacks, a test has to be made to know whether these web

applications are vulnerable to such attacks. These tests can be implemented

with certain methodologies (See Section 4.2.2).

SQL Injection

SQL injection is a vulnerability that enables malicious codes to be inserted

into strings that are later passed to an SQL Server for parsing and execution.

SQL injection attacks can occur if a web application does not properly filter

user input. There are many varieties of SQL Injection attacks. The typical

unit of execution in the SQL language is the use of query the aim of which

is to retrieve data from the database server. These queries can also be used

to manipulate records in the database server. This could lead to obtaining,

modifying or even deleting data from the database server. Figure 4.1 shows

a simple digram for an SQL Injection attack.

Normal SQL Injection Attacks: A web application is vulnera-

ble to an SQL Injection attack if an attacker is able to insert SQL statements

into the web application. This is usually achieved by injecting malicious in-

43

Figure 4.1: SQL Injection Process

puts into user fields or website addresses that are used to compose the query.

For example, The following C# code dynamically constructs and executes

a SQL query that searches for items matching a specified name. The query

restricts the items displayed to those where the owner matches the user name

of the currently-authenticated user [23],[24]. See Figure 4.2.

string userName = ctx.getAuthenticatedUserName();

string query = "SELECT * FROM items WHERE owner = "’"

+ userName + "’ AND itemname = ’"

+ ItemName.Text + "’";

sda = new SqlDataAdapter(query, conn);

DataTable dt = new DataTable();

sda.Fill(dt);

Figure 4.2: A C# code executes a SQL query to find a specified name

SELECT * FROM items

WHERE owner =

AND itemname = ;

Figure 4.3: Shows the query that Figure 4.2 code intends to execute

However, because the query is constructed dynamically by concatenating

44

a constant base query string and a user input string, the query only behaves

correctly if itemName does not contain a single-quote character. If an at-

tacker with the user name Smith enters the string ”name’ OR ’a’=’a” for

item Name, then the query becomes as Figure 4.4

SELECT * FROM items

WHERE owner = ’Smith’

AND itemname = ’name’ OR ’a’=’a’;

Figure 4.4: An attacker enters the string “name’ OR ’a’=’a”’ as bad inputs

The addition of the OR ’a’=’a’ condition causes the where clause to al-

ways evaluate to true, so the query becomes logically equivalent to the much

simpler query as shown in Figure 4.5.

SELECT * FROM items;

Figure 4.5: An attacker enters the string “name’ OR ’a’=’a”’ as bad inputs

This simplification of the query allows the attacker to bypass the requirement

that the query only return items owned by the authenticated user; the query

now returns all entries stored in the items table, regardless of their specified

owner.

Blind SQL Injection Attacks: Blind SQL injection occurs

when an attacker is able to execute SQL injection attacks and thus receive an

error response from the server stating this was a SQL Query’s syntax error.

A blind SQL injection attack is similar to a normal SQL injection attack;

however, instead of receiving a useful error message in the latter situation, a

generic page specified by the developer appears. This makes exploiting a po-

tential SQL Injection attack more difficult but not impossible. An attacker is

45

still able to steal data by asking a series of True and False questions through

SQL statements. This is carried out through simple statements to combined

and very sophisticated ones in order to determine the server’s response and

so build a structure to achieve the attacker’s intended goal which might be,

for instance, stealing the administrator’s user name and password [25],[24].

An attacker may verify whether a sent request returned True or False in

the following ways:

(in)visible content Having a simple page, which displays an article with

a given ID as the parameter, the attacker may perform a couple of sim-

ple tests if a page is vulnerable to SQL Injection attack. For example, the

following website link: http://example.com/items.php?id=2 (See Figure 4.6)

http://example.com/items.php?id=2

This link sends the following query to the database:

SELECT title, description, body FROM items WHERE ID = 2

Figure 4.6: An attacker visits http://example.com/items.php?id=2

The attacker may try to inject any query, even an invalid one, which

should cause the query to return no results. (See Figure 4.7)

http://example.com/items.php?id=2 and 1=2

This modification will change the SQL query so it will look like this:

SELECT title, description, body FROM items WHERE ID = 2 and 1=2

Figure 4.7: An attacker visits http://example.com/items.php?id=2

The query is not therefore going to return anything. Even if the web

application is vulnerable to SQL Injection, it probably will still not return

46

anything. To make sure, the attacker will certainly then inject a valid query.

(See Figure 4.8)

If the content of the page is the same, then the attacker is able to differen-

http://example.com/items.php?id=2 and 1=1

Figure 4.8: An attacker injects a valid SQL query into a website link

tiate whether the query is True or False. The only limitations are privileges

set up by the database administrator, different SQL dialects and finally the

attacker’s imagination [26],[27],[28],[29],[30].

The scenario of figures 4.9, 4.10, 4.11, 4.12 and 4.13 show the process of

potential Blind SQL Injection attack on a back-end database server. The

first step is when the attacker checks whether the back end server was vul-

nerable to SQL Injection attack. If the back-end server was vulnerable, the

attacker then checks the infected columns from which further information

in the database can be retrieved. Then the attacker reveals the databases’

names that are stored in the back end server. This step is followed with re-

vealing the actual database in use by the web application at present. As the

attacker send requests and receives responses through the browser (HTTP

protocol), he/she records valuable information that can be used in the fol-

lowing steps to complete the attack. Eventually, the attacker reaches a stage

where he/she can retrieves the tables’ names and looks for a table which

may include sensitive information such as administrator’s user name and

password. If this attack was completed the attacker would be in control of

all the website contents.

This attack was performed for testing and demonstrating the actual at-

tack without completing it. The targeted website was informed about their

SQL Injection vulnerability. A similar attack is performed later on this the-

sis. The aim of performing such attack is to find a way of recording the

attacker behaviour and record it before the attack actually strikes on the

47

Figure 4.9: Step 1: The Attacker Sent SQL Injection Inputs and Received
the Response Above, Showing an Error Message Which Indicates an SQL
Injection Vulnerability

Figure 4.10: Step 2: The Attacker Proceeded Further Exploiting the SQL
Injection, Retrieving the Number of the Infected Columns in the Database

Figure 4.11: Step 3:The Attacker Proceeded Even Further Retrieving the
Databases’ Names

database server. This can be used to prevent similar attacks from actually

happening and also more important to provide valid digital forensic evidence

against the attacker if needed in the future. (See Chapter 5)

48

Figure 4.12: Step 4: The Attacker has Revealed the Database Name that is
in Use by the Web Application

Figure 4.13: Step 5: The Attacker Utilised the Already Retrieved Information
on Revealing the Available Tables on the Database

Cross-site scripting (XSS)

Cross Site Scripting (XSS, sometimes also abbreviated as CSS) refers to a

range of attacks in which the attacker injects malicious client-side script into

a web application or web pages viewed by other users [2, 9]. XSS can occur

when an attacker intentionally injects a malicious script into a web page.

This malicious script in most cases is sent through a web request. XSS can

also occur when data in a dynamic content is sent to a web user without that

data being checked as to whether it contains a malicious code [31],[25],[32],

[33].

That malicious code is often in a JavaScript or it can include HTML,

Flash or any other form of code that can be executed in the web server. The

code can result in sensitive data including cookies, session information, or

other details retained by the browser being revealed. The attacker could also

redirect the victim to a controlled web content or perform other suspicious

49

operations on the targeted computer[25].

XSS scripts can also rewrite the content of the HTML page which can

result in significant damage. These attacks are easy to execute but difficult

to prevent. XSS attacks can generally be categorized into two categories:

Stored and Reflected. There is a third category, a much less well known type

of XSS attack called DOM Based XSS. The third one will not be discussed

in this thesis.

Reflected XSS attack (also known as first-order XSS or Type XSS); and

Stored XXS attack (also known as second-order XSS, persistent, or Type 2

XSS) [34],[30]. These two are further explained below.

Reflected XSS vulnerabilities result from the application inserting part of

the user’s input in the next HTML page that it renders. This happens when

an attacker encourages a user to click on a (disguised) URL which contains

malicious HTML/JavaScript code. The user’s browser then displays HTML

and executes JavaScript that was part of the attacker-crafted malicious URL.

This can result in the theft of browser cookies and other sensitive user data.

Stored XSS Attack vulnerabilities result from the application perma-

nently storing the attacker’s input within the target servers, such as in a

database, in a message forum, visitor log, comment field, etc. This input will

then be inserted into a web page and thus is displayed to all users who gain

access to it (e.g., in an online bulletin board application).

The Reflected XSS Attack is the most common attack of web applica-

tion at present[35]. A good example is when a user accesses the popular

www.myonline-banking.com web site to perform sensitive operations (e.g.,

online banking). Unfortunately, input validation of the search form is not

checked by the web site. Therefore, when a search query is entered that does

not return any results, the message displayed also contains the unfiltered

search string. For example, if the user enters a search string

50

<i>Hi There<i>

The italics markers are not filtered, and the browser of the user displays “No

matches for Hi There” (note that the search string is displayed in italics).

This is how a Reflected XSS vulnerability has been uncovered in this web

application.[34],[30] The uncovered vulnerability can be then exploited by an

attacker using the following steps:

1. The attacker writes a small JavaScript through which a victim’s sen-

sitive details will be passed to the attacker such as cookie address or

session ID. This script is executed in the victim’s browser.

2. The attacker then encourages the victim into visiting a website (a link)

that points him/her to the form which contains the malicious script as

an URL (GET) parameter. By emailing the link or sending it while

chatting (e.g. on social networks) to the targeted user. This can include

a few words that encourage the targeted user to click on the link which

will enable the attacker to achieve his/her goal [?], [36]. When the user

clicks on this link, the vulnerable application receives a search request

similar to the previous one, where the search term was “Hi There”.

However, this time the search term is not “Hi There” any more, but a

malicious script written by the attacker. Instead of a harmless phrase

in italics, the victim’s browser now receives malicious JavaScript code

from a trusted web server. Therefore, the server will executes the ma-

licious JavaScript code.

3. Consequently, the user’s cookie, which can contain authentication cre-

dentials, is sent to the attacker. This is why this type of attack is called

Reflected; the malicious code comes back to the victim’s browser after

being Reflected back by the server.

51

Apart from cookie stealing there is, potentially, another way for attackers

to exploit Reflected XSS vulnerabilities. Assuming the web page mentioned

in the previous example includes a login form along with the search form

with JavaScript, the location to which a form sends the collected data can

be modified. Therefore, the attacker can modify the malicious JavaScript

snippet in order to redirect the login form to his/her server. When the user

enters his/her name and password into the compromised login form and sub-

mits them, her/his credentials will be transmitted to the attacker [34],[35].

The difference between the Reflected XSS attack and Stored XSS attack

is that the malicious script is not immediately reflected back to the victim by

the server. A Stored Attack is recorded inside the targeted web application

for later retrieval.

XSS Attack Consequences: The consequences of an XSS at-

tack are the same regardless of what type the attack is All the three types

of XXS attacks (Reflected or Stored or DOM Based) have the same conse-

quences. The only distinction is the way of transmitting payloads to the

server. XSS attacks do not exclude “read only” or “brochureware” site. An

XSS attack can cause consequences for the victim from mere annoyance to

complete account compromise. One of the most severe XSS consequences is

when a user’s session cookie is revealed which allows the attacker to hijack

the victim’s session ID and thus be able to manipulate their logged account

(e.g. bank account) [25].

Other damaging attacks include the disclosure of the victim’s files, the

installation of a Trojan horse programs, redirecting the user to some other

page or site, or modifying the presentation of its content. An XSS vulnerabil-

ity allowing an attacker to modify a press release or news item could affect a

company’s stock price or lessen consumer confidence. An XSS vulnerability

on a pharmaceutical site could allow an attacker to modify dosage informa-

tion resulting in an overdose[26],[37],[27],[28],[30].

52

In this thesis, XSS attacks are carried out in order to have real-live data

of the attack patterns. This attack is carried out manually and by auto-

matically utilising some open-source testing tools. The aim is to be able

to monitor a real world XXS traffic and be able to detect it for potential

evidence recording. This attack is carried on the installed open-source web

applications of our testbed. (See Chapter 5). A simple process of XSS attack

is shown in Figure 4.14. However, the whole picture of the attacks’ streams

are shown later on in Chapter 5

Figure 4.14: Simple XSS Attack Digram

4.2.2 Methodology Approaches

Before commencing web application attacks, a few tests can be made

to uncover any potential vulnerabilities. These tests can be carried out

with three main approaches. These approaches follow different mechanisms.

While no mechanism can uncover all the possible vulnerabilities for a tar-

geted web application, no one approach is better than the other is. The

differences between them are based on the accessed resources availability to

the tester.

53

White box: In the White box approach requires programming skills and

an access to the targeted application resources including the source code and

design specifications, in order to find the defective or vulnerable lines of code

and fix them. This operation is often integrated into the development process

by creating add-on tools for common development environments. [38], [39],

[29]

Black box: The Black box does not require an access to the source code

or any other resources and only sends random, unexpected or invalid data to

the web application inputs [40].

Gray box: the Gray box testing is floating in between the white and

black boxes. It provides more information than the Black box analysis

through reserve code engineering (RCE) of available binaries. We will not

discuss the Gray box as it is beyond the scoop of this thesis [22].

White Box Testing

A source code can be obtained either manually or automatically using certain

tools that include time checkers, source code browser or automated source

code auditing tools. An automation tool is a better way, as code lines can

be numerous and searching manually would be time consuming. However,

these automated tools can only suggest what suspicious codes need to be re-

viewed by a security specialist. The security specialist then needs to review

the suspicious code and fix it [39], [29], [30].

A suspicious C++ code might include, for instance, “the strcpy function”

which could cause a Buffer Overflow vulnerability if not used properly. The

usage of strcpy() can be misused in C++. This is when a programmer misses

checking the buffer which receives the inputs [22],[41]. The following example

demonstrates a C++ weak code that can cause Buffer Overflow.

#include <stdio.h>

54

#include <string.h>

int main (int argc, char**argv) {

int authentication (0);

char cUsername[10], cPassword[10];

strcpy (cUsername, argv[1]);

strcpy (cPassword, argv[2]);

if (strcmp(cUsername, "admin") == 0 && strcmp(cPassword, "adminpass") == 0){

authentication = 1;

}

if(authentication){

printf("Access granted");

} else {

printf (\Wrong username and password");

}

Return 0;

}

This code will not check the input and therefore can cause a Buffer Over-

flow attack. As is shown, only 10 bytes are allowed as inputs. So if we

enter within the username field more than 10 bytes; for example 20 bytes

e.g. (AAAAAAAAAAAAAAAAAAAA). This will cause a buffer overflow

(overwriting) to the array in the password field of the memory. The entered

input could be even bigger and bigger. Hence, automated tools will only

indicate the suspicious parts of the code while it is the tester who must ad-

dress its vulnerability. In such a case, the lengths of input must be checked

to prevent such vulnerabilities[42]

Black Box Testing

Black box testing is considered as blind testing due to the randomness of

fuzzing inputs to a web application [43], [28]. The end user determines the

contents of that Black box as inputs, and subsequently he/she observes the

55

emerged output from the targeted application. While this process is happen-

ing, the end user has no clue what is going under the hood of that target.

Black box testing can be carried out manually or with assistance of auto-

mated tools “Fuzzers”[44], [29] [30].

The technique of Black box testing will be used in the design of the thesis

testbed. A certain number of black box Fuzzers will also be implemented

to test the targeted web applications for uncovering potential vulnerabilities.

This will depend on human analysis of the fuzzer’s responses. Uncovering

such vulnerabilities will enable us to carry out some attacks on the targeted

web application. See Chapter 5 for more details. The following figure will

show a simple process for a Fuzzer4.15.

Figure 4.15: shows the process of a Fuzzer.[9]

Manual Testing Since Black box testing can be carried out manu-

ally, ordinary web browsers can be deployed to explore a web site hierarchy

and insert dangerous inputs throughout the observed areas. For example to

conduct an SQL Injection vulnerability adding the following characters: (‘

or ‘1’=1 –) will attempt to achieve this [26]. For uncovering traversal vul-

nerability, inserting the following: (../ ../ ../) and so on.

Automated Testing (Fuzzing) Fuzzing is a brute force technique

that simply inserts random or invalid inputs into a web application. A Black

56

Box testing can be carried out as the researcher requires no knowledge of the

internal workings of the application. Fuzzing must proceed through certain

phases which start by identifying the specific target to fuzz and end with the

determination of exploiting the found vulnerability. These phases are further

discussed and implemented in the design of testbed chapter. (See Chapter

5, Section). The following figure demonstrates all the fuzzing phases (Fig2).

4.2.3 Methods

Before fuzzing any web application, the target environment must be set up

to target the subsequent selection of the input vectors. “web applications

present some unique challenges on both fronts. By design, the architecture

of web applications can be deployed across multiple networked machines.

Although this enables the scalability necessary when deploying such appli-

cations in production environment, it can also create performance hits that

might not be desirable during fuzzing.”[22] Far more important to under-

stand is that data comes in various forms and can always be masked. Hence,

web application inputs can always be “disguised” in many different ways

while all lead to the same “vulnerabilities.” This should be considered when

defining inputs that are to be fuzzed [22].

Fuzzer’s Ability

It is crucial to set up a capable fuzzing environment. When fuzzing a web

application a large amount of inputs need to be generated and then fuzzed

to the targeted web application. At the same time it is necessary to wait

for them to be processed by the targeted web application while also listening

for any reaction. A fuzzer must be able to do this easily and without any

problems occurring. To achieve this we have to ensure a supported environ-

ment for the fuzzer. The supported environment can be evaluated from two

perspectives: 1) fuzzing a local web application that is in same server of the

fuzzer; or 2) fuzzing a web application within a network. The “bottleneck”

57

within the first tends to be CPU cycles and hard drive read/write times

whereas the bottleneck within the second is caused by the transport of the

network packets.

Fuzzer’s Inputs

We have identified the various inputs of the targeted web application in or-

der to fuzz them. (See Section??). This includes not only normal inputs

to fill forms, but also URL (Uniform Resource Identifier) itself, cookies and

HTTP headers. From a fuzzing perspective, all inputs that can be fuzzed

and interpreted by the web server must be considered [22].

GET and POST Methods

The GET and POST methods are the core functions within an HTTP server.

They are used to transfer data from a web page and display it. The GET and

POST methods use name-value pairs for obtaining data from a web server.

The name-value pairs can be submitted to the web server by both GET and

POST. While GET submits the name-value pairs within the request URL,

POST submits them as HTTP headers. The POST method enables unlim-

ited size of data to be sent but it does not allows the URL to be shared

to direct another user to an already generated page. There are also other

valid methods including HEAD, DELETE, PUT, TRACE, CONNECT and

OPTIONS [22].

4.2.4 Fuzzing Areas

Request-URL

After stating the method, the request-URL can be sent to the web server in

order to identify the resource of the requested page. This is explained more in

58

the following example: “http://www.example.com/page.html”. Each com-

ponent of the URL can be fuzzed as it is shown in the following example:

/dir/page.html?name1=value1&name2=value2. This can be segmented as

follows:

/[path]/[page].[extension]?[name]=[value]&[name]=[value]

While fuzzing data decoding should be considered, it can limit the in-

put validation process. As it has been shown above, the Path component

can uncover vulnerabilities that could cause Buffer Overflows or Directory

Traversal vulnerabilities. These vulnerabilities can be identified by fuzzing a

large amount of data, and fuzzing successive ../ character sequences respec-

tively.

The page component can uncover vulnerabilities such as Information

Leakage or Buffer Overflow. It can be tested by fuzzing random or com-

mon page names that could ultimately reveal sensitive pages. The Extension

component can uncover vulnerabilities that are associated not with known

page extensions like .php or .html but with unknown extensions.

Within the Name component, sending unexpected variables could lead

the targeted application to malfunction if it does not handle errors properly.

Conversely, vulnerability within this component can be uncovered by fuzzing

common names that could result in undocumented variables, which can be

eventually fuzzed to the server.

Within the Value component, random data can be fuzzed especially when

they are different from what was expected to be an input. For example if the

value length=50, then we can try to fuzz it with a higher or lower length or

even negative. We also can fuzz it with an increasing number to see whether

a Buffer Overflow would occur. The last component within the above exam-

ple which can be fuzzed is the Separators that include (/, ?, =, &, %, $, .,

:, etc). While fuzzing these characters, they can be exploited only when the

59

server does not have enough error handling [22].

HTTP Headers, Protocols & Cookies

There are also many other components that can be fuzzed within web appli-

cations including Protocols, Headers and Cookies. The HTTP protocol ver-

sion can uncover server vulnerabilities. This can be fuzzed through fuzzing

supported and unsupported versions. The most current popular version is

HTTP1.1. This is clarified as HTTP/ [major version]. [minor version]. web

application Headers can also be fuzzed to ensure whether the application

supports them. Three potential components within a header can be fuzzed;

Header name; the separator (:) and Header’s value. The Header’s format is

[Header name]: [Header value]. Cookies can also be a fuzzing target. Since

cookies are locally stored when a request is made to the web server, then

they can come back as an HTTP header. The format of a cookie looks like:

Cookie: [Name1]=[Value1]; [Name]=[Value]. The same fuzzing procedure

that applied to HTTP Header can be also applied here.

4.2.5 Inputs Identification

In this section, we will discuss how inputs’ fields can be conducted in order

to identify all the legitimate input values. Identifying inputs can be car-

ried out through a manual method or through an automated process. When

fuzzing an application either way the following inputs should be identified;

web pages, Directories, Method supported by pages, web forms including

name-value pairs and hidden fields, Headers and Cookies.

The aforementioned can be simply identified through viewing the page

source using the web browser. This allows anyone to identify the inputs

included in web forms. Some applications include hidden input fields. Un-

fortunately, lazy developers try to implement security through obscurity by

writing these kinds of input fields. This is a very weak control because hidden

60

fields can be seen through the page source code. Since the headers’ request

and response cannot be viewed through the page source, a particular type

of software is needed. We have designed C++ software in order to inter-

pret HTTP headers. This software allows us to view the request/response

of headers; modify them and eventually post them to the application server.

See Section 5.4.3.

HTTP Headers can be viewed through web browsers such as Mozilla Fire-

fox using Add-ons features. To trace a web application hyperlinks fuzzing

can be sufficient. This can be applied using a web spider (also known as web

crawler). A web spider is an automated software that identifies all the visited

pages within a web application. web spiders help to identify the inputs and

thus enables them to be fuzzed.

4.2.6 Vulnerability Approaches and Attack Injection

In this section we discuss both uncovering vulnerabilities and security mech-

anisms that can be applied to web applications. The methodology for these

mechanisms is based on the injection of realistic vulnerabilities and the sub-

sequent controlled exploitation of the vulnerabilities that attack the system.

This provides a practical environment that can be used to test counter mea-

sure mechanisms (such as IDS, web Application vulnerability scanners, fire-

walls, etc.), train and evaluate security teams, estimate security measures

(like the number of vulnerabilities present in the code), among others.

We, however, have used completely vulnerable web applications (e.g. We-

bGoat). In order to define where a real vulnerability is likely to be located

in the source code, we must find the difference between a vulnerable and a

non- vulnerable piece of code, and sometimes how the vulnerability manifests

itself.

This is carried out by utilising some manual methods as well as some

61

open source automated tools such as Fuzzers (e.g. JbroFuzz and Exploit

Scanner). We also have used proxies to intercept HTTP requests as well

as mySQL queries. The attacks are carried out by using other functions in

these tools or by using other particular and more sophisticated functions.

Most Fuzzers or Vulnerability Scanners include finding the vulnerability and

injecting potential attacks automatically at the same time. (See Section 5.4).

The aforementioned tools (JbroFuzz and other tools) are used to inject at-

tacks in a web application source code file (Figure 1). They start by analysing

the source code of the target file while searching for locations where vulner-

abilities can be injected (e.g. user-name and password parameters). While

some tools require the user to specify the vulnerability targets, others recog-

nise them automatically; they follow the actual patterns in the web appli-

cation. Once a tool finds a possible location, it performs a specific code

mutation in order to inject one or more attacks in that particular vulnerable

location. This was carried out while we observed the results of such actions

on the web application at the same time it was being intercepted by the

HTTP proxy and IDS system. (See Chapter 6 on tests and results).

When attacking a particular vulnerability certain attributes must be fol-

lowed. These attributes include the location pattern and the vulnerability

code change. The location pattern defines the conditions that a specific vul-

nerability type must comply with [45],[46] . The vulnerability code change

specifies the actions that must be performed in order to inject attack patterns

(e.g. bad inputs) to the specified vulnerability. Where the vulnerability is

to be injected depends on its environment. The following example clarifies

the concept of simulated attacks through Fuzzing. For example, a web appli-

cation has the following php code: “$id=intval($ GET[‘id’]);” in its source

code. Since the variable “$id” can be used in a query, then the Fuzzer will

remove this function from the source code in order to inject a simulated at-

tack (e.g SQL Injection with the input of “1 or 1=1”). By assigning the value

“1 or 1=1” to the “$id” variable, the SQL query will execute without the

effect of the “where” condition; therefore, affecting every row of the query[45].

62

The automated attack of a web application when one vulnerability is in-

jected is done in two stages by the attack injection tool (e.g. JbroFuzz &

HTTPFuzzer). The first stage is to collect all possible links of the target

web application. This is called web crawling or spidering. The next stage

is when a new interaction with the web application is performed but, this

time, a collection of attack payloads is also injected in order to exploit the

vulnerability by altering the SQL query sent to the database server of the

web application. The interaction with the web application is always done

from the web client’s point of view (the web browser) and the payload is

applied to the variables (the text fields, combo boxes, etc, present in the web

page interface) [45],[46]. At the end of the attack, the fuzzer assesses if the

attack was successful. This success is equivalent to the “error” state in a

traditional fault injection technique.

However, whether the attack succeeds or not, the main point of this thesis

is to monitor attack patterns, alerts and other relevant data from a forensic

perspective. This is in order to record them in the database and therefore

store them in the proposed DEB. The consequences of the performed attack

are mostly dependent on how valuable the data stored in the database actu-

ally is. For those who are interested to know the consequences of performed

attacks, the database itself can be checked after the attack was executed (e.g.

SQL Injection).

4.3 Design of Digital Evidence Bag

4.3.1 A New Approach

While it is not possible to completely ignore all the current existing forensic

tools, their techniques must be made more flexible. This should eventually

lead to a new way of capturing and processing digital information in a foren-

sically sound manner [10],[11]. During the last few years, the concept of

63

a Digital Evidence Bag (DEB) has been introduced and this should address

these issues. A digital evidence bag is a wrapper for any type of digital based

evidence or information [10],[9],[7]. Although the bag has a potentially infi-

nite capacity, practically, the size will be limited and will also depend upon

the user’s requirements to obtain evidence in both a static and a real-time

environment (the scope of this research). Each bag also has its own tag of

information, complete with integrity assurance information and “continuity

sections”.

4.3.2 DEB Structure

The core structure of a digital evidence bag may contains three main files:

• Tag file;

• Index file;

• Bag file.

Both the bag file and the index file are called evidence unit (EU) [10],[7].

The EU (bag and index files) coupled with an index definition which enables

the flexibility of the DEB frame work. This flexibility is required to use the

selective and intelligent imaging techniques. At present a selective captur-

ing process can be created in both manual and semi-automatic modes. In

the manual processing capture the investigator captures information to both

single and multiple EUs. This mode allows the category of the content to be

recorded with an arbitrarily defined label [7].

Tag File The tag file contains details about the person who captures

the evidence and the general information about the corresponding DEB. This

could include: a reference number of the DEB; the details of the captured

evidence; the name of the person who is taking custody of the capturing

process; the date and time when the capturing process commenced. A unit

is included containing the other two files: the index file and the bag file.

64

Figure 4.16: Digital Evidence Bag Framework

There is also a hash for integrity maintenance; a tag seal number that is

equivalent to the traditional seal number; a continuity section that reflects

the history of operations performed on the DEB and finally a definition of the

index file [10]. The tag file is a plain text file comprising four main sections

[7]:

1. DEB header

2. Evidence units

3. DEB footer

4. TCB

The first section of the DEB tag file is the header that contains informa-

tion such as investigating officer, time-stamp of when the DEB was created,

and description of what, where and when evidence was captured. The de-

fault content of the DEBs index files are specified within the DEB header “

Index Format”. The file format is defined by a sequence of meta-tags. This

65

enables EUs to be customisd within the DEB; therefore, allowing a DEB to

contain information from several types of devices [7]. There are a wide range

of index file meta-tags that can be used to present the stored information.

These come in four categories:

• Labels: file name and path (F), origin description (P), file attributes

(Fa), command (C)

• Timestamps: last modified/completed (Tmod), accessed (Tacc), cre-

ated/ started/commenced (Tcre)

• Numeric: physical sector (PS), logical cluster number (LCN), file logical

size (Fls), file physical size (Fps)

• Integrity – MD5 hash (Hmd5), SHA hash (Hsha)

The second section of the DEB tag file is the evidence units that is used to

record all the created EUs in the DEB. These EUs have integrity hashes for

their contents (both the index and bag files.) The first evidence unit (Unit

0) is used for recording the meta-data of the DEB as a whole. This meta-

data can include creation time, capturing process, hash integrity of the used

application, revision number, capturing process configuration file and details

of capturing selection criteria. Other forms of meta-data can also be included

such as photographs and free-form text.The third section of the tag file is the

DEB footer section that records the number of EUs within the DEB. The

DEB, subsequently, will be sealed and tagged with an integrity hash.While

the last section of the DEB tag file is the tag continuity blocks (TCB). This

section records the application function, signature and time-stamp of when

the DEB was last accessed or modified [7].

Index File The index file should contain details about the bag file such

as a list of file names, folder paths, and time-stamp information relating to

the contents of the digital information in the bag. Alternatively it may

contain details of the physical device.

66

Bag File The bag file should contain the actual evidence captured.

This can be a structured text (e.g. from network packet capture), files (e.g

from logical volume acquisition) or categorized files (e.g. several bags, each

bag contains file of one type such as text files, MS word docs, JPEG files

etc.) The bag files within each EU contain a link to each entry in the corre-

sponding index file [7].

67

Chapter 5

Design and Implementation of

a Testbed

5.1 Overview

This chapter describes the tools that have been used in the testbed to at-

tack Web server and Database server systems and how other tools collect

digital evidence resulting from these attacks. The novel approach of this

thesis involves multiple attacks on multiple servers. The testbed architec-

ture includes multiple IDSs, firewalls and databases and is used to monitor

and gather data from different locations of the network. The data obtained

is analysed and forensically stored within a collective database. This data,

subsequently, is extracted by a DEB tool and stored in a Digital Evidence

Bags (DEB) format. Open source tools are implemented for both data col-

lection and data analysis. There are two reasons for choosing open-source

tools: the first is cost-efficiency in an academic research environment. The

second is that generally open-source programs are easier to deploy in hetero-

geneous networks because it is possible to adapt the software to the specific

requirements of the environment.

69

The first two sections describe the tools used to set up the testbed and the

network model for security and forensics tests. (See Chapter 6, on evaluation

and results).

A list of the version or build numbers for the software used for this thesis

is given towards the end of the chapter. The chapter ends with a discussion

of unsuitable tools; that is software or hardware that have not been used in

the experiments within the security architecture testbed or network simula-

tion.

5.2 A Novel Approach

In this section, we have performed some practical experiments in the live

testbed. Open-source tools that operate at different system levels(application,

database and network), have been utilised in this testbed. In order to perform

practical tests, a range of attack scenarios were performed on the testbed.

Vulnerability and attack injection were applied in a set up based on web

applications of different sizes and complexities. Results are further discussed

in Chapter 6.

5.2.1 Motivation

One factor that motivated us to do this particular experiment was the idea

of performing multiple attacks on multiple servers. We were very interested

to have a testbed which consists of multiple servers and most importantly

multiple intrusion detection systems.

Another factor was that there is also a shortage of research in the com-

bined area of security and forensics. Looking at them from a practical per-

spective it could be said they are even one entity. If a system needs to be

highly secured it also needs to be structured in such a way to enable investiga-

70

tors to collect evidence. No entity is completely secure and so when security

is violated, there must be a clear system for collection of the evidence. Not

all systems will be the same and what system is appropriate will depend on

the type of attack and the type of investigation required. However, investi-

gators can take the initiative and build their own systems within a forensic

environment.

5.2.2 Concept

The Proof of Concept of this research shows how security and forensics are

connected and why they should always be considered as one component.

It also shows the importance of being secure and of always being aware of

the potential for a future need for digital evidence. This statement can be

reduced to the main goal of building a highly secured and forensically sound

system. It is proposed in this thesis that the design of a Correlation Engine

and the proposed Digital Evidence Bag framework are able to collaborate in

a security and forensic implementation.

5.2.3 Testbed Architecture

In order to have a practical environment, the testbed consists of three sub-

networks. There were two reasons for this. The first reason was that most

organisations have a model of three subnetworks model (external, DMZ and

external). The second reason was that in this research we wanted to be able

to demonstrate and actually perform the concept of multiple IDSs among

various networks. This was to allow us to have a few IDSs (slaves) which

enabled us to collect their feedback from these subnetworks into a single IDS

server (master). See Figure 5.1

External subnetwork: this subnetwork is directly connected to the In-

ternet through the main router. It is connected to a central network which

is in fact the DMZ subnetwork which is the joint between the external and

71

Figure 5.1: Testbed Architecture

the trusted networks

DMZ subnetwork: this is the central subnetwork in our testbed which

utilises another computer as an additional AP. The purpose of a DMZ is to

add an additional layer of security to the internal local area network (LAN);

an external attacker only has access to equipment in the DMZ, rather than

any other part of the network. DMZ is widely used in real world scenarios.

This subnetwork includes a few services like HTTP, FTP, DNS...etc. We

also use this subnetwork as the centre for our testbed as it incorporates the

data correlation and collation machine. This data is actually the IDSs alerts

which result from potential internal or external attacks.

Internal (trusted) subnetwork: this is connected to the DMZ via a

firewall but it cannot communicate with the external (untrusted) subnet-

72

work. This is the most secured subnetwork among all three. It cannot be

subjected to any external attacks; however, it can be subjected to internal

attacks. For this reason this subnetwork interface was monitored but with

fewer attack rules compared to the most vulnerable subnetwork which is the

external one.

5.3 Attack Scenarios

As described in Chapter , a range of invalid injection attacks were per-

formed in order to present this thesis. This included SQL Injection and Cross

Site Scripting attacks. We also performed some Denial of Service attacks.

These were designed to keep the monitoring processes apart from an ongoing

attack. Because the Administrators do not have enough time to trace all of

the attacks our aim this was to divert their attention from the monitoring

process. See Section 4.2.1, Chapter 4.

5.3.1 First Scenario

This scenario represents an attacker’s attempts to take advantages of the

vulnerability of an SQL Injection in a web server. The attacker starts his

attacks by checking whether the targeted website is vulnerable. This can be

carried out in three ways: automatically, semi-automatically and manually.

The following figure shows the main diagram of the data flow in our testbed.

When looking at it, it may be helpful to consider it as an extracted piece of

the whole testbed picture. (See Figure 5.2).

One way to exploit an SQL Injection vulnerability is using hacking tools.

This is the most sophisticated but easiest and fastest way of uncovering

SQL Injection vulnerabilities and exploiting them. Hacking tools can be ex-

ceedingly sophisticated but utilising some of them does not require a major

human analysis. In fact, most script kiddies learn how to use them and start

exploiting SQL Injection vulnerabilities without even knowing the basic ar-

73

Figure 5.2: The Data Flow of The Attacker Trying The First Scenario

chitecture of the a database. They even can misuse penetration testing tools

in order to exploit SQL Injection vulnerabilities and thus gain credential de-

tails from the back end database server.

Another way of uncovering SQL Injection vulnerability is to deploy a

fuzzing tool and watch the web server responses (See Section 4.2, Chapter

4). This way is faster than the manual one but still also requires a further

human analysis to complete the attack. One more way to discover an SQL

Injection vulnerability is manually, the attacker misuses the web application

input fields by entering bad inputs. This can include any type of Blackbox

data. It can range from using a simple code to building a complete hacking

tool.

In our testbed we have used all the above ways while monitoring them and

recording attacking attempts in a forensically sound manner. The attacker

attempts to find whether the web application is vulnerable by using any of

the above ways. While the attacker is doing this the IDS starts alerting these

suspicious activities. It is from this point that the forensic recording must

start. In case the attacker gets through, there would be valuable evidence of

his attempts before the attack was completed. Of course there is a possibility

of having some false negative alerts but that would not be an issue when an

operator is undertaking normal actions. For example if a user started typing

bad inputs by mistake, this would not last long before the user realised their

mistake and altered their inputs. It would be clear whether he/she was mak-

ing normal mistakes or was actually attempting to break into the database

74

and obtaining sensitive data (e.g. admin username and password)

This scenario raised two elements in our experiment which can be utilised

in security and forensic research. The first element was that being able to

collect valuable evidence before an attack actually strikes on the web server.

The second element was that being able to reduce the possibility of of Zero-

day attacks from happening. This is further discussed in more dtails towards

the last chapter (See Section 7.2, Chapter7).

5.3.2 Second Scenario

This scenario shows how multiple attacks were carried out simultane-

ously. This can happen when an attacker(s) (e.g. three hackers) collaborate

to launch attacks at a certain time or date. For example, we set up a group of

two attackers (virteual machines) that attacked the web server with different

attacks (DOS, SQL Injection and XSS). The basic idea behind simulating

this attack is to have a few attacks underway while only one of those attacks

is intended by the attacker. This is to lure the monitoring processes way from

the main attack while hiding the pattern of that main attack or at least di-

verting the administrators’ attention because they do not have enough time

to trace all the attacks. These different attacks may come from different

sources. We used automated tools to attack the targeted web server while

we concentrated on the main attack. (See Figure 5.3).

Figure 5.3: The Data Flow of The Attacker Trying The Second Scenario

75

5.3.3 Third Scenario

This scenario presents the most sophisticated attack that web servers

have suffered in recent years (DDOS). This scenario shows the complexity

of such attacks with suggestions that can be used in order to mitigate the

severe consequences of these attacks. The idea behind this scenario is to

have a large number of attackers from different locations launching the same

attack at the same time.

Since this scenario is near to impossible to simulate, we tried a similar

scenario by inviting some outsiders to attack our web server in the DMZ

network. Attackers from hacking forums and social networks were invited to

hack into our website. These attackers were encouraged to use open-source

tools including Slowhttptest1, Nmap and fuzzers for their attack on the web

server. We also performed some DDOS from internal virtual machines. See

Chapter 6 for results. For this scenario data flow in our testbed (See Figure

5.4).

Figure 5.4: The Data Flow of The Attacker Trying the Third Scenario

In this testbed we found that the second scenario is very similar to the

third scenario. However the third scenario consumed a lot of CPU resources

1Slow HTTP DoS attacks rely on the fact that the HTTP protocol, by design, requires
requests to be completely received by the server before they are processed. If an HTTP
request is not complete, or if the transfer rate is very low, the server keeps its resources
busy waiting for the rest of the data. If the server keeps too many resources busy, this
creates a denial of service. This tool is sending partial HTTP requests, trying to get denial
of service from target HTTP server.

76

compared to the second one. It was even hard at times to navigate between

applications. The difference between the second and third scenario was that

the second scenario focused on different attacks coming from one source or

only a very small number of sources; whereas, the third focused on one type

of attack coming from a large number of sources.

5.4 Testbed Tools

This section describes the tools used inside our testbed. It describes the main

machines we have used and both their hardware and software components.

Further explanation is completed on each tool and the reasons we chose it in

this thesis.

5.4.1 Virtual and Physical Machines

Virtualisation has made the development and evaluation of many different

types of software, from operating systems to graphical user interfaces and

even malware, much easier. VMware Workstation allows a user to clone ex-

isting virtual systems (VMware images). Therefore, we used virtual machines

in order to save time setting up identical or nearly identical operating sys-

tems compared to the physical computers. Additionally, the internal state of

these images were observed at some stages for malicious activities and were

reset to a healthy state when needed.

At times an IDS could not recognise some virtual network interfaces so

physical machines as well as virtual ones were at times used in our testbed

for the sub networks. However, every single sub network has its own phys-

ical machine in the testbed. Each physical machine includes some virtual

machines when required. Most of the machines were Linux based but only

a few were Windows. This enabled us to experiment on different operating

systems and have the flexibility of ultlising different software. For example

77

some tools only work on windows while we need to use them (e.g. Visual

Studio) so virtual machines sloved this problem in our experiment.

5.4.2 Hardware Tools

The testbed was established with a main router (D-Link, DSL-2730B), three

PCs and 5 NIC. Each PC had (Linux Ubuntu 11.04) loaded. The first two

PCs were utilised and turned into routers in order to have enough CPU power

and RAM storage. This enabled us to perform complex functions with de-

vices able to handle them smoothly. These functions include packet analysis

and loading any software that was required.

5.4.3 Software Tools

In Chapter 4, we described why we chose certain attacks (SQL Injection

and XSS).(See Section 4.2.1, Chapter 4). In this section we elaborate on

the tools used for carrying out these attacks. While some attacks were car-

ried out manually, others were carried out using the following tools including

sqlmap, havij, JbroFuzz and HTTPFuzzer. Our reasons for choosing these

particular tools and not others are mentioned under each tool heading.

sqlmap:

sqlmap is an open source penetration testing tool that automates the process

of detecting and exploiting SQL injection flaws and takes over the database

servers. It comes with a detection engine and a broad range of switches

lasting from database fingerprinting, over data fetching from the database,

to accessing the underlying file system and executing commands on the op-

erating system via out-of-band connections. We have used it through the

BackTrack operating system [24].This tool is chosen in our thesis because

it’s been widely used and recommended in a few references including [47]

and [48]. According to [49], sqlmap was downloaded over seven million times.

78

havij:

Havij is an automated SQL Injection tool which was utilised for penetration

testing in order to uncover and exploit the SQL injection vulnerabilities of

web applications. We chose this tool because of the high success rate of in-

jectiong vulnerable targets. This success rate was more than 95% according

[50]. It can take advantage of a vulnerable web application and enable users

to perform back-end database fingerprint, retrieve DBMS users and pass-

word hashes, dump tables and columns, fetch data from the database, run

SQL statements and even access the underlying file system while executing

commands on the operating system [50].

JBroFuzz:

JBroFuzz is a web application testing tool (fuzzer) that utilises both HTTP

and HTTPS requests. JBroFuzz aims to provide a single, portable applica-

tion which enables web protocol testing capabilities. We used JBroFuzz to

initiate requests and transfer them to a web applications as we watched the

corresponding responses of these requests. However, this required further

analysis to determine whether we complete the attack or not.

The first important thing to analyse was the response of the numeric

status code to HTTP requests. For more details about HTTP and HTTPS

numeric status code (See Appendix A). See Figures 5.5, 5.6 and 5.7.

Certain attack payloads included in fuzzers were used to generate re-

quests such as XSS and SQL injection and are crafted to successfully exploit

flaws. Such flaws represented previously known vulnerabilities for web appli-

cations. JBroFuzz grouped fuzzers, with their corresponding payloads into a

number of categories, depend on previously known vulnerabilities.Therefore,

the human analyst would need to select the fuzzers to use in order to test a

79

Figure 5.5: Numeric Status Code Responses of Multiple Attacks (SQL Injec-
tion, XSS ...etc) carried out on HTTP Requests

particular set of vulnerabilities and review the results in order to recognize

if exploitation had succeeded or not [51].

HTTPFuzzer:

HTTPFuzzer is a web application fuzzer that we have created using C++

programing language. This fuzzer enables us to experiment on a more dy-

namic way with parameters inside a web page. It generates requests and

puts them in the wire and waits for corresponding responses for further anal-

ysis. SQL Injection and XSS payloads are included in the designed software.

(Figure X)shows a snapshot of the HTTPFuzzer in action.

80

Figure 5.6: Response Time of the previous Multiple Attacks(SQL Injection,
XSS ...etc) carried out on HTTP Requests

5.5 IDSs and Event Correlation Engine

5.5.1 IDS (Snort)

Intrusion Detection System (Snort): Snort is an open-source network intru-

sion detection and prevention system (IDS/IPS) developed by Sourcefire. We

have applied Snort to our research as it combines the benefits of signature,

protocol, and anomaly-based inspection and it is one of the most widely de-

ployed IDSs/IPSs technologies worldwide. See Figure ?? for a simple snort

rule which was used in this testbed.(http://www.snort.org/)

Snort’s main purpose was to monitor the network traffic on the interfaces

for potential attacks or any security related issues. For instance, it mon-

itored the network interfaces for potential exploits or just network probes

(e.g. nmap), which is used for acquiring information about the targeted sys-

tem. All this was accomplished by Snort utilising existing signature based

81

Figure 5.7: Response Size of the previous Multiple Attacks(SQL Injection,
XSS ...etc) carried out on HTTP Requests

alert tcp \$SQL_SERVERS 1433 -> \$EXTERNAL_NET any (msg:"SQL sa brute

force failed login unicode attempt"; flow:from_server,established;

content:"L|00|o|00|g|00|i|00|n|00| |00|f|00|a|00|i|00|l|00|e|00|d|00|

|00|f|00|o|00|r|00| |00|u|00|s|00|e|00|r|00| |00|’|00|s|00|a|00|’|00|";

detection_filter:track by_src, count 5, seconds 2; reference:bugtraq,

4797; reference:cve,2000-1209; reference:nessus,10673; classtype:

unsuccessful-user;sid:3273; rev:5;)

Figure 5.8: A Snort Rule that was Implemented on this Testbed to Catch
Potential Attacks on the Database Server

rules. When these rules match any suspected behavior, Snort send alerts in

a unified2 format file. This unified2 file is immediately read by a database

logging tool Barnyard2 (See Section5.5.2), and logged to a database where

we can view it and see whether real attacks are under way.

82

alert tcp \$EXTERNAL_NET any -> \$HTTP_SERVERS \$HTTP_PORTS (msg:"SQL

oversizedcast statement - possible sql injection obfuscation"; flow:

established,to_server; content:"CAST|28|"; nocase; isdataat:250,relative;

content:!"|29|"; within:250; metadata:policy security-ips drop, service

http; reference:url,isc.sans.org/diary.html?storyid=3823; classtype:

web-application-attack; sid:13791; rev:1;)

Figure 5.9: Another Snort Rule that was Implemented on this Testbed to
Catch Potential SQL Injection on the Database Server

As Snort reported any suspected activities which matched the established

rules, firewalls also were applied to the interfaces in order to slow some at-

tacks from being successful. However, highly secure configured firewalls were

not highly considered in this research as we were focusing more on the foren-

sic part of collecting evidence from the IDSs

In order to avoid potential errors Snort was built from the source code

in this research. However, Snort can be downloaded as a pre-built package:

this is likely to be much easier for users. The Sourcefire team, the makers of

Snort, also release pre-built packages of Snort. At the time of writing this

thesis, the used (latest) version is “snort-2.9.0.5.tar.gz”.

For Snort rules capturing attacks, we have applied both the Sourcefire

Snort rules[52] and Emerging threat rules 2[53]. They were downloaded and

updated on a frequent basis and placed in the /etc/snort directory(Linux)

where rule files are normally placed. Nevertheless, a rule file can be put

in any directory while bearing in mind changing the ”RULE PATH” of the

configuration files.

The network model has three different sub networks. Each sub network

is presented with one physical machine which has two interfaces (eth0:eth1).

Each physical machine may include virtual machines when needed. The first

2Emerging Threats is an open source community project that produces the diverse
Suricata and Snort Rulesets and firewall rules available.

83

interface of the first sub network is the Internet facing one (eth1). This is

the Interface that connects the network/IDS system to the Internet. See the

Appendix for the base configuration file used for all interfaces.

IDSs interfaces are set with different rules ranging from highly secured

to weak. This can decrease and increase the threat levels and hence enable

us to carry out easy and highly sophisticated attacks. These interfaces are

being monitored for everything in the proposed LAN network including at-

tacks and malware. The interfaces configuration of the sub networks is very

similar, but with different network definitions.

The following command is used to start Snort on eth0:

sudo /usr/local/snort/bin/snort -u snort -g snort -c

/usr/local/snort/etc/snort.conf -i eth0

Figure 5.10: Running Snort on eth0

The following figure shows Snort in action as it’s logging events in a

unified2 format file. (See Figure 5.11).

5.5.2 Database Logging (Barnyard2)

Barnyard2 that is an output system for Snort. Barnyard reads this uni-

fied2 file, and then resends the data to a database backend. Unlike the

database output plug-in, Barnyard is aware of a failure to send the alert to

the database, and it stops sending alerts. It is also aware when the database

can accept connections again and will start sending the alerts again. This

Proof of Concept design had to have a single place where all security related

events could be viewed[54].

A critical design concept was important for all the data (alerts) to be

dumped in a unified2, single console for viewing. Unified2 is a special binary

output format that is created by Snort. A system that used several pieces of

84

Figure 5.11: Snort (First Sensor) in Action for Logging Snort’s Alerts into a
unified2 format file

software which dumped data to various places was not an option; therefore,

we implemented Barnyard2

As it is shown in figure 5.12 that Snort did not send alerts to the database

(MySQL). The reason for this is because Barnyard2 was utilised for data cor-

relation and collation. Barnyard2 was set in order to obtain data from Snort

and send it to the back end database server.

All IDSs were configured to use the ”output unified2:” option. As Snort

detected potentially hostile traffic, it logged it to a file using unitied2 format.

This enabled Snort to record the alert and rule that was triggered, as well as

the packet information (packet dump). Barnyard2 therefore ”read” this file,

in real time, and send it to our SQL back end servers. The underlying idea

85

behind this approach is to take the burden of dealing with logging processes

from Snort.

In other words, Snort monitored the subnet interfaces in real time. This

is because If an untoward interruption occurs Snort would temporarily stop

processing network traffic to log this information to the SQL database. This

is not satisfactory, as we would potentially miss other hostile traffic while

Snort is logging this information to the SQL server. In order to deal with

this, a separate process was started by Barnyard2 which obtained the in-

formation from Snort, via the unified2 output format, and inserted it into

the SQL database for Snort; thus off loading that process from Snort to

Barnyard2. Since Snort now does not need to concentrate its efforts on SQL

logging, it can continue monitoring the network interface.

output unified2: filename snort.eth0.log, limit 128 #Internal interface

output unified2: filename snort.eth1.log, limit 128 #Internal interface

Figure 5.12: Each IDS has been configured to log alerts to its own individual
”unified2”

textbfnote The ’limit’ option means the unifed2 file size limit. In our

cases, we are setting this to 128 megabytes

Since have a total of three instances of Snort running, we ran three in-

stances of Barnyard2. Each one read a unique Snort unifed2 formatted file.

Each Barnyard2 instance logged to the database MySQL back end as a sep-

arate ”sensor id”. In the Snort MySQL database in the ’sensor’ table, the

’sensor id’ is known as the ’sid’.

Data from each specific instance of Barnyard2 was loaded to a unique sid.

In the end, this allows us to specify traffic by interface from the database.

Ultimately we were able to view data from the sid # 1 (Exteranl subnet-

work) while ignoring sid’s #2 (DMZ) and #3 (Trusted subnetwork). We

86

were also able to combine all the information in order to have a complete

view of all the data. After creating the database and tables of the back end

server, we utilised the open-source tool (OpenVPN) to create a tunnel be-

tween IDSs and the back end server. This was to ensure the integrity of the

data when collecting information from Snort via Barnyard2 and sending it

over the OpenVPN to the back-end (MySQL) server.

The following figure demonstrates the database and tables establish-

ment.As stated above, in this research as mentioned before, we are using

the open-source database (MySQL schema).

#/usr/local/mysql/bin/mysql -u root -p < ./contrib/create_mysql snort

Figure 5.13: The database and its tables establishment

Once the database is created, we assigned the appropriate grants/rights

to the database for the remote IDS systems to be able to store information.

mysql -u root -p snort

mysql> grant INSERT,SELECT on snort.* to snort@IP-Address identified by

’password’;

mysql> grant INSERT,UPDATE,SELECT on snort_sensor to snort@IP-Address identified

by ’password’

mysql> quit

Figure 5.14: The database and its tables establishment

note In too many cases users grant ”ALL” to remote IDS/IPS systems.

We only want to give our IDS/IPS system the rights that it needs! If an at-

tacker gained access to the system and stole the database credentials, he/she

87

would have access to ALL the back end database. We do not want that to

occur.

With the grants/rights in place, we configured Barnyard2 to read the

unifed2 output from Snort and inserts data into the database server. As with

Snort where we separated configuration files via interface (ie - snort.eth0.conf,

snort.eth1.conf), we have done the same with Barnyard2 (barnyard.eth0.conf,

barnyard.eth1.conf). For example, the eth1 interface configuration file of

Barnyard2.eth1.conf may look like the following

22. ###

23. # /etc/barnyard2/barnyard2.eth1.conf - Internal interface.

24. ###

26. config reference_file: /etc/snort/reference.config

27. config classification_file: /etc/snort/classification.config

28. config gen_file: /etc/snort/gen-msg.map

29. config sid_file: /etc/snort/sid-msg.map

30. config hostname: host2-internal

31. config interface: eth1

32. config set_gid: snort

33. config set_uid: snort

34. config waldo_file: /var/log/barnyard2/barnyard2.eth1.waldo

35. input unified2

37. output database: log, mysql, user=snort password=mypassword dbname=snort

host=Remote-IP-Address, detail full

Figure 5.15: Routine to Enable Barnyard2 for Logging Events on eth1 to
The Database

The following command is used to start Barnyard: The following figure

shows Barnyard2 in action as it’s reading the event file of Snort in a unified2

format and logging its data to the database. See Figure 5.17

88

sudo /usr/local/bin/barnyard2 -c /usr/local/snort/etc/barnyard2.conf -G

/usr/local/snort/etc/gen-msg.map -S /usr/local/snort/etc/sid-msg.map -d

/var/log/snort -f snort.u2 / -w /var/log/snort/barnyard2.waldo

Figure 5.16: Barnyard2 starting up. the ’database’ information is shown

Figure 5.17: Barnyard2 (First Sensor) in Action for Logging Snort’s Alerts
to a Database

5.5.3 Web-Interface (Snorby)

Snorby is an open-source tool that integrates with intrusion detection sys-

tems such as Snort. It is a very useful tool for combining data, showing

actionable metrics and retrieving data from different IDS sensors. Snorby

was utilised in this thesis for data correlation using MySQL queries to store

all information in a combined database. This is the database from which our

designed DEB tool extracts digital forensic evidence. (See Chapter 6).

89

The configuration part was very much the same as Barnyad2. However,

instead of having Barnyard2 reading snort unified2 file and logging it to the

Barnyard2 database; we had Barnyard2 configured to log snort unified2 file

to a Snorby database. Snorby database has more functions than Barnyard2

database. Snorby works very well with Snort and Barnyard2. See the Tests

and Results in (Chapter 6), for data extraction and the results achieved

combining these open-source tools.

90

Chapter 6

Tests and Results

6.1 Overview

The previous chapters described the novel security and forensics architec-

ture. In this chapter, the results from applying multiple IDSs, launching and

detecting attacks and correlating their resulted alerts are all presented with

potential security mechanisms to both mitigate attacks and with the ability

to trace them back to their sources. A novel architecture of Digital Evidence

Bags is also demonstrated in this chapter.

This chapter starts with an overview of the evaluation and follows this up

with the results of the attacks; the qualitative results from the PoC testbed,

and the quantitative results from the network simulation which are further

analysed. Known and yet to be solved problems encountered during the ex-

periments are described at the end of this chapter.

6.2 Evaluation Process and Input Data

In order to conduct an evaluation on our designed testbed, certain security

measurements have to be considered. The qualitative and quantitative meth-

ods used in the evaluation part of this thesis are described in the following

92

sections.

Input data used for the security and performance experiments can come

from two different sources. These are network traffic from the real world

and/or constructed data. The constructed data can be either intentionally

generated to target known vulnerabilities or it can be randomly generated

through fuzzing techniques (See Fuzzing, Section 4.2, Chapter 4).

Input validation attacks (SQL Injection and XSS) from the network traf-

fic of the real world were captured and analysed using open-source web ap-

plications which were enabled site to public. These web applications were

selected for two reasons: Moodle web application is largely used among edu-

cation organisations and is reasonably secure; whereas, WebGoat is used for

penetration testing training and thus is completely vulnerable. The aim was

to have a web application with potential vulnerabilities for XSS and SQL

Injection. This shows that not to have a completely secure web application

but highly secure intrusion detection systems architecture for monitoring bad

behaviours might occur in the network peripheries. See table2 for open ports

which have been left on the web server (See Table2- nmap-sS output)

Network traffic related to input validation attacks in particular (XSS &

SQL Injection) and other web application attacks, that have resulted from

the real world, were captured and analysed using open-source tools including

Snorby and SnortReport and the power of MySQL database (See Design of

correlation engine - Chapter 4). The scenarios of the aforementioned at-

tacks are already discussed in the previous chapter (See Attacks Scenarios-

Chapter 4)

Based on the results from the multiple sensors of the IDSs and from other

reports on malicious http-traffic, specific attacks (XSS and SQL Injection),

reports were generated and sent to the main IDS in the DMZ section of the

network. This has been discussed in the previous chapter. (See Network

Architecture, Chapter 4)

93

6.3 Multiple IDSs Results

The multiple IDSs collected data during two time-frames. The first was

designed to generally monitor any potential attacks on the network. This

monitoring was for a period of about 9 months. (See Figure 6.1). The sec-

ond time-frame was designed for more specific attacks and scenarios. It was

monitored over a period of 30 days.

6.3.1 First Time-Frame

The first time-frame of monitoring potential threats to the network was set to

catch all attacks with no specifications. This concentrated more on monitor-

ing attacks without the application of the aforementioned scenarios explained

in the previous chapter. Figure 6.1 shows the distribution of attack signatures

which occurred in the period from 14/11/2010 (at 03:14 PM) to 07/09/2011

(at 11:05 PM). It also shows the types of traffic that mostly came through

ICMP protocol; whereas, the least came through UDP protocol. This also

has happened with the second time-frame.

During this time-frame 94,619 alerts was triggered mainly on ICMP pro-

tocol with low severity. Most of the alerts triggered were due to internal bad

behaviours such as attempts to gain a higher privilege or Brute force attacks

that were mainly carried out internally by internal users.

However, many attacks did not succeed due to the robust security and

the fact that we did not make a public invitation for attackers to break into

the network. SnortReport was the main tool used to analyse the collected

data over this period. See Figure...

94

Figure 6.1: SnortReport Showing Details on Some Alerts Sorted by Signature

6.3.2 Second Time-Frame

The second time-frame was far more interesting. This was because the pro-

posed scenarios were applied to the experiment. Web applications were also

installed and an invitation to the public and to hacking forums and social

networks was then made. The data was collected over a period of 30 days.

Figure shows the distribution of hacking attempts that hit the network on

a daily basis for the period of observation from Thursday 01/09/2011 (at

12:00AM) to Friday 30/09/2011 (at 11-59-PM)

Severities:

During the period of the second time-frame, 66,719 alerts were triggered;

(438) with high severity, (60552) with medium severity and (15704) with

low severity. These were mainly related to web application vulnerabilities.

During this time-frame a different tool (Snorby) was utilised to analyse the

collected data.

Figure 6.3 shows the traffic on a day when the testbed was attacked

95

Figure 6.2: Severities of Attack During the Second-Time Frame

Figure 6.3: Severities of Attack During the Second-Time Frame

with a severity which ranged from a low number to a large number of at-

tacks. During the day, the Second Scenario of this testbed (Section 5.3.2)

was also implemented and it is shown in the Figure 6.3. Our aim was to show

how a large number of attacks could be deployed to hide other intended at-

96

tacks. When we ran multiple attacks the sensor triggered so many alerts

that the monitoring process was diverted. An attacker is therefore able to

hide his/her actual intended attack by generating a high number of alerts so

that the alerts related to the intended attack go unnoticed. This is shown in

Figure 6.3 where the Red indicates the alerts of the intended severe attack,

and the Green and Yellow indicate the other unimportant attacks that were

triggered to make the Red go unnoticed.

Attack Protocols

Similar to the first time-frame, most attacks’ traffic came through ICMP

protocol; whereas, reasonable amount of attacks’ traffic came through TCP

protocol. The interesting factor happened during this time-frame was that

no traffic came through UDP protocol at all. (See Figure 6.4).

Figure 6.4: Protocols Were Used to Attack the Web Application

97

Attack Signatures

The number of hacking attempts per day ranged from a low of Zero to a

high of 24087 alerts. The average number of triggered signatures per day, or

mean, was µ = 76708
30

≈ 2557 attempts per day. The Median is 23.5. All type

of alerts were included in the triggered signatures including the low severity

attacks that were carried out on the testbed. The standard deviation for the

number of alerts per day is

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 ≈ 6273.97

Figure 6.5: Top 15 Signatures Occurred During the Month

98

The mode of the most signatures occurred was: “frag3: Fragments smaller

than configured min fragment length” with a percentage of 74.55%. This

occurred 35940 times in the whole month. This was when we were attempting

to flood the sensor with high load of traffic in order to blind the monitoring

process while running other separate attacks including SQL Injection and

XXS. See Figure 6.5) for the Top 15 Signatures was triggered in the whole

month.

Figure 6.6: Another Diagram Showing Largest 12 Occurred Signatures Dur-
ing the Month

Attack Source Addresses

The source addresses for most occurred attacks were mainly coming through

internal machines with IP Addresses 192.168.1.6, 192.168.1.5 and 192.168.1.2.

Some attacks came from New Zealand while others came from other parts

of the world including USA, Australia, China and Japan. There were a few

other attackers from other countries but the attacks they performed were not

major. (See Figure 6.7).

99

Figure 6.7: Top 10 Source Addresses Produced Attacks During the Month

Attack Destination Addresses

The top 10 destination addresses were definitely our internal servers. As it

is shown in Figure 6.8, most destinations were within the internal network of

the testbed. These internal destinations IPs start with 192.168.1.x. Whereas,

121.74.226.149, was the public IP of the web application we enabled on the

web server.

Figure 6.8: Top 10 Destination Addresses Received Attacks During the
Month

100

6.4 A Proposed Digital Evidence Bag

Since we have now monitored, collected and traced these attacks, it is time

to produce the evidence of these attacks that can be incorporated into a

trusted container (DEB). All this hard work is to support our proposition

that Security and Forensic is one unit that cannot be separated. As with a

thief, in the end a clear legal valid case must prove that a crime has been

committed.

Figure 6.9: DEB Interface in Process for Acquiring Evidence and Wrapping
it with MD5 Hash

The PoC of this DEB is to apply the ideas of Turner’s approach [9] to

having a global DEB that can be used to collect evidence from any appli-

cation. In our DEB we prove that a DEB can incorporate evidence from

intrusion detection systems and multiple sources such as command line tools

(See Table). It enables investigators to establish a connection to the main

database of the IDS and command line tools. From this point the power of

open-source MySQL queries can be used to retrieve data from the database

in a secure way. This connection must have the same, or with save, con-

nection (e.g. encrypted tunnelling). After all the necessary data has been

101

retrieved into a file, this file can be both composed and encrypted with Md5

hash. (See Figure 6.11).

Figure 6.10: DEB Has been Created and Wrapped

This will save time for investigators when acquiring evidence especially

in a live-forensic technique. This also applies to those investigators who use

open-source command-line tools and write down their outputs or manually

copy them to a file. Using this method prevents them from tracing back

an ongoing attack. The following figure is a demonstration of the designed

PoC DEB which describes a case of an attacker attempted to insert an SQL

Injection into the database server. We will use that information to show how

evidence can be wrapped into a container (DEB). (See Figure 6.11).

6.5 Conclusion

In conclusion, most attacks came from the external network targeting web

applications’ vulnerabilities in general. Most attackers seem to use script

kiddies tools to perform their attacks. Some attackers use fuzzers and hack-

ing tools such as Wa3f. Different operating systems vary among attackers

102

Figure 6.11: DEB Composed and Saved with MD5 Hash

with the minority using Linux while the majority use Windows. Different IP

addresses from different countries have been captured by the IDS including

New Zealand, USA, China. etc.

The use of a rich diversity of sensor information may achieve the develop-

ment of more reliable IDS. The rationale behind this is that sensor variety is

needed because each sensor perceives different information depending on its

capabilities, its function and where it is deployed in the network. The amount

of information required to infer malicious activity using distributed hetero-

geneous sensor architectures would overwhelm any human network manager

and automatic processing becomes necessary.

6.5.1 Thesis Limitations

Although multiple intrusion detection systems offer extensive detection ca-

pabilities, they do have some limitations. These include the analysis of en-

crypted network traffic, the handling of high traffic loads, and their apparent

limited ability to withstand attacks against the intrusion detection systems

103

themselves. These limitations are discussed below.

Encrypted network traffic including virtual private network (VPN) con-

nections, HTTP over SSL (HTTPS), and SSH sessions cannot be detected

by network-based IDSs. However, some IDSs can perform a limited analysis

of the setup of encrypted connections. They can identify the client or server

software, whether it has known vulnerabilities or is misconfigured. There-

fore, for example, in order to ensure an analysis is performed on the payloads

within an encrypted network traffic, IDSs should be placed in such a position

as to enable an analysis of the payloads before they are encrypted or after

they are decrypted.

Intrusion detection system sensors themselves were susceptible to various

types of attacks. Certain type of tools (e.g. Nmap, DoS attacking tools)

were used from different virtual machines to generate large volumes of traffic

in a short period of time. Two of the three attacking scenarios, that were

deployed in our experiment for this thesis, caused a major problem for the

IDSs (sensors). The goal of those two scenarios was to confuse the moni-

toring process by flooding the sub network with a large volume of network

traffic, or by generating network traffic that was likely to trigger many IDS

alerts in a short period of time. This was intentionally carried out in order

to divert the administrator’s attention from another, separate, attack which

was under way. (See Section 5.3).

Large volumes of traffic was generated as the sensor was reporting anoma-

lous activity (Attempted Denial of Service) which apparently exhausted the

sensor’s resources. It cased the sensor not only to generate too many alerts

and thus enabling the intended attack alerts to go unnoticed but to slow it

down to such an extent that it ultimately failed.

104

Chapter 7

Conclusion and Future Work

7.1 Summary

This thesis has described the situation of multiple threats and vulnerabilities

on multiple servers. It has also discussed the need to have multiple intrusion

detection systems based on different networks. The foundation of this thesis

was the importance of multiple entities. These entities included, attacks,

vulnerabilities, servers: firewalls, IDSs, databases and web server. All these

entities were combined in a novel testbed based on an active network which

enabled us to join individual strengths together and to overcome their specifc

weaknesses. Another significant factor of this research was the creation of

an unique DEB along with IDSs output and open-source networking tools

(e.g. whois). Existing solutions and ongoing research in the area of security

(IDSs), and forensics (DEB) were described and analysed for their effective-

ness on the thesis testbed. The results from the Proof-of-Concept testbed

showed that a security architecture of multiple IDSs for large networks can

be implemented using Unix-based systems and free open-source tools.

The results of the multiple attacks showed, under some circumstances,

that it was possible to prevent attacks. When a server is attacked, it is likely

that other servers in the same sub network or nearby will also be attacked.

Our aim was to protect multiple servers on a network by preventing attacks

106

from spreading to other servers on the network. If there were a web server

in a network then it is possible that a database server exists on the same

sub network or nearby. Therefore, if we received an XXS attack on the web

server, then it was likely that we would also receive attacks on the database

server (e.g. SQL Injection). We also noted that when an attacker wanted

to attack a particular target, he/she would test the vulnerable aspects of the

target before starting the real attack. This gave us an indication of when a

potential attack was coming and; therefore, when other servers on the net-

work should be protected.

The results from these multiple IDSs showed the enormous benefits of

having a centralised database of multiple IDSs (sensors). By using multiple

sensors and combining their outputs we were able to enhance the security of

the implemented network. This should apply to any other network regard-

less how big or small it was. This also showed that internet security as a

whole can be improved by having multiple sensors and centralised databases

all over the internet through which suspicious behaviour can be monitored.

These databases could be analysed and utilised for security purposes in order

to prevent a potential threat from spreading over the internet. However there

were shortcomings to this approach. There was the possibility of a sensor

crash due to a large volumes of traffic such as distributed denial of service

(DDoS) attacks and anomalous activity such as fragmented packets with the

aim to exhaust a sensor’s resources or cause it to crash. Suggestions to over-

come these shortcomings are further discussed in a future work section. (See

Section 7.2).

The last importnat part of the thesis was the acquired digital evidence

from both networking command line tools as well as the centralised database

of the multiple IDSs through a novel DEB tool. The results from the Proof-

of-Concept (PoC) of our testbed indicated that it is possible and crucial to

have an open-source DEB that can be connected to the IDSs. This thesis

indicates that it is possible to include a DEB within the IDSs utilities. Many

third party tools to handle IDSs alerts were used in this thesis. These in-

107

cluded Snorby and SnortReport which in themselves, DEB functions should

be incorporated. This is for future work so that potential evidence can be

encapsulated and exported as a wrapped DEB in a forensically sound manner.

7.2 Future Work

7.2.1 Performance

Since the thesis’ testbed architecture was a Proof-of-Concept implementation

utilising tools that enabled the thesis’ author to demonstrate the use of exist-

ing open-source tools, performance was not considered a major factor in the

thesis. However, if custom built software is used with high featured hardware

tools, performance enhancement will be gained. This needs further research

beyond the Proof-of-Concept and some indications are included in this thesis.

7.2.2 Realistic Attacks Data

To capture real-world malicious attacks network data, two sub networks (ex-

ternal and DMZ) were exposed to the Internet with low to medium security.

A few ports were open and web applications were available for the public. Be-

cause the testbed was confined to two small public subnets, the results were

not extensive enough to be representative of the whole Internet. However,

real attacks were performed from within the network and from the Internet.

While the internal attacks were very satisfying and produced the significant

part of the results, the outsider attacks we received from the internet were

not that satisfactory. The reason for this was probably more elements were

required to attract hackers and crackers from the internet such as a honepot

which could be considered for future work.

108

7.2.3 Extensions and Generalisation

The scope of this thesis was established to research, analyse, and improve

the security and forensics of a large network. The main concentration was

the implementation of multiple intrusion detection systems with the aim of

obtaining evidence extracted through a digital evidence bag tool. The Proof-

of-Concept can be applied to any type of network, whether it is a small or a

large network, and can be extended even further. This is due to the large load

of network traffic that will need to be handled. This extension requires more

research and the implementation of a live network with advanced hardware

tools. Although, some virtual machines were used for this thesis, generally

speaking, they should not be used for major elements in the testbed but can

for minor elements. This is in order to have more realistic testbed and thus a

more real-world measurement for the performance For example for a router

and servers in the sub network there must be physical machines but these sub

networks can be extended from the inside. This extension can be through

implementing virtual machines simulating attacks from within the network.

Further research and more experiments can extend the security archi-

tecture we have developed to a general security architecture for all network

traffic. The testbed and network can also be extended to provide a more

accurate model of the real world. The centralised IDSs’ databases can be

analysed and bad behaviours or patterns can be further analysed for improv-

ing Internet Security. The analysis of collaborated IDSs patterns can track

down Distributed Denial of Service attack (DDOS) and possibly prevent or

at least mitigate Zero-Day attacks from spreading over the Internet in a short

period of time.

When the suspicious activity is being recorded, the source of these suspi-

cious activities can be stopped at an early stage of before they can proceed

further. For example, when the attacker starts checking the database server

to see whether it is vulnerable to SQL Injection or not, forensic recording will

have started and so any traffic from the same source can be stopped at that

109

point from further accessing the network. This can be done automatically

by setting a software running between the firewall and the IDS together with

the automatic creation of new rules.

Further research on the DEB architecture and the functions of the IDSs

could lead to a significant contribution in the area of security and forensics.

An open-source DEB tool must be established sooner or later. The proposed

DEB in this thesis is able to deal with databases and command-line network-

ing tools and extracts digital evidence from them. However, this DEB can

be extended to extract digital evidence from more tools and software. The

bottom line is having a tool that can deal with various other tools and extract

digital evidence from them in a forensically sound manner. The DEB of this

thesis was a PoC and didn’t have enough time and resources to complete it.

It is to be carried out in thr future for further development and reseach.

110

Bibliography

[1] J. Wiles and A. Reyes, Computer Forensics in To-

day’s World. Burlington: Syngress, 2007. [Online]. Avail-

able: http://www.sciencedirect.com/science/article/B8KJR-4S69PSH-

4/2/34773ec41cdbbfe874dee6fac6660c1c

[2] E. S. Pilli, R. Joshi, and R. Niyogi, “Article: A generic framework

for network forensics,” International Journal of Computer Applications,

vol. 1, no. 11, pp. 1–6, February 2010, published By Foundation of

Computer Science.

[3] S. R. Selamat, R. Yusof, and S. Sahib, “Mapping process of digital foren-

sic investigation framework,” IJCSNS International Journal of Com-

puter Science and Network Security, vol. 8, no. 10, pp. 163–169, 2008.

[4] A. Ganame, J. Bourgeois, R. Bidou, and F. Spies, “A global security

architecture for intrusion detection on computer networks,” in Paral-

lel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International, 2007, pp. 1–8.

[5] J. Nehinbe, “Log analyzer for network forensics and incident reporting,”

in Intelligent Systems, Modelling and Simulation (ISMS), 2010 Interna-

tional Conference on, 2010, pp. 356–361.

[6] C. Lin, L. Zhitang, and G. Cuixia, “Automated analysis of multi-source

logs for network forensics,” Education Technology and Computer Sci-

ence, International Workshop on, vol. 1, pp. 660–664, 2009.

112

[7] P. Turner, “Selective and intelligent imaging using digital ev-

idence bags,” Digital Investigation, vol. 3, no. Supplement

1, pp. 59–64, 2006, the Proceedings of the 6th Annual

Digital Forensic Research Workshop (DFRWS ’06). [Online].

Available: http://www.sciencedirect.com/science/article/B7CW4-

4KCPVBY-2/2/44b61e9eabd53bf3dbaeea1e9a1bfcea

[8] D. Haagman et al., “Good practice guide for computer-based electronic

evidence,” accessed April 2011. [Online]. Available: http://computer-

forensics.7safe.com/the-acpo-guide-for-electronic-evidence/

[9] P. Turner, “Applying a forensic approach to incident response, network

investigation and system administration using digital evidence bags,”

Digital Investigation, vol. 4, no. 1, pp. 30–35, 2007. [Online].

Available: http://www.sciencedirect.com/science/article/B7CW4-

4MT5K2R-2/2/1a08ca3fff0601ae12fee6ffa70b97d6

[10] ——, “Unification of digital evidence from disparate

sources (digital evidence bags),” Digital Investigation,

vol. 2, no. 3, pp. 223–228, September 2005. [Online].

Available: http://www.sciencedirect.com/science/article/B7CW4-

4GWBF1D-1/2/847d1447394144c7dcd47bdd270a1acc

[11] I. G. G. Richard and V. Roussev, “Next-generation digital forensics,”

Commun. ACM, vol. 49, pp. 76–80, February 2006. [Online]. Available:

http://doi.acm.org/10.1145/1113034.1113074

[12] H. Zeidanloo, A. Bt Manaf, P. Vahdani, F. Tabatabaei, and M. Zamani,

“Botnet detection based on traffic monitoring,” in Networking and In-

formation Technology (ICNIT), 2010 International Conference on, 2010,

pp. 97–101.

[13] Y. Zeng, X. Hu, and K. Shin, “Detection of botnets using combined host-

and network-level information,” in Dependable Systems and Networks

(DSN), 2010 IEEE/IFIP International Conference on, 2010, pp. 291–

300.

113

[14] H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet detection by monitoring

group activities in dns traffic,” in Computer and Information Technol-

ogy, 2007. CIT 2007. 7th IEEE International Conference on, 2007, pp.

715–720.

[15] W. Hailong and G. Zhenghu, “Heterogeneous multi-sensor information

fusion model for botnet detection,” in Intelligent Computation Tech-

nology and Automation (ICICTA), 2010 International Conference on,

vol. 2, May 2010, pp. 428–431.

[16] M. del Mar Fernandez and I. Porres, “An evaluation of current

ids,” Master’s thesis, Linköping University, SE-581 83 LINKÖPING,

Sweden, February 2008. [Online]. Available: urn:nbn:se:liu:diva-11635

[17] M. Govindarajan and R. Chandrasekaran, “Intrusion detection using

neural based hybrid classification methods,” Computer Networks,

vol. In Press, Uncorrected Proof, pp. –, 2010. [Online]. Avail-

able: http://www.sciencedirect.com/science/article/B6VRG-51S25P9-

2/2/b7c2acd2944f945e67112a98f37a8c02

[18] A. Servin and D. Kudenko, “Multi-agent reinforcement learning for

intrusion detection,” in Adaptive Agents and Multi-Agent Systems III.

Adaptation and Multi-Agent Learning, ser. Lecture Notes in Computer

Science, K. Tuyls, A. Nowe, Z. Guessoum, and D. Kudenko, Eds.

Springer Berlin / Heidelberg, 2008, vol. 4865, pp. 211–223. [Online].

Available: http://www.springerlink.com/content/e2471134g8531018/

[19] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and

W. Lee, “Mcpad: A multiple classifier system for ac-

curate payload-based anomaly detection,” Computer Networks,

vol. 53, no. 6, pp. 864–881, 2009. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1389128608003927

[20] Combining Multiple Intrusion Detection and Response

Technologies in an Active Networking Based Architec-

114

ture, June 2003. [Online]. Available: http://www.tu-

ilmenau.de/fakia/fileadmin/template/startIA/telematik/Mitarbeiter/schaefer/Publications/dfn03.pdf

[21] HB 171-2003 Guidelines for the management of IT ev-

idence. Standards Australia, 2003. [Online]. Available:

http://infostore.saiglobal.com/store/Details.aspx?productid=568739

[22] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerabilty

discovery, ser. Safari Books Online. Addison-Wesley, 2007. [Online].

Available: http://books.google.co.nz/books?id=D2VGAAAAYAAJ

[23] OWASP, “Sql injection,” April 2011, accessed July 2011. [Online].

Available: https://www.owasp.org/index.php/Category:Attack

[24] J. Clarke et al., SQL Injection Attacks and Defense,

1st ed. Burlington, MA: Syngress, May 2009. [Online]. Avail-

able: http://www.syngress.com/hacking-and-penetration-testing/SQL-

Injection-Attacks-and-Defense/

[25] OWASP, “Cross-site scripting (xss),” 2011, accessed July 2011. [Online].

Available: https://www.owasp.org/index.php/Category:Attack

[26] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic

creation of sql injection and cross-site scripting attacks,” in Proceedings

of the 31st International Conference on Software Engineering, ser. ICSE

’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 199–

209. [Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070521

[27] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.

Kuo, “Securing web application code by static analysis and runtime

protection,” in Proceedings of the 13th international conference on World

Wide Web, ser. WWW ’04. New York, NY, USA: ACM, 2004, pp.

40–52. [Online]. Available: http://doi.acm.org/10.1145/988672.988679

[28] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art:

Automated black-box web application vulnerability testing,” in Security

and Privacy (SP), 2010 IEEE Symposium on, may 2010, pp. 332–345.

115

[29] W. Tian, J. Xu, K.-M. Lian, Y. Zhang, and J. feng Yang, “Research on

mock attack testing for sql injection vulnerability in multi-defense level

web applications,” in Information Science and Engineering (ICISE),

2010 2nd International Conference on, dec. 2010, pp. 1–5.

[30] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat: a

web vulnerability scanner,” in Proceedings of the 15th interna-

tional conference on World Wide Web, ser. WWW ’06. New

York, NY, USA: ACM, 2006, pp. 247–256. [Online]. Available:

http://doi.acm.org/10.1145/1135777.1135817

[31] RSnake, “Xss (cross site scripting) cheat sheet esp: for filter evasion.”

[Online]. Available: http://ha.ckers.org/xss.html

[32] Wardg, “Web security,” accessed May 2011. [Online]. Available:

http://code.google.com/p/doctype/wiki/ArticleXSS

[33] G. Ollmann, “Understanding the cause and effect of css (xss)

vulnerabilities,” in HTML Code Injection and Cross-site scripting.

[Online]. Available: http://www.technicalinfo.net/papers/CSS.html

[34] A. Kieyzun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic creation

of sql injection and cross-site scripting attacks,” in Software Engineering,

2009. ICSE 2009. IEEE 31st International Conference on, may 2009, pp.

199–209.

[35] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat: a

web vulnerability scanner,” in Proceedings of the 15th interna-

tional conference on World Wide Web, ser. WWW ’06. New

York, NY, USA: ACM, 2006, pp. 247–256. [Online]. Available:

http://doi.acm.org/10.1145/1135777.1135817

[36] DP, “Critical facebook xss bugs could be used to hijack accounts,” Sep.

2010. [Online]. Available: http://www.xssed.com/

[37] H. Shahriar and M. Zulkernine, “Mutec: Mutation-based testing of cross

site scripting,” in Proceedings of the 2009 ICSE Workshop on Software

116

Engineering for Secure Systems, ser. IWSESS ’09. Washington, DC,

USA: IEEE Computer Society, 2009, pp. 47–53. [Online]. Available:

http://dx.doi.org/10.1109/IWSESS.2009.5068458

[38] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox

fuzzing,” SIGPLAN Not., vol. 43, pp. 206–215, June 2008. [Online].

Available: http://doi.acm.org/10.1145/1379022.1375607

[39] P. Tonella and F. Ricca, “A 2-layer model for the white-box testing of

web applications,” in Web Site Evolution, 2004. WSE 2004. Proceedings.

Sixth IEEE International Workshop on, sept. 2004, pp. 11–19.

[40] K. Haller, “White-box testing for database-driven applications: a

requirements analysis,” in Proceedings of the Second International

Workshop on Testing Database Systems, ser. DBTest ’09. New

York, NY, USA: ACM, 2009, pp. 13:1–13:6. [Online]. Available:

http://doi.acm.org/10.1145/1594156.1594172

[41] G. Janardhanudu and K. van Wyk, “White box testing,” Sep. 2009. [On-

line]. Available: https://buildsecurityin.us-cert.gov/bsi/articles/best-

practices/white-box/259-BSI.pdf

[42] B. Ornarli, “C++ buffer overflow exploit,” Dec. 2008. [Online]. Avail-

able: http://www.infernodevelopment.com/c-buffer-overflow-exploit

[43] A. Lanzi, L. Martignoni, M. Monga, and R. Paleari, “A smart

fuzzer for x86 executables,” in Proceedings of the Third International

Workshop on Software Engineering for Secure Systems, ser. SESS ’07.

Washington, DC, USA: IEEE Computer Society, 2007, pp. 7–. [Online].

Available: http://dx.doi.org/10.1109/SESS.2007.1

[44] H. Dai, C. Murphy, and G. Kaiser, “Configuration fuzzing for software

vulnerability detection,” Availability, Reliability and Security, Interna-

tional Conference on, vol. 0, pp. 525–530, 2010.

[45] J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability #x00026; attack

injection for web applications,” in Dependable Systems Networks, 2009.

117

DSN ’09. IEEE/IFIP International Conference on, 29 2009-july 2 2009,

pp. 93–102.

[46] I. Elia, J. Fonseca, and M. Vieira, “Comparing sql injection detection

tools using attack injection: An experimental study,” in Software Reli-

ability Engineering (ISSRE), 2010 IEEE 21st International Symposium

on, nov. 2010, pp. 289–298.

[47] A. Ciampa, C. A. Visaggio, and M. Di Penta, “A heuristic-

based approach for detecting sql-injection vulnerabilities in web

applications,” in Proceedings of the 2010 ICSE Workshop on

Software Engineering for Secure Systems, ser. SESS ’10. New

York, NY, USA: ACM, 2010, pp. 43–49. [Online]. Available:

http://doi.acm.org/10.1145/1809100.1809107

[48] B. D. A. G. and M. Stampar, “automatic sql injection and

database takeover tool,” 2011, accessed April 2011. [Online]. Available:

http://sqlmap.sourceforge.net/

[49] W. G. Halfond, S. Anand, and A. Orso, “Precise interface identification

to improve testing and analysis of web applications,” in Proceedings of

the eighteenth international symposium on Software testing and analysis,

ser. ISSTA ’09. New York, NY, USA: ACM, 2009, pp. 285–296.

[Online]. Available: http://doi.acm.org/10.1145/1572272.1572305

[50] ITSecTeam, “Havij v1.15 advanced sql injection,”

Jun 2011, accessed April 2011. [Online]. Available:

http://itsecteam.com/en/projects/project1.htm

[51] OWASP, “Jbrofuzz,” July 2011, accessed July 2011. [Online]. Available:

https://www.owasp.org/index.php/JBroFuzz

[52] “Sourcefire vrt certified rules - the official snort ruleset,” accessed

September 2011. [Online]. Available: http://www.snort.org/snort-rules/

[53] “Emerging threats,” accessed September 2011. [Online]. Available:

http://www.emergingthreats.net/

118

[54] “About barnyard2,” accessed July 2011. [Online]. Available:

http://www.securixlive.com/barnyard2/about.php

[55] “Http status codes,” July 2011, ac-

cessed September 2011. [Online]. Available:

http://www.google.com/support/webmasters/bin/answer.py?answer=40132

[56] R. Fielding et al., “Hypertext transfer protocol – http/1.1,”

June 1999, accessed January 2011. [Online]. Available:

http://www.w3.org/Protocols/rfc2616/rfc2616.html

119

Chapter 8

Appendices

8.1 Appendix A

8.1.1 HTTP Status Codes

When a request is made to a web server, the server returns an HTTP sta-

tus code in response to the request. This status code provides information

about the status of the request. It gives information about the request and

response. Some common status codes are [55]:

• 200 - the server successfully returned the page

• 404 - the requested page doesn’t exist

• 503 - the server is temporarily unavailable

A complete list of HTTP status codes is below. For further information

see the W3C page on HTTP status codes [56].

1xx (Provisional Response)

Status codes that indicate a provisional response and require the requestor

to take action to continue. See Table 8.1

121

Code Description
100 (Continue) The requestor should continue with the request. The

server returns this code to indicate that it has received
the first part of a request and is waiting for the rest.

101 (Switching proto-
cols)

The requestor has asked the server to switch protocols
and the server is acknowledging that it will do so.

Table 8.1: HTTP Response 1xx (Provisional response)

2xx (Successful)

Status codes that indicate that the server successfully processed the re-

quest.(See Table8.2)

Code Description
200 (Successful) The server successfully processed the request. Generally,

this means that the server provided the requested page.
201 (Created) The request was successful and the server created a new

resource.
202 (Accepted) The server has accepted the request, but hasn’t yet pro-

cessed it.
203 (Non-
authoritative in-
formation)

The server successfully processed the request, but is re-
turning information that may be from another source.

204 (No content) The server successfully processed the request, but isn’t
returning any content.

205 (Reset content) The server successfully proccessed the request, but isn’t
returning any content. Unlike a 204 response, this re-
sponse requires that the requestor reset the document
view (for instance, clear a form for new input).

206 (Partial content) The server successfully processed a partial GET request.

Table 8.2: HTTP Response 2xx (Successful)

3xx (Redirected)

Further action is needed to fulfill the request. Often, these status codes are

used for redirection. (See Table 8.3).

122

Code Description
300 (Multiple choices) The server has several actions available based on the

request. The server may choose an action based on the
requestor (user agent) or the server may present a list
so the requestor can choose an action.

301 (Moved perma-
nently)

The requested page has been permanently moved to a
new location. When the server returns this response (as
a response to a GET or HEAD request), it automatically
forwards the requestor to the new location.

302 (Moved temporar-
ily)

The server is currently responding to the request with a
page from a different location, but the requestor should
continue to use the original location for future requests.
This code is similar to a 301 in that for a GET or HEAD
request, it automatically forwards the requestor to a dif-
ferent location.

303 (See other loca-
tion)

The server returns this code when the requestor should
make a separate GET request to a different location
to retrieve the response. For all requests other than
a HEAD request, the server automatically forwards to
the other location.

304 (Not modified) The requested page hasn’t been modified since the last
request. When the server returns this response, it
doesn’t return the contents of the page.

Table 8.3: HTTP Response 3xx (Redirected)

4xx (Request Error)

These status codes indicate that there was likely an error in the request which

prevented the server from being able to process it. (See Table 8.4).

5xx (Server Error)

[!ht] These status codes indicate that the server had an internal error when

trying to process the request. These errors tend to be with the server itself,

not with the request. See Table 8.5

123

Code Description
400 (Bad request) The server didn’t understand the syntax of the request.
401 (Not authorized) The request requires authentication. The server might

return this response for a page behind a login.
403 (Forbidden) The server is refusing the request.
404 (Not found) The server can’t find the requested page. For instance,

the server often returns this code if the request is for a
page that doesn’t exist on the server.

405 (Method not al-
lowed)

The method specified in the request is not allowed.

406 (Not acceptable) The requested page can’t respond with the content char-
acteristics requested.

407 (Proxy authenti-
cation required)

This status code is similar 401 (Not authorized); but
specifies that the requestor has to authenticate using a
proxy. When the server returns this response, it also
indicates the proxy that the requestor should use.

Table 8.4: HTTP Response 4xx (Request error))

Code Description
500 (Internal server
error)

The server encountered an error and can’t fulfill the re-
quest.

501 (Not imple-
mented)

The server doesn’t have the functionality to fulfill the
request. For instance, the server might return this code
when it doesn’t recognize the request method.

502 (Bad gateway) The server was acting as a gateway or proxy and received
an invalid response from the upstream server.

503 (Service unavail-
able)

The server is currently unavailable (because it is over-
loaded or down for maintenance). Generally, this is a
temporary state.

504 (Gateway time-
out)

The server was acting as a gateway or proxy and didn’t
receive a timely request from the upstream server.

505 (HTTP version
not supported)

The server doesn’t support the HTTP protocol version
used in the request.

Table 8.5: HTTP Response 5xx (Server error)

8.2 Appendix B

8.2.1 Coding

DEB Command Line Networking Tools & DB Connection

//References used

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Threading;

using System.IO;

using System.IO.Compression;

using System.Security.Cryptography;

namespace WindowsFormsApplication1

{ public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

private void button1_Click(object sender, EventArgs e)

{

ExecuteCommandAsync(textBox1.Text);

ExecuteCommandSync(textBox1.Text);

}

public void ExecuteCommandSync(object command)

try

{ System.Diagnostics.ProcessStartInfo procStartInfo = new

System.Diagnostics.ProcessStartInfo("cmd", "/c " + command);

procStartInfo.RedirectStandardOutput = true;

procStartInfo.UseShellExecute = false;

procStartInfo.CreateNoWindow = true;

System.Diagnostics.Process proc = new System.Diagnostics.Process();

proc.StartInfo = procStartInfo;

proc.Start();

string result = proc.StandardOutput.ReadToEnd();

//Recording DEB Metadate

textBox2.AppendText(Environment.NewLine + "Investigator Name:" +

textBox7.Text + Environment.NewLine + "Case Details:" + textBox8.Text +

Environment.NewLine + "Suspect Address:" + textBox9.Text +

Environment.NewLine + "Crime Referene Number:" + textBox10.Text +

Environment.NewLine + "Description of the Case:" + textBox11.Text +

Environment.NewLine + "Time Stamps and Date:" + textBox14.Text +

126

Environment.NewLine + "Used Command:" + textBox1.Text + Environment.NewLine

+ Environment.NewLine + result + "----------------------------" +

Environment.NewLine);

}

catch (Exception objException)

{}

}

public void ExecuteCommandAsync(string command)

{ try

{ Thread objThread = new Thread(new

ParameterizedThreadStart(ExecuteCommandSync));

objThread.IsBackground = true;

objThread.Priority = ThreadPriority.AboveNormal;

objThread.Start(command);

}

catch (ThreadStartException objException)

{}

catch (ThreadAbortException objException)

{}

catch (Exception objException)

{}

} // Creating MD5 Hash for the created DEB

private static MD5 md5 = MD5.Create ();

private void button2_Click(object sender, EventArgs e)

{

this.folderBrowserDialog1.ShowNewFolderButton = false;

this.folderBrowserDialog1.RootFolder =

System.Environment.SpecialFolder.MyComputer;

DialogResult result = this.folderBrowserDialog1.ShowDialog();

string foldername = this.folderBrowserDialog1.SelectedPath;

textBox3.Text = foldername + "\\" + textBox4.Text + ".txt";

textBox6.Text = foldername + "\\" + textBox4.Text + ".zip";

if (result == DialogResult.OK);

127

string FILE_NAME = textBox3.Text ;

StreamWriter MyStream = null;

string MyString = "Hello World";

MyStream = File.CreateText(foldername + "\\" + textBox4.Text

+".txt");

MyStream.Close();

//MyStream.Write(MyString);

if (System.IO.File.Exists(FILE_NAME) == true)

{

System.IO.StreamWriter objWriter = new

System.IO.StreamWriter(FILE_NAME);

objWriter.Write(textBox2.Text);

objWriter.Close();

MessageBox.Show("A New Digital Evidence Bag Has Been Created");

}

else

{

MessageBox.Show("File Does Not Exist");

}

FileStream sourceFile = File.OpenRead(textBox3.Text);

FileStream destFile = File.Create(foldername + "\\" + textBox4.Text + ".zip");

GZipStream compStream = new GZipStream(destFile,

CompressionMode.Compress);

try

{ int theByte = sourceFile.ReadByte();

while (theByte != -1)

{ compStream.WriteByte((byte)theByte);

theByte = sourceFile.ReadByte();

}

}

finally //Compressing the DEB in A Zip file

{ compStream.Dispose();

128

}

using (FileStream stream = File.OpenRead (textBox6.Text))

{

byte [] checksum = md5.ComputeHash (stream);

textBox5.Text = (BitConverter.ToString (checksum).Replace ("-",

string.Empty));

}

}

private void button3_Click(object sender, EventArgs e)

{

}

private void textBox4_TextChanged(object sender, EventArgs e)

{ if (textBox4.Text.Length > 0);

{ button2.Enabled =true;

}

}

private void Form1_Load(object sender, EventArgs e)

{ button2.Enabled = false;

}

private void button3_Click_1(object sender, EventArgs e)

{ textBox1.Text = "";

textBox2.Text="";

}

}

}

129

HTTPFuzzer: Request Class Code (C++)

// Request.cpp: implementation of the Request class.

#include "stdafx.h"

#include "HTTPrequest.h"

#include "Request.h"

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

// Construction/Destruction

Request::Request()

{}

Request::Request()

{}

// MemBufferCreate: Passed a MemBuffer structure, will allocate a memory buffer

// of MEM_BUFFER_SIZE. This buffer can then grow as needed.

void Request::MemBufferCreate(MemBuffer *b)

{

b->size = MEM_BUFFER_SIZE;

b->buffer =(unsigned char *) malloc(b->size);

b->position = b->buffer;

}

// MemBufferGrow:Double the size of the buffer that was passed to this function.

void Request::MemBufferGrow(MemBuffer *b)

{

size_t sz;

sz = b->position - b->buffer;

b->size = b->size *2;

b->buffer =(unsigned char *) realloc(b->buffer,b->size);

b->position = b->buffer + sz; // readjust current position

}

// MemBufferAddByte:Add a single byte to the memory buffer, grow if needed.

void Request::MemBufferAddByte(MemBuffer *b,unsigned char byt)

{

if((size_t)(b->position-b->buffer) >= b->size)

MemBufferGrow(b);

*(b->position++) = byt;

}

// MemBufferAddBuffer: Add a range of bytes to the memory buffer, grow if needed.

void Request::MemBufferAddBuffer(MemBuffer *b,

unsigned char *buffer, size_t size)

{

while(((size_t)(b->position-b->buffer)+size) >= b->size)

MemBufferGrow(b);

memcpy(b->position,buffer,size);

b->position+=size;

}

// GetHostAddress: Resolve using DNS or similar(WINS,etc) the IP address for a

// domain name such as www.wdj.com.

DWORD Request::GetHostAddress(LPCSTR host)

{

struct hostent *phe;

char *p;

phe = gethostbyname(host);

131

if(phe==NULL)

return 0;

p = *phe->h_addr_list;

return *((DWORD*)p);

}

// SendString: Send a string(null terminated) over the specified socket.

void Request::SendString(SOCKET sock,LPCSTR str)

{ send(sock,str,strlen(str),0);

}

// ValidHostChar: Return TRUE if the specified character is valid for a host name, i.e. A-Z or 0-9 or -.:

BOOL Request::ValidHostChar(char ch)

{ return(isalpha(ch) || isdigit(ch)

|| ch==’-’ || ch==’.’ || ch==’:’);

}

// ParseURL: Used to break apart a URL such as //

//http://www.localhost.com:80/TestPost.htm into protocol, port, host and request.

void Request::ParseURL(LPCSTR url,LPSTR protocol,int lprotocol,

LPSTR host,int lhost,LPSTR request,int lrequest,int *port)

{ char *work,*ptr,*ptr2;

*protocol = *host = *request = 0;

*port=80;

work = strdup(url);

strupr(work);

ptr = strchr(work,’:’); // find protocol if any

if(ptr!=NULL)

{ *(ptr++) = 0;

lstrcpyn(protocol,work,lprotocol);

}

else

{ lstrcpyn(protocol,"HTTP",lprotocol);

ptr = work;

132

}

if((*ptr==’/’) && (*(ptr+1)==’/’)) // skip past opening /’s

ptr+=2;

ptr2 = ptr; // find host

while(ValidHostChar(*ptr2) && *ptr2)

ptr2++;

*ptr2=0;

lstrcpyn(host,ptr,lhost);

lstrcpyn(request,url + (ptr2-work),lrequest); // find the request

ptr = strchr(host,’:’); // find the port number, if any

if(ptr!=NULL)

{ *ptr=0;

*port = atoi(ptr+1);

}

free(work);

}

// SendHTTP:

// Main entry point for this code.

// url- The URL to GET/POST to/from.

// headerSend- Headers to be sent to the server.

//post- Data to be posted to the server, NULL if GET.

//postLength- Length of data to

//post.req - Contains the message and headerSend sent by the server.

// returns 1 on failure, 0 on success.

int Request::SendHTTP(LPCSTR url,LPCSTR headerReceive,BYTE *post,

DWORD postLength,HTTPRequest *req)

{

WSADATA WsaData;

SOCKADDR_IN sin;

SOCKET sock;

char buffer[512];

char protocol[20],host[256],request[1024];

int l,port,chars,err;

133

MemBuffer headersBuffer,messageBuffer;

char headerSend[1024];

BOOL done;

ParseURL(url,protocol,sizeof(protocol),host,sizeof(host), // Parse the URL

request,sizeof(request),&port);

if(strcmp(protocol,"HTTP"))

return 1;

err = WSAStartup (0x0101, &WsaData); // Init Winsock

if(err!=0)

return 1;

sock = socket (AF_INET, SOCK_STREAM, 0);

//if (socket == INVALID_SOCKET)

if (sock == INVALID_SOCKET)

return 1;

sin.sin_family = AF_INET; //Connect to web sever

sin.sin_port = htons((unsigned short)port);

sin.sin_addr.s_addr = GetHostAddress(host);

if(connect (sock,(LPSOCKADDR)&sin, sizeof(SOCKADDR_IN)))

{ return 1;

}

//printf("\r\n\r\n <<SEND HTTP REQUEST:>> \r\n\r\n"); //Send request

if(!*request)

lstrcpyn(request,"/",sizeof(request));

if(post == NULL)

{

SendString(sock,"GET ");

strcpy(headerSend, "GET ");

}

134

else

{ SendString(sock,"POST ");

strcpy(headerSend, "POST ");

}

SendString(sock,request);

strcat(headerSend, request);

SendString(sock," HTTP/1.0\r\n");

strcat(headerSend, " HTTP/1.0\r\n");

SendString(sock,"Accept: image/gif, image/x-xbitmap,"

" image/jpeg, image/pjpeg, application/vnd.ms-excel,"

" application/msword, application/vnd.ms-powerpoint,"

" */*\r\n");

strcat(headerSend, "Accept: image/gif, image/x-xbitmap,"

" image/jpeg, image/pjpeg, application/vnd.ms-excel,"

" application/msword, application/vnd.ms-powerpoint,"

" */*\r\n");

SendString(sock,"Accept-Language: en-us\r\n");

strcat(headerSend, "Accept-Language: en-us\r\n");

SendString(sock,"Accept-Encoding: gzip, deflate\r\n");

strcat(headerSend, "Accept-Encoding: gzip, deflate\r\n");

SendString(sock,"User-Agent: Mozilla/4.0\r\n");

strcat(headerSend, "User-Agent: Mozilla/4.0\r\n");

if(postLength)

{

wsprintf(buffer,"Content-Length: \%ld\r\n",postLength);

SendString(sock,buffer);

strcat(headerSend, buffer);

}

//SendString(sock,"Cookie: mycookie=blablabla\r\n");

135

// printf("Cookie: mycookie=blablabla\r\n");

SendString(sock,"Host: ");

strcat(headerSend, "Host: ");

SendString(sock,host);

strcat(headerSend, host);

SendString(sock,"\r\n");

strcat(headerSend, "\r\n");

if((headerReceive!=NULL) && *headerReceive)

{

SendString(sock,headerReceive);

strcat(headerSend, headerReceive);

}

SendString(sock,"\r\n"); // Send a blank line to signal end of HTTP headerReceive

strcat(headerSend, "\r\n");

if((post!=NULL) && postLength)

{

send(sock,(const char*)post,postLength,0);

post[postLength] = ’\0’;

strcat(headerSend, (const char*)post);

}

// strcpy(req->headerSend, headerSend);

req->headerSend = (char*) malloc(sizeof(char*) *

strlen(headerSend));

strcpy(req->headerSend, (char*) headerSend);

//printf("\r\n\r\n <<RECEIVE HTTP REQUEST : >> \r\n\r\n\r\n");

// First read HTTP headerReceive

MemBufferCreate(&headersBuffer);

chars = 0;

done = FALSE;

while(!done)

136

{

l = recv(sock,buffer,1,0);

if(l<0)

done=TRUE;

switch(*buffer)

{ case ’\r’:

break;

case ’\n’:

if(chars==0)

done = TRUE;

chars=0;

break;

default:

chars++;

break;

}

MemBufferAddByte(&headersBuffer,*buffer);

}

req->headerReceive = (char*) headersBuffer.buffer;

*(headersBuffer.position) = 0;

MemBufferCreate(&messageBuffer); // Now read the HTTP body

do

{

l = recv(sock,buffer,sizeof(buffer)-1,0);

if(l<0)

break;

*(buffer+l)=0;

MemBufferAddBuffer(&messageBuffer, (unsigned char*)&buffer, l);

} while(l>0);

*messageBuffer.position = 0;

req->message = (char*) messageBuffer.buffer;

req->messageLength = (messageBuffer.position - messageBuffer.buffer);

137

closesocket(sock); // Cleanup

return 0;

}

// SendRequest

//void Request::SendRequest(bool IsPost, LPCSTR url, char *pszHeaderSend, char

// *pszHeaderReceive, char *pszMessage)

void Request::SendRequest(bool IsPost, LPCSTR url, CString &psHeaderSend,

CString &psHeaderReceive, CString &psMessage)

{ HTTPRequest req;

int i,j,rtn; FILE *fp; LPSTR buffer;

req.headerSend = NULL;

req.headerReceive = NULL;

req.message = NULL;

//Read in arguments

if(IsPost)

{ /* POST */

i = psHeaderSend.GetLength();

buffer = (char*) malloc(i+1);

strcpy(buffer, (LPCTSTR)psHeaderSend);

rtn = SendHTTP(url,"Content-Type: application/x-www-form-urlencoded\r\n",

(unsigned char*)buffer,

i,

&req);

free(buffer);

}

else /* GET */

rtn = SendHTTP(url,NULL,NULL,0,&req);

if(!rtn)

//Output message and/or headerSend

{ psHeaderSend = req.headerSend;

psHeaderReceive = req.headerReceive;

psMessage = req.message;

free(req.headerSend);

138

free(req.headerReceive);

free(req.message);

}

else

{

//printf("\nFailed\n");

MessageBox(0, "Retrieve Failed", "", 0);

}

}

139

8.3 Appendix C

8.3.1 Multiple IDSs Configuration

When having multiple interfaces for sensors, and wanting to log in

to different destinations. Multiple separate instances of both snort

and barnyard2 are needed.

Snort

This is just the important part of Snort.conf file. For more details refer to

Snort website.

path to dynamic preprocessor libraries

dynamicpreprocessor directory /usr/local/snort/lib/snort_dynamicpreprocessor/

path to base preprocessor engine

dynamicengine /usr/local/snort/lib/snort_dynamicengine/libsf_engine.so

path to dynamic rules libraries

dynamicdetection directory /usr/local/snort/lib/snort_dynamicrules

unified2

vlan_event_types

output unified2: filename snort.u2, limit 128

....

database

output database: alert, <db_type>, user=<username> password=<password> test

dbname=<name> host=<hostname>

output database: log, mysql, user=DATABASEUSERNAME password=YOURPASSWORD

dbname=DATABASENAME host=localhost

...

Barnyard2.conf

As Snort logs its alerts to a unified2 file, Barnyard read it and log into a

database. This database can be Barnyard’s database or Snorby or Base, or

any other tool that can process the alerts in an easy way.

database: log to a variety of databases

output database: log, mysql, user=USER_ACCESS_THE_DB

password=DB_PASS dbname=DB_NAME host=localhost

output database: alert, postgresql, user=snort dbname=snort

output database: log, odbc, user=snort dbname=snort

output database: log, mssql, dbname=snort user=snort password=test

output database: log, oracle, dbname=snort user=snort password=test

We put Snorby in the database name field as we used Snorby for viewing

alerts and analysing them.

Snorby

snorby config.yml

Since Barnyard2 was set to read alerts from Snort unified file and log them

to Snorby database, the Snorby configuration file should look similar to the

following:

development:

domain: localhost:3000

wkhtmltopdf: /usr/bin/wkhtmltopdf

test:

domain: localhost:3000

wkhtmltopdf: /usr/bin/wkhtmltopdf

production:

domain: localhost:3000

wkhtmltopdf: /usr/bin/wkhtmltopdf

141

Snorby Database.yml

Whereas Snorby database configuration file should like similar to the follow-

ing:

snorby: &snorby

adapter: mysql

username: root

password: "PASSforRoottoAccessTheDB" # Example: password: "s3cr3tsauce"

host: localhost

development:

database: snorby

<<: *snorby

test:

database: snorby

<<: *snorby

production:

database: snorby

<<: *snorby

142

