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ABSTRAcr 

This thesis describes the development of a general method for 

the analysis of integrated a.c. and d.c. systems under normal, but 

not necessarily balanced, steady state operation. 

Phase component three phase system modelling is reviewed and 

the relationship of the well known symmetrical components to the 

three phase modelling is discussed. 

Using as a reference the single phase fast decoupled algorithm 

the modifications required to produce an efficient three phase 

fast decoupled load flow are described. It is demonstrated that 

the three phase fast decoupled load flow displays all the 

characteristics of the original single phase version. 

Single phase balanced convertor modelling is reviewed and 

several techniques for the integration of such models with the single 

phase fast decoupled load flow are developed and their performance 

is compared. 

The methods for single phase convertor modelling are extended 

to allow unbalanced convertor operation to be analysed. The integration 

of the unbalanced convertor model into the three phase fast decoupled 

load flow is described. Convergence properties are examined and 

detailed results given. 

The extension of steady state analysis techniques to the 

consideration of harmonic frequencies is discussed. The unbalanced 

convertor model is used as a basis to enable the harmonic interaction 

of d.c. convertors and the a.c. system to be studied. 
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CHAPTER 1 

INTRODUcrION 

The undesirable influence of steady state power system 

unbalance (1) on the conventional system loads and generators has 

required power system planners to be very conscious of any feat­

ures which may create unbalance· among the three phases. with 

the more recent proliferation of high power d.c~ convertor 

installations, which are susceptible to the production of hon­

characteristic harmonic currents even with small unbalance, there 

is a renewed interest in the study of the causes of power system 

unbalance. 

The quantitative analysis of unbalanced power systems 

op~rating in the presence of d.c. convertors, is a demanding-task, 

which, until now has only been attempted in very restricted cases. 

This thesis describes a general method of analysis in which the 

unbalanced operation of the three phase system, including the 

influence of large three phase convertor installations, is 

analysed using an efficient steady state load flow technique. In 

addition to the study of the power frequency unbalanced operation 

of convertors, this thesis also deals with the related problem of 

harmonic current generation. 

The methods presented are, in general, extensions of the most 

advanced and well proven single phase load flow techniques. In 

particular, the development of the three phase load flow algorithm 

is based on the fast decoupling principles which have proved so 

successful in the single phase case. 
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The emphasis in the thesis is on algorithmic formulation, with 

only brief discussions on the relevant computational details. 

Although it is acknowledged that the computational aspects are 

critical to the practicality of any load flow solution, methods 

for efficient programming of storage and solution routines have 

been extensive,ly studied in the recent past and further effort in 

this area is unlikely to bring any significant advance. Therefore 

existing sparsity storage and solution routines have been used 

wherever practicable. 

Symmetrical components is a well established method which 

provides immense simplification in the analysis of unbalanced 

operation of balanced transmission systems. However, when the 

system itself is unbalanced, the transformation provides no 

simplification and its use cannot be justified. The three phase 

system and the d.c. convertors are therefore represented directly in 

phase quantities. Symmetrical components are however, a valuable aid 

in the understanding and interpretation of results and they are 

used for this purpose where appropriate. 

The material presented conveniently separates to form the 

individual chapters and each chapter is, for the most part, treated 

as a separate unit. 

Chapter 2 presents a review of power system modelling for steady 

state analysis. The relationship of the well known symmetrical 

components to the steady state system modelling in phase components 

is discussed. Models for all the common three phase elements are 

presented and the methods for their derivation reviewed. Although 

the material in this chapter is largely a review of existing methods, 

it is essential to the formulation of the three phase load flow 

as well as being of considerable interest in itself. 
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Chapter 3 is a brief description of the basic Newton-Raphson 

solution method. This material, although well docUmented, forms an 

important basis for the application of the method to the less 

familiar situations of the three phase load flow and the steady state 

convertor models. It is therefore included as a chapter in its 

own right to reflect its importance to the remainder of this thesis. 

Chapter 4 describes the development of a three phase fast 

decoupled load flow for the unbalanced a.c. system. The three phase 

version is an extension of the well known single phase fast decoupled 

load flow. The original aspects of the three phase version and 

their relationships to the single phase case are discussed'in detail. 

The performance of the developed algorithm is investigated and it is 

demonstrated that the three phase version retains the computational 

efficiency and reliability of the single phase version. 

Chapter 5 describes the formulation of a model of the balanced 

operation of the d.c. convertors which is suitable for integration 

into single phase load flow studies of combined a.c. and d.c. 

systems. Various sequential and unified (simultaneous) integrations 

with the single phase fast decoupled load flow are discussed and 

compared. The primary motivation for the work described in this 

chapter is to provide a basis for the development of a three phase 

convertor model and to enable selection of the best algorithm for 

the subsequent integration of that model into the three phase fast 

decoupled load flow. 

Chapter 6 describes the formulation of a model of the unbal­

anced three phase convertor with sufficient generality to incor­

porate a wide range of convertor control modes including the effect 

of symmetrical firing and the more traditional phase angle firing 

controllers. The sequential integration of the unbalanced model 
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into the three phase load flow is presented and the performance of 

the three phase integration compared to the corresponding single 

phase version. The steady state unbalanced convertor model 

forms a basis for the investigation of the harmonic current generat-

ion during unbalanced steady state operation as discussed in chapter 

8. 

Chapter 7 deals with the extension of the techniques for 

power frequency modelling of the three phase system to the more 

general case of harmonic frequency modelling. In addition, this 

chapter introduces the nature of some of the problems caused by 

harmonic power flows and also discusses the degree of representation 

required if an analysis is to be attempted. This chapter is an 

introduction to the topic only and is intended to form a basis for 

further investigation. The material presented provides the necessary 

background to the final chapter. 

Finally, chapter 8 is concerned with the steady state harmonic 

generation of d.c. convertors under unbalanced conditions when the 

system harmonic impedances cannot be assumed zero. Features such as 

the harmonic interaction of a convertor and the a.c. system and 

also the effect of system resonances are considered on a general 

three phase basis. The limitations of the steady state analysis 

are discussed and iilustrative examples are studied in detail. 

(2 - 6) Several papers have been written in connection with the 

work in this thesis and where appropriate they are referenced or 

included as appendices. 



2.1 INTRODUCTION 

CHAPTER 2 

REVIE~v OF FOHER SYSTEM MODELLING FOR 

STEADY STATE LOAD FLOW ANALYSIS 

To enable a load flow analysis to be performed, be it three 

phase or single phase, it is ne~essary to form a mathematical 

representation of the power system. The most successful load flow 

techniques to date are based upon the nodal admittance formulation. 

This chapter describes the formulation of the admittance parameters 

for the various three phase elements. 

A three phase power system consists of the interconnection of 

5 

a number of relatively simple physical elements such as generators, 

transformers, transmission lines and loads. However, the electrical 

characteristics of these interconnected elements are extremely 

complex. By making as many simplifying assumptions as the purpose 

of the study will allow, methods have been developed to enable 

engineers to cope with this complexity. 

The elements of the power system are inevitably unbalanced 

and some unbalance will also exist in the system loading and generat­

ion. To study features associated with this unbalance it is necessary 

to perform a three phase load flow analysis. In this analysis each 

phase is independently modelled as are all inductive and capacitive 

mutual couplings between phases and between circuits. No trans­

formations yield any simplification to this analysis although 

symmetrical components are a valuable aid in the interpretation of 

results. 



For many studies on the electrical power system the unbalance 

itself is not of any particular interest and may be ignored. The 

parameters of the system are then assumed to be balanced as are 

6 

the system loads and generation. In such cases a steady state 

analysis is possj~le with a single phase (positive sequence) load 

flow. The system modelling for the single phase case is relatively 

simple and is well documented and will not be discussed further 

here. 

This chapter firstly reviews the relationship of the well 

known symmetrical component theory to the three phase system modell­

ing. The development of models for the various three phase elements 

is discussed and a systematic procedure for the formation of the 

system admittance matrix is developed. 

2.2 SYMMETRICAL COMPONENTS 

The symmetrical component transformation is a general math­

ematical technique developed by Fortescue whereby any "system of 

n vectors or quantities may be resolved, when n is prime, into n 

different symmetrical n phase systems." (7) Any set of three phase 

voltages or currents may therefore be transformed into three 

symmetrical systems of three vectors each. This, in itself, would 

not commend the method. However, consider the equation describing 

the system operation, 

where abc indicates the actual phase quantities. The transformed 

quantities (indicated by subscripts 012 for the zero, positive and 

negative sequences respectively) are related to the phase quantities 

by: 
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(2.2) 

[ ] [T ]-1 [ ] 
I012 = s Iahc 

where [T ] is the transformation matrix. 
s 

Substitution into (2.1) yields: 

The transformed voltages and currents are related by the 

transformed admittance matrix, 

= [T ]-1 [Yah ][T ] 
s c s 

If the original phase admittance matrix [Y
abc

] is in its' 

natural unbalanced state then the transformed admittance matrix 

(2.3) 

(2.4) 

(2.5) 

[YOl2 ] is full. Therefore current flow of one sequence will give 

rise to voltages of all sequences, i.e. the equivalent circuits for 

the sequence networks are mutually coupled. The problem of analysis 

is no simpler in sequence components than in the original phase 

components and, in this case, symmetrical components should not be 

used. 

However, when the unbalance is small, or of no particular 

interest, then it may be ignored and [Y
abc

] becomes, upon transform-

ation, a diagonal matrix. That is, the mutually coupled three phase 

system has been replaced by three uncoupled symmetrical systems. In 

addition, if the generation and loading are balanced, or may be 

assumed balanced, then only one system, the positive sequence system, 

has any current flow and the other two sequences may be ignored. 

This is essentially the situation with the single phase load flow. 



2.3 NETWORK SUBDIVISION 

To enable the system to be modelled in a systematic, logical 

and convenient manner the system must be subdivided into more 

manageable units. These units, called subsystems, are defined as 

8 

fo llows : A SUBSYSTEM is the uni t in to whi ch any part of the system 

may be divided such that no subsystem has any mutual couplings 

between its const~tuent branches and those of the rest of the system. 

This definition ensures that the subsystems may be combined in an 

extremely straightforward manner. 

The system is first subdivided into the most convenient sub­

systems consistent with the definition above. An example o£ this 

process is illustrated in Appendix 1. 

The smallest unit of a subsystem is a single network element. 

In the following sections the nodal admittance matrix representation 

of all common elements is derived. More complex subsystems must be 

defined because of mutual coupling between three phase system 

elements and because many connections between busbars consist of a 

number of elements in series. Methods are presented for deriving 

the nodal admittance matrix for these subsystems. 

The subsystem unit is retained for input data organisation. 

The data for any subsystem is input as a complete unit, the subsystem 

admittance matrix is formulated and stored and then all subsystems 

are combined to form the total system admittance matrix. 

2.4 SYNCHRONOUS MACHINE MODELLING FOR LOAD FLOW ANALYSIS 

Synchronous machines are designed for maximum symmetry of the 

phase windings and are therefore adequately modelled by their 

sequence parameters. The sequence impedances contain all the inform~ 

ation that is required to analyse the steady state unbalanced 



behaviour of the synchronous machine. 

The admittance representation of the generator in phase 

components may be derived from the sequences impedances 

(ZO,Zl,Z2)· The generator sequence impedance matrix [Zgen]012 

is first transformed to phase components.[Z Jab is given by, gen c 

* 

-1 
[Z Jab = [T ][z ]012[T] gen c s gen s 

* = [T ][Z ]012[T] s gen s 

where [T] is the complex conjugate of matrix [T ], where 
s s 

1 

[T ]::::: 1 
s 

1 

1 

2 
a 

a 

and a is the complex operator 

1 

a 

2 
a 

j21T /3 
e . 

The phase component impedance matrix is thus, 

9 

(2.6) 

(2.7) 

(2.8) 

Zo + Zl + Z2 Zo + aZ
l 

+ a2Z Zo + a2Z + aZ
2 2 1 

[Z ] ::::: 
gen abc Zo + a2Z 

1 
+aZ 

2 Zo + Zl + Z2 Zo + aZ
l 

+ a2Z 
1 

Zo + aZl + a2Z Zo + a2Z + aZ
2 Zo + Zl + Z2 2 1 

(2.9) 

The phase component model of the generator is illustrated in 

Fig 2.1 (a). The machine excitation acts symmetrically on the three 

phases and the voltages at the internal or excitation busbar form a 

balanced three phase set, i.e., 

a b C 

Ek =: Ek ::::: Ek (2.10 ) 

and 

ea e~ + 
21T eC _ 21T 

::::: 3= k k 3 
(2.11) 
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a 

b 

c 
I I 

® cb 
v'r? 

l 
vC: 

l v9 
L 

(a) Phase component representation 

V. term. { 

E +ve sequence 

----il V.term2 

-ve sequence 

-, 
2:0 

....-------<~ v'termo 

zero sequence 

777F 

(b) ::;YILllletrical component reoresentation 

Fig. 2.1 Synchronous Machine Models 



For three phase load flow the voltage regulator must be 

accurately modelled as it influences the machine operation under 

unbalanced conditions. The voltage regulator monitors the 

terminal voltages of the machine and controls the excitation volt­

age according to some predetermined function of i~e terminal volt­

ages. Some common examples are: 

(i) The v.oltage on one phase is maintained. 

(ii) One phase to phase voltage is maintained. 

In general the voltage regulator constraint may be written as some 

function of the terminal voltages. 

11 

Before proceeding further it is instructive to consider the 

generator modelling from a symmetrical component frame of reference. 

The sequence network model of th~ generator is illustrated in 

Fig. 2.1 (b). As the machine excitation acts symmetrically on the 

three phases positive sequence voltages only are present at the 

internal busbar. 

The influence of the generator upon the unbalanced system is 

known if the voltages at the terminal busbar are known. In terms of 

sequence voltages, the positive sequence voltage may be obtained 

from the excitation and the positive sequence voltage drop caused by 

the flow of positive sequence currents through the positive sequence 

reactance. The negative and zero sequence voltages are derived from 

the flow of their respective currents through their respective 

impedances. It is important to note that the negative and zero 

sequence voltages are not influenced by the excitation or positive 

sequence impedance. 

There are infinite combinations of machine excitation and 

machine positive sequence reactance which will satisfy the conditions 

at the machine terminals and give the correct positive sequence volt-
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age. Whenever the machine excitation must be known (as in fault 

studies) the actual positive sequence impedance must be used. For 

load flow however, the excitation is not of any particular interest 

and the positive sequence impedance may be arbitrarily assigned to 

any value. This ·feature has been recognised by previous researchers (8) 

for load flow studies on unbalanced systems when the system has 

been modelled usi~g coupled sequence networks. The positive sequence 

impedance is usually set to zero for these studies. With regard to 

three phase load flow in phase eo-ordinates, the practice of setting 

the positive sequence reactance to a small value is equally valid. 

The advantage to the three phase load flow is that the excitation 

voltage is reduced to the same order as the usual system voltages 

and there is a corresponding reduction in the angle between the 

internal busbar and the terminal busbar, Both these features are 

important when a fast decoupled algorithm is used • 

. Therefore, in forming the phase component generator model using 

equation (2.9), an arbitrary value may be used for Zl but the actual 

values are used for Zo and Z2' There is no loss of relevant 

information as the influence of the generator upon the unbalanced 

system is accurately modelled, 

The nodal admittance matrix, relating the injected currents at 

the generator busbars to their nodal voltages, is given by the inverse 

of the series impedance matrix derived from equation (2.9). 

2.5 TRANSMISSION LINES 

Transmission line parameters are calculated from the line 

geometrical characteristics. The calculated parameters are expressed 

as a series impedance and shunt admittance per unit length of line, 
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The effect of ground currents and earth wires are included in the 

(7 9 10) 
calculation of these parameters " . 

The usual single phase transmission line model represents the 

electrically short line by a nominal-n network. Half of the total 

shunt admittance is connected to earth at each terminal and the 

series impedance for the total line is placed in series between the 

busbars as shown in Fig. 2.2. 

Y/2 

z s 

Y/2 

Fig. 2.2 Nominal-n Model: Single Phase Transmission Line 

The same nominal-n model can be used in the three phase case. 

The process by which Z and Y become 3 x 3 matrix quantities is 
s 

illustrated in Fig. 2.3. In part (i) of the figure the full circuit 

representation is shown. This consists of three nominal-n circuits 

(one for each phase) which are coupled together. The mutual coupling 

is lumped in a similar manner to the other parameters. Parts (ii) 

and (iii) show alternative and more concise circuit representations 

where [Z ] and [Y] are written as 3 x 3 matrices and correspondin9 
s 

three phase compound coils. 

K (11) 
ron refers to these matrix quantities as compound tensors 

and states 
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Fig. 2.3 llominal 'IT Hodel: Three phase transmission line 
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"the whole impedance terminology of ordinary networks can 
be transferred to compound networks by replacing ordinary 
numbers with appropriate tensors" and also the "theories, 
laws, equations etc •.• for ordinary networks are all valid 
for compound networks by simply replacing single quantities 
by appropriate tensors and single tensors by appropriate 
compound tensors." 

The representation of three phase elements by the use of 

compound coils will be used extensively. The formation of both the 

primitive and actual network admittance matrices using three phase 

compound coils is covered in detail in Appendix 2. The admittance 

matrix for the three phase element can now be written. (This is 

done following the rules which are developed in Appendix 2 for the 

formation of the admittance matrix using compound coils.) 

The element admittance matrix relates the nodal injected 

currents illustrated in Fig.2.3 (~ii) to the nodal voltages by the 

equation, 

. [r. ] 
~ 

[r, ] 
K 

6 x 1 

[Z]-l + [Y]j2 

:::: 

[v. ] 
J.. 

(2.12 ) 

[Z]-l + [y]j2 

6 x 6 6 x 1 

This forms the element admittance matrix representation for 

the short line between busbars i and k in terms of 3 x 3 matrix 

quanti ties. 

This representation is often not accurate enough for electrically 

long lines. The physical length at which a line is no longer 

electrically short depends on the wavelength, therefore if harmonic 

frequencies are being considered, this physical length may be quite 

11 ' . . l' d t' h (12,13) sma . USJ..ng transmJ..ssJ..on J..ne an wave propaga J..on t eory 

more exact models may be derived. However, for normal mains frequency 

analysis, it is considered sufficient to model a long line as a 
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series of 2 or 3 nominal-~ sections. If many sections are taken 

an exact representation is approached. 

2.6 TRANSFORMER MODELLING 

2,6.1 Introduction 

Traditionally, three phase transformers have been represented 

by their equivalent sequence networks. The inherent assumption, 

that the transformer is a balanced three phase device, is justified 

in the majority of practical situations. More recently, however, 

(9 14 15) 
methods have been developed ' I to enable all three phase 

transformer connections to be accurately modelled in phase coordinates. 

In phase coordinates no assumptions are necessary although the 

physically justifiable assumptio~s are usually introduced in order 

to simplify the modelling. The basis of the derivation of the 

phase coordinate transformer models, is the primitive admittance 

matrix which is derived from the primitive or unconnected network 

for the transformer windings. The method of linear transformation 

(Appendix 2) enables the admittance matrix of the actual connected 

network to be found. 

This section describes the primitive admittance matrix for a 

basic two winding three phase transformer in the most general case. 

The usual simplifying assumptions are introduced and models for the 

common connections are derived. 

2.6.2 Primitive Admittance Model of Three Phase Transformers 

Many three phase transformers are wound on a common core and all 

windings are therefore coupled to all other windings. Therefore, in 

general, a basic two winding three phase transformer has a primitive 

or unconnected netwon< consisting of six coupled coils. If a 



it --- ..... --­v. 

(a) Diagramatic representation of tvlO winding transformer 

(b) Six coupled coil primi ti ve neh'lOrk 

NOTE: the dotted coupling represents parasitic coupling 
between phases. 

Fig. 2.4 Primitive Network of ~o Winding Transformer 

17 
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tertiary winding is also present the primitive network consists of 

nine coupled coils. The basic two winding transformer only will be 

considered; the addition of further windings is a simple but 

cumbersome extension of the method. 

The primitive network, Fig. 2.4, can be represented by the 

primitive admittance matrix which has the general form of equation 

2.13. 

i
l Yll Y12 Y13 Y14 Y15 Y16 VI 

i2 Y21 Y22 Y23 Y24 Y25 Y26 
v

2 

i3 Y31 Y32 Y33 Y34 Y35 Y36 v3 

= 
i4 Y41 Y 42 Y 43 Y44 Y45 Y46 

v
4 

i5 YSI YS2 YS3 YS4 YSS YS6 Vs 

.i
6 Y61 Y62 Y63 Y64 Y65 Y66 v6 

Assuming the reciprocal nature of the mutual couplings in 

equation 2.13, twenty one short circuit measurements would be 

necessary to complete the admittance matrix. Such a detailed 

representation is seldom required. 

(2.13 ) 

By assuming the flux paths .to be symmetrically distributed 

between all windings then equation 2.13 may be simplified to 

equation 2.14. 
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i
l yp y' 

m 
y' 

m 
-y 

m 
y" 

m 
y" 

m VI 

--
i2 y' 

m yp y' 
m 

y" 
m -Ym y" 

m 
v

2 

--
i3 y' 

m 
y' 

m yp y" 
m 

y" 
m 

-y 
m v3 

= (2.14) 

i4 -Ym y" 
m 

y" 
m Ys 

yell ym 
m 

v
4 

--
is y" 

m 
-y 

m 
y" 

m 
ylIV 

m Ys y'" 
m Vs 

i6 y" 
m 

yll 
m 

-y 
m 

yin 
m 

y'" 
m Ys v6 

where y' is the mutual admittance between primary coils. m 

y" _ is the mutual admittance between primary and secondary m 

coils on different cores. 

ylll is the mutual admittance between se condary coi Is • m 

For three separate single phase units all the primed values are 

effectively zero. In three phase units the primed values, 

representing parasitic inter-phase coupling, do have a noticeable 

effect. This effect can be interpreted through the symmetrical 

component equivalent circuits as discussed in detail in references 

(9) and (14). 

Normally, the only parameters which are available are from the 

standard short circuit and open circuit transformer tests. These give 

the leakage impedance (Z ) and the magnetising admittance (Y ) for sc oc 

each pair of primary and secondary windings. The magnetising 

admittances are conveniently removed from the transformer model; if 

required these may be added later as small shunt connected admittances 

at the transformer terminals~lS,16) 
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In order to model three phase transformers it is necessary 

to derive the primitive admittance matrix in terms of the standard 

parameters. Equation 2.14, \l7i th all primed values ignored, forms 

the primitive admittance matrix. The coupling between coils is 

modelled as for a single phase unit, with an appropriate allowance 

for both primary and secondary off nominal tap ratios. An 

equivalent p.u. r~presentation is shown in Fig. 2.5 . 

f 

Fig. 2.5 

f 
Vi 

• I 
l 

1 
v" 

Equivalent Circuit in p.u. for Coupled Transformer 
Windings 

i 
Vs 

Primary and secondary off nominal tap ratios are designated 

20 

a and S respectively. Solving for the terminal currents in terms of 

the terminal voltages yields: 

i 
p 

i 
s 

= 

y 
la2 

y 
- laB 

y 
- laS 

y 
IS2 v 

s 

(2.15) 

The primitive network and corresponding primitive admittance· 

matrix can be derived in terms of equation 2.15. Allowing for 

independent parameters for each coupled winding the primitive 

network of Fig. 2.6 (i) is applicable. The primitive admittance 



where Y 
p. 

l 

2 = Y/a " Y 
l s. 

J 

(i) Primitive network 

l. YP, 

Ll Yp1. 

l:~ YP;, 

l4 M 
4\ 

L!:I M.r2 
l6 M63 

Ys s 

M\4-

M 
:l.!O 

Ys .... 

YSs-

(ii) Primitive admittance matrix· 
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VI 

Va 

M3& V'J, 
(2.16) 

V4 

Vs 

YS,b V6 

Fig. 2.6 Primitive Network of Two I'Jinding Transformer in Terms 

of Standard Parameters 



22 

matrix (equation 2.16 in Fig. 2.6 (ii)) p forms the basis for 

deriving the models of the common transformer connections. 

2.6.3 Models for Common Transformer Connections 

The network admittance matrix for any two winding three phase 

transformer can now be formed by the method of linear transformation'. 

This method is described in Appendix 2. 

As an example consider the formation of the admittance matrix 

for the star-star connection with both neutrals solidly earthed. 

This example is chosen as it is the simplest computationally. 

The connection matrix is derived from consideration of the 

actual connected network. For the star-star transformer this is 

illustrated in Fig. 2.7. The connection matrix [C] relating the 

branch voltages (i.e. voltages of the primitive network) to the node 

voltages (i.e. voltages of the actual network) is given by equation 

2.17 which is illustrated in Fig. 2.8. 

The nodal admittance matrix [Y]NODE is given by 

t 
= [C] [Y]PRIM [C] (2. 18) 

Substituting for [C] yields, 

(2.19 ) 

as the connection matrix for this example is a 6 x 6 identity matrix. 

The models for the other common connections can be derived 

following a similar procedure. A further example of the star-g/delta 

connection is given in Appendix 3. 

In general, any two winding three phase transformer may be 

represented using two coupled compound coils. The network and 

admittance matrix for this representation is illustrated in Fig. 2.9. 
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Fig. 2.7 Connection Diagram for star-Star Transformer 

VI I ~ 

Vl, , V'b 

V3 I '>Ie 
(2.17) 

V4 I Va 
F---

V'5P I Vb 

V6 I Vc. 

Fig. 2.8 The Connection Matrix for Star-Star Transformer 
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Fig. 2.9 Two winding three phase transformer as two 

coupled compound coils. 

It should be noted that, 
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[y ]:: [y ]T 
sp ps (2.20) 

as the coupling between the two compound coils is bilateral. 

Often, because more detailed information is not required, the 

parameters of all three phases are assumed balanced. In this case 

(9 ) 
the common three phase connections are found to be modelled by 

three basic submatrices. 

The submatrices, [y ], [Y ] etc., are given in Table 2.1 
pp ps 

for the common connections. 

Finally these submatrices must be modified to account for 

off nominal tap ratios as follows: 



Table 2.1 

TRANSF. 

BUS P 

Wye-G 

Wye-G 

Wye-G 

Wye 

Wye 

DELTA 

where 

Characteristic submatrices used in forming the 

transformer admittance matrices 

CONNECTION 

BUS S 

Wye-G 

Wye 

DELTA 

Wye 

DELTA 

DELTA 

Y. 
J. 

Y.. = 
J.J. 

Y ... = 
J. J.J. 

SELF ADMITTANCE 

Y Y 
pp ss 

y. y. 
1 1 

YU/3' YU/3 

Y. Y .. 
1 11 

Yii/ 3 Yii/ 3 

Yii/ 3 
Y .. 

J.J. 

Y .. Y .. 
J.l J.l 

Y
t 

Y
t 

2Yt -Y 
t 

-y 2Yt t 

-Y 
t 

-Y 
t 

-Y 
t 

Y
t 

-Y 
t 

'I"t 

MUTUAL ADMITTANCE 

Y yT 
ps' sp 

-Yo 
1 

-Yii/3 

+Y ... 
J.J.l 

-Yii / 3 

Y ... 
J.l1 

-Y .. 
J.J. 

Yt 

-Y 
t 

-Y 
t 

2Yt 

Y
t 

-Y 
t 
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(i) Divide the self admittance of the primary by a 2 . 

(H) Divide the self admittance of the secondary by /3 2 . 

(iii) Divide the mutual admittance matrices by (as). 

It should be noted that in the p.u. system a delta winding has an 

off nominal tap of 13. 

For transformers with ungrounded Wye connections, or ~vith 

neutrals connecte~ through an impedance, an extra coil is added 

to the primitive network for each unearthed neutral and the 

primitive admittance matrix increases in dimension. By noting 

that the injected current in the neutral is zero, these extra 

terms can be eliminated from the connected network admittance 

. (14) 
matr~x • 

Once the admittance matrix has been formed for a particular 

connection it represents a simple subsystem composed of the two 

. 
busbars interconnected by the transformer. 

2 . 7 SHUNT ELEMENTS 

Shunt reactors and capacitors are used in a power system for 

reactive power control. The data for these elements are usually 

given in terms of their rated MVA and rated kV, the equivalent 

phase admittance in p.u. is calculated from this data. 

The admittance matrix for shunt elements is usually diagonal 

as there is normally no coupling between the components of each 

phase. 

This matrix is then incorporated directly into the system 

admittance matrix, contributing only to the self admittance of the 

particular bus. It represents the simplest subsystem, being 

composed of only one busbar. 
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Fig. 2.10 Re~resentation of a Shunt Capacitor Bank 
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A three phase capacitor bank is illustrated in Fig. 2.10 as 

an example. 

2.8 MUTUALLY COUPLED THREE PHASE ELEMENTS 

2.8.1 Mutually Coupled Three Phase Lines 

Significant coupling exists between some three phase system 

elements. Transmission lines will be considered here as they are 

a common example. 

\.<]hen transmission lines occupy the same right of way for 

a considerable length, the electrostatic and electromagnetic 

coupling between those lines must be considered. 

In the simplest case of two mutually coupled three phase 

lines the two coupled lines are considered to form one subsystem 

composed of four system busbars. The coupled lines are illustrated 

in Fig. 2.11. 

0 
Y 11 ® 

i t LINE 

[VA] eVe] 

L J 
Yc Yse. 

® °1 
65 

Y2.2. t LINE 2 

[VB] [Vo] 

L J 

Fig. 2.11 Mutually Coupled Transrrission Lines 
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In Fig. 2.11 each coil is a 3 x 3 compound coil and all 

voltages and currents are 3 x I vectors. 

The coupled series elements represent the electromagnetic 

coupling while the coupled shunt elements represent the capacitive 

or electrostatic coupling. These coupled parameters are lumped in 

a similar way to the standard line parameters discussed in section 

2.5. 

With the admittances labelled as in Fig. 2.11 and applying the 

rules of linear transformation for compound coils (see Appendix 2) 

the admittance matrix for the subsystem is defined as follows: 

I 
A Yll + Y33 Yl2 + Y34 -Yll -Y12 

I 
B 

T T T 
Y12 + Y34 Y22 + Y24 · -Y12 -Y22 

= 

Ie -Yll -Y12 Yll + YS5 Y12 + Y56 

ID 
T T 

-Y12 -Y22 Yl2 + 
T 

YS6 Y22 + Y66 

12 x 1 12 x 12 12 x 1 

(2.21) 

It is assumed here that the mutual coupling is bilateral. 

T 
Therefore Y21 = Y12 etc. 

The subsystem may be redrawn as Fig. 2.12. The pairs of 

coupled 3 x 3 compound coils are now represented as a 6 x 6 compound 

coil. The matrix representation is also shown. Following this 

representation and the labelling of the admittance blocks in the 

figure, the admittance matrix may be written in terms of the 6 x 6 

compound coils as, 



...... -...•. -.-

(i) 6,X § matrix representation 

(ii) 6 x 6 compound coil_ representation 

Fig. 2.12 6 x 6 Compound Coil Representation of Two Coupled 

Three Phase Lines 
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[::] [z ]-1 + [Y
sl

] -[z ]-1 
s s 

1-----1 = (2.22) 

-[z r 1 [z ]-1 + [Y
s2

] 
s s 

12 x 1 12 x 12 12 x 1 

This is identical to equat~on 2.21 with the appropriate matrix 

partitioning. 

The representation of Fig. 2.12 is more concise and the format-

ion of equation 2.22 from this representation is straight forward, 

being exactly similar to that which results from the use of 3 x 3 

compound coils for the normal single three phase line as discussed 

in section 2.5. 

The data which must be input to the programme, to enable 

coupled lines to be treated in a similar manner to single lines, 

is the series impedance and shunt admittance matrices. These 

matrices are of order 3 x 3 for a single line, 6 x 6 for two coupled 

lines, 9 x 9 for three and 12 x 12 for four coupled lines. 

Once the matrices [Z ] and [Y ] are available, the admittance 
s s 

matrix for the subsystem is formed by application of equation 2.22. 

When all the busbars of the coupled lines are distinct, the 

subsystem may be combined directly into the system admittance matrix. 

However, if the busbars are not distinct then the admittance matrix 

as derived from equation 2.22 must be modified. This is considered 

in the following section. 
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2.8.2 Consideration of Terminal Connections 

The admittance matrix as derived above must be reduced if 

there are different elements in the subsystem connected to the 

same busbar. As an example consider two parallel transmission 

lines illustrated in Fig. 2.13: 

BUS BAR C& -lA' la. BUSBAR@ 
~ 

AI 51 

IA'l. 1&:1 
~ ............ 

A2 B2 

Fig. 2.13 Mutually coupled parallel trans~ission lines 

The admittance matrix derived previously, related the 

currents and voltages at the four busbars AI, A2, B1 and B2. This 

relationship is given by: 

IAl VAl 

IA2 

~AlA2BlB~ 
VA2 (2.23) = 

lSI VBl 

IS2 VS2 

The nodal injected current at busbar A,(I A), is given by 

similarly 



Also from inspection of Fig. 2.23 

VA ::::: VAl ::::: VA2 

VB ::::: VBl ::::: VBl 

The required matrix equation relates the nodal injected 

currents, IA and I
B

, to the voltages at these busbars. This is 

readily derived from equation 2.23 and the conditions specified 

above. This is simply a matter. of adding appropriate rows and 

columns and yields, 

33 

:::: (2.24) 

This matrix ~ABJ is the required nodal admittance matrix for 

the subsystem. 

It should be noted that the matrix in equation 2.23 must be 

stored in full as it is required in the calculation of the 

individual line power flows (after the solution of the load flow). 

2.9 LINE SECTIONALISATION 

A line may be divided into sections to account for features 

such as the following: 

- Transposition of line conductors. 

- Change of type of supporting towers. 

Variation of soil permittivity. 

- Improvement of line representation. (Series of two 

or more equivalent TI networks.) 

- Series capacitors for line compensation. 
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Lumping of series elements not central to a particular 

study. 

An example of a line divided into a number of sections is 

shown in Fig. 2.14. 

Sechon ion 
BUS I P5 I P6 

, Seclion I tis ec.H 
PI 

Section I Section' SecHon 
I I .. 2 I 3 I 5 I I 7 

I I I , I I 
I I I 

>f 
, 

I 
I 

I I 

I' 
TRANSPOSITION SERIE~ C 

CHAtGE OF 
C.ONFIGURATION 

).pAQTO~ /I' 
SHUNT abc. 

PHASE~ ROCTOR~ ... 

Fig. 2.14 Transmission line sectionalisation 

.' The network of Fig. 2.14 is considered to form a single 

BUS 

abc. 

subsystem. The resultant admittance matrix between bus A and bus 

B may be derived by finding, for each section, the ABCD or trans-

mission parameters, then combining these by matrix mUltiplication to 

give the resuitant transmission parameters. These are then converted 

to the required admittance parameters. 

This procedure involves an extension of the usual nvo port 

network theory to multi-two-port networks. Currents and voltages 

are now matrix quantities and are defined in Fig. 2.15. The ABCD 

matrix parameters for the common sections are given in Table 2.2 

The dimensions of the parameter matrices correspond to those,of 

the section being considered, i.e. 3, 6, 9 or 12 for 1, 2, 3 or 

4 mutually coupled three phase elements respectively. All sections 
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must contain the same number of mutually coupled three phase 

elements, ensuring that all the parameter matrices are of the same 

order and that the matrix multiplications are executable. To 

illustrate this feature, consider the example of Fig. 2.16. This 

example shows the nec:!d to consider uncoupled elements as coupled 

ones with zero coupling to ensure correct dimensions for all 

matrices. 

TABLE 2.2 

ABCD PARAMETER MATRICES FOR THE COMMON SECTION TYPES 

[u] + [Z] [Yl!2 
Transmission Line 

[Y]{[u] + [Z][Y]/4} 

Transformer 

[u] 
Shunt Element 

[YSH] 

[u] 

Series Element 
[0] 

-[Z] 

-{ [u]+[Y] [Zl!2} 

[Y ]-1 
SP 

[0 ] 

-[u] 

_ [y ]-1 
SE 

-[u] 

In the table [u] is the unit matrix, [0] is a matrix of zeros, ano 

all other matrices have been defined in their respective sections. 

It should be noted that all the above matrices have dimensions 

corresponding to the number of coupled three phase elements in the 

section. 
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Fig. 2.16 Sample system to illustrate line sectionalisation 

Features of interest: 

(a) As a matter of programming convenience an ideal transformer is 
created and included in section 1. 

(b) The dotted coupling represents coupling which is zero. It is 
included to ensure correct dimensionality of all matrices. 

(c) In the p.u. system the mutual coupling between the 220 kV and 
66 kV lines is expressed to'a voltage base given by (7) the 
geometric mean of the base line-neutral voltages of the two 
parallel circuits. 

Bus B 
220kVa-----\-----.< 

220/GG kV 

Bus A 

220/GGkV 

(i) System Single Line Diagram 

BusA 
220 kV 

220/220, Bus B) ()/ t: I 

L-(JD-!-f ---1--, - ......... I-eJJ5-h 
~ . I' \ t I r 

~ I J I 

220/C;;G 
I 

I 7 
I 
I 
I Sedicn N?21 

Bus C 
Section N"3 I 

GGkV 

(ii) System redrawn to illustrate line sectionalisation. 



Once the resultant ABCD parameters have been found the 

equivalent nodal admittance matrix for the subsystem can be 

calculated from equation 2.25. 

[D] [B]-l [C] - [D] [B ]-1 [A] 
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[y] = (2.25) , 
[B] -1 _ [B]-1 [A] 

2.10 FORMING THE SYSTEM ADMITTANCE MATRIX 

It has been shown that the element (and subsystem) admittance 

matrices can be derived and manipulated efficiently if the, three 

nodes at a busbar are associated together. This association proves 

equally helpful when forming the admittance matrix for the total 

system. 

The subsystem, as defined in section 2.3, may have common 

busbars with other subsystems, but may not have mutual coupling 

terms to the branches of other subsystems. Therefore the subsystem 

admittance matrices can be combined to form the overall system 

admittance matrix as follows: 

2.11 

(a) The, self admittance of any busbar is the sum of all the 

individual self-admittance matrices at that busbar. 

(b) The mutual' admittance between any two busbars is the 

sum of the individual mutual admittance matrices from 

all the subsystems containing those two nodes. 

CONCLUSION TO CHAPTER 2 

This chapter has described the nature of three phase system 

modelling in phase co-ordinates with emphasis on the essential 

features which must be present in the input routine for any three 

phase load flow analysis. 



In contrast to single phase load flow investigations the 

complexity of three phase system modelling requires the load flow 

programmer to devote a comparable effort on the formulation of 

the system model as on the solution routine itself. 

Methods have been presented to enable the various system 

elements to be modelled in as much detail as the purpose of the 

study demands. 
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CHAPTER 3 

BASIC NmV'TON-RAPHSON SOLUTION METHOD 

3.1 PROBLEM FORMULATION 

The Newton-Raphson method is a general mathematical technique 

which enables the solution of a set of simultaneous algebraic 

equations. 

To apply the technique it is necessary to formulate n 

independent algebraic equations, F, in terms of the n varipbles, 

x, which describe the system. The solution of the problem is the 

-vector x for which the constraint equations F are all satisfied. 

For any physical system the 'minimum number of variables 

required to define the state of the system is the number of 

independent variables. For a.c. load flow problems this minimum set 

is invariably used. However, for combined a.c. and d.c. load flows 

it is often more convenient to use an enlarged set of variables. 

Once the equations have been formulated as, 

F(x) ;::: 0 (3.1) 

the Newton-Raphson process may be applied. 

3.2 NEWTON-RAPHSON SOLUTION METHOD 

The Newton-Raphson method is an iterative procedure which 

enables the vector (x), 1tlhich satisfies equation 3.1, to 'be found. 

The method is presented here with reference to a single, equation and 

single variable. The problem is to find x such that, 

f(x) o (3.2) 
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Let ~ be an approximation to the solution, with an error 

A P . ., (17) 
uX- from the solut~on, at any ~terat~on p . Then, 

f(~ + f1~) = 0 (3.3) 

• (') i h (18). Id Expand~ng 3.3 by Taylor s T eorem y~e s, 

f(~ + fj.~) = 0 

= f(~) + (fj.~) 1 f(iP) + (fj.~)2 f(xP) + •.• 

(3.4) 

If the estimate ~ is near the solution value, fj.~ will be 

small and all terms where fj.~ is raised to a power greater than I 

(19) 
may be neglected . Hence, 

or 

A new value for the variable is then obtained from 

Equation (3.7 ) may be wri tten as 
,b ? 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

The method is readily extended to a set of N equations in N 

unknowns. J becomes the square jacobian matrix of first order 

partial differentials of the functions F(x). Elements of [J] are 

defined by, 
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J
km 

= (3.9) 

The jacobian represents the slopes of the tangent hyperplanes 

h 'ch ' th ,-(-) h' t' ,(20) w ~ approx~mate e funct~on F x at eac ~tera ~on po~nt • In 

the multivariG~le case the method involves the selection of estimates 

for all variables (iP) and then evaluation of, 

followed by solution of, 

for ~iP. A new and hopefully better estimate of the solution 

vector is then obtained from, 

-The process continues until the equations F can be considered to 

be solved. 

A large number of derivations from the basic method have 

been applied to the particular problem of load flow analysis and 

many of these methods have proved more successful than the 

general technique described here. However, these methods use the 

same problem formulation as the standard Newton-Raphson method and 

are, in general, derived from the equations presented above. 

3.3 CONVERGENCE PROPERTIES 

The Newton-Raphson algorithm will converge if; the functions 

have continuous first derivatives in the neighbourhood of the 

1 ' (21) th b' .. . I d th ' . . 1 so ut~on , e Jaco ~an matr~x ~s non-Slngu ar, an e ~n~t~a 
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approximations of x are close to the actual solutions. However 

the method is sensitive to the behaviours of the functions F[x] 

d h t th ' fl' (20) an ence 0 e~r ormu at~on . The more linear they are, the 

more rapidly and reliably Newton's method converges. Non-smoothness, 

i.e. humps, in anyone of the functions in the region of interest, 

can cause convergence delays, total failure or misdirection to a 

non-useful solution. 
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CHAPTER 4 

THREE PHASE FAST DECOUPLED LOAD FLOW 

FOR A.C. SYSTEMS. 

4. 1 INTRODUCTION 

~vith the increasing use of long untransposed high voltage 

transmission lines there has be€;!n a corresponding increased interest 

in the analysis of power system unbalance. . (22-25) Early techn~ques 

for analysing the unbalance were restricted to the case of. isolated 

unbalanced lines operating from known terminal conditions. In 

order to investigate the unbalanced operation of an interconnected 

system, including the influence of any significant load unbalance, 

;t . th h 1 d fl l' (8,26,27,28) ~ ~s necessary to perform a ree p ase oa ow ana ys~s . 

The storage and computational requirements of a three phase 

load flow analysis are greater than those of the corresponding 

single phase case. The need for efficient algorithms is therefore 

significant even though, in contrast to single phase analysis, the 

three phase load flow is likely to remain a planning, and not an 

operational, exercise. 

. (20) 
Of the numerous load flow techniques wh~ch have been proposed , 

. (29) 
the general Newton-Raphson algor~thm ,combined with efficient 

programming techniques has proved the most successful. 

This method has been improved by the application of 'decoupling' 

t h
· (30,31,32) ec n~ques . 

. ( 30) 
The fast decoupled Newton-Raphson algor~thm 

is now widely accepted as the best general load flow method available 

and is currently being applied to many associated povler system 

( 33) 
problems . 
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A review of the single phase load flow problem and the 

application of the Newton-Raphson technique to its solution, is 

presented in Appendix 4. Also in the Appendix, the single phase 

fast decoupled algorithm, as developed by Stott(30) $ is derived from 

the Newton-Raphson formulation. This derivation forms the basis 

upon which the three phase fast decoupled algorithm is developed. 

The formulation of the three phase load flow problem is signif-

icantly different to the single phase case. Three phase line and 

transformer models are more complex than the single phase ones. 

Moreover, the three phase load flow includes detailed representation 

of the generators as they have considerable influence on the 

system unbalance. The inclusion of the generators creates a need 

to depart from the usual load flow specification of busbar types. 

It is therefore necessary to examine the formulation of the load 

flow problem in some detail. 

A basic belief which influenced the derivation of the three 

phase load flow algorithm was that as single phase and three phase 

load flows are solving the same physical system, the three phase 

representation simply being more detailed, then the behaviour of the 

algorithms adopted for a solution of the system equations should be 

basically similar in both cases. This has been reinforced by the 

results obtained. 

This chapter describes the formulation of the three phase 

load flow problem and the derivation of a fast de coup led algorithm 

for its solution. The convergence properties are investigated and 

compared with those of the single phase algorithm. A concise 

( 3) 
summary of this chapter is contained in a paper published in the 

I.E.E. and reproduced in Appendix 5. 



4.2 NaI'ATION 

To enable three phase vector and matrix'elements to be clearly 

and unambiguously identified a system of superscripts and subscripts 

is required. Three phase system notation is complex and clearly 

defined bus numbering and scripting is essential for the mathematical 

statement of the load flow problem and for the subsequent development 

of a solution technique. 

The a.c. system is considered to have a total of n busbars 

where; 

n == nb + ng 

and nb is the number of actual system busbars 

ng is the number of synchronous machines. 

Subscripts i, j etc refer to system busbars as shown in the 

follmV'ing examples: 

i = I, nb identifies all actual system busbars. 

ie. all load busbars and all generator 

terminal busbars. 

i = nb + l, nb + ng - 1 identifies all generator 

i = nb + ng 

internal busbars with the exception of 

the slack machine. 

identifies the internal busbar at the 

slack machine. 

In addition the following subscripts are used as an aid to 

clarity; 

reg - refers to a voltage regulator 

int refers to an internal busbar at a generator 

gen - refers to a generator. 
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Superscripts p,m identify the three phases at a particular busbar. 

4.3 FORMULATION OF THE THREE PHASE LOAD FLOW PROBLEM 

The object of the three phase load flow is to find the state 

of the three phase power system under the specified conditions of 

load, generation and system configuration. 

The set of ~ariables required to define the operation of the 

three phase system is similar to that which is required for the 

usual single phase load flow with the exception of the variables 

associated with the description of the generator busbars. A 

polar co-ordinate representation is used throughout this develop-

ment. 

The generator model, as discussed in section 2.4, includes a 

balanced set of internal (excitation) voltages acting behind the 

synchronous impedances. The voltage regulator controls the 

magnitude of the internal voltages according to some function of the 

three terminal voltages. In addition, the total real power output 

from each generator will be specified although the distribution 

amongst the three phases will not be known. 

The following variables form a minimum and sufficient set to 

define the operating state of the three phase system under steady 

state operation: 

- The slack generator internal busbar voltage magnitude 

V. t' where j = nb + ng. (The angle 8. . is taken as a 
l.n J l.nt J 

reference. ) 

- The internal busbar voltage magnitudes V. . and angles 
1.nt J 

8. t' at all other generators. ie j = nb + 1, nb + ng - 1 
l.n J 

- The three voltage magnitudes (v.
p

) and angles (8. P ) at every 
1. 1. 



load busbar in the system ie. i = l,nb and p = 1,3. 

Only two variables are associated with each generator 

internal busbar as all three phase voltages are balanced and 

symmetrical. There is no justification for retaining the 

redundant voltages and angles as variables for the solution of 

the load flow. However, for ease of programming these are retained 

as variables for the calculation of the real and reactive power 

mismatches. 
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A knowledge of all the variables listed above completely 

defines the steady state operation of the three phase system. In 

order to solve for these state variables using a Newton-Raphson 

based technique it is necessary to formulate a similar number of 

independent equations. These equations are derived from the 

specified operating conditions, ie. from apriori knowledge about the 

system operation. 

The specified three phase system conditions may be summarised 

as: 

(i) The individual phase real and reactive power loading 

at every system busbar. 

(ii) The voltage regulator specification for every 

synchronous machine. 

(iii) The total real pow~r generation of each synchronous 

machine, with the exception of the slack machine. 

The usual load flow specification of a slack machine is 

applicable to the three phase load flow. 
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4.3.1 Derivation of Equations 

The three phase system behaviour is described by, 

[r] - [y][V] ::::: 0 (4.1) 

where the system admittance matrix [y], as developed in chapter 2, 

represents each phase independently and models all inductive and 

capacitive mutual. couplin~s between phases and between circuits. 

The mathematical statement of the specified conditions 

is derived in terms of the system admittance matrix 

[y] == [G] + j[B] 

as follows i 

(i) For each of the three phases (p) at every load and 

generator terminal busbar (i), 

(4.2) 

and 

lIQ,P ::::: (Q ,p) sp _ Q,P 
~ ~ ~ 

n 3 pm 
(Q,P )sp V,P I I m [G

ik 
sin e pm 

~ ~ k=l m=l 
V

k ik 

_ B pm e pm] 
ik cos ik (4.3) 

where, when k refers to a generator internal busbar, 

3 
Vk = Vint k 



and 

e I = 
k 

e 2 _ 21T 
k 3 

= 
3 21T e + 

k 3 

(ii) For every generator j, 

= e. 
~ntk 

where' k is the bus number of the jth generator's 

terminal busbar. 

(iii) For every generator j, with the exception of the 

slack machine, ie. j ~ nb + ng 

(D.P ). == (P sp). _ (P ). 
gen J gen J gen J 

== (P sp). 
gen J 

B pm sin e pm] 
jk jk 
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(4.4) 

(4.5) 

where, although the summation for k is over all system 

busbars, the mutual terms Gjk and Bjk are non zero 

only when k is the terminal busbar of the jth generator. 

It should be noted that the real power which is specified for 

the generator is taken as the total real power which is leaving the 

generator internal or excitation busbar. In actual practice 

the specified quantity is the power leaving the terminal busbar .. In 

effect, the real power losses are ignored. 

The real power losses in the generators or synchronous 
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compensators are small and they have an insignificant influence 

on the system operation. If the losses are of particular interest 

they may be calculated from the sequence impedances after the 

solution of the unbalanced load flow when all generator sequence 

currents are known. 

The reason for writing the mismatch at the internal busbar 

is primarily one of conceptual simplicity and programming convenience. 

Any other method requires the real power mismatch to be written 

at busbars remote from the variable in question, that is, the 

angle at the internal busbar. In addition, inspection of equations 

(4.2) and (4.5) will show that the equations are identical' except 

for the summation over the three phases at the generator internal 

busbar. 

That is, the generator power mismatches_may be calculated in 

exactly the same way and by the same subroutines as are used for 

the power mismatches at other system busbars. This is possible as 

the generator is the only element connected to each internal busbar. 

Inspection of the jacobian submatrices derived later will show that 

this feature is retained throughout the study. In terms of 

programming, the generators present no additional complexity. 

Equations (4.2) to (4.5) form the mathematical formulation of the 

three phase load flo\.., as a set of independent algebraic equations 

in terms of the system variables. 

The solution to the load flow problem is the set of variables 

which, upon substitution, make the left hand side mismatches in 

equations (4.2) to (4.5) equal to zero. 
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4.4, FAST DECOUPLED THREE PHASE LOAD FLOW ALGORITH1-1 

The standard Newton-Raphson algorithm (chapter 3) may be 

applied to enable solution of equations (4.2) to (4.5). This 

involves successive solutions of; 

tJ.p A E I M M 

tJ.P )3 F J N M' t gen l.n 
= (4.6) 

tJ.Q C G K P tJ.V/V 

tJ.V D H L R tJ.V. t /V . t reg l.n l.n 

for the right hand side vector of variable updates. The right 

hand side matrix is the usual jacobian matrix of first order partial 

deri vati ves . 

Following decoupled single phase load flow practice (Appendix 4) 

the effects of tJ.8 on reactive power flows and tJ.V on real power flows 

ar~ ignored. Equation (4.6) may therefore be simplified by 

assigning, 

[I] = [M] = [J] = [N] = 0 

and [C] = [G) = 0 

In addition, the voltage regulator specification is assumed to be 

in terms of the terminal voltage magnitudes only and therefore, 

[D) = [H] = 0 

Equation (4.6) may be written in the decoupled form as; 

(4.7) 
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for i,k = 1,00 and j,,Q, '" I, ng - 1 (ie, excluding the slack generator), 

and 

[o~ ~ a I K :l [o~ J (4.8) 
1:1 V , L I:1Vint ,Q, /Vint,Q, reg J_ _ 

for ilk '" 1,00 and j,,Q, = I, ng (ie, including the slack generator) • 

4.4.1 Jacobian Submatrices 

To enable further developm~nt of the algorithm it is necessary 

to consider the jacobian submatrices in more detail. 

In deriving these jacobians from equations (4.2) to (4.5) it 

must be remembered that, 

V 1 2 V 3 ::: VQ, = = Vint,Q, Q, ,Q, 

e,Q, 
1 

e,Q, 
2 27T 

e,Q, 
3 27T 

e, ,Q, ::: ::: + -= 
3 3 ~nt 

when Q, refers to a generator internal busbar. The coefficients 

of matrix equation (4.7) are; 

where 

pm = vI: V
m 

[G
pm 

sin e
pm B

pm 
cos e.J?m] 

Aik ~ k ik ik ik ~k 

except 

mm mm m 2 Qm 
~k 

:: - B (Vk ) 
kk k 

- [B;k] = [Cl I:1P , /Cl em] 
gen J k 

3 

I m 
[~~ sin e

pm 
B

pm 
epm] = Vint j 

Vk cos 
p=l 

jk jk jk 
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- [Eft] :::: [a P.p /a e int t ] ~ 

3 

I p 
[~~ sin epm pm epm ] :::::: V·ttV. Bit cos 

m=l ~n ~ it it 

[a P . /a e. t n ] gen J ~n N 

where [F j t] == 0 for all j ~ Q, because the j th generator 

th has no connection' with the Q, generator's internal busbar. 

3 ( \2 \ 
[FQ,Q,] I ( .pp and == -BQ,Q, V int Q,) - eli) 

p=l 

3 3 
(Vint Q,)2[~~ sin + I I epm _ Bpm, cos epm ] 

m=l p::::::l Q,Q, Q,Q, , Q,Q, 

m~ 

The coefficients of matrix equation (4.8) are; 

whe,re 

except 

rom m 2 m 
:::::: - B (V) + Q 

kk k k 

:::::: vm [a ~V . /a Vkm] 
k reg J 

let 

where k is the terminal busbar of the jth generator 

:= 0 otherwise. 

[a ~rl.. IV. t n ] 
~ ~n N 



B
pm epm ] i.Q, cos i.Q, 

[a /:,.v ./av. to] reg J ~n N 

= 0 for all j,.Q, as the voltage regulator 

specification does not explicitly 

include the variables v. to 
~n 

Although the above expressions appear complex, their meaning and 
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derivation are similar to the usual single phase jacobian elements. 

4.4.2 Jacobian Approximations 

Approximations similar to those applied to the single phase 

load flow are applicable to the jacobian elements as follows; 

(i) at all nodes (ie all phases of all busbars) 

(ii) between connected nodes of the same phase, 

. rom 
cos e

ik 
r:::::l 1 ie 

rom 
6
ik 

is small 

and 

(iii) An additional assumption which is applicable to the 

three phase system is that the phase angle unbalance 

at any busbar will be small and hence; 

e~~r:::::l ± 120
0 

for p rf. m 

(iv) As a consequence of approximation (ii) and (iii) 

the angle between different phases of connected 



busbars will be approximately 120° * ie 

or 

and 

cos 

sin epm ~ ± 0.866 
ik 

The final approximation (iv) , which is necessary if the jacobians 

are to be approximated to constants, is the least valid of those 

listed as the cosine and sine values change rapidly with small 

changes in angle around 120 degrees. This approximation probably 

accounts for the relatively slow convergence of the unbalance at a 

busbar compared to the convergence of the average voltage magnitudes 

and angles at the busbar. 

It should be emphasised that these approximations apply to the 

jacobian elements only, they do not prejudice the accuracy of the 

solution nor do they restrict the type of problem which may be 

attempted. 

Applying approximations (i) to (iv) to the jacobians and 

substituting into equations (4.7) and (4.8) yields, 

t,p~ ['1 M
pm ml [1 '1 ~~ Vinet] t,e

m 
~ ik VkJ k 

Ul v:][1 3 
t,p V, t' MPm I pm ] M, Q, gen j V't,M'Q,V'tQ, 

~n J jk p=l ~n J J ~n ~nt 

(4.9) 

* This assumption is modified for the ± 30° phase shift inherent 
in the star~delta connection of three phase transformers. 
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and 

b.V . 
reg J 

[0 ] 

(4.10) 

where ~m' cf.m 
ik = ik sin epm 

ik 
B

pm 
ik 

cos epm 
ik 

with rom e
kk 

= 0 

rom 0 e
ik 

= 

epm 
:::::: ± 120

0 
for p ':} m. ik 

All terms in the matrix [M] are constant, being derived solely from 

the system admittance matrix. 

Matrix [M] is the same as matrix [-B] except for the off-diagonal 

terms which connect nodes of different phases. These are modified 

by allowing for the nominal 120
0 angle and also including the 

<fm . 
ik s~n epm 

ik 
terms • The similarity in structure of all jacobian 

submatrices reduces the programming complexity which is a feature 

of many three phase load flows. This uniformity has been achieved 

primarily through th~ method of implementing the three phase 

generator constraints. 

The above derivation closely parallels the single phase fast 

decoupled algorithm although this tends to become obscured by the 

added complexity of the notation. At the present stage the jacobian 

elements in equations (4.9) and (4.10) are identical except for 

those terms which involve the additional features of the generator 

modelling. 
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Equations_ (4.9) and (4.10) are then modified as follows: 

(i) The left hand side defining functions are redefined as . 

[t,p~ Iv
i ], [t,p . IV. t .] and [t,Q~ I~]. 

1. P gen J 1.n J 1. 1.. 

These functions are more linear in terms of the voltage 

magnitude [V] than are the functions [t,p] and [t,Q]. In 

both the Newton-Raphson and related constant jacobian 

methods, the reliability and convergence rate is 

improved with more linearity in the defining functions(34~ 

(ii) In equation (4.9) the remaining right hand side V terms 

are set to 1 p.u. 

(iii) In equation (4.10) I the remaining right hand side V 

terms are cancelled by the corresponding terms in the 

right hand side vector. 

This yie Ids , 

3 
M

pm I 1~~ t,eP 
ik 

m=l 
k 

3 3 3 
t,p . IV. . 

gen J 1.nt J I ~~ I I ~~ t,e int Q, 
p=l p=l m=l 

[B' ] (4.11) 

3 
t,c;l/vr: 

1. 1. ~~ I M
pm m 

t,v
k m=l H 

t,v . 
reg J 

m , 
[Ljk ] 0 t,v int Q, 

[B" ] (4.12) 
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m I m 
Recalling that (LJ'k] = CJD.V ,/'dV

k 
it is clear that if V is a 

reg J reg 

simple function of the terminal voltages then [Lv] will be a 

constant matrix. For example, the voltage regulator may hold one 

phase voltage constant (eg phase 1) or it may monitor the phase 

to phase voltage at the terminal. In the first case the equation 

is, 

D.V • 
reg J 

1 
- V 

k = 0 

and in the second case 

V ,= V
sp 

- v
k
l 

+ vk
2 

reg J gen 

for the phase to phase voltage between phases 1 and 2. In either 

case, the partial derivatives with respect to ~ will be constants. 

Therefore, both the jacobian matrices [B I] and [B"] in 

equations (4.11) and (4.12) have been approximated to constants. 

Zero diagonal elements in equation (4.12) result from the 

ordering of the equations and variables. This feature causes no 

problems if these diagonals are not used as pivots until the rest of 

the matrix has been factorised (by which time, fill in terms will 

have occurred on the diagonal). There is a minor loss of efficiency 

as a result of inhibiting the optimal ordering for the complete 

matrix. This could be avoided by a reordering of the equations, 

however, this reordering is programmatically and conceptually 

difficult and the extra complexity is not justified. 

4.4.3 Final Jacobian Approximations 

The use of equations (4.11) and (4.12) gave varied results. 

Although only a small number of systems were tested it was clear 

that the use of these equations was not satisfactory. Fortunately 
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the same systems I under the assumption of balanced conditions, had 

(35) . 
been investigated by Bodger us~ng a fast decoupled load flow 

b th . th h . th (30) d' th . . 1 [] o w~ t e standard algor~ m an w~ var~ous s~ng e B 

matrix versions. The single [B] matrix version where [B"] is 

effectively used for both jacobians, gave very similar convergence 

to the use of (4.11) and (4.12) for the three phase case. This 

feature is not un~xpected as the algorithms are similar except 

for the inclusion of the generator model. It was therefore decided 

to modify the jacobians (4.11) and (4.12) based on the reasoning 

of Stott and Alsac(30~ which proved successful in the single phase 

load flow. 

The [B i
] matrix is modified by omitting the representation 

of those elements that predominantly effect MVAR flows. The 

implementation of this general intention is not as obvious for the 

three phase system representation. The line shunt capacitance 

matrices as discussed in chapter 2, represent phase to phase as 

well as phase to earth capacitance. 

The capacitance matrix and the physical significance of the 

values is shown in Fig. 4.1 for a single three phase line. For 

capacitivelycoupled parallel lines the matrix will be 3n x 3n, 

where n is the number of lines involved; the equivalent circuit 

for the shunt capacitance will be correspondingly altered. 

From a consideration of the equivalent circuit it was decided 

that the phase to earth capacitances solely affect MVAR conditions 

while the phase to phase values affect MVAR and also MW conditions 

to some extent. Therefore, the phase to earth capacitances only. 

were removed in the formation of the [B'] matrix. 

Convergence was reliable but somewhat slow. The influence 

of the shunt capacitance matrix on r~al power flows was therefore 



C -C -c. 
cc ac -bc 

a 

C -c -C 
aa ab ac 

(i) Physical Significance of Shunt Capacitances. 

Caa -Cab ":'Cae 

-Cba ebb -Cbe 

-Cea -Ccb ece 

(ii) Capacitance ~~trix 

Fig. 4.1 Shunt capacitance matrices 
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re-examined. The single phase modelling was used as an aid to this 

re-examination. 

In single phase load flows the shunt capacitance is the 

positive sequence capacitance which is determined from both the 

phase to phase and the phase to earth capacitances of the line. 

It therefore appears that the entire shunt capacitance matrix 

predominantly affects MVAR flows only. Thus, following single 

phase fast decoupling practice, it was decided to omit the 

representation of the entire shunt capacitance matrix in the 

formulation of [BI]. The rate of real power convergence increased 

and, as a result, the number of iterations to convergence was 

approximately halved. 

With capacitively coupled three phase lines the implementation 

of this procedure requires further clarification as the interline 

capacitance influences the positive sequence shunt capacitance. 

However, the values of interline capacitances are small in 

comparison with the self capacitance of the phases and investigat­

ions have shown that it does not make any noticeable difference 

whether these values are included or not. 

Off-nominal transformer taps are straightforward except it 

should be noted that the effective tap of 13 introduced by the 

star-delta transformer connection is interpreted as a nominal tap 

and is therefore included when forming the [BI] matrix. 

A further difficulty arises from the modelling of the star-g/ 

delta transformer connection. The equivalent circuit, illustrated 

in Appendix 3, shows that large shunt admittances are effectively 

introduced into the system. Initially these were excluded from 

[EI] as for a normal shunt element; divergence resulted in all 

cases attempted. vvhen they are included in (B'] excellent 



convergence results. The most appropriate explanation is that, 

viewing the transformer as an element, then, on nominal turns ratio, 

it does not affect MVAR conditions any more than MW conditions. 

The entire transformer model, must, therefore be included in both 

[B'] and [B"]. 

with the modifications described above the two final algorithmic 

equations may be concisely written, 

l 
6.Q/V 

6.v 
reg 

(4.13) 

(4.14) 

The constant approximated Jacobians [B~] and [B~J correspond to 

fixed approximated tangent slopes to the multidimensional surfaces 

defined by the left hand side defining functions. 

The equations (4.13) and (4.14) are then solved according to 

the iteration sequence illustrated in Fig. 4.2. The solutions of 

equations (4.13) and (4.14) are carried out using sparsity 

techniques and near optimal ordering, as embodied in Zollenkopf's 

b 'f ' , ch' (36,37) h' , ~ actor~sat~on te n~que .T e spars~ty storage ~s structured 

in 3 x 3 matrix blocks, which are assumed to be full, to take full 

advantage of the inherent block structure of the three phase 

system matrices. 

The jacobian matrices in equation (4.13) and (4.14) are 

readily assembled from the system admittance matrix. Once assembled, 



Fig. 4.2 Iteration sequence for three phase 

a.c. load flow 
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they are factorised before the iteration sequence is initiated. 

The solution of each equation within the iterative procedure is 

relatively fast, consisting only of the forward reduction and 

back substitution processes. 

The three phase fast decoupled algorithm enjoys all the 

computational advantages of the single phase version when compared 

to alternative load flow algorithms. 

4.4.4 Generator Models and the Fast Decoupled Algorithm 

The derivation of the fast decoupled algorithm involves the 

use of several assumptions to enable the jacobian matrices. to be 

approximated to constants. The same assumptions have been applied 

to the excitation busbars associated with the generator model as 

are applied to the usual system busbars. The validity of the 

assumptions regarding voltage magnitudes and the angles between 

connected busbars depends upon the machine loading and positive 

sequence reactance. As discussed in section 2.4 this reactance may 

be set to any value without altering the load flow solution and 

a value may therefore be selected to give the best algorithmic 

performance. 

When the actual value of positive sequence reactance is used 

the angle across the. generator and the magnitude of the excitation 

voltage both become comparitively large under full load operation. 

Angles in excess of forty five degrees and excitation voltages 

greater than 2.0 p.u. are not uncommon. Despite this considerable 

divergence from assumed conditions l convergence is surprisingly 

good. The only convergence difficulties have occured at the slacJ<: 

generator and then only when it is modelled with a high synchronous 

reactance (1.5 p.u. on machine rating) and with greater than 70% 



full load power. Under these conditions the convergence becomes 

slow and, on increased loading, divergence may occur. All other 

system generators, under the same conditions, converge reliably 

but somewhat slowly. 

This deterioration in convergence rate may be avoided by the 

simple practice of setting the generator positive sequence 

reactance to a low value. The value is not critical and an 

arbitrary value of 0.01 p.u. has been found satisfactory in all 

cases. 

4.4.5 Starting values 

Starting values are assigned as the three phase parallel of 

flat voltage and angle values as follows: 

- All non-voltage controlled busbars are assigned 1 p.u. 

on all phases. 

- At generator terminal busbars all voltages are assigned 

values according to the voltage regulator specification. 
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- All system busbar angles are assigned, 0, -120, +120 degrees 

for the three phases respectively. 

- The generator internal voltages and angles are calculated 

from the specified real power and by assuming zero reactive 

power. For the slack machine the real power is estimated 

as the difference between total load and total generation 

plus 8% of the total load to allow for losses. 

For cases where convergence is excessively slow or difficult 

it is possible to use the results of a single phase load flow to 

establish starting values. The values will, under normal steady 

state unbalance, provide excellent estimates for all voltages and 

angles including generator internal conditions which are calculated 
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from the single phase real and reactive power generations. 

Moreover, as a three phaSe iteration is more costly than a 

single phase iteration, the overall cost of all studies will often 

be reduced by the use of single phase starting values. In practice 

therefore it is recommended that a single phase load flow is used 

for starting values for all cases. Although not necessary this will 

often provide more efficient overall convergence and it will also 

enable the more obvious data errors to be detected at an early 

stage. 

For the purpose of investigating the load flow performance 

flat voltage and angle values will be used throughout. 

4.5 PERFORMANCE OF THE ALGORITHM 

4.5.1 Introduction 

Exhaustive testing of the three phase load flow algorithm with 

a large number of practical systems is difficult owing to the 

unavailability of reliable data. Instead, this section attempts 

to identify and study those features which influence the convergence 

with particular reference to several small to medium sized test 

systems. General conclusions are then inferred from these results. 

Considerable justification for this course of action is provided 

by the fact that, under balanced conditions, the performance 

of the three phase fast decoupled load flow is virtually identical 

to that of the standard single phase fast decoupled load flow. 

The performance of the three phase algorithm, under both 

balanced and unbalanced conditions, is examined in the following 

sections. vJhere applicable I comparisons are made with the 

performance of the single phase fast decoupled algorithm. 



4.5.2 Performance under Balanced Conditions 

A symmetrical three phase system, operating with balanced 

loading, is accurately modelled by the positive sequence system 

and either a three phase or a single phase load flow may be used. 

Under these conditions it is possible to compare the three 

phase and single phase fast decoupled algorithms. 

For the three phase system all transmission lines are 

represented by balanced full 3 x 3 matrices. All transformers are 

modelled with balanced parameters on all phases and all generators 

are modelled by their phase parameter matrices as derived from 

their sequence impedances. 
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The number of iterations to convergence for both the single 

phase and three phase algorithms are given in table 4.1. The 

algorithms behave identically. Features such as the transformer 

connection and the negative and zero sequence generator impedances 

have no effect on the convergence rate of the three phase system 

under balanced conditions. This is not unexpected as, under these 

conditions, only the positive sequence network has any power flow 

and there is no coupling between sequence networks for the balanced 

system. The negative and zero sequence information inherent in the 

three phase model of the balanced system, has no influence on 

system operation and this is reflected into the performance of 

the algorithm. 

4.5.3 Performance With Unbalanced Systems 

The number of iterations to converge several three phase 

systems, under realistic steady state unbalanced operation, are 

given in Table 4.1. The convergence rate deteriorates as compared 

with the balanced case and between six to eight iterations are 
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Table 4.1 Convergence Results. 

Number Single Typical 
Case of phase Balanced three three phase 

busbars load flow phase load flow unbalance 

1 5 4,3 4,3 4,3 6,6 

2 6 3,3 3,3 3,3 8,8 

3 14 3,3 3,3 3,3 6,5 

4 17 3,3 3,3 3,3 8,7 

5 30 3,3 3,3 3,3 6,6 

Convergence tolerande is 0.1 MW/MVAR. 

The numerical results, (i,j) should be interpreted as follows: 

i-refers to the. number of real power - angle update 

iterations 

j - refers to the number of reactive power - voltage 

update iterations. 
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required. The cause of this deterioration is examined in this 

section. 

The convergence patterns of real and reactive power mismatches 

for a corresponding single phase and unbalanced three phase load 

flow are compared in Figs 4.3 (a) and (b). The mismatches are in 

p. u.· (100 MVA base for single phase and 33.33 MVA base for three 

phase) and are taken at the busbar which is the slowest to converge. 

The initial convergence of the three phase mismatches is 

very close to that of the single phase load flow. However as 

the solution is approached the three phase convergence becomes 

slower. It appears that, although the voltage and angle unbalance 

are introduced from the first iteration, they have only a secondary 

, effect on the convergence until the positive sequence power flows 

are approaching convergence. That is, the positive sequence 

power flows, which predominate the actual system operation, also 

predominate the initial convergence of the three phase load flow. 

This feature is illustrated in Fig. 4.4 where the convergence 

pattern of the three phase voltages is shown. The convergence 

pattern of the positive sequence component of the unbalanced 

voltages is also given as is the convergence pattern of the 

voltage at the same busbar for the corresponding single phase load 

flow. The positive sequence voltage of the three phase unbalanced 

load flow has an almost identical convergence pattern to the 

\ . 
correspondlng single phase fast decoupled load flow. 

The final convergence of the system unbalance is somewhat 

slow but is reliable. 

The following features are peculiar to a three phase load flow 

and their influence on convergence is of interest: 
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(i) Three phase voltages 
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Voltage convergence patterns for three 
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- Asymmetry of the system parameters. 

- Unbalance of the system loading. 

- The influence of the transformer connection. 

- Mutual coupling between parallel transmission lines. 

These features have been examined with reference to the small 6 

bus test system illustrated in Fig. 4.5. 
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The system includes synchronous generators, three phase lines, 

transformers and a section of four mutually coupled parallel three 

phase lines. A description of the system and a set of case spec­

ifications are given in sections 6 and 7 of Appendix 5. The 

Appendix also discusses the modelling of synchronous compensators 

and the resulting system power flows with unbalanced system voltages. 

The system illustrated in Fi.g. 4.5 is used here to investigate 

the three phase system parameters which influence convergence. 

The following cases have been examined: 

(i) Balanced system with balanced loading and no mutual 

coupling between parallel three phase lines. 

(ii) As for case (i) but with balanced mutual coupling 

introduced for all parallel three phase lines as 

indicated in Fig. 4.5. 

(iii) As for case (ii) but with unbalanced loading. 

(iv) As for case (ii) but with system unbalance introduced 

by line capacitance unbalance only. 

(v) As for case (ii) but with system unbalance introduced 

by line series impedance unbalance only. 

(vi) Combined system capacitance and series impedance 

unbalance with balanced loading. 

(vii) As for case (vi) but with unbalanced loading. 
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(viii) As for case (vii) but with Delta/Star-g for the 

generator transformers. 

(ix) As for case (viii) but with large unbalanced real 

power loading at INV220. 
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(x) As for case (viii) but with large unbalanced reactive 

power loading at INV220. 

Table 4.2 Number of iterations to convergence for 6 bus 

tes t sys tern. 

Convergence tolerance 

Case (MW/MVAR) 

10.0 1.0· 0.1 

i 2,1 2,2 3 1 3 

ii 2,1 2,2 3,3 

iii 2,1 6,5 10,10 

iv 2,1 5,4 8,8 

v 2,1 5,4 9,9 

vi 2,1 5,4 9,9 

vii 2,1 4,3 10,9 

viii 2,1 3,3 8,7 

ix 4,3 11,9 17,16 

x 4,3 10,10 16,16 



The numbers of iterations to convergence, given in Table 4.2, 

clearly indicates that system unbalance causes a deterioration in 

convergence. Such deterioration is largely independent of the 

source of the unbalance although it is dependent on the severity of 

the unbalance. 

The degree of unbalance may be assessed from the sequence 

components of the busbar voltages p which are given in Table 4.3 

for cases (vii) 8 (viii) and (x). The degree of unbalance is 

considerable in all cases p parti.cularly in case (x) \'lhich is 

included only to demonstrate the convergence properties of the 

algorithm. 

It is noteworthy that the initial convergence of the algorithm 

is fast even in cases of extreme steady state unbalance. The 

reliability of the algorithm is not prejudiced by significant 

unbalance although convergence to small tolerances becomes slow. 

The influence of the three phase transformer connection maybe 

seen in the sequence voltages of cases (vii) and (viii). The 

star-g/delta connection provides no through path for zero sequence 

currents and the zero sequence machine current is zero. This is 

reflected in .the zero sequence voltages at the machine terminal 

voltages. 

The sequence voltages also illustrate the position of angle 

reference at the slack generator internal busbar. In addition it 

may be seen that at all generator internal busbars the negative 

and zero sequence voltages are zero reflecting the balanced and 

symmetrical nature of the machine excitations. 
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Table 4.3 Sequence Components of Busbar Voltages 

Case (vii) 

+ ve sequence - ve sequence zero sequence 

Busbar 

VI 8
1 

V
2 

8
2 Vo 8

0 

INV220 1.020 -0.16 0.028 2.42 0.021 -0.85 

RQX220 1.037 -0.13 0.028 2.37 0.025 -1.13 

MAN220 1.058 -0.09 0.015 1. 84 0.014 -0.77 

MAN014 1.039 -0.01 0.008 1.85 0.012 -0.76 

TIW220 1.015 -0.17 0.028 2.40 0.021 -0.74 

RQX011 1.055 -0.03 0.019 2.39 0.019 -1.12 

MAN .GN 1.056 0.03 0.0 - 0.0 -
RQX.GN 1.066 0.0 0.0 - 0.0 -

Case (viii) 

+ ve sequence - ve sequence Zero sequence 

Busbar 

VI 8
1 

V
2 

8
2 Vo 8

0 

INV220 1.034 0.36 0.023 -3.12 0.004 0.23 

RQX220 1.049 0.40 0.023 3.04 0.005 -0.80 

MAN220 1.071 0.43 0.015 2.39 0.001 0.20 

MAN 0 14 1.050 -0.01 0.006 2.93 0.0 -
TIW220 1.029 0.36 0.023 3.11 0.005 0.69 

RQXOl1 1.064 -0.02 0.016 -2.70 0.0 -
MAN .GN 1.067 0.03 0.0 - 0.0 -
RQX.GN 1.074 0.0 0.0 - 0.0 -
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Case (x) 

+ ve sequence - ve sequence zero sequence 

Busbar 

vI 6
1 

V
2 

6
2 Vo 8

0 

INV220 1.011 0.37 0.100 -2.69 0.083 -2.62 

RQX220 1.043 0.40 0.086 -2.70 0.031 -2.36 

MAN 22 0 1.065 0.44 0.058 -2.65 0.017 -2.50 

MAN014 1.061 -0.01 0.032 -2.11 0.0 -
TIW220 L007 0.36 0 .. 098 -2.68 0.080 -2.59 

RQXOll 1.081 -0.02 0.060 -2.16 0.0 -
MAN .GN 1.086 0.03 0.0 - 0.0 -
RQX.GN 1.096 0.0 0.0 - 0.0 -



4.5.4 Conclusion On Algorithmic Performance 

This section has investigated the performance of the three 

phase algorithm under various degrees of steady state unbalance. 
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It has been demonstrated that the algorithm behaves identically to 

a standard single phase fast decoupled load flow when the three 

phase system is symmetrical and has balanced loading. The 

initial convergence pattern with unbalanced systems is very 

similar to the single phase fast de coup led version, and, therefore, 

the three phase algorithm possesses similar reliability as the 

single phase algorithm. 

Final convergence of the three phase algorithm is determined 

by the degree of unbalance but does not depend upon the source 

of that unbalance. In all practical cases of steady state 

unbalanced system operation the convergence rate has been acceptable. 

As the initial convergence is fast and reliable starting values 

are. not critical and flat voltage and angle values have proved 

adequate in all cases. 



80 

FAST DECOUPLED LOAD FLOW ALGORITHMS 

FOR BALANCED A.C./D.C. SYSTEMS 

5.1 INTRODUCTION 

The relatively small 'number of h.v.d.c. transmission schemes 

in existance has not encouraged sufficient development of a.c./d.c. 

load flow programmes to ensure that the integration of the d.c. 

equations is most efficient and reliable. However, an increasing 

interest in the potential application of h.v.d.c. schemes, both 

point to point and ~ultiterminal, has highlighted the need for 

efficient incorporation of the d .. c. system into modern load flow 

techniques. 

The computational efficiency and reliability of the fast de-

(30) . coupled a.c. load flow ~s well documented and programmes based 

on this technique are being gradually adopted for general purpose 

load flow studies. 

The incorporation of the d.c. system models into the fast 

decoupled load flow is therefore of considerable interest. 

The aim of including the d.c. system model into the load flow 

analysis is to enable solution for the operating state of the combined 

a.c. and d.c. systems under the specified conditions of load, 

generation and d.c. system control strategy. 

The formulation of suitable d.c. system models and the inte-

gration of the models into the fast decoupled load flow is discussed 

in this chapter. 

Two basic approaches have been used to integrate the d.c. 

system model into a.c. load flows, ie sequential and unified approaches. 



Th t ' I . h (38,39) abl' .. e sequen 1a approac p en es 1ntegrat1on 1nto 

existing load flow programmes without significant modification or 

restructuring of the a.c. solution technique. The a.c. and d.c. 

equations are solved separately. For the a.c. iterations each 

convertor is modelled simply by the equivalent real or reactive 

power injection at the terminal busbar. The terminal busbar 

voltages obtained from the a.c. iteration are then used to solve 

the d.c. equations and consequently, new power injections are 

obtained. This process continues iteratively to convergence. 

Alt t ' I h h' , t d 'f' d th d (34,40,41,42) erna 1ve y, t e more sop 1st1ca e un1 1e me 0 s 

give full recognition to the interdependence between a.c. and d.c. 

system equations and simultaneously solve the complete set of 

equations. 

In the absence of comparative studies the discussions on the 

relative merits of the alternative techniques have been vague. 

. The aim of this chapter is to develop efficient unified and 

sequential fast decoupled a.c./d.c. load flows which are suitable 

for multiple and/or multiterrninal d.c. systems. Several variations 

of the algorithms are described and a detailed assessment of the 

relative merits presented. 

5.2 FORMULATION OF THE SINGLE PHASE A.C./D.C. LOAD FLOW PROBLEM 

The aim of the single phase a.c./d.c. load flow is to solve for 

the state of the combined a.c. and d.c. systems, under the specified 

conditions of load, generation and d.c. system control strategy. 

The operating state of the combined power system is defined by: 

_ T 
[V, 8 f x] 
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-where V is a vector of voltages at all a.c. system busbars 

e is a vector of angles at all a.c. system busbars 

(except one, which is assigned e = 0 ie. taken as 

a re fe rence) 

x is a vector of d.c. variables. 

-The selection of V and e as a.c. system variables is straight-

forward and is well documented. However, the selection of d.c. 

variables x is more complex and is discussed in depth in section 

5.3. 

To enable the use of a Newton-Raphson based technique it is 

necessary to formulate a set of n independent algebraic equations 

in terms of the n variables. 

The equations which relate to the a.c. system variables are 

derived from the specified a.c. system operating conditions. The 
.' 

only modification to the usual real and reactive power mismatches 

(Appendix 4) occurs with those equations derived from the specified 

injected powers at the convertor terminal busbar. These equations 

become : 

where 

psp - P
t 

(ac) - P
t 

(dc) = 0 
term erm erm 

a 

P
t 

(ac) is the injected power at the terminal 
erm 

(5.1) 

(5.2) 

busbar as a function of the a.c. system variables. 

P
t
' (de) is the injected power at the terminal busbar 
erm 

as a function of the d.c. system variables 

and similarly for Q (dc) and Q (ac) . 
term term 
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The injected powers Q (dc) and P
t 

(dc) are functions of 
tenn enn 

the a.c. convertor source voltage (taken as the a.c. terminal busbar 

voltage; see section 5.3.1 for basic assumptions) and of the d.c. 

system variables, i.e. 

P (dc) = f(V
t 

x) 
term erm, 

(5.3) 

Qt (dc) = f(Vt ,x) e:pn erm (5.4) 

The equations derived from the specified a.c. system conditions 

may therefore be summarised as: 

i:J.P (V,e) 

= 0 (5.5) 
i:J.Q (V,8) 

where the mismatches at the convertor terminal busbars are indicated 

separately. 

A further set of independent equations is derived from the d.c. 

system conditions. These are designated, 

o (5.6) 

for k = 1, number of convertors present. 

It should be noted that the d.c. system equations (5.6) are 

independent of the a.c. system angles 8. This is achieved by 

using a separate angle reference for the d.c. system variables as 

defined in Fig. 5.2. This mathematical contrivance has been found 

to give improved algorithmic performance by effectively decoupling 

the angle dependence of a.c. and d.G. systems. 
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Equations 5.3, 5.4 and 5.6 mathematically model the steady 

state operation of the d.c. system. Their formulation is discussed 

in section 5.3. 

The general a.c./d.c. load flow problem may therefore be 

summarised as the solution of: 

fj,p (V,S) 

(V, S) ::::: 0 (5. 7) 

-R (V
t 

,x) 
erm 

for the variables V,S and x. 

5.3 D.C. SYSTEM MODEL 

The mathematical model of the d.c. system (equations 5.3, 5.4 

and 5.6) is developed in this section. The formulation of the 

equations and selection of variables x requires several basic 

assumptions. 

5.3.1 Basic Assumptions 

The following assumptions are made in the formulation of the 

d.c. convertor model: 

(i) The three a. c. voltages at the terminal busbar are 

perfectly balanced and perfectly sinusoidal. 

(ii) The convertor operation is perfectly-balanced. 

(iii) The direct current and voltage are smooth. 

(iv) The convertor transformer is loss less and the magnetising 

admittance may be ignored. 

( 43) 
These assumptions are generally acc~pted for balanced steady 
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state analysis of d.c. convertor operation and no further justificat-

ion will be given here. 

5.3.2 Convertor Model 

The assumptions listed enable each convertor in the d.c. 

system to be modelled as shown in Fig. 5.1. The variables illustrat~ 

ed, representing every fundamental frequency or d.c. quantity, 

fully describe the system,operation. 

An equivalent circuit for the convertor is shown in Fig. 5.2. 

A trivial modification to the angles has been performed as regards 

the position of angle reference. 

The variables are defined with reference to Fig. 5.2, as 

follows: 

Vterm Li 

ELi 

I ,I 
P s 

a 

Vd 

Id 

convertor terminal busbar nodal voltage 

(phase angle referred to convertor 

reference) . 

fundamental frequency component of the 

voltage waveform at the convertor 

transformer secondary. 

fundamental frequency component of the 

current waveshape on the primary and 

secondary respectively. 

firing delay angle. 

transformer off-nominal tap ratio. 

average d.c. voltage. 

convertor direct current. 

These ten variables, nine associated with the convertor plus 

the a.c. terminal voltage magnitude V ,form a possible choice 
term 
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term~ 

Ip -

Fig. 5.1 

Vterm ~ 

Ip 
-----+ 
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Id 

Basic d.c. convertor (Angles referred to a.c. 

system reference) 

E 0t, Id 
;.. 
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(I-a) .B
t 

Single phase equivalent circuit for basic convertor. 

(Angles referred to d.c. reference) 
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of x for the formulation of equations 5.3, 5.4 and 5.6. 

For efficiency, the smallest number of variables, consistant 

with the need for. convenient incorporation of a wide range of control 

modes, should be used. 

This clearly involves a compromise and the number of variables 

used by different researchers has varied(39-41) . 

As mentioned in chapter 3 the minimum number of variables 

required to define the operation of any system is the number of 

independent variables. These completely define the operating state 

of the system and any other system variable or parameter (e P g. dc 

and Qdc) may be written in terms of these variables. 

A d.c. convertor, operating under balanced conditions, from a 

known terminal voltage, has two independent variables. The use of 

two variables yields a d.c. convertor model of the smallest 

dimension. However, the control requirements of the d.c. convertors 

are such that a range of variables, or functions of them (eg. constant 

power), are the specified conditions. If the minimum number of 

variables are used then the control specifications must be trans-

lated into equations in terms of these two variables. These equations 

often contain complex non-linearities, which are difficult to 

derive and include in programme implementation. In addition, the 

equations for P
dc 

and Q
dc 

may be complex and this will make the 

programming of a unified solution more difficult. 

For these reasons, a non minimal set of variables is used. 

This is in contrast to a.c. load flows where, due to the restricted 

nature of the control specifications, a minimum set is convenient. 

Therefore all variables which are influenced by control action are 

retained in the study. 
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The following set of variables enable simple relationships 

to be written for all control strategies. 

Variable ~ is included to ensure ti1at a simple equation for 

Q
dc 

may be written. This is important in the formulation of a 

unified solution method; for sequential methods this variable may 

be omitted as it is not essential in the formulation of any control 

specification. The variable cos a is used rather than a as the 

equations are more linear and this has a favourable influence on 

convergence as discussed in chapter 3. Before developing "the 

equations it is necessary to discuss the per unit system, if any, 

which should be used for the d.c. system. 

5.3.2.1 D.C. Per unit System 

No per unit system is necessary to enable the modelling of 

the d.c. system. For the d.c. system equations the p.u. a.c. 

terminal voltage can be translated into kV. All d.c. equations 

could then be written in actual values. The injected powers 

P
t 

(dc) and Qt (dc) would simply be divided by the a.c. system 
erm erm 

power base before inclusion in equations (5.1) and (5.2). 

However, to avoid any per unit to actual value translations 

and to enable comparable convergence tolerances to be obtained for 

both a.c. and d.c. system mismatches, a per unit system is used 

for the d.c. quantities. 

Computational simplicity is achieved by using common power 

and voltage base parameters on both sides of the convertor ie. 

a.c. and d.c. sides. To preserve constancy of power in per unit, 

the direct current base, obtained from (MVAB)/VB , is /3 times 
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larger than the a. c. current base. 

This has the effect of changing the coefficients involved in 

the a.c./d.c. current relationships. For a perfectly smooth 

direct current and neglecting the commutation overlap, the r.m.s. 

fundamental component of the phase current is related to Id by the 

expression: 

(5.8) 

To improve the accuracy of'this approximation a factor of 

0.995 is often introduced. For clarity this minor addition will be 

omitted from the equations presented here. 

Translating equation 5.8 to per unit yields: 

I (p.u.) = 16.13 . Id(P.U.) s 1T 

ie. I (p. u.) 
312 

Id(p·U.) (5.9) = . s 1T 

5.3.2.2 Consideration of Series and Parallel Bridges 

Under balanced conditions similar convertor bridges attached 

to the same a.c. terminal busbar will operate identically regardless 

of the transformer connection. All such bridges may therefore 

be replaced by an equivalent single bridge for the purpose of 

single phase load flow analysis. 

5.3.2.3 Derivation of Equations 

The following relationships may be derived for the variables 

defined in Fig. 5.2. The equations are in p.u. 

(i) The fundamental current magnitude on the secondary 

of the convertor may be approximated to, 



* 

90 

(5.10 ) 

(ii) The fundamental current magnitude on the primary may 

be found by referring the secondary current across the 

lossless transformer, 

I ::::: a . I (5.11)' 
P s 

(iii) The d.c. voltage may be expressed in terms of the 

convertor source voltage* referred to the transformer 

se condary as, 

v = 312 
d 'IT 

• a • 
3 

V cos ex - -'IT • Id term 
x 

c 
(5.12) 

(iv) The d.c. current and voltage are related by the d.c. 

system configuration, 

(5.13 ) 

for a simple rectifier supplying a passive load. 

(v) The assumptions listed previously ensure that there is 

no real power in the harmonic frequencies at both the 

primary and secondary busbars. Therefore the d.c. 

real power may be equated to the a.c. real power at the 

transformer secondary in terms of the fundamental 

components alone, ie. 

(5.14) 

(vi) As the transformer is loss less a similar equation may 

be written equating the primary real power to the d.c. 

power ie. 

From the assumptions listed previously the source voltage is 
simply the a.c. terminal busbar voltage V

t 
. 

erm 
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V I =: V . I . cos <t> d· d term p (5.15 ) 

(vii) The final independent equation may be written in terms· 

of the fundamental component of current flow across 

the convertor transformer, ie. 

(5.16) 

where. 'B J t Yt the transformer leakage admittance. 

No other independent equations may be written relating the 

total set of nine convertor variables. A total of seven equations 

have been derived. 

The variables, I ,I ,E and ~ are not included as d.c. convertor 
p s 

variables x and these are eliminated from the equations to yield, 

V K a V cos a + 2 I d - 1· • term 1T d 

Vd - Kl . a . V cos <t> term 

where Kl = 
1T 

x = 0 
c 

o 

= 0 

(5 .17) 

(5. 18) 

(5.19) 

The final two independent equations which are required are 

derived from the specified control mode. Two equations are required 

as the convertor has two degrees of freedom (ie. two independent 

variables) which must be restrained in order to define an operating 

state. 

The d.c. model may thus be summarised as follows: 

where 

R(x,V
t 

)j =: 0 erm ( 
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R (1) :::: Vd - K 
1 

. a . V term . cos ~ 

R(2) Vd - Kl V 
3 

= . a . . cos a + . Id . X . term 'If c 

R(3) f(Vd,I d ) 

R(4) = Control equation 

R(5) :::: Control 'equation 

and 

It should be noted that V
t 

is either known, (i.e. specified) 
erm 

or it is an a.c. system variable • 

. The equations for P
dc 

and Q
dc 

may be written as: 

Qdc = V I • . sin ~ term p 

= V 
term Kl · a . Id . sin ~ (5.21) 

and 

P
dc = V I · cos ~ term p 

:::: V . Kl · a . Id . cos ~ term 
(5.22) 

or 

p. = Vd ec . I d · (5.23) 

Several simple equations for P
d 

may be written, the equation , c 

may be chosen to give the most convenient algorithmic implementation. 

The equation for Q is written as the fundamental reactive 
dc 

power load of the convertor, the reactive power of the harmonics 

is zero as perfect filtering has been assumed. 

5.3.3 Clarification of an Anomaly in Previous D. C. Models 

Several earlier d.c. models used by this author and others 

(4,5,34,41,42) retained the variables E and ~ in their formulation. 
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This was necessary as the equation for d.c. voltage was written in 

terms of E and not the convertor source voltage referred to 

the secondary of the convertor transformer. These variables could 

not, therefore, be conveniently removed. As a result the regulation 

due to the commutation reactance was effectively included twice. 

The form of the algorithms is not significantly altered although 

the accuracy of the solutions is affected. 

5.3.4 Incorporation of Contro~ Equations 

Each convertor in the d.c. system provides two additional 

independent variables to the system. Two further constraint 

equations must therefore be derived from the control strategy 

of the system to ensure a defined operating state. For example a 

classical two-terminal d.c. link 'has two convertors and therefore 

requires four control equations. The four equations must be 

written in terms of the ten d.c. variables (five for each convertor) . 

Any function of the ten d.c. system variables is a valid 

(mati1ematically) control equation so long as each equation is 

independent of all other equations. In practice there are 

restrictions limiting the number of alternatives. Some control 

strategies refer to the characteristics of power transmission 

(eg. constant power or constant current) , others introduce 

constraints such as minimum delay or extinction angles. 

Examples of valid control specifications are: 

(i) Specified convertor transformer tap, 

(ii) Specified d.c. voltage 

v - V sp = a 
d d 



(iii) Specified doc. cu.rrent 

I - I sp ::::: 0 
d d 

(iv) Specified minimum firing angle, 

cos a - cos a, ::::: 0 
m~n 

(v) Specified doc. power transmission 

The control equations are s,imple and are easily incorporated 

into the solution algorithm. In addition to the usual control 

modes, non standard modes such as specified convertor power factor 

or specified a.c. terminal voltage may also be included as 

convertor control equations (see section 5.5 ) 0 

5.3.5 Invertor Operation 

All the equations presented are equally applicable to invertor 

operation. However, during inversion it is the extinction advance 

angle (y) which is the subject of control action and not the firing 
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angle (a). For convenience therefore equation R(2) may be rewritten 

as: 

(5.24) 

This equation is valid for rectification or inversion. Under 

inversion, Vd , as calculated by 5.24, will be negative. 

To specify operation with constant extinction angle the following 

equation is used: 

COS(7T 

where ySP is usually y minimum for minimum reactive power consumption 

of the invertor. 
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5.3.6 Convertor Control Strategies 

During the iterative solution procedure the uncontrolled 

convertor variables may go outside prespecified limits. When this 

occurs the offending variable is usually held to its' limit value 

d . I' abl . f d (34) an an appropr~ate contro var~ e ~s ree . 

Each time a control equation is altered a small discontinuity 

occurs and convergence will usually be delayed for one or two 

iterations. 

This process is common to both the unified and sequential 

techniques. For the purposes of this chapter, which is to compare 

the two techniques, the control strategy is a further and unneccessary 

complication. For this reason the specified convertor controls 

are appropriately selected to ensure that limit violations do not 

occur. 
.. 

It should be noted also that, upon final convergence the tap 

ratio may need to be adjusted to the nearest discrete tap ratio 

available. This reconvergence will usually be very fast. 

5.4 SOLUTION TECHNIQUES 

The aim of this section is to develop a solution procedure 

for equation (5.7) which fully retains the computational advantages 

of the fast decoupled a.c. load flow method. The standard fast 

decoupled a.c. load flow algorithm (Appendix 4) involves the iterat-

ive solution of the following equations in a block successive 

iteration scheme. 

[6P/V] = [B' ][68] 

[6Q/V] = [B"] [6V] 

(5.25) 

(5.26) 

where [B'] and [B"] are the constant approximated jacobian matrices. 



Any method of solution for equation (5.7), which involves 

the fast decoupled algorithm, should possess all, or at least most, 

of the following features: 

(i) The jacobian matrices [B'] and [B"] must remain constant 

and symmetrical for the a.c. network solution and must 

be able to be factorised before the iterative solution 

process. 

(ii) The speed and reliability of the a.c. load flow algorithm 

is, in part, due to the block successive iteration scheme 

which is initiated with a real power - angle update 

iteration. Except with evidence to the contrary this 

practice should be retained. 

(iii) The minimum modification to any existing fast decoupled 

algorithm is a desirable feature. 

(iv) The integration of the convertor equations should not 

increase the number of solutions of (5.25) and (5.26) 

that are required for convergence. The dimension of 

these equations (and hence their solution time) will, 

in general, be many times greater than the dimension 

of the d.c. equations. The number of solutions of the 

d.c. equations is therefore of relatively minor 

importance. 

These features provide an indication of the variations which 

are worthy of investigation. 

All methods are discussed with reference to a single convertor 

connected to an a.c. busbar. The extension to multiple or multi­

terminal d.c. systems is relatively trivial and is discussed in 

section 50 7. 
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5.4.1 Unified Methods 

The unified methods give recognition to the interdependence 

of a.c. and d.c. system equations and simultaneously solve the 

complete system. Several variations of the unified technique are 

investigated in this section. 

The a.c./d.c. load flow problem, as formulated in (5.7), may 

be written for a single convertor d.c. system, as: 

~p (V, 6) 

~Pt (V , 6 ,x) erm 

(V,6) 

~Qt (V, 6 , x) erm 
- -R(V

t 
,x) 

erm 

== 0 

where the subscript term indicates the value at the convertor 

terminal busbar. 

Recalling that I 

~P == psp _ p (ac) - P (dc) 
term term term term 

~Q == QSP _ Q (ac) - Q (dc) 
term term term term 

and, 

P
t 

(dc) = f(V
t 

x) 
erm erm , 

Q(dc) = f(V
t 

,x) 
term erm 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

the standard Newton-Raphson algorithm may be applied (see chapter 3) . 

Essentially, this method involves repeat solutions of, 

- l 
~P (V I 6) ~e 

~P (V,6,x) ~6 term term 
-

6Q (V,6) J 6V (5.32) 

6Qt (V,8,x) erm ~V 
term 

- -
R(V t ,x) erm 6~ 
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where J is the matrix of first order partial derivatives. 

Applying the usual a.c. fast decoupled assumptions to all 

jacobian elements related to the a.c. system equations, yields: 

I1P!V M 

I1P IV term term· AA' 116 
term 

- -I1Q!V I1V 

I1QtermIVterm AA" I1V 
term 

-
R BB" A I1x 

(5.33) 

where all matrix elements are zero unless otherwise indicated. 

The matrices [B'] and [B"] are exactly the usual single phase 

fast decoupled jacobians. These matrices are constant in value. 

The other matrices indicated, vary at each iteration in the solution 

process. 

The only element of [B"] which becomes modified is indicated 

as B" in equation (5.33). This element varies at each iteration ii 

ie. it is a function of the system variables. 

The advantage of an independent angle reference for the d.c. 

equations is demonstrated in the equation where it may be seen 

that: 

aPt (d.c.)!a6t erm erm = 0 

ie. the diagonal jacobian element for the real power mismatch at the 

convertor terminal busbar depends on the a.c. equations only and 



is therefore the usual fast decoupled B' element. 

In addition, 

aR/a8
t 

:::: 0 
erm 

which is an aid to the subsequent decoupling of the equation. 

In order to maintain the block successive iteration sequence 

of the usual fast decoupled a.c. load flow it is necessary to 

decouple equation (5.33). The jacobian submatrices must be 

examined in more detail. 

The j~cobian submatrices are: 

DD == 
1 

V term 

== 0 

allP
t 

/av
t erm erm 

+ V 1 l-aP
t 

(dc) /av ~ erm term 
term 

by the usual decoupled load flow practice. 

AA' 
V t~<m ~IIP term/a~ 

1 ~P . (ae) /a~ + 
1 ~P (de) /aJ == 

V term V term 
term term 

0 
1 ~P (de) /a] == + 

V term 
term 

Mil 1 ~IIQterm/a~ == 
V 

term 

1 ~Q (de) /3~ "" V term term 
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BB" == dR/dV 
term 

[A] == dR/dX 

B',', 1 ~IIQtern/av te~ = 
~~ V 

term 

1 
dQ /dV = v term(ac) term 

term 

Bit 
ii (ac) 

Now, taking 

then, 

and therefore, 

DD = 0 

100 

1 ~Qterm(dC)/aVte,;J + V 
term 

+ B" 
ii (dc) 

The derivation to this point is cornmon to the unified solution 

methods which utilise the fast decoupled a.c. load flow. These 

methods are described in the following sections. 

5.4.1.1 Unified Method 1 

Without further assumptions the d.c. variables x are coupled 

to both the real and reactive power a. c. mismatches. However I 

equation (5.33) may be separated to enable a block successive 

iteration scheme to be used. The following two equations result: 
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L1P/V 

B' 

L1p /V 
tex:m tex:m 

=: AA' L16 
tex:m (5.34 ) 

R 

L1Q/V 
B" 

= BI,I, 

~~ 

-
R BB" 

A 

M" 

A 

L1x 

L1v 

L1V 
tex:m 

L1x 

(5.35) 

The a.c. mismatches and variables are appended to both the usual 

fast de coup led a.c. equations. 

These equations are solved according to the iteration sequence 

illustrated in Fig. 5.3. This iteration scheme is referred to 

as - POC, QOC - where the significance of the mnemonic is clear. 

The results for a number of test cases are given in section 

5.8. 

5.4.1.2 Unified Method 2 

The algorithm of method 1 may be further simplified by recognis-

ing the following characteristics of the a.c. and d.c. systems: 

(i) The coupling between d.c. variables and the a.c. 

tex:minal voltage is strong. 

(ii) There is no coupling between d.c. mismatches and a.c. 

system angles. 



Fig. 5.3 

TrianguJ.ate B' and B" 
Convertor busbars not used as pivots 

Calculate LiP (a.c. system only) 

residuals (R) 

Form. d.c. Jacobian Matrix 

Forward reduction of Vector A V'I 

olva reduced equation for Pt and Ai . erm. 

Back substitute for 6 EI 

Update;' and § 

Calcula.te b. ~ system only) 

Calculate C. (de) and d.c. residuals (li) 
"term. 

'YES 

Form. d.c. Jacobian Matrix 

Forward reduction of vector 6 G./'I 

Solve reduced equation for Vt and 6~ erm. 

Back substitute for A V 

Update ~ and 7 

Flow Chart for Unified Single Phase A.C./D.C. Load 

Flow 
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(iii) Under all practical control strategies the d.c. power 

is well constrained and this implies that the changes 

in d.c. variables x do not greatly affect the real 

power mismatches at the terminals. This coupling, 

embodied in matrix AA' of equation (5.34) can therefore 

be justifiably removed. 

These features justi~y the removal of the d.c. equations from 

equation (5.34) to yield the following two algorithmic equations: 

/::,Q/V B" 

= B',', 
11 

-R BB" 

AA" 

A 

/::'V 

/::'V 
term 

/::'x 

The block successive iteration scheme - P,QDC - is used. 

(5. 36) 

(5.37) 

For the solution of equation (5.36) the d.c. variables are 

considered constant and the convertors are therefore modelled simply 

as the appropriate real power load at the terminal busbars. 

5.4.1.3 Programming Considerations for the Unified Algorithms 

In order to retain the efficiency of the fast,decoupled load 

flow, the B' and B" matrices must be factorised only once, before' 

the iterative process begins. 

The method of solving equations (5.34) and (5.35) is therefore 
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the key to the feasibility of any unified method utilising the 

fast de coup led a.c. algorithm. 

The jacobian elements related to the d.c. variables are non~ 

constant and must be re-evaluated at each iteration. It is therefore 

necessary to separate the constant and non-constant parts of the 

equations for the solution routine. 

(35 ) 
By manipulation of t~e factorisation process, Bodger 

developed a method to enable the constant and non-constant parts to 

be factorised and processed separately. The constant part is 

factorised only once, before the iteration process as in the usual 

fast decoupled a.c. load flow. The method requires a trivial 

modification to the existing a.c. load flow algorithm. 

The technique is explained here with reference to a single d.c. 

convertor. It is however, equally applicable for any 

convertors. 

Initially, the a.c. fast decoupled equations are formed with 

the d.c. link ignored (except for the minor addition of the filter 

reactance at the appropriate a.c. busbar). The reactive power 

mismatch equation for the a.c. system is: 

b,Q/V 
== B" 

b,V
t erm 

(5.38) 

where b,QI QSP Q 
term == term - term(ac) is the mismatch calculated in 

the absence of the d.c. convertor 

and [B"] is the usual constant a. c. fast decoupled jacobian. 

After triangulation down to, but excluding the busbars to 
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which d.c. convertors are attached, equation (5.39) results: 

Bn , 

(5.39) 

(L\Q /V ) " term term 
L\V

term 
Bill 
ii 

(L\Q;V)" and (L\Q IV )" signify that the left hand side vector 
term term 

has been processed. Matrix [B'"] is the matrix [B"] after triang-

ulation. 

This triangulation (performed before the iterative process) 

may be achieved simply by inhibiting the terminal busbars being 

used as pivots during the optimal ordering process. 

The processing of L\Q indicated in the equation is actually 

performed by the standard forward reduction process used at each 

iteration. 

The d.c. convertor equations may then be combined with equation 

(5.39) as follows: 

- -
(L\Q/V) " 0 B'" 

(8 )" L\Qterm(dc) ~term + 
V 

term term 
= 0 Bill +B" .. .. (d ) 

~~ ~~ c 

-
R 0 BB" 

where B" 
ii (dc) ::::: V 1 raQterm(dc)/dVterml. 

term L ~ 

The unprocessed section, ie, 

0 

Mil 

A 

L\V 

L\V
t erm 

6x 

(5.40 ) 



(
D.Q )" D. term Qterm(dc) 
v + V 
term term 

-
R 

B"' +B" . . . . (d ) 
~~ ~~ c 

BB" 

Mil 

A 

D.V
t erm 

D.x 
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(5.41) 

may then be solved by any 'method suitable for non-symmetric matrices. 

The values of D.x and D.V are obtained from this equation. 
term 

The value of D.Vt is then used to enable the usual back substitution erm 

'process for the remaining D.V to be completed, ie. equation (5.39) 

is solved for D.V. 

The most efficient method for solving equation (5.41) depends 

on the number of convertors. Fo~ six convertors or more the use of 

sparsity storage and solution techniques are justified; otherwise 

all elements should be stored. 
(35) 

Bodger found that the best 

method was a modified form of gaussian elimination where all elements 

were stored but only non-zero elements processed. 

It is important to note that the unified solution of equation 

(5.34) or (5.35) is performed retaining all the computational 

advantages of the constant and symmetric a.c. system jacobians 

and that this is achieved with only minor modification to the a.c. 

solution procedure. Matrix and vector elements are simply with-

drawn and replaced after the standard forward reduction and back 

substitution processes. 

The only computational difference between a unified and a 

comparable sequential iteration is that the d.c. jacobian equation 

(ie. 5.41 for the unified method) is slightly larger for the unified 

method. The difference is one additional row and column for each 
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convertor present. In terms of computational cost per iteration 

the corresponding unified and sequential algorithms are virtually 

identical. 

5.4.2 Sequential Methods 

The sequential methods are a further simplification of the 

unified method 2. The a.c. system equations are solved with the 

d.c. system modelled simply as a real or reactive power injection 

at the appropriate terminal busbar. For a d.c. solution the a.c. 

system is modelled simply as a constant voltage at the convertor 

a.c. terminal busbar. 

The following three equations are solved iteratively to 

convergence. 

[~P/V] = [B' ][~6] (5.42) 

[~Q/V] = [B"] [~V] (5.43) 

[R] = [A] [~~] (5.44) 

The appeal of this method is its' simplicity. The a.c. load 

flow is not modified; a further iterative loop is simply added. 

As mentioned in section 5.3.2 the variable ~ may be removed 

from x for the sequential solutions. The sequential approach has 

been investigated with both ~ included (5 variable model) and ~ 

excluded (4 variable model) . 

Several iteration schemes have been investigated. 

5.4.2.1 Sequential Method 1 

The iteration sequence is illustrated in the flow chart of 

Fig. 5.4 and may be summarised as follows: 

(i) Calculate ~P/V, solve equation (5.42) and update 6. 



Fig. 5.4 

L.~ __ T_r.l~·an __ gu1 ___ .aTt_e_B ___ 'an __ d_B~_'f _____ 1 ._ (All a.c. busbaxs) 

Calculate 6. ~ (total system) and d. c. residuals R 

Solve equation 5.42 

Calculate ~Q, (total system) and d. c. residuals R 

YES 

Solve equation 5.43 and update (v 

Calculate d.c. mismatches 

Form d.c. Jacobian matrix 

Solve equation 5.44 and update x 

Flow Chart for Sequential Single Phase A.C./D.C. 

Load Flow 
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-(ii) Calculate ~Q/VQ solve equation (5.43) and update V. 

(iii) Calculate d.c. residuals, R, solve equation (5.44) 

and update x. 

(iv) Return to (i). 

This sequence is .referred to as P,Q ,DC. 

with reference to Fig. 5.4 the following features are noteworthy: 

(i) To en'able the' number of iterations required for corres-

ponding unified and sequential algorithms to be compared 

directly the convergence testing for the sequential 

algorithm is identical to that used in the unified 

case. 

(ii) The d.c. equations are continued to be solved until 

both a.c. and d.c. systems have converged. This 

ensures that the sequential technique is an exact 

parallel of the corresponding unified algorithm. 

These features are common to all the sequential algorithms 

presented in this chapter. It should, however, be noted that an 

advantage of the sequential method is that the d.c. equations need 

not be solved for the entire iterative process. Once the d.c. 

residuals have converged the d.c. system may be modelled simply as 

fixed real and reactive power injections at the appropriate convertor 

terminal busbar. The d.c. residuals must still be checked after 

each a.c. iteration to ensure that the d.c. system remains converged. 

However the computational cost of a d.c. iteration is, in any 

practical situation, only a fraction of the cost of an a.c. iteration 

and this advantage is therefore not considered significant. 

504.2.2 Sequential Method 2 

The iteration sequence differs from that of method 1 in that the 
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d.c. equations are solved after each real power as well as after 

each reactive power iteration. This sequence is summarised as 

P,DC,Q,DC. As in the previous method the d.c. equations are 

solved until all mismatches are within tolerance. 

5.5 CONTROL OF CONVERTOR A.C. TERMINAL VOLTAGE 

A convertor terminal voltage may be specified in two ways. 

Firstly by local reactive power.injection at the terminal. In 

this case no reactive power mismatch equation is necessary for that 

busbar and the relevant variable (ie. /::'V
t 

) is effectively 
erm 

removed from the problem formulation. This is the situation where 

the convertor terminal busbar is a P. V busbar. Two control 

specifications are required for each d.c. convertor. 

Alternatively the terminal voltage may be spec~fied as a 

d.q. system constraint. That is, the d.c. convertor must inject 

the correct amount of reactive power so that the terminal voltage 

is maintained constant. This constraint is usually applicable in 

cases where the d.c. convertor model is extended to include 

additional items of plant(44) such as synchronous machines which 

are operated as an integral part of the convertor control. In 

such cases the convertor model may produce or absorb reactive power. 

For the basic convertor unit the terminal voltage may be controlled 

over a small range by altering the reactive power absorbed by the 

convertor. 

with the unified method the equation, 

V
sp 

- V = 0 term term 

is written as one of the two control equations. This would lead 
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to a zero row in equation (5.34) and therefore during the solution 

of equation (5.34) some other variable (eg. tap ratio) must be 

specified instead. The d.c. convergence is therefore marginally 

slowed for the PDC,QDC iteration. However the d.c. is overconverged 

by this iteration. scheme and the slowing of the d. c. convergence 

does not have any noticeable effect on the overall convergence rate. 

With the sequential method this control equation cannot be 

written. The terminal busbar is specified as a P.V busbar and the 

control equation 

QSP Q = 0 
term (dc) - term(dc) 

sp 
is used, where Qterm(dc) is taken as the reactive power required to 

maintain the voltage constant. The specified reactive power varies 

at each iteration and this discontinuity slows overall convergence. 

This case is discussed for completeness; results are not given 

as, with the basic convertor model, the control of the terminal 

voltage by the d.c. system, is not a practical proposition. 

5.6 CONSTANT D.C. JACOBIAN METHODS 

With both the unified and sequential methods the jacobian 

elements related to the d.c. variables undergo only slight numerical 

change at each i terat.ion; especially so, if good starting values 

are used. This prompted examination of the following algorithmic 

variations: 

(i) The d.c. related jacobians are held constant at their 

initial values. 

(ii) With assumptions for the values of the d.c. variables 

the jacobian may be approximated to a constant. 

with the d.c. related jacobians constant all matrices, in 
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both the unified and sequential methods, may be factorised before 

the iterative procedure. 

However, the dimension of the a.c. system is normally much 

greater than that of the d.c. system and the small savings in 

computing time per d.c. iteration are outweighed by an occasional 

deterioration in overall convergence. The advantages of these 

methods are therefore questionable and they were not pursued further. 

5.7 EXTENSION TO MULTIPLE AND/OR MULTI-TERMINAL D.C. SYSTEMS 

The basic algorithms have been developed for a single d.c. 

convertor. Each additional convertor adds a further five d.c. 

variables and a corresponding set of five equations. The number 

of a.c. system jacobian elements which become modified in the 

unified solutions is equal to the number of convertors. 

As an example, consider the system shown in Fig. 5.5. The 

system represents the North and South Islands of the New Zealand 

Electricity Division's 220Kv a.c. system. At present convertors 1, 

2 and 3 are in operation. Convertors 1 and 2 form the 600 MW, 

500 Kv d.c. link between the two Islands. Convertor 3 represents 

a 420 MW aluminium smelter. The South Island may have some surplus 

hydro power in the future and the possibility of a further d.c. link 

to carry such power from the remote hydro generation in the South 

to two load centres, one in each Island, is under consideration. 

To this end, a further three terminal d.c. interconnection has 

been added. (Convertors 4,5 and 6.) 

Normally, convertor 4 will operate in the rectifier mode with 

convertors 5 and 6 in the inversion mode. 

The reactive power-d.c. jacobian for the unified method has 

the structure illustrated in equation (5.45). 
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where Bn is the part of B" which becomes modified. Only the MOD 

diagonal elements become modified by the presence of 

the convertors. 

Off diagonal elements will be present in B"MOD if there 

is any a.c. connection between convertor terminal 

busbars. 

" Note: All off diagonal elements of BB" and Mit are zero. 

In addition, matrix A is block diagonal in 5 x 5 blocks with the 

exception of the d.c. interconnection equations. 

Equation R(3) in each set of d.c. equations is derived from 

the d.c. interconnection. For the six convertor system shown in 

Fig. 5.5 the following equations are applicable. 

Vdl + Vd2 Idl (RdJ.: + Rd2 ) = 0 

Vd3 - Id3 . Rd3 ::::: 0 

Idl - Id2 
::::: 0 

Vd4 + Vd6 - Id4 Rd4 - Id6 Rd6 ::::: 0 

Vd5 - Vd6 Id5 . Rd5 + Id6 . Rd6 ::::: 0 

::::: 0 

This example indicates the ease of extension to the multiple 

convertor case. 

5.8 INITIAL CONDITIONS 

Initial values for the d.c. variables x are assigned from 

estimates for the d.c. power and d.c. voltage and assuming a power 

factor of 0.9 at the convertor terminal busbar. The terminal busbar 

voltage is set at 1.0 p.u. unless it is a voltage controlled busbar. 
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This procedure gives adequate initial conditions in all 

practical cases as good estimates of Pdc and Vdc are obtainable. 

The effect of initial conditions on the convergence is examined 

in section 5.10. 

5.9 D. C. CONVERGENCE TOLERANCE 

A feature which is cqmmon to all methods is the requirement of 

a convergence tolerance for the d.c. residuals R. 

The aim of the combined a.c. d.c. load flow is to give 

information regarding power flows, line losses and voltage magnitudes 

for both the a.c. and d.c. systems. In addition, the requirements 

of the d.c. convertors in regard to reactive power demand and 

convertor transformer tap ranges may be stUdied. 

The accepted tolerance for a.c. load flow is 0.1 ~v or MVAR 
.. 

for the maximum power mismatch at any busbar. Similar power 

tolerances are acceptable for the d.c. system. 

The d.c. p.u. system is based upon the same power base as the 

a.c. system and on the nominal open circuit a.c. voltage at the 

convertor transformer secondary. The p.u. tolerances required 

for d.c. powers, voltages and currents are therefore comparable 

with those adopted in the a.c. system. 

The only d.c. residual equations not in terms of these quantities 

are some of the control equations. with reference to section 5.3.4 

and 5.3.5 it may be seen that these equations are of the form, 

where X may be the tap or cosine of the firing angle. It is important 

to note that these equations are linear and are solved exactly in one 



d.c. iteration. The question of an appropriate tolerance for 

these mismatches is therefore irrelevant. 
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An acceptable tolerance for the d.c. residuals which is 

compatible with the a.c. system tolerance is therefore 0.001 p.u. 

on a 100 MVA base ie. the same as that adopted for the a.c. system. 

5.10 TEST SYSTEM k~ RESULTS 

The A.E.P. standard 14 bus test system has been used to 

investigate the convergence properties of the proposed algorithms. 

The a.c. transmission line between busbars 5 and 4 has been 

replaced by a two terminal h.v.d.c. link. Neither bus is a voltage 

controlled busbar and the iteraction between a.c. and d.c. systems 

will therefore be considerable. 

A comprehensive range of control strategies have been 

applied to the link and the convergence results for the various 

algorithms are given in Table 5.1. The number of iterations 

(m,n) should be interpreted as follow's. 

m is the number of reactive power-voltage updates 

required 

n is the number of real power-angle updates. 

The number of d.c. iterations varies for the different sequences, 

however this is of secondary importance and may/if required/be 

assessed in each case from the number of a.c. iterations. In terms 

of computational cost a unified QDC iteration is equivalent to a Q 

iteration and a DC iteration executed separately. 

The d,c. link data and specified controls for case 1 are given 

in Table 5.2. The link operation is illustrated in Fig. 5.6. The 

specified conditions for all cases are derived from the results of 



Case Specification 

Specified d.c. 
link constraints 
m-rectifier end 
n-invertor end 

1 a P Y V 
m dm n dn 

2 a PdIn a Vd m n n 

3 a P dIn a Vd m n n 

4 a P y V 
m dm·n dn 

5 a P dm Yn 
a 

m n 

6 a P d a Yn m m m 

7. a I 
m d Yn Vdn 

8 a Vdm Y P 
m n dn 

Case 1 with 
ini tial cond-
i tion errors 

9 50% error 

10 80% error 

Number of iterations to convergence (0.1 MW/MVAR) 

Unified Methods Sequential Methods 
(5 variables) (5 variables) (4 variables) 

IpDC,QDC 2p ,QDC 1 P,Q,DC 2 P,DC,Q,DC 1 P,Q,DC 2 P,DC,Q,DC 

4,3 4,3 4,3 4,3 4,4 4,3 

4,3 4,3 4,4 5,5 4,4 failed 

4,3 4,3 4,4 5,5 4,4 failed 

4,3 4,3 4,4 4,4 4,4 4,4 

4,3 4,3 4,4 4,4 4,4 4,4 

4,3 4,3 4,3 4,3 4,4 4,3 

4,3 4,3 4,3 4,3 4,4 4,;3 

4,3 4,3 4,4 4,4 4,4 4,4 

4,3 4,3 4,4 4,3 4,4 4,3 

5,4* 6,5* 7,6* 5,4* 4,4 4,3 

where * indicates a false solution 
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Table 5.2 Characteristics of d.c. link 

A.C. Busbar 

D.C. Voltage base 

Transformer Reactance 

Commutation Reactance 

Filter admittance Bf~ 

D.C. link resistance 

Control parameters for 

Case 1 

D.C. link power 

Rectifier firing angle (deg) 

Invertor extinction angle (deg) 

Invertor d.c. voltage 

Convertor 1 

Bus 5 

100 kV 

0.126 

0.126 

0.478 

0.334 ohms 

58.6 MW 

7 

* Filters are connected to a.c. 

terminal busbar. 

Convertor 2 

Bus 4 

100 kV 

0.0728 

0.0728 

0.629 

10 

-128.87 kV 

Note: All reactances are in p.u. on a 100 MVA base. 
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case 1. All cases therefore yield the same d.c. operation. 

BUS 5 
V=1.032 

P :: 58.60 

Q ,.. 18.79 

a:= 7.0 

~ = 17.32 

y = 10.0 

10.33 

BUS 4 
.v=l.06l 

P '" -58.31 

Q = 16.78 

All angles are in degrees. D.C. voltages and current are in kV and 

Amps respectively. D.C. resistance is in ohms. A.C. powers (P,Q) 

are in MVJ and MVARs. 

Fig. 5.6 D.C. Link Operation 

The a.c. system in isolation (i.e. with the d.c. system 

modelled by the equivalent a.c. loads) requires (4,3) iterations. 

The d.c. system in isolation (i.e. operating from fixed 

terminal voltages) requires 2 iterations under all control strat-

egies. A typical convergence pattern for the terminal power flows, 

Pt and Qt ,is illustrated in Fig. 5.7. The example given erm erm 

has poor starting values. 

The additional iterations required for the combined a.c./d.c. 

systems by many of the sequential versions is therefore due to the 

interaction between the two systems. 
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5.11 DISCUSSION OF RESULTS 

The convergence results shown in Table 5.1 expose several 

significant features of the a.c./d.c. load flow algorithms which have 

been developed. These features are discussed in the following 

sections. 

5.11.1 Unified Methods 

The unified methods provide fast and reliable convergence in 

all cases. 

For the unified methods 1 and 2 the number of iterations did 

not exceed the number required for the a.c. system alone. 

5.11.2 Sequential Hethod 1 (- P ,Q,DC -) 

Convergence was fast and reliable although the reactive power 

convergence was slower than for the a.c. system alone. This 

cauged an extra Q iteration to be required in many cases. 

The removal of the variable ~ caused a slight deterioration in 

performance. An investigation of the mismatches at each iteration 

showed that Qt (dc) actually converges faster when ~ is removed. 
erm 

However, the faster convergence pattern is also more oscillatory 

and these oscillations are reflected in a slowing of overall voltage 

convergence in the a. c. system. 

5.11.3 Sequential Method 2 (- P,DC,Q,DC -) 

The occasional deterioration in performance (cases 2 and 3) 

has been traced to the first d.c. iteration \'Then the a.c. terminal 

voltage is at the initial value of 1.0 p.u. The feature common to 

cases 2 and 3 is that both the transformer tap and d.c. voltage are 

specified at the invertor end. In order to maintain the specified 
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d.c. voltage from a fixed a.c. terminal voltage of 1 p.u. and with 

a fixed tap, the firing angle must decrease. In order to satisfy 

the equation, 

the control variable cos (1T - y) is actually updated to be less than 

-1. Although physically unobtainable this presents no mathematical 

problem unless the variable y is explicitly required. 

Similarly, with the five variable version, the equation 

Vd = Kl . a . V . cos ~ term 

causes the variable <p to be updated for minimum cos <p (i.e: 

approaching -1) . Qt (dc) is therefore in considerable error. erm 

The next d.c. iteration follows a reactive power voltage update 

and the d.c. is converged to be compatible with a better (in this 

case higher) a.c. terminal voltage and convergence to the correct 

solution is subsequently obtained. The variations in the reactive 

power which occur do, however, slow the overall convergence. 

In the 4 vari~le version, ~ is absent. The calculation of 

Q(dc) by equation 5.21 requires a value for <p which may be calculated 

from 

Vd ) 
. a. V term 

when both a and Vd are specified and with a value of V of 1 p.u., term 

the inverse cosine argument is greater than 1 and ~ cannot be 

calculated. The 4 variable version is recorded as having failed in 

these cases although it should be noted that with appropriate 

limits on the inverse cosine argument convergence may be obtained. 
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5.11.4 Dependence on Starting Values 

The starting value for the a.c. terminal voltages is 1 p.u. 

as this is usually the best estimate available. The d.c. starting 

values are calculated from an estimate of the d.c. power and d.c. 

voltage. These estimates determine the initial values for the 

real and reactive power mismatches at the convertor terminal 

busbars. They are therefore relevant to the variation in the a.c. 

terminal voltage. 

With starting values for d. 'c. real and reactive powers within 

± 50%, which are available in all practical situations, all 

algorithms converged rapidly and reliably (see case 9) . 

For completeness it is instructive to consider a rather 

impractical case, such as 10, which has initial estimates for the 

d.c. variables such that the terminal powers are in error by - 80%. 

All methods which retain the variable ~ converged to an incorrect 

solution. The convertor is generating, rather than absorbing, 

reactive power, i.e. the variable cos ~ is correct, and equation 

(5.15) is satisfied, but this occurs with ~ being negative instead 

of positive. This problem cannot occur with the 4 variable versions. 

It should also be noted that with limits placed on ~ the correct 

solution may be obtained. 

5.12 GrHER ITERATION SCHEMES 

The iteration schemes reported have all begun with a real power­

angle update iteration. As the operation/of the d.c. convertors 

is strongly related to the voltage magnitudes the idea of initiating 

the solution sequence with a reactive power-voltage update iteration 

is appealing. This was tested with both the unified and sequential 
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methods. Rapid and reliable convergence was obtained in all cases. 

(30) 
However, Stott and Alsac reported generally improved per-

formance of the a.c. load flow by initiating the iterative process 

with a real power iteration. 

Moreover, from the results obtained it is clear that for the 

best a.c./d.c. methods, convergence depends on the a.c. system 

itself i.e. the Qverall convergence rate does not suffer with 

integration of the d.c. equations. 

Therefore, although the iteration schemes which begin with a 

reactive power iteration improve the reliability of the sequential 

integration, it is not recommended. 

5.13 DISCUSSION OF CONVERGENCE PROPERTIES 

The overall convergence rate of the algorithms depends on the 

successful interaction of the two distinct parts. The a.c. system 

equations are solved using the well behaved constant tangent fast 

decoupled algorithm; the d.c. system equations are solved using the 

more powerful, but somewhat more erratic, full Newton-Raphson 

approach. 

In general, the solution times for the d.c. equations will be 

small compared to the solution time of the a.c. equations. The 

relative efficiencies of the alternative algorithms may therefore 

be assessed by comparing the number of a.c. voltage and angle updates 

which are required. 

Comparing corresponding unified and sequential schemes the 

unified method gives more robust and dependable performance. The 

unified method 2 (i.e. P,QDC) is the best algorithm which has been 

been investigated. The performance of the unified method 1 (PDC,QDC) 
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is comparable but the d.c. equations are effectively solved twice 

as often and this method is therefore slightly less efficient. Of 

the sequential methods, the sequential method I (P,Q,DC) proved the 

best; being only marginally inferior to the unified method. 

Those schemes which acknowledge the fact that the d.c. variables, 

are strongly related to the terminal voltage give the fastest and 

most reliable performance., In these schemes the first d. c. iteration 

occurs alongside or following the first alteration of system voltages. 

The powerful convergence of the Newton-Raphson process for 

the dec. equations can cause overall convergence difficulties. If 

the first d.c. iteration occurs before the reactive power voltage 

update then the d.c. variables are converged to be compatible with 

the incorrect terminal voltage. This introduces an unnecessary 

discontinuity which may lead to convergence difficulties in the 

sequential method. In the unified approach the powerful convergence 

of the d.c. equations is dampened by the reflection of the a.c. 

mismatches onto the changes in d.c. variables. This gives faster 

and better behaved convergence. 

~fuen the busbar to which the convertors are attached is voltage 

controlled (as is often the case) the two approaches become virtually 

identical as the interaction between a.c. and d.c. systems is much 

smaller. 

5.13.1 Generalisations On Convergence Properties 

The unified and sequential algorithms have been investigated 

with reference to the well behaved 14 bus test system. If genera~ 

conclusions are to be drawn regarding the performance of the algorithms 

then further investigation is required. 

~vi th reference to the results already presented and based on 
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experience with other systems, the performance of the a.c./d.c. 

load flow is dependent on the following: 

(i) The initial values of the a.c. terminal voltage for 

the initial d.c. iteration (sequential method only) . 

(ii) The strength of the a.c. system at the terminal busbar. 

This gives a measure of how the changing real and 

reactive powers of the d.c. convertor influences the 

a.c. system convergence. 

(iii) The convergence pattern of the a.c. terminal busbar 

voltage. 

The initial value of a.c. terminal voltage for the first d.c. 

iteration is, in the sequential method, determined by a normal 

fast decoupled a.c. iteration. The maximum error in this voltage 

will be small. 
( 30) 

stote reported maximum errors of around 3% even 

with difficult a.c. systems. The error may be slightly different 

for a.c./d.c. systems depending on the initial values for the d.c. 

variables, however, this error will be small in all practical cases. 

The overall convergence of the a.c./d.c. load flow is therefore 

primarily due to the manner in which the a.c. terminal voltage varies 

with changing convertor power flows and vice versa. 

The nature of t~e a.c. system and the rate at which it converges 

is not relevant to the behaviour of the integrated a.c./d.c. 

load flows except in as much as it influences features (ii) and 

(iii) above. 

In order to investigate the performance of the algorithms with 

a weruc a.c. system the test system described earlier was modified 

by the addition of two a.c. lines as shown in Fig. 5.8. 



128 

BUS 5 jX 
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jX BUS 4 

ro~ 

Fig. 5.8 D.C. 'Link Operating From Weak A.C. S~stem 

The reactive power compensation of the filters was adjusted to 

give similar d.c. operating conditions as previously. 

The number of iterations to convergence for the most promising 

algorithms are shown in Table 5.3 for the control specifications 

corresponding to cases 1 to 5 in the previous results. 

x = 0.3 x = 0.4 CASE 

SPECIFICATION 
UNIFIED SEQUENTIAL UNIFIED SEQUENTIAL 

m-rectifier P,QDC P,Q,DC P,QDC P,Q,DC 

n-invertor 
5V 4V 5V 4V 

12 a P
dm 

Yn Vdn 4,4 4,4 4,4 4,4 5,4 4,4 m 

13 a P d a V
dn

' 4,4 9,8 10,12 4,4 >30 Diverges m m n 

14 a P
dm 

a V
dn m n 

4,3 9,8 10,12 4,3 >30 Diverges 

15 a P
dm Yn 

V
dn m 

4,3 6,5 7,7 4,3 28,27 >30 

Table 5.3 Numbers of Iterations for 

Weak A.C. Systems 
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The different nature of the sequential and unified algori~~ms 

is clearly demonstrated. The effect of the type of convertor 

control is also shown. For case 12 both the d.c. real power and the 

d.c. reactive powers are well constrained by the convertor control 

strategy. Convergence is rapid and reliable for all methods. 

For all other cases, where the control angle at one or both 

convertors is fre~, an oscillatory relationship bet''leen a. c. terminal 

voltage and the reactive power of the convertor is possible. This 

leads to poor convergence of the' sequential algorithms. 

To illustrate the nature of the interaction the convergence 

pattern of the convertor reactive power demand and the a.c. system 

terminal voltage is plotted in Fig. 5.9 for the rectifier. The 

convergence patterns, under the same conditions, for the a.c. and 

d.c. systems in isolation are shown in Figs 5.10 and 5.11 respectively. 

The oscillatory interaction is clear in Fig. 5.8. Figs 5.9 and 5.10 

demonstrate that this problem is purely due to the interaction and 

not due to any feature associated with either a.c. or d.c. system. 

The nature of, the problem is that when the firing angle is not 

specified and the d.c. voltage is effectively fixed,' any increase in 

terminal voltage leads to an increase in firing angle and hence 

increase in the reactive power demand. The increased reactive power 

demand causes a subsequent decrease in terminal voltage during the 

following a.c. iteration and an ocsillatory pattern emerges. With 

a strong a.c. system the terminal voltage is well constrained and the 

oscillations are well damped. 

It may be possible to alleviate some of the oscillatory problem 

by the use of acceleration factors or similar techniques. It is 

considered doubtful that the oscillation may be sufficiently 

dampened without detrimentally effecting convergence speed in well 
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behaved cases. 

5.13.2 General Conclusions on Convergence Properties 

The features which influence the convergence of the unified 

and sequential algorithms have been discussed in some detail. The 

following general conclusions may be made: 

In cases ~here the a.c. system is strong both the 

unified and sequential algorithms may be programmed to 

give fast and reliable convergence. 

If the a.c. system is weak the sequential algorithm is 

susceptible to convergence problems. 

A potential load flow user may assess the best method for their 

particular system. 

The discussion on the strength of the a.c. system has been 

deliberately vague. The usual measure of the strength of an a.c. 

system containing a convertor installation is the short circuit 

ratio (SCR). The SCR is calculated from the fault MVA at the 

terminal busbar, and, as such, depends not only upon the lines and 

transformers but also on the machine transient or subtransient 

reactances. However, in load flow studies, these reactances are 

zero, that is, the machine terminal voltages represents an infinite 

busbar and the SCR does not therefore give an exact indication of the 

strength of the system. For example a small synchronous condensor 

attached to a busbar makes that busbar infinitely strong in a load 

flow sense while having a far smaller influence on the SCR. 

, , (43,46) , d' h 1m A survey of ex~st~ng schemes In ~cates t at, a ost 

invariably, with systems of low SCR, some form of voltage control, 

often synchronous condensors, is an an integral part of the convertor 



installation. These schemes are therefore often strong as far as 

the load flow is concerned. 
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A measure of the strength of a system in a load flow sense is the 

SCR calculated with all machine reactances set to zero. This short 

circuit ratio is invariably much higher than the usual value. It 

has been demonstrated in the previous section that the sequential 

load flow converg~s under all control strategies even down to a load 

flow SCR of around 3. In the usual sense the SCR of this system is 

considerably less than 3. Since' SCR's below 3 are not encountered 

in practical convertor schemes it may be concluded that the sequential 

integration should converge in all practical situations although the 

convergence may become slow if the system is weak in a load flow 

sense. 

The only disadvantage of the unified method is increased pro­

gramming complexity; if this is not an important consideration then 

the'unified method is to be preferred in all cases due to its greater 

inherent reliability. Experience with multiterrninal d.c. systems 

has shown the feat~res described here to be equally applicable. 
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CHAPTER 6 

THREE PHASE A.C./D.C. LOAD FLOW ALGORITHM 

6.1 INTRODUCTION 

Any convertor which is operating from an unbalanced a.c. system 

will itself operate with unbalanced pO\\Ter flows and unsymmetric valve 

conduction periods. In addition any unbalance present in the convertor 

control equipment or any asymmetry in the convertor transformer will 

introduce additional unbalance. 

Considerable interaction exists between the unbalanced operation 

of the a.c. and d.c. systems. The exact nature of this interaction 

depends on features such as the convertor transformer connection and 

the convertor firing controller. 

One purpose of a detailed study of the unbalanced operation of 

a.c./d.c. systems is as an aid to system planning and development. 

Operation of high pO\'1er convertors is being considered in situations 

of relatively low short circuit ratios. Unbalance effects are more 

likely to be significant under these conditions and may require 

additional consideration. The steady state unbalance and its' 

relevance to convertor harmonic current generation may also influence 

the consideration of possible transmission line transpositions and 

also the suitability of either synchronous or static reactive power 

compensation. 

In addition the developed model and its' integration into the 

load flow provides an excellent basis for a thorough understanding 

of steady state convertor behaviour. 
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The fundamental frequency model derived here also provides 

a basis for an investigation of several features associated with 

the steady state harmonic interaction between d.c. convertors and 

the a.c. system. This subject is considered in the final chapters 

of this Thesis. 

The present chapter is restricted to the study of the fundamental 

frequency unbalanGed operation of integrated a.c./d.c. system. 

, (47) 
PreVlOUS researchers have developed coupled sequence 

representations to enable the convertor to be analysed in conjunction 

with the a.c. system. However the parameters of the coupled sequence 

impedances depend upon the operating conditions of the convertor; 

therefore they change at every iteration. In addition, the impedances 

are a mathematical artificiality and cannot be physically realised. 

These features make this approach unattractive. 

'II 1(48) dd' t' "t t Arrl aga et a exten e lnves 19atlons ln 0 conver or 

unbalance and developed an equivalent sequence current generator 

concept for the unbalanced convertor. 

The artificiality of modelling the convertor in terms of 

sequence components may be avoided simply by integrating the equations, 

in actual phase quantities, directly into a phase component, three 

phase load flow analysis. 

The convertor model for unbalanced analysis is considerably 

more complex than that developed in the preceeding chapter for the 

balanced case. The additional complexity arises from the need to 

include the effect of the three phase convertor transformer connect~ 

ion and the different convertor firing control modes. Early h. v. do. c. 

control schemes were based on phase angle control, where the firing 

of each valve is timed individually with respect to the appropriate 
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crossing of the phase voltages. This control scheme has proved 

susceptible to harmonic stability problems when operating from a 

weak a.c. system. An alternative control, based on equidistant 

firings on the steady state, is generally accepted to provide 

greater inherent accuracy in the timing of firing pulses and also to 

provide more stable operation in the presence of weak a.c. 

t 
(49,50,51) 

sys ems. . Under normal steady state and perfectly balanced 

operating conditions there is no difference between these two 

basic control strategies. However, their effect on the a.c. system 

and d.c. voltage and current waveshapes during normal, but not 

balanced, operation, is quite different. 

A three phase convertor model, with the flexibility to 

represent alternative control strategies, has been developed. 

Although this chapter is restricted to considering the 

integration of the developed model with the three phase fast 

decoupled load flow described in chapter 4, the model may be used 

wi th any three phase load flow. 

Similar techniques are available for the integration of the 

three phase convertor model into the load flow analysis as were 

discussed with respect to the balanced single phase analysis. Based 

upon the extensive investigations into the behaviour of single phase 

a.c./d.c. load flow described in chapter 5, the sequential approach 

is considered the most appropriate for the integration of the d.c. 

model into the three phase load flow. The complexity of the unified 

approach is not considered justified in the three phase case 

because, in cases of difficult convergence such as those involvin~ 

very weak a.c. systems, it is possible to use starting values 

derived from single phase analysis. 

This chapter describes the development of a model for the 
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unbalanced convertor and the subsequent integration of that model 

into the three phase fast de coup led load flow analysis. A summary 

f th ' ch ' 'd ' (3) ubI' h d' th o ~s apter ~s conta~ne ~n a paper p ~s e ~n e 

Proc. lEE and reproduced in Appendix 6. 

6.2 FORMULATION OF THE THREE PHASE A.C./D.C. LOAD FLOW ProBLEM 

The aim of the three phase a.c./d.c. load flow is to solve for 

the unbalanced operating s'tate of the combined a.c. and d.c. systems, 

under the specified conditions of load/generation and d.c. system 

control strategy. 

The operating state of the combined system is defined,by: 

where: 

are the vectors of the balanced internal 

voltages at the generator internal 

busbars. 

are vectors of the three phase voltages 

at every generator terminal busbar and 

every load busbar. 

x is a vector of the d.c. variables (as yet 

undefined) . 

The significance of the three phase a.c. variables was discussed 

in chapter 4. The selection of d.c. variables x is discussed in the 

following section. 

To enable a Newton-Raphson based technique to be used it is 

.necessary to formulate a set of n independent equations in terms 

of the n variables describing the system. The equations which 
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relate to the a.c. system variables are derived from the specified 

a.c. system operating conditions. The only modification to these 

equations (described in chapter 4) which results from the presence 

of the d.c. system occurs at the convertor terminal busbars. These 

equations become, 

== (Pp ) sp - PPt (ac) - PPt (dc) 
term erm erm 

(6.1) 

ll~erm = (6.2) 

where PPt (dc) and QP
t 

(dc) are functions of the a.c. terminal 
erm erm 

conditions and the convertor variables, i.e.: 

(6.3) 

(6.4) 

The equations for the a.c. system may therefore be summarised 

as I 

llP (V, 6) 

- -
llPt (V, 6, x) 

erm 

llP (V, 6) 
gen 

= 0 (6.5) 
llQ (V, 6) 

llQt· (V, 6, x) 
erm 

llV (V) 
reg 

where the mismatches at the convertor terminal busbars are indicated 

separately from the usual three phase a.c. system equations. 

Further equations are derived from the d. c. sys.tem conditions. 

Let these equations be designated, 

(6.6) 
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That is, for each convertor, k, a set of equations is derived 

in terms of the terminal conditions and the convertor variables i. 

Equations 6.3, 6.4 and 6.6 form a mathematical model of the 

d.c. system suitable for inclusion into load flow analysis. 

The three phase a.c./d.c. load flow problem may therefore be 

formulated as the solution of, 

t:,.p 6.1 , ·6 ) 

- -t:,.p (V 
term term' 6 t!3rm I x) 

t:,.p (V, 6) gen 

t:,.Q (V, 6) = 0 (6. 7) 

t:,.Qt (V, erm 
6, x) 

t:,.V 
reg (V) 

-
R (V

term
, 6 t' f 

x) 
erm 

-for the set of variables (V, 6, x) . 

6.3 D.C. SYSTEM MODELLING 

6.3.1 Introduction 

The basic h.v.d.c. interconnection sh~vn in Fig. 6.1 is used 

as a reference in the development of the model. The extension to 

other configurations is clarified throughout the development. Under 

unbalanced conditions the convertor transformer modifies the 

source voltages applied to the convertor and also affects the phase 

distribution of current and power. In addition, the a.c. system 

operation may be influenced (e.g. by a zero sequence current flow to 

a star-g/delta transformer) by the transformer connection. Each 

bridge in Fig. 6.1 will thus operate with a different degree of 

unbalance, due to the influence of the convertor transformer connections, 
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Filters Filters 

Fig. 6.1 Basic h.v.d.c. Interconnection 

Primary Secondary 

Fig. 6.2 Basic Three Phase Convertor Unit 
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and must be modelled independently. This feature is in contrast to 

the balanced d.c. model where it is possible to combine bridges in 

series and in parallel to form an equivalent single bridge. The 

dimensions of the three phase d.c. model, will, for this reason 

alone, be greater than the balanced d.c. model. 

All convertors, whether rectifying or inverting, are represented 

by the same model, (Fig. 6.2) and their equations are of the same 

form. 

6.3.2 Basic Assumptions 

To enable the formulation of equation (6.6) and to simplify 

the selection of variables i the following assumptions are made: 

(i) The three a.c. phase voltages at ~~e terminal busbar 

are sinusoidal. 

(ii) The direct voltage and direct current are smooth. 

(iii) The convertor transformer is lossless and the magnetising 

admittance is ignored. 

Assumption (i) requires more critical examination for unbalanced 

study. Under balanced operation only characteristic harmonics are 

produced and, as filtering is normally provided at these frequencies, 

the level of harmonic voltages will be small. However, under even 

small amounts of unbalance, significant non-characteristic harmonics 

may be produced and the harmonic content at the terminal busbar 

may increase. 

An investigation of the possible worst case influence of harmonic 

voltages up to the limits allowed by power authorities, is discussed 

in Appendix 7. The investigation concludes that although a 

rigorous justification is not possible, the assumption can be expected 

to be justified in all practical cases. A rigorous justification 
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requires an assessment of the possible harmonic levels and this is 

considered further in chapter 8. For the present, in line with 

th ' ,,(47,48) th t' 'II b d 'th o er ~nvest~gat~ons ,e assump ~on w~ e accepte w~ 

only heuristic justification. 

Assumptions (ii) and (iii) are equally valid for three phase 

analysis as for single phase analysis and no further justification 

will be given here. 

6.3.3 Selection of Convertor Variables 

The philosophy governing the selection of convertor variables 

was discussed in detail in section 5.3 with regard to the balanced 

convertor model. The same considerations are relevant to the 

unbalanced three phase convertor model. The important features 

may be summarised as follows: 

(i) For computing efficiency the smallest number of variables 

should be used. 

(ii) To enable a wide range of control specifications to be 

readily incorporated all variables involved in their 

formulation should be retained. 

An unbalanced convertor, operating from known three phase 

voltages, requires a knowledge of six independent variables to 

define the convertor operating state. For example if all three 

firing angles and all three transformer taps are known then the 

convertor operation is defined. The minimum number of convertor 

variables is therefore six. However to satisfy condition (ii) 

above additional variables are used. 

The assumptions listed in section 6.3.2 justify the use of 

idealised voltage and current waveforms as illustrated in Fig. 6.3. 

The following variables are defined with reference to Figs 6.2 and 
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Unbalanced Convertor Voltage and Current Waveform 

(i) phase voltages 
(ii) D. C. voltage waveform 
(iii) assumed current waveshape for phase 1 

(actual vlaveform is indicated by dotted line) 
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Off-nominal tap ratios on the primary side. 

Phase to phase source voltages for 

convertor referred to the transformer 

secondary . C. are therefore the zero 
~ 

crossings for the timing of firing 

pulses. 

Firing delay angle measured from the 

respective zero crossing. 

Total average d.c. voltage from 

complete bridge. 

Id Average d.c. current. 

Where i = 1,2,3 for the three phases involved. 

All of the above variables are required in the formulation of 

the control specifications for unbalanced convertor operation. The 

variables parallel those used in the balanced model except for the 

addition of the phase to phase source voltages at the secondary. In 

the single phase model the convertor source voltage is not included 

as a variable as its calculation is trivial and it is not required 

in the formulation of any control specification. In contrast the 

unbalanced phase to phase source voltages at the transformer secondary 

are more complex to calculate as they depend not only on the transformer 

taps but also on the transformer connection. In addition, the zero 

crossings, C., are explicitly required in the formulation of the 
1. 

symmetrical firing controller. For these reasons they are included 

as convertor variables. 

Equation (6.6) may be conveniently formulated in terms of these 
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14 variables. 

6.3.4 Derivation of Basic D.C. Equations 

The previous discussion justifies the use of 14 variables to 

model each convertor. The vector x is 

[U.,C.,a., 
~ ~ ~ 

where i = 1,3. 

The convertor model requires the formulation of a corresponding 

number of independent algebraic equations in terms of these 14 

variables. Following the preliminary development of a conyertor 

angle reference and suitable per unit system, the derivation of 

these equations will be given. 

6.3.4.1 Convertor Angle Reference 

In the three phase a.c. load flow all angles are referred to 

the'slack generators internal busbar. The angle reference for each 

convertor may be arbitrarily assigned. SimilarlY,to the single phase 

a.c./d.c. load flow (chapter 5) , by using one of the convertor angles 

(e.g. St' in Fig. 2) as a reference the mathematical coupling erm 

between the equations describing the a.c. system and those describing 

the convertor, is weakened. This has a favourable effect on the 

rate of convergence, especiallY so, as a sequential solution technique 

is to be used. 

6.3.4.2 Per unit System 

The application of a p.u. system to the single phase representat-

ion of the d.c. system was disc~ssed in detail in section 5.3.2.1. 

Similar considerations apply to the three phase representation. 

The following p.u. system is adopted. 



Computational simplicity is achieved by using common power and 

vol tage bases on both sides of the convertor. 

The three phase a.c. system base values are: 

MVA. :: Base power per phase -nase 

Vb = Phase - neutral voltage base. ase 

With common power and voltage bases the current base on the 

a.c. and d.c. sides are also equal and therefore no constants appear 

in the equations due to the p.u •. system. 

6.3.4.3 Convertor Source Voltages 

The phase to phase source voltages referred to the transformer 

secondary are found by a consideration of the transformer connection 

and off-nominal turns ratio. For example consider the star-star 
-~ 

transformer of Fig. 6.4. 

Phase 1 

Phase 3 

Phase 2 

Fig. 6.4 Star-Star Transformer Connection 

The phase to phase source voltages referred to the secondary 

are: 

(6.8) 

(6.9) 
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1 2 /2 ill E. U
2l

/c
3 

= - v 8 -8 ~ - V 0 o a2 term term term a
l 

term 
(6.10) 

Taking real and imaginary parts yields a further six equations. 

6.3.4.4 D.C. Voltage 

The d.c. voltage is found by integration of the waveforms in 

Fig. 6.3 (ii) and may be written in the form: 

V *rr 
d --= 

- Cos(C +ct -C)] 
3 3 1 

where XC, is the commutation reactance for phase i. 
1. 

6.3.4.5 D.C. Interconnection 

(6.11) 

An equation is derived for each convertor, from the d.c. system 

topology relating the d.c. voltages and currents. In general, this 

equation is of the form: 

o (6.12) 

For example the system shown in Fig. 6.1 provides the following four 

equations: 

Vdl + Vd2 + Vd3 + Vd ~ 
4 

Id
l 

. Rd 0 

Id -
1 

Id
2 

0 

Id
l 

Id
3 

0 

Id
l 

Id4 
0 

where clearly some redundancy results. This is the cost of complete 



148 

generality in the d.c. interconnection. 

6.3.4.6 Incorporation of Control Strategies 

A further six equations are derived from the specified operating 

conditions. Any function of the variables is a valid (mathematically) 

control equation so long as the equation is independent of all the 

others. 

In practice there are restrictions limiting the number of 

alternatives. Some control specifications refer to the characteristics 

of power transmission (e.g. constant power or constant current) , 

others introduce constraints such as minimum delay or extinction 

angles. 

As the consideration of the alternative firing controls is of 

particular interest their implementation is now discussed. 

Symmetrical firing is considered as being applied individually 

for each six pulse bridge although, if required, the equations may 

be written to consider the firing controller operating on an integral 

twelve pulse bridge. For a six pulse unit the interval between 

firing pulses is specified as 60°. This provides two equations. The 

third equation results from the specification of minimum firing 

angle control, i.e. 

a, - a, - 0 (6.l3) 
1. ml.n 

Where phase i is selected during the solution procedure such that 

the other two phases will have, in the unbalanced case, firing angles 

greater than a , . 
ml.n 

With conventional phase angle control the firing angle on each 

phase is specified as being equal to a , , i.e. ml.n 
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a - a :::: 0 (6. 14) 1 min 

a
2 - a = 0 (6.15) min 

a
3 

- a :::: 0 (6.16) min 

The remaining three control equations are derived from the 

operating conditions. Usually, the off-nominal taps are specified 

as being equal, i.e. 

= 0 (6.17) 

= 0 ( 6.18) 

The final equation will normally relate to the constant current 

or constant power controller, e.g. 

(6.19 ) 

or (6.20) 

The above examples illustrate the case with which the various 

control specifications are incorporated. 

6.3.4.7 Invertor Operation with Specified Extinction Angle 

In the single phase load flow the d.c. equations for invertor 

operation are written in terms of the extinction angle y (instead of 

the firing delay angle a) and the equations for specifying the 

extinction angle may be written directly. For the three phase load flow 

this cannot be done as the variable a must be retained in the study 

as it is required in the formulation of the symmetrical firing control 

equations. Therefore the restriction upon the extinction advance 

angle y requires the implicit calculation of the qommutation angle 

for each phase. 
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Taking the specification for y, as defined in Fig. 6.3, the 

following equation is used: 

Cos sp + C I YI os a l - d = 0 (6.21) 

Similar equations apply to the other two phases with a cyclic 

change of suffices. 

6.3.5 Calculation of Terminal Power Flows 

The mathematical model of the convertor includes the formulation 

of equations (6.3) and (6.4) for the individual phase real and 

reactive power flows on the primary of the convertor transformer. 

It is in connection with these equations that the three phase 

model deviates significantly from the single phase model developed 

in the previous chapter. 

The calculation of the individual phase real and reactive 

powers at the terminal busbar requires the values of both the 

magnitude and angle of the fundamental components of the individual 

phase currents flowing to the convertor transformer. 

In the single phase analysis of the balanced convertor the 

magnitude of the fundamental is obtained by approximating the 

fourier analysis for the current waveshape on the transformer secondary 

and then transferring the fundamental magnitude across the convertor 

transformer. In the single phase case this procedure is trivial 

and the equations are eliminated from the d. c. solution • The angle 

of the fundamental component is calculated by simply equating the 

total real power on a.c, and d.c. sides of the convertor. 

A similar procedure may be applied to the three phase analysis 

of the unbalanced convertor, however, the transferance of secondary 
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currents to the primary is no longer a trivial procedure due to 

the influence of the three phase transformer connection. In addition, 

the three phase convertor transformer may ·influence the a.c. system 

operation, for example, a star-g/delta connection provides a zero 

sequence path for .the a. c. system. 

The simp list and most general method of accounting for the 

influence of the three phase convertor transformer connection is to 

extend the d.c. system model to include the nodal admittance model 

of the transformer. The nodal admittance model of the various 

transformer connections have been discussed in chapter 2 for the 

usual a. c. system transformers i the same models are applicable to 

the convertor transformers except these may be generalised to 

include the modelling of independent tap ratios on each phase winding. 

An example is given in Appendix 5 for the star-g/delta connection. 

The inclusion of the fundamental frequency three phase model 

of the transformer necessitates the inclusion of the following 

variables, defined here with reference to Fig. 6.2: 

the fundamental component of the voltage waveshape 

at the transformer secondary busbar. 

the fundamental component of the secondary current 

waveshapes. 

where i = 1,3 for the three phases. 

A total of 12 extra variables are added to the original 14 

to yield a final set of 26 variables for each convertor in the d. c. 

system. 

The terminal real and reactive power flows on the primary of 

the convertor transformer may be calculated from the values of E. and 
1. 

~. which are solved for as part of the Newton-Raphson procedure for 
1. 
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the d.c. system. These power flows are calculated at each real 

or reactive power a.c. iteration to form the real or reactive power 

mismatch at the terminal busbar. They are calculated by the usual 

a.c. equations for calculating the power flow leaving a busbar (the 

convertor terminal) and flowing to another busbar (the convertor 

transformer secondary) through a three phase element (the convertor 

transformer) when all voltages and angles are known. 

The additional 12 variables which are added to the d.c. model 

require the formulation of an additional 12 independent equations. 

As these equations relate to the fundamental frequency three phase 

power flows across a system element it may therefore seem appropriate 

to apply the usual real and reactive power mismatch equations 

at the convertor secondary busbar. However, the calculation of the 

individual phase real and reactive power flows to the d.c. side from 

the transformer secondary is difficult and these mismatch equations 

are not suitable. Therefore the variables I. /w. are included and 
~~ 

current mismatch equations are used. The inclusion of these 

variables enables all equations to have clear physical significance. 

The equations are formed in the following sections. 

6.3.5.1 Current Relationships 

Relationships are derived for the fundamental frequency real and 

imaginary current flows across the convertor transformer. 

Off nominal taps (a
l 

a
2 

a
3

) are modelled on the system (primary) 

side of the transformer; and are, for generality, assumed independently 

controllable. 

The three-phase convertor transformer is represented by its 

nodal admittance model, i.e. 
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y y 
pp ps 

y = 
node y y 

(6.22) 

sp ss 

where p indicates the primary side 

and s the secondary side of the transformer. 

The 3 x 3 submatrices (Y I etc.) for the various transformer 
pp 

connections, including modelling'of the independent phase taps, may 

be derived using Kron's connection matrix technique; an example is 

illustrated in Appendix 3. 

In terms of these submatrices and on the assumption of a lossless 

transformer (i.e. Y = jb , etc.) the currents at the convertor side 
pp pp 

busbar are expressed as follows: 

jw 
I.e . 

3 

- -2 el 
)] (6.23) 

term ~ 1. 
k=l 

By subtracting e
l 

in the above equation the terminal busbar angles 
term 

are related to the convertor angle reference. 

Separating this equation into real and imaginary components the 

following six equations result: 

I.cosw. = 
1. l 

I.sinw. == 
1. 1. 

3 
'\ [bik . ik k . (ek e1) ] ~ ssEks1.n~k + b V- Sln t -

k=l sp term erm term 
(6.24) 

ik k k 1 
b V cos(e

t 
- e )] (6.25) 

sp term erm term 

Three further equations are derived from approximate expressions 

. '( 48) 
for the fundamental rms components of the ll.ne current waveforms 

as shown in Fig. 6.3, i.e. 



I. :: 0.995* 
~ 

4 • Id 
--.;;;;. sin (T. /2) 

~ 

where T. is the assumed conduction period for phase i. 
~ 
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(6.26) 

The accuracy of these approximations depends upon the magnitude 

of the commutation angles and also upon the imbalance between the 

incoming and outgoing commutation periods. Within the range of 

unbalance expected in steady state operation the error should be 

less than 1%. If greater accura~y is required this may be achieved 

by the procedure outlined in Appendix 8. Solutions to greater 

accuracy are,however, seldom required in the context of load flow 

investigations. 

6.3.5.2 Equality of Real Power Flow 

The sum of the real powers on the three phases of the transformer 

secondary may be equated to the total d.c. power, i.e. 

6.3.5.3 

3 

I 
i=l 

E. 
~ 

Final Equations 

A total of 10 equations have been derived so far and an 

(6.27) 

additional 2 independent equations are required. Several versions 

have been developed for .these equations which are applicable to 

specific transformer connections. The version presented here, is 

general to all transformer connections and is therefore considered 

the most satisfactory. 

The equations are derived from the position of the fundamental 

frequency voltage reference for the secondary of the. convertor 

transformer. 

The voltage reference for the a.c. system is earth. In d.c. 
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transmission the actual earth is placed on one of the convertors 

d.c. terminal and this point is used as a reference to define the 

d.c. transmission voltages and the insulation levels of the convertor 

transformer secondary windings. 

However for the load flow analysis arbitrary references can be 

used for each convertor unit to simplify the mathematical model. 

The actual voltages to earth, if required, can then be obtained 

from the particular configuration and earthing arrangements. 

The transformer nodal admittance matrix relates the injected 

currents to the nodal voltages, where the nodal voltages must be 

with respect to a common reference. In the case of the convertor 

transformer secondary an arbitrary reference can be explicitly 

included. 

with a star winding on the secondary an obvious reference is 

the star point itself. If the nodal admittance matrix is formed 

for" a star-g/star-g connection, then this reference is implicitly 

present through the admittance model of the transformer. In this 

case however the convertor transformer does not restrict the flow 

of zero sequence currents and the following two equations may be 

written: 

3 
I I. tw. = 0 

i=l ~·U 
(6.28) 

These two equations (real and imaginery parts) complete the 

set of 12 independent equations in terms of the 12 additional 

variables. 

However, for a delta secondary winding no star point is 

available and some other reference must be used. 

To obtain a reference which may be applied to all transformer 

secondary windings an artificial reference node is formulated. The 
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zero sequence secondary voltage is taken as a reference, this is 

conveniently implemented by the following two equations: 

3 

L E. cos ~i = 0 
i=l 1. 

(6.29) 

3 

L E. sin ~. = 0 
i=l 

1. 1. 
(6.30) 

The nodal admittance matrix for a star connected transformer 

secondary is formed for an unearthed star winding. The restriction 

on the zero sequence current flowing on the secondary is therefore 

implicitly included in the transformer model for both star 'and 

delta connections. 

Both alternatives for a star winding have been programmed and, 

not unexpectedly, yield exactly the same solution to the load flow 

problem. 

6.3.6 Summary of Equations and Variables 

The 26 equations (R) which define the operation of each convertor 

are: 

3 
R(l) L E. cos ~i = 0 

i=l' 1. 

3 
R(2) ::: L E. sin, ~. :::;: 0 

i=l 
1. 1. 

3 
R(3) ::: I E.I. cos (<p. -w. ) -Vd·Id i=l 1. 1. 1. 1. 

R(4) 
4 Id 

II - -. - sin(Tl /2) 
1T /2 

R(5) 
4 Id 

12 -. - sin(T /2) 
11" 12 2 



R(6) 

R(7) ::::: 

R(8) ::::: 

R(9) == 

R(lO) ::::: 

R(ll) "" 

R(12) = 

R( 13) 

R(18) 

R( 19) 

R(24) 

R(25) 
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R(26) = f(Vdi,I di ) from d.c. system topology. 

The 26 variables x are: 

6.4 SOLUTION TECHNIQUES 

As discussed in the introduction, the simpler sequential 

solution technique has been adopted for the three phase a.c./d.c. 

load flow, the complexity of the unified approach not being justified 

for the three phase case. The sequential technique, using the 

three phase fast decoupled a.c. algorithm and a full Newton-Raphson 

algorithm for the d.c. equations, involves the block successive 

iteration of the following three equations, 

[": (V ,a~/v J = [ B' ] [ ::int ] /::'P IV. t gen ~n 

(6.31) 

["~(V ,a~;v ] = [ B" ] [::int] /::'v (V) 
reg 

(6.32) 

[ R(x) ] == [ J J [ /::.;;: ] (6.3,3) 

where [B'] and [B"] are the three phase fast decoupled a. c. jacobian 

matrices as developed in chapter 4 
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and (J] is the d.c. jacobian of first order partial derivatives. 

Equations (6.31) and (6.32) are the three phase fast decoupled 

algorithmic equations from chapter 4. For the solution of the a.c. 

equations, the d.c. variables x are treated as constants and, in 

effect, the d.c. system is modelled simply as the appropriate real 

and reactive power loads at the convertor terminal busbar. For 

the d.c. iteration, the a."c. variables at the terminal busbars are 

considered to be constant. 

The selection of the sequential iteration sequence for the three 

sets of equations (Le., (6.31), (6.32) and (6.33)) has been based 

upon the results of the investigation with the single phase fast 

decoupled a.c./d.c. load flow presented in chapter 5. The iteration 

sequence, illustrated in Fig. 6.5·, parallels the single phase P ,Q ,DC 

sequence which proved the most successful in the single phase case. 

This sequence acknowledges the fact that the convertor operat­

ion is strongly related to the magnitude of the terminal voltages 

and more weakly dependent on their phase angles. Therefore the 

convertor solution follows the update of the a.c. terminal voltages. 

It should be noted, h~qever, that for the final convergence 

of the system unbalance, the d.c. operation is dependent on the phase 

angle unbalance as much as on the voltage unbalance. The final 

convergence of the three phase load flow is comparatively slO\q and 

no convergence problems have occured from this dependence on terminal 

busbar phase angle unbalance. 

6.5 PROGRAMMING ASPEcrS 

Equations (6.31) and (6.32) are solved using sparsity techniques 

and near optimal ordering. 
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The solution of equation (6.33) is carried out using a modified 

Gaussian Elimination routine. The equations for each convertor are 

separate except for those relating to the d.c. interconnection. 

This feature may be utilized by appropriate ordering of variables 

to yield a block sparsity structure for the d.c. Jacobian. By 

placing the d.c. voltage variable last for each blode of convertor 

equations and by placing all the d.c. current variables after all 

convertor blocks the d. c. Jacobian will have a structure as illustrated 

in Fig. 6.6. 

By using row pivoting only during the solution procedure, the 

block sparsity of Fig. 6.6 is preserved. Each block containing 

non-zero elements is stored in full, but only non-zero elements are 

processed. 

This routine requires less storage than a normal sparsity 

programme for non-symmetrical matrices and the solution efficiency is 

improved. 

6.6 PERFORMANCE OF THE ALGORITHH AND SAMPLE RESULTS 

6.6.1 Introduction 

The performance of the sequential integration of the unbalanced 

convertor model into the three phase fast decoupled a.c. load flow 

is subject to the same considerations as the comparable single phase 

load flow discussed in chapter 5. That is, the convergence rate 

depends on the influence of the a.c. terminal voltages on .the d.c. 

operation and the influence of the changing convertor real and 

reactive power flows on the a.c. system convergence. 

This section investigates the performance of the three phase 

a.c./d.c. load flow and, where applicable, compares this with the 
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corresponding single phase sequential integration. The investigat­

ion is performed with reference to a particular test system which 

has been selected to illustrate tpe features which influence 

convergence and also to enable detailed results to be given. 

The test system and d.c. convertor installations are described 

in the first part of this section. The convergence characteristics 

of the d.c. model when operating from fixed terminal conditions is 

examined and then the behaviour of the combined a.c./d.c. load 

flow is investigated. 

6.6.2 Description of Test System 

The developed algorithm has been investigated with reference to 

the test system illustrated in Fig. 6.7. The system consists of two 

a.c. systems interconnected by a ?OO kv, 600 MW h.v.d.c. link. 

The 20 bus system is a representation of the 220 kv a.c. network 

of the South Island of New Zealand. It includes mutually-coupled 

parallel lines, synchronous generators and condensers, star-star 

and star-delta connected transformers and has a total generation in 

excess of 2000 Mtv. 

At the other end of the link a fictitious 5-bus system represents 

800 MtV of remote hydrogeneration connected to a convertor terminal 

and load busbar by long untransposed high voltage lines. 

The small system is used to test the algorithm and to enable 

detailed discussion of results. The d.c. link should have considerable 

influence, as the link power rating is comparable to the total 

capacity of the small system. Relevant parameters for the a.c. system 

and d.c. link are given in Table 6.1. 



20 Bus System 

(a) H.V.D.C. interconnection 

A. k;;m BU5.03 

F 
-~~-BU5.02 

---<>- 8U5.04 

(b) 5 Bus a. c. system 

Fig. 6.7 Three Phase A.C./D.C. Test System 
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5 Bus System 

8U5.01 

knr"l> 8U5.05 



Data for all lines 

Z Series Impedance 
s 

0.0066 0.0017 
+jO.056 +jO.027 

0.0017 0.0045 
+jO.027 +jO.047 

0.0012 0.0014 
+jO.021 +j~.0220 

Generator Data 

Matrix 

0.0012 
+jO.021 

0.0014 
+jO.022 

0.0062 
+jO.061 

y Shun t Admi ttan ce Matrix 
s 

jO.15 -jO.03 -jO.Ol 

-jO.03 jO.25 -jO.02 

-jO.Ol -jO.02 jO.125 

Data for generator trans­
formers 

Sequence Power Voltage 
Connection Star-G/DELTA 

Name 
Reactances (MW) Regulator 

X X
2 Va 

0 

Reactance ,0.0016+jO.015 

Off-nominal +2.5% on 
GEN.Ol 0.02 0.004 700.0 1.045 tap Star 

GEN.SL 0.02 0.004 SLACK 1.061 

Busbar Loadings 

BUS NAME 
PHASE A PHASE B PHASE C 

P-LOAD Q-LOAD P-LOAD Q-LOAD P-LOAD Q-LOAD 

BUS.01 20.000 10.000 20.000 10.000 20.000 10.000 

BUS.02 66.667 26.667 66.667 26.667 66.667 26.667 

BUS .01 0.000 0.000 0.000 0.000 0.000 0.000 

BUS.04 0.000 0.000 0.000 0.000 0.000 0.000 

BUS.05 0.000 0.000 0.000 0.000 0.000 -, 0.000 

Data for all convertors 

Phase 1 Phase 2 Phase 3 

Trans former Reactances 0.0510 0.0510 0.0510 

Commutation Reactances 0.0537 0.0537 0.0537 

Minimum Firing Angle 7.0 deg 

Minimum Extinction 
Angle 

10.0 deg 

Nominal Voltage 140 kV 

D.C. link resistance = 25.0 ohms. 

Table 6.1 System Data 
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6.6.3 Convergence of D.C. Model from fixed Terminal Conditions 

The set of equations R form a complete mathematical description 

of the steady state operation of the three phase d.c. convertor. 

These equations may be solved using a full Newton-Raphson procedure 

as discussed in section 6.4. If the terminal busbar voltages 

(Vt ,6t ) are fixed then the d.c. model may be solved in erm erm 

isolation. The convergence pattern of the real and reactive power 

flows from the a.c. busbar are of interest as this is the primary 

feature of the d.c. systems' influence on the convergence of the a.c. 

system. The convergence patterns for these terminal power flows 

for the. three phase model, under both balanced and unbalanced terminal 

conditions, are shown in Fig. 6.8. Similar convergence patterns are 

obtained under all d.c. control strategies when the terminal 

conditions are fixed. The convergence pattern of the single phase 

representation of the same convertor, as developed in chapter 5, is 

also illustrated. To enable a comparison to be made, the total 

three phase powers are plotted for the balanced case. In all cases 

d.c. starting values were selected to give large initial errors in 

the terminal powers to better illustrate the convergence. 

The d.c.equations require 2 iterations to converge for both 

the single and three phase models. The three phase terminal powers 

converge in a similar manner to the single phase powers under 

balanced conditions. vii th unbalanced terminal conditions the three 

phase convergence is rapid. 

The influence of the changing three phase power flows on the 

I 

a.c. system convergence is investigated in the following section. 

6.6.4 Performance of the Integrated A.C./D.C. Load Flow 

With reference to the test system illustrated in Fig. 6.7, the 

following control specifications are applied at the inverting 
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terminal for all cases whiCh have been investigated; 

symmetrical firing control with the reference phase 

on minimum extinction angle. 

Off nominal tap ratios equal on all phases. 

D.C. voltage specified. 
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A variety of different control strategies have been applied at 

the rectifier terminal; ~e case descriptions and convergence 

results are given in Table 6.2. The Table also includes the results 

with the convertor installation modelled by equivalent a.c. loads 

at the terminal busbars and for cases where the system unbalance 

has been artificially increased with large unbalanced loads. 

It should be noted that the iteration scheme illustrated in 

Fig. 6.5 does not allow for each individual a.c. system to be 

converged independently, therefore the number of iterations required 

is the larger of the two sets given in the Table. 

It is clear that the integration of the d.c. convertor model 

does not cause any significant deterioration in performance. The 

only cases where convergence was slowed was for cases (viii) and (xi), 

where the system is weakened by the loss of one transmission line. 

This is not unexpected from the discussion of single phase sequential 

algori thms given in chapter 5. 

The nature of the interaction between a.c. and d.c. systems is 

examined in more detail in the following section. 

6.6.5 Interaction Between A.C. and D.C. Systems 

The convergence pattern of the terminal voltages at BUS.03 is 

illustrated in Fig. 6.9 for the case where the convertor is modelled 

by the equivalent unbalanced real and reactive power loads. The 

deviation of the three phase angles from nominal balance (i.e. 



Case 

a(i) 

(ii) 

b (i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

(xi) 

Case Description and Rectifier Specifications 

Convertor modelled by equivalent balanced loads* 

Convertor modelled by equivalent unbalanced loads* 

Phase angle control a =a =a =a a =a =a P =psp 
1 2 3 min' 1 2 3' dc d 

II Symmetrical firing a.=a. 
~ m~n 

" 

Phase angle control 

Symmetrical firing 

As for case b (i) 

As for case b(i) 

As for case b(ii) 

As for case b (i) 

Symmetrical firing 

Phase angle control 

al=a2=a3=amin,al=a2=a3,IdC=I~Ydl=Vd2 
a.=a . 
~ m~n 

" " " 
with poor starting values. (P

d 
,Q

d 
in . c c 

error by 70%) 
with large unbalanced l6ad at BUS .03 

with large unbalanced load at BUS.03 

with loss of 1 line BUS.Ol to BUS.03 

a.=a . ,a
l

=-10%,a
2
=0,a =+10% 

~ m~n 3 

a -a -a -asp a -N -N P _psp 
1- 2- 3- '1-~2-~3' dc- dc 

Case (x) loss of 1 line. BUS.OI to BUS.03 

Number of iterations to 
Convergence (0.1 ffiv/MVAR 

20 Bus SystemJ6 Bus System 
8,7 6,5 

8,7 6,5 

8,7 6,5 

8,7 6,5 

8,7· 6,5 

8,7 6,5 

8,7 8,7 

8,7 7,6 

8,7 7,6 

8,7 9,9 

8,7 7,6 

8,7 7,6 

8,7 8,8 

* loading for case a(i) and a(ii) derived from results for case b(i). See Table 3. 

Table 6.2 Case Descriptions and Convergence Results 
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0,-120,120) is also shown. The convergence of the three phase a.c. 

voltages for the a.c. system in isolation is well behaved and is 

very similar to the single phase case as discussed in chapter 4. 

The slower overall convergence of the three phase load flow 

occurs in a stable manner with the voltages and angles changing 

very little after the initial iterations. That is, the final 

unbalanced power mismatches require only very small changes in 

voltages and angles to enable final convergence to be obtained. 

As a result the d.c. terminal pmvers appear as virtually constant 

real and reactive po~er loads over the final convergence of the 

a.c. system and the d.c. convertor does not, except in the 'case of 

a weak a.c. system, influence the final convergence. 

From the discussion thus far it has been shown that both the 

three phase d. c. convertor terminal power flO\vs and the three phase 

a.c. voltages converge in virtually identical patterns to the 

cor~esponding single phase cases. The interaction between a.c. and 

d.c. systems in the three phase case can therefore be expected to 

closely parallel the single phase sequential integration discussed 

in chapter 5. 

The most stringent test is therefore the case of a weak a. c. 

system when the convertor control angles are not specified, for 

example case (xi). In such cases it is possible to observe an 

oscillatory convergence pattern which slows the overall convergence. 

To examine the effect of a weak system in the three phase 

case the convergence patterns for the terminal powers and voltages 

are shown for case (x) and (xi) in Figs 6.10 and 6.11 respectively,_ 

The following general features of the three phase a.co/d.c. load 

flow may also be seen: 
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for the first reactive power iteration the convertor reactive 

power demands are unbalanced. This unbalance is solely due.to 

the terminal busbar phase angle unbalance. and has, therefore, 

no definite relationship with the final reactive power 

unbalance. 

the terminal voltages resulting from the first reactive 

power ite~ation are due to a combination of the terminal 

reactive power, and the system unbalance. 

As a consequence of these features the reactive power and voltage 

unbalance vary considerably over the first few iterations. Although 

this suggests that the d.c. convertor equations should not be 

solved until after one or two complete a.c. iterations, the initial 

variation in the unbalance does npt cause any convergence problems 

and therefore alternative techniques, such as the one mentioned, 

have not been investigated. 

Comparing Figs 6.10 and 6.11 it is clear that with the weaker 

system the unbalance is increased and also the convergence patterns 

are more oscillatory. Both these features cause a slowing of 

overall convergence. The corresponding convergence pattern for the 

single phase load flow for case (xi) is sh~vn in Fig. 6.12 where a 

similar oscillatory pattern is observable. The sum of the three 

phase reactive powers and the +ve sequence voltage for the three 

phase case is also plotted in Fig. 6.12. The siIT~larity is claar. 

In the three phase case it appears that the unbalance is virtually 

superimposed onto the behaviour of the single phase study. 

6.6.6 Sample Results 

The operating states for both convertors at BUS.03 are given 

for all cases in Tables 6.3(a) and (b). The corresponding a.c. system 
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CONVERI'OR 1 (STAR-STAR) 
I 

Commu- I 

Case Phase Firing Tap 
tation 

Terminal Powers DC Conditions 
Angle Ratio 

Angle Real Reactive Voltage Current 
01.. (deg) a. (%) 

l. l. jJ. (deg) P. (MW) Q. (MVAr) Vd
1 

(kV) . Id
1 

(kA) 
l. l. l. 

b (i) 1 7.00 5.5 29.79 98.1 48.1 292.8 1.0246 

2 7.00 5.5 29.32 101. 7 50.8 - -
3 7.00 5.5 29.61 100.3 48.3 - -

I 

b (ii) 1 7.00 5.3 29.78 98.6 49.0 292.8 1.0246 

2 7.20 5.3 29.14 100.9 51. 3 - -

3 8.43 5.3 28.50 100·.6 47.8 - -

b (vi) 1 7.00 4.8 29.17 95.6 39.5 292.8 1.0246 

2 7.00 4.8 29.16 101.9 50.5 - -
3 7.00 4.8 30.43 102.44 57.2 - -

b (vii) 1 7.00 3.9 29.03 97.6 39.1 292.8 1.0246 

2 11.64 3.9 25.63 101.8 54.7 - -
3 9.37 3.9 28.56 100.6 57.7 - -

b (ix)· 1 11.00 -10.0 24.32 104.6 49.4 314.1 0.9483 

2 .7.00 0.0 27.76 101.1 45.4 - -
3 7.55 10.0 26.08 92.1 44.03 - -

-- --
_._-

- - -- - - - .. -~ - ---------- .. ---~--

-'-

Table 6.3 (a) Convertor 1 Results 
--.J 
0'\ 



Case Phase Firing Tap 
Angle Ratio 

a. (deg) a. (%) 
1 1 

b (i) 1 7.00 5.5 

2 7.00 5.5 

3 7.00 5.5 

b (ii) 1 8.03 5.2 

2 7.00 5.2 

3 8.55 5.2 

b (vi) 1 7.00 4.3 

2 7.00 4.3 

3 7.00 4.3 

b(vii) 1 7.00 3.0 

2 14.95 3.0 

3 13.41 3.0 

b (ix) . 1 8.08 -10.0 

2 8.38 0.0 

3 7.00 10.0 
- - - _ .. L. 

Table 6.3 (b) Convertor 2 Results 

CONVERTOR 2 (STAR-G-DELTA) 

Commu-
Terminal Powers 

tation 
Angle Real Reactive 

].1. (deg) P. (MW) Q. (MVAr) 
1 1 1 

29.80 97.3 49.2 

29.60 102.6 53.2 

29.32 100.14 44.7 

28.97 96.4 50.0 

29.57 102.7 52.9 

28.08 100.87 45.66 

30.63 67.9 13.0 

28.92 95.5 89.4 

28.90 136.6 53.7 

30.48 70.9 17.9 

23.25 90.1 94.1 

24.25 138.9 52.2 

25.42 88.9 65.3. 

27.30 122.6 49.9 

26.96 86.9 24.2 
-- ----------- ------------ .. _----

DC Conditions 

Voltage Current 
Vd

2 
(kV) Id

2 
(kA) 

292.8 1.0246 

- -
- -

292.8 1.0246 

- -
- -

292.8 1.0246 

- -
- -

292.8 1.0246 

- -
- -

314.7 0.9483 

- -
- -
-- - ~ 

~ 
~ 
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voltage profiles and generation results are given for cases a(i), 

b(i) and b(ii) in Table 6.4. The following discussion is with 

reference to these results. 

Comparing cases a(i) and b(i) it may seem that the realistic 

three phase convertor model, which enables the unbalanced power 

demands of the convertor to be found, results in an identifiable 

alteration in the system voltages over the simple case of using 

balanced real and reactive loads at the terminal busbar. 

The terminal power flows to· the convertors are significantly 

unbalanced, especially in the case of the star-g/delta connection of 

the convertor transformer. The influence of these unbalanced 

loads on the a.c. operation depends on the strength of the a.c. 

system. 

Comparing cases b(i) and b(il) it may be seen that the symmetrical 

firing controller has only a small influence on the steady state 

fungamental power flows to the convertors. The main influence is, 

of course, on the harmonic generation and harmonic interaction which 

is considered further in the following chapters. Although small 

the following effects may be seen: 

there is a marginal increase in reactive power consumption 

due to two phases having greater than minimum firing angles. 

in the results given, a small increase in transformer tap 

boost was required to maintain the specified d.c. voltage. In 

actual practice the transformer taps are not infin~tely 

variable and a small decrease in d.c. terminal voltage would 

occur for the same fixed tap. 

The influence of the convertor transformer connection is significant. 

In addition to modifying the convertor source voltages it also 



Case 
PHASE A PHASE B 

. 
PHASE C GENERATION 

BUS NAME 
VOLT. ANG. VOLT. ANG. VOLT. ANG. TOTAL 

a(i) 
BUS.01 1.067 27.294 1.067 -92.891 1.061 147.431 0.000 0.000 

BUS.02 1.054 25.190 1.065 -94.670 1.057 144.915 0.000 0.000 

BUS.03 1.038 23.185 1.071 -95.714 1.043 142.567 0.000 0.000 

BUS.04 1.045 -3.566 1.046 -123.479 1.047 116.436 173.621 74.723 

BUS.05 1.061 2.683 1.062 -117.367 1.061 122.628 700.000 .113.920 

Case BUS NAME 
PHASE A PHASE B PHASE C GENERATION 

VOLT. ANG. VOLT. ANG. VOLT. ANG. TOTAL 
b (i) 

BUS.Ol 1.067 27.362 1.065 -92.9515 1.062 147.437 0.000 0.000 

BUS.02 1.055 25.232 1.064 -94.717 1.057 144.925 0.000 0.000 

BUS.03 1.038 23.517 1.066 -95.965 1.049 142.543 0.000 0.000 

BUS.04 1.045 -3.552 1.046 -123.483 1.047 116.438 173.570 74.706 

BUS.05 1.061 2.690 1.062 -117.369 1.060 122.634 700.000 113.680 
---- -----------_ .. _-

Case 
PHASE A PHASE B PHASE C GENERATION 

BUS NAME 
VOLT. ANG. VOLT. ANG. VOLT. ANG. TOTAL 

b (ii) 
BUS.Ol 1.066 27.31 1.066 -92.942 1.062 147.421 0.000 0.000 

BUS .02 1.054 25.238 1.064 -94.705 1.057 144.913 0.000 0.000 

BUS.03 1.036 23.532 1.066 -95.947 1.049 142.506 0.000 0.000 

BUS.04 1.045 -3.563 1.046 -123.479 1.047 116.439 173.593 75.949 
-> 

BUS.05 1.061 2.690 1.062 -117.363 1.060 122.635 700.000 115.391 -.J 
\.0 

Table 6.4 Bus Voltages and Generation Results 
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modifies the phase distribution of power flows. The convertor 

transformer may also influence the a.c. operation ,directly which 

may be seen more clearly in Fig. 6.13 where the zero sequence 

voltages and currents are shown for case b(i) . 

It can be seen that under unbalanced conditions a zero sequence 

voltage may appear at system busbars. As the convertor has no zero 

sequence path, ze~o sequence current will only flow when the convertor 

transformer provides a path, as in the case of the star-G/delta 

transformer. Accurate convertor' transformer models must therefore 

be included in the convertor modelling. 

6.6.7 Conclusions On Performance of the Algorithm 

It has been demonstrated that the fast decoupled three phase 

a.c./d.c. load flow behaves in a very similar manner to the correspond­

ing single phase version. The following general conclusions on 

performance are applicable: 

the number of iterations to convergence is not significantly 

increased by the presence of the d.c. convertors. 

d.c. convergence is not dependent on the specific control 

specifications applied to each convertor. 

wide errors in initial conditions may be tolerated. 

for very weak a.c. systems the interaction of the convertor 

with the a.c. system is increased and the convergence is 

slowed. 

Successful convergence can however, be expected in all practical 

cases. 

the algorithm exhibits good reliability even under conditions 

of extreme steady state unbalance. 



VO=O.OOI 
- jO.003 

i---;;O­o 

i O=-0.061 
-jO.024 

v =0 o 

v =0 o 

(a) Zero sequence potentials for case b(i) 

i =0 o 

where Zan .. jO.05l 

(b) Zero sequence ne'bITork for convertor transformers 

Fig. 6.13 

Note: Transformer secondary zero sequence reference 
is provided by equations 

Sequence Components and the Convertor Transformer 

Connection 
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6.7 CONCLUSION 

A model of the steady state unbalanced operation of the three 

phase d.c. convertor has been formulated. The developed model is 

sufficiently general to enable convenient incorporation of the 

different firing controllers and also the various three phase 

convertor transformer connections. The sequential i,ntegration of 

the d.c. system model with. the equations of a fast decoupled three 

phase load flow has been successfully implemented, without impairing 

the efficiency and convergence of the original fast decoupled 

algorithm. 



CHAPTER 7 

INTRODUCTION TO HARMONIC FREQUENCY. 

POWER SYSTEH ANALYSIS 

7.1 GENERAL CONSIDERATIONS 

It is well known that any non-linear device operating from 

the power system will generate voltages and currents of harmonic 

frequencies. Common examples of such non-linear devices are the 

power transformer and d.c. power conversion equipment. 

( 43) 
Harmonics in the power system cause many well documented 

problems. In the New Zealand situation, the most significant 

problems experienced relate to Post Office communication and ripple 

control interference whiCh result from the harmonic currents 

generated by high power d.c. conversion equipment. In the South 

Island of the New Zealand system up to 50% of the total generation 

is often used to supply the inter-island h.v.d.c. link and a 
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large aluminium smelter. 
(52) 

Early harmonic problems and occasional 

recurring Post Office and ripple control interference have created 

a significant need for greater understanding of harmonic phenomena. 

I dd . . .. ( 53) h h 1 . f " n a ~t~on, overseas exper~ence suggests t at t e pro ~ erat~on 

of non-linear solid state devices at domestic level, which generate 

both odd and even harmonic orders, are likely to be a sour!=e of 

future harmonic problems and there is a significant need to 

establish standards to limit harmonic generation levels at both 

domestic and industrial installations. 

The use of ripple control equipment is widespread throughout 

New Zealand and many different frequencies and types of plant are 
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-In (54) 
.b use. 

A revie\v of the ripple control characteristics shows that 

some systems are more susceptible to interference than others due 

to the \vide frequency acceptance of the relay and the type of 

coding employed. The latest ripple control systems, employing 

fixed frequency solid state injection plant,allow better tuning of 

the relays and interference with this plant is unlikely. Ho\vever, 

installed equipment is likely to remain in operation for a consider-

able time and the interference problem cannot be ignored. 

In order to fully understand both harmonic generation and 

harmonic penetration into the power system, some means of analysis 

is required. Early techniques for harmonic frequency analysis 

were developed in connection with the design of ripple control 

t 
(55,56,57) 

sys ems • These single phase harmonic penetration studies 

are used to determine the size of the injection plant, detect system 

resonances and identify locations with low signal levels. Apart 

from these studies very little has been done in the analysis of 

harmonic power flo'>1s. A notable exception is a detailed investigat-

ion into the flow of harmonics in transmission systems carried out 

in 
(58) 

the 1940's by Whitehead and Radley • 

Experience by New Zealand Electricity in extending the single 

phase analysis to the prediction of convertor generated harmonic 

levels on the h.v. transmission system has revealed significant 

deviations between calculated and monitored harmonic levels; this 

is thought to be due to the unbalanced nature of the harmonics at 

the point of generation and also the unbalanced and coupled nature 

of the three phase system. 

It is the aim of this chapter to provide an introduction for 

further investigations into harmonic penetration studies on a three 
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phase basis. Although a detailed investigation of this topic is 

outside the scope of this thesis, many of the concepts and 

techniques involved are cornmon to the, steady state load flO\I/ analyses. 

In partic~lar the steady state three phase convertor model developed 

in the previous chapter provides an excellent basis for ,the estimation 

of possible harmonic generation under unbalanced conditions, a 

subject discussed in the following chapter. 

7.1.1 Harmonic Generation and Flow in the Transmission System 

Any device which, when connected to a sinusoidal voltage 

supply, draws other than a sinusoidal current is a source of harmonics. 

Power transformers are a common example and some allowance is 

usually made for the zero sequence third harmonic currents which 

are required. Fifth and seventh harmonics also occur but these are 

generally small and do not cause operational problems. 

The major source of harmonics which are troublesome in the 

a.c·, system is the high power d.c, convertor. The harmonic currents 

injected into the a.c. system by the convertor are, in general, 

unbalanced between, phases i the unbalance being more extreme for 

the case of non-characteristic harmonic orders. Measurements 

(52) 
of the harmonic currents at Benmore have shown deviations 

between phases of up to 56% (450 Hz) with an average deviation of 35%. 

The combined effect of the curtent unbalance and any system impedance 

unbalance is reflected in the phase voltages which are shown (52) in 

Table 7,1 for the Benmore 220 Kv busbar. All harmonic voltages are 

unbalanced \I/ith the most severe unbalance occurring at the non-

characteristic third and ninth harmonics. Although unbalanced, the 

current injections at the convertor itself consist purely of 

positive and negative sequence components as there is no zero 
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7 
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10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

25 

Table 7.1 

400 A d.c. (one third full load current) 
Phase-to-neutral voltages 

At Benmore 220 kV 

Red 
phase (%) 

100 

0.5 

2.9 

0.6 

0.25 

0.25 

0.15 

o 
0.05 

0.05 

0.1 

0.15 

0.05 

0.05 

0.15 

o 

0.3 

o 

0.3 

0.2 

0.4 

0.2 

Yellow 
phase (%) 

100 

0.7 

0.3 

0.3 

0.15 

0.30 

0.15 

0.05 

0.05 

. 0.05 

0.15 

0.05 

0.05 

0.05 

o 
0.1 

0.3 

0.05 

0.3 

0.2 

0.2 

0.2 

Blue 
phase (%) 

100 

1.0 

1.0 

0.4 

0.25 

0.35 

0.1 

0.1 

0.15 

0.05 

0.1 

0.15 

0.05 

0.05 

0.2 

0.15 

0.3 

0.1 

0.7 

0.5 

0.3 

0.15 

Harmonic Measurements during 

Back-to-back Testing. 
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sequence path for the convertor currents. This is discussed in 

more detail in the following chapter. 

Moreover, with unbalanced conditions or with firing angle errors, 

both phase angle control and symmetrical firing control, give rise 

h "h ,(59) to unc aracterlstlc armonlCS . The advantage of symmetrical 

firing is the elimination of harmonic feedback effects (50) and the 

greater inherent ~ccuracy of the firing controller. 

Communication interference arising from harmonics in the a.c. 

system is usually caused by the flow of zero phase sequence 

(43) 
components of harmonic currents. If convertor generated harmonics 

are the source of the interference then the zero sequence currents 

arise solely because of the a.c. system unbalance. For long 

untransposed lines resultant zero sequence currents may be sig-

'f' t(58,60) nl lcan . 
, 

A series of tests have been carried out to investigate the 

importance of the mutual coupling between parallel transmission lines 

at harmonic frequencies. The harmonic voltages induced in an out of 

service 220 kv transmission line are shown in Table 7.2. The voltages, 

all of zero sequence, were caused by electromagnetic coupling with a 

parallel transmission line which was in service at the time of 

measurement. The zero sequence harmonic currents in the in service 

line are also given in Table 7.2. 

Additional features which are illustrated in the Table are the 

high mutual coupling at 5th harmonic and the relatively h~gh 9th 

harmonic current in the active line. Both these effects may be 

attributed to the transmission line length. The line is approximately 

240 km long which corresponds to around a quarter of wavelength at 

5th harmonic and approaches a half wavelength at 9th harmonic. 
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Zero Sequence Current Induced Voltages (Volts) 
Harmonic Order (In Service Line) (Out of Service) 

(Amps) VR VY VB 

1 2.186 170 165 170 

3 0.45 9 9 9 

5 0.106 38 38 38 

7 0.186 9 9 9 

9 0.30 10 10 10 

Table 7.2 ~ Measurements of Induced Voltages in Parallel Transmission 

Zero sequence currents were measured using existing station CT's. 

(60) 
The errors are small at the frequencies measured (i.e. < 1.5%). 

Induced voltages were measured with a Plessey Audio Frequency 

Power Analyser. 

Phase to Phase induced voltages were very small indicating that 

the induced voltages were of zero sequence. 

From the preceding discussion it may be concluded that a 

realistic quantitive analysis of harmonic levels and their interference 

potential requires a detailed three phase representation of the 

power system. In addition, the major harmonic current injections 

must be accurately known. 

The difficulties and uncertainty associated with harmonic 

investigations should not be underestimated. The major obstacles 

are: 

(i) Three phase system data is not generally available at 

harmonic frequencies. 

(ii) The values of both the characteristic and, more especially, 

the non~characteristic harmonic injections cannot be 

accurately assessed, except in the case of existing 
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schemes where measurements may be made. This difficulty 

is likely to remain insurmountable. 

However, it is only by investigations into both the generation 

and propagation of harmonics on a three phase basis that a full 

appreciation of harmonic phenomena can be obtained. For this reason,. 

research into both the calculation of harmonic current injections 

and the penetration of those harmonics into the a.c. system, is of 

considerable relevance. 

The remainder of this chapter discusses the harmonic frequency 

system modelling. 

7.2 COMPONENT MODELS FOR HARMONIC STUDIES 

The formation of a mathemati,cal model of the power system at 

harmonic frequencies is based on the fundamental frequency modelling 

discussed in chapter 2. However, more detailed consideration has to 

be given to the modelling of individual components at harmonic 

frequencies. 

7.2.1 Transmission Lines 

In general, the lumped parameter approximation commonly used for 

fundamental frequency analysis, where most lines may be considered 

electrically short (i.e., less than l/20th of a wavelength long), can 

not be applied when higher harmonic frequencies are being considered. 

Accordingly, the exact representation(7~ which takes full account 

of standing wave effects, must be used. The exact representation 

is most conveniently formed as an equivalent TI or T circuit which 

gives the correct terminal conditions for the line under consideration. 

This technique is applicable to both three phase and single phase 

analysis. 
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The single phase equivalent pi and T circuits are shown in 

Fig. 7.1. The input impedance at any point along a line terminated. 

with a load (ZL) is, 

ZL + Zo tanhy. x 
Z = Zo x Zo +Z tanhy.x 

L 
(7.1) 

where 

y = a + jS IZY (propagation constant) 

and 

Zo =A (characteristic impedance) 

For a short circuited lossless line: , 

(7.2) 

For an open circuited lossless line: 

(7.3) 

where 

S = 21T/:\ 

:\ is the wavelength 

Therefore a line which is :\/4 long, will, when terminated in a 

short circuit, appear as a very high impedance, in a similar way 

to a parallel resonance of lumped capacitance and inductance. Under 

the same conditions a line :\/2 long will appear as a very low 

impedance, similarly to a series resonance. 

For three phase models the series impedance and shunt admittance 

per unit length are 3 x 3 matrix quantities, as discussed in chapter 2, 

d . . l' (12) . d f th . 1 an matr~x man~pu at~ons are requ~re . to orm e equ~va ent 

shunt and series matrices. Similar resonant effects are apparent, 

and, in addition, the influence of coupling between parallel circuits 

are included. 



Z/2 Z/2 

I 
y 

(a) Short line 

(b) Long line 

where 

Z = )/,z = )/,(r + jx) = )/,(r + 

= total series impedance 

Y = )/,y = )/,(g + jb) - )/, (g + 

::: total shunt admittance 
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Z 

'1 
~ w.N.i I' 

T 
Y/2 TY

/2 

--Y tanh IZY72 .--...,.. 
2 ,JZY/2 

j21TfL) 

per phase 

j21TfC) 

per phase 

where )/, is length of line in miles; r,L,C, and g are resistance, 

inductance, capacitance, and leakance, respectively, per m~le; f is 

frequency. 

Fig. 7.1 Long Line Transmission Line Models 



192 

The methods of calculating the line parameters are well 

d t d (7,61,62) d ocumen e and only the frequency depen ent features will 

be considered further here. 

7.2.2 Frequency Dependence of Transmission Line Parameters 

7.2.2.1 Skin Effect 

As the frequency increases the current concentrates at the outer 

circumference of the condu'ctor or conductor bundle. 

This effect is usually igno~ed in the calculation of reactance but 

it must be included in the calculation of a.c. resistance. 

D t '1 d ' ,,(63) h h th t C d e a~ e ~nvest~gat~ons ave s own a A SR con uctors may 

be considered as hollow tube conductors. The increase in a.c. 

resistance is strongly dependent on the ratio of inside to outside 

diameter as shown in Fig. 7.2. 

7.2.2.2 The Effect of Ground Current Distribution 

, The effect of frequency on the ground currents and hence on the 

series impedance matrix, can be assessed by approximating the 

resistivity distributions of the earth. 
( 7) 

Carson developed formulae 

which were based on the assumption of uniform earth resistivity. 

The affect of variation of frequency and earth resistivity can 

be seen in Table 7.3 which was calculated (64) from Carson's equations 

for the line shown in Fig. 7.3. The increase in resistance with 

frequency due to skin effect and the increase in unbalance with 

increase in frequency is shown. The change in inductances may be 

understood by the concept of 'depth of penetration' of the earth 

currents. With increase in frequency or decrease in earth resist~vity 

the currents do not penetrate so deeply and hence the inductance 

decreases. 

(13) , 
More recent researchers have developed techn~ques for consider~ 

ing the effect of multi layers of different conductivities. 



Fig. 7.2 
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Earth 

Resistivity 

Qm 

Rll Lll 20 

100 

R12 L12 20 

100 

R13 L13 20 

100 

R22 L22 20 

100 

R
23 

L
23 

20 

100 

R33 L33 20 

100 
-------- --

Table 7.3 

Angular frequency w rad/s 

314 104 106 

Q/mile mH/mile Q/mile mH/mile Q/mile 

0.075 2.831 1.925 2.338 61.62 

0.077 3.082 2.209 2.556 106.7 

0.074 1. 321 1. 794 0.845 49.58 

0.077 1.569 2.128 1.051 90.13 

0.073 1.102 1.680 0.641 41..41 

0.076 1.348 2.053 0.839 77.91 

0.073 2.841 1.680 2.381 41.42 

0.076 3.087 2.053 2.578 77 .92 

0.071 1.330 1.580 0.885 35.54 

0.075 1.574 1.984 1.073 68.56 

0.070 2.850 1.491 2.419 31.11 

0.075 3.092 1.919 2.599 61.17 
L-. ___________ .~_ .. ___ 

---- --- --- - -

Impedance of 275 kV Line 

mH!mile 

1.962 

2.204 

0.518 

0.583 

0.353 

0.408 

2.092 

2.147 

0.625 

0.672 

2.184 

2.225 

~ 

'-.0 
~ 



195 

4 

3 

18' 

2 106' 

14----18.75 ' 

.' 

86' 

20' 

62' 

38' 

I 

Fig. 7.3 Configuration for 275 kV Transmission Line 
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7.2.3 Transformer Modelling 

The techniques discussed in chapter 2 for the modelling of 

various three phase connections are equally applicable to harmonic 

studies except for the values of leakage reactance and resistance, 

which must be modified. There is some disagreement in the 

literature(55,57) as to whether the full value or only 80% of 

the fundamental f:r;~quencyreactance should be used. The resistance 

is taken as increasing with frequency and again there is some 

variation in the exact relationship. The exact values used are 

not critical unless the transformer forms part of a resonant 

circuit at a particular harmonic frequency. 

. d 1 (57) to' 1 t' dm' tt f 1 t' A convenJ..ent mo e l.mp emen l.n an a l. ance ormu a l.on 

is shown in Fig. 7.4. A resistance, whose value is eighty times 

the fundamental leakage reactance in ohms, is placed in parallel 

with the transformer leakage inductance. 

jXQ, 

R == 80XQ, ohms 

Fig. 7.4 Harmonic Frequency TransforITer Model 

---The frequency variation of this model is shown in Fig. 7.5 

where it may be seen that the resistance increases significantly 

wi th frequency while the leakage inductance decreases only slightly, 

This model is applicable on a single phase basis or as part of 



Fig. 7.5 
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Frequency Dependence of Transformer Model 
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the primitive network for the derivation of the three phase models. 

7.2.4 Filter Modelling 

In most high power d.c. convertor installations filters are 

. d d f th ch " h . (43) prOV1 e or e aracter~stic arrnon1CS. Single tuned shunt 

filters are provided for the lower order harmonics. The higher 

order harmonics, usually 17th and above, are filtered using a 

second or third o~~er high pass filter. It is not uncommon for 

additional filters to be required for abnormal harmonics which 

prove troublesome. 
, (52) 

For example at Benmore an additional filter 

tuned to the 9th harmonic was found to be necessary. The filter 

types are illustrated in Fig. 7.6. 

C 

L 

L 

R 

Fig. 7.6 H.V.D.C. Shunt Filter Types 

The single tuned sh1.'lnt filter impedance is, 

(7.4) 

and the third order high pass impedance with equal capacitors is, 

1 ( 1 1 )~l 
Z ::: --+ +--

f jWC \R + l/jwC jwL 
(7.5) 

In an admittance formulation (where Yf 
-1 

::: Zf ) the filters contribute 
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to the shunt admittance of the busbar to which they are connected. 

7.2.5 Synchronous Machines 

In general it may be assumed that the synchronous machines 

produce no harmonic voltages and they may therefore be modelled 

simply by a shunt connected impedance at their terminal busbar. 

A value of 80% of the subtransient inductance together with a power 

factor of 0.2 has 'been empirically determined to give satisfactory 

(55) 
results. 

7.2.6 Loads 

It is generally adequate to model loads by their equivalent 

parameters derived from the power frequency conditions. 

7.3 CONCLUSION 

This chapter has described the nature of the harmonic problems 

associated with transmission and distribution systems and has 

discussed the degree of system representation required for a 

quantitative analy,sis. 

A brief introduction to three phase harmonic frequency power 

system modelling has been given and it is intended that this form 

a basis for further development. 
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CHAPTER 8 

STEADY STATE HARMONIC GENERATION OF 

D. C. CONVERTORS. 

8.1 INTRODUCTION 

It is well known that, under unbalanced or distorted conditions 

(i.e. non sinusoidal supply), d.c. convertors produce abnormal a.c. 

current harmonics in addition to the expected characteristic 

harmonic orders. The unbalanced operation may be caused by the 

commutation reactances (65) , the cornrnutating voltages or the control 

t 't If(59,66,67) sys ern ~ se . 

Under normal steady state operation some minor unbalance is 

inevitably present and some uncharacteristic harmonic currents will 

be generated. These currents, together with the characteristic 

harmonic currents give rise to harmonic voltages at the convertor 

terminal busbar. The magnitude of the harmonic voltages is determined 

by the parallel combination of the system and filter impedances at 

each particular harmonic frequency. 

The harmonic voltages may, depending on their magnitude and 

the control system in operation, give rise to an increased generation 

of harmonic currents of the same order. This feature of harmonic 

'f' ,(50), , ab'l' magn~ ~cat~on , and ~n extreme cases ~nst ~ ~ty, occurs due to 

a positive feedback loop between the terminal voltages and the 

harmonic current generation via the control system. It is usually 

(51) 
only of importance for convertors connected to weak a.c. systems 

or if the system harmonic impedance is high due to a.c. system 

, (67) 
resonances or resonances between the f~lters and the a. c. system. 
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The use of control system filters to interupt this feedback loop 

has resulted in improved harmonic performance. However, several 

associated disadvantages(49) make the use of control system filters 

undesirable. 

The symmetrical firing system, as proposed by Ainsworth (49) , 

removes the feedback effect without the disadvantages of a control 

system filter. The symmetrical firing does not eliminate the 

t ' f ab 1 h' , (59,69) d bId di' genera ~on 0 norma armon~cs un er un a ance con t~onsi 

it is however amenable to greater accuracy and it does eliminate many 

harmonic feedback effects. 

The calculation of the harmonic currents produced by the 

convertor is complex due to the wide range of parameters which are 

involved and the difficulty of obtaining accurate values for those 

parameters. For these reasons it is difficult for the harmonic 

current generation to be calculated with reasonable accuracy. 

However, the features which influence harmonic generation and 

harmonic interactions can be studied and this provides valuable 

understanding of harmonic phenomena. This uncertainty introduces 

difficulties in assessing the assumptions which may be made without 

invalidating any particular study. As few assumptions as possible 

are therefore made and these are clearly stated. 

P , '" (59,65,66,67) h ' 
rev~ous ~nvest~gat~ons ave assumed nom~nal 

conditions of unbalance (e.g. firing angle errors or voltage 

unbalance) or commutating voltage distortion and calculated the 

harmonic currents under those conditions. The results are usually 

presented as graphs of the percentages of positive and negative 

sequence harmonic current generation as a function of the 

unbalance or of the harmonic voltage distortion. The difficulty in 

presenting results is considerable and the thorough manner in which 

previous researchers have identified and quantified the various 
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features which cause harmonic production is commendable. 

The aim of this chapter is not to reproduce those results but 

to develop a more general method to study the harmonic interaction 

between a convertor and the a.c. system, on the steady state. 

n~ 1 (70) . d h .. t' t eli b ~eve et a carr~e out armon~c ~nterac ~on sues y 

means of dynamic simulation. Their analysis was restricted to a 

single convertor interacting with a reduced representation of the 

a.c. system. No attempt was made to include the effects of inter-

action between various convertors connected to the same a.c. system. 

While such extensions may be possible the computational costs 

become prohibitive and the use of dynamic analysis should be 

avoided whenever possible. 

steady state analysis can reduce the computational costs and 

still allow the investigation of many features associated with 

harmonic current generation. Although the dynamic response of the 

control system cannot be modelled, any steady state firing angle 

errors may be represented. 

The steady state analysis presented here enables study of the 

harmonic interaction between separate convertor installations, the 

effectiveness of the filters and also the interaction of the 

filters and a.c. system. Computational efficiency is achieved by 

the use of a Fast Fourier Transform algorithm to calculate the 

fourier coefficients of the current waveshapes. 

In common with previous investigations into the harmonic 

interaction of a convertor with the a.c. system, a knowledge of the 

system harmonic admittance is required. For the purpose of this 

chapter it is assumed that the harmonic frequency admittance 

matrices of the system elements are known. The calculation of 

these matrices and formation of the system admittance matrix for 
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each frequency was discussed in the previous chapter. 

However, it is appropriate to restate here that, the formation 

of the harmonic system model is the area in which future efforts 

will need to be directed. The topic was introduced in the previous 

chapter and techniques for inclusion of the system model at 

harmonic frequency are discussed here. At present, the best data 

which is available is that derived from single phase studies and 

it is this data which has been used. 

This chapter describes the 'calculation of the harmonic current 

injections of the d.c. convertors when operating from an a.c. system 

which contains unbalanced and distorted a.c. voltages. The 

harmonic interaction of the convertor and the a.c. system is studied 

wi th both symmetrical firing and phase angle control. 

The basic method used to enable calculation of the harmonic 

voltages and currents generated by the d.c. convertor is illustrated 

in Fig. 8.1. 

An important assumption, inherent in the method, is that the 

operating state of the convertors, as regards the d.c. current 

magnitude and the fundamental component of a.c. voltages at the 

terminal busbars, is not significantly altered by the presence 

of the harmonics. The validity of this assumption is considered 

in Appendix 7 where it is concluded that although intuitive 

reasoning suggests that harmonic voltages, up to the allowable 

limits, will not significantly affect the fundamental conditions, it 

is possible, under worst case conditions, for the fundamental operating 

state of the convertor, as calculated by the three phase load flo~, 

to be significantly in error. The fundamental conditions which exist 

in the presence of harmonic distortion must therefore be compared 

with those originally calculated by the load flow. Lack of significant 
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From results of three phase acdc 
loadflow calculate the harmonic 
current injections of convertors. 
Store fundamental components. 

Inject harmonic currents into the 
a.c. system and calculate resulting 
harmonic voltages at all convertor 
terminal busbars. 

Calculate new firing angles and 
commutation angles assuming the 
fundament~l voltages are invariant. 

Converged YES 

NO 

Calculate new set of harmonic 
current injections. 

Fig .8.1 Flow Chart of Harmonic Interaction 

Study 
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error confirms the validity of both the three phase a.c./d.c. 

load flow and of the harmonic study itself. 

The details of the iterative solution technique, illustrated 

in Fig. 8.1, are discussed in the following sections. 

8.2 CALCULATION OF HARMONIC VOLTAGES AT CONVERTOR TERMINAL 

BUSBARS. 

8.2.1 A.C. System Modelling 

It is assumed that the a.c. system is linear and therefore 

the principle of superposition may be applied to enable each harmonic 

to be considered separately. At each frequency of interest the 

system is modelled by its' harmonic admittance matrix. The 

harmonic voltages are related to the injected currents by the familiar 

equation: 

[I] = [Y][V] ( 8.1) 

The development of the system harmonic admittance matrix was 

discussed in the previous chapter. For the present it is assumed 

that the system harmonic admittance matrix is known. 

The method of solution for equation (8.1) is structured so 

that the harmonic admittance, as viewed from the convertor terminal, 

may be used if the complete system harmonic admittance matrix is not 

available. 

8.2.2 Position of the Injected Currents 

In the present investigation the only source of harmonic currents 

considered is d.c. convertor stations. The injected currents at most 

a.c. busbars will therefore be zero. For the convertors, the injected 

currents are calculated from the current waveshapes by fourier analysis. 

(59) h' l' f h Reeve et al performed t e Four~er ana ys~s 0 t e current 
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waveshapes at the convertor terminal busbar. This requires. the 

transfer of the current waveshapes from the secondary (convertor) 

windings to the primary windings. While this is straightforward 

for a star-star unit it is considerably more complex for the 

star-delta connection, especially so as the transformer parameters 

and the commutation voltages may be unbalanced. 

As models fo~ all three phase transformers at the harmonic 

frequencies are available it is more convenient to include the 

convertor transformer into the system model and to simply calculate 

the harmonic currents on the transformer secondary. All units 

therefore have the same current waveshape and features such as 

phase shifts in the convertor transformer and the influence of the 

system unbalance are accurately included without the need for 

separate routines. 

A further consideration influencing the convertor transformer 

modelling is the calculation of any zero sequence harmonic current 

flows in the a.c. system. Although the zero sequence voltage at 

the convertor terminal does not affect the convertor operation, it 

should be remembered that, in an unbalanced system, the magnitudes 

of the positive and negative sequence voltages are influenced by 

the flow of zero sequence currents. Therefore it is necessary to 

accurately model any zero sequence path in the convertor transformer. 

8.2.3 Convertor Secondary Voltage Reference 

The convertor transformer secondary is referenced to earth via 

the convertor to the d.c. earth. However, it is mathematically 

convenient to use a different reference for the purpose of analysi's. 

As regards the position of a voltage reference, the considerations 

made in chapter 6 with reference to the fundamental frequency 



modelling are applicable. 

A reference may be provided by: 

(i) Placing a large admittance to earth on one phase of 

the secondary. This effectively earths the phase 

concerned. 
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(ii) Placing a large resistance from each phase to a star 

point ?I1d earthing the star point. If the resistances 

are equal the reference is the zero sequence voltage 

as used in chapter 6" 

Both methods have been tested and provide identical results. 

However, for consistency and ease of interpretation of results, 

method (ii) is used in the sections that follow. 

S.2.4 Solution Technique 

with reference to Fig. S.l it is clear that equation (S.l) 

must. be solved repeatedly for the harmonic voltages at the convertor 

terminals. All other voltages are only required after the iterative 

solution procedure has converged. In addition, the system admittance 

matrix [Y] is constant at each frequency for each of the repeat 

solutions. 

As an example consider the admittance matrix of the five bus 

test system used in chapter 6. Preserving the identity of each 

busbar in the system, including the convertor transformer secondarys 

(i.e. 6 and 7) equation (S.l) has the following form: 
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(8.2) 

where all vectors are 3 x I and all matrix elements are 3 x 3. 

The influence of the harmonic filters, if any, is inherently 

included in the calculation of the self admittances at the.convertor 

terminal busbars as discussed in chapter 7. 

In equation (8.2) the injected currents at all busbars except 

the convertor transformer secondaries (i.e. 6 and 7) , have been set 

to zero. 

Equation (8.2) retains the identity of every system busbar and 

its solution would yield the harmonic voltages at all system busbars. 

However in the iterative procedure only the voltages at the convertor 

terminal busbar are required. The a.c. system is therefore reduced 

to an equivalent system interconnecting all convertor a.c. terminal 

busbars. Considering the system of equations (8.2), the matrix may 

be re-ordered to ensure that the convertor terminal busbars, and a~l 

busbars where injected currents are present, are placed last. For 

example: 
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(8.3) 

The matrix may then be triangulated down to but excluding the 

convertor terminal busbars. The resulting matrix is: 

0 VI 
-

0 V
2 

0 V
4 

-
0 Vs 

I =0 
3 V3 

--
16 V6 

17 V
7 

(8.4) 

The 3 x 3 matrix elements [Y
33

] are modified but [Y
36

], [Y
37

], 

[1 6 ] and [1
7

] are not. 

In general the reduced matrix equation may be written: 



210 

-o V syst 

-o = V term 
(8.5) 

-V 
conv 

The lower part of the matrix, i.e. 

-0 V 
term 

= (8.6) 
- -
Ih V 

conv 

may be solved independently of the rest of the system. When data 

for-the a.c. system elements are not available then the system 

admittance, as viewed from the convertor terminals, may be substituted 

into equation (8.6). The harmonic admittance may, in case of 

existing schemes, be from actual measurements or it may be estimated 

from single phase data or from the short circuit ratio and approx­

imations for the phase angle of the short circuit impedance (68,70) . 

In these cases the system harmonic penetration and the harmonic 

interaction between convertors at separate a.c. busbars, cannot be 

studied. 

In any case the reduced equation (8.6) is obtained. This is 

constant and need be factorised only once, before the iterative 

process. The vector of injected currents is then processed by the 

usual forward reduction and back substitution processes to yield 

the right hand side vector of harmonic voltages. 
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8.3 CALCULATION OF CURRENT WAVESHAPES 

The calculation of the harmonic currents, in both magnitude 

and phase, requires a knowledge of the current waveshapes to a 

common phase reference. The angle reference for all quantities in 

the three phase load flow was arbitrarily taken as the phase 'a' 

voltage at the convertor terminal busbar. For convenience this 

reference is retained for the calculation of the current waveshapes. 

When multiple convertor stations are present in a system it is 

necessary to ensure that all calculated harmonic currents are with 

respect to a common reference. The separate convertor references 

must therefore be related to a common reference. 

The presence of harmonic voltages at the convertor terminal 

busbar will cause the actual zero crossing of the commutating 

voltages to be shifted from those calculated for the fundamentals 

alone. This shift has the effect of altering the time of valve 

firing with reference to the fundamental voltages. The commutation 

angles will therefore become altered. 

The magnitUde of these effects depends upon the control system. 

It is assumed that the control system, whether phase angle control 

or symmetricai firing, is presented with the actual zero crossings 

of the commutating voltages (i.e. there is no control system filter) . 

The process of calculating the new waveshapes involves: 

(i) calculation of the actual crossing points of the 

commutation voltages 

(ii) calculation of the new firing angles for the control 

system in operation 

(iii) calculation of the new commutation angles. 

These steps are discussed in the following sections. 
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8.3.1 Zero Crossing of the Commutating Voltage 

The calculation of the zero crossings of the commutating 

voltages requires a knowledge of the magnitude and phase of all 

harmonic voltages at the convertor terminal. These voltages must 

then be referred across the transformer with consideration given 

to the transformer taps and transformer connection. Identical 

equations to those presented in chapter 6 for the fundamental, are 

applied to each harmonic. 

An iterative process is used to determine the position of the 

zero crossings. A regula falsi method is used. .As the crossing 

points of the fundamental voltages calculated by the load flow give 

" excellent starting values, the iterative process converges rapidly. 

It should be noted that, with harmonic voltages up to the 

allowable limits multiple zero crossings are extremely unlikely 

and therefore no procedures have been developed for this situation. 

8.3.2 Derivation of Firing Angles 

The firing angle refers to the angle between the actual zero 

crossing of the commutating voltage and the instant of subsequent 

valve firing. 

With phase angle control it is assumed that the firing angles 

calculated by the three phase load flow are maintained. The firing 

angle need not be equal on each phase. 

In the case of symmetrical firing control the firing angles 

become altered. Considering one phase as a reference and with the 

firing pulses delayed by sixty degrees for subsequent valve firings 

it is clear that, any shift in the zero crossing of the reference . 

commutating voltage, will cause a similar shift in position of the 

valve firings on the other two phases. The actual firing angles on 

the other two phases are calculated from the shift in reference, 
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together with the shift in the respective zero crossing of the 

appropriate cornmutating voltage. With control system errors 

neglected the valve firings are constrained to be exactly sixty 

degrees apart. 

In the context of the present investigation, which is to 

examine the nature of the harmonic interactions (not to attempt an 

exact analysis aS,this is considered impractical), the following 

assumptions are considered justified: 

(i) The reference firing angle may be arbitrarily selected, 

e.g. phase 1. 

(ii) Under inversion operation the extinction angle is the 

specified variable, however it is more convenient to 

assume that the firin,q angle is the control variable 

as for rectifier operation. 

As a result of these approximations small errors between 

specified and actual control angles may occur however, this does 

not influence the nature of the harmonic interaction. 

8.3.3 Calculation of Commutation Angles 

strictly. speaking, the current waveform during commutation 

and the commutation angle should be calculated considering the 

harmonic voltages as well as the fundamentals. However, as the 

harmonic voltage magnitudes are generally small compared to the 

f d 1 h . l' h . 11 (66) un amenta , t e error ~n neg ect~ng t ese ~s sma . Therefore 

all that is required for the calculation of the commutation current 

waveform and commutation angle is a knowledge of the effective fi~ing 

delay from the zero crossing of the fundamental components of the 

commutating voltages. The equations used in the three phase load flow 

are then applicable. 
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8.4 FOURIER ANALYSIS OF CURRENT WAVESHAPES 

The complexity of the Fourier analysis used in previous 

1 (59,66) h b . d h b th f . ana yses as een avo~ ed ere y e use 0 a Fast Four~er 

Transform (FFT) algorithm. The current waveshapes are simply sampled 

at regular intervals; the sampled data is then used by the FFT 

to yield the magnitude and phase of the Fourier coefficients. 

with this technique, additional waveform complexity, such as 

the d.c. ripple, present no additional problems. In this chapter, 

however, the d.c. has simply been assumed constant. 

The use of the FFT involves errors due to the numerical 

calculations themselves and the finite number of sample points used. 

To reduce computational cost a minimum number of sample points 

should be used, consistent with a9curacy requirements. It has been 

found that for investigations of all harmonics up to the fiftieth, 

the use of 512 samples is adequate. With fewer samples the higher 

harmonics are subject to possible errors. 

8.5 . CONVERGENCE TEST 

Convergence is obtained when a consistent self sustaining set 

of harmonic voltages and harmonic currents are found. Programmatically 

this is tested for by comparing the instant of valve firings from one 

iteration to the next. If the largest shift in valve firing is less 

than 0.001 radians, then convergence is accepted. A test related 

to the current wave shape is considered more appropriate th~ a test 

associated with the actual harmonic currents, largely due to the 

difficulty of assigning a realistic tolerance. 
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8.6 TEST SYSTEM AND SAMPLE RESULTS 

8.6.1 Test System 

The small six bus system described in chapter 4 has been modified 

by placing a large rectifier at bus TIW220. A single six pulse 

bridge rectifier is considered as this enables detailed results to 

be given whilst adequately demonstrating the nature of the harmonic 

study. The relevant convertor data and the results of the three 

phase a.c./d.c. load flow are given in Table 8.1. The results for 

both the symmetrical firing and the phase angle firing controllers 

are given. 

8.6.2 Harmonic Study Under Normal Conditions 

The initial values of the harmonic currents are calculated 

from the results of the three phase a.c./d.c. load flow which define 

the current waveshapes when fundamental voltages only are considered. 

These initial harmonic currents, given in Table 8.2, are then 

injected into the a.c. system and the resulting harmonic voltages at 

the terminal busbar are calculated from equation (8.6). This equation 

requires the harmonic admittances of the convertor transformer, 

filters and the a.c. system itself as viewed from the terminal busbar. 

" (52) The fllter parameters are given in Fig. 8.2 and typical system 

harmonic impedances are given in Table 8.3. The variation of 

filter impedance with frequency is indicated in Fig. 8.3~52) 

with reference to Fig. 8.1, the harmonic voltages, together 

with the existing fundamental voltages, must then be used to 

calculate new firing and commutation angles as discussed in section 

8.3. A Fourier transform of the new current waveshapes yields a new 

set of harmonic injected currents. This process is repeated until 

a self sustaining consistent set of harmonic voltages and currents are 

obtained. 



Table 8.1 Convertor Data and Load Flow Results 

Convertor Data 

Transformer type star-g/delta 

Transformer reactance (p. u.) 0.05 

Commutation reactance (p. u.) 0.05 

D.C. voltage base (kV) 0.44 

D.C. load resistance (ohms) 0.0023 

Filter susceptance (p. u.) 0.511 

All values are equal on all pha?es. 

Load Flow Results 

Symmetrical 
Phase Angle Control Firing Control 

Firing Angle 
(deg) 

Interval between 
firing pulseS" (deg) 

Commutation Angle 
(deg) 

Terminal Real 
Power (l-1W) 

Terminal Reactive 
Power MVAR 

Terminal Voltages 

Magnitude 

Angle (deg) 

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 

5.0 ?o 5.0 5.0 7.38 

119.2 118.4 122.4 120.0 120.0 

33.2 33.1 33.8 33.2 31.1 

118.6 128.5 127.9 118.5 127.5 

59.8 64.0 57.5 60.3 64.8 

1.0 1.031 1.028 1.0 1.031 

0.0 -118.3 119.3 0.0 -U8.3 

* Interval is taken from firing 

instant of valve to the initiation 
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Phase 3 

5.71 

120.0 

33.1 

127.4 

57.5 

1.028 

119.3 

of valve extinction. (See Fig. 6.3.) 



Fig. 8.2 
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Table 8.2 Harmonic Currents When Harmonic Impedances Are Zero 

(i) Symmetrical Firing Control 

Phase a Phase b Phase c 

Order Mag. Angle Mag. Angle Mag. Angle 

1 4.075 2.16 4.047 0.08 4.115 -2.02 

*3 0.006 -2.78 0.060 -3.01 0.066 0.15 

5 0.617 1.33 0.645 -2.78 0.591 -0.68 

7 0.322 -0.72 0.307 -2.67 0.352 1.48 

*9 0.003 1.08 0.032 0.18 0.034 -2.89 

11 0.084 -2.19 0.094 0.12 0.072 2.22 

13 0.062 1. 41 0.049 -0.47 0.066 -2.51 

*15 0.001 - 0.015 2.46 0.015 -0.68 

(ii) Phase Angle Control 

Phase a Phase b Phase c 
. . 

Order Mag. Angle Mag. Angle Mag. Angle 

1 4.079 2.15 4.044 0.08 4.136 -2.01 

*3 0.Oi4 -2. 7.7 0.077 -2.93 0.091 0.23 

5 0.618 1. 34 0.643 -2.75 0.576 -0.67 

7 0.318 -0.72 0.296 -2.65 0.350 1.51 

*9 0.005 1. 03 0.033 0.32 0.036 -2.74 

11 0.085 -2.20 0.093 0.11 0.072 2.20 

13 0.062 1. 42 0.051 -0.40 0.070 -2.51 

*15 , 0.002 2.11 0.019 2.47 0.02 -0.70 

Notes: rIDS values 

All angles are in radians relative to phase a 

terminal voltage 

* indicates non characteristic orders. 
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Table 8.3 Typical System Harmonic Impedances 

Order Impedance (ohms at 220 kV) 

3 27.6 + j 84.0 

5 200.3 + j 8.6 

7 54.4 - j 59.7 

9 11. 7 - j 40.2 

11 2.5 - j 3.8 

13 2.2 + j 23.2 

15 6.2 + j 57.6 

17 28.1 + j 122.3 

19 79.7 - j 77.2 

21 65.2 + j 66.6 

23 111.3 - j 29.5 

25 51.5 - j100.5 
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The values of the parameters which define the current 

waveshapes at each iteration are given in Table 8.4. The phase 

angle controller required four iterations and the symmetrical 

firing required three iterations. The final values of harmonic 

voltages and currents are given in Tables 8.5 and 8.6. The sequence 

components of the a.c. injected currents for the phase angle 

controller are giyen in Table 8.7. 

8.6.3 Preliminary Discussion of Results 

The results presented in the preceding tables demonstrate 

several aspects of harmonic current generation by d.c. convertors: 

small asymmetries in valve conduction periods produce 

significant non-zero sequence triplen harmonics. 

both firing controllers give rise to non-characteristic 

harmonic currents although the magriitudes are noticeably 

reduced with the symmetrical firing controller. The unbalance 

in commutating voltages causes a significant unbalance in the 

commutation angles which leads to the production of non­

characteristic harmonics even with symmetrical firing. This 

feature is especially noticeable at small firing angles as 

in the example given. 

the predominant sequence of the characteristic harmonics is 

illustrated in Table 8.7. 

the unbalanced nature of the non-characteristic orders is 

clear. 

in this example both firing controllers are harmonically . 

stable and this is reflected in the stability of the iteration 

procedure. 

with small values of a (5 degrees in the example), shifts in 



Table 8.4 Values of Waveform Parameters at Each Iteration 

(i) Phase Angle Control 

Shift in 
Commutation Angles 

Zero Crossings 
Iteration 

SZC
l 

SCZ
2 SZC) 111 112 113 

0 0 0 0 33.22 33.15 33.78 

1 1.10 -1.02 1.04 32.18 32.29 34.69 

2 1.04 -0.79 0.92 34.12 32.48 34.59 

3 1.05 -0.82 0.94 34.13 32.45 34.61 

4 1.05 -0.82 0.94 34.13 32.45 34.61 

all firing angles are 5.00 degrees. 

(ii) Symmetrical Firing 

- ---r- ---
Shift 

Zero Crossings Commutation Angles 
Iteration 

SZC
1 

SZC
2 

SZC
3 111 112 113 

0 0 0 0 33.17 31.15 33.15 

1 0.83 -0.83 0.89 33.94 31.86 33.89 

2 0.95 -0.81 0.95 34.00 31.92 33.96 

3 0.96 -0.81 0.96 34.01 31.92 33.96 
----- -~ --

all periods between firings are 120.00 degrees. 

Period between Firings 

Tl T2 T3 

119.26 118.37 122.36 

119.32 120.43 120.25 

119.38 120.08 120.53 

119.36 ·120.14 120.49 

119.36 120.14 120.49 

Firing Angles 

OL
1 

OL
2 

OL
3 

5.0 7.38 5.71 

5.0 5.68 5.72 

5.0 5.62 5.71 

5.0 5.62 5.71· 

I 

I 
i 

I\) 
I\) 
-' 



Table 8.5 Harmonic Currents and Voltages for Symmetrical 

Firing 

(i) Currents (p.u.) 

Phase a Phase b Phase c 
Order 

Mag. " g. Angle Mag. Angle 

1 4.073 2.1~ 4.044 0.08 4.116 -2.01 

3 0.007 -2.78 0.062 -2.99 0.069 0.17 

5 0.612 1.35 0.641 -2.76 0.585 -0.66 

7 0.317 -0.70 0.302 -2.65 0.348 1.49 

9 0.003 1.07 0.032 0.23 0.034 -2.84 

11 0.085 -2.20 0.094 0.12 0.072 2.21 

13 0.063 1.45 0.051 -0.43 0.068 -2.48 

15 0.001 - 0.014 2.46 0.015 -0.68 

(ii) Vol tages (p. u . ) 

Phase a Phase b Phase c 
Order 

Mag. Angle Mag. Angle Mag. Angle 

3 0.008 1.24 0.019 -1.86 0.011 1.31 

5 0.022 0.72 0.021 2.89 0.02 -1.37 

7 0.005 -1.19 0.006 3.11 0.006 0.88 

9 0.001 2.46 0.012 1.62 0.013 -1. 45 

11 0.001 - 0.001 - 0.001 -

13 0.001 2.72 0.001 0.92 0.001 -1. 39 

15 0.001 - 0.015 2.49 0.016 -0.65 
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Table 8.6 Harmonic Voltages and Currents for Phase Angle 

Control 

(i) Currents (p.u.) 

Phase a Phase b Phase c 
Order 

Mag. Angle Mag. Angle Mag. Angle 

1 4.078 2.15 4.053 0.086 4.127 -2.0ll 

3 0.132 -2.77' 0.062 -2.98 0.075 0.19 

5 0.614 1. 354 0.638 -2.75 0.582 -0.66 

7 0.315 -0.70 0.299 -2.64 0.347 1.50 

9 0.004 1.01 0.031 0.23 0.034 -2.82 

II 0.085 -2.21 0.094 0.11 0.072 2.2 

13 0.063 1. 45 0.052 -0.42 0.070 -2.49 

15 0.002 2.15 0.015 2.51 0.017 -0.67 

(H) Voltages (p.u.) 

Phase a Phase b Phase c 

Order 
Mag. Angle Mag. Angle Mag.- Angle 

3 0.007 1.22 0.020 -1.84 0.013 1.34 

5 0.022 0.73 0.021 2.89 0.020 -1. 37 

7 0.005 -1.19 0.006 3.12 0.006 0.88 

9 0.001 1.93 0.002 -1. 05 0.001 2.19 

11 0.001 - 0.001 - 0.001 -

13 0.001 2.73 0.001 0.914 0.001 -1. 39 

15 0.001 - 0.002 -2.76 0.001 0.33 
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Table 8.7 

Order 

3 

5 

7 

9 

11 

13 

15 

Sequence Components of Harmonic Currents for 

Phase Angle Control 

Positive Seq. Negative Seq. Zero Seq. 

Mag. Angle Mag. Angle 

0.041 3.12 0.039 1.91 0.0 

0.032 -3.04 0 •. 611 1. 41 0.0 

0.320 0.62 0.028 -2.41 0.0 

0.020 1. 78 0.018 -1.20 0.0 

0.013 2.74 0.080 -2.06 0.0 

0.063 1.61 0.009 0.18 0.0 

0.009 -2.32 0.009 1.00 0.0 
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the position of zero crossings, and hence changes in firing 

angles, cause significant changes in the commutation angle. 

This change inhibits the alteration of the current waveshape 

and harmonic magnification is unlikely. 
. (50) 

A~nsworth reported 

tha.t with C/, = 0 harmonic instability cannot occur. 

the presence of the harmonic voltages have little effect 

on the magnitude or phase of the fundamental currents in both 

cases gi ven. 

8.6.4 Investigation of Harmonic Instability 

Harmonic magnification may occur with harmonic impedances 

above certain values. To illustrate this effect and to investigate 

the influence of a resonance phenomena, the third harmonic impedance 

of the system has been altered in order to form a resonant circuit 

with the filters. At third harmonic the filters appear capacitive 

and the system is invariably inductive. with typical filter 

parameters and a weak a.c. system parallel resonance at third 

harmonic is possible. This situation is illustrated in Fig. 8.3 

where lines have been drawn on the filter impedance diagram 

indicating Short Circuit Ratios' (S.C.R.) of around 3 and 5 respectively. 

A S.C.R. of around 3 gives a resonance at third harmonic. 

The third harmonic system impedance has been arbitrarily 

selected as 94.0 + j 134.2 ohms to correspond to a S.C.R. of 

around 3. This yields a well damped resonant circuit whose resonant 

frequency is slightly off third harmonic. 

In order to illustrate the harmonic interaction the study has 

been conducted as previously except with the nominal firing angles' 

increased to 36.0 degrees. 

The values of the parameters which define the waveform at each 

iteration are given for both cases in Tables 8.8 and 8.9 for the phase 
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Shift in zero Commutation Periods between Third harmonic 
crossings (deg) Angles (deg) Firings (deg) voltages (p. u.) 

I 

SZC
1 

SZC
2 

SZC
3 111 112 113 T1 T2 T3 Phase 1 Phase 2 . Phase 3 I 

. 
0 0 0 0 14.34 14.29 14.75 119.23 118.17 122.60 0.015 0.047 0.032 

1 -0.94 0.66 -1.23 14.12 14.15 14.44 119.61 116.17 124.21 0.036 0.078 0.042 
I 

2 -0.90 1.59 -1. 74 14.l3 14.68 14.35 120.06 114.84 125.09 0.051 0.097 0.046 

3 -0.76 2.13 -1.92 14.16 14.82 14.31 120.4 114.11 125.49 0.060 0.106 0.046 

4 -0.64 2.41 -1.99 14.19 14.89 14.29 120.60 113.80 125.65 0.065 0.111 0.046 

5 -0.57 2.52 -2.02 14.20 14.92 14.28 120.68 113.61 125.70 0.066 0.112 0.046 

· 
· 
· 
9 -0.52 2.58 -2.04 14.22 14.94 14.28 120.75 1l3.54 125.70 0.068 0.1l3 0.045 

--- -------- --~--- ~-----.-- ... -

Table 8.8 Values of Waveform Parameters at each Iteration: Phase Angle control 

I\) 
I\) 
0\ 



Shift in Commutation Firing Angles Third harmonic 
crossings (deg) Angles (deg) (deg) voltages (p. u.) 

SZC
l 

. SZC 
2 

SZC
3 ]11 ]12 ]13 Ci.

1 
Ci.

2 
Ci.

3 
Phase ~ Phase 2 - Phase 3 

0 0 0 0 14.14 13.52 14.40 36.00 38.67 36.71 0.006 0.008 0.002 

1 -0.68 0.29 -0.94 13 .98 13.38 ~4.24 36.00 '39.06 36.45 0.006 0.008 0.002 

2 -0.67 0.28 -0.90 13.98 13.38 14.25 36.00 39.06 36.48 0.006 0.008 0.002 

3 -0.67 0.28 -0.90 13.98 13.38 14.25 36.00 39.06 36.48 0.006 0.008 0.002 

Table 8.9 Values of Waveform Parameters at Each Iteration: Symmetrical Firing 

I\) 
I\) 
-J 



angle and symmetrical firing controllers respectively. The phase 

angle controller required 9 iterations and the symmetrical firing 

controller 3. 

The following features are noteworthy: 

at the larger value of a, the unbalance in commutation 

angles is less and the symmetrical firing controller gives 

rise to less non-characteristic harmonics. 

the symmetrical firing controller is harmonically stable 

where as the phase angle controller exhibits considerable 

harmonic interaction and harmonic magnification occurs. 

The harmonic stability or otherwise is directly reflected 

in the iterative process. 

If the damping of the resonant circuit is reduced or if 

resonance is approached more closely the phase angle controller 

becomes harmonically unstable and the iteration process fails to 

converge. 

8.7 CONCLUSION 
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A method has been developed to allow the investigation of many 

features associated with steady state harmonic phenomena in power 

systems. The penetration of harmonic currents into the power 

system may be studied on a three phase basis. In addition a wide 

range of features associated with d.c. convertor installations may be 

examined. In particular the harmonic interaction between convertors 

and the a.c. system may be studied including the inflpence of 

features such as the firing controller, a.c. system resonances, arid 

the filter installations. The incomplete cancellation of characteristic 

six pulse harmonics with unbalanced operation of a twelve pulse 

bridge has also been studied. 
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As with all studies into harmonic phenomena associated with 

d.c. convertors, there is a significant uncertainty associated with 

any numerical solutions for the uncharacteristic orders, due to 

their sensitivity to a wide range of parameters, many of which 

either cannot be accurately known or are of a dynamic, rather than 

steady state nature. However, studies such as the one described 

here are a significant aid to the understanding of harmonic phenomena. 
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CHAPTER 9 

CONCLUSION 

This thesis has presented techniques for the general steady state 

analysis of integrated a.c. and d.c. power systems under normal, 

but not necessarily balanced, conditions. 

Phase co-ordinate modelling of the unbalanced three phase 

system has been extensively reviewed. The nodal admittance represent­

ation in phase co-ordinates is suitable for the application of the 

most successful load flow analysis technique presently available, 

i.e. the fast decoupled algorithm. 

The extension of single phase fast decoupling principles to 

the three phase load flow has been successfully attempted. Such 

extension is not straight forward due to the additional features 

associated with three phase system modelling. Further jacobian 

assumptions are required as regards the angle unbalance at a busbar 

and the angles across various three phase transformer connections. 

In addition, the modelling of the three phase synchronous generators 

requires a consideration of the voltage regulator. The most 

successful method developed is the inclusion of the voltage regulator 

specification directly in the formulation of the reactive power 

jacobian equation of the fast decoupled algorithm. 

The developed three phase fast decoupled algorithm displays the 

same advantages, in terms of efficiency and reliability, as the 

original single phase version. The convergence patterns of the three 

phase version closely parallel those of the single phase version. 

The convergence of the system unbalance is, in effect, superimposed 
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on the convergence of the dominant positive sequence power flows. 

The rate of convergences decreases as the degree of system unbalance 

increases, but is acceptable even in cases of extreme steady state 

unbalance. 

The three phase load flow is a necessary tool in the analysis 

of many features of steady state power system operation and the 

developed algorithm is currently being included in the suite of 

power system analysis programmes in use by New Zealand Electricity. 

The development of d.c. convertor models, which are suitable 

for inclusion in single phase load flow analyses, have been discussed 

in detail.' The most appropriate algorithm for the integration of 

such models into the single phase fast decoupled a.c. load flow has 

been investigated. The results of this investigation illustrated 

the superior convergence of the simultaneous or unified algorithms 

in difficult cases. For the vast majority of cases however, the 

simpler sequential algorithms proved equally efficient and reliable. 

In difficult cases, where the a.c. system is weak in a load flow 

sense, the convergence of the sequential algorithm is slower, but 

within the range of practical systems it is reliable. 

The techniques developed for single phase a.c./d.c. load flow 

have been successfully extended to the three phase representation 

to enable the investigation of d. c. convertor performance under 

unbalanced conditions. 

A phase co-ordinate model of d.c. convertor systems operating 

in an unbalanced state has been formulated with sufficient generality 

to allow representation of various control strategies such as pre4ictive 

and symmetrical firing control. The sequential integration of the 

developed model into the three phase fast decoupled load flow analysis 

has been described. The results given illustrate the flexibility 
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and powerful convergence of the proposed integration. The similarity 

in performance to the corresponding single phase algorithm has also 

been demonstrated. 

Using the unbalanced d.c. convertor model as a basis, the scope 

of the steady state analysis has been extended to the consideration 

of harmonic frequencies. Three phase a.c. system modelling at 

harmonic frequenci~s has been introduced. The harmonic current 

generation of d.c. convertors has been investigated including the 

influence of features such as the firing controller and system 

resonances. This investigation enables consideration of harmonic 

interaction between convertors, filters and the a.c. system. An 

important general conclusion regarding the calculation of harmonic 

current generation is the uncertainty in the numerical accuracy of 

any results due to the impracticability of including the large 

number of parameters involved. However, the harmonic study is of 

considerable value in that the possibility of harmonic problems and 

the effectiveness of the filters may be assessed. The harmonic 

study is suitable for extension to enable the assessment of even 

harmonic and d.c. components. 

The development of harmonic frequency models of the power 

system and the subsequent realistic harmonic penetration studies 

is the area in which further study can be profitably directed. 
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APPENDIX 1 

EXAMPLE OF SYSTEM MODELLING 

The three phase power system illustrated in Fig. A 1.1 has 

been selected to illustrate the system modelling discussed in 

chapter 2. Some features 'of interest are: 

241 

the presence of both synchronous generators and a synchronous 

condensor. 

an example of a line sectionalisation with one section 

containing four mutually coupled three phase lines. 

all lines are represented in their unbalanced mutually 

coupled state. 

the generator transformers' are star-delta connected with the 

star neutrals earthed. 

The system is redrawn in Fig. A 1.2 to illustrate the use of 

3 x 3 compound coils to represent the three phase elements (see 

section A 2.2). An alternative representation is illustrated in 

Fig. A 1.3 using 3 x 3 matrix blocks to represent the various coupled 

elements. 

For the purposes of input data organisation and the formation 

of the system admittance matrix, the system is divided into eight 

subsystems. These are illustrated in the exploded diagr~ of Fig. A 

1.4. 
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APPENDIX 2 

LINEAR TRANSFORMATION AND THE USE OF COMPOUND COILS IN THE 

FORMATION OF NETIvORK ADMITTANCE MATRICES 

A 2.1 LINEAR TRANSFORMATION 

The use of linear transformation techniques enables the admittance 

'f t k b f d' t t' (11,71-73) matrJ.x 0 any ne wor to e oun J.n a sys ema J.C manner. 

Consider for the purposes of illustra.tion, the network shown in 

Fig. A 2.1. 

Fig. A2.l Connected Network 

The steps to form the network admittance matrix, by linear 

transformation, are listed below: 

(1) Label the nodes in the original network. 

(2) Number, in any order, the branches and branch admittances. 

(3) Form the primitive network admittance matrix by inspection. 
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This matrix relates the nodal injected currents to the node 

voltages of the primitive network. The primitive network is also 

drawn by inspection of the actual network. It consists of the 

unconnected branches of the original network with a current equal to 

the original branCh current injected into the corresponding node of 

the primi ti ve network. The voltages across the primi ti ve ne twork 

branches then equal those across the same branCh in the actual 

network. 

The primitive network for Fig. A 2.1 is shown in Fig. A 2.2. 

YS5 

Fig. A2.2 Primitive or Unconnected Network 

The primitive admittance matrix relationship is: 

! 

i
1 Yl1 

v
l 

i2 Y22 v
2 

i3 Y33 v3 

--
i4 Y44 

v
4 

--
is YSS Vs 
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Off-diagonal terms are present when mutual couplings between branches 

are present. 

(4) Form the connection matrix [e]. 

This relates the nodal voltages of the actual network to the 

nodal voltages of the primitive network. 

vI = V - V a b 

v
2 

:::: Vb V' 
c 

v3 :::: V 
a 

v
4 

:::: Vb 

v5 :::: V 
c 

giving the matrix [e] as 

1 -1 

I -1 

:::: 1 

1 

1 

[e] 

By inspection of Fig. A 2.1 

V 
a 

V 
c 

(5) The actual network admittance matrix which relates the nodal 

currents to the voltages by, 

I V 
a a 

Ib Vb 

I V 
c c 

can now be derived from, 



249 

[C] 

3x5 5x3 

which is a straightforward matrix multiplication. 

A 2.2 COMPOUND COILS 

When analysing three phase networks p where the three nodes at 

a busbar are always associated together in their interconnections, 

it is convenient to use compound coils to graphically represent the 

network, and matrix quantities to represent the admittances of the 

network. 

The compound coil is a mathematical tool which provides graphical 

representation of the use which can be made of matrix partitioning 

to simplify calculations. 

Consider six mutually coupled single coils, the primitive network 

of which is illustrated below in Fig. A 2.3. 

Fig. A2.3 Primitive Network of Six Coupled Coils 

The primitive admittance matrix relates the nodal injected 

currents to the branch voltages as follows: 

.' 
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II Yll . Y12 Y13 Y14 Y15 Y16 VI 

12 Y21 Y22 Y23 Y24 Y25 Y26 V
2 

--
13 Y31 Y32 Y33 Y34 Y3S Y36 V3 

-- = (A 2.1) 

14 Y41 Y 42 Y 43 Y 44 Y 45 Y 46 V
4 

IS YS1 Y52 , YS3 Y54 Y55 Y56 Vs 

16 Y61 Y62 Y63 Y64 Y6S Y66 V6 

6 x.l 6x6 6x1 

Partitioning equation A 2.1 into 3 x 3 matrices and 3 x 1 vectors, 

the equation becomes, 

where [1 ] 
a 

[y ] 
aa 

[I ] 
a 

Yll 

Y21 

Y31 

Y14 

Y24 

Y34 

[y ] 
aa 

= 
[Y

ba
] 

Y12 

Y22 

Y32 

Y15 

Y25 

Y35 

[V ] 
a [Yab'J 

(A 2.2) 
[Y

bb
] 

Y13 Y44 Y 45 Y46 

Y23 Y54 Y55 YS6 

Y33 Y64 'Y65 Y66 

(A 2.3) 

Y16 Y41 Y51 Y61 

Y26 Y 42 Y52 Y62 

Y36 Y43 Y53 Y63 
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Graphically we represent this partitioning as grouping the 

six coils into two compound coils (a) and (b), each composed of three 

individual coils. This is illustrated in Fig. A 2.4. 

[Yob] 

~ [Ybb] l\'b] 

Fig. A2.4 Coupled Compound Coils 

On examination of (Y
ab

] and [Y
ba

] it can be seen that, 

if, and only if Y'k = Y , for i = I to 3 and k = 4 to 6. That is, 
l kl 

if and only if the couplings between the two groups of coils are 

bilateral. 

In this case equation A 2.2 may be written 

[I ] 
a 

[Y ] [Y
ab 

] 
aa 

[v ] 
a 

[Y T] [Y
bb

] 
ab 

(A 2.4) 

The primitive network for any number of compound coils is 

formed in exactly the same manner as for single coils, except that 

all quantities are matrices of the same order as the compound coils. 
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The actual admittance matrix of any network composed of the 

compound coils can be formed by the usual method of linear transform-

ation i the elements of the connection matrix are now n x n identity 

matrices where n is the dimension of the compound coils. 

If the connection matrix of any network can be partitioned into 

identity elements of equal dimensions greater than one, the use of 

compound coils is advantageous. 

As an example, consider the network shown in Fig. A 2.5 - this 

represents a simple line section'. The admittance matrix will be 

derived using single coils and compound coils to. show the simple 

correspondence. The primitive networks and associated admittance 

matrices are drawn in Fig. A 2.6. The connection matrices are shown 

in Fig. A 2.7. The exact equivalence, with appropriate matrix 

partitioning, is clear. 

The network admittance matrix is given by the linear transform-

ation equation, 

[Y
NODE

] = [e] 

This matrix mUltiplication can be executed using the full 

matrices or in partitioned form. The result in partitioned form is, 

A 2.3 

[y ] + 
. A. 

[Y
B

] -[Y ] 
A 

[Y
NODE

] = 
-[y ] [Y

A
] + rYe] 

A 

RULES FOR FORMING THE NETWORK ADMITTANCE MATRIX FOR 

SIMPLE NETWORKS 

The method of linear transformation may be used. to give the 

admittance matrix of any network. For the special case of networks 

where there is no mutual coupling between coils, simple rules may be 



a. 

b 

c 
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4 

( i) 51NGLE COIL. 

.r Y A] 

(ii) COMPOUND COILS 

Fig. A2.S Single and Compound Coil Network 
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VI -I 1 
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Fig. A2.7 Single and Compound Connection Matrices 
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used to form the admittance matrix by inspection. These rules apply 

to compound networks with no mutual coupling between the compound 

coils. 

(72) 
These rules may be stated: 

(a) Any diagonal term is the sum of the individual branch 

admittances connected to the node corresponding to that 

term. 

(b) Any off-diagonal term is the negated sum of the branch 

admittances which are connected between the two correspond­

ing nodes. 
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APPENDIX 3 

STAR-G/DELTA THREE PHASE TRANSFORMER MODEL 

A 3.1 ADMITTANCE REPRESENTATION 

Disregarding interphase mutual couplings the per unit primitive 

admittance matrix in terms of the transformer leakage admittance 

( )
. (9) 

Yti 1.s: 

Ytl -Yt1 --2 a l a l 

Yt2 · -Yt2 -- --2 a 2 a2 

Yt3 -Yt3 --2 a 3 a 3 
[y . ] = 

pr1.m 
-Ytl -- Ytl a

l 

-Yt2 -- Yt2 a2 

-Yt3 -- Yt3 a 3 

where aI' a2 and a 3 are the off-nominal taps on windings 1,2 and 3 

respectively. In addition any windings connected in delta will, 

because of the per unit system, have an effective tap of 13 

The nodal admittance matrix for the transformer windings is: 

[y d] no e 
[C]T [y . ] [C] 

pr1.m 



where [C] is the connection (windings to nodes) matrix. 

The connection matrix and connection diagram for a DYll 

connection is illustrated in Fig. A 3.1. 

The resulting [Y d) is, no e 

Ytl 
2 

a1 

Yt2 
2 

a2 

Yt3 --2 

[Y ] = 
node 

a 3 

-Yt1 Yt3 

hal l3a" 
3 

Ytl -Yt2 
'"ha

l na-
2 

Yt2 -Yt3 
13a

2 
ha

3 

~Ytl 

hal 

Yt3 
Fa3 

Yt1+Yt3 
3 

-Ytl 
3 

-Yt3 
~ 

Ytl 
Fa

1 

-Yt2 Yt2 
ha

2 
, 

ha2 

-Yt3 · 

~3 

-Ytl -Yt3 --3 3 

Yt2+Ytl -Yt2 
3 3 

-Yt2 Yt2+Yt3 
3 3 

Usually all three phase units are symmetrical i.e., 

arid 

= a 

A simple equivalent circuit is shown in Fig. A 3.2 for the 

symmetrical case with unity off-nominal taps. 
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(i) Connection Diagram 

if, I tfo.. --
V;\. I tfb ._- --

V3 I tlc:.. 

LJ4 I -I Va. 

LrS I -I Vb 
--

Ub -I 1 Vc. 

(ii) Connection matrix 

Fig. A3.1 Connection l1.atrix for Star-g/delta (DY11) 

Connection. 



PRIMARY. 

Fig. A3.2 
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SEC.ONDARY. 

Equivalent Circuit for Symmetrical Star-g/delta 

. Transformer (unity tap ratio) 
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APPENDIX 4 

SINGLE PHASE LOAD FLOW PROBLEM AND THE 
FAST DECOUPLED SOLUTION ALGORITHM 

PROBLEM FORMULATION 

261 

The aim of th~ single phase load flow is to find the operating 

state of the balanced power system under the specified conditions of 

load, generation and system configuration. 

The operating state is defined by, 

-where V. is a vector of voltages at all system busbars i.e. 
l 

i == 1,00 

-8. is a vector of angles at all busbars (except one, which is 
l 

assigned e == 0 and is taken as a reference) i.e. i == 1,00 - 1. 

It should be noted that [V, e] is a minimum set of variables i.e. 

they are all independent variables. 

To enable the use of a Newton-Raphson based technique it is 

necessary to f"ormulate a set of 2nb - 1 independent algebraic equations 

in terms of the 2nb - 1 variables. These equations or constraints are 

derived from the specified operating conditions. Only a limited 

number of specified operating conditions apply to the balanced 

power system and it is customary to place the system busbars in 

categories as follows: 

(i) Load Busbars. (P - Q) 

The active and reactive power loading at the busbar is 

specified. 
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(H) Generator Busbars (P - V) 

The active power injection is known and the voltage is 

specified and controlled by the voltage regulator. 

(iii) Slack Busbar 

This is a special case of a generator busbar. As the 

total system losses are unknown it is impossible to 

specify the povl7er injections at all busbars. One busbar, 

designated the slack busbar, must remain a source or 

sink of real power to enable an overall power balance to 

be maintained. 

The following equations are derived from these specified conditions. 

(i) 
sp 

V. - V. :::: 0 
~ ~ 

(A 4.1) 

for i = 1, ng i.e. at all generator busbars. 

(H) - - sp --
/::'P. (V, e) = P. - P. (V, e) 

~ 1:.1 
(A 4.2) 

for i = 1, nb -1 Le. at all busbars except the slack 

machine. 

(iii) /::'Q. (V, e) = Q~P - Q.(V,8) (A 4.3) 
~ . ~ ~ 

for i = 1, nb - ng i.e. at all load busbars. 

A total of 2nb - 1 equations have been formed. Clearly, equations 

A 4.1 are trivial and do not require solution and these equations and 

the corresponding voltage variables are removed from the problem form-

ulation. 

The problem may therefore be formulated as the solution of: 

o (A 4 •. 4) 

for the unknown voltages and angles. 



The power mismatches are written in terms of the problem variables 

and the system admittance matrix as follows, 

P. = R [V. I.*] 
~ e ~ ~ 

(A 4.5) 

Q. = I [V. I.*] 
~ m ~ ~ 

(A 4.6) 

where n 
I. = I Y

ik 
. V

k ~ k=l 
(A 4.7) 

and 

Yik = G
ik 

+ j Bik (A 4.8) 

The equations are: 

n 
6.P. :::: p7P - V. L V

k 
[G

ik 
cos 6ik + Bik sin 6

ik
] 

~ ~ ~ 
k=l 

(A 4.9) 

n 
6.Q. Q7P - V. I Vk 

[Gik sin 6ik - Bik cos 6
ik

] 
~ ~ ~ 

k=l 
(A 4.10) 

A 4.2 NEWTON-RAPHSON ALGORITHM 

The general Newton-Raphson method consists of successive 

solutions of, 

(A 4.11) 

where [J] is the jacobian matrix of first order partial derivatives. 

for the changes in variables 6.x. The variables x are then updated 

until the set of equations 

can be considered solved. 

Defining I 

and (A 4.12) 

The algorithm involves repeat solutions of, 

(A 4.13) 



The Jacobian elements H, N, J and L are given by: 

The right hand side variable [~V;V] in equation (A 4.13) is 

usually taken as it is found to give better computational results 

than the use of [~V] alone'. 

Equation (A 4.13) is solved for the changes in the variables 

[~V/V] and [~8], the variables [V] and [8] are then updated, the 

mismatch functions [~i?] and [~g] re-evaluated and equation, (A 4.13) 

solved again. This process is continued until [~i?] and [bg] are all 

small enough to be considered zero. 

It should be noted that the uacobians H, N, J and L must be 

re-evaluated at each solution of equation (A 4.13) as these are functions 

-of V and e which are changing at each iteration. 

A 4.3 DERIVATION OF THE SINGLE PHASE FAST DECOUPLED ALGORITHM 

d ' h (30,34) th l' , In ecoupled load flow met ods e coup ~ng matr~ces 

[N] and [J] are set to zero. This is the mathematical implementation 

of the following, well justified statements: 

(a) A change be affects the real power flows with only a small 

change in the reactive power flow. 

(b) A change V affects the reactive power flows with only a 

small change in the real power flows. 

This yields the two decoupled equations: 

[~i? ] 

[~Q] 

[H] [~e] 

[L] [~V;V] 

(A 4.14) 

(A 4.15) 



The Jacobian matrices [H] and [L] are given by, 

L kk 

= - Bkk V~ - Qk 

2 
= -- Bkk Vk + Qk 

Stott(8) then makes the following assumptions: 

( 1) cos 8 :::: 1 
km 

(2) 

( 3) 
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These are almost always valid for the single phase representation of 

the balanced power system. Equations (A 4.14) and (A 4.15) may then 

be approximated to: 

= 
- , -

[V][B ][V][68] (A 4.16) 

(A 4.17) 

where at this stage [B '] and [B"] are simply the elements of the 

matrix [-B]. The use of equations (A 4.16) and (A 4.17) have been 

found to be only partially successful. Further modifications to the 

equations yield: 

(A 4.18) 

(A 4.19) 

where the modifications may be listed: 

(a) Omit from [B'] those elements that predominantly affect 

MVAr flows. This includes shunt ractances and in· phase 

transformer taps. 

(b) Omit from [B"] the angle shifting effects of phase shifters. 



(c) Neglect series resistance in the calculation of the 

elements of [Bi]. This is of minor importance. 

(d) Rearrange the equations (A 4.16) and (A 4.17) by taking 

the defining functions as [.t~P IV] and (tlQ/V]. 

(e) Set the remaining right hand side [V] terms in (A 4.16) 

to one p.u., removing the affects of MVAr flows on the 

calculation of tie. 
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The equations (A 4.18) and (A 4.19) form the basis of the fast 

decoupled method. The constant approximated Jacobians [B'] and [B"] 

correspond to fixed approximated tangent slopes to the multidimensional 

surfaces formed by the right hand side defining functions. 

Each iteration comprises one solution of (A 4.18) for [tiS], 

then updating eel, followed by on~ solution of (A 4.19) for [tlV] , 

then updating [V]. The iteration cycle, illustrated in Fig. A 4.1, 

is continued until both [tiP/V] and [~Q/V] are small enough so that 

they can be considered as zero. This method has been found to be 

highly successful in solving many load flow problems, even those with 

convergence difficulties by other methods. 

The main feature of the fast decoupled method, which makes it 

computationally superior to the full Newton-Raphson formulation, is 

the use of the constant Jacobians [B'] and [B"]. These need be 

inverted only once during the load flow, providing for fast repeat 

solutions of (A 4.18) and (A 4.19). 



Fig. A4.l· 

NO 

&. UPDATE (eJ~ 

OUTPUT 

Flow Chart of Single Phase Fast Decoupled 

Algorithm. 
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APPENDIX 5 

Fa t- e oupl d thr e-ph 10 d flow 
Prof. J. Al'I'illaga, M.Sc. Tech., Ph.D., C.Eng., F.I.E.E., and B.J. Harker, M.E. 

Indexing terms: Load (electric), Modelling, Power-tranSmission lines, Reactive power, Transmission-network 
calculations 

Abstract 

Using as a reference the single-phase fast-decoupled algorithm, this paper describes the modifications required to 
produce an efficient three-phase fast-decoupled load flow. The compound-coil concept is used in the represent­
ation of power-system components, and the effect of automatic voltage regulators is modelled as part of the 
reactive-power Jacobian-matrix equation. It is shown that the three·phase modified fast-decoupled load flow 
displays all the characteristics of the original single-phase version. 

list of principal symbols 

[1] = vector of nodal injected currents' 
[V] = vector of nodal voltages [IV I eJ8 ] 

[Z 1 = [R] + i [X] = matrix of impedances 
lYJ = [G) + i [OJ = matrix of admittances 
~ == real power mismatch at busbar i with phase p 
AQf == reactive power mismatch at busbar i with phase p 

(Pff1' = specified real power at busbar i with phase P' 
(Qryo' = specified reactive power at busbar i with phase p 

I Vir == voltage magnitude at busbar i with phase p 
8t't.", = 6( - 6f:' = angle between busbar i with phase p, and busbar 

Ti: with phase m 
Gr,.m ... value of matrix G relating busbar i with phase p, and 

I busbar k with phase m 
I VI/nt.J == voltage magnitude at the internal busbar of the jth gener­

ator 
a/nt.J = voltage phase angle at the internal bus bar of the jth 

generator 
PfenJ == specified total power output ofjth generator 

VPe:.", J = voltage regulator specification for the three terminal 
voltages for generator j 

nb = number of system busbars, excluding generator internal 
busbars 

n = total number of system busbars 
ng = number of system generators 

1 Introduction 

Accurate models of power-system components using phase 
parameters are available in the literature .1-3 Two recent public­
ations4 ,s have integrated such models with a Newton-Raphson 
method for the solution of three-phase load flows. In balanced studies 
however the conventional Newton algorithm has been displaced by 
the computationally superior fast-decoupled method. Because comput­
ational requirements (time and storage) are more demanding with 
three-phase models, it would appear that the conventional Newton 
method should give way to the more powerful decoupled algorithms. 

A preliminary investigation carried out to assess the applicability 
of the fast-decoupled algorithm to three-phase studies gave negative 
results. Owing to !he greater degree of representation. used in three­
phase models (transformer connections, mutual inductances etc.), the 
Simplifications made in the development of the single·phase fast­
decoupled algorithm could not be justified for three-phase load flows, 
and convergence was poor. 

A deeper investigation into decoupling techniques and three­
phase power system components indicated that, with suitably modi­
fied simplifications, an efficient fast-decoupled three-phase load flow 
could be achieved with s:imilar characteristics to the single-phase fast­
decoupled method. 

The development of such an algorithm is described in this paper, 
emphasis being placed on those features peculiar to the three·phase 
case. 

2 Three-phase power-system modelling 

The compound-coil concept provides the basis for a system­
atic modelling procedure. linear transformations can be applied to 
compound coils by simply replacing the single quantities of ordinary 
networks with appropriate admittance matrices. 6 

Paper 8098 P, first received 17th May 1977 and in revised form 23rd January 
1978 

Prof. Arrilloga is with the Department of Electrical Engineering, University of 
Canterbury, Christchurch I, New Zealand, and Mr. Harker is with the New 
Zealand Electricity Depanment, Christchurch I, New Zeaiand 
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The network is fIrst subdivided into subsystems (e.g. generators, 
transformers, transmission lines), with the restriction that there 
should not be mutual coupling between the branches of different SUb: 
systems. With this restriction the subsystem admittance matrices can 
be combined as follows: 

(a) The self-admittance matrix of any busbar is the sum of all the 
individual self·admittance matrices at that busbar 

(b) The mutua1-admittance matrix between any two busbars is the 
sum of the individual mutual-admittance matrices from all sub­
systems containing those two busbars. 

A traIl$mission·line subsystem may itself need sectionalising to account 
for transpositions, changes of line parameters, series capacitors etc. In 
such cases, the parameters for each section are fIrst found and then 
combined by matrix multiplication to obtain the overall subsystem 
parameters. 

2. 1 Transmission lines 

For power frequency analysis, a three·phase transmission line 
can be modelled by three lumped 11' circuits, with mutual coupling 
between both the series and shunt branches of all three circuits. This­
is illustrated by the matrix equivalent of Fig. la and its compound 
coil equivalent of Fig. 1 b. 

The subsystem of Fig. Ib can be represented by matrix eqn. 1 : 

fiiJl= 
ITill 

[Zilo) -1 + [Y/I.l/2 - [Za.rl 

-[Za.r l [Zilor l + [Yu.)/2 ~
Vd 

(1) 
[V,.] 

The effect of earth wires and the influence of ground currents is 
included in the self and mutual reactances of the phase conductors. I. 7 

For a long line it may be necessary to consider the line as composed 
of two or three lumped 11' sections in series. 

I~ Zoo ZC!/) z"" £I~ 
Zb<:! ZbO Zbe 

~ Zea Zeb Zee ~ 
vaa vab v"" v"" vab vac 

I (Vikl/2 vb<:! vab vb< vb<:! Vbb vbe (Yik J/2 [v 

Yea Veb vee Vea Veb Vee 

""" a ~ 

b 

Fig. 1 
Transmission·line model 

a Matrix representation 
b Equivalent circuit using three·ph ... compound coils 

DDI"l/'" Tr:'C" 1/ ...... 1 1"e ,\T ..... 0 A TTr"TTC'T 10"10 



2.1.1 Mutuallv-coupled three-phase lines 

It is common for up to four transmission lines to occupy the 
same right of way for a considerable length. Their electrostatic and 
electromagnetic coupling must then be considered. 

Applying the method of linear transformation for compound coils, 
and assuming bilateral mutual couplings (i.e. YZI = Yfz etc.), we can 
write the following matrix equation for the case of two coupled lines, 
shown in Fig. 2: 

YII + Y33 Y IZ +Y34 - YII - Y IZ 

Yf2 + yt Yn + Y44 - Yfz - Y22 

- YII - Y IZ YII + Yss Y 12 + Y S6 

~z - Yn Yfz + Yf6 YZ2 + Y 66 

12 x 1 12 x 12 

(2) 

y 11 

© 

\" 
Jr';;'.' 

Y21 

YS6 @ 
Y22 

J [:':i' 
Fig. 2 
Two coupled three-phase lines 

By the combination of pairs of coupled 3 x 3 coils as a single 6 x 6 
compound coil. the matrix equivalent of Fig. 3 results. 

The corresponding matrix equation is as follows: 

(3) 
Eqn. 3 now has the same form as eqn. 1, the series impedance [Z s] 
and shunt admittance [Ys ] matrices being of orders 3 x 3, 6 x 6, 
9 x 9, or 12 x 12 for cases of one, two, three or four coupled three· 
phase lines, respectively. 

C 

I~ Y Y II 
11 12 -' -
T 

V'Z Y2'1 

6.6 

6. 

Yn Y3J, [yJ VS5 Y
S6 &J [: 

T T 
1 Y34 Y •• 6.6 Y 56 Y 66 6x6 6x 

~ 
_ ---b..-

Fig. 3 
6 '( 6 matrix representation oj" Fig. 2 
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2.2 Synchronolls machines 

With reference to Fig. 4, the synchronous machine is re­
presented by a compound coil Ygen ., which interconnects an internal 
busbar of balanced three-phase voltages and a terminal busbar. The 
three terminal busbar voltages are used to control the balanced internal 
voltages according to some prespecified relationship. 

The following matrix equation applies: 

[Ysen ] - [Ygen ] 

(4) 
- [Ygen ] [Yuen ] 

where Ygen is a 3 x 3 admittance matrix derived from the sequence 
component impedances of the machine. 

vol tagE> regulator 

Fig. 4 
Synchronous-generator model 

2.3 Transformers 

terminal 
busbar 

In general, any two-winding three-phase transformer can be 
represented using two coupled compound coils [Ypp] , [Y,.] , i.e. 

~ 
W 

(5) 

This procedure is carried out for the common connections in Refer· 
ence 1, and it is shown that three basic types of submatrix result. For 
each type of transformer connection, Table 9 in Appendix 10.1 indi­
cates the appropriate submatrix to be used in the corresponding 
position of the nodal admittance matrix of eqn. 5. The generality of 
the model can be increased by modifying these submatrices to include 
primary- and secondary-winding off nominal taps, which is achieved 
by 

(a) dividing the primary self·admittance matrix by aZ 

(b) dividing the secondary self-admittance matrix by 132 

(c) dividing the mutual admittance matrix by C/f3. 

where a and 13 are the primary and secondary tap ratios, respectively. 
In the p.u. system, a delta winding has an effective tap of ../3. 

3 Newton-Raphson solution 

To fmd the state of the system (i.e. the voltage magnitudes 
and their phase.angle relationships) so that the specified conditions at 
the busbars are satisfied, a Newton-Raphson solution requires the 
following mismatch equations: 

(i) For each of the three phases (p) at every load or generator terminal 
busbar (i), 

n 3 

Mf (Pf)SP-lVlf I: I 1V1'K[Gfhmcosefhm 
n=l m=1 

(6) 
n 3 

(Qfr -IVlf I I ! Vik' [Gfkm sin 8fh'" 
k=1 m=l 

- Bfhm cos 8fkm] (7) 

(ii) For each internal busbar of each generator, where the nodal volt­
ages are constrained to form a balanced three-phase set. only two 
equations are required for the unknown voltage (I Vlint,) and uri· 
known angle (e int .), Le. 

3 n 3 

I1~n.j - I I Vi inU \' )' i Vl k (Gfhm COSefk
m 

p=l k=l m=1 

(3) 
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t.1 Vlr,g.} = I vlf::'rn,j -I VltermAi Vlf) (9) 

where I Vir are the three terminal voltages at busbar i. 
The simplest equation results when the voltage regulator monitors 

one phase (I VIA) only, i.e. 

AIVlreg.i = IVlf::'m,i-IVlt (10) 

These sets of nonlinear equations are expressed by the equation 

[M [[AI [E] [I] [MI] [~ 1 t.Pgen [B] [F] (J] (N] tl8 int 

t.Q [e] (G] [K] [P] t.IVI/IVI 

t.1 Vlr,g (D] [H] [L] (R] tll Vlint I Vlint 
(11) 

The right-hand-side matrix is the usual Jacobian matrix of partial 
derivatives. Eqn, 11 is solved iteratively for the right-hand-side vector, 
the corresponding variables are updated, and the Jacobians are then 
re-evaluated, The procedure continues until the left-hand-side mis­
matches are within tolerance. 

4 Oecoupled algorithm 

In decoupled solutions, the effects of t.8 on reactive-power 
flows and AWl on real-power flows are ignored, i.e. we can simplify 
egn. 11 by making 

and 
(I] = [M) = (J] 

[C] = [G] = 0 

[N] o 

Moreover, it follows from egn. 10 that 

(D] = (H] = 0 

Egn. 11 can thus be written in decoupled form, i.e. 

[
tl

Pf 1 [[A] 
Mgen j = [B] 

[El] 
[F] 

for i = 1, nb and i. = 1, ng - 1 (excluding the slack generator) 

[
tlQf ] [[K] 
tll Vl reg i = [L] 

[P] ] 
[R] [

tl I Vif /I Vlf ] 

tll V!/nt ill Vlint} 

for i = I, nb and i = 1, ng (including the slack generator). 

(12) 

(13) 

The coefficients of the Jacobian submatrices for eqns. 12 and 13 
are given in Appendix 10.2. 

5 Three-phase fast-decoupled algorithm 

The basis of a fast-decoupled algorithm is the use of constant 
Jacobian matrices. Approximations similar to those used in the single­
phase-load-flow case are justifiable in eqns. 12 and 13 as follows: 

(a) at all nodes 

QZ' ~ B'k"m (I VI;;'? 

(b) between connected nodes of the same phase 

and 
cos 8u:m 

"" 1 

Gu:m sin8 ik ~BiZ'm 

The three·phase Jacobian submatrices in eqns. 12 and 13 require a 
further approximation to remain constant, namely, ignoring the 
phase·angle unbalance 

8fk'" = ± 120
0 

for m * P 

The above 'procedural' approximations, however, must not be con­
fused with the 'actual' phase·angle differences or degrees of angle 
unbalance that the algorithm can handle, 

Substituting these values in to the Jacobian sub matrices of Appen­
dix 10,2 yields 
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[OQf ] 
t.1 Vlr,g,) [

[I Vlf Mfk'" I VIi:'] 

[L) 

[

AI VIZ' II VI;;' ] 

tll Vlint,z/I Vlint./ 

where Mfkm = Gfh'" sin 8fh'" - Bfh'" cos 8fh'" 
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(14) 

(I5) 

All terms in the matrix [M) are constant, and their values are given 
by substitution of the following: 

omm 
kl< 0 

Omm 0 
and 

Ik 

OP," = ± 120
0 

in for m*p 

The matrix [M] is the same as matrix [B] , except for the offdiagonal 
terms that connect nodes of different phases, which are modified by 
allowing for the ± 120

0 
angle, and adding the Gfkrn sin /ifkm terms. 

Eqns. 14 and 15 are then modified as follows: 

(i) The left-hand-side defining functions are redefmed as [tlPf I 
IVjfL [Mgen.ill Vlint,i) and [t.Qf /I Vlf) 
(li) In egn. 14, the remaining right-hand-side I VI terms are set to 1 
p.u., removing the influence of reactive-power (MY Ar) flows on the 
calculation of tl8 and tl8 in t. 
(iii) In eqn. 15, the remalning right-hand-side I VI terms are cancelled 
with the corresponding ones at the right-hand-side vector. 

This yields 

[ [~Pf/l'Vlfl J [Mfklf1 f MfI'" 1 
[tlPgen iliVlint/) = f M~~I t f J}fjlm 

p=l P=l m=l 

[B'] 

[ 

tlQf I I VIf] = [M':~ J. Mflm 1 [t.1 VI;;' 1, 
tll Vl reg i [L) [0] tllVlint / 

(I 7) 

[B") 

where [B'] and [B") are constant approximated Jacobian matrices. 

5.1 Modification of constant Jacobian matrices 

The decoupling process is completed by further modifying 
matrices [B ') and [B") as follows. 

It is important that the constant Jacobian matrices represent a 
reliably approximate tangent slope to the corresponding surface. inde­
pendent of the minor changes in shape that occur during the iterative 
process. For the surface det1ned by [j,p/V] , these changes in shape 
can be viewed as localised deformities of the surface, These deform­
ities are most pronounced along the axis that corresponds to the bus-­
bars where shunt admittances are present, If the terms that reflect 
these localised deformities into the tangent hyperplane are ignored. a 
reliably approximate tangent slope is obtainable. This is effectively 
done in single-phase fast-decoupled load t1ows8 by removing from 
[B'J the representation of the network elements that predominantly 
affect reactive·power (MY Ar) flows. 
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In the modelling of some three-phase transformer connections (the 
most common example being the star-delta connection), large shunt 
admittances are effectively introduced into the system. This is 
illustrated for the case of a star-delta transformer in Fig. 5. 

When the shunts are excluded from the [B') matrix, convergence 
is inhibited. With the inclusion of these shunts, an excellent con­
vergence is obtained, consistent with the usual single-phase load-flow 
characteristics. 

Fig. 5 
Equivalent circuit for the star-delta transformer 

The difference with respect to the normal system shunt elements 
is purely one of magnitUde. The shunt admittances from the trans­
former model are extremely large (20 p.u. for a 5% leakage reactance 
transformer), and will therefore alter the entire shape of the multi­
dimensional surface defmed by [M/V). These shunts must be in­
cluded in [B') if this is to be representative of the tangent hyper­
plane to the surface. All other shunts should be excluded from [B') 
to avoid the localised-deformity problem discussed earlier. 

This yields the following two three-phase fast-decoupled matrix 
equations: 

[~P/I VI ] = [B~l] [~~"nt.] 
Mgen'!l VI/nt. i.W 

(18) 

[ ~Q/I VI ] [] 
LliVl

reg
• = B~ [ ~IVI ] 

~IVlint. 
(19) 

The constant approximated lacobians [B,~) and [B,~) correspond to 
fIxed approximated tangent slopes to the multidimensional surfaces 
formed by the right-hand-side defming functions. Eqns. 18 and 19 
are then solved successively, as in the single·phase fast-decoupled 
method, i.e. according to the flow diagram illustrated in Fig. 6. 

Fig. 6 
Flow chart of basic iterative procedure 
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The solution of eqns. 18 and 19 is carried out using sparsity tech­
niques and near-optimal ordering, as embodied in Zollenkopfs 
bifactorisation9 technique. 

In decoupled load flows, the multidimensional surface defmed by 
[~P/ V] is considered to. be independent of the values of [V) . This is 
not strictly correct, and the changing [V] values will alter the sur­
face defmed by [~P/V]. 

6 Test system 

The developed algorithm has been applied to the power 
system shown in Fig. 7, which includes synchronous generators, a 
synchronous compensator, a section of four mutually-coupled three­
phase lines, star-delta-connected transformers with earthed neutrals, 
and both primary and secondary taps. 

generator 

lin€' 4 

section 2 

synchronous condenser 

Fig. 7 
Single-line diagram of the test system 

Fig. 8 illustrates the system divided into eight natural sybsystems, 
each in terms of 3 x 3, 6 x 6, and 12 x 12 matrix blocks, representing 
the various elements and sections. The nodal admittance matrix is 
formed for each section, and these are then combined as discussed 
earlier. 

The matrix blocks are formed from the input data illustrated in 
Tables 1-3. Because the input data for the coupled lines consist of 
various full matrices (up to and including two 12 x 12 matrices) 
representative data only are given in Table 3. 

To investigate the convergence properties of the algorithm, the 
following studies were compared: 

(a) Balanced operation of the balanced power system 
(i) with the generators effectively excluded by setting their sequence 

impedances to a low value (this is the three-phase equivalent of the 
usual single-phase load t1ow) 
(li) with realistic generator modelling 

(b) Unbalanced operation of the unbalanced power system (with 
busbar loading conditions as shown in Table 4) 

(i) generators effectively excluded 
(li) realistic generator modelling 

(e) As for case (b) (ti). except with the 30° phase shift due to the 
transformer connections ignored in the starting values 
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(d) For the unbalanced system under abnormal operating conditions 
(i) large unbalanced real-power loading (as for case (b) (li), except 

for INV220, which now has 300 MW in phase A) 
(li) large unbalanced reactive-power loading (as for case (b) (li), except 
for INV220, which now has 500 MV AI reactive power in phase A) 
(lii) large unbalanced real and reactive-power loading (d) (i) and 
(d) (li) loading conditions applied together). 

6.1 Discussion of results 

The number of iterations required for the maximum mis­
matches to be within the specitJed tolerance is shown in Table 5. 
These results and the authors' experience with other cases leads to the 
following conclusions as regards convergence properties of the de­
veloped algorithm: 

(i) For a balanced system, convergence is similar to that of a single­
phase load now 

(li) The inclusion of generator plant and the modelling of the voltage 
regulator does not cause any significant deterioration in conver­
gence 

(iii) Starting values are not critical. Flat voltage and angle initial con-
ditions are perfectly adequate 

(iv) Convergence is achieved even in cases of extreme unbalance. 

The resulting system voltages and angles for cases (b) (ii) and (d) (li) 
are glven in Tables 6 and 7, respectively, and the line power flows for 
case (b) (ii) in Table 8. 

In addition to the significant unbalance, the following features are 
noticed in Tables 6-8: 

(a) There is an approximate 30° phase shift due to the star-delta­
connected transformers 

(b) Balanced voltages occur at the generator internal busbars 

Table 1 
GENERATOR DATA 

Generator 

Name 

MANI4 
TIW220 
ROXOII 

Table 3 

Sequence reactances 

0·010 
0·010 
0-010 

Power 

p 

6·900 
0,000 
slack 

Voltage 

V 

1·045 
1·020 
1·050 

....,-MANGN 
Yg.nO CD 

-L MAN014 
MAN014 

seeondory 
® (5) 

p«'ln°ry 

MANno 
MAN220 
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ROXGN\I 

(Vigen 

Floxon 

Fig. 8 
Test system exploded into eight subsystems 

Table 2 
TRANSFORMER DATA 

Busbar names 

Connection 

Leakageirnpedance 
Primary tap (%) 

Secondary tap (%) 

ROX220-ROXOli 

Star delta 

0·0060 +; 0·1164 
0·022 
0·732 

MAN220-MANOI4 

Star delta 

0·0018 + ;0·0492 
0·025 
0·732 

LINE DATA: INV220-TIW220 DOUBLE CIRCtnT SERIES-IMPEDANCE MATRIX 

a b c a b c 

a 0·0069 + ; 0·0440 0·0045 + j 0·0209 0·0043 + ; 0·0219 0·0043 + ; 0·0212 0·0045 + ;0,0185 0·0043 + ;0.0182 

b 0·0045 + ; 0·0209 0·0066 + ; 0·0441 0·0044 + ; 0·0207 0·0045 + ; 0·0185 0·0046 +; 0·0182 0·0044 + ;0.0167 

c 0·0043 + ;0·0219 0·0044 + ; 0·0107 0·0065 + ; 0.0442 0·0043 + ; 0·0182 0·0044 + ;0·0167 0.0043 +; 0·0163 

a 0·0043 + I 0·0212 0·0045 + f 0·0185 0·0043 + 10·0182 0·0069 + ; 0,0440 0·0045 + ; 0.0209 0·0043 + ; 0·0219 

b 0·0045 + ;0·0185 0·0046 + ;0·0182 0·0044 +; 0·0167 0·0045 + ; 0·0209 0·0066 +; 0,0441 0·0044 + I 0·0207 

0·0044 + 0·0167 0·0043 + 0·0163 0·0043 + 0·0219 0·0044 + 0·0207 0·0065 + 0·0442 

a b c a b c 

a ;0·0152 -; 0·0021 - ;0·0024 - ;0.0020 - ;0·0009 - ;0·0005 

b - 10·0021 /0·0142 - / 0·0022 - /0·0009 - /0·0011 - jO·0004 

- ;0·0024 -10·0022 jO·0147 - ;0·0008 - ;0·0004 -;0·0001 

a - / 0·0020 -10·0008 - ;0·0008 /0·0152 -; 0·0021 - j 0·0024 

b - ;0·0009 - /0·0011 - ;0·0004 -/0·0021 ; 0·0142 - ;0·0022 

- 0·0004 0·0001 0·0024 0·0022 0·0147 

Table 5 
Table 4 NUMBER OF lTERA TrONS TO CONVERGENCE 
BUSBAR LOADING DATA 

Case Maximum Convergence tolerance 
, 

name Phase A Phase B Phase C study initial 
0·1 p P P mismatch' 0·01 0·001 

50·000 15·000 45 ·000 14·000 48·300 16·600 
MANOl4 0·000 0·000 0·000 0·000 0·000 0·000 a (i) 2-45 2 I 3 2 5 3 
MA~220 0·000 0·000 0·000 0·000 0·000 0·000 a (U) 2·45 2 I 4 3 6 4 . 
ROXOll 0·000 0·000 0·000 0·000 0·000 0·000 b(i) 2·51 2 1 4 4 7 7 
ROX220 48·000 20·000 47·000 12·000 51·300 28·300 b (ii) 1·51 '2 1 4 4 7 7 
TIW220 150·000 80·000 157 ·000 78·000 173·000 72·000 c 10·34 4 3 6 5 9 7 
MAN.GN 0·000 0·000 0·000 0·000 0·000 0·000 dm 2·88 4 4 7 7 11 10 
TIW.GN 0·000 0·000 0·000 0·000 0·000 0·000 d (iil 3·14 6 6 9 9 12 12 
ROX.GN 0·000 0·000 0·000 0·000 0·000 0·000 d (iii) 3·14 6 6 10 10 13 12 

'Tolerances and mismatches are in p.u. on a 100 ~fVA base 
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Table 6 
SYSTEM VOLTAGES AND ANGLES (DEGREES) FOR CASE b 

Busbar name Phase A Phase B Phase C Generation 

Voltage Angle Voltage Angle Voltage Angle MW MVAr 

INV220 1·021 29·447 1·022 - 90·520 1·026 149·152 0·000 0·000 
MAN014 1·045 11·235 1·046 - 108·873 1·044 131·112 0·000 0·000 
MAN220 1·059 35·399 1·053 - 85·244 1·042 155·267 0·000 0·000 
ROX011 1·050 - 1·573 1·051 -121·550 1·051 118412 0·000 0·000 
ROX220 1·038 26·646 1·048 - 93·247 1·035 146·354 0·000 0·000 
TIW220 1·020 29·164 1·018 - 90·908 1·023 148·845 0·000 0·000 
MANGN 1·111 22·584 1·111 - 97416 1·111 142·584 690·000 288·124 
TIW GN 1·056 29·033 1·056 - 90·967 1·056 149·033 0·000 114·641 
ROXGN 1·078 0·000 1·078 - 120·000 1·078 120·000 93·065 89·246 

Table 7 
SYSTEM VOLTAGES (V) AND ANGLES (DEGREES) FOR CASE d (ii) 

Busbar name Phase A Phase B Phase C Generation 

Voltage Angle Voltage Angle Voltage Angle MW MVAr 
INV220 0·884 28·782 1·162 - 97·506 1·190 152-450 0·000 0·000 
TIW220 1·020 27·345 1·137 - 94·500 1·142 149·480 0·000 0·000 
ROX220 1·013 25·944 '1·084 - 94·405 1·070 146·723 0·000 0·000 
ROX011 1·050 -1·849 1·050 -121·739 1·052 118·190 0·000 0·000 
MAN220 1·057 33·828 1·104 -87·051 1·095 153·583 0·000 0·000 
MANOl4 1·045 9·280 1·047 - 110·561 1·049 129·263 0·000 0·000 
MANGN 1·049 21-416 1·049 - 98·584 1·049 141·416 690·000 80·021 
TIWGN 1·382 27·448 1·382 - 92·552 1·382 147-448 0·000 1174450 
ROXGN 1·065 0·000 1·065 - 120·000 1·065 120·000 105·447 48·534 

Table 8 
LINE POWER FLOWS FOR CASE 

Sending-end Receiving-end Sending end Receiving end 
busbar name bus bar name MW MVAr MW MVAr 

MAN014 MANGN - 215·188 - 47·660 214·317 94·689 
- 236·239 - 32·027 239·036 83·135 
-238.577 - 57·358 236·651 110·300 

TIWnO TIWGN 1·022 - 48·856 -0·943 50·603 
13·968 - 39·879 -14459 41·417 

- 14·990 - 21·861 15·402 22·622 

ROX011 ROXGN - 31477 - 32·397 31·380 34·123 
- 27·102 - 26-447 27·056 27·870 
- 34·486 - 25-625 34·629 27·253 

MAN220 INV220 61·717 -0·449 --59·959 - 3·060 
63·923 8·780 -63·029 -12·525 
55·884 9·433 -55·938 -12·890 

MAN220 INVnO 60·104 3·148 -58·834 -6·633 
60·697 8·862 -59·913 -12·893 
55·386 8·308 -55·251 -11·644 

MANnO TIW220' 50·372 4·489 - 50·036 . -10·361 
45·195 8·696 -44·865 -15·661 
45·:]99 - 2·050 -44·387 -4·002 

MAN220 TIW220 50·280 1·766 -49·601 -7·803 
71·153 - 10·392 -68·015 5·177 
66·716 21·838 -67·520 -25·218 

lNV220 TIW220 25·741 4·940 - 25·740 - 6-486 
29·094 12-418 -29·016 -13·818 
22·994 8· 775 - 23·049 - 10-464 

lNV220 TIWno 25·755 4·932 -25·727 -6-494 
29·094 12·418 - 29·016 -13·818 
23 ·008 8·782 - 23·035 -10-456 

lNV220 ROX220 17·294 - 15·180 -17·761 7·742 
19·699 -13·417 -18·814 8·668 
16·931 - 9·624 -16·981 2·118 

MAN220 MAN014 - 222-495 - 8·953 215·204 47·661 
- 240·999 - 15·945 236·24 :2 32·027 
-223·842 -37·530 238·620 57·358. 

ROX220 ROX011 -30·247 -27 .743 31-473 32·397 
-18·193 - 20·668 27 ·099 26·447 
-- 34·329 - 30·418 34-487 25·625 

Total generation 783·0651 ~!W 492·0122 ~!V Ar 
Total load 769·6000 \fW 335 ·9000 ~!V Ar 
System losses 13·3693\fW 156·1118 MVAr 
\lismatch 0·0959 ~!W -0·0006 \!VAr 
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(c) Balanced angles occur at the generator internal busbars 
(d) There is an apparent gain in active power flow in anyone phase. 

This power flows through the mutual-coupling terms between 
phases. The overall active power shows a net loss as expected for a 
realistic system 

(e) For the synchronous compensator the individual phases may carry 
real power; although the total three-phase power always sums to 
zero. 

7 Conclusions 

The high efficiency of fast-decoupled algorithms over the 
conventional Newton-Raphson (roughly six fast-decoupled iterations 
are equivalent to one full Newton-Raphson iteration) method has 
been extended in this paper to the solution of three-phase load flows. 
Such extension is not straightforWard, arid various modifications to 
the basic algorithm have been developed to cope with mutual effects 
between phases and between parallel transmission lines. Also, the 
presence of large shunt admittances in some transformer equivalent 
circuits have been found to influence convergence, and need to be 
included in the active power-mismatch Jacobian matrix. Sparsity 
techniques and near-optimal ordering have been used to provide fast­
repeat solutions. The algorithm provides fast and reliable. convergence 
even with extreme conditions of steady-state unbalance. 
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10.1 

Table 9 

Appendix 

Submatrices for different transformer connections 

BASIC SUBMATRICES USED IN NODE-ADMITTANCE FORMULATION OF 
COMMON THREE·PHASE TRANSFORMER CONNECTIONS 

Transformer connection Self admittance Mutual admittance 

Bus P Bus S Ypp Y .. Yps , yIp 

Wye - G Wye - G Yj Yj - Yj 

Wye - G Wye Yn/3 Yu/3 - Ya/ 3 

Wye - G Delta Yj Yn + Ym 

Wye Wye Yu/ 3 - Yn/ 3 

Wye Wye Yn/ 3 Ym 
Delta Delta 

740 

cf4 

The characteristic submatnces used in fOrming the transformer 
admittance matrices are as follows: 

2Yt -Yt -Yt 

-Yt 2Yt -Yt 

-Yt -Yt 2Yt 

-Yt Yt 

-Yt Yt 

Yt -Yt 

10,2 Jacobian sullmatrices 

Coefficients of matrix eqn. 12 are as follows: 

(i) [Af:'] = [aLV'f /ill:lZ' 1 
where 

(ii) [Bn:] 

(iii) [Efl] 

-B;:'km IVI;:" -Q;:' 

[at.PGEN•j /ill:l7( ] 

3 

I IVlint.JIVIZ' [Gf:' sin I:Ifhm - Bfkm cos I:Ifkm] 
p=l 

3 

I IVllnt.zlVlf [Gtim sinl:lflm -Bflm cos 1:11Im] 
m=l 

(iv) [Fil] = [a6Pl1en.j/al:lint.zl 

where [F;zJ = 0 for j "" I because the jth generator has no connection 
with the Ith generator internal busbar 

and 
3 3 3 

[Fll ] I - Br,m IVlr' - Ql" + I I IVlint.dVllnt.1 
Tn=1 m=1 P=l 

m","p 

[Gfzm sin I:Ifzm - Brr cos I:Ifzm] 

Coefficients of matrix 13 are as follows 

(i) [Kfkm ] = IVI'?: [36Qf/alVl'?:] 

where 

K'pm 
ik 

except 

IVI'?: 1V\f [Gf:' sin I:If:' - Bf:' cos I:If:'] 

KZ'r ~ -BZ'r IVIZ" + QZ' 
(li) [Ln:] = IVIZ' [a6 reg jalVlZ'] 

where Llk = -IVI~ where k is the terminal busbar ofthejth generator 

and Lfl, = 0 otherwise 

(iii) [Pfz] = Wlint.z(a~Qf /Wllnt.d 

3 

IVl int.1 I IVlf [Gfzm sin I:Ifzm - Bfzm cos I:Ifzm] 
m:=.l 

(iv) [R iI ] o for all i, I 
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APPENDIX 6 

-p .c. load flow 
B.J. Harker, B.E., l1li. E., and Prof. J. Arrillaga,IIII.Sc.Tech., Ph.D., C.Eng .• F.I.E.E. 

IIIth-xillg (erllls: f).c.p,m·('f (rallSlllissi,'II. l."i/J /1,11\'. P'III't!rnll/l'\'r("ys 

Abstract 

A phasc..:u-mdinatc model or h,v, d.c. transmission systems suitabk for int~!!ration into :I·phase loau-now anal~ ,is 
is ucvelopcu in the paper. TIl~ model is surn~kntly ~.:ncral to aUuw rcprcs~nt·atilln ur altcrnativ.: ~ontrol strak~k'. 
su~h as the prcllktivc and symmctrkal thin!:! control. The integration or the model into thc luad·fluw allaly,i:, I, 

described with particular rcfercn~e to the J·phasc rast.ucclluplcd algorithm. The results inllkate th.: tk'ihility :lIIU 

powerful convcrgcnc~ of the proposeu algorithm, 

Introduction 

TIle subject of a,c./d.c. load flow has been given some 
consiueration in recent years but unly under p.!rfcctly symmetrical 
operating conditions. 1 Villen the a,e. system is not balanced the 
interaction between convertor and a.e.·supply wa~forms can only be 
assessed with a J·phase load·fl·ow model integrating the a.c. and d.c. 
equations. 

Phase·angle control with minimum angles of delay (rectifier) or 
advance (inverter) in the steady·stale condition constituted the basiS 
of carly h.v. d.c. control schemes. An alternative ~ontrol. based on 
equidistant lirings on the steady state. is generally accepted to provide 
more stable op.!ration in the presence of weak a.c. systems and par· 
ticularly during disturbances. l 

Under normal steady-state and perfectly balanced generating 
conditions there is no difference between these two basic conlrol 
strategies. However. their effect on Ihe 3.1::. system and d.c. voltage 
and current waveshapes during normal. but not balanced, op.!ration is 
quite different. 

A 3·phase convertor model is deseribed in this paper with flexi· 
bility to represent alternative control strategies and doe. configurations. 
Although the model can be used with any type of 3·phase 19ad flow .. 
the paper describes I very efficient integration with the recently 
developd 3·phase fast decoupled algorithm. J 

~ fatta>fS 

,.;,. 
Filii. 1 
Basic h.v. d.c. interconnection 

I 

prImary 

Fig. 2 
Basic conve'rtoy unit 

2 D.C. system modelling 

r---
! 
I 
v~ 

I 

The basic h.v. d.c: interconnectiOll shown in Fig. I is used as 
a reference in the development of the model. The extension to other 
configurations is clarified throughout the development. All convertor 
units. whether rectifying or inverting, are represented by the same 
model (Fig. 2). and their equations are of the same form, 
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Und~r unbalanced .:onditions the ~onvcrtor transfmnwr III"uitle'S 
the sour.:e voltages applied tn the ,onwrtur anu also affeds Ihe rha~l' 
distribution of .:urrent and power. In auuition. Ihe a.e, srstelll "rer­
ation may be influenced (e,g, by a Icro-se4uCllI:e ,'urrcnt n"w I" a 
star·g/dclta transformer) by the transformer ,ollnc~tioll, Eadl hrid~c 
in Fig. I will thus operate with a Jiffcrcnt Jc~rcc of lInbalan~c. lIWill~ 
to the int1ucncc of the convertor transform.:r connections. anu IIImt 
be modelled independently. 

A mathematical Illodel of the d.c, system, suitable for indusioll 
into the load·flnw analysis. eonsists of a set of inllcpcnd.:nr cquatilllls 
R which completely define the opcratin!! state of the system in tcrlllS 
of the convertor variables i and the J-phase a ,I.:. voltages I';e,," and 
81,m" at the terminal busbars, i.~. 

(I) 

for k = I (number of ~onvertofs) and i = I. J for thl! three phas~~ at 
the temlinal busbar. 

2.1 Derivation of equations 

To simplify the selection of variables and the formulation of 
eqn. I the follOWing conditions are assumed: 

(a) sinusoidal voltage supply on the system side of tht: conv~rtur 
transforrucr 

(b) perfectly smooth direct current 
(c) rectangular approximation for the phase currents 
(d) the supply to the convertor auxtliaries and .:ontrol units is lIot 

affected by the degree of unbalance. 

Regarding assumptions (0) and (b). previous work" A. ~ has demoa· 
strated the appearance of secOIld-harmonk ripI'll! on the d .~. side anJ 
nonzero-scquence triplen·harmonic currents on the a.c, side of statk 
convertors under unbalanced a.c. system conditions. However. the 
harmonic levels produced are OIlly Significant in extreme cases of 
unbalance, e.g. during unbalanced short..:ircuit conditions. 

The limit of voltage harmonic distortion pennittcd unuer stcad~· 
state operating conditions is normally below n for ca.:h inJividual 
harmonic at transmission-voltage levcis. and. whenever such limits arc 
surpassed, steps are taken to reduce them (e.g_ the addition of a third­
harmonic fLlter to the cross..:hanncllink). 

Although an exact solution would require accurate assessment uf 
the harmonic content and harmonic penetration. there is no need for 
such detailed studies in power·t1ow analysis. (Further justification IS 
given in Section 6,) 

Approximation (c) is commonly accepted in load· flow studies I for 
the purpose of calculating the magnitude of the fundamental ~urrcnt. 
(The error involved under normal operating ~onditions with overl:.ap 
angles below 30° is under 1%,) It must be clarified. however. that sudl 
approximation does not imply neglect pf the effect of ,;ommutatiun 
reactance in the calculation of power factor. d.c, voltage levels ct.:. 
where the errors would b.: more pronounced. 

Based on the above approximations the voltage and cucrent wave, 
forms illustrated in Fig. J apply, The ~onvertor operating state .:an 
then be formulated in terms of the follOWing Z6 variables (.r) lIdin.:J 
with reference to Fig, Z and Fig, 3: 

£;19; = fundamental-frequency voltages at the se~ondary sille uf 
the transformer 

l,/wr = fundamental·frequency line currents at the transfornl~r 
secondary 

01 '" off-nominal tap ratios on the primary side 
UUICi = phase·phase source voltages for the convertor referrcJ to 

the transformer secondary, C( are therefore the LCr'J 
crossings for the timing of firing pulses 

u( '" firing-delay angle measured from the respective zero 
crossing 



I'd '" total avera~e d.c. voltage from complete bridge 
Id '" avera!!c d.c. current 

where i '" 1.2.:.1 for the three phases involved. 
In the 3-phase a.c. load flow all angles are referred to the slack 

generator's intcrnal busbar. The angle reierence for the convertor vari­
ables is arbitrary. Similarly, for the single·phase a.c.!d.c. load flow,' 
by using one of the convertor angles (e.g. olum in Fig. 2) as a refer­
encc, the mathematical coupling between the equations describing the 
a.c. system and those describing the convertor is weakened. This has 
a favourable effect on the rate of convergence, especially when a 
sequential solution technique is used. 

Based on the p.u. system described in Appendix 10.1 a set of 26 
independent equations is derived in the following subsections. 

The complete set of equations is illustrated in Appendix 10.2. 

phose t 

Fig. 3 
Voltage and current waveforms 

a Phase voltages 
b Direct voltagt!s 

b 

c 

c ,o\.s.sumed current in phase 1 (actual waveform indicated in dottl!d line) 

2.1.1 Current relationships 

a 

Relationships are derived for the fundamental-frequency real 
and imaginary current flows across the convertor transformer. 

Off-nominal taps (a, a2 a3) are modelled on the system (primary) 
side of the transformer and for generality are assumed to be indepen­
dently controllable. 

The 3-phase convertor transformer is represented by its nodal 
admittance model. i.e. 

1276 

t::.{O 

where f' indicates the primary side and s the sewndary s,de of the 
transformer. 

The 3 x 3 submatrices (Ypp ell:.J for the various transformer CLlIl' 

nections. induding modelling of the independent-phase taps. may he 
derived using I\. ron 's connection-matrix technique as explained in 
Reference 6. 

In tenns of these submatrices, and on the assumption of a loss less 
transformer (i.e. Ypp = ibpp etc.), the currents at the convertor·side 
busbar are expressed as follows: 

lieiwj = 

3 

- I (jb!:Ehei¢k+ib~V~ermexp U(07.rm-Oierm)]} ,,-, 
On subtracting oler", in the above equation, the terminal busbar 
angles are related to the convertor angle reference. On separating this 
equation into real and imaginary components, the following six 
equations result: 

3 

Ii cos Wi = I {b!: En sin <Ph + b!Z V~erm 
h=' 
sin (07.r", - ol.r",)} (2) 

3 

1 . '\ {bi"f- '" bi" V" i SIn Wi = '- - .. :h cos 'l'h - ap term 
h=' 
COS (87.r", - 8 lerm)} (3 ) 

Three approximate relationships are derived 4 for the fundamental 
Lm.s. components of the line·current waveforms as shown in Fig_ 3, 
i.e. 

(4) 

where Tj is the assumed conduction period'of phase i_ 

2.1.2 Secondary·voltage reference 

The voltage reference for the a_c. system is. earth. In d_c_ 
transmission the actual earth is placed on one of the convertors' 
d_c_ terminal, and this point is used as a reference to define the 
d_c.-transmission voltages and the insulation levels of the convertor­
transformers' secondary windings. 

However. for the load-flow analysis, arbitrary references can be 
used for each convertor unit to simplify the mathematical model. The 
actual voltages to earth, if required, can then be obtained from know­
ledge of the particular configuration and earthing arrangements_ 

The transformer nodal admittance matrix of Section 2.1.1 relates 
the injected currents to the nodal voltages, where the nodal voltages 
are normally referenced to earth_ In the case of the convertor­
transformer secondary an arbitrary reference can be explicitly 
included. Using the zero-sequence ,secondary voltage as a reference 
yields the following equations: 

3 

I Ei cos <Pi = 0 (5) 
k= 1 

3 

I Ei sin <Pi = 0 (6) 
i= 1 

2_1.3 Power relationship 
The follOwing expression is derived by equating the sum of 

the 3-phase a.c_ powers to the total d.c. power: 

3 

I E;fiCOS(<Pi-Wi)- Vd1d = 0 (7) 
j = 1 

2_1.4 Convertor source voltages 

The phase-phase source voltages referred to the transformer 
secondary are found by a consideration of the transformer connection 
and off-nominal turns ratio. For example, consider the star-star trans­
former of Fig. 4: 

U Ic I, .. , /Q 1 V 3 .' j Q 3 0' 
13 ~ = - . term - - term v term - term 

a, a3 _ 
(8) . 

U23 Lf.J. I., / l " 
- J term e term - 8 term 
al 

(9) 
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(10) 

Taking real and imaginary parts yields a further six equations. 

1 phosE' 1 

/~ 

~MSE'3: 
pha SE' 2 

Fig. 4 
S /ar'Slar /rans/u",,,!y cunnection 

2.1.5 Direct voltage 

The direct voltage is found by integration of the waveforms 
in Fig. 3b and may be written in the form 

Va. [cos (C • ... 01, - CJ ... If) - cos (C1 ... 011 - C] ... 1f)) 

+ Vu[cos (C1 ... 012 - C.) - COS (Cl ... OIJ - C.») 

... Vulcos (CJ ... OIl - Cl ) - cos (C • ... 01, ... 1f - Ca)1 

-I" (XCI'" XCa ... XCl ) (II) 

where XC, is the commutation reactance for phase i. 

2.1.6 D.C. intoroonMetioo 

An equation is derived for each convertor from the d.c. 
system topology relating the d.c. voltages and CUfTents. In general this 
equation is of the form 

For example. the system shoWY! in Fig. 1 provides the foUowing four 
equations; 

I'd • ... Veil + Vdl ... Vd4 -1d.Rd = 0 

Id. -Ida "" 0 

Id, -ld3 "" 0 

Id, -ld4 '" 0 

where clearly some redundancy results. This is the cost of complete 
generality in the d.c. interconnection. 

2.1.1 incorporation of oontrol Itfllltegil!lS 

A further six equations are derived from the specific oper· 
ating conditions. Any function of the 16 variables is a valid (math· 
ematically) control equation so long as the equation is independent Of 
all the others. In practice there are t~trictions limiting the number of 
alternatives. Some control specifications refer to the characteristics of 
power transmission (e.g. constant power or consunt current): others 
introduce constraints such as minimum delay or extinction angles. 

As the consideration of the alternative firing controls is of particu. 
lar interest their implementation is now discussed. S~'11UlIetric.al ruing 
is considered as being applied indivtdUaUy for each 6·pulse bridge. 
although, if required. the equations may be written to consider the 
firing controller operating on an integral 12·puJse bridge. For the 
6·pulse unit the interval between firing pulses is specified as 60°. This. 
provides two equations. The third equation results from the specifi­
cation of minimum fiting-angle ~ontrol. i.e. 

where phase i is selected during the solution procedure such that the 
other two phases will have. in the unbalanced case. firing angles 
greater than am;,,' With conventional phase·angle cootrol the firing 
angle on each phase is specified as being equal to am;", i.e. 

a. -01",;" 0 

al - 01",;" 0 

Q) - Ckmi" 0 
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-, , 
The remaining three control equations are derived from the llperating 
conditions. Usually, the off·nominal taps are specitied as b~ing e'1ual. 
i.e. 

o 

Q2 - Q) 0 

The final equation will normally relate to the ~onstant ~urren t or .;ul1· 
stant power .:ontroller. e.g. 

/,,-1:1' = 0 

or 

The above examples illustrate the ease with whit:h th.: various cuntrol 
specil1cations are incorporated. 

2.1.8 Invertor operation with minimum extinction angle . 

As the firing.Jelay angle 01 is used as a variable. the r~strIt:t\l"l 
on the extinction advance angle., requires the il11plidt .:ai.:uiJtilltl of 
the commutation angle for each phase. 

Taking the specification for., as defined in Fig. J. the foillly.ing 
equation is used: 

(XCI'" XC,I) 
cosrr+COS<l1\ -I" ~hU ::: 0 
. V - IJ 

(13 ) 

Similar equations apply to the other two phases with cydk dl~n~c ,If 
sufrlX~. 

3 3·phase a.c./d.c. algorithm . 

Single and ]·phase load-now formulations are haskally thl! 
woe. In the ]·phase case. however, the system-admittan..:e matrix 
includes the effect of each separate phase as well as th.: interphase 
mutual couplings in generators, transformers and transmission s~~­
tems. Moreover. the load active P and reactive Q pow.:rs are spc.:ilieJ 
separately for each phase. 

Generators require special consideration in J-phase loaJ nows. 
Their model includes 

(II) ill balanced set of internal voltaLZ~ acting behind their 
syncnronous-impedance matri.x; i.e. an additional internal bushar is 
introduced for each generator 

(b) the voltage-regulator action. which in general is specified as a 
function of the three tenninal voltag~. i.e.r(V I. V l. V') 

(c) the total real-power generation. which is specifieJ at all !!~ncr· 
ating busbars except the slack busbar. 

The following variables are required to define the operating state of 
the J -phase system; 

(i) the slack-generator internal·busbar·voltage magnitude ( , .... " )SL 

(ii) the intcrnal·busbar·voltagc magnituJes (r ... " II anJ In\!les 
(8_), at all other generators. i.e. for i = 1.lIg - 1 where 11,1: is the 
number of generators. 

(iii) the three voltage magnitudes (I'f, and angles (Or) at '~\'~ry 
generator terminal busbar and every load busbar. i.e. for p = I. 3 fllr 
the three phases and i = I. lib where lib is the actual number of hus· 
bars. 

To solve for the above variables. a total of (::(lIg - I) +- I +- nllh I 
mismatch equations can be written from the specified ~onditi(1ns: 
th~ are 

(a) at the generators' internal busbars (except the slack generatur). 

(AI'_), '" (Plt"n);p -(PII"")' 

(~Vr"W)' = [(Vi. vi. Vi) = 0 

for i '" I. IIg - I 
(b) at the slack.generator internal busbar. 

(I-n 

(lS) 

(~Vr~g)SL '" [(I'JL' I'§L' Vdd = 0 (Ihl 

(c) at every generator tcrminal busbar and every in!lJ hushar. 

Ll.Pf = (PI')ap - (PI' I"" = 0 ( 17) 

AQf '" (Qf)'" -!QI')"" '" 0 (I S) 

for p '" I. J and i '" I. lib. 

Eqns. 14 to I g are written in terms of the unknown \Jrtahk, 
(norTl1211y V and 8). They may he solved by the dire.:! "iewllln· 

1,--
- I , 



R.:!:>h,,," ~1~(lrJtl\ll1< ur. illure efrcctJvcl~. hy a ~-rhasl' fast-dccourled 
\'C\I hll,-RJphSdll al~tlrithlf13 USIf1~ the latter technique. eqns. 14 ttl 
1>-- C:lll he dCcllul,IcJ In tWl' ~r\)urs and sulvcJ scqucntJally as fnllllws. 

(19 J 

(20) 

where B' and B" are the Jacobian matrices approximated to constants. 
The presence of the d.c.link is manifested in two ways: 

(i) addition of 26 variables and the corresponding mismatch 
equations for each convertor, i.e. eqn. I 

(ii) modification of the constraint eqns.17 and 18 at the convertor-

evaluate real-power mismatches 

evaluate reactive power and 
voltage regulator mismatches 

kP= 0 

no 

no 

yes 

A 

yes 

B 

~ ~~- yes ---_--, 

Fig.5 

no 

solve eqn. 23 
and uodate [xJ 

I 
r;;-:-oi 
~ 

I 

FI()w chart of /leral1Vf procedure 

1~7S 

yes 

no c 

~-----' 
convergence obtained 

terminal bushar as follows. 

j.!'f ~ IFf I'" - (PF Jac - (Pf Jde = 0 

j.(!f = Wf I'" - (Of J"" - W[ Ide = 0 

(21 I 

where «(!f)de and (Ff)de are functlons of the a.c.-terminal conditluns 
and of the convertor variables. 

Extensive load-flow studies have shown that in all cases where 
reasonable starting values are available a sequential integration of the 
d.c. equations into the load-flow algorithm led to convergence, the 
complexity of other approaches not being justified. 

With the sequential approach the d.c.-convertor power demands in 
eqns. 21 and 22 are considered as constant loads, and eqns. 19 and 20 
are used without modification for the a.c. solution. 

For the soluti~n of the link eqn. I the terminal voltages f'!erm and 
e~erm are considered constant, and the standard Newton-Raphson 
technique is applied; i.e. the equation 

[RJ = [J][~xJ (23) 

is used to iteratively solve eqn. I. 
The three sets of equations (i.e. eqns. 19, 20 and 23) are solved 

according to the iteration sequence illustrated in Fig. 5. This sequence 
acknowledges the fact that the convertor operation is strongly related 
to Lfte magnitude of the terminal voltages and more weakly dependent 
on their phase angles. Therefore the convertor solution follows the 
update of the a,c_-terminal voltages. Also, to avoid compatibility 
problems between a.c, and d.c_ tolerances, the convertor equations are 
continued to be solved until both sets of a.c_ mismatches have con· 
verged. Final convergence, when a d,c_ convertor is present, is always 
obtained via path C in the flow chart; paths A and B are possible only 
in the absence of d.c, convertors. . 

During the iterative procedure the unspecified convertor variables 
may go outside prespecified limits. In these cases the offending vari­
able can be set to its limiting value and an appropriate control variable 
freed. In addition, once convergence is acltieved, it may be necessary 
to set the transformer taps to the nearest discrete step and reconverge 
to obtain a practical operating condition. The reconvergence will. in 
general, be very fast. 

4 Programming aspects 

Eqns. 19 and 20 are solved using sparsity techniques and 
near-optimal ordering. The solution of eqn. 23 is carried out using a 
modified Gaussian-elimination routine. The equations for tach con­
vertor are separate except for those relating to the doc. intercon­
nection. 

This feature may be utilised, by appropriate ordering of variables, 
to yield a block sparsity structure for the doc. Jacobian_ On placing 
the direct-voltage variable last for each block of convertor equations 
and on placing all the direct-current variables after all convertor 
blocks, the d.c. Jacobian will have a structure as illustrated in Fig.6. 

On using row pivoting only during the solution procedure, the 
block sparsity of Fig. 6 is preserved_ Each block containing nonzero 
elements is stored in full, but only nonzero elements are processed. 

This routine requires less storage than a normal sparsity prograrrune 
for nonsymmetrical matrices and the solution efficiency is improved. 

5 Test system and results 

The test system. Fig. 7, consists of two a.c. subsystems inter­
connected by an h.v. d.c. link. The 20-busbar system is a represen­
tation of the 2::0 kY a.c. network in the South Island of New Zealand. 
It includes mutually coupled parallel lines, synchronous generators 
and condensers, star-star and star-delta connected transfom1ers and 
has a total generation in excess of 2000 MW. The d.c.-link parameters 
are those of the Cook Strait link between the two islands. . 

At the other end of the link a fictitious 5-busbar system represents 
800 ~1\1j of remote hydrogeneration feeding balanced loads at busbars 
I and 2 and connected to the convertor terminal by long unuans-
posed high-voltage lines. -

The small system is used to test the algorithm and to enable 
detailed discussion of results. The New Zealand d.c. link shOuld luve 
conSiderable innuence. as the link power ratmg (600 MW) is compar­
able to the total capacity of the small system. 
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Table 1 
(0' mOL SI'I nnCA TlO'S \'D CO"VII{(;I '0 RI Sl L rs 

(,./I 

Ih) IiI 

Wi) 
( iv) 
(v) 

Case Jes.:ril'tion and rcctifkr specifications 

Convertor lI10delicJ hy equhalent halan.:ed loaJs' 
phase·angle control: 

01, = OIl =01) =OI m in. l1 , = III =u].PdL. =/':/' 
sYIl1Ill~tr;';al firint,:: 

Ckj ::: Q'rnin 
as for case (h)( i I: wilh large unhalanccJ load at hushar OJ 
as for cas,' (I! Ie ii I: with large unhalan,cJ loaJ al hushar 03 
symmctrkal firing; 

01 = . IJ = - I O'~ . = + I O'~ 
'L03uint: for c:JSt: IJ dcrih-d from results for <.::IS<: h Iii 

Table I illustrates spcdlkations anJ convergence results for a few 
selected cases. In all cases the following sl'e.:ilications apply al the 
receiving end: 

(i) symmetrical firing control with ref~rence ph:ise on minimum· 
exinctil'l1 angk 

(ij) off·nominal taps equal in the three phases 
(iii) d.c. v()ltage s~cificd 

AT 

R2 

~3 

R~ 

KV".l
d

) 

U'n 
(l0~.1 ) 

Fig. 6 

= 

(Jl 
(10 .. ,(04) 

m 
(104,1) 

JaC'ubian SlI'UC'/lUf! fur a 4-com'l!rtor d.c. s.ntl!fII (non::f!ro elements 
indicait'd) 

20 - busbor syst!l'm 

~, 
-

Fig. 7 
Test system 

61 H.V d.c. inten:nnnet:tiun 
b S-blU,OU a.c. SY!h:m 

a 5 - busbor Systl!'fI'I 

bus. 01 

kJo,~ -~ 01.15.05 

---.-- ~01 

// 
n bus. 02 
\o(,k.w 
<,..! l> 

-bus 04 
A 
I~I <;)I!'n st 

b 
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Sumbcr of it~rations to 
convcrgen.:e 10·1 \IW.\IV.·\rl 

10-hushar 

8 
tl 
tl 

6 

7 

7 
7 
7 

7 

The case d~Sl:riptions ~re summarised below: 

i:!.{'j 

(0) equivalenl balanced loading with the conv.:rtors Ilwddlcd b} 
sped lied re~1 and rca..:tive powers al the terminal busbars 

(b) accurate ,onvcrtor representation: 

(i) phase·angie control wilh all taps cunstraincd tu be C4U;J1 JuJ 
the tOlal real puwer spcdlicd 

.(ij) as for case (i) but with synunetrk:ll·tiring control 
(iii) as for case (i) but with unbalan.:cd loading at busbar J 
(iv) as for case (iii) but with symmetr;'al I1ring 
(v) all taps independently controlled on eadl phase. with sym· 

metrical firing. 

Only cases (i) and (ii) are representative' of pr3cticalload·nuw oper· 
ating conditions. Cases (iii) and (iv) have been included to illuSlral1.' 
the capability of the algorithm to handle c:<tn:mc Ic:vels of loaJ 
unbalance (although it is realised that the approximations of Sc:diun 
2.1 will lead to larger errors under such conditions). finally. ,ase (v) 

has been added to show the liexibity of the mlXlcl regarding ,ontlol 
specifications. The operating states of each convertor at the reclifler 
end are given in Table :!. The results have nOI been adjusled III th.: 
nearest dis<;n~te tap ratio to facilitate their interpretation. 

To provide some understanding of the iniluence of the ~unvertur· 
transformer connection on the unbalance. the tero-scqucnce '0111' 

ponents of voltage 3J1d currenl are indicated fOf case b(i) in Fig. ~. 

10 

b 

fig. 8 
Zuu'$e'queflce beilt1l'lOUr 0/ CIJllvt'rtlJr rrafls/orm('fS (cflrYl'Sf,,,"Jilg !" 

test example (b)(i)) 

iii Zero~t.lut:n":t" voHat!C''l ,JnlA 1,:urr~nC$ 
b E~uiv3h:nf lero~ttuenc\!' nel\%HCk 
Tnn$J()fmef~undarY'lef'n ~wen!:F.: fe{ef~rU=1:! is protiUJed hy e~ns. 5 Jnu h 
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UI'IIHTI:-«; STAffS AT TilL IUCTlHI·.R I·~'H) 

CUIIV<!rtur I (slar-star) CUII\~rtllr ~ (star·g:Jdla I 

cummu· terminal powers d.~. conJilions 
~ommu-

firing tap talion firing tap lali"n 
t~rl1linal puwer d.l:. ,ondili"n, 

Case Phase angk ratio angJe f,'al reacliw vollage 
Qj. Jeg a i. r; IJj. Jeg Pj. ~IW Qj. \IV.-\r I-d ,. kV 

h (i) 7'00 5·5 ~4'79 9H·I 4R·1 24~'8 
2 7·00 5·5 ~9'31 101·7 50·8 
3 7·00 5'5 19'01 100·3 48·3 

b Oi) I 7'00 5·3 19·7R 98'6 49·0 192'8 
2 7·20 5·3 29·14 100·9 51·3 
3 8·43 5'3 18·50 100'6 47'8 

b (iii) I 7·00 4·8 2'H7 <15'6 39·5 292'8 
2 7·00 4·8 29'16 101·9 50'5 
.3 7'00 4'8 30·43 101'44 57':! 

b(iv) I 7·00 3'9 19·0] 97-(; 39'1 292·8 
2 11'64 )'9 25'63 101'8 54'7 

9'37 3·9 28'56 100'6 57·7 
b (vJ 11'00 -10'0 24'32 104'6 49·4 314'1 

2 7·00 0'0 27-76 101'1 45·4 
.3 7·55 10.0 ~6'08 92'1 44·03 

6 Discussion 

With reference to Table I. the following general features of 
the algorithm can be identified: 

(a) The number of iterations to convergence is not significantly 
increased by the presence of the d.c. convertors. 

(b) Convergence is not dependent on the specific control specifications 
applied to each convertor. 

(c) The algorithm exhibits good reliability even under conditions of 
extreme steady-state unbalance. 

In compuison with single.phase a.c./d.c.load nOM I the somewhat 
slower convergence of the J.phase fast-<iecoupled load now leads to a 
greater degree of reliability for the J·phase a.c./d.c. algorithm. 

The results, shown in Table 2, clearly demonstrale the need for 
:u:curate Jllhase modeUing of the convertor plant. Differences of up 
to 20% are noticed in the rellCtive powers of the three phases of case . 
b(i). The use of balanced P. Q·power injections at the convertor bus· 
bars is therefore unacceptable, even for small degrees of unbalance. 

On the other hand. the errors owing to approltimations made in the 
analytical model (Section 2.1) are comparatively small. For voltage 
distortion, for instance. the addition of 1% third-harmonic voltage 
results in about one-<iegree firing enor in the worst possible case (i.e. 
when the third-h1Ul11onic voltages are in antiphase at the fundamental· 
voltage zero crossing) and the corresponding maltimum clwIges in 
fundamental power components are of the order of 1 %. 

The use of symmetrical firing control results in higher reactive· 
power consumption by the convertors, and, to maintain the levels 
of direct voltage and power, increases in transformer.lap boost are 
required. 

The computed results also indicate that, in general, the convertors 
have a balanCing effect on the system voltage prome. 

It can be seen from Fig, 8 that under unbalanced conditions ill 

zero-sequence voltage may appellJ' at system busban. As the convertor 
has no zero-sequence path, zero-sequence current will only now when 
the convertor tf1l1lsformer provides a path, as in the case of the 
star·g/delta transformer. Accurate convertor-transformer models must 
therefore be included in the convertor modelling. 

1 Conclusions 

A model of the steady-state behaviour of unbalanced h.v. d.c. 
transmission systems under normaJ operating conditions has been 
developed. Its sequential integration with a J·phase fast-<iecoupled a.c. 
load·flow solution has been successfuUy implementea without impair· 
ing the effiCiency and convergence of the origmal fast-<iecoupled 
algorithm. 

The results indicate that a realistic assessment of the phase voltages 
and line-power nows, in the presence of voltage unbalance, r~uires 
a detailed J-phase representation of the convertor and convertor 
transformer. Reactive.power differences of the order of ~ey::;, can 
occur as a result of normal transmission-system unbalance, i.e. under 
perfectly-balanced generating and loading conditions. 

The maximum prescribed levels of voltag.:: harmonic distortion 
have negligible effect for the purpose of power·now studies. Ii must 
be made clear, however. that waveform distortion cannot be ignored 
in the calculation of current harmonic content to be used in furmonic­
penetration studies, and further work is required in this area. 
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current ang.ks ralio angle 
I d " k.-\, Qj • .leg (/i· 

, .. 
IJj. ,kg 

1'0~46 7·00 5·5 24'XO 
7'00 15'5 ~4'60 
7·00 5·5 ~<l'32 

1'0246 R'O] 5':! 2M·'17 
7·00 5'~ 29'57 
R'SS 5·1 18·08 

1·0246 7-00 4'3 30'63 
7·00 4'3 ~8·9:: 

7'00 4·3 28·'10 
1'0246 7'00 3'0 JO'41l 

14'95 3'0 2J·25 
INI J·O 24'15 

0·9483 8'08 -10,0 15-42 
8'38 0'0 27·30 
7'00 10'0 26·<)6 
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10 AppendixEI$ 

10.1 F'lIIv-unit system 

Computational simplicity is achieved by using ~Omlll()n 
power and voltage bases on both sides of the ~onvertor. Tho: ]·phasc 
l.c.-system base values are 3S follows: 

MVA".. = base power per phase 

V".. = phase: neutral voltage base 

With common power and voltage bases the current base on the a.~. 
and d.c. sides are also equal, and therefore no constants appear in the 
equations owing to the p.u. system. 

10.2 Convertor equations 

'The 26 equations (R) which define the operation of each 
convertor are as follows: 

J 

RO) = L EI cos 91 0 
I-I 

J 

R(2) = L E/ sin 9i 0 
1-, 

J 

R(J) = L El/j cOs(9j - Wj) - I'd/a 
/-1 

R(4) "" I, - ~!.!1. sin (T,n.) 
)TV2 . 
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R(5) 

R(b) 

R(7) 

R(8) 

R(9) 

J 

II ,OS WI - ~ Ih!.IlFh sin 0" + h~ I',~,,,, 
Ipi 

sin (01.,,,, - 0 I .. ", )1 

3 'Ie" "It de 
II ';OS WI - I Ih;' I:" Sin 9,. + b;p I Ie,,,, 

Iral 

sin (01 ... ", -I) le,,,,)1 
~ 

! J ';us w] - ~ Ib!k Eh sin 0,. + b:: I'I~'''' ,. -. 
sin (01erm - Ol .. ",)j 

J 

R(IO) I. sin w. + I {b!.lil:'" ';059",+ b~V,~,,,, 
log. 

cos (1}1 .. ,", - I} I., ... >I 

PROC lEE. VoL 126. No. J:!, DECE.W3ER 1979 

, 
R(12) IJsinwJ+~ Ih~I<FkCOS(\k+h::I'I~r'" 

R(13) 

R(l8) 

R(19) 

R(24) 

he. 

depend on transformer connection 

depend on control spedlka!iol1s 

R(1S) = I'd If - v'1U1• [.:os (C. + Il. - Cj + 11) - cos IC: + III - C] + ;T)I 

-v':!l/13 [cos (Cl + 112 - C.) - COS (C] + Il] - C. II 
-v':!UI3 [COS (C] + III - Cl ) -cos (C. + Il. + - Cl)1 

+ Id(XC. + XC! + xc]) 
'R(26) '" j'<Vdl.ldl ) from d,c.-system topology 
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APPENDIX 7 

EFFECT OF HARMONIC VOLTAGES ON FUNDAMENTAL 
FREQUENCY OPERATION OF D.C. CONVERTORS 
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The three phase model of the d.c. convertor, as formulated in 

chapter 6, assumes- perfectly sinusoidal voltages at the convertor 

terminal busbar. Without this assumption the steady state load 

flow formulation would be extremely complex due to the difficulty 

of calculating the harmonic voltages to any accuracy. 

Harmonic voltages and currents present in the a.c. system cause 

many well documented (43) undesirable effects. Power authorities 

therefore specify maximum permissible values for these quantities. 

It is reasonable to restrict accuracy requirements to those systems 

which fall within these limits. 

The presence of harmonic voltages at the convertor terminal 

busbar will alter the fundamental frequency power flows primarily 

because the actual zero crossings of the phase to phase voltages will 

be shifted from those calculated from the fundamentals alone. Other 

secondary effects will also be present but these may be ignored as 

the allowable harmonic voltages are small. 

The term 'error' refers to the difference between the actual 

quantity in question and that calculated when the harmonics are 

ignored i,e. from the fundamentals alone as in the load flow equations 

of chapter 6, 

A 7,1 HARMONIC VOLTAGE LIMITS 

are 

Recommended limits for harmonic voltages in the United Kingdom 

given(74) below: 



Supply Voltage 

415 V 

33 kv 

110/132 kv 

Odd Harmonic 
% 

4 

2 

1 
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Even Harmonic 
% 

2 

1 

0.5 

The Total Harmonic Distortion (THD) is also limited to 1.5% for 

110/132 kv where, 

THD 0. 
n=2 

In addition limits are placed on the harmonic current magnitude 

but these are not relevant to the present discussion. 

A 7.2 ASSESSMENT OF POSSIBLE ERRORS 

A 7.2.1 Shift in Zero Crossing of Phase-Phase Voltages 

There is considerable difficulty in assigning a realistic worst 

case for the investigation of the influence of harmonic voltages. 

The following considerations apply: 

Under balanced conditions the characteristic harmonic orders 

do not influence the intervals between firing pulses i.e. 

all firings are shifted by equal amounts. Therefore these 

voltages will have very little effect on the magnitude of the 

fundamental currents. 

Harmonic limits are usually applied at the point of common 

coupling to the supply network which mayor may not be the 

convertor terminal busbar as assumed by the load flow. 

The majority of the allowed triplen harmonics will consist 

of the usual zero sequence components and these have no 

influence on the position of phase to phase crossings. 
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The order of the non-zero sequence triplen harmonics, which may 

be considered to cause the most significant shifts, is not important 

as, under balanced conditions with the subsequent crossings 120 degrees 

apart, a small magnitude of any lower order triplen harmonic will 

result in comparable shifts for all three phases. 

As a consequence of these features it is considered reasonable 

to investigate the worst case effect of 2% of non-triplen third 

harmonic voltage. 

The worst case for a shift in any zero crossing is for all 

harmonics to add to the fundamental voltage on one phase and to 

subtract from the other phase at the position of actual zero crossing. 

This situation is illustrated in Fig. A 7.1 where a phasor diagram 

for non zero sequence third harmonic is shown. 

Fig. A7.1 

3wt 
V 

a 

v = 0 
c 

Phasor Diagram of Third Harmonic Voltages 

With consequent zero crossings 60° apart i.e. one half rotation 

of the third harmonic phasors, then one subsequent shift will be 

approximately half the initial worst case, and the third shift wi"ll 

be equal to the worst case initial shift except in the opposite 

direction. 
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For 2% non zero sequence third harmonic the worst case shift is 

approximately one degree. 

The order of magnitude of the resultant errors can be assessed 

on the basis of nominally balanced operation and by interpreting 

shifts in zero crossings as firing angle errors determined in 

accordance with the firing controller in operation. 

For a convertor operating with fixed tap ratios and specified 

d. c. current, any firing angle errors are reflected into the convertor 

operation through errors in the calculated d.c. voltage and in the 

calculated magnitudes for the fundamental component of the phase 

current waveforms. Both errors occur to some extent with both firing 

controllers. 

A 7.2.2 Errors in Calculated Phase Current Magnitudes 

Appreciable errors occur with the case of phase angle control; 

errors with symmetrical firing are limited to the effects of commutat­

ion"angle unbalance. 

The effect of a 2 degree modulation has been investigated on the 

basis of the current waveform of a convertor with commutation angle of 

ten degrees and balanced voltages. Ignoring the shifts in commutation 

angle which will occur with an alteration of firing angle the effect 

of alteration in the period of conduction has been investigated using 

a Fourier Transform algorithm. The results are shown in Table A 7.1. 

In addition to the fundamental the percentages of the harmonics are 

also given. Note that no even harmonics are present as ~e waveform 

was assumed to be symmetrical. 

It is important to note that the percentage errors presented"in 

the Table are the maximum that can occurj in all practical cases 

there will be an alteration in the commutation angle which will 
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inhibit the change in the waveform. This effect will be most noticeable 

at small firing angles as can be seen in the results of chapter 8. 

In general therefore the harmonic changes will be less than those 

indicated in the Table. 

The change in fundamental is not, therefore, expected to exceed 

1% of the value calculated by the load flow. 

Table A 7.1 

Harmonic content of current waveform with period between valve 

firings of T and commutation angle of 10 degrees. 

Order Period T 
120

0 
121

0 
122

0 

0 - - -
1 100.00 100.50 100.99 

3 0.01 0.95 1.92 

5 17.85 17.3 16.89 

7 11. 32 11.64 12.04 

9 0.01 0.68 1. 35 

11 4.88 4.57 4.25 

13 3.09 3.26 3.41 

15 0.01 0.29 0.56 

17 1.05 0.94 0.82 

19 0.75 0.81 0.85 

A 7.2.3 Error in Calculated Average D.C. Voltage 

The largest error occurs with symmetrical firing where any 

shift in the firing angle of the reference phase is reflected as a 

shift on all phases. The error depends upon the nominal firing angle. 

An example of possible errors is shown in Table A 7.2. 



Table A 7.2 

Percentage Errors in Calculated D.C. Voltage 

Nominal Firing 

- % of V 
do 

a 

10° 

20 

40 

70 

Angle Error due to shift in 

1° 2° 

0.3 0.7 

0.6 1.3 

1.1 2.3 

1.6 3.3 

Zero Crossing 

3° 

1 

2 

3.5 

5.0 

The errors are small at small firing angles but may become 

significant at large firing angles. 

A 7.3 CONCLUSION 
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The errors discussed in the previous sections may cause an 

alteration in the operating state of the convertor and lead to errors 

in the calculated values of real and reactive power flows for each 

phase. 

The errors are minimal at small control angles which are usually 

applicable in load flow investigations. In addition, the nature of 

the harmonic voltages which will exist in any practical situation are 

unlikely to satisfy worst case conditions and any errors are not 

considered significant in the context of load flow investigations. 

The modulation in the valve conduction periods which -may occur 

are,however, significant if harmonic frequency current generation is 

being considered. 
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IMPROVEMENT IN APPROXIMATIONS FOR 
PHASE CURRENT MAGNITUDES 
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The approximations for the fundamental magnitude of the phase 

currents may be improved ip accuracy by adding an additional iterative 

loop to the load flow solution. After the load flow has converged 

to a moderate tolerance (e.g. five times the final tolerance) a 

Fourier Transform may be performed for the fundamental magnitudes. 

This may be performed by the Fast Fourier Transform algorithm as 

described in chapter 8. The correction factor (0.995 in equation 

6.25) is then recalculated separately fo~ each phase. 

Convergence may then proceed to the final tolerance. 

The phase currents may be calculated to any accuracy desired 

by repeated application of this procedure. 

With one correction as discussed above the fundamental magnitudes 

have been within 0~2% for all examples considered. Only a marginal 

increase in the number of iterations is usually incurred by the 

introduction of this discontinuity. 
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