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ABSTRACT

This thesis describes the development of a general method for
the analysis of”integrated a.c. and d.c. systems under normal, but
not necessarily balanced, steady state operation.

Phase component three phase system modelling is reviewed and
the relationship of the well known symmetrical components to the
three phase modelling is discussed,

Using as a reference the single phase fast decoupled algorithm
the modifications required to produce an efficient three phase
fast decoupled load flow are described. It is demonstrated that
the three phase fast decoupled load flow displays all the
characteristics of the original single phase version.

Single phase balanced convertor modelling is reviewed and
several techniques for the integration of such models with the single
phase fast decoupled load flow are developed and their performance
is compared.

The‘methods fqr single phase convertor modelling are extended
to allow unbalanced convertor operation to be analyéed. The integration
of the unbalanced convertor medel into the three phase fast decoupled
load flow is described. Convergence properties are examined and
detailed results given.

The extension of steady state analysis techniques to the
consideration of harmonic frequencies is discussed. The unbalanced
convertor model is used as a basis to enable the harmonic interaction

of d.c. convertors and the a.c. system to be studied.
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CHAPTER 1

INTRODUCTION

The undesirable influence of steady state power system
unbalance(l) on the conventional system loads and generators has
required power sistem plaﬁners to be very conscious of any feat-
ures which may create unbalance.among the three phases. With
the more recent proliferation of high power d.c. convertor
installations, which are susceptible to the production of non-~
characteristic harmonic currents even with small unbalance, there
is a renewed interest in the study of the causes of power system
unbalance.

The quantitative analysis of unbalanced power systems
operating in the presence of d.c. convertors, is a demanding task,
which, until now has only been attempted in very restricted cases.
This thesis describes a general method of analysis in which the
unbalanced operation of the three phase system, including the
influence of large three phase convertor installations, is
analysed using an efficient steady state load flow technique. In
addition to the study of the power frequency unbalanced operation
of convertors, this thesis also deals with the related problem of
harmonic current generation.

The methods presented are, in general, extensions of the most
advanced and well proven single phase load flow techniques. In
particular, the development of the three'phase load flow algorithm

is based on the fast decoupling principles which have proved so

successful in the single phase case.



The emphasis in the thesis is on algorithmic formulation, with
only brief discussions on the relevant computational details.
Although it is acknowledged that the computational aspects are
critical to the practicality of any load flow solution, methods
for efficient programming of storage and solution routines have
been extensively studied in the recent past and further effort in
this arxea is unlikely to bring any significant advance. Therefore
existing sparsity storage and solution routines have been used
wherever practicable.

Symme trical components is a well established method which
provides immense simplification in the analysis of unbalanéed
operation of balanced transmission systems. However, when the
system itself is unbalanced, the transformation provides no
simplification and its use cannotl be justifieci. The three phase
system and the d.c. convertors are therefore represented directly in
phase quantities. Symmetrical components are however, a valuable aid
in the understanding and interpretation of results and th;y are
used for this purpose where appropriate.

The material presented conveniently separates to form the
individual chapters and each chapter is, for the most part, treated
as a separate unit.

Chapter 2 presehts é review of power system modelling for steady
state analysis. The relationship of the well known symmetrical
components to the steady state system modelling in phase components
is discussed. Models for all the common three phase elements are
presented and the methods for their derivation reviewed. Although
the material in this chapter is largely a review of éxisting methods,
it is essential to the formulation of the three phase load flow

as well as being of considerable interest in itself.



Chapter 3 is a brief description of the basic Newton-Raphson
solution method. This matexiai, although well documented, forms an
important basis for the application of the method to the less
familiar situations of the three phase load flow and the steady state
convertor models. It is therefore included as a chapter in its
own right to reflect its importance to the remainder of this thesis.

Chapter 4 describes the develcopment of a three phase fast
decoupled load flow fox tﬁe unbalanced a.c. system. The three phase
version is an extension of the well known single phase fast decoupled
load flow. The original aspects of the three phase version and
their relationships to the single phase case are discussed in detail.
The performance of the developed algorithm is investigated and it is
demonstrated that the three phase version retains the computatidnal
efficiency and reliability of the single phase vexsion.

Chapter 5 describes the formulation of a model of the balanced
operation of the d.c. convertors which is suitable for integration
into single phase load flow studies of combined a.c. and d.c.
systems. Various sequential and unified (simultaneous) integrations
with the single phase fast decoupled load flow are discussed and
compared. The primary motivation for the work described in this
chapter is to provide a basis for the development of a three phase
convertor model and to enable selection of the best algorithm for
the subsequent integration of that ﬁodel into the three phase fast
découpled load flow.

Chapter 6 describes the formulation of a model of the unbal-
anced three phase convertor with sufficient generality to incor-
porate a wide range of convertor control modes including the effect
of symmetrical firing and the more traditional phase angle firing

controllers. The sequential integration of the unbalanced model



into the three phase load flow is presented and the performance of
the three phase integration coﬁpared to the corresponding single
phase version. The steady state unbalanced convertor model

forms a basis for the investigation of the harmonic current generat-
ion during unbalanced steady state operation as discussed in chapter
8. |

Chapter 7 deals with the extension of the techniques for
power frequency modelling'of the three phase system to the moxe
general case of harmonic frequency modelling. In addition, this
chapter introduces the nature of some of the problems caused by
harmonic power flows and also discusses the degree of representation
required if an analysis is to be attempted. This chapter isvan
introduction to the topic only and is intended to form a basis for
further investigation. The matefial presented provides the necessary
background to the final chapter.

Finally, chapter 8 is concerned with the steady state harmonic
generation of d.c. convertors under unbalanced conditions when the
s&stem harmonic impedances cannot be assumed zero. Features such as
the harmonic interaction of a convertor and the a.c. system and
also the effect of system resonances are considered on a general
three phase basis. The limitations of the steady state analysis
are discussed and illustrative examples are studied in detail.

Several papers(2'=6) have been written in connection with the
work in this thesis and where appropriate they are referenced or

included as appendices.



CHAPTER 2

REVIEW OF POWER SYSTEM MODELLING FOR

STEADY STATE LOAD FLOW ANALYSIS

2.1 INTRODUCTION

To enable a ioad flow analysis to be performed, be it three
phase or single phase, it is necessary to form a mathematical
representation of the power system. The most sqccessful load flow
techniques to date are based upon the nodal admittance formulation.
This chapter describes the formulation of the admittance parameters
for the various three phase elements.

A three phase power system consists of the interconnection of
a number of relatively simple physical elements such as generators,
trapsformers, transmission lines and loads. However, the electrical
characteristics of these interconnected elements are extremely
complex. By making as many simélifying assumptions as the purpose
of the study will éllow, methods have been developed to enable
engineers to cope with this complexity.

The elements of the power system are inevitably unbalanced
and some unbalance will also exist in the system loading and generat-'
ion. To study features associated with this unbalance it is necessary
to pexrform a three phase load flow analysis. In this analysis each
phase is independently modelled as are all inductive and capacitive
mutial couplings between phases and between circuits. No trans-—
formations yield any simplification to this analysis. although
symmetrical components are a valuable aid in the interpretation of

results.




For maﬁy studies on the electrical power system tﬁe unbalance
itself is not of any particulai interest and may be ignored. The
parameters of the system are then assumed to be balanced as are
the system loads and generation. In such cases a steady state
analysis is possible with a single phase (positive sequence) load
flow. The system modelling for the single phase case is relatively
simple and is well documented and will not be discussed further
hexre.

This chapter firstly reviews the relationship of the well
known symmetrical component theory to the three phase system modell-
ing. The development of models for the various three phase elements
is discussed and a systematic procedure for the formation of the

system admittance matrix is developed.

2.2 SYMMETRICAL COMPONENTS

The symmetrical component transformation is a general math-
ematical technique developed by Fortescue whereby any "system of
n vectors or quantities may be resolved, when n is prime, into n

w (7 Any set of three phase

different symmetrical n phase systems.
voltages or currents may therefore be transformed into three
symmetrical systems of three vectors each. This, in itself, would

not commend the method. However, consider the equation describing

the system operation,

[z, J1=1[v, I J (2.1)

abe vabc

where abc indicates the actual phase guantities. The transformed
gquantities (indicated by subscripts 012 for the zero, positive and
negative sequences respectively) are related to the phase quantities

by



[Von.z] = [T ] {_ivabc] (2.2)
[z 1= 1" [z ] (2.3)
012 abc °
where [TS] is the transformation matrix.
Substitution into (2.1) yields:
=1
[1012] = [Ts] [Yabc][Ts][VOIZ] (2.4)
The transformed voltages and currents are related by the
transformed admittance matrix,
lv. 1=1r 17 [y, 17 ] : (2.5)
012 s abe s "

If the original phase admittance matrix [Yabc] is in its'
natural unbalanced state then the transforwmed admittance matrix

[v 12] is full. Therefore current flow of one sequence will give

0]
rise to voltages of all sequences, i.e. the equivalent circuits for
the sequence networks are mutually coupled. The problem of analysis
is no simpler in seguence components than in the original phase
components and, iﬁ this case, symmetrical components should not be
used.

However, when the unbalance is small, or of no particular

interest, then it may be ignored and [Y c] becomes, upon transform-

ab
ation, a diagonal matrix. That is, the mutually coupled three phase
system has been replaced by three uncoupled symmetrical systems. 1In
addition, if the generation and 1oading are balanced, or may be

assumed balanced, then only one system, the positive sequence system,

has any current flow and the other two sequences may be ignored.

This is essentially the situation with the single phase load flow.



2.3 NETWORK SUBDIVISION B

To enable the system to be modelled in a systematic, logical
and convenient manner the system must be subdivided into more
manageable units. These units, called subsystems, are defined as
follows: A SUBSYSTEM is the unit into which any part of the system
may be divided such that no subsystem has any mutual couplings
between its constituent b;anches and those of the rest of the system.
This definition ensures that the subsystems may be combined in an
extremely straightforward manner.

The system is first subdivided into the most convenient sub-
systems consistent with the definition above. An example of this
process is illustrated in Appendix 1.

The smallest unit of a subsystem is a single network element.
In the following sections the nodal admittance matrix representation
of all common elements is derived. More complex subsystems must be
defined because of mutual coupling between three phase system
elements and because many connections between busbars consist of a
number of elements in series. Methods are presented for deriving
the nodal admittance matrix for these subsystems.

The subsystem unit is retained for input data organisation.

The data for any subsystem is input as a complete unit, the subsystem
admittance matrix ié fofmulated and stored and then all subsystems

are combined to form the total system admittance matrix.

2.4 SYNCHRCONCUS MACHINE MODELLING FOR LOAD FLOW ANALYSIS
Synchronous machines are designed for maximum symmetry of the

phase windings and are therefore adequately modelled by their

sequence parameters. The sequence impedances contain all the inform=-

ation that is required to analyse the steady state unbalanced




behaviour of the synchronous machine.

The admittance representation of the generator in phase

components may be derived from the sequences impedances

(z ,%

0r%12y)

is first transformed to

[ ]

den abec

It 1z
s

[r 1z ]
s° g

gen

phase components,[zgen]abC

=1
en OlZ[Ts]

%

]OlZ[Ts]

The generator sequence impedance matrix [Z ]

gen-012

is given by,

(2.6)

(2.7)

. .
where [TS] is the complex conjugate of matrix [TS], where

1 1

[Tr] = |1 a2
s

1 a

and a is the complex operator e

The phase component impedance matrix is thus,
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m/3

(2.8)

2
+ + a‘%
Z0 aZl a

2

2
+ +
ZO a Zl a22

[den]abc B 0 1 2

2
+ +
ZO aZl a Zl

zZ_ o+ +
0 Zl Z2

The phase

Fig 2.1 (a).

component model of the generator is

(2.9)

illustrated in

The machine excitation acts symmetrically on the three

phases and the voltages at the internal or excitation busbar form a

balanced three phase set, i.e.,

a b C
Ek = Ek = Ek
and
a b 2m c
= + m— =
ek 6k 3 ek

2T

(2.10)

(2.11)
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For three phase load flow the voltage regulator must be
accurately modelled as it inflﬁences the machine operation undér
unbalanced conditions. The voltage regulator monitors the
terminal voltages of the machine and controls the excitation volt-
age according to some predetermined function of the terminal volt-

ages. Some common examples are:

(i) The voltage on one phase is maintained.

(ii) One phase to phase voltage is maintained.

In general the voltage regulatof constraint may be written as some
function of the terminal voltages.

Before proceeding further it is instructive to consider the
generator modelling from a symmetrical component frame of reference.
The sequence network model of the generator is illustrated in
Fig. 2.1 (b). As the machine excitation acts symmetrically on the
three phases positive sequence voltages only are present at the
infernal busbar.

The influence of the generator upon the unbalanced system is
known if the voltages at the terminal busbar are known. In terms of
sequence voltages, the positive seguence voltage may be obtained
from the excitation and the positive sequence voltage drop caused by
the flow of positive sequence currents through the positive sequence
reactance. The negative and zero sequence voltages are derived from
the flow of their respective currents through their respective
impedances. It is important to note that the negative and zero
sequence voltages are not influenced by the excitation or positive
sequence impedance.

There are infinite combinations of machine excitation and
machine positive sequence reactance which will satisfy the conditions

at the machine terminals and give the corxrect positive sequence volt-
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age. Whenever the machine excitation must be known (as in fault
studies) the actual positive sequence impedance must be used. For
load flow however, the excitation is not of any particular interest

and the positive sequence impedance may be arbitrarily assigned to

(8)

any value. This feature has been recognised by previous researchers
for load flow studies on unbalanced systems when the system has

been modelled using coupled sequence networks. The positive sequence
impedance is usually set to zero for these studies. With regard to
three phase load flow in phase co-ordinates, the practice of setting
the positive sequence reactance to a small value is equally valid.
The advantage to the three phase load flow is that the excitation
voltage is reduced to the same order as the usual system voltages

and there is a corresponding reduction in the angle between the

internal busbar and the terminal busbar. Both these features are

important when a fast decoupled algorithm is used.

Therefore, in forming the phase component generator model using
equation (2.9), an arbitrary value may be used for Z1 but the actual
values are used for Z0 and Z2. There is no loss of relevant
information as the influence of the generator upon the unbalanced
syétem is accurately modelled.

The nodal admittance matrix, relating the injected currents at

the generator busbars to their nodal voltages, is given by the inverse

of the series impedance matrix derived from equation (2.9).

2.5 TRANSMISSTION LINES
Transmission line parameters are calculated from the line
geometrical characteristics. The calculated parameters are expressed

as a series impedance and shunt admittance per unit length of line.
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The effect of ground currents and earth wires are included in the
calculation of these parameteré(7'9’10),

The usual single phase transmission line model represents the
electrically short line by a nominal-w network. Half of the total
shunt admittance’is connected to earth at each terminal and the

series impedance for the total line is placed in series between the

busbars as shown in Fig. 2.2,

Z
s
o ] .
Y/2 Y/2
Fig. 2.2 Nominal=1 Model: Single Phase Transmission Line

The same nominal-mT model can be used in thé three phase case.
The process by which Zs and Y become 3 % 3 matrix quantities is
illustrated in Fig. 2.3. In part (i) of the figure the full circuit
representation is shown. This consists of three nominal-wv circuits
(one for each phase) which are coupled together. The mutual coupling
is lumped in a similar manner to the other parameters. Parts (ii)
and (iii) show alternative and more concise circuit representations
where [Zs] and [vY] are written as 3/X 3 matrices and corresponding
three phase compound coils.

(11)

Kron refers to these matrix quantities as compound tensors

and states
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Fig. 2.3 Uominal m Model: Three phase transmission line
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"the whole impedance terminology of ordinary networks can

be transferred to compound networks by replacing oxdinary
numbers with appropriate tensors" and also the "theories,
laws, equations etc ... for ordinary networks are all valid
for compound networks by simply replacing single quantities
by appropriate tensors and single tensors by appropriate
compound tensors."

The representation of three phase elements by the use of
compound coils will be used extensively. The formation of both the
primitive and actual network admittance matrices using three phase
compound coils is covered in detail in Appendix 2. The admittance
matrix for the three phase element can now be written. (This is
done following the rules which are developed in Appendix 2 for the
formation of the admittance matrix using compouwnd coils.)

The element admittance matrix relates the nodal injected

currents illustrated in Fig.2.3 (iii) to the nodal voltages by the

equation,

Tz, ] [2]-1 + [v]/2 -[z]-1 [v, 1
- (2.12)

L[Ik] .--'[Z]'l [z]-! + [¥]/2 [Vk]

6 X 1 6 X 6 6 X 1

This forms the element admittance matrix representation for
the short line between busbars i and k in terms of 3 X 3 matrix
quantities.

This representation is often not accurate enough for electrically
long lines. The physical length at which a line is no longer
electrically short depends on the wavelength, therefore if harmonic
frequencies are being considered, this physical length may be quite
small. Using transmission line and wave propagation theory(lz’lB)

more exact models may be derived. However, for normal mains frequency

analysis, it is considered sufficient to model a long line as a
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series of 2 or 3 nominal-m sections. If many sections are taken

an exact representation is approached.

2.6 TRANSFORMER MODELLING

2.6.1 Introduction

Traditiocnally, three phase transformers have been represented
by their equivalent sequence networks. The inherent assumption,
that the transformer is a balanced three phase device, is justified
in the majority of practical siéuations° More recently, however,

methods have been developed(9'14'15)

to enable all three phase
transformer connections to be accurately modelled in phase~COordinates,
In phase coordinates no assumptions are necessary although the
physically justifiable assumptions are usually introduced in order
to simplify the modelling. The basis of the derivation of the
phase coordinate transformer models, is the primitive admittance
maﬁrix which is derived from the primitive or unconnected network
for the transformer windings. The method of linear transformation
(Appendix 2) enables the admittance matrix of the actual connected
network to be found.

This seétion describes the primitive admittance matrix for a
basic two winding three phase transformer in the most general case.

The usual simplifying assumptions are introduced and models for the

common connections are derived.

2.6.2 Primifive Admittance Model of Three Phase Transformers

Many three phase transformers are wound on a common core and all
windings are therefore coupled to all other windings. Therefore, in
general, a basic two winding three phase transformer has a primitive

or unconnected network consisting of six coupled coils. If a
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.LD l.& 4 TLB &
v.t | ARTA
VE‘ 3
i,q. @ Lg g is
Vit ng %
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(a) Diagramatic representation of two winding transforuer
.L‘ -Lq Lz i.s LB .L‘

NN NN

% \é\

(b) Six coupled coil primitive network

NOTE: the dotted coupling represents parasitic coupling
between phases.,

Fig. 2.4 Primitive Network of Two Winding Transformer
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tertiary winding is also present the primitive network consists of
nine coupled coils. The basic‘two winding transformer only will be
considered; the addition of further windings is a simple but
cumbersome extension of the method.

The primitive network, Fig. 2.4, can be represented by the

primitive admittance matrix which has the general form of equation

2.13.
1 Y11 | Y12 | Y13 | Y1a | Y15 | Y16 V1
to Vo1 | Yoo | Y23 | Yoa | Y25 | Y26 V)
3 Y31 | Y32 | ¥33 | Y34 | Y35 | Y36 V3

_ (2.13)
*4 Yar | Yao | Y43 | Yaa | Yas5 | Y46 Va
15 Y51 | Y52 | ¥53 | Y54 | Y55 | Y56 Vs
6 Y61 | Y62 | Y63 | Y64 | Y65 | Y66 M3

Assuming the reciprocal nature of the mutual couplings in
equation 2.13, twenty one short circuit measufements would be
necessary to‘complete the admittance matrix. Such a detailed
representation is seldom required.

By assuming the flux paths to be symmetrically distributed
between all windings then equation 2.13 may be simplified to

equation 2.14.
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] ] -~ " " v
T Y5 i i Y Y1 n 1
‘ 3 " - " 37
iy Y YP Y Yo Yo Yo 2
1] 1] 1l i P v
ia Yo Yo Yp Yo T Yo 3
= (2.14)
- L 1] (1] L1 7
14 Yo Y Yo Yg y Y 4
: n - n vee e AV
5 Y Y n Y s I 5
2 [1] " p— e 111) v
‘6 Yn Y i Y i Yo 6
where y& is the mutual admittance between primary coils.
y& _is the mutual admittance between primary and secondary

coils on different cores.

is the mutual admittance between secondary coils.

For three separate single phase units all the primed values are
effectively zero. In three phase units the primed values,
representing parasitic inter-phase coupling, do have a noticeable
effect. This effect can be interpreted through the symmetrical
component equivalent circuits as discussed in detail in references
(9) and (14).

Normally, the only parameters which are available are from the
standard short circuit and open circuit transformer tests. These give
the leakage impedance (ZSC) and the magnetising admittance (YOC) for
each pair of primary and secondary windings. The magnetising
admittances are conveniently removed from the transformer model; if
required these may be added later as small shunt connected admittances

at the transformer terminalsfls'16)
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In order to model three phase transformers it is necessary
to derive the primitive admittsnce matrix in terms of the standard
parameters. Equation 2.14, with all primed values ignored, forms
the primitive admittance matrix. The coupling between coils is
modelled as for a single phase unit, with an appropriate allowance
for both primary and secondary off nominal tap ratios. An

equivalent p.u. representation is shown in Fig. 2.5.

ip VB is
= © =
A A
Vp VII VS
&
Fig. 2.5 Equivalent Circuit in p.u. for Coupled Transformer

Windings
Primary and secondary off nominal tap ratios are designated

o and B respectively. Solving for the terminal currents in terms of

the terminal voltages yields:

. y Y
lp /az /aB Y
- (2.15)

. Yy V4
i /ue

/82 Vg

The primitive network and corresponding primitive admittance
matrix can be derived in terms of eqguation 2.15. Allowing for
independent parameters for each coupled winding the primitive

network of Fig. 2.6 (i) is applicable. The primitive admittance
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(i)

L

La

la

Ls

Le

Fig. 2.6

(1i)

where Y =
P

2
Y/ai, YS

j

Primitive network

. 5 ‘
Y/Bj and Mij = Y/aiBi»

Vi

Va

Ye, M.
Ye, M,
—_— Y"s Mss
o, Ys.
M,, Ys,

Va

63

Vs,

Vs

Primitive admittance matrix-

Ve

(2.16)

Primitive Network of Two Winding Transformer in Terms

of Standard Parameters
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matrix (equation 2.16 in Fig. 2.6 (ii)), foxms the basis for

deriving the models of the common transformer connections.

2.6.3 Models for Common Transformer Connections

The network admittance matrix for any two winding three phase
transformer can now be formed by the method of linear transformation.
This method is described in Appendix 2.

As an example consider the formation of the admittance matrix
for the star-star connection with both neutrals solidly earthed.
This example is chosen as it is‘the simplest computationally.

The connection matrix is derived from consideration of the
actual connected network. For the star-star transformer this is
illustrated in Fig. 2.7. The connection matrix [C] relating the
branch voltages (i.e. voltages of the primitive network) to the node
voltages (i.e. voltages of the actual network) is given by equation
2.17 which is illustrated in Fig. 2.8.

The nodal admittance matrix [Y]NODE is given by

[e1® [¥],ppy L] (2.18)

[¥]

NODE

Substituting for [c] yields,

[v] (2.19)

ooE = [¥lproy

as the connection matrix for this example is a 6 X 6 identity matrix.
The models for the other common connections can be derived
following a similar procedure. A further example of the star-g/delta
connection is given in Appendix 3.
In general, any two winding three phase transformer may be
represented using two coupled compound coils. The network and

admittance matrix for this representation is illustrated in Fig. 2.9.
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Fig. 2.7 Connection Diagram for Star-Star Transformer
V) i Va
\ i Vi
Va ! Ve
Va ] \/;
Vs ] \/L
Ve | \J;

Fig. 2.8 The Connection Matrix for Star-Star Transformer

(2.17)
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sp
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Fig. 2.9 Two winding three phase transformer as two

coupled compound coils.

It should be noted that,

[y 1=1[y 1 (2.20)

as the coupling between the two compound coils is bilateral.
Often, because more detailed information is not required, the
parameters of ‘all three phases are assumed balanced. In this case
the common three phase connections are found to be modelled(g) by
three basic submatrices.
The submatrices, [Ypp], [Yps] etc., are given in Table 2.1
for the common connections.

Finally these submatrices must be modified to account for

off nominal tap ratios as follows:



Table

2.1

Characteristic submatrices used in forming the

transformer admittance matrices

where

TRANSFE. CONNECTION SELF ADMITTANCE MUTUAL ADMITTANCE
T
BUS P BUS S Y Y , ¥
joys] ss ps sp
- - ' =Y,
Wye=G Wye~G Yi i i
Wye=G W e Y.. =Y, .
¥e ye ii/3 ii/3 ii/3
Wye-G DELTA Y, . s +Y, .,
i ii iii
W ¥,. Y., =Y, .
ye wye ii/3 ii/3 1i/3
Y,, L. Y, ..
wye DELTA ii/3 ii iii
DELTA DELTA Y., ' . =Y.,
ii ii ii
Yt
Yi = Y‘C
Y
2Yt =Yt -Yt
= ""Y- 2 -
Tii e | “Ye | Ve
- - 2
Yt Yt Yt
Y Te
Y544 = e | Y
Ty Yy
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(i) Divide the self admittance of the primary by 02,
(ii) Divide the self admittance of the secondary by B2,

(1ii) Divide the mutual admittance matrices by (oB).

It should be noted that in the p.u. system a delta winding has an
off nominal tap of /3.

For transformers with ungrounded Wye connections, oxr with
neutrals connected through an impedance, an extra coil is added
to the primitive network for each unearthed neutral and the
primitive admittance matrix increases in dimension. By noting
that the injected current in the neutral is zero, these extra
terms can be eliminated from the connected network admittahce
matrix(l4).

Once the admittance matrix has been formed for a particular

connection it represents a simple subsystem composed of the two

busbars intercénnected by the transformer.

2.7 SHUNT ELEMENTS

Shunt reactors and capacitors are used in a power system for
reactive power control. The data for these elements are usually
given in terﬁs of their rated MVA and rated kV, the equivalent
phase admittance in p.u. is calculated from this data.

The admittance matrix for shunt elements is usually diagonal
as there is normally no coupling between the components of each
phase.

This matrix is then incorporated directly into the system
admittance matrix, contributing only to the self admittance of the
particular bus. It represents the simplest subsystem, being

composed of only one busbar.



27

b
j
[
§ ¢
[

T T T 777

| I
fix| |
[Vi] fixe| | [eu]
Vi%e
[zo

- [V

Fig. 2.10 Representation of a Shunt Capacitor Bank
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A three phase capacitor bank is illustrated in Fig. 2.10 as

an example.

2.8 MUTUALLY COUPLED THREE PHASE ELEMENTS

2.8.1 Mutually Coupled Three Phase Lines

Significant coupling exists between some three phase system
elements. Transmission lines will be considered here as they are
a common example,

When transmission lines océﬁpy the same right of way for
a considerable length, the electrostatic and electromagnetic
éoupling between those lines must be considered.

In the simplest case of two mutually coupled threeé phase
lines the two coupled lines are qonsidered to form one subsystem
composed of four system busbars. The coupled lines are illustrated

in Fig. 2.11.

T LINE 1
Ys3 -
[VA:] Yla Ys5 L-Vc,:]
Yz
L ®
43 56
(8)e— — DT Bsl ©
] \ Yoz \' b INE 2
A %m veed [ Vo]

Fig. 2.11 Mutually Coupled Transmission Lines
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In Fig. 2.11 each coil is a 3 X 3 compound coil and all

voltages and currents are 3 X 1 vectors.

The coupled series elements represent the electromagnetic

coupling while the coupled shunt elements represent the capacitive

or electrostatic coupling.

These coupled parameters are lumped in

a similar way to the standard line parameters discussed in section

2.5,

With the admittances labelled as in Fig. 2.1l and applying the

rules of linear transformation for compound coils (see Appendix 2)

the admittance matrix for the subsystem is defined as follows:

Ta Y1 T Y33 | Y32 T Y3y Yy1 REY Va
I T syt + —yT - \
B V1o T ¥34 | Y92 T Yoy Y12 Y92 B
- +
Ic Y11 Y15 Y113 * Y55 | Y15 * Ysg Ve
: T T T
- - + +
Iy Y12 Y22 Y19 " Y56 | Yoo ¥ Ygge b
12 x 1 12 x 12 12 x 1
(2.21)
It is assumed here that the mutual coupling is bilateral.

Therefore Y51 =

T
Y12

etc.

The subsystém may be redrawn as Fig. 2.12. The pairs of

coupled 3 x 3 compound coils afe now represented as a 6 X 6 compound

coil.

The matrix representation is also shown.

Following this

representation and the labelling of the admittance blocks in the

figure, the admittance matrix may be written in terms of the 6 X 6

compound coils as,
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L
2 Yu Y2
e ®
' Yig' | Yaa A
66

Va Y33 |Yas Y55 | Yse [VC
VE = E{SI] % E%ggj V5
éx1. Yag' Y4 [Ex6 Y56 [Yee |6X6 | £y

(i) 6 x 6 matri# representation

(id) 6 x 6 compound coil representation

Fig. 2.12 6 x 6 Compound Coil Representation of Two Coupled

Three Phase Lines —_—
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& B
[z 1= + [y .1 -[z 171
I s sl s v
S = — (2.22)
T AV
© -lz17 [z_171 + [v_,] ©
T s S s2 v
el - L DJ
12 x 1 ) . 12 x 12 12 x 1

This is identical to equation 2.21 with the appropriate matrix
partitioning.

The representation of Fig. 2.12 is more concise and the format-
ion of equation 2.22 from this representation is straight forward,
being exactly similar to that which results from the use of 3 x 3
compound coils for the normal single three phase line as discussed
in section 2.5.

The data which must be input to the programme, to enable
coupled lines to be treated in a similar manner to single lines,
is the series impedance and shunt admittance matrices. These
matrices are of oraer 3 x 3 for a single line, 6 % 6 for two coupled
lines, 9 X 9 for three and 12 x 12 for four coupled lines.

Once the matrices [Zs] and [YS] are available, the admittance
matrix for the subsystem is formed by application of equation 2.22.

When all the busbars of the coupled lines are distinct, the
subsystem may be combined directly into the system admittance matrix.
However, if the busbars are not distinct then the admittance matrix
as derived from equation 2.22 must be modified. This is considered

in the following section.
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2.8.2 Consideration of Terminal Connections

The admittance matrix as derived above must be reduced if
there are different elements in the subsystem connected to the
same busbar. As an example consider two parallel transmission

lines illustrated in Fig. 2.13:

I I '
BUSBAR(A) _ A1 Bl _ BUSBAR
Al Bl
Iaa Iga
A2 : B2
Ffig. 2.13 Mutually coupled parallel transmission lines

The admittance matrix derived previously, related the
currents and voltages at the four busbars Al, A2, Bl and B2. This

relationship is given by:

Ta1 Va1

I : A\

R _lry A2 (2.23)
1 AlA2B1B2 v

B1 Bl

Ig2 Y

The nodal injected current at busbar A,(IA), is given by

similarly
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Also from inspection of Fig. 2.13

The required matrix equation relates the nodal injected

currents, IA and I to the voltages at these busbars. This is

BI
readily derived from equation 2.23 and the conditions specified
above. This is simply a matter of adding appropriate rows and

columns and yields,

IA j VA
— - [YAB-J - (2.24)
B B

This matrix [?Aé] is the required nodal admittance matrix for
the subsystemn.

It should be noted that the matrix in equation 2.23 must be
stored in full as it is required in the calculation of the

individual line power flows (after the solution of the load flow).

2.9 LINE SECTIONALISATICN
A line may be aiviaed into sectioné to account for features
such as the following:
= Transposition of line conductoxrs.
-~ Change of type of supporting towers.
= Variation of soil permittivity.
- Improvement of line representation. tSeries of two
or more equivalent 7 networks.)

= Series capacitors for line compensation.
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= Lumping of series elements not central to a particular

study.

An example of a line divided into a number of sections is

shown in Fig. 2.14.

Seclion 4 Section 6

BUS A P P2 P3 L P4 Psl P6 BUS B
Section! Section! Section | 1! Section ! 1!section
.2 13 1 5 A
| | Py, I
l | " )
:y<><f ' 1¢
| Y
| i¢ ' L—]
A .
TRANSPOSITION SERIES CAPACITORS
abc CHANGE OF SHUNT abe
PHASES CONF|GURATION REACTORS =
Fig., 2.14 Transmission line sectionalisation

" The network of Fig. 2.14 is considered to form a single
subsystem. The resultant admittance matrix between bus A and bus
B may be derived.by finding, for each section, the ABCD or trans-
mission parameters, then combining these by matrix multiplication to
give the resultant transmission parameters. These are then converted
to the required admittance parameters.

This procedure invélves an extension of the usual two port
network theory to multi=-two-por‘t networks. Currents and voltages
are now matrix quantities and are defined in Fig., 2.15. The ABCD
matrix parameters for the common sections are given in Table 2.2

The dimensions of the parameter matrices correspond to those. of
the section being considered, i.e. 3, 6, 9 or 12 for 1, 2, 3 or

4 mutually coupled three phase elements respectively. All sections
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Fig. 2.15

Two Port Network Transmission Parameters
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must contain the same number of mutually coupled three phase
elements, ensuring that all thé parameter matrices are of the same
order and that the matrix multiplications are executable. To
illustrate this feature, consider the example of Fig. 2.16. This
example shows the need to consider uncoupled elements as coupled
ones with zero coupling to ensure correct dimensions for all
matrices.

TABIE 2.2

ABCD PARAMETER MATRICES FOR THE COMMON SECTION TYPES

[u] + [2][¥]/2 -[z]
[vl{[ul + [2][¥1/4} ~{[ul+iv1[z]1/2}

Transmission Line

'[Yspl_l[yss] [YSP]_I
Transformer 1 1
[YPS]-[YPP][YSP] [YSS] [YPP][YSP3
[ul fo]
Shunt Element
[YSH] ~[ul
[l ~[y 1!
Series Element
[o] =[u]

In the table [u] is the unit matrix, [0] is a matrix of zeros, and

all other matrices have been defined in their respective sections.
It should be noted that all the above matrices have dimensions

corresponding to the number of coupled three phase elements in the

section.
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Fig., 2.16 Sample system to illustrate line sectionalisation

Features of interest:

(a) As a matter of programming convenience an ideal transformer is
created and included in section 1.

(b) The dotted cdupling répresents coupling which is zero. It is
included to ensure correct dimensionality of all matrices.

{c¢) In the p.u. system the mutual coupling between the 220 kV and
66 kV lines is expressed to a voltage base given by (7) the
geometric mean of the base line-neutral voltages of the two
parallel circuits.

Bus B
/

220kY : —
220/66 KV

BusA __GD

220/6G kv

GG kY
Bus.C

(1) System Single Line Diagram

220/7.20! | 53 0/66 1
e !
@ | { \ (D ,
BUSA ? ] \ l |
220 kY s \I i
D |
220/66 : | 7
! | Bus C
l

Sectiocn Nl] Section N°3 |

—
4

ii) System redrawn to illustrate line sectionalisation.
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Once the resultant ABCD parameters have been found the
equivalent nodal admittance matrix for the subsystem can be

calculated from equation 2.25.

[p] [B]-! [c] = [p] [B1-! [a]

[v] = (2.25)-
81~ - [B]7! [a]

2.10 FORMING THE SYSTEM ADMITTANCE MATRIX

7 It has beén shown that the element (and subsystem) admittance
matrices can be derived and manipulated efficiently if the. three
nodes at a busbar are associated together. This association proves
equally helpful when forming the admittance matrix for the total
system.

The subsystem, as defined in section 2.3, may have common
busbars with other subsystems, but may not have mutual coupling
terms to the branches of other subsystems. Therefore the subsystem
admittance matrices can be combined to form the overall system

admittance matrix as follows:

(a) The self admittance}of any busbar is the sum of all the
individual self-admittance matrices at that busbar.

(b) The mutual admittance between any two busbars is the
sum of the individual mutual admittance matrices from

all the subsystems containing those two nodes.

2.11 CONCLUSION TO CHAPTER 2

This chapter has described the nature of three phase system
modelling in phase co-ordinates with emphasis on the essential
features which must be present in the input routine for any three

phase load flow analysis.
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In contrast to single phase load flow investigations the
complexity of three phase systém modelling requires the load flow
programmer to devote a comparable effort on the formulation of
the system model as on the solution routine itself.

Methods have been presented to enable the various system
elements to be modelled in as much detail as the purpose of the

study demands.
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CHAPTER 3

BASIC NEWTON-RAPHSON SOLUTION METHOD

3.1 PROBLEM FO?MULATION

The Newton-Raphson method is a general mathematical technique
which enables the.solutioﬁ of a set of simultaneous algebraic
equations.

To apply the technique it is necessary to formulate n
independent algebraic equations, F , in terms of the n variables,
%, which describe the system. The solution of the problem is the
vector x for which the constraint equations F are all satisfied.

For any physical system the minimum number of variables
required to define the state of the system is the number of
independent variables. For a.c. load flow problems this minimum set
is invariably used. However, for combined a.c¢. and d.c. load flows
it is often more convenient to use an enlarged set of variables.

Once the equations have been formulated as,
"F(x) =0 (3.1)

the Newton=Raphson process may be applied.

3.2 NEWTON=-RAPHSON SOLUTION METHOD

The Newton-Raphson method is an iterative procedure which
enables the vector (§), which satisfies equation 3.1, to’'be found.
The method is presented here with reference to a single,equation and

single variable. The problem is to find x such that,

f(x) =0 . (3.2)
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Let ¥ be an approximation to the solution, with an exror

Axp from the solution, at any iteration p(17)m Then,
£(x + AxE) = 0 (3.3)
Expanding (3.3) by Taylor's Theorem(ls) yields,
£ + &) = 0
= £(F) + (Af)l £(x7) + (Aﬁ))z £(:55) +...

(3.4)

If the estimate ¥ is near the solution value, AP will be
small and all terms where AP is raised to a power greater than 1

(19)

may be neglected . Hence,

£xF) + 0% . £(F) = 0 (3.5)

or
pP = - f(fp) (3.6)
f(xp)
A new value for the variable is then obtained from
+
BT L P AP (3.7)
Equation (3.7) may be written as
Leb o 7
£F(xF) = -J AxF (3.8)

The method is readily extended to a set of N equations in N
unknowns. J becomes the square jacobian matrix of first order
partial differentials of the functions F(X). Elements of [J] are

defined by,
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3
8

km Ix (3.9)

g

The jaccbian represents the slopes of the tangent hyperplanes

which approximate the function F(x) at each iteration point(zo),

In
the multivariable‘case the method involves the selection of estimates

for all variables (}-;p) and then evaluation of,
F[x"]
followed by solution of,

[a°] = - [31°) F[¥]

for AX®. A new and hopefully better estimate of the solution

vector is then obtained from,
=1 + = -
A O g I

The process continues until the equations F can be considered to
be solved.

A large number of derivations from the basic method have
been applied to the particular problem of load flow analysis and
many of these methods have proved more successful than the
general technique déscribed here. However, these methods use the
same problem formulation as thé standard Newton-Raphson method and

are, in general, derived from the equations presented above.

3.3 CONVERGENCE PROPERTIES
The Newton~Raphson algorithm will converge if; the functions
have continuous first derivatives in the neighbourhood of the

(21)

solution , the Jacobian matrix is non-singular, and the initial
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approximations of x are close to the actual solutions. However
the method is sensitive to the behaviours of the functions F[x)

. ) . (20) 5
and hence to their formulation . The more linear they are, the
more rapidly and reliably Newton's method converges. Non-smoothness,
i.e. humps, in any one of the functions in the region of interest,

can cause convergence delays, total failure or misdirection to a

non-useful solution.
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CHAPTER 4

THREE PHASE FAST DECOUPLED IOAD FLOW

FOR A.C. SYSTEMS.

4.1 INTRODUCTION

With the inc?easing use of long untransposed high voltage
transﬁission lines there has been a corresponding increased interest
in the analysis of power system unbalance. Early techniques(zz-zs)
for analysing the unbalance were restricted to the case of.isolated
unbalanced lines operating from known texrminal conditions. 1In
order to investigate the unbalanced operation of an interconnected
system, including the influence of any significant load ﬁnbalance,

it is necessary to perform a three phase load flow analysis(8'26’27'282

The storage and computational requirements of a three phase
load flow analysis are greater than those of the corresponding
single phase case. The need for efficient algorithms is therefore
significant even 1~;hough, in contrast to single phase analysis, the
three phase load flow is likely to remain a planning, and not an
operational, exercise.

20)

Of the numerous load flow technigues which have been proposed( ’

(29)

the general Newton-Raphson algorithm ;, combined with efficient
programming techniques has proved the most successful.

This method has been improved by the application of 'decoupling'

(30,31,32) (30)

techniques The fast decoupled Newton—Raphson algorithm

is now widely accepted as the best general load flow method available
and is currently being applied to many associated power system

problems(33)u
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A review of the single phase load flow problem and the
application of the Newton-Raphson technigue to its solution, is
presented in Appendix 4. Also in the Appendix, the single phase

fast decoupled algorithm, as developed by Stott(BO)

; is derived from
the Newton-Raphson formulation. This derivation forms the basis
upon which the three phase fast decoupled algorithm is developed.

The formulation of the three phase load flow problem is signif-
icantly different to the single phase case. Three phase line and
trans former models are more comblex than the single phase ones.
Moreover, the three phase load flow includes detailed representation
of the generators as théy have considerable influence on tﬁe
system unbalance. The inclusion of the generators creates a need
to depart from the usual load flow specification of busbar types.
It is therefore necessary to examine the formulation of the load
flow'problem in some detail. |

A basic belief which influenced the derivation of the three
phase load flow algorithm was that as single phase and three phase
load flows are solving the same physical system, the three phase
representation simply being more détailed, then the behaviour of the
algorithms adopted for a solution of the system equations should be
basically similar in both cases. This has been reinforced by the
results obtained.

This chapter describes thé formulation of the three phase
load flow problem and the derivation of a fast decoupled algorithm
for its solution. The convergence properties are investigated and
compared with those of the single phase glgorithm, A concise

(3)

summary of this chapter is contained in a paper published in the

I.E.E. and reproduced in Appendix 5.
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4.2 NOTATION

To enable three phase vecfor and matrix elements to be clearly
and unambiguously identified a system of superscripts and subsgripts
is required. Three phase system notation is complex and clearly
defined bus numbering and scripting is essential for the mathematical
statement of the load flow problem and for the subsequent development
of a solution technique.

The a.c. system is cénsidered to have a total of n busbars
where;

n = nb + ng
and nb is the number of actual system busbars

ng is the number of synchronous machines.

Subscripts i,j etc refer to system busbars as shown in the

following examples:

i=1, nb identifies all actual system busbars.
ie. all load busbars and all generator

terminal busbars.

i=nb+ 1, nb + ng - 1 identifies all generator
internal busbars with the exception of

the slack machine.

nb + ng identifies the internal busbar at the

I.J-
i

slack machine.

In addition the following subscripts are used as an aid to
clarity;
reg - refers to a voltage regulator
int = refers to an internal busbar at‘a generator

gen - refers to a generator.
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Superscripts p,m identify the three phases at a particular busbar.

4.3 FORMULATION OF THE THREE PHASE LOAD FLOW PROBLEM

The obiject of the three phase load flow is to find the state
of the three phase power system under the specified conditions of
load, generation and system configuration.

The set of Variables‘required to define the operation of the
three phase system is similar to that which is required for the
usual single phase load flow with the exception of the variables
associated with the description of the generator busbars. A
polar co-ordinate representation is used throughout this dévelop-
ment.,

The generator model, as discussed in section 2.4, includes a
balanced set of internal (excita£ion) voltages acting behind the

synchronous impedances. The voltage regulator controls the

magnitude of the internal voltages according to some function of the
three terminal voltages. In addition, the total real power output
from each generator will be specified although the distribution
amongst the three phases will not be known.

The following variables form a minimum and sufficient set to
define the operating state of the three phase system under steady

state operation:

- The slack generator internal busbar voltage magnitude

where j = nb + ng. (The angle ein ., 1s taken as a

Vine 5 t 3

reference.)

= The internal busbar voltage magnitudes Vi and angles

nt j -
eintj at all other generators. ie Jj=nb+1l, nb+ng-1

- The three voltage magnitudes (Vip) and angles (eip) at every
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load busbar in the system ie., i = l,nb and p = 1,3.

Only two variables are associated with each generator
internal busbar as all three phase voltages are balanced and
symmetrical. There is no justification for retaining the
redundant voltageé and angles as variables for the solution of
the load flow. However, for ease of programming thése are retained
as variables for the calculation of the real and reactive power
mismatches.

A knowledge of all the variables listed above completely
defines the steady state operation of the threebphase system. In
order to solve for these state variables using a Newton—-Raphson
based technique it is necessary to formulate a similar number of
independent equations. These equations are derived from the
specified operating conditions, ie. from apriori knowledge about the
system operation.

The specified three phase system conditions may be summarised
as:

(1) The inaividual phase real and reactive power loading

at every system busbar.

(ii) The voltage regulator specification for every

synchronous machine.

(iii) The total real power generation of each synchronous

machine, with the exception of the slack machine.

The usual load flow specification of a slack machine is

applicable to the three phase load flow.
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4.,3.1 Derivation of Equations

The three phase system behaviour is described by,
[x] - [¥]lvl =0 (4.1)

where the system admittance matrix [Y], as developed in chapter 2,
represents each phase independently and models all inductive and
capacitive mutual. couplings between phases and between circuits.
The mathematical statement of the specified conditions

is derived in terms of the systém admittance matrix
- [Y] = [6]l + j[B]

as follows;
(i) For each of the three phases (p) at every load and

generator texminal busbar (i),

AP, = (p,F)ySP - p P
i i i
P, sp p v 2 m pm pm
= (7)) " - v, Y ) Vi [Gik cos 67,
k=1 m=1
pm pm
+ B,y sin eik] (4.2)
and
P _ p,sp _ P
AQi (Qi ) Qi
p,sp p ? % m b pm
Q5 ) 5 =V v, [G, sin 6,
i i kel mel k ik ik
_ . pm pm
Bik cos eik ] (4.3)

where, when k refers to a generator internal busbar,

k k k - Vintk
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(ii) For every generator J,
(w__ ). =£v,", v%, V") (4.4)

where k is the bus number of the jth generator's

terminal busbar.

(iii) For every generator j, with the exception of the

slack machine, ie. j # nb + ng

(ap_ ). =(_ Py @ ),
gen ] gen J gen J
= (p_°5PF)
gen °j
3 n 3
- z (Vint)' Z Vkm [G.]Izm cos e_im +
=1 J k=1 n=1 ] J

pm . pm
Bjk sin ejk ] (4.5)

where, although the summation for k is over all system

busbars, the mutual terms ij and B,, are non zero

jk

only when k is the texminal busbar of the jth generator.

It should be noted that the real pdwer which is specified for

the generator is taken as the total real power which is leaving the

generator internal or excitation busbar. In actual practice

the specified quantity is the power leaving the terminal busbar. - In

effect, the real power losses are ignored.

The real power losses in the generators or synchronous
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compensators are small and they have an insignificant- influence

on the system operation. If ﬁhe losses are of particular interest
they may be calculated from the sequence impedances after the
solution of the unbalanced load flow when all generatox sequence
currents are known.

The reason for writing the mismatch at the intermal busbar
is primarily one pf conceptual simplicity and programming convenience.
Any other method requires'the real power mismatch to be written
at busbars remote from the variable in question, that is, the
angle at the internal busbar. In addition, inspection of equations
(4.2) and (4.5) will show that the equations are identical except
for the summation over the three phases at the generator internal
busbar.

That is, the generator powef mismatches may be calculated in
exactly the same way and by the same subroutines as are used for
the power mismatches at other system busbars. This is possible as
the generator is the only element connected to each internal busbar.
Inspection of the jacobian submatrices derived later will show that
this feature is retained throughout the study. In terms of
programming, ‘the generators present no additional complexity.
Equations (4.2) to (4.5) form the mathematical formulation of the
three phase load flow as a set of independent algebraic equations
in terms of the system variables.

The solution to the load flow problem is the set of variables
which, upon substitution, make the left hand side mismatches in

equations (4.2) to (4.5) equal to zero.
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4.4. FAST DECOUPLED THREE PHASE ILOAD FLOW ALGORITHM

The standard Newton-Raphson algorithm (chapter 3) may be
applied to enable solution of equations (4.2) to (4.5). This

involves successive solutions of;

PN p— — e I

AP A E I M Y:
AP B F J N A8, 4
gen - . (4.6)
AQ C G X P AV /Y
i Avreg | &D H L Rg- AV, Y -

for the right hand side vector of variable updates. The right
hand side matrix is the usual jacobian matrix of first order partial
derivatives.

Following decoupled single éhase load flow practice (Appendix 4)
the effects of AO on reactiﬁe power flows and AV on real power flows
are, ignored. Equation (4.6) may therxefore be simplified by

assigning,

[z] = [M] = [3] = [w]

]
o

and [c] = [c]

]
o

In addition, the voltage regulator specification is assumed to be

in terms of the terﬁinal voltage magnitudes only and therefore,
[p] = [l =0

Equation (4.6) may be written in the decoupled form as;

p Ap™
AP _ A B k

i
B T (4.7)

AP .
gen j AeJ'_:n“i: 2
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for ik = 1,nb and 3j,L = 1, ng = 1 (ie excluding the slack generator),

and
AQI; K P Avi
= (4.8)
AVreq 3 L R® Avint L /Vint 2

for i,k = 1,nb and 3j,% 1, ng (ie, including the slack generator) .

4.4.1 Jacobian Submatrices

To enable further development of the algorithm it is necessary
to consider the jacobian submatrices in more detail.
In deriving these jacobians from equations (4.2) to (4.5) it

must be remembered that,

1 2 3
Vo =V V2 T Vines

1 2 27 3 2T
O =8 3 =8 FF T %k

when 2 refers to a generator internal busbar. The coefficients

of matrix equation (4.7) are;

pmy p m
- [Aik] = [3 AP, ~/3 ek]

where
pm m pm . pm _ _pm pm
ape = vy v [efl sin 670 - BY cos 7]
except
2
i min m m
M =7 Bg () -9
m m
- = 9
/ [Bjk] [5 APgen j/a k]

i
i 1w

m mo, Pm __ rm pm
oA vintj Vi [GI;]{ sin ij Bjk cos ij]



== |p = P
[Eiﬂ,] [o P:i_ ‘/3 eint% ]
= 1 Vi Vy L6, sin 6y, - B
=1
- [?jll = [d Pgenj/a eintXL]

where [Fj .

gz

pm

pm
ig o8 5,1

1= 0 for all j # & because the jth generator

has no connection with the JLth generator's internal busbarx.

: 3 \ 2
and [Pl = le (‘ 5o (Vintsz> - Qﬁ)

3 3
+ ) ) W

m=1 p=1
m#p

int & e

The coefficients of matrix equation (4.8) are;

_ [ePmy o m p m
[Kik] Vi [3 8Q. % /9 Vk]
whexre
pm m _p mo pm pm
K = i X X - .
ik A Vl [GL:k sin Slk Blk cosf
except
2
mm mm ,_m m
Nae =7 B )+ &
m m m
- [ij] = V) [3 Avregj /9 Vk]
let
m m m 1
[ij] =V, [ij]

where k is the teyxminal busbar of the jth generatox

LH.1 =0 otherwise.

ik

D = i
[P0 ) = Vineq [0 800/V ]

2 m pm _ _pm pm
) [G}';“Q sin @ BY " cos GM‘]

22

Pm]

ik
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3
= pm Pm _ _pm pm
= Vint 2 -mzl vy [6fy sin 6fy - By cos 07}
- [le] = [3 AVreg‘ 3 /avint L ]

0 for all j,%2 as the voltage regulator
specification does not explicitly

include the variables V,
int

Although the above expressions appear complex, their meaning and

derivation are similar to the usual single phase jacobian elements.

4.4.2 Jacobian Approximations

Approximations similar to those applied to the single phase

load flow are applicable to the jacobian elements as follows;
(1) at all nodes (ie all phases of all busbars)
R ™
Qk kk 'k
(ii) between connected nodes of the same phase,

cos ‘SI.“m ~ 1 ie er.“m is small
ik ik
and

omo mm mm
<<
Gik sin eik Bik
(iii) An additional assumption which is applicable to the

three phase system is that the phase angle unbalance

at any busbar will be small and hence;

oP™

o
aa i
Kk 1207 for p #m

(iv) As a consequence of approximation (ii) and (iii)

the angle between different phases of connected
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. o ¥,
busbars will be approximately 120 ie

Pl & 0° £

eik + 12 or p #Fm
or cos ng’w - 0.5

ik

I+

and sin ef‘“w 0.866

k

The final approximation (iv), which is necessary if the jacobians
are to be approximated to constants, is the least valid of those
listed as the cosine and sine vélues change rapidly with small
changes in angle around 120 degrees. This approximation p;obably
accounts for the relatively slow convergence of the unbalanée at a
busbar compared to the convergence of the average voltage magnitudes
and angles at the busbar.

It should be emphasised that these approximations apply to the
jacobian elements only, they do not prejudice the accuracy of the
soiution nor do they restrict the type of problemvwhich may be
attempted.

Applying approximations (i) to (iv) to the jacobians and

substituting into equations (4.7) and (4.8) yields,

Ap? 1 T [vP M vm-I § vE T v ] —Aem ]
i ['i Tik k] oy i ik Tint k
N
AP , v, ., MW v, .MV, A8,
gen j p=1 intj ik k]{m=l p=1 int j 32 lnt%} int %

(4.9)

* This assumption is modified for the * 30 phase shift inherent
in the star-delta connection of three phase transformers.
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m m] pm r g -
AQ?. [VPMPJ«: kj[z VPM 1nt5L7 AV
i ¥
reg j Vk (L] [o] av lntQ/V
‘ nt £
b el . - - .
(4.10)
me_ mo . pm _ _pm pm
where Mik = Gﬁk sin eik Bik cos eik
, mm
with ekk = 0
mm
eik = 0
pm=+ °
eik * 120 for p # m.

All terms in the matrix [M] are constant, being derived solely from
the system admiftance matrix.

Matrix [M] is the same as matrix [-B] except for the off-diagonal
terms which connect nodes of different phases. These are modified
by allowing for the nominal 120° angle and also including the
GEE sin GEE terms.. The similarity in structure of all jacobian
submatrices reduces the programming complexity which is a feature
of many three phase load flows. This uniformity has been achieved
primarily through the method of implementing the three phase
generator constraints.

The above derivation closely parallels the single phase fast
decoupled algorithm although this tends to become obscured by the
added complexity of the notation. At the present stage the jacobian
elements in equations (4.9) and (4.10) are identical except for |

those terms which involve the additional features of the generator

nodelling.
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Equations. (4.9) and (4.10) are then modified as follows:

(i) The left hand side defining functions are redefined as =

P i D
[APi/VP], [AP /vintj] and [AQi/VI;].

gen j
These functions are more linear in terms of the voltage
magnitude [v] than are the functions [AP] and.[Aél. in
both the Newton-Raphson and related constant jacobian
methoés, the ieliability and convergence rate is

(34)

improved with morxe linearity in the defining functions .

(id) In equation (4.9) the remaining right hand side V terms

are set to 1 p.u.

(iii) 1In equation (4.10), the remaining right hand side V
terms are cancelled by the corresponding texrms in the
right hand side vector.

This yields,

. R e 3 [ —— -
P pm m P
bPL/VY O A%
=),
| (L 11
AP . /V, . . . AB,
| L_ gen j J.nt Jﬁ L§= jk p=1 m=1 jJL— L int 52,_
[B'] (4.11)
B p 1 m 3 il R
bQE /Y we Loy AV
m=1
m 1]
Avreg 3 | [ij] 0 Avint %

[B"] , (4.12)
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Recalling that [L?k] = 3AV ., Jov

it is clear that if V is a
reg j k reg

simple function of the terminai voltages then [L'] will be a
constant matrix. For example, the voltage regulator may hold one
phase voltage constant (eg phase 1) or it may monitor the phase
to phase voltage at the terminal. In the first case the equation
is,

1
. =VP v =0
reqg j gen k

and in the second case

sp 1 2
= - +
Vregj Vgen Vk Vk

for the phase to phase voltage between phases 1 and 2. In éither
case, the partial derivatives with respect to Vz will be constants.
Therefore, both the jacobian matrices [B'] and [B"] in
equations (4.11) and (4.12) have been approximated to constants.
Zero diagonal elements in equation (4.12) result from the
ordering of the equations and variables. This feature causes no
problems if these diagonals are not used as pivots until the rest of
the matrix has beeﬁ factorised (by which time, £ill in terms will
have occurred on the diagonal). There is a minor loss of efficiency
as a result of inhibiting the optimal oxrdering for the complete
matrix. This could be avoided by a reordering of the equations,
however, this reordering is programmatically and conceptually

difficult and the extra complexity is not justified.

4.4.3 Final Jacobian Approximations

The use of equations (4.11) and (4.12) gave varied results.
Although only a small number of systems were tested it was clear

that the use of these equations was not satisfactory. Fortunately
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the same systems, under the assumption of balanced conditions, had
been investigated by Bodger(Bs) using a fast decoupled load flow

both with the standard algorithm(30)

and with various single [B]
matrix versions. The single [B] matrix version where [B"] is
effectively used for both jaccobians, gave very similar convergence
to the use of (4.11) and (4.12) for the three phase case. This
feature is not unexpected.as the algorithms are similar except

for the inclusion of the generator model. It was therefore decided
to modify the jacobians (4.11) and (4.12) based on the reasoning
of Stott and Alsac(301 which proved successful in the single phase
load flow.

The [B'] matrix is modified by omitting the representation
of those elements that predominantly effect MVAR flows. The
implementation of this general iﬁtention is not as obvious for the
three phase system representation. The line shunt capacitance
matrices as discussed in chapter 2, represent phase to phase as
well as phase to earth capacitance.

The capacitance matrix and the physical significance of the
values is shown in Fig. 4.1 for a single three phase line. For
capacitively coupled parallel lines the matrix will be 3n x 3n,
where n is the number of lines involved; the equivalent circuit
for the shunt capacitanée will be correspondingly altered.

From a consideration of the equivalent circuit it was decided
that the phase to earth capacitances solely affect MVAR conditions
while the phase to phase values affect MVAR and also MW conditions
to some extent. Therefore, the phase to earth capacitances only .
were removed in the formation of the [B‘j matrix.

Convergence was reliable but somewhat slow. The influence

of the shunt capacitance matrix on rzal power flows was therefore
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c { } b Jo— Caa.ncabnca;c

Cccucacmcbc —_ ::Cbbmcabmc’bc

T T T I T ITTTTTTT

(1) Physical Signifj_-dance of shunt Capacitances.

Caa |=Cabl|-Cac

-Cba|Cbb |-Cbc

—Ccal-Ceb|Ccc

(ii) Capacitance Matrix

Fig. 4.1 Shunt capacitance matrices



62

re—examined. The single phase modelling was used as an aid to this
re-examination.

In single phase load flows the shunt capacitance is the
positive sequence capacitance which is determined from both the
phase to phase and the phase to earth capacitances of the line.

It therefore appears that the entire shunt capacitance matrix
predominantly affects MVAR flows only. Thus, following single
phase fast decoupling praétice, it was decided to omit the
representation of the entire shunt capacitance matrix in the
formulation of [B']. The rate of real power convergence increased
and, as a result, the number of iterations to convergence was
approximately halved,

With capacitively coupled three phase lines the implementation
of this procedure requires further clarification as the interline
capacitance influences the positive segquence shunt capacitance.
However, the values of interline capacitances are small in
comparison with the self capacitance of the phases and investigat-
ions have shown that it does not make any noticeable difference
whether these values are included or not.

Off-nominal transformer taps are straightforward except it
should be noted that the effective tap of /3 introduced by the
star-delta transformer connection is interpreted as a nominal tap
and is therefore included when forming the [B'] matrix.

A further difficulty arises from the modelling of the star-g/
delta transformer connection. The equivalent circuit, illustrated
in Appendix 3, shows that large shunt admittances are effective;y
introduced into the system. Initially these were excluded from
[B'] as for a normal shunt element; divergence resulted in all

cases attempted. When they are included in [B'] excellent
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convergence results. The most appropriate explanation is that,
viewing the transformer as an élement, then, on nominal turxns ratio,
it does not affect MVAR conditions any more than MW conditions. |
The entire transformer model, must, therefore be included in both
[B'] and [B"].

With the modifications described above the two final algorithmic

equations may be concisely written,

Ap/v . A0
o )
= BM (4.13}
AP-gen/vint i Aeint
AQ/v AV
= _BM (4.14)
Av Av
reg int

The constant approximated Jacobians [B&] and [Bﬁ] correspond to
fixed approximated tangent slopes to the multidimensional surfaces
defined by the left hand side defining functions.

The equations (4.13) and (4.14) are then solved accoxrding to
the iteration sequence illustrated in Pig. 4.2. The solutions of
equations (4.13) and (4.14) are carried out using sparsity
techniques and near.optimal ordering, as embodied in Zollenkopf's
bifactorisation techniqué36'37ZThe sparsity storage is structured
in 3 X 3 matrix blocks, which are assumed to be full, to take full
advantage of the inherent block structure of the three phase
system matrices,

The jacobian matrices in equation (4.13) and (4.14) are

readily assembled from the system admittance matrix. Once assembled,
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they are factorised before the_iterationrsequence is initiated.
The solution of each equation within the iterative procedure is
relatively fast, consisting only of the forward reduction and
back substitution pfocesses.

The three phase fast decoupled algorithm enjoys all the
computational advantages of the single phase version when compared

to alternmative load flow algorithms.

4,4.4 Generator Models and the Fast Decoupled Algorithm

The derivation of the fast decoupled algorithm involves the
use of several assumptions to enable the jacobian matrices. to be
approximated to constants. The same assumptions have been applied
to the excitation busbars associated with the generator model as
are applied to the usual system busbars. The validity of the
assumptions regarding voltage magnitudes and the angles between
conpected busbars depends upon the machine loading and positive
sequence reactance. As discussed in section 2.4 this reactance may
be set to any value without altering the load flow solution and
a value may therefére be selected to give the best algorithmic
performanceu‘

When the actual value of positive sequence reactance is used
the angle across the generator and the magnitude of the excitation
voltage both become comparitively large under full load operation.
Angles in excess of forty five degrees and excitation voltages
greater than 2.0 p.u. are not uncommon. Despite this considerable
divergence from assumed conditions, convergence is surprisingly
good. The only convergence difficulties have occured at the slack
generator and then only when it is modelled with a high synchronous

reactance (1.5 p.u. on machine rating) and with greater than 70%
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full load power. Under these conditions the convergence becomes
slow and, on increased loading,ndivergence may occur. All other
system generators, under the same conditions, converge reliably
but somewhat slowly.

This deterioration in convergence rate may be avoided by the
simple practice of setting the generator positive sequence
reactance to a low value. The value is not critical and an
arbitrary value of 0.01 p;u. has been found satisfactory in all

cases.

4.4.5 Starting values

Starting values are assigned as the three phase parallel of

flat voltage and angle values as follows:

- All non-voltage controlled busbars are assigned 1 p.u.
ocn all phases.

- At generator terminal busbars all voltages are assigned
values according to the voltage regulator specification.

- All system busbar angles are assigned, 0, =120, +120 degrees
for the thrée phases respectively.

= The generator internal voltages and angles are calculated
from the specified real power and by assuming zero reactive
power. For the slack machine the real power is estimated
as the difference between total load and total generation

plus 8% of the total load to allow for losses.

For cases where convergence is excessively slow or difficult
it is possible to use the results of a single phase load flow to .
establish starting values. The values will, under normal steady
state unbalance, provide excellent estimates for all voltages and

angles including generator internal conditions which are calculated



from the single phase real and reactive power generations.

Moreover, as a three phasé iteration is more costly than a
single phase iteration, the overall cost of all studies will‘often'
be reduced by the use of single phase starting values. In practice
therefore it is recommended that a single phase load flow is used
for starting values for all cases.. Although not necessary this will
often provide more efficient overall convergence and it will also
enable the more obvious déta exrors to be detected at an early
stage.

For the purpose of investigating the load flow performance

flat voltage and angle values will be used throughout.

4.5 PERFORMANCE OF THE ALGORITHM

4.5.1 Introduction

Exhaustive testing of the three phase load flow algorithm with
a lérge number of practical systems is difficult owing to the
unavailability of reliable data. Instead, this section attempts
to identify and study those features which influence the convergence
with particular reference to several small to medium sized test
systems. Genéral conclusions are then inferred from these results.
Congiderable justification for this course of action is provided
by the fact that, under balanced conditions, the performance
of the three phase fast deeoupled load flow is virtually identical
to that of the standard single phase fast decoupled load flow.

The performance of the three phase algorithm, under both
balanced and unbalanced conditions, is examined in the following '
sections. Where applicable, comparisons are made with the

performance of the single phase fast decoupled algorithm.
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4.5,2 Performance under Balanced Conditions

A symmetrical three phase system, operating with balanced
loading, is accurately modelled by the positive sequence system
and either a three phase or a single phase load flow may be used.

Under these conditions it is possible to compare the three
phase and single phase fast decoupled algorithms.

For the three phase system all transmission lines are
represented by balanced full 3 x 3 matrices. All transformers are
modelled with balanced parametefs on all phases and all generators
are modelled by their phase parameter matrices as derived from
their sequence impedances.

The‘number of iterations to convergence for both the single
phase and three phase algorithms are given in table 4.1; The
algorithms behave identically. Features such as the transformer
connection and the negative and zero sequence generator impedances
have no effect on the convergence rate of the three phase system
under balanced conditions. This is not unexpected as, under these
conditions, only the positive sequence network has any power flow
and there is no coupling between sequence networks for the balanced
system. The negative and zero sequence information inherent in the
three phase model of the balanced system, has no influence on
system operation and this is reflected into the performance of

the algorithm.

4,5.3 Performance With Unbalanced Systems

The number of iterations to converge several three phase
systems, under realistic steady state unbalanced operation, are
given in Table 4.1. The convergence rate deteriorates as compared

with the balanced case and between six to eight iterations are



Table 4.1 Convergence Results.,
Numbex Single Typical
Case of phase Balanced three three phase

busbars load flow |- phase load flow unbalance

1 5 4,3 4,3 4,3 6,6
2 6 3,3 3,3 3,3 8,8
3 14 3,3 3,3 3,3 6,5
4 17 3,3 3,3 3,3 8,7
5 30 3,3 | 3,3 3,3 6,6

Convergence tolerande is 0.1 MW/MVAR.

The numerical results, (i,j) should be interpreted as follows:

i = refers to the number of real power - angle update

iterations

i = refers to the number of reactive power - voltage

update iterations.

69
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required. The cause of this deterioration is examined in this
section. /

The convergence patterns of real and reactive power mismatches
for a corresponding single phase and unbalanced three phase load
£low are compared in Figs 4.3 (a) and (b). The mismatches are in
p.u. (100 MVA base for single phase and 33.33 MVA base for three
phase) and are taken at the busbar which is the slowest to converge.

The initial convergence of the three phase mismatches is
very close to that of the singlé phase load flow. However as
the solution is approached the three phase convergence becomes
slower. It appears that, although the voltage and angle uﬁbalance
are introduced from the first iteration, they have only a secondary
effect on the convergence until the positive sequence power flows

are approaching convergence. That is, the positive sequence

~power flows, which predominate the actual system operation, also

predominate the initial convergence of the three phase load flow.

This feature is illustrated in Fig. 4.4 where the convergence
pattern of the three phase voltages is shown. The convergence
pattern of the positive sequence component of the unbalanced
voltages is also given as is the convergence patterxrn of the
voltage at the same busbar for the corresponding single phase load
flow. The positivelseqﬁence voltage of the three phase unbalanced
load flow has an almost identiéal convergence pattern to the
corréspondinq single phase fast decoupled load flow.

The final convergence of the system unbalance is somewhat
slow but is reliable.

The following features are peculiar to a three‘phase load flow

and their influence on convergence is of interest:
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(i) Three phase voltages
Voltage
(p.u.)
1.04 Three phase busbar
ot voltages
3
3 3
1.034 2
4 7 2 2 2
3
1.02 4
1001"
1 1 1 1
‘ ]
1.00 : I + + ¥ Iteration
1 2 3 4 5
(ii) Single phase and three phase positive sequence voltages
Voltage
(p.u.)
1.03
T single phase load flow
1.024 e —
‘ ,,f"p +ve sequence of three
7 phase voltages
- / 7
/
1.014 4
/4
1 7
1-00 ! : ' : ; Tteration
1 2 3 4 meera
Fig. 4.4 Voltage convergence patterns for three
phase and single phase load flows.
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I

Asymmetry of the system parameters.

Unbalance of the system loading.

The influence of the transformer connection.

Mutual coupling between parallel transmisgsion lines.

These features have been examined with reference to the small 6
bus test system illustrated in Fig. 4.5.

The system includes synchronous generators, three phase lines,
transformers and a section of four mutually coupled parallel three
phase lines. A description of tﬁe system and a set of case spec-
ifications are given in sections 6 and 7 of Appehdix 5, The
Appendix also discusses the modelling of synchronous compenéators
and the resulting system power flows with unbalanced system voltages.

The system illustrated in Fig. 4.5 is used here to investigate
the three phase system parameters which influence convergence.

The following cases have been examined:

(i) Balanced system with balanced loading and no mutual
coupling between parallel three phase lines.

(ii) As for‘case (i) but with balanced mutual coupling
iptroduced for all parallel three phase lines as
indicated in Fig. 4.5.

(iii) As for case (ii) but with unbalanced loading.

(iv) As for case (ii) but with system unbalance introduced
by line capacitance unbalance only.

{v) As for case (ii) but with system unbalance introduced
by line series impedance unbalance only.

(vi) Combined system capacitance and series impedance
unbalance with balanced loading.

(vii) BAs for case (vi) but with unbalanced loading.
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(viii) As for case (vii) but with Delta/Star—g for the

(ix)

Table 4.2

generatoyr transforﬁers.

As for case (viii) but with large unbalanced real
power loading at INV220.

As fo; case (viii) but with large unbalanced reactive

power loading at INV220.

Number of iterations to convergence for 6 bus

test system.

Convergence tolerance
Case (MW/MVAR)

10.0 1.0 0.1
i 2,1 2,2 3,3
ii 2,1 2,2 3,3
iii 2,1 6,5 10,10
iv 2,1 5,4 8,8
v 2,1 5,4 9,9
i 2,1 5,4 9,9
vii 2,1 4,3 10,9
viii | 2,1 | 3,3 8,7
ix 4,3 | 11,9 | 17,16
% 4,3 | 10,10 | 16,16
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The numbers of iterations to convergence, given in Table 4.2,
clearly indicates that system ﬁnbalance causes a deterioration in
convergence., Such deterioration is largely independent of the
source of the unbalance although it is dependent on the severity of
the unbalance.,

The degree of unbalance may be assessed from the seqguence
components of the busbar voltages, which are given in Table 4.3
for cases (vii), (viii) aﬁd (x) . The degrée of unbalance is
considerable in all cases, particularly in case (x) which is
included only to demonstrate the convergence properties of the
algorithm,

It is noteworthy that the initial convergence of the algorithm
is fast even in cases of extreme steady state unbalance. The
reliability of the algorithm is not prejudiced by significant
unbalance although convergence to small tolerances becomes slow.

The influence of the three phase transformer connection maybe
seen in the sequence voltages of cases (vii) and (viii). The
star-g/delta conneqtion provides no through path for zero sequence
currents and the zero sequence machine current is zero. This is
reflected in the zero sequence voltages at the ﬁachine terminal
voltages.

The sequence voltages also illustrate the position of angle
reference at the slack generator internal busbar. In addition it
may be seen that at all generator internal busbars the negative
and zero sequence voltages are zero reflecting the balanced and

symmetrical nature of the machine excitations.




" Table 4.3

Sequence Components of Busbar Voltages

Case (vii)
+ ve sequence | = ve sequence Zero sequence
Busbar
V1 o vy % Yo %
INV220 1,020 | =0.16 | 0.028 2.42 | 0.021 | -0.85
ROX220 1.037 | =0.13 | 0.028 2.37 } 0.025 | -1.13
MAN220 | 1.058 ;| ~0.09 | 0.015 1.84 | 0.014 | =0.77
MANO14 | 1.039 | =0.01 | 0.008 1.85 | 0,012 | =-0.76
TIW220 | 1.015 | -0.17 | 0.028 2.40 | 0.021 | -0.74
ROQXO11 | 1.055 | =0.03 | 0.019 2.39 | 0.019 | -1.12
MAN.&N | 1.056 0.03 | 0.0 = 0.0 -
ROX.GN | 1.066 0.0 0.0 - 0.0 -
Case (viii)
+ ve sequence | - ve sequence Ze¥XO sequence
Busbar
Vl el v2 62 Yo 60
INV220 | 1.034 0.36 | 0.023 =3.12 | 0.004 0.23
RQX220 | 1.049 0.40 | 0.023 3.04 { 0.005 | =0.80
MAN220 1.071 0.43 0.015 2.3%9 0.001 0.20
MANO14 | 1.050 | =0.01 | 0.006 2.93 1 0.0 -
TIW220 | 1.029 0.36 | 0.023 3.11 | 0.005 0.69
RQX011l | 1,064 | =-0.02 | 0.016 -2,.70 | 0.0 -
MAN.GN | 1.067 0.03 | 0.0 - 0.0 -
ROX .GN 1.074 0.0 0.0 - 0.0 -
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Case (x)

+ ve sequence - Ve sequence | zero sequence
Busbar

V1 1 V) % Yo %
INV220 | 1.011 | 0.37 | 0.100 | -2.69 | 0.083 | -2.62
ROX220 | 1.043 | 0.40 | 0.086 | -2.70 | 0.031 | -2.36
MAN220 | 1.065 | 0.44 | 0.058 | -2.65 | 0.017 | -2.50
MANO14 | 1.061 | -0.01 | 0.032 | -2.11 | 0.0 -
TIW220 | 1.007 | 0.36 | 0.098 | -2.68 | 0.080 | -2.59
RQXO1l | 1.081 | -0.02 | 0.060 | -2.16 | 0.0 -
MAN.GN | 1.086 | 0.03 | 0.0 - 0.0 -
ROX.GN | 1.096 | 0.0 | 0.0 - 0.0 -
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4,5.4 Conclusion On Algorithmic Performance

This section has investigéted the performance of the three
phase algorithm under various degrees of steady state unbalance.
It has been demonstrated that the algorithm behaves identically to
a standard single phase fast decoupled load flow when the three
phase system is symmetrical and has balanced loading. The
initial convergence pattern with unbalanced systems is very
similar to the sisgle phaée fast decoupled version, and, therefore,
the three phase algorithm possesses similar reliability as the
single phase algorithm.

Final convergence of the three phase algorithm is determined
by the degree of unbalance but does not depend upon the source
of that unbalance. In all practical cases of steady state
unbalanced system operation the convergence rate has been acceptable.

As the initial convergence is fast and reliable starting values
are, not critical and flat voltage and angle values have proved

adequate in all cases.
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CHAPTER 5

FAST DECOUPLED LOAD FILOW ALGORITHMS

FOR BALANCED A.C./D.C. SYSTEMS

5.1 INTRODUCTION

The relatively small number of h.v.d.c. transmission schemes
in existance has not encouraged sufficient development of a.c./d.c.
load flow programmes to ensure that the integration of the d.c.
equations is most efficient and reliable. Howevér, an inc:easing
interest in the potential application of h.v.d.c. schemes, both
point to point and multiterminal, has highlighted the need for
efficient incorporation of the d.c. system into modern load flow
techniques.

The computation;l efficiency and reliability of the fast de-
coupled a.c. load flow(3o) is well documented and programmes based
on this technique are being gradually adopted for general purpose
load flow studies.

The incorporation of the d.c. system models into the fast
decoupled load flow is therefore of considerable interest.

The aim of inclgding the d.c. system model into the load flow
analysis is to enable solution for the operating state of the combined
a.c., and d.c. systems under the specified conditions of load,
generation and d.c. system control strategy.

The formulation of suitable d.c. system models and the inte-
gration of the models into the fast decoupled load flow is discussed
in this chapter.

Two basic approaches have been used to integrate the d.c.

system model into a.c. load flows, ie sequential and unified approaches.
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The sequential approach (38,39)

, enables integration into‘
existing load flow programmes without significant modification or
restructuring of the a.c. solution technique. The a.c. and d.c.
equations are solved separately. For the a.c. iterations each
convertor is modelled simply by the equivalent real or reactive
power injection at the terminal busbar. The terminal busbar
voltages obtained_from the a.c. iteration are then used to solve
the d.c. equations and consequently, new power injections are
obtained. This process continues iteratively to convergence.
Alternatively, the more sophisticated unified methods(34'4o’4l'42)
give full recognition to the interdependence between a.c. and d.c.
system equations and simultaneously solve the complete set of
equations. i

In the absence of comparati&e studies the discussions on the
relative merits of the alternative techniques have been vague.

The aim of this chapter is to develop efficient unified and
sequential fast decoupled a.c./d.c. load flows which are suitable
for multiple and/or multiterminal d.c. systems. Sevéral variations

of the algorithms are described and a detailed assessment of the

relative merits presented.

5.2 FORMULATION OF THE SINGLE PHASE A.C./D.C. LOAD FLOW PROBLEM

The aim of the single phase a.c./d.c. load flow is to solve for
the state of the combined a.c. and d.c. systems, under the specified
conditions of load, generation and d.c. system control strategy.

The operating state of the combined power system is defined by:

- . T
[v, 6, x]
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where V is a vector of voltages at all a.c. system busbars

<D

is a vector of angles at all a.c. system busbars
(except one, which is assigned 0 = 0 ie. taken as
a reference)

x is a vector of d.c. variables.

The selection of V and 8 as a.c. system variables is straight-
forward and is well documented. However, the selection of d.c.
variables x is more complex and is discussed in depth in section
5.3.

To enable the use of a Ne&ton—Raphson based technique_it is
necessary to formulate a set of n independent algebraic equétions
in terms of the n variabies.

The equations which relate to the a.c. system variables are
derived from the specified a.c. system operating conditions. The
only modification to the usual real and reactive power mismatches

(Appendix 4) occurs with those equations derived from the specified

injected powers at the convertor terminal busbar. These equations

become:
P - =0 5.1
Pterm Pterm(ac) Pterm(dc) (5.1)
sSp
- - = 0 5.2
Qterm . Qterm(aC) Qterm(dc) ( )
where Pterm(aC) is the injected power at the terminal

busbar as a function of the a.c. system variables.

Pgerm(dc) is the injected power at the terminal busbar

as a function of the d.c. system variables

and similarly for Qterm(dc) and Qterm(ac)°
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The inj d P i
injected powers Qterm(dc) and term(dc) are functions of
the a.c. convertor source voltage (taken as the a.c. terminal busbar

voltage; see section 5.3.1 for basic assumptions) and of the d.c.

system variables, i.e.

i

Py (de) = £( ) (5.3)

\Y
te term,

Q (de) £(v X) (5.4)

term term’

]

The equations derived from the specified a.c. system conditions

may - therefore be summarised as:

= 0 (5.5)

where the mismatches at the convertor terminal busbars are indicated
separately.
A further set of independent equations is derived from the d.c.

system conditions. These are designated,

R(V %) =0 (5.6)

term’ 7'k

for k = 1, number of_convertors present.

It should be noted that the d.c. system equations (5.6) are
independent of the a.c. system angles 6. This is achieved by
using a separate angle reference for the d.c. system variables as
defined in Fig. 5.2. This mathematical contrivance has been found

to give improved algorithmic performance by effectively decoupling

the angle dependence of a.c. and d.a. systems.
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Equations 5.3, 5.4 and 5.6 mathematically model the steady

state operation of the d.c. sysﬁem. Their formulation is discussed

in section 5.3.

The general a.c./d.c. load flow problem may therefore be

summarised as the solution of:

AQ (v,0) = 0 (5.7)

for the variables \7,5 and x.

5.3 D.C. SYSTEM MODEL

The mathematical model of the d.c. system (equations 5.3, 5.4
and 5.6) is developed in this section. The formulation of the
equaéions and selection of variables x requires several basic

assumptions.

5.3.1 Basic Assumptions

The following assumptions are made in the formulation of the

d.c. convertor model:

(1) . The three‘a.c° voltages at the terminal busbar are
perfectly balanced énd perfectly sinusoidal.

(ii) The convertor operation is perfectly-balanced.

(iii) The direct current and voltage are smooth.

(iv) The convertor transformer is lossless and the magnetising
admittance may be ignored.

43)

These assumptions are generally accepted( for balanced steady
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state analysis of d.c. convertor operation and no further justificat-

ion will be given here.

5.3.2 Convertor Model

The assumptions listed enable each convertor in the d.c.
system to be modelled as shown in Fig. 5.1. The variables illustrat-
ed, representing every fundamental frequency or d.c. quantity,
fully describe the system operation.

An equivalent circuit for the convertor is shown in Fig. 5.2,
A trivial modification to the aﬁgles has been performed as regards
the position of angle reference.

The variables are defined with reference to Fig. 5.2,.as

follows:

Vterm Z@_ convertor terminal busbar nodal voltage
(phase angle referred to convertor
reference) .

E Z@L fundamental frequency component of the
voltage waveform at the convertor
transformer secondary.

I I fundamental frequency component of the

current waveshape on the primary and

- secondary respectively.

o firing delay angle.

a transformer off-nominal tap ratio.
vd average d.c. voltage.

Id convertor direct current.

These ten variables, nine associated with the convertor plus

the a.c. texminal voltage magnitude vterm' form a possible choice
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Fig. 5.1 Basic d.c. convertor (Angles referred to a.c.
system reference)
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Fig. 5.2 Single phase equivalent circuit for basic convertor.

(Angles referred to d.c. reference)



87

of x for the formulation of equations 5.3, 5.4 and 5.6.

For efficiency, the smallést number of variables, consistant
with the need for.convenient incorporation of a wide range of contfél
modes, should be used.

This clearly involves a compromise and the number of variables
used by different researchers has varied(39“4l)°

As mentioned in chapter 3 the minimum number of variables
required to define the opération of any system is the number of
independent variables. These cempletely define the operating state
of the system and any other system variable or parameter (eg'Pdc
and Qdc) may be written in texms of these variables.

A d.c. convertor, operating under balanced conditions, from a
known terminal voltage, has two independent variables. The use of
two variables yields a d.c. convertor model of the smallest
dimension. However, the control requirements of the d.c. convertors
are such that a range of variables, or functions of them (eg. constant
power), are the specified conditions. If the minimum number of
variables are used then the control specifications must be trans-
lated into equations in terms of these two variables. These equations
often contain complex non=-linearities, which are difficult to
derive and include in programme implementation. In addition, the

equations for P and Qac may be complex and this will make the

dc
programming of a unified solution more difficult.

For these reasons, a non minimal set of variables is used.
This is in contrast to a.c. load flows where,due to the restricted
nature of the control specifications, a minimum set is convenient.

Therefore all variables which are influenced by control action are

retained in the study.
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The following set of variables enable simple relationships

to be written for all control strategies.

= T
[x] = [Vd,Id,a, cos o, ¢}

Variable ¢ is included to ensure that a simple equation for
Qdc may be written. This is important in the formulation of a
unified solution method; for sequential methods this variable may
be omitted as it is not essential in the formulation of any control
specification. The variable co$ o is used rather than o as the
equations are more linear and this has a favourable influence on
convergence as discussed in chapter 3. Before developing the
equations it is necessary to discuss the per unit system, if any,

which should be used for the d.c. system.

5.3.2.1 D.C. Per Unit System

No per unit system is necessary to enable the modelling of
the d.c. system. For the d.c. system equations the p.u. a.c.
terminal voltage can be translated into kV. Aall d.c. equations
could then be wriﬁten in actual values. The injected powers
Pterm(dC) ané Qterm(dC) would simply be divided by the a.c. system
power base before inclusion in equations (5.1) and (5.2).

However, to avoid any per unit to actual value translations
and to enable comparable convergence tolerances to be obtained for
both a.c. and d.c. system mismatches, a per unit system is used
for the d.c. gquantities.

Computational simplicity is achieved by using common power
and voltage base parameters on both sides of the convertor ie.
a.c. and d.c. sides. To preserve constancy of power in per unit,

the direct current base, obtained from (MVAB)/VB, is V3 times
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larger than the a.c. current base.
This has the effect of changing the coefficients involved in
the a.c./d.c. current relationships. For a perfectly smooth

direct current and neglecting the commutation overlap, the r.m.s.

fundamental component of the phase current is related to Id by the
expression:
. /6 .
IS—-—_"—'. Id (5.8)

To improve the accuracy of this approximation a factor of
0.995 is often introduced. For clarity this minor addition will be
omitted from the equations presented here.

Translating equation 5.8 to per unit yields:

V6
Is(p.u.) == /5 . Id(p.u.)
: _ 32
ie. Is(p.u.) == Id(p.u.) (5.9)

5.3.2.2 Consideration of Series and Parallel Bridges

Under balanced conditibns similar convertor bridges attached
to the same a.c. terminal busbar will operate identically regardless
of the transformer connection. All such bridges may therefore
be replaced by an equivalent single bridge for the purpose of

single phase load fiow analysis.

5.3.2.3 Derivation of Equations

The following relationships may be derived for the variables

defined in Fig. 5.2. The equations are in p.u.

(i) The fundamental current magnitude on the secondary

of the convertor may be approximated to,
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I = == I (5.10)

(id) The fundamental current magnitude on the primary may
be found by referring the secondary current across the

lossless transformer,
I =a.lI (5.11)

(iii) The d.c. voltage may be expressed in terms of the
convertor source voltage* referred to the transformer

secondary as,

VvV, = EZZ-. a. v cos o = E—. I. . X (5.12)

d L term T d c
(iv) The d.c. current and voltage are related by the d.c.

system configuration,

f(Vd,Id) =0 (5.13)
eg.
Vd - Id o Rd =0
for a simple rectifier supplying a passive load.
(v) The assumptions listed previously ensure that there is

no real power in the harmonic frequencies at both the
primary and secondary busbars. Therefore the d.c.

feal power may be equated to the a.c. real power at the
transfo;mer secondary in terms of the fundamental

components alone, ie.
V., . I, =58 . Is . cos ¢ (5.14)

(vi) As the transformer is lossless a similar equation may
be written equating the primary real power to the d.c.

poweyr ie,

From the assumptions listed previously the source voltage is

simply the a.c. terminal busbar voltage vterm°
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Vd . Id = vterm . IP . cos ¢ (5.15)

(vii) The final independent equation may be written in terms
of the fundamental component of current flow across

the convertor transformer, ie.

. a . Vv sin ¢ (5.16)

=B . E . si - B
I sin ¥ rerm

t

where_jBt = Yt the transformer leakage admittance.

No other independent equations may be written relating the
total set of nine convertor variables. A total of seven equatiohs
have been derived.

The variables, Ip'Is'E and Y are not included as d.c.>convertor

variables x and these are eliminated from the equations to yield,

Vd - Kl . a . Vterm cos o + %-Id . Xc = 0 (5.17)

Vd - Kl e @ o Vte cos ¢ = 0 (5.18)

f(Vd,Id) = 0 (5.19)
where Kl = 3%2 .

The final two independent equations which are required are
derived from the specified control mode. Two equations are required
as the convertor has two degrees of freedom (ie. two independent
variables) which must be restrained in order to define an operating
state.

The d.c. model may thus be summarised as follows:
R(x,V, ), =0 (5.20)

where
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R(1l) = Vd - Kl . a . Vterm . COS ¢
R(2) =V, = K v cos o +-§ I X
T g 1% Yeemm 7 Td " T’
R(3) = f(vd’Id)
R(4) = Control equation
R(5) = Control equation
and
- T
x = [V_,,I_,a, cos a,]

a'"a

It should be noted that Vterm is either known, (i.e. specified)
or it is an a.c. system variable.

The equations for P and Qdc may be written as:

de

Qdc = Vterm . Ip ..8in ¢
= vterm . Kl . a . Id . 8in ¢ (5.21)
ang
PdC = Vterm . IP . cos ¢
= Vterm . Kl . a . Id . cos ¢ (5.22)
or
P, =V I (5.23)

Several simple equations for P may be written; the equation

de
may be chosen to give the most convenient algorithmic implementation.
The eqguation for Qdc is written as the fundamental reactive

power load of the convertor, the reactive power of the harmonics

is zero as perfect filtering has been assumed.

5,3.3 Clarification of an Anomaly in Previous D.C. Models

Several earlier d.c. models used by this author and others

(4.5,34,41,42) retained the variables E and Y in their formulation.
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This was necessaxy as the equation for d.c. voltage was written in
terms of E and not the convertor source voltage referred to

the secondary of the convertor transformer. These variables could
not, therefore, be conveniently removed. As a result the regulation
due to the commutation reactance was effectively included twice.

The form of the algorxithms is not significantly altered although

the accuracy of the solutions is affected.

5.3.4 Incorporation of Control Equations

Each convertor in the d.c. system provides two additional
independent variables to the system. Two further constraint
equations must therefore be derived from the control strategy
of the system to ensure a defined operating state. For example a
classical two-terminal d.c. link has two convertors and therefore
requires four control equations. The four equations must be
wri;ten in terms of the ten d.c. variables (five for each convertor).

Any function of the ten d.c. system variables is a valid
(mathematically) control equation so long as each equation is
independent of allvother equations. In practice there arxe
restrictions limiting the number of alternatives. Some control
strategies refer to the characteristics of power transmission
(eg. constant power or constant current), others introduce
constraints such as minimum delay or extinction angles.

Examples of valid control specifications are:

(i) Specified convertor transformer tap,

(ii) Specified d.c. voltage

- v P <
Ve~ Yy 0
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(iii) Specified d.c. current
-1 5P o
Id Id 0

(iv) Specified minimum firing angle,

cos O - cos o, =0
. min
(v) Specified d.c. power transmission
sp
Y I i e
Vd d Pdc 0

The control equations are simple and are easily incoxporated
into the solution algorithm. In addition to the usual control
modes, non standard modes such as specified convertor power factor
or specified a.c. terminal voltage may also be included as

convertor control equations (see section 5.5 ).

5.3.5 Invertoxr Operation

All the equations presented are equally applicable to invertor
opekation. However, during inversion it is the extinction advance
angle (y) which is the subject of control action and not the firing
angle (o). For convenience ;herefore equation R(2) may be rewritten

as:

(5.24)

This equation is valid for rectification or inversion. Under
inversion, Vd, as calculated by 5.24, will be negative.
To specify operation with constant extinction angle the following

equation is used:
s
cos{(m = y) - cos(m - Y P) = 0

sp | . - . .
where 7y is usually y minimum for minimum reactive power consumption

of the invertor.
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5.3.6 Convertor Control Strategies

During the iterative solution procedure the uncontrolled
convertor variables may go outside prespecified limits. When this
occurs the offendiﬁg variable is usually held to its' limit value
and an appropriate control variable is freed.(34)

Each time a control equation is altered a small discontinuity
occurs and convergence will usually be delayed for one or two
iterations.

This process is common to both the unified and sequential
techniéues. For the purposes of this chapter, which is to compare
the two techniques, the control strategy is a further and ﬁnneccessary
complication. For this reason the specified convertor controls
are appropriately selected to ensure that limit wviolations do not
occur.

It should be noted also that, upon final convergence the tap

ratio may need to be adjusted to the nearest discrete tap ratio

available. This reconvergence will usually be very fast.

5.4 SOLUTION TECHNIQUES

The aim of this section is to develop a solution procedure
‘for equation (5.7) which fully retains the computational advantages
of the fast decoupléd a;c. load flow method. The standard fast
decoupled a.c. load flow algorithm (Appendix 4) involves the iterat-
ive solution of the following equations in a block successive

iteration scheme./

]

[4B/V] = [B'1[48] (5.25)

[ag/v] = [B"][aV] (5.26)

where [B'] and [B"] are the constant approximated jacobian matrices.
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Any method of solution for equation (5.7), which involves
the fast decoupled algorithm, should possess all, or at least most,

of the following features:

(i) The jacobian matrices [B'] and [B"] must remain constant
and symmetrical for the a.c. network solution and must
be able to be factorised before the iterative solution
process.

(ii) The speed and reliability of the a.c. load flow algorithm
is, in part, due to‘the block successive iteration scheme
which is initiated with a real powef - angle update
iteration. Except with evidence to the contra?y this
practice should be retained.

(iii) The minimum modification to any existing fast decoupled

algorithm is a desirable feature.

(iv) The integration of the convertor equations should not
increase the number of solutions of (5.25) and (5.26)
that are required for convergence. The dimension of
these equations {(and hence their solution time) will,
in general, be many times greater than the dimension
of the d.c. equations. The number of solutions of the
d.c. equations is therefore of relatively minox

importance. i

These features provide an indication of the variations which
are worthy of investigation.

All methods are discussed with reference to a single convei;or
connected to an a.c. busbar. The extension to multiple or multi-
terminal d.c. systems is relatively trivial and is discussed in

section 5.7.



5.4,1 Unified Methods

97

The unified methods give recognition to the interdependence

of a.c. and d.c. system equations and simultaneously solve the

complete system.

investigated in this section.

Several variations of the unified technique are

The a.c./d.c. load flow problem, as formulated in (5.7), may

be written for a single convertor d.c. system, as:

[ ey

where the subscript term indicates the value at the convertor

terminal busbar.

Recalling that,

Pterm - Pigrm - Pterméac) - Pterm(dc)
AQterm - Qigrm - Qterm(ac) - Qterm(dC)
and,
Pterm(dc) - f(Vterm,;{)
Qterm(dc) - f(Vterm';d

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

the standard Newton-Raphson algorithm may be applied (see chapter 3).

Essentially, this method involves repeat solutions of,

[ 5 (V,8) 1T ] na‘é
Aptem({},,;:) : A8
AQ (V,8) = I AV
AQtem(G,S,E)

i ROV, _o%) 1L | mA;E

term

(5.32)
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where J is the matrix of first oxder partial derivatives.
Applying the usual a.c. fast decoupled assumptions to all

jacobian elements related to the a.c. system equations, yields:

AP /V Z/ V , AB
/ 7// ;/”
AP ernVeern - %/// PD | AT A% erm

BY, AA" AV
il term

AQ /v

texrm’ term

N

(5.33)

where all matrix elements are zero unless otherwise indicated.
The matrices [B'] and [B"] are exactly the usual single phase
fast decoupled jacobians. These matrices are constant in value.
The other matriceé indicated, vary at each iteration in the solution
process.

The only element of [B"] which becomes modified is indicated
as Bzi in equation (5.33). This element varies at each iteration
ie. it is a function of the system variables.

The advantage of an independent angle reference for the d.c.
equations is demonstrated in the eguation where it may be seen

that:

aPterm(d°c°)/aeterm = 0

ie. the diagonal jacobian element for the real power mismatch at the

convertor terminal busbar depends on the a.c. equations only and
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is therefore the usual fast decoupled B' element.

In addition,

dR/08, =0

which is an aid to the subsequent decoupling of the equation.

In order to maintain the block successive iteration sequence
of the usual fast decoupled a.c. load flow it is necessary to
decouple equatioﬁ (5.33). The jacobian submatrices must be
examined in more detail.

The jacobian submatrices are:

v BAPterm/avterm

1 , 1 [ N
Y Eptem(ac)/avten:-l * \Y BPterm(dc)/avterm
term term

b ]

~ =
1
=0 Ty BPte::‘rn(dc)/avterm
term [ ]
by the usual decoupled load flow practice.
[ 1 I -
AA' = AP /3%
\Y term
term |
= L T)P (ac) /3;:;] + L EP (dc)/B;:
“term \Y term
term L term .
=0 P— EP (dc) /9%
\Y texrm
term |
ann = —L [gn /3%
A\ Q'term
texrm |

Y SQtem(dc)/a§
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BB" = OR/BV__

[a]l = 3R/3%

T — [%A /ov ]

ii Y Qterm term
texrm

texrm term

1 ) : 1
Ty aQterm(ac)/avterm * A4 [}Qterm(dc)/avtex;]

= 1"t + B" :
Bii(ac) ii (de)
Now, taking
=V_ . I

Pterm(dc) a d
then,

aPterm(dc)/avterm =0
and therefore,

DD =0

The derivation to this point is common to the unified solution
methods which utilise the fast decoupled a.c. lcocad flow. These

methods are described in the following sections.

5.4.1.1 Unified Method 1

Without further assumptions the d.c. variables X are coupled
to both the real and reactive power a.c. mismatches. However,
equation (5.33) may be separated to enable a block successive

iteration scheme to be used. The following two equations result:
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APV AB
B ]
= ]
Pterm/vterm AR Aeterm (5.34)
R A Ax
BO/Y - AV
= " " .
80, Vo e By, | Aa v | (5.35)
R BB" | A A%

The a.c. mismatches and variables are appended to both the usual
fagt decoupled a.c. equations.

These equations are solved according to the iteration sequence
illustrated in Fig. 5.3. This iteration scheme is referred to
as = PDC, QDC = wherxe the significance of the mnemonic is clear.

The results for a number of test cases are given in section

5.4.1.2 Unified Method 2

The algorithm of method 1 may be further simplified by recognis-

ing the following characteristics of the a.c. and d.c. systems:

(1) The coupling between d.c. variables and the a.c.
terminal voltage is strong.
(ii) There is no coupling between d.c. mismatches and a.c.

system angles.
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I DATA TNPUT l

Triangulate B' and B"
Convertor busbars not used as pivots

Calculate AP (a.c. system only)
R

Calculate Ptgr_m (de) and d.c. residuals (R)

<] ver d
i)
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|

Forward reduction of Vector A%y l
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!
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!

Forward reduction of vector Aﬁ,/v
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0

|

Back substitute for AV

}
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Flow Chart for Unified Single Phase A.C./D.C. Load

Flow
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(1ii) Under all practical control strategies the d.c. power
is well constrained and this implies that the changes
in d.c. variables x do not greatly affect the real
power mismatches at the texminals. This coupling,
embodied in matrix AA' of equation (5.34) can therefore

be justifiably removed.

These features justify the removal of the d.c. equations from

equation (5.34) to yield the following two algorithmic eguations:

[aP/V] = [B'1[48] (5.36)

AQ/V . AV
o " " 5 o
AQterm/vterm Bii AR AVterm (5.37)
R BB" | A A%

The block successive iteration scheme = P,QDC - is used.

For the sclution of equation (5.36) the d.c. variables are
considered constant and the convertors are therefore modelled simply

as the appropriate real power load at the terminal busbars.

5.4.1.3 Programming Considerations for the Unified Algorithms

In order to retain the efficiency of the fast decoupled load
flow, the B' and B" matrices must be factorised only once, before

the iterative process begins.

The method of solving equations (5.34) and (5.35) is therefore



104

the key to the feasibility of any unified method utilising the
fast decoupled a.c. algorithm.

The jacobian elements related to the d.c. variables are non-
constant and must be re-evaluated at each iteration. It is therefore
necessary to separate the constant and non-constant parts of the
equations for the solution routine.

By manipulation of the factorisation process, Bodger(35)
developed a method to enable the constant and non-constant parts to
be factorised and processed sepérately. The constant part is
factorised only once, before the iteration process as in the usual
fast decoupled a.c. load flow. The method requires a triviél
modification to the existing a.c. load flow algorithm.

The technique is explained here with reference to a single d.c.
convertor. It is however, equally applicable for any numbe £
convertoxrs.

Initially, the a.c. fast decoupled equations are formed with
the d.c. link ignored (except for the minor addition of the filterxr

reactance at the appropriate a.c. busbar). The reactive power

mismatch equation for the a.c. system is:

Ags/v AV
. = | " | (5.38)
! A
Q term/vterm ‘ vterm
where AQ%erm = Qigrm - Qterm(ac) is the mismatch calculated in

the absence of the d.c. convertor

and [B"] is the usual constant a.c. fast decoupled jacobian.

After triangulation down to, but excluding the busbars to
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which d.c. convertors are attached, equation (5.39) results:

(Aa/;;) " Rive i AV

i

(5.39)

term Vterm id term

(AQ / " B, | AV

(AQ/V) " and (AQterm/vterm)" signify that the left hand side vector
has been processea. Matrix [B"'] is the matrix [B"] after triang-
ulation.

This triangulation (performed before the iterative process)
ﬁay be achieved simply by inhibiting the terminal busbars being
used as pivots during the optimal Qrdering process.

The processing of AQ indicated in the equation is actually
performed by the standard forward reduction process used at each
iteration.

The d.c. convertor equations may then be combined with equation

(5.39) as follows:

(0Q/V) " | 0 B 0 AV
AQterm " AQterm(dc) - o —— AR -
term vterm | ii Tii(dc) term
R | 0 BB" A A%
(5.40)

i = 1
where Bii(dc) Y [%Qterm(dc)/avteré]°
term

The unprocessed section, ie,
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AQ " AQ
term tem(dC) Bl!' +B" AAM AV
Vterm vterm ii Tii(de) term
R BB" a Ax

(5.41)
may then be solved by any method suitable for non-symmetric matrices.
The values of Ax and Avterm are obtained from this equation.
The value of Avterm is then used to enable the usual back substitution
process for the remaining AV to be completed, ie; equation (5.39)
is solved for AV. |

The most efficient method for solving equation (5.41) depends
on the number of convertors. For six convertors or more the use of
sparsity storage and solution techniques are justified; otherwise
all elements should be stored. Bodger(35) found that the best
metgod was a modified form of gaussian elimination where all elements
were stored but only non-zero elements processed.

it is importaht to note that the unified solution of equation
(5.34) or (5.35) is performed retaining all the computational
advantages ofythe constant and symmetric a.c. system jacobians
and that this is achieved with only minor modification to the a.c.
solution procedure. Matrix and vector elements are simply with-
drawn and replaced after ﬁhe standard forward reduction and back
substitution processes.

The only computational difference between a unified and a
comparable sequential iteration is that the d.c. jacobian equatioﬁ

(ie. 5.41 for the unified method) is slightly larger for the unified

method. The difference is one additional row and column for each
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convertor present. In terms of computational cost per iteration
the corresponding unified and sequential algorithms are virtually

identical.

5.4.2 Sequential Methods

The $equentiél methods are a further simplification of the
unified method 2. The a.c. system equations are solved with the
d.c. system modelled simply as a real or reactive power injection
at the appropriate terminal busbar. For a d.c. solution the a.c.
system is modelled simply as a constant voltage at the convertor
a.c. terminal busbar.

The following three equations are solved iteratively té

convergence.

[ap/v] = [B*]1[A6] ~ (5.42)
[aQ/v] = [B"]1[AV] ’ (5.43)
[Rl = (allax] (5.44)

The appeal of this method is its' simplicity. The a.c. load
flo& is not modified; a further iterative loop is simply added.

As mentioned in section 5.3.2 the variable ¢ may be removed
from x for the sequential solutions. The sequential approach has
been investigated with both ¢ included (5 variable model) and ¢
excluded (4 variable model).

Several iteration schemes have been investigated.

5.4.2.]1 Sequential Method 1

The iteration sequence is illustrated in the flow chart of

Fig. 5.4 and may be summarised as follows:

(i) Calculate AE/%, solve equation (5.42) and update 9,



Triangulate B' and B"
(A1l a.c. busbars)

Calculate AP (total system) and d.c. residuals B

Converged 12
' N0

Solve equation 5.42 and update (8) lP=1

P=Q=0

Calculate AQ (total system) and d.c. residuals R

YES

onverge
NO

Solve equation 5.43 and update (V)] | G=1

] P=G=0 |

SOLOTLON
OBTAINED

Calculate d.c. mismatches

Form d.c. Jacobian matrix

Solve equation 5.44 and update R

[ ]

Fig, 5.4 Flow Chart for Sequential Single Phase A.C./D.C.
Load Flow
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(iii)

{iv)
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Calculate A§/§, solve equation (5.43) and update v.
Calculate d.c. residuals, ﬁ, solve equation (5.44)

and update X.

Return to (i).

This sequence is referred to as P,Q,DC.

With reference to Fig. 5.4 the following features are noteworthy:

(i)

(i)

To enable the number of iterations required for corres-
ponding unified and.sequential algorithms to be compared
directly the convergence testing for the sequential
algorithm is identical to that used.in the unified

case.

The d.c. equations are continued to be solved until

both a.c. and d.c. systems have converged. This

ensures that the sequential technique is an exact

parallel of the corresponding unified algorithm,

These features are common to all the sequential algorithms

presented in this chapter. It should, however, be noted that an

advantage of the sequential method is that the d.c. equations need

not be solved for the entire iterative process. Once the d.c.

residuals have converged the d.c. system may be modelled simply as

fixed real and reactive power injections at the appropriate convertor

terminal busbar. The d.c. residuals must still be checked after

each a.c. iteration to ensure that the d.c. system remains converged.

However the computational cost of a d.c. iteration is, in any

practical situation, only a fraction of the cost of an a.c. iteration

and this advantage is therefore not considered significant.

5.4.2.2 Sequential Method 2

The iteration sequence differs from that of method 1 in that the
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d.c. equations are solved after each real power as well as after
each reactive power iteration. This sequence is summarised as
P,DC,Q,DC. As in the previous method the d.c¢. equations are

solved until all mismatches are within tolerance.

5.5 CONTROL OF CONVERTOR A.C. TERMINAL VOLTAGE

A convertor terminal voltage may be specified in two ways.
Firstly by local reactive power .injection at the terminal. 1In
this case no reactive power mismatch equation is necessary for that

busbar and the relevant variable (ie. AV

term) is effectlvely

removed from the problem formulation. This is the situation where
the convertor terminal busbar is a P.V busbar. Two control
specifications are required for each d.c. convertor.
Alternatively the terminal voltage may be specified as a
d.c. system constraint. That is, the d.c. convertor must inject
the correct amount of reactive power so that the terminal voltage
is maintained constant. This constraint is usually applicable in
cases where the d.c. convertor model is extended to include

(44)

additional items of plant such as synchronous machines which
are operated as an integral part of the convertor control. 1In

such cases the convertor model may produce or absorb reactive power.
For the basic convertor unit the terminal voltage may be controlled
over a small range by altering the reactive power absorbed by the

convertor.

With the unified method the equation,

sSp
-V
term term

is written as one of the two control eguations. This would lead
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to a zero row in equation (5.34) and therefore during the solution
of equation (5.34) some other &ariable (eg. tap ratio) must be
specified instead. The d.c. convergence is therefore marginally
slowed for the PDC,QDC iteration. However the d.c. is overconverged
by this iteration scheme and the slowing of the d.c. convergence
does not have any noticeable effect on the overall convergence rate.
With the seqpential method this control equation’cannot be
written. The terminal buébar is specified as a P.V busbar and the

control equation

sp

Qterm(dc)

- Qterm(dc) =0

is used, where Qigrm(dc)

is taken as the reactive power required to

maintain the voltage constant. The specified reactive power varies

at each iteration and this discoritinuity slows overall convergence.
This case is discussed for completeness; results are not given

as, with the basic convertor model, the control of the texminal

voltage by the d.c. system, is not a practical proposition.

5.6 CONSTANT D.C. JACOBIAN METHODS

With both the unified and sequential methods the jacobian
elements related to the d.c. variables undergo only slight numerical
change at each iteration; especially so, if good starting values
are used. This prémpted examination of the following algorithmic

variations:

(i) The d.c. related jacobians are held constant at their
initial values.
(ii) With assumptions for the values of the d.c. variables

the jacobian may be approximated to a constant.

With the d.c. related jacobians constant all matrices, in
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both the unified and sequential methods, may be factorised before
the iterative procedure.

However, the dimension of the a.c. system is normally much
greater than that of the d.c. system and the small savings in
computing time per d.c. iteration are outweighed by an occasional
deterioration in overall convergence. The advantages of these

methods are therefore gquestionable and they were not pursued further.

5.7 EXTENSION TO MULTIPLE AND/OR MULTI-TERMINAL D.C. SYSTEMS

The basic algorithms have been developed for a single d.c.
convertor. Each additional convertor adds a further five d.c.
variables and a corresponding set of five equations. The number
of a.c. system jacobian elements'which become modified in the
unified solutions is equal to the number of convertors.

As an example, consider the system shown in Fig. 5.5. The
sysfem represents tﬁe North and South Islands of the New Zealand
Electricity Division's 220Kv a.c. system. At present convertors 1,
2 and 3 are in operation. Convertors 1 and 2 form the 600 MW,

500 Kv d.c., link between the two Islands. Convertor 3 represents

a 420 Mw aluminium smelter. The South Island may have some surplus
hydro power in the future and the possibility of a further d.c. link
to carry such power from the remote hydro generation in the South

to two load centres, one in eaéh Island, is under consideration.

To this end, a further three terminal d.c. interconnection has

been added. (Convertors 4,5 and 6.)

Normally, convertor 4 will operate in the rectifier mode with
convertors 5 and 6 in the inversion mode.

The reactive power-d.c. jacobian for the unified method has

the structure illustrated in equation (5.45).
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where B"MOD is the part of B" which becomes modified. Only the
diagonal elements Become modified by the presence of
the convertors.
0ff diagonal elements will be present in B"MéD if there
is any a.c. connection between convertor terminal
busbars.

Note: All off diagonal elements of BB" and AA" are zero.

In addition, matrix A is block diagonal in 5 x 5 blocks with the

exception of the d.c. interconnection equations.

Equation R(3) in each set of d.c. equations is derived from
the d.c. interconnection. For the six convertor system shown in

Fig. 5.5 the following equations are applicable.

Var * Va2 T Ta1(Ray * Rgp) =0
Vaz T Taz - Ras =0
a1~ Ta | =0
Vaa " Vae " Tas - Raa " Tae t Rag = ©
Vas ~ Vag " Tas © Ras t Tas v Rae T ©

- - = (
laa T Tas T Lae

This example indicates the ease of extension to the multiple

convertor case.

5.8 INITIAL CONDITIONS

Initial values for the d.c. variables x are assigned from
estimates for the d.c. power and d.c. voltage and assuming a power
factor of 0.9 at the convertor terminal busbar. The terminal busbar

voltage is set at 1.0 p.u. unless it is a voltage controlled busbar.
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This procedure gives adequate initial conditions in all

practical cases as good estimates of P and V o are obtainable.

dc d
The effect of initial conditions on the convergence is examined

in section 5.10,

@

5.9 D.C. CONVERGENCE TOLERANCE

A feature which is common to all methods is the requirement of
a convergence tolerance for the d.c. residuals R.

The aim of the combined a,é. d.c. load flow is to give
information regarding power flows, line losses and voltage magnitudes
for both the a.c. and d.c. systems.. In addition, the requirements
of the d.c. convertors in regard to reactive power demand and
convertor transformer tap ranges may be studied.

The.accepted tolerance for a.c. load flow is 0.1 MW or MVAR
for the maximum power mismatch ;t any busbar. Similar power
tolerances are acceptable for the d.c. system.

The d.c. p.u. system is based upon the same power base as the
a.c. systeﬁ and on' the nominal open circuit a.c. voltage at the
convertor transformer secondary. The p.u. tolerances required
for d.c. powers, voltages and currents are therefore comparable
with those adopted in the a.c. systen.

The only d.c. résidﬁal equations not in terms of these quantities
are some of the control equations. With reference to section 5.3.4

and 5.3.5 it may be seen that these equations are of the form,

where X may be the tap or cosine of the firing angle. It is important

to note that these equations are linear and are solved exactly in one
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d.c. iteration. The question of an appropriate tolerance for
these mismatches is therefore irrelevant.

An acceptable tolerance for the d.c. residuals which is
compatible with the a.c. system tolerance is therefore 0.001 p.u.

on a 100 MVA base ie. the same as that adopted for the a.c. system.

5,10 TEST SYSTEM AND RESULTS

The A.E.P. standard 14 bus test system has been used to
investigate the convergence properties of the proposed algorithms.
The a.c; transmission line getween busbars 5 ana 4 has beep
replaced by a two terminal h.v.d.c. link. Neither bus is a‘voltage
controlled busbar and the iteraction between a.c. and d.c. systems
will therefore be considerable.

A comprehensive range of control strategies have been
applied to the link and the convergence results for the various
alg;rithms are given in Table 5.1. The number of iterations

(m,n) should be intexpreted as follows.

- m is the number of reactive power-voltage updates
required

= n is the number of real power—angle updates.

The number of d.c. iterations varies for the different sequences,
however this is of secondary importance and may,if required, be
assessed in each case from the number of a.c. iterations. In texms
of computational‘cost a unified QDC iteration is equivalent to a Q
iteration and a DC iteration executed separately.

The d.c. link data and specified controls for case 1 are given
in Table 5.2. The link operation is illustrated in Fig. 5.6. The

specified conditions for all cases are derived from the results of



Case Specification

Number of iterations to convergence (0.1 MW/MVAR)

Specified d.c.
link constraints
m-rectifier end.

' Unified Methods

(5 variables)

Sequential Methods
(5 variables)

(4 variables)

n-invertor end Iepc,opc |2p,0pc | lp,0,0c {2P,DC,0,DC | P,0,DC | 2P,DC,Q,DC
1 am Pdm Yn Van 4,3 4,3 4,3 4,3 4,4 4{3
2 am Pdm an Vdn 4,3 4,3 4,4 5,5 4,4 failed
3 a Pdm an Vdn 4,3 4,3 4,4 5,5 4,4 failed
4 am Pdm'Yn Vdn 4,3 4,3 4,4 4,4 4,4 4.4
5 o Fam Yn . 4,3 4,3 4,4 4,4 4,4 4,4
6 am am %m Yn 4,3 4,3 4,3 4,3 4,4 4,3
7. e Ty V. 4,3 4,3 4,3 4,3 4,4 4,3
v P 3
P@ 8 am am Yn an 4, 4,3 4,4 4,4 4,4 4,4
Case 1 with
initial cond-
ition errors
9 50% error 4,3 4,3 4,4 4,3 4,4 4,3
10 80% error 5,4% 6,5% 7,6% 5,4% 4,4 4,3

where * indicates a false solution

T°6 ®TYRL
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Table 5.2 Characteristics of d.c. link

Convertor 1

Convertor 2

A.C. Busbar

Bus 5 Bus 4
D.C. Voltage base 100 kv 100 kv
Transformer Reactance 0.126 0.0728
Commutation Reactance 0.126 0.0728
Filter admittance Bf* 0.478 0.629
D.C. link resistance 0.334 ohms
Control parameters for

Case 1

D.C. link power 58.6 MW =
Rectifier firing angle (deg) 7 -
Invertor extinction angle (deg) - 10
Invertor d.c. voltage - -128.87 kv

*  PFilters are connected to a.c.

terminal busbar.

Note: All reactances are in p.u., on a 100 MVA base.

119
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case 1. BAll cases therefore yield the same d.c. operation.

BUS 5 BUS 4
V=1.032 I3=454.2 v=1.061
i ’ - W a=6.,9%
R=0.334 :
V,=129.022 V =-128.87 EEZZ
- - O
P = 58.60 a= 7.0 y = 10.0 P = -58.31
Q= 18.79 po= 17.32 W 10.33 Q=

16.78

All angles are in degrees. D.C. voltages and current are in kV and
Amps respectively. D.C. resistance is in ohms. A.C. powers (P,Q)

are in MW and MVARs.

FPig. 5.6 D.C. Link Operation

The a.c. systém in isolation (i.e. with the d.c. system
modelled by the equivalént a.c. loads) requires (4,3) iterations.

The d.c. system in isolation (i.e. operating from fixed
terminal voltages) requires 2 iterations under all control strat-
egies. A typical convergence pattern for the terminal power flows,
Pterm and Qterm' is illustrated in Fig. 5.7. The example given
has poor starting values.

The additional iterations required for the combined a.c./d.c.

systems by many of the sequential versions is therefore due to the

interaction between the two systems.
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MW, MVAR
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Pterm(d,c.)
Qterm(d.c.)
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Fig. 5.7 Convergence Pattern For D.C. System In Isolation




122

5.11 DISCUSSION OF RESULTS

The convergence results shown in Table 5.1 expose several
significant features of the a.c./d.c. load flow algorithms which have
been developed., These features are discussed in the following

sections.

5.11.1 Unified Methods

The unified methods provide fast and reliable convergence in
all cases.
For the unified methods 1 and 2 the number of iterations did

not exceed the number required for the a.c. system alone.

5.11.2 Sequential Method 1 (- P,Q,DC =)

Convergence was fast and reliable although the reactive power
convergence was slower than for the a.c. system alone. This
caused an extra Q iteration to be required in many cases.

The removal of the variable ¢ caused a slight deterioration in
performance. An investigation of the mismatches at each iteration
showed that Qterm(dC) actually converges faster when ¢ is removed.
However, the faster convergence pattern is also more oscillatory
and these oscillations are reflected in a slowing of overall voltage

convergence in the a.c. system.

5.11.3 Sequential Method 2 (- P,DC,Q,DC =)

The occasional deterioration in performance (cases 2 and 3)
has been traced to the first d.c. iteration when the a.c. terminal
voltage is at the initial value of 1.0 p.u. The feature common té
cases 2 and 3 is that both the transformer tap and d.c. voltage are

specified at the invertor end. In order to maintain the specified
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d.c. voltage from a fixed a.c. ferminal voltage of 1 p.u. and with
a fixed tap, the firing angle must decrease. In order to satisfy
the equation,

3

= o o o - to— o
\% K a vterm cos(m~vy) p xC Id

the control variable cos(m=7v) is actually updated to be less than
=1l. Although physically unobtainable this presents no mathematical
problem unless the variable y is explicitly required.

Similarly, with the five variable version, the equation

Vd é Kl . a . errm . cos ¢

causes the variable ¢ to be updated for minimum cos ¢ (i.e. .
approaching =1). Qterm(dc) is therefore in considerable error.

The next d.c. iteration follows a reactive power voltage update
and the d.c. is converged to be cémpatible with a better (in this
case higher) a.c. terminal voltage and convergence to the correct
solution is subsequently obtained. The variations in the reactive
power which occur do, however, slow the overall convergence.

In the 4 variable version, ¢ is absent. The calculation of
Q(dc) by equation 5.21 requires a value for ¢ which may be calculated

£rom

-1 d

1@ °vterm

when both a and Vd are specified and with a value of vterm of 1 p.u.,
the inverse cosine argument is greater than 1 and ¢ cannot be
calculated. The 4 variable version is recoxrded as having failed in

these cases although it should be noted that with appropriate

limits on the inverse cosine argument convergence may be obtained.
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5.11.4 Dependence on Starting Values

The starting value for the.a.c. terminal voltages is 1 p.u.
as this is usually the best estimate available. The d.c. starting
values are calculated from an estimate of the d.c. power and d.c.
voltage. These estimates détermine the initial values for the
real and reactive power mismatches at the convertor terminal
busbars. They are therefore relevant to the variation in the a.c.
terminal voltage.

With starting values for d.c. real and reactive powers within
* 50%, which are available in all practical situations, all
algorithms converged rapidly and reliably (see case 9).

For completeness it is instructive to consider a rather
impractical case, such as 10, which has initial estimates for the
d.c. variables such that the terﬁinal powers are in error by - 80%.
All methods which retain the variable ¢ converged to an incorrect
solution. The convertor is generating, rather than absorbing,
reactive powe;, i.e. the variable cos ¢ is correct, and equation
(5.15) is satisfied, but this occurxs with ¢ being negative instead
of positive. This pfoblem cannot occur with the 4 variable versions,
It should also be noted that with limits placed on ¢ the correct

solution may be obtained.

5,12 OTHER ITERATION SCHEMES

The iteration schemes reported have all begun with a real power=-
angle update iteration. As the operation of the d.c. convertors
ig strongly related to the voltage magnitudes the idea of initiating

the solution sequence with a reactive power-voltage update iteration

is appealing. This was tested with both the unified and sequential
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methods. Rapid and reliable convergence was obtained in all cases.

Howevey, Stott and Alsac(3o) reported generally improved per;
formance of the a.c. load flow by initiating the iterative process
with a real power iteration.

Moreover, from the results obtained it is clear that for the
best a.c./d.c. methods, convergence depends on the a.c. system
itself i.e. the overall convergence rate does not suffer with
integration of the d.c. equations.

Therefore, although the iteration schemes which begin with a

reactive power iteration improve the reliability of the sequential

integration, it is not recommended.

5.13 DISCUSSION OF CONVERGENCE PROPERTIES

The overall convergence rate of the algorithms depends on the
success ful interaction of the two distinct parts. The a.c. system
equétions are solved using the well behaved constant‘tangent fast
decoupled algorithm; the d.c. system equations are solved using the
more powerful, but somewhat more erratic, full Newton-Raphson
approach.

In generél, the solufion times for the d.c. equations will be
small -compared to the solution time of the a.c. equations. The
relative efficiencies of the alternativebalgorithms may therefore
be assessed by comparing the number of a.c. voltage and angle updates
which are required.

Comparing corresponding unified and sequential schemes the
unified method gives more robust and dependable performance. The
unified method 2 (i.e. P,QDC) is the best algorithm which has been

been investigated. The performance of the unified method 1 (PDC,QDC)
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is comparable but the d.c. equations are effectively solved twice
as often and this method is therefore slightly less efficient. OFf
the sequential methods, the sequential method 1 (P,Q,DC) proved the
best; being only marginally inferior to the unified method.

Those schemes which acknowledge the fact that the d.c. variables
are strongly related to the terminal voltage give the fastest and
most reliable performance. In these schemes the first d.c. iteration
occurs alongside or following the first alteration of system voltages.

The powerful convergence of'the Newton-Raphson process for
the d.c. equations can cause overall convergence difficulties. If
the first d.c. iteration occurs before the reactive power QOltage
update then the d.c. variables are converged to be compatible with
the incorrect terminal voltage. ?his introduces an unnecessary
discontinuity which may lead to convergence difficulties in the
sequential method. In the unified approach the powerful convergence
of the d.c. equations is dampened by the reflection of the a.c.
mismatches onto the changes in d.c. variables. This gives fastexr
and better behaved  convergence.

When the busbar to which the convertors are attached is voltage
controlled (aé is often the case) the two approaches become virtually
identical as the interaction between a.c. and d.c. systems is much

smallerx.

5.13.1 Generalisations On Convergence Properties

The unified and sequential algorithms have been investigated
with reference to the well behaved 14 bus test system. If general
conclusions are to be drawn regarding thé performance of the algorithms
then further investigation is required.

With reference to the results already presented and based on
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experience with other systems, the performance of the a.c./d.c.

load flow is dependent on the following:

(1) The initial values of the a.c. terminal voltage for
the initial d.c. iteration (sequential method only).

(ii) The strength of the a.c. system at the terminal busbar.
This gives a measure of how the changing real and
reactive powers of the d.c. convertor influences the
a.c. system convergence.

(iii) The convergence pattérn of the a.c. terminal busbar

voltage.

The initial value of a.c. terminal voltage for the first d.c.
iteration is, in the sequential method, determined by a normal
fast decoupled a.c. iteration. The maximum error in this voltage
will be small. StotéBO) reported maximum errors of around 3% even
with difficult a.c. systems. The error may be slightly different
for a.c./d.c. systems depending on the initial values for the d.c.
variables, however, this error will be small in all practical cases.

The overall cénvergence of the a.c./d.c. load flow is therefore
primarily due to the manner in which the a.c. terminal voltage varies
with changing convertor power flows and vice versa.

The nature of the a.c. system and the rate at which it converges
is not relevant to the behaviour of the integrated a.c./d.c.
load flows except in as much as it influences features (ii) and
(iii) above.

In order to investigate the performance of the algorithms with

a weak a.c. system the test system described earlier was modified

by the addition of two a.c. lines as shown in Fig. 5.8.
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Fig. 5.8 D.C. 'Link Operating From Weak A.C. System

The reactive power compensation of the filters was adjusted to
give similar d.c. operating conditions as previously.
The number of iterations to convergence for the most promising

algorithms are shown in Table 5.3 for the control specifications

corresponding to cases 1 to 5 in the previous results.

CASE x = 0.3 x = 0.4
SPECIFICATION
A UNIFIED SEQUENTIAL UNIFIED SEQUENTIAL
m-rectifier P,0DC P,0,DC P,QDC P,Q,DC
n—lnvertor 5v 4y 5v av
12 um_Pdm Yn Vdn 4,4 4,4 4,4 4,4 5,4 4,4
13 o Pdm a, Vdﬁ ‘4,4 9,8 10,12 4,4 >30 Diverges
14 a Pdm a Vdn 4,3 1 9,81 10,12 4,3 >30 Diverges
15 a Pdm Yn Vdn 4,3 6,5 7,7 4,3 28,27 >30
Table 5.3 Numbers of Iterations for

Weak A.C. Systems



129

The different nature of the sequential and unified algorithms
is clearly demonstrated. The effect of the type of convertor
control is also shown. For case 12 both the d.c. real power and the
d.c. reactive powers are well constrained by the convertor control
strategy. Convergence is rapid and reliable for all methods.

For all other cases, where the control angle at one or both
convertors is free, an oscillatory relationship between a.c. terminal
voltage and the reactive power of the convertor is possible. This
leads to poor convergence of the sequential algorithms.

To illustrate the nature of the interaction the convergence
pattern of the convertor reactive power demand and the a.c. system
terminal voltage is élotted in Fig. 5.9 for the rectifier. The
convergence patterns, under the same conditions, for the a.c. and
d.c. systems in isolation are shown in Figs 5.10 and 5.11 respectively.
The oscillatory interaction is clear in Fig. 5.8. Figs 5.9 and 5.10
demonstrate that this problem is purely due to the interaction and
not due to any feature associated with either a.c. or d.c. system.

The nature of. the problem is that when the firing angle is not
specified and the d.c. voltage is effectively fixed, any increase in
terminal voltage leads to an increase in firing angle and hence
increase in the reactive power demand. The increased reactive power
demand causes a subséquént decrease in terminal voltage during the
following a.c. iteration and anlocsillatory pattern emerges. With
a strong a.c. system the terminal voltage is well constrained and the
oscillations are well damped.

It may be possible to alleviate some of the oscillatory problem
by the use of acceleration factors or similarx techniques, It is
considered doubtful that the oscillation may be sufficiently

dampened without detrimentally effecting convergence speed in well
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(i) Sequential Method (P,Q,DC 5 Variable)

Qterml Vterm
(MVAR) (p.u.)
28§ 1.0
26 1 0.98
247 0.967
22 7 0.947
20 0.92;
18 0.90 r — : : o =
0 1 2 3 4 5 6 7
Qterm v (ii) Unified Method (P,Q,DC)
(MVAR) .
28 1.0
26 0.98]
24 0.96
22 0.94
20 T 0.9214
g L 0.90 . ‘ =

1 2 3 4

Fig. 5.9 Convergence Pattern for A.C./D.C. Load Flow
with Weak A.C. Systen
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(p.u.)
1.00
0.98
0.96]
0.94
0.92y
Number
0.90 ! : + : + #=of voltage
1 2 3 4 updates
Fig. 5.10 Convergence Pattern of Terminal Voltage for Weak
A.C. System
Qterm
MVAR -
*#100
28 ]
26 4
24 T
22 4
20 1
Humber
18 I . ] ) ; wm Of d.c.
iterations

Fig. 5.11 Convergence Pattern of D.C. Reactive Power For D.C. in
Isolation (i.e. fixed terminal voltage)
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behaved cases.

5.13.2 General Conclusions on Convergence Properties

The features which influence the convergence of the unified
and sequential algorithms have been discussed in some detail. The

following general conclusions may be made:

= In cases where the a.c. system is strong both the
unified and sequential algorithms may be programmed to
give fast and reliable convergence.

= 1If the a.c. system is weak the sequential algorithm is

susceptible to convergence problems.

A potential load flow user may assess the best method for their
particular system.

The discussion on the strength of the a.c. system has been
deliberately vague. The usual measure of the strength of an a.c.
sysfem containing a convertor insﬁallation is the short circuit
ratio (SCR). The SCR is calculated from the fault MVA at the
terminal busbar, and, as such, depends not only upon the lines and
transformers but also on the machine transient or subtransient
reactances. ﬁowever, in load flow studies, these reactances are
zero, that is, the machine terminal voltages represents an infinite
busbar and the SCR dées not therefore gi§e an exact indication of the
strength of the system. For example a small synchronous condensor
attached to a busbar makes that busbar infinitely strong in a load
flow sense while having a far smaller influence on the SCR.

6
A survey of existing schem.es(43’4 )

indicates that, almost
invariably, with systems of low SCR, some form of voltage control,

often synchronous condensors, is an an integral part of the convertor
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installation. These schemes are therefore often strong as far as
the load flow is concerned.

A measure of the strength of a system in a load flow sense is the
SCR calculated with all machine reactances set to zero. This short
circuit ratio is invariably much higher than the usual value. It
has been demonstrated in the previous section that the sequential
load flow converges under all control strategies even down to a load
flow SCR of around 3. In the usual sense the SCR of this system is
considerably less than 3. Since SCR's below 3 are not encountered
in practical convertor schemes it may be concluded that the sequential
integration should‘converge in all practical situations although the
convergence may become slow if the system is weak in a load flow
sense.

The only disadvantage of the‘unified method is increased pro-
gramming complexity; if this is not an important consideration then
the- unified method is to be preferred in all cases due to its greater
inherent reliability. Experience with multiterminal d.c. systems

has shown the features described here to be equally applicable.




134

CHAPTER ©

THREE PHASE A.C./D.C. LOAD FLOW ALGORITHM

6.1 INTRODUCTION

Any convertor which is operating from an unbalanced a.c. system
will itself operate with unbalanced power flows and unsymmetric valve
conduction periods. In addition.any unbalance present in the convertor
control equipment or any asymmetry in the convertor transformer will
introduce additional unbalance.

Considerable interaction exists between the unbalanced operation
of the a.c. and d.c. systems. Thg exact nature of this interaction
depends on features such as the convertor transformer connection and
the convertor firing controller.

One purpose of a detailed study of the unbalanced operation of
a.c./d.c. systems is as an aid to system planning and development.
Operation of high power convertors is being considered in situations
of relatively low short circuit ratios. Unbalance effects are more
likely to be éignificant ﬁnder these conditions and may require
additional consideration. The steady state unbalance and its'
relevance to convertér harmonic current generation may also influence
the consideration of possible t?ansmission line transpositions and
also the suitability of either synchronous or static reactive power
compensation.

In addition the developed model andvits' integration into the
load flow provides an excellent basis for a thorougﬁ understanding

of steady state convertor behaviour.
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The fundamental frequency mode 1 derived here also provides
a basis for an investigation of several features associated with
the steady state harmonic interaction between d.c. convertors and
the a.c. system. This subject is considered in the final chapters
of this Thesis.
The present chapter is restyricted to the study of the fundamental
frequency unbalanced opergtion of integrated a.c./d.c. systemn.
Previous researchers(47) have developed coupled sequence
representations to enable the convertor to be analysed in conjunction
with the a.c. system. However the parameters of the coupled sequence
impedances depend upon the operating conditions of the con&ertor;
therefore they change at every iteration. In addition, the impedances
are a mathematical artificiality and cannot be physically realised.
These features make this approach unattractive.

Arrillaga et al(48)

extended investigations into convertoxr
unbalance and developed an equivalent sequence current generator
concept for the unbalanced convertor.

The artificiality of modelling the convertor in terms of
sequence components may be avoided simply by integrating the equations,
in actual phase quantities} directly into a phase component, three
phase load flow analysis.

The convertor médel.for unbalanced analysis is considerably
more complex than that developea in the preceeding chapter for the
balanced case. The additional complexity arises from the need to
include the effect of the three phase convertor transformer connect-
ion and the different convertor firing control modes. Early h.v.d.c.

control schemes were based on phase angle control, where the firing

of each valve is timed individually with respect to the appropriate
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crossing of the phase voltages. This control scheme has proved
susceptible to harmonic stability problems when operating from a
weak a.c. system. An alternative control, based on equidistant
firings on the steady state, is generally accepted to provide
greater inherent accuracy in the timing of firing pulses and also to
provide more stable operation in the presence of weak a.c.

systems,(49’50’511

Under normal steady state and perfectly balanced
operating conditions there is no difference between these two

basic control strategies. Howevér, their effect on the a.c. system
and d.c. voltage and cﬁrrent waveshapes during normal, but not
balanced, operation, is quite different.

A three phase convertor model, with the flexibility to
represent alternative control strategies, has been developed.

Although this chapter is restricted to considering the
integration of the developed model with the three phase fast
decoupled load flow described in chapter 4, the model may be used
with any three phase load flow.

Similar techniques are available for the integration of the
three phase convertor model into the load flow analysis as were
discussed with respect to the balanced single phase analysis. Based
upon the extensive investigations into the behaviour of single phase
a.c./d.c. load flow aeséribed in chapterl5, the sequential approach
is congidered the most appropriéte for the integration of the d.c.
model into the three phase load flow. The complexity of the unified
approach is not considered justified in the three phase case
because, in cases of difficult convergence such as those involving
very weak a.c. systems, it is possible to use starting values
derived from single phase analysis.

This chapter describes the development of a model for the



137

unbalanced convertor and the subsequent integration of that model
into the three phase fast decoupled load flow analysis. A summaxry

(3)

of this chapter is contained in a paper published in the

Proc., IEE and reproduced in Appendix 6.

6.2 FORMULATION‘OF THE THREE PHASE A.C./D.C. LOAD FLOW PROBLEM

The aim of the three phase a.c./d.c. load flow is to solve for
the unbalanced opérating state of the combined a.c. and d.c. systems,
under the specified conditions of load,generation and d.c. system
control strategy.

The operating state of the combined system is defined by:

where:

v, {5. \ are the vectors of the balanced internal

int/ _int
voltages at the generator internal
busbars.

GZE_ are vectors of the three phase voltages
at every generator terminal busbar and
every lcad busbar.

x is a vector of the d.c. variables (as yet

undefinedf,

The significance of the three phase a.c. variables was discussed
in chapter 4. The selection of d.c. variables x is discussed in the
, following section.

To enable a Newton-Raphson based technique to be used it is -
‘necessary to formulate a set of n independent equations in terms

of the n variables describing the system. The equations which
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relate to the a.c. system variables are derived from the specified
a.c. system operating conditioné. The only modification to these
equations (described in chapter 4) which results from the presence
of the d.c. system occurs at the convertor terminal busbars. These

eguations become, .

P

P _ (PSP _ P _

APterm - (Ptem) Pterm(aC) Ptem(dC) (6.1)
= (OF sp _ P _ P

AR = (gh )P - ol (ac) - BT (dc) (6.2)

P

where P
ol te

(dc) and Qp (dc) are functions of the a.c. terminal
rm term

conditions and the convertor variables, i.e.:

P = P o

PP (80 = E(VE_ . 87 . %) (6.3)
| ] L

Qf (do) = £ b ) (6.4)

The equations for the a.c. system may therefore be summarised

as,

= 0 , (6.5)

L ]

where the mismatches at the convertor terminal busbars are indicated
separately from the usual three phase a.c. system equations.
Further equations are derived from the d.c. system conditions.

Let these equations be designated,

R(VE b x), = 6.6
R(Vterm’ eterm' x)k ° ( )
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That is, for each convertor, k, a set of equations is derived

in terms of the terminal conditions and the convertor variables x.

Equations 6.3, 6.4 and 6.6 form a mathematical model of the

d.c. system suitable for inclusion into load flow analysis.

The three phase a.c./d.c.

formulated as the solution of,

—

AP
i
AP
gen
AQ
AQ

P
term(vterm'

(V, 6)
(v, 6)
vV, 8

(V, 8, %)

eterm'

load flow problem may therefore be

%)

(6.7)

term

for the set of variables (5, 5, %) .

6.3 D.C. SYSTEM MODELLING

6.3.1 Introduction

The basic h.v.d.c. interconnection shown in Fig. 6.1 is used
as a reference in the development of the model. The extension to
other configuration5~is clarified throughout the development. Undexr
unbalanced conditions the convertor transformer modifies the
source voltages applied to the convertor and also affects the phase
distribution of current and power. In addition, the a.c. system
operation may be influenced (e.g. by a zero sequence current flow to
a star-g/delta transformer) by the transformer connection. Each

bridge in Fig. 6.1 will thus operate with a different degree of

unbalance, due to the influence of the convexrtor transformer connections,
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and must be modelled independently. This feature is in contrast to
the balanced d.c. model where it is possible to combine bridges in
series and in parallel to form an equivalent single bridge. The
dimensions of the three phase d.c. model, will, for this reason
alone, be greater than the balanced d.c. model.

All convertors, whether rectifying or inverting, are represented
by the same model (Fig. 6ﬂ2) and their equations are of the same

form.

6.3.2 Basic Assumptions

To enable the formulation of equation (6.6) and to simplify

the selection of variables % the following assumptions are made:

(i) The three a.c. phase voltages at the terminal busbaxr
are sinusoidal.
(ii) The direct voltage and direct current are smooth.
(iii) The convertor transformer is lossless and the magnetising

admittance is ignored.

Assumption (i) requires more critical examination for unbalanced
study. Under balanced operation only characteristic hgrmonics are
produced and, as filtering is normally provided at these frequencies,
the level of harmonic voltages will be small. However, under even
small amounts of unbélaﬁce, significant non-characteristic harmonics
may be produced and the harmonic content at the terminal busbar
may increase.

An investigation of the possible worst case influence of harmonic
voltages up to the limits allowed by power authorities, is discussed
in Appendix 7. The investigation concludes that alﬁhough a
rigorous justification is not possible, the assumption can be expected

to be justified in all practical cases. A rigorous justification
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requires an assessment of the possible harmonic levels and this is
considered further in chapter 8. For the present, in line with

other investigations(47’48)

, the assumption will be accepted with
only heuristic justification.
Assumptions (ii) and (iii) are equally valid for three phase

analysis as for single phase analysis and no further justification

will be given here.

6.3.3 Selection of Convertor Variables

The philosophy governing the selection of convertor variables
was discussed in detail in section 5.3 with regafd to the balanced
convertor modei. The same considerations are relevant to the
unbalanced three phase convertor model. The important features

may be summarised as follows:

(1) For computing efficiency the smallest number of variables
should be used.

(ii) To enable a wide range of control specifications to be
readily incorporated all variables involved in their

formulation should be retained.

An unbalanced convertor, operating from known three phase
voltages, requires a knowledge of six independent variables to
define the convertor opérating state. For example if all three
firing angles and all three transformer taps are known then the
convertor operation is defined. The minimum number of convertor
variables is therefore six. However to satisfy condition (ii)
above additional variables are used.

The assumptions listed in section 6;3,2 justify the use of
idealised voltage and current waveforms as illustrated in Fig. 6.3.

The following variables are defined with reference to Figs 6.2 and
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Phase 1

Unbalanced Convertor Voltage and Current Waveform

(1)

Fig. 6.3

phase voltages

voltage wave form
assumed current waveshape for phase 1

(actual wavefo

D.C.

(ii)
(iii)

rm is indicated by dotted line)
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a; Off-nominal tap ratios on the primary side.
Ul2 C., UZBZSQ' UZléii Phase to phase source voltages for
: convertor referred to the transformer
secondary . Ci are therefore the zero

crossings for the timing of firing

pulses.

oy Fifing delay angle measured from the
respective zero crossing.

Vd : Total average d.c. voltage ffom
complete bridge.

Id Average d.c. current.

Where i = 1,2,3 for the three phases involved.

All of the above variables are required in the formulation of
the control specifications for unbalanced convertor operation. The
variables parallel those used in the balanced model except for the
addition of the phése to phase source voltages at the secondarxry. In
the single phase model the convertor source voltage is not included
as a variable as its calculation is trivial and it is not required
in the formulation of any contrxol specification. In contrast the
unbalanced phase to phase source voltages at the transformer secondary
are mére complex to calculate as they depend not only on the transformer
taps but also on the transformer connection. In addition, the zexo
crossings, Ci' are explicitly required in the formulation of the
symmetrical firing controller. For these reasons they are included
as convertor variables.

Equation (6.6) may be conveniently formulated in terms of these
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14 variables.

6.3.4 Derivation of Basic D.C. Equations

The previous discussion justifies the use of 14 variables to

model each convertor. The vector x is

T
[Ui, Ci’ s o2 Vd' Id]

where 1 = 1,3,

The convertor model requires the formulation of a corresponding
number of independent algebraic equations in terms of these 14
variables. Following the préliminary development of a convertor
angle refefence and suitable per unit system, the derivation of

these equations will be given.

6.3.4.1 Convertor Angle Referenee

In the three phasé a.c. load flow all angles are réferred to
the 'slack generators internal busba‘r° The angle reference for each
convertor may be arbitrarily assigned. Similarly to the single phase
a.c./d.c. load flow (chapter 5), by using one of the convertor angles
(e.qg. eéerm in Fig. 2) as a reference the mathematical coupling
between the equations describing the a.c. system and those describing
the convertor, is weakened. This has a favourable effect on the

rate of convergence, especially so, as a sequential solution technique

is to be used.

6.3.4.2 Per Unit System

The application of a p.u. system to the single phase representat-
ion of the d.c. system was discussed in detail in section 5.3.2.1.
Similar considerations apply to the three phase representation.

The following p.u. system is adopted.
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Computational simplicity is achieved by using common power and
voltage bases on both sides of the convertor.

The three phase a.c. system base values are:
MVAbase = Base power per phase

Vbase

Phase - neutral voltage base.

With common power and voltage bases the current base on the
a.c. and d.c. sideé are also equal and therefore no constants appear

in the equations due to the p.u. system.

6.3.4.3 Convertor Source Voltages

The phase to phase source voltages referred to the transformexr
secondary are found by a consideration of the transformer connection
and off-nominal turns ratio. For example consider the star-star

transformer of Fig.gé.4.

Phase 1
Phase 3 e
Phase 2 ©

Fig., 6.4 Star-Star Transformer Connection

The phase to phase source voltages referred to the secondary

are:
1.1 1.3 3 1 .
Ul3£_; - EZ Vtermég_ - 2‘_‘; vterm/eterm eterm (6.8)

]
|
<
@@
I
i

- ﬁz 1 .2 2 el ﬂ_}mviﬂ /93 _ el
23 az te term texrm a3 term term term

(6.9)
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1 .2 2 1 1 .1
UZlZEQ - ;;'Vterm/eterm'eterm - ay Vtermdgl (6.10)

Taking real and imaginary parts yields a further six equations.

6.3.4.4 D.C. Voltage

The d.c. voltage is found by integration of the waveforms in

Fig. 6.3 (ii) and may be written in the forms

V.o .
d
= = 4= = 4 . + .
v Uyy [Cos(Cl +o, =Cy ) Cos(C2 a, =Cy ) ] (6.11)
- - + -
+ Uy, [COS(C2+OL2 cl) COS(C3 oy cl)]
+0_ - - +o. 4+ -
+ U23 [Cos(C3 o, C2) Cos(Cl a, C2)]

i

+ +
Id(XCl xc2 xc3)

where XCi is the commutation reactance for phase i.

6.3.4.5 D.C. Interconnection

An equation is derived for each convertor, from the d.c. system
topology relating the d.c. voltages and currents. In general,this

equation is of the form:
= 6.1
£(V ’I.) ,O ( 2)

Por example the system shown in Fig. 6.1 provides the following four

equations:
+ + - Id, . Rd =
le + Vd2 Vd3 Vd4 1 0
- = 0
Idl Id2
Id1 = Id3 = 0
Idl - Id4 =0

where clearly some redundancy results. This is the cost of complete
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generality in the d.c. interconnection.

6.3.4.6 Incoxporation of Control Strategies

A further six equations are derived from the specified operating
conditions. Any function of the variables is a valid (mathematically)
control equation éo long as the equation is independent of all the
others.

In practice there are restrictions limiting the number of
alternatives. Some control spec;fications refer to the characteristics
of power transmission (e.g. constant power or constant current),
others introduce constraints such as minimum deléy or extinction
angles.,

As the consideration of the alternative firing controls is of
particular interest their implementation is now discussed.

Symmetrical firing is considered as being applied individually
for each six pulse bridge although, if required, the equations may
be written to consider the firing controller operating on an integral
twelve pulse bridge. For a six pulse unit the interval between
firing pulses is séecified as 60°. This provides two equations. The
third equation results from the specification of minimum firing

angle control, i.e.

o, = o = 0 (6.13)

Where phase i is selected during the solution procedure such that
the other two phases will have, in the unbalanced case, firing angles
greater than o ., .

min

With conventional phase angle control the firing angle on each

phase is specified as being equal to o in’ i.e.
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al - amin = 0 | (6.14)
o, - amin = 0 (6.15)
u3 - amin = 0 (6.16)

The remaining three control equations are derived from the
operating conditions. Usually, the off-nominal taps are specified

as being equal, i.e.

a. - a., =20 ' (6.17)
a. -a. =20 (6.18)

The final equation will normally relate to the constant current

or constant power controller, e.g.

- 1SP_
Id Id 0. (6.19)
_ pSP_
or Vd . Id Pd = 0 (6.20)

The above examples illustrate the case with which the various

control specifications are incorporated.

6.3.4.7 Invertor Operation with Specified Bxtinction Angle

In the single phase load flow the d.c. equations for invertor
operation are written in terms of the extinction angle y (instead of
the firing delay angle o) and the equations for specifying the
extinction angle may be written directly. Foxr the three phase load flow
this cannot be done as the variable o must be retained in fhe study
as it is required in the formulation of the symmetrical firing control
equations. Therefore the restriction upon the extinction advance
angle vy requires the implicit calculation of the commutation angle

for each phase.
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Taking the specification for v, as defined in Fig. 6.3, the
following eqguation is used:

< (xc:l + xc3)
Cos Ylp + Cos o, = I I 0 (6.21)

17 TS
3
Uys

Similar equations apply to the other two phases with a cyclic

change of suffices.

6.3.5 Calculation of Terminal Power Flows

The mathematical model of the convertor includes the formulation
of equations (6.3) and (6.4) for the individual phase real and
reactive power flows on the primaxy of the convertoxr transformer.

It is in connection with these equations that the three phase
model deviates significantly from the single phase model developed
in the previous chapter.

The calculation of the individual phase real and reactive
powers at the terminal busbar requires the values of both the
magnitude and angle of the fundamental components cof the individual
phase currents flowing to the convertor transformer.

In the single phase analysis of the balanced convertor the
magnitude of the fundamental is obtained by approximating the
fourier analysis for the current Waveshape on the transformer secondary
and then transferriné thé fundamental maénitude across the convertor
transformer. In the single phaée case this procedure is trivial
and the equations are eliminated from the d.c. solution. The angle
of the fundamental component is calculated by simply equating the
total real power on a.c. and d.c. sides of the convertor.

A similar procedure may be applied to the three‘phase analysis

of the unbalanced convertor, however, the transferance of secondary
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currents to the primary is no longef a trivial procedure due to

the influence of the three phasé transformer connection. In addition,
the three phase convertor transformer may influence the a.c. system'
operation, for example, a star-g/delta connection provides a zero
sequence path for the a.c. system.

The simplist and most general method of accounting for the
influence of the three phase convertor transformer connection is to
extend the d.c. system modél to include the nodal admittance model
of the transformer. The nodal admittance model of the various
transformer connections have been discussed in chapter 2 for the
usual a.c. system transformers; the same models are applicable to
the convertor transformers except these may be generalised to
include the modelling of independent tap ratios on each phase winding.
An example is given in Appendix 5 for the star-g/delta connection.

The inclusion of the fundamental frequency three phase model
of the transformer necessitates the inclusion of the following

variables, defined here with reference to Fig. 6.2:

- Ei [ﬁi the fundamental component of the voltage waveshape
at the transformer secondary busbar.

- Ii [Si the fundamental component of the secondary current
waveshapes.

where i = 1,3 for the three phases.

A total of 12 extra variables are added to the original 14
to vield a final set of 26 variables for each convertor in the d.c.
systemn,

The terminal real and reactive power flows on the primary of’
the convertor transformer may be calculated from the values of Ei and

¢i which are solved for as part of the Newton-Raphson procedure for
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the d.c. system. These power flows are calculated at each real

or reactive power a.c. iteration to form the real or reactive power
mismatch at the terxminal busbar. They are calculated by the usual
a.c. equations for calculating the power flow leaving a busbar (the
convertor terminal) and flowing to another busbar (the convertoxr
transformer secondary) through a three phase element (the convertor
transformer) when all voltages and angles are known.

The additional 12 variables which are added to the d.c. model
require the formulation of an additional 12 independent equations.
As these equatic;ns relate to the fundamental frequency three phase
power flows across a system element it may therefore seem appropriate
to apply the usual real and reactive power mismatch equations
at the convertor secondary busbar. However, the calculation of the

individual phase real and reactive power flows to the d.c. side from

the transformer secondary is difficult and these mismatch equations

are not suitable. Therefore the variables Ii[fi are included and
current mismatch equations are used. The inclusion of these
variables enables all equations to have clear physical significance.

The equations are formed in the following sections.

6.3.5.1 Current Relationships

Relationships are dgrived for the fundamental frequency real and
imaginary current flows across the conveftor transformer.

Off nominal taps (al a, a3) are modelled on the system (primary)
side of the transformer; and are, for generality, assumed independently
controllable.

The three-phase convertor transformer is represented by its

nodal admittance model, i.e.
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Y Y
pp ps
Y = (6.22)
node v .
sp 88
where p indicates the primary side
and s the secondary side of the transformer.

The 3 X 3 submatrices (Ypp' etc.) for the various transformer
connections, including modelling of the independent phase taps, may
be derived using Kron's connection matrix technique; an example is
illustrated in Appendix 3.

In terms of these submatrices and on the assumption of a lossless
transformer (i.e. Y __ = jbpp, etc.) the currents at the convertor side

pp

busbar are expressed as follows:

4 ik k

k 1
k + bV
sp

3 _
term® (eterm eterm)] (6.23)

jw 3 ik
Ii.e:J i 4_2 [jbssEke
k=1
By subtracting eierm in the above equation the terxminal busbar angles
are related to the convertor angle reference.
Separating this equation into real and imaginary components the

following six equations result:

3
ik ik k 1
I, = i i - .
1 GOS0y kZl[bssEkSln(bk * bspvtermSln(eterm eterm)] (6.24)
2 ik ik k K 1
IiSlnwi = kzl[— bssEkcosd)k - bspvtermcos(eterm - eterm)] (6.25)

I3
Three further equations are derived from approximate expressions

(48)

for the fundamental rms components of the line current waveforms

as shown in Fig. 6.3, i.e.
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4 , Id
I, = 0,995% ~————— gin(T, /2) (6.26)
i /5 i

where Ti is the assumed conduction period for phase i.

The accuracy of these approximations depends upon the magnitude
of the commutatioﬁ angles and also upon the imbalance between the
incoming and outgoing commutation periods. Within the range of
unbalance expectea in steady state operation the error should be
less than 1%. If greater accuracy is required this may be achieved
by the procedure outlined in Appendix 8. Solutions to greater
accuracy are, however, seldom required.in the context of load flow

investigations.

6.3,5.2 Equality of Real Power Flow
The sum of the real powers on the three phases of the transformer

secondary may be equated to the total d.c. power, i.e.

]
o

(6.27)

il ~1W
el

L Ii . cos(¢i—wi)—-=vd . Id

6.3.5.3 Final Equations

A total pf 10 equations have been derived so far and an
additional 2 independent equations are required. Several versions
have been developed for these equations which are applicable to
specific transformer connections. The version presented here, is
general to all transformer connections and is therefore considered
the most satisfactory.

The equations are derived from the position of the fundamental
frequency voltage reference for the secondary of the convertor |
transformer.

The voltage reference for the a.c. system is earth. 1In d.c.
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transmission the actual earth is placed on one of the convertors

d.c. terminal and this point is used as a reference to define the
d.c. transmission voltages and the insulation levels of the convertor
transformer secondary windings.

However for the load flow analysis arbitrary references can be
used for eaéh convertor unit to simplify the mathematical model.
The actual voltages to earth, if required, can then be obtained
from the particular configuration and earthing arrangements.

The transformer nodal admittance matrix relates the injected
currents to the nodal voltages, where thé nodal voltages must be
with respect to a common reference. In the case of the coﬂvertor
transformer secondary an arbitrary reference can be explicitly
included.

With a star winding on the secondary an obvious reference is
the star point itself., If the nodal admittance matrix is formed
for a star=-g/star-g connection, then this reference is implicitly
present through the admittance model of the transformer. In this
case however the convertor transformer does not restrict the flow
of zero sequence currents and the following two equations may be

written:
3

- 6.2
Zl Iiffi‘ 0 ( 8)

These two equations (real énd imaginery parts) complete the
set of 12 independent equations in terms of the 12 additional
variables.

However, for a delta secondary winding no star point is
available and some other reference must be used.

To obtain a reference which may be applied to all transformer

secondary windings an artificial reference node is formulated. The
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zero sequence secondary voltage is taken as a reference, this is

conveniently implemented by the following two equations:

i
o

.3
'Z Ei cos ¢i (6.29)
i=1

(6.30)

It
o

§ .
E, sin ¢,
i=1 * *

The nodal admittance matri% for a star connected transformer
secondary is formed for an unearthed star winding. The restriction
on the zero sequence current flowing on the secondary is therefore
implicitly included in the transformer model for both star and
delta connections.

Both altemmatives for a star winding have been programmed and,
not unexpectedly, yield exactly the same solution to the load flow

problemn.

6.3.6 Summary of Equations and Variables

The 26 equations (R) which define the operation of each convertor

are:
3
R(1) = 'Zl‘Ei cos ¢i =0
3
R(2) = izl Ei 81n.¢i = 0
3
R(3) = iZlEI cos (¢, -w,) = Vg . I,
I
R(4) = 1, - 2. Zsin(r,/2)
V2
I
4 d
= - =, = s 2
R(5) 12 - s;n(Tz/ )

V2




R(6)

R(7)

R(8)

R(9)

R(10)

R(11)

R(12)

R(13)

R(18)

R(19)

R(24)

R(25)

I
4 d ‘
I, - =, = sin(T_/2)
3 ﬂ 2 3
3 ik 1k k k
R - i 4 . i -
I, .cos w, kzl[bSSEkSln¢k bSP vterm51n(ete
3 2k 2k k k
. - ; + s i -
I, .cos o, kzl [bSSEks:anpk bsp Vte sm(eterm
) 3 3k 3k k k
. - } i + . i -
I3 cos W, k_l[bssEkSlnq)k bsp vte s:.n(ete
3 1k 1k k k
. si + + . -
Il sin w, kzl[bssEkcoscbk bSp Vte cos(ete
3 2k 2k k k
. 8i B + . -
I, .sin w, + kzl[bssn.kcoscbk bsp Vte cos (eterm
3 3k 3k k k
. si + + . -
I3 sin w, z [bSSEkcosq>k bsp vtermcos(ate

k=1

depend on transformer connection

depend on the control specifications

V. .m=v2

+o,,~C

U,y [eos(c +a,-Cy

-2

U13 [cos (C2+0L2=~Cl)

-v2

~C_)

+
U23[cos(C3 a,-C,

+ I + XC_+
d(XCl YCZ XCB)

+1) - +o_=C_+
) cos(C2 o, C3 m) ]

- COS (C3+0L3=Cl) ]

- +0, +T-
cos (C ocl CZ)]

1
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R(26) = f(Vdi,Idi) from d.c. system topology.

The 26 variables x are:
[El’EZ iE3r¢li¢2v¢3l IliIle3lwllw2 ,(1)3,

UparUy30Up30C 1€y 0Cau0q00,505,28y 185085,

T
Vd,Id]

6.4 SOLUTION TECHNIQUES

As discussed in the introduction, the simpler sequential
solution technique has been adopted for the three phase a.c./d.c.
load flow, the complexity of the ﬁnified approach not being justified
for the three)phase case. The sequential technigque, using the
thrée phase fast decoupled a.c. algorithm and a full Newton-Raphson
algorithm for the d.c. equations, involves the block successive

iteration of the following three equations,

~ _ _ _ _ 7 - - i -
AP(V,8) /V A®
- - = B (6.31)
APgen/vint Ae1nt
- S . . - T
AQ(V,8) /v AV
_ = B" _ (6.32)
AV (V) Av
reg int

[ R(® 1= a 7T [sx ] (6.33)

where [B'] and [B"] are the three phase fast decoupled a.c. jacobian

matrices as developed in chapter 4
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and [7] is the d.c. jacobian of first order partial derivatives.

Equations (6.31) and (6.32) are the three phase fast decoupled
algorithmic equations from chapter 4. For the solution of the a.c.
equations, the d.c. variables X are treated as constants and, in
effect, the d.c. éystem is modelled simply as the appropriate real
and reactive power loads at the convertor terminal busbar. For
the d.c. iteratioﬁ, the a.c. variables at the terminal busbars are
considered to be constant.

The selection of the sequential iteration sequence for the three
sets of equations (i.e., (6.31), (6.32) and (6.33» has been based
upon the results of the investigation with the single phase fast
decoupled a.c./d.c. load flow presented in chapter 5. The iteration
sequence, illustrated in Fig. 6.5, parallels the single phase P,Q,DC
sequence which proved the most successful in the single phase case.

This sequence acknowledges the fact that the convertor operat-
ion is strongly related to the magnitude of the terminal voltages
and more weakly dependent on their phase angles. Therefore the
convertor solution.follows the update of the a.c. terminal voltages.

It should be noted, however, that for the final convergence
of the system unbalance, the d.c. operation is dependent on the phase
angle unbalance as much as on the voltage unbalance. The final
convergence of the three phase load flow is comparatively slow and
no convergence problems have occured from this dependence on terminal

busbar phase angle unbalance.

6.5 PROGRAMMING ASPECTS

Equations (6.31) and (6.32) are solved using sparsity technigues

and near optimal ordering.
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9
[Evaluate Real Power mismatchgﬁj

Solve Equation 6.31

and update & leQ#kD=1 YES
A
kQ=0 :
kD=0 Xo

BEvaluate Reactive Power and
voltage regulator mismatches

Solve Bquation 6.32 //,/’

and update VI \{*y _ YES

kP=0
kDO | KO

. . L 4
| KD=1 | 1o onv%EE§§>~

1ES

\
Bvaluate d.c. Residuals

Solve Equation §.33
and update x

STOP

P=0
kQ=0

Fig. 6.5 Flow Chart for Three Phase A.C./D.C. Load Flow
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The solution of equation (6.33) is carried out using a modified
Gaussian Elimination routine. The equations for each convertor are
separate except for thosg relating to the d.c. interconnection.

This feature may be utilized by appropriate ordering of variables
to yield a block sparsity strxucture for the d.c. Jacobian. By
placing the d.c. voltage variable last for each block of convertor
equations and by placing all the d.c. current variables afteé all
convertor blocks the d.c..Jacobian will have a structure as illustrated
in Pig. 6.6.

By using row pivoting only during the solution procedure, the
block sparsity of Fig. 6.6 is preserved. Each block containing
non-zero elements is stored in full, but only non-zero elements are
processed.

This routine requires less sforage than a normal sparsity
programme for non-symmetrical matrices and the solution efficiency is

improved.

6.6 PERFORMANCE OF THE ALGORITHM AND SAMPLE RESULTS

6.6.1 Introduction

The performance of the sequential integration of the unbalanced
convertor model into the three phase fast decoupled a.c. load flow
is subject to the saﬁe cbnsiderations as the comparable single phase
load flow discussed in chapter 5. That is, the convergence rate
depends on the influence of the a.c. terminal voltages on the d.c.
operation and the influence of the changing convertor real and

reactive power flows on the a.c. system convergence.

This section investigates the performance of the three phase

a.c./d.c. load flow and, where applicable, compares this with the
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corresponding single phase sequential integration. The investigat-
ion is performed with reference.to a particular test system which
has been selected to illustrate the features which influence
convergence and also to enable detailed results to be given.

The test system and d.c. convertor installations are described
in the first part of this section. The convergence characteristics
of the d.c. model when operating from fixed terminal conditions is
examined and then the beha§iour of the combined a.c./d.c. load

flow is investigated.

6.6.2 Description of Test System

The developed algorithm has been investigated with reference to
the test system illustrated in Fig. 6.7. The system consists of two
a.c. systems interconnected by a 600 kv, 600 MW h.v.d.c. link.

The 20 bus system is a representation of the 220 kv a.c. network
of the South Island of New Zealand. It includes mutually=-coupled
paréllel lines, synchronous generators and condensers, star-star
and star-delta connected transformers and has a total generation in
excess of 2000 MW.

At the other end of the link a fictitious 5-bus system represents
800 MW of reméte hydrogeneration connected to a convertor terminal
and load busbar by long untransposed high voltage lines.

The small system is used to test thé algorithm and to enable
detailed discussion of results. The d.c. link should have considerable
influence, as the link power rating is comparable to the total
capacity of the small system. Relevant parameters for the a.c. system

and d.c. link are given in Table 6.1.
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Data for all lines
ZS Series Impedance Matrix YS Shunt Admittance Matrix
0.0066 0.0017 0.0012 . . .
+30.056 | +30.027 | +30.021 1015 J0.03 J0.01
0.0017 0.0045 0.0014 . . . .

. . =30.0 . =30,
+30.027 | +30.047 | +30.022 30.03 30.25 10.02
0.0012 0.0014 0.0062 . . .

. . =30. =40.0 .
+j0.021 | +30.0220 | +30.061 J0.01 30.02 J0.125

Generator Data Data for generator trans-
formers
Sequence | Power | Voltage Connection | Star-G/DELTA
Name Reactances (MW) Regulator
” X a Reactance - 0.0016+30. 015
v .
o 2 Off-nominal +2.5% on
GEN, 01 0.02{0.004 700.0 1.045 tap Star
GEN.SL 0.02/0.004 SLACK 1.061
Busbar Loadings
PHASE A PHASE B PHASE C
BUS NAME | ©_roap O-LOAD | P-IOAD Q-LOAD | P=IOAD = Q-LOAD
BUS.OL 20.000 10.000 20.000 10.000 20.000 10.000
BUS.02 66,667 26.667 66.667 26,667 66.667 26.667
BUS.03 0.000 0.000 0.000 0.000 0.000 0.000
BUS .04 0.000 0,000 0.000 0.000 0.000 0.000
BUS.05 ’ 0.000 0.000 0.000 0.000 0.000 - 0.000
Data for all convertors
Phase 1 Phase 2 Phase 3

Transformer Reactances 0.0510 0.0510 0.0510

Commutation Reactances 0.0537 0.0537 0.0537

Minimum Firing Angle 7.0 deg

Minimum Extinction 10.0 deg

Angle
Nominal Voltage 140 kv
D.C. link resistance = 25,0 ohms.
Table 6.1 System Data
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6.6.3 Convergence of D.C. Model from fixed Terminal Conditions

The set of equations R form a complete mathematical description
of the steady state operation of the three phase d.c. convertor.
These equations may be solved using a full Newton-Raphson procedure
as discussed in section 6.4. If the terxminal busbar voltages

(

vterm' eterm) are fixed then the d.c. model may be solved in
isolation. The convergence pattern of the real and reactive power
flows from the a.é. busbar.are of interest as this is the primary
feature of the d.c. systems influence on the convergence of the a.c.
system. The convergence patterns for these terminal power flows

for the three phase model, under both balanced and unbalanced terminal
conditions, are shown in FPig. 6.8. Similar convergence patterns are
obtained under all d.c. control strategies when the terminal
conditions are fixed. The convergence pattern of the single phase
representation of the same convertor, as developed in chapter 5, is
also illustrated. To enable a comparison to be made, the total
three phase powers are plotted for the balanced case. In all cases
d.c. starting values were selected to give large initial errors in
the terminal powers to better illustrate the convergence.

The d.c. equations require 2 iterations to converge for both
the single and three phase models. The three phase terminal powers
converge in a similar manner to the single phase powers under
balanced conditions. With unbalanced terminal conditions the three
phase convergence is rapid.

The influence of the changing three phase power flows on the

/
a.c. system convergence is investigated in the following section.

6.6.4 Performance of the Integrated A.C./D.C. Load Flow

With reference to the test system illustrated in Fig. 6.7, the

following control specifications are applied at the inverting
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terminal for all cases which have been investigated;

- symmetrical firing control with the reference phase
on minimum extinction angle.
= Off nominal tap ratios equal on all phases.

= D.C. voltage specified.

A variety of different control strategies have been applied at
the rectifier terminal; ‘the case descriptions and convergence
results are given in Table 6.2. The Table also includes the results
with the convertor installation ﬁodelled by equivalent a.c. loads
at the terminal busbars and for cases where the system unbalance
has been artificially increased with large unbalanced loads.°

It should be noted that the iteration scheme illustrated in
Fig. 6.5 does not allow for each individual a.c. system to be
converged independently, therefore the number of iterations required
is the larger of the two sets given in the Table.

It is clear that the integratioﬁ of the d.c. convertor model
does not cause any significant deterioration in performance. The
only cases where convergence was slowed was for cases (viii) and (xi),
where the system is weakened by the loss of one transmission line.
This is not uhexpected from the discussion of single phase sequential
algorithms given in chapter 5.

The nature of tﬁe iﬁteraction between a.c. and d.c. systems is

examined in more detail in the following section.

6.6.5 Interaction Between A.C. and D.C. Systems

The convergence pattern of the terminal voltages at BUS.03 is
illustrated in Fig. 6.9 for the case where the convertor is modelled
by the equivalent unbalanced real and reactive power loads. The

deviation of the three phase angles from nominal balance (i.e.



Number of iterations to

Case Case Description and Rectifier Specifications Convergence (0.1 MW/MVAR
20 Bus System{6 Bus System
a(i) Convertor modelled by equivalent balanced loads* 8,7 6,5
(ii) Convertor modelled by equivalent unbalanced loads® 8,7 6,5
. sp '
P - = = = = =
b(i) hase angle control ; o, =0, =0 I a3,Pd Pd 8,7 6,5
(ii) Symme#rlcal f}rlng poag=a L 8,7 6,5
13 1 — = = — = —3 Sp =
(1ii) Phase angle control ; al az u3 amin'al a2 a3,Idc Idcydl de 8,7 6,5
H : 2t ;' = . 1) [ 3] [
{iv) Symmetrical firing i & in 8,7 )
(v) As for case b(i) ; with poor starting values. (P, ,0. 1in 8,7 8,7
. - de ~dc
error by 70%)
(vi) As for case b(i) ; with large unbalanced load at BUS.03 8,7 7,6
{vii) As for case b(ii) ; with large unbalanced load at BUS.03 .7 .
(viii) | As for case b(i) ; with loss of 1 line BUS.Ol to BUS.03
] i i i ° = e = =+
(ix) Symmetrical firing ; ui amin’al lO%,a2 O,a3 10% 8, 6
(x) Phase angle control ; a.=a_=a =asP o, =a_=0_,P =PSp 8,7 7,6
T %172 73 "1 72 37dec dc ! !
{xi) Case (x) loss of 1 line. BUS.01l to BUS.03 ’ 8,7 8,8

* loading for case a(i) and a(ii) derived from results for

Table 6.2

case b(i).

Case Descriptions and Convergence Results

See Table 3.

691
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Fig. 6.9 Convergence Pattern of Phase Voltages at Terminal Busbar
for the A.C. System in Isolation
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0,-120,120) is also shown. The convergence of the three phase a.c.
voltages for the a.c. system iﬁ isolation is well behaved and is
very similar to the single phase case as discussed in chapter 4.
The slower overall convergence of the three phase load flow;
occurs in a stable manner with the voltages and angles changing
very little after the initial iterations. That is, the final
unbalanced power mismatches require only very small changes in
voltages and anglés to enéble final convergence to be obtained.

As a result the d.c. terminal powers appear as virtually constant
real and reactive power loads over the final convergence of the
a.c. system and the d.c. convertor does not, except in the case of
a weak a.c. system, influence the final convergence.

From the discussion thus far it has been shown that both the
three phase d.c. convertor terminal power flows and the three phase
a.c. voltages convergevin virtually identical patterns to the
corresponding single phase cases. The interaction between a.c. and
d.c. systems in the three phase case can therefore be expected to
closely parallel the single phase sequential integration discussed
in chapter 5.

The most stringent test is therefore the case of a weak a.c.
system when the convertor control angles are not specified, for
example case (xi). In such cases it is possible to observe an
oscillatory convergence pattern which slows the overall convergence.

To examine the effect of a weak system in the three phase
case the convergence patterns for the terminal powers and voltages
are shown for case (x) and (xi) in Figs 6.10 and 6.11 respectively.
The following general features of the three phase a.c./d.c. load

flow may also be seen:
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= for the first reactive power iteration the convertor reactive
power demands are unbalanced. This unbalance is solely due to
the terminal busbar phase angle unbalance and has, therefore,
no definite relationship with the final reactive power
unbalance.

- the termingl voltages resulting from the first reactive
power iterxation are due to a combination of the terminal

reactive power, and the system unbalance.

As a consequence of these features the reactive power and voltage
unbalance vary considerably over the first few iterations. Although
this suggests that the d.c. convertor equations should not be

solved until after one or two complete a.c. iterations, the initial
variation in the unbalance does not cause any convergence problems
and therefore alternative techniques, such as the one mentioned,
have not been investigated.

Comparing Figs 6.10 and 6.11 it is clear that with the weaker
system the unbalance is increased and also the convergence patterns
are more oscillatory. Both these features cause a slowing of
overall convergence. The corresponding convergence pattern for the
single phase load flow for case (xi) is shown in Fig. 6.12 where a
similar oscillatory pattern is observable. The sum of the three
phase reactive powers and the +ye sequen;:e voltage for the three
phase case is also plotted in Fig. 6.12. The similarity is clear.

In the three phase case it appears that the unbalance is virtually

superimposed onto the behaviour of the single phase study.

6.6.6 Sample Results

The operating states for both convertors at BUS.03 are given

for all cases in Tables 6.3(a) and (b). The corresponding a.c. system
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CbNVERTOR 1 (STAR-STAR)
Case Phase Firing Tap :zrzrim;—l Terminal  Powers DC Conditions
aA?gi:) Zaﬁgﬁ Angle Real Reactive | Voltage Current
i i ui(deg) Pi(MW) Qi(MVAr) le(kV)- Idl(kA)
b(i) 1 7.00 5.5 29.79 98.1 48.1 292.8 1.0246
2 7.00 . 29.32 101.7 50.8 - -
3 7.00 5. 29.61 100.3 48.3 - -
b(ii) 1 7.00 5.3 29.78 98.6 49.0 292.8 1.0246
2 7.20 5.3 29.14 100.9 51.3 - -
3 8.43 5.3 28.50 100.6 47.8 - -
b({vi) 1 7.00 .8 29.17 95.6 39.5 292.8 1.0246
2 7.00 29.16 | 101.9 50.5 - -
3 7.00 . 30.43 102.44 57.2 - -
b(vii) 1 7.00 3.9 29.03 97.6 38.1 292.8 1.0246
2 11.64 3.9 25.63 101.8 54,7 - -
3 9.37 3.9 28.56 100.6 57.7 - -
b(ix)- i 11.00 -10.0 24.32 104.6 49.4 314.1 0.9483
2 .7.00 0.0 27.76 101.1 45.4 - -
.3 7.55 10.0 26.08 92.1 44,03 - -

Table 6.3(a)

Convertor 1 Results

9Ll



CONVERTOR 2 (STAR-G~DELTA)
Case Phase | Firing Tap :Zﬁ?g; Terminal Powers DC Conditions
aA?gi:) 2a?;$ Angle Real Reactive Voltage Current
i i vy (deg) P, (MwW) Qi (MVArX) vd, (kv) 14, (kB)
b (i) 1 7.00 . 29.80 97.3 49.2 292.8 | 1.0246
2 7.00 5.5 29.60 102.6 53.2 - -
3 7.00 . 29.32 100.14 44 .7 - -
b{ii) 1 8.03 5.2 28.97 96.4 50.0 292.8 1.0246
2 7.00 5.2 29.57 102.7 52.9 - -
3 8.55 5.2 28.08 lOO.é? 45 .66 - -
b (vi) 1 7.00 4.3 30.63 67.9 13.0 282.8 1.0246
2 7.00 4.3 28.92 95.5 8.4 - -
3 7.00 . 28.90 136.6 53.7 - -
b {vii) 1 7.00 3.0 30.48 70.9 17.9 292.8 1.0246
2 14.95 3.0 23.25 90.1 24.1 - -
3 13.41 3.0 24.25 138.9 52.2 - -
b(ix) 1 8.08 -10.0 25.42 88.9 65.3. 314.7 0.9483
2 8.38 0.0 27.30 122.6 49 .9 - -
3 7.00 10.0 26.96 86.9 24,2 - -

Table 6.3 (b)

Convertor 2 Results

LLL



178

voltage profiles and generation results are given for cases a(i),
b(i) and b(ii) in Table 6.4. The following discussion is with
reference to these results.

Comparing cases a(i) and b(i) it may seem that the realistic
three phase convertor model, which enables the unbalanced power
demands of the convertor to be found, results in an identifiable
alteration in the system voltages over the simple case of using
balanced real and reactivé loads at the terminal busbar.

The terminal power flows to. the convertors are significantly
unbalanced, especially in the case of the star-g/delta connection of
the convertor transformer. The influence of these unbalanced
loads on the a.c. operation depends on the strength of the a.c.
system.

Comparing cases b{i) and b(ii) it may be seen that the symmetrical
firing controller has only a small influence on the steady state
fundamental power flows to the convertors. The main influence is,
of course, on the harmonic generation and harmonic interaction which
is considered further in the following chapters. Although small

the following effects may be seen:

- there is a marginal increase in reactive power consumption
due to two phases having greater than minimum firing angles.

- in the resulﬁs given, a small increase in transformer tap
boost was required to méintain the specified d.c. voltage. 1In
actual practice the transformer taps are not infinitely
variable and a small decrease in d.c. terminal voltage would

occur for the same fixed tap.

The influence of the convertor transformer connection is significant.

In addition to modifying the convertor source voltages it also




Case

b(i)

Case

b(ii) |

BUS NA | yorn - awe. | vour. . awe. | vomr. . e, ~rorar
BUS .01 1.067 | 27.294 1.067 -92,891 1.061 147.431 0.000 0.000
BUS .02 1.054 }25.190 1.065 -94.670 1.057 144.915 0.000 0.000
BUS.03 1.038 | 23.185 1.071 -95.714 1.043 142.567 0.000 0.000
BUS .04 1.045 -3.566 1.046 -123.479 1.047 116.436 173.621 74;723
BUS.05 1.061 2.683 1.062 -117.367 1.061 | 122.628 | 700.000 | 113.920
BUS NAME VOLTF;)HASE iNG. VOL??ASE BANG. VOLE?ASE gNG. GEN$g$§£ON
BUS.O1 1.067 27.362 1.065 ~92.955 | 1.062 147.437 0.000 0.000
BUS.02 1.055 25.232 1.064 -94.717 1.057 144.925 0.000 0.000
BUS.03 1.038 | 23.517 1.066 -95.965 1.049 142.543 0.000 0.000
BUS .04 1.045 -3.552 1.046 -123.483 1.047 | 116.438 | 173.570Q 74.706
BUS.05 1.061 2.690 1.062 -117.369 1.060 122.634 | 700.000 113.680
BUS.OL 1.066 27.31 1.066 -92.942 1.062 147.421 0.000 0.000
BUS.02 1.054 | 25.238 1.064 -94.,705 1.057 144.913 0.000 0.000
BUS.03 1.036 23.532 1.066 -95,947 1.049 142.506 0.000 0.000
BUS.04 1.045 ~-3.563 1.046 | -123.479 1.047 116.439 173.593 75.949
BUS .05 1.061 2.690 1.062 -117.363 | 1.060 122.635 700.000 115.391
Table 6.4 Bus Voltages and Generation Results

6LL
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modifies the phase distribution of power flows. The convertor
transformer may also influence the a.c. operation directly which
may be seen more clearly in Fig. 6.13 where the zero sequence
voltages and currents are shown for case b(i).

It can be seen that under unbalanced conditions a zero sequence
voltage may appear at system busbars. As the convertor has no zero
sequence path, zero sequence current will only flow when the convertor
transformer provides a path, as in the case of the star-G/delta
transformer. Accurate convertor transformer models must therefore

be included in the convertor modelling.

6.6.7 Conclusions On Performance of the Algorithm

It has been demonstrated that the fast decoupled three phase
a.c./d.c. load flow behaves in a very similar manner to the correspond-
ing single phase version. The following general conclusions on

performance are applicable:

- the number of iterations to convergence is not significantly
increased by the presence of the d.c. convertors.

- d.c. convergence is not dependent on the specific control
specifications applied to each convertor.

- wide errors in initial conditions may be tolerated.

- for very weak a.c. systems the interaction of the convertor
with the a.c. system is increased and the convergence is

slowed.

Successful convergence can however, be expected in all practical

cases.

~ the algorithm exhibits good reliability even under conditions

of extreme steady state unbalance.
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(a) Zero Sequence potentials for case b(i)

where Zab = j0.0?l

(b) 3Zero sequence network for convertor transformers

" Note: Transformer secondary zero sequence reference
is provided by equations

Pig. 6.13 Sequence Components and the Convertor Transformer

Connection
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6.7 CONCLUSION

A model of the steady state unbalanced operation of the three
phase d.c. conveértor has been formulated. The developed model is
sufficiently general to enable convenient incorporation of the
different firing controllers and also the various three phase
convertor transformer connections. The sequential integration of
the d.c. system model with the equations of a fast decoupled three
phase load flow has been successfully implemented, without impairing
the efficiency and convergence of the original fast decoupled

algorithm.
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CHAPTER 7

INTRODUCTION TO HARMONIC FREQUENCY

POWER SYSTEM ANALYSIS

7.1 GENERAL CONSIDERATIONS

It is well known that any non-linear device operating from
the power system will generate véltages and currents of harmonic
frequencies., Common examples of such non-linear devices are the
power transformer and d.c. power conversion equipment.

. . (43) “;
Harmonics in the power system cause many well documented f
problems. In the lew Zealand situation, the most significant

problems experienced relate to Post Office communication and ripple

control interference which result from the harmonic currents

generated by high power d.c. conversion equipment. In the South
Island of the New Zealand system up to 50% of the total generation

is often used to supply the inter-island h.v.d.c. link and a

(52)

large aluminium smelter. Early harmonic problems and occasional
recurring Post Office and ripple control interference have created

a significant need for greater understanding of harmonic phenomena.

53)

In addition, overseas experience( suggests that the proliferation

of non-=linear solid state devicés at domestic level, which generate
both odd and even harmonic orders, are likely to be a source of
future harmonic problems and there is a significant need to
establish standards to limit harmonic generation levels at both

domestic and industrial installations.

The use of ripple control equipment is widespread throughout

New Zealand and many different frequencies and types of plant are
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in use.(54)
A review of the ripple conﬁrol characteristics shows that

some systems are more susceptible to interference than others due

to the wide frequency acceptance of the relay and the type of

coding employed. The lateét ripple control systems, employing

fixed frequency solid state injection plant,allow better tuning of
the relays and interference with this plant is unlikely. However,
installed equipmeét is likély to remgin in operation for a consider-
able time and the interference problem cannot be ignored.

In oxder to fully understand both harmonic géneration and
harmonic penetration into the power system, some means of analysis
is required. Early techniques for harmonic frequency analysis
were developed in connection with the design of ripple control
systems(55'56'57). These single phase harmonic penetration studies
are used to determine the size of the injection plant, detect system
resonances and identify locations with low signal levels. Apart
from these studies very little hag been done in the analysis of
harmonic power flows. A notable exception is a detaiied investigat-
ion into the flow of harmonics in transmission systems carried out
in the 1940's by Whitehead and Radley(sg).

Experience by New Zealand Electricity in extending the single
phase analysis to the prediction of convertor generated harmonic
levels on the h.v. transmission system has revealed significant
deviations between calculated and monitored harmonic levels; this
is thought to be due to the unbalanced nature of the harménics at
the point of generation and also the unbalanced and coupled naturg
of the three phase system.

It is the aim of this chapter to provide an introduction for

further investigations into harmonic penetration studies on a three
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phase basis. Although a detailed investiéation of this topic is
outside the scope of this thesié, many of the concepts and

techniques involved are common to the steady state load flow analysés.
In particplar the steady state three phase convertor model developed
in the previous chapter provides an excellent basis for the estimation
of possible harmonic generation under unbalanced conditions, a

subject discussed in the following chapter.

7.1.1 Harmonic Generation and Flow in the Transmission System

Any device which, when connected to a sinusoidal voltage
supply, draws other than a sinusoidal current is a source of harmonics.
Power transformers are a common example and some allowance'is
usually made for the zero sequence third harmonic currents which
are required. Fifth and seventh harmonics also occur but these are
generally small and do not cause operational problems.

The major source of harmonics which are troublesome in the
a.c. system is the high power d.c. convertor. The harmonic currents
injected into the a.c. system by the convertor are, in general,
unbalénced between. phases; the unbalance being more extreme for
the case of non=-characteristic harmonic oxders. Measurements
of the harmonic currents at Benmore(52) have shown deviations
between phases of up to 56% (450 Hz) with an average deviation of 35%.
The combined effect bf Ehe current unbalance and any system impedance
unbalance is reflected in the phase voltages which are shown(sz) in
Table 7.1 for the Benmore 220 Kv busbar. All harmonic voltages are
unbalanced with the most severe unbalance occurring at the non-
characteristic third and ninth harmonics. Although unbalanced, the

current injections at the convertor itself consist purely of

positive and negative sequence components as there is no zero
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400 A d.c., (one third full load current)
Phase-to-neutral voltages
Harmonic At Benmore 220 kv
Red Yellow Blue
phase (%) phase (%) phase (%)
1 100 100 100
2 0.5 0.7 1.0
3 2.9 0.3 1.0
4 0.6 0.3 0.4
5 0.25 0.15 0.25
6 0.25 0.30 0.35
7 0.15 0.15 ‘ 0.1
8 0 0.05 0.1
9 0.05 0.05 0.15
10 0.05 "0.05 0.05
11 0.1 0.15 0.1
12 0.15 0.05 | 0.15
13 0.05 0.05 0.05
14 0.05 0.05 0.05
15 0.15 0 0.2
16 -0 0.1 0.15
17 0.3 0.3 0.3
18 0] 0.05 0.1
19 0.3 0.3 0.7
20 - - -
21 - - -
22 0.2 0.2 0.5
23 0.4 0.2 0.3
25 0.2 0.2 0.15
Table 7.1 Harmonic Measurements during

Back-to-back Testing.
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sequence path for the convertor.currents. This is discussed in
more detail in the following chapter.

Moreoveyr, with unbalanced conditions or with firing angle errors,
both phase angle control and symmetrical firing control, give rise

(59)

to uncharacteristic harmonics . The advantage of symmetrical
firing is the elimination of harmonic feedback effects(so) and the
greater inherent accuracyvof the firing controller.

Communication interference arising from harmonics in the a.c.
system is usually caused by the flow of zero phase sequence
components(43) of harmonic currents. If convertor generated harmonics
are the source of the interference then the zero sequence éurrents
arise solely because of the a.c. system unbalance. For long
untransposed lines resultant zero sequence currents may be sig-
nificant(ss’Goz |

A series of tests have been carried out to investigate the
impbrtance of the mutual coupling between parallel transmission lines
at harmonic frequencies. The harmonic voltages induced in an out of
service 220 kv transmission line are shown in Table 7.2. The voltages,
all of zero sequence, were caused by electromagnetic coupling with a
parallel transmission line which was in service at the time of
measurement. The zero sequence harmonic currents in the in serxvice
line are also given in Table 7.2.

Additional features which ére illustrated in the Table are the
high mutual coupling at 5th harmonic and the relatively high 9th
harmonic curre?t in the active line. Both these effects may be
attributed to the transmission line length. The line is approximately

240 km long which corresponds to around a quarter of wavelength at

5th harmonic and approaches a half wavelength at 9th harmonic.
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Harmonic Oxder

Zero Sequence Current
(In Sexrvice Line)

Induced Voltages (Volts)
{Out of Serxvice)

(Amps) VR A4 VB
1 2.186 170 165 170
3 0.45 9 9 9
5 0.106 38 38 38"
7 0.186 9 9 9
9 0.30 10 10 10

Table 7.2 = Measurements of Induced Voltages in Parallel Transmission

Zero sequence currents were measured using existing station CT's.

(60

The errors are small

)

at the frequencies measured (i.e. < 1.5%).

Induced voltages were measured with a Plessey Audio Frequency

Power Analyser.

Phase to Phase induced voltages were very small indicating that

the induced voltages were of zero sequence.

realistic quantitive analysis of harmonic levels and their interference

From the preceding discussion it may be concluded that a

potential requires a detailed three phase representation of the

power system.

must be accurately known.

investigations should not be underestimated.

are:

In addition, the major harmonic current injections

The difficulties and uncertainty associated with harmonic

The major obstacles

(i) Three phase system data is not generally available at

harmonic frequencies.

(ii) The values of both the characteristic and, more especially,

the non-characteristic harmonic injections cannot be

accurately assessed, except in the case of existing
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schemes where measurements may be made. This difficulty

is likely to remain insurmountable.

However, it is only by investigations into both the generation
and propagation of harmonics on a three phase basis that a full
appreciation of harmonic phenomena can be obtained. For this reason,
research into both the calculation of harmonic current injections
and the penetration of those harmonics into the a.c. system, is of
considerable relevance.

The remainder of this chaptér discusses the harmonic frequency

system modelling.

7.2 COMPONENT MODELS FOR HARMONIC STUDIES

The formation of a mathematical model of the power system at
harmonic frequencies is based on the fundamental frequency modelling
discussed in chapter 2. However, more detalled consideration has to
be éiven to the modelling of individual components at harmonic

frequencies.

7.2.1 Transmission Lines

In general, the lumped parameter approximation commonly used for
fundamental frequency analysis, where most lines may be considered
electrically short (i.e., less than 1/20th of a wavelength long), can
not be applied when higher harmonic frequencies are beihg considered.

71 which takes full account

Accordingly, the exact representation(
of standing wave effects, must be used. The exact representation
is most conveniently formed as an equivalent T or T circuit which
gives the correct terminal conditions fof the line undexr consideration. )

This technique is applicable to both three phase and single phase

analysis.
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The single phase equivalent pi and T circuits are shown in
Fig. 7.1. The input impedance at any point along a line terminated
with a load (ZL) is,

+ .
ZL ZO tanhy.x

Z =12 ' (7.1)
Z. + R
X 0 o ZL tanhy.x

where
Y =0 + jB = vV ZY (propagation constant)
and
Z ' . : .
ZO = //; (characteristic impedance)

For a short circuited lossless line:

Z, =+ 3 2, tan B.x (7.2)

For an open circuited lossless line:

Z =-372

« 0 cotan B.x (7.3)

where

w
I

2m/A

A is the wavelength

Therefore a line which is A/4 long, will, when terminated in a
short circuit; appear as a very high impedance, in a similar way
to a parallel resonance pf lumped capacitance and inductance. Under
the same conditions a line A/2 ;ong will.appear as a very low
impedance, similarly to a series resonance.

For three phase models the series impedance and shunt admittance
per unit length are 3 x 3 matrix quantities, as discussed in chapter 2,
and matrix manipulations(lz) are required to form the equivalent
shunt and series matrices. Similar resonant effects are apparent,

and, in addition, the influence of coupling between parallel circuits

are included.
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(b) Long line
where

Z fz. = 2(xr + jx) = L(r + j2mfL)

1

total series impedance per phase

Y =42y = (g + Jb) = (g + j2w£fC)

total shunt admittance per phase
where f is length of line in miles; r,L,C, and g are resistance,
inductance, capacitance, and leakance, respectively, per mile; f is

frequency.

Fig. 7.1 Long Line Transmission Line Models
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The methods of calculating the line parameters are well

(7,61,62)

documented and only the frequency dependent features will

be considered further here.

7.2.2 Frequency Dependence of Transmission Line Parameters

7.2,2.1 Skin Effect

As the frequency increases the current concentrates at the outer
circumference of Ehe conductor or conductor bundle.

This effect is usually ignored in the calculation of reactance but

it must be included in the calculation of a.c. resistance.

(63)

Detailed investigations have shown that ACSR conductors may
be considered as hollow tube conductors. The increase in a.c.

resistance is strongly dependent on the ratio of inside to outside

diameter as shown in Fig. 7.2.

7.2.2.2 The Effect of Ground Current Distribution

The effect of frequency on the ground currents and hence on the
series impedance matrix, can be assessed by approximéting the
resistivity distributions of the earth. Carson(7) developed formulae
which were based on the assumption of uniform earth resistivity.

The affect of variation of frequency and earth resistivity can
be seen in Table 7.3 which was calculated(64) from Carson's equations
for the line shown in Fig. 7.3. The increase in resistance with
frequency due to skin effect and the increase in unbalance with
increase in frequency is shown. The change in inductances may be
understood by the concept of 'depth of penetration' of the earth
currents. With increase in frequency or decrease in earth resistivity
the currents do not penetrate so deeply and hence the inductance
decreases.

(13)

More recent researchers have developed techniques for consider-

ing the effect of multi lavers of different conductivities.
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Fig. 7.2 Skin Effect Curves for Tubular Conductors



Earth Angular frequency w rad/s
Resistivity 314 104 106
Qm Q/mile mH/mile Q/mile wmH/mile /mile mH/mile
Rll Lll 20 0;075 2.831 1.925 2.338 61.62 1.%62
100 0.077 3.082 2.209 2,556 106.7 2.204
R12 le 20 0.074 1.321 1.794 0.845 439.58 0.518
100 0.077 1.569 2.128 1.051 90.13 0.583
R13 L13 ' 20 0.073 1.102 1.580 0.641 41.41  0.353
100 0.076 1.348 2.053 0.839 77.91 0.408
R22 L22 20 0.073 2.841 1.680 2.381 41.42 2.092
100 0.076 3.087 2,053 2.578 77.92 2.147
R23 L23 20 0.071 1.330 1.580 0.885 35.54 0.625
100 0.075 1.574 1.984 1.073 68.56 0.672
R33 L33 20 0.070 2.850 1.491 2.419 31.11  2.184
100 0.075 3.092 1.91° 2.599 61.17 2,225
Table 7.3 Impedance of 275 kV Line

velL
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Fig. 7.3 Configuration for 275 kV Transmission Line
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7.2.3 Transformer Modelling

The techniques discussed iﬁ chapter 2 for the modelling of
various three phase connections are equally applicable to harmonic
studies except for the values of leakage reactance and resistance,
which must be modified. There is some disagreement in the

literature(55'57)

as to whether the full value or only 80% of

the fundamental frequency ?eactance should be used. The resistance
is taken as increasing with frequency and again there is some
variation in the exact relationship. The exact values used are
not critical unless the transformer forms part of a resonant
circuit at a particular harmonic frequency.

(57 to implement in an admittance formulation

A convenient model
is shown in Fig. 7.4. A resistance, whose value is eighty times

the fundamental leakage reactance in ochms, is placed in parallel

with the transformer leakage inductance.

'jx

Y Y Y Y

—WW

R = 80X ohms

Fig. 7.4 Harmoniec Frequency Transformer Model

_ .
The frequency variation of this model is shown in Fig. 7.5

where it may be seen that the resistance increases significantly

with frequency while the leakage inductance decreases only slightly.

This model is applicable on a single phase basis or as part of
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Fig. 7.5 Frequency Dependence of Transformer Model
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the primitive network for the derivation of the three phase models.

7.2.4 Filter Modelling

In most high power d.c. convertor installations filters are
provided for the characteristic harmonicsf43) Single tuned shunt
filters are provided for the lower order harmonics. The higher
order harmonics, usually 17th and above, are filtered using a
second or third oxder high“pass filter. It is not uncommon for
additional filters to be required for abnormal harmonics which

(52) an additional filter

prove troublesome. For example at Benmore
tuned to the 9th harmonic was found to be necessary. The filter

types are illustrated in Fig. 7.6.

c —— —__ c
, —_ c
L
R % R
NN NQ\N AU URRRRNRNNNN
Fig. 7.6  H.V.D.C. Shunt Filter Types

The single tuned shunt filter impedance is,
N 1)
= R < o R
Z R j\wL wC} (7.4)
and the third order high pass impedance with equal capacitors is,

-] .
1/ 1 1 —
= + ' : °
e ij+\R+l/ij ij) v (7.3)

. , =1 . .
In an admittance formulation (where Yf = Zf ) the filters contribute
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to the shunt admittance of the busbar to which they are connected.

7.2.5 Synchronous Machines

In general it may be assumed that the synchronbus machines
produce no harmonic voltages and they may therefore be modelled
simply by a shunt connected impedance at their terminal busbar.

A value of 80% of the subtransient inductance together with a power
factor of 0.2 has been empirically determined to give satisfactory

(55)

results.

7.2.6 Loads
It is generally adequate to model loads by their equivalent

parameters derived from the power frequency conditions.

7.3 CONCLUSION

This chapter has described the nature of the harmonic problems
associated with transmission and distribution systems and has
diséussed the degree of system representation required for a
quantitative analysis.

A brief introduction to three phase harmonic frequency power
system modelling has been given and it is intended that this form

a basis for further development.
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CHAPTER 8

STEADY STATE HARMONIC GENERATION OF

D.C. CONVERTORS.

8.1 INTRODUCTION

It is well known that, under unbalanced or distorted conditions
(i.e. non sinusoidal supply), d.c. convertors produce abnormal a.c.
current harmonics in addition to the expected characteristic

harmonic orders. The unbalanced operation may be caused by the

(65)

commutation reactances

system itself559'66'67)

, the commutating voltages or the control

Under normal steady state opération some minor unbalance is
inevitably present and some uncharacteristic harmonic currents will
be generated. These currents, together with the characteristic
harmonic currents give rise to harmonic voltages at the convertor
terminal busbar. The magnitude of the harmonic voltages is determined
by the parallel combination of the system and filter impedances at
each particular harmonic frequency.

The harmonic voltages may, depending on their magnitude and
the control éystem in operation, give rise to an increased generation
of harmonic currents of the sameé order. This feature of harmonic

(50)

magnification , and in extreme cases instability, occurs due to

a positive feedback loop between the terminal voltages and the

harmonic current generation via the control system. It is usually

. 1
only of importance for convertors connected to weak a.c. systems(5 )

or if the system harmonic impedance is high duvue to a.c. system

(67)

regonances or resonances between the filters and the a.c. system.
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The use of control system filters to interupt this feedback loop
has resulted in improved harmonic performance. However, several

(49)

associated disadvantages make the use of control system filters

undesirable.
. . . (49)
The symmetrical firing system, as proposed by Ainsworth ‘
removes the feedback effect without the disadvantages of a control
system filter. The symmetrical firing does not eliminate the

(59,69) under unbalanced conditions;

generation of abnormal hafmonics
it is however amenable to greater accuracy and it does eliminate many
harmonic feedback effects.

The calculation of the harmonic currents produced by the
convertor is complex due to the wide range of parameters which are
involved and the difficulty of obtaining accurate values for those
parameters. For these reasons iﬁ is difficult for the harmonic
current generation to be calculated with reasonable accuracy.
However, the features which influence harmonic generation and
harmonic interactions can be studied and this provides wvaluable
understanding of harmonic phenomena. This uncertainty introduces
difficulties in assessing the assumptions which may be made withoﬁt
invalidating .any particular study. As few assumptions as possible
are therefore made and theée are clearly stated.

(59,65,66,67) have assumed nominal

Previous investigations
conditions of unbalance (e.g. firing angle errors or voltage
unbalance) or commutating voltage distortion and calculated the

Vharmonic currents under those conditions. The results are usually
presented as graphs 6f the percentages of positive and negative
sequence harmonic current generation_as a function of the
unbalance or of the harmonic voltage distortion. The difficulty in

presenting results is considerable and the thorough manner in which

previous reseaxchers have identified and quantified the various
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features which cause harmonic production is commendable.

The aim of this chapter is not to reproduce those results but
to develop a more general method to study the harmonic interaction
between a convertor and the a.c. system, on the steady state.

Reeve et a1(7Q) carried out harmonic interaction studies by
means of dynamic simulation. Their analysis was restricted to a
single convertor ;nteracting with a reduced representation of the
a.c. system. No attempt was made to include the effects of inter-
action between various convertors connected to the same a.c. system.
While such extensions may be possible the computational costs
become prohibitive and the use of dynamic analysis should be
avoided whenever possible.

Steady state analysis can reduce the computational costs and
still allow the investigation of ﬁany features associated with
harmonic current generation. Although the dynamic response of the
control system cannot be modelled, any steady state firing angle
errors may be represented.

The steady state analysis presented here enables study of the
harmonic interaction between separate convertor installations, the
effectiveness of the filters and also the interaction of the |
filters and a.c. system. Computational efficiency is achieved by
the use of a Fast Fourier Transform algorithm to calculate the
fourier coefficients of the current waveshapes.

In common with previous investigations into the harmonic
interaction of a convertor with the a.c. system, a knowledge bf the
system harmonic admittance is required. For the purpose of this
chapter it is assumed that the harmonic ffequency admittance
matrices of the system elements are known. The calculation of

these matrices and formation of the system admittance matrix for
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each frequency was discussed in the previous chapter.

However, it is appropriate'to restate here that, the formation
of the harmonic system model is the area in which future efforts
will need to be directed. The topic was introduced in the previous
chapter and techniques for inclusion of the system model at
harmonic frequency are discussed here. At present, the best data
which is available is that derived from single phase studies and
it is this data which has‘been\used.

This chapter describes the calculation of the harmonic current
injections of the d.c. convertors when operating from an a.c. system
which contains unbalanced and distorted a.c. voltages. Thé
harmonic interaction of the convertor and the a.c. system is studied
with both symmetrical firing and phase angle control.

The basic method used to enéble calculation of the harxmonic
voltages and currents generated by the d.c. convertor is illustrated
in Fig. 8.1.

An important assumption, inherent in the method, is that the
operating state of the convertors, as regards the d.c. current
magnitude and the fundamental component of a.c. voltages at the
terminal busbars, is not significantly altered by the presence
of the harmonics. The validity of this assumption is considered
in Appendix 7 where it is concluded that although intuitive
reasoning suggests that harmonic voltages, up to the allowable
limits, will not significantly affect the fundamental conqitions, it
is possible, under worst case conditions, for the fundamental operating
state of the convertor, as calculated by the three phase load flow,
to be significantly in error. The fundamental conditions which exist
in the presence of harmonic distortion must therefore be compared

with those originally calculated by the load flow. Lack of significant
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Study
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error confirms the validity of both the three phase a.c./d.c.
load flow and of the harmonic study itself.
The details of the iterative solution technique, illustrated

in Fig. 8.1, are discussed in the following sections.

8.2 CALCULATION OF HARMONIC VOLTAGES AT CONVERTOR TERMINAL

BUSBARS .

8.2.1 A.C. System Modelling

It is assumed that the anc..system is linear and therefore
the principle of superposition may be applied to enable each harmonic
to be considered separately. At each frequency of interes£ the
system is modelled by its' harmonic admittance matrix. The
harmonic voltages are related to the injected currents by the familiar
equation:

[1]1 = [vllv] (8.1)

The development of the system harmonic admittance matrix was
discussed in the previous chapter. For the present it is assumed
that the system harmonic admittance matrix is known.

The method of solution for equation (8.1) is structured so
that the harménic admittance, as viewed from the convertor terminal,
may be used if the complete system harmonic admittance matrix is not

available.

8.2.2 Position of the Injected Currents

In the present investigation the only source of harmonic currents
considered is d.c. convertor stations. The injected currents at most
a.c. busbars will therefore be zero. For‘the convertors, the injected
currents are calculated from the currént waveshapes by fourier analysis.

(59)

Reeve et al performed the Fourier analysis of the current
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waveshapes at the convertor terminal busbar. This réquiresvthe
transfer of the current waveshapes from the secondary (convertor)
windings to the primary windings. While this is étraightforwaxd
for a star-star unit it is considerably more complex for the
star-delta connection, especially so as the transformer parameters
and the commutation voltages may be unbalanced.

As models for all thrge phase transformers at the harmonic
frequencies are available it is more convenient to include the
convertor transformer into the system model and to simply calcu;ate
the harmonic currents on the transformer secondary. All units
therefore have the same current waveshape and features sucﬁ as
phase shifts in the convertor transformer and the influence of the
system unbalance are accurately included without the need for
separate routines. |

A further consideration influencing the convertor transformer
modélling is the calculation of any zero sequence harmonic current
flows in the a.c. system. Although the zero sequence voltage at
the convertor terminal does not affect the convertor operation, it
should be remembered that, in an unbalanced system, the magnitudes
of the positive and negative sequence voltages are influenced by
the flow of zero sequence currents. Therefore it is necessary to

accurately model any zero sequence path in the convertor transformer.

8.2.3 Convertor Secondary Voltage Reference

The convertor transformer secondary is referenced to earth via
the convertor to the d.c. earth. However, it is mathematically
convenient to use a different reference for the purpose of analysis.
As regards the position of a voltage reference, the considerations

made in chapter 6 with reference to the fundamental frequency
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modelling are applicable.

A reference may be provided by:

(1) Placing a large admittance to earth on one phase of
the secondary. This effectively earths the phase
concerned.

(idi) Placing a layge resistance from each phase to a star
point and earthing the star point. If the resistances
are equal the reference is the zero sequence voltage

as used in chapter 6.

Both metheds have been tested and provide identical results.
However, for consistency and ease of interpretation of results,

method (ii) is used in the sections that follow.

8.2.4 Solution Technigque

With reference to Fig. 8.1 it is clear that equation (8.1)
must be solved repeatedly for the harmonic voltages at the convertor
terminals. All other voltages are only required after the iterative
solution procedure has converged. In addition, the system admittanée
matrix [Y] is constant at each frequency for each of the repeat
solutions.

As an example consider the admittance matrix of the five bus
test system used in chapter 6. Preserving the identity of each
busbar in the system, including the convertor transformer secondarys

(i.e. 6 and 7) equation (8.1) has the following form:
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Lt o |° Y11 | Yaz | Va3 15 Yy
1y 0 Yo1 | Yoo | Y23 | Y2u Yy
13 0 Y31 | Y32 | Y33 Y36 | Y37 V3
Th | = 0= Y42 Y44 Vg
Is 0 51 55 Vs
T Te | : Y63 Y66 Ve
1 19 Y93 Yo7 41 Ve

(8.2)

where all vectors are 3 X 1 and all matrix elements are 3 X 3,

The influence of the harmonic filters, if any, is inherently
included in the calculation of the self admittances at the convertor
terminal busbars as discussed in chapter 7.

In equation (8.2) the injected currents at all busbars except
the convertor transformer secondaries (i.e. 6 and 7), have been set
to zero.

Equation (8.25 retains the identity of every system busbar and
its solution would yvield the harmonic voltages at all system busbars.
However in the iterative procedure only the voltages at the convertor
terminal busbar are required. The a.c. system is therefore reduced
to an equivalent system interconnecting all convertor a.c. terminal
busbars. Considering the system of equations (8.2), the matrix may
be re-ordered to ensure that the convertor terminal busbafs, and all
busbars where injected currents are present, are placed last. For

example:
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0 Y12 | Y12 Yi5 | Y13 Vi

0 a1 | Yoz | You Y23 Vo

0 Yaz | Yaa Va

0 | = |y Yo, v,
3= Y31 | Y32 Y33 | Y36 | Ya7 V3
o Y63 | Yoo Ve
Iy B 793 Y97 Va

(8.3)

The matrix may then be triangulated down to but excluding the

convertor terminal busbars.

The resulting matrix is:

| ) |
S Iy
o )
o TN T

The 3 X 3 matrix elements [Y33] are modified but [Y

[16] and [17] are not.

(8.4)

1, [Y3 1,

36 7

In general the reduced matrix equation may be written:
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o -
/ / Vs yst

j v= \\\\\\§ \:7tem (8.5)
h &\ & Veonvy

The lower part of the matrix, i.e.

term

= (8.6)

h Vconv

may be solved independently of the rest of the system. When data
for-the a.c. system elements are not available then the system
admittance, as viewed from the convertor terminals, may be substituted
into equation (8.6). The harmonic admittance may, in case of
existing schemes, be from actual measurements or it may be estimated
from single phase data or from the short circuit ratio and approx-
imations for the phase angle of the short circuit impedance(68’7o).
In these cases the system harmonic penetration and the harmonic
interaction between convertors at separate a.c. busbars, cannot be
studied.

In any case the reduced equation (8.6) is obtained. This is
constant and need be factorised only once, before the iterative
process. The vector of injected currents‘is then processed by the

usual forward reduction and back substitution processes to yield

the right hand side vector of harmonic voltages.
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8.3 CALCULATION OF CURRENT WAVESHAPES

The calculation of the harmonic currents, in both magnitude
and phase, requires a knowledge of the current waveshapes to a
common phase reference. The angle reference for all quantities in
the three phase load flow was arbitrarily taken as the phase 'a'
voltage at the convertor terminal busbar. For convenience this
reference is retained for the calculation of the current waveshapes.

When multiple convertor stations. are present in a system it is
necessary to ensure that all caléulated harmonic currents are with
respect to a common reference. The separate convertor references
must therefore be related to a common reference.

The presence of harmonic voltages at the convertor terminal
busbar will cause the actual zero crossing of the commutating
voltages to be shifted from those calculated for the fundamentals
alone. This shift has the effect of altering the time of valwve
firing with referencé to the fundamental voltages. The commutation
angles will therefore become altered.

The magnitude of these effects depends upon the control system.
It is assumed that the control system, whether phase angle control
or symmetrical firing, is presented with the actual zero crossings
of the commutating voltages (i.e. there is no control system filter).

The process of calculating the new waveshapes involves:

(i) calculation of the actual crossing points of the
commutation voltages

(ii) calculation of the new firing angles for the control
system in operation

(iii) calculation of the new commutation angles.

These steps are discussed in the following sections.
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8.3.1 Zero Crossing of the Commutating Voltage

The calculation of the zeré crossings of the commutating
voltages requires a knowledge of the magnitude and phase of all
harmonic voltages at the convertor terxminal. These voltages must
then be referred across the transformer with consideration given
to the transformer taps and transformer connection. Identical
equations to those presented in chapter 6 for the fundamental, are
applied to each harmonic.,

An iterative process is used to determine the position of the
zero crossings. A regula falsi method is used. As the crossing
points of the fundamental voltages calculated by the load flow give
“excellent starting values, the iterative process converges rapidly.

It should be noted that, with harmonic voltages up to the
‘allowable limits multiple zero créssings are extremely unlikely

and therefore no procedures have been developed for this situation.

8.3.2 Derivation of Firing Angles

The firing angle refers to the angle between the actual zero
crossing of the commutating voltage and the instant of subsequent
valve firing.

With phase angle control it is assumed that the firing angles
calculated by the three phase load flow are maintained. The firing
angle need not be equél 6n each phase.

In the case of symmetrical firing control the firing angles
become altered. Considering one phase as a reference and with the
firing pulses delayed by sixty degrees for subsequent valve firings
it is clear that, any shift in the zero crossing of the reference
commutating voltage, will cause a similar shift in poéition of the
valve firings on the other two phases. The actual firing angles on

the other two phases are calculated from the shift in reference,
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together with the shift in the respective zero crossing of the
appropriate commutating voltage. With control system errors
neglected the valve firings are constrained to be exactly sixty
degrees apart.

In the context of the present investigation, which is to
examine the nature of the harmonic interactions (not to attempt an
exact analysis as this is.considered impractical), the following

assumptions are considered justified:

(1) The reference firing.angle may be arbitrarily selected,
e.g. phase 1.

(idi) Under invefsion operation the extinction angle is the
specified variable, however it is more convenient to
assume that the firing angle is the control variable

as for rectifier operation.

As a result of these approximations small errors between
specified and actual control angles may occur however, this does

not influence the nature of the harmonic interaction.

8.3.3 Calculation of Commutation Angles

Strictly.speaking, the current waveform during commutation
and the commutation angle should be calculated considering the
harmonic voltages as well as the fundamentals. However, és the
harmonic voltage magnitudes are generally small compared to the
fundamental, the error in neglecting these is small(66z Therefore
all that is required for the calculation of the commutation current
waveform and commutation angle is a knowledge of the effective firing
delay from the zero crossing of the fundamental components of the

commutating voltages. The equations used in the three phase load flow

are then applicable.
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8.4 FOURIER ANALYSIS OF CURRENT WAVESHAPES

The complexity of the Fourier analysis used in previous

analyses(59’66)

has been avoided herxe by the use of a Fast Fourier
Transform (FFT) algorithm. The current waveshapes are simply sampled
at regular intervals; the sampled data is then used by the FFT

to yield the magnitude and phase of the Fourier coefficients.

With this technique, additional waveform complexity, such as
the d.c. ripple, present no additional problems. In this chapter,
however, the d.c. has simply beer; assumed constant.

The use of the FFT involves errors due to the numerical
calculations themselves and the finite nuwber of sample poinfs used.
To reduce computational cost a minimum number of sample points
should be used, consistent with accuracy requirements. It has been
foﬁnd that for investigations of all harmonics up to the fiftieth,

the use of 512 samples is adequate. With fewer samples the higher

harmonics are subject to possible errors.

8.5 . CONVERGENCE TEST

Convergence is obtained when a consistent self sustaining set
of harmonic voltages and harmonic currents are found. Programmatically
this is tested for by comparing the instant of valve firings from one
iteration to the nexﬁ. if the largest shift in valve firing is less
than 0.001 radians, then convergence is accepted. A test related
to the current waveshape is considered more appropriate than a test
associated with the actual harmonic currents, largely due to the

difficulty of assigning a realistic tolerance.
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8.6 TEST SYSTEM AND SAMPLE RESULTS

8.6,1 Test System

The small six bus system described in chapter 4 has been modified
by placing a large rectifier at bus TIW220. A single six pulse
bridge rectifier is considered as this enables detailed results to
be given whilst adequately demonstrating the nature of the harmonic
study. The relevant convertor data and the results of the three
phase a.c.)d.cm load flow are given in Table 8.1. The results for
both the symmetrical firing and the phase angle firing controllers

are given.

8.6.2 Harmonic Study Under Normal Conditions

The initial values of the harmonic currents are calculated
from the results of the three phase a.c./d.c, load flow which define
the current waveshapes when fundamental voltages only are considered.
These initial harmonic currents, given in Table 8.2, are then
injécted into the a.c. system and the resulting harmonic voltages at
the terminal busbar are calculated from equation (8.6). This equation
requires the harmonic admittances of the convertor transformer,
filters and the a.c. system itself as viewed from the terminal busbar.

(52)

The filter parameters are given in Fig. 8.2 and typical system

harmonic impedances are given in Table 8.3. The variation of
. . . c s . . (52)
filter impedance with frequency is indicated in Fig. 8.3.
With reference to Fig. 8.1, the harmonic voltages, together

with the existing fundamental voltages, must then be used to
calculate new firing and commutation angles as discussed in section
8.3. A Pourier transform of the new current waveshapes yields a new
set of harmonic injected currents. This process is repeated until

a self sustaining consistent set of harmonic voltages and currents are

obtained.



Table 8.1

Convertor Data

Convertor Data and Load Flow Results

-

Trans former type
Trans former reactance
Commutation reactance
b.C. voltage base

D.C. load resistance

Filter susceptance

(p.u.)
{p.u.)
(kV)

(ohms)

(p.u.)

star-g/delta
0.05
0.05
0.44
0.0023
0.511

All values are equal on all phases.

Load Flow Results
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Phase Angle Contxol

Symmetrical
Firing Control

Phase 1| Phase 2| Phase 3|Phase 1| Phase 2|Phase 3
N N @ R
Firing Angle 5.0 5.0 5.0 5.0 7.38 | 5.71
(deq) :

Interval between ) ,.4 , 118.4 |122.4 |120.0 | 120.0 |120.0
firing pulsest (deg)
Commutation Angle | 45 , 33.1 | 33.8 | 33.2 31.1 | 33.1

(degq)
Terminal Real 118.6 128.5 |127.9 |118.5 | 127.5 |127.4
Power (MW)
Terminal Reactive | o4 o 64.0 | 57.5 | 60.3 64.8 | 57.5
Power MVAR »
Terminal Voltages
Magnitude 1.0 1.031 1.028 1.0 1.031 1.028
Angle (deg) 0.0 |-118.3 |[119.3 0.0 |-118.3 [ 119.3

Interval is taken from firing

instant of valve to the initiation

of valve extinction. (See Fig. 6.3.)
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Fig. 8.3 Filter Impedance Diagram (p.u. to d.c.

power base)
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Table 8.2 Harmonic Currents When Harmonic Impedances Are Zero
(i) Symmetrical Firing Control
Phase a Phase b Phase c
Order Mag. Angle Mag. Angle Mag. Angle
1 4,075 2.16 4,047 0.08 4,115 =-2.,02
*3 0.006 -2.78 0.060 -3.01 0.066 0.15
5 0.617 1;33 0.645 =-2.78 0.591 -0.68
7 0.322 =0.72 0.307 -2,67 0.352 1.48
*9 0.003 1.08 0.032 0.18 0.034 -2.89
11 0.084 -2.19 0.094 0.12 0.072 2,22
13 0.062 1.41 0.049 =0.47 0.066 =2.51
*15 0.001 - 0.015 2.46 0.015 -0.68
(ii) Phase Angle Control
Phase a Phase b Phase ¢
Order Mag. . Angle Mag. Angle Mag. ) Angle
1 4,079 2.15 4,044 0.08 4.136 =-2.01
*3 0.014 =2,77 0.077 =2.93 0.091 0.23
5 0.618 1.34 0.643 =2.75 0.576 -0.67
7 0.318 =0.72 0.296 =2.65 0.350 1.51
*9 0.005 1.03 0.033 0.32 0.036 -2.74
11 0.085 -2,20 0.093 0.11 0.072 2.20
13 0.062 1.42 0.051 =-0.40 0.070 -2.51
, *15 0.002 2,11 0.019 2.47 0.02 =0, 70
Notes: - rms values

All angles are in radians relative to phase a

terminal voltage

indicates non characteristic orders.



Table 8.3

Typical System Harmonic Impedances

Oxrder

Impedance (ohms at 220 kV)

11
13
15
17
19
21
23

25

27.6 + § 84.0

200.3

54.4

11.7

2.5

28,1

79.7

65,2

111.3

51.5

4

i 8.6
j 59.7
j 40.2
i 3.8
i 23.2
3 57.6
3122.3
j 77.2
i 66.6
j 29.5

3100.5

219
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The values of the parameters which define the current
waveshapes at each iteration are given in Table 8.4. The phase
angle controller required four iterations and the symmetrical
firing required three iterations. The final values of harmonic
voltages and currents are given in Tables 8.5 and 8.6. The sequence
components of the a.c. injected currents for the phase angle

controller are given in Table 8.7.

8.6.3 Preliminary Discussion of Results

The results presented in the preceding tables demonstrate

several aspects of harmonic current generation by d.c¢. convertors:

- small asymmetries in valve conduction periods produce
significant non-zero sequence triplen harmonics.

- both firing controllers éive rise to non-characteristic
harmonic currents although the magﬂitudes are noticeably
reduced with the symmetrical firing controllexr. The unbalance
in commutating voltages causes a significant unbalance in the
commutation angles which leads to the production of non-
characteristic harmonics even with symmetrical firing. This
feature is especially noticeable at small firing angles as
in the example given.

= the predominént>sequence of the characteristic harmonics is
illustrated in Table 8.7.

- the unbalanced nature of the non-characteristic orders is
clear.

y

= in this exaﬁple both firing contrxollers are harmonically
stable andlthis is reflected in ﬁhe stability of the iteration
procedure.,

- with small values of a (5 degrees in the example), shifts in



Table 8.4 Values of Waveform Parameters at Each Iteration
(i) Phase Angle Control
Shift in Commutation Angles | Period between Firings
. Zexo Crossings
Iteration
SZCl‘ SCZ2 SZC3 ul 1—12 113 Tl T2 T3
0 0 0 0 33.22 33.15 33.78 119.26 118.37 122.36
1 1.10 -1.02 1.04 32.18 32.29 34.69 119.32 120.43 120.25
2 1.04 -0.79 0.92 34.12 32.48 34.59 119.38 120.08 120.53
3 1.05 ~-0.82 0.94 34.13 32.45 34.61 119.36 | -120.14 120.49
4 1.05 -0.82 0.94 34.13 32.45 34.61 119.36 120.14 120.49
- all firing angles are 5.00 degrees.
(ii) Symmetrical Firing
Shift o tati ..
. Zero Crossings ommutation Angles ~Firing Angles
Iteration
Z Z
S Cl S C2 SZC3 ul u2 u3 al u2 u3
0 0 0 0 33.17 | 31.15 | 33.15 | = 5. 7.38 5.71
1 0.83 -0.83 0.89 33.94 31.86 33.89 . 5.68 5.72
2 0.95 -0.81 0.95 34.00 31.92 33.96 . 5.62 5.71
3 0.96 -0.81 0.96 34.01 31.92 33.96 .0 5.62 5.71

all periods between firings are 120.00 degrees.

Lee



Table 8.5

(1)

Harmonic Currents and Voltages for Symmetrical

Firing

Currents (p.u.)

(ii)

Phase a Phase b Phase ¢
Order
Mag. Angle Mag. Angle Mag. Angle
1 4,073 2.16 4,044 0.08 | 4.116 | =2.01
3 0.007 | =2,78 | 0.062 | =2.99 ] 0.069 0.17
5 0.612 1.35 0.641 -2.76 | 0.585 | -0.66
7 0.317 | -0.70 | 0.302 | -2.65 | 0.348 1.49
o | 0.003| 1.07] 0.032| o0.23| 0.034| -2.84
11 0.085 =2.20 | 0.094 0.12 0.072 2.21
13 0.063 1.45 0.051 | -0.43 | 0.068 | -2.48
15 0.001 - 0.014 2.46 { 0.015 -0.68
Voltages (p.u.)
Phase a Phase b Phase ¢
Order .
Mag. Angle Mag. Angle Mag. Angle

3 0.008 1.24 | 0.019 -1.86 | 0.011 1.31

5 0.022 0.72 0.021 2.89 0.02 -1.37

7 0.005{ -1.19 { 0.006 3.11 | 0.006 | 0.88

9 0.001 2,46 | 0.012 1.62 0.013 |{-1.45
11 0.001 - 0.001 - 0.001 -
13 0.001 2.72 0.001 0.92 0.001 —1,39.
15 0.001 - 0.015 2.49 0.016 | -0.65

222




Table 8.6 Harmonic Voltages and Currents for Phase Angle
Control
(1) Currents (p.u.)
Phase a Phase b Phase ¢
Order ‘
Mag. Angle Mag. Angle Mag. Angle
1 4,078 2.15 4,053 0.086 4,127 | =2.011
3 0.132 | =2.77 0.062 | ~-2.98 0.075 0.19
5 0.614 1,354 Oo§38 -2.75 0.582 | =-0.66
7 0.315 | =0.70 0.299 | =-2.64 0.347 1.50
9 0.004 1.01 0.031 0.23 0;034 -2.82
11 0.085 | =2.21 0.094 0.11 0.072 2.2
13 0.063 1.45 0.052 | =0.42 0.070 | =2.49
15 0.002 2.15 0.015 2,51 0.017 | -0.67
(ii) Voltages (p.u.)
Phase a Phase b Phase c
Order
Mag. Angle Mag. Angle Mag. | Angle
3 0.007 1.22 0.020 | =-1.84 0.013 1.34
5 0.022 0.73 0.021 2.89 0.020 | =-1.37
7 0.005 | =-1.19 0.006 3.12 0.006 0.88
9 0.001 1.93 0.002 | -1.05 0.001 2.19
11 0.001 - 0.001 - 0.001 -
13 0.001 2.73 0.001 0.914{ 0.001 —1.39
15 0.001 - 0.002 -2,76 0.001 0.33
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Table 8.7 Sequence Components of Harmonic Currents for
Phase Angle Control
Positive Seq. Negative Seq. Zero Seq.
Order -
Mag. Angle Mag. Angle
3 0.041 3.12 0.039 1.91 0.0
5 0.032 -3,04 0.611 1.41 0.0
7 0.320 0.62 0.028 -2.41 0.0
9 0.020 1.78 0.018 =1,20 0.0
11 0.013 2.74 0.080 -2.,06 0.0
13 0.063 l.61 0.009 0.18 0.0
15 0.009 -2,32 0.009 1.00 0.0
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the position of zero crossings, and hence changes in firing
angles, cause significant changes in the commutation angle.
This change inhibits the alteration of the current waveshape
. . s . . . . (50)
and harmonic magnification is unlikely. Ainsworth repoxted
that with o = 0 harmonic instability cannot occur.
- the presence of the harmonic voltages have little effect

on the magnitude or phase of the fundamental currents in both

cases given.

8.6.4 Investigation of Harmonic Instability‘

Harmonic magnification may occur with harmonic impedances
above certain values. To illustrate this effect and to in§estigate
the influence of a resonance phenomena, the third harmonic impedance
of the system has been altered in order to form a resonant circuit
with the filters. At third harmonic the filters appear capacitive
and the system is invariably inductive. With typical filter
parameters and a weak a.c. system parallel resonance at third
harmonic is possible. This situation is illgstrated in Fig. 8.3
where lines have been drawn on the filter impedance diagram
indicating Short Circuit Ratios (S.C.R.) of around 3 and 5 respectively.
A S.C.R. of around 3 gives a resonance at third harmonic.

The third harmonic system impedance has been arbitrarily
selected as 94.0 + j‘l34;2 ohms to correspond to a S.C.R. of
around 3. This vields a well damped resonant circuit whose resonant
frequency is slightly off third harmonic.

In order to illustrate the harmonic interaction the study has
been conducted as previously except with the nominal firing angles
increased to 36.0 degrees.

The values of the parameters which define the waveform at each

iteration are given for both cases in Tables 8.8 and 8.9 for the phase



Shift in zero Commutation Periods between Third harmonic
crossings (deq) Angles (deg) Firings (deg) voltages (p.u.)
SZCl SZC2 SZC3 ul u2 u3 Tl T2 T3 Phase 1 Phase 2 Phase 3
0 0 ‘0 0 14.34 14.29 14.75 119.23 118.17 122.60 0.015 0.047 0.032
1 -0.94 0.66 -1.23, 14.12 14.15 14.44 119.61 116.17 124.21 0.036 0.078 0.042
2 -0.90 1.59 -1.74 14.13 14.68 14.35 120.06 114.84 125.09 0.051 0.097 0.046
3 -0.76 2.13 -1.92 14.16 14.82 14.31 120.4 114.11 125.49 0.060 0.106 0.046
4 ~-0.64 2.41 -1.99 14.19 14.89 14.29 120.60 113.80 125.65 0.065 0.111 0.046
5 ~-0.57 2.52 -2.02 14.20 14.92 14.28 120.68 113.61 125.70 0.066 0.112 0.046
9 -0.52 2.58 -2.04 14.22 14.94 14.28 120.75 113.54 125.70 0.068 0.113 0.045
Table 8.8 values of Waveform Parameters at each Iteration: Phase Angle Control

9¢¢



Shift in ' Commutation Firing Angles » Third harmonic
crossings (degq) : Angles (deg) {degq) voltages (p.u.)
. Z . ' ) -
SZCl SZC2 S C3 My uz My ay o, a3 Phase 1 Phase 2 Phase 3
0 0 0 0 14.14 13.52 14.40 36.00 38.67 36.71 0.006 0.008 0.002
1 -0.68 [ 0.29 -0.94 13.98 13.38 14.24 36.00 | "39.06 36.45 0;006 0.008 0.002
2 ~0.67 10.28 | -0.90 13.98 13.38 14.25 36.00 39.06 36.48 0.006 0.008 0.002
3 -0.67 [0.28 -0.90 13.98 13.38 14.25 36.00 39.06 36.48 0.006 0.008 0.002
Table é.9 Values of Waveform Parameters at Each Iteration: Symmetrical Firing

L22
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angle and symmetrical firing controllers respectively. The phase
angle controller required 9 iterations and the symmetrical firing
controllexr 3.

The following features are noteworthy:

- at the larger value of a, the unbalance in commutation
angles is less and the symmetrical firing controller gives
rise to less non-characteristic harmonics.

= the symmetrical firing controller is harmonically stable
where as the phase angle.controller exhibits considerable
harmonic interaction and harmonic magnification occurs.
The harmonic stability or otherwise is directly reflected

in the iterative process.

If the damping of the resonant circuit is reduced oxr if
resonance is approached more closely the phase angle controller
becomes harmonically unstable and the iteration process fails to

converge.

8.7 CONCLUSION

A method has been developed to allow the investigation of many
features assoéiated with steady state harmonic phenomena in power
systems. The penetration of harmonic currents into the power
system may be studied on a three phase basis. In addition a wide
range of features associated with d.c. convertor installations may be
examined. In particular the harmonic interaction between convertors
and the a.c. system may be studied including the influence of
features such as the firing controller, a.c. system resonances, and
the filter installations. The incomplete cancellation of characteristic
six pulse harmonics with unbalanced operation of a twelve pulse

bridge has also been studied.
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As with all studies into harwonic phenowena associated with
d.c. convertors, there is a sigﬁificant uncertainty associated with
any numerical solutions for the uncharacteristic orders, due to
their sensitivity to a wide range of parameters, many of which
either cannot be accurately known or are of a dynamic, rather than
steady state nature. However, studies such as the one described

here are a significant aid to the understanding of harmonic phenomena.
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CHAPTER 9

CONCLUS ION

This thesis has presented techniques for the general steady state
analysis of integrated a.c. and d.c. power systems under normal,
but not necessarily balanced, conditions.

Phase co-ordinate modelling of the unbalanced three phase
system has been extensively reviéwed. The nodal admittance represent-
ation in phase co-ordinates is suitable for the application of the
most successful load flow analysis technique presently available,
i.e. the fast decoupled algorithm.

The extension of single phase fast decoupling principles to
the three phase load flow has been successfully attempted. Such
extension is not straight forward due to the additional features
associated with three phase system modelling. Further jacobian
assumptions are required as regards the angle unbalance at a busbar
and the angles across various three phase transformer connections.

In addition, the modelling of the three phase synchronous generators
requires a consideration of the voltage regulator. The most
successful method developed is the inclusion of the voltage regulator
specification directiy in the formulation of the reactive power
jacobian equation of the fast découpled algorithm,

The developed three phase fast decoupled algorithm displays the
same advantages, in terms of efficiency and reliability, as the
original single phase version. The convergence patterns of the three
phase version closely parallel those of the single phase version.

The convergence of the system unbalance is, in effect, superimposed
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on the convergence of the dominant positive sequence power flows.
The rate of convergences decreaées as the degree of system unbalance
increases, but is acceptable even in cases of extreme steady state
unbalance.

The three phase load flow is a necessary tool in the analysis
of many features of steady state power system operation and the
developed algorithm is currently being included in the suite of
power system analysis proérammes in use by New Zealand Electricity.

The development of d.c. convertor models, which are suitable_
for inclusion in single phase load flow analyses, have been discussed
in detail.  The most appropriate algorithm for the integration of
such models into the single phase fast decoupled a.c. load flow has
been investigated. The results of this investigation illustrated

the superioxr convergence of the simultaneous or unified algorithms

in difficult cases. For the vast majority of cases however, the

simpler sequential algorithms proved equally efficient and reliable.
In difficult cases, where the a.c. system is weak in a load flow
sense, the convergence of the sequential algorithm is slower, but
within the range of ?ractical systems it is reliable.

The techniques developed for single phase a.c./d.c. load flow
have been successfully extended to the three phase representation
to enable the investigation of d.c. convertor performance under
unbalanced conditions.

A phase co—ordinate model of d.c. convertor systems qperating
in an unbalanced state has been formulated with sufficient generality
to allow representation of various control strategies such as predictive
and symmetrical firing control. The sequential integration of the ’ ?
developed model into the three phase fast decoupled load flow analysis

has been described. The results given illustrate the flexibility



232

and powerful convergence of the proposa& integration. The similarity
in performance to the corresponding single phase algorithm has also(
been demonstrated.

Using the unbalanced a.c& convertor model as a basis, the scope
of the steady state analysis has been extended to the consideration
of harmonic frequencies. Three phase a.c. system modelling at
harmonic frequencies has been introduced. The harmonic current
generation of d.c. convertors has been investigated including the
influence of features such as the firing controller and system
resonances. This investigation enables consideration of harmonic
interaction between convertors, filters and the a.c. system; An
important general conclusion regarding the calculation of harmonic
current generation is the uncertainty in the numerical accuracy of
any results due to the impracticagility of including the large
number of parameters involved. However, the harmonic study is of
congiderable value in that the possibility of harmonic problems and
the effectiveness of the filters may be assessed. The harmonic
study is suitable for extension to enable the assessment of even
harmonic and d.c. components.

The development of harmonic frequency models of the power
system and the subsequent realistic harmonic penetration studies

is the area in which'further study can be profitably directed.




233
REFERENCES

ROPER, R.D., and IEEDHAM, P.J.: ‘A review of the causes and
effects of distribution system three-phase unbalance',

I.E.E. Conference on Sources and Effects of Power System .
Disturbances, no. 110, London, 1974.

ARRILLAGA, J., and HARKER, B.J.: 'Fast decoupled three-phase
load flow', Proc. i,E,E., 1978, 125, (8) pp.734-740.

HARKER, B.J., and ARRILIAGA, J.: '3=phase a.c./d.c. load flow',
Proc. I.E.E., 1979, 126(12), pp.1275-1281.

ARRILLAGA, J., HARKER, B.J. and BODGER, P.: 'Unified ‘and
sequential load flows for A.C. systems containing static
convertors', Power Systems Computation Conference,

Darmstatd, Germany, Augusf, 1878. pp.719-=729.

ARRILLAGA, J., HARKER, B.J. and BODGER, P.: 'Fast decoupled
load flow algorithms for a.c./d.c. systems', I.E.E.E. PES
Summer Meeting, Los Angeles, July, 1978, A78555-5,

ARRILLAGA, J. and HARKER, B.J.: 'Inclusion of a large convertor
load into three phase load flow analysis'. Trans. I.E. (Aust),
Vol. E.E. 16, No. 1, March, 1980, pp.6-13.

CLARKE, E.: 'Circuit Analysis of A.C. Power Systems = Vol. 1'.
Wiley 1943.

EL-ABIAD, A.H., and TARSI, D.C.: 'Load flow solution of
Untransposed EHV Networks'. Power Industry Computer
Applications (PICA) Proceedings, Pittsburgh Pa, May 1967,
pp.377-384.

CHEN, M.S., and DILLON, W.E.: 'Powér System Modelling'.

Proc. I.E.E.E., Vol. 62, No. 7, July 1974, pp.901-915,



10.

11.

13.

14.

15,

16.

17.

18.

19.

20.

234

STEVENSON, W.D., Jr: 'Elements of Power System Analysis'.
McGraw Hill Book Companf, 1962,

KRON, G.: 'Tenéor Analysis of Networks'. MacDénald, London,
republished 1965.

BOWMAN, K.I., and McNAMEE, J.M.: ‘Development of Equivalent
?i and T Matrix Circuits for long Untransposed Transmission
Lines'. I.E.E.E. PAS Vol. 84, June, 1964, pp.625-632.

WEDEPOHL, L.M., and ﬁASLEY, R.G.s 'Wave Propagation in
Multiconductor Overhead Lines'. Proc. I.E.E., Vol. 113,
No. 4, April, 1966, pp.627-632.

DILLON, W.E., and CHEN, M.S.: 'Transformer Modelling 'in
unbalanced Three Phase Networks'. I.E.E.E. Summer Power
Meeting, Vancouver, July, 1972,

LAUGHTON, M.A.: ‘'Analysis df Unbalanced Polyphase Networks by’
the Method of Phase Co-ordinates. Part 1. System
Representation in Phase Frame of Reference'. Proc. I.E.E.,
Vol. 115, No. 8, August, 1968, pp.l163-1172.

THE J & P Transformer Book. Johnson & Phillips Ltd, Ninth
Edition, 1961.

LAUGHTON, M.A. and HUMPHREY DAVIES, M.W.: 'Numerical Techniques
in Solution of Power System Load flow Problems'. Proc.
I.E.E., Vol. III, No. 9, September, 1964, pp.l1575-1588.

KREYSZIG, E.: 'Advanced Engineering Mathematics', 2nd Edition,
N.Y., Wiley, 1967, pp.646.

STAGG, G.W. and EL-ABIAD, A.H.: 'Computer Methods in Power
System Analysis'. McGraw Hill, 1968, pp.249.

STOTT, B.: 'Review of Load flow Calculation Methods'. Proc.

I.E.E.E.;, Vol. 62, No. 7, July, 1974, pp.916=929.



21.

22.

23.

24.

25.

26.

27,

28.

29.

30.

235

WALLACH, Y., and EVEN, R.K.: ‘'Application of Newton's Method
to Load flow C;'alculatior‘ls'.n Proc. I.E.E., Vol. 114,
March, 1967, pp.372-374.

HOLLEY, H., COLEMAN, C. and SHIPILEY, R.B.: 'Untransposed ehv
line computations‘, I.E.E.E. Trans. on Power Apparatus and
Systems, March, 1964, p.291.

HESSE, M.H.: 'Circulating currents in parallel untransposed,
malticircuit lines; I - Numerical evaluations'. I.E.E.E.
Trans. on Power Apparatus and Systems, July, 1966, p.802.

HESSE, M.H.: ‘'Circulating currents in parallel untransposed
multicircuit lines: II - Methods of eliminating current
unbalanée', ibid., July, 1966, p.812.

KARAS, A.N.: Discussion on reference 23.

WASIEY, R.G. and SLASH, M.A.: 'Newton-Raphson algorithm for

three~-phase load flow'. Proc. I.E.E., Vol. 121, No. 7,
July, 1974, p.630.

BIRT, K.A., GRAFFY, J.J., McDONAID, J.D. and EL—ABIAD, A.H.:
'Three phase load flow program'. I.E.E.E. Trans. on Power
Apparatus and Systems, January, 1976, p.59.

KERSTING, W.H. and SEEKER, S.A.: 'A program to study the effects
of mutual coupling and unbalanced loading on a distribution

system'., I.E.E.E. PES Winter Meeting, N.Y., January, 1975,

C75047-6.
TINNEY, W.F. and HART, C.E.: 'Power flow solution by Newton's
Method'. I.E.E.E. Trans. on Powey Apparatus and Systems,

June, 1961, p.299.

STOTT, B. and ALSAC, O.: 'Fast decoupled load flow'. I.E.E.E.

Trans. on Power Apparatus and Systems, May, 1974, p.859.



31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

236

STOTT, B.: 'Decoupled newton load flow'., I.E.E.E. Trans. on
Power Apparatus and Sysfems, September, 1972, p.1955,

DESPOTOVIC, S.T.: 'A new decoupled load flow method'. I,E,E.ﬁa
Trans. on Power Apparatus and Systems, May, 1974, p.884.

VERVLOET, F.G. and BRAEMELLER, A.: '‘A.C. security assessment'.
Proc. I.E.E., Vol. 122, No. 9, September, 1975, p.897.

STOTT, B.: ‘'Load flows for A.C. and integr;ted A.C./D.C.
systems', Ph.D. Thesis, University of Manchester Institute
of Science and Technology, 1971.

BODGER, P.S.: 'Fast decoupled A.C. and A.C,./D.C. load flows'.
Ph.D. Thesis, University of Canterbury, 1977.

STOTT, B. and HOBSON, E.: 'Solution of large power system
networks by ordered elimination: A comparison of ordering

schemes'. Proc. I.E.E. Vbl. 118, No. 1, January, 1971,

pp.125-134,
ZOLENKOPF, K.: 'Bi-Factorisation - basic computational
algorithm and programming techniques'. Conference on Large

Sets of Sparse Linear Equations. Oxford, 1970, pp.75-96.
SATO, H. and ARRILLAGA, J.: 'Improved lcad flow techniques for
integrated a.c./d.c. systems'. Proc. I.E.E., Vol. 116,

no. 4, April, 1969, pp. 525-532.

REEVE, J., FAHMY, G. and STOTT, B.: 'Versatile load flow
method for multiterminal h.v.d.c. systems'. I.E.E.E. PES
Summer Power Meeting, Portland, July, 1976, F76 354-1.

BRAUNAGAL, D.A., KRAFT, L.A., and WHYSONG, J.L.: 'Inclusion of
d.c. convertor and transmission eguations directly in a
Newton power flow. I.E.E.E. Trans. Power Apparatus and

Systems, vol. 95, no. 1, January, 1976, pp.76-88.



41.

42.

43.

44,

45 .

46 .

47,

48.

49,

50.

237

ARRILLAGA, J., and BODGER, P.: ‘'Integration of h.v.d.c. links
with fast decoupled loaa flow solutions'. Proc. I.E.E.,
Vol. 124, no. 5, May, 1977, pp.463-468.

EL~MARSAFANY, M.M., and MATHUR, R.M.: 'A new, fast technigque
for load flow solutions multiterminal D.C./A.C. systems',
I.E.E.E. PES Winter Meeting, New York, February, 1979,

F79 174-4.

KIMBARK, E.W.: 'Direét current transmission'. New York,
Wiley~Interscience, 1971.

ARRILLAGA, J. and BODGER, P.: 'A.C.=-D.C. load flows with

- realistic representation of the convertor plant'.
Proc. I.E.E., Vol. 125, no. 1, January, 1978, pp.41-46.

DANFORS, P.: 'Reactive Power', A.S.E.A. H.V.D.C. Transmission
Study Course, Ludvika, 1962°

A GENERAL SURVEY OF A.C. HARMONIC FILTER AND REACTIVE POWER
COMPENSATION FOR HVDC, Working Group 03, CIGRE Study
Committee 14 (HVDC links), 1977.

PHADKE, A.G. and HARLOW, J.H.: 'Unbalanced convertor operation'.,
I.E.E.E. Trans. on Power Apparatus and Systems, Vol. 85,
March, 1966, pp.233-239,.

ARRILLAGA, J. and EFTHYMIADAS, A.F.: ‘'Simulation of Convertor
Performance under unbalanced conditions'. Proc. I.E.E.,
Vol. 115, No. 12, December, 1968, pp.1809-1818.

AINSWORTH, J.D.: 'The phase locked oscillator - a new control
system for controlled static convertors'. I.E.E.E. Trans.
on Power Apparatus and Systems, Vol. 87, no. 3, March, 1968,
Pp.859-865,

AINSWORTH, J.D.: 'Harmonic instability between controlled
static convertors and a.c. networks'. Proc. I.E.E., Vol. 114,

No. 7, July, 1967, pp.949-957.



51.

52,

53.

54.

55.

56..

57.

58.

59,

238

KAUFERLE, J., MEY, R. and ROGOWSKY, Y.: 'H.V.D.C. stations
connected to weak a.c. éystems'. I.E.E.E. Trans. on Power
Apparatus and Systems, Vol. 89, No. 7, September, 1970,
pp. 1610-1617,

ROBINSON, G.H.: 'Harmonic phenomena associated with the
Benmore-Haywards H.V.D.C. transmission scheme. N.Z.
Engineering, January, 1966, pp.l6-29.

INTERNATIONAL CONFERE&CE ON SOURCES AND EFFECTS OF POWER
SYSTEM DISTURBANCES. I.E.E., Vol. 110, London, 1974.

ROSS, N.W.: 'Harmonics and xipple control'. Conference on
Harmonics in Power Systems, University of Canterbury,

New Zealand, October, 1979.

ROSS, T.W. and SMITH, R.M.A.: ‘'Centralised ripple control on
high voltage networks'. Proc. I.E.E. Vol. 95, part II,
October, 1948, pp.470-=479.

THE THEORETICAL DETERMINATION OF SIGNAL POWER REQUIRED FOR THE
RIPPIE CONTROL OF A NETWORK. Strowger Journal, VIII,
October, 1351, pp.30-35.

HILTON, A.P.: 'An outline of methods of evaluating the harmonic
impedance of, and penetration into, A.C. power systems'.
D.C. Transmission Department, English Electric Company Ltd.
Report No., 5/NS ¥25, 1963.

WHITEHEAD, S. and RADLEY, W.G.: ' 'Generation and Flow of
Harmonics in Transmission Systems'. Proc. I.E.E., Vol. 96,
1949, pp.22-48. |

REEVE, J., and KRISHNAYYA, P.C.S5.: 'Unusual current harmonigs
arising from high voltage d.c. transmission'. I.E.E.E.
Trans. on Power Apparatus and Systems, Vol. 87, no. 3, Maxch,

1968, pp.883-893.



60.

61.

62,

63.

64, -

65.

66.

239

KUUSSAART, M., and PESONEN, A.J.: 'Measured power-line
harmonic currents and iﬁduced telephone noise interference
with special reference to statistical approach'. CIGRE
International Conference on Large High Voltage Electric
Systems, Paris 1976,

HESSE, M.H.: 'Electromagnetic and electrostatic transmission
line parameters by digital computer'. I.E.E.E. Trans. on
Powexr Apparatus ana Systems} Vol. 82, June, 1963,
Pp.282=-291.

COLEMAN, D., WATTS, F. and SHIPLEY, R.B.: 'Digital Calculation
of overhead transmission line constants'. A.I.E.E. Trans.
on Power Apparatus and Systems, Vol. 77, 1958, pp.1266-1268,

IEWIS, W.A. and TUTTIE, P.D.: ‘The resistance and reactance
of aluminium conductors, éteel reinforced'. A.I.E.E. Trans.
on Power Apparatus and Systems, Vole. 77, 1958, pp.1189-1215,

BATTISSON, M.J., DAY, S.J., MULLINEAUX, N., PARTON, K.C., and
REED, J.R.: 'Some effects of the frequency dependence of
transmission line parameters'. Proc. I.E.E., Vol. 116,

No. 7, July, 1969, pp.1209-1216.

.SUBBARAO, T., and REEVE, J.: 'Harmonics caused by imbalanced

transformer impedances and imperfect twelve pulse operation
in H.V.D.C. conversion'. I.E.E.E. Trans. on Power
Apparatus and Systems, Vol. 95, No. 5, September, 1976,

pp.1732=1735.,

PHADKE, A.G., and HARLOW, J.H.: ‘'Generation of abnormal harmonics

in high voltage A.C.-D.C. power systems'. I.E.E.E. Trans. on
Power Apparatus and Systems, Vol. 87, No. 3, March, 1968,

pp.873=-882,



67.

68.

69.

70.

71.

72.

73.

74.

240

REEVE, J., BARON, J.A. and KRISHNAYYA, P.C.S.: 'A general
approach to harmonic current generation by H.V.D.C.
convertors'. I.E.E.E. Trans. on Power Apparatus and
Systems, Vol. 88, No. 7, July, 1969, pp.989-995.

BOWLES, J.P,; 'A.C. system and transformer representation
for H.V.=-D.C. transmission studies'. I.E.E.E. Trans. on
Power Apparatus and Systems, Vol. 89, No. 7, September,
1970, pp,1603“160§¢

UHLMANN, E.: 'Power transmission by direct current'.
Springexr=-Verlag, Berlin, 1975,

REEVE, J. and SUBBARAO, T.: 'Dynamic analysis of harmonic
interaction between a.c. and d.c. power systems',
I.E.E.E. Trans. on Power Apparatus and Systems, Vol. 93,
No. 2, March, 197/;2”, pp.640-646.

IE CORBEILILER, P.:  'Matrix Analysis of Electric Networks'.
John Wiley and Sons, Inc., 1950.

BRAEMELLER, A., JOHM, M.N. and SCOTT, M.R.: 'Practical

Diakoptics for electrical networks'. Chapman and Hall
Ltd, 1969.
LEWIS, W.E. and PRYCE, D.G.: 'The application of matrix

theory to electrical engineering’. E. and F.N. Spon
London, 1965,

LIMITS FOR HARMONICS IN THE U.K. ELECTRICITY SUPPLY SYSTEM.
Engineering Recommendation G5.3, U.K. Electricity Council

Chief Engineers' Conference.



241

APPENDIX 1

EXAMPLE OF SYSTEM MODELLING

The three phase power system illustrated in Fig. A 1.1 has
been selected to illustrate the system modelling discussed in

chapter 2. Some features of interest are:

- the presence of both synchronous generators and a synchronous
condensor. |

- an example of a line sectionalisation with one section
containing four mutually coupled three phase lines.

= all lines are represented in their unbalanced mutually
coupled state.

- the generator transformers' are star-delta connected with the

star neutrals earthed.

The system is redrawn in Fig. A 1.2 to illustrate the use of
3 x 3 compound coils to represent the three phase elements (see
section A 2.2). An alternative representation is illustrated in
Fig. A 1.3 using 3 %X 3 matrix blocks to represent the various coupled
elements.

For the purposeé ofninput data organisation and the formation
of the system admittance matrix} the system is divided into eight
subsystems. These are illustrated in the exploded diagram of Fig. A

1.4.
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APPENDIX 2

LINEAR TRANSFORMATICN AND THE USE OF COMPOUND COILS IN THE

FORMATION OF NETWORK ADMITTANCE MATRICES

a 2.1 LINEAR TRANSFORMATION

The use of linear transformation techniques enables the admittance
matrix of any network to be found in a systematic mannersll’7l-73)

Consider for the purposes of illustration, the network shown in

Fig. A 2.1.

Fig. a2.1 Connected Network

The steps to form the network admittance matrix, by linear

transformation, are listed below:

(1) Label the nodes in the original network.
(2) Number, in any order, the branches and branch admittances.

(3) Form the primitive network admittance matrix by inspection.
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This matrix relates the nodal injected currents to the node
voltages of the primitive netwofkm The primitive network is also
drawn by inspection of the actual network. It consists of the
unconnected branches of the original network with a current equal to
the original branch current injected into the corresponding node of
the primitive network. The voltages across the primitive network
branches then equal those across the same branch in the actual
network.

The primitive network for Fig. A 2.1 is shown in Fig. A 2.2.

¢ & & b &

MY Vol =Y Vsl =Yay N cYs Vs %Yss

Fig. A2.2 Primitive or Unconnected Network

The primitive admittance matrix rélationsnip is:

iy 11 _ | 1
i Y22 Y2
)= Y33 V3
i Y44 Va
i Y55 Vs

PRIM
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Off-diagonal terms are present when mutual couplings between branches
are present. |

(4) Form the connection matrix [C].

This relates the nodal voltages of the actual network to the

nodal voltages of the primitive network. By inspection of Fig. A 2.1

v, =V =V

1 a b
v2 = Vb - Vc
V3 T va
Va T V%

Vg = Vc

v, 1 | -1 v,
VZ 1 -1 Vb
vy = 1 Vc
V4 1

VS' 1

[c]
(5) The actual network admittance matrix which relates the nodal

currents to the voltages by,

I \Y
a a

Iy | = I;Yab;] b

I v
C C

can now be derived from,
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1 [cl

3%3 3x5 5x%5 5x%3

which is a straightforward matrix multiplication.

A 2.2 COMPOUND COILS

When analysing three phase networks, where the three nodes at
a busba? are alwa¥§ associated together in their interconnections,
it is convenient to use céﬁpound coils to graphically represent the
network, and matrix quantities to represent the admittances of the
network.

The compound coil is a mathematical tool which provideés graphical
representation of the use which can be made of matrix partitioning
to simplify calculations.

Consider six mutually coupléa single coils, the primitive network

v

of which is illustrated below in Fig. A 2.3.

‘\I‘ S\Iz '\1\3 Isg \Is \I\c

VI Vz V3 V4 VS \‘@

Fig. A2.3 Primitive Network of Six Coupled Coils

13

The primitive admittance matrix relates the nodal injected

currents to the branch voltages as follows:



Ty Yir | Y12 | Yi3 | Y14 | Yi5 | Y16
1 Yo1 | Y22 | Y23 | Y24 | Y25 | Y26
13 ) I31 | ¥32 | ¥33 | Y34 | Y35 | Y36
Ty Ya1 | Ya2 | Yaz | Yaa | Y45 | Y46
Ty Y51 | Y52 | Y53 | Y54 | Y55 | Y56
s Yo1 | Ye2 | Y63 | Ye4 | Ye5 | Yoo
6x1 6 %6 6x1

Partitioning equation

the equation becomes,

250

(A 2.1)

£Ia] [Yaa [Yab] [va]
= (a 2.2)
[Ib] [Yba] [Ybb] [vb]
where [I ] = [1. 1. 1T ]T (1.1 =1[1 1_71I ]T and
a 1 34ty 475 "6
Y1 | Y12 | Y13 Yga | Yas5 | Yye
[Y s Vo1 | Y22 | Y23 vypd = | Y54 | Y55 | Y56
Y31 | Y32 | Y33 Yea | Y65 | Yee
(A 2.3)
Y94 | Y15 | Y36 Ya1 | Y51 | Y61
[y b = | Yau | Yos5 | Y26 vy 1= | Yas | Y52 | Y62
Y34 | Y35 | Y36 Yaz | Y53 | Y63
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Graphically we represent this partitioning as grouping the

six colls into two compound coils (a)

individual coils.

[Va]

Fig. A2.4

On examination

[Yba]

i £ d ly if Y
1f, and only if ik

Ta)

[y obl]

\[Ib]

This is illustrated in Fig. A 2.4.

[YadZ = [Upa] ~=ClUst] Vi)

Coupled Compound Coils

and (b), each composed of three

of [Yab] and [Yba] it can be seen that,

[

[

Y

Y

ab

ki

]T

for i

= 1 to 3 and k =

4 to 6.

That is,

if and only if the couplings between the two groups of coils are

bilateral.

In this case equation A 2.2 may be written

[z, v 1| [y, [v,]
1, ] ¥ 1| Iy, ) [v, ]

@ 2.4)

The primitive network for any number of compound coils is

formed in exactly the same manner as for single coils, except that

all guantities are matrices of the same order as the compound coils.
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The actual admittance matrix of any network composed of the
compound coils can be formed by'the usual method of linear transform=-
ation; the elements of the connection matrix are now n Xn identity
matrices where n is the dimension of the compound coils.

If the connecﬁion matrix of any network can be partitioned into
identity elements of equal dimensions greater than one, the use of
compound coils is advantageous.

As an example, considér the network shown in Fig. A 2.5 = this
represents a simple line section. The admittance matrix will be
derived using single coils and compound coils to show the simple
correspondence. The primitive networks and associated admittance
matrices are drawn in Fig. A 2.6. The connection matrices are shown
in Fig. A 2.7. The exact equivalence, with appropriate matrix
partitioning, is clear.

The network admittance matrix is given by the linear transform-
ation equation,

T

[ 1 = [cl [ 1 [cl

YNODE YPRIM

This matrix multiplication can be executed using the full

matrices or in partitioned form. The result in partitioned form is,

LYA]‘+ [YB] -[YA]

[ }=

Y
NODE
“[YA] , [YA] + [YC]

A 2.3 RULES FOR FORMING THE NETWORK ADMITTANCE MATRIX FOR
SIMPLE NETWORKS

The method of linear transformation may be used to give the
admittance matrix of any network. For the special case of networks

where there is no mutual coupling between coils, simple rules may be
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a —o d
b P
C T o f
.
>

U Uga(C Yoo

ST ST

(1) SINGLE coOlL.

[Ya]
[abe] [d ef]

[Ye] [¥e ]

(n) COMPOUND COILS

Fig. A2.5 Single and Compound Coil Network



Y Un; Yss Yaaq l
(1) PRIMITIVE NETWORK USING SINGLE COILS .

Yy {YajYa
Yoy {Y22] Yo
1Yai {Ysz|Yas

Uaa|[Uas|Yag

Ys4|Yssl Use

Ue4j Yes| Yes

Uv7|Ura| Yo
Ug7 | Yae| Uao

Ya7|Uog| Yoo

(ii)  PRIMITIVE  ADMITTANCE MATRIX,

\EA \Ea Ie

Yaa Yeatle UYee

(i)  PRIMITIVE NETWORK USING COMPOUND COILS.

Ua

Up

Ye

(iVv) PRIMITIVE ADMITTANCE MATRIX.

Fig. A2.6 Single and Compound Coil Primitive Network
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used to form the admittance matrix by inspection. These rules apply
to compound networks with no mutual coupling between the compound
coils.

These rules may be stated:(72)

(a) BAny diagonal term is the sum of the individual branch
admittances connected to the node corresponding to that
term.

(b) BAny off-diagonal term is the negated sum of the branch
admittances which are connected between the two correspond-

ing nodes.
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APPENDIX 3

STAR-G/DELTA THREE PHASE TRANSFORMER MODEL

A 3.1 ADMITTANCE REPRESENTATION

Disregarding interphase mutual couplings the per unit primitive

admittance matrix in termé of the transformer leakage admittance

(9)

(yti) is: ¢
Ve Yig
2 a
ay 1
Yo Yo
2 a
a2 2
Vi3 Y3
2 a
a3 3
[Yprim] =
Y1 v
al tl
Yo g
a2 t2
Y3 g ’
a3 t3
where al, a2 and a3 are the off-nominal taps on windings l;2 and 3

respectively. In addition any windings connected in delta will,

because of the per unit system, have an effective tap of V3

The nodal admittance matrix for the transformer windings is:

T
[Ynode] = [c] [Ypriml [c]
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where [C] is the connection (windings to nodes) matrix.

The connection matrix and connection diagram for a DY1l
connection is illustrated in Fig. A 3.1.

The resulting [Ynode] is,

Ye1 , Y1 Vel
2 ;Ba 73a
a 1 1
1 R
Yio Yo Y2
2 ;3a ‘ ;3
a 2 a2
2 o
Y3 Y3 Vi3
2 V3a ’ V3
a3 3 a3
Y a—
[ node
Yep | Ve | Y13 | Y Vi3
7 7 .
3al 3a3 3 3 3
- 4 -
Yo | Yio Vi Yoy Yio
VBal ;3a2 3 3 3
Yeog | ez | TYes Yo Yiot¥y3
/3a, V3a, 3 3 3

Usually all three phase wnits are symmetrical i.e.,

]
]

Ye1 T Y T Y3 T Yy

and

al = a2 = a3 = a

A simple equivalent circuit is shown in Fig. A 3.2 for the

symmetrical case with unity off-nominal taps.
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(1) Connection Diagram

(ii) Connection matrix

Fig. A3.1

Connection Matrix for Star-g/delta (DY1ll)

Connection.
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PRIMARY. SECONDARY.

Fig. A3.2 Equivalent Circuit for Symmetrical Star-g/delta

- Transformer (unity tap ratio)
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APPENDIX 4

SINGLE PHASE LOAD FILOW PROBLEM AND THE
FAST DECOUPLED SOLUTION ALGORITHM

A 4.1 PROBLEM FORMULATION

The aim of the single phase load flow is to find the operating
state of the balanced power system under the specified conditions of
load, generation and system configuration.

The operating state is defined by,
[v, 8]
where ﬁi is a vector of voltages at all system busbars i.e.
i=1,nb

ei is a vector of angles at all busbars (except one, which is

assigned 9 = 0 and is taken as a reference) i.e. i = l,nb-1,

It should be noted that [V, 6] is a minimum set of variables i.e.
they are all independent variables.

To enable the use of a Newton-Raphson based technique it is
necessary to formulate a set of 2nb -~ 1 independent algebraic equations
in terms of the 2nb - 1 variables. These equations or constraints are
derived from the specified operating conditions. Only a limited
number of specified operating conditions apply to the balanced
power system and it is customary to place the system busbars in

categories as follows:

(i) Load Busbars. (P - Q)
The active and reactive power loading at the busbar is

specified.
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(ii) Generator Busbars (P - V)
The active power injection is known and the voltage is
specified and controlled by the voltage regulator.

(iii) Slack Busbar
This is a special case of a generator busbar. As the
totalvsystem losses are unknown it is impossible to
specify the power injections at all busbars. One busbar,
desiggated the‘slack busbar, must remain a source ox
sink of real power to enable an overall power balance to

be maintained.
The following equations are derived from these specified conditions.

(i) vip— v, =0 (A 4.1)

for i = 1, ng i.e. at all generator busbars.
. = = sp - = :
(ii) AP, (V, 8) = P.7 = P,(V, 0) (A 4.2)
i i i
for 1 =1, nb -1 i.e. at all busbars except the slack
machine.
(1ii) AQ, (V, 8 =0%P - 0, (V,®) (A 4.3)
ittt i it

for i = 1, nb - ng 1i.e. at all load busbars.

A total of 2mb - 1 equations have been formed. Clearly,equations

A 4.1 are trivial and do not require solution and these equations and
the corresponding voltage variables are.removed from the problem form-
ulation.

The problem may therefore be formulated as the solution of:

' AP (V, 8)

i
o

- - (A 4.4)
AQ(V, 0)

for the unknown voltages and angles.
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The power mismatches are written in terms of the problem variables

and the system admittance matrix as follows,

P, =R [v, . 1, #] (A 4.5)
1 e 1 1
== %
Q =1 [vi . I,%] (A 4.6)
where
% ,
I, = Y. .V (a 4.7)
i k=1 ik k i
and
Vi = c;ik + 3 Bik (A 4.8)

The equations are:

_ oSP _ :
Ap, = P; v, Zl v [Gik cos 0, + B, sin eik] s (A 4.9)
sp t
g, =0F - v, kzl v [Gik sin 8, - B, cos eik] (A 4.10)

A 4.2 NEWTON-RAPHSON ALGORITHM
The general Newton-Raphson method consists of successive
solutions of,

F(%) = - [3][Ax] ' (A 4.11)

where [J] is the jacobian matrix of first order partial derivatives.
for the changes in variables Ax. The variables % are then updated

until the set of equations
F[x] =0

can be considered solved.
Defining,

F = |AP and Ax = |AB (A 4.12)

AQ , AV/V

The algorithm involves repeat solutions of,

= (A 4.13)
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The Jacobian elements H, N, J and L are given by:

Hip

il
it

3P,/ O, N Vk[BAPi/BVk]

ik

Iix

BAQi/B ei Lik vk [ aAQi/avk]

The right hand side variable [AV/V] in equation (A 4.13) is
usually taken as it is found to give better computational results
than the use of [AV] alone.

Equation (A 4.13) is solved for the changes in the variables
[av/V] and [AB], the variables [V] and [8] are then updated, the
mismatch functions [AP] and [AQ] re-evaluated and equation (A 4.13)
solved again. This process is continued until [AP] and [AQ] are all
small enough to be considered zero.

It should be noted that the Jacobians H, N, J and L must be
re-evaluated at each solution of equation (A 4.13) as these are functions

of V and 6 which are changing at each iteration.

A 4.3 DERIVATION OF THE SINGLE PHASE FAST DECOUPLED ALGORITHM

(30,34) the coupling matrices

In decoupled load flow methods
IN] and [J] are set to zero. This is the mathematical implementation

of the following, well justified statements:

(a) A change A® affects the real power flows with only a small
change in the reactive power flow.
(b) A change V affects the reactive power flows with only a

small change in the real power flows.

This yields the two decoupled equations:

[AB] [H] [AB] | (A 4.14)

[a0] (Ll [av/v] (A 4.15)
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The Jacobian matrices [H] and [L] are given by,

Hkm = Lkm = Vkvm[ka sin ekm N Bkm cos ekm]
2
B = 7 B Y — %
L = B V2 +
kk ke kT 9%
Stott(s) then makes the following assumptions:
(1) cos 6 =1

km

i <
(2) ka sin ekm < Bkm

(3) 9 < < By ¥y

These are almost always valid for the single phase representation of
the balanced power system. Equations (A 4.14) and (A 4.15) may then

be approximated to:

[AP] [VI[e 1[91[a6] (A 4.16)

[A0] V1l " 1[V1[Aav/V] (A 4.17)

where at this stage [B'] and [B' | are simply the elements of the
matrix [-B]. The use of equations (A 4.16) and (A 4.17) have been
found to be only partially successful. Further modifications to the

equations yield:

{ap/v]l = [B'1[AB] , (A 4.18)

il

[agQ/v] [B"1[aV] (A 4.19)

where the modifications may be listed:
(a) Omit from [B'] those elements that predominantly affect
MVAr flows. This includes shunt ractances and in phase

transformer taps.

(b) Omit from [B"] the angle shifting effects of phase shifters.
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(c) Neglect series resistance in the calculation of the
elements of [B']. This is of minor importance.

(d) Rearrange the equations (A 4.16) and (A 4.17) by taking
the defining functions as [AP/V] and [AQ/V].

(e) Set the remaining right hand side [V] terms in (A 4.16)
to one p.u., removing the affects of MVAr flows on the

calculation of A8,

The equations (A 4.18) and (A 4.19) form the basis of the fast
decoupled method. The constant épprcximated Jacobians [B'] and [B"]
correspond to fixed approximated'tangent‘slopes to the multidimensional
surfaces formed by the right hand side defining functions.

Each iteration comprises one solution of (A 4.18) for [Aé],
then updating [6], followed by one solution of (A 4.19) for [av],
then updating [vl. The iteration cycle, illustrated in Fig. A 4.1,
is continued until both [AP/V] and [AQ/V] are small enough so that
the& can be considered as zero. This method has been found to be
highly successful in solving many load flow problems, even those with
convergence difficulties by other methods.

The main feature of the fast decoupled method, which makes it
computationaliy superior to the full Newton-Raphson formulation, is
the use of the constantiJacobians [B'] and [B"]. These need be
inverted only once during the load flow,bproviding for fast repeat

solutions of (A 4.18) and (A 4.19),
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APPE“JDIX 5

Fast decoupled three-phase load ﬂow

Prof. J. Arrillaga, M.Sc. Tech., Ph.D,, C.Eng., F.LE.E., and B.J, Harker, M.E.

Indexing terms: Load (electric), Modelling, Power-transmission lines, Reactive power, Transmission-nerwork

calculations

Abstract

Using as a reference the single-phase fast-decoupled algorithm, this paper describes the modifications required to
produce an efficient three-phase fast-decoupled load flow. The compound-coil concept is used in the represent-
ation of power-systern components, and the effect of automatic voltage regulators is modelled as part of the
reactive-power Jacobian-matrix equation, It is shown that the three-phase modified fast-decoupled load flow
displays all the characteristics of the original single-phase version.

List of principal symbols

[T == vector of nodal injected currents-
[V] = vector of nodal voltages [ |V |e/®]
{Z] = [R} +/{X] = matrix of impedances
[¥] = [G] +/[B] = matrix of admittances
APP = real power mismatch at busbar { with phase p
AQF = reactive power mismatch at busbar { with phase p
(PPY* = specified real power at busbar / with phase p
(@FY® = specified reactive power at busbar { with phase p
|Vif = voltage magnitude at busbar { with phase p
85" = 9f — 9 = angle between busbar i with phase p, and busbar
k with phase m
GR™ = value of matrix G relating busbar / with phase p, and
"busbar & with phase m
¥ lines = voltage magnitude at the internal busbar of t.he jth gener-
ator
Oipty = voltage phase angle at the internal busbar of the jth
generator
P;l:n,; = gpecified total power output of jth generator
Ve 4 = voltage regulator specification for the three terminal
voltages for generator /
nb = number of system busbars, excluding generator internal
busbars
r = total number of system busbars
ng = number of system generators
1 Inroduction

Accurate models of power-system components using phase
parameters are available in the literature.!™ Two recent public-
ations®® have integrated such models with a Newton-Raphson
method for the solution of three-phase load flows. In balanced studies
however the conventional Newton algorithm has been displaced by
the computationally superior fast-decoupled method. Because comput-
ational requirements (time and storage) are more demanding with
three-phase models, it would appear that the conventional Newton
method should give way to the more powerful decoupled algorithms.

A preliminary investigation carried out to assess the applicability
of the fastdecoupled algorithm to three-phase studies gave negative
results. Owing to the greater degree of representation.used in three-
phase models (transformer connections, mutual inductances etc.), the
simplifications made in the development of the single-phase fast-
decoupled algorithm could not be justified for three-phase load flows,
and convergence was poor.

A deeper investigation into decoupling techniques and three-
phase power system components indicated that, with suitably modi-
fied simplifications, an efficient fast-decoupled three-phase load flow
could be achieved with similar characteristics to the single-phase fast-
decoupled method.

The development of such an algorithm is described in this paper,
emphasis being placed on those features peculiar to the three-phase
case.

2 Three-phase power-system modelling

The compound-coil concept provides the basis for a system-
atic modelling procedure. Linear transformations can be applied to
compound coils by simply replacing the single quantities of ordinary
networks with appropriate admittance matrices.$

Paper 8098 P, first received 17th May 1977 and in revised form 23rd fanuary
1978

Prof. Arrillaga is with the Department of Electrical Engineering, University of
Canterbury, Christchurch 1, New Zealand, and Mr. Harker is with the New
Zealand Efectricity Department, Christchurch 1, New Zeaiand

734

The network is first subdivided into subsystems (e.g. generators,
transformers, transmission lines), with the restriction that there
should not be mutual coupling between the branches of different sub-
systems. With this restriction the subsystem admittance matrices can
be combined as follows:

" (a) The self-admittance matrix of any busbar is the sum of all the

individual self-admittance matrices at that busbar

(b) The mutual-admittance matrix between any two busbars is the
sum of the individual mutual-admittance matrices from all sub-
systems containing those two busbars.

A trangmission-line subsystem may itself need sectionalising to account
for transpositions, changes of line parameters, series capacitors etc. In
such cases, the parameters for each section are first found and then
combined by matrix multiplication to obtain the overall subsystem
parameters.

2.1 Trensmission lines

For power frequency analysis, a three-phase transmission line
can be modelled by three lumped 7 circuits, with mutual coupling
between both the series and shunt branches of all three circuits, This
is illustrated by the matrix equivalent of Fig. la and its compound
coil equivalent of Fig. 1b.

The subsystem of Fig. 15 can be represented by matrix eqn. 1:

{nl [Zie] '+ [Yie]/2 =2kl Vil o
(] =[Zw]™ | [Za]" + [ Yil2 Vel

The effect of earth wires and the influence of ground currents is
included in the self and mutual reactances of the phase conductors.’*”
For a long line it may be necessary to consider the line as composed
of two or three lumped 7 sections in series.

“'JD Zoa| Zan| Zac u,bJD
~ Zoa| Zus| Zoe -
\ Zeal Zew| Zec /
vau Yc:b vac van ab ch
(v, 2 Yya | Yab | Ve Yoa| Yob | Yoe |4, )72 [v,)
Vca ch ch ch ch VCC
s o
a
tg,) (Zoo] ®!
@ ik e
) v, lr2 (v, b2 v,
b
Fig. 1

Transmission-line model

@ Matrix representation
b Equivalent circuit using three-phase compound coils
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2.1.1  Mutually-coupled three-phase lines

It is common for up to four transmission lines to occupy the
same right of way for a considerable length. Their electrostatic and
electromagnetic coupling must then be considered.

Applying the method of linear transformation for compound coils,
and assuming bilateral mutual couplings (ie. Y3y = YT, etc.), we can
write the following matrix equation for the case of two coupled lines,
shown in Fig. 2:

Iy Yig+ Y| YotV —Yy =Y

Ig YL +Yh| Yt Ya -1} ~ Y

e —Yu ~Yp Yy +Yss Vi +¥s

Ip — ¥ ~ Yy | YL+ YL | Yo + Y
12x1 12%x 12

Va

Va

Ve

Vb
T2x 1 )

Y13
®o > ©
line 1
Y33 ¥ [V ]
[VA] v Yig 8 <
Va4 21
Y -
Y,
22 line 2
[va] Yia %e [V D]

Fig, 2
Two coupled three-phase lines

By the combination of pairs of coupled 3 x 3 coils as a single 6 6
compound coil, the matrix equivalent of Fig. 3 results.
The corresponding matrix equation is as follows:
Va
Vg
Ve

(Zs]™ + Y] ~[Zs1™

-
i

Egn. 3 now has the same form as eqn. !, the series impedance [Z,]
and shunt admittance [Y;] matrices being of orders 3x 3, 6% 6,

9% 9, or 12x 12 for cases of one, two, three or four coupled three-
phase lines, respectively.

”[ZS]-l [Zs]—l +{¥s]

Vb

-3
{IA} [zs] l’lc
IKC KTRT >
T vy T
12 1'22
6x6
v v |
[VAJ Y333 v, ¥ss |%ss [VCJ
7 S T s2 e
6x1 Yoo [Yis | 8%6 Yeg|Ygsl 646 |66
Fig. 3

6 « 6 marrix representation of Fig. 2
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2.2 Synchronous machines

With reference to Fig, 4, the synchronous machine is re-
presented by a compound coil Yy, , which interconnects an internal
busbar of balanced three-phase voltages and a terminal busbar. The
three terminal busbar voltages are used to control the balanced internal
voltages according to some prespecified relationship.

The following matrix equation applies:

[Ygen] - [Ygen] Vi
’ = %)
—[Ygen] [Ygen] Vk

where Yge, is a 3% 3 admittance matrix derived from the sequence
component impedances of the machine.

internal v
busbar | terminal

busbar

vol l eator

Fig. &
Synchronous-generator model

2.3 Transformers

In general, any two-winding three-phase transformer can be
represented using two coupled compound coils [Yp,], [V, ie.

(Yppl | [Ypil Vo

ol )
| el e | 7

This procedure is carried out for the common connections in Refer-
ence 1, and it is shown that three basic types of submatrix result. For
each type of transformer connection, Table 9 in Appendix 10.1 indi-
cates the appropriate submatrix to be used in the corresponding
position of the nodal admittance matrix of eqn. 5. The generality of
the model can be increased by modifying these submatrices to include
primary- and secondary-winding off nominal taps, which is achieved
by

(a) dividing the primary self-admittance matrix by &?

(b) dividing the secondary self-admittance matrix by

(c) dividing the mutual admittance matrix by af.

where « and § are the primary and secondary tap ratios, respectively.
In the p.u. system, a delta winding has an effective tap of \/3.

3 Newton-Raphson soiution

To find the state of the system (i.e. the voltage magnitudes
and their phase-angle relationships) so that the specified conditions at
the busbars are satisfied, a Newton-Raphson solution requires the
following mismatch equations:

(i) For each of the three phases (p) at every load or generator terminal
busbar (7),

n 3
APP = (PP —ViP L L IVIR[GR™ cos8B™
k=1 m=1
+ BR™ sin 5™ (6)
n 3
AQF = (@) —1VIP L L IVIRIGR” sing BT
k=1 M=l
— B cos 65 (7N

(if) For each internal busbar of each generator, where the nodal volt-
ages are constrained to form a balanced three-phase set, only two
equations are required for the unknown voltage (|Vi,,.) and un-
known angle (8;,;.), i.2.

3 n 3
_ P - T ¥ am pm I
= Peenj Zl Vlint; o 2 \VIR{GE™ cos8F™
p= =1 m=1

+ BE™ sin 65" ] €]

APyep ;

a

~i
L3
A




A V‘reﬂ.l -1 Vlter-m.j(i Vlf) (9)

where |V|, are the three terminal voltages at busbar j.
The sunplest equation results when the voltage regulator monitors
one phase (| V*) only, i.e.

[ V’term 4

AMVlegy = |VIhm, = VI (10)
These sets of nonlinear equations are expressed by the equation
AP [ E1 I M ad
A‘Dgen _ [B] [F] [J] [N] AHl'nt
aQ [cl 6] [k} [P AVl
AlVeq (b} [H] L] IR] AV lint 1V line
an

The right-hand-side matrix is the usual Jacobian matrix of partial
derivatives. Eqn. 11 is solved iteratively for the right-hand-side vector,
the corresponding variables are updated, and the Jacobians are then
re-evaluated. The procedure continues until the left-hand-side mis-
matches are within tolerance.

4 Decoupled algorithm

In decoupled solutions, the effects of A6 on reactive-power
flows and A|V| on real-power flows are ignored, i.e. we can simplify
eqn. 11 by making

N=M=yl=n=0

[€c1=1[6] =
Moreover, it follows from eqn. 10 that
D} = [H] =

Eqn. 11 can thus be written in decoupled fonm, i.e.

{épf ]= [[A] [E]] [Aef }
APzeni [B] [Fj Aeintl

fori=1,nb and j = 1,ng — 1 (excluding the slack generator)

(12)

[AQ.-"
AV lreg 5

}_[[Kl [Pl} [mw{’/mf’ } 13
L) RY L8Vl il 1V line s

fori=1,nb and j = 1, ng (including the slack generator).
The coefficients of the Jacobian submatrices for eqns. 12 and 13
are given in Appendix 10.2.

.

5 Three-phase fast-decoupled algorithm

The basis of a fast-decoupled algorithm is the use of constant
Jacobian matrices. Approximations similar to those used in the single-
phase-load-flow case are justifiable in eqns. 12 and 13 as follows:

(a) at all nodes
oF < BRI (V1T

(b) between connected nodes of the same phase
cos O™ =~ 1

Gik sin Gik <B(;¢nm

and

The three-phase Jacobian submatrices in egns. 12 and {3 require a
further approximation to remain constant, namely, ignoring the
phase-angle unbalance

5" = £120° for m+=p

The above ‘procedural’ approximations, however, must not be con-
fused with the ‘actual’ phase-angle differences or degrees of angle
unbalance that the algorithm can handle.

Substituting these values into the Jacobian submatrices of Appen-
dix 10.2 yields
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APP UVIEME™ VIR
3
APen { Z, W line ME™ | VI,:“}
=
3
[ y IVI!’Mﬁ"‘IVim.;} 26
S
{ Zx f:l }V,'int.jMﬁle’int.l:l Aine
" (14)
QP UVIeMEm VIR [z VP MR lVl.,.”]
NI L] @)
AVIENVIE
MV Yine i/ WV line
L (15)

where MA™ =GR sin 65" — BR™ cos0f™

All terms in the matrix [M] are constant, and their values are given
by substitution of the following:

omm =0
gmm =0

6™ = £120° for

and
m¥*p

The matrix [M] is the same as matrix [B], except for the offdiagonal

terms that connect nodes of different phases, which are 1 modified by

allowing for the * 120° angle, and adding the Gf" sin 4" terms.
Eqgns. 14 and 15 are then modified as follows:

(i) The left-hand-side defining functions are redefined as [APP/
WY, [8Pgen if| Vlines] and [AQP/1VIP]
(i) In eqn. 14, the remaining right-handside | V| terms are set to 1
p.u., removing the influence of reactive-power (MVAr) flows on the
calculation of A8 and A8,,.
(i) In eqn. 15, the remaining right-hand-side {¥| terms are cancelled
with the corresponding ones at the right-hand-side vector.

This yields

- 3
[arP V] Mpr L M A9
m=j
= 3 s ) (16)
[APgen i1V line ] MRy Y MET ABjny )
L. p=1 p=l m=1
B']
" 3
AQP I\ VIP ME" Z, Mg | lalvip |
ez
= an
Al V|regj [L "] [0] AlVlint i
[8"]

where [B'] and {B"] are constant approximated Jacobian matrices.

5.1 Modification of constant Jacobian matrices

The decouplmg process is completed by further modifying
matrices [B'] and [B"] as follows.

It is important that the constant Jacobian matrices represent a
reliably approximate tangent stope to the corresponding surface, inde-
pendent of the minor changes in shape that occur during the iterative
process. For the surface defined by [Ap/V}, these changes in shape
can be viewed as localised deformities of the surface. These deform-
ities are most pronounced along the axis that corresponds to the bus-
bars where shunt admittances are present. If the terms that reflect
these localised deformities into the tangent hyperplane are ignored, a
reliably approximate tangent slope is obtainable. This is effectively
done in single-phase fast-decoupled load flows® by removing from
[B'] the representation of the network elements that predominantly
affect reactive-power (MVAr) flows.
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In the modelling of some three-phase transformer connections (the
most common example being the star-delta connection), large shunt
admittances are effectively introduced into the system. This is
illustrated for the case of a star-delta transformer in Fig. 5.

When the shunts are excluded from the {B') matrix, convergence
is inhibited. With the inclusion of these shunts, an excellent con-
vergence is obtained, comsistent with the usual single-phase load-flow
characteristics.

Yy
a J\ A
-y
3 ¥i3
Y
-y
15 8 §Y13
n e Y,
y y .
- Y ,{T
AV ¢
€ + Vi
s e
primary secondary
Fig. 5

Equivalent circuit for the star-delta transformer

The difference with respect to the normal system shunt elements

is purely one of magnitude. The shunt admittances from the trans-
former model are extremely large (20 p.u. for a 5% leakage reactance
transformer), and will therefore alter the entire shape of the multi-
dimensional surface defined by [AP/V]. These shunts must be in-
cluded in [B'] if this is to be representative of the tangent hyper-
plane to the surface. All other shunts should be excluded from [B'}
to avoid the localised-deformity problem discussed earlier.

This yields the following two three-phase fast-decoupled matrix
equations:

APV , 28
= |8y }
APgen.”V’lnt. ABint.

= M

AV lreq.
The constant approximated Jacobians [By] and [By] correspond to
fixed approximated tangent slopes to the multidimensional surfaces
formed by the right-handside defining functions. Eqns. 18 and 19

are then solved successively, as in the single-phase fast-decoupled
method, i.e. according to the flow diagram illustrated in Fig. 6.

(19)

Al ]
AV line.

Iculculcte [aPIV],[A gen']]

ch(culqte [AQ/ V], [aV output |

reg? |

[ sotve eqn 19 and update[V] v,

Fig. 6
Flow charr of basic iterarive procedure
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The solution of eqns. 18 and 19 is carried out using sparsity tech-
niques and near-opumal ordering, as embodied in Zollenkopf’s
bifactorisation® technique.

In decoupled load flows, the multidimensional surface defined by
[AP/V] is considered to be independent of the values of {¥]. This is
not strictly correct, and the changing [V] values will alter the sur-
face defined by [AP/V].

6 Test system

The developed algorithm has been applied to the power
systemn shown in Fig. 7, which includes synchronous generators, a
synchronous compensator, a section of four mutually-coupled three-
phase lines, star-delta-connected transformers with earthed neutrals,
and both primary and secondary taps.

generator

generator

ROXON

section |

section 2
INV220

Tiw220

synchronous condenser

Fig. 7
Single-line diagram of the test system

Fig. 8 illustrates the system divided into eight natural sybsystems,
each in terms of 3x 3, 6 x 6,and 12 x 12 matrix blocks, representing
the various elements and sections. The nodal admittance matrix is
formed for each section, and these are then combined as discussed
earlier.

The matrix blocks are formed from the input data illustrated in
Tables 1—-3. Because the input data for the coupled lines consist of
various full matrices (up to and including two 12X 12 matrices)
representative data only are given in Table 3.

To investigate the convergence properties of the algorithm, the
following studies were compared:

(a) Balanced operation of the balanced power system
(i) with the generators effectively excluded by setting their sequence
impedances to a low value (this is the three-phase equivalent of the
usual single-phase load flow) .
(ii) with realistic generator modelling
(b) Unbalanced operation of the unbalanced power system (with
busbar loading conditions as shown in Table 4)
(i) generators effectively excluded
(ii) realistic generator modelling
(¢) As for case (b) (ii), except with the 30° phase shift due to the
transformer connections ignored in the starting values
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(d) For the unbalanced system under abnormal operating conditions

(i) large unbalanced real-power loading (as for case () (ii), except
for INV220, which now has 300 MW in phase 4)

(ii) large unbalanced reactive-power loading {as for case () (ii), except
for INV220, which now has S00 MV Ar reactive power in phase 4)
(iii) large unbalanced real and reactive-power loading ((d) (i) and
(d) (ii) loading conditions applied together).

6.1 Discussion of results

The number of iterations required for the maximum mis-
matches to be within the specified tolerance is shown in Table 5.
These results and the authors’ experience with other cases leads to the
following conclusions as regards convergence properties of the de-
veloped algorithm:

(i) For a balanced system, convergence is similar to that of a single-

phase oad flow

(ii) The inclusion of generator plant and the modelling of the voltage
regulator does not cause any significant deterioration in conver-
gence

(i) Starting values are not critical. Flat voltage and angle initial con-
ditions are perfectly adequate

(iv) Convergence is achieved even in cases of extreme unbalance.

The resulting system voltages and angles for cases (b) (1‘1') and (d) (if)
are given in Tables 6 and 7, respectively, and the line power flows for
case (b) (ii) in Table 8. :

Ir addition to the significant unbalance, the following features are
noticed in Tables 6—8:

(a) There is an approximate 30° phase shift due to the star-delta-
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secondary
(s)
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connected transformers Fig. 8
(b) Balanced voltages occur at the generator internal busbars Test system exploded into eight subsystems
Table 1 Table 2
GENERATOR DATA TRANSFORMER DATA
Generator Sequence reactances Power  Voltage Busbar names ROX220-ROX011 MAN?220-MANO14
Name Xo X X, P v Connection Star delta Star delta
MANI14 0-050 0.100 0.010 6-900 1.045 " Leakage impedance 0-0060 +;0.1164 0-0018 +/0-0492
TIW 220 0-050 0-100 0.010 0.000 1.020 Primary tap (%) 0-022 0-025
ROXO01! 0.050 0-100 0-010 slack 1-050 Secondary tap (%) 0.732 0.732
Table 3
LINE DATA: INV220-TIW220 DOUBLE CIRCUIT {Z,] SERIES-IMPEDANCE MATRIX
a b ¢ a b ¢

0.0069 + ;0.0440

0.0045 +j 0.0209

0.0043 +/0.0219

b 0-0045 +70.0209 0-0066 +j0.0441 0.0044 + 7 0-0207
c 0.0043 +/0.0219 0.0044 +0.0207 0-0065 +70.0442
a 0-0043 +;0.0212 0-0045 +70.0185 0-0043 +,0.0182
b 0-0045 +j0-0185 0-0046 +/0.0182 0.0044 +/0-0167

o

0-0043 +;0.0182

0-0044 +/0.0167

0-0043 +,0-0163

0.0043 +70.0212
0-0045 +/0.0185
0-0043 +70.0182
0-0069 +/0.0440
0.0045 +;0-0209
0-0043 +,;0.0219

0.0045 +;70.0185
0-0046 +,0.0182
0.0044 + 7 0.0167
0.-0045 +70.0209
0-0066 +0.0441
0-0044 +j0.0207

0.0043 +,0.0182
0.0044 +;0.0167
0.0043 +j0.0163
0-0043 +/0.0219
0-0044 +; 0.0207
0.0065 +0.0442

[Y,] shunt-admittance matrix

»

a b c a b ' c
a j0.0152 -7 0-0021 —j0-0024 —j0-0020 —j 0.0009 —j0.0005
b —j0:0021 100142 —j0.0022 —j0-0009 —j0.0011 - j0-0004
¢ —70:0024 —70-0022 j0-0147 —;0-0008 —j0.0004 —j0-0001
a —;0:0020 —70-0008 —10-0008 j0.0152 —70-0021 —j0-0024
b —j0-0009 —j0-0011 —j 0-0004 —j0-0021 j0.0142 —70-0022
¢ —70-0005 —;0-0004 —;0-0001 —;0.0024 —70-0022 j0-0147
Table 5
Tahble 4 NUMBER OF ITERATIONS TO CONVERGENCE
BUSBAR LOADING DATA ; *
Case Maximum Convergence tolerance
Bus name Phase 4 Phase B Phase C study initial
P 0 P 0 P Q mismatch® 0'} 0-01 9-001
INV220 50000 15000 45000 14.000 48300 16600 b w8 b
MANO14 0.000 0.000 0-000 0.000 0-000 0.000 a (i) 2.45 2 1 3 2 S 3
MAN22 0-000  0.000. 0-000 0.000 0-000 0.000 a (ii) 245 2 1 4 3 6 4,
ROXO011 0.000 0.000 0-000  0-000 0.006 0-000 b (i) 2.51 2 1 4 4 7 7
ROX22 48.000 20.000 47.000 12.000 51.300 28-300 b (i) 2.51 2 1 4 4 7 7
TIW220 150-000 80.000 157.000 78.000 173.000 72.-000 c 10-34 4 3 6 5 9 7
MAN.GN 0-000  0.000 0.000 0-000 0-000 0-000 d (i) 2.88 4 4 7 7 11 10
TIW.GN 0-000 0-000 0-000 0.000 0-.000 0.000 d (ii) 3.14 6 6 9 9 12 12
ROX.GN 0-000  0.000 0-000 0.000 0-000 0-CO0 d (iii) 3.14 6 6 10 10 13 12
*“Tolerances and mismatches are in p.u.ona 10O MVA base
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Table 6
SYSTEM VOLTAGES (V) AND ANGLES (DEGREES) FOR CASE & (ii)
Busbar name Phase A Phase B Phase C Generation
Voltage Angle Voltage Angle Voltage Angle MW MVAr
INV220 1-021 29-447 1.022 —90.520 1.026 149.152 0-000 0-000
MANO14 1045 11.235 1.046 — 108-873 1.044 131-112 0-000 0-000
MAN?220 1.059 35-399 1.053 — 85-244 [-042 155-267 0-000 0-000
ROXO011 1.050 —1.573 1-051 —121-550 1-051 118412 0-000 0-000
ROX220 1.038 26-646 1.048 — 93.247 1.035 146.354 0-000 0-000
TIW220 1.020 29-164 1018 —90.908 1.023 148.845 0-000 0-000
MAN GN 1111 22-584 1111 —97.416 1111 142.584 690-000 288.124
TIW GN 1-056 29.033 1.056 —90.967 1-056 149.033 0-000 114-641
ROX GN 1-078 0-000 1.078 — 120-000 1.078 120-000 93.065 89.246
Table 7
SYSTEM VOLTAGES (V) AND ANGLES (DEGREES) FOR CASE d (ii)
Busbar name Phase 4 Phase B Phase C Generation
Voltage Angle Voltage Angle Voltage Angle MW MVAr
INV220 0-884 28.782 1-162 - —97.506 1-190 152450 0-000 0-000
TIW220 1.020 27.345 1137 —94.500 1-142 149-480 0-000 0-000
ROX220 1.013 25-944 1.084 © —94.405 1.070 146723 0-000 0-000
ROXO011 1-050 —1.849 1.050 —121.739 1052 118:190 0-000 0-000
MAN220 1.057 33.828 1-104 -~ 87.051 1.095 153.583 0-000 0-000
MANO14 1.045 9.280 1-047 - 110-561 1-049 129-263 0-000 0-000
MAN GN 1-049 21416 1049 —98.584 1-049 141416 690.000 80.021
TIW GN 1.382 27-448 1.382 - 92.552 1-382 147-448 0-000 1174450
ROX GN 1065 0-000 1.065 — 120.000 1.065 120-000 105.447 48.534
Table 8
LINE POWER FLOWS FOR CASE (b) (ii)
Sending-end Réceiving-end Sending end Receiving end
busbar name busbar name MW MVAr MW MVAr
MANO14 MAN GN —215-188 . —47-660 214.317 94.689
— 236-239 - 32.027 239.036 83.135
—238577 —57.358 236651 110-300
TIW?220 TIW GN ©1.022 — 48.856 —0.943 50.603
‘13.968 —39.879 —14.459 41.417
— 14.990 —21-861 15-402 22622
ROX011 ROX GN — 31477 —32:397 31-380 34-123
—27-102 — 26447 27-056 27-870
— 34.486 — 25625 34-629 27.253
MAN220 INV220 61.717 —0-449 -—59.959 — 3.060
63.923 8-780 ~63.029 —12.525
55-884 9.433 —55-938 —12-890
MAN220 INV220- 60-104 3.148 —58.834 —6:633
- 60-697 8-862 —59.913 —12.893
55.386 8.308 —55-251 —11.644
MAN?220 TIW?220' 50.372 4.489 —50.036 | —10-361
45.195 8.696 —44.865 —15.661
45.799 — 2.050 —44.387 —4.002
MAN220 TIW220 50-280 1.766 —49.601 —7.803
71153 —10:392 —68.0135 5.177
66-716 21.838 —67.520 —25.218
INV220 TIW?220 25.741 4.940 —25.740 —6.486
29.094 12.418 —129.016 —13.818
22.994 8.775 —23.049 —10-464
INV220 TIW220 25.755 4.932 —25.727 — 6494
29.094 12.418 —29.016 —13.818
23.008 8.782 —23.035 —10-456
INV220 ROX220 17.294 —15-180 —17-761 7-742
19699 — 13417 —18-814 8668
16:931 —9.624 —16.981 2.118
MAN?220 MANO14 — 222.495 — 8.953 ] 215204 47.661
— 240.999 —15.945 236-242 32.027
—223.842 —37.530 238.620 37.358
ROX220 ROXO011 —30-247 — 27.743 31473 32.397
— 28.193 — 20-668 27-099 26-447
- 34.329 — 30418 34.487 25625
Total generation 783-0651 MW 492.0122 MVAr
Total load 769-6000 MW 335-9000 MVAr
System losses 13:3693 MW 156-1128 MVAr
Mismatch 0-0959 MW —0:0006 MVAr
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(¢) Balanced angles occur at the generator internal busbars

(d) There is an apparent gain in active power flow in any one phase.
This power flows through the mutualcoupling terms between
phases. The overall active power shows a net loss as expected for a
realistic system

(e) For the synchronous compensator the individual phases may carry
real power; although the total three-phase power always sums to
zero.

7 Conclusions

The high efficiency of fast-decoupled algorithms over the
conventional Newton-Raphson (roughly six fast-decoupled iterations
are equivalent to one full Newton-Raphson iteration) method has
been extended in this paper to the solution of three-phase load flows.
Such extension is not straightforward, and- various modifications to
the basic algorithm have been developed to cope with mutual effects
between phases and between paralle] transmission lines. Also, the
presence of large shunt admittances in some transformer equivalent
circuits have been found to influence convergence, and need to be
included in the active power-mismatch Jacobian matrix. Sparsity
techniques and near-optimal ordering have been used to provide fast-

repeat solutions. The algorithm provides fast and reliable.convergence

even with extreme conditions of steady-state unbalance.
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10 Appendix ’
10.1 ~ Submatrices for different transformer connections

Table 9

BASIC SUBMATRICES USED IN NODE-ADMITTANCE FORMULATION OF
COMMON THREE-PHASE TRANSFORMER CONNECTIONS

Self admittance

Transformer connection Mutual admittance

Bus P Bus § Yop Yes Yps, YEp
Wye — G Wye — G Yy Yy — ¥y
Wye — G Wye Y11/3 Yi/3 ~Yy/3
Wye - G Delta Yy Yy + Ym
Wye Wye /3 Yn/3 —¥Yy/3
Wye Wye Yn/3 Yn Ym
Delta Delta Yy Yo — Y
740

a4

The characteristic submatrices used in forming the transformer
admittance matrices are as follows:

!
n= Y
f!
2 Yt - Yt - Yt
Yu == Yt 2Yt - Yt
- Y! - Yf 2Yf
Y| 1
Yip = -Y Y
Y, -Y,
10.2 Jacobian submatrices

Coefficients of matrix eqn. 12 are as follows:
0 [45"] = (24P /06}]
where
AT = VRIVIE (G sin 0" — BR™ cos 6§"]
except
o= B - o

(i) [Bfk] = [04Psgpn . ;/007]

3
= 2 W line g \VIF [GH sin 65" — BE™ cos 65"

p=1
() [Efi] = [BAPP/30ine.]
3
= 3 WlinualVIF [GR™ sin6§™ — BE™ cos 0™ ]
=)
(iV) [Fﬂ] = [aAPgen.j/ael'nt.l]

where [F};] =0 for j #/ because the jth generator has no connection
with the /th generator intemal busbar

and s
Ful = Y —BE™ Vi —op +

m=|

e

3
T W line{Vhine
t p=1
m#p
[GR™ sin 8f™ — BY™ cos 6§™]
Coefficients of matrix 13 are as follows
G kol = WIRRBAQIRIVIE]

where

KE = VIR IVE [GH sin 08" — BI cos 03]
except

K = = BRr VIR + OF

R
@) [LR] = VIR [34,0.,/81VIR]

where L}, = — [VI} where k is the terminal busbar of the jth generator
and

It

Ly = 0 otherwise

(i) (PR = W lines [DAQF W hine]

0

Il

3
Wlinea 2 V1P [GE™ sin6f™ — BE™ cos 67 ]

m=1

(iv) [Ry]l =0 forallj,{
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APPENDIX 6

3-phase a.c./d.c. load flow

8.J. Harker, B.E., M.E., and Prof. J. Arrillaga, M.S¢.Tech., Ph.D., C.Eng., F.1.E.E.

Indexing terms:

Abstract

D.C. power transmission, Load fhow, Power conyertors

A phaseo-ordinate model of h.v, d.c. transmission systems suitable for integration into 3-phase load-flow analy sis
is developed in the paper. The model is sufficiently veneral to allow representation of alternative control strategies.
such as the predictive and symmetrical firing control. The integration ol the model into the load-tlow analysis is
described with particular reference to the 3-phase tast-decoupled algorithm. The results indicate the fexibility and
powerful convergence of the proposed algorithm,

1 Introduction

The subject of ac./de. load flow has been given some
consideration in recent years but only under perfectly symmetrical
operating vonditions.! When the ac. system is not balanced the
interaction between convertor and a.c..supply waveforms can only be
assessed with a 3-phase load-low model integrating the a.c. and d.c.
equations.

Phasc-angle control with minimum angles of deldy (rectifier) or
advance (inverter) in the steady-state condition constituted the basis
of early h.v.d.c. control schemes. An alternative control, based on
equidistant firings on the steady state, is generally accepted to provide
more stable operation in the presence of weak a.c. systems and par-
ticularly during disturbances.?

Under normal steady-state and perfectly balanced generating
conditions there is no difference between these two basic control
strategies. However, their effect on the a.c. system and d.c. voltage
and current waveshapes during normal, but not balanced, operation is
quite different.

A 3.phase convertor model is described in this paper with flexi-
bility to represent alternative control strategies and d.c. configurations.

Although the model can be used with any type of 3-phase lead flow, .

the paper describes a very efficient integration with the recently
developed 3-phase fast decoupled algorithm.?

filters

e

Fig. 3
Basic h.v. d.c. interconnection

2 2 '
vwrm[e(nm'euvm lg
— g

8y.0,,a,

Cfilters !

1
vl«m[.Q

v |
3 ‘ ;
v(efm e!lum 'extﬂm {
| | i
I /“’3 —=—-—==—-m'
primdary secondary
Fig. 2 N
Basic convertor unit ,
2 D.C. system modelling

The basic h.v. d.c! interconnection shown in Fig. | is used as
a reference in the development of the model. The extension to other
configurations is clarified throughout the development. All convertor
units. whether rectifying or inverting, are represented by the same
model (Fig. 2), and their equations are of the same form.
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Under unbalanced conditions the convertor transformer modities
the source voltages applied to the convertor and also attects the phase
distribution of current and power. In addition. the a.c. system oper-
ation may be influenced (e.g. by a zero-sequence current tlow to a
star-g/delta transformer) by the transfurmer connection. Each bridge
in Fig. 1 will thus operate with a different degree of unbalunce. owing
to the intluence of the convertor transformer connections, and must
be modelled independently.

A mathematical model of the d.c. system, suitable for inclusion
into the load-flow analysis. consists of a set of independent equations
R which completely define the operating state of the system in terms
of the convertor variables ¥ and the 3-phase a.c. voltages 1o, and
0,‘,,,. at the terminal busbars, i.e.

R(V:nm»otlcrm‘i)k =0 (-

for k =1 (number ol convertors) and i = 1, 3 for the three phases
the terminal busbar.

2.1 Dersivation of equations .

To simplify the selection of variables and the formulation of
eqn. | the following conditions are assumed:

(a) sinusoidal voltage supply on the system side of the convertor
transformer

(b) perfectly smooth direct current

(c¢) rectangular approximation for the phase currents

(d) the supply to the convertos auxiliaries and control units is not
affected by the degree of unbalance.

Regarding assumptions (a) and (b). previous work” *° has demon-
strated the appearance of second-harmonic ripple on the d.c. side and
nonzero-sequence triplen-harmonic currents on the a.c. side of static
convertors under unbalanced a.c. system conditions. However, the
harmonic levels produced are only significant in extreme cases of
unbalance, e.g. during unbalanced short-ircuit conditions.

The limit of voltage harmonic distortion permitted under steady-
state operating conditions is normally below 17 for each individuul
harmonic at transmission-voltage levels, and, whenever such limits are
surpassed, steps are taken to reduce them (e.g. the addition of a third-
harmonic filter to the cross<channel link).

Although an exact solution would require accurate assessment of
the harmonic content and harmonic penetration. there is no need for
such detailed studies in power-flow analysis. (Further justification 1s
given in Section 6.)

Approximation (c) is commonly accepted in load-flow studies' for
the purpose of calculating the magnitude of the fundamental current.
(The error involved under normal operating conditions with overlap
angles below 30° is under 1%.) It must be clarified, however, that such
approximation does not imply neglect of the effect of commutation
reactance in the calculation of power factor, d.c. voltage levels etc.
where the errors would be more pronounced.

Based on the above approximations the voltage and current wave-
forms illustrated in Fig. 3 apply. The convertor operating state can
then be formulated in terms of the following 26 variables (X)) Jefined
with reference to Fig. 2 and Fig. 3: i

E,/%; = fundamental-requency voltages at the secondary side of
the transformer
Iijwy = fundamental-{requency line currents at the transformer
secondary

a; = off-nominal tap ratios on the primary side
Uy{C; = phase-phase source voltages for the convertor referred to

the transformer secondary. C; are therefore the cero
crossings for the timing of firing pulses

a; = firing-delay angle measured from the respective zero

crossing




1

"d
14

total average d.c. voltage from complete bridge
average d.c. current

it

where i = 1, 2, 3 for the three phases involved.

In the 3-phase a.c. losad flow all angles are referred to the slack
generator’s internal busbar. The angle reference for the convertor vari-
ables is arbitrary. Similarly, for the single-phase a.c./d.c. load flow,’'
by using one of the convertor angles (e.g. 8}.,n, in Fig. 2) as a refer-
ence, the mathematical coupling between the equations describing the
a.c. system and those describing the convertor is weakened. This has
a favourable effect on the rate of convergence, especially when a
sequential solution technique is used.

Based on the p.u. system described in Appendix 10.1 a set of 26
independent equations is derived in the following subsections.

The complete set of equations is illustrated in Appendix 10.2.

phase 1

phase 3

Hy H2 Hy
P i e i..p.

I
=
R e

Fig. 3
Voltage and current waveforms

a Phase voltages
b Direct voltages
¢ Assumed current in phase 1 (actual waveform indicated in dotted line)

2.1.1 Current relationships

Relationships are derived for the fundamental-frequency real

and imaginary current flows across the convertor transformer.

Off-nominal taps (4, 2, a3) are modelled on the system (primary)
side of the ‘transformer and for generality are assumed to be indepen-
dently controllable. ‘

The 3-phase convertor transformer is represented by its nodal
admittance model, i.e.
Y

bp

Y,

P wa

Y

Ps

Ynode =

< {O

where p indicates the primary side and s the secondary side of the
transformer.

The 3 x 3 submatrices (Yp, ete.) for the various transformer con-
nections, including modelling of the independent-phase taps. may be
derived using Kron's connection-matrix technique as explained in
Reference 6.

In terms of these submatrices, and on the assumption of a lossless
transformer (i.e. Yy, = /by, etc.), the currents at the convertorside
busbar are expressed as follows:

I.'('Jui =

3 . .
—kZl (bR ER ek + [bis V ferm exP [/ (0Ferm = 60rmm)] )

On subtracting 6),,, in the above equation, the terminal busbar
angles are related to the convertor angle reference. On separating this
equation into real and imaginary components, the following six
equations result:

3
Iicosw; = Y {b%E, sin ¢ + bk VE
R

=1
sin (G?erm - azerm )} (2)
# 3 . »
Jisinw; = 2 {— XL, cos ¢ — b'.’; V:'erm
k=1
cos (etzrm - B:erm )} (3)

Three approximate relationships are derived® for the fundamental
r.n.s. components of the line-current waveforms as shown in Fig. 3,
ie.

aly
I = \7sm (Ti/2) @)
where T is the assumed conduction period-of phase /.

2.1.2  Secondary-voltage reference

The voltage reference for the a.c. system is earth. In d.c.
transmission the actual earth is placed on one of the convertors’
d.c. terminal, and this point is used as a reference to define the
d.c.-transmission voltages and the insulation levels of the convertor-
transformers’ secondary windings.

However, for the load-flow analysis, arbitrary references can be
used for each convertor unit to simplify the mathematical model. The
actual voltages to earth, if required, can then be obtained from know-
ledge of the particular configuration and earthing arrangements.

The transformer nodal admittance matrix of Section 2.1.1 relates
the injected currents to the nodal voltages, where the nodal voltages
are normally referenced to earth. In the case of the convertor-
transformer secondary an arbitrary reference can be explicitly
included. Using the zero-sequence secondary voltage as a reference
yields the following equations:

3
El E;icos¢; = 0 (5)

. .
Y Eising; =0 (6)
i=1

2.1.3 Power relationship

The following expression is derived by equating the sum of

the 3-phase a.c. powers to the total d.c. power:

Eilicos (9 ~wy) —Vaglg = 0 (7
1

N ™

2.1.4 Convertor source voltages

The phase-phase source voltages referred to the transformer
secondary are found by a consideration of the transformer connection
and off-nominal turns ratio. For example, consider the star-star trans.
former of Fig. 4:

1., 1 / . »
Uss Zgl = a_l ,‘Atlerm &_H_ Vtaevrm ze?erm —‘agerm (8)
3 .
! v .

— g 2 Y
U23 ICZ - a ;ttrm leterm Olerm
2

! 3

=~ Vierm [Bterm ~8term ®)

3
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r l 2 - l -
Un [Cy = a_';V;"'" Oierm = 0ter -a—”"'" 0
t

(10

Taking real and imaginary parts yields a further six equations,

phase !
-la- / L
H 2 '
V(evm e'erm-elerm phase 3
k} ——)
Vt{wrrle"erﬁ- -8lerm phase 2

Fig. 4
Star-star transformer connection

'

\‘t‘errH[Q,

2.1.5  Direct voltage

The direct voltage is found by integration of the waveforms
in Fig. 3b and may be written in the form

Var = Uyplcos (C, + a; = C; + 7) =cos (C; +a'g=-C,+IW)l

V2
+ Uisleos (Cy + a3 =€) = cos (Cs + a3 = C)]

+ Uu[COS(C, + a3 ‘“’Cg)"COS(Cl + @y + ﬂ‘-Cz)].
“"Id(-YC."’XC:"’XC’) (Il)

where XC, is the commutation reactance for phase i,

2.1.8 D.C. interconnection

An equation is derived for each convertor from the d.c.
system topology relating the d.c. voltages and currents. In general this
equation is of the form

(Vg ly) = 0 a2)

For example, the system shown in Fig. | provides the following four
equations:

Vd, + Vdy + Vdy + Vdy = Id,Rd = 0
Wy —1dy =0
dy~tdy, =0
Wy=1ds =0

where clearly some redundancy results. This is the cost of complete
generality in the d.c. interconnection.

2.1.7  Incorporation of control strategies

A further six equations are derived from the specific oper-
ating conditions. Any function of the 26 variables is a valid (math-
ematically) control equation go long as the equation is independent of
all the others. In practice there are restrictions limiting the number of
alternatives. Some control specifications refer to the characteristics of
power transmission (e.g. constant power or constant current): others
introduce constraints such as minimum delay or extinction angles.

As the consideration of the alternative firing controls is of particu-
lar interest their implementation is now discussed. Symmetrical firing
is considered as being applied individually for each 6-pulse bridge,
although, if required, the equations may be written to consider the
firing controller operating on an integral 12-pulse bridge. For the

6-pulse unit the interval between firing pulses is specified as 60°. This.

provides two equations. The third equation results from the specifi-
cation of minimum firing-angle control, i.e.

Q= iy = 0

where phase i is selected during the solution procedure such that the
other two phases will have. in the unbalanced case. firing angles
greater than a,,;,. With conventional phase-angle control the firing
angle on each phase is specified as being equal 10 @pyiq. i.8.

Gy~ g = 0
@ = Ui = 0

@y = Qpin = 0
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The remaining three control equations are derived from the operating
conditions. Usually, the off-nominal taps are specified as being equal.
ie.
dy —dy = 0
ay —~ay =0

The final equation will normally relate to the constant current or cun-
stant power controller, e.g.

Iy=1P =0
or
‘alg —pd =0

The above examples illustrate the ease with which the various control
specifications are incorporated.

2.1.8 {nvertor operation with minimum extinction angle -

As the firing«lelay angle « is used as a variable, the restriction
on the extinction advance angle ¥ requires the implicit calculation of
the commutation angle for each phase.

Taking the specification for v as defined in Fig. 3, the following
equation is used:

(XC, + XCy)
i =2 () (t3
V2Uy,

Similar equations apply to the other two phases with cyclic chunge of
suffixes.

cos YP +cos ey = Iy

3 3-phase a.c./d.c. algorithm

Single and 3-phase load-flow formulations are basically the
same. In the 3-phase case, however, the system-admittance matrix
includes the effect of each separate phase as well as the interphase
mutual couplings in generators, transformers and transmission sys-
tems. Moreover, the load active P and reactive Q powers are spevitied
separately for each phase.

Generators require special consideration in 3-phase load flows.
Their model includes

(@) a2 balanced set of internal voltages acting behind their
synchronous-impedance matrix; i.e. an additional internal bushar is
introduced for each generator

(b) the voltage-regulator action, which in general is specified as a
function of the three terminal voltages.ie. f(V', Vi V')

(c) the total real-power generation, which is specified at all gener.
ating busbars except the slack busbar.

The following variables are required to define the operating state of
the 3-phase system:

(i) the slack-generator internal-busbar-voltage magnitude (1 )y,

(ii) the internal-busbarvoltage magnitudes (1,), and angles
(B gen )y at all other generators, ie. for j= |.ng — | where ng is the
rumber of generators. .

(iii) the three voltage magnitudes {17) and angles (0F) ar every
generator terminal busbar and cvery load busbar, i.c. for p = 1.3 fur
the three phases and / = 1, ub where nb is the actual number of bus-
bars.

To solve for the above variables. a total of [2(ng — 1) + | + 6uh|
mismatch equations can be written from the specified conditions:
these are

(@) at the generators’ internal busbars (except the slack generator),

(APgen); = (Peen)i® = (Peen)y
(AV,«)’ = f(l"ll. V]z, V]‘) =0

forj=1.ng—1
(b) at the slack-generator internal busbar.

(AVregsy, = f(Fsp Vép. VsL) = 0

{c) at every gencrator terminal busbar and every load busbar,

(14)

APF = (PPY? —(PP)™ =0
AQP = (OPY® —(Qf)y* = 0

forp=1,3andi= 1, ub.
Egns. 14 to 18 are written in terms of the unknown vanuables
(normally }” and 6). They may he solved by the direct Newton-
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Raphson algorithm® or, more effectively . by a 3-phase fast-decoupled
Newton-Raphson alporithin.® Using the fatter technique, eqns. 14 to
1% can be decoupled in two groups and solved sequentially as folows.

APPIIVP oA
' = (8] (19)
(Allgnn)j/l(lﬂen)j( A(ofen)/'
AQFPIHPTI Ve
AMVreg); = [B"] | A(Fyen); (0)
A( Vrzg)SL A( Vgen )SL

where B'and B are the Jdcobi:m matrices approximated to constants.
The presence of the d.c. link is manifested in two ways:

(i) addition of 26 variables and the corresponding mismatch
equations for each convertor, i.e. eqn. |
(ii) modification of the constraint eqns. 17 and 18 at the convertor-

[ evaluate real-power mismatches_[

solve egn. 19
and update [61

evaluate reactive power and
voltage regulator mismatches

solve eqn. 20
and update [ V]

convertor
foad

evaluate d.c. residuails W

converge yes

kP*kQ = 10 Y&
C

no

solve eqn. 23
and update [x])

|
R

>
[SI
2=

0o

convergence obtained

Fig. 5
Flow chart of iterative procedure
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terminal bushar as follows:
1)
(22)

/)F - pp yar —

AQF = ()™

(PP)oc—(PP)g. = O
() —1Ca = 0

where ((F 4. and (PP )4, are functions of the a.c.-terminal conditions
and of the convertor variables.

Extensive load-flow studies have shown that in all cases where
reasonable starting values are available a sequential integration of the
d.c. equations into the load-flow algorithm led to convergence, the
complexity of other approaches not being justified.

With the sequentlaj approach the d.c.-convertor power demands in
eqns. 21 and 22 are considered as constant loads, and egns. 19 and 20
are used wnhou( modification for the a.c. solution.

For the solution of the link eqn. 1 the terminal voltages '}, and
8%erm are considered constant, and the standard Newton- Raphson
technique is applied; i.e. the equation

[R] = [V}{ax]

is used to iteratively solve eqn. 1.

The three sets of equations (i.e. eqns. 19, 20 and 23) are solved
according to the iteration sequence illustrated in Fig. 5. This sequence
acknowledges the fact that the convertor operation is strongly related
to the magnitude of the terminal voltages and more weakly dependent
on their phase angles. Therefore the convertor solution follows the
update of the a.c.-terminal voltages. Also, to avoid compatibility
problems between a.c. and d.c. tolerances, the convertor equations are
continued to be solved until both sets of a.c. mismatches have con-
verged. Final convergence, when a d.c. convertor is present, is always
obtained via path C in the flow chart; paths A and B are possible only
in the absence of d.c. convertors.

During the iterative procedure the unspecified convertor variables
may go outside prespecified limits. In these cases the offending var-
able can be set to its limiting value and an appropriate control variable
freed. In addition, once convergence is achieved, it may be necessary
to set the transformer taps to the nearest discrete step and reconverge
to obtain a practical operating condition. The reconvergence will, in
general, be very fast.

(23)

4 Programming aspects

Eqns. 19 and 20 are solved using sparsity techniques and
near-optimal ordering. The solution of eqn. 23 is carried out using a
modified Gaussian-elimination routine. The equations for éach con-
vertor are separate except for those relating to the d.c. intercon-
nection.

This feature may be utilised, by appropriate ordering of variables,
to yield a block sparsity structure for the d.c. Jacobian. On placing
the direct-voltage variable last for each block of convertor equations
and on placing all the direct-current variables after all convertor
blocks, the d.c. Jacobian will have a structure as iliustrated in Fig.6.

On using row pivoting only during the solution procedure. the
block sparsity of Fig. 6 is preserved. Each block containing nonzero
elements is stored in full, but only nonzero elements are processed.

This routine requires less storage than a normal sparsity programme
for nonsymmetrical matrices and the solution efficiency is improved.

5 Test system and results

The test system, Fig. 7, consists of two a.c. subsystems inter-
connected by an h.v.d.c. link. The 20-busbar system is a represen-
tation of the 220 kV a.c. network in the South Island of New Zealand.
It includes mutually coupled paralle| lines, synchronous generators
and condensers, star-star and sitar-delta connected transformers and
has a total generation in excess of 2000 MW. The d.c.-link parameters
are those of the Cook Strait link between the two islands.

At the other end of the link a fictitious 5-busbar system represents
800 MW of remote hydrogeneration feeding balanced loads at busbars

*1 and 2 and connected to the convertor terminai by long untrans-

posed high-voltage lines.

The small system is used to test the algorithm and to enable
detailed discussion of results. The New Zealand d.c. link should have
considerable influence, as the link power rating (600 MW) is compar-
able to the total capacity of the small system.
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Tabile 1
CONTROL SPECINVICATIONS AND CONVERGENCE RESULTS

Cuse Case description and rectifier specilications Number of iterations to
: convergence (01 MW MV Ar)
20-bushar system S-bushar system
(a) Convertor modelied by equivalent batanced loads® 8 6
(h} phasc-angle control:

ax:0:=03=0mind|=Uz‘”J'Pdc=l’,§" b 7
(ii) symmetrical tiring;

& = Amin ! ) 8 7

(idi) as tor case (M) with large unbalanced load at bushar 03 8 7

{iv) as for case (A )ii): with large unbalunced load at busbar 03 8 7
(v) symmetrical tiring.;

U T Qpind) = — 107 43 =0,uy =+ 107 8 7

“Loading for case @ derived from results fur case b (i)

Table | illustrates specitications and convergence results for a few
selected cases. In all cases the following specitications apply at the
receiving end:

(i) symmetrical firing control with reference phase on minimum-
exinction angle

(ii) off-nominal taps equal in the three phases

(iii) d.c. voltage specificd

k\\ ‘\: i
ol \\ N . S Vay
f N N E:} ky
2 \\ k‘ Vay
N i3

By = \-\\\ R

8, Q NEESE

N Yoo

N o

KY..1) \ N @

@’ NN i
(&) )] $}]
(10bal}) 106 2104) {(104al)

Fig. 6

Jacobian structure for a d-convertur d.c. system (ronzero elements
indicated)

20 -busbar system — - S-busbar system

a
bus 03 bus. 01
bus. 08
o kb
D@
* 1 gen 01
H //—
. /
bus. 02
ays
.
= Bys Q4
(/gi/ gen si
b

Fig. 7
Test system

a H.V . d.c. interconnection
b S-busbar a.c. syitem
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The case descriptions are summarised below:

(@) equivalent balanced loading with the convertors modelled by
specitied real and reuctive puwers at the terminal busbars

(b) accurate convertor representation:

(i) phase-angle control with all taps cunstrained to be equal and
the total real power speciticd

(i} as for case (i) but with symmetrical-firing control

(iii) as for case (i) but with unbalanced loading at busbar 3

(iv) as for case (iii) but with symmetrical firing

-(v) all taps independenty controlled on each phase. with sym-
metrical firing.

Only cases (i) and (ii) are representative of practical lvad-Now oper-
ating conditions. Cases (iii) and (iv) have been included to illustrate
the capability of the algorithm to handle extreme levels of load
unbalance (although it is realised that the approximations of Section
2.1 will lead to larger crrors under such conditions). Finally, casc (v)
has been added to show the flexibity of the model regarding control
specifications. The operating states of each coavertur at the rectifier
end are given in Table 2. The results have not been adjusted to the
nearest discrete tap ratio to facilitate their interpretation.

To provide some understanding of the influence of the convertor-
transformer connection on the unbalance, the zero-sequence com-
ponents of voltage and current are indicated for case A(i) in Fig. 8.

J-

/‘/\, l '_-h“—‘-'—
Vy20 Q01 i ey
~)0-003 | 'e20 N 1 —
Vo2l '
SN 1.’1‘4
— \)2,_/ 1 2 —
| :
-0 826
a
Zoy V°=O 0
| EEEE————,
'Q
Vo 1
Zap i
) S o e " VN A
[ !

where z,,2(0 051

Fig. 8

Zerv-sequence befaviour of convertor transformers (corresponding o
test example (b)(i})}

@ Zerngequenve voltages and currents

b Equivaiznt zero-gequence network
Transfurmersecondary-2e70 seyuenae feference is provided by eyns. 5 and o
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Convertor | (starsstar) Convertor 2 (star-g/delta)
firing tap C?::i‘g:. terminal powers  d.c. conditions fiting tap “::::::' terminal power Jdoes vonditions
Case Phuse angle ratio angle real reactive  voltage  current]{ angles ratio  angle real reactive  voltage  current
aj.deg g v diodeg P MW Qi MV AT g kY T kA agodeg a7 ppadeg P MW O MV AR e RV T AN
b (i) t 7-00 55 2979 981 481 2928 10246 700 S5 29-80 97-3 49-2 928 10246
2 7-00 55 29:32 1017 50-8 - - 7-00 15-5 2960 1026 532
3 7-00 55 29al 1003 483 - - 7-00 5-5 29-32 100-14 44-7 -
b (ii) 1 7-00 5-3 2978 986 49-0 292-8 10246 803 52 2897 264 50-0 2928 10246
2 7-20 5-3 2914 100-9 53 - - 7-00 5-2 29:57 1027 529 -
3 8-43 53 2850 1006 47-8 - - 858 5-2 2808 100-87 4566 -
b (i) 1 7-00 48 2917 956 39-3 2928 102467 7-00 43 30:63 679 13-0 2028 10240
2 7-00 4-8 2916 10t-9 505 - - 7-00 4:3 2892 955 89-4 -
3 7-00 48 3043 10244 5§72 - - 7-00 4-3 2890 1366 537 -
b (iv) 1 7-00 39 2903 976 3941 292-8  1-0246 7-00 30 3048 709 179 928 10246
2 11-64 39 2563 101-8 547 - - 1495 30 2325 90-1 94-1 S -
3 937 39 28356 1006 577 - - 13-41 30 2425 1389 522 - -
b (v) 1 11:00 —10:0 24-32 1046 49-4 3141 0-9483 808 —100 1542 889 653 3147 09483
2 7-00 006 2776 101-} 45-4 - - 8-38 00 27-30 1226 49-9 -
3 7:55 10.0 26-08 921 44-03 - - 7-:00 10:0 2696 869 242 -
6 Discussion 8 Acknowledgments

With reference to Table I, the follomng general features of
the algorithm can be identified:

{a) The number of iterations to convergence is not signiﬁcantly
increased by the presence of the d.c. convertors.

(&) Convergence is not dependent on the specific control specifications
applied to each convertor.

(¢) The algorithm exhibits good reliability even under conditions of
extreme steady-state unbalance.

In comparison with single-phase a.c./d.c. load flows' the somewhat
dower convergence of the 3-phase fast-decoupled load flow leads to 2
greater degree of reliability for the 3-phase a.c./d.c. algorithm.

The results, showm in Table 2, clearly demonstrate the need for
accurate 3-phase modelling of the convertor plant. Differences of up

to 20% are noticed in the reactive powers of the three phases of case °

b(i). The use of balanced P, Q-power injections at the convertor bus-
bars is therefore unaccepiable, even for small degrees of unbalance.

On the other hand, the errors owing to approximations made in the
analytical model (Section 2.}) are comparatively small. For voltage
distortion, for instance, the addition of 1% third-harmonic voltage
results in about one<degree firing error in the worst possible case (i.e.
when the third-harmonic voltages are in antiphase at the fundamental-
voltage zero crossing) and the corresponding maximum changes in
fundamental power components are of the order of 1%.

The use of symmetrical firing control results in higher reactive.
power consumption by the convertors, and, to maintain the levels
of direct voltage and power, increases in transformer-tap boost are
required.

The computed results also indicate that, in general, the convertors
have a balancing effect on the system voltage profile.

It can be seen from Fig. 8 that under unbalanced conditions a
zero-sequence voitage may appear at system busbars. As the convertor
has no zerosequence path, zero-sequence current will only flow when
the convertor transformer provides a path, as in the case of the
star-g/delta transformer. Accurate convertor-transformer models must
therefore be included in the convertor modelling,

7 Conclusions

A model of the steady-state behaviour of unbalanced h.v. d.c.
transmission systems under normal operating conditions has been
developed. Its sequential integration with a 3-phase fast-decoupled a.c.
load-flow solution has been successfully implemented without impair-
ing the efficiency and convergence of the original fast-decoupled
algorithm.

The results indicate that a realistic assessment of the phase voltages
and line-power flows, in the presence of voltage unbalance, requues
a detailed 3-phase representation of the convertor and convertor
transformer. Reactive-power differences of the order of 20% can
occur as a result of normal transmission-system unbalance, i.¢. under
perfectly-balanced generating and loading conditions.

The maximum prescribed levels of voltage harmonic distortion
have negligible effect for the purpose of power-flow studies. It must
be made clear, however, that waveform distortion cannot be ignored
in the calculation of current hanmonic content to be used in harmonie-
penetration studies, and further work is required in this area.
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10 Appendixes

10.1 Per-unit system

Computational simplicity is achieved by using common
power and voltage bases on both sides of the convertor. The 3-phase
3.c.-system base values are as follows:

MV A youe = base power per phase
Ve = phase: neutral voltage base

With common power and voltage bases the current base on the a.c.
and d.c. sides are also equal, and therefore no constants appear in the
equations owing to the p.u. system.

16.2 Convertor squations

The 26 equations (R) which define the operation of each
convertor are as follows:

3
R() =3 Eicosg, = 0
{a)
3
R(Z) = Z E,sin(),- =0
oy -
R(3) = Z Ed; cos (¢; W) = Vyly
=1
R@) =1, -2 1 gin (712)

2
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[}

) S o(p2k e gk
4/ R(11) = [ysinws + X [halflpcosop + bISVE,
R(5) =1 -;j‘; sin (T3/2) Pl w " term
- 4 1y Los (O?erm -O:erm)l
R‘ﬁ) = IJ_;\7{ SIn(T_‘/:) \
RU2) = Lysinwy + 2, [62E, cosdy + b3t
K] k=1
R(Y = [ coswy — S [BFE, sinop + bR UL .
k=1 . €0 (Oferm _0;¢rm)|
Sin (0Ferm ~ Oferm )| R(13)
3 L sk : depend on transformer connection
R(8) = I3 coswy — S [b2FER sin ép + b Viem :
fe=1 R(18)
sin (oferm “'ozerm )' R(19)
RO) = 1y cosws — i [I;,;‘,"I:‘k sin op + b’\:,-‘:’m depend on control specifications
kay
R(24)
sin (O?erm —Bllerm )l :
, R(25) = Vym—/2Uplcos (C, +a; = Cy + 1) —cos (Ci + as ~ C, + 7))
R(10) = [, sinw, + Ellb},"b'h cos @y b.',f}’&.,m . =V2Wyleos(Cy +a; =C) —cos(Cy +a, - ()]

=V2Unplcos (Cy +ay =€) —cos (C, + ay + — C3)|

€08 (0%erm = O lerm)]
Oterm = Oterm +14(XC, + XC; + XC3)

R(26)

]

J(Vai, I41) from d.c.-system topology
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APPENDIX 7

EFFECT OF HARMONIC VOLTAGES ON FUNDAMENTAL
FREQUENCY OPERATION OF D.C. CONVERTORS

The three phase model of the d.c. converxrtor, as formulated in
chapter 6, assumes. perfectly sinusoidal voltages at the convertor
terminal busbar. Without this assumption the steady state load
flow formulation would be extremély complex due to the difficulty
of calculating the harmonic voltages to any accuracy.

Harmonic voltages and currents present in the a.c. system cause

(43)

many well documented undesirable effects. Power authorities
therefore specify maximum permissible values for these gquantities.
It is reasonable to restrict accuracy requirements to those systems
which fall within these limits.

" The presence of harmonic Qoltages at the convertor terminal
busbar will alter the fundamental frequency power flows primarily
because the actual zero crossings of the phase to phase voltages will
be shifted from those calculated from the fundamentals alone. Other
secondary effects will also be present but these may be ignored as
the allowable harmonic voltages are small.

The term 'error; refers to the difference between the actual
quantity in question and that célculated when the harmonics are

ignored i.e. from the fundamentals alone as in the load flow equations

of chapter 6.
A 7.1  HARMONIC VOLTAGE LIMITS

Recommended limits for harmonic voltages in the United Kingdom

(74)

are given below:
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Supply Voltage 0dd Harmonic Even Harmonic
% %
415 v 4 2
33 kv 2 1
110/132 kv 1 0.5

The Total Harmonic Distortion (THD) is also limited to 1.5% for

110/132 kv where,
T 2
THD = } v
n
n=2
In addition limits are placed on the harmonic current magnitude
but these are not relevant to the present discussion.

A 7.2 ASSESSMENT OF POSSIBLE ERRORS

A 7.2.1 Shift in Zero Crossing of Phase-Phase Voltages

There is considerable difficulty in assigning a realistic worst
casé for the investigation of the influence of harmonic voltages.

The following considerations apply:

= Under balanced conditions the characteristic harmonic orders
do not influence the intervals between firing pulses i.e.
all firings are shifted by equal amounts. Therefore these
voltages will have very little effect on the magnitude of the
fundamental currents.

- Harmonic limits are usually applied at the point of common
coupling to the supply network which may or may not be the
convertor terminal busbar as assumed by the load flow.

- The majority of the allowed triplen harmonics will consist
of the usual zero sequence components and these have no

influence on the position of phase to phase crossings.
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The order of the non-zero sequence triplen harmonics, which may
be considered to cause the most significant shifts, is not important
as, under balanced conditions with the subsequent crossings 120 degfees
apart, a small magnitude of any lower order triplen harmonic will
result in comparable shifts for all three phases.

As a consequence of these features it is considered reasonable
to investigate the worst case effect of 2% of non-triplen third
harmonic voltage.

The worst case for a shift in any zero crossing is for all
harmonics to add to the fundamental voltage on one phase and to
subtract from the other phase at the position of actual zero crossing.
This situation is illustrated in Fig. A 7.1 where a phasor diagram

for non zero sequence third harmonic is shown.

3wt ’/"‘ a

Fig. A7.1 Phasor Diagram of Third Harmonic Voltages

With consequent zero crossings 60° apart i.e. one half rotation
of the third harmonic phasors, then one subsequent shift will be
approximately half the initial worst case, and the third shift will
be equal to the worst case initial shift except in the opposite

direction.
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For 2% non zero sequence third harmonic the worst case shift is
approximately one degree.

The order of magnitude of the resultant errors can be assessed
on the basis of nominally balanced operation and by interpreting
shifts in zero crossings as firing angle errors determined in
accordance with the firing controller in operation.

For a convertor operating with fixed tap ratios and specified
d.c. current, any firing éngle errors are reflected into the convertor
operation through errors in the calculated d.c. voltage and in the
calculated magnitudes for the fundamental component of the phase
current waveforms. Both errors occur to some ektent with both firing

controllers.

A 7.2.2 Errors in Calculated Phase Current Magnitudes

Appreciable errors occur wit£ the case of phase angle control;
errors with symmetrical firing are limited to the effects of commutat-
ion angle unbalance.

The effect of a 2 degree modulation has been investigated on the
basis of the current waveform of a convertor with commutation angle of
ten degrees and balaﬁced voltages. Ignoring the shifts in commutation
angle which will occur with an alteration of firing angle the effect
of alteration in the period of conduction has been investigated using
a Fourier Transform élgoiithm. The results are shown in Table A 7.1.
In addition to the fundamental the percentages of the harmonics are
also given. Note that no even harmonics are present as the waveform
was assumed to be symmetrical.

It is important to note that the percentage errors presented.in
the Table are the maximum that can occur; in all pfactical cases

there will be an alteration in the commutation angle which will
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inhibit the change in the wayeforme This effect will be most noticeable
at small firing angles as can be seen in the results of chapter 8.
In general therefore the harmonic changes will be less than those
indicated in the Table. .

The change in fundamental is not, therefore, expected to exceed

% of the value calculated by the load flow.

Table A 7.1

Harmonic content of current waveform with period between valve

firings of T and commutation angle of 10 degrees.

Order o PeriodoT o |
120 121 122 |
0 - - -
1 100.00 |100.50 |100.99 i
3 0.01 0.95 1.92 f
5 17.85 | 17.3 | 16.89 |
7 11.32 | 1l.6e4 | 12.04 |
9 0.01 0.68 1.35
11 4.88 4.57 4.25
13 | 3.09 3.26 3.41
15 0.01 0.29 0.56
17 1.05 0.94 0.82
19 0.75 0.8l 0.85

A 7.2.3 Error in Calculated AVerage D.C. Voltage

The largest error occurs with symmetrical firing where any
shift in the firing angle of the reference phase is reflected as a

shift on all phases. The error depends upon the nominal firing angle.

An example of possible errors is shown in Table A 7.2,
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Table A 7.2

Percentage Errors in Calculated D.C. Voltage

Nominal Firing Angle Error due to shift in Zero Crossing
o 1° 2° 30
10° 0.3 0.7 1
20 0.6 1.3 2
40 : 1.1 2.3 3.5
70 1.6 3.3 5.0

- % ofvdo

The errors are small at small firing angles but may become

significant at large firing angles.

A 7.3 CONCLUSION

The errors discussed in the previous sections may cause an
alteration in the operating state of the convertor and lead to errors
in the calculated values of real and reactive power flows for each
phase.

The errors are minimal at small control angles which are usually
applicable in load flow investigations. In addition, the nature of
the harmonic voltages which will exist in any practical situation are
unlikely to satisfy Qorst case conditioné and any errors are not
considered significant in the c;:m,text of load flow investigations.

The modulation in the valve conduction periods which may occur
are,however, significant if harmonic frequency current generation is

being considexed.
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APPENDIX 8

IMPROVEMENT IN APPROXIMATIONS FOR
PHASE CURRENT MAGNITUDES

The approximations for the fundamental magnitude of the phase
currents may be improved in accuracy by adding an additional iterative
loop to the load flow solution. After the load flow has converged
to a moderate toleranée (e.g. fiQe times the final tolerance) a
Fourier Transform may be performed for the fundamental magnitudes.
This may be performed by the Fast Fourier Transform aléoriéhm as
described in chapter 8. The correction factor (0.995 in equation
6.25) is then recalculated separa;ely for each phase.

Convergence may then proceed to the final tolerance.

The phase currents may be calculated to any accuracy desired
by fepeated application of this procedure.

With one correction as discussed above the fundamental magnitudes
have been within 0.2% for all examples considered. Only a marginal
increase in the number of iterations is usually incurred by the

introduction of this discontinuity.
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