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ABSTRACT 

An expression for the field scattered by a perfectly 

conducting wedge with a deformed apex is formulated as a 

finite matrix equation to illustrate the application of the 

current density replacement technique. This technique enables 

the scattering from any size of body to be determined to a 

given accuracy after the inversion of one finite matrix, 

provided that the shape of the body can be derived by inward-

ly deforming a finite part of a body from which the scattering 

is known explicitly~ The size of only the deformed part of 

the body is limited by available computational facilities o 

The field scattered from truncated and rounded wedges 

is calculated o These results not only enable the effect of 

edge deformation to be studied¥ but are also used to evaluate 

the accuracy of the geometrical theory of diffraction and 

physical optics estimates of the diffracted field o 

Expressions for the field scattered by a perfectly con~ 

ducting wedge in the presence of transversely polarized line 

sources are found. These results are used with an iterative 

current density replacement technique to formulate expressions 

for the field scattered by a truncated wedge q and thus derive 

a secondary edge diffraction coefficient for use with the 

geometrical theory of diffraction q This coefficient is 

applicable to perfectly conducting bodies with small or 

large separation between edges" The increased accuracy obtain-

able with this coefficient, and a modification to the physical 

optics representation of the current density on a body 

with edges, are discussed o 
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SYMBOLS, TERMINOLOGY f AND ABBREVIATIONS 

magnetic field intensity 

electric field intensity 

magnetic flux density 

electric flux density 

electric current density 

electric charge density 

magnetic vector potential 

E f H, or A 

surface current density at x ~ 

permeabili ty 

permeability of free space 

permittivity 

permittivity of free space 

angular frequency; variable of integration 

-~ velocity of electromagnetic propagation c = (11s) 

wavelength 

wavenumber k = w/c = 2n/A 

Bessel function of the first kind of order \! and 

argument z 

Hankel function of the second kind of order \! and 

argument z 

c (z) ,C (z) Any cylindrical Bessel function of order \! and 
\! \! 

argument z 

o (z) the Dirac delta function 
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unit vector 

outward unit normal vector to a surface or contour 

the vector of magnitude F 

the vector curl operator 

the vector divergence operator 

the vector gradient operator 

cylindrical polar co-ordinate systems 

-+ 
E = zE, 

+ 
A = zA electrically polarized 

-+ 
H = zH magnetically polarized 

Geometrical optics 

Geometrical Theory of Diffraction 

Physical optics 

Polarization Current Replacement 

SoCoR. Surface Current Replacement 

Iterative Surface Current Replacement 

Modified Physical Optics 

U.HPo Upper Half-plane 

LoHPo Lower Half-plane 
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PREFACE 

This thesis is concerned with the computation of 

electromagnetic scattering, particularly from perfectly 

conducting bodieso 

1 

It is evident from recent volumes of the IEEE Trans­

actions on Antennas and Propagation that considerable 

attention is being devoted to the application of ray-optical 

techniques to electromagnetic scattering problems. Diffract­

ion by horns and obstacles in waveguides has received 

particular attention 0 

In order to be able to evaluate the accuracy of ray­

optical and other approximate methods of determining 

electromagnetic scattering, it is desirable to have available 

solutions to other than simple scattering problems. This 

thesis presents techniques for determining such solutions 0 

These techniques are essentially new and are of interest 

in their own righto 

The field scattered from a perfectly conducting wedge 

with a deformed apex is calculated by using a current 

density replacement technique. The results not only enable 

the effect of edge deformation to be studied, but are also 

used to evaluate the accuracy of the geometrical theory 

of diffraction and physical optics estimates of the diffracted 

fieldo 

Expressions are found for the field scattered by a 

perfectly conducting wedge in the presence of a transversely 
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polarized line source 0 These results are used with an 

iterative current density replacement technique to formulate 

expressions for the field scattered by a perfectly conducting 

truncated wedge, and thus derive secondary edge diffraction 

coefficients for use with the geometrical tbeory of diffract­

iono These coefficients are equally applicable to perfectly 

conducting bodies with small or large separation between 

edges. The accuracy of these coefficients, and a suggested 

improvement to the physical optics representation of the 

current density on a body with edges, are evaluated. 

Chapter I is introductory. New results are presented 

in Chapters 2 - 7. 

Chapter I contains a brief survey of several well 

known methods of determining electromagnetic scattering which 

are relevant to this thesiso Mention is made of papers which 

show the usefulness and limitations of these methods. 

Chapter 2 introduces a method of determining electro­

magnetic scattering call~d the current density replacement 

technique. This technique enables the scattering from any 

size of body to be determined to a given accuracy after the 

inversion of one finite matrix, provided that the shape 

of the body can be derived by inwardly deforming a finite 

part of a body from which the scattering is known explicitly. 

The size of only the deformed part of the body is limited 

by available computational facilitieso Thus, the current 

replacement technique enables the scattering from large 
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or even infinite bodies to be calculated o 

The current replacement technique is used to formulate 

expressions which describe the field scattered by a 

perfectly conducting wedge with a deformed apex, and in 

Chapter 3 this formulation is specialized to the truncated 

and rounded wedgeso Results are presented which illustrate 

the convergence of the solutions as the matrix order is 

increasedo It is found that the convergence is accelerated 

if explicit use is made of the analytic properties of 

the surface current densityo 

The results of Chapter 3 are used in Chapter 4 to study 

the accuracy of the physical optics and geometrical theory 

of diffraction estimates of the field scattered by a 

perfectly conducting wedge with a deformed apex 0 Of particul­

ar interest is the accuracy of the geometrical theory of 

diffraction applied to the truncated wedge when the distance 

between the two edges is less than one wavelength 0 It is 

found that when the incident field is magnetically polarized 

parallel to the wedge axis, the inclusion of the higher 

order diffracted fields may lead to inaccuracieso However 

in other cases p such as the prediction of the end-on 

electrically polarized backscattered field, the geometrical 

theory of diffraction yields accurate estimates even when 

the separation of the edges is as small as 0005 wavelengthso 

Expressions for the field surrounding a perfectly 

conducting wedge in the presence of transversely polarized 



electric or magnetic line sources are derived in 

Chapter 50 

4 

The results of Chapter 5 are used in Chapter 6, 

where the field surrounding a perfectly conducting 

truncated wedge is formulated by successive application 

of the current replacement technique to two separate 

perfectly conducting wedgese The expressioffifrom the 

first two such applications are obtained. 

It is shown in Chapter 7 that these expressions not 

only give rise to terms describing the primary field of 

the geometrical theory of diffraction g but also describe 

a secondary diffracted fieldc The resulting secondary 

diffraction coefficient is identical to that of the 

geometrical theory of diffraction when the edge separation 

is large, but is also valid when the distance between the 

edges is smallo Unlike the geometrical theory of 

diffraction secondary diffraction coefficient v this 

diffraction coefficient is not zero when the field is 

electrically polarized parallel to the edges of the bodyo 

Results are presented which show the increased accuracy 

obtained by using this coefficient to approximate the field 

scattered from the truncated wedge and perfectly conducting 

stripe The improvement in the representation is 

particularly noticeable in the vicinity of the direction 

for which the secondary diffracted field of the geometrical 

theory of diffraction becomes infiniteo 
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An improvement to the physical optics representation 

of the surface current density on a perfectly conducting 

body with edges is suggested in Chapter 7. It is shown 

that this suggestion is equivalent to representing the 

diffracted field by the primary diffracted field of the 

geometrical theory of diffraction and two correction terms 

for each edge of the bodyo Results are presented which 

show the increased acCuracy obtained by using the modified 

physical optics current densityo 

Chapter 7 concludes with suggestions for further 

areas of research o 

Some results in Chapte~2 and 3 have been published;,2 

as have the derivations in Chapter 50 3 

The computer programs required for this thesis were 

written in the Fortran IV language using the double 

precision option, and were executed on an IBM 360/44 

computer which has 64K bytes of core memory 0 All programs 

and subroutines were written by the author of this thesis, 

with the exception of the IBM subroutine MINV which, 

after suitable modification for complex double precision 

operation, was used to invert the matrices of Chapter 3 0 
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CHAPTER 1 

Four methods of determining the electromagnetic field 

surrounding a scattering body are discussed in this chaptero 

The first of these methods requires the derivation of an 

explicit solution to the scattering problem, and the 

second involves the use of modal expansions in conjunction 

with an integral equation representation of the scattered 

fieldo The use of ray tracing techniques including the 

geometrical theory of diffraction is the third method 

discussed, and the fourth is the physical optics 

approximation 0 

lol(a) EXPLICIT SOLUTIONS 

A rigorous description of an electromagnetic 

scattering phenomenon requires the solution of Maxwellas 

field equations 

v X E = -B f v X Ii = J + 13, 
(101) 

v 0 D = q, v 0 B = 0, 

formulated as a boundary value problem 0 

Use of the classical separation of variables technique 

with the Helmholtz equation 

v.2 U + k 2U = 0 

is possible in only eleven separable co-ordinate 

systems 4 when the surface of the scatterer conforms to 

(102) 
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a complete co-ordinate surface. Rigorous solutions can 

be obtained when the scattered field is described by 

equations of the Wiener-Hopf type 5 , but the total number 

of known explicit solutions of Maxwell's field equations 

formulated as boundary value problems remains extremely 

limi tedo 

One such known solution describes the field scattered 

by an infinite perfectly conducting wedge. Because much of 

this thesis is related to the problem of scattering by a 

wedge, several forms of the solution to this problem will 

be examined in some detailo 

10 1 (b) SCATTERING BY A PERFECTLY CONDUCTING WEDGE 

Consider the infinite perfectly conducting wedge of 

interior angle S and surface contour C defined in terms of 

the (Pf~'Z) cylindrical polar co-ordinate system in Figo 101 

by ~= 0 and ~ = m~q where 

(10 3) 

The wedge is of infinite extent in both the positive and 

negative Z directionso When the incident field exhibits 

no variation in the Z direction it is necessary to consider 

the variation of field quantities i~only the P and ~ 

directions o The problem then becomes two-dimensional, and 

even though the fields are described in terms of electro­

magnetic quantities, the expressions are equally applicable 

to acoustic scatteringo 6 
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The wedge is surrounded by a homogeneous, isotropic, 

time-invariant medium of permeability ~, and permittivity 

'Eo The total field U surrounding the wedge must satisfy 

the Helmholtz equation (101) at all source-free points, 

and either the Neumann boundary condition 

3U = 0 
3n ' 

on C, (1. 4) 

when the field is magnetically polarized (H " = z'H) , 

or the Dirichelet boundary condition 

U = 0, on C, (1.5) 

-7- (0. 

when the field is electrically polarized (E = zE) 0 n 

is the direction normal to the boundary contour C, and 

k 2 = W2~E in (102) 0 The suppressed monochromatic time 

dependence is exp(jwt) 0 The Neumann boundary condition 

corresponds to the sound-hard boundary, and the Dirichelet 

boundary condition to the sound-soft boundary in acoustics. 

In 1896, Sommerfeld obtained expressions describing 

7 
the diffraction from a perfectly conducting half plane • 

Macdonald used the method of separation of variables to 

obtain both series and integral representations of the 

8 9 field scattered by a perfectly conducting wedge ' • 
-7-' 

When the incident field Ul is the plane wave 

-7-
U = z·U, Ui = jkpcos(~-W) e , (1. 6) 

he found that the solutions to (1.2), subject to the 

boundary conditions in (1. 4) and (105) rel?pecti vely', are 
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given by 

U(p ,</» = W (p , </> -lj!) ± W(p,</>+lj!), (1 0 7) 

where 

W(p ,U = Vl(p,O + V2 (p,l;), (108) 

'~ 

Vl(p,l;)= ejkpcoS(~+2pTrm) 

Is; + 2pTrm 1< Tr , 

= 0, Is; + 2p'ITml > Tr (109) , 

V2 (PIs;) 
1 

fe 1 ~ 
ejkpcosa 

da, (1010) = 2Trm 
(-j [a+S;J) 
em· 

1 

and p is any integer or zeroo The upper ( lower) sign in 

(107) applies when the field is magnetically (electrically) 

polarizedo 

By performing a contour integration, Pauli obtained 

V2 (p,S;) in the form lO 

da 

Ikp (l+cosS;) 

+(higher order terms -n,,:,,!z in p .. ) 0 
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Pauli showed that the higher order terms in (loll) are 
, 

identically zero when S = 0 (the case of the half plane) , 

and can be neglected if kp (1 + cos~) is large. In this 

latter case, the asymptotic form of the expression in 

(1.11) is given by 

kp(l+cosi;) »1, (1. 12) 

where the first neglected term is of the order of p 

The expressions for V2(Pf~) given in (1.11) and (1012) 

with S= 0 are identical to those obtained by Sommerfeld. 

Oberhettingher found a different asymptotic 

expansion of (1.11) involving only trigonometric functions 

in the higher order termsllo 

Consider a line source situated at (p ,~) in Figo 601 
o 

such that the incident field vi is given by 

Then a solution is required to 

cS(p-p ) cS(~-~) 
o (1.14) 

Po 

subject to the appropriate boundary condition (1.4) or 

(105) on Co This problem of the wedge illuminated by a 

cylindrical wave can be solved by using the Kontorowich-

Lebedev transform12 0 Thus 13 



U(p,t) = -j\! 
4 

11 

00 

I En J (kp) H(2)(kp ) {cos[n\!(t-1jJ)] 
n=O n\! n\! 0 

± cos [n \! ( t+ 1jJ) ] } , (10 15) 

where \! = 11m, and En is the Neumann factor defined as 

EO = 1; En = 2, n f O. The expression in (1.15) may also 

13 be written as 

(10 16) 

where 

-1 
rl(p,S) = 8TI 

coshv - cos(!) (1017) 

and the upper sign in (1016), as in (1015), is to be 

taken with the boundary condition (1.4) for a magnetic 

line source; and the lower sign is to be taken with the 

boundary condition (1 0 5) for an electric line source 0 

By deforming the contour of integration in (1017) into 

the t 'h t lines ' , , ,7f, 7f ,7f 00 + J' ~ s ralg JOlnlng 00 -Jffi' -Jffi' Jffi' m ' 

and accounting for the included poles which occur only 

on the imaginary axis, Jones showed that 

(10 18) 
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= -4j H (2) {k[ p2+p2_2pp cos (~+21fpm) ]~} ,1~+21fpm I <1f, 
000 

(1.19 ) 

= 0, I ~ + 21fpm I > 1f, 

00 

-J' 
, (' 1f) (2){k[ 2 2 2 h( )J~} d S.ln ]V+m""": . H.. . . P +p +p P cos mv v, 

000 = 8TI 
(1.20) 

-- 00 

and p can take any integer value or zeroo 

At a large distance from the line source at (po,w), 

the incident cylindrical wave given in (1.13) appears 

as a plane wave, as evidenced by the asymptotic expansion 

of the Hankel function of the second kind14 , 

H(2)( )~ !2je-j (z- V21f) 
v z I ~ , (1.21) 

After using the binomial theorem to expand the arguments 

of the Hankel functions in (1.13), (1.19), and (1.20) for 

Po » P, and multiplying the expressions in (1.13) i (1015), 

(1019), and (1.20) by the normalization factor 

'JTI"kP: j k p 4j/--:;f e 0, (1.22) 

it follows that when the field incident upon the wedge 

is the plane wave given in (1.6), the total field described 

in (1015) becomes 

00 

U(p,<P) = v I En jnvJnv(kp)'{cos[nv(<p-w)] ± cos[nv(<p+w)]}, 
n=O 

(1.23) 
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and from (1.19) and (1.20), 

I ~+27Tpm I < 7T, 

= 0,. I ~+27Tpm I > 7T, 

00 

, (' +7T) -jkp cosh (mv) 
1 Sln ]V in: .e .. dv. 

w2(P,~) = 2TI 
cos (jv+!.) - ·cos(I) 

m m 

(1. 25) 

00 

When kp is large, W2(Pf~) can be evaluated by the method 

of stationary phase15 , which results in 

7T -]'kp sin (-) e m 
W2 (PnS) = . 7T ~ , 

Ij 27Tkp . m[ cos (m) -cos (ill) ] 
kp » 1, I ~ I 

(1. 26) 

Comparison of the expressions in (L 7) - (1.10), (1.12) v 

with those given by (1.16) , (L18) , (1.24) - (1.26), shows 

that corresponding expressions are identical except for 

that in (1.25). This expression is mathematically more 

tractable than either (1.10) or (1.11). 

1.2(a) INTEGRAL EQUATION REPRESENTATION 

Although rigorous explicit expressions describing 

the scattered field have been determined for only a few 

bodies, it is possible, by using an integral equation 

representation, to describe implicitly the field 

surrounding any scatterer. The integrj3.nd of the integral 
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equation is composed of two parts: a source distribution 

which describes the shape and composition of the scatterer, 

and the Greens function appropriate to those sources. 

The body considered here is homogeneous and isotropic, 

has permeability ~s' permittivity ES' conductivity 0, and 

occupies a volume v. It is surrounded by a homogeneous 

isotropic medium of permeability ~ and permittivity E in 

-+ 
which exists a current source J. Maxwell's equations in 

(10 l) enable the field at any point to be described by 

. . 
( 1 ) -+ -+ -+ (-+) -+ 
~ E - -2 E + ~ 0E + ~J + II II. E + II ~ X Hi S S 

C 

where c is the velocity of electromagnetic propagation in 

(10 28) 

the surrounding medium. By defining the scattered field US as 

U
-+s -+ -+i = U - U , (10 29) 

where vi is the field incident from the source distribution 
-+ 
J, and restricting the field to be monochromatic with 

angular frequency w, the solutions to (1.27) and (1.28) 

I are given by 
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- jw( •• i + v. x i~ G(kR) dv, 

(10 30) 

11 - 11 j1 E - E E 
~S - ~r' s - r' k is the wavenumber appropriate to the 

surrounding m'edium, R. is the distance from tYre elemental 

volume dv to the point P, and G(kR) 
-'kR , = e J /4~R 1S the 

three-dimensional Greens function 0 

When the surface S of the scatterer is perfectly 

given by 

+ 

conducting, the scattered field is 

i'is(P) = (*lffs k(s) G(kR)ds, 

where the surface current density K(s) on S is defined by 

+ + 
K(s) = n X H, (10 33) 

and n is the outward unit normal vector to S at So The 

vector operator {*} 
. 2 2 + 

is { - j j1 c ( k + 1/ 1/ 0 ) / w } when U 

represents the electric 
' , ,+ 

f1eld 1ntens1ty E, and is {I/ X} 

when 
+ 
U represents the magnetic field intensity 

+ 
Ho 

When the problem is two-dimensional, the volume integrals 

in (10 30) and (10 31) reduce to integrals over T , the normal 

cross-section of the scatterer, and the surface integral 

in (1032) reduces to a line integral along C, the perimeter 

of the scatterero Thus, the expressions in (1030), (1031) 

and (10 32) reduce to 
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(1. 34) 

+ . + + 1 
- E X Va -Jw(~aH + E X VE~ g(kR) ds, 

(1 • 35) 

jJS(P) ~ {A} L K(C) g(kR)dc, (1.36) 

where {A} is {-jw~} when U represents the electric field 

+ + 
intensity E, and is {v X} when U represents the magnetic 

field intensity H. g(kR) is the two-dimensional Greens 

function obtained by integrating the three-dimensional 

Greens function along an infinite path in the z-direction: 

g (kR) = + z2) ~l dz = :-jH (2) (kR) • (1. 37) J 4 0 

The first terms in the kernel of the integrals in (1.30), 

(1.31), (1.34), and (1035) are often referred to as the 

"polarization current density".16 The remaining terms in 

these kernels can also be regarded as polarization current 

densities. 

lo2(b) MODAL EXPANSIONS 

The integral equation representation of the scattered 

field discussed in section 102(a) is valid at all points 

inside, outside, and on the surface of the scatterero Once 

the polarization current density or the surface current 



density in the integrand of the integral equation is 

determined, the field at any point can be calculated. 

Techniques which represent the current density as a 

modal expansion and use numerical methods to evaluate 

the modal coefficients are known as Moment Methodso 17 

17 

The simplest method of modally expanding the current 

density is the method of subsections. This involves sub­

dividing the volume or surface of the scattering body into 

N parts, and approximating the current density in the nth 

part by the unknown constant Kn. Alternatively, the 

electric or magnetic field intensity may be approximated 

by an unknown constant in the nth part. The integral 

over the volume or surface is approximated by a summation 

over the N subsections 0 N simultaneous equations are derived 

by equating the two representations of the field or 

current density in each of the N subsections. These simul­

taneous equations can be derived for a perfectly conducting 

body by ensuring that the boundary conditions are satisfied 

at a point in each subsection. Care must be taken in 

dealing with the singularity which occurs in the Greens 

function when the effect of the sources on themselves 

is considered. 

The position at which the boundary condition is 

enforced in each subsection of a perfectly conducting 

scatterer has been shown to affect the accuracy of the method 
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of subsectionso 18 Hashimoto and Fujisawa conclude 

that the best positi6n is the midpoint of each subsectiono 

The application of the method of subsections to a 

perfectlY,conducting body having a surface with edges 

. . 1 . d t' 19 or corners requlres specla conSl era lono' When the 

field is ele6trically pol~rized parallel to an edge, 

the surface current density is integrably infinite at the 

edge0 32 Kay and Nihen 33 studied the, effect of decreasing 

the subsectional size near an, edge, and also the effect of 

considering the edge to have a small but finite radius 

of curvatureo They found· that the forward scattered field 

is insensitive to the subsectional arrangement near the 

edge, except when the radius of curvature .of the curve 

approximating the edge becomes too large. 

Andreason19 uses the method of subsections in conjunct-

ion with (1036) to formulate the scattering from two-

dimensional metallic cylinders as a matrix equationo He 

ensures that the boundary condition in (1.4) or (1 05) is, 

satisfied at the midpoint of each of the N subsections. The 

problem of the singularity of the Greens function p which 

occurs in the nth subsection while deriving the nth 

simultaneous equation, is overcome by performing 

analytically the integration ovex·this subsectiono 
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Results are presented for various single and multiple 

cylindrical bodies o 

Earlier g Mei and van Bladel had used the method of 

subsections to obtain the surface current density on 

perfectly conducting, rectangular cylinders, and hence 

the scattered field: 0 Many of their results have since 

b '11' f' d 21 een experlmenta y ver1 1e 0 However, the resonance 

phenomenon which appears in one of their results is 

. 22 1ncorrecto Such resonances may arise during the course 

of a numerical solution if resonant field modes can exist 

in the interior of the scattering bodY023,24,25 

However, these resonances can not exist if use is made 

of the extended boundary condition25 ,26 in the formulation 

of the scattering algorithmo 

The extended boundary condition requires not only the 

satisfaction of the boundary conditions in (104) or (105) 

on the surface of a perfectly conducting closed body; but 

also that the total field be zero in a region interior 

4 25 29 to the bodyo Analytic continuation arguments ,. f 

ensure that if such a condition is met, the field is zero 

everywhere inside the bodyo Thus it is impossible for 

resonant field modes to exist in the interior of the scatterer 

and con tribute to the surface current density 0 Al though 

the use of the boundary coriditions with the method of sub-

sections is sufficient to ensure that a close approximation 

to the scattered field is obtained, it is necessary to use 
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the extended boundary conditions to be certain of obtaining 

accurate values for the surface current density on the bodyo 

A "Null field method" is a method which employs. the· 

extended boundarycondi tion in the formulation of a 

scattering problem. 

"Point-matching methods" rely on satisfying the 

boundary conditions at points on the surface of a scattering 

body in order to determine the field modal coefficientso 27 

28 Fuller and Audeh use the point-matching method to determine 

the cutoff frequencies of a nonsymmetric waveguide. They 

observe that the point-matching method becomes less accurate 

as the boundary contour of the waveguide becomes more 

complicatedo 

29 Bates has recently critically appraised the point-

matching method and calculated the cutoff frequencies 

of various modes in several waveguides. He shows that 

identical expressions are obtained for the cutoff frequencies 

of a waveguide whether the boundary conditions or the 

extended boundary conditions are invoked. 

Richmond16 uses the method of subsections to calculate 

the field scattered by. an infinite dielectric cylinder when 

the incident field is electrically polarizedo A matrix 

equation is derived by substituting V].l = (J = 0 into the 

expression in (1 0 34) and representing the total electric 

f ' ld . " h th b ' b th t le lntenslty ln ten su sectlon y e cons ant 

+ 
En0 A set of simultaneous equations is obtained by 
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t ' (+ +Ei) h 'd' h th b t' equa lng E - at t e ml pOlnt of ten su sec lon . n 

to the expression on the right-hand side of (1034) 0 This 

latter expression is approximated by a summation over 

the N subsections o The singularity in the Greens 

function is overcome by integrating over a circular region 

of the same cross-sectional area as the nth subsectiono 

This integration is easier to perform than that over a 

rectangular subsection, and Richmond maintains that it 

introduces little error~ Results are presented for 

dielectric shells v and homogeneous and inhomogeneous 

dielectric sheetso 

When the field incident upon a homogeneous dielectric 

scatterer is magneticallY polarized, and Va = a = 0, ~r = Ii 

the integrand in (1035) retains a term in E X VEo The 

best method of dealing with this polarization current 

density term, which exists only on the surface of the 

dielectric, is not immediately apparent 

Bates30 uses the method of subsections to determine 

the scattering from a wedge covered with finite distributions 

of dielectric q when the field is magnetically polarizedo 

+ He neglects the E X VE polarization current density term 

in (1035) and thereby implicitly assumes that for the narrow 

dielectric wedges studied, this term has the same 

magnitude but is in antiphase on either side of the wedgeso 

Richmond31 avoids the problems associated with the 

integrand of (1.35)0 He evaluates the scattering from a 
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dielectric cylinder by expressing the magne.tically 

polarized field in terms of the electric field intensityo 

The scattered field is evaluated by using the method 

of subsections and the expression in (1034). Results 

are presented for cylindrical shells and dielectric slabs o 

Because the method of subsections approximates the 

field or current density by a constant value in each 

subsection, the modal expansion of the method is discontin-

uous across each·suhsection boundary 0 However, by summing 

N continuous modal functions each weighted by an 

unknown coefficient, the field or current density can be 

represented in a continuous manner over the region of 

interesto 

34 ., h d 1 . Bates uses a Fourler serles as t e mo a expanslon 

of the surface current density on the perimeter of a 

perfectly conducting cylindero The null field method is 

used to extract the Fourier. coefficients of the incident 

and scattered fieldso It is shown that fewer surface 

current density modes· are required to, calculate the 

scattered field than are required to calculate the surface 

current density to the same accuracyo This indicates that 

the scattered field is accurate to the second order when 

the surface current density is accurate to the firsto 17 ,35 

Results are presented for the scattering from a square 

cylindero 
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36 Mullin et al express the scattered field exterior 

to an infinite perfectly conducting cylinder of arbitrary 

cross-section as a sum of outward travelling waves o By 

enforcing the boundary condition in (104) or (105) at 

points on the boundary~ the unknown coefficients of the 

scattered field modes are obtained o The results fail "for 

cylinders which are large perturbations from the circular"o36 

By continuing the outward travelling representation of the 

scattered field back to the.surface of the cylindrical 

II ' h ' k d hI' h h h' 37 scatterer f Mu ln as lnvo e t e Ray elg ypot eS1S 

38-41 which I during the course of a recent controversy has 

been shown by Millar38 to be incorrect in general f and in 

particular incorrect for elliptical scatterers of appreciable 

eccentricityo This explains the failure of some of Mullin!s 

resul ts 0 

The scattering for nose~on incidence from perfectly 

conducting cones with blunted tips is evaluated by 

Weiner and Borison42 by representing the total field in a 

general eigenfunction expansiono After satisfying the 

boundary conditions and ensuring that the incident part of 

the total field is equal to the incident field? the eigen-

function coefficients are obtainedo 

43 Watennan expresses the field as a sum of continuous 

mode functions in order to determine the scattering from 
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three-dimensional dielectric bodieso The fields inside 

and outside the body are written as modal expansions 

with unknown mode coefficientso By using the boundary 

conditions44 to relate the expansions across the dielectric 

boundary a matrix is derived ff which after inversion 

enables the modal coefficients to be obtainedo 

The determination of scattering by using a modal 

representation of the field or current density requires 

the inversion of a matrix in order to find the modal 

coefficients 0 The order of the matrix is dependent upon 

th b f d d ' h· . 17,45 e n.um er 0 mo es use In t e representatlono 

When using the method of subsections~ the extent of each 

subsection must be less than half the wavelength. 

of the highest spatial harmonic of interest in the field or 

current densitYo19 Andreason19 suggests between four 

and ten subsections per wavelength of the incident field 

is adequate in the case of metallic scatterers, and 

'h d16 R1C mon suggests 5/~r subsections per. wavelength for 

dielectric scattererso It follows from these considerations 

that the size of scatterer which can be dealt with by 

moment methods is limited by the capacity of available 

t t ' 1 f 'I' t·' 45 compu a lona aCl 1 leSo The limit on the circumfer-

19 
ence of metallic scatterers is about 25-40 wavelengths , 

although symmetry in the scattering problem enables this 
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limit to be increased significantly. 

1.3(a) RAY-TRACING TECHNIQU~ 

Both the integral equation repres~ntation of the 

scattered field discussed in section 1.2(a), and the 

rigorous explicit solutions mentioned in section l.l(a), 

describe exactly the total field surrounding a scattering 

body. The ray tracing techniques discussed in this section 

give an estimate of the field surrounding the scatterero 

The accuracy of this estimate depends upon the nature and 

shape of the scatterer as well as the sophistication of 

the ray-tracing technique employed. 

Ray-tracing techniques are based on the assumpt.ion 

that the field propagating from one point to another travels 

along ray paths joining the two points. Fennat Us principle 

states that the rays between two points "are those curves 

along which the optical path length is stationary with 

t t ' f' 't '1 't' l'n path". 46 Th respec 0 ln lnl eSlma varla lons e 

intensity of the field predicted by ray theory is obtained 

by applying the principle of conservation of energy to a 

tube of rays. 

The simplest ray-tracing theory is Geometrical optics 

(G"o.). The field U predicted by geometrical optics go 

in the vicinity of a scattering body is defined as 

(1. 38) 



where Ui is the incident field? Ur is the field reflected 

from the body, and U is the field refracted by the bodyo 
r 
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At a congruence of rays, called a caustic, the geometrical 

optics field is undefinedo Geometrical optics is the 

leading term in the high-frequency asymptotic expansion 

f th f ' ld d' tt . b d 46 d th f o e le surroun lng a sca erlng 0 y f an ere ore 

is useful for predicting the field scattered from a body 

whose surface has radii of curvature which are large compared 

with the wavelength of the fieldo 

The expressions in (107) - (1012) show that the high-

frequency asymptotic expansion of the field in the vicinity 

of a perfectly conducting wedge illuminated by the plane 

wave given in (10 6) i is 

(10 39) 

where Vl(Pf~) is given in (1 09) 0 Examination of the existence 

condition I s+2'ITpml < 'IT associated with VI (p ,i;) shows that 

when ~ = ¢-lj!, only p=O, I ¢-lj!1 < 'IT satisfies this condition 0 

When s = ¢+lj!p only p=O, 1¢+lj!1 < 'IT and p= -1, /¢+lj!-2'ITml < 'IT 

satisfy the existence conditiono Substitution of these three 

values ofp into (1 09) results in three expressions which 

describe the incident field, the field reflected from the 

surface ¢= 0, and the field reflected from the surface 

¢ = m'IT respectivelyo Thus the expression in (1039) describes 

the geometrical optics field in the vicinity of the perfectly 

conducting wedgeo 
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It can be seen from the preceeding discussion that 

geometrical optics predicts no field in the shadowed 

regions of an opaque bodyo The extension of geometrical 

optics which overcomes this limitation is called the 

47 Geometrical Theory of Diffraction (GoT.D.)o The field 

Ugtd predicted by the geometrical theory of diffraction 

in the vicinity of a scatterer is given by 

U = U + ud (1.40) 
. gtd go ' 

where ud represents a diffracted field. This diffracted 

field is produced whenever a ray strikes an edge, corner f 

or· vertex of a. boundary surface, or grazes such a surface. 

The geometrical theory of diffraction assumes that the 

diffracted field in a given direction is dependent upon 

only the incident field and the local geometry of the 

diffracting surface. By using the explicit solution of a 

simple canonical problem which contains the appropriate 

type of surface discontinuity (such as the wedge for edge 

diffraction47
1 and the circular cylinder and sphere for 

diffraction by a convex surface 48) f the relationship 

between incident and diffracted fields is deduced. The 
I 

diffracted field is given by the term following the geometric-

al optics term in the high-frequency asymptotic expansion 

of the field appropriate to the canonical problem. Thus, 

the diffracted field from an edge when the incident field 

is given in (1.6), is found from (1.7), (1.8) and (1.12) 
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to be 

(10 41) 

where the upper (lower) sign applies when the field is 

magnetically (electrically) polarizedo 

The field diffracted from a surface discontinuity in 

a two-dimensional problem can be written in the form
47 

, (10 42) 

where d (¢f~) is the diffraction coefficient appropriate m 

to the discontinuityo The edge diffraction coefficient 

for a perfectly conducting body is found from (1 0 12) 

( 10 41) and (10 42) to be 

sin (~) 
dm (¢ i~) = 

m~2'ITk [ 
_1-,.,..--,-- ± 

cos (!!.) -cos (¢-~) . 
m m cos (2!.) ~cos (.t!:1) J . m m 

Like the geometrical optics field, the diffracted field 

of the geometrical theory of diffraction travels along ray. 

directions 0 For edge diffraction, the ray paths are 

defined by the modified FermatDs principle: "an edge 

diffracted ray from P to Q is a curve which has stationary 

length among all cur~es from P to Q having a point on the 

edge"o 47 By considering the energy in a tube of rays, 
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Keller
47 

modified the edge diffraction coefficient 

given in (1 043) to a coefficient appropriate to a curved 

edge 0 Tip diffraction coefficients have also been 

defined0
49 

When an incident field grazes a smooth 

convex boundary surface, a surface ray is generated0 48 

This surface ray travels along a geodesic arc of the 

surface and produces diffracted rays which leave the 

surface tangentially from each point on the arc o 

The geometrical theory of diffraction has been used 

to estimate the fields scattered by many different 

bodies~7-57 The use of the geometrical theory of diffract~ 

ion is attractive because of the ease with which an 

estimate of the field surrounding a scatterer can be 

obtainedo Although the ray approach to diffraction prob­

lems is an asymptotic high-frequency technique, it often 

gives accurate results when the characteristic dimension 

. 47 50 52 54 
of the scatterer 1S of wavelength ordero ' f 1 

L3(b) EDGE DIFFRACTION USING THE GoT.D. 

The use of the geometrical theory of diffraction in 

problems involving edge diffraction is restricted by 

the constraints associated with (1041) 0 Pauli lO maintains 

that the discontinuity associated with the geometrical 

optics field Vl(p,l;) and its derivatives on the shadow 

and reflection boundaries I~±~I = TI, is matched exactly 

by the discontinuities associated with V2 (p,l;) in (1010) 

and its derivatives on the reflection and shadow boundaries, 
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thereby ensuring that the total field given in (1 07) is 

continuous everywhere 0 The neglect of the higher order 

terms of (loll) in the asymptotic expansion in (1012) 

causes the discontinuity at I~±~I = TI in the diffracted 

field of the geometrical theory of diffraction given by 

(10 41) 0 

Ahluwalia et a158 overcome the problem of the discontin-

uities in the case of a plane screen by deriving a uniform 

asymptotic expansion for the diffracted fieldo Higher 

order terms of the expansion are obtained recursivelyo 

Yee et a154 use the geometrical theory of diffraction 

to obtain the reflection from the open end of. a waveguide 0 

The incident field mode is decomposed into two plane waves~ 

and the diffraction from the terminating edges of the wave-

. guide is calcul.ated separately for each plane wave 0 

Multiply diffracted fields,. generated when the diffracted 

field from one edge strikes the other edge, are not 

predicted by the geometrical theory of diffraction for the 
, 

waveguide because the direction of mUltiple diffraction 

coincides with.the reflection boundary of the terminating 

edges~ This difficulty is overcome by Yee.et al by using 

a Fresnel integral formula for the diffraction coefficient 

and thereby providing a continuous transition of the 

diffracted field through the reflection boundaryo 
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H . d 59 . . . aml suggests uSlng correctlon factors wlth the 

diffraction coefficient in (1 043) not only to avoid the 

discontinuities across the shadow and reflection boundaries v 

but also to compensate to some extent for the asymptotic 

nature of the diffraction coefficiento The correction 

factors are functions of kp,¢, and~, and are obtained 

by comparison of the field predicted by the geometrical 

theory of diffraction with the exact solution o 

Mohsen and Hamid60 derive a diffraction coefficient 

for the scattering by a half plane by considering both 

the first and second terms in the asymptotic expansion of 

the exact solution given by Keller et al0 6l This improved 

diffraction coefficient results in a more accurate 

estimate of the field diffracted by a narrow slit, strip 

60 62 and circular aperture 0 ' 

other attempts to overcome the asymptotic nature of 

the diffracted field given in (1041) involve the use of 

the Pauli diffraction function given by the first term 

in the expression in (loll) 0 

63 Ryan and Rudduck use the Pauli diffraction function 

to estimate the mUltiply diffracted field radiated from the 

edges of a parallel-plate waveguide. Improved results 

64 are obtained by Rudduck and Wu who introduce a slope 

wave diffraction function derived by differentiating the 

Pauli diffraction function with respect to the angle of 

incidence 0 This technique is similar to that used by 
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other workerso 47 !5l 

Yu and Rudduck 65 use the Pauli diffraction 

function in representing the sum of the multiply 

diffracted fields from an edge of a perfectly conduct-

ing strip by a cylindrical wave 0 The strengths of the 

diffracted fields are found by a selfconsistent method 

66 similar to that used by Karp and Russek o 

However f most " 60 63 65 66 lmprovements ' Q , to the 

geometrical theory of diffraction do not predict a 

multiply diffracted field from a perfectly conducting 

body illuminated by a field electrically polarized 

parallel to the edges of the bodyo Expressions for such 

a multiply diffracted field are derived in Chapter 7 

of this thesiso 

The concept of representing the field diffracted 

by an edge as a cylindrical wave emanating from the 

edge is related to the use of fictitious edge currents 

to describe the diffraction 0 This technique is used 

by Millar67- 69 to find the field diffracted by 

circular and elliptic apertures, and more recently 

70 by Ryan and Peters to find the diffraction from 

finite axially symmetric cone frustrums, a conically 

capped finite cylinder, and a stub mounted above a 

circular disco Moullin and Phillips7l use a similar 



approximation to describe the presence of an edgeo 

A concise survey of the theory of diffraction 

of short waves by edges up to 1964 is given by Keller 

72 and Hansen o Other survey and review papers are 

'1 bl 6,73-75 aval a eo 

104(a) PHYSICAL OPTICS 

33 

Physical optics (PoO.) approximates the field scattered 

from a perfectly conducting body by the radiation from a 

surface current density K given by 

+i 
2n X H f on a directly illuminated surface Q 

:= 0, on a shadowed surface. 

Comparison of the expression in (1.44) with the exact 

(1. 44) 

description of the surface current density given in (1033) 

shows that physical optics approximates the tangential 

magnetic field intensity at the surface of the scatterer 

by twice the tangential component of the incident magnetic 

field intensityo The physical optics surface current 

density, which is due to the geometrical optics field g 

is therefore dependent only upon the incident field and the 

orientation of the surface at a point on a perfectly 

conducting body. 

Because the physical optics surface current density 

exists only upon the directly illuminated surface of a 

scattering body, the interchange of transmitter and receiver 

will f in general, resul tin a different prediction for 



the physical optics field. Thus, physical optics does 

. t 1 ' f th ' ,L th 73,77 U l'k no a ways satls y e reclprocl~y eorem. n 1 e 

the geometrical theory of diffraction, physical optics 

fails to account for the polarization of the field in 

the backscattered direction. 53 

One advantage of the physical optics approximation 

is that it often enables the integrals in (1032) and 

(1.36) to be evaluated analytically, resulting in simple 

algorithms suitable for numerical evaluation. Thus a 

, k h k th· lIt' l'S aval'lable.70u76 qU1C c ec on 0 er ca cu a lons 

Because physical optics approxi~atesthe surface current 

density, and errors in the estimate of the current density 

on a body do not contribute equivalent errors to the 

scattered fl'eldQ17,35 th h ' 1 t' t' t ft , e p YSlca op lCS es lma e 0 en 

accurately describes the scattered field. Physic~l optics 

34 

is most useful in estimating the field scattered in the 

direction of specular reflection. 70 It is in this direction 

that the field predicted by the geometrical theory of 

diffraction is discontinuous.· 

However Q although an iterative technique which starts 

with the physical optics estimate of the scattered field 

will converge to the exact solution for large smooth obstacles? 

it does no.t converge to the exact solution for the half-

plane and the strip.76 This is because the physical 

optics surface current density does not have the correct 

behaviour at an edge. 32 ,33 In the case of normal 

.backscattering from the half-plane and strip, the physical 



35 

optics field does approach the exact backscattering 

because the radiation from the surface current density 

in 76 the vicinity of the edge is maskedo 

Fock 78 
F 79 defl' nes t 't' , th a ranSl lon reglon on e 

surface of a convex metallic scatterer between 

the illuminated surface and the surface on which the 

physical optics surface current density is zero o 

The surface current density in the transition region 

is approximated by a universal function which is 

the same for all bodies having the same local radius 

of curvature and illuminated by the same incident 

fieldo Thus g the Fock theory extends the physical 

optics current density into the shadow region of a 

smooth convex bodyo 

In Chapter 7 of this thesis Q a modification is suggested 

to the physical optics current density near the edge 

of a perfectly conducting bodyo This modific~tion 

extends the physical optics current density onto a 

surface shadowed by an edge o 



Figure 1.1 z axis perpendicular to the paper. 

36 

(p ,<J! ) 
o 
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CHAPTER 2 

This chapter contains the formulation of a current 

density replacement technique which can be used to determine 

the electromagnetic field surrounding a scattering body. 

When applied to non-metallic bodies the method is called 

the Polarization Current Replacement (P.C~R.) technique 

and when applied to metallic bodies it is called the 

Surface Current Replacement (S.C.R.) technique. The 

S.C.R. technique is used to determine the field scattered 

from a perfectly conducting deformed wedge in a form 

suitable for numerical evaluation. 

It has been shown in Chapter I that the number of 

scattering problems for which an explicit solution can be 

obtained is very small. The size of scattering body which 

can be dealt with by numerical techniques (in conjunction 

with the integral equation representation of the scattered 

field) i is limited by the available computational facilities o 

It is comparatively simple to use ray-tracing techniques 

to construct an expression describing the scattered field 

which requires little computational effort to evaluate. 

However Q since these ray-tracing techniques use the leading 

terms of far field asymptotic expansions of the field p 

they become less accurate when the scatterer has dimensions 

of wavelength order. 
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To be able to evaluate the usefulness of any suggested 

improvement to existing ray-tracing techniques, it is 

desirable to have available accurate solutions to simple 

scattering problems involving dimensions of wavelength 

ordero The technique introduced in this chapter enables 

such solutions to be obtained for the field scattered 

from a perfectly conducting deformed wedgeo The 

deformation of the wedge apex has dimensions of wavelength 

80 81 ordero Waterman f v in considering the field around 

a perfectly conducting strip, uses similar reasoning to 

82 
that in the following two sections, as does Plonseyo 

Some of the results of this chapter and the next 

2 have been published elsewhere o 

,20l(a) POLARIZATION CURRENT REPLACEMENT 

Consider a homogeneous isotropic body of permeability 

~, permittivity E, and conductivity 0, occupying a volume V 

with surface S (Fig o 2 0 1), where 

S= sUYo 

When the body is illuminated by an incident monochromatic 

+i + 
field U i (1029) - (1031) give the total field U2 at any 

point as 

+ +i 
U2 = U + [[[vP2 (V) G(kR)dv 

where P 2 (v) is the polarization current density in V and 

is given by (1030) and (1031) as 



when U represents the electric field intensity E, and 

when U represents the magnetic field intensity li. Since 

the volume integration of (2.2) must include S, all terms 

-r 
of P2 (v) involving the vector gradient operator are 

included in the integrand. 

The field U2 can be determined using the PeCoRo 

technique by first treating two other problems. 

Problem (i) 

Consider a body of permeability ~, permittivity £, 

and conductivity C5 occupying a volume VI with surface Sl 

(Figo 202) f where 

VI = V U T, 

-ri 
When the body is illuminated by the incident field U Q 

-r 
the total field Ul is given by (1 029) - (1031) as 

-r 
Pl(v) G(kR)dv, 

-r 
where Pl(v) is the polarization current density in Vlo 

Problem (ii) 

Consider the body occupying volume V illuminated by 

the field radiated from sources of strength [-i\ (v) ] 

39 
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situated throughout the volume T (Figo 203) 0 The total 

field U at any point is 

U = -+ 
P(v) G(kR)dv, (20 7) 

P(v) being the polarization current density in Vo Notice 

that the source distribution [-Pl(v) ] contains no terms 

involving the vector gradient operator across the surface 60 

Adding the expressions in (206) and (207), and 

using (2 0 5) gives 

U
l 

+ V = vi + fft (2 0 8) 

where 

-+ -+ -+ 
P 3 (v) =P(v) +Pl(v). 

Comparison of (20S) with (202) shows that 

(2010) 

Thus the problem represented by the combination of 

Figso 202 and 2 03 is identical to the problem represented 

by Figo 20 10 The polarization current replacement technique 

is the method of determining the field D2 by adding together 

the fields VI and Do 
The extension of this section to ansiotropic, 

inhomogeneous bodies is straightforward although the 

expression describing the polarization cur~ent density 

is more complicatedo 
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2.1(b) SURFACE CURRENT REPLACEMENT 

Consider a perfectly conducting closed body with 

surface S present in an incident monochromatic field 

ui (Fig. 2.4) 0 The total field U2 at any point is given by 

(1.29) and (1.32) as 

UdfL E(s) G(kR)ds 

:+-
where h(s}, the surface current density on S, is defined 

from (1.33) as 

h(s) = 
and 

-+ 
n X H, 

(2013) 

-+ 
In order to evaluate U2 using the S.C.R. technique, 

it is first necessary to treat two other problemso 

Problem (i) 

Consider a perfectly conducting closed body with 

surface Sl' such that 

(2 0 14 ) 

-+i 
illuminated by the incident field U (Fig. 2.5)0 The 

-+ 
total field Ul is given by (1033) as 

7-
1 ( s) G (kR) ds , (2 0 15) 

7-
where l(S) is the surface current density on Sl. 



42 

Problem (ii) 

Consider the surface S illuminated by the field 

radiated by a surface current density [~1(s)] on a, which is 

external to S, as shown in Figo 2 0 6 0 The total field D 
is given by 

where £(s) is the surface current density on So 

Adding (2015) and (2016), and using (2014), gives 

VI + U = vi + It :+ 
k ( s) G (kR) ds , 

where the surface current density k(s) is 

k ( s ) = f ( s ) + i ( s), on Y I' 

= f(s) , on 

Since both S and Sl are perfectly conducting surfaces, 

-+ -+ 
0, inside U = U2 = Sf 

-+ 
Ul = 0, inside Slo (2 0 19 ) 

Thus, the problem represented by Figo 204 is identical 
I 

to the problem represented by the combination of Figso 205 
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and from a comparison of (2 0 11) and (2 0 17) 

:+ :+ 
h(s) == k(s) 0 

Since the SoC.R. technique requires the solution 

of two problems in order to find the solution to a third, 

it is, in general, a more protracted method of obtaining 

the field '{\ than solving the third problem directly. 

However, if the solution VI to Problem (i) is known 

explicitly, only Problem (ii) remains to be solved. Because 

Problem (ii) has sources only in close proximity to the 

scattering body, the total field external to an appropriate 

region can be completely described by a sum of outward 

travelling waves. The use of such an expansion to represent 

the field enables the scattering from large or even infinite 

bodies to be determined with only the size'of the deformed 

surface being limited by available computational facilities. 

To illustrate the use of the S.C.R. technique, it 

will be applied to the problem of determining the scattering 

from a perfectly conducting two-dimensional wedge with 

deformed apex, for both magnetic and electric polarizations 

of the incident field. Problem (i) corresponds to the 

problem of scattering from a, perfectly conducting undeformed 

wedge, and Problem (ii) corresponds to the problem of 

determining the field scattered from the deformed wedge 

in the presence of sources si tuate,d on the replaced 

surface. The S.C.R. technique derived. in this, section 
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is formulated for a three-dimensional bodyo Since 

the deformed wedge to be considered in the next sections 

is two-dimensional, the vector operator {~} of- section 

201 (b) becomes the vector operator {A} , and the three-

dimensional Greens function G(kR) becomes the two-

dimensional Greens functiong(kR) 0 These operators 

and Greens functions are defined in section 102(a) 0 

Although the scattering from the deformed wedge 

is determined only for plane wave inciqence, it should 

be remembered that any incident field can be represented 

83 by a superposition of plane waves o 

202(a'} THE DEFORMED WEDGE (Electric polarization) 

Problem (i) 

Consider the infinite perfectly conducting wedge in 

Figo 207 occupying the region I <t> I ~ X and illuminated 

by an electrically polarized plane waveo Use is made 

of the vector potential notation 

-r -r 
l-lH = V X A, 

-r 
A = zA, (2 022) 

where z is the unit vector in the z direction 0 The 
. -r 
symbol U used in section 2ol(b) is replaced in this 

section by A, and the vector operator {A} reduces to the 

scalar operator ]10 The incident field, normalized so 

that the· incident magnetic field intensity is of unit 
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strength, is given by 

The field Al surrounding the wedge is given by 

(10 23) as 

co 

I 
n=l 

v 

The symbol r is used to denote the distance from the 

apex of the wedge to a point on the wedge surfaceo The 

surface current density on the wedge can then be 

defined, by using the expressions in (2~22) and (1033), 

as 

+ 
I (r) 

where the upper (lower) symbol refers to the wedge 

surface ~=X (~= 2~ -X) 0 

Problem (ii) 

Consider the perfectly conducting deformed wedge 

of cross-sectional contour C defined in the cylindrical 

polar co-ordinates (r,8,z) (Figo 2.7) • Let the maximum 

value of r for I 8 I < X be ao Then, without loss of 
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generality, it is possible to define the deformation 

C3 as being the cross-sectional contour between (a,-X) and 

(a, X) 0 

The surface current density on the surface~=X will 

be distinguished by the subscript 1, that on ~= 21f - X 

by the subscript 2, and that on C3 by the subscript 30 

The field incident upon the deformed wedge· is 

radiated from the ctirrent distribution [-1 (r) ] , o ~ r .;$ 

on ~ = X and ~ = 21f-Xo Writing 

" = zI (r) , 

and using (2 024) with (2026), it is readily deduced 

that 

- 4v 
= + kr 

00 

L 
n=l 

The total field A(pg~) surrounding the deformed wedge 

is found from (2 016) to be 

~ -4'- t F(c) H;2) (kR)dc 

+ jll 
4 r [1;1 (r) + 1

2
(r) 1 H~2) (kR) dr, 

o 

where R is the distance from the elemental con.tour dc 
+ A 

or drto (p,~), and F(c) = zF(c) is the z-directed 

a 
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surface current density on Co 

The use of Graf'S addition theorem for Bessel 

functions 14 enables the expression in (2029) to be expanded 

as 

00 

trn(kb) [ A(b p ¢) = =¥- I {F l (r) cos[m(¢-x) ] 
m=-oo 

+F2(r)cos[m(¢+x)J}H~2) (kr) dr 

+ H~2)(kb)[[ {F1(r)cos[rn(o-xl] t F 2 (r)cos[rn(o+x)]}Jrn(kr) dr 

-[(II (r) cos [m (o-X)] + 12 (r) cos [mH+x) ]}Jrn fkr) dr 

The representation of the total field given in (2030) 

is valid for all ¢, and may be written as a trigonometrical 

Fourier series on the circle p = bo Thus 

= B+ + 2 
o 

00 

L 
p=l 

b ~ a, 

(2 0 31) 
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+ + 
where the B- are functions of b o The B- are extracted 

p p 

from (2031) by performing the integration 

27T 

A(b,¢) ~~~(p¢) d¢. 

o 

Using the property of any cylindrical Bessel 

function e (z) that14 
m 

e (z ) = (-1 ) me ( z ) m -m 

(2032) 

(2,,33) 

where m is any integer or zero, it fo]ows from (2030) 

and (2 032) that 

B~ =-iX [ ~~~ (PX) [Jp (kb) [[ Fl (r) ± F 2 (r) lH~ 2) (kr) dr 

+ H (2) (kb) 
p 

+ H(2) (kb) 
P 

f
b

a

, 

cos 
F

3
(C)J (kr) . (p8) P Sln ' 

The sources of the field A(p,¢) are contained 

(2034) 

within the circle p:c a, and A(p,cp) is entirely outgoing 
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for p > a. A representation of the field which satisfies 

the radiation condition at infinity84 and the boundary 

condition (1.5) on the wedge surface is 

<Xl 

I an_H~~)(kp) sin[nv(~-x)], 
n=l 

p > a, X ~ ~ ~ 27f:-X, 

where the compleKcoefficients a are yet to be determined. n 

The surface current density on the wedge surfaces 

r > a can be described in terms of the a by using (2035) 
n 

with (2.22) and (1.33). Then 
00 

1 
F (r) = + -m kr 

\' (±l)nnv an H(2) (kr) 
L nv' r > a, m 1 

= 2° 
n=l 

Because the total field inside the deformed wedge is 

+ 
everywhere zero, the Fourier coefficients B- of the 

p 

field on the circle p = b are given by 

cos 
A(b,~ s~n(p~) d~, 

as an alternative to (2.32). Using (2.35) with (2037) 

+ 
to obtain the B~ in terms of the an results in 

00 

II cos 
TIK sin (PX) I 

n=l 

tv at H~~) (kb) 

2 2 (tv) -p 

t = 2n-l 
, 2n p t tv. 
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After noting from (2028) and (2.36) that 

00 

II (r) ± 12 (r) 
-8v I tv jtvJt (kr)sin(tv~), t 

2n-l -- kr = 2n n=1 
v . . 

(2039) 

00 

-2 (2 ) 2n-l 
Fl (r) ± F2 (r) I tv t - Kr atHtv (kr) f = 2n 

n=1 

(2 0 40) 

equating descriptions of the 
+ 

in (2 034 ) the two B-
p 

and (2038) gives 

00 
I U 

nIl at DtFP + ct,p 

where 

o 
D 
t,p 

. t v 

= ~ qt(PX) 

+ H(2) (kb) 
P 

C! =2 H C2) (kb) 
t,p 4 P 

I 

= Yt ' ,p 
2n-l 

t = 2n 

[ 
J

oo H(2) (kr) H(2) (kr)dr 
J p (kb) b _·_t ... v--,-. .,...... --r"';'P-----. -

J

b

a 

H~~) (kr}J1?(kr) dr 2j H~~) (k.b) J 
+ ·22' 

r 1T [ (tv) -p ] 

J·,(kr) qt· (.p8).dc, 
p 

00 

(2042) 

(2043) 

a 

Ii' tv . tv . ( ,',) J tv (kr) J; (kr)dr 
L .. J sJ.n tv 't'. p., 

n=1 r 
o. 

(2044) 
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q2n-l (~) = cos (~) 0 

. h l' h' 85 USlng t e re atlons lp 

~ 

~ d .CJ-i+l(kz) Cv (kz) -Cfl (kz) Cv +l (k z) } 
Cv(kZ)~ = - kZ{--~.------·--2~--~2~~~-----------­

J-i - v 

CJ-i(kz) Cv(kz) 
+ 

fl + v 

where Cfl(kz), Cv(kz) are any two cylindrical Bessel 

functions, and simplifying (2.42) with the use of Appendix 1 

allows the expression in (2041) to be reduced to 

00 

I at Dt + Ct = Yt ' 
n=l ,p ,p ,p 

where 

D 
t,p 

t = 2n-l 
2n , 

- ka 
Ht( v

2
+) 1 (ka) J (ka) - H (2) (ka) J +1 (ka)j p ~v p f 

(tv)2 _ p2 

C t,p 
k 

= 2 F 3 (c) Ji? (kr) qt (p8) dc, (2'049) 



and 

y 
t,P 

00 

= 4v qt (PX) L 
n=l 

. tv . ( ,I, ) tv J sln tv,/, 

Jtv+l(ka) Jp(ka) - Jtv(ka) Jp+l(ka) 

(tv) 2 _ p2 

J t (ka) J (ka) 1 _v --,,----P 

tv+ p 

The qt(~) ~re defined in (2.45) I P is any positive 

integer or zero, and tv t po 

202(b) THE DEFORMED HEDGE (Magnetic Polarization) 

Problem (i) 

52 

Consider the infinite perfectly conducting wedge in 

Figo 207 occupying the region I¢I ~ X and illuminated 

by a magnetically polarized plane wave. 
,+ 

The symbol U 

-+ 
used in section 20l(b) is replaced in this section by Hi 

the magnetic field intensity, and the vector operator {A} 

becomes (VX). The incident field is given by 

-+ 
H = zH, (2 0 51) 

The field HI surrounding the wedge is given by (1.23) as 

00 

L 
n=O 

J (kp) cos[nv(¢-x)]cos[nVljJ], nv 
(2 0 52) 
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where v is defined in (2 025)0 

The symbol r is used to denote the,distance from the 

apex of the wedge to a point on the wedge surface o The 

surface current density I(r) on the wedge is then defined 

from (10 33) as 

-+ 
I (r) = ± pH 

¢= X 27f-,)( 

" where the upper (lower) symbol refers to the wedge surface 

¢=x (¢=27f-X) 0 

Problem (ii) 

Consider the perfectly conducting deformed wedge of 

cross-sectional contour C defined by the cylindrical polar 

co-ordinates (r,e,z) (Figo 2 0 7)0 Let the maximum 

value of r for I e I < X be a o Then, without loss of generality, 

it is possible to define the defbrmation C
3 

as being the 

cross-sectional contour between (a,-x) and (apX)o 

The surface current density on the surface ¢=X will be 

distinguished by the subscript 1, that on ¢= 27f-X by the 

subscript 2, and that on C3 by the subscript 3 0 The 
A 

unit vectors r l , r 2 , and r3 are defined by 

A A 

r = p cos (nn) - ¢sin (n ), n=1,2,3, n n 

where 

nl = ¢'"'"X, n2 = ¢+X , n3 = ¢-o, (2055) 



and 0 is defined in Figo 2070 Define 

The field incident upon the deformed wedge is 

radiated by the current distribution [-1(r)], 

o ~ r ~ a on ~=x and ~= 2~ -x. After writing 

it follows from (2 0 52) and (2053) that 

00 
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(2056) 

(2057) 

±2v ~ ~ (+_l)nJ.nvJ (kr) (''') 1 L ~ cos nv~ , m = 20 
n=O n nv 

(2058) 

The total field H(p,~) surrounding the deformed wedge 

is found from (2016) to be 

~ -i f ~ H(p,<b) ~ .. VX C F(c) H (2) (kR) dc 
o 

+ i 
4 I7X 

a 

CI1(r) + 12 (r) ]H~2) (kR)dr, 

o 

(2 0 59) 

where R is the distance from the elemental contourdc 
~ 

or dr to (p,~), and P(c) is the surface current density 

on the wedge o Bec~use the field ,is magnetically polarized 

(~ = ;H), l(c) is directed along C in the (p,~) planeo 



Thus it is possible to write 

-+ '" 
Fn(C) = rn Fn(C), 

where the rn are defined in (2054). 

The use of Grafls addition theorem for Bessel 

functions,14 and (2.57) and (2.60) enables (2.59) to be 

e3'panded into 

H(p ,0) = : X J~oo (-j,i) [Jm(kP)f;l Fl (r)cos(m<l) 

+ r 2 F2 (r) cos (m<2) lH~2) (kr) dr + H~2) (kp) [f~;l 
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The argument of the vector curl operator in (2 061) is 

the magnetic vector potential A(p, </» 0 Examination of the 

-+ 
expression in (2 0 54) shows that A(p,</» can be written as 

-+ 
A(p,</» = pA: + 

p 

-+ 
ClA 
az = 0, (2 0 62) 
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+ enabling H(p,~) to be written as 

A 

= zH (p , <p) , 
1 3A~ 3A 

= -[p- + A - _PJ 
~p3p ~ 3~ 0 

(2063) 

The evaluation of the first term of (2.63) is accomplished 

after noting that 

;P [f(p) [h(X) g(x)dx + g(p) [h(X) f(x)dxj 

v 
= f (p) J :(X) g(x)dx + 

p 

i 

g (p) J p h (x) 

a 

f(x)dx, (2 0 64) 

where the prime denotes differentiation with respect to po 

The second term on the right-hand side of the expression 

in (2063) is cancell~d by a part of the third, leaving 

the description of H(p,~) in the form 

- - j ~ [J oo[ S ( n lC) F 1 (r) + S 1 ( n 2 " lC 2 ) F 2 (r) ] Hm( 2 ) (kr) dr:' -'4P m~-oo p 1 l' <., 1 v <., 

(2065) 



where 

8 1 (n,~) = mJm (kp) sin (mO cosn 

i 

- kp Jm(kp) cos(m~)sinn, 

= mH (2) (kp) sin (m~) cosn 
m 

- kp H~2)6(kp) cos(m~)sinnf 

and the prime denotes differention with respect to 
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the argument of the Bessel functiono Use of the recurrence 

relations for Bessel functions 14 enables 81(n,~) and 

82(n,~) to be simplified to 

kp = 2{Jm_l(kp)sin(m~-n) + Jm+l(kp)sin(m~+n)}6 

(2 0 68) 

82(nu~) = ki{H~:~(kp}sin(m~-n} + H~~~(kp)sin(m~+n)L 
(2 0 69) 

The representation of the total field given by (2 0 65) 

is valid for all ~, and may be written as a trigonometrical 

Fourier series on the circle p = b. Thus 

00 

I 
p=l 

+ 
the Bp being functionS of b 0 

(2070) 

+ The B- ·are extracted from 
p 



(2.70) by performing the integration 

f

27T 

o 

H (b ~) cc:>s ( "') , sln P't' 
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(2071) 

Using (2033) and Appendix 2, it is found from (2 065), 

(2068) and (2 069) that 

[F2 (r) :;: Fl(;r)]H~2) (kr) dr 

r 

+ H . ( 2 ) (kb) 
p 

- H (2) (kb) 
p 

::;: k H (2) (kb) 
2" p 

fa [I 2 (r) + I 1 (r)lJ
p

(kl') drJ t r 

f 
F3 (c) [Jp + l (kr) sin {(p+l) 8-6} 

cos 
C3 

+ J 1 (kr). p-
sin 
cos { (p-l) 8+6 } 1 de] 0 (2072) 

The sources of the field H(p,~) are contained within 

the circle p = a, and H (p , ~) is entirely outgoing for p > a 0 

A representation of the field which satisfies the 

d ' t' d" t' f' 't 84 d th b d ra la lon con ltlon a ln lnl y an e oun ary 

condition (104) on the wedge is 
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00 

L an H(2)(kp) cos[nv(~-x)J, 
n=O nv 

p > a, X ~ ~ ~ 2n-x, (2 0 73) 

where the complex coefficients an are yet to be determined o 

The surface current density on the surfaces r > a can 

be described in terms of the a by using (20}3) with, (1033) 0 
n 

Thus, using (2054) and (2 060) f 

Because the total field inside the deformed wedge is 

+ 

(2 0 74) 

everywhere zero, the Fourier coefficients B- of the field 
p 

on the circle p= b can be obtained from 

J

2n- x 

X 

H (b "') c<?s ( "') d'" 
,'1' Sln P'I' 'I' 

as an alternative to (2 071). Using (2073) with (2 075) 

+ 
to obtain the Bp in terms of the an gives 

sin 
cos (PX) 

a 
= 2 ~ H ~ 2 ) (kb) 0 

00 

n=O 

a H (2) (kb) 
t tv t = 

2 2' (tv) - p. 

After noting from (2058) and (2074) that 

2n 
2n+l' tv ~ p, p t 0, 

(20 76) 

(2 0 77) 



F 2 (r) + F
1
(r) 

00 

= +2 \' at H(2) (kr) 
L tv ' n==O 

t = 2n 
2n+1F 
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(2078) 

(2.79) 

equating the two descriptions in (2072) and (2.76) of the 

+ 
B- gives 

p 

00 

t 
n=O 

u 

at D tIP 

where 

2n 
t = 2n+1' 

! 

D 
t,P 

00 

~ ~qt(PX) lJp(kb) lb 
H (2) (kr) H(2) (kr) 
tvp dr 

r 

+ H (2) (kb) 
p 

b 

a 

H~~) (kr) J (kr) 
p 'dr 

r + r. 2 2] , 
1T~tV) -p 

2 j H (2) (kb)] tv 

c u = ~ ( 2 ) (kti F 3 (c) [ J . + 1 (k r) qt' { (p+ 1) e - 0 } 
t,p 8 p' P > 

C3 

u 
D 
0,0 

(2.80) 

= 
-H (2) (kb) 

° 

(2.81) 

(2.82) 
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fo

a 

J tv (kr) J (kr) 
p dr r Q 

00 

n=O 

(2083) 

and the qt(s) are defined in (2045) 0 

Using (2046) and Appendix 1 to simplify the expression 

in (2 0 81) enables (2080) to be reduced to 

00 

I 
n=O 

at Dt + Ct ,p ,p 
2n 

t = 2n+l' (2084) 

where 

D [ ka 
(2) J (ka) H(2) (ka) Jp+l(ka) } = p qt (p~) 2 2 {H tv + l (ka) -

tiP (tv) "'"p.' P tv 

'H(2) (ka) J (ka) l i tv 12 D = (2085) 
tv+p 0,0 v 

C 
k f . F3 (C)[J +l(k~ qt{(p+l)e~o} = '4 t,p , P 

C ' 
3 

(2086) 

co 

Y = 2pv \ E t jtv qt(p.x) typ L n=D [

J t (ka) J p (ka) 
cos(tv~) ___ v ______ ~ __ _ 

b)+ p 

(2087) 
p is any positive integer or zero, and tv ~ po 
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202(c) COMMENTS ON THE RESULTS OF SECTION 202 

As shown in section 201(b), the superposition of 

the field deqcribed in (2035) and the field scattered 

from the undeformed perfectly conducting wedge (given 

in (2 024)), results in an exact description of the field 

scattered from the deformed wedge by the eLectrically 

polarized incident field in (2023) 0 Similarly, the super-

position of the field described in (2 073) and the field 

scattered from the undeformed perfectly conducting 

wedge (given in (2052)) results in an exact description 

of the field scattered from the deformed wedge by the 

magnetically polarized incident field in (2 051) 0 

The exact values of the an modal coefficients in 

(2035) or (2073) are obtained by solving the expressions 

in (2047) or (2.84) respectively" The a can be evaluated 
n 

17 by using a moment method to represent the surface 

curren t densi ty :r 3 (c) and then forming a matrix equation 

by letting p take a number of values in (2047) or (2 084) 0 

The matrix equation must be of finite order if the an 

are to be evaluated numericallyo 

The description of the fields in (2035) and (2073) 

is valid in the region p ~ a, X ~ 4J ,,' 27f-Xo By evaluat-

ing the an field coefficients and using analytic 

. 25 29 
continuation technlques ' ,the field in p < a, 

X < 4J < 27f-X can be determined o However, to find the field 

in p < r, !4J! < X, the fields given in (2 0 29) and (2 059) 
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must be evaluated and superimposed upon the fields given 

in (2.24) and (2 052) respectively. 

In the derivation of the expressions in (2 047) 

and (2084) two representations of the Fourier coefficients 

of the scattered field are equated on the circle p = b , 

b ~ ao One of these representations ensures that the 

field is zero for 'p = b, I ~ I < X 0 The expressions in 

(2047) and (2 084) are independent of b o Not only does 

this confirm that-the an are independent of Pv but it also 

ensures that the field is zero for p ~ au I~I < xo 

A:palytic continuation arguments enable this region of zero 

field to be extended everywhere inside the deformed wedge~ 

Hence the formulations in sections 202(a) and 202(b) 

t ' f h d d b d d" 25 sa 18 y t e exten e oun aty con 1tlOpo 

The expressions in (2 0 47) and (2084) can each be 

regarded as a pair of equat~ons coup,led by the Ct,p 
I 

term. In Chapter 3 it is shown that when the wedge 

deformation is symmetric about ~ = 0 Q as are the. rounded 

and symmetrically truncated wedges, the pair of equations 

in (2 047) or (2 084) can bedecoupled-. 
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Figure 2.1 Figure 2.2 

y 

Figure 2.3 Figure 2.4 

y 

Figure 2.5 Figure 2.6 
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Figure 2.7 
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(P' ,111 ) 

Deformed wedge. z axis perpendicular to the paper. 
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CHAPTER 3 

In this chapter, the surface current density replace.;.. 

ment technique is applied to the truncated and round-topped 

perfectly conducting wedgesQ The scattered field is 

determined for both electric and magnetic polarization of 

the incident field. 

Equations which ensure the continuity of the surface 

current density at suitable points on the wedge surface 

are Cieri vedo 

Results showing the convergence of the solutions. are 

presented, and the factors affecting the rate of convergence 

are discussedo 

3 01(a) TRUNCATED WEDGEo (Electric Polarization) 0 

The primary concern in the application of the result 

in section 202{a) to the truncated wedge is to find a 

representation of F3 (C) which adequately describes the 

behaviour of the surf.ace current density on C3 0 Once a 

suitable representation has been found, it can be used with 

(2049) to enable the a coefficients in (2047) to be 
.n 

determinedo 

Consider the perfectly conducting closed surface 

having the contour C in Figo 3010 The side Cl is of 
~ 

length a f and the side C2 is of length b, where b < ao 

The (p,¢,z) cylindrical co-ordinate system has its origin 

at the edge wi thinternal angle So A suitable representat-

ion will be found for F 3 (c) when the field is electrically 
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polarized by considering the form of the surface. current 

density on Cl and C2 0 

-+ 
A representation of the field A which satisfies the 

He Imhol tz equati on (10 2), the boundary condi tion (105) 

C d d th d d 't' 84 to' on 1 an C2 , an e e ge con 1. 1.on a p= 1.S 

00 

A =;)1 L D J (kp) sin(mT~), 
m=l m mT 

p < b, 

where T = 1/(2-S/n), and the Dm q.re .constants which 

depend upon the incident field and the shape of the con-

tour Co By using (2022) and (1033) with (301) f the 

surface current denpity Sl(X) on C1 is found to be 

-+ 
Sl(x) == -z 

00 

L Dm mT 
m=l 

-+. 
and the surface current density S2(x) on C2 is 

00 

= z 
J . (kx) 
mt 

x 
, 

where x is the distance from the edgep= 0 to a point 

Because the field is continuous everywhere 

outside c, and the contour Cl has no discontinuities ff 

the surface current density on Cl is continuous 0 Thus, 

the expression in (302) is a valid representation of 

-+ 
Sl(x) everywhere on Clo 



Notice that an integrable infinity exists in the 

surface current density at the edge ·of the bodyo This 

infinity restricts the accuracy which can be obtained. by 

using the method of subsections to represent the surface 

current density near the edgeo17~33 
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Consider the' perfectly condupting truncated wedge in. 

Figo 3020 The (p,<P,z) co-ordinate system has its origin 

at the apex of the undeformed wedge 0 The ntruncation 

surface" of length 2b -is the surface between edge 1 at 

p = aI' <p = X i and edge 2 at p = a 2 , <p = 21f -X, where 

a 2 ? alo It is comlenient to describe the deformed surface 

C3 of the truncated wedge a~ the surface between p = a, 

<p = 21f-X, and p= a, <P=x, where 

When considered in conjunction with section 2 02(a), the 

definition of C3 may be bett~r understood by referring to 

Figo 303 0 Then 

Define Cl to be the contour of the surface P'l a, <p = X f and 

C2 to be the contour of the surface p ? a, <p = 21f-Xo 

A representation of the surface current density F3 (c) 

on C3 will now be constructed, and is later specialized 

for the case of the symmetrically truncated wedge, a l = a 2 0 

Define x to be the distance from edge 1 to a point 

on C30 It follows from (302) and (303) that the surface 
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current density Sl(x) at a point on the surface ~=xv and 

the surface current density 83 (X) at a point on the truncat­

ion surface can be represented by 

00 J (kx) I (±I)m Dm mT __ m_, ____ _ 
m=1 x 

Sn(x) - ± 

where the Dare constants g and m 

7T 
T = 27T -

g n = 

Define y to be the distance from· edge .2 to a point 

on C30 It follows from (302) and (303) that the surface 

+ 
current density T2 (y) on the surface ~ = 27T -x, and the 

3 
l' 

+ surface current density T3 (y) on the·trunca:tion surface can 

be represented by 

00 J m (ky) 
I (±I)m Em my ~. ~y~.---

m=1 y 
Tn(y) - ± ; n 

3 
:: 2 ; 

where the Em are constants; and 

7T 
y = 

27T - a. 

The surface current density F 3 (C) of (2049) is defined as. 
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o ~ x ~ 2b on the truncation 
y 

surface, 

= S 1 (x), 0 ~. x ~ b, ~ = X. (3010) 

The limiting form of the Bessel function of the first 

kind when the order v is fixed and the argument z tends 

. 14 to zero lS 

Therefore, the first terms in the se~ies for S3(x) 

will adequately approximate-the surface current density 

near edge 1, and the first terms in the series for T3 (y) 

will adequately approximate the 'surface current density 

near edge 2. 

Equation (3010) indicates that either S3(x) or 

T3 (y) is a suitable representation of F 3 (C) at.all points 

on the truncation surface 0 However, when x~ 2b, a large 

number of terms of the series given in (3 06) are required 

to approximate the infinite nature of the surface current 

densi ty near edge 2. Similarly, when y';\; 2b f a large· 

number of terms of the series in (3.8) are required to 

appro~imate the surface current density near edge 10 

Since it is nutneric.;illyimpractical to deal with a large 

number of unknowns in (2 047), the use of either S3(x) 

or T3 (y:) to represent F 3 (c) everywhere on the truncation 
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surface would introduce a gross error in the approximation 

of the surface current dehsity near either edge 2 or edge 10 

Instead, T3 (y) is used to represent the current density 

for 0 ~ y ~ b, and S3(x) is used for 0 ~ x ~ b, giving 

F 3 (c) = T2 (y) , 0 < y ~ b, ~ = 27f-X, 

= T3 (y) f 0 ~ Y ~ b f on the truncation surfacej (3012) 

= s3 (x) i 0 ~ X ~ h, on the truncation surface, 

= S 1 (x) , 0 ~ x <: b, ~ =Xo 

Using (3 0 12), the expression in (2.49) becomes 

t,p: c = ~2 [f"a
o
-a2 

b 

+ foT3(YI Jp(krl qt(pejdy 

+ 
a-a1 1 

J:1 (xl J p (hi qt (pxl dXr 
(3013) 

substituting (3 06) and (30'8), and using Graf's,addition 

theorem14 with (3013) gives 
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00 

Ct,p = ~ L 
m=l 

" oo=\' _00 [( -1) m+ 
1 

E [J J (k ) f [k ( ) ] '" L m my qt -PX p_£ a 2 . my,£ a-a2 

+(-1)£ Dm mT qt[PX +£S]Jp+£(ka l ) fmT,£(kb) 

+(_l)m+l Dm mT qt[PX]Jp _ t (ka1 ) fm.,R-Il«a-a1)J 

where, from (2046), 

z 

f n (kz) = v,,,, 

J (kz) J £ (kz)Jv (kz) J £ (kz) 
V . dz = 

z v+£ 

o 

V > O. 

When the wedge is symmetrically truncated, 

and C reduces to t,p 

C t,p 
k 

= "2 
00 

m=l 



+ (-1) t J pH (ka1 ) [qt (-PX-t S) Em +qt (PXHS) Dm l] . 
From (3 0 15) 

JI, 
f n(kz) = (-1) f n(kz), 
v,~ v,-~ 

which enables (3.17) to be separated into the two 

equations 

C t,p 
k 

= 4" 
00 

I 
m=l 
JI,=o 

•. [ Jp_JI, (ka~.+(-l) Jl,Jp+JI, (ka1 )] +(-I)JI,[qt(px+JI,S) Jp+JI,(kal) 

J p _ t (ka1 ) 1 J t = 2n-1 
2n (3019) 

where EJI, is the Neumann factor, and n is an integer. 

After defining. the two infinite sets of complex 

cons tan ts Qm and Em by 

Q = D + Em' m m Rm = Dm - Em' m=I.,2,3,---, (3.20) 

(2047) specializes, in the case of the symmetrically 

truncated wedge, 

00 
00 

I I at D + Qm 2n-1 t,p Ct . = Yt ' t = n=l m=l R ,p,m 2n m ,p 
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, 
f 



where, from (30l9) and (3 020), 

C t,p,m 
__ km

4 
T ~ [ £ m + 1 

£;;'0 E £ f mT ,£ (kb) J p+£ (ka l ) (-l) [ (-1) 
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() ( ) ] Jp_ n (kal·) [ (._l)m+l ·qt Px + qt px+£6 + N qt(PX)+qt(PX-IB)~ 
(3 0 22) 

and the D and Yare de fined by (2. 48) and (2 0 50) 
t,p t,P 

respectively. Thus, when applied to the symmetrically 

truncated wedge, the expression in (2.47) separates into 

the two independent equations in {3.2l)0 As no approximat-

ions have been made during the derivation of (3. 21) , the 

solution to these equations describes exactly the field 

scattered from the truncated wedgeo 

3 01{b) SURFACE CURRENT CONTINUITY (Electric Polarization) 0 

The unique description of the constants at' Qm andRm 

given in (302l) is obtained by equating the Fourier coeffic-

ients of two representations of the field sUl:"rounding the 

truncated wedge {see Chapter 2) 0 It is possible to obtain 

other relationsb.ips b~tween these constants by ensuring 

the continuity of surface current density at points on 

the truncated wedgeo 

First, consider the continuity of the ,surface current 

densi ty on the truncation surface of the wedge 0 From (3010), 

Ii 101 < b , (3 023) 
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and moreover, since the truncation surface is absolutely 

continuous, 

0,1,2,---, 

. 14 
By using the recurrence relations and the addition 

theorem with (306) and (3.8), the expression in (3.24) 

expands into 

I Et Em [(my+t) Jmy+t (kb) 

m=l 

+ (-l)t(my-nJ' n(kb)] ~Jn(kO) 
my-x, ao q x, 

t=o 

= I EtD [(mT-t)J _t(l<b)+(-l)t(m:r+t)J +t(kb)J-~_qJt(kO), 
m=l m mT mT a&q 
t=O 

viol < bo (3025) 

It Gan be deduced from the recurrence relations for Bessel 

functions that provided 

~(q-2n) = 0, n=1,2,3,--- q/~, (3026) 

then (Appendix 3) 

=0, t'f q,' 

o = 0 (3027) 

= (~) q ~ (q), t =q , 
. 2. 
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where ~(.Q,) is any .function of .Q,;.Q, being a posi ti ve integer 

or zeroo 

Using (3.27) with (3 025) gives 

00 

(3028) 

when the symmetry condi tionsin . (3016 )applyo The expression 

in (3.28) ensures the continuity of the qth derivative of· the 

surface current density about the Tflidpoint of the truncation 

surface, provided that lower derivatives of the current density 

are continuoi.lls there 0 

Now consider the contimii ty of the surface ct1rrEmt 

density across p= a on Cl and C2 0 It can be seem from (2 0 28) 

and (2.36) that this current density can be express~d as 

1 
Im (r) + F ~ (r) = + ~I (±l)h Pn nv 

n=l 

L (kr), nv r > a, m = 2' 

P n Lnv (kr) -

nv 
4v. 
_J_ 

k 
a 

In,,(kr) sin (nv1jJ) + n H(2) (kr) 
v k nV 0 

«30 30) 

Since P nLnv ('kr) is a linear combihation;,'of cylindrical Bess.el 
\ 

functions, it can be manipulated as a cylindrical Bessel 

function. 

Because the; surface C1 is absolutely continuous for 

p > aI' the su~face current density is absolutely continuous 

on Clo Hence, the representations in (306) and (3.29) 

may be equated at any point on Clf giving 
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By using the addition theorem for Bessel functions, the· 

expression in (3 0 31) expands into 

00 

I 
m=l 

E: R, (-1) m Dm [ 
(mT-R,) J n(k[a-al])+(-l)R,(mT+R,) mT-x, 

a-a l 
R,=o 

I E:R,~Pnr(hV_R,) Lnv,...R,(ka) 

n=l L 
R,=o 

The use of (3.27) enables the expression in (3 0 32) to be 

reduced to 

co 

I 
m=l 

00 

Pn[(nv-q ) L (ka) + (-l)R,(nv+R,) L + (kci)] f (3033) a nv-q nv q = I 
n=l 

thereby~ensuring the continuity of the qth derivative of the 

surface cu.rrent density about p=a on elf provided that. lower 

derivatives of the current density arecontin~ous there 0 

Similarly, the continuity of the qth derivative of the 



78 

surface current density about p=a on C2 is ensured if 

~. (_l)m ~ [(my-q) J (kb)+(-l)q(my+q) J + (kb)] 
L u my-q my q m=l 

= I 
n=l 

(-1) n _P
n_ [(nv-q ) L v (ka)+(-l)q(nv+q) L + (ka)]; (3.34) a n -q . nv q 

00 

provided that lower derivatives()f the surface current density 

are continuous thereo 

When the wedge is symmetrically truncated, the addition 

and subtraction of the expressions in (3.33) and (3034) gives 

the two equations 

00 

I 
m=l 

00 

= I 
n=l 

substituting (3.20) and (3.30) into (3.35) results in 

~: nIl at [( tv -q) H~~:q (ka) + (-1) q (tv+q) H~~~q (ka)] 

+ I (-bl)m Qm [(mT-q)J (kb)+(-l)q(mT+q)J + (kb)] 
m=l ~ mT-q fiT q 

2n-l 
t = 2n ' 

which are valid if derivatives of the surface current 

density below the qth are continuous about p=a o 

2n-l 
2n 

(3 0 36) 
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301 (c) TRUNCATED WEDGE 0 (Magnetic Polarization) 0 

To determine a representation of the· surface current 

-+ 
density F 3 (C) on the surfaceC3 of the truncated wedge when 

the field is magnetically polarized, consider the perfectly 

conducting closed surface C in Fig. 3.1. The geometry of 

this figure is described in section 3.l(a)0 

A representation of the field ~ which satisfies the 

Helmholtz equation (1.2), the boundary condition (1.4) on Cl 

and C2 , and the edge condition at p= 0, is 

co 

~ =z I 
m=O 

Dm J (kp) cos(mT~), mT 
p < b, 

where T is defined in (3 0 7), and the D are constants which. m 

depend upon the incident field and the shape of the contour 

Co By using (3037) with (1.33), the surface current density 

-+ 
Sl(x) on Cl is found to be 

00 

x ~ b, 

and the surface current density S2(x) on C2 is 

where 

I. 

r l = pcos~ ~sincp, 

00 

I 
m=O 

(-1) m D J (kx), m mT 

" r 2 = pcos(~+S) - ~sin(<p+S), 

(3 0 38) 

(3039) 

(3.40) 
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and xis the distance from p=O to a point on Cl or C2 0 

Because the field is continuou$ everywhere outside c, and 

the contour'C1 has no discontinuities, the current density 

on Cl is continuous. Thus, the expression in (3038) is a 

valid representation of Sl(x) everywhere on Cl • 

Considertheperfectly conducting truncated wedge in 

Figo 3020 The description of this figure, and the definition 

of the deformed surface C3 is given in section 30l(a)o It 

follows from (3038) and (3.39) that the surfa,ce current 

density Sl(x) at a point on the surface ~=X, and the surface 

current density S3(x) ata point on the truncation surface 

can be represented by 
00 

\ m 3 
L (±l) Dm J mT (kx) ,n = I! 

m=O 

where the Dm,are constants, and the unit vectors r l and r3 

are defined in (2 054) as 

'" A A A A 

r l = pcos(~-X) - ~sin(~-x), r3 = pcos(~-8)-~sin(~-8) 0 (3,,42) 

Similarly, the surface current density T2 (y) on the 

surface ~= 2n-x, and the surface current density T3 (y} 

on the truncation surface can be represented by 

00 

T (y) = L m 3 
n m=O (±l) Em Jmy(ky), n = 2' 
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where the Em are constants, the unit vector r 2 is defined 

in (2 0 54), and y is defined in (3.9). The surf~ce current 

density F3 (C) of (2.86) is given by 

F 3 (c) = T2 (y) , 0 ::; y ::; b, ~ = 21T-X, 

= T3 (y) , 0 .~ y -.:::: b, on the truncation surface, 

= S 3 (x) I' 0 ~ X ~ b, on the truncation surface, 

= Sl (x), 0 ~x .::; b, .~ = X 0 (3044) 

Substituting (3.44) into (2.86) gives 

From (2045), 

(3046) 
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Using the recurrence relations for Bessel functions, and 

substituting (3.41), (3.43),and (3.46) into (3045) 

results in 

[( -1) m+t 

b 
00 J p (k[ a 2+y J ) J (ky) 

C 
k L Em2p qt (PX) 

my dy = "4 k (a2+y) tiP m=O 
0 

( [ IJ8)] J (k) d + (_l)nH-l D 2 () ·qt+l· p- mt x ,x m p qt· PX 

When the truncated wedge .exhibits the symmetry defined 

in (3016), C
t 

simplifies to ,p 
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co 

L 
m=O 

(D +E ) m m 
c = k 
t,p if 

± {Jp +1 (kr) qt+l ((pH) a) -Jp _ 1 (kr) qt+l ((p-l) a) J J mT (kx) dx, 

t = 2n (3048) 
2n+l' 

where 

2 2 k 
r = (al + x - 2bx) 20 (3 0 49) 

Using the definition in (3 0 20) extended to includem=O,· 

(2084) can be specialized for the symmetrically truncated 

wedge to 

co co R 
m C = 

Qm t,p,m 
2n 

t = 2n+l' L' at Dt + L 
n=O ,P m=O 

where the D
t 

and Y
t
, are given by (2085) and (2 087) 

vp ,p 

respectively, and from (3 048) 

C t,p,m 
k 

= "4 

(3051) 
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. 3.1 (d) SURFACE CURRENT CONTINUITY. (Magnetic Polarization). 

In a similar manner to that of section 3.1(b), the 

equations which explicitly ensure the continuity of the 

current density on the truncated. wedge are derived in this 

section for magnetic polarization of the field. First, 

consider the continui tyot' the surface current density 

about the midpoint of the truncation surface. Using the 

addition theorem for Bessel functions 14 to expand (3.41) 

and (3.43) enables the expression in (3.24) to be expanded 

into 

00 [ JI.,. ] Cl
q 

I EnE J. n (kb)+(-l) J 0 (kb) -. J o (ko) N m . my+N . mY~N Clo q N 
m=O 
JI.,=O 

00 

= I EJI., 
m=O 
JI.,=O 

(3.52) 

When the wedge is symmetrically truncated as defined in 

(3.16), the expression in (3.52) is reduced, by using (3.27»), 

to 

00 

\' ·{D + (-l)qE} [J (kb) + (-l)q J +. (kb)] = 0; L m m mT-q mT q m=O 
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which ensures the continuity of the qth derivative of 

the surface current density about the midpoint of the 

truncation surface, provided that lower deri vati.ves or 

the current density are continuous there 0 

Now consider the continuity of the surface current 

density across p= a on Cl and C2 0 It can be seen from 

(2058) and (2074) that this current density can be 

expressed as 

00 

n=O 

P n Lnv (kr) = 

(±l)n P L (kr), n nv 
1 

r > a, m = 2' 

a H (2) (kr) 
n nv f 

.where the function P n Lnv (kr) can be manipulated as a 

cylindrical Bessel functiono 

Because the surface Cl is· absolutely continuous 

for p > a l v the surface current density is absolutely 

continuous on Clo Hence, the representations in (3 0 41) 

and (3054) can be equated as in (3 031). By using the 

addition theorem for Bessel functions, the expression 

in (3.31) expands into 
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00 

L E 9" (-1) m+l 

m=O 
9,,=0 

00 

= I 
n=O 
9,,=0 

[ 9" J ' Cl
q I E 9" P n Lnv -9" (ka) + (-1) Lnv +9" (ka)- J 9" (ko), 10 < (a-al ) 0 

Cloq 

(3056) 

The use of (3 027) enables the expression in (3056) to be 

reduced to 

I (_l)m+l D [J (k[a-al])+(-l)q J + (.k[a-a
l

])] m mT-q . mT q m=O 

(3.0 57) 

thereby ensuring the continuity of theqth derivative of 

the surface current dehsi ty about p = a on Cl , provided 

that lower derivatives of the current density are continuous 

there 0 

S ' '11th t" f h th d 't' f lml ar y, e con lnulty 0 t e q erlva lve 0 

the surface current density about p =a on C2 is ensured if 
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co 

mlo (-1) m Em [Jmy _q (k [a-a2 ]) + (-1) q Jmy +q (k [a-a2 ])] 

= I (_l)n P IL . (ka)' + (-l)q L + (ka)] , 
n=O nLnv-q nv q 

provided that lower deri vati ves of the surface current 

density are continuous there 0 

When the wedge.is symmetrically truncated as in (3016) v 

the .addi tion and subtraction of the expressions in (305,) 

and (3058) gives the, two equations 

00 

I ( D + E ) (-1) ~[ J. (kb) + ( -1) q J + (kb)] 
m=O m m mT~q . mT q 

co 

= -2 L Pt[Ltv_q(ka)+(;"'l)q Ltv+q(ka)J" t = ;~+lo (3059) 

n=O 

Substitutihg (3020) and (3 055) into (3059) gives 

00 

2 I a [H(2) (ka)+('''';l)q H(2) (ka)]+ 
t tv-q tv+q n=O 

00 

.[J (kb)+(-l)q J + (kb)] = -4v mT-q mT q 

.[J
t 

(ka)+(-l)q J
t
· + (ka)], v-q , v q. 

2n 
t = 2n+l' 
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which are valid if derivatives of the surface current 

density below the qth are continuous about p= ao 

302(a) ROUNDED WEDGE. (Electric Polarization) 

The specialation of the results of section 202(a) 

to the rounded wedge is studied in this section. As in 

previous sections of this chapter, the representation 

of the surface current density F3 (C) over the wedge 

deformation is of primary interest. 

Consider the perfectly conducting rounded wedge in 

Fig. 304. The (p,¢,z) co-ordinate system has its origin 

at the apex of the undeformed wedge. The deformation 

contour C3 is the arc of a circle centred on ¢= 0 

such that the surfaces¢= X and ¢= 2~-X are tangents 

to the arc at p = a,¢= ±X 0 Let x be the distance measured 

along the surface in a clockwise direction from the mid-

point of C3 to a point on the surface 0 The maximum 

value of x on C
3 

is Xo The incident field is electrically 

polarized in the z-directiono 

A representation of F](C) which acknowledges 

"'-
a priol'i that any oscillations in the surface current 

densi ty are likely to have a period close to that of the 

field in the surrounding medium is 
00 

(3061) 
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where the bm are constants 0 Substituting this representat­

ion into (2.49) gives 

C t,p 
k 

= '2 

00 

Since, from (2045) 

and r is an even function of x, Ct is simplified ,p 

by using. (2 0 33), ·to 

C = k t,p 

00 

L 
II'l.=0 

b s 
2m 2n-l 

= 2m+l' t=2n 

Thus, in the case of the rounded wedge, the expression 

in (2047) becomes 

00 

I 
n=l 

00 

at Dt + I 
uP m=O 

b s C 
tgp,~ 

2n-.1 2m =. s = 2n v 2m+l u 

where the Dtl'P and Yt,p are defined in. (2048) and (2050) 

respectively, and from (3064), 
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The surface current density on Cl and C2 when the field 

is electrically polarized is given by (3 029) and (3030) 0 

The qth derivative of the surface current density across 

x = X is continuous if 

3
q 

[II (a+o)+Fl(a+o)] 
30 q = 

0=0 0=0 

and is continuous across x = -x if 

= 

0=0 0=0 

Substitution of (3029) and (3.61) and the use of the 

addition theorem for Bessel functions 14 enables the expression 

in (3.67) to be expanded as 

00 

m=O 
9,=0 

= 00 E9, P n [ 9, J q I -- (nv-9,) L n(ka)+(-l) (nv+9,) L +"(ka) --L:..Jo(kO) 
a nv-~ nv ~ 30 q ~ 

n=l 
9,=0 

0=0 
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which, with the use of (3.27), reduces to 

I b [J (kX)+(-l)q J + (kX)]'-
m=O m m-q m q 

~.. Pan [<nv-q ) L (ka) L nv-q 
n=l 

+ (-1) q (nv+q) L + (ka)]. nv q 
(3. 70) 

th The expression in (3.70). ensures the continuity of the q 

derivative of the current density across x = X provided 

that derivatives of lower order are continuous there .• 

Similarly, if. 

I ( -1) m b [J (k X) + ( -1 ) q J (k X)] = ~ m m-q m+q L m=O n=l 

.[(nv-q ) L (ka)+(-l)q(nv+~) L + (ka)], nv-q nv q 

P 
:( -1) n _n_ 

a 

(3071) 

the qth derivative of the surface current density across x=-X 

is continuous Q provided that deri vati ves of lower order 

are continuous there. Adding and subtracting the expressions 

in (3.70) and (3.71) gives 

2m 2n-l 
s = 2m + l' t = 2 n • ( 3 • 72) 
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Substitution of (3.30) into (3.72) gives 

I at [( tV7q) H
t
( 2) (ka) + (-1) q (tv+q) H

t
( 2+) (ka)] 

n=l ka v-q v q 

- 4v 
= ka I jtv sin (tv1/J) [(tv-q) Jtv_q(kal+(-l)q(tv+q ) Jtv+q(kaJ, 

n=l j 

2m t = 2n-l 
s = 2m+l' 2n (3.73) 

which is valid if derivatives of surfaee current density 

below the qth are continuous across both x = X and x = -X. 

3.2 (b) ROUNDED WEDGE •. (Magnetic Polarization). 

Consider the perfectly conducting rounded wedge in 

Fig. 3.4 illuminated by a magnetically polarized field. The 

geometry of the figure is described in section 3.2(a). For 

-+ 
the reason given in that section, the form of F 3 (C) used to 

represent the surface current density on C3 is 

00 

F 3 (c) " I = r3 F 3 (X), F 3 (x) - bm Jm(kx) f (3.74) 
m=O 

where the b m are constants. The unit vector r3 is defined 

in (2.54) and (2 • 55), wi th 
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7T 
~- e- '2 + r, r = sin -1.[. s~n eJ • 

s1nX (3075) 

substituting the expression in (3.74) into (2.86 ) gives 

00 rx J m (kx) ~P+l (kr) C 
k I b q(pe+r- !..) = 4' t,p m=O m t 2 

(3076) 

Since r is an even function of x, while e and r are both odd 

functions of x, Ct can be simplified by using (3 046), (3 063) ,p 

and (2033), to 

C t,p 
k 

= 2 

00 

I (-1) s+l b
s m=O 

":'Jp _ l (kr) qt+l (pe-nJ dx, 
2m 

s = 2m+l ' 
2n 

t· = 2n+lo 

(3 0 77) 

The expression in (2084) are speciali~ed, in the case of 

the rounded wedge, to 
00 00 

I D + L b C Y t 2n 2m 
at = = 2n+l' s = 

n=O t,p 
m=O 

s t,p,s t,p' 2m+l' 

(3 0 78) 

where the Dt,p and Yt,p are given in (2.85) and (2087) respect-
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ively, and from (3077) 

C = (_l)s+l k 
t,p,s 2 

f

X

o 

J s (kx) [Jp+l (kr) qt+l (pe+r) 

- J p_ l (kr) qt+l (pe-n] dxo (3079) 

The surface current density on C1 and C2 when the field 

is magnetically polarized is given by (3054) and (3055) o The 

qth derivative of the surface current density across 

x = X is continuous if the expression in (3 0 67) holds, and 

the qth derivative of the .surface current density across 

x,= -x is continuous if the expression in (3068) holdso 

Using the addition theorem for Bessel functions to expand 

(3 9 54), and substituting into (3067) gives 

I E9,bm[Jm_9,(kX)+(-l)9,Jm+9,(kX)] a:: J9,(ko) 
m=O 
9,=0 

which, with the use of (3.27) reduces to 

, 

0=0 
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00 

bm [J ( kX) + ( -1 ) q J + (kX ) J m-q " m q 
m=O 

00 

= I P [L· (ka) +(-l)q L + (ka)]. 
n=O n nv-q nv q 

(3.81) 

The expression in (3.81) ensures the continuity of the 

qth derivative of the current density across x =Xv 

provided that derivatives of lower order are continuous 

there. Similarly, if 
00 00 

I mlo (_l)m bm[Jm_q(kX)+(-l)q Jm+q(kX)] = 
n=O 

(_l)n P 
n 

[L (ka)+{-l)<;j: L + (ka)], . nv-q nv q " 

th th"d" , '" fth f td 't " e q erl. vatl. ve 0 . e surace curren .enSl. . y across 

x = -x is continuous, provided that derivatives of lower 

order are continuous there. Adding and subtracting 

the expressions in (3.81) and (3.82) gives 

00 

~ b [J (kX)+(-l)q J + (kX)] 
L s s-q "s q. " 

m=O 

= 
00 

I P t [Ltv_q(ka) +( -1) q Ltv +q (ka) ] , 
n=O 

2n 2m 
t = 2n+l'· s = 2m+l' 



which, after substituting (3.55), gives 

00 

- I 
n=O 

a [H(2) (ka)+(-l)q H(2) ] 
t tv-q tv+q' 

00 

00 

+ I b [J (kX)+(-l)q 
m=O s s-q 
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.J + (kX)] s q = 2v I Et jtv cos(tv~) [Jtv_q(ka)+(-l)q Jtv+q(ka) J, 
n=O 

t = 2n 
2n+l ' 

2m 
s = 2m+1 P (3.84) 

where EQ, is the Neumann factor. The expressions in (3084) 

ensure the continuity of the qth derivative of the surface 

current density aCross x = ±X provided that lower derivatives 

of the current density are continuous thereo 

303(a) NUMERICAL CONSIDERATIONS 

The four expressions in (3 021), (3.50), (3 065), and 

(3 078) are specializations of the expressions in (2047) 

and (2084) for the cases of a symmetrically truncated wedge 

and a rounded wedge in either an electrically or a magnetic-

allY polarized field. Each of the four expressions con-

sists of two independent equations with an infinite 

number of unknownso 

The independence of these two equations arizes from 

the symmetry of the wedge ,deformation about ¢= O. As 



97 

a result of this symmetry, half of the unknown field modal 

coefficients (the a ) and half of the unknown surface 
n 

current density modal coefficients (the Q and R , or b m) m m 

appear in one equation, and the remainder appear in the 

other. The coefficients separate into exactly the same 

groups in the equations derived from surface current density 

continuity considerations. 

Because similar methods are.used to obtain the unknown 

modal coefficients from either (3.21), (3.50) g (3.65) or 

(3.78), only the expressions relating to the truncated wedge 

in an electrically polarized field will be discussed. 

By letting p take all positive integer values and zero, 

the equations of (3.21) may be written as two independent 

matrix equations of infinite order. Because there has been 

no approximation made during the derivation of (3.21), 

the solution to these matrix equations enables an exact 

description of the field scattered from a truncated wedge 

to be obtained. However, in order to numerically determine 

the unknown modal coefficients in these matrix equations, 

it is necessary to limit the number of an to a finite number 

N, and the number of Qm or Rmto a finite number M. The 

maximum values of Nand M are limited by available 

computational facilities. 
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Thus, from (3021) 

N M Qm I at D + I C 
2n-l 

(3085) t,p R = Yt ' t = m t,p,m 2n , 
n=l m=l ,p 

and by letting p take a suitable number of values v these 

equations can each be expressed in matrix form as 

[AJ[ x] = [y] 0 

The. elements of [A] are the Dt and the C
t 

; while 
,p ,ppm 

[x], the vector of unknowns i contains the at and Qm or ~o 

It ~a.n be seen from (2050) that the characteristics of 

the incident field are contained in the elements Y
t ,p 

of the known vector [Y]o Thus, having determined the 

inverse [A]-l of the matrix [A], the modal co~fficients 

may be obtained for any incident field by post-multiplicat~ 

ion of [A] -1 by the appropriate vector [y] 0 

Define T to be the order of the matrix [A] in 

(3 0 86) 0 The matrix elements are obtained by letting p 

(the field Fourier component harmonic number) take the 

first T zero and positive ,integer values to give T 

algebraic equationso It follows that an increase in N or M 

resulting in an increase in T means that a greater number 

of Fourier field components must be consideredo 

The inclusion of Q equations from both (3028) and 

(3036) in the matrix equation (3086) explicitly ensures 
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the continuity of the surface cu~rerit density up to the 

~_l)th derivative 0 These equations are obtained by 

letting q take all positive integer values between zero 

and (Q-I) inclusive. This requires that the range of p 

be reduced by Q in a matrix of order To Thus for a given, 

matrix order, the inclusion of current density continuity 

equations results in the neglect of higher order field 

Fourier componentso 

The separation of the matrix equation in (2047) 

into the two matrix equations in (3085) when the wedge 

truncation is symmetric, enables considerable savings 

to be made in both computational time and storageo Since 

the time required to numerically invert a matrix of order 

2T is proportional to 8T 3 ,86 the separation of (2047) 

into two equations of approximately equal order T enables 

the inversions to be completed in a time proportiohal to 

2T 3 
g The storage requirement for a matrix of order 2T 

is 4T2 locations, while that for two matrices of order T 

is only 2T2 locations 0 

The limiting of the matrices to finite order is 

justified only if the neglected terms and equations have 

negligible influehceon the values obtained for the modal 

coefficients 0 The Qonvergence of the modal coefficients 

to constant values as Nand M increase indicates that 

these coefficients are adequately defined in the matrix 

equations of finite 
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3 03(b) PROGRAMMING 

Simpson Us Rule 87 was used to evaluate the contour 

integrals of (3051), (3 066), and (3079) to obtain respectively 

the Ct for the symmetrically truncated wedge in a magnetic-
,p,m 

ally polarized'field,and the rounded wedge in an electrically 

or magnetically polarized field. 

By dividing the range of integration into (L-l) equal 

subdivisions, where L is an odd integer, the expression 

in (3.51) can be approximated by 

[ 

L 
kh m+l 

Ctpm=T (-1) pqt(px) I 
" . ' .Q,=l 

where 

b 
h = L-l' x.Q, = (.Q,-l)h, 

and from (3049) 

The weighting factor e.Q, is defined 

e.Q, = 1, .Q, = 1,L, 

= 2, .Q, = 2n-l, .Q, 

= 4, .Q, = 2n, 

by 

:f 1,L, 

qt+l (~P-l]8.Q,)J 

·Jrn , (kx ~l 
(3087) 

'(3 0 88) 

.~ 2bx.Q,) 0 

(3.89) 



where n is an integero 

In a similar manner, (3.66) was approximated by 

C 
t,p"s 

where 

kh 
=) 

h = X 
L-l' 

L 

I 
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(3091) 

(3092.) 

and X is defined in terms of the radius R of the round top by 

X = R(; - X) 0 

Then, 

2 2 2 ] ~ r 9,=[ R +al sec X - 2Ral sec xcos (x 9,/R) 2 i 

, x 
. -1 [R . ( 9,) ] 

e 9, = sln ' r t 1n R . 

Similarly, (3 0 79) was approximated by 

where the definitions in (3 0 92)-(3.94) hold g and from (3075) f 

r n = sin -1,[ s~ne 9,] • 
N Slnx 

The subroutine which was written to evaluate the 

Bessel function of the first kind uses the formula
14 
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2 k 

00 (-~ ) 

J (z) (i-) v I 4 (3097) = k! r(v+k+l) , 
v k=O 

where r(z) is the Gamma functiono Using the recurrence 

formula 

r(z+l) = z r(z), 

Jv(z) can be expressed as 

J (z) 
v 

where 

1 
= f(v+l); 

K (K ~ ) 2 > > ('~) 2K , 

2 
-z Tk - 1 

4k (v+k) f 
k > 0 0 (3.100) 

Because the summation in (3 0 99) involves the subtraction 

of large similar terms, the algorithm is unsuitable for 

large z 0 However, it was sui table for the range of orders 

and arguments which arose during the construction of the 

matrices discussed in section 3 0 3(a)0 When v was not an 

integer, Hankel functions of the second. kind were calculated 

14 from a subroutine using the formula 

H(2) (z) = J (z) .... j 
v v 

J v (z) cos (V7T) - ~v (z) 

sin(v7T) 

When v was an integer, the formula used was 



H(2) (z) = 
f1 

J (z) - j 
n 

00 

l(z)n 
- TI "2" 

(-~ ) 2 k ] 
L . {1}! (k+l) + 1}! (n+k+l)} ..... k..-! --'-(n~+""'k'"'!"')"""!- , 

k=O 

where 

1}! (1) = -y; 1}! (k) = -y + 

and y is the Euler constant. 

3.3(c) RESULTS 

k-l 

L 
n=l 

-1 
n , k ) 2, 
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(3.102) 

(3.103) 

For the purposes of this discussion, a modal coefficient 

is said to have converged if its modulus remains constant 

to at least three significant figures as N is increasedo 

The convergence is said to be fast if the modal coefficient 

converges when N is small, and is said to be slow if the 

coefficient converges when N is large 0 

Define w = 2b for the truncated wedge, and w = 2asinx 

(the chord length of C3) for the rounded wedge 0 

Some results obtained by numerically evaluating the 

an coefficients in (3.21), (3.50), (3.65) or (3078) are 

presented in Figso 3.5 - 3011. The legend for Figs. 3.6 - 3.11 

follows Fig. 3.70 These representative curves have been 

included in this chapter to indicate how certain factors 

affect the convergence of the field modal coefficientso 
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A summary of these factors and their effects, which have 

been deduced from many curves such as those in Figso 3 05-

3011, is given at the end of this section. 

Figs. 3.5 and 3.6 show the convergence of three an 

when the rounded wedge is illuminated by an electrically 

polarized wave. (Equations (3.65) and (3073)). Fig. 3.5 

shows the effect of M on the convergence of the an field 

coefficients. with M=l convergence appears to be occurring v 

but only slowly. Convergence is faster with M=5 than with 

M=7 0 This indicates that there is an optimum value of M 

for which convergence of the a is fastest. The use of a 
n 

greater or lesser number of surface current density modes 

then the optimum hinders the convergence of the field mode 

coefficientso Figo 3 06 illustrates the faster convergence 

which is achieved by explicitly matching the two represent-

ations of the surface current density across x = ±X (Q=l), 

and by matching the two representations of the surface current 

density and their first derivative across x = ±X (Q=2) 0 Six 

modes (M=5) of the current density representation in (3061) 

are used o 

Figo 3 07 is plotted for the rounded wedge in the 

presence of a magnetically polarized fieldo (Equati0ns 

(3.78) and (3084»0 This figure illustrates the faster con-

vergence of the field coefficients which is obtained by 

including the expression in (3.84) with the matrix equation 
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derived from (3.78), and ther~by ensuring the continuity 

of the surface current density across x =±X. 

Figs. 3.8 and 309 both show the convergence of some an 

when a symmetrically truncated wedge is illuminated by an 

electrically polarized field. (Equations (3.21), (3.28) Q 

(3036». Fig. 3.8 is plotted for M=5 with Q=0,2 p 4. It is 

evident that the convergence of the a is faster when Q=2 
n 

than when Q=O. However, the convergence becomes slower 

with a further increase in Q to Q=4. Fig. 3.9 is plotte~ 

for M=7 with Q=0,2,4. In this case, each higher value of 

Q brings faster convergence of the a 0 Figs. 3 0 8 and 3.9 
n 

indicate that for fastest convergence of the an' there is 

an optimum value of Q which is dependent upon Mo 

Fig. 3 0 10 shows the faster convergence of the an when 

the representations of the surface current density and their 

derivatives are matched at suitable points. 

The curves in Fig. 3 011 are plotted for the symmetrically 

truncated wedge illuminated by a magnetically polarized field. 

(Equations (3050) 11 (3 053), (3060». This figure indicates 

that convergence of the an may not occur below a large 

value of N unless current density matching equations are 

included with the matrix equation derived from (3050). 

From the study of Figs. 3 0 5 - 3011 and other similar 

results obtained for OolA ~ w ~ 2A, the following trends 

have been noticed: 

(a) Convergent solutions can be obtained by limiting the 



the summations of (3021) I (3 050), (3.65), and (3078) 

to a finite number of termso 

(b) The value of N at which the an converges becomes 

larger with an increase in Wo 
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(c) There is an optimum value M of M for fastest converg~ 
o 

ence of the an for a given problemo This optimum value 

becomes larger as w increases o 

(d) The inclusion of surface current density matching 

equations in the matrix formulation of the scattering 

problem often results in much faster convergence of the an0 

(e) If M <: Mo convergence of the an may be very slow o 

Inclusion of any surface current density matching equations 

in the matrix formulation can result in instability of 

the an with No 

(f) If M > M it is often necessary to use the surface o 

current matching equations to obtain convergence of the an 

at some reasonable value of No 

(g) If the number of current density matching equations 

Q is increased to near M, instability of the an with 

N occurso 
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Figure 3.1 

(p ,q> ) 

Figure 3.2 z axis perpendicular to the paper. 
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Figure 3.3 

(p,q» 

Figure 3.4 z axis perpendicular to the paper. 
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CHAPTER 4 

The geometrical theory of diffraction and the physical 

optics approximation are used to predict the field scattered 

from truncated and rounded wedges when the incident field 

is electrically or magnetically polarizedo These predictions 

are compared with the results of Chapter 3, which were 

obtained by using the surface current density replacement 

technique 0 

4olLa~ INTRODUCTION 

The fields to be compared in this chapter are those 

which can be normalized with respect to pby removal of 

the factor 

2' /
-

1TrI P 
-jkp e 

where p is the distance from the apex of the undeformed 

wedge to some point in the far fieldo The comparison 

is between the diffracted fields predicted by the geometrical 

theory of diffraction, the surface current density 

replacement technique, and physical opticso The reflected 

field from the rounded surface of the rounded wedge can 

be normalized by (4.1) I and hence this field is included 

in the prediction of the geometrical theory of diffraction. 
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Throughout this chapter, the incident magnetic vector 
. ~i 

potential 11 or the incident magnetic field strength H 

is defined by 

~i "i 
U = zU , 

in the cylindrical polar co-ordinate system shown in 

Figo 4 010 The field expressions compared in this chapter 

d b ~ ~ ~ . h h b . are represente y Ug.td , U , U u W1 t t e su scr1pts scr po 

indicating the method used to derive theexpressiono Since 

we are concerned with only the leading diffraction term 

of the geometrical theory of diffraction, secondary 

diffraction coefficients, such as those derived by Burke 

91 and Keller , are not considered hereo 

The field U surrounding the deformed wedge is given scr 

by (2 0 20) as 

~ 

U = zU, 

where U is the diffracted field surrounding the undeformed 

wedge, and Ul is the extra diffracted field caused by the 

deformation 0 U is defined in (10 42) ,and after normalization 

by the factor in (4 0 1) becomes 

mn = 2n-2X, 

with dm(</1,1jJ) define,d in. (1043) 0 

When the field is electrically polarized, Al is 

defined by (2.35) suitably modified for the incident field 
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qnetically polarized field, HI is defined 

'g the asymptotic form of the Hankel 

(1021) for large p, the normalized 

,lld H may be written as scr 

00 
.nvn 

~ dm (¢ , Ij!) + I :r-r 
sin [nv ¢] f a e· 

2j n=l n 

.nvn 
00 )-2-

H =1* dm ( ¢, Ij!) + I cos[nv¢J Q a e scr 2j n=O n 

where 
v = 11m, (407) 

and the negative (positive) sign is used in the definition 

in (1 043) of d (¢,Ij!) when the field is electrically m 

(magnetically) polarizedo 

4.2(a) GoToD. DIFFRACTED FIELDo TRUNCATED WEDGEo 

(Electric Polarization) 0 

Consider the perfectly conducting truncated wedge in 

Fig. 401. Edge 1 is at (al,O,z) in the (p,¢,z) co~ordinate 

system and has internal angle So Edge 2 is at (a2 ,mTI,z) 

and has internal angle a o m is defined in (4 04), and 

T'IT = 2n-S, yn = 2n-ao ( 4 0 8) 

The length of the "truncation surface" between edge 1 

and edge 2 is Wo The cylindrical polar co-ordinate 

systems (r,~,z) and (s,o,z) have their origins at edge 1 

and edge 2 respectively. 
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The field Ai incident upon edge Iv and the field 
1 

A~ incident upon edge 2 are,from (402) v 

jkalcostJ; e , o < tJ; < TTIp 

= 0, T TI < ~J, 

Ai = jka2cos(mTI-tJ;) 
2 e , orr_SO < tJ; < mTI, 

= Ou tJ; < 'IT-So 

-+-
The primary diffracted field A of the geometrical theory 

of diffraction is given by (1042) and (1043) as 

-+- Ai dT(~QtJ;) 
-jkr Ai d (ovtJ;+S-n) 

~jks A = zAg A = El e + E:2 e Q 1 2 '( 

Ir- I-s-

where (4010) 

El :: 1, 0 < ~ <TTIp E:2 = 1, 0 < 0 < '(TI , 
..... 

= o , TTI < ~ <2TI u = 0, '('IT < 0 <2TIo (4 0 11) 

The existence conditions imposed in (4011) are necessary 

to ensure that the diffracted rays from an edge do not 

directly illuminate a shadowed region o 

A secondary diffracted field is generated by a 

primary diffracted ray travelling along the truncation sur~ 

face of the wedge and striking an edgeo However, since 

= d (O,tJ;+S-TI) = 0, 
'( 
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no rays exist on the surface of the wedge when the field 

is electrically polarizedo Therefore, the expression 

in (4010) represents the total diffracted field of the 

geometrical theory of diffraction o 

When p is large, 

o ,,, ¢+B- '11 0 

The field Agtd is found by using (4013) with (4 010) 

and normalizing by the factor in (4.1) 0 Thus, 

.dy(¢+B-'lT
f 

1jJ+B-'lT) ejka2COS(m1T-¢)]. 

(4014) 

It can be seen from (1 0 43) that in the directions of 

specular reflection ¢= 'IT-1jJ or ¢= (2T-l)1T-1jJu d T(¢,1jJ) 

becomes infiniteo However, in the direction of reflection 

¢ = (2T-l)'IT-1jJ from the truncation surface of a symmetrically 

truncated wedge, careful manipulation of the expression 

in (4014) results in a finite value for Agtd given by 

-j ejkalsin (B+1jJ) sinB [ 2sin (-f) 
=2 

T~OS(~) - cos('IT~21jJB 

Tf 
+ cot (x) 

T 
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4 02(b) G.T.Do DIFFRACTEDFIBLD. TRUNCATED WEDGEo (Magnetic 

Polarization) 0 

Consider the truncated wedge in Fig. 4 010 Edges 1 

and 2 are illuminated by the fields given in (409), with 

the symbol A replaced by Ho The geometry of the figure 

is described in section 402(a) 0 

The field diffracted from the truncated wedge is 

composed of an infinite number of multiply diffracted fields. 

Unlike the electrically polarized case, rays exist on the 

wedge surface when the field is magnetically polarized Q 

and travel from edge to edge. Each time a ray strikes an 

edge a diffracted field is produced. 

the field diffracted when edge 1 (edge 2) is struck by a 

ray which has previously undergone modification at (n-l) 

edgeso Before generating a diffracted field H~ or H~f 

the ray has made (n-l) passes along the "truncation 
-+ 

surface" of length w. The total diffracted field H is 

described by 

Ii = zH, 

The primary diffracted fields are given by (1.42) and (1.43) 

as 

H~ = H~ €l dT(~'~) ~-jkr 
rr 

1 i -jks 
H2 = H €2 d (6 "'+S-n) e 2 y' 'f' _ 

IS 

(4 0 17) 
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where El and E2 are defined in (4 0 11) 0 The secondary 

diffracted field is produced when a ray diffracted from 

51 edge 1 and of strength 

-jkw e 

2 TW 

strikes edge 2, and a ray diffracted from edge 2 and of 

strength 

Hi d (O,I/!+S-7f) -jkw e 2 y 
21W 

.....-
strikes edge 10 Thus, 

H2 = E2 Hi d (T7f ,I/!) e-jkw d (8,0) 
-jks e 2 1 T Y , 

21W IS 

and similarly, 

H3 = El Hi d (T7f ,I/!) [e-jkW r d (0,0) d T (l; , T 7f ) 
-jkr e 1 1 T Y v· 

21W Ir 
(4 0 22) 

H3 Hi 
[ 'k r -jks = E2 d

y
(O,I/!+S-7f) e- J w d (T7f,T7f) d (8,0) e 2 2 T y 

2/W IS 

(4,,23) 
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After writing a sufficient number of the higher order 

diffraction expressions in the above manner, it becomes 

clear that the expression in (4.16) can be expanded as 

H ~ ~jkrtl H~ [dT(S,</» +a[;~kWr dT(n,</» dy(O,O) dT(S,n~ 

+ "2 H~ a :~~kW dy (0, </>+B-,) dT (s ,a] + ~t{2 

where 

00 

0- = I 
n=;:O 

d (L 7f , T 7f ) d (<5, 0 )] 
T Y 

I ~
2 

-jkw 
C = e d (0,0) d (T7f,T7f)o 

21W y T 
L. 

(4 0 25) 

By using the expressions in (4013) and normalizing with 

the factor in (4 0 1), H reduces to Hgtd , where 

Hgtd ~ Ig tjkalCOS$~ H~ d
T 

(0," 

-jkw e Hi d (O,1jJ+S-7f) 
2 y 



e-jkwJl 
21W IJ 

+0 dy(ojO) e-
jkw [8 1 Hi dT(2TI-S,~) + 82 H~ dy(O,~+S-TI) 

2/w 
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For Hgtd to describe a diffracted field of finite magnitude, 

o must converge to a constant value in the summation of the 

geometric progression in (4025) as n-+ 00 This requires 

I C I <. 1, and then 

1 I C I < 10 o = , 
l-C 

The restriction Ici < 1 imposes a minimum value on the 

separation w of edge 1 from edge 20 It follows from (4025) 

and (1043) that this restriction is 

TI TI 
cot ('2'T) cot (2y) 

2 4TI T Y 
w > 

where w is measured in wavelengths o 

Curves showing the minimum value of w for various a 

and S are given in Figo 4.20 This minimum value is very 

much less than the edge separations for which the plane wave 
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diffraction coefficients would normally be used to approximate 

the diffracted fieldo 

The expressions in (4.25) and (4026) are similar to 

90 those derived by Russo et al , who used the more accurate 

Pauli diffraction function in formulating the diffraction 

by a thick edge 0 

The primary diffracted field (Hi + H~) is, in general, 

infinite in a direction of specular reflection o However, in 

the direction of reflection ~= (2T-l)n-w from the truncation 

surface of a symmetrically truncated wedge, a finite value 

for the primary diffracted field H~td is obtained as 

-j 
= 2' 

ejkal sin (S+W) sinS [ 2sin (2[..) 

[ . n n+2w 
T cos (-)-cos (----) 

T T 

- jkw Sin(B+~)J ,¢ ~ (2T-l)"-~, a 1 ~ a 2 , 

402(c) GoToDo DIFFRACTED FIELD. ROUNDED WEDGEo 

Consider the perfectly conducting rounded wedge in 

Figo 4.3. The (p,~,z) cylindrical co-ordinate system has 

its origin at the apex of the undeformed wedge of angle 2X. 

The incident field Vi given in (402) makes an angle ~ with 

the normal to the rounded surface at·a point To The radius 

of curvature of the rounded surface is R. 

48 ~ 
Levy and Keller give the diffracted field U of the 

geometrical theory of diffraction as 



I 

u = zu, -jks e 
m 

D (-jk-a)t 
m emu 

'IT + 1/1 < ¢ < m'IT, 
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where m is defined in (4 0 4)0 Ui(Q)is the field incident 

at a point Q given by ~= 'IT/2 on the rounded surfaceo 

The diffracted field is produced when an incident ray, 

grazing the surface at Q, travels a distance t along a 

geodesic arc of the surface and leaves the surface 

tangentially at Po ~he distance s is measured from P to 

the point (p,¢) at which U is observed, and if s is large, 

The a and D of (4030) are defined in Table 401 for both m m 

electric and magnetic polarization of the fieldo 

POLARIZATION 

I Electric 

Magnetic 

1 
'IT -j~ (kR)3 1 
-2 e 6 6 -~2--

Ai ( ) qm 

I 

I l 

I 
I 
I 

~------------~------------------~~----------------------------~ 

TABLE 401 
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The prime denotes differentiation of the Airy function 

Ai(x) with respect to the argument X f where 

fCOS(T3-XT) dT. 

o 

Ai (x) = 

The field reflected from the rounded surface is 

described in Appendix 4 by 

-jkr 
e I rr-ljJ < ¢ < 7f + ljJ v (4033) 

where r is the distance from T to the point (p,¢) at which 

U is observed, and the negative (positive) sign in (4 033) 

is used when the field is electrically (magnetically) 

polarizedo 

From the geometry of Figo 403, and from (402) 

~ = ¢-ljJ 
-2-' Ui(T) ejkR [cos(ljJ+x)/sinx+cos(¢2=~')J = . [I (4 v 34) 

and thus 

(4.035) 

When p is large, 

r~" p - R[COS(¢+x)/sinx + coS(¢;1/!)JI SNp + R cos(¢+x}/sinXo 

(40 36) 

The use of (4.34), (4035) and (4 036) with (4.30) and (4033), 

and normalization by the factor in (401) results in 
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E:r/~~,cOs(cp;l/J) e j2kR cos(cp;l/J) + E:d I Dm e(-jk-am)t r (4037) 
m 

where 

E: r = 1, TI - l/J < cP < TI + l/J, 

= 0, cP < TI - W, cP > TI + l/J, 

E:d = 1, TI + ~ < cp < mn, 

= OD 0 < cP < n +1jJo 

(4038) 

4 0 3(a) PHYSICAL OPTICS FIELDo (Electric Polarization) 

Consider the perfectly conducting deformed wedge in 

Figo 4040 The origin of the (pqcp,z) co-ordinate system is 

at the apex of the undeformed wedge of angle 2Xu and m is 

defined in (404) 0 

In this section, the field radiated by. the physical 

optics surface current density on the surfaces P ~ alP cP= 0 

and P ~a2f cP = mn of the deformed wedge is calculated for 

electric polarization of the incident fieldo The field 

radiated by the physical optics surface current density 

existing on the deformed surface of the wedge is calculated 

in later sectionso 

The.incident field is given by (4 0 2) with U replaced 

-+ 
by the symbol A for the magnetic vector potentialo The 

-+ 
physical optics surface current density Kl(r) at P := r 



126 

on the surface ~= 0 of the wedge is given by (1.44) and 

( 2 0 22) as 

~ +i _2~ +Ai) = 2n X H = ~ X (V X = 
]J 

(4039) 

~= 0 

which, after writing 

+ .... 
K1 (r) = z Kl (r) , 

and using (402) v reduces to 

. ,I, jkrcoSlj! sln't' e , o < lj! < 'ITD 

= 0, 'IT < lj! < mwo (4040) 

Similarly, the physical optics current density K2 (r) at p= r 

on the surface ~= mn is 

(4041) 

where 

== 0 f 0 < lj! < (m-l) n 0 (4042) 

The field A radiated from the current distributions 

-+ + 
Kl(r) and K2 (r) on the deformed wedge is determined from 

(1036) and (1037) with the vector operator {A} replaced 

by the scalar ]J • Then, 00 

+ -j]J [ jOOK1(r) H;2) (kR1)dr + J K2 (r) H (2) (kR ) drlo A = zA, A = T o 2 
a l a 2 

~~4 

(4043) 
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where Rl and R2 are the distances from the elemental contours 

dr to (p,~) 0 When p is large, 

By using the asymptotic form of the Hankel function in 

(1021) with (4.44) Q and substituting the expressions in (4040) 

and (4 0 41) into (4 0 43), the physical optics field Al which po 

can be normalized by the factor in (401) is given by 

Al = -k~ -jkp [0 1 sin1/J fOOejkr(cos~+cos.) dr 2"1fKP e· 
po 

a l 

+ t: 2 sin (mn-1/J) r ejkr[ cos (mIT-~) +cos (mIT-o) 1 drJ" (4045) 

a 2 

When k has a vanishingly small negative imaginary partg 

it is readily shown that 

. -jka = -Je 
T 

Performing the integrations in (4 0 45) and normalizing 

by the factor in (401) gives 

[ 

• ,I, jkal[cos1/J+cos~J 
1 . t:l sln,/, e 

A --J 
po - 2 cos~+cos1/J 

+ 
t:2 Sln mn-,/, e . ( "~,) jka2 [ cos (mn-1/J) +cos (m1f-~) J] 
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403(b) PaO. FIELD. TRUNCATED WEDGE 0 (Electric Polarizat.ion) 0 

Consider the perfectly conducting truncat.ed wedge in 

Fig. 4.5 0 The "truncation surface" C3 of length w is 

defined in terms of the cylindrical polar co-ordinate 

system (r,e,z) whose origin is at the apex of the undeformed 

wedge 0 The line e= 0 is perpendicular to C3 and x is the 

distance from e= 0 to a point on C3 " 

-+ 
The physical optics current density K3 (c) on C3 is 

given by (L 44) and (2022) as 

'* 2~ [1 K (c) = -. X -3 ]1 P 

where the electrically polarized incident field Ai is 

given in (402) 0 The unit normal vector n to C3 is 

n = -p sin(¢+B} -¢ cos(¢+B) 0 

Using (4049) and (402) with (4048) results in 

jkrsin(B+W- 8 ) 
e f 

where 
E3 = If n - B < W < 2n ~B, 

= 0, ljJ < n-B, W > 2n-Bo 

The field ~ radiated by K3 (c) is given by (1036) with 

the operator {A} replaced by ]10 When p is large, the dist~ 

anee R from the elemental contour dx of C3 to (p,¢) is 
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R ~ p - r sin(S+</l-S), p » ro 

After using (4 0 52) with (1021) to asymptotically expand the 

Hankel function in (1036) 

r -a cosS 
1 

(4053) 

where the normalization factor in (4 0 1) has been removed. By 

writing the integrand in terms of x using the relationship 

r sinS = x, 

A2 is evaluated as po 

r cosS = a l sinS, 

= j sin(S+~) ejkalQ(S)sinSrejkalP(S)cosS 
1::3 2 P(S) LI -e ~jka2P (13) cos-a] ~ 

(4 0 55) 

Q(13) = sin(S+~)+sin(S+</l), P(S) = cos(S+~)+cos(S+</l) 0 

When the wedge is symmetrically truncated (al := a 2 ) f the 

expression for A2 simplifies to 
po 

. [kwQ ( ) ] jkaP (X) cosx 
Sln 2 X e , 

The field A radiated by the physical optics current po 

density on the truncated wedge is given by (4 0 47) and (4 0 S5) 

as 
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For normal backscattering from the truncation surface 

(¢=~=~-x),the expression for A in (4.57) reduces to po 

-j 
= "2 

-jka sinS . 
e [~tan(X)-JkwJ. (4.58) 

Notice the similarity between this expression for the physical 

optics backscattered field and that of the geometrical theory 

of diffraction given in (4.15) with ~= (T-~)~o 

4.3 (c) P. 0 0 FIELD 0 ROUNDED WEDGE 0 (E lectric Polarization) Q 

Consider the perfectly conducting rounded wedge in 

Fig. 4060 The radius of curvature of the rounded surface C3 

is R, and the centre of curvature is at Qo P is the point at 

which C3 joins the wedge surface ¢= 0 0 C
3 

is defined in terms 

of the cylindrical polar co-ordinates (r,e) whose origin 

is at p = 0, which is the apex of the undeformed wedge. The 

angle T is measured in an anticlockwise direction from QP v 

and the distance x along C3 is given by x = RTo 

The electrically polarized incident field Ai is given 

in (402) 0 Without loss of generalityv ~ is restricted such 

that 

0 ~ ~ ~ ~o (4.59) 

From the geometry of Fig. 4 06 f the arc length 8 of C3 which 

is illuminated by the incident field is 

8 = R~l' ~l = ~f ~ ,~ ~ - 2x, 

= ~- 2X, ~ > ~ - 2X. (4060) 
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The physical optics current density K3 (C) on C3 is found 
"-

from (4.48) with the unit vector n normal to C3 defined by 

A A 

n = psin(~-T) + ~ COS(~-T). (4.61) 

-+ Using (4.2) and (4.61) with (4.48), K3 (C) reduces to 

-+ A 

K3 (c) = ZK3 (c) , 
2J'k 'k ( ) = . sin(T-~) e J rcos e-X-~ f 

jl 

= 0, T > 1/11. 

The field A radiated by the current distribution K3 (c) is 

given by (1. 36), in which the Hankel function can be expanded 

when p is large by using (1.21) and 

p - rcos(e-~-X)· 

Rl is the distance from the elemental contour dx to the 

point (pp~) at which the field is observed. Then, 

kR f~l , ( ~,) jkr[cos(e-~-x)+cos(e-¢-X)]d_ = "2 Sln T-'t' e 'l v 

o 

-+ 
A = zAp 

where the normalization factor (4.1) has been remove? Since 

r cose = R[sin(T+X)-cosec(X}], r sine = R cos (T+x) g 



the expression for A~o reJ~uces to 

A2 = k2R e jkR P(X)/sinX 1 sin(T-~) e-jkR Q(rr-T) dT, 
po 

o 
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where P(S) and Q(S) are defined in (4.55) 0 The field A po 

radiated by the physical optics current density on-the 

rounded wedge is obtained by substit-l1ting the expressions 

in (40 47) and (4.66) in to (4 0 57). 

4.4(a) PHYSICAL OPTICS FIELD. (Magnetic Polarization) 0 

Consider the perfectly conducting deformed wedge in 

Figo 4040 The geometry of the figure is discussed in section 

4 0 3(a)0 

In this section, the field radiated by the physical 

optics current density on the surfaces p ~ aI' ¢ = o and 

p ) a2 , ¢ = rn7f of the deformed wedge is calculated for 

magnetic polarization of the incident field. The field 

radiated by the physical optics current density existing 

on the deformed surface of the wedge is calculated in 

subsequent sections. 

The incident field is given by (402) with U replaced 

by Ho The physical optics surface current density Kl(r) 

at p = r on the surface ¢ = 0 is given by (1044) and (402) as 

(4 0 67) 

¢ = 0 
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where 

r 1 = p cos~ -~ sin~, 

and €1 is defined in (4.40). Similarly, the physical 

optics current density K2 (r) at p= r on the surface ~ = mTI 

is 

where €2 is defined in (4.42). 

The field H radiated from the current distributions 

Kl(r) and K2 (r) on the deformed wedge is given by (1.36) 

and (10 37) as 

-+ -j 

X [L -+ H (2) (kR ) 
dr + r -+ H(2)(kR) H = V Kl (r) K2 (r) 4" o 1 o 2 

a 2 (4 070) 

where Rl and R2 are defined in (4044) for p»r. When the 

asymptotic form of the Hankel function (1.21) is used with 

d~ • 

(4044), the physical optics field HI which can be normalized 
po 

by the factor in (4.1) is given by 

, At' 'k [", = -.J..VX _J_ e -] p r 
2 TIkp 1 

f
oo jkr[cos~+ 

€ 1 e 
a

l 
. 

jkr[cos(mTI-~)+cos(mTI-~) ] d J 
€2 e rJ ' 

(4.71) 
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where the expressions in (4067) and (4 069) have been 
-+ -+ 

substituted for Kl(r) and K2 (r) respectively. The vector 

curl operation in (4.71) is of the form 

; a(pF~) aF 
II X (p Fp + ~ F~) = P [ ap - a/ J, 

aF 
p 

3Z (4072) 

76 
Using (4 046) and (4.72), the expression in (4 071) reduces to 

-+1 
H po 

+ 

" 1 = z H , po [ 

. ~ jkal[cos~+cos~J 
1 j El Sln~ e 

H =-po 2 cos~+cos~ 

(4 0 73) 

when p is large. The expression in (4 0 73) is normalized by 

the factor in (401). 

404(b) P.Oo FIELDo TRUNCATED WEDGE. (Magnetic Polarization) 0 

Consider the perfectly conducting truncated wedge in 

Figo 4 0 5 0 The geometry of the figure is described in 

section 4.3(b). The incident field Hi is given in (4.2). 

The physical optics surface current density K3 (C) on C3 

is given by (1.44) and (4.2) as' 

(4074) 

since n is defined in (4.49). E3 is defined in (4051) 0 
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The field H radiated by the current distribution K3 (C) 

is given by (1.36) and (1.37) as 

-+ 
H = -j Il X 

'4 (4.75) 

where R is the distance from the elemental contour dx to 

(p,¢). When p is large; R is approximated by the expression 

in (4.52), and the Bankel function in (4.75) can be 

expanded using (1.21). Thus, substituting the expression 

-+ 
for K3 (c) into (4.75) when p » r, 

-+ -jE: 3 
H=--r IlX 

A A !2i" -jkp 
[ </> sin (<j>+S) - p cos (<j>+S)J I ;-f-;; e 

jkr[sin(S+1)J-e)+sin(S+<j>-e) Jd e x. (4076) 

The vector curl operation in (4.76) is of the form given 

in (40 72) • 
-1: 

By neglecting terms of order lower than p 2, 

and using the relations given in (4054), it follows from 

(4.76) that 



-+2 
H 

po 
.... 2 

= z H , po = 
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-js 3 sin (B+</l) 

2 P(B) 

(4.77) 

where P(B) and Q(B) are defined in (4.55). When the wedge 

is syrruuetrically truncated (al = a 2 ), the expression for 

H2 , l'f' t po slmp 1 les 0 

= (4.78) 

The field H radiated by the physical optics surface po 

current density on the truncated wedge is given by (4.73) 

and (4.78) as 

H = HI + H2 • 
po po po 

(4 0 79) 

Notice that IHpol in (4.79) equals IApol in (4.57) when 

<P = ~, illustrating that physical optics predicts a 

polarization insensitive backscattered field. 

For normal packscattering from the truncation surface 

(<p=~=~-X), the expression for H in (4.79) reduces to 
I po 

H = -:4. e -jka sinB [tan (X) +jkw]. 
po ~ 

(4. 80) 
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Notice the similarity between this expression for the 

physical optics backscattered field, and that of the 

geometrical theory of diffraction given in (4.29) with 

4.4(c) PHYSICAL OPTICS. ROUNDED WEDGE. (Magnetic Polarization). 

Consider the perfectly conducting rounded wedge in 

Fig. 4.6. The geometry of the figure is described in 

section 4.3(c). The magnetically polarized incident field 

Hi is given in (4.2) subject to the restriction in (4.59). 

-+ 
The physical optics current density K3 (C) on C3 is defined 

in (L44), n is defined in (4.61), and 1/1 1 is defined in (4.60). 

Thus 

= 0, T > 1/11. (4.81) 

The field Ii radiated hy the current distribution 

is given in (1.36) 0 Using (4.63) with (1.21) to expand 
-+ 

the Hankel function when p » r enables H to be described 

by 

H = -jR 
2' If X !2 j 

TIkp 
-jkp e 

[
A A • (~ ) jkr[cos(e-1/I-x)+cos(e-~-xD 

• p COS(~-T)-~ Sln ~-T e 

o 

(4 0 82) 



The vector curl operation in (4.82) is of the form given 

in (4. 72) • 
-:I.: 

By neglecting terms of order lower than p 2, 

H2 is given from (4.82) as po 

A 2 
= z H po' 

= -kR 
"2 

1/J l 

. ( ,j,) jkr[ c.os (8-1/J-X) +cos (8-¢-X) ] d· Sln T-~ e . T. 

o 
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(4.83) 

2 The relations given in (4.65) enable H to be simplified to po 

= -kR 
T 

ejkR P(X)/sinx sin(T-¢) -jkR Q(n-T) d e Tg 

where P(S) and Q(S) are defined in (4.55). 

The field H radiated by the physical optics current 
po 

density on the rounded wedge is obtained by substituting 

the expressions in (4.73) and (4.84) into (4.79). Notice 

that, as in the case of the truncated wedge, physical optics 

predicts a polarization insensitive backscattered field. 
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4.5(a) NUMERICAL CONSIDERATIONS 

Table 4.2 indicates which expressions in this chapter 

have been numerically evaluated for purposes of comparison. 

WEDGE DERIVATION 
DE FORM- POLARIZATION 
ATION 

S. CoR. G.T.D P.O. 

(4.5) (4.57) i Trunc- Electric (4.14) 
ated [ (1. 42) + p. 35) ] [ (.4,47) + (4055) ] ! 

I 
I 

(4.6) (4.79) 

Magnetic (4.26) 

I 
[(.1.42)+(2.73) ] [(.4.73)+(4.78) ] 

(405 ) (4 057) 

Round- '1 . E ectrlc (4.37) 
ed 

[ (1.42) + (2.35) ] [ (4 • 47) + ( 4 • 66) ] 

(4.6) (4.79) 

, Magnetic (4 037) 

[(4.73)+(4.84) J [ (1.42) + (2. 73) ] 

TABLE 4.2 

The an modal coefficients in (2.35) must be obtained 

before'the electrically polarized diffracted field surrounding 

the deformed wedge (and given in (4.5» can be calculated. 

Similarly, before evaluating the magneticallY,_'polarized 
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diffracted field given in (4.6), the an coefficients 

of (2.73) must be obtained. Because of the restriction 

on the size of matrix which can be inverted by a computer, 

only a finite number of the an can be obtained. Thus the 

summations in (4.5) and (4.6) are limited to a finite 

number of terms. This number N was chosen such that 

p ~ N. (4.85) 

When w is small (w - 0 .• IX.) , it was found that 3 ,( N ~ 5, " 

but when w is larger (w - 1. 01.) it was found that 9 ~ N ~20. 

(In the case of the rounded wedge w is defined to be the 

chord length of the rounded surface C3 in Fig. 4.6) • The 

condition in ( 4 . 85) was met with all the coefficients 

an' n ~ N convergent to the third decimal place. 

As well as evaluating the expression in (4.26) for the 

G.T.D. field diffracted from the truncated wedge, the primary 

diffracted field H~td was calculated. This field is given 

by (4.17) as 

(4086) 

A comparison of H~td and Hgtd enables the effect of 

including the higher order diffracted fields in the geometrical 

theory of diffraction to be studied. 
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The evaluation of the expression in (4.37) requires 

the zeros of the Airy function and its derivative to be 

calculated. It can be seen from (4.37) that the number 

of these zeros which must be calculated before the summation 

has converged with a given accuracy is dependent upon t, 

the. length of arc of the rounded surface along which the 

grazing ray travels. The evaluation of (4.37) takes 

more time when t is small (</>::: 1f+1jJ) , than when t is large. 

The integrations of (4.66) and (4.84) were performed 

. 11 . . i l' t t' 87 . th t numerlca y uSlng Slmpson s ru e In egra lon Wl a 

least ten sUbdivi.sions per wavelength. 

4.S(b) RESULTS. 

The curves plotted in Figures 4.7 - 4.18 all pertain 

to the rounded wedge. Figs. 4.7 - 4.11 show the diffracted 

field surrOlll1ding -the rounded wedge when the incident 

field is electrically or magnetically polarized. The 

physical optics estimate, the geometrical theory of diffract-

ion prediction, and the field diffracted from an undeformed 

wedge are·· all plotted, as well as the accurate diffracted 

field. The two directions in which the field becomes 

large correspond respectively to the. direction of reflection 

from the illuminated wedge surface, and the forward scatter-

ing direction which is a shadow boundary. 
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Figs. 4.7 - 4 09 are plotted for three rouhded wedges 

with 2X = 940 illuminated by similar fields electrically 

polarized in the z-direction. The rounded wedges are 

characterized by w = O.lA, w = O.SA, and w = 1.OA 

respectively. When w = O.lA the rounded wedge diffracts 

a field littl~ different from that diffracted by an 

undeformed wedge. As w increases (Figs. 4.8 and 4.9), 

so does the difference between the 'diffracted field and that 

diffracted by an undeformed wedge. However., in no case is 

the field in the region ~ > 7f+1jJ significantly different to 

that diffracted by the undeformed wedge. The physical 

optics estimate of the field increases in accuracy as 

w increases, particularly in the region ~ < 7f-1j! where 

the geometrical theory of diffraction predicts no scattered 

field. Over the region 7f-1j! <: ~ < 7f+Ij!, .. the geometrical 

theory of diffraction field, given. by the reflection of the 

incident field from the rounded surface, is less accurate 

than physical optics. 

Similar comments apply to the curves in Figs. 4 0 10 

and 4.11 which are plotted for two rounded wedges with 

2x = 94 0 
f illuminated by magnetically polarized fields. 

Figs. 4.12 - 4017 show the field backscattered from 

rounded wedges which are illuminated by a field normally 

incident upon the rounded. surface in the direction 1j!=(7f-X}0 
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The backscattered field is plotted against w for the 

three cases 2X = 54 0 , 2x = 940 , and 2X = 1340 when the 

incident field is electrically polarized in tbe z-direction. 

The accurate values were obtained by using the S.C.R. 

technique described in Chapters 2 and 3, and the accurate 

value at w = 0 is the field backscatt~red from the undeformed 

. wedge. Also plotted in these figures is the physical 

optics estimate of the backscatterecl field, and the geometric­

al theory of diffraction apprQximation. This latter estimate 

is wholly due to the reflection of the incident field from 

the rounded surface and is directly proportional to rw 
as can be deduced from (4.33). The physical optics estimate 

increases, in accuracy as w increases. However, .for 

w < 0.15~ it can be seen that in general the most accurate 

estimate of the backscattered field is that from the 

undeformed wedge. 

When w is small, physical optics underestimates the 

strength of the normally backscattered electrically polarized 

field, but overestimates the strength of the normally 

backscattered magnetically polarized field. 

Fig. 4.18 shows the manner in which the surface current 

density on the surface p > a, ~ = 0 of the rounded wedge 

differs from that on the undeformed wedge for w = 1.0~, 

2X = 940 , W = 600
, when the incident field is electrically 

polarized. Notice the faster rate o£. decay of the oscillat­

ions in the surface current densit.1of the rounded wedge. 
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This suggests that the rounded surface of the wedge causes 

less disturbance to the physical optics current density 

on the surface ~= 0 than does the apex of the undeformed 

wedge. 

From Figs. 4.7 - 4.18 and other curves unpublished 

here, the following trends relating to the f.i'eld diffracted 

by a perfectly conducting rounded wedge have been·noticed: 

(i) The field diffracted by an undeformed wedge is, in 

general, a more accurate estimate of the field diffracted 

by a rounded wedge with w < .1511. than either the estimate 

of physical optics or the geometrical theory of diffractiqn~ 

(ii) The increase in accuracy of the physical optics 

approximation with w is particularly noticeable in the region 

~ < n-~, and the backscattering region. 

(iii) Unlike physical optics, the geometrical theory of 

diffracti.on does not predict the form of the ~-variation 

of the field in the region n-~ < ~ < n+~, and gives no 

estimate of the field in the region ~ < n-~. 

The curves. plotted in Figs. 4.19 - 4.30 pertain to 

symmetrically truncated wedges. In Figs. 4.19 and 4.20 

are curves of the difference between the field diffracted 

from an undeformed wedge and the field diffracted from a 

truncated wedge. A similar electrically polarized incident 

field illuminates the wedges. Notice the increased accuracy 

of the geometrical theory of diffraction when w is larger. 
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The curves in Fig. 4021 show the field diffracted from 

a symmetrically truncated wedge as calculated by the S.C.R. 

method, and estimated by physical optics and the geometrical 

theory of diffraction. Also plotted is the field diffracted 

from the undeformed wedge of angle 2X = 940 • The incident 

field is electrically polarized. The curves in Fig. 4.21 can 

be compared with those in Fig. 4.7 for the rounded wedge 

similarly illuminated. It can be seen that when w = OolA, 

there is little difference betwee:q the fields diffracted 

by a rounded or a· symmetrically truncated' wedge.· This con­

clusion is similar to that reached by Jones 88 who considered 

the effect of the shape of the end of a thick semi-infinite· 

plate. 

Fig.4.22 shows the field diffracted from a symmetrically 

truncated wedge (2X = 1140 , w = 1.OA) when the incident 

field is magnetically polarized in the z-direction. 

In addition to the field of the geometrical theory of 

diffraction and the field surrounding the undeformed wedge, 

the primary diffracted field of the geometrical theory of 

diffraction is plotted. Notice that for much of the 

scattering region, this primary dif·fracted field is a better 

estimate of the diffracted field than is the complete GoT.Do 

approximation which includes the mUltiply diffracted fields" 

Figs. 4.23 and 4.24 show the fields diffracted by 

symmetrically truncated wedges illuminated normal to the 

truncation surface by similar electrically polarized fields 
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(lj! = 'IT-X). The two truncated wedges are characterized 

by 2X = 940 with w = O.lA and w = LOA respectively. The 

formulae in (4.15) and (4.58) were used to evaluate the 

G.T.D. and P.O. backscattered fields respectively. Because 

of the symmetry about .~ = ('IT-X), thefields are plotted 

only in the region 0 < ~ ~ ('IT-X). For both wedges, the 

diffracted field in the region ~ < ('IT-lj!) is little different 

from that diffracted by the undeformed wedge. However, in 

the backscattering direction there is an appreciable ,difference 

which is larger for the larger value of w. The physical 

optics estimate is more accur.ate for w = 1. OA than for 

w = O.lA, particularly in the backscattering region, but 

the geometrical theory of diffraction closely approximates 

the diffracted field for all. values of ~ for both truncated 

wedges. 

Figs. 4.25 - 4~30 show the-field backscattered from 

symmetrically truncated wedges illuminated by a field 

normally incident upon the truncation surface (~ = 1jJ = 'IT -X) • 

Thebackscattered field is plotted against w for the three 

Cases 2x = 540 , 2x = 940 , and 2X = 134 0 when the incident 

field is electrically polarized in the z-direction; and for 

2X = 74 0
Q 2X = 1140 , and2x = 1540 when the field is 

magnetically polarized in the z-direction~ 

As well as the accurate value of the backscattered 

field, the physical optics and geometrical theory of 

diffraction estimates are also plotted in Figs. 4.25 - 4.27. 
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The expressions for the G.T.D. and P.O. backscattered fields 

are given in (4.15) and (4.58) respectively. Each of the 

three figures shows that the G.T.D. approximation is more 

accurate than the physical optics estimate which under­

estimates the electrically polarized back scattered field. 

Figs. 4.25-:- 4.27 may be compared with Figs. 4.12 - 4.14 

for the rounded wedge. The strength of the backscattered 

field increases more rapidly with w for the truncated 

wedge than for the rounded wedge. 

The primary, the sum of the primary and secondary, 

and the complete G.T.D. backscattered fields have been 

calculated for the three truncated wedges of Figs. 4.28 -

4.30 when the incident field is magnetically polarized 

in the z-direction. Each of these diffracted fields was 

more accurate than the physical optics approximation v 

but the most consistently accurate was the sum of the 

primary and secondary G.T.D. diffracted fields. This 

result confirms the suggestion in section 4.2(b) 

that the inclusion of all the multiply diffracted fields 

is not always the best estimate of the G.T.D. Consequently v 

the sum of the primary and secondary diffracted fields of 

the G.T.D. is plotted in Figs. 4.28 - 4.30, and also 

the physical optics approximation and the accurate value 

obtained from using the S.C.R. technique. The expressions 

for the primary G.T.D. and P.o. backscattered fields 

are given in (4.29) and (4.80) respectively. Each of 
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the figures shows that P. o. overestimates these magnetic-':' 

ally polarized backscattered fields when w is. smalL 

From the curves in Figs. 4~19 - 4.30 and others, 

the following trends relat.ing to the field diffracted 

by a perfectly conducting truncated wedge have been noticed: 

(i) Both the physical optics and the geometrical theory of 

diffraction approximations to the scattered field increase 

in accuracy as w increases. 

(ii) For the truncated wedges studied (0.05A ~ w ~ 1.OA), 

physical opti~s is not as accurate as the geometrical 

theory of diffraction. In general, the sum of the primary 

and secondary diffracted fields is a better estimate 

of the magnetically polarized diffracted field than the 

complete GoToD. predictiono 

(iii) The normally backscattered field (~ = ~ =n -X) 

from a truncated wedge is stronger than that from a rounded 

wedge having the same values of 2X and Wo 

(iv) The PoO. and G.T.D. estimates of the normally back­

scattered field given in (4.15), (4.29), (4.58), and (4 0 80), 

tend asymptotically towards the exact value of the back­

scattered field when w is large o For a given w, the GoToD. 

approximation increases in accuracy as 2X iri~reaseso 
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(p,<p) 

Figure 4.3 z axis perpendicular to the paper. 

Figure 4.4 z axis perpendicular to the paper. 
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CHAPTER 5 

The exact description of the field scattered from a 

perfectly conducting infini te wedge is obtained when the 

wedge is excited by line sources polarized in the plane 

normal to the wedge axis. The solutions for both 

electric and magnetic line sources are given. The results 

of this chapter are used in Chapter 6. 

5.1(a) INTRODUCTION 

J 13 d' th t' ones erlves e equa lons (1.16) -(1. 20) 

describing the field surrounding a perfectly conducting 

wedge when the excitation is an electric or magnetic 

line source polarized parallel to the wedge axis. In 

Chapter 6 of this thesi.s, the description of the field 

surrounding a perfectly conducting wedge is required when 

the excitation is an electric line source polarized in the 

plane normal to the wedge axis. That description, and 

the one appropriate to a magnetic line source polarized 

in the plane normal to the wedge axis, are derived 

in this chapter. The expressions are presented in the 

same form as (1.16) - (1.20). The results of this 

chapter have been published elsewhere. 3 

5 02(a) TRANSVERSELY POLARIZED EBECTRIC LINE SOURCE. 

Consider the perfectly conducting wedge in Fig. 5 010 

The z axis is perpendicular to the paper. In terms of 

the cylindrical polar coordinates (p,~), the line source 
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is at (p ,w) and the wedge occupies the re, gion o ' 

2TI-B ~ ~ ~ 2TI. Rectangular co-ordihates (x,y) and polar 

co-ordinates (r,e) are set up with origin at (p ,W)o The 
o 

x axis is parallel to the direction ~= o. 

The wedge is excited by the field from the trans­

versely polarized electric line source J given by 

8(p-p ) 8(~-W) J = [~cpse + ~sine ] ______ 0 ________ _ 

o 0 Po 
, (5 0 1) 

where 8{~) is the Dirac delta function, and x and yare 

the unit vectors in the x and y directions respectively. 

-7-
J can also be written as 

-7-
J = x J + Y J • x Y 

Since 

aJ aJ 
=Z (axY-ayx), 

-7-
V X J (5 0 3) 

it follows from (1.28) that the source distribution J 

generates a magnetically polarized field. However, because 

of the curl of the delta function on the right-hand side of 

the expression in (1.28), it is not clear how to determine 

-7-
H by using the Kontorowich-Lebedev transform. 

In order to overcome this difficulty, consider J to.be 

a continuous source distribution with a Gaussian fo~m 

centred on (p , w) • Thus 2 o ' 
(:.!.....) 

-7- " " 
2b 2 

2 2 2 
J :[ xcose + ysine ] e 

+ (504) = 2TIb2 r = x y , 
0 0 



where b is a constant. Since 

Lt 
b+O 

_ 2 (2-)] 
2b 2 

[ e . = <5 (x) , 

v27T b 
(S. S) 

the expressions in (S.4) and (S.l) are identical in the 

limi t b + O. 

166 

By using the expressions in (S.4) with those in (S.2) 

and (S 03), and noting that 

x = r cos8, y = r sin8, 

+ 
X J can be described by 

v X J = z S(r,8), S(r,8) = 

2 
(-r ) 

2b 2 
r e 

(S 06) 

sin(8-8)o 
o 

(S 0 7) 

A solution H(p,¢) is now required such that 

+ 
H = zH, 

2 2' 
V H + k H =-' - S ( r , 8) , 

_,~~ _~_c"--_-.J 

subject to the boundary conditions in (1.4), that 

dH 
an 

o 
¢= m1T 

= 0, 

The solution U(pp¢) of (1014) subject to the boundary 

condition (1.4) is given by (1.16) and (1.17). That solut-

ion is the Greens function for an infinite z-diTected 

magnetic line sourceo The solution of (S.8) can therefore 
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be written as 

where 

1 
81T 

S ( r , e) . U ( P , ~) r de dr, (5.10 ) 

o 0 

(5.11) 

(2) 2 2 ~ . 
Ho {k[p -PI -2pPIcosh(mv) ] 2}slnhv dv 

cosh v - cos (~) 
(5.12) 

Consider the term of H (p ,~) given by 
00 21f . 

HI (p , p) = S (r, e ) rt (p , ~ - ~ 1) rd e dr 0 

o 0 (5.l3) 

It can be seen from (5.4) that as b tends to zero, all· 

important contributions to the integral in (5.10) will 

come from the neighbourhood of r = O. In this region, 

~-~ 
p. ::: Po + rcos(e-1J!), cos(--...!.)!ltcos(~-1J!)+ 

1 m m 
r . ( ). (~-1J!) --Sln e-1J! Sln - , P m m 
o 

(5.14) 

enabling the denominator of rt(P'~-~l) to be written, 

with the use of the binomial theorem, as 



cj>-cj> 
coshv - cos( ____ 1) 

m 

where 

Cl = coShv-cos(cj>~lji), 
6-lji 

sinCm-) 
. p omC1 
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(5.16)· 

The Hankel function in the integrand of (5.'12) is 

(5017) 

The distance z is represented by 'the side AC of the triangle 

ABC in Fig. 502. The line AD of length Y.is constructed 

such that the length 6f BD is p • 
o 

Then, t;tsing the addition 

theorem14 and (5014) with (5.17) , 

00 

H~2)(kZ)=L H~2) (ky) In[kr cos (e-.lji) ]cos(nct}, (5 0 18) 

n=-oo 

where, from the geometry of Fig. 5.2, 

2 2 k pcosh(mv) - Po 
y = [p +p -2pp cosh (mv) ] 2, COSa= 

o 0 y (5 0 19 ) 

When kr is small, the use of the limiting form of the Bessel 

function of small argument in (3.11) gives 

J [kr cos(8-lji)F n 
[kr co.s ce-lji0 n 

2' .' J ' 
r(n+1) 

n ? O. (5 0 20) 
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substitution of (5020) into (5018), andth~ use of 

(2033), results in 

E 
n 

H(2) (ky) cos(na) 
n 

r(n+1) [

kr cos (e-w)ln 

2 -J' (5.21) 

where En is the Neumann factor defined in (1.15) 0 

Bysubstituting the expressions in (5.7) and (5 012) 

with those in (5015) and (5021) into (5.13), the first term of 

H (p,~) can be described by, 

, . n 00 2n oo+J-m [£ H (2) (ky) 00 

H1(P,~) 
-1 L 1 n n , = 

16n 2b 4 C1 
"r (n+1) cos (na) 

n=O 

.n 
oo-Jffi 0 0 

21 
(.:.£.:) 
2b2 

e dedr dvo 

(5022) , 

Notice that C1 "C2 ,y and a are all independent of e and ro 

Since 

0, 
o 

2n 

cos(e-w)sin(e-e )de = nsin.(w ... e ), 
'.' 0 0 

o 

nCQs (W-e ), 
o 

(5.23) 
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the integration with respect to 8in (5.22) can be performed, 

giving 

+,7T 00 2 00 J-m (-r ) 

H1 (p,<jJ) -1 1 3 ~ sinhv = 
167T 2b 4 C1 

7Tr e 

,7T 
oo-Jill 0 

H (2) (ky) cos (1jJ-8 ) + k H
1
(2) (ky) 

o 0 
cosa sin(1jJ-8 ) 

o 

27T 
00 

+2 I 
o n=2 

Now, 

Lt 
b-+O 

27T 

o 

cos (8-1jJ) sin (8-e ) 
o 

H~2) (ky) cos (na) sinhv sin(8-e
o

) 

r (n+l) 

[ 
:2 

(,.-r ) 
n 2b2 r 2 

b 4 e dr = n = , 

= 0, n > 

3 , 

3. (5025) 

Therefore.,. performing the integration with respect to r in 

(5 024) as b tends to zero, results in 
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COSCI. 

] 
sinhv dY 

.sin(~-eo) . C1 

After substitution of. the expre!;lsions for C1 andC2 in 

(5016) into (5.26), Hl (p ,¢) is given· by 

where 

-1 
87T 

oo+j~[ . m '. 2 
sin. ( i) H ( ) (k Y ) co s (~- e. ) 
mo.. 0 

. p m{coshv-cos(i)~ 
•. 'IT 0 m OO-J-m 

+ 
k Hi2

) (ky) COSCI. sin{~.,..e 0) ] • 
. . slnhv dvo 

coshv-cos (i) 
m 

Consider now the second term in. (5.10 ) given by 

In the neighbourhood of r =0, 

p 1 ::: p 0 + r co s ( e - tjJ) , 
r - --p m 
o 

. ( ) . ( ¢+tjJ) . s1ne;-·tjJ· s ln - r m 

(5.26) 

(5028) 
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enabling the denominator of Q (p, </>+</>1) to be wri tten, by 

using the bihomial.theorem, as 

where 

</>+</>1 
coshv - cos(-.---) m 

= C [1 C . (8 ,,', )]- C 3 '3 . - 4' r. Sln . - 'I' -~1":-+-:=:c-4-r-s""'in--r(-i'e--":-l/J'f"")' 

(5.31)' 

C3 = coshv - cos(</>~l/J), 
-sin (</>+l/J) 

·m .(5 .• 32) 

C3 and C4 , like Cl and C2 , are independent of 8.and ro 

The development from (5.17) to (5.26) with Cl andC 2 

replaced by C3 and C4 respectively, enabl~s the expression 

for H2 (p, </» in (5.29) to be reduced to 

-1 
=8'Tf 

.n 
oo+J­m 

.n oo-J­m 

[C
4

H (2) (ky) cos(l/J.,..8 ) +k H
l
(2) (ky) 

o . 0 
cOSa 

.sin(l/J~8,) ] 
0; 

sin~v dvo (5.33) 
3 . 

After substituting the expressions in (5.32)" into (50.,33), 

H2 (p ,</» is given by 

(5.34 ) 

where n(p,~) is given in (5.28). The solution H(p,</» to 

(5.8) subject to the condition in (5.9) is given by (5027) 

and (5.34) as. 

(5035) 
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50 2 (b) TRANSVERSELY POLARIZEDMAGNE.TICLINE SOURCE. 

Consider the perfectly' conducting wedge in Figo SoL The 

co-ordinate systems in the figure are described in section 

5 0 2 (a) 0 

The wedge is excited by the f;ield from a transversely 
+ 

polarized magnetic line source M given by 

M =[~ cose + ~sine] 
o 0 

8(p-p ) 8 (<p-ljJ) 
. 0 

Po 

The extended Maxwell equ~tion 

.. 
+ + + 

V X E. = M - B (5 .• -37) 

gives rise to the wave equation 

V2 E + k2~ = + 
-V X M (5038) 

in. a homogeneous iso.tropic time-invariant medium free from 

el~ctric. curren t sources 0 Since 

, + 
V X M (50 39') 

it follows from (5038) that the source distributj,on M will 

generate an electrically polarized field. Because of the curl 

of the delta function appearing on the right-hand side of the 

expression in (5038), it is not clear how to determine the 
+ 

field E surrounding the wedge by using the Kontorowich-Lebedev 

transform. However, by considering M to bea continuous 

source distribution with the Gaussian form as given by the 

right-hand sid~ of (5 0 4), it follows that 

'" 
V: X M = z S( r , e) , (5040) 



where S(r,e). is defined in (5.7) • 

A solution is now required to 

subject to the boundary condit.;Lons (1.5) 

E 

o 
~ = In7T 

= 0,-
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(5.41) 

(5.42) 

The Greens function for an infinite z-directed electric 

line source when the field is subject to· tJiI.e boundary 

conditions in (5 0 42), is given by (1.16) and (1.17) 0 Thus f 

where 

(5.44) 

and Q(p,~) i~ defined in (5~12). 

The two terms of (5.43) have· been evaluated in section 

5.2(a) 0 Hence, from (5.27) and (5 0 34), 

E ( p , ~) = n ( p ,e/> -$ ) - n ( p, - e/> -$) , (5 0 45) 

where n(p,~) is defined in (5.28). 

503(a) MANIPULATION OF n(p,~) 

In this section n,(p ,~) is manipulated into the same 

form as Q (p,~) of (1. 18), thus enabling the reflected and 



diffracted field components to be readily identifiedo 

Consider the first term of n(p,l;) in (5.28) with y 

de fined by (50 19). Integra ti on by parts shows that 

+ 

.7f oo-J­
m 

.7f 
oo+J­m 

H(2) (ky) sinhv dv 
o 

[ coshv-cos (~) ] 2 
m 

mp
o 

Hi2 ) (ky) kp sinh (mv) dvo 

y[ coshv-cos(£) ] \ 

I 
/ 
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On substituting the limits, the first·term on the right-hand 

side of (5046) becomes zero. n (.p, l;) reduces to 

-1 n (P.l;) = • SiT 
".- .-~ k~i~) (ky) . . ~Sin(I) cos {l/J-e ) sinh (mv) 

y[ co~'hv-cos (~)]L m 0 

+[p cosh(mv)-p ]sin(l/J-e ) sinhV]dVf 
o 0 

where the expression for COSet given by (5 0 19) has been 

substi tutedo 

The contour of integration in (5 0 47)will be deformed 
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into the contour used by Jones13 to derive (L18) from 

(L 17) 0 This contour is. shown in Fig 0 5 0 3 0 Using 

abbreviated notati.on, 

n(p,l;) = 

• 'IT 
'X+]_ m 

f(v) dv- = + + + 0, 

(5 0 48) 

where the definition of f(v) follows from (5 0 47) f and 0 

is. the sum of the 'residues evaluated at the included p~les. 

The variable of integration v can be defined along 

C2 in terms of a real variable x given by 

Then 

dv = '- fO fl-x-j;l 
_00 

Along C4 ' v can be defined in te.rms of x by 

giving 

• 'IT 
V = X + ]- , m 

dX Q 

[f(X+jikl dx. 

(5 0 50) 

(5051) 

(5 0 52.) 
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Examination of (5047) shows that f(v) is an odd function 

of v, and therefore 

f

'7T 
Jill 

f(v) dv = 0, 
,7T 

-Jm 

and from (5 0 50) and (5 052.) 

= C f(x+j~) dx. (5054) 

The poles of the integrand of (5.47) occur when v takes. 

the values 

v = ±j(i + 2p7T), (5055) 
m 

where p is any integer. or zero. The contour C3 of Figo 5 0 3 

must. be deformed in a semicircle. about each pole located 

on the imaginary axis wi thin /~+2p7Tm / < 7T •. The. sum of the 

residues is given by 

a= I j7f~(j[£+2P7T]} + g(-j[£+2P7T]~' V /~+2p7Tm/ < IT, 

P 

where 

g (v) = f(v) 

, 

[ cosh v-cos (i) ] m . 
---s.....,i .... n .... h-v-·-

Since g(v) is en even function of v, 

/ ~ + 2p7Tm/ < 7T. 

(5.57 ) 

By using (5.53), (5.54) and (5058) with (5.48), n (p,~) may 



178 

be expressed as 

hl(P'~) = -~~ Hi2
) (ka)Gsin(~+1jJ-eo+2p7Tm)~poSin(1jJ-eo)J, 

I s+2p7Tm I < 7T, 

= 0, 1~+2p7Tml > 7T (5 0 60) 

co 

H (2) (kb) 
-k G sin (!) h2 (p, 0 1 cos( 1jJ- e) sinh (mv) = '87f b[ c,os (jv+~)-cos(~) ] 0 

-co 

-j[p,cosh(mv)+po]sin(1jJ-e o) Sin(jV+;)] dv, 

where 

2 2 ,~ 
b =[ p +p +2p p cosh (mv) ] 20 

o 0 

The hl(p,s) term represent~ the cylindrical waves 

radiated directly by the line source, and those reflected 

by the faces of the wedge. The condition 1~+2p7Tm)1 < 7T 

on the existence of these waves is the same as in (10 19) 0 

As discussed in section 1.3(a), when ~= (</>-::-1jJ) onlyp=O, 

I </>-1jJ I < 7T satis fies the condition. When ~ = ,( -</>-1jJ) however, 

p=O, I </>+1jJ I < 7T and p=l, I </>+1jJ-27Tm I < 7T satisfy the condition 0 

These three cases correspond respectively to the regions 
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of existence of the ,incident field, the field reflected 

by the ,surface cj)= 0, and the field reflected by the surface 

~ = m1T. 

The h 2 (p,s) term represents the waves diffracted 

by the wedge apex. The detailed form of h 2 (p,.;) is apprec­

iably more complicated than w2 (p,.;) of (L20) which is 

the corr~sponding expreBsion for i-polarized line sources~ 

However, ,when the transversely polarized line source 

is a, great distance. from the apex of the wedge such that 

Po » P, the use of (L2l) enal:>les hl(p,s) andh 2 (p,..;) 

to be expre.ssed as 

I s + 2 P 1Tm I < 1T, 

= 0, I S+2p1Tml > 1T , (5.63) 

sin (~-a 0) r si'n(jv+2!:.) -jkp cosh (mv) 
-jk e dv, h 2 (p,s) m = 21T cos (jv+!.) -cos {f) m m (5~64) 

_00 

where the normalization factor (1.22) has been removed. 

Examination of the, expressions in (5.63) and (5.64) 

shows that they are, identiQal to the' corresponding expressions 

(1.24) and (1.25) for the z-polarized line source, multiplied 

by the, factor [-jksin(1jJ-6 ) ]. This factor describes the 
o 

far field radiation pattern of the transversely polarized 

line source. Consequently" when the line sources are 

transversely polarized, '. the. appropriate far fielo. di ffraction 

coefficients of the geometrical theQ:r'Y of diffraction are, 
'" 
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the same as those used when the line sources ar.e z-polar-

izedo 

The reason why 11 (P,S;) is not reciprocal in pand Po 

is that when the' source of the field is a transversely 

polarized electric current element, 11(P,S;) is proportional 

to Hz, which implies that the field is being observed with 

a z-polariz;ed magnetic current receiving elemento 

When the point (p, cJ» at which the field is observed 

is a large distance from the wedge apex, the asymptotic 

form of the Hankel function ~~~o21) 'can be used to' expand 

Hl2) (ka) and Hi2 ) (kb) 0 Th,u~,from, (5 0 60)- (506
i
2), 

a "" p - Po cos(S;+2prrm), b IY. p + pocosh(mv), p» Po' (5.65) 

H (2) (ka) 
1 

rr -j[kp-kp cos(S;+2prrm)7'.2:-J 
,. /7'i"k(Y e 0 '* , p > > Po' 

H(2) (kb) "" n:- -j[kp+kp cosh(mv);...3;J-
1 ~ eo, p »P. (5 0 67) 

o 

After normalization by the factor (4 0 ;0, h1(p,S;) and h 2 (p,S> 

reduce to 

= 0, 

[ h 2 (p,s> = -~ 8rr 

I S;+2prrm I > rr, , (5.68) 

-jkp cosh (mv) 
e 0 .-. -rsin (!) cos (1}!- 8 0) ~inh (tnv) 
cos (jv+~) -cos(!) L 

-jcosh (mv) sin (1}!-8 ) sin (jv~!.)JdVo (5069) , o m 



Figure 5.1 Wedge iri the presence of a transversely polarized 
line source. z axis is perpendicular to the paper. 
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CHAPTER 6 

The iterative surface current density replacement 

technique is introduced and applied to the problem of 

determining the scattering from a perfectly conducting 

truncated wedge when the field is electrically or magnetic­

ally polarizedo The results of this Chapter are used 

in Chapter 7 to derive new edge diffraction coefficients o 

6 ol(a) THE loRe TECHNIQUE 0 

In the iterative surface current density replacement 

(Io Ro) technique the e~pression for the field is derived 

by summing an infinite number of field terms 0 Each .term 

(other than the first;) is directly dependent upon the 

preceeding termo It is postulated that the result of 

the summation is·an exact description of the field 

surrounding the·. scattering bodyo However g it must be 

emphasized that the conv~rgence of the-.series has not 

been proved, even though the application of the IoRo 

technique to determine·the scattering from a truncated 

wedge suggests that the first terms in the series dominate 

the remainder 0 

The IoRo technique can be formulated for any body 

which is thein.tersection (in the set theory sense) of 

two perfec.tly conducting bod,ies from which the scattering 

is known explicitlyo Some two-dimensional examples 

are the ... truncated wedge of Fig 0 605 which can be 

regarded as the intersection of two infinite wedges; and 
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the cylinders of Fig. 6.6~ which can be regarded as 

the intersection of two circular cylinders, and a circular 

cylinder and an infini tewedge respectively. 

The loR. technique will be described by applying it 

to the truncated wedge problem. 

Consider the perfectly conducting wedge in Fig. 6 0 1 

illuminated by an incident field ui • Th.e wedge surfaces 

are defined by </>= 0 and</>= 21T-S in the (p,</>,z) cylindrical 

polar co-ordinate system whose orQgin is at th~ wedge. 

apex. Kl(r) is .defined to be the jn4uced surface current 

density at a distancer from the wedge apex on the surfq.ce 

<p = 21T-S. The total field ul is zero everywhere inside. 

the wedge. 

Now consider the perfectly conducting wedge in Fig. 6 •. 2. 

The wedge surfaces are defined by 8 = ·0 and 8 = 21T=a in the 

(s,8,Z) cylindrical polar co-ordinate system whose origin 

is at the wedge apex" The wedge is illuminated by the field 

-+ 
radiated ftom a source dist.ribution [-K l (s+w) ] r s ?~ 0 on e =1T.o 

The induced surface current densit.yat a distance t.from 

-+ 
the wedge apex on the surface 8= 0 is defined to be K2 (t). 

, -+ 
The total field U2 .is zero everywhere inside . the wedge. 

Consider the wedge in Fig. 6.1 illuminated by the field 

radiated from a source distribution [-K2 (p+w)], p <> 0 on 

</>=1T-S a~ shown in Fig. 6.3. The induced surface current 

density on the.surface 
-+ 

</> = 21T-S is defined to be K3 (r) • 



In general, define U2n , n ? 1 to be the field 

surrounding the wedge in Figo 6 0 2 when the incident field 
- , 
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is radiated by the source distribution [-K2n- l (s+w)J, s >-- 0 

on e=~o U2n is zero everywhere inside the wedge in Figo 6 0 20 

Define u2n+l ' n 9 1 to be the field surrounding the wedge in 

Figo 6 0 3 when the incident field is radiated by the source 

distribution [-K2n (p+w) J, p ~ 0 on ~=~-t3 0 

-+ , 
U2n+l 1S zero 

everywhere inside the wedge in Figo 603. The surface current 

densi tiesKn are defined from (lo 33) as 

-+ 
K2n (t) = , -+ K

2n
_

l
(r) = x II 2n ... l (6 0 1) 

e = 0 ~:= 2~-S 

where e and ~ are unit vectors in thee and ~ directions 

respectivelyo 

Now cons,ider the, truncated wedge in Fig 0 6 0 4 illuminated 

-+' 
by an incident field U1

0 The cylindrical polar co~ordinate 

systems (p,~,z) and (s,6,z) have their origins at the edges 

with internal anglesS ,and a respectively 0 The I 0 Ro technique 

-+t ' 
postulates that the total field U surrounding the truncated 

wedge is given by 
00 

where the fields U have been defined abo~e; and that ut 
n 

-+t 
is approximated with a finite error by UN' where 

N 
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N being a finite pO.sitive integer. The expressiO.n in 

(6.2) states that the prO.blem illustrated in Fig. 6.4 

is equivalent to' the superpO.sitiO.n O.f the prO.blem illustrat." 

ed in Fig 0 6.1 and the ,infinite number O.f prO.blems each 

illustrated by either Fig. 6 02 O.r Figo 6 030 NO.tice th~t 

Ut is zero. everywhere, inside the truncated wedge as 

requiredo The cO.nvergence O.fthe series in (6 02) and 

the validity O.f .the approximatiQn.in (603) have nO.t been 

prO.ved. 

6 0 2 (a) TRUNCATED WEDGE. (Electricl?O.la:r::izatiO.n) a 

The loRa technique is used .in this ·sectiO.n to determine 

the appr~ximatiO.n A~ to' the electrically pO.larized, field 

scattered by the perfectly cO.nducting truncq.ted wedge 
'1 

in Figo 604~ The nO.tation used in this sectiO.n follO.ws 

'that O.f sectiO.n 601(~) 0 

. . . -+t . Three maln steps are requlred to' det:ermlne A2 0 Flrstly 

the field Al surrO.unding the wedge O.f Figo 6 01 is determinedo 

Then the surface current density Kl(r) is calculated? and 

-+ finally an expressiO.n fO.r the field A2 surrO.unding the 

wedge in Figo 6 0 2 is O.btainedo 

CO.nsider the wedge in Fig 0 6 0 .1 illuminated by an 

electrically pO.larized plane wave o The incident magnetic 

-+i vectO.r pO.tential A is given by 

-+ 
A = z A, (6 0 4) 
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The total field Al surrounding the wedge is given in (L 16) 

as 

(605) 

where 

(606) 

and wl(p,P and w2 (p,s) are defined in (1024) and (L25) 

respectivelyo 

The surfa,ce current density KI(r) on the surface 

~ = 2n-S is calculatedus~ng (6 01) and (2022) as 

1. 
].I 

~ = fin 

which· reduces to 

I = --+ 
].I~ 

Defining 

a at [w (p , OJ 

s=x 

enables KI (r) to be expressed as 

(6 0 7) 

(6 0 8) 

(6 09) 
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From (L24) 

, ( ) 'k '( 1:+2 ) jkrcos (l;+2npm) wI rfl; =] r Sln ~ npm e v 1l;+21Tpm I < n v 

= 0, 

and from (1.25), 

-sin (i) 
m 

21Tm 

00 

I . (. +n) -jkrcosh (mv) , Sln]V - e 
m 2 dvo 

, [cos (jv+~) -cos (.£) ] 
-00 m m 

Performing the integration in (6 0 12) by parts gives 

(6.11) 

(6 0 12) 

, (l;) fOO . h(', .) -],'kr cosh(mv) Sln - Sln mv e m ~~~~~--------==-=- dv v (6.13) 
cos (jv+1L) -cos (g.,) m m 

-00 

from which it is deduced th~t 

(6 0 14) 

The condition associated with the ~xpression in (6011) 

demands that wI U (r ,mn-1jJ) be zero unless p=O v 7f~ S < I!) < mn ~ 

and that wI' (r,mn+1jJ) be zero unless p=-l,7f-S < 1jJ < mTIo 

From ( 6 0 11) q 

(6015) 

p=o p=~l 

Using (6 0 14) and (6.15) enables the expression in (6.10) 

to be reduced to 



p=O 

= 0, IjJ < 7T-(3, IjJ > m7T, 

where, from (6.11) and (6.13), 

p=O 

= -2jk 
J.l 

-k sin (mljJ) 
J.l7T 

. ( "~,) jkrcos(m7T-IjJ) Sln m7T-~ e , 

00 

. h( ) -jkrcosh(mv) Sln mv e d . v. 
cos (j v+ ~) +cos (1#.-> 

_00 

Now consider the wedge in ;Fig. 6.2. The sourc~ 

distribution on 8= 'IT is [-K1(So+W) J, 
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(6017) 

(6.18) 

the distance from the wedge apex to a point on 8 = 7T. The 

total field A2 surrounding the wedge is the sum of the 

fields due to all the elemental sources. Thus, 

A2 (8,1) = -u f~ Kl(8o~) A(8,1) dBa, 

where from (1. 16) , 

and rl (s,.;) is defined by, (1.18) • Let s > > s . for all 
o 

important contributions from the source distribution 

( 6. 19 ) 

(6 .• 20) 
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can be expanded by using the asymptotic form of the Hankel 

function in (1021), and after normalizing by the factor 

become 

and 

w2 (s,s)= 

where 

-jks e 

-j jksocos(s+2TIpn) = '4 e , 

= 0, I s+2TIpn I > TI, 

00 

I s+2TIpn I <IT f 

sin (jw+ 2!..) e -'jksocosh(nw) 
.:i n dw, s 8TI ~) cos (I) cos(jw+ -n n 

_00 

nTI = 2TI-O'.o 

» 

S »s ? o 

S 
Off 

The condition associated with the expression in (6022) 

demands that w1(su8-TI) be zero unless p=O; and that 

w1 (s,8+TI) be zero unless p=-l, 2TI-2O'. < 8 ~ nTIo Thus p 

=1, 2TI-2O'. < 

(6.25) 

8·~ nIT, 

=0, 0 < 8 < 2TI-2O'., 



and A(s,8) is given from (6 020) - (6 026) by 

-I:: 
o 

-jksocos (8+2a) 
e· 
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1 0 0 1f - oks cos nw 0 1f 8-1f-l + - S1.n (Jw+-) e J 0 h ( ) ~ cos (J w+-) -cos (-) ] 
)

00 

21f n ~. n n 

_00 

Subst.ituting (6017) and (6 018)' into (6 019) gives 

00 

A ( 8) k 
[ 

2 0 0 ( ,10) jk (s +w) cos (m1f-ljJ) 
2 s, . = I:: 2 }s1.n m1f-'I' e 0 

o 

1f L o h( ) -jk(so+w) cosh (rnv) J 
S1.n mv e dv A(s,8) dsoo 
cos(jv+~) + cos(!) n n 

Using the expression in (4 0 46). to perform the integration 

with respect to So results in 

00 

where 

o h( ) -jkwcosh(mv) S1.n mv e 

cos (j v+~o) + cos (!) m m 



F(i;) = [cos6-coSi;]-1 - E.: [cos(6+2a) - cosi;]-l 
o 

+ 
1 1

00 

sin (jw+~) ~ 6 1 2n _______ n _____ . [cos(jw+~)-cos( ~TI)]-

cosh(nw)-cosi; 
_00 

[ . TI 6+TI ]-~ - cos(Jw+-)-cos(---) dw • n n 
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Since 0 ~ (S+1jJ) "" 2'IT, the substitution of x = j(S+1jJ-·rr) 

in Appendix 5 is va1ido Hence, 

. (S+1jJ-'IT) 
-Sln n r~ S+1jJ-'IT 6-TI-1 

F(S+1jJ) = n sin (S+1jJ) L[cOS( n )-cos(-n-)] 

[ S+1jJ-'IT 6+ 'IT ] -lJ - -(:os ( - n' ) -cos (n) ., 

and also from Appendix 5 v 

F (jmv+'IT) 
sinh (~) ~ 6 1 n [ mv -'IT ]-= . h(.) cosh(-)-cos(-) n Sln mv n n 

[ mv 6+'IT ]-~ - cosh(--) - cos (---) 0 n n 

The substitution of (6.31) and (6 032) into (6029) results 

in 
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A2 (S, 8) 
-jE: 2 , (S+1/J- lT ) ="2n Sln n 

]'kWCOS(S+1/J).[[ (S+1/J-lT) (S-7T)J-l e cos -cos -n n 

13+ -TI 8+TI-l J -[cos( ~ )-cos(:n-) J . 

-sin (1) 
m 

41Tn 
Sln -n- e [mv 8-1T-l 

1
00 'h(mv) -jkwcosh(mv) 

-------1/J~-- [ cosh (-) -cos (:n-) J 
cos (jv+~) +cos (_) n m m 

_00 

[ mv 8+1T J -l~ - cosh(--)-cos(---) dv. n n 

Notice that A2 (s,8) as given in (6 0 33) is independent 

of E: , which in (6026) defines the reflection boundary 
o 

of the field radi~ted by the source distribution on 8=1T 0 

The field A~,defined withN=2 in (603), is given as 

(6034) 

where Al is given in (6 0 5), and A2 is obtained by 

multiplying the expression .in (6 0 33) by the normalization 

factor in (6 021) 0 

6 0 2(b} TRUNCATED WEDGEo (Magnetic Polarization) 0 

The loR. technique is used to determine the approximat-

l'on +Ht2 to the t' 11 l' d f' ld tt d magn~ lca y po arlze le sca ere 

by the perfectly conducting truncated wedge in Fig. 6.4. 

The notation used in this section follows that of 

section 6 0 l(a) 0 



-+t 
Three main steps are required to determine H2 • 

Firstly, the field ~l surrounding the wedge of Fig. 6.1 

is determined. 
-+ 

Then the surface current density Kl(r) 

is calculated, and finally an expression for the field 

-+ 
H2 surrounding the wedge in Fig. 6.2 is obtained. 

Consider .the wedge in Fig. 6.1 illuminated by a 
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magnetically polarized plane wave. The incident magnetic 

-+' 
field intensity Hl is given by 

(6 • 35) 

The total field HI surrounding the wedge is given in (1016) 

as 

where 

and wl(Pv~) and w2(P,~) are defined in (1024) and (1025) 

respecti velyo 

The surface current density Kl(r) on the surface 

¢ :::: 21T-S is calculated from .(601) as 

(6.38) 

After substituting the expressions in (6.35) and (6.36) into 

-+ 
(6038), and using the definition of m1T in (607), Kl(r) 

is described by 
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'" -r [n(r,mw-~)+n(r,mw+~)J, 

where 

A A A 

r = pcos(++S)-+sin(++S). (6.40) 

The condition associated with the expression in (1.24) 

demands that w 1 (r ,mw-~) be zero unless p=O, w-S < lj; < mw; 

and that wl(r,mw+~) be zero unless p=-l, w-S < lj; < mw. 

Since, from (1.24) and (1.25) 

, 

p=O p=-.l 

and 

the surface current density K1 (r)in (6.39) is given by 

00 

= _2;rE2ejkrCOS(~+S) + 1 
L 2Tf 

_00 

where E2 is defined in (6.16). 

sin (jv+~) 

CQS (jv+~) 

e -jkrcosh (mv) ] 

lj; dJ v 
+ cos em) 

Now consJder the wedge in Fig. 6 0 2. The source 

s > 0, where s o 0 

is the distance from the wedge apex to a point on 8=w. 

In the (s,8,z) co-ordinate system r is defined by 

"-

r = -scos8 + 8sin8. (6.44) 
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The Greens function for the field surrounding a 

perfectly conducting wedge in the presence of a trans-

versely polarized line source is derived in .section 5.2(a). 

Let s »s for all important contributions from the source 
o 

distribution [-11 (so +w) ] • Then the Greens function 

-+-
H(s,8) is given by (5.35) as 

-+-
H(s,8) = z H(s,8), H(s,8) = n(s,8-7f) + n(s,-8-7f), 

n(s,.;) = hl(s,';) + h 2 (s,';), 

where, from (5068) and (5 069) after normalization by 

the factor in (6.21), 

(6 0 45) 

(6.46 ) 

h ( /:") k . ( /:"+ e +2 ) jks cos ( ';+2p7fn) IS,s :l:4'sJ.ns7f-o p7fn eo, 1';+2p7fn I < 7f, 

= 0, 1';+2p7fnl > 7f, 

00 
(6.47) 

jk -jks cosh (nw) 
[sin(~) h 2 (s,';) e 0 coseosinh(nw) = '8'TI cos (j w+'!') -cos Cf ) n n 

_00 

+jcosh (nw) sine sin(jw+~) ]dwo o n (6.48) 

The condition associated with the expression in (6.47) 

demands that h l (s,8-7f) be zero unless p=O; and that 

h l (s,-e-7f) be zero unless p=l, 27f-2a < e ~ n7f. Thus 

(6.49) 

hI (s,-e-7f) = -E 
o 

k . (8+6 ~2 ) -jks cos (e+2a) 
~ sJ.n ~ a eo, 

(6.50) 



where E is defined in (6.26). 
o 

By defining 

-+ 
Kl(so+w) = r Kl(so+W) , 

the polarization angle 8
0 

becomes (see Fig. 5.1) 
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(6.51) 

8 ='IT. (6 .52) 
o 

Using (6.47) (6.52), H(s,8) defined in (6.45) 

reduces. to 

H(S,8) k r. 8 -jks cos8 sin(8+2a) e-jksocos(8+2a) = - 4 LS1n e 0 - EO 

+i 
2 'IT L sinh(nw) 

. 8-'IT 
e-jksocosh(nw)[ sln(-n-) 

'IT -'IT cos (jw+-) -cos (~) 
n n 

. (8+'IT) j Sln -- ] 
-C-O-S-(-j-w-+-'IT-) .... _-c-:;.;;.s-( -::"e"':"'+-'IT-) . dw • 

n n 

(6 0 53) 

-+ 
The total field H2 surrounding the wedge is the sum of 

the fields due to all the elemental line sources in the 

distribution Thus, 

H
2

(S,8) = Kl(S +w) H(s,8) ds , (6.54) 
o 0 

which becomes, after substituting the expressions in (6.43) 

and (6.51), 



H2(s,e) = 2r[~2 ejk(so+w)cos(.p+e) 

o 

1 
+2'7T 

00 

-00 

, (. + 'IT) -jk (s +w) cosh (mv) 
Sln JV ~ ~ 0 , 

cos (jV+~) + cos (*) 
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Using the result in (4046) to perform the integration with 

respect to s gives 
o 

1 
+2'7T 

where 

(00 

_00 

, (' +'IT) -jkwcosh(mv) J Sln JV ~ e 
----------------~------ F(jmv+'IT) dv , 
cos (jv+.!) + cos (.1) m m 

E: sin(e+, 2~) sine 
F (U = cose-cos~ 

o ' 

cos (e+2~) -cos ~ 

+.L 
2 'IT 

00 

[; 

, e-'IT 
. sinh(nw) sln(n-) 

'IT e-'IT 
-cosh(nw)-cos~ cos(jw+n)-cos(:n-) 

-00 

Sln --,(e+'IT) J 
n 

- e+ dw 0 

cos(J'w+~)-cos(~) 
n n 

Since '0 ~ (13+1/1) ~ 2 'IT , the substitution ofx= j(S+1/1-'lT) 

in Appendix 6 is valid. Hence, 
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F(S+t/J) = 
[ 

8-1f 
-1 sin (11) 

Ii :. '+ ' 8 cos (\~ t/J-1f)_cos (~) 
n n 

- ,S+~-1f ."8+1f' 
C0S ( ) -cos (--) n n 

. (8+1f) j Sln ~ 
(6, 058) 

and also from Appendix 6, 

F (jmV+1f) = -1 [ sin(~) 
n cosh(~)-cos(~) 

n n 

sin(8+1T) ] n 

The substitutio~ of the expressions in (6.58) and (6.59) into 

(6056) gives 

ejkwcos(t/J+S)[ sin(T) -
S+t/J-1f 8-1f cos ( ,) -cos (--) n n 

n sin( 8+1f) ] 

+ -1f 8+1f cos (13 t/J ) -cos (_) 
n n 

-j 
41fn 

00 

-00 

' .. (. + 1f) -jkwcosh (mv) [ Sln JV m e 

cos (jv+.2!.) +cos(2t) m m 

Sln -'. (8+1f) ] 
n 

- + dvo 
cosh(~)-cos(~) n n 

8-1f sin (n-) 

(mv e-1f cosh -) -cos (-) 
n n 

Notice that H2 (s,e) as given in (6060) is independent of E:o 

which defines the reflection boundary of the field radiated by 

the source distribution on 8=1f. 

+t The field H2 , defined with N=2 in (603), is given as 

+t '" H = z (H . + H2), 2 1 

where HI is given in (6036), and H2 is obtained by multiplying 

the expression in (6 0 60) by the normalization factor in (6.21) 0 
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Figure 6.1 

- - - - - - - - - JIl-....... .&.... ...... _--

(p,cp) Figure 6.2 

Figure 6.3 

Figure 6.4 

z axis perpendicular to the paper 
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Figure 6.5 

Figure 6.6 
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CHAPTER 7. 

The loR. technique is compared with the geometrical 

theory of diffraction. An I. R. seconda,ry diffraction 

coefficient is derived which is valid when the distance 

between the edges of a scatterer is small, and is equal 

to the geometrical theory of diffraction coefficient when 

the distance between the edges is large. Results are 

presented which .. show the diffraction from a truncated 

wedge and a strip. 

A modification to, the physical optics current density 

on a body with edges is suggested, and results are presented 

which show the effect of this modification when applied 

to a truncated wedge. 

Results are compared with the accurat~ values obtain?d 

from using the S.C.R. technique. 

Areas of further research are suggested. 

701(a) COMPARISON OF G.ToD. AND l.R. TECHNIQUE. 

The I.Ro technique and the geometrical theory of 

di ffraction use .similar methods to construct an expression 

for the diffracted field around a perfectly conducting 

truncated wedge. Consider the truncated wedge shown in 

Fig. 6040 The incident field is vi, where 

The loR. technique expresses the total field 

surrounding the truncated wedge as 
00 

U = z U, U = I Un' 
n=l 

(7.1) 
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an4 postulates that the summation converges in the limit 

Each term in this summation, which is discussed 

in section 6 0 1(a), is valid for all values of Wo 

The geometrical theory of diffraction field V surround-

ing the truncated wedge can be written in the form 
00 

+ 
V = z V, 

which is assumed to approximate the exact field in the limit 

n + 00 0 . Each of the higher order diffracted fields represent-

ed by the higher order terms in (7 0 3) is derived from (1042) 

on the assumption that w is very much larger than the wave-

length of the fieldo Higher order asymptotic terms of the 

expression in (1 0 25) areneglectedo 

Both U and V represent fields surrounding a perfectly 
n n 

conducting wedge. Ul is the total field surrounding the 
, i 

wedge in Figo 6 0 1 when the incident field is. U, 0 U
l 

is zero 

in 2n-S < ~ < 2n, and in general is non-zero in 0 ~ ~ ~ 2n-So 

The GoToDo field VI surrounding the wedge in Figo 6 0 1 

is given in (1 0 40) as 

VI = V + vd
, go 

where V is the geometrical optics field, and Vd 
go 

is defined in (1 0 42)0 VI is zero in 2n-S < ~ < 2n, and in 

general is non-zer~ in 0 ~ ~ , 2n-S. The manner in which 
; 

the expressions for V and vd are derived in Chapter 1 go 

ensures that at a large distance ·from the wedge apex, 

kp » 10 
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The parameters a and w of the truncated wedge enter 

the field formulations in the derivation of U2 and V2 0 U2 

is the total field surrounding the wedge in Fig. 6 0 2 when 

the incident field is due to a source distribution 

derived directly from Ul and dependent upon w. U2 is zero 

in 2~-a < 8 < 2~, and in general is non-zero in 0 ~ 8 ~ 2~-a. 

V2 is the GoT.Do field scattereq from the wedge in Fig. 6.2 

when the incident field is ui plus a ray of the field VI 

originating at (s=w, 8=0) and travelling along the surface 

towards the wedge apex. V2 is zero in 2~-a < 8 < 2~, and 

in general is non-zero in 0 ~ 8 ~ 2~-ao 

Each term Un +
1 

(n 3- 1) in the summation in (702) is 

directly dependent upon Un' and each term Vn+l (n ~ 2) 

in the summation in (703) is directly dependent upon V 0 n 

Thus; the higher order terms in each summation depend upon 

only the preceeding term and the shape of one of the perfect-

ly conducting wedges in Figs 6.1 or 6.2. U and V both n n 

exist in the same region a~d are zero inside the wedge. 

The boundary conqition in (1.5) and the form of the 

expression in (1.43) show that no electrically polarized 

edge diffracted rays can travel along a perfectly conducting 

flat surface adjacent to the edge. Therefore, when the 

incident field is electrically polarized, 

V = 0, n 
n :;:.. 3, 

in the summation in (7 03}0 No similar condition is 

associated with the Un0 
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7.2(a) TRUNCATED WEDGE. (Electric Polarization). 

In this section, the expression for the fields Al 

and A2 are examined and the relationship between them and 

VI and V2 is established. The notation of the previous 

section is used. 

Because of the mathematical complexity of the terms 

following the second in the series in (6 02), only Al and A2 

are evaluated in section 602(a). The expressions for Al 

an4 A2 are given in (6.5) and (6.33) respectively, and are 

derived for the truncated wedge of Fig. 6.4v illuminated 

by the incident field given in (6 0 4). The.se expressions 

are appropriate when the point at which the field is 

observed is a large distance from the truncated wedge. 

The normalization factor is given in (6.21). 

Firpt, consi.der Al given in (605). From (7.5), 

kp »1. 

A2 (s, 8) f given in ·(6.33), can be written as 

. . (S+$-TI) . (8) . (TI) jkwcos(S+$) 

(7.7) 

A2 (s,8) = 
-]E2S1n Sln - Sln - e . n .. n n 
--------------------------------------------=-- + P, 

S+$-TI 8-TI S+$-TI 8+TI n[ cos ( ) -cos (--) ] [cos ( ) -cos (-) ] n n n n 

where 
00 

~sin (t) 
P= m 

4TIn L . h(mv) -jkwcosh(mv) Sln - e . 
n 

cos (jv+:!,,) +cos (1) m m 

• [cosh (-) -cos (-) ] [ 
mv 8-TI-l 
n n 

.... [ cosh (~) -cos (!:!::.!.) ] -lJ dv. 
n n 
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The trigonometrical identity 

[cos(a)-cos(b-c)][cos(a)-cos(b+c)] 

= [cos(c)-cos(a-b)][cos(c)-cos(a+b)], 

enables the expression in (708) to be rearranged as 

. . (7f) jkWCOS(S+1Ji)[C (7f) (S+1Ji-7f-e)]-l -J€2 Sln n e cos n -cos n 
=~ 

[ 7f S+'/'-7f+e ] -lJ - cos (n) -cos ( 'I' n·) + Po 

The field given by the first two terms of A2 (S,e) in 

is identical to the primary d.iffracted field from edge 2 

predicted by the geometrical theory of diffractiono As 

men tioned in section 701 (a), there is no secondary di ffracted 

field predicted by the geometrical theory of diffraction 

for the truncated wedge when the incident fi.eJ.,d is electric-

ally polarized. Thus, 

A2 = V2 + P, ks » 10 (7012) 

It is readily deduced from (709) by using the method of 

stationary phase15 that 

::: P 0, kw» 1. (7013) 

Hence, from (707), (7012) and (7.13), 

(7014) 

This relationship shows that when the geometrical theory of 

diffraction approximations are valid, the diffracted fields 

given by the first two terms of the series in (7 02) and (703) 

are iden ti cal 0 
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From the discussion in section 701(a) and the 

expressions in (7012) - (7014), it follows that the field 

described by P in (7012) may be regarded as a correction 

to the G.T.D. field V2 when w is small. It is evident 

that if the construction of the summation in (7 02) 

was such that the field Ul was that diffracted by the 

wedge of Fig. 6.2 illuminated by ui , and U2 was the field 

diffracted by the wedge .of Fig. 6 0 3, a similar correction 

for the G.T.Do field VI would result. 

It is now possible to define the I.R. secondary 

diffraction coefficient P (8,~,W) appropriate to a m,n 

perfectly conducting body as in Fig. 7.1, illuminated by 

a field electrically polarized parallel to the edges. 

. -+i -+i 
The flelds AS and Ay are incident at angles ~S and ~y 

on the edges having internal angles Sand y respectively, 

and -+i i 
A = z A 0 (7.15) 

The cylindrical polar co-ordinate system (s,8;z) has its 

origin at the edge having internal angle a. The field A 
diffracted from this edge will be approximated by 

-+ 
A = z A, A =A +A2j 

gtd 1fks 

+ Ai P n (n 1f - 8 ,~ ,b)], k s »1, ( 7 0 16 ) 
y . N,n y 

where Agtd is the GoToDo field diffracted from the edge, 

a and b are the separations of the edges as shown in the 

figure, and from (709)and (7.10), 
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.. (1f) . (\jJ)JOO -jkwcosh(mv) P (8,\jJ,w) = E (e) 4Jsln n Sln m _e _______ -.-__ 
m,n n 1fn cos (jv+~) +cos (1) 

-00 ·m m 

cos (-) -cos ( ) ] [[ 
1f jmv-e-l 
n n 

[ 1f jmv+e ] -ll 
- cos(n)-cos(U n ) JdV, 

m1f = 21f-S, n1f = 21f-a, £1f = 21f-Y, 

En(e) = 1, 0 ~ e ~ n1f, 

= 0, n1f < e < 21fo 

When a and b are large, it follows from (7013) that the 

expression in (7016) reduces to the G.T.D. estimate of the 

field diffracted by the edge at s.=O. 

702(b) TRUNCATED WEDGE. (Magnetic Polarization) 0 

The expressions for the fields HI and H2 given in (6 036) 

and (6 0 60) respectively are examined in this section, and the 

relationship between them and VI and V2 is establishedo The 

notation of section 701(a) is usedo 

The fields HI and H2 are derived for the truncated wedge 

of Fig. 6 04 illuminated by the magnetically polarized 

incident field in (6 035) 0 Terms higher than the second in 

the series in (602) are not evaluated in section 602(b) 

because of their mathematical complexity. The expressions 

for HI and H2 are appropriate when the point at which the 

field is observed is a large distance from the truncated 

wedge 0 The normalization factor for the expressions is given 



From (705), it follows that 

kp »1. 

H2 (s,e), given in (6 0 60), can be written as 

-jE: 2 kjkwcos(~+a) . (w) 
t:: Sln -n n 

w e a+~-w cos(-) - cos(-) cos( ) 
n n n + 

[ a+~-w e-w J r. a+~-w e+w)] Q, cos ( n ) -cos (Yl) LCOS ( n ) -cos (Yl 

where 

Q = -j 
411' n 

co 

J 

. (. w) -jkwcosh (mv) Sln ]v+- e 
-~ 

cos (j v+2:..) +cos (1) m m 
-co 

. (e+w) J Sln --
n 

- mv e+w dv. 
cosh(--)-cos(---) n n 

[ 

e-w sin(--) 
n 

mv e-w cosh(--)-cos(---) n n 
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Using (7010) to rearrange the expression in (7.21) results in 

. (w) jkwcos (~+a) Dc (w) (a+~-w-:-e)J-l Sln - e cos - -cos n· n n 

(7.23) 

The field given by the first two terms in (7.23) is 

identical to the primary diffracted field nrom edge 2 predicted 

by the geometrical theory of diffraction. By using the method 
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f . h 15 h k . 1 th .. o stat10nary p ase w en w 1S arge, e express10n 1n 

(7.22) becomes 

kw» 10 

The use of the identity in (7.10) enables this expression 

for Q to be reduced to 

Q ::: 

-j(kw_ n) . n . n -e 4 sln(-) sln(-) m n kw » 1 0 

nm/2nkw [cos (.2.:.) +cos (1) ] [cos (2.:.) -cos (!) ] m m n n (7 0 25) 

A comparison of the field given in (7.25) with the field 

H~ given in (4020) shows that the expression for Q is identic­

al to the normalized GoT.Do secondary diffracted field from 

edge 20 Thus, 

kw > > 10 (7026) 

From the discussion in section 7.1(a) and the express-

ions in (7021)-(7.26) it follows that the field described 

by Q in (7022) may be regarded as a corrected form of the 

secondary GoT.Do field when w is small. 

In a similar manner to that in section 7.2(a), it is 

now possible to define the I.R. secondary diffraction co-

efficient Q (e,~,w) appropriate to a perfectly conducting m,n 

body, such as that of Figo 7.1, when the incident field is 

magnetically polarized parallel to the edges. The fields 
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H~ and H~ are incident at angles Ws and Wy on the edges 

having internal angles Sand y respectively, and 

The field 
-+ 
H diffracted from the edge at s=o is approximated 

by 

H = z H, H = P 
Hgtd + I;~s e-

jks [H~ Qm,n(8'W S ,a) 

+ Hi Q n (nTI-8,w ,b)] , 
y N,n y 

ks » 1, 

where H~td is the primary GoToD. field diffracted from the 

edge, a and b are the separations of the edges as shown 

in the figure, qnd from (7.22) and (7.10), 
00 

-E (8) j sin(~) Qm,n(8,W,W) = n ~4-TI-n--~~ 

sin(jv+~) e-jkwcosh(mv) 

cos (jv+~) +cos (*) 
-00 

~[ (TI) (jmv-8~.]-1 +. [cos(.!.)-CoS(jmv+8)]-lldVo T cos n -cos n, n n J (7029 ) 

min and Q, are defined in (7018), and E (8) is defined in 
n 

(7.19) 0 vvhen a and b are large, it follows from (7.25) 

that the expression in (7.28) reduces to the sum of the 

primary and secondary GoToD. fields diffracted by the edge 

at s=O 0 

703(a) THE IoRo DIFFRACTION CqEFFICIENT APPLIED TO A TRUNCAT­

ED WEDGE. 

The loR. secondary diffraction coefficient P (8,W,w) m,n 



in (7017) or Q (e,~,w) in (7029) is applied to the m,n 
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problem of approximating the scattering from the truncated 

wedge of Figo 401 when the incident field is electrically 

or magnetically polarized o The notation used in this sect-

ion is that of Chapter 40 

Consider the perfectly conducting truncated wedge of 

Figo 401 illuminated by the electrically polarized magnetic 

vector potential defined in (402) 0 i i 
The fields Al and A2 

defined in (4 09) are incident upon edges 1 and 2 respectivelyo 

The normalized field Agtd in (4 014) is the GoT.Do diffracted 

field surrounding the truncated wedge. By including with 

Agtd the loRo secondary diffracted fields defined in (7016), 

a new estimate A of the diffracted field is obtained as 

A = A + Ai jka2cos(mTI-~) 
gtd 1 e P (~+S-TI ,~,w) 

T,y 

+ A12' ejkalcos~ ( ) P TTI-~,YTI+~-~-S,w, y,T 
(7.30) 

where the normalization factor in (4 01) has been removed 0 

Consider the truncated wedge when the magnetically 

polarized incident fields Hi and H~ upon edges 1 and 2 

respectively a~e given by (4.9) with the symbol A replaced 

by Ho The primary field H~td diffracted by the . truncated 

1 1 wedge is given from (4017) as (HI + H2 ). By including 

with HPtd the loR. secondary diffracted field defined 
g . 

in (7.28), a new estimate H of the diffracted field is 

obtained as 
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+ Hi ejka1cos¢ Q (T7f-,!, y7f +7f-,j,-S w) 2 y,T '/', If', 11' 

where the normalization factor in (4.1) has been 

removedo 

7 0 3(b) THE loR. DIFFRACTION COEFFICIENT APPLIED TO A 

CONDUCTING STRIP. 

The secondary diffraction coefficients P (e,~,w) m,n 

andQ (e,~,w) are applied to the perfectly conducting m,n 

strip. In order to compare some resu1tq with those of 

65 
Yu and Rudduck , use is made·of their normalization 

factor: 

-jkr e 

/ 27f jkr 

Consider the· perfectly conducting strip of width 

2 a in Fig 0 7. 2 • The incident plane wave 
+i 
U is given by 

+i i ui jkrcos(e-8) 
U = z U , = eo, (7033) 

in the (r,e,z) cylindrical polar co-ordinate system 

with origin at the centre of the strip. The G.ToDo primary 

+p 
diffracted field Ugtd is found from (1.42) and (1043) 

to be 

± 

-cos[ka(sin8+sin6 )] . .0 

j sin[ka(sin8+sine o )] 

8- e 
cos~?) 

(7.34) 



213 

where the normalization factor in (7.32) has been removed, 

and the upper (lower) sign in (7.34) holds when the field 

is magnetically (electrically) polarized. In the reflection 

direction e = - e the expression in (7034) reduces to 
o ' 

uP (-e e) = -sec(e) ± J'2kacos(e ), g1;:.d 0'0 0 0 

which is in agreement with the form of (4 015) and (4.29) 

when e = 0 0 o 

By including with U~td the I.R. seqondary diffracted 

fields defined in (7016) and (7.28), the new estimate 

of the diffracted field is found to be 

A(e e ) = A (1"1 e ) + 4' re-jka(sine-sine o) p (1T e 31T e 2) 
, 0 gtd Q, 0 J L 2,2 2 '2~ 0 v a 

+ e jka (sine-sine 0) P2,2 (;.+e ,¥-+e 0 ,2a)] , 

when the field is electrically polarized, and 

+ ejka(Sine-Sineo)Q2,2(re,.g...reo,2a)], 

when the field is magnetically polarized. 

Agtd ( e , eo) is .the complete G. To D. electrically 

polarized diffracted field surrounding the strip. When 

the field is magnetically polarized, the sum of the primary 

and secondary diffracted field of the GoToDo is given by 

where 



214 

+ e 0 -jka(sinS-sinS) J 
(7.38) 

Since each side of the strip provides a direct ray path 

between the edges, a factor of 2 is included with the 

secondary field terms in (7036), (7037) -, and (70 3B) 0 

703(c) NUMERICAL CONSIDERATIONS? 

The integrations in (7017) and (7029) for Pm n(S vl/J,w) 
11 

and Q n(S,l/J,w) can be performed numerica11yo By removing m, 

the odd parts of the integrands, the expressions reduce to 

P (S,l/J,w) m,n = C sin (i) sin (!) m n 

. h(mv) -jkwcosh(mv) 
Sln - e· 

n d 
D(v) v, 

f
CO [COShV cos (!) +cos (~)J 

Q (S,l/J,w). = C ---...,.......,.-----
m,n . D(v) 

o 

• cos(-)-cosh(--)cos(-) [ 
n mv S ] 
n n n 

where 

C = 
.:..j E {s) 

n 
nn 

-jkwcosh (mv) e . dv, 

r: mv 8-n J r mv: . S+n ] ·Lcosh(I1)-Gos(~) Lcosh(~-cos(-n-) 0 (7 0 42) 
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When v is large, the integrands of (7.39) and (7 0 40) are 

-2v of order e and decrease rapidly in magnitude as v increases. 

By expressing the exponential term in the integrands in 

trigonometric functions, the integrands are immediately 

separable into real and imaginary parts. The real parts 

oscillate "as cos[kwcosh(mv) J, and the imaginary parts as 

sin[kwcosh(mv) J. Consequently the zeros of the real part 

of the integrands are located at 

V 
- 1 h- l n 2p-l) 7fJ - m cos L 2kw J (7.43) 

where, within the range of integration, p is any integer 

satisfying 

kw 
P ~+ !:2. 

7f 

Similarly, the zeros of the imaginary part of the integrands 

are located at 

v = ~ cosh-
l [~J 

where, within the range of integration, p is any integer 

satisfying kw 
p:;;.-. 

7f 

The integrations have been evaluated by performing 

a Simpsonis rule integration over each half cycle or "hump" 

of the real and imaginary parts of the integrandso The 

convergence of the calculation is indicated from a comparison 

of the area under a hump with both the sum of the areas under 

all preceeding humps, and the area under the preceeding 

hump. Convergence is attained when either the area under 

a hump is small compared with the sum of the areas 
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under all preceeding humps, or the sum of the areas under 

two consecutive humps is small. In the latter case, only 

one half of the area under the final hump is included 

in the area summation. 

7.3(d) RESULTS. 

Figures 7.3 and 704 indicate the difference between 

the I.R. and G.T.D. secondary diffracted fields given in 

(7.29) and (7.25) respectively. Fig. 7.3 sho.ws the 

secondary diffracted field from edge 2 of the truncated 

wedge of Fig. 6.4 when only ~dge 1 is directly illuminated 

by the incident magnetically polarized field, and Figo 7.4 

shows the. sum of the primary and secondary· diffracted 

fields from edge 2 when both edges are directly illuminated. 

It is evident that there is an appreciable difference 

between the I.R. and GoT.D. secondary diffracted fields 

when w is small, and that this diff.erence is not negligible 

when compared with the primary diffracted field. 

The curves in Fig. 7.5 compaJ:"e the G.T.D. diffracted 

field, the primary G.T.D. diffracted field, the field 

obtained by using the I.R. secondary diffraction coefficient 

as in (7.31), and the magnetically polarize d field given 

by the S.C.R. technique for a symmetrically truncated wedge. 

The increased accuracy of the loR. secondary diffraction 

coefficient over the oth~r ap~rox~mat~ methods is evident. 

The expression in (7.30) has been evaluated for a 

symme-eri cally truncated wedge wi t1;l ·2X = 94 0 , w = 0 .1A v and 
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is plotted in Figo 7 060 Also plotted are the'GoToD o 

diffracted field p the diffracted field of Burke and Kell­

er47 ,91! the field from an undeformed wedge with 2X = 94 0
Q 

and the accurate value of the diffracted field as calcul-

ated from the SoCoRo technique 0 Again,the increased accuracy 

of the IoRo secondary diffraction coefficient over other 

approximate methods is evident o Similar remarks apply 

to the curves in Figo 7070 

The curves in Figso 705, 7 0 6 and 7.7 may be compared 

with those in Figs. 4022, 4021 and 4.23 respectively. 

The expressions in (7.30) and (7.31) involving the I.R. 

secondary diffraction coefficient have been evaluated for 

seven values of w in the range 0005A~ w ~ 100Afor the case 

of normal backscattering from the truncated wedges approp= 

riate to Figs. 4025 - 4.30. When the curves obtained 

are plotted on these figures, they are inqistinguishable 

from the accurate curves. 

The three sets of curves in Fig. 7.8 show estimates 

of the diffraction from a perfectly conducting strip 

illuminated normally by an electrically polarized field. 

The results obtained from (7.36) are compared with the 

geometrical theory of diffraction estimate. It is 

apparent that the inclusion of the I.R. secondary diffracted 

fields in (7.36) only slightly modifies the GoT.D. estimate 

7f 
when w > O. SA, except near e = ±2'0 The expression in (7036) 

has not been evaluated in these two directionso 
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The curves in Fig. 7.9 show the field diffracted 

by a perfectly conducting strip illuminated normally by a 

magnetically polarized field. The figur~s show the primary 

GoT.D. field (7.34), the sum of the primary and secondary 

G.TeD. fields (7.38) y the sum of the primary G.T.D. and loR. 

secondary fields (7.37), and the diffracted field of Moshen 

d . d62 an Haml • The use of the I.R. secondary diffraction co-

efficient results in a significantly better estimate of the 

field in the vicinity of e = ::t. ~ than does the G.TeD. or 

the method of Moshen and Hamid. A similar improvement is 

noticeable in Fig. 7.10 where the magnetically polarized 

incident field is not normal to the strip. 

It is concluded from the above results that when the 

separation between edges is small, use,of the I.R. secondary 

diffraction coefficients results in significantly increased 

accuracy over the asymptotic coefficients of the G.TeD., and 

also over the coefficient of Moshen and Hamid for the strip. 
I 

7.4(a) MODIFIED PHYSICAL OPTICS. 

Before a modification is suggested to the physical 

optics estimate of the surface current density ona perfectly 

conducting body with edges, the current density on the 

perfectly conducting wedge of Fig. 1.1 will be derived from 

(1.16) and (1033) 0 The surface ~= 0 of the wedge is called 

surface 1, and the surface~= 2n-B is called surface 20 

Consider the wedge illuminated by the electrically 

polarized plane wave given by 
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(7047) 

An expression for the surface current density K2 (r) 

at p = r on surface 2 is derived in section 6 0 2 (a) 0 The 

-+ surface current density Kl(r) at p= r on surface 1 can be 

derived in a similar manner. Thus, 

-+ 
,K ( r) = z K ( r) , Kl(r) - y(1/J), K2 (r) = y (mTI=1/J) f 

where 

-2jk 
Y ( ~) =. ].l E: (E;;') 

00 
(7049) 

c( c) = -ksin(l) Ym r,s ].lTI m 
. h( ) -jkrcosh(mv) 

Sln mv e d 
E; v, 

cos (jv+~) -cos (-) m m 

(7050) 

00 

m'IT = 2TI-S, o < E;< TI , 

= 0, TI < E; ~ mTI. (7051) 

The 

and 

physical optics surface current. densities Ki(r) 
-+p 
K2 (r)on surfaces 1 and 2 respectively are given in 

(4 0 40) and (4041). It follows from (7048) and (7 049) that 

Consider the wedge illuminated by the magnetically 

polarized plane wave given by 
A i 

= z·H , 
jkpcos (¢-1/J) e 0 (7053) 
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An expression for the surface current density L2 (r) at p= r 

on surface 2 is derived in section 6.2(b)0 The surface 

-+ current density Ll(r) at p= r on surface 1 can be derived 

in a similar mannero Thus, 

where 

° (t;) = 2E: (t;)ejkrcost; + o~(r,t;) f (7055) 

00 

_00 

. (. +. 7f) -jkrcosh (mv) 
Sln ]v.-e m 

--------------~------- dv, (7.56) 
cos ( j v+!.) -cos (I) m m 

A A A A 

r l = pcos<jJ-<jJsin<jJ, r 2 = pcos(<jJ+i3)-<jJsin(<jJ+i3) Q 

(7 0 57) 

and m and E: (t;) are defined in (7051) 0 The physical optics 

surface current densities ti (r) and L~ (r) on surfaces 1 and 2 

respectively are given in (4 067) and (4069)0 It follows 

from (7054) and (7 0 55) that 

-+ -+P A C -+ -+P A c 
Ll(r) = Ll(r) + r l 0m(r,l/J),L2 (r) = L2 (r)-r2om(r f m1f=l/J) 0 

(7058) 

15 The application of the method of stationary phase . 

to the expressions for y~(r,t;) and o~(r,t;) shows that at a 

large distance from the wedge apex, 

y~(r,O ::: 0, o~(r,t;)::: 0, kr » 1, 
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and thus, 

L2 (r) t: L~ (r), kr» 10 

It is shown in section 3.1(a) that when the field 

is electrically polarized, the surface .current density tends 

to infinity as the wedge ·apex is approached. (This 

behaviour can also be seen by substituting the expression 
-+ 

in (3.11) into (2.28).) The P.O. approximations Ki(r) and 

K~(r)tio not predict this current density behaviour. Simil~ 

arly, it follows from section 3.l(c) that when the field 

is magnetically polarized, the surface current density 

is contin~ous around the wedge apex • (This behaviour 

. can also be seen by substituting the.expression in (3.11) 

into (2.58) 0) The physical optics approximationsLl(r) and L~(r) 

are discontinuous around the wedge apex if. only one surface 

of the wedge is illuminateq. 

The expressions in (7.60) empha,size that the physical 

optics approximation to the surface current density on a 

perfectly conducting body .is equivalent to regarding each 

point on the body as a point on an infinite perfectly 

conducting plane 0 In the .. case of the perfectly conducting 

wedge, y~(rb'lJi) and o~(r,lJi) may be regarded as a perturbation 
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to the physical optics current density on surface 1 

due to that surface terminating in an edge at r "" 0 0 

Similarly, Y (r,mw-~) and 8 (r,mw-~) may be regarded m m 

as a perturbation to the physical optics current density 

on surface 2 due to that surface terminating in an edge 

at r=O ~ These perturbations have little effect beyond 

89 a distance of about one wavelength from the edge • 

This suggests that the perturbations could be used 

..... wi th the physical optics current density to approximate 

the current density on a perfectly conducting body wi t.ll 

edges 0 

The Modified Physical optics (MoPoO~) current 

density on a perfectly conducting body is derived by 

adding a term of the form ym(r,t;) or 8m(r,O (depending 

upon the polarization of the f~eld) to the expression 

for the physical optics current density in the vicinity 

of an edgeo This approximation is equivalent to regarding 

each edge of the body as the apex of an infinite 

perfectly conducting wedgeo 

For example, consider the perfectly conducting 

body in Figo 7.10 The geometry of the body is described 

in section 7 0 2(a), and m and n are defined in (7 ol8) 0 

When the incident field is electrically polarized in t.he 

+c 
z-direction g the MoPoO. current density K (r) at s "" r 

on the surface 6= 0 is 
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+ Ai c a Y n ( r , 1)! 8 +8 -1f) , 

where A~ and A~ are the incident fields on the edges 

of internal angles a and 8 respectively, and KP(r) is the 

physical optics current density. 

When the-incident field is magnetically polarized 

in the z-direction, the M.P.O. current density tC(r) 

at s=r on the surface .S = 0 is 

where tp(r) is the physical optics current density, and 

A 

r = s cose - esinS. 

Hi and Hi are the incident fields on the edges of ~nternal 
a 8 

angles a and 8 respectively. 

Notic.e that while physical optics predicts no current 

density if the surface is not directly illuminated v M.P.O. 

predicts no current qensity only if neither edge at the 

ends of the surface is directly illuminatedo 

If· in the approximation to the current density given 

in (7 0 61) and (7.62) the functions YT(X,~) and 0T(x,l;) 

are defined to exist only for 0 ~ x < a, the correct 

behaviour of the surface currents at the edges is obtained o 
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However, in this case the approximation to the current 

densi ty would be discontinuous at at least one point on the 

surface. The M.P.O. current d~nsity is continuous on the 

surface, and predicts, an infinite-current density at the 

edges when the field is ,electrically polarized. When the 

field is magnetically polarized~ the M.P.O. current density 

is continuous around the edges if a is large. 

7.4(b) SOME DEFINITIONS. 

It is convenient at this point to make some definit~ 

ions. Define 

f
w c (. ~,) jkrcosn d . 
Ym r,.., e r, 

o 

Substitution of the expression in (7.50) and evaluation 

of the integral results in 

f

co 

. h ( .)' '{ 1 -jkw[ cosh (mv) ~cosn J} 
Sln mv -e ' . dvu 

-co [cos (jv+ ;) -cos ~)J [cosh (mv) ~cosn ] 

which; by substituting x == j (n-n) into Appendix 7 Q 

reduces to 

== irE (E;) sinE; " + 
' 2 Leos E;+cos n 

where E(E;) is defined in (7.51), and 

(7.65) 

(7.66) 
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sin (~) 
41f 1

00 'h( ) -jkw[cosh(mv)-cosnJ 
Sln mv e 

--------------~------------~-- dv 
~ cos (jv+~) -cos (£)][cosh (mv) -cosn ] 

(7 0 67) 

if w is finiteo When w is infinite, it follows from (4046) 

that the result of the iqtegration with respect to r in 

(7064) requires 

::m (00 , s ,11) = 0 0 

Define 

f

w . 

'm(w.I,n) = ;S1D(n) 0 1~(r,l) ejkrcosndr, 0, n < 2 •. 

(7 0 69) 

By substituting the expression in (7056)! evaluating 

the integral with respect to r, and using Appendix 8 with 

x = j (n-1f) , 

Llm(w,s,n) = -~ [E (S) sinn + 
coss+cosn 

where the definition 

sin(!~-:22.)' J 
m + 

m[cos(1f~n)-cos(~)J 

(7070) 

= jsinn 
41f [ , (' +1f) -]'kwrcosh(mv)-cosri1 

Sln ]V - eL:I !J 
m dv 

[cos (jv+~) ~cos (£) ] [cosh (mv) -cosnJ 

( 7 0 71) 

holds if w is finiteo When w is infinite, 

Tm(oo,s,n) = 00 (7072) 



226 

704(c) MoP.Oo APPLIED TO A TRUNqA,TED WEDGEo 

Consider the perfectly conducting truncated wedge of 

Figo 401 in the presence of an electrically polarized 

fieldo The fields At and A~ incident upon edges 1 and 2 

respectively are defined in (4.9 ) 0 The notation used 

in this section follows .that in. Chapter 40 

Using the definition in (7 061) i the MoPoOo surface 

current density K~(r) at p = r on the surface¢= 0 is given 

by 

(7073) 

where Kl(r) is thePoO. surface current density defined 

in (4 040) 0 TheMo P 0 o. surface current density K~ (r) 

at p=r on the surface ¢= mTI is given by 

(7074) 

where K2 (r) is the PoOo surface current density defined 

in (4 041)0 The MOPbOO surface current density K~(X) 

at, a distance x from edge'l on the ,surface of length w 

between edge 1 and edge 2 is 

K~(X) - K3 (x) + At Y~(XiTTI-1J!) + A~ Y~(W~Xi1jJ+S~'rr) 11 (7075) 

where K3 (x) is the PoO o surface.current density defined 

in (4 0 50) 0 

The field radiated by the PoO o current density 

on the truncated wedge is evaluated in Chapter 40 The 

magnetic vector potential AC radiated by the iBmodifyingl! 
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curreht density on the wedge is found from (1036) I (7073)-

( 7 0 75) , and ( 1 0 21) to be 

-+c .... c 
A = zA v 

where rm(wv~,n) is defined in (7 0 64) p and the 

normalization factor in (401) has been removed 0 

The.MoPoO o field A scattered by the truncated mpo 

wedge is given by (7076) and (4057) as 

A = A +A
c 

mpo po 0 

straightforward but laborious algebraic manipulation 

enables A to be reduced to mpo 

(7077) 

(7,,78) 

where Agtd defined in (4014) is the geometrical theory of 

diffraction field surrounding the truncated wedgeo 

Now copsiderthe perfectly conducting truncated wedge 

of Figo 401 in the presence of a magnetically polarized 

fieldo The fields Hi and H~incident upon edges 1 and 2 

respecti vely are defined in (4 9 9), with the. symbol A 

replaced by Ho Using the definition. in (7062), t.he MoPoO o 
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surface current density t~(r) at p= r on the surface ~=O 

is given by 

(70 79) 

where tl(r) is the physical optics current density defined 

" in (4 0 67) v and r 1 is defined in (4068) 0 The MoPoO o surface 

. -+c ( ) current denslty L2 r at p = r on the surface ~= mn is given. 

by 

-+c -+ i c 
L2 (r) = L2 (r). - H2 r 2 8 (r a mn d,) y - 2f -0/ V 

" where the physical optics cur~ent density t 2 (r), and r::U 

are both defined in .(4 0 69) 0 The MoPoOo . surface current 

. -+c ( ) denslty L3 x at a distance x from edge 1 on the surface 

of length w of the truncated wedge is 

L~(X) = L3 (x) + r3 [Ht 8~(x,Tn-1jJ) + H;8~(W-x,1jJ+s-n)J g 

(7081) 

-+ 
where L3 (x) is the physical optic.s current density 

defined in (4 0 74), and 

r -3 -
A A 

-pcos(~+S)+~sin(~+S) 0 

The field radiated by the PoGo current density on t.he 

truncated wedge is evaluated in Chapter 40 The magnetic 

-+c 
field intensity H radiated by the "modifying" current density 

is found from (1036) 1 (7079) - (7.81), and (1021) to be 
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where Llm(w~l;~n) is defined in (7.69) Q and the normalizatio~l 

factor in (4.1) has been removed. 

The M. P.O. field Hmpo scattered by the truncated 

wedge is given by (7.83) and (4.79) as 

H = H + H
C

• mpo po 

Straightforward but liiliorious algebraic manipulation 

enables Hmpo to be reduced to 

The primary diffracted field H~td of the GoT.D. 

is given by I 1 (HI + H2 ) in (4.17) after normalizat:ion by 

the factor in (4.1) 0 

704(d) DISCUSSION AND RESULTS. 

It is shown in section 7.4(c) that the MoP.Oo 

approximation to the surface current density on the trllnc= 

ated.wedge is equivalent to adding to the primary field 

of the geometrical theory of diffraction two fields for 

each edge. Each of these· fields is a function of 
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the length of one ~side of the body adjacent to theedge p 

and is zero if that side is of infinite extento However v 

these fields are dependent only, upon the in.ternal angle 

of one edge of the body, and ther~;foredo not describe 

any interactive effects-between theedgeso Unlike. physical 

optics, MoPeO e predicts a polarization sensitive back~ 

scatteredfieldo 

The numerical evaluation of the integrals in (7078) 

and (7085) was accomplished by using a technique similar 

to that desc:ribed in section 703(c) 0 The curves in Figso 7 011-

7013 compare the fields. radiated by the Po 0 0 current density, 

the MoPoO o current density, and the field diffracted by the 

undeformed wedge, wi th the field di;Efracted by the 

symmetrically truncated wedge illuminated by an electrically 

polarized fieldo The three figures apply to the wedges 

appropriate to Figso 4021 and 706, 4 023 and 707, and 4024 

respecti vely" It can be seen that .the M.\oPoOo current density 

gi ves a more accurate estimate of the diffracted field than 

does the PoOo current density .. although in certain regions 

Figo 7011 shows the'most aC(l'!urate estimate is that of the 

field diffracted from the undeformed wedgeo 

The magnetically polari:z;ed field diff,racted by a 

symmetrically truncated wedge is shown in Figo 70140 It is 

apparent that the field radiated by the MoPoO o current 

density is a more accurate estimate of the scattered field 

than that radiated by thePoOo current densityo 



231 

The MoPoO o approximation has also be,en used to 

estimate the normally backscattered field from the wedges 

appropriate to Figso 4 0 25 - 4030, ,with w in the range 

When the curves obtained are, plotted 

on these figures they are indistinguishable from the accurate 

curves. 

It is concluded from· these·' and other curves v that 

although the MoPoOo approximation results in a more accurate 

estimate of the scgttered field than dOeS P 000 u it is in 

general le~~ accurate ,than the use of the IoRo secondary 

diffraction coefficients defined ih sections 702(a), 

and 702 (b) 0 

7 05 (q.) SUGGESTIONS FOR, FURTHER RESEARCH 0 

The application of the SoCoRo technique to bodies 

other than the deformed wedge would give further insight 

into theef~ect· of boundary perturbations on scattering 

patterns 0 In particular, the scattering from deformed 

circular cylinders and spheres· could, .becompared with the 

GoToD o and PoO o approximations and could also be used to 

1 t th k . t' 78 i 79 eva 'ua e e Foc approx~ma~on It may be possible to 

use the formulation of scattering from a deformed wedge to 

augment present knowleqge on diffraction phenQmena associated 

with the propagation of radio waves over mountain ranges 92 0 

The PoCoRo technique has yet to be applied to a 

scattering problemo The. scattering by dielectric cylinders 

could be found using this technique,. and the results used to 

evaluate the accuracy of approximate methods of determining 
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the scatteringo 

The results of applying the IoRo secondary diffraction 

coefficient to other scattering bodies such as polygonal 

cylinders and thick half-planes could be compared with results 

obtained by other methods 20 ,51,88,90 0 The increased 

accuracy of the l.Ro secondary diffraction coefficients over 

that of the GoToDo encourages further investigation of the 

series in (6.2) with the aim of finding higher-order edge 

diffraction coefficientso A study of the convergence of 

this series.is also warrantedo 

It has been shown ,how the application of the loR. 

technique to the truncated wedge gives rise to the loR. 

secondary diffraction coefficients. Similarly, the applicat-

ion of the I.R. technique to scattering bodies such as those 

of Figo 6 0 6 may give further insight into the nature of the 

diffraction from the edge formed by two curved surfaces, 

or a curved and a flat surface
56

0 

The MoPoO. approximation to the surface current 

density on a perfectly conducting rectangular cylinder 

20 21 89 . could be compared with other results ' , ln an attempt 

to further improve the current density representationo 

The volume of recent li terature concerned with the 

derivation and evaluation of simple approximate methods of 

determining scattered fields shows that this is currently a 

most rewarding avenue of research. These approximate methods 

not only enable estimates of the field scattered by 

complicated bodies to be calculated quickly and with little 

programming effort, but can also provide an insight into the 

nature of scattering phenomena. 
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Figure 7.1 z axis perpendicular to the paper. 

z 

2a----'Io1>-I1 

Figure 7.2 Scattering from a strip. 
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APPENDIX 1 

Consider 

S = Jp(kb) 

H ( 2) (k r), J (k r) 
]J . P dr. 

r 

By using (2046) f and letting khave a smallnegativ~ 

imaginary part such that 

k= (a- j E:) , E: + 0, 

S can be expressed as 

H ( 2) (kb) H ( 2) (k a ) J ( k a ) 
P ]J .. p 

But14 
Q 

and there fore 



s = [ 
ka 

2 2 ]..l -p 
{H (2) (ka) J (ka) 

]..l+l p 

- H~ 2) (ka) }Jp + 1 (ka) } 
_ H~ 2) (ka) J p (ka)l 0 

]..l+p J 

APPENDIX 2 
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Let Cm(X)f Cm(x) be any two cylindrical Bessel functions 

of order m and argument·xo Then 

00 -
S = I [cm_l(x) sin{(m-..,l)a} + Cm~l(x) sin{(m+l)a}]Cm(z) 

m=-oo 

00 -
= I. [Cm(x)sin{ma}Cm+l (z) + Cm(x) sin{ma}Cm_l(z)] 

m=-oo 

00 

2m ~ 

= I - C (z)C (x)sin{ma} 
z m m 

m=-oo 

00 

= I 4m C (z)C (x)sin{maL z m m 
m=l 

APPENDIX 3 

Consider 

F = ~(S/,) 
q 

_3 _ J S/, (k8) 
a 8q 

1 S/, = 0,1,2,---, (A3o 1) 

8= 0 

where ~ (S/,) is some function of S/, 0 Repeated use of the 

recurrence relation for Bessel functions 14 



shows that F may be written as 

q 

I an J9,_q+2n(k8) 
n=O 

where the an are non~zero constants, 

and a = 10 Since o 

J (0) := 1· o ' , J (0) = 0, Pr'O .. p 
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8=0 

where p is any integer, 9, is restricted to the values 

9, = q - 2n, n ,< 9. , . 2' 

for F to be non-zeroo The restriction on n arises from 

the condition in (A3oJ,) tpat 1 be positive or zeroo 

If the function ~(9,) is defined such that 

~{9,) = 0, 1= q - 2n, q 
Vn~ 1 ~ n ~'7 ' 

then 

F=Ov9,r' q,' 

kq = ~ (q) (1) , 1= q 0 

APPENDIX 4 

Consider the : convex reflecting surface C in Fig 0 ' AI, 

illuminated by the incident plane wave Ui(T) at the point T. 

The radius of curvature of the surface is Ho The angles 
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made by the incident field with the normals Ol?, OQ to the 

surface at P and Q are sand s+o ¢ respectively v where LPOQ =0 ¢ 0 

Let. IUi(T) I = Aov and IUr(S) I = A, where Ur(S) is the 

reflected field at So The conservation of energy flux in a 

cone of the reflected field requires 

From lIOQX u 

and since 

From (A401) and 

and hence 

P 1 0 8 A~ = ( p 1 + r) 0 8 A 
2 

0 

08 = 2 o¢v 

Ro¢ 

PI 

(A402) F 

A 
Ao 

-+ 

-+ 

= 

R 
"2"COS S1 

jRC08 S 
2r' 

, o¢ -+ 0, 

r »R, 

Ur(S) = ± Ui(T) jRc~~s e- jkr , r »Rv 

where the upper (lower) sign applies when the field is 

magnetically (electrically) polarized in the z-directiono 

APPENDIX 50 

Consider the functions I (8-n) and I (8+n) where 

I ( s) 

J

co sin (j w+!.) 

= .[COS(jw+~)-cos(i)J[COSh{nW)+coshXJ dw, 
n n 

-co 

o < 8 < nn, nn = 2n -a, 1 < n < 20 
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This integral can be evaluated by performing two contour 

integrations. in the complex: w plane of Fig. A2. Cl 

is the contour along the real axis from -00 to 00, C2 

is the semicircle of radius R closing Cl in the upper half­

plane (D.HP.) ,·and C
3 

is the semicircle of radius R closing 

Cl in the low~rhalf-plane(L.HP.). In abbreviated 

notation, 

I 
+ I = <J.hp' (A5 0 2) 

Cl C3 

where 0uhp and 0lhp are the sum of the residues in the­

upper. and lower half-planes respecti velyo Examination 

of the integrand of I (s) shows that 

and thus, from (~502), 

(i) Consider the poles located at 

w 

where p is any integer or zero. The notation p± is used 

to denote the pole located.byp with the ± sign in (A5.4). 

The residues 0 ± at the p± poles in the U.HP. are 
p 



27f , = 
cos(±s+2pn7f)-coshx 

± and the, residues Yp in the L.H~ are 

+ 
Y~ = 

Hence, 

-Y_p ' 

-27f 

cos(±s+2pn7f)-coshx 

o = 
p 

+ -Y -p 

(a) When s = (6-7f) i examiriationof (AS.4) subject to 
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(AS. S) 

+ the restrictions on 6 and n iri(AS.l) shows that the p-

(p. ~ 0) poles all lie in the U.HP., and the p± (p <0) poles 

all lie in the LoHP o 

The sum 01 of the residues o± p' y± in the upper and 
p 

lower half-planes reduces, with the use of (ASoS), to 

° - 0+ + 0 ' 1 - 0 0 = -47f 
cos6+coshx , 

when s= (6-7f) 0 

± + (b) When s = (6+7f), the p (p ~ 1) poles and the 0 

+ pole located by (ASo4) lie in the UoHP o The p- (p < 0) 

poles and the 0 pole lie in the L .HP. provided 6 < 2 7f-2 a. 

If 6 >27f-2a, the -1+ pole lies in the D.HP. Then, using 

where 

-E: 47f 
o 

cos~ ( 6+2 a) +coshx' 

E: = 1, 27f-2a < 6 < n7f, 
o 

= 0, 0 < 6 < 27f-2a. 

(AS. 7) 
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(ii) Consider, the poles located by 

00= ± ~ + j(2p+l)~, (AS a 8) 

where p is any integer or zeroa The notation p± is used 

to denote the pole located 'by p with the ± sign in (ASa 8) a 

The residues 0 ± at the p± poles in the U. HP. are 
p 

2 7T sinh (±~ + j 2 P 7T ) 
n n 

+ + 
and the residues yp at the p- poles in the L.HP. are 

+ 
y":"" = 

P 

-27T 'h (+X+' ,2 p7T) 
Sln -n In-

n sinh ~±x) rcosh( ±~ j 2p 7T) -cos (i)] a , L\ n n n 

'+ ± 
Co~parison of 0p and yp shQWS that the ~xpressions in (ASaS) 

are valida 

The locations of the poles given by (AS 0 8) are independ-

ent of ~a 
+ The p- (p >- 0) poles lie in the UoHP. Q and the 

+ 
p- (p < 0) poles lie in the L~HPa Using (ASoS), the sum 

+ + 
02 of the residues 0p'y~ in the upper and lower half planes 

is given by 

= 0+ + 0 
o 0 

47T sinh(~) 
- ------~~~----------~~ 

n sinh ~ [cosh (~) -cos (i)] a 
n n. 

(AS 0 9) 

Notice from the p~sition ot: the poles that 02 is unchanged 

if x is replaced by j (Y-7T), 0 ~ y ~. 27T a 
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From (A5o 3) 

I ( ~) = 

and thus, from (A5.6), (A5.7), and (A509), 

~ 
sinh (~) 

n I(El-rr) = 2rr . x El-rr n sinh x [cosh (i1) -cos (n-)] 
- [cose+COShXJ-~ , 

I ( El+rr) 
[ sinh (?:.). 

= 2 rr ~--'-s-1---n-h-'-x-:~~C;"'O-:-h-' -(-~-) -.--c-o-s-.-( "::"El n":""+-rr-) J~ 

J ( ~) 

APPENDIX 6 

Consider the .functibns J(El-rr) and J(El+rr) where 

1

00 sinh(nw) d 

= [cos(J'w+~)-cos(i)][cosh(nw)+coshxJ w, n . n 

_00 

o < El < nTI, nrr = 2rr-a, 1 < n < 2. 

This integral is similar to that evaluated in Appendix 5, 

and since the integration is ,performed in a similar manner, 

only the essential steps are noted here. The location of 

the poles of J(~), and I(~) of Appendix 5, are identical. 

(i) Consider the poles located by 

[ ~ rr 1 w = j ±- + - + 2prr 
n n 



250 

where p is any integer or zeroo The .residues 0 ± at the p± 
p 

poles in. the U. HP. are 

21fj sin(±~+2p1fn) 

sin(±~)[cOS(±~+2p1fn)-coshX] 

± and the residues Yp in the LoHP. are 

+ 
Y~ = 

and hence 

-21fj sin(±t+2p1fn) 

sin(±I)[cos(±~+2p1fn)-coshx] 
n 

+ + o = -Yp ' 0p .=-Y 0 P -p 

(a) When ~ 
+ ± = (8-1f)! the sum ()l of the.residues o~, Yp 

(A6 Q 1) 

in the upper and lOWer half-planes reduces I with the· use of 

(A6 01), to 

() = 0+ + 0 
100 = 41fj sin8 

8-1f [ ] sin (---) cos8+coshx n 

(b) When~= (8+1f), 

where 

E 41fj sin(8+2a) 
o 

B+1f . ' sin (--) [cos(8+2a)+coshx] 
n 

E = 1, 21f-2a < 8 < n1f, 
o 

= 0, 0 < 8 < 21f-2ao 

(A6 • 2) 



(ii) Consider the poles located by 

w =± x + . (2 +1) ~ n J p n' 

251 _ 

+ ± 
where p is any integer or zeroo The residues 8- at thep 

p 

poles in the UoHP. are 

+ 8- = 
P r x 2pn l; ] ' n Lcosh (±n + jl1) -cos (n) 

+- + 
and the residues ypat the-p- poles in the LoHP are 

± "'-2nj 

yP = n[cosh(±~ + j2~n)_Cos(~)J 0 

+ + Comparison af 8- and - shows that the expressions in (A6 ol) p yP 

are valido 

The sum 02 of the residues 0 ±and y± in the upper-p p 

ana lower half-planes is 

02 = 8+ + 8 
o 0 = 

n rcosh (~) -cos (1)J 
~ n n 

Notice the 02 rema~ns unchanged if"x is replaced by 

j (y-n) 11 0 ~ Y ~ 2 n 0 Since 

from (A6 02), (A6 0 3), and (A604), 

(A6 <i 4) 
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E: sin (e+2a) 
J ( e+TI) = 2 TI j --~~-'+-. -.--------­

sin( n TI ) [cos (e+2a}+coshx] 

APPENDIX 7 
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Consider the expression J(~) defined in Appendix 6, 

but subject to the restrictions 

1·< n < 2, 

(i) Consider the poles locat~d by 

w = J' [± ~ + 'IT 
n n + 2pTI L 

+ Using the notation of Appendix 6, the p- (p ~ I) poles and 

0+ + the pole lie in the U. HP.; and the p- (p < 0) pol~s and 

the o· pole lie in the. L 0 HP., provided ~ > TI 0 I f ~ < TI, tb.e 

o pole lies in the UoHP. and 01' the sum of the residues 

in the upper and lower half-planes is . 

where 

_E:..;;.(...;~:.::)~4 .... TI_J{,...~ _S.;..,l.-,' n;..;...::,~ __ . , 

sin(I}[cos~-coshxJ 
n 

= 0, TI<~<nTIo 

(ii) Consider the poles located by 

x, TI 
W = ± n + J(2p+l)n 0 

(A 701) 

The sum ° 2 of the residues in the upper and lower half-planes 
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is given in (A6 0 4) 0 

Hence, from (A6 0 4) and (A7ol) 

-_ 2 ,[, E U;} sin€; 1 r h (x) s J -lJ 1fJ - - , + nLcos Ii -cos(n) 0 

sin{~)[coss-coshx] 

APPENDIX 8 

Consider the expression I (s) defined in Appendix 5, but 

subject to the restrictions 

1 < n < 2, 

(i) Consider the poles located by 

w = 
+ 

Using the notation of Appendix 5, the p- (p ~ 1) poles and 

the 0+ pole lie in the UoHP.; and the p± (p < 0) poles and the 

o pole lie in the LoHP. proviqed s > 1fo If S <1f, the 0 

pole lies in the U 0 HP. and CJ l' the sum of the residues in 

the upper and lower half-planes is 

(A8ol) 

where 

= 0, 1f < S ~ n1fo 

(ii), Con'sider ,the poles located by 

w = ± ~ + J'(2p+l) ~ 0 

n' n 

The sum CJ 2 of the residues in the upper and lower half-:t?lanes 

is given in (A5 0 9}o 

Hence, from (A5 0 9) and 

I(s) = 21ff. E(O . + 
Lcos s-coshx 

(A,8.l) 
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-+i 
U 

o 
Figure A1 Reflection from a cylindrical surface. 

Im(w) 

Re(w) 

Figure A2 
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