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ABSTRACT

An expression for the field scattered by a pgrfectly
éonducting wedge with a deformed apex is formulated as a
finite matrix equation to illustrate the application of the
current density replacement technique. This technique enables
the scattering from any size of body to be determined to a
given accuracy after the inversion of one finite matrix,
provided that the shape of the body can be derived by inward-
ly deforming a finite part of a body from which the scattering
is known explicitly. The size of only the deformed part of
the body is limited by available computational facilities,

The field scattered from truncated and rounded wedges
is calculated. These results not only enable the effect of
edge deformation to be studied, but are also used to evaluate
the accuracy of the geometrical theory of diffractioﬁ and
physical optics estimates of the diffracted field.

Expressions for the field scattered by a perfectly con-
ducting wedge in the presence of transversely polarized line
sources are found. These results are used with an iterative
current density replacement technique to formulate expressions
for the field scattered by a truncated wedge, and thus derive
a secondary edge diffraction coefficient for use with the
geometrical theory of diffraction. This coefficient is
applicable to perfectly conducting bodies with small or
large separation between edges. The increased accuracy obtain-
able with this coefficignt, and a modification to the physical
optics representation of the current density on a body

with edges, are discussed,



SYMBOLS, TERMINOLOGY, AND ABBREVIATIQONS

magnetic field intensity

electric field intensity

magnetic flux density

electric flux density

electric current density

electric charge density

magnetic vector potential

E, H, or A

surface current density at x

permeability

permeability of free space

permittivity

permittivity of free space

angular frequency; variable of integration
velocity of electromagnetic propagation c = (ue:)“J/2
wavelength

wavenumber k = w/c = 2u/A

Bessel function of the first kind of order v and
argument =z

Hankel function of the second kind of order v and
argument z

Any cylindrical Bessel function of order v and
argument z

the Dirac‘delta function



3 37 = -1
5] . . . ° aX
X time derivative Of2{rX:=§€
r unit vector
n outward unit normal vector to a surface or contour
F the vector of magnitude F
v X the vector curl operator
v . the vector divergence operator
v the vector gradient operator
(DI¢IZ)
(s,0,2)
cylindrical polar co-ordinate systems
(r,6,2)
(s,68,2)

electrically polarized E = zE, K = ZA
magnetically polarized H = QH

G.O. Geometrical Optics

G.T.D. Geometrical Theory of Diffraction
P.0, ‘ Physical Optics

P.C.R. Polarization Current Replacement
S.C.Re Surface Current Replacement

I.R. Iterative Surface Current Replacement
M.P.O, Modified Physical Optics

U.HP, Upper Half-plane

L.HP. Lower Half-plane
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PREFACE

This thesis is concerned with the computation of
electromagnetic scattering, particularly from perfectly
conducting bodies.,

It is evident from recent volumes of the IEEE Trans-
actions on Antennas and Propagation that considerable
attention is being devoted to the application of ray-optical
techniques to electrqmagnetic scattering problems, Diffract-
ion by horns and obstacles in waveguides has received
particular attention,

In order to be able fo evaluate the accuracy of ray-
optical and other approximate methods of determining
electromagnetic scattering, it is desirable to have available
solutions to other than simple scattering problems. This
thesis presents techniques for determining such solutions.
These techniques are essentially new and are of interest
in their own right,

The field scattered from a perfectly conducting wedge
with a deformed apex is calculated by using a current
density replacement technique. The results not only enable
the effect of edge deformation to be studied, but are also
used to evaluate the accuracy of the geometrical theory
of diffraction and physical optics estimates of the diffracted
field,

Expressions are found for the field scattered by a

perfectly conducting wedge in the presence of a transversely




polarized line source. These results are used with an
iterative current density replacement technique to formulate
expressions for the field scattered by a perfectly conducting
truncated wedge, and thus derive secondary edge diffraction
coefficients for use with the geometrical theory of diffract-
ion, These coefficients are equally applicable to perfectly
conducting bodies with small or large separation between
edges. The accuracy of these coefficients, and a suggested
improvement to the thsical optics representation of the
current density on a body with edges, are evaluated.

Chapter 1 is introductory. New results are presented
in Chapters 2 - 7,

Chapter 1 contains a brief survey of several well
known methods of determining electromagnetic scattering which
are relevant to this thesis. Mention is made of papers which
show the usefulness and limitations of these methods,

Chapter 2 introduces a method of determining electro-
magnetic scattering called the current density replacement
technique. This technique enables the scattering from any
size of body to be determined to a given accuracy after the
inversion of one finite matrix, provided that the shape
of the body can be derived by inwardly deforming a finite
part of a body from which the scattering is known explicitly.
The size of only the deformed part of the body is limited
by available computational facilities., Thus, the current

replacement technique enables the scattering from large



or even infinite bodies to be calculated.

The current replacement technique is used to formulate
expressions which describe the field scattered by a
perfectly conducting wedgé with a deformed apex, and in
Chapter 3 this formulation is specialized to the truncated
and rounded wedges. Results are presented which illustrate
the convergence of the solutions as the matrix order is
increased. It is found that the convergence is accelerated
if explicit use is made of the analytic properties of
the surface current density.

The results of Chapter 3 are used in Chapter 4 to study
the accuracy of the physical optics and geometrical theory
of diffraction estimates of the field scattered by a
perfectly conducting wedge with a deformed apex., Of particul-
ar interest is the accuracy of the geometrical theory of
diffraction applied to the truncated wedge when the distance
between the two edges is less than one wavelength, It is
found that when the incident field is magnetically polarized
parallel to the wedge axis, the inclusion of the higher
order diffracted fields may lead to inaccuracies. However
in other cases, such as the prediction of the end=-on
electrically polarized backscattered field, the geometrical
theory of diffraction yields accurate estimates even when
the separation of the edges is as small as 0.05 wavelengths,

Expressions for the field surrounding a perfectly

conducting wedge in the presence of transversely polarized



electric or magnetic line sources are derived in
Chapter 5.

The results of Chapter 5 are used in Chapter 6,
where the field surrounding a perfectly conducting
truncated wedge is formulated by successive application
of the current replacement technique to two separate
perfectly conducting wedges. The expressions from the
first two such applications are obtained.

It is shown in Chapter 7 that these expressions not
only give rise to £erms descfibing the primary field of
the geometrical theory of diffraction, but also describe
a secondary diffracted field. The resulting secondary
diffraction coefficient is identical to that of the
geometrical theory of diffraction when the edge separation
is large, but is also valid when the distance between the
edges is small. Unlike the geometrical theory of
diffraction secondary diffraction coefficient, this
diffraction coefficient is not zero when the field is
electrically polarized parallel to the edges of the body.
Results are presented which show the increased accuracy
obtained by using this coefficient to approximate the field
scattered from the truncated wedge and perfectly conducting
strip. The improvement in the representation is
particularly noticeable in the vicinity of the direction
for which the secondary diffracted field of the geometrical

theory of diffraction becomes infinite.



An improvement to the physical optics representation
of the surface current density on a perfectly conducting
body with edges is suggested in Chapter 7. It is shown
that this suggestion is equivalent to representing the
diffracted field by the primary diffracted field of the
geometrical theory of diffraction and two correction terms
for each edge of the body. Results are presented which
show the increased accuracy obtained by using the modified
physical optics current density.

Chapter 7 concludes with suggestions for further
areas of research,

Some results in Chapters2 and 3 have been published%’2
as have the derivations in Chapter 503

The computer programs required for this thesis were
written in the Fortran IV language using the double
precision option, and were executed on an IBM 360/44
computer which has 64K bytes of core memory. All programs
and subroutines were written by the author of this thesis,
with the exception of the IBM subroutine MINV which,
after suitable modification for complex double precision

operation, was used to invert the matrices of Chapter 3.



CHAPTER 1

Four methods of determining the electromagnetic field
surrounding a scattering body are discussed in this chapter.
The first of these methods requires the derivation of an
explicit solution to the scattering problem, . and the
second involves the use of modal expansions in conjunction
with an integral equation representation of the scattered
field., The use of ray tracing techniques including the
geometrical theory of diffraction is the third method
discussed, and the fourth is the physical optics

approximation.

l.1(a) EXPLICIT SOLUTIONS

A rigorous description of an electromagnetic
scattering phenomenon requires the solution of Maxwell's

field equations

(1.1)

v.D=q, v.B=o0,

1l

formulated as a boundary value problem.,

Use of the classical separation of variables technique
with the Helmholtz equation
v2U + K20 = 0 (1.2)

is possible in only eleven separable co-ordinate

systems4 when the surface of the scatterer conforms to



a complete co-ordinate surface. Rigorous solutions can
be obtained when the scattered field is described by
equations of the Wiener-Hopf types, but the total number
of known explicit solutions of Maxwell's field equations
formulated as boundary value problems remains extremely
limited.

One such known solution describes the field scattered
by an infinite perfectly conducting wedge. Because much of
this thesis is related to the problem of scattering by a
wedge, several forms of the solution to this problem will

be examined in some detail.

1.1(b) SCATTERING BY A PERFECTLY CONDUCTING WEDGE

Consider the infinite perfectly conducting wedge of
interior angle B and surface contour C defined in terms of
the (p,¢,2) cylindrical polar co-ordinate system in Fig, 1.1

by ¢= 0 and ¢ = mw, where
mm = 27~B. (1.3)

The wedge is of infinite extent in both the positive and
negative z directions. When the incident field exhibits

no variation in the 2z direction it is necessary to consider
the variation of field quantities is¢i only the p and ¢
directionso The problem then becomes two-dimensional, and
even though the fields are described in terms of electro-
magnetic quantities, the éxpressions are equally applicable

to acoustic scatteringo6




The wedge is surrounded by a homogeneous, isotropic,
time-invariant medium ofvpermeabilify U, and permittivity
€., The total field U surrounding the wedge must satisfy
the Helmholtz equation (1.1) at all source-free points,

and either the Neumann boundary condition

@
(e

-—n= O, on C, (194)

(o3}

when the field is magpetically polarized (ﬁ = zH),
or the Dirichelet boundary condition

U=20, onC,- | (1.5)
when the field is electrically polarized (E = EE)° n

is the direction normal to the boundary contour C, and
k2 = wzue in (1.2), The‘suppressed monochromatic time
dependence is exp(jwt). The Neumann boundary condition
corresponds to the sound~hard boundary,vand_the Dirichelet
boundary condition to the sound-soft boundary in acoustics,
In 1896, Sommerfeld obtained expressions dgscribing
the diffraction from a perfectly conducting half plane7o
Macdonald used the method of separation of variables to
obtain both series and integral representations of the
field scattered by a perfectly conducting wedge8’9.

o
When the incident field U' is the plane wave

A

o = zu, vl = eJkecos(e-v) (1.6

he found that the solutions to (1.2), subject to the

boundary conditions in (1.4) and (1.5) respectively, are



given by
U(p i¢) = W(o,¢-¢) * W(p ,¢+\I)) 7- (1.7)
where
W(p,£) =~Vl(p'€) + Vz(p,E), (1.8)
[l ‘\‘_
Vi (p,&)= eIkPcos(tt2pm)
e + 2pmm|< 7,
=0, ¢ + 2pm| > m, (1.9)
1 ejkpCOSu
Vz(plg) = Tnm - do, (1.10)
cil'- o miotel)

and p is any integer or zero. The upper (lower) sign in
(1.7) applies when the field is magnetically (electrically)
polarized,

By performing a contour integration, Pauli obtained

V,(p,£) in the form™

fOO

; 25in(1)]cos(€)| C 12
V,(0,8) = = 2 ,/%\ejk"c"s‘E e™3% 4o

m[cos(%)—cos(%ﬂ‘

/Ep(l+cos£)

-n-

+(higher order terms in p %) . (1,11)
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Pauli showed that the higher order terms in (1.11) are
identicélly zero when B = 0 (the case of the half plane),
and can be neglected if ké(l + cosg) is large. In this
latter case, the asymptotic form of ﬁhe expression in
(1.11) is given by
sin(%) eIk

Volo,8) = S , kp (l+cosg) >»>1, (1.12)
j27kp m[cos(%) —cos(%)]

3

where the first neglected term is of the order of o 2,

The expressions for Vz(pyﬁ) given in (1.11l) and (1.12)

with B= 0 are identical to those obtained by Sommerfeld.
Oberhettingher found a different asymptotic

expansion of (1l.11) involving only trigonometric functions

in the higher order termsll°

2

Consider a line source situated at (po,w) in Fig. 6.1

such that the incident field U™ is given by

£

G = ZU, Ui(p,¢) = _%Héz){k[pz + pi - 2ppocos(¢~w)]%} (1.13)

Then a solution is required to

S (p=p ) S(¢=1)
v2U + k%U = - 0 , (1.14)

Po

subject to the appropriate boundary condition (1.4) or
(1.5) on C., This problem of the wedge illuminated by a
cylindrical wave can be solved by using the Kontorowich-

Lebedev transformlzo Thusl3
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Up,8) = T T e g (ko) 5(%) (o ) feosiny(g-v)]

t coslnv(¢+y) 1}, (1.15)

where v= 1/m, and € is the Neumann factor defined as

€, = l;~en =2, n # 0., The expression in (1.15) may also
be written as13
U(p,¢) = alp,0=0) £ Q(p,¢+y), (1.16)
where | |
oo+j11n.

L .
Héz){k[p2+pif2ppOcosh(mv)]2} sinhv dv,

- g
] coshv. - cos (2) (1.17)

o=J=
and the upper sign in (1.16), as in (1.15), is to be
taken with the boundary condition (1l.4) for a magnetic
line source;.and the lower sign is to be taken with the
boundary condition (l°5f for an electric- line source,
By deforming the contour of integration in (1.17) into
the straight lines joining « —j%, —jﬁ, jlﬂ o + ji ’

and accounting for the included poles which occur only

on the imaginary axis, Jones showed that

Q(p,&) = wl(p,i) + wz(p,i), (1.18)
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wy(p,8) = :% H(z){k[pz+p2—2pp cos(g+2wpm)]%}J£+2ﬂpm|<w,
(e} (o] (o}
(1.19)

= 0, |£+2ﬂpm |> T,

i
. sin(jv+%) HK2>{k{pz+p2+20p cosh(mv) 1?1} dv,
- -] o) 0 0
wz(plg) ST

s My (£
» cos(]v+ﬁ) cos(m) (1.20)
and p can. take any- integer value or zero.

At a large distance from the line source at (po,w),
the incident cylindrical wave given in (1.13) appears

as a plane wave, as evidenced by’ the asymptotic expansion
14

14

R . VT
TCIMVETCIEE T 121

After using the binomial theorem to expand the arguments

of the Hankel function of the second kind

of the Hankel functions in (1.13), (1019); and (1.20) for
P, >> p, and multiplying the expressions in (1.13), (1.15),

(1,19), and (1.20) by the normalization factor

JTkp .
45 / 2j° eIkP, (1.22)

it follows that when the field incident upon the wedge

is the plane wave given in (196),vthe total field described

in (1.15) becomes

U(p,9) = v ) € jannV(kp)'{cos[nv(¢—w)] + cos[nv (¢+v) ]},
n=0

(1.23)
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and from (1.19) and (1.20),

ejkp cos (£+21Tpm) , I €+2rn-pm, < m,

wl(plg)

=0, |e+2mpm| > =, (1.24)

.. -jkpcosh (mv)
sin(jv+=) e -7 : dv. (1.25)

1
wz(p ,E) - ZT- L . g
cos(jv+ﬁ) - Cos(ﬁ)

00

When kp is large, wz(p,g) can be evaluated by the method

of stationary phasels, which results in

sin(%) g~dke
w2 (048) = 2 . —————y ko >> 1, [E] #w.
jZﬂkp"m[COS(ﬁ)—COS(H)J
(1026)
Comparison of the expressions in (1.7) - (1.10), (1.12),

with those given by (1.16), (1.18), (1.24) - (1.26), shows
that corresponding expressions are identical except for
that in (1.25). This expression is mathématically more

tractable than either (1.10) or (1.11).

1.2 (a) INTEGRAL EQUATION REPRESENTATION

Although rigorous explicit ekpressions describing
the scattered field have been determined for only a few
bodies, it is ?osSible, by using an integral eguation
representation, to describe implicitly the field

surrounding any scatterer. The integrand of the integral
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equation is composed of two parts: a source distribution
which describes the shape and composition of the scatterer,
and the Greens function appropriate to those sources,

The body considered here is homogeneous and isotropic,
has permeablllty Mg , permittivity I conductivity o, and
occupies a volume V.- It is surrounded by a homogeneous
isotropic medium of permeability u and permittivity e in
which exists a current source 3. Maxwell's equations in

(1.1) enable the -field at any -point to be described by

> ° o
2 E 1
VeE —07 = (USES»_ ?)E + uOE + uJ + V(V, E) + vu X H (1.27)
2 i 1. ;
V'H = — = (uses - —7)H + ucH - VX J + E X Ve + E X Vo + V(V, H)

(1.28)

where c is the velocity of electromagnetic propagation in

the surrounding medium. By defining the scattered field U° as
g% =0 - 0%, (1.29)

where U is the field incident from the source distribution
-+

J, and restricting the field to be monochromatic with
angular frequency w, the solutions to (1.27) and (1.28)

rare given by
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r(r
ES(p) = (W e, - Lk%E - ju(uok + v X ﬁ)} G(kR) dv,
JJ)
v (1.30)
fff
HS(p) = (urer—l)kzﬁ - E X Vo-ju(icH + E X VE)}G(kR) av.
LLACAYA | (1931)

Hg = H My €4 = € €, k is the wavenumber appropriate to the

s
surrounding medium, R is the distance from tHe elemental
volume dv to the point P, and G(kR) = ewij/4ﬂR is the
three-dimensional Greens function,

When the surface S of the scatterer is perfectly

conducting, the scattered field is given by

oS (p) =7{A}H K(s) G(kR)ds, (1.32)
s L

where the surface current density %(s) on S is defined by
K(s) =n X H, (1.33)

and ﬁ is the outward unit normal vector to S at s. The
vector operator {#} is {—juc2(k2‘+ VV.)/w} when ]
represents the.electric field intensity E, and-is {V X}
when U represénts the magnetic field intensity H,

When the problem. is two-dimensional, the volume integrals
in (1.30) and (1.31) reduce to integrals over T, the normal
cross-section of the scatterer, and the surface integral
in (1.32) reduces to a line integral along C, the perimeter
of the scatterer. Thus, the expressions in (1.30), (1.31)

and (1.32) reduce to
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f
>SS | 2> > >
E¥(P) = (urer—l)k E - ju(poE + vu X H)| g(kR) ds, (1.34)
JJT
(r
i (P) = (ursr—l)kzﬁ - E X Vo —ju(uol + B X VE)] g (kR) ds,
JJT ™
(1.35)
%) = {A} | K(e) g(kR)dc, (1.36)

c
where {A} is {-jwu} when U represents the electric field

intensity E, and is {Vv X} when U represents the magnetic
field intensity H. g(kR) is the two-dimensional Greens
function obtained by integrating the three-dimensional

Greens function along an infinite path in the z-direction:

oo

g(kR) = G{%(Rz + 22)%]dz = P . (1.37)

The first terms in the kernel of the integrals in (1.30),
(1.31), (1.34), and (1.35) are often referred to as the
"polarization current density"o16 The remaining terms in

these kernels can also be regarded as polarization current

densities.

1.2 (b) MODAL EXPANSIONS

The integral equation representation of the scattered
field discussed in section 1.2(a) is valid at all points
inside, outside, and on the surface of the scatterer. Once

the polarization current density or the surface current
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dgnsity in the integrand of the integral equation is
determined, the field at any point can be calculated.
Techniques which represent the current density as a
modal expansion and use numerical methods to evaluate
the modal coefficients are known as Moment Methodso17

The simplest method of modally expanding the current
density is the method of subsections. This involves sub=-
dividing the volume or surface of the scattering body into
N parts, and approximating the current density in the nth
part by the unknown constant an Alternatively, the
electric or magnetic field intensity may be approximated
by an unknown constant in the nth part. The integral
over the volume or surface is approximated by a summation
over the N subsections. N simultaneous equations are derived
by equating the two representations of the field or
current density in each of the N subsections., These simul-
taneous equations can be derived for a perfectly conducting
body by ensuring that the boundary conditions are satisfied
at a point in each subsection., Care must be taken in
dealing with the'singularity which occurs in the Greens
function when the effect of the sources on themselves
is considered, |

The position at which the boundary condition is

enforced in each subsection of a perfectly conducting

scatterer has been shown to affect the accuracy of the method
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of subsectionsc18

Hashimoto and Fujisawa conclude
that the best position is the midpoint of each subsection.

The application of the method of subsections to a
perfectly. conducting body having a surface with edges
or corners requires special considerationol9 When the -
field is électriCally polarized parallel to an edge,
the surface current density is integrably infinite at the
edgeo32 Kay'and‘Nihen33 studied the effect of decreasing
the subsectional sizé near an, edge, and also the effect of
considering the edge to have a small but finite radius
of curvature. They found that the forward scattered field
is insensitive to the subsectional arrangement near the
edge, except when the radius of curvature of the curve .
approximating the edge becomes too large.

Andreason19 uses the method of subsections in conjunct-
ion with (1.36) to formulate the scattering from two-
dimensional metallic cylinders as a matrix equation. He
ensures that the boundary conditi@n in (1.4) or (1.5) is
satisfied at the midpoint of each of the N subsections. The
problem of the singularity of the Greens function, which
occurs in the nth Subsection while- deriving the nth
simultaneous equation, is overcome by-performing

analytically the integration over this subsection.,
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Results are presented for various single and multiple
cylindrical bodies,

Earlier, Mei and van Bladel had used the method of
subsections to obtain the surface current density on
perfectly conducting rectangular cylinders,. and hence

the scattered,fieldbzO

Many of their results have since

1 .
However, the resonance

been experimentally've‘rifiedq2
phenomenon which appears in one of their results is
incorrecto22 Such resonances may arise during the course
of a numerical solution if resonant field modes can exist
in the interior of the scattering body023’24'25
However, these resonances can not exist if use is made

of the extended boundary conditionZS’26

in the formulation
of the scattering algorithm.

The extended boundary condition requires not only the.
satisfaction of the boundary conditions in (l.4) or (1.5)
on the surface of a perfectly conducting closed body, but
also that the total field be zero in a region interior
to the body. - Analytic continuation arguments4’25’29'
ensure that if such a condition is met, the field is zero
everywheré inside‘thevbodyg Thus it is impossible for
resonant field modes to exist in the interior of the scatterer
and contribute to the surface current density. Although
the use of the boundary conditions with the method of sub-

sections is sufficient to ensure that a close approximation

to the. scattered field is obtained, it is necessary to use
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the extended boundary conditions to be certain. of obtaining
accurate values for the surface current density on the body.
A "Null field method" is a method which employs. the .
extended boundary condition in the formulation of a
scattering problem,

"Point-matching methods" rely on satisfying the
boundary conditions at points on the surface of a scattering
body in order to determine the field modal coeffi'cientso27
Fuller and,Audeh28 use- the point-matching method to determine
the cutoff frequencies of a nonsymmetric waveguide. . They
observe that the point-matching method becomes less accurate
as the boundary contour of the waveguide becomes more
complicated.

Bates29 has recently critically appraised the point-
matching method and calculated the cutoff frequencies
of various modes in several waveguides. He shows that
identical expressions are obtained for the cutoff frequencies
of a waveguide whether the boundary conditions or the
extended boundary conditions are invoked.

Richmond16 uses the method of subsections to calculate
the field scattered by. an infinite dielectric cylinder when
the incident field is:electrically-polarizedo A matrix
equation is derived by substituting Vu = ¢ = 0 into the
expression in (1.34) and representing the total electric
field intensity in the nth subsection by the constant

-3 . .
E - A set of simultaneous equations is obtained by
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equating (En —-Ei) at the midpoint of the nth subsection
to the expression on the right-=hand side of (1.34). This
latter expression is approximated by a summation over

the N subsections. The singularity in the Greens
function is overcome by integrating over a circular region
of the same cross-sectional area as the‘nth subsection,
This integration is easier to perform than that over a
rectangular subsection, and Richmond maintains that it
introduces little error. Results are presented for
dielectric shells, and homogeneous and inhomogeneous
dielectric sheets,

When the field incident upon a homogeneous dielectric:
scatterer is magnetically poiarized, and Vo =0 = 0, u_ =1,
the integrand in (1.35) retains a term in E X Ve. The
best method of dealing with this éolarizationrcurrent
density term, which exists only on the surface of the
dielectric, is not immediately apparent

Bates30 uses the method of subsections to determine
the scattering from a wedge covered with finite distributions
of dielectric, when the field is magnetically polarized. .

He neglects -the E X ve polarization current density term

in (1.35) and thereby implicitly assuﬁes that for the narrow

dielectric wedges studied, this term has the same

magnitude but is in antiphase on either side of the wedges,
Richmond31 avoids the problems associated with the

- integrand of (1.35). He evaluates the scattering from a
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dielectric cylinder by expressing the magnetically
polarized field in terms of the electric field intensity.
The scattered.field ié evaluated by using the method
of subsections and‘the expression in. (1.34). Results
are presented for cylindrical shells and dielectric slabs,

Because the method of subsections approximates the
field or current density by .a constant value in each
subsection, the modal expansion of the method is discontin-
uous across each subsection boundary. However, by summing
N continuous modal functions each weighted by an
unknown coefficient, the field or- current. density can be
represented in a continuous manner over.the,regibn of
interest,

Bates34 uses a Fourier series as the modal expansion
of the surface current density on the perimeter of a
perfectly conducting cylinder. The null field method is
used to extract the Fourier: coefficients of the incident
and scattered fieldsor It is shown that fewer surface
current density modes. are required to calculate the
scattered field'than are required to calculate the surface
current density to the same accuracy. This indicates that
the scattered field is accurate to the second order when
the surface current density is accurate to the firstc,]j"35
Results are presented for the scattering from a square

cylinder.
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Mullin et al36'éxpress the scattered field exterior
to an infinite perfectly conducting cylinder of arbitrary
cross-gection as a sum of outward travelling waves., By
enforcing the boundary condition in (1.4) or (1.5) at
points on the boundary, the unknown coefficients of the
scattered field modes are .obtained. The results fail "for
cylinders which are large perturbations from the circular";,36
By continuing the outward travelling representatioh of the
scattered field back to the surface of the cylindrical
scatterer, Mullin has invoked the Rayleigh hypothesis37
which, during the course of a recent controversy38m4l has
been shown by Millar38 to be incorrect in general, and in
particular incorrect for elliptical scatterers of appreciable-
eccentricity., This explains the failure of some of Mullin's
results,

The scattering for nose-on incidence from perfectly
conducting cones with blunted tips is evaluated by
Weiner  and Borison42 by representing the total field in a
general eigenfunction expansion, After.satisfying the
boundary conditions and ensuring that the incident part of
the total field is equal to the incident field, the eigen=-
function coefficients are obtained.

Waterman43 expresses the field as a sum of continuous

mode functions in order to determine the scattering from
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three-dimensional dielectric bodies. The fields inside
and outside the body are written as modal expansions
with unknown mode coefficients. By using the boundary

44.to relate the expansions across the dielectric

conditions
boundary a matrix is derived, which after inversion
enables the modal cééfficients_to be obtained.

The determination of scattering by using a modal
representation of the field or current density requires
the inversion of a ﬁatrix in order to find the modal
coefficients. The order of the matrix is dependent upon
the number of modes used in the representation}7’45
When using the method of subsections, the extent of each
subsection must be less than half the wavelength
of the highest spatial harmonic of interest in the field or
current densityolgﬂ Andreason19 suggests between four
and ten subsections per-wavelength of the incident field
is adequate in thefcase‘of metallic scatterers, and
Richmondl6 suggests S/Er subsections per. wavelength for
dielectric scatterers, It follows from these considerations
that the size of scatterer which can be dealt with by
moment methods is limited by the capacity of available

45

computational facilities. " The limit on the circumfer=

ence of metallic scatterers is-about 25-40 wavelengthsl9,

although symmetry in the scattering problem enables this
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limit to be increased signifi'cantly°

1.3(a) RAY-TRACING TECHNIQUES

Both the integral equation representation of the
scattered field discuééed in section 1l.2(a), and the
rigorous explicit solutions mentioned in section 1l.1(a),
describe exactly the total field surrounding a scattering
body. The ray tracing techniques discussed in this section
~give an estimate of. the field surrounding the scatterer.
The accuracy of this estimate depends upon the nature and
shape of the scatterer as well as the sophistication of
the ray-tracing technigue employed.

Ray~-tracing techniques.are based on the assumption
that the field propagating from one point to another travels
along- ray paths joining the two points. Fermat's principle
states that the rays between two. points "are those curves
along which the optical path length is stationary with
respect to infinitesimal variations.inkpath"o46 The
intensity of the field predicted by ray theory is obtained
by applying the principle of conservation of energy to a
tube of rays.

The simplest ray-tracing theory is Geometrical Optics
(G.0.). The field Ugo predicted by geometrical optics
in the vicinity of a scattering body is defined as

Uy = ut + Ut + U, (1.38)
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where UL is the incident field, U¥ is the field reflected
from the body, and Ur is the field refracted by the body.
At a congruence of rays, called a caustic, the geometrical
optics field is undefined. Geometrical optics is the

leading term in the high-frequency asymptotic expansion

of the field surrounding a scattering body46i and therefore
is useful for predicting the field scattered from a body
whose surface has radii of curvature which are large compared
with the wavelength of the field.

The expressions in (1.7) - (1.12) show that the high-
frequency asymptotic expansion of the field in the vicinity
of a perfectly conducting wedge illuminated by the plane
wave given in (1.6), is

Ulp,9) = Vylo,¢=9) £ Vylo,0+y), (1.39)

where Vl(p,g) is given in (1.9). Examination of the existence
condition |&+2rpm| < m associated with V,(p,£) shows that
when ¢ = ¢-y, only p=0,- |¢=y] < 7 satisfies this condition.
When & = ¢+y, only p=0, |¢+v| < n and p= -1, |¢+y-2mm| < =
satisfy the existence condition., Substitution of these three
values ofip into (1.9) results in three expressiqns which
describe the incident field, the field reflected from the
surface ¢= 0, and the field reflected from the surface

¢ = mm respectively. Thus the expression in (1.39) describes
the geometrical—bptics field in the vicinity of. the perfectly

conducting wedge.
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It can be seen from the preceeding discussion that
geometrical optics predicts no field in the shadowed
regions of an opaque body. The extension of geometrical
optics which overcomes this limitation is called the
Geometrical Theory of Diffraction (GOTQD,,)?7 The field
Ugtd predicted by the geometrical theory of diffraction

in the vicinity of a scatterer is given by
U =U._ + .U, (1.40)

where Ud represents a diffracted field. This diffracted
field is produced whenever a ray strikes an edge, corner,
or vertex of é‘boundary surface, or grazes such a’surfaceo
The geometrical theory of diffraction assumes that the
diffracted field in a given direction is dependent upon
only the incident field and the local geometry of the
diffracting surface. By using the explicit solution of a
simple canonical problem which contains the appropriate
type of surface discontinuity (such as the wedge for edge
diffraction47, and the- circular cylinder and sphere for.

diffraction by a convexsurface48

) , the relationship

between incident and diffracted fields is deduced. The
diffracted field is given by the term following théﬂgeometric“
al optics term in the high-frequency asymptotic expansion

of the field appropriate to the canonical problem. Thus,

the diffracted field from an edge when the incident field

is given in (1.6), is found from (1.7), (1.8) and (1.12)



28

to be

0o, 9) = Vy(p,0-1) t V,(0,¢+v), ke[l + cos(¢29) ] >> 1,

(1.41)
where the upper (lower) sign applies when the field is
magnetically (electrically) polarized.

The field diffracted from a surface discontinuity in

a two-dimensional problem can be written in the form47‘

-jke
Ud e

(0,0) = U a_(o,9) , (1.42)

P
where dm(¢yw) is the diffraction coefficient appropriate
to the discontinuity. The edge diffraction coefficient
for a perfectly conducting body is found from (1.12)
(1.41) and (l.42) to be
. ki) .
sin (g) 1 . 1

dos(%&—cos(géi)'- cos(%ﬁFCOS(Q%E)

dm(fbylb) =

mvj2wk
(1.43)

Like the geometrical optics field, the diffracted field
of the geometrical theory of diffraction travels along ray .
directions. For edge diffraction, the ray paths are
defined by the modified Fermat's principle: "an edge
diffracted ray from P to Q is a curve which has stationary
length among all curves from P to Q having a point- on the

edge"o47 By considering the energy in a tube of rays,



29

47 modified the edge diffraction coefficient

Keller
given in (1.43) to a coefficient appropriate to a curved
edge, Tip diffraction coefficients have also been
defined°49 When an incident field grazes a smooth
convex boundary surface, a surface ray is generatedo48
This surface ray travels along a geodesic arc of the
surface and produces diffracted rays which leave the
surface tangentiélly from each point on the arc.:

The geometrical theory of diffraction has been used
to estimate the fields scattered by many different

bodies‘ljm57

The use of the geometrical theory of diffract-
ion is attractive because of the ease with which an

estimate of the field surrounding a scatterer can be
obtained., Although the ray approach to diffraction prob-
lems is an asymptotic high-frequency technique, it often
gives accurate results when the characteristic dimension
47,50,52,54

of the scatterer is of wavelength order.

1.3(b) EDGE DIFFRACTION USING THE G.T.D,

The use of the geometrical theory of diffraction in
problems involving edge diffraction is restricted by
the constraints associated with (1.41). PaulilO maintains
that the discontinuity associated with the geometrical
optics field Vl(p,z) and its derivatives on the shadow
and reflection boundaries |¢ty]| = 7, is matched exactly
by the discontinuities associated with V2(p,€) in (1.10)

and its derivatives on the reflection and shadow boundaries,
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thereby ensuring that the total field given in (1.7) is
continuous everywhere., The neglect of the higher order
terms of (l.11) in the asymptotic expansion in (1.12)
causes the discontinuity at |¢*y| = 7 in the diffracted
field of the geometrical theory of diffraction given by
(1.41),

Ahluwalia et a158 overcome the problem of the discontin=-
uities in the case of a plane screen by deriving a uniform
asymptotic expansion for the diffracted field. Higher-
order terms of the expansion are obtained recursively.

Yee et'a154 use the‘geometrical theory of diffraction-
to obtain the reflection from the open end of a waveguide.
The incident field mode is decomposed iﬁto two plane waves,
and the diffraction from the -terminating edges of the wave-.
~guide is calculated séparately for. each plane wave.
Multiply diffracted fields, generated when' the diffracted
field from one edge strikes the other edge, are not
predicted by the geometrical theory of diffraction for the
wavegﬁide because the diréctionvof multiplé diffraction
coincides with the reflection boundary of the terminating
edges. This difficulty is overcome by Yee. et al by qsing
a Fresnel integral formula for'tﬁe diffraction coefficient
and thereby providing a cantinuous transition of the

diffracted field through the reflection boundary.
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Hamid59 suggests using correction factors with the
diffraction coefficient in (1.43) not only to avoid the
discontinuities across the shadow and reflection boundaries,
but also to compensate to some extent for the asymptotic
nature of the diffraction coefficient. The correction
factors are functions of kp,¢, andy, and are obtained
by comparison of the field predicted by the geometrical
theory of diffraction with the exact solution.

Mohsen and Hamid60 derive a diffraction coefficient
for the scattering by a half plane by considering both
the first and second terms in the asymptotic expansion of

the exact solution given by Keller et alo61

This improved
diffraction coefficient results in a more accurate
estimate of the field diffracted by a narrow slit, strip
and circular apertureu60’62

Other attempts to overcome the asymptotic nature of
the diffracted field given in (1.41l) involve the use of
the Pauli diffraction function given by the first term
in the expression in (1.11).

Ryan and Rudduck63 use the Pauli diffraction function
to estimate the multiply diffracted field radiated from the
edges of a parallel-plate waveguide. Improved results
are obtained by Rudduck and‘Wu64 who intrqduce a slope
wave diffraction fuﬁction derived by differentiating the

Pauli diffraction function with respect to the angle of

incidence., This technique is similar to that used by
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other workersf,éw"'51

Yu and Rudduck65 use the Pauli diffraction
function in representing the sum of the multiply
diffracted fields from an edge of a perfectly conduct-
ing strip by a gylindrical wave, The strengths of the
diffracted fields are found by a selfconsistent method
similar to that used by Karp and‘Russeko66

60,63,65,66 i

However, most improvements
~geometrical theory of diffraction do not predict a
multiply diffracted field from a perfectly conducting
body illuminated by a field elecfrically polarized
parallel to the edges of the body. Expressions for such
a multiply diffracted field are derived in Chapter 7

of this thesis.,

The concept of representing the field diffracted
by an. edge as a cylindrical wave emanating from the
edge is related to the use of fictitious edge‘currents
to describe the diffraction. This technique is used

by Millar67_69

to find the field diffracted by
circular and elliptic apertures, and more recently
by Ryan and Peters70 to find the diffraction from
finite axially symmetric cone frustrums, a conically

capped finite cylinder, and a stub mounted above a

circular disc., Moullin and Phillips71 use a similar
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approximation to describe the presence of an edge.
A concise survey of the theory of diffraction

of short waves by edges up to 1964 is given by Keller

72

and Hansen, Other survey and review papers are

availableo6’73u75

1.4 (a) PHYSICAL OPTICS

Physical optics (P.O.) approximatesthe field scattered
from a perfectly conducting body by the radiation from a

surface current density K given by

I

K 2n X ﬁl, on a directly illuminated surface,

=.0, on a shadowed surface., (1.44)
Comparison of the expression in (1.44) with the exact
description of the surface current density given in (1.33)
shows that physical optics approximates the tangential
magnetic field intensity at the surface of the scatterer
by twice the tangential component of the incident magnetic
field intensity. The physical optics surface current
density, which is due to the geometrical optics field,
is thefefore dependent only upon the incident field and the
orientation of the surface at a point on a perfectly
conducting body.

Because the physical optics surface current density
exists only upon the directly‘illuminated surface of a
scattering body,’the interchange of transmitter and receiver

will, in general, result in a different prediction for
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the physical optics field. Thus, physical optics does

73,77 yniike

not always satisfy the reciprocity theorem.
the geometrical theory of diffraction, physical optics
fails to account for the polarization of the field in
the backscattered direction°53

One advantage of the physical optics approximation
is that it often enables the integrals in (1.32) and
(1,36) to be evaluated analytically, resulting in simple
algorithms suitable for numerical evaluation., Thus a
quick check on othér calculations is ava:i.lablec?Oy76
Because physical optics approximates the surface current
density, and errors in the estimate of the current density
on a body do not contribute equivalent errors to the

scattered field,l7’35

the physical optics estimate often
accurately describes the scattered field.- Physichl optics
is most useful in estimating the field scattered in the

70 It is in this direction

direction of specular reflection.,
that the field predicted by the geometrical theory of
 diffraction is discontinuous.:

However, although an iterative technique which starts
with the physical optics estimate of the scattered field
will converge to the exact solution for large smooth obstacles,
it does not converge to the exact solution for the half=-
plane and the‘stripo76 This is because the physical
optics surface current density does not have the correct

32,33

behaviour at an -edge.: In the case of normal

.backscattering from the half-plane and strip, the physical
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optics field does approach the exact backscattering
because the radiation from the surface current density

in the vicinity of the edge is maskedo76

Fock78i79

defines a transition region on the
surface of a convex metallic scatterer between

the illuminafed surface and the surface on which the-
physical optics surface current density is zero.

The surface current density in the transition region
is approximated by a universal function which is

the same for all bodies having the same local radius
of curvature and illuminated by the same incident
field., Thus, the Fock theory extends the physical

optics current density into the shadow region of a

smooth convex body.

In Chapter 7 of this thesis, a modification is suggested
to the physical optics current density near the edge
of a perfectly conducting body. This modification
extends the physical optics current density onto a

surface shadowed by an edge.



Figure 1.1

z axis perpendicular to the paper.
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CHAPTER 2

This chapter contains the formulation of a current
density replacement technique which can be used to determine
the electromagnetic field surrounding a scattering body.
When applied to non-metallic bodies the method is called
the Polarization Current Replacement (P.C.R.) technique
and when applied to metallic bodies it is called the
Surface Current Replacement (S.C.R.) technique. The .

S.C.R., technique is used to determine the field scattered
from a perfectly conducting deformed wedge in a form

suitable for numerical evaluation,

It has been shown in Chapter 1 that the number of
scattering problems for which an explicit solution can be
obtained is very small. The size of scattering body which
can be dealt with by numerical techniques (in conjunction
with the integral equation representation of the scattered
field), is limited by the available computational facilities,
It is comparatively simple to use ray-tracing techniques
to construct an expression describing the scattered field
which requires little computational effort to evaluate,
However, since these ray-tracing techniques use the leading
terms of far field asymptotic expansions of the field,
they become less accurate when the scatterer has dimensions

of wavelength order.
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To be able to evaluate the usefulness of any suggesfed
improvement to existing ray-tracing techniques, it is
desirable to have available accurate solutions to simple
scattering problems involving dimensions of wavelength
order. The technique introduced in this chapter enables
such solutions to be obtained for the field scattered
from a perfectly conducting deformed wédge° The
deformation of the wedge apex has dimensions of wavelength

order, Wa’cermango"81

, in considering the field around
a perfectly conducting strip, uses similar reasoning to
that in the following two sections, as does Plons‘eyo82

Some of the results of this chapter and the next

have been published elsewheren2

.2,1(a) POLARIZATION CURRENT REPLACEMENT

Consider a homogeneous isotropic body of permeability
U, permittivity e, and conductivity o, occupying a volume V

with surface S (Fig. 2.1), where

s= 8\, (2.1)
When the body is illuminated by an incident monochromatic
field ﬁl, (L.29) = (1.31) give the total field 62 at any

point as

U, = U + P, (v) G(KR)dv (2.2)
v
where P,(v) is the polarization current density in V and

is given by (1.30) and (1l.31) as
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2 . > >
§2(V) = (b e~k EZ - Jju(uok, + Vu X H,), (2.3)

when U represents the electric field intensity E, and
by

5

2 .
By(v) = (upe ~L)Kk“Hy, = B, X Vo ~ju(uol, + B, X Ve) (2.4)

2 2
when U represents the magnetic field intensity H. Since
the volume integration of (2.2) must include S, all terms
of ﬁz(v) involving the vector gradient operator are
included in the integrand.

The field 62 can be determined using the P.C.R.

technique by first treating two other problems.

Problem (i)

Consider a body of permeability u, permittivity e,
and conductivity ¢ occupying a volume Vi with surface S,

(Fig. 2.2), where
v, = vy, 8, = a Vv (2.5)

When the body is illuminated by the incident field U,

. the total field Gl is given by (1.29) - (1,31) as
ﬁl =7t + ?l(v> G (kR) dv, (2.6)
Vl‘

where ﬁl(v) is the polarization current density in Vi

Problem (ii)

Consider the body occupying volume V illuminated by

the field radiated from sources of strength‘[—ﬁl(v)]
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situated throughout the volume T (Fig. 2.3). The total

field U at any point is

b= - f»l(v) G(kR)dv + B(v) G(kR)dv, (2.7)

T Vv

B (v) being the polarization current density in V. Notice

that the source distribution‘[eﬁl(v)] contains no terms

involving the vector gradient operator across the surface 8.
Adding the expressions in (2.6) and (2.7), and

using (2.5) gives

G, + T =0+ B, (v) G(kR)av (2.8)
where v
By(v) = B(v) + B (v). (2,9)

Comparison of (2.8) with (2.2) shows that

> _ o> >
U2: Ul+U,

B,(v) = By(v). (2.10)

Thus the problem represented by the combination of

Figs., 2.2 and 2.3 is identical to the problem represented
by Fig.2.1. The polarization current replacement technique
is the method of determining the field 62 by adding together

the fields ﬁ and ﬁq

1
The extension of this section to ansiotropic,
inhomogeneous bodies is straightforward although the

expression describing the polarization curcent density

is more complicated.
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2.1(b) SURFACE CURRENT REPLACEMENT

Consider a perfectly conducting closed body with

surface S present in an incident monochromatic field

Ut (Fig. 2.4). The total field 62 at any point is given by

(1.29) and (l.32) as

U, = 0" + (a)|| T(s) G(kmas (2,11)

S

where K(s), the surface current density on S, is defined

from (1.33) as

B(s) = n x H, (2.12)

and

s s\ v . A (2,13)

Il

In order to evaluate 62 using the S.C.R. technique,

it is first necessary to treat two other problems.

Problem (i)

Consider a perfectly conducting closed body with

surface Sl' such that

s, =al v, (2.14)

illuminated by the incident field U' (Fig. 2.5). The

total field ﬁl is given by (1.33) as

U, = o+ @A) T(s) G(kR)ds, (2.15)

51

where I(s) is the surface current density on Slo
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Problem (ii)

Consider the surface S illuminated by the field
radiated by a surface current density [-1(s)] on o, which is
external to S, as shown in Fig. 2.6, The total field [ij

is given by

+

U=~ (&) || 1(s) G(kR)ds + {#}|| ¥(s) G(kR)ds, (2.16)

o S

where f(s) is the surface current density on S.

Adding (2.15) and (2.16), and using (2.14), gives

1+ 0 =T+ (&) K(s) G (kR)ds, (2.17)

S

where the surface current density K(s) is

K(s) = f(s) + 1(s), on v,
= f(s), on  B. (2.18)
Since both S and Sl are perfectly conducting surfaces,
U = 32 = 0, inside S,
U, = 0, inside s;. (2,19)

Thus, the problem represented by Fig. 2.4 is identical
to the problem represented by the combination of Figs. 2.5
and 2.,6. Hence,

U, = 61 + U, (2.20)
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‘and from a comparison of (2.11) and (2.17)

B(s) = Xk(s). (2.21)

Since the S.C.R. technique requires the solution
of two problems in order to find the'solution to a third,
it is, in general, a moré protracted method of obtaining-
the field 62 than solving the third problem directly.:
However, if the solution %l to Problem- (i) is known
explicitly, only Problem (ii) remains to be solved. Because
Problem (ii) has‘sourcés‘onlj in close proximity to the-
scattering body, the total field external to an appropriate
region can be completely described by a sum of outward
travelling waves. The use of such an expansion to represent
the field enables the scattering from large or even infinite
bodies to be determined with only the size-of the deformed
surface being limited by available computational facilities.

To illustréte the use of the S.C.R. technique, it
will be applied to the problem of determining the scattering
from a perfectly conducting two-~dimensional wedge with
deformed apex, for both magnetic and electric polarizations
of the incident field. lProblem (i) corresponds to the
problem of scattering from a perfectly conducting undeformed
wedge, and Problem~(iii corresponds to the problem of
determining the field scattered from the deformed wedge
in the presence of sources situated on the replaced

surface., The S.C.R. technique derived.in this. section
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- is formulated for a three-dimensional body. Since

the deformed wedge to be considered in the next sections
is two-dimensional, the vector operator {#} of section-
2.1(b) becomes the vector operator {A}, and the three-
dimensional Greens function G(kR) becomes the two-.
dimensional Greens function g.(kR). These operators

and Greens functions are defined in section 1l.2(a).

Although the scattering from the deformed wedge

is determined only for plane wave incidence, it should:
be remembered that any incident field can be represented

by a superposition of plane wavese83

2.2(a) THE DEFORMED WEDGE (Electric Polarization)

Problem. (i)

Consider the infinite perfectly conducting wedge in
Fig. 2.7 occupying the region |¢| <X and illuminated
by an electrically polarized plane wave., Use is made

of the vector potential notation

B o= VXA, R = za, (2.22)
where 2z is the unit vector in the z direction. The
éymbol U used in section 2,1(b) is replaced in this
section by A, and the vector operator {A} reduces to the
scalar operator u. The incident field, normalized so

that the incident magnetic field intensity is of unit
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strength, is given by

Alz_

ﬁ oJkecos (¢=Xx-v). (2.23)

The field Al surrounding the wedge is given by

(1.23) as

A, = i%l ) jannv(kp) sin[nv (¢-x)] sin{nvyp]l,  (2.24)
n=1

voo= s WﬁX_o o (2.25)

The symbol r is used to denote the distance from the
apex of the wedge to a point on the wedge surface. The
surface current density on the wedge can then be
defined, by using the expressions in (2.22) and (1.33),

as

T(r) = ¢ 2. 1L (2.26)

where the upper (lower) symbol refers to the wedge

surface ¢=x (¢ = 271 =x).

Problem (ii)

Consider the perfecfly conducting deformed wedge
of cross-sectional contour  C defined in the cylindrical
polar co-ordinates (r,6,z) (Fig. 2.7). Let the maximum

value of r for |6| <y be a. Then, without loss of
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“generality, it is possible to define the deformation
C3 as being the cross-sectional contour between (a,-x) and
(@,x) .

The surface current density on the surface ¢=X will
be distinguished by the subscript 1, that on ¢= 21 - ¥

by the subscript 2, and that on C, by the subscript 3.

3

The field incident upon the deformed wedge is

radiated from the current distribution'[—f(r)], 0 £ rs a
on ¢ = x and ¢ = 27m=X, Writing |
> ” '
I(r) = zI(x), (2.27)
and using (2.24) with (2.26), it is readily deduced
that
I (r) = M) E (+1)"nv §%Y3_ (kr) sin(nvy), m = !
m r - J nv -’ v 2°
n=1
(2.28)
The total field A(p,¢) surrounding the deformed wedge
is found from (2.16) to be
Alp,9) = ”li‘- F(c) Hc()z) (kR) dc.
C
a
+ 1) 1o+ 1] B2 kR)ar (2.29)
.4 1 2. o} ’ °

o}
where R is the distance from the elemental contour dc

or dr-to (p,¢), and ﬁ(c) = zF(c) is the z-~directed



47

surface current density on C,
The use of Graf's addition theorem for Bessel

functions14 enables the expression in (2.29) to be expanded

as

o]
o]

Ab,o) = 3§ |3 _(kb) | {F(x)coslm(s=x)]

m==c b

+F2(r)cos[m(¢+x)}}H£2)(kr) dr

b

+ Héz)(kb)[ {F, (x) cos[m(s=x) ] + Fy(r)coslm(s+x) 133, (kr) dr

a
ra
- {Il(r)cos[m(¢-x)] +’Iz(r)cos[m(¢+x)]}Jm€kr)‘dr.
JO |
r
+. F3(c)cos[m(¢~6)]Jm(kr) dc} ,. b > a. (2,30)
.
>3

The representation of the total field given in (2.30)"

is valid for all ¢, and may be written as a trigonometrical

Fourier series on the circle p = b, Thus

[oo]

A(b,$) =BY +2 T [BY cos(ps) + B sin(ps)], b » a,
, o ply P p

(2.31)
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. ] .
where the\B; are functions of b. The Bé are extracted
from (2.31) by performing the integration

f o

1 cos
= 5 A(b,¢)

B .
sin

(p9) dé. (2,32)

0o+

O

Using the property of any cylindrical Bessel

function Cm(z) that14

c (z) = (-1)7c_ (2) (2.33)

where m is any integer or zero, it folows from (2,30)

and (2.32) that

o0

+ -3 - 2 ‘
B; =.141i g‘;i(px) [meb)» [F(x) ¢ F2(r)]HI() ) (kr) ar
b

+ 1% (xp bl[ £ Fo(r) 13 (kr) 4
D (kb) Fi(r) ¢ 2(‘r» kar r
a
a‘,
(2) - : :
- Hy (kb) O[I‘l‘(r) * Iz(r)]Jp(kr) dr]
(2) cos .
+ Hp (kb) F3(c)Jp(kr)Sin(p6) de. |. (2.34)
C
3

The sources of the field A(p,¢) are contained

within the circle p= a, and A(p,¢) is entirely outgoing
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for p > a. A representation of the field which satisfies
the radiation condition at infinity84 and the boundary

condition (l1l.5) on the wedge surface is

Alp,¢) = f

I ~38

l,aniH;§><kp> sinlnv (9=x)],
& (2.35)

p>a,x\<¢SZWF’Xr

where the complex coefficients a, are yet to be determined.
The surface current density on the wedge surfaces
r > a can be'descfibed in terms- of theran by. using (2.35)

with (2.22) and (1.33). Then

| ~138

n 2 ‘ 1
(£1) "nv a, Hév)(kr), r>a,ms= ;.

-1
Fplr) =+ kr 1

n
(2.36)
Because the total field inside the deformed wedge is
. + ‘
everywhere zero, the Fourier coefficients B; of the
field on the circle p = b are given by

2T =%

1

= 37 A(b,9)
X

cos

B sin(p¢) dé, (2.37)

O o+

as an alternative to (2.32). Using (2,35) with (2.37)

+ .
to obtaln the Bé in terms of the a, results in

v tva u1? g
tv a, Hp, (kb)
2 14

n=1 (tv)2¥p,

2n-1
t=2nlp7£t\)°

H Cos

By = TR sin(pX)'

oo+

(2,38)
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'After noting from (2.28) and (2.36) that

- =, t o 2n—
I;(r) £ I,(xr) ='%%; nzl tv j thv(kr)51n(tvw), t = 2§ 1
(2.39)

-2 w 2 2n-1

Fin) 2Ty = g ]y amen, e= 207
(2.40)

: _ +
equating the two descriptions of the BE in (2,34)

and (2,.38) gives.

S v v _ 2n-1
nzi-at Dep T Cep=Ye,pr E= 05 (2.41)
where
[ g (2) (2)
. .ty , (kr) H (kr)dr
D, o= 3 9 (px) [T, (kb) Cev I
X b
> (2) (2)
: H (kxr). J_(kr)dr 23 HY (kb)
(P kp) | 2 P+
B a o v[(.tv) -p?]-
(2.42)
c. =2 u® kp) | p,(c) Ju(kr) q, (po)dc, (2,43)
t,p 4 "p 3 P t
. c |
a

. = 2 iV (2) ) | °°»v 't'\) . 7 J (kr) J !(kr)
Y__,p —%— Hp (kb)qt(PX) nzi tv 3. sin{tvy) |"tv . o' ar,

0.
i (2.,44)
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and ‘
don (&) = sin(g), gy, (&) = cos(f). (2.45)
. . .85
Using the relationship
) (kz) C, (kz)-~ -c, (kz) C . (kz)
dz _ _ . +l v+1:
Cu(kz) Cv(kZ)E- = kz{ —5 5 }
pe o= v
z
. C“(gz) c, (kz)
: - ! (2.46)

u o+ v
where Cu(kz), Cv(kz) are any two cylindrical Bessel
functions, and simplifying (2.42) with the use of Appendix 1
allows the expression in (2.41) to be reduced to

te =Y. o, t=35"",

2n-1 v
Zl 3 Dep ¥ Cep = Yep (2.47)

n=

where

Heo) (ka) T (ka)

Ppp =t qt(px){

v+ p

g (2) (2)
- ka tv+l(ka) J (ka) - H (ka) Jp+l(ka)]’
(t\)) - p2
(2.48)
“t,p ~ 3 F3(c) J,(kr) qy(po)de, (2.49)
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and

Y = 4v g, (px) Yty jtvsin(tvw)
1

ks Jtv+l(ka) Jp(ka) - Jtv(ka) Jp+l(ka)
(t\))2 - p2
J, (ka) J_(ka)
_ tv p . (2.50)

tv+ p

The qt(a) are defined in (2.45), p is any positive

integer or zero, and tv ¥ p.

2,2(b) THE DEFORMED WEDGE (Magnetic Polarization)

Problem (i)

Consider the infinite perfectly conducting wedge in
Fig. 2.7 occupying the region |¢| < x and illuminated
by a magnetically polarized plane wave. The symbol U
used in section 2.1(b) is replaced in this section by ﬁy
the magnetic field intensity, and the vector operator {A}

becomes (VX)., The incident field is given by
B = gn, ub = gJkecos(o-x-v) (2,51)

The field H; surrounding the wedge is given by (1.23) as

Hl = 2v z € jnv Jnv(kp) cos[nv (¢=x) Jcos[nvy], (2.52)
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where v is defined in. (2.25).
The symbol r is used to denote the'distance from the
apex of the wedge to a point on the wedge surfaceo The
surface current density I(r) on the wedge ‘is then defined -

from (1.33) as

f(r) = ¢ pH (2.53)
= X
P= amey

where the upper (lower) symbol refers to the wedge surface

é=x (¢=2m=%).,

Problem -(ii)

Consider the perfectly conducting deformed wedge of
cross-sectional contour C defined by the cylindrical polar-
co-ordinates (r,6,z) (Fig. 2.7). Let- the maximum
value of r for |8|<x be a. Then, without loss‘of generality,

it is possible to define the deformation C, as being the

3
cross-sectional contour between (a,-x) and (a,x).

The surface current density on the surface ¢=x will be
distinguished by the subscript 1, that on ¢= 2m=X by the
subscript 2, and that on C3 by the subscript 3. The

A A

unit vectors Ty, r2,,and ry are defined by

>

r. = pcos(nn) - ¢Sin(nn), n=1,2,3, (2.54)

where

nl = 9=X, ﬂ2 = ¢ty , T]3 = =38, (2°55)
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and ¢ is defined in Fig. 2.7. Define

gl = Tll;- €2 = nzr g3 = ¢ =8, (2056)

The field incident upon the deformed wedge is
radiated by the current distribution [—f(r)],

0 « r £ aon ¢=x and ¢= 271 =-x., After writing

N A
In(r) = r, In(r), (2.57)

it follows from (2,52) and (2.53) that

n.nv
J

I (r) = £2v e (1) J_ (kr) cos(nvy), m = 7

20
(2.58)

The total field ﬁ(p,¢) surrounding the deformed wedge

is found from (2.16) to be

H(p,¢) = ";r VX F(c) Héz) (kR) dc

a
2)

+
;J}Iu.

vx| [T (r) + 1 (r)]H( (kR)dr, (2.59)
1 2 o)
o
where R is the distance from the elemental contour dc
->
or dr to (p,¢), and F(c) 1is the surface current density

on  the wedge. Because the field is magnetically polarized

(ﬁ = zH), F(c) is directed along C in the (p,¢) plane,

%
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Thus it is possible to write

F_(c) = En F_(c), (2.60)

where the r, are defined in (2.54) .

The use of Graf's addition theorem for Bessel
functions,t and (2.57) and (2.60) enables (2.59) to be

expanded into

o

BGp,e) == x T (| g, (ke) |[x; Fy(x)cosmey)
m==o
Y

p

+z, Fz(r)cos(maz)]Héz)(kr) dr + Héz)(kp)[ [£1 F, (r) cos (mg,)
a

a
+ ;2 Fz(r)cos(miz)] Jm(kr) dr - '[£l Il(r)cos(mgl)'

/O

+ £2 I,(r)cos(mé,) ] J_(kr) dr + C3£3 F3(c)cos(m£3)Jm(krddc]:p
%3

P 2 a. (2.61)

The argument of the vector curl operator in (2.61) is
the magnetic vector potential K(p,¢)o Examination of the

expression in (2.54) shows that K(p,¢) can be written as

-
R(p,9) = PR+ 4R, 32 _ o, (2.62)
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enabling ﬁ(p,¢) to be written as

9A JA

Hio,0) = 2H(p,8), Hlp,9) = =log=t + A, - =21, (2.63)

The evaluation of the first term of (2.63) is accomplished

after noting that

o ‘ o
S [£(0) | h(x) g(x)dx + g(p) | h(x) £(x)dx]
0 a
8 " ‘ 1 e
= £ (p) | h(x) g(x)dx + g (p) | h(x) f(x)dx, (2.64)
P a

where the prime denotes differentiation with respect to op.
The second term on the right-hand side of the expression-
in (2.63) is cancelled by a part of the third, leaving

the description of H(p,¢) in the form

o

H(p,¢) =_£§ I ||Isy(ny, 8 Fyx) + 8 (ny,6.) Fyo(r)IEHknar
v m==—co
0 ,
G
+ | [8y(ng,8)) Fi(r) + S,(ny,E5) F,(r) ], (kr) dr
ja
ra

= | [sylngegy) Ii(x) + 85(ny,8)) I,(x) 13 (kr) dr
o
f

+ 82(n3,€3) F3(C)Jm(kr) dr ’ (2065)
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where

S;(n,&) = mJ (ke) sin(mg)cosn

- kp J;(kp) cos(mg) sinn, (2.66)

i

mH(z)(kp) sin (m&) cosn

Sz(n,E) m

- kp Hézy(kp) cos (mE) sinn, (2.67)

and the prime denotes differention with respect to
the. argument of the Bessel function. Use of the recurrence
relations for Bessel functions14 enables Sl(”’g) and

Sz(n,g) to be simplified to

S1(n,8) = 5003, (ko) sin(mg=n) + 3, (ko) sin (me+n),
(2.68)

0 (u(2) (ko) sin(mg-n) + u(2)

m+l(kp)sin(m§+nﬂo

(2.69)

So(n, &)

The representation of the total field given by (2.65)
is valid for all ¢, and may be written as a trigonometrical

Fourier series on the circle p = b. Thus

H(b,¢),=-B: +2 7 [B£Cos(p¢) + Bosin(pe) ], (2.70)
p=1 g
t

P

\ + o
the B being functionsof b. The Bé-are extracted from
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(2.70) by performing the integration
2m

= o= | H(b,s) ©98
27w ’

B .
sin

(p¢) dé¢. (2.71)

oI+

0o

Using (2.33) and Appendix 2, it is found from (2.65),

(2.68) and (2.69) that

. - E, (r) + Fo@eNE'?) (kr) ar
o sin 2 1 P
Bp B 7% P cos(pX) [Jp(kb) r
b
2) b [éz(r) TP (0)]13_(kr) dr
+ H_ ') (kb) E
P ‘ r
a
(a [ + ]
LI (r) + I ()] _(kr) 4
P T
(@]
=k .. (2) ‘ ; sin
+ 7z Hp (kb) F3(c) [Jp+l(kr) coé{(p+l)e-6}
C3
+ 3y (kr) S0 ((p-1) 6401 ]dc|. (2.72)

The sources of the field H(p,¢) are contained within

the circle p = a, and H(p;¢) is entirely outgoing for p > a.
A representation of the field which satisfies the

radiation condition at infinity84 and- the boundary

condition (1.4) on the wedge is
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H(p,¢) = ) a (2)(kp) cos[nv (¢~x) 1],

P> a, X s ¢ < 2m=y, (2.73)

where the compléx coefficients a, are yet to be determined,
The surface current density on the surfaces r > a can

be described in terms of the a by using (2373) with (1.33).

Thus, using (2054) and (2.60),

Fm(r) =

Il t~18

1™ a_ 82 k), m =1, | (2.74)
0

n
Because the total field inside the deformed wedge is

L +
everywhere zero, the Fourier coefficients B; of the field

on the circle p= b can be obtained from

21—y

]

H(b,¢) o (P4) Ao (2.75)

T+

X
as an alternative to (2.71). Using (2.73) with (2.75)
+
to obtain the Bé in terms- of the a, gives

g (2)

, o (kb)
* p sin 9 tv _ 2n

Bp = I - COS(pX) E t ) - 2.i t = 2n+1° tv # p, p # 0,

n=0 v P
(2.76)

a
+ _ o . (2)

B, = 5 H ®' (kb). (2.77)

After noting from (2.58) and (2.74) that
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- - v 1 (2) _ 2n
Fo(x) ¥ Fy(x) = +zh20_ ¢ Heo  (kr), t =250, (2.78)
- - m. L ‘ 2n
Io(r) + I;(x) =+ 4vn£o epd T, (kr) cos(tvy), t =75 .,
(2,79)

equating the two descriptions in (2.72) and (2.76) of: the

Bi' ves
D give
*© 0 ' N 2n
§ @ Dep *+Cp = Ye e t= oni (2.80)
n=0 '
where
g (2) (2)
[ s (kr) H. (kr)‘
— Jp tv P. d
Dy o = 2 q, (px) 3, (kD) — ‘
b
b
(2) 12D (k) 7, (kx) 25 H (2)(kb) : -2 (xp)
+ H"' (kb) ' Ar + —p—=———|, Dy o T Ty
p r wBtv),=p ] ; :
4a
(2,81)
cy o = i Fy(e)[a ) (kr)q {(p+1) 0-5)
C‘

3

* I, ko) g t(p-1)e+6}lde, (2.82)
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a.
. ® J, (kr) J_(kx)
! . (2) , S AV , tv P
Ve,p = 3PV ag(px)Hy (kb)" ] e 3 cos(tvy) = ar,
=0 o
(2.83)
and the qt(g)’are'defined in (2.45),
Using (2.46) and Appendix 1 to simplify the expression
in (2.81l) enables (2.80) to be reduced to
E a, D + C =Y g =D (2.84)
n=0 t t,p t,p t,p’ 2n+1’ °
where
. ka . (2) Ca(2)
Dtyp = p qt(px) I {Htv+l(ka) Jp(ka) Htv»(ka) Jp+l(ka)}
(t\)) .ﬁpA
+(2) ,
_ Htv (ka) qEKka) 5 3 (2.85)
7- 0,0 BTN A e
tv+p ’
C -k F,(c)[J (kr) g, {(p+l)6=6}
t,p 40 3 pt+l t
. cy
t I, 1 (kr) g f(p-1)e+6}]de, (2.86)
® J,. (ka) J_(ka)
_ B AV tv p
Yo o = 2PV n£ ey J qt(px) cos (tvy) v
- ka3 (ka) J_(ka) - J, (ka) J__ . (ka)}l.
(tv)z%pz tv+l P tv © Tptl ' J

(2.87)
p is any positive integer or zero, and tv # p.
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2.2{c) COMMENTS ON THE RESULTS OF SECTION 2.2

As shown in section 2.1(b), the superposition of
the field described in (2.35) and the field scattered
from the undeformed perfectly conducting wedge (given
in (2.24)), results in an exact description of the field
scattered from the deformed wedge by the electrically
polarized incident field in' (2.23). Similarly, the super-
position of the field described in (2.73) and the field
scattered from the undeformed perfectly conducting
wedge (given in (2.52)) results in an exact desdription
of the field scattered from the deformed wedge by the
magnetically polarized incident field in (2.51).

The exact values of theuah modal coefficients in-
(2.35) or (2.73) are obtained by solving the expressions
in (2.47) or (2.84) respectively. The a, can be evaluated
by using a moment method17 to represent the surface:
current density F3(c) and then forming a matrix equation
by letting p take a number of values in (2.47) or (2.84).
The matrix equation must be of finite order if the aj
are -to be evaluated numerically.

The description of the fields in (2,.35) and (2,73)
is valid in the region po » a, x € ¢ <'2m=x. By evaluat-
ing the a, field coefficients and using analytic
continuation technique525”29,‘the field in p < a,

X < ¢< 27—y can be determined. However, to find the field

in p < r, |¢| < x, the fields given in (2.29) and (2.59)
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must be evaluated and superimposed upon the fields given
in (2.24) and (2.52) respectively.

In the derivation of the expressions in (2.47)
and (2.84) two representations of the Fourier coefficients
of the scattered field are equated on the circle p = b,
b » a. One of these representations ensures that the
field is zero for o= b, o] < x. The—expréssions in
(2.47) and (2.84) are indépendent of b. Not only does
this confirm that-the.an are independent of p, but it also
ensures that the field is zero for o > a, l¢| < Yo
Aﬁalytic continuation arguments enable:this region of zero
field to be extended everywhere inside the deformed wedge.
Hence -the formulations in sections 2.2(a) and 2.2(b)

satisfy the-extended_boundarygconditiop025

The expressions in (2.47) and (2eé4) can each be
regarded as a pgi: 0f-equations~§oggled‘by the Ct,p
term.. In Chapter 3 it is shown that when the wedge
deformation is symmetric about ¢ = 0, as are thé;rounded

and symmetrically truncated wedges, the!pair of- equations

in (2.47) or (2.84) can be decoupled.
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*,?)

Figure 2.7 Deformed wedges 2z axis perpendicular to the paper,
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CHAPTER -3

In this chapter, the surface current density replace=
ment technique is applied to>the'truﬁcated and round-topped
perfectly conducting wedges. The scattered field is
determined for both electric and magnetic polarization of
the incident field.:

Equations which ensure .the continuity of the. surface
current densiéy at suitable points on the‘wedge-surfacer
are derived.

Results showing the convergence of the solutions are
presented, and the factors affecting the rate of convergence
are discussed.

-3,1(a) TRUNCATED WEDGE, (Electric Polarization) .

The primary concern in the application of the result
in section 2.2(a) to the truncatedeedge is to find a
representation of F3(c) which adequately describes the
behaviour of the surface current density on C3° Once a
sulitable representation has been found, it can be used with
(2049) to enable the a, coefficients in (2.47) to be
determined.-

Consider the perfectly conducting closed surface

having the contour C in Fig., 3.1, The side C, is-of

1
length a, and the s-ide*C2 is of length b, where b < a.
The (p,¢,2z) cylindrical co-ordinate system has its origin

at the edge with internal angle 8. A suitable representat- .

ion will be found‘forrF3(c) when the field is electrically
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polarized by considering the form of the surface. current

density

on Cl and C2°

>
A representation of the field A which satisfies the

Helmholtz equation (1l.2), the boundary condition (1.5)

on Cy and Cys and the edge conditiong-4 at p= 0 is

-
A

where T

i

zu ) D J_kp)sin(mt¢), o < b, (3.1)
m=1

i

-1/(2=-8/m), and the.Dm are -constants which

depend upon the incident field and the shape of the con-

tour C.

surface’

El(x) =

and- the

S,(x) =

where x
on Cl or
outside

the surf

the expr

By using (2.22) and-(1.33) with (3.1), the

current density §l,(x)'oan1 is -found to be

® J__(kx)
mr ;
-7 Z Dm mT‘_—?—a* ;. X < b, (3.2)
m=1 :

surface current density*gé(x) on C, is
N ® J_ . (kx)
mr
z 2 (-1)™ D mT ———— (3.3)

" m=1

is the distance from the edge p= 0 to a point
Czo Because the field is continuous everywhere
C, and the contour Cl has no discontinuities,

ace current density on Cy is continuous. Thus,

ession in (3.2) 1is a valid representation of

§l(x) everywhere on Cye
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Notice that an integrable infinity exists in the
surface current density at the edge of the body. This
infinity restricts the accuracy which can be obtained by
using the method of subsections to represent the surface
current density near the edge,l7’33

Consider. the perfectly conducting truncated wedge in.
Fig., 3.2. The (p,¢,2) co-ordinate system has its origin
at the apex of the undeformed wedge. The "truncation.
surface" of length 2b .is the surface between edge 1 at
p = a;, $=x, and edge 2 at p = a,,¢= 21 -x, where
ay » aj. It is conwvenient to describe the deformed surfacev
C3 of the truncated wedge as the surface between p = a,

¢ = 2r-x, and p= a, ¢=x, where
a ='a2+bo | (3.4)

When considered in conjunction with section 2.2(a), the
definition of C; may be better understood by referring to

Fig, 3.3. Then

Lt C = C30 (3.5)

€+0

pefine Cl to be the contour of the surface p> a, ¢ =y, and
C2 to be the contour of the'sqrface pza, = 21=%.
A representation of the surface current density ?3(c)
on C, will now be constructed, and is later specialized
for the case of the symmetrically truncated wedge, a; = a,.
Define x to be the distance from edge 1 to a point

on C3o It follows from (3.2) and {(3.3) that the surface
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current density gl(x) at a point on the surface-¢=x, and
‘the surface current density §3(x) at a point on the truncat-
ion surface can be represented by

© er(kx)

N A m
S,(x) =z s (x), S (x) =1 le (+1)" D, M1 ————— , n =

(3.6)
where the Dm are constants, and

S (3.7) -

21 = B

Define y to be the distance from edge 2 to a point

on‘C3° It follows from (3.2) and (3.3) that the surface

current densityvfz(y) on the surface ¢ = 2 =-x, and the.

surface -current density‘%3(y) on the truncation surface can

be represented by

%n(Y) = ; Tn(y), Tn(Y) =% § (il)m E. my EEX%EZL , o= g ’
m=1 -
(3.8)
where the E, are constants, and:
m

Y= ———— (3.9)

The surface current densitthB(c) of (2.49) 1is defined as
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F3(C) ’bl ¢ =’27T_X‘l

il
=]
N
L< .
-y
o
N
Y
N

T3(y) or $3(x), 0 ¢« * < 2b on the truncation
, Y surface,

=85(x), 0 xsb, ¢=x. (3.10)

The limiting form of the Bessel function of the first:
kind when the order v is fixed and the. argument z tends

to zero isl4

I (z) “(3)7/T(v+l), v # -1,-2,-3,°, z > 0, (3.11)
Therefore, the first terms in Ehe series for S3(x) ‘\\
will adequately approximate -the surface current densitj
near edge 1, and the first terms-in:the series for T3(y)
will adequately approximate the ‘surface current density
near edge 2.

Equation (3.10) indicatesjthat;either:83(x) or
Tg(y) is a suitable representation of F3(c) at all points
on the truncation surface. However, when x# 2b, a large
number of terms of the series given in (3.6) are requiréd
to approximate the- infinite nature of the surface current
density near edge 2, Similarly, when y=* 2b, a large -
number of terms of the series in (398)‘are required to
approximate the surface current density near edge 1.
Since it is numericallyimpractical to deal with a large

number of unknowns in (2.47), the use of either S3(x)

or T5(y) to represent F3(c) everywhere on the truncation.
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surface would introduce a gross error in the approximation
of the surface current density near either edge 2 or edge .1l.
Instead, T3(y) is used to represent the current density

for 0 < y.< b, ‘and S3(X) is used for 0 ¢ x < b, giving

F3(C) = Tz(y)l 0 gvyc< br ¢ =-2m-x,
=‘T3(y), 0 ¢y s b, on the truncation surface; (3.12)
= S3(x), 0 ¢ x b, on the truncation surface,

li

sl(x), 0 €« x<b, ¢ =%

Using (3012); the expression in (2.49) becomes

'k fa=a,
“tp T 2 T,(y) I (kr) qq(-px)dy
o]
b
| T3(y) I (kr) g (po)dy
O .

b a-aj ‘ ]
+ S3(x) I (kr) qp(pe)dx +  [8;(x) I, (kr) gy (px)dx;.

J

o o
(3.13)

Substituting (3.6) and (3.8), and using Graf's addition

theorem14 with (3.13) gives
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c _ % ) (-1)™*1 E, My qt[-pX]Jp_z(kaz)_me;Jk(a-az)]

+(_l)£ B my qt[f(px+@a)]Jp+£ (kaz) me,Z (kb)

L o - .
+(-1) D mT qt[px\+lB]Jp+2(kal) fmT,k(kb)

m+1 , . : : , - : -
+(-1) D mrrqt[px]Jp_ﬁ(kal) fmlek(a al)], ay> a;> b,
; (3.14)
where, from (2,46),
. ,
J (kz) J,(kz) J (kz) J,(kz)
£ (kz) = v L dz = v L
v, L z v+2
o}
“kz , _ 7
- :i_t_zf [Jv+l(kz) Jz(kz) Jv(kz) J2+l(kz)]’

v > 0. (3.15)

When the wedge is symmetrically truncated,

a) = a,, a=-a) =a-a,-= b, d= B, v =-T, (3.16)

and Ct reduces to
14

] mt £ (kb) -1)™s  (ka

p-% ly
1 g==w

Q

]
N &
H o~18

m

oy (-px)Ey + g (px) D]
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+(=1)'3, (kayp) [ay (-px=L8) By +ay (px+28) D] (3.17)
From (3.15)
£, gkz) = (-1, (kz), (3.18)

which enables (3.17) to be separated into the two

equations
B k *® m+1l .
Cop =17 mzl e, (DptE ) mt fmf,z(kb) (-1)""ay (px)
2=0

L3, g (kapH=1)"3_ (kap)] +(-1)"[ag (px+e8) T, (ka))
+-D'qu(px-28) 9, kapl|, €= 5071, (3.19)

where €, is the Neumann factor, and n is an integer.
After defining. the two infinite sets of complex

constants Q and Rm by

Q, =P, +E, R =D -E, mn=1,2,3,"77, (3.20)

(2.47) specializes;, in the case of the symmetrically

truncated wedge,

Ttpt T ’

a
t 1 Rmrct,p,m‘_ 2n

Ho~8
o318 )

+
n=1 t,p m

(3.21)
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where, from (3.19) and (3.20), .

[oo]

kmt %
ct’p'm = 27 Qéoez f (kb) Jp+2(ka1)(—l).[(—l)

m+1

LAy (px) + qt(px+28)] + Jp—JL (kal')[ (.-l)m+vl qt(px)+qt(px-28)] v

(3.22)

and the D, _ and Y, _ are defined by (2.48) and (2.50)

t,p t,p
respectively. Thus, when applied to the symmetrically
truncated wedgé;.the expression in (2.47) separath‘into
the two independent equationé in (3.21). As no- approximat-
ions have been made during the derivation of (3.21), the

solution to these equations describes eXactly,the field

scattered from the truncated wedge.

3,1(b) SURFACE CURRENT. CONTINUITY (Electric Polarization).

The uniqué description of the constants:a o) andPRm

t! *m

given in (3.21) is obtained by equating the Fourier coeffic-
ients of two representations of the field‘surrounding the
truncated wedge (see Chapter 2). It is possible to obtéin
other relationships between ‘these constants by ensuring

the continuity'of surface current density at points on

the truncated wedge.

First, consider the continuity of the :surface current

density on the truncation surface of the wedge., From (3.10),

Ty(b = 8) = S5(b + §), ¥ |§] < b, (3.23)
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and moreover, since the truncation surface is absolutely

continuous,

el 54 4

_E [Ty(b~8)] = __E [s5(b+s8)], g =0,1,2,""7, ¥ |s] < b.

387 - 38 7
(3.24)

By using the recurrénce relations14 and the addition
theorem with (3.6) and (3.8), the expression in (3.24)

expands into

- ' ' q
J e = [kmy+z) (kb) + (-1)* (my=2)3__ (kb)| —— J, (ko)
I .JZ, m my+4% my- &Sq :
2=0
_ 5 L, 59
_ m£1 eQDm[(mT )3, (kb)+ (1) (mr+) T +2(kb{]s&q 3, (ks),
9=0

¥ |§| < b, (3.25).

It can be deduced from the recurrence relations for Bessel

functions that provided

£(g-2n) =0, n=1,2,3,77° g/2, (3.26)
then (Appendix 3)
54 .
() —= J,(k8) =0, L# q,
559
§ =0 V (3.27)

f (]%) C_[E (q), 2=q,
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where (%) is any function of 2; £ being a positive integer
or zero.
Using (3.27) with (3.25) gives

[ee)

mzl {Dmv- (_1)qu}I(mr—q) JmT_q(kb)'+t(-l)g(mr+q) JmT

+q (kb)] =0 [

(3.28)

when the symmetry conditions 'in.(3.16) apply. The expression
in (3.28) ensures the continuity of'the'qth derivative of the
surface current density about the midpoint of the truncation
surface, provided that lowér derivatiVésrof“the-current density
are continuous there.

Now consider the continuity of the surface current
density across p= a on Cl,and‘Cza' It can be seen from (2.28)

and (2.36) that this current density can be expressed as

. P n- , . ‘ 1
I (o) + F (x) =% %,2‘(11) Py nv L (kr), r>a, m=3,
n=1
' (3.29)
nv
4vj‘ ‘ | 2 (2) M
Pn Ll’l\) (kr) =-= k Jn\, (kr) Sln(n\)gb) + e Hn\) | (kr) (3030)

Since PnanCkr) is a linear cOmbihation;of cyl}ndrical Bessel
functions, it can be manipulated as avéylindrical Bessel
function.

Because the! surface Cl is absolutely continuous for
p.> a;, the surface current density is absolutely continuous
on Cla Hence, the representations in (3.6) and (3.29)

may be equated at any point on Cy, giving

T
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N é q

3 e} o
Ry [s (a=a +6)]= — [T (a+8) +F (a+6)] =0,1,2
569 1 1 559 1 1 - a e !

6 >al-ao (3031)

By using the addition theorem for Bessel functions, the

expression in (3.31) expands into

) . [(mr—ﬂ) 3, (klama; ) +(-1) " (mr+2)

3q, ® e£~Pn“ » N

T ey (Klamag D) =3 T, (k8) = ] 7 |(ov=8) L, (ka)
‘ 1

0

n
L

I

) 7 . od
+(=1) " (nv+4) an+£(ka{} ;EE Jz(ké),< |8 ] <,(a—al)o (3.32)
The use of (3.27) enables the expression in (3.32) to be

reduced  to

[hnr-q)'JmT_qu[a-al])+(-l)q(mt+q) Jmt+q(k[awaﬂﬂ

fg{}nv-q) an_q(ka) + (=1) Y (nv+e) th+q(ké{], (3.33)

h

thereby.ensuring the continui‘ty.of’the,qt derivative of the

surface current density about p=a on Cl’ provided that lower

derivatives of the currenht density are continuous there.

h

Similarly, the continuity of the qt derivative of the
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surface current density about p=a on C2 is ensured if

©0

‘ E
- —_pym _m - -1 d ‘
mzl -7 5 [(mv @D Tpy—q (KR +(=1) F (my+q) JmY+q(kb)]

= z (=1)7 — l:(nv—q) an_q(ka‘)+(-1)q'(nv.+qv) Ln\)+q(ka):|' (3.34)

provided that lower derivatives of the surface current density
are continuous there,

When the wedge is symmetrically truncated, the addition
and subtraction of the expressions in (3.33) and (3.34) gives

the two equations

© (D_tE )
m m m q.,
mzi’———ge__(—l) [ (m1-q) JmT_q(kb)+(—l) (mt+q) JmT+q(kb)]
= § e [ (tv-q) L (k )+(-1jq(t +q) L (ka)], £ = 2271
a =1 T PRV by gt O e A
| (3,35)

Substituting (3.20) and (3.30) into (3.35) results in

-2 v (2) 2)
ka nzl at[(tv-q) Htv~q(ka) + (-1)9(tv+q) Htv+q(ka)]

o170 3 _.q |
+ mzl T RImn [(mr q)JmT_q(kb)%r( 1) (mT+q)JmT+q(kb)]
= %% nzl jtv Sin(tvw)[ (t§—q) Jtv_q(ka)+(—l)q(tv+q) Jtv+q(ka)]i
_ 2n=1
t = on ! (3.36)

which are wvalid if derivatives of the surface current

density below the qth are continuous about p=a.
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3.1(c) TRUNCATED WEDGE. (Magnetic Polarization) .

To determine a representation of the: surface currert
density f3(c) on the surface¢C3 of-the truncated wedge when.
the field is magnetically polarized, consider the perfectly
conducting closed surface C in Fig. 3:1l.  The geometry of-
this figure is described in section 3.1(a).

A representation of the field H which satisfies the
Helmholtz equation (1.2), the boundary condition (l1.4) on Cl

and C,, and the edge condition at p= 0, is

> ~
H =1z
m

0.Dm‘JmT(kp) cos (mt¢) , pr < b,. (3.37)

llo~138

where 1 is defined ih-(3°7), and the~Dm‘are constants which.
depend upon the- incident field and the shape of the contour:
C. By using (3.37) with (1.33), the surface current density.

§l(x) on Cl is found to be’

R . .
Sl(x) =ry . Dm JmT(kx), X X b, (3.38)

le~18

m

and the surface current densityvgz(x) on Czris

§,(x) = - 1, mzo (-1)™ D, I, (kx), | (3.39)

A A ~

ry = pcos¢ - gsin¢, r, =»gcos(¢+6) - $Sin(¢+6), (3.40)



80

and x is the distance from p=0 to a point on Cl or Cyo
Because the field is continuous everywhere outside C, and
the contourxclkhas no discontinuities, the current density
on Cy is continuous., Thus, the expression in (3.38) is a
valid representation of §l(x) everywhere on Cl.

Considertheperfectly conducting truncated wedge in
Fig. 3.2. The description of this figure, and the definition
of the deformed surface C, is-given in section 3.1l(a). It
follows from (3.38) and (3.39) that fhe-surface current -
density §l(x) at a point.on_the surface  ¢=%x, and the surface
current density'gs(x) at a point on the truncation surface -
can be represented by

o m

- v v : 3
Sp(x) = r S (x), S (x) = - mzo‘(il) D, I, (kx), n =7,

(3.41)

where the Dm are constants, and the unit vectors ry and ¥y

are defined in (2.54) as

A

A

r, = gcos(¢—x) - &sin(¢-x), r3;=rgcos(¢—g)—&sin(¢-6)o (3.42)

Similarly, the surface current density Tz(y) on the-
- surface ¢= 2m=-x, and the surface current density %3(y)
on the truncation surface can be represented by

N )
T (y) =, T .(¥), T (¥) = ]

m- _ 3
m=0 (x1) Em-me(ky)’ n =

2i

(3.43)
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where the E are constants, the unit vector ry is defined
in (2.54), and y is defined in (3.9). The surface current

density F3(c) of (2.86) is given by

F3(c) = Tz(y), 0 <y b, ¢ = 2m=y,

= T3(y), 0 £y £ b, on the truncation surface,

= S3(x)”‘ 0 £ x € b, on the truncation surface,

= Sl(X)’ 0 L. X S bl (b = X e (3944)

Substituting (3.44) into (2.86) gives

i ;

- k. —y— - |

Ct,p =7 Tz(y)[?p+l(kr) a4 (=px ﬁ);+'Jp_l(kr) gy ( px+w{]dy
o
b

+ T3(y)[Jp+l(kr) qt([p+l]e—%)+Jp_l(kr) qt([p-l]9+%{]dy
o

b
e S3-(X) [Jp+l (kr) qt.( Ep+l] e_.Tzr_) +Jp,—l (kr) qt( [p"’l] 6+%):l le

a=aq

+ Sl(x)[Jp+l(kr) + Jp_l(kr)] d (px)ax| . (3.45)

From (2.45),

qp (-pxtm) = (-1)* 9 (PX) r a, ([p+llets) = i(-l)t7qt+l([p+l]6)o

(3.46)
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Using the recurrence relations for Bessel functions; and

substituting (3.41), (3.43), and (3.46) into (3045)

results in .

‘Jp(k[a2+y]) me(ky)
ETa2+y)'

_k v m+t :
Cep =7 Lo | DT Ep2p ap(px)

b [

+(=1) n [&pfl(kr) qt+l([p+l]9)—Jp_l(kr) qt+l([p-lJ6)}

b

t
'me(kY) dy + (-1) D [Jp+l(kr) qt+l([p+l]9)-Jp_l(kr)

o

m

RE [p-l]e)] T (k%) dx + (-1)™ D 2p g, (p1)

a-al
Ji(kla,+x]) T__ (kx)
p 1 mt e
k (a; +x) — dx}, a; »a; > b. (3.47)

When the truncated wedge exhibits the symmetry defined

in (3.16), C,

simplifies to
t,p = pll
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e b m+1 2p 3, (kla;+x]) (o)
k(al+x) | g 1PX

C = % L (D _¥E_ ) (-1)

* {Jp+l(kr) qt+ldp+1]e)—Jp_l(kr) Appq (Lp-110) 3|0 (kx) dx,

_ 2n
£ = 2n+1v (3.48)
where
- b-x 1L
8 = sin 1 [“j;‘] , =;(al2 +'x2 - 2bx)?, (3.49)

Using the definition in (3.20) extended to include m=0, -

(2.84) can be specialized for the symmetrically truncated.

wedge to
E' a, Do o+ E‘ o C =Y £ = 20 (3,50)
neo ETtp Lo O Ttpm T Tt,pt 2n+1’ ‘
where the D and Y, _ are.given by (2.85) and (2.87)
typ t,p

respectively, and from (3.48)

b
J_(kla,+x]) ‘

_k m+1 p 1 .

“t,om T 7 [(‘1) 2p K (a;+x) I (PX)

(0]

<

’ t o, , 4
+(-1) {Jp+l(kr) qt+l([p+l]6)-Jp_l(kr)qt+l([pfl]6){}JmT(kx) dx.

(3,51)
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'3.1(d) SURFACE CURRENT CONTINUITY. (Magnetic Polarization) .

In a similar manner to that of section 3.1(b), the
equations which explicitly ensure the continuity of the
current density on the‘truncated,wedge are derived in this
section for magnetic polarization of the field. First,
consider the continuity of the surface current density
about the midpoint of the truncation surface. Using the
‘addition theorem for Bessel functionsl4‘to expand (3.41)
and (3.43) enables the expression ih (3.24) to. be expanded
into

q
, - . ad .
EQEm[JmY*Q/ (kb)"'(-rl) me—"g’(kb)jl;(g_q J,Q, (ks)

i ro~s

m=0
2=0

a8

I
I
Il Jfe~18

q
% N : ,
L e, Dm[?mT_z(kb)+(-l) Jm”(kb)}——a Jg(kd),..¥|aj<b°
2=0

(3.52)
When the wedge is symmetrically truncated as defined in-.
(3.16), the expression in (3.52) is reduced, by using (3.27),;
to |

o0

‘ -9 ¥ : -1y 4 ' =
LDy CLEEGY Lo (kb) 4 (GDE g (0) ] =0,

(3.53)
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which ensures the continuity of the qth derivative of
the surface current density abéut the midpoint of the
truncation surface, provided that lower derivatives of
the current density are continuous there.

Now consider the continuity of the surface current
denéity across p=-a onVClband C2° It can be seen from
(2.58) and (2.74) that this current density can be

expressed as

I (r) +F (r) =¢ [ (il)n'PnAan(kr), r>a, ms=

27
n=0
(3.54)
P L (kr) = 2v e i™J_ (kr) cos(nvy) + a_ H'%) (kr)
n nv nJ nv ! n nv 7
(3.55)

‘where the function P L., (kr) can be manipulated as a
cylindrical Bessel function.

Because the surface Cl is- absolutely continuous
forp » aj, the surface current density is absolutely
continuous on Cq- Hence, the representations in (3.41)
and (3.54) can be equated as in (3.31)., By using the
addition theorem for Bessel functions, the expression

in (3.31) expands into
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) ‘ 54
) e, ( 1)+l D [JmT_z(k[a—al])H-l)2 Ty (Klam al]{‘ —=, ()
m=0 368 |
2=0 |
- v 2 }‘aq
) nzo EQPn[Ln“‘Q(ka)+(_l) an+z(kaﬁ 264 3, (k8), |é8]<(a-aj),
=0

(3:56)
The use of (3.27) énables the expression in. (3.56) to be

reduced to

oo

To(-1)

m=0

w1 Dm[%mT_q(k[a—al])+(-l)q J (k[a-a ]ﬁ

mT+q

]
I ~18

. ’pn[m q(ka)+( 19 Ln\)_i_q(ka)-:l, (3.57)

thereby ensuring the continuity of»the—qth derivative of
the surface current density about p= a on Cl, provided
that‘lower derivatives of the current density are continuous
there,

Similarly, the continuity of the qth“derivative of

5

the surface current density about o =a on C, is ensured if
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o«

'y o-n"E [

L +q(k[a-azJ)]

- q<k[a—a2])+( 1)4

]
Il ~18

~1n q
(-1) Pn[:nv gy + n9r q(ka)], (3.58)

n=0

provided that lower derivatives of the surface current
density are continuous there,

When the wedge is symmetrically truncated as in (3.16),
the addition and subtraction of the expressions in (3.57)

and (3.58) gives the two equations

o o]

i d
20 (0, ¥8,) (DL (kb)+(-DT T (kb) ]

(ka)], t = 2n. . (3.59)

o q
_q(ka)+( 1)* L 2n+1

tv+g

]

Substituting (3.20) and (3.55) into (3.59) gives

2 E a [m2) o k) +(=1) 12 (kayl+ 7 om_pym
neo tv+q n2o Q.
. =AY
,[er_q(kb)+(=1)q JmT+q(kb)] = —4v nzoretj‘ cos (tvy)
L3, a0 g ka)l, €= 2n (3.60)

t tv+g
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which are valid if derivatives of the surface current

density below the qth are continuous about p= a.

3.2(a) ROUNDED WEDGE. (Electric Polarization)

The specialation of the results of section 2.2(a)
to the rounded wedge is studied in this section. As in
previous sections of this chapter, the representation
of the surface current density f3(c) over the wedge
deformation is of'primary interest,

Consider the perfectly conducting rounded wedge in
Fig. 3.4. The (p,$,2z) co-ordinate system has its origin
at the apex of the undeformed wedge. The deformation
contour C3 is the arc of a circle centred on ¢= 0
such that the surfaces ¢= x and ¢= 27=-X are tangents
to the arc at p= a,$= tx. Let x be the distancé measured
along the surface in a clockwise direction from the mid-
point of C; to a point on the surface. The maximum

value of x on C, is X. The incident field is electrically

3
polarized in the z-direction.

A representation of fs(c) which acknowledges
a priori that any oscillations in the surface current

density are likely to have a period close to that of the

field in the surrounding medium is

Fy(c) - 2 Fy(x), Fy(x) = mzobm g (kx), (3.61)
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where the bm are constants. Substituting this representat-
ion into (2.49) gives
- X |
Cyp o = 3 sz b T (kx) I, (kr) g, (po)dx. (3.62)

-X

Since, from  (2.45)
a.(5) = (-1)¥L g ( -5), | (3.63)

and r is an even function of x, C is simplified

t,p
by using (2.33), to,
C =k § b, . J.(kx) J (? ) (p8) d = 2m o po2n-l
t,p ﬁ=0 s g (KX P £} de P X1 S = omy1r 2n. °
o
(3.64)
Thus, in the case of the rounded wedge, the expression-
in (2.47) becomes
v v A _ _ 2n-1 _2m
nzl %t Dtpp * mzo by Ct,p,s _‘Yt,p’ t = 2n ¢+ ST omy1v
(3.65)
where the D and Y are defined in. (2.48) and (2.50)
: tpp‘ trp
respectively, and from (3.64),
X .
Ct,p,s =k J (kx) Jp(kr) qy (p8) dx. (3.66)

(@)
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The surface current density on C, and C, when the field
is electrically polarized is given by (3.29) and (3.30).
The qth derivative of the surface current density across

x = X 1s continuous if

q q
9 9
— P, (X+S = e | T +§8)+F +8. 3.6
q [ 3 ( )] e [ 1 (at8) +F; (a )] , ( 7)
§=0 §=0
and is continuous across x = =X if
74 [ 9 ,
535 F3(-X-6)] ="§§§ [12(a+6)+F2(a+6ﬂ . (3.68)
§=0 ‘ §=0

Substitution of (3.29) and (3.61) and the use of the
addition theorem for Bessel functionsl4 enables the expression

in (3.67) to be expanded as-

~1 8

I} 74
, bm[?mfg(kx)+(—l) Teeg, UEX) | =5, (kc0)

= B
nol

oo
o .
il

=1

o q
- 7 Anm [(nv-!b) L, (ka)+(=1) "(nv+e) T (ka) el Al

=0

(3.69)
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which, with the use of (3.27), reduces to

P
ni.,.
Er[knv—q) anmq(ka)

I~ 8

[e<] _ q | N _
m£0 bm[Jm_q(kX)+( 1) Jm+q(k><)] =

n=1

+(-1)4 (nv+q) an+q(ka):|, (3.70)

The expression in (3.70) ensures the continuity of the qth

derivative of the current density across x = X provided
that derivatives of lower order are continuous there.

Similarly, if

n Fn
(-1) =

Z

I t~18

- RICEES -
(-1™ b [Jm_q(kx)+( 1) Jm_l_q(kx)]— )

m=0 1

,[}nv—q) an_q(ka)+(—1)q(nv+q) an+q(ka{], (3.71)

the qth derivative of the surface current density across x=-=X
is continuous, provided that derivatives of lower order
are continuous there. Adding and subtracting. the expressions

in (3.70) and (3.71) gives.

7 q
mzo by [Js_q(kx) =1 T (kx)]

A
= - . ._t - ’ - a
n£1 a[(tv @) Ly g (ka)+(=1) = (tv+q) Lt\)_i_q(ka)] .
_2m . _2n-1
s = 2m+l’ t—2n . (3.72)
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Substitution of (3.30) into (3.72) gives

oot (2 q (2)
nil = | (tv=a) Htv—q(ka)+('l) (tv+q) Htv+q(kai]
7 -1)4
+ mzo bs[§s~q(kx)+( 1) Js+q(kx{]
_ —4v o Lty . ' e g
= = n£1 3 s1n(tv¢)[(tv q) Jtv_q(ka)+( 1) (tv+q) Jtv+q(k%j’

which is valid if derivatives of surface current density

below the‘qth are continuous across both x = X and x = -X,

3.2 (b) ROUNDED WEDGE.. (Magnetic Polarization).

Consider the perfectly conducting rounded wedge in
Fig. 3.4 illuminated by a magnetically polarized field. The
geometry of the figure is described in section 3.2(a). For
the reason given in that section, the form of F3(c) used to

represent the surface current density on Cs is

Fylo) = £y Fy(x), Fy(x) =Vm£0 b I (kx), (3.74)

where the bm are constants. The unit vectorrr3,is defined

in (2,54) and (2.55). with
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: _ Al T — «in—1l°] sine
Ny = o 9. 5 + I, T sin [mjl o (3.75)

Substituting the expression in (3.74) into (2.86) gives

X
-k
C =7 E b Jm(kx)[?p+l(kr) qt(pe+P—
-X

N =
N

™
+ Jp_l(kr) qt(p6-1‘+ 7{]dx° » (3.76)

Since r is an even function of x, while 6 and T are both odd

functions of x, C can be simplified by using (3.46), (3.63)

t,p
~and (2.33), to
- X
_k s+1 '
“t,p =2 mZo (1) Ps T (x) [Jp+l(kr) T (POFT)
o
: S _ 2m - 2n. N
_’Jp_l(kr) qt+l (pe_’r)] dX, s = 2m+l ¥ t - 2n+l°

(3.77)
The expression in (2.84) are specialized, in the case of

the rounded wedge, to

fo'e) (o]

_ 2n _ 2m
nzo 8 Dtyp +Im£0 Py Ct,p,s B Yt,p’ €= one1’ S T omelr
(3.78) .
where the D and Y are given in (2.85) and (2.87) respect=-

t,p typ
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ively, and from (3.77)

X
_ (_1yStl Xk
Ct,p,s = (-=1) > Js(kx) [&p+l(kr) qt+l(pe+P)
o
- Jp_l(kr) qt+l(p6-F{deo (3.79)

The surface current density on C;, and C, when the field

1 2
is magnetically polarized is given by (3.54) and (3.55). The
qth derivative of the surface current density across

x = X is continuous if the expression in- (3.67) holds, and
the qth derivative of the surface current density across

X.= =X is,conﬁinuous if the expression in (3.68) holds.

Using'thé'addition theorem for Beéessel functions to expand

(3¢54), and substituting into (3.67) gives

T % 7 4d
X egbm[Jmuz(kX)+(-l) »Jm_l_g(kx)} —5 T4 (k)
m=0 v i
=0 5=0
S 3 59
= 3 eKPn[an_z(ka)+(-l) anm(ka)] — 3, (ké) ,  (3.80)
n=0 33

which, with the use of (3.27) reduces to



95

. -9 7 v
y bm[Jm_q(kX)+(vl) Jm+q(kx)]

m=0

- Z P L (k@) +(-1)4 Ly K@) - (3.81)

The expression in (3.81) ensures the continuity of the

qth derivative of the current density across x = X,
provided that derivatives of lower order are continuous

there. Similarly, if

- m s a - - n
mzo (-1) bm[hm_q(kX)+( 1) Jm+q(kX)] = nzb -1t p

q , ;
LT q(ka)+< DY 1 g &a)], (3.82)

L

the qth derivative of the surface current density across
x = =X is continuous,.provideduthat derivatives- of lower
order are continuous there. Adding and subtracting

the expressions in-(3081) and (3.82) gives

I pslog g0+ 5y, x]

[ee)

- q
nzopt[ fy-gq (K1 F L,

(ka)] .t = 2n _ 2m

tv+g T on+l” S T om+l’

(3.83)
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‘which, after substituting (3.55), gives

S5 an(® T N _1)d
nzo ap[He iy (k) + (1% HeGL ]+ sz bylag_ o (kX)+(-1)

[oo]

-t |
g (K0 ] = 2vnzo er 3 gos(tvw)[Jtv_q(ka)+(-1)q Tiyigka) 1,

2n 2m
= on+tl * ° T omsl’ (3.84)

where e, is the Neumann factor. The expressions in (3.84)

%
ensure the continuity of theAqth derivative of the surface

current density across x = *X provided that lower derivatives

of the current density are continuous there.

" 3,3(a) NUMERICAL CONSIDERATIONS

The four expressions in (3.21), (3.50), (3.65), and
(3.78) are specializations of the expressions in (2.47)
and (2.84) for the cases of a symmetrically truncated wedge
and a rouﬁded wedge in either an electrically or a magnetic-
ally polarized field., Each of the four expressionS‘con;

sists of two independent equations with an infinite

number of unknowns.

The independence of -these two equations arizes from

the symmetry of the wedge deformation about ¢= 0. As
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a result of this symmetry, half of the unknown field modal
coefficients (the an) and half of the unknown surface
current density modal coefficients (the Qm and Rm, or bm)
appear in one equation, and the remainder appear in the
other. The coefficients separate into exactly the same
groups in the equations derived from surface current density

continuity considerations.

Because similar methods are used to obtain the unknown
modal coefficients from either (3.21), (3.50), (3.65) or
(3.78) , only the expressions relating to the truncated wedge
in an elecfrically polarized field will be discussed.

By letting p take all positive integér values and zero,
the equations of (3.21) may be written as two independent
matrix equations of .infinite order. Because there has been
no approximation made during the derivation of (3.21),
the solution to these matrix equations enables an exact
description of the field scattered from a truncated wedge
to be obtained. However, in order to numerically determine -
the unknown modal coefficients in these matrix equations,
it is necessary to limit the number ofan to a finite number
N, and the number of Qm or Rmto a finite number M. The
maximum values of N and M are limited by available

computational facilities.
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Thus, from (3.21)

a, D + m _ _ 2n=1
n=1 £ =1 g Ctrprm - Yt,p’ £ =+ (3-8

and by letting p take a suitable number of values, these

equations can each be expressed in matrix form as

[allx] =[y]. | (3.86)

The .elements of'[A]‘are»the Dt,p and the Ct,p,m’ while
- [x], the vector of unknowns, contains the a, and Qm or ng
It can be seen from (2.50) that the characteristics of
the incident field are contained in the elements'Ytlp
of the known vector [y]. Thus, having determined the

1 of the matrix' [A], the modal coefficients

inverse [A]
may be obtained for any incident field by post-multiplicat-

ion of'[A]“l»by the appropriate vector [yl.

Define T to be the order of the matrix [A] in
(3.86), The matrix elements are obtained by letting p
(the field Fourier component harmonic number) take the
first T zero and positive integer values to give T
algebraic equations. It follows that an increase in N or M
resulting in an increase in T means that a greater number
of Fourier field components must be considered.

The inclusion of Q equations from both (3.28) and

(3.36) in the matrix equation (3.86) explicitly ensures
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the continuity of the surface current density up to the/
«Q—l)th derivative. These equations are obtained by
letting g take all positive integer values between zero
and (Q-1) inclusive. This requires that the range of p
be reduced by Q in a matrix of order T. Thus for a given:
matrix order, the inclusion of current density continuity
equations results in the neglect of higher order field
Fourier components:.

The separatioh of the matrix equation in (2.47)
into the two matrix equations in. (3.85) when the wedge
truncation is symmetric, enables considerable savings
to be made in both computational time and storage. Since
the time required to numerically invert a matrix of order

2T is proportional t0'8T3,86’

the separation of (2.47)
into two equations of approximately equal order T enables
the inversions to be completed in a time proportiohal to
2T3, The storage requirement for a matrix of order 2T

is 4'I'2 locations, while that for two matrices of order T
fis only 2T2 locations.,

The limiting of the matrices to finite order is
justified only if the neglected terms and equations have
negligible influence on the values:obtained for the modal
coefficients. The convergence of the*modal coefficients
to constant values as N and M increase indicatéé that

these coefficients are adequately defined in the matrix

equations of finite order,
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3.3(b) PROGRAMMING

Simpson's Rule87 was used to evaluate the contour
integrals of (3.51), (3.66), and (3.79) to obtain respectively
the Ct,p,m for the symmetrically truncated wedge in a magnetic-
ally polarized field, and the rounded wedge in an electrically
or magnetically polarized field.

By dividing the range of integration into (L-1) equal

subdivisions, where L is an odd integer, the expression

in (3.51) can be approximated by

L .
J_[k(a,+x,)]
kh m+1 plela;tx,
C = -1 ). e J (k=
t,pm -6 |7 pqt(pX)zzl Y k(a,+x,) me (%)
1 7
+ "“”ti e, T ,(kr,) q,,  ([p+tlle )-J__. (kr,) ([p-1le,)
2 L STl o) Q41 'tP g/ TVp=1 Ty Ay VEPTHE,
avaT (kxz) ﬂr
(3.87)
where
h=-2_, x = (-1)h - (3.88)

-1’ *» ‘ .

and from (3.49)
b-x
= ain—dg % = 2 - w )72
6, = sin {—fZ‘}’ r, = (a;” + x, 2bx )™,
(3.89)

The weighting factor e, is defined by

e, =1, &= 1,L,.

=2, & =2n-1, % # 1,L,

=3 4’ 2 = 2n, (3090)
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where n is an integer.

In a similar manner, (3.66) was approximated by

1,
_ kh
Ceop,s =3 L e Tglkxy) T (kry) ap(py), (3.91)
2=1
where X
h =35, x,= (4-1h, (3.92)

and X is defined in terms of the radius R of the round top by
X = R(F =% (3.93)
Then,

r ‘=[R2+a 2seczx - 2Ra.secxcos (x /R)]l/2
L ‘ 1 1 £ 4

X
1 [%—-Sin(—-ﬁ%)]m (3.94)
2

= gin
62

Similarly, (3.79) was approximated by

s+1 kh L
t,p,s = " _6—22=1 JS(kx,Q,)I:Jp+l(krg) Qpyp (POHTY)
= Ip-p k) qt+1(pez“rz)]’ (3.95)

where the definitions in (3.92)-(3.94) hold, and from (3.75);,

siné
S A R 4 3.96
r, = sin [sinx ] . ( )

The subroutine which was written to evaluate the

. 14
Bessel function of the first kind uses the formula
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( 7 )
kS T (v+k+1) 7

AN
3,(2) = (3

I| ~1 8

k=0
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(3.97)

where T'(z) is the Gamma function. Using the recurrence

formula
I'(z+1l) =z I'(z),

Jv(z) can be expressed as

3, (z) = (%" Z) 2K

T K(k$)Z >> (%) %K,

Il e~

ki

k=0

where 5

-2 Tk—l

_ 1 . _
To = T(v+rl) '’ Ty = Ak (VFKk) ¢ k> 0.

(3.98)

(3.99)

(3.100)

Because the summation in (3.99) involves the subtraction

of large similar terms, the algorithm is unsuitable for

large z. However, it was suitable for the range of orders

and arguments which arose during the construction of the

matrices discussed in section 3.3(a). When v was not an

integer, Hankel functions of the second kind were calculated

from a subroutine using the formula14
J (z) cos(vm) = J (z)
(2) - sV v
Hv (z) = Jv(z) J sin(vm)

When v was an integer, the formula used was

(3.101)
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n=1
| -k-1)! 2k, 2.
Héz)(z) = Jn(z) -3 -%(%)n kzo iE_ETfL (%) + ?.log(g) Jn(z)
2 k
l,z2.n : (7 )
- =) I u(k+1) + p(ntk+D) } pr—mrEye | (3.102)
k=0
where
k-1
W(l) = -y; vk =-y+ ) nl, ks 2, (3.103)
n=1

and y 1is the Euler constant.

3.3(c) RESULTS

For the purposes of this discussion, a modal coefficient
is said to have converged if its modulus remains constant
to at least three significant figures as N is increased.
The convergence is said to be fast if the modal coefficient
converges when N is small, and is said to be slow if the
coefficient converges when N is large.

Define w = 2b for the truncated wedge, and w = 2asiny
(the chord length of C3) for the rounded wedge.

Some results obtained by numerically evaluating the
a, coefficients in (3.21), (3.50), (3.65) or (3.78) are
presented in Figs. 3.5 - 3,11, The legend for Figs. 3.6 - 3.11
follows Fig. 3.7. These representative curves have been
included in this chapter to indicate how certain factors

affect the convergence of the field modal coefficients.
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A summary of these factors and their effects, which have
been deduced from many curves such as those in Figs. 3.5=-
3.11, is given at the end of this section,

Figs. 3.5 and 3.6 show the convergence of three a,
- when the rounded wedge is illuminated by an electrically
polarized wave. (Equations (3.65) and (3.73)). Fig. 3.5
shows the effect of M on the convergence of the a, field
coefficients. With M=1 convergence appears to be occurring,
but only slowly. Convergence is faster with M=5 than with
M=7, This indicates that there is an optimum value of M
for which convergence of the a, is fastest. The use of a
greater or lesser number of surface current density modes
then the optimum hinders the convergence of the field mode
coefficients, Fig. 3.6 illustrates the faster convergence
which is achieved by explicitly matching the two represent-
ations of the surface current density across x = X (Q=1),
and by matching the two representations of the surface current
density and their first derivative across x = #X (Q=2). Six -
modes (M=5) of the current density representation in (3.61)
are used, |

Fig. 3.7 is plotted for the rounded wedge in the
presence of a magnetically polarized field. (Equations
(3.78) and (3.84). This figure illustrates the faster con-
vergence of the field coefficients which is obtained by

including the expression in (3.84) with the matrix equation



derived from (3.78), and thereby ensuring the continuity
of the surxface current denSity across x =iX, |

Figs. 3.8 and 3.9 both show the convergence of some ay,
when a symmetrically truncated wedge is illuminated by an
electrically polarized field. (Equations (3.21), (3.28),
(3.36)). Fig., 3.8 is plotted for M=5 with 0=0,2,4. It is
evident that the convergence of the a, ismfaster.when Q=2
than when Q=0., However, the convergence becomes slower
with a further increase in Q to Q=4. Fig. 3.9 is plotﬁéd"
for M=7 with Q=0,2,4. 1In this case, each higher wvalue of
Q brings faster convergence of the a o Figs. 3.8 and 3.9
indicate that for fastest convergence of the ap s there is
an optimum value of Q which is dependent upon M.

Fig. 3.10 shows the faster convergence of the a, when
the representations of the surface current density and their
derivatives are matched at suitable points.

The curves in Fig. 3.11 are plotted for the symmetrically
truncated wedge illuminated by a magnetically polarized field.
(Equations (3.50), (3.53), (3.60)). This figure indicates
that convergence of the a, may not occur below a large
value of N unless current density matching equations are
included with the matrix equation derived from (3.50).

From the study of Figéa 3.5 = 3.11 and other similar
results obtained for 0.1) < w < 2\, the following trends
have been noticed:

(a) Convergent solutions can be obtained by limiting the
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" the summatiéns of (3.21), (3;50), (3.65), and (3.78)

to a finite number of terms.

(b) The value of N at which the a, converges becomes

larger with an increase ih W,

(c) There is an optimum value Mo of M for fastest converg-
ence of the a, for a given problem. This optimum value
becomes larger as w increases.

(d) The inclusion of surface current density matching
equations in the matrix formulation of the -scattering
problem often results in much faster convergence of the a, .
(e) IEM < MO convergence of the a, may be very slow.
Inclusion of any surface current density matching equations
in the matrix formulation can result in instability of

the a, with N,

(£) If M » MO it is often necessary to use the surface
current matching equations to obtain convergence of the a,
at some reasonable value of N.

(g) If the number of current density matching equations

Q is increased to near M, instability of the a, with

N occurs.
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(p49)

Figure 3.1

(P,w)

Figure 3.2 z axis perpendicular to the paper,
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Figure 3.3

(pyo)

Figure 3.h z axis perpendicular to the paper.
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CHAPTER 4

The geometrical theory of diffraction and the physical
optics approximation are used to predict the field scattered
from truncated and rounded wedges when the incident field
is electrically or magnetically polarized. These predictions
are compared with the results of Chapter 3, which were
obtained by using the surface current density replacement
technique;

4.1(a) INTRODUCTION

The fields to be compared in this chapter are those
which can be normalized with respect to p by removal of
the factor

/% e~ Jke (4.1)
where p is the distance from the apex of the undeformed
wedge to some point in the far field. The comparison
is between the diffracted fields predicted by thergeometrical
theory of diffraction, the surface current density |
replacement technique, and physical optics. The reflected
field from the rounded surface of the rounded wedge can
be normalized by (4.1), and hence this field is included

in the prediction of the geometrical theory of diffraction.
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Throughout this chapter, the incident magnetic vector
[} . __} o
potential A' or the incident magnetic field strength Ht

is defined by

ot = sut, ol = ek cose-v) (.2

in the cylindrical polar co-ordinate system shown in

Fig. 4.1. The field expressions compared in' this chapter
i

gtd’ “scr’

indicating the method used to derive the expression. Since

are represented by U GPO,-with the subscripts -
we are concerned with only the leading diffraction term
of the geometrical theory of diffraction, secondary
diffraction coefficients, such as those derived by Burke
and Kellergl, are not considered here.

The field ﬁscr surrounding the deformed wedge is given

by (2.20) as
(4.3)

where U is the diffracted field surrounding the undeformed
wedge, and U, is the extra diffracted field caused by the
deformation. U is defined 1in (1.42),and after normalization

by the Ffactor in (4.1) becomes

U = /g% a (6,0), mr = 272X, (4.4)

with d_(¢,¥) defined in (1.43).
When the field is electrically polarized,;Al is

defined by (2.35) suitably modified for the incident field
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gnetically polarized field, Hl is defined
‘g the asymptotic form of the Hankel
(L.21) for large p, the normalized

.ad HS may be written as

cr
- , v
mk . 2 fon I
/§§ dm(¢,w) + nzl a e sinfnv¢], (4.5)
- jnvﬂ
_ /1k 2
Hy o™ /53 d (¢,9) + nzo a, e cos{nv¢], (4.6)
where
v = 1/m, (4.7)

and the negative (positive) sign is used in the definition
in (1.43) of d_(¢,9) when the field is electrically

(magnetically) polarized.

4.2(a) G.T.D. DIFFRACTED FIELD. TRUNCATED WEDGE, #

r3

(Electric Polarization).

Consider the perfectly conducting truncated wedge in
Fig. 4.1, Edge 1 is at (al,O,z) in the (p,¢,2) co=ordinate
system and has internal angle 8. Edge 2 is at (az,mﬂiz)

and has internal angle do m is defined in (4.4), and
Tn o= 2m-8, YT = 2T=0, (4,8)

The length of the "truncation surface” between edge 1
and edge 2 is w, The cylindrical polar co-ordinate
systems (r,£,z) and (s,6,z) have their origins at edge 1

and edge 2 respectively.
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The field Ai incident upon edge 1, and the field

' A, incident upon edge 2 are,from (4.2),

1 _ ejkalcoswi 0 <y < Tm,

= 0, T < Uy,

al ejkachS(m“‘W), =8 < ¢ < mm,

= Op . q) < 'TT““BO (‘409)

The primary diffracted field A of the geometrical theory

of diffraction is given by (1.42) and (1.43) as

5 A i : _'kr i mnkS
A=2zn, A=2a] e, d(E,0) e IRy By ey A (8,+8-T) e JRs
S Vs
where . (4.10)
£, = 1, 0 < ¢ <17, €y = 1, 0 < & <vym,
.
=0, tm < g <27, =0, ym < § <21, . (4.11)

The existence conditions imposed in (4.1l) are necessary
to ensure that the diffracted rays from an edge do not
directly illuminate a shadowed region.

A secondary diffracted field is generated by a
primary diffracted ray travelling along the truncation sur-

face of the wedge and striking an edge. However, since

a (tm,y) =d (0,9+8-m) = O, (4.12)
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‘no rays exist on the sﬁrface of the wedge when the field
is electrically polarized. Therefore, the expression

in (4.10) represents the total diffracted field of the
geometrical theory of diffraction.

When p is large,
r ~ p = alcos¢, s v p = azcos(mw~¢), g~ o, § =~ ¢+B= w ,
(4.13)

The field A is found by using (4.13) with (4.10)

gtd

and normalizing by the factor in (4.1). Thus,

k : : .
A = /1% i jkajcos¢ i
‘gtd 2:] [Al El dT((b,‘P) e 1 + A2 €2

-dy(¢+8-w, P+B=1) ejkazcos(mnm¢) b

(4.14)
It can be seen from (1.43) that in the directions of
specular reflection ¢= n=¢9 or ¢= (21t=1)n=-y, dT(¢,w)
becomes infinite. However, in the direction of reflection
¢ = (2t=1)m=-y from the truncation surface of a symmetrically
truncated wedge, careful manipulation of the expression

in (4.14) results in a finite value'for'Agtd given by

m
+ cot (=)

TT+21P)] T

T

. . . m
_ =3 _jka,sin(B+y) sinB 2sin ()
Agtd—-‘—ie 1

T@OS(%) - cos

+ jkw sin(8+w{}, o= (21=1)m=9, a; = age
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4,2(b) G.T.D, DIFFRACTED FIELD. TRUNCATED WEDGE. (Magnetic

" Polarization).

Consider the truncated wedge in Fig. 4.1. Edges 1
and 2 are illuminated by the fields given in (4.9), with
the symbol A replaced by H. The geometry of the figure
is described in section 4.2(a).

The field diffracted from the truncated wedge is
composed of an infinite number of multiply diffracted fields.
Unlike the electrically polarized case, rays exist on the
wedge surface when the field is magnetically polarized,
and travel from edge to edge. Each time a ray strikes an
edge a diffracted field is produced. Define Hg (Hg) to be
the field diffracted when edge 1 (edge 2) is struck by a
ray which has previously undergone modification at (n-1)
edges. Before generating a diffracted field H? or Hg,
the ray has made (n-1l) passes along the "truncation
surface" of length w. The total diffracted field E is
described by

n

) (4.16)

H=2zH, H= ] (H +H
n=1

The primary diffracted fields are given by (1.42) and (1.43)
as
jks

2

= Hi € dT(E,w) E_" ; H2 = Ht €9 dY(é,w+B~w) Sm
4a /s

(4.17)
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where €1 and €, are defined in (4.11). The secondary

diffracted field is produced when a ray diffracted from

edge 1 and of strength>l

HY a_(cn,p) e 35V, (4.18)

27w

strikes edge 2, and a ray diffracted from edge 2 and of
strength
Hy d (0, y+8-m) eIkW | (4.19)
2/

e

strikes edge 1. Thus,

H2 = e, HY a_(rn,v) e d, (8,0) o 3ks

2 2 71 , (4,20)
2Vw Vs
2 _ i _ -Jjkw ~jkr
Hl =€ H2 dY(O,w+B T) e dT(E,Tﬂ) e . (4.21)
2Vw /r
and similarly, '
3 i ~5kw |2 -3k
Hl =gy Hl dT(Tﬂ,w)_ e dy(0,0) dT(E,Tn) e )
2Vw Vr
(4.22)
3 i ~5kw] 2 —5ks
Hy = e, Hy d_(0,y+8-m)|e J d (tn,tn) & (8,0) e J
2Vw )

(4.23)
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After writing a sufficient number of the higher order
diffraction expressions in the above manner, it becomes

clear that the expression in (4.16) can be expanded as

, . a2
Ho=e KTl H] [dT<a,w) +c[ef3kw] d,(tn,¥) 4 (0,0) dgaw)]

/r 2vw
+ e, HE ge7IkV 4 (0,v+B=m) A (&,Tm)| + e~3ks| . gllg (8, 9+8—1)
272 T=— Ty T o S| F2 Ha %y torvTh
2vw /s _

. 2
-jkw _ ‘
+O[e ] dy(O,w+6 ) dT(Tw,In) dy(G,O)]

| 2/w
+oeq Hi o e kW a (tm,y) dY(G,O) , (4.24)
2Vw
where
2
o n e-jkw
o= ) C, C= d (0,0) d_ (tm,tm). (4.25)
n=0 | 2/w Y

By using the expressions in (4.13) and normalizing with

the factor in (4.1), H reduces to H , Where

gtd
_ Tk jka,cos¢ i
Hytg _//f? el %é Hy d_(¢,v)

+ 0 dT(¢,Tﬂ) e_jkw

ik [52 Hé a (0, y+6=m)
2w
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i o =jkw
+ ) Hy d (17,9) 4 ,(0,0) e J ]
2Vw

" ) .
+ eJkagcos (mm 4’)[82 Hy d_(8,y+6-m)

-k i i
+ dy(é,O) e XV e, Hy d_(2m=B,¥) + e, Hj dY(O,w+B-ﬂ)
2vVw

.d_(21-8,21-8) e“jkW]] . (4.26)
2Vw

For Hgtd to describe a diffracted field of finite magnitude,
o must converge to a constant value in the summation of the
geometric progression in (4.25) as n» «, - This requires

|c] < 1, and then

R lc] < 1. (4.27)
1-C
The restriction |C| < 1 imposes a minimum value on the
separation w of edge 1 from edge 2, It follows from (4.25)

and (1.43) that this restriction is

cot (x-) cot (a—)
w > 21 2y

5 v (4.28)
47Ty

where w is measured in wavelengths,

Curves showing the minimum value of w for various o

and B are given in Fig., 4.2. This minimum value is very

much less than the edge separations for which the plane wave
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diffraction coefficients would normally be used to approximate
the diffracted field.

The expressions in (4.25) and (4.26) are similar to
those derived by Russo et al90, who used the more accurate
Pauli diffraction function in formulating the diffraction
by a thick edge;

The primary diffracted field (Hi + H%) is, in general,
infinite in a direction of specular reflection. However, in
the direction of reflection ¢= (2t-1)n-¢y from the truncation
surface of a symmetrically truncated wedge, a finite value

for the primary diffracted field HP is obtained as

gtd
gP = =} ika;sin(B+y) sing 2sin (7) _ cot(§)
“gtd 2 T[cos(%)~cos(ﬂ:2¢) *
- jkw sin(6+w{] 0 = (2t=1) 1=y, a; = aj. (4,29)

4,2(c) G.T.D, DIFFRACTED FIELD. ROUNDED WEDGE,

Consider the perfectly conducting rounded wedge in
Fig. 4.3. The (p,¢,2) cylindrical co~ordinate system has
its origin ét the apex of the undeformed wedge of angle 2y,
The incident field ﬁi given in (4.2) makes an angle & with
the normal to the rounded surface at a point T. The radius
of curvature of the rounded surface is R.

Levy and Keller48 give the diffracted field U of the

geometrical theory of diffraction as
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= zU, U = U.(Q) e

(a2
I
|...a
]
s
n
= r~1
(w]
=g
[0}
N
.
e
a
Ev
r!.

T+ Y < ¢ < mm, (4.,30)

where m is defined in (4.4). UL(Q) is the field incident

at a point Q given by &= n/2 on the rounded surface.

The diffracted field is produced when an incident ray,
~grazing the surface at Q, travels a distance t along a
~geodesic arc of the surface and leaves the surface

tangentially at P. The distanée s is measured from P to

the point (p,¢) at which U is observed, and if s is large,
t = R(¢=¢=1). (4.31)

The o and Dm of (4.30) are defined in Table 4.1 for both

electric and magnetic polarization of the field.

1 1
LT = 5w -
_ Jd7 k.3 7k, 2
POLARIZATION Otm = -6 (6 2) qm e-” 4 (21T Dm
R
1
5 3
Electric Ai(qm) =0 % e IG5 (%ﬁ) 1 >
[Ai”(qm)]
.57
Magnetic AL'(q) =0 LeTIT (BR3P —
AL (q )

TABLE 4.1
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The prime denotes differentiation of the Airy function

Ai(x) with respect to the argument x, where
Al(x) = [ COS(T3~XT) dr. (4,32)
[e]

The field reflected from the rounded surface is

described in Appendix 4 by

i ﬁbos& -jkr
U= $UT(T) J= e™IRL,

=y < ¢ < W+ Y, (4.33)

where r is the distance from T to the point (p,¢) at which
U is observed, and the negative (positive) sign in (4.33)
is used when the field is electrically (magnetically)
polarized,

From the geometry of Fig. 4.3, and from (4.2)

= 0 i o IR [cos (w+x) /sinxteos (B5h] ) 5

and thus
Ul(Q) - eij cos(w+x)/51nx° (4,35)

When p is large,

r e~ p = R!}os(¢+x)/sinx + cos(2§i+], s~p + R cos(e¢+y)/siny.

(4,36}
The use of (4.34), (4.35) and (4.36) with (4.30) and (4.33),

and normalization by the factor in (4.1l) results in
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U _Jik eij[Zos(w+X)+cos(¢+¢ﬂ/Sinx
Tgtd V23 -

" . L kg )t
n{i erffgwcps(i%i) ejsz COS(_T_) + €4 % Dm e( ik OLm)t , (4.37)

where

e, =1, 7 = 9 < ¢ < 1 + Y, £

l, = + ¢ < ¢ < mmu,

Il
ol
]

¢ < m =Y, ¢ > T+ Y, 0, 0 < ¢ < m+1.

(4.38)

4,3(a) PHYSICAL OPTICS FIELD. (Electric Polarization)

Consider the perfectly conducting deformed wedge in
Fig. 4.4. The origin of the (p,¢,2) co~ordinate system is
at the apex of the undeformed wedge of angle ZX,’and m is
defined in (4.4).

In this section, the field radiated by the physical
optics surface current density on the surfaces p 3 ay s ¢= 0
and o Za55 ¢ = mn of the deformed wedge is calculated for
electric polarization of the inéident field. The field
radiated by the physical optics surface current density
existing on the deformed surface of the wedge is calculated
in later sections.,

The .incident field is given by (4.2) with U replaced
by the symbol A for the magnetic vector potential. The

physical optics surface current density Rl(r) at p = r
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on the surface ¢= 0 of the wedge is given by (1.44) and

(2.22) as
B (r) = 2n X AT = 20 (v X Aty = -22 3a% (4.39)
1 - U ur d¢ ! ’
$= 0
which, after writing
+ ~
Kl(r) = z Kl(r),
and using (4.2), reduces to
29k . ik s )
Kl(r) ==€q —%—~s¢nw eJRLCO w, € = 1, 0 <y <m
=0, m< Yy < mr, (4.40)

Similarly, the physical optics current density ﬁz(r) at p= r

on the surface ¢= mr is

K : 25k . ikrcos (mn =
Ko(r) = z Ky(r), K, (r) =-¢, —%— sin(mm-y) e? (mm w)y
(4.41)
where
e, =1, (m=1)7 < ¢ < mm,
:\OV O<I]) < (mml)*”‘o (4042)

The field A radiated from the current distributions
Kl(r) and ﬁz(r) on the deformed wedge is determined from
(1.36) and (1.37) with the vector operator {A} replaced

by the scalar u. Then, o

A=z, a="Jd i: K, () 52 (krpdr + | Ky(x) 8! (kR)) déjo

a a -
1 2 (4.43)



where Rl and R2 are the distances from the elemental contours

dr to (p,¢). When p is large,

Rl “ p = r cos¢, R2 ~ p = r cos(mn=9¢), 'p >> T, (4.44)

By using the asymptotic form of the Hankel function in

(1.21) with (4.44), and substituting the expressions in (4.40)

1

and (4.41) into (4.43), the physical optics field Apo which

can be normalized by the factor in (4.1l) is given by

(o]

1 _ -k 27 ~-jkp . jkr (cosy+cosé)
Apo TV 7%, e [%l sinvy e dr
a
1
+ €, sin (mu=y) ejkr[COS(mﬂ'¢)+COS(mﬂ‘¢)] d{]o (4.45)
a2

When k has a vanishingly small negative imaginary part,

it is readily shown that
-jka

adx = -sj..g

o~ kX 5 .

(4.46)
a

Performing the integrations in (4.45) and normalizing

by the factor in (4.1) gives

jkal[cosw+cos¢]

cos¢+cosy

1 -5 %1 siny e
8-t [

€, sin(mr~y) e
(4.47)

jka2[cos(mn~w)+COS(mﬂ~¢)]
cos (mr=y) +cos (mm-9) ]s
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4,3(b) P,0O0. FIELD. TRUNCATED WEDGE., (Electric Polarization).

Consider the perfectly conducgting truncated wedge in
Fig. 4.5, The "truncation surface"‘C3 of length w is
defined in terms of the cylindrical polar co=ordinate
system (r,6,2z) Whose origin is at the apex of the undeformed
wedge. The line 6= 0 is perpendicular to Cs and x is the
distance from 6= 0 to a point on C3°
The physical optics current density ﬁ3(c) on C, is

given by (1l.44) and (2.22) as

i i
2n 1 B8A™" JA™"
= : E; e §E~¢] o (4.48)
where the electriéally polarized incident field At is

given in (4.2). The unit normal vector n to C3‘is
n = -p sin(¢+8) —=¢ cos(¢+B8). (4,49)
Using (4.49) and (4.2) with (4.48) results in

K4 (c) =z Ky(c), Ks(c) = e ng sin(pty) eIKTSIn(B+I=6)

(4.50)

=1, =8 < Y o< 21 =8,

=0, ¥ < 7=B, ¢ > 2w=B, (4.51)

The field A radiated by §3(c) is given by (1.36) with
the operator {A} replaced by wu. When p is large, the dist-=

ance R from the elemental contour dx of C, to (p,0) is
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R~ p - r sin(B+4¢=8),  p >> r, (4.52)

After using (4.52) with (l.21) to asymptotically expand the

Hankel function in (1. 36)
f

-ag cosB
3 = A, A2 - k'sin(6+w) ejkr[Sln(B+¢m6)+Sln(B+¢m3)}dxy
po 32
a, cosd (4.53)

where the normalization factor in (4.1) has been removed. By

writing the integrand in terms of x using the relationship

r sine = x, r cosb = a, sins, ‘ (4.54)

1

2
Apo is evaluated as

A2 - ] sin (B+y) ejkalQ(B)sinB ejkalP(B)cosB memjkaZP(B}cosa
po = 53 T3 B (R '

(4.55)

Q(B) = sin(B+yY)+sin(B+¢), P(B) = cos(B+y)+cos(B+¢).

When the wedge is symmetrically truncated (al = a,), the

expression for Ago simplifies to

2 cos (Y+x) . rkw jkaP (x) cosy _ _
Apo = e a0 81n[77Q(x)]e - a, = a.

(4.56)

The field Apo radiated by the physical optics current
density on the truncated wedge is given by (4.47) and (4.55)
as

A = A + AT (4.57)
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For normal backscattering from the truncation surface

(¢=y=m=-x) ,the expression for Apo in (4.57) reduces to

_ -3 -jka sing _ e
Apo = 5 € [-tan(yx) -jkw]. (4.,58)

Notice the similarity between this expression for the physical
optics backscattered field and that of the geometrical theory

of diffraction given in (4.15) with y= (t=%) 7.

4.3(c) P.O, FIELD. ROUNDED WEDGE. (Electric Polarization).

Consider the perfectly conducting rounded wedge in
Fig. 4.6. The radius of curvature of the rounded surface C3
is R, and the centre of curvature is at Q. P is the point at
which Cq joins the wedge surface ¢= 0. C3 is defined in terms
of the cylindrical polar co-ordinates (r,0) whose origin
is at p= 0, which is the apex of the undeformed wedge. The
angle 1 is measured in an anticlockwise direction from QP,
and the distance x along C3 is given by x = Rt.

The electrically polarized incident field Ki is given
in (4.2). Without loss of generality, ¢ is restricted such
that

0 5 ¢ g 7o | (4.59)

From the geometry of Fig. 4.6, the arc length § of C, which

is illuminated by the incident field is

§ = Rwl; wl = wi (" L= 2Xl

i

= 2%, Y > m = 2%, (4.60)
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The physical optics current density §3(c) on C, is found

from (4.48) with the unit vector n normal to C, defined by

3
ﬁ = ;sin(¢—r) + % cos{¢=1) . (4.61)

Using (4.2) and (4.61) with (4.48), K3<c) reduces to

By(c)=z Ky(c), Kyle) = 23K sin(r-y) e

jkrcos (8=x=y)
" ¢

0 < 1 <Py (4.62)

= 0, T > YPqo

The field A radiated by the current distribution §3(c) is
given by (1.36), in which the Hankel function can be expanded

when p is large by using (1.21) and

R, = o = r cos(e-gp=x). (4.63)

Rl is the distance from the elemental contour dx to the
point (p,¢) at which the field is observed. Then,
vy

%= 2a, a2 = kR sin(t-y) ejkr[cos(e-¢¥x)+cos(6~¢wx)]dTF

(4,64)
where the normalization factor (4.l1) has been removed. Since
r cos6 = R[sin(t+x)-cosec(x) ], r sine = R cos(t+y),

s
a

(4.65)



132

the expression for Azo reduces to

Y1

A2 _ kR eij P(yx)/siny

po = 2 sin(t-p) e IKR QU™=T) 4o (4 66)

where P(B8) and Q(B) are defined in (4.55). The field Apo
radiated by the physical optics current density on-the
rounded wedge is obtained by substituting the expressions

in (4.47) and (4.66) into (4.57).

4.4(a) PHYSICAL OPTICS FIELD. (Magnetic Polarization).

Consider the perfectly conducting deformed wedge in
Fig., 4.4, The geometry of the figure is discussed in section
4,3(a). \

In this section, the field radiated by the physical
optics current density on the surfaces p > ays $ = 0 and
° > ay, ¢ = mm of the deformed wedge is calculated for
magnetic polarization of the incident field. The field
radiated by the physical optics current density existing
on the deformed surface of the wedge is calculated in
subsequent sections,

The incident field is given by (4.2) with ] replaced
by fi. The physical optics surface current density fl(r)

at p = r on the surface ¢ = 0 is given by (1l.44) and (4.2) as

K (r) = 2n X T = 2eJkr cosv (4.67)

rl 81
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where

Y "

ry = p cos¢$ =¢ sing, (4.68)

and € is defined in (4.40). Similarly, the physical
optics current density Kz(r) at p=r on the surface ¢ = mn
is

2ejkrcos(mw—w) 9

ﬁz(r) = —%2 ) =3 cos (mr=¢)+ &sin(mw-¢)v

€2
(4.69)

where €, is defined in (4.42),

The field i radiated from the. current distributions
ﬁl(r) and ﬁz(r) on the deformed wedge is given by (1l.36)

and (1.37) as

[s]

H = "’zjf voX [ El(r) H(()Z)(le) dr + K, (x) Héz) (kR,) drjl[,

[se)

a aan
1 2 (4.70)

where Rl and R2 are defined in (4.44) for p>>r, When -the
asymptotic form of the Hankel function (1.21) is used with
(4.44), the physical optics field H;o which can be normalized

by the factor in (4.1) is. given by

[se]

al = ~dyx /21 o~dke|Z . oJkrlcosy+ cosel
po 2 TKp 1 1
a1
- 1, e, ejkr[cos(mn—w)+cos(mn—¢)] d%}, (4.71)
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where the expressions in (4.67) and (4.69) have been
> >
substituted for Kl(r) and Kz(r) respectively. The vector

curl operation in (4.71) is of the form

~ N » a(pF ) oF oF oF
_z o p b _ =
VX (o F o+ ¢ F) == [—5 Tl ggi 0. (4.72)

7
Using (4.46) and (4.72), the expression in (4.71) reduces to 6

jkal[cos¢+cos¢]

e, sSin¢ e

lo_ ol o4l _ 3 [ 1

po po’ po 2 lcosy+cos¢

€, sin(mm=¢) e
(4.73)

jkaz[cos(mw—¢)+cos(mn—¢)]
cos (mr=y)+cos (mn=¢) }'

when p is large. The expression in (4.73) is normalized by

the factor in (4.,1).

4.4(b) P.O. FIELD. TRUNCATED WEDGE. (Magnetic Polarization).

Consider the perfectly conducting truncated wedge in
Fig. 4.5. The geometry of the figure is described in
section 4.3(b). The incident field ﬁi is given in (4.2).

The physical optics surface current density §3(c) on C3

is given by (1l.44) and (4.2) as

jkr sin(B+y=-6)
e 4

?3(0) 2n X BT =[$ sin(¢+6)—$ cos(¢+B)]e3 2

Il

(4.74)

>

since n is defined in (4.49). e3vis defined in (4.51).
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The field H radiated by the current distribution ?B(c)

is given by (1.36) and (1.37) as
-ay cosB

B o="Jvx Eye) 82 (km) ax, (4.75)

a2 cosa

where R is the distance from the elemental contour dx to
(p,¢) . When p is large, R is approximated by the expression
in (4.52), and the Hankél function in (4.75) can be

expanded using (1.21). Thus, substituting the expression

for §3(c) into (4.75) when p >> r,

-e o S ) -]
=2 vx [ ¢ sin(¢+8) - o cos(¢+8)] ; %%E e

[-a, cosB

1

oJkrlsin(B+y-6) +sin(p+¢-0) ], - (4.76)

ja, cosa

The vector curl operation in (4.76) is of the form given
-L

in (4.72). By neglecting terms of order lower than p 3,

and using the relations given in (4.54), it follows from

(4.76) that
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5 2 _—je3 sin (8+4)

= = cJkaiQ(B) sing
po po’ po 2 P(B)

.[ejkalP(B) cosp _e—jkazP(B) cosu], (4.77)
where P(B) and Q(B8) are defined in (4.55). When the wedge
is symmetrically truncated (al = a2),rthe expression for

2 . A
Hpo simplifies to

g2 = - Sos(étx)

. jka P(x)cosy
po 3 Q(x !

sin (52 0(x)1 e (4.78)

al=a2=ao

The field Hpo radiated by the physical optics surface
current density on the truncated wedge is given by (4.73)

and (4.78) as

H = H-_ + H® ., (4.79)

Notice that ‘Hpol in (4.79) equals lApo' in (4.57) when
¢ =9, illustrating that physical optics prediéts a
polarization insensitive backscattered field.

For normal backscattering from the truncation surface

in (4.79) reduces to

(¢=y=m-x) , the expression for Hpo

Hpo = ‘% e—jka sing [tan (x)+jkw]. (4.80)
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Notice the similarity between this expression for the
physical optics backscattered field, and that of the
geometrical theory of diffraction given in (4.29) with

p=(1-%) 7,

4,4(c) PHYSICAL OPTICS. ROUNDED WEDGE. (Magnetic Polarization).

Consider the perfectly conducting rounded wedge in
Fig, 4.6. The geometry of the figure is described in
section 4.3(c). The magnetically polarized incident field
ﬁi is given in (4.2) subject to the restriction in (4.59).
The physical optics current density §3(c) on C, is defined
in (1.44), n is defined in (4.61), and y; is defined in (4.60).

Thus

E3(C) =[p. COS(d)"T)—d) Sin(d)—'[)] zejk.r COS(G_\U-X), 0 < T <1’)l,
=0, T>9;. (4.81)

The field H radiated by the current distribution E3(c)

is given in (1.36). Using (4.63) with (1.21) to expand

. ->
the Hankel function when p >> r enables H to be described

by
% = —iR /23 -3ke
H 5 VvV X % e

vy

3

jkrlcos(6=y~x)+cos(6=¢=x)]

dT'o

a'[g cos(¢-T)—$ sin(¢=1) e ,(4082)

o]
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The vector curl operation in (4.82) is of the form given

1
73

in (4.72). By neglecting terms of order lower than p 2,

B2 is given from (4.82) as
jele)
I -
po PO
V1
H;o = ‘11213 sin(c-g) elkrlcos(o=y=x)+cos (8=0=x)] 4.

(4.83)
The relations given in (4.65) enable H;é to be simplified to
vy
2 -kR eij P(X)/siny sin(t-¢) e

Hpo T2

-jkR Q(w=1) ar,

(4.84)

where P(B) and Q(B) are defined in (4.55).

The field Hpo radiated by the physical opticé current-
density on the rounded wedge is obtained by substituting
the expressions in (4.73) and (4.84) into (4.79). Notice
that, as in the case of the truncated'wedge, physical optics

predicts a polarization insensitive backscattered field.
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Table 4.2 indicates which expressions in this chapter

have been numerically evaluated for purposes of comparison.

WEDGE DERIVATION
DEFORM~| POLARI ZATION
ATION
S.C.R. G.T.D P.O.
(4.5) (4.57)
Trunc- {Electric (4.14)
ated [(1.42)+(2.35)] [ (4,47)+(4.55) ]
(4.6) (4.79)
Magnetic (4.26)
J0(1.42)+(2.73) ] [(4.73)+(4.78)]
(4.5) (4.57)
Round- | Electric (4.37)
ed
10 (1.42)+(2.35) ] [(4.47)+(4.66)]
(4.6) (4.79)
Magnetic (4.37)
10(1.42)+(2.73) ] [(4.73)+(4.84)]

TABLE 4,2

The a, modal coefficients in (2.35) must be obtained

before the electrically polarized diffracted field surrounding

the deformed wedge (and given in (4.5)) can be calculated.

Similarly, before evaluating the magnetiCallyfpolarized




140

diffracted field given in (4.6), the a coefficients

of (2.73) must be obtained. Because of the restriction
on the size of matrix which can be inverted by a computer,
only a finite number of the a, can be obtained. Thus the
summations in (4,5) and (4.6) are. limited to a finite

number of terms. This number N was chosen such that

Iapl < lQ_3 |al|, p > N. (4.85)

When w is small (w ~ 0.,11), it was found that 3 < N < 5,
but when w is larger (w ~ 1.0)) it was found that 9 < N <20.
(In the case of the rounded wedge w is defined to be the
chord length of the rounded surface C3 in Fig. 4.6). The
condition in (4.85) was met with all the: coefficients

a n < N convergent to the third decimal place.

nl
As well as evaluating the expression in (4.26) for the

G,T.D. field diffracted from the truncated wedge, the primary

diffracted field Hgtd was calculated. This field is given

by (4.17) as

:‘,‘_

p _ /ik jka,cos¢ i

+ edkajcosimm=o), 4l dy(a,ww—w)]° (4.86)
; P
A comparison of Hgtd and Hgtd enables the effect of

including the higher order diffracted fields in the geometrical

theory of diffraction to be studied.
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The evaluation of the expression in (4.37) requires
the zeros of tﬁe Airy‘fUnction and its derivative to be
calculated. It can be seen from (4.37) that the number
of these zeros which must be calculated before the summation
has converged with a given accuracy is dependent upon t,
the length of arc of the rounded surface along which the
‘grazing ray travels. The evaluation of (4.37) takes
more time when t is small (¢ ® w+y), than when t is large.
The integrations of (4.66) and (4.84) were performed
numerically using Simpson's rule integration87 with at

least ten subdivisions per wavelength.

4,5 (b) RESULTS.

The curves plotted in Figures 4.7 - 4.18 all pertain
to the rounded wedge. Figs., 4.7 - 4.11 show the diffracted
field surrounding the rounded wedge when the incident
field is electrically or magnetically polarized. The"
physical optics estimate, the geometrical theory ofgdiffré;t—
ion,predictibn, and the field diffractedifrom an undeformed
wedge are-all plotted, as well as the accurate diffracted
field. The two directions in which the field becomes
large correspond respectively to the direction of reflection
from the illuminated wedge surface;.anduthevforward scatter-

ing direction which is a shadow boundary.

t
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Figs. 4.7 - 4.9 are plotted for three'fghnded wedges.
with 2y = 94° illuminated by similar fields electfigally
polarized in the: z-direction. The rounded wedges~aré
characterized by w = 0.1x, w = 0,51, and w = 1,0x
respectively., When w = 0.1l)x the rounded wedge diffracts
a field little different from that diffracted by an
unde formed wedge. As w increases (F_J'.gso 4.8 and 4.9),
so does. the diffefence between the diffracted field and that
diffracted by an uhdeformed wedge. However, in no case is
the field in the region ¢ > n+y significantly different to
that diffracted by the undeformed wedge. The physical
optics estimate of the field increases in accuracy as
W increases, particularly in.the region ¢ <w~y where
the geometrical theory of diffraction predicts no scattered
field. Over the region n-¢y < ¢ < w+y,. the geometrical
theory of diffraction field, given by the reflection of the
incident field from the rounded surface, is less accurate
than physical optics. -

Similar comments apply to the curves in Figs., 4,10
and 4,11 which are plotted for two rounded wedges with

2y = 94°, illuminated by magnetically polarized fields.

Figs. 4.12 - 4.17 show the field backscattered from
rounded wedges which are illuminated by a field normally

incident upon the rounded surface in the direction y=(m-x).
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The backscattered field is plotted against w for the
three cases 2X = 549, 2X = 949, and 2X = 134° when the
incident field is electrically polarized in the'z-direc;iono
The accurate values were obtained by using the S.C.R.
technique described in Chapters»Z and 3, and the accurate
value at w = 0 is the field backscattered from the undeformed
‘wedge. Also plotted in these. figures is the physical
optics estimate of the backscattered field, and the geometric-
al theory of diffraction approximation. This latter estimate
is wholly due to the reflection of the incident field from
the rounded surface and is directly proportional to vw
as can be deduced from (4.33). The physical optics estimate
increases\in accuracy as w increases. However, for
w < 0,151 it can be seen that in general the most accurate
estimate of the backscattered field is that from the
undeformed wedge.

When w is 'small, physical optics underestimates the
strength of the normally backscattered electrically polarized
field, but overestimates the strength of the normally
backscattered magnetically polarized field.

Fig. 4.18 shows the manner.inAwhich the surface current
density on the surface p > a, ¢ = 0 of the rounded wedge
differs from that on the undeformed wedge for w = 1.0X,-
22‘= 94°, y = 60°, when the incident field is electrically
polarized. Notice the faster rate of decay of the oscillat- -

ions in the surface current density of the rounded wedge.
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This suggests that the rounded surface of the wedge causes
less disturbance to the physical optics current density

on the surface ¢= 0 than does the apex of the undeformed
wedge.,

From Figs. 4.7 - 4.18 and other curves unpublished
here, the following trends relating to the fiéld diffracted
by a perfectly conducting rounded wedge have been noticed:
(i) The field diffracted by an undeformed wedge is, in
~general, a more accurate estimate of the field diffracted
by a rounded wedge With w < ,15) than either the estimate
of physical optics or the geometrical theory of diffraction,
(ii) The increase in accuracy of the physical optics
approximation with w is particularly noticeable in the region
¢ < m=y, and the backscattering region.

(iii) Unlike physical optics, the geometrical theory of
diffraction does not predict the form of*the_¢—variation
of theAfield in the region m-y < ¢ < w+y, and gives no

estimate of the field in the region ¢ < w=y,

The curves plotted in Figs. 4.19 - 4.30 pertain to
symmetrically truncated wedges. In Figs. 4.19 and 4,20
are curves of the difference between the field diffracted
from an undeformed wedge and the field diffracted from a
truncated wedge. A similar electrically polarized incident
field illuminates the wedges. . Notice the increased accuracy:

of the geometrical theory of diffraction when w is larger.
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The curves in Fig. 4,21 show the field diffracted from
a symmetrically truncated wedge as calculated by the S.C.R.
method, and estimated‘by physical optics and the geometrical
theory of diffraction. Also plotted is the field diffracted
from the undeformed wedge of angle 2X = 949, The incidept
field is electridally'polariz’ed° The curves in Fig. 4.21 can
be compared with those in Fig. 4.7 for the rounded wedge
similarly illuminated. It can be seen that when w = 0,17,
there is little difference between thé fields- diffracted
by a rounded or a symmetrically truncated'wedge;- This con-
clusion is similar fo that reached by Jones88 wh§~considered
the effect of the shape of the end of a thick semi~-infinite -
plate.

Figo4°22’shows the field diffracted from a symmetrically
truncated wedge (2X = 1149, w = 1.0)) when the incident
field is magnetically polarized in the z-direction,

In addition to the field of the geometrical theory of
diffraction and the field surrounding the undeformed wedge,
the primary diffracted field of the geometrical theory of
diffraction is plotted. Notice that for much of the
scattering region, this primary diffracted field is a better
estimate of the diffracted field than is the complete G.T.D.
approximation which includes the multiply diffracted fields.

Figs. 4.23 and 4.24 show the fields diffracted by
symmetrically truncated wedges illuminated normal to the

truncation surface by similar electrically polarized fields
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(¢ = m=-X). The two truncated wedges ére~characterized
by 2x = 94° with w = 0.1 and w = 1.0) respectively. The
formulae in (4.15) and (4.58) wefe used to evaluate the
G.T.D. and P.O. backscattered fields respectively. Because
of the symmetry about ¢= (m=X), thefields are plotted
only in the region 0 < ¢ g (m-X). For both wedges, the
diffracted field in the region ¢ < (w-¢) is little different
from that diffracted by the undeformed wedge. However, in:
the backscattering direction there is an appreéiabiéydifference~
which is lérger for fhevlarger value of w. The physical
optics estimate is more accurate for w = 1.0)x than for
w = 0,1x, parti¢ularly~in the backscattering region, but
the geometrical theory of diffraction closely approximates
the diffracted field for all values of ¢ for both truncated
wedges., |

Figs. 4.25 - 4,30 show the field backscattered from
symmetrically truncated wedges illuminated by a field
normally incident upon the truncatioh<surface.(¢ =yY=T=x)
The backscattered field is plotted against w for the three
cases 2X = 549, 2x = 94°, and 2x = 134° when the incident
field is electrically polarized in the z-direction; and for
2x =.749, 2x = 114°, and 2x = 154° when the field is
magnetically polarized in the. z-direction.

As well as the accurate value of the backscattered
field, the physical optics and geometrical theory of

diffraction estimates are also plotted in Figs. 4.25 - 4.27,



147

The expressions for the G.T.D. and P.O. backscattered fields
are given in (4.15) and (4.58) respectively. Each of the
three figures shows that the G.T.D. approximation is more
accurate than the physical optics estimate which under-
estimates the electrically polarized backscattered field.
Figs. 4.25- 4.27 may be compared with Figs. 4.12 - 4.14
for the rounded wedge. The strength of the backscattered
field increases more rapidly with w for the truncated
wedge than for the rounded wedge.
The primary, the sum of the primary and secondary,
and the complete G.T.D. backscattered fields have been
calculated for the three truncated wedges of Figs. 4.28 =
4,30 when the incident field is magnetically polarized
in the z-direction. Each of these diffracted fields was
more accurate than the physical optics approximation,
but the most consistently accurate was the sum of the
primary and secondary G.T.D. diffracted fields. This
result confirms the suggestion in section 4.2(b)
that tﬁe inclusion of all the multiply diffracted fields
is not always the best estimate of the G.T.D. Consequently,
the sum of the primary and secondary diffracted fields of
the G.T.D. is plotted in Figs.. 4.28 - 4.30, and also
the physical optics approximation and the accurate value
- obtained from using the S.C.R. technique. The expressions
for the primary G.T.D. and P.O. backscattered fields

are given in (4.29) and (4.80) respectively. Each of
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the figures shows that P.0. overestimates these magnetic- -

ally polarized backscattered fields when w is small.

From the curves in Figs. 4.19 - 4.30 and others,
the following trends relating to the field diffracted
by a perfectly conducting truncated wedge have been noticed:
(i) Both the physical optics and the geometrical theory of
diffraction approximations to the scattered field increase’
in accuracy as w increases.
(ii) For the truncated wedges studied (0,0SA s w g 1.00),
physical thiCs is not as accurate as the geometrical
theory of diffréctiona In general; the sum of the primary
and secondary diffracted»fields is a better estimate
of the magnetically polarized diffracted field than the
complete G.T.D. prediction.
(iii) The normally backscattered field (¢ = ¢ =71 =X)
from a truncated wedge is stronger than that from a rounded
wedge having the same values of 2x and w.
(iv) The P,0. and G.T.D. estimates of the normally back=-
scattered field‘given‘in (4.15), (4.29), (4.58), and (4.80),
tend asymptotically thards the exact value of the back-
scattered field when w is large. For a given w, the G.T.D.

approximation increases in accuracy as 2y increases.
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Figure 4.3 z axis perpendicular to the paper.

Figure 4.4 2z axis perpendicular to the paper.
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Figure 4,5 2z axis perpendicular to the paper.

Figure 4.6 2z axis perpendicular to the paper.
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CHAPTER 5

The exact description of the field scattered from a
perfectly conducting infinite wedge is obtained when the
wedge is excited by line sources polarized in the plane
normal to the wedge axis. The solutions for both
electric and magnetic line sources are given. The results
of this chap%er are used in Chapter 6.

5,1(a) INTRODUCTION

Jonesl?3 derives the equations (1.16) =--(1.20)
describing the field surrounding a pérfectly conducting
wedge when the excitation is an electric or magnetic
line source polarized parallel to the wedge axis. In
Chapter 6 of this thesis, the description of the field
surrounding a perfectly conducting wedge is required when
the excitation is an electric line source polarized in the
plane normal to the wedge axis. That description, and
the one appropriate to a magnetic line source polarized
in the plane normal to the wedge axis, are derived
in this chapter. The expressions are presented in the
same form as (1.16) - (1.20). The results of this

chapter have been published elsewhereo3

5,2(a) TRANSVERSELY POLARIZED ELECTRIC LINE SOURCE.

Consider the perfectly conducting wedge in Fig. 5.1.
The z axis is perpendicular to the paper. In terms of

the cylindrical polar coordinates (p,¢), the line source
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is at (po,w) and the wedge occupies the regionv
2r-8 & ¢ € 27, Rectangular co-ordihates (x,y) and polar
co-ordinates (r,6) are set up with origin at (po,lp)° The
X axis is parallel to the direction ¢= 0.
The wedge is excited by the field from the trans-

versely polarized electric line source J given by

n n S(p=p_) &§(d=9%)
3 = [xcoseo+ ysineo] 2 ’ (5.1)
o]

where §(£) is the Dirac delta function, and x-and y are
the unit vectors in the x and y directions respectively.

->
J can also be written as

-
J=xJ_ + ny., (5.2)
Since
N |
V X J = 2z (a—g— - 'é-y—), (503)

it follows from (1,28) that the source distribution J
~generates a magnetically polarized field. However, because
of the curl of the delta function on the right-=hand side of
the expression in (1.28), it is not clear how to determine
H by using the Kontorowich-Lebedev transform,

In order to overcome this difficulty, consider J to be
a continuous source distribution with a Gaussian form
centred on (po,w)o Thus- =22

2b°
J = '{;cose + Asine ] & r2 =-x2 + 2 (5.4)
' 0 y 0 2nb2 ' Y . °
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where b is a constant. Since

2

(=£5)

2b?
Lt = = s(x), (5.5)
b+0 LB7 b

the expressions in (5.4) and (5.1) are identical in the
limit b ~ 0.
By using the expressions in (5.4) with those in (5.2)

and (5.3), and noting that
X = r cosb, y = r siné, (5.6)

V X J can be described by

2b*?
VXTI =z S(x,8), S(r,8) = E—S—z——— sin(e—q?a
271b
(5.7)
A solution ﬁ(p,¢) is now required such that
B = zH, V% + k?H = - S(r,0),  (5.8)
subject to the boundary conditions in (1.4), that
oH
m = 0, mm . = 27]'—89 (509)
_ 0
=

The solution U(p,¢) of (1.14) subject to the boundary
condition (1.4) is given by (1.16) and (1.17). That solut-
ion is the Greens function for an infinite z-directed

magnetic line source. The solution of (5.8) can therefore
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be written as

o p2
H(p,9) = S(r,e) U(p,¢) r de dr, (5.10)
0" 0
where
U'(D ,d)) = Q(pr¢-¢l) + 9(p,¢+¢l)r (Soll)
+ I §
L g (2) (k[p2-p %~20p cosh (mv) ] %} sinhy dv
Q(p,8) = = Tl ' 2 . -
m cosh v -‘cos(%)
m_j%; (5.12)

Consider the term of H(p,¢) given by
© 021
Hy(p,9) = S(r,8) 2(p,¢~¢¢) r de dr.

00 (5.13)"

It can be seen from (5.4) that as b tends to zero, all
important contributions to the integrél.in'(SolO) will

come from the neighbourhood of r = 0. 1In this region,

_(t) _ _
Pi °o + rcos (6-y), cos(—arlo”cos(iﬁ£)+ Efﬁsin(e-w)sin(iﬁi),

(5.14)
enabling the denominator of Q(p,¢—¢l) to be written,

with the use of the binomial theorem, as
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b=6, » G
coshv - cos(—/=) = C; [1-C, r sin(6=-y)] = I+C,rsin(6-y) *

(5.15)
where
_sin(.g%£ .
Cl,= COShV-COS( ), C2 = —-p—(;r—nc—l-—o : (5016,)'

The Hankel function in the integrand of (5.12) is

1% (kz) = Héf’”{k[pz-pifzpplgosh,(mwJ%,}o o (5an

The distance z is represented by the side AC of the triangle
ABC in Figq 5.2. The: line AD of length y is . constructed
such that the length of BD is o, Then, using the addltlon

theorem'® and (5.14) with (5.17),

(z)k 2 H(z)(k ) I, [kr cos(6- w)Jcos(na), (5.18)

n—-oo
where,-fromrthe_geometry of Fig. 5.2,

pcoeh(mv) - P,

o (2. 2_ 3. _
= [D.+po 20p jcosh(mv) ]7, cosa= 5 : . (5.19)

When kr is small, the use of the limiting form of the Bessel

function of small argument in (3.11) gives-

n
J'[kr cos (8- wH"'[kr cgs(e wﬁ , n >0, (5b20)

" T (n+1)
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Substitution of (5.20) into (5.18), and the use of

(2,33), results in

« (2)
(2 °z° oy

‘Ho (kz);=o ®n T'(n+1)

(ky) cos(na) kr COS(O—w)_n
- 5 ,  (5.21)

where €1 is the Neumann. factor defined in (1,15)o
By substituting the expressions in (5.7) and (5.12)
with those in (5.15) and (5.21) into (5.13), the first term of

H(p,¢) can be described by.

forg T (7 (27
H.(p,9) = ‘ = e ~cos (ha)
1 1672p% n=0 1. T (n+l)
T
Jo=]z JO Jo
5
-r"
n —*?
» Sinhv sin(eeﬂg [%r cgs(e-w)]-[1+c2 r,sin(e—w)]r2 e,2b dédr dv,.
(5.22) -
Notice that Cy+Cyry and o afe‘all'independent of 6 and r.
Since
[on 27
sin(6-0)de = 0, sin(6-y)sin(6-6_)d6 = wcos(y-6_),
LAN ) Y ‘
[27
cos(6~¢)sin(e-eo)d0 = ﬁsin(w—eo), (5.23)
o]
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the integration with respect to 6 -in (5.22) can be'performed,

giving
oo-l-jlr— had - 2
" (=)
Hl(p,¢) = ——:%—Z é; nr3 e 2b sinhv
167"b : 1
00 e T
g Jo

1< Héz)(ky) cos(y=6 ) + k H{2{(ky) cosa sin(¥=-0 )

27
1 +cCyr | cos(e-y) sin(e-8 ) sin(e—w)dé}-
B ) -
27 (2)
® H "’ (ky) cos(no) sinhv sin(6-6. )
+2 ) T (n+1)
o h=2
] . 2
7 n (=) -
'[#r coz(e_w)} A N C, r sin(e-y)]de | drdv. (5.24)
Now , ® (—rz)
n 2b2
Lt EZ e dr = 2, n=3,
b-=+0 o b

(5.25)

]
o
-
o}
v
w
°

Therefore,‘performing:the integration with respect to r in

(5.24) as b tends to zero, results in
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Hl(p,¢) =-%% {%2 Héz)(ky)‘cos(w—eo)+ij{2)(ky):cosa
T
oo—jl-n-
.sin(y-0 )} sinhv dv. =~ (5 ,g
o Cl v

After substitution of the expressions for Cy and C, in

(5.16) into (5.26), Hl(p,¢) is given by
Hl(plq’) =‘n(pr¢'—¢) I - (5427)

where

sin(®) 5! (ky) cos(y-e,)

poﬁ{COShv—cos(%ﬂz

k Hiz)(ky) cosa sin(weeo)

+ 5 sinhv dv. (5.28)
coshv-cos ()
m
Consider now the second term in (5.10) given by
o (2 ‘
Hy(o,9) = S(r,0) alp,¢+¢;)xr do dr. (5.29)
0]0

In the neighbourhood of r = 0,

o+,
m .

Py ¥ o, + r cos(e6-¢), cos( ) = cos(¢;w)

.sin (6=) sin(i%i), (5.30)
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enabling the denominator of Q(b,¢+¢l)“to be written, by
using the binomial theorem, as

o+¢ C

coshv —Hcos(\rnl)’= C3[1,-<C4kr_sin(ﬁf¢ﬂx >

1+C4f~sin(é—wT"

(5.31) "
where
. +
o+ ’Sln*iﬁi)
C; = coshv - cos (=), C, = ; . (5.32)
: v pol,nc:3
Cy and'C4, like'Cl and‘Cz,Tare independent of 6 and r.
The development from (5.17) to (5.26) with Cy and:C2

replaced by C3‘and Cy respectively, enables the expression

for Hz(p,¢) in (5.29) to be: reduced to

Hy(0,0) = 2= [c1{?) (ky) cos(y-0 )+k B{?) (ky) cosa
LT
”f]ﬁi ; N
.sin(p-p, )] Sinhv dv. 5 33
o, T, ‘

After substituting the expressions in (5.32) into (5.33),
H2(p,¢) is given by

Hy(o,9) = nlp,=¢-¥), | (5.34)
where n(p,£) is given in (5.28). The solution H{(p,¢) to
(5.8) subject torthevcondition"iﬁ.(5;9) is given gy~(5°27)
and (5.34) as

H(p,9) = nle,o=¢) + nlp,-¢=9), (5.35)
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5,2 (b) TRANSVERSELY POLARIZED MAGNETIC LINE SOURCE.-

Consider the'perfectlylconductihg.wedge in Fig. 5.1. The
co-ordinate systems in the figure are described in section
5.2(a). |

The wedge is excited by the field from a transversely

-> .
polarized magnetic line source M given. by

L . s (p=p_) 8 (o=1)
M =[x coso + ysind ~ - . (5:36)
0 o ‘po
The extended Maxwell equation
VXE=M-38 (5.37)
gives rise to the wave equation
V2B 4+ k% = -y XM (5.38)

in.a homogeneous isotropic time-invariant medium free from
electric current sources. Since

~ oM oM
M = (—Y - X
VXM=2z (ax T3y )y

M o= §Mx,+_§My, | (5.39)
it follows from (5.38) that the source distribution M will
generate an electrically polarized field. Because. of the curl
of the delta function appearing on the right-hand side of the
expression in (5.38), it is not clear how to determine the
field E surrounding the wedge by using the Kontorowich-Lebedev
transform. However, by considering M to be .a continuous

source distribution with. the Gaussian form as given by the

right-hand side of (5.4), it follows that

VXM = zS(r,8), (5.40)



174

where S(r,0) is defined in (5.7).

A solution is now required to

- 2

B = zE, v2E+k?

E = - S(r,8), (5.41)

subject to the boundary conditions (1,.5)

E = 0, mr = 2r=8%, (5342)f

The Greens function.for an infinite z-directed electric
line  source when the field is subject to the boundary
conditions in (5.42), is given by (1.16) and (1.17).‘' Thus,

o]

2T
E(p,¢) = S(r,8) V(p,¢) r dedr, (5.43)
0] (o]
where
Vips9) = @lo,9=¢9) = alp,¢+¢5) (5.44)

and Q(p,&) is defined in (5.12).
The two terms of (5.43) have been evaluated in section

5.2(a). Hence, from (5,27) and (5:34),

E(p,¢) = nlp,9=9) = n(p,=¢=v), (5.45)

where n(p,&) is defined in (5.28).

5.3(a) MANIPULATION OF n(p,&)

In this section ni{p,£) is manipulated into the same

form as Q(p,&) of (l°l8),_thuS'enabling-thé reflected and



diffracted field components to be readily identified.
Consider the first term of n(p,&) in (5.28) with y
defined by (5.19). Integration by parts shows that
T il
°°+jﬁ1- +jﬁ
12 (ky) sinhv av | -5(?) (ky)
_ 2 7 | Coshv-cos (&
. [Lcoshv cos(%)] coshv-cos (=) a3l
w—Jﬁ . m-
(>+3g
me H{?) (ky) ko sinh(mv) dv. |
o 1 ‘
N — -— ‘ (5.46)
y[coshv—cos(ﬁ)] \
T
TR

t

On substituting the limits, the first term on the right-hand

side of (5.46) becomes zero. nl(p,£) reduces to

fopo T
+]mv
' (2)
- ce k HYY (ky)

e — LJSﬁﬁEQ cos(y-6 ) sinh (mv)
y[coéhv—cos(%ﬂ‘ m 0

T
SR

+[ p. cosh(mv)—po}sin(w—eo) sinhvi]dv, (5047)

where the expression for coso given byz(5°l9) has been
substituted.

The contour of integration in (5.47)will be deformed
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into the contour used by Jonesl3 to derive (1.18) from
(l.17). This contour is. shown in Fig. 5.3. . Using
abbreviated notation,
i
“*Im

n(p,&) = f(v) dv =

1l
-+
+
+
Q

LT
== €1 C2 UG53 Gy

(5.48)

where the definition of f(v) follows from (5.47), and o
is.the—sum-of the<residﬁes¢evaluated,at the included poles.
The. variable of integration v can be defined along

C, in terms of a real variable 'x given by

V'=»—x“—j% . (5.49)

Then

_'lT.‘ o
-Ig

£(v) dv = = | f£(-x-3F) dx. (5.50)

oo-j— 00

I

Alongvc4, v. can be defined in terms. of x by

v = x + j%', ‘ (5.51)

giving

= f(v) dv = f(x+j%) dx. (5.52)
C4 LT o
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Examination of (5.47) shows that f(v) is an odd function

of v, and. therefore

T

Im

il

f(v) dv = 0, (5.53)
LT
3 “Im
and from (5.50) and (5.52)
+ = f(x+j%) ax. (5.54)
2 Cy =

The poles of the -integrand of (5.47) occur when v takes

the values.

v = tj(E + 2pm), (5.55)

where p is any integer or zero. The contour C, of Fig, 5.3
must be deformed in‘arsemiCircle;ab0ut each pole located
on-the_imaginary-axis“within¢€+2pnml < T, . The 'sum of the -

residues is given by

o= ) jW[é(j[%+2pﬂ])+ g(—j[%#Qpﬂ]ﬂ, ¥ |g+2pmm| < 7, (5.56)

where -[éoshv—cos(§OI
g(v) = £(v)

sinhv - : (5.57)

Since g(v) is en even function.of v,

o = 2'2"j’9(j[§{+ 2prl), ¥ |ge+ 2pmm| < w. (5.58)
p

By using (5.53), (5.54) and (5.58) with (5.48), n(p,£) may
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be expressed as

n(p,E) =_hl(plE) +'h2(prg)l‘ (5.59)

hy(o,8) = 23K 1l (ka) psin(£+xp—eo+2p1rm)'-pos;i_n(lp—eo):l,

| e+2pmm| < m,

=0, !£+2pﬂm! > 7w, (5.60)

o)

(2)
Hy (kb)

1
|

hy(p,8) = [gsin(é) cos (=0 ) sinh mv).

b[cos(j&ﬁ;y-coé(%)]

00

-j[pcosh(mv)+po]sin(¢-eo) sin(jv+%{] dv,.

(5.61)

where

L ‘ L
a = [pz+p§—2ppocos(£+2pﬂm)]2, b’=[Q?+pi+2096005h(mv)]2°
(5.62)

The hl(p,E) term represents-the'cylindrical waves
radiated directly by the line source,‘andAthose teflected
by the faces of the wedge. The condition |&+2pmm)|< n
on the existence of these waves is the same as in (1.19).

As discussed in section 1.3(a), when &= (¢-¥) only p=0,
|9=v| < 7 satisfies ﬁhe conditioh.‘ When & = (-¢~-y) however,
p=0, |¢+y|'<r and p=1, |¢+y-2mm| < v satisfy the condition,

These three cases correspond respectively to the regions
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of existence of the incident field, the field feflected
by the surface ¢= 0, and the field reflected by the surface
o = mm.

The‘hz(p,g) term represents the waves diffracted
by the wedge apex. The detailed form of hé(p,g) is apprec-
iably more cémplicéted than wz(p,g) of {(1.20) which is
the corresponding expression for z-polarized- line sources.
However} whenfthe=transversely polarized line source
is aﬁgreatAdistance,from the apex of the wedge 'such that
P, >> 0y the'use~df (1.21) enablES'hl(p,g) andrhz(p,s)

to be expressed as .

By (p,8) = -3k sin(y-0) eIPCOSIEXIRT piopm| < v,
=0, | e+2pmm| > m, ‘ (5.63) .
- sih(jv+1)‘e-jkp005h(mvy
- —Jk o m’ dv,
hylp,8) = —5— sin(y-6 ) — - -
cos(jv+ﬁ)-cos(ﬁ) (5.64)

- OO

where the normalization factor (1.22) has been removed,
Examination of the. expressions in (5.63) and (5.64)

shows that they are‘identical to the*corresponding expressions

(1°24)~and (l°é5) for the z-polarized line source, multiplied

byrthe;factorv[ejksih(w;éé)loA This factor describes the

far field radiation pattern of the transversely polarized

line source, Consequently, when the line;sources’are

transversely polarized;&the\appropriate far;field diffractiOn

coefficients of the geometrical theory of diffraction are
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the same as those used when the line sources are z-pdlar=
ized.

The reason whysn(b;g) is not reciproc’al.invpvéndfpO
is that when~the”sour¢e of the field is.a transversely
polarized electric currént'element, n(p,&) is proportional
to H,, which‘impliesithat‘the'field is being observed with
a z-polarized magnetic curreﬁt receiving element.

When the point'(p;¢) at which the field is observed
is a 1argerdistahéé“from the”wedge‘apek; the asymptotic
‘form of the‘Hankél'functibn (37.21) 'can be used to expand

#{?) (ka) ana B{*) (kb). Thus, from (5.60) - (5.62),
a~ p - Q>COS(E+2pﬁm)' Ab'”‘p‘+;%cosh(mv), p>>0 , (5.65)

' ; . Ny ., - 3ﬂ ‘ ,
H](‘Z) (ka) - /_ﬂ_]i_p e J[kp—kpoCOS(E+2p’le) T]’ p >> pO' (5066)

; (moy 37 »
Hiz)(kb)‘~ ‘Z%: e~Ilketke jcosh(mv) =Sl o oy | (5.67)
ko 0

After normalization by the factor (4.1), hl(p,g) andrhz(p,g)

reduce to

hi(p,E) = Z sin (g+y-6 +2pﬂm) eJkp COS(E+2pﬂm) - |E+2pm]< 7,

|e+2pmm| > ©,  (5.68)

. Cik -jkp cosh(mv)
hz(plg) =: >8'IT

o [si‘n(’i) cos (-0 _ ) sinh (1v)
cos(jv+—) cos(—

-C0

-jCOSh(mV) s1n(w ) ) 31n(jv+—{]dv°(5 69)
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(r,0)

Figure 5.1 Wedge in the presence of a transversely polarized
line source. z axis is perpendicular to the paper.

r cos(6-¢)

B
Ay
Csa .
in/m - _—— oo+ im/m
C3 4 L 1G e
-in/m — _———
C, . °°—jn/m
v = x+jy
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CHAPTER 6

The iterative surface current density replacement
technique is introduced and applied to the problem of
determining the scattering from a perfectly conducting
truncated wedge when the field is electrically or magnetic-
ally polarized. The results of this Chapter are used
in Chapter 7 to derive new edge diffraction coefficients.

6.1(a) THE I.R. TECHNIQUE.,

In the iterative surface current density replacement
(I.R.) technique the expression for the field is derived
by summing an infinite number of field terms. Each term
(other than the first) is directly dependent upon the-
preceeding term., It ié‘pdstulated that the result of
the summation is-an'eXact description of the field
surrounding the,scattefing body. However, it must be
emphasized that thesconvergénce of the .series has not
been proved, even though the application of the I.R.
technique to determine the scattering from a truncated
wedge suggests that,ﬁhé first terms in the series dominate
the remainder.

The I.R. technique can be formulated for any body
which is the intersection (in the set theory seéense) of
two perfectly conducting bodies from which the scattering
is known explicitly. Some two-dimensional examples
are the. truncated wedge of Fig. 6.5 which can be

regarded as the intersection of two infinite wedges; and
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the cylinders of Fig. 6.6, which:can be regarded as
the intersection of two circular cylinders, and a circular
cylinder and an infinite wedge respectively. |

The I.R. techhi@ﬁe’will be,described by applying it
to the truncated wedge problem.

Consider‘the perfectly conducting wedge in Fig. 6.1
illuminated by an incident field ﬁio The wedge surfaces
are defined by ¢= 0 and ¢= 27-8 in the (p,¢,2) cylindrical
polar co-ordinate system whose origin is at the wedge.
apex., ﬁl(r) is defined to be the induced surface current
density at a distance -r from the wedge apex on the‘sﬁrface
b = 2m-B, The total field 61 is zero‘everywhere inside .
the wedge.

Now consider the perfectly conducting wedge in Fig. 6.2,
The wedge surfaCes'are defined by 6=.0 and 6 = 27-a in the
(s,6,2) cylindrical poelar co-ordinate system whose origin
is at the wedge: apex. Thé wedge is illuminated by the field
radiated from a sourcé distribution'[mﬁl(s+w)]ys 2 0 one =7,
The induced surface current density,at a distance tffrom
the wedge apex on the surface 8= 0 is defined to berfz(t)n
The - total field ﬁz\is Zero\eve‘ry_where'insideJthe‘wedgeo

Consider the wedge in Fig, 6.1 illuminated by the field
radiated from a source distribution-[efz(p+w)L p> 0 on
¢=m-B as shown in Fig. 6.3. The induced surféce current

density on the sgsurface ¢ = 2r-8 is defined to be §3(r)o
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In general, define ﬁZn’ n > 1 to be the fiela~
surrounding the wedge in Fig. 6.2 when the incident field
is radiated by the source distribution,[—fzn_l(s+wﬂ, s » 0
on 0=7, ﬁZn is zero everywhere inside the wedge in Fig. 6.2,
De fine 62n+l’ n > 1 to be the field surrounding the wedge in
Fig. 6.3 when the incident field is radiated by the source

distribution‘[~§2n(p+w)], o » 0 on ¢=71-B, is zero

U

2n+1
everywhere inside the wedge 'in Fig. 6.3. . The surface current
densities-f%n are defined from (l.33) as.

> > ~

B (t) = o x & -
on(t) =06 X C oy, Kzn_l(r) = =¢ X

a2

2n-1 R

6=10 | . b= 27=B

where 6 and % are unit vectors in the 8 and @ directibns
respectively. .

Now consider the;truncated wedge in Fig. 6.4 illuminated -
by an incident -field Eio The cylindrical polar co-ordinate
systems (p,%¢,z) and (s,0,z) have their origins at the edges
with internal angles-Brand o reépectivelyo The I.R. technique
- postulates that the total field gt surrohnding the truncated 

wedge is given by

-> >
ot =1 U, (6.2)
n=1
. > ) . >t
where the fields Un have been defined above; and that U
is approximated with a finite efror by 3;, where
N
>t ->
Uy = z U, (6.3)

n=1
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N being a finite positive integer. The expression in -

(6.2) states that the problem illustrated in Fig. 6.4

is equivalent to the superposition of the problem illustrat-
ed in Fig. 6.1 and the infinite number of problems each
illustrated by either Fig. 6.2 c‘>r'Figo 6.3, Notice that-

Gt is zero everywhere inside the truncated wedge as
requiredo' The convergence of the series in (6.2) and

the wvalidity of .the aﬁprOximatiQn.in (6:3) have not been
proved., .

6.2(a) TRUNCATED WEDGE. (Electric Polarization).

The IQRO‘techniqUe‘is used in this.section to determine
the appréximation Kg'to the electrically polarized field
scattered by the perfectly conducting truncated wedge
in Fig. 6.4. The notation used in this section follows
'that of section 6°l(a)o

Three main steps‘are requifed‘to determine Kgo Firstly
‘the field Zl‘surrounding the wedge of Fig., 6.1 is determined.
Then the surface current density(ﬁl(r) is calculated, and
finally an ekpression for the field zzxsurrounding‘the
wedge in Fig. 6.2 is obtained.

Consider the wedge in Fig. 6.1 illuminated by an
electrically polarized plane wave. The incident magnetic

vector potential AT is given by

‘i - ; A; Al - ejkp»COS(Cb"ll)) . (604)
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The total field A, surrounding the wedge is given in (1.16)

1
as
A(p,9) = Qlo,0=9) = Qlp,+¥), (6.5)
where
2(p,8) = wy(p,8) + wylp,8), (6.6)

and wl(p,ﬁ) and wz(ppi) are defined in (1.24) and (1.25)
respectively.
The surface current density El(r) on the surface -

¢ = 2m=B is calculated using (6.1) and (2.22) as

> >
R () = - % X (v X &) . mm o= 20-8, (6.7)
¢ = mmnu
which reduces to
‘ SA ;
> _ = 1 1
Ki(r) =z Ky (r), Kq(r) = T o | (6.8)
¢= mmr
Defining
a .
'a_"g [w(pig)] = wu(pyX)l (609)

£=X

enables Kl(r) to be expressed as
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Kl(r) = F% [él"(r,mﬂnw)+w2'(r,mw-w)
-wl“(r,mﬂ+w) - w2°(r,mﬂ+w):]° {6.10)

From (1.24)

jkrcos (g+2npm)

jkr sin(g+2npm)e , | E+2mpm| < 7,

i

wl’(ryg)
= 0, | e+2mpm| > =, (6.11)
and from (1.25), o

_sin(é) , sin(jv+%) e“jkrcosh(mv)

wy' (x,E) dv. (6.12)

2mm _., Lcos (jV+£—) -cos (r%-) ]2

Performing the integration in (6.12) by parts gives

[5.2]

_ . E . ' -jkr cosh(mv)
0ot (r,E) = kr~sln(m) sinh(mv)e - av, (6.13)
2 2m cos (§v+L) -cos (&)
. IV S 'm
from which it is deduced that:
wz“(r,mﬂ—w) = =w2“(r,mﬂ+w)o (6.14)

The condition associated with the expression in (6.11)
demands that wl"(r,mw-w) be zero unless p=0, 7= < Y <mw;
and that wli(rpmn+w) be =zero unleSs‘p=fl,w“8 < ¥ < mw.

From (6.11),

wl'(r,mﬂ-w)‘ = -wl"(r,mn+w) o (6.,15)

p=0 p=-1
Using (6.14) and (6.15) enables the expression in (6.10)

to be reduced to
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K, (r) = f%[EZ wl'(r,mﬂ—w) + wz'(r,mw-w)],
p=0 "
€y = 1, 7m=-B < ¢ <mm,

=0, v < m=B, Y- > mm, (6.16)

where, from (6.11) and (6.13),

2o (r,mr-p) = 23X gin(mr-y) edkroOs(mm=y) g 19
pr 1 , 1
p=0 .
_ . -jkrcosh (mv)

Z ' (r,mr-y) = K sin(dy | Sinh(mv) e dv. (6,18)
ur 2 um Lo, T ¥

cos(jv+a)+cos@ﬁ)

Now consider the wedge -in Fig. 6.2. The source

distribution on 6= 7 is [-El(so+w)], Sy 7 O,fwhere‘so is

the distance from the wedge apex to a point on 8 =w . The
total field Xz surrounding the wedge is the sum of the

- fields due to all the elemental sources. Thus,

Ay(s,0) = -u Ky (s tw) A(s,0) ds_, | (6,19)
where from (1.16),
A(s,0) = Q(s,0-1)-0(s,0+w), (6.20)

and Q(s,£&) is defined»by,(l..lS)° Let s >>So‘for all
important contributions from the source distribution

[—Kl(so+w)]° Then wl(S,E) and w,(s,&) of (1.19) and (1.20)
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can be expanded by using the asymptotic form of the Hankel

function in (1.21), and after normalizing by the factor

/§%§ o~Jks (6.21)

become
wl(sig) B a%beijOCOS(E+2ﬂpn)r |5+2ﬂpnl <M, 8 >>8,

T |¢+2ren] > v, (6.22)
and .

e sin(ju+ %) o~ Jksgcosh (nw)
| (S,E)=V—l ‘ dw, s »>> s
2 8n - p 3 y
cos (ju+ ) - cos(£)
(6.23)

where
an o= A (6.24)

The condition associated with the expression in (6.22)
demands that wl(s,e—ﬂ) be zero unless p=0; and that

wl(S,e+ﬂ) be zero unless p=-1, 27=2a < 6 < nv, Thus,

wy(s,0-1) = " eTIESoC080, (6.25)

w, (s,6+m) = 'i%l

. o~ Jksgcos (6+2a)

r &y =1, 2w~=2a < 6 < n7w,

=0, 0 < 6 < 21=2a,

(6.26)
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- and A(s,6) is given from (6.20) - (6.26) by

A(s,8) = -% [%—jksocose —e efjksocos(6+2a)‘

1 . . 7y =jks,ycosh (nw) LI B=m,q =1
+ oo 51n(jw+H)e o E cos(1w+ﬁ) cos ( = )]
_[cos(jw+£-)~cos(e:ﬂ)]*l:ldu]° , (6.27)

Substituting (6.17) and (6.18) into (6.19) gives

Az(spe) = k ’:82 2jsin(mm~y) ejk(SO+W)COS(mﬂ-¢)

0]
o

- .
. s;n(ﬁ) ‘sinh(mv)e jk (sg+w) cosh (mv)

™

dvil A(s,9) dsOo

cos(jv+%)‘+ cos(%f

s OO

(6.28)

Using the expression in (4.46) to perform the integration

with respect to sS4 results in -

jkwébs(8+w)

A,(s,0) = %[}2 j sin(B+y)e F(B+y)

0

.Y . ,
sin (=) - -jkwcosh (mv)
_ —_?_E_ sinh (mv)e F(jmv+n)d£], (6.29)
T . T ]
COS(]V+E) + cos(ﬁ)

OO

where
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F(g) = [cose-cose:]-l - gﬂcos(6+2q) - cos&;]_l

o«

1 sin (ju+g) . " g 1=1
+ - '[[cos(jw+ﬁ)—cos( = )]
cosh (nw) =cosé
- [cos(jw+%)—cos(e;ﬂ)]—{] dw . (6.30)

Since 0 < (B+y) < 27, the substitution of x = j(B+y=-m)

in Appendix 5 is valid. Hence,

. BFY=T
~sin(EX¥CT) o o
F(B+y) = sin(2+w)‘[cos(8+i ﬂ)-cos(enw)} 1
~Leos (ET) —cos (220) 1 j : (6.31)

and also from Appendix 5,

sinh(%g) mv B-m, 1-1
F(ij+1T) = m) l:[ cosh (_fT) -cos( n ) ]
mv e+m,—1
-[cosh(?r) - cos( — )]‘:Ie (6.32)

The substitution of (6.31) and (6.32) into (6.29) results

in
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—jey, R
Az(s,e) = = sin( )]

) ~cos( =

s+z—ﬂ) ejkwcos(8+w)[kcos(6+imﬂ

B+yp—T O+m, 1=1
-[cos(——ﬁm—o—cos( = ) ] J.

o

—sin(%) sinh(%?) ¢~ Jkweosh (mv)

‘ mv f=m, 7=1
T — 7 Leosh (37) —cos ()]
cos (jv+=) +cos ()

= OO

—[cosh(%g)-cos(egﬂ)] _fJ dv. (6.33)

Notice that A2(s,6) as given in (6.33) is independent

of e, which in (6.26) defines the reflection boundary

of the field radiated by the source distribution on 6 =7 .
The field X5, defined with N=2 in (6.3), is given as

A

>t

Ay =z (Al + Az), . (6.,34)
where Al is given in (6.5), and A2 is obtained by
multiplying the expression in (6.33) by the normalization

factor in (6.21).

6,2 (b) TRUNCATED WEDGE. (Magnetic Polarization).

The I.R. technigue is used to determine the approximat-

S to the'magnetically polarized field scattered

. =+
ion H
by the perfectly conducting truncated wedge in Fig. 6.4.
The notation used in this section follows that of

section 6.1(a).
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Three main steps are required»to determine ﬁgq

Firstly, the field H surrounding the wedge of Fig. 6.1

1
is determined. Then the surface current density ﬁl(r)
is calculated, and finally an expression for the field

ﬁz surrounding the wedge in Fig. 6.2 is obtained.

Consider the wedge in Fig. 6.1 illuminated by a
maghetically polarized plane wave. The incident magnetic

field intensity gt is given by

B =2mH, ul=ikecos(e-y) (6.35)

The total field Hq surrounding the wedge is given in (1.16)

as

i

Hy(p, ) = 2(p,0=¥) + Q(p,¢+¥), (6.36)

where

Q(p,&) = wl(p,a) + wy(p,E), (6.37)

and wl(p,E) and wz(p,g) are defined in (1.24) and (1.25)
respectively,
The surface current density ?l(r) on the surface

¢ = 27=B is calculated from (6.1) as

R (x) = -9 x H . (6.38)

¢ = 21-8.
After substituting the expressions in (6.35) and (6.36) into
(6.38), and using the definition of mr in (6.7), Kq(xr)

is described by



194

A

Ky(r) = -r [a(r,mr-p)+0(r,mr+y) ], (6.39)

T = pcos(¢+8)—psin (¢+8) . (6.40)

The condition associated with the expression in (1.24)
demands that wl(r,mw—w) be zero unless p=0, 71=8 < P < mm;
and that wl(r,mﬂ+w) be zero unless p=-1, 7~B < Y < MmT.

Since, from (1.24) and (1.25)

wl(r,mﬁ—w) = wl(r,mﬂ+w) , - (6.41)
p=0 p=-1
and

W, (r,mr—p) = wy (x,mr+y) , (6.42)

the surface current density %l(r)‘in (6.39) is given by

o]

e T ~jkrcosh (mv)
51n(]v+ﬁ) e

K, (x) = -22[}2ejkrcos(w+5) + oo T

. s
cos(jvﬁﬁ) + cos(m

- 00

(6.43)
where €5 is defined in (6.16). |
Now consider the wedge in Fig. 6.2. The source
distribution on 6=nw iS'[-ﬁl(sO+w)], S, ¥ 0, where s

‘is the distance from the wedge apex to a point on 6=m,

In the (s,6,z) co-ordinate system r is defined by

r = -scosfH + 6sin6, (6.44)

o).
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The Greens function for the field surrounding a
perfectly conducting wedge in the presence of a trans-
versely polarized line source is derived in section 5.2(a).
Let s >>s for all important contributions from the source
distribution'[—El(so+w)], Then the Greens function

ﬁ(s,e) is given by (5.35) as

H(s,8) = z H(s,0), H(s,0) = n(s,6-7) + n(s,~o=m), (6.45)
n(s,g) = hl(S,E) + h2(S,£), (6.46)
where, from (5.68) and (5.,69) after normalization by

the factor in (6.21),

jksocos(£+2pnn)

il

hl(s,é) % sin(£+n—eo+2pnn) e , |e+2pmn| < m,

Il

0, | e+2pmn| > =,
(6.47)

. -jks_cosh (ny)
h2(Si€) = K = o [sin(%) coseosinh(nw)

8m cos(jw+%)—cos(§)
+jcosh (nw) sind_ sin(jw+%)]dwe (6.48)

The condition associated with the expression in (6.47)

demands that hl(s,e—w) be zero unless p=0; and that

hl(s,-e-n) be zero unless p=1, 27-2a < 6 < nm, Thus
hy(s,8-1) = 5 sin(e-8_)e I¥5o00S¢ (6.49)
k

h,(s,~6-m) = -e 7 sin(6+€5¥2a)e—?ksocos<9+2“)’

(6.50)
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where €, is defined in (6.26).

By defining
5 A
Kl(so+w) =r Kl(so+w), ] (6.51)

the polarization angle 9 becomes (see Fig. 5.1)
6 =1, (6.52)

Using (6.47) - (6.52), H(s,8) defined in (6.45)

reduces. to

H(Sle) = - % l:sine e-ijoCOSO - 80 sin (6+42a) e"ijOCOS(9+20L)
’ sin (2T
+ zi Sinh(nw) e—ijOCOSh(nw) n
" cos ( 'w+1)-cos(9_”)
-0 J n n
sin(e;ﬂ)
h du] . (6.53)
cos (ju+l) -cos (1)
n n .

The total field ﬁz surrounding the wedge is the sum of
the fields due to all the elemental line sources in the

distribution [—El(so+w)]° Thus,

[s+)

H2(s,e) = = Kl(so+w) H(s,9) dso, (6.54)

o]

which becomes, after substituting the expressions in (6.43)

and (6.51),
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H,(s,0) = 2 l}z ejk(SO+W)¢os(1p+B)

0

o

1 sin (JV+I%) e_Jk (S'O+W) cosh (mv)

. . dv|H(s,8) ds_. (6.55)
cos(jv+%) + cos(%) ] °

== 00

Using the result in (4.46) to perform the integration with

respect to Sq gives

Hy(s,8) = 3 [:ezejkwcos(”’*“F(ew)

2
[ .
L Sin(jv+%)e—jkwcosh(mv)
+ F(jmv+yg) dv|, (6.56)
2m cos (Jv+s) + cos(i)
where
P lE) = sinb _15051n(e+2a)
cos8—=-cost. cos (b+20) ~CcOsE
sin(e-ﬂ)
+ g_ sinh(nw) n
" -cosh (nw) -cosg cos(jw+%)—cos(251)
sin(e;“)
- - 5T dw. ) | (6.,57)
COS(jw+H)—COS( - )

Since '0 g (B+y) < 2w, the substitution of x= j(B+y-7)

in Appendix 6 is valid. Hence,
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) .
;'9+ﬂ£]7 (6.58)

s} - cos(ﬁiﬂ) 'cos( ﬁ—ﬂ)-cos( =

e—n) Sln(e+ﬂ

‘ -1 sin(
F(B"'d)) = H cos(ﬁ"‘w ki)

and also from Appendix 6,

N sin (£20) sin (L)
F(jmv+m) = = - - o (6.59)
n cosh(%?)-cos(ﬁﬁi) cosh(——) cos(e+ﬂ) ‘

The substitution of the expressions in (6.58) and (6.59) into

(6.56) gives

HZ(S,G) =

—e.3 sin(e'")
27 ejkwcos(w+8)
2n _ B+ w Ul

COS (e

6+n
sin(

)
) cos(é—jLQE) -Cco s(e+ﬂ).]

x- . m
-3 sin(jv+r)e
dmn

—jkwcosh(mv)[

cos(jv+%)+cos(%) cosh(%?)—cos(gﬁi)

- OO

Sln(e+ﬂ)
- dv. - (6.60)
) .

cosh(-ﬁ-)—cos(e;1T

Notice that H,(s,8) as given in (6.60) is independent of €,
which defines the reflection boundary of the field radiated by
the source distribution on 6=,

The field ﬁt

oY defined with N=2 in (6.3), is given as

St
Hy

where Hy is given in (6.36), and H, is obtained by multiplying

the expression,in (6.60) by the normalization factor in (6.21).

=z (H, + Hy), (6.61)
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Figure 6.1
(s,6)

ey mm — e e D ——— e

(p,9) Figure 6.2

Figure 6.3

Figure 6.4

z axis perpendicular to the paper



200

Figure 6,5

Figure 6.6
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CHAPTER 7.

The I.R. technique is compared with the geometrical
theory of diffraction. An I.R. secondary diffraction
coefficient is derived which is valid when the distance
betweén the edges of a scatterer is small, and is equal
to the geometrical theory of diffraction coefficient when
the distance between the edges is large. Resﬁlts are
presented which show the diffraction from a truncated
wedge and a strip.

A modification to the physical optics current density
on a body with edges is suggested, and results are presented
which show the effect of this modification when applied
fo a truncated wedge. |

Results are compared with the accurate values obtained
from using the S.C.R. technique..

Areas of further‘research are suggested.

7.1(a) COMPARISON OF G.T.D. AND I.R. TECHNIQUE.

The I.R. technique and the geometrical theory of
diffraction use similar methodsto construct an expression
for the diffracted field around a perfectly conducting
truncated wedge. Consider the truncated wedge shown in
Fig, 6.4, - The incident field is ﬁi, where

U =2z U (7.1)

=1 A
The I.R. technique expresses the total field
surrounding the truncated wedge as’

t=zu, u= ] u, (7.2)
n=1
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and postulates that the summation converges in the limit
'n » », Each term in this summation, which is discussed
in section 6.1(a), is valid for all values of w.
The geometrical theory of diffraction field V surround-

ing the truncated wedge can be written in the form

(o]

_)- A
V=2V, V= ) V,
n
n=1

(7.3)
which is assumed to approximate the exact field in the limit
n » », Each of the higher order diffracted fields represent-
ed by the higher order terms in (7.3) is derived from (1.42)
on the assumption that w is very much larger than the wave-
length of the field. Higher ofder asymptotic terms of the
expression in (1.25) are neglected.

Both Un and Vn represent fields surrounding a perfectly

conducting wedge, Uy is the total field surrounding the

wedge in Figa;6°l when the incident field is U'. U, is zero

1
in 2m-8 < ¢ < 2w, and in general is non-zero in 0 < ¢ < 27-B.
The G.T.D, field Vl surrounding the wedge in Fig. 6.1
is given in (1.40) as
_ P |
Vi = VgtV (7.4)

where»vgo,is the geometrical optics field, and Vd

is defined in (1.42). Vl is zero in 2m-8 < ¢ < 27, and in

general is non-zer®6 in 0 < ¢ < 271=B, The manner in which
the expressions for Vgo and Vd are derived in Chapter 1
ensures that at a large distance from the wedge apex,

V, = U

1 kp >> 1. (755)

ll
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The parameters o and w of the truncated wedge enter

the field formulations ih the derivation of U, and Vzo U2
is the total field surrounding the wedge in Fig, 6.2 when
the incident field is due to a source distribution
derived directly from U1 andydependent upon w. U, is zero
in 27=0 < 6 < 2m, and in general is non-zero in 0 < 6 < 2m=0,
v, is the G.T.D. field scattered from the wedge in Fig. 6.2
when the incident field is U.l plus a ray of the field 41
originating at (s=w, 0=0) and travelling along the surface
is zero in 2w=o < 6 < 27, and

2

in general is non-zero in 0 < 6 < 2m=o0.

towards the wedge épexo \Y

Each term U, (n > 1) in the summation in (7.2) is

+1
directly dependent upon U , and each term V__, (n > 2)
in the summation in (7.3) is directly dependent upon Vno
Thus, the higher order terms in each summation depend upon
only the preceeding term and the shape of one of the perfect-
ly conducting wedges in Figs 6.1 or 6.2. U, and V, both
exist in the same region and are zero inside the wedge.

The boundary condition in (1.5) and the form of the
expression in (1.43) show that no electrically polarized
edge diffracted rays can travel along a perfectly conducting
flat surface.aajacent to the edge. Therefore, when the
}ncident field is electrically polarized,
v. =0, n3z3, (7.6)

in the summation in (7.3). No similar condition is

associated with the Un°
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7.2 (a) TRUNCATED WEDGE. (Electric Polarization).

In this seétion, the expression for the fields Ay
and A2 are examined and the relationship between them and

V, and V., is established. The notation of the previous

1 2
section is used.

Because of the mathematical complexity of the terms
following the second in the series in (602), only Al and A,
are evaluated in section 6.2(a). The expressions for Al
and A, are given in (6.5) and (6.33) respectively, and are
derived for the truncated wedge of Fig. 6.4, illuminated
by the incidénf field given in (6.4). These expressions
are appropriate when the point at which the field is

observed is a 1arge distance from the truncated wedge.

The normalization factor is given in (6.21).
First, consider Ay given in (6;5)e From (7.5),

A, =V,

A,(s,0), given in (6.33), can be written as

kp >>1. (7.7)

-jezsin(5+w"“) sin(%) sin(%) ejkwcos(6+w)
n[cos(ﬁi%ZE)‘COS(E%E)J[COS(Ei%:l)—cos(e;“)]
(7.8)
where
asin(i) sinh (Y) e-jkwcosh(mv)
- m . Yn
“47n

_. COS(jv+z)+cos (%)

0

.[[cosh(%})—cos( )]—l —[cosh(%g)-cos(e;ﬂ)]_y] dav. (7.9)

=T
n
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The trigonometrical identity
[cos(a)=cos (b-c) ][ cos (a) ~cos (b+c) ]

= [cos (c)-cos (a-b)]{cos(c)~-cos (a+b) ], (7.10)

enables the expression in (7.8) to be rearranged as

-J€; sin(%) ejkWCOS(B+w)[ECOS(%)—COS(Ei%Tw:EJ]
A,(s,0) = ==

-1

- [cos (F) -cos (BRI ] ‘l] + P, (7.11)

The field given by the first two terms of‘Az(s,e) in (7.11)
is identical to the primary diffracted field from edge 2
predicted by the geometrical theory ofrdiffractivon° As
mentioned in section 7.1(a), there is noﬁsecondary diffracted
field predicted by the geometrical theory of diffraction
for the truncated wedge when the incident field is electric-
ally polarized. Thus, |

A, =V, + P, ks >> 1. ' ' (7.12)
It is readily deduced from (7.9) by using the method of

stationary phase15 that

~

P~ 0, kw> 1. (7.13)
Hence, from (7.7), (7.12) and (7.13),
Al + A 1 27

This relationship shows that when the geometrical theory of

, =V +V ks » 1, kw >, (7.14)
diffraction approximations are valid, the diffracted fields
given by the first two terms of the series in (7.2) and (7.3)

are identical.
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From the discussion in section 7.1(a) and the
expressions in (7.12) = (7.14), it follows that the field
described by P in (7.12) may be regarded as a correction

to the G.T.D. field V, when w is small. It is evident

2
that if the construction of the summation in (7.2)

was such that the field U, was that diffracted by the

1
wedge of Fig. 6.2 illuminated by Ui, and U, was the field
diffracted by the wedge of Fig. 6.3, a similar correction
for the G.T.D. field Vl would result.

It is now pdssible to define the I.R. secondary
diffraction coefficient Pm’n(e,w,w) appropriate to a
perfectly éonduCting body as in Fig. 7.1, illuminated by
a field eleptrically polarized parallel‘td the edges.

The fields Ké and ii are incident at angles wB and wY

on the edges having internal angles B and y respectively,

and . P
At = z A%, (7.15)

The cylindrical polar co-ordinatesystem (s,6,z) has its

origin at the edge having internal angle o. The field R

diffracted from this edge will be approximated by

> _° _ 27 -jks i
A=z A, A = Agtd + F_k—-S— e [AB Pm’n(e,'\bsia)

i ‘
+ Ay_len(nw—e,wy,b)], ks > 1, (7.16)

where A is the G.T.D. field diffracted from the edge,

gtd

a and b are the separations of the edges as shown in the

figure, and from (7.9)and (7.10),
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P (6,V,w) = c_(98) jgig(%)sin(%) e—jkWCOSh(mV)
m,n " *°°* n 4dmn LT P
cos (jv+=) +cos (=)
—00 m m
'[[cos(%)-cos(im§:2)]_l —’[cos(%)-cos(im%ig)]_i]dv, (7.17)
mr = 27-8, nm = 2m-a, 4T = 27-Y, (7.18)

e (6) =1, 0 < 6 < nm,

=0, nm < 6 < 2m, (7.19)

When a and b are large, it follows from (7.13) that the
expression in (7.16) reduces to the G.T.D. estimate of the
field diffracted by the edge at s=0.

7.2 (b) TRUNCATED WEDGE. (Magnetic Polarization).

The expressions for the fields Hy and H, given in (6.36)

and (6.60) respectively are examined in this section, and the

1

notation of section 7.1l(a) is used,

relationship between them and V., and v, is established., The
The fields Hqy and H, are derived for the truncated wedge
of Fig, 6.4 illuminated by the magnetically polarized
incident field in (6.35). Terms higher than the second in
the series in (6.2) are not evaluated in section 6.2(b)
because of their mathematical complexity. The expressions
for H, and H, are appropriate when the point at which the
field is observed is a large distance from the truncated
wedge, The normalization factor for the expressions is given

in (6.21).
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From (705), it follows that

Hy = Vl’ - kp » 1. (7.20)

H2(s,6), given in (6,60), can be written as

-je .
Hy(s,0) = 2 ejkwcos(w+B)Sin(1)
: n
cos(%) - cos(%) COS(Ei%:E) ,
. _ . - + Q, (7.21)
[éos(éi%—ﬂ)-cos(enﬂi][?os(éi%—i)-cos(e;n)]
where
sin(jv+£)e'jkwcosh(mv) [; sin (82T
0 = -7 —m n
4mn _mcos(jv+%)+cos(%) cosh(%?)—cos(e;ﬂ)
Sin(e+ﬂ)
- — n 5T dve 1 (7022) ‘
cosh(?r)—cos( nw)

Using (7.10) to rearrange the expression in (7.21) results in

_js ) | . )
Hy(s,0) = 2n2 Sin(%)ejkwcos(w+s)[icos(%)—cos(giiﬁlégi] 1
+ cos(%)-cos(ﬁii%ﬂiﬁq]"i] + Q. (7.23)

The field given by the first two terms in (7.23) is
identical to the primary diffracted field firom edge 2 predicted

by the geometrical theory of diffraction., By using the method
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of stationary phase15 when kw is large, the expression in

(7.22) becomes

. ™
o~ 3 (kw=7) sin(%) sin(L) [cos (L) -cos(d) ]
g * m n n_ n , kws>> 1,
ananW'[cos(%Q+COS(%)]‘[l‘cos(e;ﬂ)][l'cos(e;“”

(7.24)
The use of the identity in (7.10) enables this expression
for Q to be reduced to
N m
-3 gin(D) sin(d)
0 = ’ kw >> 1.

nmv27kw [COS(%)+COS(%)][COS(%)-COS(g)]

(7.25)

A comparison of the field given in (7.25) with the field
Hg given in (4.20) shows that the expression for Q is identic-
al to the normalized G.T.D. secondary diffracted field from
edge 2. Thus,

Hy + H2 =V; +V,, ks >> 1, kw >> 1. (7.26)

From the discussion in section 7.1(a) and the express=-
ions in (7.21)-(7.26) it follows that the field described
by Q in (7.22) may be regarded as a corrected form of the
secondary G.T.D., field when w is small,

In a similar manner to that in section 7.2(a), it is
now possible to define the I.R. secondary diffraction co-
efficient Qmin(e,w,w) appropriate to a perfectly conducting
body, such as that of Fig. 7.1, when the incident field is

magnetically polarized parallel to the edges. The fields
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Hé and H$ are incident at angles Vg and wy on the edges

- having internal angles B and y respectively, and
it = z ut, (7.27)
The field H diffracted from the edge at s=0 is approximated

by
#=zmn, H=EHP + /-%J;— e Jks gl g (6,V,,a)
’ gtd TKS B m,n ‘"B’

i
+ HY Qz’n(nﬂ—e,wy,b)] , ks >> 1, (7.28)

where Hgtd is the primary G.T.D. field diffracted from the

edge, a and b are the separations of the edges as shown

in the figure, and from (7.22) and (7.10),
3§ sin (%) Sin(jv+%) e_JkWCOSh(mV)
len(e’w'w) = _En(e) “Trn

cos(jv+%)+cos(%)

OO

s[kcos(%)—cos(im%:gfql +-[cos(%)—cos(imgig)]_f]dvu (7.29)

m,n and & are defined in (7.18), and en(e) is defined in
(7.19) . When a and b are large, it follows from (7.25)
that the expression in (7.28) reduces to the sum of the
primary and secondary G.T.D. fields diffracted by the edge

at s=0.,

7,3(a) THE I.R, DIFFRACTION CQEFFICIENT APPLIED TO A TRUNCAT-

ED WEDGE.

The I.R. secondary diffraction coefficient P n(e,w,w)
I'4
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in (7.17) or Qm’n(e,w,w)rin (7.29) is applied to the
problem of approximating the scattering from the truncated
wedge of Fig., 4.1 when the incident field is electrically
or magnetically polarized. The notation used in this sect-
ion is that of Chapter 4.

Consider £he perfectly conducting truncated wedge of
Figu.4;l illuminated by the electrically polarized magnetic
vector potential defined in (4.2). The fields Ai and Aé

defined in (4.9) are incident upon edges 1 and 2 respectively.

The normalized field A in (4.14) is the G.T.D. diffracted

gtd

field surrounding the truncated wedge. By including with

Agtd the I.R. secondary diffracted fields defined in (7.16),

a new estimate A of the diffracted field is obtained as

_ i _jka,cos(mm-¢) _
A=A g+ Ay et P (68T 0, W)
+ A; ejkalcos¢ PY T(Tw—¢,yﬂ+ﬂ-w—8,w), (7.30)
r

where the normalization factor in (4.1) has been removed.

Consider the truncated wedge when the magnetically

polarized incident fields Hi and H; upon edges 1 and 2

respectively are given by (4.9) with the symbol A replaced

: ; p
by H, The primary field Hgtd
wedge is given from (4.17) as (Hi + H:zL)n By including

diffracted by the truncated

with Hgtd‘the I.R. secondary diffracted field defined

in (7.28), a new estimate H of the diffracted field is

obtained as
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= uP .41 _jka,cos(mn-¢) _
H Hgtd-+ Hl e 2 QT,Y(¢+B T, ,W)
+ H; e]kalcos¢QY‘r(Tn-¢,yﬂ +T=p=8,w) , (7.31)
4

where the normalization factor in (4.1) has been

removed.,

7.3(b) THE I.R., DIFFRACTION COEFFICIENT APPLIED TO A

CONDUCTING STRIP.

The secondary diffraction coefficients P n(e,w,w)
' 4
and‘Qm n(e,w,w) are applied to the perfectly conducting
14 .
strip. In order to compare some results with those of
Yu and Rudduckes, use is made of their normalization
factor:
efjkr
V271 3jkr
Consider the perfectly conducting strip of width

o (7.32)

2a in Fig. 7.2. The incident plane wave ot is given by

i i _ ejkrcos(e—eo)

U =2zU, U , (7.33)

in the (r,8,z) cylindrical polar co-ordinate system
with origin at the centre of the strip. The G.T.D. primary

diffracted field oP is found from (1.42) and (1.43)

gtd
to be
N ~cosl[ka(siné+sind )]
thd =2 Ugiqr Ugeq(®8,) ——
I cos$m§%9)
j sin[ka(sine+sineo)]
* - R , (7.34)

sin(

(0]
2)
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‘where the normalization factor in (7.32) has been removed,
and the upper (lower) sign in (7.34) holds when the field

is magnetically (electrically) polarized. In the reflection

direction 6 = -6, the expression in (7.34) reduces to:
P - = - '
Ugtd( 6,,6,) sec(eo) + 32kacos(60), (7.35)

which is in agreement with the form of (4;15) and (4.29)
when 6 =0,
0
By ‘including with Ugtd-the I.R. secondary diffracted
fields defined in (7.16) and (7.28), the new estimate

of -the diffracted field is found to be

T 3m _

-jka(sin6=sin6 ) 3m
l:e ) Pziz(-z-e, 5 60y2a)

A(e,eo) = Agtd(e,eo) + 47

ejka(sine-sineo) T 37

P2’2(z+e,77+60,2a)], (7.36)

+

when the field is electrically polarized, and

3w

~jka(sin6-sin6 ) T, 3
Q) 2(z 0,756 ,22)

_ P :
H(6,0 ) = Hgtd(e,eo) + 43[e

jka(sinf-sine ) T, 3T
+ e o Q2,2(7+6,7r+6o,2a) ’ (7.37)

when the field is magnetically polarized.
Agtd(e’eo) is the complete G.T.D. electrlcally

polarized diffracted field surrounding the strip. When

the field is magnetically polarized, the sum of the primary

and secondary diffracted field of the G.T.D. is given by

H:td’ where
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(6,6 ) = P (0,0 ) + e -j2ka fejka(51ne sine )

FkE | cos (%) —si <9§3s7>->

gtd

(7.38)

e—jka(sxne—31neo)
)

8 . ,9+496
2) +sin ( t o

0+
cos ( ) >

Since each side of the: strip provides a direct ray path
between the edges, a factor of 2 is included with the

secéndary field terms in (7.36), (7.37), and (7.38).

7,3 (c) NUMERICAL CONSIDERATIONS,

The integrations ihk(7°17) and (7.29) for L n(eyxp,w)
' 14
and'Qm n(e,w,w) can be performed numerically. By removing
12

the odd parts of the integrands, the expressions reduce to

m‘

sinhv sinh (AY) e Jkwcosh (mv)

L(0,0,m = ¢ sinsind) ST dv,
° (7.39)
P =il
coshv cos (=) +cos (=)
L(8,0,w) = C E — m:I
’ D (v)
0]
.[;os(%)—cosh(%g)cos(%{] e—jkwcosh(mv) dv, (7.40)
where
. , . Ty s T
o - -Jren(e) 51n(5031n(5), (7.41)
™

e

D(v) =|{coshv cos(1)+cos(£) 2+ sinhv sin (=) 2
m m m

[cosh (——-) cos(-———)] I: osh(m cos(e+ﬂ):| o (7.42)
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When v is. large, the integrands of f7°39) and- (7.40) are

of order e_l2v and decrease rapidly in magnitude as v increases,
By expressing the exponential term in the integrands in

trigonometrié functions, the integrands are immediately

separable into real and imaginary parts. The real parts

oscillate -as cos[kwcosh(mv) ], and the imaginary parts as

sin[kwcosh(mv) ]. Consequently the zeros of the real part

of the integrands are located at

_ 1 -1 [(2p=-1)7
v —.I—n- cosh —'—E:T{'w——] ’ (7@43)

where, within the range of integration, p is any integer
satisfying

20 (7044)

Similarly, the zeros of the imaginary part of the integrands

are located at

=4 -1 [pr
v== cosh [kw] (7.45)
where, within the range of integration, p is any integer:

satisfying '
p> X, (7.46):

The integrations have been evaluated by performing
aOSimpson”s rule integration over each half cycle or "hump"
of the real and imaginary parts of the integrands. The
convergence of the calculation is indicated from a comparison
of the area under a hump With both the sum of the areas under
all preceeding humps, and the area. under the preceeding
hump. Convergence is attained when either the area under

a hump is small compared with the sum of the areas
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under all  preceeding humps, or the sum of-the areas under
two consecutive humps is small. fn the latter case, only
one half of the area under the final hump is included
in the area summation.

703(d) RESULTS.

Figures 7.3 and 7?4 indicate the difference between
the I.R. and G.T.D. secondary diffracted fields given in
(7.29) and (7.25) respectiveiy° Fig. 7.3 shaows the
secondary diffracted field from edge 2 of the truncated.
wedge of Fig. 6.4 when only edge 1 is directly illuminated
by the incident magnetically polarized field, and Fig. 7.4
shows the sum of the primary-andrsecondary'difffacted
fields from edge 2 when both edges\arerdirectly illuminated.
It is evident that there is an appreciable difference.
between the I.R., and G.T.D. secondary diffracted fields
when w is small, and that this difference iS~not‘negligible
when compared with the primary diffracted field.

The curves in Fig. 7.5 compare the G.T.D. diffracted
field, the primary G.T.D., diffracted field, the field
obtained»by using the I.R. secondary diffraction coefficient
as in (7.31), and the magnetically pélanmeéifield given.
by the S.C.R. technique for a symmetrically truncated wedge.
The increased accuracy of the I.R. secondary diffraction

coefficient over the othgr-approximate methods is evident.

The expression . in (7.30) has been evaluated for a

symmetrically truncated wedge with 2X = 949, w = 0.1x, and
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is plotted in Fig. 7.6. Also plotted are the G.T,D.
diffracted field, the diffracted field of Burke and Kell-

opd7,91

, the field from an undeformed wedge with - 2y = 940,
and the accurate value of the diffracted field as calcul-
ated from the S.C.R. technique° Again, the increased accuracy
of the I.R. secondary diffraction coefficient over other
approximate methods is evident. Similar remarks apply

to the curves in Fig. 7.7.

The curves in Figs. 7.5, 7.6 and 7.7 may be compared
with those in Figs. 4.22, 4.21 and 4.23 respectively.

The expressions in (7.30) and (7.31) involving the I.R.
secondary diffraction coefficient have been evaluated for.
seven values.of w in the range 0.05 ¢ w < 1.0\ for the case
of normal backscattering from the truncated wedges approp-
riate to Figs. 4.25 - 4.30. When the curves obtained
are plotted on these figures, they are indistinguishable
from the accurate curves.

The three sets‘of curves in Fig. 7.8 show estimates
of the diffraction from a perfectly conducting strip
illuminated normally by an electrically polarized field.

The results obtained from (7.36) are compared with the
geometrical theory of diffraction estimate. It is.

apparent that the inclusion of the I.R. secondary diffracted
fields in (7.36) only slightly modifies the G,T.D, éstimate
when w > 0.,5), except near 0= i%o The expression in (7.36)

has not been evaluated in these two directions,
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The curves in Fig. 7.9 show the field diffracted

by a perfectly conducting strip illuminated normally by a
magnetically polarized field. The figures show the primary
G.T.D. field (7.34), the sum of the primary and secondary
G.T.D. fields (7.38), the sum of the primary G.T.D., and I.R.
secondary fields (7037), and the diffracted field of Moshen
and Hamid62o The use of the I.R. secondary diffraction co-
efficient results in a significantly better estimate of the
field in the vicinity of 6= + % than does the G.T.D. or
the method of Moshen and Hamid. A similar improvement is
noticeable ‘in Fig. 7.10 where the magnetically polarized
incident field is not normal to the strip.

It is concluded from the above results that when the
separation between edges is small, use.of the I.R. secondary
diffraction coefficients results in significantly increased
accuracy over the asymptotic coefficients of the G.T.D., and
also over the coefficient of Moshen and Hamid for the strip.

7.4(a) MODIFIED PHYSICAL OPTICS,

Before a modification is suggested to the physical
optics estimate of the surface current density on.a perfectly
conducting body with edges, the current density on the
perfectly conducting wedge of Fig. 1.1 will be derived from
(1.16) and (1.33). The surface ¢= 0 of the wedge is cailled
surface 1, and the surface ¢= 27~B is called surface 2.

Consider the wedge illuminated by the electrically

polarized plane wave given by
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3t = 2z al, al = (Jkecos(e-¥) (7.47)

An expression for the surface current density fz(r)
at p= r on surface 2 is derived in section 6.2(a). The
surface current density ﬁl(r) at p= r on surface 1 can be

derived in a similar manner. Thus,

E(r) =z K(x), K (r) = 1), Ky(x) = ymi-y),

(7.48)
where
v(e) = "HE e(g) sing eIFTFOSE 4\ Cr ey, 0 < g <omr,
© (7.49)
_ . -jkrcosh (mv)
vS(r,8) =‘~£sin(£) sinh(mv)e dv, (7.50)
m HT m cos('v+£)-cos(£)
mr = 2n1=8, e(g) =1, 0 < g<m7,
=0, T < £ & M7, (7.51)

The physical optics surface current densities ﬁi(r)
and Eg(r)‘on‘surfaces 1 and 2 respectively are given in

(4.40) and (4.41)., It follows from (7.48) and (7.49) that
K. (r) =K (r) + vS(r,v) K. (r) = Ko(r) + vS(r,mr=v)
l r - l Ym MP ¥ 2 2 Ym 14 e

(7,52)

Consider the wedge illuminated by the magnetically

polarized plane wave given by

~

gt = z.Hl, ut = ejkpCOS(¢“¢)o (7.53)
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An expression for the surface current density fz(r) at p= r
on surface 2 is derived in section 6.2(b). The surface
current density fl(r) at p= r on surface 1 can be derived

in a similar manner. Thus,

Li(x) =1y 8(¥), L,y(r) = -r, s(mn=y),  (7.54)
where
S(8) = 20(5)eTFTOSE 4 5C(p gy, (7.55)
sin(jv#l)e-jerOSh(mv)
6C(x,6) = = o av, (7.56)

: L. 3
cos (jv+=) —cos (2)

A A

r; = gcos¢~$sin¢, r, = ;cos(¢+6)=$sin(¢+8)y
(7.57)
and m and e (&) are defined in (7.51). The physical optics
surface current densities f?(r)and fg(r) on surfaces 1 and 2
respectively are given in (4.67) and (4.69). It follows

from (7.54) and (7.55) that-

L0 =25 + ry 6S(x,0), T,(x) =1

The application of the method of stationary phasels
to the expressions for Y;(I,E) and Gg(r,ﬁ)‘ShOWS that at a

large distance from the wedge apex,

Y;(I,E) * 0, 6§(r,€) 0, kr >> 1, (7.59)
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and thus,
Kq(x) * Kﬁ(r), Ky(r) = KD (r), ﬁl(;) 2 ig(r),

fz(r) * TP(x), kr >»1, (7.60)

It is shown in section 3.1(a) that when the field
is electrically polarized, the surface current density tends
to infinity as the wedge apex is approached. (This
behaviour can also be seen by substituting the expression
in (3.11) into (2°28)J The P.O, approximations‘ﬁﬁ(r) and
Kg(r)“do not predict this current density behaviour. Simil-
arly, it follows from section 3.1l(c) that when the field
is magnetically polarized, the surface current density
is continuous. around the wedge‘apekc (This behaviour
.can also be seen by substituting the expression in (3.11)
into (2.58).) The physical optics approximationéfgﬁﬂ and-ﬁg(r)
are discontinuous around the wedge apex if only one surface
of;the wedge is illuminated.

The expressions in (7.60) emphasize that the physical
optics approximation to the surface: current density on a
perfectly conducting body - is equivalent to regarding each
point—Qn the body as a point on an infinite perfectly
conducting plane. In the case of the perfectly conducting

wedge, Y;(r,w) and'ég(r,w) may be regarded as a perturbation



to the physical optics current density on surface 1

due to that surface terminating in an edge at r = 0,
Similarly, Ym(r,mﬂnw)‘and ém(rjmn=w) may be regarded

as a perturbation to the physical optics current density
on. surface 2 due to that surface terminating in an edge
at r=0, These perturbations have -little effect beyond
a distance of about one wavelength from the'edge89@

This suggests that the perturbations could be used

“ with the physical optics current density to approximate
the current density on a perfectly conducting body with
edges.

The Modified Physical Optics (M.P.0O.) current
‘density on a perfectly~conductiﬁg body is defived.by
adding a term of the form Ym(r,i)'or»ém(r,é) (depending
upon the polarization of the field) to the expression
for the physical optics current .density in the vicinity
of an edge. This»approximation‘is equivalent to regarding
each -edge of the body as the apex of an infiniter

perfectly conducting wedge,

For example, consider. the perfectly conducting
body in Fig. 7.l1l. The geometry of the body is described
in section 7.2(a), and m and n are defined in (7.18).
When the incident field is electrically polarized in the
z~direction, the M.P.0O. current density ES(r) at s = r

on the surface 6= 0 is



8% (r) = z kS(r), KS(r) = KP(r) + Aé Yo (@~ mr=y )
+ AE yﬁ(r,¢8+e—w),, (7.61)

where Ai‘and Aé are the incident fields on the edges
of internal angles o and B reSpectiVely,,and KP(r) is the
physical optics current density.

When the incident field is magnetically polarized

in the z=-direction, the M.P.0O. current density L (x)

at s=r on the surface:$p= 0 is

fc(r) = fp(r) + ; [ﬁé 6;(a—r,mﬂ -we) + Hi 6§(r,¢8+BWﬂ{],
(7.62)

where TP (r) is the physical optics current density, and

~

; = 5 Ccos@ = 5sineu (7.63)
Hi and Hé are the incident fields on the edges of internal
angles o and 8 respectively;

Notice that while physical optics predicts no current
density if the surface is not directly illuminated, M.P.O.
predicts no current density on;y 1f neither edge at the
ends of -the surface is directly illuminated.

If in the approximation.to the current density given
in (7.61) and (7.62) the functions y(x,£) and §_(x,¢)

are defined to exist only for 0 ¢ x < a, the correct

behaviour of the surface currents at the edges is obtained.
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However, in. this case the approximation to the current
density would be discontinuous a:atieast,one point on the
surface. The M.P.0. current density is continuous on the
surface, and predicts an infinite -current density at the
edges when the field is electrically polarized. When the
field is magnetically polarized, the M.P.O. current density
is continuous around the edges if a is large.

7.4 (b) SOME DEFINITIONS.

It is convenient-at this point to make some definit=

ions. Define:
w
-3u. ik
ITa(Wo8pn) = ;%, w;(r,g) eJ rcosndr-, 0
o

£ n < 21 (7.64)

Substitution of the. expression in (7.50) and evaluation

of the integral results in

[o )

. (w,é,n) =sin(%) sinh(mv){l~emjkw[COSh(mv)ucosn]}dvy
me 4? [cos(jv+%)=cos%%Y][Cosh(mv)mcosn]

h {(7.65)
which, by substituting x = j(n-v) into Appendix 7,
reduces to

. . ‘sin ()
T(Wogem) =’%[;é§2+i;2§f+' nTﬁ = =] * ety
m[cos(~5~)-cos(ﬁo]
(7.66)

where e(g) is defined in (7.51), and



225

sin(%) gsinh (mv) e
Em(wﬁgﬁn) = an T 3 awv
[ cos(jv+z) ~cos (2)][cosh (mv) ~cosn ]

- (7.67)

~jkw[ cosh (mv) ~cosn ]

if w is finite. When w is infinite, it follows from (4.46)
that the result of the integration with respect to r in

(7.64) requires
g (=,E,n) = 0, | (7.68)

Define
w

b (w,E,n) = Ssin(n) s (x, )

ejkrcosndry 0 < . < 27,

0
(7.69)

By substituting the expression in (7.56), evaluating
the integral with respect to r, and using Appendix 8 with

x = jn=m),

=9 {e(&)sin sin(lﬁﬂ) '
A‘m(Wy‘Ern) = %‘I: U + — o 3 ]'F Tm(wpgyn)p
cosE+cosn m[cos(eﬁﬂ)wcos(ﬁ)l

(7.70)

where the definition

. sin (5v+5) o~ Jkw [cosh (mv) ~cosn]
T (w,E,n) = 45inn m
m F >0 4'1T‘

B [?os(jv+%);cos(§i][?OSh(mv)mcos{]dv

(7.71)

holds if w is finite. When w is infinite,

T (=,E,n) = 0. (7.72)



7.4(c) M.P.0O., APPLIED TO A TRUNGATED WEDGE,

Consider the-peffectly conducting truncated wedge of
Fig. 4.1 in the presence of an electrically polarized
field. The fields'Ai and Aé incident upon edges 1 and 2
respectively are defined in (4.9 ). The notation used
in- this éection follows that in-Chapter 4.

Using the definition in (7.61), the M.P.O. surface
current density Ei(r) at p= r on the surface ¢= 0 is given

by

B(r) = 2z k%), k$(0) = Ky (n) + Ay vS(rmag,0),  (7.73)

where Kl(r) is the P.0. surface current density defined
in. (4.40). The M.P.0. surface current density Kg(r)

at p= r on the surface ¢= m7m is given by
: i ¢
Kg(r) = K2(r) + A2 yy(ruaz,mw=¢),v (7.74)

where K2(r) is the P.0., surface current density defined
in (4.41). The M.P.0O. surface current density Kg(x)
at. a distance x from edge 1 on the.surface of length w

between edge 1 and edge 2 is

Kg(x) =»K3(x) + Ai,y?(x,rwew) + Aéﬁyg(wﬂx,¢+8=w)y (7.75)
where K3(x) is the P.O. surface current density defined
in (4.50).

The field'radiated by the P.0. current density
on the truncated wedge is evaluated in Chapter,4o The

maghetic vector potentialbzc’radiated by the "modifying"
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current density on. the wedge_is found from (1.36), (7.73)-

(7.75), and (1.21) to be
2° = za%, a° = A% ejka1°98¢[PT(w,w,¢) + T (worney tn-g) ]

+ Aé ejkaZCOS(m”’¢)ﬁk(w,mn-w,mﬁ—¢)+ FY(W,w+B-Wy¢+B=w)]y

o wr, (7,76)
where T (w,{,n) is defined in (7.64), and the
normalization. factor in (4.1) has been removed.

The M.P.0., field A . scattered by the truncated

po
wedge .is given. by (7.76) and (4.57) as

' - c ,
Ampo —,APO+A o (7.77)

Straightforward but laborious. algebraic manipulation

enables Ampo to be reduced to -

A = A + A

i _jka,cos¢
mpo- gtd el

1 E(wWotm=y,Tm=¢)

i ejkazéos(mﬂ-¢)

+ A5 E(W, p+B=T, ¢+B=1) ,. . (7.78)
where Agtd defined in (4.14) is thecgeometrical‘theory Qf.
diffraction field surrounding the truncated wedge.

E6£,n) is defined in (7.67) and (7.68).

Néw,consider\the perfectly conducting truncated wedge’
of Fig., 4.1 in the~presenée of a magnetically polarized
field. The fields Hi and Hé-incident upon edges 1 and 2
respectively are defined in (4.9) with the symbol A

replaced by H. Using the;definitionﬁin (7-62) , the M.P.0O,
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surface current density fg(r) at p= r on the surface ¢=0

is given by

fi(r) =‘fl(r) + Hi rlég(rfal,w), (7.79)

where fl(r) is the physical optics current density defined

in (4.67), and rl is defined in (4.68). The M.,P.0. surface

current density;fg(r) at o = r on the surface ¢= mrm is given.
by

>C > iz c

Ly(r) = L,(r) - H; r, 6y(r=a2,mw=¢)p (7.80)

where the physical optics current density fz(r), and r,
are both defined in (4.69). The M.P.O. surface current
density fg(x) at a distance x from edge 1 on the surface

of length w of the truncated wedge is

L3(x) = L(x) +ry [ﬁi 67 (x,Tn-y) + Hz‘aﬁ(w-x,w+s=ﬂ)],

(7.81)
where 33(x) is the physical optics current density
defined in (4.74), and
ry = -gcos(¢+8)+¢sin(¢+8)o (7.82)

The- field radiated by the P.0. current density on the
truncated wedge is evaluated in Chapter 4. The magnetic
) > ‘
field intensity HS radiated by the "modifying" current density

is found from (1.36), (7.79) = (7.81), and (1.21) to be



= z8C, HC = HY eI¥21°080(y @ y,0) + & (w,ra—p, 109 ]

+ gt ejkazcos(mﬂwq))['AY(oo

2 yOT=y ,mr=¢) + AY(w0w+eewg¢+gnﬂ)]y

(7.83)
where Am(wygvn) is defined in (7069), and the normalization
factor in (4.1l) has been removed.

The M.P.0. field Hmpo scattered by the truncated

wedge is given by (7.83) and (4.79) as
= H + H . {7.84)

Straightforward but laborious algebraic manipulation

enables Hmpo to be reduced to

Hipo = Hgtd + Hi eJkajcosé T (W, Tn=y, T-$)

+,H§vejkazcos(mﬂ=¢) Ty(wiw+gmﬁp¢+5mﬁ)° (7.85)

The primary diffracted field Hgtd

is given by (Hi,+ H%) in (4.17) after normélizati@m by

of the G.T.D,

the factor in (4.1) .

7.4(d) DISCUSSION AND RESULTS.

It is shown in section 7.4(c) that the M.P,0.
approximation to the surface .current density on the trunc-
ated wedge is equivalent to adding to the primary field
of the- geometrical theory of diffraction two fields for

each edge. Each of these fields is a function of
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the: length of one.side of the body adjacent to the edge,
‘and is zero if that side is-of infinite extent. However,
these fields are dependent only upon the internal angle
of oﬁe edge of the body, énd therefore -do not describe
any interactive effects between the-edges. Unlike physical
optics, M.P.O. predicts a polarization sensitive back=-
scattered. field.

The numerical evaluation of the integrals in (7.78)
and (7.85) was accomplished by using a technique similar
to that described in section- 7.3(c). The curves in Figs. 7,11~
7.13 compare the fields radiated by the P.0O. current density,
the M.,P.0O. current density, and the field diffracted by the
unde formed wedge, with the field diffracted by the
symmetrically truncated wédge illuminated by.an electrically
polarized field. The,three'figures apply to the wedges
appropriate to Figs. 4.21 and-7.6, 4.23 and 7.7, and 4.24
respectively. It can be seen that;thelﬁikogcurrent density
gives a more‘accurate-estimaté'of'the'diffracted fielé than
does the P,O. current density, although in certain regions
Fig. 7.11 shows the most accurate estimate "is that of the
field diffracted from the undeformed wedge-.

The magnetically polarized field diffracted by a
symmetrically truncated wedge is shown in Fig. 7.14. It is
apparent thatfthe'field radiated by the M.P.0., current
density is a more accurate estimate of the scattered field

than that radiated by the P.0O. current density.
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The M.P.0. approximation has also been used to
estimate - the normally backscattered field from the wedges-

- appropriate to Figs. 4.25 = 4.30, with w in the range

0.05A <w <1.0A., When the curves obtained are plotted

on these figures they are indistinguishable -from the accurate
curves.,

It is concluded from theseand other- curves, that
although the M.P.O. approximation results in a more accurate
estimate of the;gcattered\field-than,does P.O,, it is in
general less accuré£é than the use. of-the I.R. secondary
diffraction coefficients defined in sections 7.2(a).
and' 7.2 (b) . |

7.5(a) SUGGESTIONS FOR FURTHER RESEARCH.:

The application of the S.C.R. technigue to bodies
other than the deformed wedge would give further-insight
into the effect of:boundary perturbations on scattering
patterns. . In particular, the scattering from deformed
circular cylinders and»spheresﬁéould;be compared with the
G-T.D, and P,0. approximations and could also be used to.
evaluate the Fock approximation78’79° It may be possible to
use the. formulation. of  scattering from- a deformed wedge to
augment present -knowledge on diffraction phenomena associated
with the propagation of radio waves over mountain range592o

The P.C.R. technique has yet to be applied to a.
scattering problem. The‘écattering by dieleéfric cylinders
could be. found using this technique,. and the results used to

evaluate the "accuracy of- approximate methods of determining.



232

the scattering.,

The results of applying the I.R. secondary diffraction
coefficient to other scattering bodies such as polygonal
cylinders and thick half-planes could be compared with results
obtained by other methods20’51'88’90° The increased
accuracy of the I.R. secondary diffraction coefficients over
that of the G.T.D. encourages further investigation of the
series in (6.2) with the aim of finding higher—ordér edge
diffraction coefficients. A study of the-convergence of
this series is also warranted.

It has been shown how the application of the I.R.
technique to the truncated wedge gives rise to the I.R.
secondary diffraction coefficients. Similarly, the applicat-
ion of the I.R. technique to scattering bodies such as those
of Fig, 6,6 may give further insight into the nature of the
diffraction from the edge formed by two curved surfaces,
or a curved and a flat surfaces6o

The M.,P,0. approximation to the surface current
density on a perfectly conducting rectangular cylinder.

20’21’89‘in an attempt

could be compared with other results
to further improve the -current density representation.

The volume of recent literature concerned with the
derivation and evaluation of simple approximate methods of
determining scattered fields shows that this is currently a
most rewarding avenue of research. These approximate methods
not only enable estimates of the field scattered by
complicated bodies to be calculated quickly and with little

programming effort, but can also provide an insight into the

nature of scattering phenomena.
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Figure 7.1 2z axis perpendicular to the paper.

-~

Figure 7.2 Scattering from a strip.
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LEGEND FOR FIGURES 7e3-7e7, 7e11=7.14

from S,C.R. technique

from Physical Optics

- & —————— A — from the undeformed wedge

- 0 ———— o — G,T.D. diffracted field

- ———a — G,T,D, primary diffracted field

— — G.T.D. sum of primary and secondary
diffracted fields

— ¢ ————— ¢ — from Burke and Keller 47,91

— ¢ ———— o — using I.R. secondary diffraction
coefficient

- — § — from M.P.O,

Figure 7.5 (2X=111+0 . ¢=60o g w=0e1A)

Symmetrically Truncated Wedge. Magnetic Polarization.
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Legend on p 235,

Electric Polarization.
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Figure 7.7 (2x=94°,(b=13§°, w=0,1A)

Symmetrically Truncated Wedge.

Legend on p 235,

Electric Polarization.
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from Yu and Rudduck 65
G.T.D, diffracted field
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diffracted fields
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coefficient
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Symmetrically Truncated Wedge. Electric'Polarizatiop.
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Figure 7.12 (2X=94 ,$ =133 , w=0.1A) Legend on p 235.

Symmetrically Truncated Wedge. Electric Polarization.
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Y T =T =
0 in an ?

Figure 7.14%  (2x=114", ¢=123", w=0.1A) Legend on p 235,

Symmetrically Truncated Wedge. Magnetic Polarization.
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APPENDIX 1

Consider.

182 (xr) Héz)(kr)

= . - _H A .
S = Jp(kb) — — dr

b (2)
Hu (kr) Jp(kr)

+ 1 2 e dr .

a

By using (2.46), and letting k have‘a small negative:

imaginary part such that

k = (a=je), e » 0,

S can be expressed as

kb Héz)(kb)

- e (2)
S = uz - p [ (kb)J‘+l&b)- I (kb). Hp+l(kb{]

(2
ka H (kb)
‘ p. (2) _ - (2)
+ uz - pj [ (ka) J (ka) H (ka) Jp+l(ka{]

(2) oy 2 (2)
Hp (kb),Hu (ka) Jp(ka)

U'I'p 7 e
'Butl4, )
1 (2) (2) 24
p+l(Z) J,(z) - By (z) Jp+l(z) = ?%,

and therefore
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. (2)
-27 H (kb) 4
_ U (2) _ka .. (2)

S = PR, -+ Hp (kb) [;§-7 {Hu+l(ka) Jp(ka)

T(p"=-p~) uo-p

(2)
H "' (ka) J_(ka)

- H(2>(ka)}Jp+l(ka)} - A u¥p/p ]o

APPENDIX 2

~

Let'Cm(x), Cm(x) be any two cylindrical Bessel functions

of order m and argument x.  Then

(e o]

s=_ 3 [c

oE (x) sih{(mhlyﬂ + Cm;l(x) Sin{(m+l)u}]ém(z)

m=1

(o]

= z’ [cm(x)rsin{ma}c

nE (z) +;Cm(xy sin{ma}ém_l(z)]

m+1

"

2m

= ) - Cm(z)Cm(x)s1n{ma}
M= —c0
- 7 A3 oyc () sinima)
Z m m °
m=1 '
APPENDIX 3
Consider
aq
Fo=£(8) =—=J,(ké) , L =0,1,2,---, (A3.1)
564 . ‘
§= 0

where &(4%) is some function of 2%.° Repeated use of the

. . 14
recurrence relation for Bessel functions™
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3 k
55 I, (k8) = 5 [J,_ (k) - J£+l(k6[],

shows that F may be written as

k.q 3
F=1:£(2) (3 ) an,Jg-q+2n(k6) !
n=0 -
§=0
where_the‘an are non=zero constants,
and a_ = 1. Since
J,(0) = 1; Jp(0) =0, p#0,

where p is any integer, %2 is restricted to the values

for F to be non-zero., The restriction on n arises from
the condition in (A3.1) that % be positive or zero. '

If the function £(2) is defined such that

£(2) =0, k=q~-2n, ¥n:lsn <z,
then

F=0VQ'7£ dy -

£(q) (g‘-‘);q; 2= g,

i

APPENDIX 4

Consider the convex reflecting surface C in Fig. Al,
illuminated by the incident plane wave U (T) at the point T.

The radius of curvature of the surface is R. The angles
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made by the incident field with the normals OP, 0Q to the
surface ‘at- P and Q are £ and &+§¢ respectively, where ZLPOQ =8¢,

Let,]Ui(T)l = A, and |UY(S)| = A, where UT(S) is the"

OF
reflected field at S. The conservation of energy flux in a
cone of the reflected field requires

2 2

py 80 AT = (pl+r)69 A“, (Ad.1)
From AOQX,
] = 2 6¢y
and since
: pl §6-
R-§¢ “CoSE ! S ¢ ’f'or
> Rcosg §¢ » 0 (A4d.2)
pl . 7 ’ o : o

From (A4.1) and (24.2),

A cosé
A, /T 2% r >R

and hence

COSE e-jkr'
2r 7.

where the upper (lower) sign applies when the field is

Ur(S) = t Ul(T) r >> R,

magnetically (electrically) polarized in the z-direction.

APPENDIX 5.

Consider . the functions I(6-7) and I(6+n) where

o]

R |
51n(j@+H)

li

I(g)

. e . dw,
[cos(jw+%)-cos(%)][cosh(nw)+coshx]

-

0 <8 <nr, nm=21 -a, 1 <n < 2,

(A5.1)
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This integral can be evaluated by performing two contour
integrations in the complex w plane of Fig. A2, Cy
is the contour alongfthe real axis from -« to =, C2

is the semicircle of radius R‘closing C, in the upper half-

1

plane (U,HP,), and C, is the semicircle of radius R closing

3
Cl in the lower half-plane .(L.HP.). In abbreviated

notation,

I(g) = ¥4 + o ) =Ouhp, + =(1-th’ (A5°2)

Gy €1 % ¢ Cs.

where Ouhp»andlglhp

upper  and lower half-planes respectively. Examination

are the sum of the residues in the.

of the-integrand of I(g) shows that

= =0, R-—>°0,
C, C3
and thus, from (A5.2),
2 I(g) = Oth + Guhp“ (A5, 3)

(1) Consider the poles located at

Sieny

w o= [ +~% + 2pn], (A5.4)
+ .

where p is ‘any integer or zero. The notation p~ is used

to denote the pole located by p with the * sign in (A5.4).

. * * ,
The residues 65 at the p~ poles in the U.HP, are
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- 21 y

T+

cos(i£+2pnﬂ)~coshx

e SN
and the. residues yé in the L.HP, are

t ~27

P cos (t&+2pnm)=-coshx

Hence,
+ - - -+
6 = o J = = o . A505
p Y-pr  p p ( )
(a) When £ = . (6-7), examination of (A5.4) subject to

: +
the restrictions on 6 and n in (A5.1) shows that the p~
(p- > 0) poles all lie in the U.HR, and the pi (p <0) poles:

all lie in the L.HP,

. R
The sum Gl of the re51dueS»6p, Yp

lower half-planes reduces, with the use of (A5.5), to

in the upper and

R - =4
°1 = % * 8, = SGshrceshx ! (A5.6)

when &= (06~m),

(b) When £ = (6+m), the p° (p » 1) poles and the 0"

pole located by (A5.4) lie in the U.HP, The‘pi (p < 0)

poles and the 0  pole lie in the L.HP. provided 6 <2m-20.
If 6>2m=-2q, the -1% pble lies in the U.HP., Then, using

(a5.5),

- 47
0

(A5.7)

1+ 8p) CoS (6+20) fcoshx '

where

™
]

1, 2m-2a0 < 6 < nm,

=0, 0 <6 < 2r-2a.



4 | 248

(ii) Consider the poles located by

w= % Z + J(2p+l) L, (A5.8)

. . ‘ . .
where p is any integer or zero. The notation p~ is used
to denote the pole located by p with the % sign in- (A5.8).
. * ot ‘ .
The~re31dues-6p at the p~ poles in the U.HP. are
27 sinh(#X + 32BT)
n n

+
§% = ‘
: . ‘ X, .2p1 !
P n's;nh(ix)[Cpsh(ii+]—§£)—cos(§X] ,

. T+ + .
and the residues yé at the p~ poles in the L.HP. are

_ . X, .2pT
o 2ﬂ'51nh(iﬁ+]—ﬁ—)

P n sinh(ix)[Eosh(igﬁjzﬁﬁ)—cos(EOJ

+

o v : . .
Comparison of 65 and vy shows that the-expressions in (A5.5)

o2

are. valid.
The locations of~thé poles given by (A5.8) are independ-
ent of £, The pi (p > 0) poles lie in the U.HP, and the

p- (p < 0) poles lie in the L.HP.  Using (A5.5), the sum

0, of the residues § in the upper and lower half planes

0+

rY:

oo+

is given by

4w‘sinh(§)

o, =8+ 6 = (A5.9)

n sinh %[?osh(%)—cdS(gi]e

Notice from the pésition of the poles that 9, is unchanged

if x is replaced by j(y-m), 0 < y < 27w,
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From (A5.3)

I(E) = 2 2

and thus, from (A5.6), (A5.7), and (A5.9),

. X
sinh (=)
n -1
I(8=7) = 27 , - [cos6+coshx]
. X =7 4
n sinh x|cosh(=)~-cos( )]
n n
sinh (3) 4l
T(6+7m) = 27 |~ e = e - eo[cos(e+2a)+coshx] A
n sinh x cosh(H);cos( = )]

APPENDIX 6

Consider the functions J(6-n) and J(6+w) where

sinh (hw)

: dw,
J(8) [cos(jw+%)-cos(§)][cosh(nw)+coshx]

- OO

0 <8 <nm, nm = 21=-qa, 1l <n < 2,

This .integral is similar to that evaluated in Appendix 5,
and since the integration is performed in a similar manner,
only the essential steps are noted here. The location of

the poleé of J(¢), and I(&) of Appendix 5, are identical,

(i) Consider the poles located by

o= 3lx2 + L'+ 2pr]



250

, o + ' -+
where p is any integer or zero. The.resldueswsp at the p

poles in. the U.HP, are

213 sin(*&+2pmn)

= . 4

sin(i%}[cos(ig+2pwn)—coshx]

)

t
P

.
and the residues yé‘in(the;LoHP.are

=+

~2qi,sih(i£+2pﬂn)

14

Y =. - - -
sih(i%)[cOs(ig+2pﬂn)-coshx]

and hence

+ - -
L6 =T (A6.1)
. BV
(a) When & =-(6-7m), the sum g, of the residues 65, o
in the upper and lower half-planes reduces, with the use of

(A6.1), to
oy =67 + 67 = L1100 ‘ (A6.2)
sin (— ) [ cos8+coshx]
(b) When -£€= (6+m),
- + €, 473 sin(6+20) ‘ ‘
o1 Teo {8y 0y) = [ ‘ ’ (A6 3)
‘ sin(—H—%[COs(e+2a)+coshx]
where _
e =1, 2m=20 < 6 < nm,

=0, 0 < 8 < 21-20a,
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(ii) Consider the poles located by
= X s ( T
w =& =+ j(2p+l)n,

: . t t
where p is any integer or zero. The residues ép at the p
poles in the U.HP, are

2773

h[bosh(i% + jzﬁi)-cos(éi] ’

§

Lol s

. t * .
and the residues Yé‘at the p~ poles in the L.,HP are

Yi'=‘ =213
P .n[bosh(i% + jz§£)—cos(§f]

+ +
Comparison of 65 and y; shows that the expressions in (A6.1)
are valid.
. + ) + . .
The sum o, of the residues‘éé and YE in the upper

and lower half-planes is

o, =60 + 67 = — ATl - (A6.4)
n[cosh () ~cos (2) |
‘Notice the'ozvremains unchanged if-x is replaced by
jy=m), 0 < vy < 2m, Since
o, *+ ©

g(e) = 42,

from (A6.2), (A6.3), and (A6.4),

J(6-m) = 2773 ' 9_81ne +‘%‘cosh(%)—cos(egﬂ)]—f],
sin(—ﬁl)[cose+coshx]
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€, sin(6+2a)
J(o+m) = 277 [ 5T
sin(—ﬁl)[cos(e+2u)+coshx]

+ %;[?osh(%)—cos(e;ﬂ)]mé}o

- APPENDIX 7
Consider the expression J(¢) defined in Appendix 6,
but subject to the restrictions
1l <n < 2, 0 £ & < nm,

(i) Consider the poles located by
w =0t 2+ T 2pw]
jlt 2+ = o

Using the notation of Appendix-6, the-pir(p > 1) poles and
the 0+‘pole lie in the U.HR; énd the:pi'(p < 0) poles and
the 07 pole lie in the L.HP., provided g>w. If ¢ <w, the
0_'pole-lies‘in‘the U.HP, and ol,.the*Sum‘oflthe residues.

in the upper and lower half—planés.is:

e(g) 4nj sint = . (a7.1)

o, = =2
sin(H)ECOsg-coshx]

1

where
e(g)= 1, 0 < £ <m,

= 0, 7w < Egnm.
(ii) Consider the poles located by

+ j(2p+l) s .

e
]
I+
B

-Therscm1020f the residues in the upper:and;lower half-planes
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is given in (A6.4).

Hence, from (A6.4) and (A7.1)

‘ _ .| (¢) sing 1 X £ -1
J(g) = 27 £ — + =|cosh (=) -cos (=2) :] .
{;in(%)[cosg—coshx]' n[ o n j

APPENDIX 8

Consider. the expression I(g) defined in Appendix 5, but
subject to the restrictions
1 <n < 2, 0 £ & g nm,

(1) Consider the poles located by

5 e

w = jl¢ + % + 2pnl].

Using the notation of Appendix 5, the pi (p > 1) poles and
the 0+ pole lie in the U.HR; and the pi (p < 0) poles and the .
0" pole lie in the L.HP, provided & > 7, If £ <m, the 0

pole lies in the U.HP. and o the sum of the residues in

1¢
the upper and lower half-planes is
_._e(g) A4r
91 T Cost-coshx’ (A8.1)

where
E(g):_ ly »O$E'<T"

(1i) Conéidergthe*poles located by

_ X . T
w. = i"H +_j(2pfl) = o

The sum oz_of'the residues in the upper and lower halffplanes
is given in (A5.9).

Hence,; from (A5.9) and (A8.1)
1(g) = ZN[ (&), sinh () ]
\ ‘ c ]

os g-coshx n sinhx[cosh(%)—cos(%)
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<

Figure A1 Reflection from a cylindrical surface.

Im(w)

Cq Re(w)

A 4
\

Figure A2
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