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Abstract 

 
Beta-alanine supplementation has been shown to increase skeletal muscle carnosine 

concentration resulting in the delay of neuromuscular fatigue and an increased aerobic and 

anaerobic capacity.  The current study investigated the effects of beta-alanine supplementation on 

aerobic and anaerobic capacity in trained cyclists.  Fourteen highly-competitive (sprint, 

endurance, road and track) cyclists underwent an 8 week 6.4g/day protocol (beta-alanine and 

maltodextrin).  Pre and post supplementation testing included a VO2max test (familiarization and 

characterization), maximum aerobic power test (aerobic capacity), and 30s wingate anaerobic test 

(anaerobic capacity).  Aerobic capacity parameter measures included aerobic and anaerobic 

thresholds, and maximum aerobic power, while anaerobic capacity parameters included fatigue 

index, average power, peak power, watts per kilogram, and final lactate concentration. 

 

There was a lack of change in aerobic and anaerobic capacity parameters post supplementation 

for both groups.  Assuming an increase in skeletal muscle carnosine concentration, results 

suggest 8 weeks 6.4g/day beta-alanine does not increase aerobic and anaerobic capacity in trained 

cyclists.  This lack of change has 3 potential explanations; carnosines’ physicochemical H+ 

buffering ability was not substantially elevated to prevent muscular fatigue via acidosis, pH 

decrease is only one limiting factor in aerobic and anaerobic capacity, or other factors 

(neuromuscular junction failure, contractile failure, substrate depletion, metabolite accumulation, 

oxidative stress) influence muscular fatigue. 
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CHAPTER ONE 

Introduction 

Performance 

Striving for excellence in sport is achieved in several ways; naturally, through training and 

adaptation, artificially, through the use of performance enhancing drugs/supplements, and most 

importantly, genetics.  Such an example of artificial enhancement is the East German regime of 

the 1970s, where in the need to succeed, hormone doping became a natural part of the training 

regime and led not only to extraordinary adaptation, but to a substantial improvement in 

performance (Franke and Berendonk, 1997).  Performance enhancing supplementation is a 

common tool for pushing the boundaries of human physiological development.  In the body-

building world where bigger is better, it is common practice to abuse the wide variety of 

synthetic hormones available in today’s market (Jazayeri and Amani, 2004) that act on muscle 

hypertrophy stimulation (increase muscle protein synthesis and anabolism) (Kadi et al., 1999).  

This brought about the development of the World Anti Doping Agency (WADA) who have not 

only established a prohibited list of substances, but developed testing procedures to combat such 

use. 

 

Natural performance enhancement, although not as dramatic and effective, comes through the 

means of training adaptation and mental preparation.  Adaptation requires stressing the 

physiological system into an unaccustomed state.  With the appropriate rest, adaptation of the 

body (heal) to the new stress will result in an increase in performance/capacity (Radak et al., 
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2001).  A question posed by athletes, coaches and scientists is whether legal sports supplements 

can help improve aerobic/anaerobic performance/capacity associated with sporting success. 

 

Cycling Disciplines 

Cycling (road, track, and mountain) includes a range of anaerobic (track sprint) and aerobic 

events (road race).  Each discipline requires specific training to achieve optimal performance 

(Table 1).  For example, the Tour de France, the event most commonly associated with cycling, 

covers approximately 3500km and is dominated by aerobic capacity and lactate threshold 

(Kenefick et al., 2002, Lucía et al., 2003).  In comparison, several disciplines are track based and 

more commonly associated with power, dominated by riders with large quadriceps, explosive 

high power outputs, and a heavily developed anaerobic system.  Events of this nature include the 

match sprint, keirin, and the kilometer time trial (kilo).  The match sprint suits riders with 

explosive power, size, and strength over 5-10s (Dorel et al., 2005), while the keirin and kilo are 

governed by the ability to maintain the same power for a sustained duration (30-65s).  Thus, in 

order to succeed at such events, a tolerance to pain is a necessity (muscular acidosis).   

 

The scratch race, points race, Madison, teams pursuit, and individual pursuit however, are 

typically based upon aerobic capacity (Schumacher and Mueller, 2002), a high lactate threshold, 

periods of explosive power, and an ability to recover from numerous anaerobic efforts.  What is 

thought to govern success in these events is the ability to manage and control lactate 

concentrations. 
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Table 1. The type, duration and training associated with the cycling disciplines. (Based on the 

programs of the current New Zealand sprint and endurance squads, 2010) 

Event Duration of event Training Zones 

Road race 2-7 hours Aerobic (2-7 hours), 
VO2max 
and lactate threshold 
(LT) training 

 
Road time trial 

 
50-65 minutes 

 
Aerobic, VO2max and 
LT training 

 
Scratch 

 
15-25 minutes 

 
Aerobic, LT and 
sprint training 

 
Points/Madison 

 
20-30 minutes 

 
Aerobic, LT and 
sprint training 

 
Pursuit 

 
3:30-4:30 minutes 

 
Aerobic, LT and LTol 
training 

 
Kilo/Keirin 

 

 
30-65 seconds 

 
Aerobic, LTol, 
VO2max and sprint 
training 

 
Sprint 

 
10-20 seconds 

 
Aerobic, LTol, and 
sprint training 

 

 

A cyclist’s control of threshold, characterized by the highest intensity at which lactate production 

and elimination are in equilibrium (Faude et al., 2009) (main determinant in road cycling 

success), and/or tolerance to lactate is an important aspect to success.  Lactate production, and 

therefore H+ production (decreases muscle pH and therefore muscle activation), is an aspect of 

fatigue that determines cycling performance (Messonnier et al., 2007).    Lactate control has 2 

aspects: lactate management, where managing levels of lactate above and below the threshold 
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determines the outcome in pursuit and time trial events, and lactate tolerance, where the 

production is not the determinant of performance, but rather the athlete’s tolerance to the 

increasing lactate concentration (pain) (success in events like the keirin and kilo). It is therefore 

important that the cycling fraternity receive unbiased, independent advice regarding the control of 

acidosis toward aerobic and anaerobic metabolism/capacity.   

 

Energy Systems 

Cycling is sustained through the aerobic and anaerobic metabolic energy systems that provide 

chemical energy in the form of adenosine triphosphate (ATP).  Initially, all cycling events utilize 

the readily available store of ATP within the muscle.  Following depletion, specific events utilize 

specific pathways to produce the required energy for muscle contraction.  For explosive events 

(sprint and keirin), the ATP-PC energy system is employed to provide rapidly utilizable ATP 

(Wells et al., 2009) during high intensity exercise such as track sprint cycling (Flyger, 2008).  

Through the chemical breakdown of phosphocreatine (PCr) (a phosphorylated creatine molecule 

that serves as a rapidly mobilizable reserve of high energy phosphates used to form ATP from 

ADP during the first 2-8 seconds (Karlsson and Saltin, 1970) of intense exercise) a phosphate 

group is liberated and provided to ADP.  The creatine molecule itself is formed from arginine, 

methionine and glycine through a series of catalyzed chemical reactions (creatine kinases) in the 

liver, kidneys, and pancreas (Williams and Branch, 1998) and transported via the bloodstream to 

the skeletal muscle (Walker, 1979).  Creatine concentration within striated human muscle is 

approximately 4µmol g-1 (Clark, 1997), with evidence indicating this concentration can increase 

following supplementation and extend the duration of the ATP-PC system (Birch et al., 1994).  

Following PCr consumption, activation of the anaerobic metabolic pathway (fast-rate glycolysis) 
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occurs.  The production of ATP sustains muscle contraction for events of 2 minutes or less (kilo) 

(Robergs et al., 2004) and is discussed shortly.   

 

Fast rate glycolysis is heavily relied upon in the keirin and kilo (2 minutes or less), and to a lesser 

extent in the scratch and points race.  Through the breakdown of glycogen to glucose in the 

absence of oxygen, and the subsequent enzymatic reactions to produce pyruvate and lactic acid 

(glycolysis) enough ATP is created to provide chemical energy for muscle contraction (Gastin, 

2001).  Muscular acidosis (decrease in muscle pH) arises due to the automatic dissociation of 

lactic acid at neutral pH (lactate (La-) and hydrogen (H+) ion) (Cooke et al., 1988, and Lamb et 

al., 1992).  At low pH, it remains in its undissociated form (lactic acid pKa 3.86 (Graves et al., 

2006)), however under physiological conditions (7.4), dissociation into the ion salt occurs.  The 

consequent drop in pH alters muscle mechanics, resulting in fatigue and decreased performance.  

If, however, sustained muscular contractions are required (road and pursuit events), the oxidative 

phosphorylation pathway provides an indefinite sustainable supply of ATP and is described in the 

following paragraph. 

 

The aerobic system (Ebert et al., 2006) is composed of three stages and is heavily relied upon in 

almost all disciplines of cycling.  Digestion is followed by the first stage incorporating glycolysis 

(carbohydrate breakdown) which breaks down glucose through a series of 10 enzyme catalyzed 

reactions to yield 2 ATP molecules, 2 molecules of NADH, and 2 molecules of pyruvate (Garret 

and Grisham, 2005), beta-oxidation, which breaks down fats in the mitochondria to acetyl-CoA, 

the entry molecule into the citric acid cycle, and deamination, which breaks down proteins in the 
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liver through amine group removal (deaminases).  In the presence of oxygen, slow rate glycoysis 

is utilized and the pyruvate molecules are fed into the second stage (Kreb’s cycle), where 1 ATP 

molecule, 1 carbon dioxide molecule, 3 NADH molecules, and 1 FADH molecule are produced 

per pyruvate molecule (Garret and Grisham, 2005).  Further progression of the NADH and 

FADH molecules into the electron transport chain (third stage) yields a total of 10 NADH+ 

molecules and 2 FADH+ molecules, which equates to 34 ATP molecules (Garret and Grisham, 

2005).  The production of 38 ATP molecules per molecule of glucose provides enough 

sustainable energy for muscular contraction during cycling events of long duration (road). 

 

In my study, progressive acidosis during cycling activity is under investigation with beta-alanine 

supplementation and cycling capacity.  The following section combines the structure and 

composition of skeletal muscle (which utilizes the production of chemical energy) in relation to 

cycling performance. 

 

Muscle Physiology 

Muscle physiology genetics is one determinant of cycling success.  Muscle composition (fibre 

type) pre-determines event specificity of an individual, so following is a discussion of the various 

aspects of muscle composition and structure in relation to cycling performance.  

 

Skeletal muscles are dominated by the presence of numerous myofibrils, each consisting of a 

highly regulated arrangement of cytoskeletal elements of thick (12-18nm assemblies of myosin) 

http://en.wikipedia.org/wiki/Carbon_dioxide�
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and thin (5-8nm assemblies of actin) filaments, which combined make up the contractile region 

of the muscle (sarcomere) (Sherwood et al., 2005).   

 

Neural stimulation governs muscle contraction (Lomo, 2009), and release of acetyl choline 

(ACh) at the neuromuscular junction (between the motor neuron terminal and the muscle fibre) 

was identified as the key initiation step (Brown et al., 1936).  Subsequent post-synaptic binding 

of the molecule stimulates an action potential that is propagated across the entirety of the muscle 

cell membrane (Axelsson and Thesleff, 1959; Katz, 1961).  A propagated release of calcium ions 

(Ca2+) from the sarcoplasmic reticulum follows (SR, modified endoplasmic reticulum consisting 

of fine interconnected tubules surrounding the myofibrils) (Sherwood et al., 2005) when the 

action potential reaches the transverse tubules (T-tubules) which run primarily into the central 

portions of the muscle fibre.  The propagated release is achieved through the ryanodine calcium 

channels that are activated through coupling with dihydropyridine proteins (Bellinger et al., 

2009), with structural and/or functional defects of this channel causing dystrophic muscle 

(Bellinger et al., 2009).  The molecular regulation of the contraction couples the binding and 

dissociation of Ca2+ on troponin (Tn) to the movement of tropomyosin (Lehman et al., 2009) on 

the actin filaments exposing the actin binding sites allowing the formation of a cross-bridge 

(Craig and Lehman, 2001).  Activation of the “power stroke” (pulling of the actin filament) 

through the chemical energy supplied from ATP causes the muscle to contract (Geeves and 

Holmes, 1999).  Cytoplasmic Ca2+ is actively absorbed into the SR (SR Ca2+-ATPase pump) 

(Toyoshima, 2007) following the completion of the action potential, resulting in muscle 

relaxation, with a further ATP molecule liberating the cross bridge. 

 



8 
 
Cycling success is determined through the rate, durability, and susceptibility of muscle fibres to 

fatigue.  The 3 muscle fibre types can be distinguished by rate and force of contraction 

(Westerblad et al., 2010); slow-oxidative (type I), fast-oxidative (type IIa), and fast glycolytic 

(IIx) cover the fibre distribution among human skeletal muscles.  Depending on the training, type 

IIc, an undifferentiated fibre, has shown an ability to convert to either of the type II fibres (Staron 

et al., 1990).  Endurance events (such as road or pursuit) predominantly utilize type I and 

occasionally type IIa fibres (Greig and Jones, 2010), whereas the anaerobic power events (match 

sprint) predominantly utilize type IIx fibres.  Table 2 differentiates between fibre types based on 

rate of contraction and durability.   

 

Oxidative phosphorylation is the dominant metabolic pathway associated with type I fibres, 

whereas type IIa fibres rely on both mechanisms to produce ATP.  Minimal contractile activity in 

the absence of oxygen makes them less susceptible to the accumulation hypothesis (discussed in 

following section) and therefore predominantly used during road and aerobic track cycling 

events.  This is in accordance with a study in 2004 (Wang et al.) where mice genetically 

enhanced through activation of a form of peroxisome proliferator-activated receptor δ (PPARδ) 

in skeletal muscle, allowed the mice to run twice the distance compared to that of a wild-type 

littermate through the increased numbers of type I muscle fibres. However, the glycolytic fibres 

(type IIx), due to their design and contractile ability in the absence of oxygen, are susceptible to 

fatigue (metabolite accumulation) but produce great force and high contractile rates (Sherwood et 

al., 2005), essential to success in sprint orientated events.  Knowledge of muscle fibre fatigue is 

essential (prolonging the maximal activity of each fibre), and the following section discusses how 

skeletal muscle fibres are affected. 
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Muscular Fatigue 

Fatigue is the reduction in force generating capacity of a muscle through neuromuscular junction 

failure, contractile failure, substrate depletion, metabolite accumulation and/or oxidative stress 

(Fig. 1) (Bigland-Ritchie and Woods, 2004).  Skeletal muscle contractile activity can be 

maintained indefinitely at low intensity, however maintaining anaerobic activity for extensive 

periods is impossible. As fatigue materializes, muscle fibre tension declines, decreasing cycling 

performance. 

 

Table 2. Characteristics of skeletal muscle fibres.  (Adapted from Sherwood et al., 2005) 

 

Characteristic 

 

Type I 

Type of Fibre 

Type IIa 

 
 
Type IIx 

Myosin ATP-ase  
Activity 

Low High High 

 
Speed of  
contraction 

 
Slow 

 
Fast 

 
Fast 

 
Resistance to 
Fatigue 

 
High 

 
Intermediate 

 
Low  

 
Oxidative  
phosphorylation 
capacity 

 
High 

 
Intermediate 

 
Low 

 
Enzymes for 
anaerobic  
glycolysis 

 
Low 

 
Intermediate 

 
High 

 
Mitochondria 

 
Many 

 
Many 

 
Few 

 
Contraction rate 

 
Low 

 
Intermediate 

 
High 
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Muscular fatigue is thought to occur through several mechanisms (Fig. 1).  Inhibition of the axon 

terminal (Taylor et al., 2000), depletion of ACh, and altered neurotransmitter receptor binding 

(Luckin et al., 1991), result in fatigue of the neuromuscular junction (NMJ).  Contractile muscle 

failure (decreased force and rate) however, is based upon altered Ca2+ release and absorption 

from the SR.  These include an inability to release Ca2+ from the SR, an inability to absorb the 

Ca2+ following reduction of an action potential (Favero, 1999; and Rubtsov, 2001; Westerblad et 

al., 1991), and/or the inability of Ca2+/troponin binding and the formation of a cross bridge (Fitts, 

1994). 

 

The 2 primary hypotheses commonly associated with muscular fatigue are the depletion 

(exhaustion) and accumulation hypotheses first characterized in 1989 (McClaren et al.).  

Depletion of key metabolites (PCr, glycogen and ATP) (McClaren et al., 1989) characterize the 

depletion hypothesis, more commonly associated with the oxidative fibres and endurance events 

(road and pursuit).  The accumulation of metabolic by-products that interrupt the contractile 

mechanics of the skeletal muscle (lactate, inorganic phosphate (Pi), ADP, inosine monophosphate 

(IMP), ammonia (NH3), magnesium (Mg2+) and H+ ions) (McClaren et al., 1989) characterize the 

accumulation hypothesis, more commonly associated with the glycolytic fibres. 

 

Molecules identified in relation to the accumulation hypothesis are lactate ions (La-), H+, ADP, 

Pi, IMP, NH3, Mg2+, and inorganic phosphate (PO4
-).  The high-energy splitting of PCr and ATP 

during cross-bridge formation (Robergs et al., 2004) produces an excess toxic level of PO4
- that 

contributes to muscular fatigue (Westerblad et al., 2002).   This action mechanism prevents the 
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release of Ca2+ from the SR (Allen and Westerblad, 2001), and a low to high force transition rate 

of the contractile elements (diminishing force production) (Westerblad et al., 2002). 

 

 

 

Figure 1. Factors contributing to muscular fatigue (adapted from Begum et al., 2005) 
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ADP, also the result of the high energy splitting of ATP, in conjunction with Mg2+ (MgADP), has 

been shown to decrease maximum muscle fibre velocity and increase muscle isometric tension 

(Cooke and Pate, 1985).  While ADP and Mg2+ affect muscle fibre tension and velocity, IMP and 

NH3 (correlation in concentration with ADP, adenosine monophosphate (AMP), and depletion of 

PCr) (Sahlin et al., 1990), have been shown to decrease muscular force during continuous 

isometric contractions, reduce Mg2+-stimulated acto-myosin-ATPase activity (up to 60% at 10 

mM IMP), and prevent the formation of the actin-myosin complex (Westra et al., 2001).  This 

accumulation is thought to prevent an “energy crisis” during exhaustive exercise, by down 

regulating the contractile machinery (Westra et al., 2001). 

 

Excess lactic acid is produced during anaerobic metabolism (fast-rate glycolysis) (Marcinek et 

al., 2010), which further dissociates into the lactate (La-) and H+ (Brooks, 1986) at neutral pH (7-

7.4).  Increased La- concentration plays a minor, albeit significant role in muscular fatigue 

through interference with cross-bridge formation (Hogan et al., 1995).  Metabolic acidosis arises 

when H+ production exceeds the chemical and physiological mechanisms available to buffer it 

(Robergs et al., 2004).  In relation to lactate production, questions have been raised about the 

effect of H+ in relation to metabolic acidosis at physiological pH.  A direct correlation between 

lactate production and H+ accumulation has been identified (Marcinek et al., 2010), which 

suggests during intense exercise, concentrations will be similar.  A decrease in ATP production 

directly linked to enzyme structural changes, structural changes to membrane transport 

mechanisms, and changes to substrate availability (Robergs et al., 2004) identifies how important 

it is to manage lactate and H+ levels (an accumulation of lactate and H+ is correlated to a drop in 

ATP) .  Phosphofructokinase (PFK) (the rate-limiting enzyme in glycolysis) is a significant 

example, as the rate of reaction decreases following H+ ion adherence.  Subsequent reactions of 
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glycolysis fail to occur because of the alteration to the conformation of the enzyme, and the 

subsequent failure of its substrate (D-Fructose-6-phosphate) to recognize its binding site. 

 

The fundamental mechanics of muscle contraction are disrupted through the production of excess 

H+.  Inhibition of actomyosin ATPase (solely responsible for the breakdown of ATP and cross-

bridge formation (Cooke et al., 1988), and relaxation), interference with Ca2+ release, absorption 

from the SR (Lamb et al., 1992), and alterations to calcium-troponin binding are a result of 

increased H+ ion concentration.  In association with metabolite accumulation, a combination of 

these problems has shown to result in decreased force and rate of contraction in skeletal muscle.  

Therefore, it is imperative to delay fatigue, naturally or artificially, to improve 

capacity/performance. 

 

Natural Fatigue Controlling Mechanisms 

There are a range of natural fatigue controlling mechanisms available to delay the onset of 

muscular fatigue.  The human body is dependent on several biochemical pathways to alleviate 

increased levels of toxic products (accumulation hypothesis) and/or the depletion of key 

metabolites (depletion hypothesis). 

 

The issue during anaerobic metabolism is the accumulation of toxic metabolites and metabolic 

by-products.  First shown in 1953 (Harris), thwarting the detrimental effects of PO4
- (ATP and 

PCr splitting) becomes increasingly difficult due to the muscle membrane having little or no 
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direct permeability to phosphate.  Transportation of phosphate ions out of a cell via a Na+ 

transporter is conceivable, with evidence showing a high concentration of phosphatase at the 

surface of secreting cells (Danielli, 1951).  In conjunction, the control of La- and H+ ion 

accumulation during anaerobic metabolism becomes crucial to muscle function.  Naturally 

buffering H+ is accomplished in part through sodium bicarbonate, with evidence showing a direct 

correlation between rising levels of lactate and decreasing levels of the compound (Beaver et al., 

1986). 

 

In conjunction with sodium bicarbonate, limiting the decrease in pH and accumulation of H+ in 

supramaximal exercise is accomplished through the function of the Na+/H+ exchanger, carbonic 

anhydrase (CA) enzymes (CA, CAII, CAIII, CAIV, CAXIV), and the monocarboxylate 

transporters (MCTI and MCT4) (Messonier et al., 2007).  Additionally, the evolution of an intra-

cellular non-bicarbonate proton buffering system aids skeletal muscle buffering abilities.  The 

imidazole rings found in histidine containing compounds (Abe, 2000) maintains a neutral pH, 

made possible through protonation of these compounds due to their pKa being closely associated 

with the intracellular pH of the cell (Abe, 2000). 

 

The body’s natural mechanisms can be enhanced by the use of substances/supplements that 

provide the athlete with a much greater resistance to fatigue than can be accomplished naturally 

(due to the demands of professional sport, and the drive to succeed).  In the following section, 

analysis of several illegal and legal compounds will be covered. 
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Ergogenic Aids – Cycling and Supplements 

It is becoming increasingly important to develop advanced mechanisms of fatigue resistance that 

allow individuals to compete at the highest level and succeed.  Millions of dollars worth of 

research has developed several ergogenic aids, some legal and some illegal, to cope with the 

demand of performance enhancement. 

 

Anabolic steroids are common illegal ergogenic aids (Calfee and Fadale, 2006, and Juhn, 2003).  

Synthetic testosterone (made famous by Floyd Landis in the Tour de France), anadrol, and 

nandrolone are prime examples.  Their ability to mimic the effects of testosterone and 

dihydrotestosterone (increased cell protein synthesis and muscle anabolism through cortisol 

blockage (Sheffield-Moore, 2000)) draws significant attention to these compounds in a range of 

sports, from bodybuilding to cycling.  Other illegal ergogenic aids include erythropoietin (EPO), 

human growth hormone (HGH), and to a lesser extent, amphetamines (stimulants), and 

painkillers.   

 

EPO, a glycoprotein hormone produced primarily in the kidney and liver, stimulates the 

production of red blood cells (erythropoeisis) within the bone marrow (Mairbaurl, 1994).  There 

is substantial evidence to conclude that an intravenous injection of EPO enhances aerobic 

performance (Thomson et al., 2007), making it popular among endurance athletes.  Red blood 

cell proliferation eventuates, increasing oxygen delivery to the working muscle following 

administration.  More commonly associated with strength/power sports (weightlifting) (Saugy et 

al., 2006), HGH, a naturally occurring polypeptide hormone, is responsible for growth, cell 
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reproduction, cell regeneration, and muscular physique, a trait highly sought after in 

strength/power sports.  Amphetamines, however, are primarily used as a stimulant to increase 

awareness, concentration, alertness, energy, and self asteem through its actions as a 

psychostimulant by increasing monoamine and dopamine levels (Fleckenstein et al., 2007).  

Painkillers on the other hand, are used extensively to achieve analgesia, allowing an athlete to 

push their performance beyond their natural pain barrier (Tscholl et al., 2009). 

 

There is a fine line between the legality of compounds that have been shown to increase 

performance.  Legal compounds include beta-alanine, creatine, sodium bicarbonate, colostrum 

and caffeine.  Because of its ergogenic properties in repetitive anaerobic cycling sprints (Calfee 

and Fadale, 2006; Juhn, 2003), creatine is becoming one of the most commonly used legal 

supplements among cyclists.  Creatine’s use was developed to improve the availability of the 

compound within skeletal muscles during intense exercise.  Through increased creatine 

availability (supplementation of 4 weeks or more), ATP synthesis duration can be extended 

(Bemben et al., 2001; Nelson et al., 2000).  At the opposing end of the supplementation spectrum, 

sodium bicarbonate (discussed previously) is commonly orally administered ninety minutes prior 

to an event, increasing blood sodium bicarbonate concentrations substantially, offsetting the 

acidity produced in the muscles during intense exercise, and essentially leading to an increase in 

blood pH (McNaughton et al., 1999).  Colostrum, however, (a form of milk produced by the 

mammary glands containing immunoglobulins, cytokines and growth factors) has been shown to 

decrease recovery time and prevent sickness during peak performance (Buckley et al., 2002).  

Caffeine, one of the more popular legal performance enhancing supplements, has been shown to 

bind to the adenosine receptors as a competitive inhibitor, resulting in increased cognitive 
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function (process of thought) (Foskett et al., 2009) correlating to an increase in performance 

(Graham and Spriet, 1991).  Beta-alanine and carnosine’s performance enhancing capabilities 

will be discussed in the following sections. 

 

Carnosine 

There is extensive literature on the function and mechanism of carnosine.  This review will 

encompass its absorption, relation to muscular fatigue (specifically as a pH buffer), action as an 

antioxidant, and action as a skeletal muscle regulator, all of which relate to performance. 

 

Carnosine is a naturally occurring histidine containing dipeptide also known as β-alanyl-L-

histidine (Hill et al., 2007) (Fig. 2).  It is commonly found in muscle and nerve cells (Hill et al., 

2007) and has effects not only on muscular fatigue resistance, but also roles in quenching free 

radicals (Kurihara et al., 2009), enzyme regulation (Johnson and Aldstadt, 1984), and calcium 

regulation from the SR (Batrukova and Rubtsov, 1997).   Its buffering potential was first 

established in 1953 (Severin et al.) using isolated frog muscle, which showed that muscles in the 

presence of carnosine could accumulate excessive amounts of lactate without hindrance to 

function.  However, in its absence, considerable acidosis occurred, hindering contractile function.  

This is commonly known as the Severin Phenomenon. 

 

 

Carnosine Absorption 

Information about carnosine absorption is equivocal.  Oral administration of carnosine as a 

dietary supplement, or through foods rich in the dipeptide (beef, pork), have been shown to not 

increase skeletal muscle concentrations (Kraemer et al., 1995) due to degradation of the molecule 
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within the gastrointestinal tract (Gardener et al., 1991).  Furthermore, evidence has shown (Chan 

et al., 1994) that rats who were fed a semi-purified diet containing carnosine and/or α-tocopherol 

showed no increase in carnosine concentration in heart muscle when fed only carnosine, however 

in combination with α-tocopherol, a 1.5 fold increase was observed.  However, recent research 

(Maynard et al., 2001) has shown that an increase in dietary carnosine by as little as 1.8% over an 

8 week period is sufficient to increase the concentration of carnosine in the soleus and lateral 

gastrocnemius muscles of rats.   

 

Oral supplementation of carnosine’s constituents (beta-alanine or histidine) has identified 

significant increases in muscle concentration (Harris et al., 2006) through the process depicted in 

Figure 2.  Histidine dietary deficiency can result in a carnosine concentration decrease within 

skeletal muscles of rats (Tamaki et al., 1984), while beta-alanine supplementation significantly 

elevates carnosine’s concentration (Harris et al., 2006).  Short-term increases have been shown to 

dramatically decrease following supplementation cessation (Boldyrev and Severin, 1990).  As 

described by Baguet et al. (2009), carnosine washout (carnosinase, Fig. 2) takes on average 6-15 

weeks depending upon the exercise status of the individual (Gardener et al., 1991).  Based on the 

evidence presented, skeletal muscle carnosine concentration following oral carnosine 

supplementation is equivocal, although significant elevations are observed following histidine 

and beta-alanine supplementation.   

 

 

Carnosine and Muscle Buffering 

During high intensity exercise, skeletal muscle cells become saturated with lactate and H+ 

(Livingstone et al., 2001), causing the interruption of muscle function.  The effect of various pH 



19 
 
levels on the excitation-contraction-coupling mechanism (ECC) of muscle contraction were 

investigated (Lamb et al., 1992).  Initial depolarization elicited a large response at all pH levels 

(6-8), however the subsequent responses decreased as pH became more acidic. Following a 

decrease in pH (accomplished via H+ ion increments), poor operation of the Ca2+-ATPase pump 

and subsequent decrease in ECC are observed. 

 

The presence of the imidazole group (Fig. 2) found in carnosine (and other histidine based 

compounds, such as anserine) is thought to play an important role in muscle buffering capacity 

(Abe, 2000); however the percentage of total muscle buffering capacity has yet to be determined.  

It was suggested over the physiological pH range (7.1-6.5), carnosine had a 7% role (Mannion et 

al., 1992) in total muscle buffering (2.4 and 10.1 mmol H+ kg-1).  In combination with anserine, 

an estimated 40% of total muscle buffering may be covered (Davey, 1960).  If the percentages 

were as high as suggested, one could significantly increase muscular performance in type I and 

type II fibres, by increasing skeletal muscle carnosine concentration. 

 

During high intensity exercise, elevated carnosine concentrations have been shown to increase 

the skeletal muscle buffering capacity (Suzuki et al., 2001).  A direct correlation between 

superior sprint performance and buffering capacity were observed in a group with significant 

elevations in vastus lateralis type II muscle fibre carnosine concentration (Suzuki et al., 2001). 

Carnosine concentration is directly dependent upon muscle fibre type, highlighting the 

importance of its use in endurance and strength/power sports.  With twice the carnosine 

concentration in type II fibres compared to type I fibres (23.2 ± 17.8 and 10.5 ± 7.6 mmol kg-1 

dry weight, respectively) (Harris et al., 1998), it is suggested that there is a direct correlation 

between carnosine concentration and type II fibre H+ ion concentration during anaerobic exercise.  
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Furthermore, studies (Mannion et al., 1992) have shown an average carnosine concentration of 20 

± 4.7mmol.kg-1 in the type II fibres of the quadriceps femoris in humans, with further evidence 

suggesting sex plays a significant role (significantly higher concentration in the male population). 

 

 

 

Figure 2. Metabolism of carnosine (Begum et al., 2005) 
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Carnosine as an Anti-oxidant 

Besides its effective role as a muscle buffering agent in skeletal muscles, there is evidence to 

suggest that carnosine plays an effective and important role as an anti-oxidant, through its 

biological function of quenching singlet molecular oxygen, and scavenging hydroxyl and 

superoxide radicals (Gariballa and Sinclair, 1992; Kohen et al., 1988; Pavlov et al., 1993).  It is 

well established that muscle contraction increases oxidative metabolism and the level of 

oxidative stress associated with it (Ji, 1995).  Elevations in reactive oxygen species (ROS) levels 

may occur (Mastaloudis, 2001) through increased respiration and an increase in electron flow 

through the electron transport chain.  In conjunction, ROS levels may rise due to depletion of 

ATP pools, leading to a higher intracellular level of ADP which triggers catabolism of ADP, and 

converts xanthine dehydrogenase to the superoxide generating enzyme xanthine oxidase (Moller 

et al., 1996).  Furthermore, a decrease in pH may promote oxygen release from hemoglobin. 

(Ebbeling and Clarkson, 1989).   

 

An increase in ROS has been shown to interrupt the SR Ca2+-ATPase (Moreau et al., 1998).  The 

specifics of interruption were examined (Xu et al., 1997) on isolated SR containing the Ca2+-

ATPase.  Further analysis identified complete inhibition of the pump through the attack of the 

ATP binding site by hydroxyl radicals.   

 

Carnosine’s antioxidative properties have been investigated several times.  An investigation into 

the effect of carnosine’s antioxidative properties was conducted on senile cataracts (formed from 

lipid peroxidation) in dog eyes (Boldyrev et al., 1987).  Further peroxidation of the cataracts was 

prevented through the interaction of carnosine, both in vitro and in vivo, with the lipids 

commonly associated with the issue.  Furthermore, the minimum effective concentration of 



22 
 
carnosine required to inhibit lipid and protein oxidation was determined to be 2.5mM and 1mM 

respectively, observed through exposure of isolated rat muscle tissue to free radicals (Nagasawa 

et al., 2001).  Further demonstration (Kang et al., 2002; Kohen et al., 1988) identified other 

histidine derivatives (homocarnosine and anserine) having similar antioxidative properties 

(imidazole group) (Fig.2).  Therefore, during endurance based sport where the body produces 

excess ROS, increased skeletal muscle carnosine concentration may prevent the consequent 

damage associated with ROS and improve performance/capacity. 

 

 

Carnosine as a Skeletal Muscle Regulator 

As discussed previously, muscle contraction is dependent upon SR release and absorption of 

Ca2+.  Inhibition of Ca2+ release and/or absorption is achieved through the concentration increase 

in H+.  Prohibiting the alteration of the rynaodine receptor transport mechanisms is preventable 

through the identification of carnosine’s H+ absorption properties.  It is suggested however, that 

there is a carnosine binding site on the SR Ca2+ ryanodine transporter for rapidly inducing Ca2+ 

release (carnosine concentration dependent) (Batrukova and Rubtsov, 1997).  Increased isolated 

rat heart contractility has been observed when saturated in carnosine (Roberts and Zaloga, 2000), 

suggesting that during high intensity cycling, carnosine may induce Ca2+ release and delay 

fatigue. 

 

Further documentation has shown that a reduction in action potential propagation is experienced 

when there is a loss of K+ and Na+ potential during repeated muscular contractions (Fitts and 

Balog, 1996).   The effects of muscular fatigue on Na+ and K+ concentrations, as well as 

membrane potential, were investigated on isolated semitendinosus frog muscle (Fitts and Balog, 
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1996).  Alterations in the concentrations led to 3 possible mechanisms of muscle fatigue.  1. It 

completely blocked the propagation of the action potential; 2. It caused depolarization-induced 

inactivation of T-tubular charge movement; and 3. It caused a reduction in magnitude of the t-

tubular charge due to the lower action potential spike potential.   This phenomenon occurs 

through disturbance of the membrane potential in the T-tubules and subsequent Ca2+ release from 

the SR (Fitts and Balog, 1996).  Severin’s phenomenon was justified when carnosine’s 

introduction restored muscular function of a neuromuscular preparation under fatigue (Petukhov 

et al., 1976).  Further analysis indicated that neither synaptic processes nor contractile 

mechanisms were responsible for muscle contraction continuation, but rather carnosine’s ability 

(properties) to restore transmembrane potential depolarized by exhaustion (Begum et al., 2005). 

 

Carnosine analysis in relation to absorption, muscular fatigue, antioxidative properties, and 

skeletal muscle regulation, classify how important an increase in its concentration may be to 

cycling performance/capacity.  In the succeeding sections, a discussion of carnosine’s rate-

limiting constituent, beta-alanine, and what evidence there is to suggest that it improves athletic 

performance will be conducted. 

 

 

Beta-alanine 

Beta-alanine (3-aminopropionic acid) (Fig. 3) is a naturally occurring, non-essential beta amino 

acid that is obtained through foods rich in dipeptides, such as carnosine, anserine and balenine 

(commonly found in chicken, pork or beef). Specific β-amino, sodium, and chloride transporters 

(Bakardjiev and Bauer, 1994) are responsible for transport of the amino acid across the gut wall.  
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The body can also synthesize beta-alanine in the liver through catabolism of pyrimidine 

nucleotides. These are broken down into uracil and thymine, and further metabolized into beta-

alanine and B-aminoisobutyrate (Zöllner, 1982).   

 

Beta-alanine supplementation may indirectly increase muscular endurance through its 

physicochemical buffering ability of H+.  The H+ buffering ability of the di-peptide carnosine 

(beta-alanine and histidine) is responsible and was discussed in the previous section.  Several 

studies have investigated the effects of beta-alanine supplementation on skeletal muscle carnosine 

concentration and muscular fatigue.  The following section highlights experimental design 

(dosage and timeline), subject , and the effect of beta-alanine supplementation on carnosine 

concentration and performance. 

 

 

Figure 3. Structure of beta-alanine. 

 

Beta-alanine Supplementation on Skeletal Muscle Carnosine Concentration 

Beta-alanine is the rate-limiting constituent in the formation of carnosine.  The concentration in 

which is it produced, which fibre type produces the highest concentration, and which muscles 
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(depending upon the fibre type) produce the highest concentration may be a determinant of 

sporting success. 

 

There is a consensus that oral beta-alanine supplementation increases skeletal muscle carnosine 

concentration (Table 3).  Muscle carnosine concentrations are analysed via a non-invasive 

technique known as proton magnetic resonance spectroscopy (proton MRS).  However, several 

other studies (Dunnett et al., 1999, Harris et al., 2006, Hill et al., 2007, Kendrik et al. 2009)  have 

successfully utilized the use of a muscle biopsy (invasive) followed by analysis using high 

performance liquid chromatography (HPLC).   

 

To date, there has been no evidence of a “ceiling effect” on skeletal muscle carnosine 

concentrations (Derave et al., 2007), with significant elevations in carnosine concentration above 

basal level still being observed among individuals with an initial high concentration (12mmol kg-

1).  A very similar protocol (Baguet et al., 2009) investigated human skeletal muscle carnosine 

loading and washout and identified a mere 1.7% increase in the soleus muscle of the control 

group and a 39% increase in the beta-alanine group following supplementation.  Following on 

from a previous gastrocnemius study (Maynard et al., 2001), a smaller, but still significant 

elevation in carnosine concentration was recognized in the beta-alanine group (23% increase).  

Fast twitch muscles have a significantly higher carnosine concentration (due to a higher 

expression of beta-alanine transporters (Bakardjiev and Bauer, 1994)), carnosinase activity 

(Bakardjiev and Bauer, 2000), and/or carnosine synthase activity (Horinishi et al., 1978) than 

slow twitch muscles (soleus).  The increase however, was directed evenly among the two fibre 

types, which agrees with previous research (Hill et al., 2007) that fibre types respond equally 

within the same muscle.   
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Table 3. Pre and post carnosine concentrations following beta-alanine supplementation protocols 

on human skeletal muscle. 

Study Dosage 
(g/day) 

N Duration 
(weeks) 

 Carnosine 
concentration 
pre (mmol kg-1) 

Carnosine 
concentration 
post (mmol kg-1) 

Derave et al. 
2007 

2.4-4.8 15 5 7.76±1.36 11.39±1.38 

Baguet et al. 
2009 

2.4-4.8 20 6 5.63±0.94 7.83±1.74 

Hill et al. 2007 4.0-6.4 25 10 21.8±1.6 34.7±3.7 
 

 

The carnosine concentration distribution among the different muscle fibre types is of particular 

importance for sporting performance.  The glycolytic fibres that utilize the ATP-PC and 

anaerobic systems are responsible for producing the necessary power during a cycling sprint.  

However, evidence suggests that, regardless of fibre type, carnosine concentrations increase 

equally (Kendrik et al., 2009) among type I and type II fibres. 

  

There is significant evidence to suggest that beta-alanine supplementation increases carnosine 

synthesis within skeletal muscle fibres.  The distribution of this increase is controversial, with 

some studies lending evidence to an equal balance among fibre types for carnosine concentration 

increase, and others stating the glycolytic fibre increases are substantially higher.  Both scenarios 

are beneficial to endurance (type I) and strength/power (type II) sports. 

 

 

Performance, Capacity, and Physiological Mechanisms 

Until recently, the effect beta-alanine supplementation had on athletic performance was 

essentially ignored.  Only within the last decade has the effectiveness of this carnosine 
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concentration increase come to light.  It is important to relate the performance changes associated 

with an elevated carnosine concentration to trained individuals who utilize the substance 

substantially more than the sedentary population. 

 

In 2003, significant improvements in 4 minute cycling power (38 Watts) were observed (Harris et 

al.); it was further identified that this change was due to increased H+ buffering activity observed 

within the first minute of exercise.  Similar research (Baguet et al., 2009) identified the 

physiological changes associated with beta-alanine supplementation in high-intensity cycling.  

Results yielded significant results including a difference in pH change between the beta-alanine 

and control groups after 6 minutes of high intensity exercise (exercise-induced acidosis).  

Pulmonary gas exchange values (VO2, ventilation, and CO2 output) between the 2 groups were 

found to be non-significant, lending evidence to believe that beta-alanine has no effect on aerobic 

parameters.   

 

Beta-alanine supplementation has been shown to significantly improve peak power (11.4%) and 

mean average power (5%) after exhaustive exercise (110 minute cycle race (van Thienen et al., 

2009).  Indications suggest beta-alanine supplementation has a positive effect on the aerobic 

system, the anaerobic system, and the crossover effect (switching from one to the other) when it 

comes to exercise capacity.  The significance this has on the outcome of a cycle stage such as that 

of the Tour de France is promising, with approximately half the stages contested by a sprint 

finish.   

 

Beta-alanine supplementation in power/strength sports is becoming a frequent occurrence.  In 

combination with creatine, beta-alanine supplementation (CBA) has shown significant increases 
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in 1 repetition max (1-RM) squat strength and bench press (Hoffman et al., 2006). However, it 

has failed to improve a 20-jump test, and more importantly the anaerobic power measures from a 

wingate anaerobic test.  Results of this nature make it hard to believe that supplementation 

improves anaerobic power even though strength levels may increase.   

 

Once again, results following beta-alanine supplementation on anaerobic power measures are 

equivocal.  Significant differences in 300 shuttle (sprinting to and from cones) time and flexed 

arm-hang time between groups have been identified (Kern et al., 2010), while other results 

(Hoffman et al., 2008) using college football players had contradictory results.  Although no 

significant differences in peak power, mean power, and total work between groups have been 

observed, an insignificant trend (P=0.07) in fatigue rates occurred, suggesting there may be an 

increase in hydrogen buffering capacity.  Similarly, repeated isokinetic contractions of 30s for a 

maximum of 5 repetitions, showed significantly higher average torque  in the beta-alanine group, 

and more specifically in bouts 4 (6.1%) and 5 (3.8%) (Derave et al., 2007).  Further analysis of 

the knee extensors in question during a 45% maximum voluntary contraction (MVC) turned up 

insignificant results, suggesting isometrically at least, beta-alanine supplementation does not 

cause a performance effect.   

 

With respect to performance improvement, 400m running times have been shown to significantly 

decrease following beta-alanine supplementation.  However, these observations occurred in both 

groups, suggesting that the changes in gastrocnemius carnosine concentration did not correlate 

with decreases in 400m times (Derave et al., 2007).  With respect to cycling events, the keirin and 

kilo closely resemble 400m in terms of time to complete and metabolic energy system 
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requirements.  This evidence would suggest that beta-alanine supplementation would not elevate 

performance/capacity.   

 

The ability to repeat maximal sprints in cycling is essential for success (points and scratch races).  

Evidence has shown there is no significant improvement following beta-alanine supplementation 

on power output during repeated sprint activity (10x5s sprints separated by 45s recovery).  A lack 

of change for peak power, average power, fatigue rates, and blood lactate levels further indicates 

increased carnosine concentration does not increase power output during repeated sprint bouts, 

and thus would not aid in recovery (muscular fatigue) during the points or scratch races. 

 

Neuromuscular fatigue (NMF) is characterized by an increase in the electrical activity of working 

muscles over time.  It is a fatigue-induced increase in electromyographic amplitude as a result of 

progressive recruitment of additional motor units and/or an increase in the firing frequency of the 

active motor units (Moritani et al., 1993).  Based on this, a term known as PWCFT (physical 

working capacity at fatigue threshold) was developed (deVries et al., 1987; deVries et al., 1990), 

and is the basis for neuromuscular studies.  Therefore, it was postulated that because of the 

properties of carnosine, an increase in its skeletal muscular concentration may delay the onset of 

NMF. 

 

In relation to cycling, evidence (Stout et al., 2007) justified the use of beta-alanine toward 

improving ventilatory threshold (VT) (13.9%), and more importantly PWCFT (12.6%).  In terms 

of VO2max and time to exhaustion, no significant differences have been observed between 

groups; however a study by Kim et al. (2006) on highly trained male cyclists showed significant 

improvement in VT and TTE (time to exhaustion) with the same effect being found on the elderly 
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(55-92 years) (Stout et al., 2008).   If indeed carnosine concentrations increase, then beta-alanine 

supplementation must cause the same effect independent of age and sex and possibly improve 

endurance related cycling events.  However, Smith et al. (2009) investigated the effects of beta-

alanine supplementation on neuromuscular fatigue and muscle function in active men (19-26 

years of age).  Electromyographic fatigue threshold (EMGFT) and efficiency of electrical activity 

(EEA) were analyzed, and contrary to the results mentioned by Stout et al. (2007 and 2008), 

EMGFT and EEA values for both mid and post supplementation indicated no significant 

difference between the groups.  This begins a debate about why active healthy males fail to 

decrease neuromuscular fatigue following increased carnosine concentration. 

 

Addressing the issue of training in conjunction with beta-alanine supplementation on 

performance is essential for justified use of the supplement.  Subjects who performed training 5 

hours a day/6 days a week, plus 3 days a week performing weights followed by 12 weeks of 

supplementation, showed significant elevations in carnosine concentration.  This resulted in 

significant increases in VT, TTE, and isokinetic flexion (Kim et al., 2007).   

 

Based on the contradictory evidence outlined above, it is hard to definitively state that the effect 

beta-alanine supplementation has on carnosine concentration does or does not affect performance 

and/or aerobic or anaerobic parameter improvement.  Because beta-alanine research is relatively 

new, a greater understanding of the definitive role of increased carnosine concentration is needed 

both in terms of performance increase and physiological and biochemical mechanisms as 

discussed in the following section. 
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Physiological Mechanisms Responsible for Improving Athletic Performance 

There is evidence to suggest that beta-alanine supplementation improves performance both 

aerobically and anaerobically.  The underlying mechanisms, both physiologically and 

biochemically, will be reviewed in this section.  It has to be noted that there is a large group of 

studies which showed little or no effect following supplementation.  These differences may be 

attributed to differences in dosing strategies, subject training status, duration of exercise stimulus, 

unfamiliarity with tests, and supplementation duration.  Experimental protocol (4-6g/day for 6 

weeks) and thus skeletal muscle carnosine concentration was a suggestion for failure to observe 

an improvement in power through repeated sprint performance (Sweeney et al., 2010).  It has 

been clearly shown, however, that 6 weeks of supplementation of 4-6g/day is more than enough 

to significantly increase carnosine concentration above basal levels (Harris et al., 2006; Hill et al., 

2007). 

 

As fast-twitch muscle fibres produce excess H+ during repeat sprint activity, it would seem 

sensible to assume that carnosine concentration increase would delay the onset of muscular 

fatigue.  The authors suggest the reason for the absence of this phenomenon is due to the 

excessive amount of H+ produced during the activity (not actually calculated via blood or muscle 

pH) exceeding the capacity of carnosine to act as an intramuscular buffer.  This may be because a 

pH drop from 7.2 to 6.5 during high-intensity exercise (Harris et al., 2006), or repeated sprint 

activities which are purely based on the ATP-PC system, may not be affected by carnosine 

concentrations.   

 

Studies state PCr stores and fast glycolysis make up approximately half of the required energy for 

a short bout (6s) of high intensity exercise (Sweeney et al., 2010).  It is postulated that for 
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repeated sprint activities with incomplete recovery (sprint or points race), the rate of PCr 

resynthesis is governed by H+ concentration, blood, and ATP concentration within the muscle 

(Silverthorn, 2004). This lack of PCr resynthesis may be responsible for the decrease in sprint 

performance, and not pH change (Bishop., 2004).  The inadequate recovery time may have 

prevented full resynthesis of PCr as its half life is approximately 57s (Bogdanis et al. 1996).  

Further evidence (Bishop et al. 2004) suggests that metabolic reactions that absorb H+, such as 

sarcolemmal lactate/H+ or Na+/H+ exchange mechanisms, capillarization, changes in the 

intracellular strong ion difference , and muscle blood flow may be more responsible for the 

physiochemical buffering in muscle. 

 

In relation to performance improvement, Derave et al. (2007) observed no significant differences 

between groups for 400m times (approximately 50s) as stated previously.  This leads to an 

argument with the previous points of view (Sweeney et al. 2010), that maximal exercise for a 

longer duration (excess of 45s) should be significantly affected by increased carnosine 

concentration.  The discrepancy is believed to be associated with the increased intracellular 

buffering capacity being insufficient to bring about an increase in 400m time, or that decreasing 

pH is not a limiting factor to 400m performance.  Interestingly, blood and muscle pH were not 

calculated, so the pH drop is therefore purely speculative.   

 

McClaren et al. (1989) suggest the decrease in muscle pH may be responsible for fatigue-induced 

increases in muscle EMG amplitude, resulting in neuromuscular fatigue.   Furthermore, an 

increase in lactate concentration, and thus H+ accumulation, increased EMG amplitude during 

cycle ergometry (Taylor et al. 1997), lending evidence to speculation by Moritani et al. (1993) 

who suggested EMGFT activity may be closely related to lactate increase and pH decrease in 
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active muscle.  Based on this statement, beta-alanine supplementation should prevent a rise in 

EMG amplitude, delay neuromuscular fatigue, and improve cycling performance.   

 

Aside from neuromuscular fatigue, significant improvements in TTE and VT have been observed 

using beta-alanine supplementation (Stout et al., 2007) based on research by Svedahl and 

MacIntosh (2003).  In a follow-up study, (Stout et al., 2008) similar observations were made that 

were attributed to an increased carnosine concentration, and its ability to delay the onset of 

intracellular acidosis via H+ buffering (Marsh et al., 1993). 

 

Through absorbance of H+ and increased troponin sensitivity to Ca2+ in fast-twitch fibres (Dutka 

and Lamb., 2004), carnosine improves performance.  Dunnett et al. (1999) highlighted the 

buffering capabilities of carnosine in a study on 6 thoroughbred horses, where following 30 days 

of beta-alanine supplementation, skeletal muscle non-bicarbonate intracellular physiochemical 

buffering capacity was significantly increased above that of the control.  Furthermore, an increase 

(9.2-14.3%) in total muscle buffering following beta-alanine supplementation was directly related 

to an elevated carnosine concentration (Harris et al., 2006).  These results were derived from the 

Henderson-Hasselbach equation and represent underestimated values for carnosine’s 

contribution.   

 

The evidence presented about carnosine’s ability to increase performance through beta-alanine 

supplementation is equivocal.  Carnosine’s ability to buffer H+ has been shown, but whether H+ 

plays a significant role in fatigue, or carnosine’s concentration is not significantly high enough to 

observe an improvement, is yet to be determined.   
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Beta-alanine Supplementation Mimicking Lactate Tolerance Training 

Where anaerobic power is essential for success, athletes will often incorporate lactate tolerance 

training.  Improving the lactic acid clearance ability of the muscle is characterized by sustained 

efforts at or above the threshold, known as lactate threshold training.  Lactate tolerance training 

however, is characterized by maximal exercise for 20-60s in duration.  By inducing muscular 

fatigue, the skeletal muscles become accustomed to the pain and discomfort, increasing pain 

tolerance, buffering mechanisms, and capacity.  

 

For professional cyclists who utilize the ATP-PC and fast rate glycolysis systems, lactate 

tolerance training is a necessity (extend maximal performance duration). It has been shown to 

significantly increase muscle buffering capacity in anaerobic orientated sports, with subjects 

exposed to an 8 week lactate tolerance training protocol (sprint) experiencing a 16% increase in 

muscle buffering capacity in the vastus lateralis (lactate concentration 21.41 ± 1.65 mmol kg-1 to 

25.61 ± 2.38 mmol kg-1).  The increased lactate concentration signifies a higher production of 

muscle H+ ion concentration indicating increased buffering capabilities (Sharp et al., 1986).  

Further research (Bell and Wenger 1988) discovered that one legged cycle ergometer training 

(60s maximally, 4 days a week for 7 weeks) significantly increased muscle buffering capacity 

(49.9 to 57.8 µmol HCl g–1 pH–1), as well as peak and average power.   

 

With increased muscle buffering capacity developed independently through beta-alanine 

supplementation and lactate tolerance training, the combined effects of the 2 methods may cause 

a synergistic effect and substantially increase intramuscular hydrogen buffering.  It is known that 

significant increases in carnosine concentration lead to an increase in muscle buffering capacity 

(4 to 12 weeks following beta-alanine supplementation), with lactate tolerance training often 
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commencing 8 to 12 weeks before competition (based on the current New Zealand sprint track 

cycling program, 2010).  Therefore, it may be beneficial for athletes competing in sprint 

orientated events to combine the use of lactate tolerance training and beta-alanine 

supplementation. 

 

There is overwhelming evidence to suggest that oral beta-alanine supplementation significantly 

increases skeletal muscle carnosine concentration.  The majority of studies used a 4-12 week 

duration, and a dosing strategy of 2.4-6.4g/day.   The most beneficial experimental protocol for 

increasing skeletal muscle carnosine concentration is yet to be determined due to the lack of a 

“ceiling effect”.   However, there is contradictory evidence as to what effect, if any, this increase 

will have on performance, both aerobically and anaerobically.  Carnosine is an intracellular 

physiochemical buffering molecule that is capable of binding free H+ preventing their detrimental 

effect on muscle mechanics.  The percentage of total buffering capacity remains unclear until 

further research is conducted via long term studies on a variety of sports. 

 

 

Aim of the Study 

Previous research has identified the effects of beta-alanine supplementation on performance 

increase in sedentary individuals, college wrestlers, football players, and physically active 

individuals, however, there is little to no research into its effects on elite cyclists.  The aim of this 

study was to identify any possible ergogenic effects of beta-alanine supplementation for elite 

cyclists.  Due to the prevalence of beta-alanine supplementation by elite cyclists since its 

introduction a few years ago, it would be beneficial to understand the possible ergogenic effect 

on cycling capacity in trained cyclists, and whether its continued use is supported scientifically. 
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CHAPTER TWO 

Methodology 

Subjects 

Fifteen competitive cyclists (8 road, 2 road/track endurance, and 4 track sprinters) were 

approached and volunteered for this study because of their calibre in the Canterbury region.  At 

the conclusion of the study, one track sprint cyclist had withdrawn.  The withdrawl was due to 

work commitments and they were unable to attend the required dates.  All subjects had been at 

representative level (regional, national or international) for at least four years.   

 

The characteristics of the subjects who completed the study are presented in Table 4.  There was 

no statistically significant difference between the groups for weight, height, age or VO2max 

(p>0.05).  Both groups completed the required supplementation protocols of their respective 

supplement. 

 

The majority of the subjects (N=12) were recruited via personal contact with the researcher.  Two 

cyclists had received services through the University of Canterbury Sports Science Laboratory in 

the past, and 1 other was recruited through word-of-mouth.  Information (Appendices A and B) 

regarding the aims of the project, subject requirements, use of results, contact details, and a brief 

overview of the supplement involved were provided to all subjects in the recruitment process.  It 

was highlighted that any subject was able to withdraw from the experiment at any time for any 
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reason and they were encouraged to ask questions about the study.  The subjects were not 

required to pay for any part of the study and received no incentives or payment for participating.   

At the time of the experiment, all subjects were in an endurance phase and were randomly 

assigned to either the beta-alanine group (N=7) (those receiving beta-alanine crystals orally) or 

the control group (N=7) (those receiving the placebo (maltodextrin)). 

 

Table 4. Physical characteristics of the subjects who completed the study.  Data are 

representative of 14 subjects and include both male and female data. (Mean ± standard deviation) 

 

                                                       Beta-alanine            Control 

  Height (m)     1.79±0.08              1.78±0.07 
  Weight (kg)             76.3±7.2       73.9±4.0 
  Age (yrs)    20.0±1.6       21.9±2.1 
  VO2max (ml.kg-1.min-1)     60.7±4.8       56.7±5.8 

 

 

During the supplementation phase, subjects continued with their previously planned training and 

competition program.  Typical training consisted of 500 to 1000 kilometres in volume and 

encompassed a combination of flat and hill rides, ergometer training, gym work, standing start 

practice, and races varying from club rides to national championships.  Training diaries were to 

be completed for the supplementation block to account for any differences observed in the 

results. 
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Prior to the study (10 weeks), each subject was sent information regarding training, nutrition and 

the use of sporting supplements (Appendices A & B).  Each subject was advised to consume the 

same meal the night prior to and the morning of testing (on each occasion) and to refrain from 

consuming alcohol.  

 

To ensure a “clean” experiment, subjects were asked to cease the use of sporting supplements ten 

weeks prior to testing.  Ten weeks was chosen specifically because it enabled the complete 

washout (beta-alanine (9 weeks) and creatine (4 weeks) of the most common sporting 

supplements.  Caffeine however, has a half-life in smokers or heavy caffeine users of 3.2-4.1 

hours and 5.1-5.3 hours in non-users (Whitsett et al., 1984).  Each subject was subsequently 

instructed to refrain from drinking any liquid or consuming any food or pills containing caffeine 

twenty-four hours prior to testing.  One subject failed to comply with this and consumed caffeine 

(1 cup of tea) on the morning of initial testing.  To standardize the results, the subject was 

instructed to consume 1 cup of tea before each test. 

 

A summary of the health issues and physical stress precautions associated with the experiment 

(Appendix C) was provided.  Before the experiment proceeded, informed, written consent 

(Appendix D) was obtained in accordance with regulations of the University of Canterbury 

Human Ethics Committee.  
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Experimental Overview 

The study was approximately 10 weeks in length which encompassed 2 weeks of testing and a 8 

week supplementation block as seen in Figure 5.  The duration of the beta-alanine 

supplementation period was chosen specifically because it is associated with significantly 

elevated carnosine concentrations above basal level within the skeletal muscle (Harris et al., 

2006).  With all subjects having previous exposure to the testing procedures associated with the 

experiment, familiarization testing was not conducted.   

 

 

Figure 5. The experimental overview. 
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Anthropometric Analysis and Ergometer Set-up 

Subjects reported to the University of Canterbury Sports Science Laboratory for anthropometric 

analysis and testing.  Testing was conducted using the Velotron Cycle Ergometer (Figure 6) or 

Repco Cycle Ergometer (Figure 7) at approximately the same time of day to account for any 

variability in performance in time-of-day (Wyse et al., 1994).  Fluid was consumed ad lib before, 

during and after the testing (except during the VO2max testing due to mouthpiece restrictions and 

the WAnT as it was an all-out 30 second effort), and a 30cm oscillating, 3-speed fan (Model 

1231, Mistral, China) was placed in front of the subject to simulate real life cycling and the air-

cooling affect.  

 

Testing took place in an indoor, temperature controlled (19-23ºC) laboratory.  While relative 

humidity was not controlled, it was measured before every test and was constantly between 50-

60%.  Subjects were instructed to bring in their own bikes for specifications and individualized 

set-up.  The Velotron Ergometer was chosen over the Kingcycle due to its stability, power output 

control (copper flywheel controlled by magnetic force), a consistent testing set-up for all subjects, 

and familiarization of the apparatus to many of the subjects. 

 

On arrival, anthropometric analysis of the subject was conducted.  Height for descriptive 

purposes, and weight in cycling clothing using digital scales (Seca scales, model 770).  

Collection of the subject’s bike specifications followed to individualize the set-up of the Velotron 

or Repco Ergometers for the subject.  Crank length (mm), seat height (cm), seat to floor (cm), 

front of the seat behind the bottom bracket (cm), handlebar to seat (cm) and handlebar to floor 
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(cm) measurements were all taken.  In order to convert these values to the Velotron, a calculation 

had to be made to account for the stationary height of the Velotron (equation 1).  The same 

specifications were used to calculate the required lengths and heights on the Repco Ergometer.  

Both the Velotron and Repco Ergometers were connected to a PC computer. 

 

 

Equation 1.  Adjustment to calculate handlebar height on the Velotron. 

Velotron seat to floor............cm – Subject seat to floor…………cm = …………cm (A) 

Subject handlebar to floor………..cm + (A)…………cm = …………cm (required Velotron 

handlebar height 

 

 

Figure 6. Velotron Cycle Ergometer used for the VO2max and MAP tests to determine aerobic 

capacity. 
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Figure 7. Repco Cycle Ergometer used for the 30s-WAnT for determination of anaerobic 

capacity. 

 

VO2max protocol 

Prior to the supplementation period (10 days), a VO2max test was chosen as a characterization 

test.  It is commonly used as an indicator of cycling performance, although VO2max has not 

always been shown to be a good predictor of endurance capacity (Mahood et al., 2001).  VO2max 

protocol was taken from that described by Paton (2000).   

 

Using a PC computer and Velotron software, Velotron Ergometer calibration was conducted.  

The subject was instructed to initiate calibration by pedaling until the desired speed of 23km/h 

was attained.  Instructions to cease pedaling allowed the flywheel to decrease in speed to 22km/h.  
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This deceleration period allowed the software to calibrate power outputs.  If the power output 

percentage change was greater than 0.2%, the calibration process continued. 

 

A heart rate monitor strap was fitted around the chest of the subject.  Heart rate was displayed via 

a wristwatch (PE1500, Polar, Finland) that was mounted onto the aerobars of the Velotron.  A 

neoprene face mask that incorporates a hole for the mouthpiece (encloses both the mouth and the 

nose to allow for a more effective analysis) was attached to the subject’s face.  The mouth piece 

(preVent flow sensor) was then connected to the VO2max mass spectrometer as seen in Figure 8 

(Ultima CPX, Medgrpahics).  Ventilation rate and breath-by-breath analysis of oxygen and 

carbon dioxide was analysed and averaged every 20s.  The mass spectrometer was calibrated for 

oxygen, carbon dioxide and nitrogen using an automated process as described by the 

manufacturer’s instructions (Medgraphics). 

 

Figure 8. VO2max mass spectrometer (Ultima CPX, Medgraphics) used for gas analysis during 

an incremental VO2max test to determine aerobic capacity. 
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A 20 minute warm-up preceeded the test at a steady cadence and power output that was 

comfortable for the subject. Sprinting activities were strictly prohibited to prevent the build-up of 

toxic by-products.  The test began with an initial power output of 100W and subsequently 

increased by 33W every minute until the subject was unable to continue pedaling (muscle 

exhaustion), could not physically continue because of breathing constraints associated with lung 

capacity, or could not hold the required power output at a cadence above 60rpm.  The subject was 

given extensive encouragement throughout the test entirety.  All subjects lasted between 9 and 13 

minutes and absolute VO2max was taken as the highest oxygen uptake reading (averaged over 

20s) in liters, per kg, per minute. 

 

Maximum Aerobic Power Test Protocol 

Subjects completed the Maximum aerobic power (MAP) test before (7 days) and after (1 day) the 

supplementation period to determine the effect of beta-alanine on aerobic capacity.  Lactate 

analysis and the point of exhaustion determined the subject’s aerobic threshold, anaerobic 

threshold, and MAP. 

 

Pre, during, and post test blood analysis for lactate concentrations were conducted.  The lactate 

analyzer (1500 Sport, Yellow Springs Instruments Inc, Ohio, USA) as shown in Figure 9 was 

calibrated prior to each test in line with the automated procedure that requires 0 and 5mmol-1 

lactate reference points.  A known sample (5mmol-1) was injected and run through twice and if 

the reading was within the manufacturers specified error limit of ±0.1mmol-1, testing began. 
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Pre warm-up, the subject’s blood was analyzed to determine resting lactate levels.  Blood was 

removed via a heparanized capillary tube from the index fingertip of the left hand.  If it became 

increasingly difficult to remove blood from the initial prick, a further incision was made to the 

same finger or middle finger of the same hand.  A 25µL sample was drawn via pipette (Model 

1501, Yellow Springs Instruments Inc, Ohio, USA) from the capillary tube and inserted into the 

lactate analyzer according to the manufacturers’ instructions.   

 

MAP test subject set-up was in accordance with the VO2max protocol.  The test began at a power 

output of 100W and had forty watt increments every 3 minutes.  Instructions were given to the 

subject to keep the cadence above 60rpm otherwise the test would cease.  Encouragement was 

given to the subject throughout the entirety of the test.  Thirty seconds before the completion of 

each power output, a blood sample was drawn and analyzed for lactate concentration.  To 

establish MAP, the subject was given instructions to continue to exhaustion (respiratory 

exhaustion or a drop in cadence below 60rpm). 

 

MAP is determined from the penultimate power output stage completed and the time (s) at the 

stage they failed to complete.  Aerobic threshold, anaerobic threshold and MAP were calculated 

using workload (W), heart rate (bpm) and lactate concentration values.  Aerobic threshold was 

defined as a lactate concentration above “baseline” levels (the low, steady-state, lactate reading), 

and the anaerobic threshold was determined as the point at which lactate concentration suddenly 

increased above clearance levels. 
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Figure 9. The 1500 sport lactate analyzer used for determination of blood lactate concentrations. 

 

 

30s-Wingate Anaerobic Test Protocol 

The 30s-Wingate anaerobic test (WAnT) was conducted prior to (4 days) and after (4days) the 

supplementation period.  The Repco Ergometer calculates the power profile of a cyclist and is 

specifically designed to predict the anaerobic power and capacity of an individual.   

 

Calibration of the Repco Ergometer is necessary to account for day to day variation.  Calibration 

was an engineering project by the University of Canterbury using a motor/calibration rig.  The 

calibration was carried out as described in the methods by Raine (1993).   

 

The subject was given instructions to cycle maximally for 30s.  This is imperative because the 

test is used to gauge a cyclist’s anaerobic power and capacity.  Anything short of their maximum 

performance can cause misleading results.  During the test, the subject was not allowed to look at 



47 
 
their graph of power data; however they were given verbal encouragement throughout the 

entirety of the test including a 10s to go call and a 5s to go call. 

 

Once the Repco Ergometer had been specifically set-up, the subject was asked to pedal at a 

comfortable cadence and power output for 20 minutes.  This allowed for adequate blood flow 

through the skeletal muscles of the legs (Bishop, 2003) which is an important aspect of any 

cyclist’s ability to perform at any level (Burnley et al., 2005).  Following the completion of the 

warm-up, the subject was asked to stop pedaling (to allow the hand held brake to be applied) and 

then perform a 4 second maximum effort.  This stimulates the neurological pathway associated 

with muscle activation and relaxation.  It is crucial because of the high cadence activity 

associated with maximum effort on the Repco Ergometer and allows the subject to activate their 

central nervous system (CNS) and stimulate maximum firing patterns.  Following the 4 second 

effort, the subject pedaled lightly for 5 minutes.  This gave the muscles adequate time to recover 

and expel any toxic by-products.  The theory behind CNS activation in repeated cycling 

ergometer training has been difficult to prove; however results have shown that the second 

maximum effort produces greater power (Glaister et al., 2003).   

 

Gear selection is an important aspect.  The subject was instructed to choose which gear they felt 

comfortable with.  Because most of the subjects had completed such a test before, they chose on 

past performances.  For the minority (N=5) of the group who had not completed a WAnT test, 

advice from the researcher was given.  The ergometer has 7 gears to choose from.  Each subject 

used gears 2-5, 5 being the hardest and associated with a slower cadence.  It was explained to the 
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subject that the gear chosen for the first 30s-WAnT would have to be the same gear used for the 

second.  A hand-held mechanical brake held the subject and flywheel (Figure 8) in place.  With a 

5s countdown the subject proceeded to cycle maximally for 30s.  At the completion, the subject 

was instructed to pedal lightly for 5-10 minutes to allow for the release of any anaerobic by-

products.  Data collected from the test provided the subject’s power over the 30s test as indicated 

by Figure 10.  Peak power, finishing power, watts per kilogram, and average power were all 

provided.  Fatigue Index was calculated using the following equation. 

 

 

Equation 2. Fatigue Index calculation using data from the WAnT. 

Peak power – Finishing power / Peak power = Fatigue Index (% change) 

 

 

Figure 10. Repco Ergometer data analysis readout example following a 30s-WAnT. 
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Experimental Protocol 

At the conclusion of the first set of testing, the 8 week supplementation protocol began.  Beta-

alanine is a commercially available substance and is commonly used throughout the sporting 

community for performance increase.  Beta-alanine was ordered in ten one kilogram bags and 

was subsequently split into 7 separate containers labeled carefully with the subjects’ names and 

the required dosage.  Five ml vials were used to carefully provide the supplement in the required 

amount (3.2g per serving) and transfer to a 200 ml glass of water.  Subjects were instructed to stir 

in the powder until it had dissolved and then consume.  Consumption was twice per day for the 

duration of the experiment.  The same protocol was associated with the control group 

(maltodextrin).  Maltodextrin is commonly used as a control (Derave et al., 2007) because of its 

close resemblance (white crystalline powder) to beta-alanine.   

 

Prior to the study (10 weeks), subjects were provided with written and verbal information from 

the researcher regarding potential risks associated with the consumption of the substance.  Such 

risks commonly associated with beta-alanine supplementation is paresthesia or the “tingling 

sensation” and can last anywhere from 10 to 45 minutes.  

 

Statistical Analysis 

To gain a better understanding of the results, mean analyses and both within and between groups 

variances were conducted.  The results are presented as mean ± SD.  This method was employed 

to take into account the types of training each of the subjects had done previously to see if that 

had had any effect on the results that the ANOVA may not have picked up. 
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The mixed design ANOVA was used to detect any differences within group and between groups 

for treatment and the statistical significance was set to 5% (p<0.05).  VO2max, weight, age, 

height, maximum aerobic power (MAP), anaerobic threshold, aerobic threshold, watts per 

kilogram (W/KG) of MAP, fatigue index, average power, average W/KG, peak power, finishing 

power, training volume, training intensity and final lactate concentrations were all analyzed using 

this method.  Data were analyzed using the Statistical Package for Social Sciences (SPSS) and 

Microsoft excel 2007.  

 

 

Funding 

Beta-alanine production companies funded no part of this study nor took part in any planning or 

implementing the design of the study.  This policy protects the study from alleged bias toward 

results that could be used for commercial gain by the manufacturer. 

 

The study was supported with the funding from The Biological Sciences Department at The 

University of Canterbury and with help from the University of Canterbury Recreation Centre, in 

particular the Sports Science Laboratory. 
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CHAPTER THREE 

Results 

In this chapter the descriptive data and inferential analysis findings for the study are presented.  

The descriptive data are presented as mean ± SD.  Subjects completed a MAP test and 30s-

WAnT on separate days pre and post supplementation.  The MAP test and 30s-WAnT were used 

to analyze whether 8 weeks of 6.4g/day beta-alanine influenced aerobic and/or anaerobic capacity 

parameters respectively in trained cyclists.   

 

 

Training Volume and Intensity 

Training intensity and training volume for the control and beta-alanine groups are shown in Table 

5.  During the 8 week supplementation block, there was no significant difference between the 

control and beta-alanine groups for training volume (F(1,9) = 0.599, p = 0.459) and training 

intensity (F(1,9) = 0.218, p = 0.652).  Training intensity was characterized as one of three levels.  

Flat terrain training session from 1 to 4 hours in duration were classified as a 1, an ergometer 

session or long (3 hours +) hill ride was classified as a 2, and sprint training exercises or gym 

work was classified as a 3.  Following the supplementation period, intensity values were added 

up and averaged over the total number of training sessions completed. 
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Table 5. Average training volume and intensity for the control and beta-alanine groups during 

the 8 weeks of supplementation. (mean ± SD)   

Parameters Control Beta-alanine                     

Training volume 
(minutes/week) 

746±134.2 760±160.1 

 
Training intensity 

 
1.71±0.4 

 
1.95±0.4 

 

 

MAP Test 

The control and beta-alanine groups completed a MAP test pre and post supplementation.  As can 

be seen in Table 6, there was minimal change for both groups over time for maximum aerobic 

power (MAP), aerobic threshold (AeT), and anaerobic threshold (AnT).  The trend in the data 

also shows very little change in the final lactate concentration and watts per kilogram (W/KG) of 

MAP for both groups.  AeT for the control group decreased following the experimental protocol 

(Table 6), whereas the beta-alanine group saw a rise of 8.6W following the supplementation 

period.  Of interest is the change in final lactate concentration of the beta-alanine group.  The 

1.63mmol-1 decrease in average lactate concentration was caused by subject 9 whose 

concentration of 5.83mmol-1 was low in comparison to the 13.57mmol-1 attained in the first MAP 

test.   The lack of change in the parameters (mean) resulted in there being a non-significant 

difference between groups for MAP (F(1,12) = 1.398, p = 0.261), AeT (F(1,12) = 0.759, p = 0.401), 

AnT (F(1,12) = 1.070, p = 0.321), final lactate concentration (F(1,12) = 1.983, p = 0.184), and W/KG 

of MAP F(1,12) = 1.054, p = 0.325).  Based on these results, 8 weeks of 6.4g/day beta-alanine does 

not significantly change the MAP, AeT, AnT, and W/KG of MAP in trained cyclists. 
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Table 6. Average aerobic capacity parameters following the MAP test pre and post 

supplementation for the control and beta-alanine groups. (mean ± SD) 

 

Parameters 

            Control 

Pre 

                     

Post 

     Beta-alanine 
 
Pre 

        
 
Post                 

MAP (W) 358.6±38.0 358.0±34.6 395.7±72.2 384.3±54.2 

AeT (W) 221.4±27.9 212.9±30.4 
 

235.7±67.8 244.3±61.3 

AnT (W) 295.6±37.8 
 

293.6±31.7 
 

322.1±72.3 
 

321.4±57.3 

W/KG of MAP 4.8±0.4 
 

4.9±0.3 
 

5.2±0.8 
 

5.2±0.7 

Final [La-] (mmol-1) 10.1±1.5 
 

10.0±2.4 12.3±1.7 10.6±3.2 

 

 

30s-WAnT 

Subjects completed a 30s-WAnT pre and post supplementation 3 days after the completion of the 

MAP test.  The trend in the data was as shown in Table 7 and indicates minimal change occurred 

for both groups over time for peak power, minimum power, fatigue index (FI), average 30s 

maximum power, and average watts per kilogram (avge W/KG) of 30s maximum power.  The 

minimum power decreased in the control group (45.3W) and increased in the beta-alanine group 

(26.3W), however both were non-significant.  There was a non-significant difference between the 

control and beta-alanine groups for peak power (F(1,12) = 0.533, p = 0.479), minimum power 

(F(1,12) = 0.907, p = 0.360), average 30s maximum power (F(1,12) = 1.122, p = 0.310), avge W/KG 

of 30s maximum power (F(1,12) = 0.827, p = 0.381), and FI (F(1,12) = 0.004, p = 0.953).  Based on 
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these results, 8 weeks of 6.4g/day beta-alanine does not significantly change any of the above 

anaerobic capacity parameters. 

 

Table 7. Average anaerobic capacity parameters following the 30s-WAnT pre and post 

supplementation for the control and beta-alanine groups. (mean ± SD) 

 

Parameters 

          Control 

Pre 

                     

Post 

     Beta-alanine 
 
Pre              

        
 
Post                 

FI (%) 59.9±6.4 58.7±5.7 61.0±6.9 57.2±7.8 

Avge 30s max 
power (W) 
 

835.3±137.6 789.6±149.8 
 

899.1±142.2 884.7±134.5 

Avge W/KG of 30s 
max power (W) 
 

11.2±1.7 
 

10.8±1.8 
 

11.9±1.4 
 

11.7±1.5 

Peak power (W) 1339.0±251.2 
 

1280.4±268.8 
 

1434.3±321.5 
 

1412.3±321.4 

Minimum power 
(W) 

555.3±86.8 
 

510.0±78.5 556.3±84.2 582.6±72.3 
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CHAPTER FOUR 

Discussion 

 

Effect of Beta-alanine on Aerobic and Anaerobic Capacity 

The aim of the study was to examine the effect of an 8 week 6.4g/day beta-alanine 

supplementation protocol on aerobic and anaerobic capacity in trained cyclists.  My study did not 

detect any significant difference between the beta-alanine and placebo groups following 

supplementation over time for any of the parameters measured.  The lack of change in aerobic 

parameters is supported by previous evidence (Stout et al., 2007), while anaerobic capacity 

parameter evidence provided by Sweeney et al. (2010) and Hoffman et al. (2006) is similar to the 

current study also.  Discrepancies in relation to Derave et al. (2007) and Kern et al. (2010) may 

be related to experimental protocol length, dosage, and/or the training status of the subjects.   

 

With approximately two decades of research into the potential ergogenic effect of increased 

carnosine concentration through beta-alanine supplementation, evidence presented in this field is 

equivocal.  Some suggest there is an ergogenic effect (Hoffman et al., 2006), while other studies 

offer little proof of such an event (Derave et al., 2007).  It has to be recognized that there is 

substantial evidence (Harris et al., 2006; Hill et al., 2007) of increased skeletal muscle carnosine 

concentration following a beta-alanine supplementation protocol.  A 37-47% increase in skeletal 

muscle carnosine concentration in the soleus and gastrocnemius has been identified (Derave et 

al., 2007), with an increase as high as 80% following 10 weeks of supplementation (Hill et al., 
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2006).  Both studies were associated with an increase in performance suggesting there may be a 

potential ergogenic effect, however, my study did not detect such a change assuming an increase 

in skeletal muscle carnosine concentration.    

 

Due to the inability to conduct a cross over design (scheduling issues associated with elite 

athletes), I cannot conclude that beta-alanine supplementation does not improve capacity.  

Identifying capacity change was not aided by the statistical power of this experiment (7 subjects 

per group); therefore a future study examining the same protocol on a significantly greater 

number of subjects would be beneficial. 

 

 

Experimental Protocol 

Previous research (Harris et al., 2006) identified significant increases in skeletal muscle carnosine 

concentrations (42.1-65.8%) following 4 weeks beta-alanine supplementation (3.2-6.4g/day).  

Due to the significant cost of proton MRS ($1000/hr) and the objection of subjects to invasive 

muscle biopsies (prevent training), identifying the possible rise in skeletal muscle carnosine 

concentration was not possible.  Therefore, based on assumption and previous evidence (Harris et 

al., 2006, Hill et al., 2007), an increase in skeletal muscle carnosine concentration in the beta-

alanine group would have been expected.   
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The current study utilized a 3.2g twice a day strategy, unlike previous studies (Kendrick et al., 

2009) which subjected subjects to a 400-800mg dose.  The 400-800mg dose is thought to prevent 

the effect of paraesthesia, and any associated problems with the current strategy are specific to 

timetable constraints and transport issues.  All subjects involved were current students or full-

time employees, which would have caused issues with administering the correct dose at the 

correct time.  Therefore, a 3.2g dosage was employed every morning and evening to ensure an 

uncomplicated effective protocol.  Some of the subjects (N=4) commented on paraesthesia, but as 

a result of previous consumption, all were well aware of the ensuing feeling, and were able to 

cope. 

 

The 3.2g serve may have caused alterations to the rate and total increase in skeletal muscle 

carnosine concentration.  There is a rate limit to beta-alanine absorption (number of β-amino 

transporters) due to the identification of a beta-alanine saturation level within the gastrointestinal 

tract (Harris et al., 2006).  Therefore, the absorption rate and percentage of the 3.2g dose may 

alter final carnosine concentration, and thus capacity.   

 

With evidence showing 10mg.kg-1.day stimulates 10-70% Vmax of transporters over time (Harris 

et al., 2006), it is possible that the increased dosage may in fact enhance carnosine synthesis.  

However, following initiation of carnosine synthesis (carnosine synthase), the degradation 

(carnosinase) may alter total carnosine concentration.  Due to the stability of carnosine, the 

degradation timeline is increasingly slower than other molecules studied thus far (Baguet et al., 

2009).  Approximately 10 weeks will be required for carnosine levels to return to baseline in 
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individuals who increase their concentration by 55%, and 20 weeks for individuals who increase 

their levels by as much as 80%.   

 

Subject Responsibility 

Subject responsibility is a major discussion point for study reliability.  Based on data published 

concerning beta-alanine (Baguet et al., 2009), and creatine washout (Greenhaff, 1995), subjects 

were asked to refrain from beta-alanine and creatine supplementation 10 weeks prior to the study.  

With creatine significantly enhancing sprint performance (Volek et al., 1997), failure to comply 

could significantly alter results.  Subjects may also have unknowingly ingested a significant 

portion of beta-alanine naturally through the consumption of chicken, beef, or pork.  Increases in 

carnosine concentration following the ingestion of chicken broth were identified (Harris et al., 

2006), equivalent to 10mg.kg-1.bwt per day.  However, it is unlikely that this had an effect, as the 

aerobic and anaerobic capacity parameters for both the control and beta-alanine group did not 

change (although consumption of beta-alanine through foods was not controlled). 

 

Kern et al. (2010) and Stout et al. (2008) observed significant improvements in performance 

following beta-alanine supplementation, while others (Smith et al., 2009) failed to see such an 

effect.  There was a lack of change in aerobic and anaerobic capacity following beta-alanine 

supplementation in the current study.  It has been established that elite athletes have a carnosine 

concentration baseline that is significantly elevated above sedentary individuals (Parkhouse et al., 

1985), suggesting 8 weeks of 6.4g/day was insufficient to substantially increase carnosine 

concentration above this.  Similar findings were published (Derave et al., 2007), suggesting 400m 
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running times were not significantly increased in sprint athletes due to the subjects’ training 

status which correlates well to the kilo. 

 

An investigation into the effects of repeated creatine supplementation on total PCr stores 

concluded that following initial supplementation, total PCr stores rose by 45%, followed by a 

22% decrease after a 30 day washout period, and rose again significantly by 25% following 

another 5 day cycle (Rawson et al., 2004).  This indicates 1 of 2 possibilities; there is either a PCr 

store maximum limit, or the second dosing cycle failed to raise PCr stores to the achieved level of 

the first cycle.  In relation to the current study (in which the majority of the subjects had used 

beta-alanine previously), a mechanism preventing carnosine concentrations achieving the level 

attained by initial supplementation may be involved.  I can only speculate as to what this 

mechanism may be, but I suspect that it may be a similar response to that observed in multiple 

creatine exposure studies.  Creatine transporters responsible for extracellular creatine absorption 

become down-regulated (Guerrero-Ontiveros and Wallimann, 1998) with continual creatine 

supplementation.  It is when the upper limit within skeletal muscle is attained (150-160mmol.kg-1 

of dry muscle) that creatine transporter synthesis declines and/or stops completely.  In relation to 

continual beta-alanine supplementation (which may have been the case for the subjects involved 

in this study), a decline in β-amino transporter synthesis (responsible for beta-alanine absorption) 

may occur, although to date, a “ceiling effect” has yet to be determined. 

 

A training effect, placebo effect, and/or carbohydrate ingestion may have played a role in the 

current study.  The timing of the study was specifically chosen to try and control training volume 
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and intensity.  A training effect may not have been a causative factor influencing results as 

indicated by Table 4 (training volume and intensity).  With relation to tiredness, accumulation of 

metabolic by-products, and/or dehydration, all of which have been known to disrupt exercise 

performance (Cheung et al., 2003; Maughan, 2003; Shirreffs, 2005), training in the week prior 

may have caused varying results because of test intensity. 

 

The current research was a blind study.  However, prevention of subjects determining treatment 

was impossible leading to the lack of a placebo effect due to paraesthesia accompanying beta-

alanine supplementation.  Controlling this situation meant tests independent of effort and 

motivation were conducted (Step test).  Subjects could not unduly influence any of the blood 

parameters utilized within this test.  With relation to the use of beta-alanine as a sports 

supplement in elite cycling, it is not to say it does not significantly improve capacity indirectly.  

By telling the cyclist population that consumption of beta-alanine will improve performance, they 

subsequently train harder and improve performance, a true placebo effect. 

 

Beta-alanine supplementation studies have failed to identify any possible effect hydration and 

carbohydrate ingestion may play on performance.  Hypohydration and dehydration can degrade 

exercise capacity (Maughan, 2003) and may alter results.  Carbohydrate ingestion was only 

controlled for the evening prior to and morning of the tests with subjects receiving instructions 

regarding food consumption (eat exactly the same food prior to both sets of testing).  It has been 

shown (Sparks et al., 1998) that pre-exercise carbohydrate intake does not alter performance, 

however, evidence of repeated solid carbohydrate feedings maintaining blood glucose levels, 
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reducing muscle glycogen during prolonged exercise, and enhancing sprint performance at the 

end of such activity have been provided (Hargreaves et al., 1984).  If not intentionally kept 

constant, carbohydrate and hydration levels may have influenced aerobic capacity parameters due 

to the length of the current study (including warm-up) at 33-45 minutes in duration. 

 

Fatigue and Buffering Mechanisms 

A lack of change following 8 weeks beta-alanine supplementation may be two-fold based on 

previous observations (Derave et al., 2007).  Either assumed elevations in carnosine 

concentration were not sufficiently high enough to increase the physicochemical buffering ability 

of the skeletal muscles, or an increase in H+ plays one of many roles in fatigue. 

 

Due to its acidic properties and the subsequent acidosis that arises, excess H+ structurally change 

enzymes linked to ATP production and alter transport mechanisms (Hultman and Sahlin, 1980) 

and substrate availability.  When pH drops as low as 6.5 (Davey, 1960), the fundamental 

mechanics of muscle contraction are hampered with the accumulation of excess H+.  This occurs 

through inhibition of the actomyosin ATPase (which is solely responsible for the breakdown of 

ATP), prevention of cross bridge formation (Cooke et al., 1988) and relaxation, and decreased 

Ca2+ release/absorption from the SR (Lamb et al., 1992).  Excess concentration can also alter 

calcium-troponin binding, and induce neuromuscular fatigue via EMG amplitude increase 

(Taylor et al., 1997).  In association with metabolite accumulation, performance/capacity can 

decrease.   
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It would seem safe to assume that acidosis (pH decrease) significantly influences fatigue during 

glycolytic fibre activation (sprint cycling (Ross et al., 2001)).  With no change in aerobic and 

anaerobic capacity in the experimental group, it has to be assumed that either the assumed 

increase in carnosine concentration was insufficient to buffer this H+ ion concentration increase, 

baseline carnosine concentrations were already significantly elevated with supplementation 

having little to no effect, or other factors are associated with fatigue.  With carnosine and 

anserine making up to 40% of total muscle buffering (Davey, 1960), it could be assumed that the 

carnosine concentration was not sufficiently high enough to buffer the increased H+ ion 

concentration.  With respect to recent evidence, however, (7% role in total muscle buffering, 

(Mannion et al., 1992)), it would suggest irrespective of carnosine’s concentration increase, the 

ability to improve capacity via physicochemical buffering is not solely reliant on the H+ buffering 

mechanisms of carnosine.   

 

Other possible physicochemical buffering options are employed in the muscle, and suggested to 

play a significant role in H+ ion buffering.  Metabolic reactions that remove H+ such as 

sarcolemmal lactate/H+ and Na+/H+ exchange mechanisms, as well as capillarization, muscle 

blood flow, and changes in the intracellular strong ion difference, may be more responsible for 

the physicochemical buffering in muscle (Bishop et al., 2004).  Based on this evidence, 

increasing carnosine concentration may only play one of many roles associated with fatigue. 

 

In a review by Allen et al. (2008), it was suggested that human muscle fatigue often occurs 

without a large increase in H+.  With a minor drop in muscle pH (6.9), rat gastrocnemius muscle 

tetanic force has been shown to significantly decrease by 60% (Baker et al., 1994) clearly 
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indicating the association of muscular fatigue with other factors.  Furthermore, when fatigued 

muscle undergoes a rest period, force production regenerates substantially faster than pH levels.  

This indicates that low pH per se is not solely responsible for force reduction (Baker et al., 1993; 

Cady et al., 1989).   

 

Isolated mammalian muscle research at physiological temperatures and significantly low pH 

levels (6.3), has highlighted the true effect of increased H+ ion concentration on anaerobic and/or 

aerobic capacity.  At 37°C and pH 6.3, cat muscle force production decreases by 5-10% (Adams 

et al., 1991), while at 32°C and pH 6.67, mice muscle maximal tetanic force decreases by a mere 

10% with no significant slowing of maximum velocity shortening (Westerblad et al., 1997).  

Based on the evidence, a lack of change in aerobic and anaerobic capacity during the current 

study may be associated with other factors other than an increase in H+ ion concentration. 

 

As H+ ion concentrations increase, Ca2+ affinity for the SR Ca2+ATPase pump decreases 

(Donaldson et al., 1978; Allen et al., 2008).  During high intensity exercise, this concentration 

increase would be expected to reduce skeletal muscle force production and rate of contraction.  

Therefore, with an assumed increase in carnosine concentration, anaerobic capacity should 

improve.  Results however, indicate anaerobic capacity did not change following beta-alanine 

supplementation.  This lack of change may be because evidence has suggested H+ increase 

skeletal muscle force production (removal may decrease force production).  Reasoning is 

twofold; firstly, H+ compete for troponin C’s binding site reducing Ca2+ affinity (twofold) (Baker 

et al., 1995), and secondly, Ca2+ affinity for the SR Ca2+ATPase pump is reduced.  
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Demonstration of such events was shown to occur when pH reduction (7 to 6.3) identified a 

fivefold decrease in affinity (Ca2+ for SR Ca2+ATPase pump) (Wolokser et al., 1997).  Due to this 

vast affinity difference, at acid pH, Ca2+ concentration is consequently higher, leading to an 

increased skeletal muscle force response (Baker et al., 1995).  Therefore, a pH decrease during 

intense exercise may be responsible for maintaining force production.  Based on the information 

provided, lack of capacity change in the experimental group may be associated with absorption of 

excess H+ (assumed carnosine concentration increase) decreasing skeletal muscle force 

production. 

 

Increasing capacity/performance through beta-alanine supplementation and subsequent carnosine 

concentration is well established (Derave et al., 2007; Kern, 2010; Stout et al., 2007 and 2008).  

However, the dominant energy system and duration of maximal effort determines the total 

ergogenic effect of the supplement. 

 

A 16% increase in total work performed during 150s of exhaustive exercise at 110% max power 

output was demonstrated (Hill et al., 2007).  Similarly, significant fatigue improvement following 

5 bouts of maximum voluntary contraction (45s each) was observed also.  The current study 

utilized a 30s-WAnT, the standard gauge of anaerobic capacity.  In this case, test duration may 

not have been long enough to utilize the H+ buffering abilities of carnosine, indicating other 

factors influencing capacity.  Future carnosine research should incorporate maximal effort 

duration of 45s or more to allow substantial incorporation of the anaerobic system (fast rate 

glycolysis) and subsequent metabolite accumulation.   
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The accumulation of toxic metabolites may be a significant cause for muscular fatigue during 

maximal exercise (less than 45s in duration).  Alterations to muscle machinery may prevent the 

necessary skeletal muscle force production being accomplished.  Accumulation of La-, H+, ADP, 

Pi, IMP, NH3, Mg2+, and inorganic phosphate (PO4
-), a decrease in PCr synthesis, and an increase 

in extracellular K+ all result in muscular fatigue.  Based on this accumulation, it would seem safe 

to suggest a decrease in pH is only one of many limiting factors involved in aerobic and 

anaerobic capacity of maximal contraction (45s duration or less).  

 

 

An example of such is ADP, the result of the high energy splitting of ATP (Westerblad et al., 

2002) during cross-bridge formation (McLester Jr, 1997).  During fatigue, this accumulation can 

cause a slowing of the rate constants (decreased velocity of muscle shortening), and thus power 

output.  In combination with ADP, PO4
- accumulation reduces skeletal muscle force production 

through the prevention of Ca2+ release (SR Ca2+-ATPase pump) (Allen and Westerblad, 2001), 

and through its profound effect on skeletal muscle force reduction (Phillips et al., 1993).  During 

a cycling sprint, PCr stores become depleted resulting in an increase in phosphate ions (Hirvonen 

et al., 1987), decreasing force production, and subsequently affecting anaerobic capacity.  A 

combination of ADP and PO4
- has been shown to decrease force production, and may explain 

why aerobic and anaerobic capacity parameters did not change following beta-alanine 

supplementation. 

 

Due to the WAnT duration (30s), a decrease in pH may not have been responsible for a lack of 

change in anaerobic capacity as shown during short repeated exercise bouts (Sweeney et al., 
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2010).  PCr stores and fast glycolysis each make up approximately half of the required energy 

during short exercise (6s) (Sweeney et al., 2010).  It is therefore postulated for repeated sprint 

activities with incomplete recovery (scratch and points races), that PCr resynthesis rate governs 

muscular fatigue.  In conjunction, a lack of PCr resynthesis may be responsible for a decrease in 

sprint performance, not H+ ion accumulation (Bishop, 2004).  The toxic effects of metabolite 

accumulation (H+) may not solely be responsible for fatigue in terms of the current study (a 30s 

non-repeat test) based upon other physicochemical buffering mechanisms mentioned previously. 

 

 

The current study found there to be no significant difference between groups for any of the 

anaerobic capacity parameters (Table 6).  It is possible without controlling for these other 

previously discussed mechanisms; one or more may have been responsible for a lack of change 

between the 2 groups. This lends evidence to the belief that H+ accumulation may only play one 

of many roles in muscular fatigue. 

 

 

Genetic Profile on Carnosine Synthesis 

Pharmacogenetics is the study of how genetic variability impacts on desired and undesired drugs, 

and a legitimate reason why there was a lack of change in aerobic and anaerobic capacity 

following beta-alanine supplementation.  In relation to beta-alanine absorption and carnosine 

synthesis rate, there is a real possibility that a lack of change is associated with this phenomenon 

using evidence presented in a creatine study (Syrotuik and Bell, 2004).  Irrespective of the 

supplementation protocol, skeletal muscle creatine concentrations can vary between individuals 

based upon their biological profile (initial creatine levels, number of type II muscle fibres and 
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greatest preload muscle fibre cross sectional area) and explain why there is equivocal evidence in 

creatine supplementation studies. 

 

A favourable preexisting biological profile determines the final extent to which individuals 

respond to supplements (Syrotuik and Bell, 2004).  Subjects are less likely to gain the full 

benefits of creatine supplementation if they have a higher pre-load level of creatine, less type II 

fibres, small pre-load muscle cross sectional area, and a lower fat-free mass.  In regard to this 

theory, extracellular concentrations of glucose have been shown to influence inter subject 

creatine stores and capacity variability (Harris et al., 1992; Terjung et al., 2000; Williams et al., 

1999). 

 

Even with a high pre-existing skeletal muscle carnosine concentration, subjects supplementing 

with beta-alanine can still significantly elevate concentrations (Derave et al., 2007).  Although a 

lack of research on beta-alanine response is available, a number of biological variables underlie 

the carnosine concentration increase among individuals.  Such variables may include β-amino 

transporter abundance and activity within the gastrointestinal tract, Na+ channel abundance and 

activity (beta-alanine transportation), carnosine synthase and carnosinase activity, and histidine 

abundance within the body.  Individuals who can maximize all of these activities will increase 

their carnosine concentration by the greatest amount. 

 

When a beta-alanine group increased skeletal muscle carnosine concentrations significantly (Hill 

et al., 2007), there was a percentage increase variability within the group.  Following 4 weeks 

beta-alanine supplementation, concentrations varied from 7-13.4mmol kg-1.  After 10 weeks, 
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concentrations were 11.9-18.5mmol kg-1 above pre-supplementation level.  It is clear some 

individuals utilize beta-alanine more efficiently than others.   

 

The current study identified subjects 9, 14, and 15 showing substantial fatigue index decreases 

(64.4 to 57.3%, 64.7 to 58.1%, and 65.6 to 49.7% respectively), further highlighting the 

importance of a biological profile.  Furthermore, carnosine washout rate in “responders” has been 

identified at 3.5%/wk and 2.5%/wk in “non-responders” (Baguet et al., 2009); suggesting 

carnosinase enzyme activity is different between individuals.  This evidence may indicate why a 

lack of change in aerobic and anaerobic capacity in the beta-alanine group was observed, and the 

need for a biological profile among subjects for future studies. 

 

 

Study Limitations 

There were several study limitations associated with the current study.  A lack of statistical power 

(14 subjects) may have prevented beta-alanine’s true effect on aerobic and anaerobic capacity.  

Study nature (elite athletes) and scheduling issues (training/racing commitments) restricted 

subject availability in comparison to similar research (Hill et al., 2007); whose 25 subjects 

significantly increased statistical power.  

 

 

Training between individual subjects was not controlled for two reasons.  Firstly, each subject did 

not want to conform to a modified training schedule which may have disrupted their capacity 

and/or volume, or their intensity.  Secondly, the true effect of beta-alanine supplementation on 

elite cyclists would not have occurred (problematic issue studying elite athletes of any variety, is 
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the response the training effect has on results).  Conducting the study in this nature gave the true 

effect of beta-alanine supplementation on elite athletes (response to the substance may vary 

among types of athletes and the stage of training).  However, training in the week leading up to 

testing (both occasions) may have caused varying results due to tiredness, accumulation of 

metabolic by-products within the muscles, muscle soreness, or even dehydration, which have 

been known to disrupt exercise performance (Cheung et al., 2003; Maughan, 2003; Shirreffs, 

2005).   

 

Conducting a quantification test via proton MRS or muscle biopsy (skeletal muscle carnosine 

concentration analysis) would have been advantageous.  Refusal to undergo an invasive 

procedure and cost related issues meant performing these tests was impossible.  Analysis would 

have indicated skeletal muscle carnosine concentrations following the experimental protocol.  

Based on previous research (Harris et al., 2006), it can only be assumed the study protocol 

significantly increased skeletal muscle carnosine concentrations which did not change aerobic or 

anaerobic capacity parameters in the experimental group.   

 

If subjects underwent a biological profile, this would have further enhanced the validity and 

overall power of the research. Analysis would have incorporated muscle fibre analysis (type and 

distribution), baseline carnosine concentration analysis, and carnosinase and carnosine synthase 

enzymatic activity.  Identification of “responders” and “non-responders” to beta-alanine 

supplementation and carnosine synthesis could have explained why this study, and others like it 
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(Sweeney et al., 2010), did not observe a change capacity and/or performance in comparison to 

others (Derave et al., 2007).   

 

Neglecting blood and/or muscle pH measurement has been a common theme of beta-alanine 

research thus far.  Cases where lactate ion concentrations have increased (exercise) following 

beta-alanine supplementation (Zoeller et al., 2007), leads to the assumption that subjects with an 

increased skeletal muscle carnosine concentration produce more lactate ions during exercise.  

This would be made possible through the increased physicochemical buffering ability of 

carnosine (absorbing excess H+ maintaining an alkaline pH).  In this study, blood and muscle pH 

measurements were not conducted, and the subsequent acidosis effect can only be assumed once 

again.  It would therefore be advantageous to analyze blood and muscle pH, pre and post 30s-

WAnTs.  This would determine whether an increase in lactate ion concentration corresponded to 

a decrease in pH, or whether the increased skeletal muscle carnosine concentration utilized its H+ 

buffering ability keeping pH neutral for increased exercise capacity.  It has to be noted however, 

that final lactate concentrations did not significantly differ between groups. 

 

Subject motivation and reliability is a study limitation.  Elite subject use brought into account the 

law of diminishing effects.  The law of diminishing effects would suggest significant 

improvement observations are hard to come by.  It states that the closer an athlete gets to their 

biological limit, the less effect can be gained from the same training compared to someone far 

from their biological limit. It has to be noted that elite athletes have been shown to be more 

reliable than non-elite athletes in tests used to simulate performance (Hopkins et al., 2001).  In 
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comparison with other studies (Stout et al., 2008), use of elite athletes (VO2max = 60.7 ± 

6.8mmol.kg-1.min-1) meant there was a chance the subsequent increase in skeletal muscle 

carnosine concentration following beta-alanine supplementation may not have been sufficient to 

significantly increase aerobic and/or anaerobic capacity.  This may be because elite athletes 

already have effective buffering systems in place simply because their training regimes demand 

this, and the addition of more carnosine to their skeletal muscle might not elicit much, if any 

change. 

 

Future Research 

Beta-alanine supplementation future research needs to address a few aspects to further the 

knowledge of this supposed performance enhancing supplement.  Consideration of a biological 

profile will give us greater insight into not only the synthesis rate and percentage increase, but 

determine why or why there was not a change in capacity or performance.  An example may 

include subjects significantly improving their performance while 2 others failed to show such 

change.  Further analysis of their biological profile might give insight into why this was. 

 

Experimental protocol is an important aspect into performance/capacity improvement.  Future 

research needs to identify the rate of carnosine synthesis as there appears to be no “ceiling effect” 

for this molecule within skeletal muscle.  A study at least 24 weeks in duration utilizing both elite 

and sedentary subjects should suffice.  In combination, proton MRS or muscle biopsy analyses 

needs to be conducted every 2 weeks to gauge the synthesis rate.  In conjunction with duration, 

dosing protocol needs to be carefully considered.  The maximum dosage utilized thus far is 

6.4g/day.  Because paraesthesia occurs with 10mg.kg-1.bwt, increasing the dosage could be 



72 
 
considered difficult.  If, however, multiple 800mg doses several times a day were directed, 

10g/day could be achieved.  In conjunction with a 10g/day, 24 week study, beta-alanine’s 

complete effect on skeletal muscle carnosine synthesis can be identified. 

 

Elite and world class athletes dominate the use of beta-alanine supplementation.  It would seem 

beneficial for future research to identify beta-alanine supplementation effects on a variety of 

world class athletes, taking into account the law of diminishing effects (subjects close to their 

biological limit).  Furthermore, the effects of supplementation should be considered on actual 

sporting events.  For example, the use of a kilometer time trial or 4 kilometer pursuit should be 

considered for anaerobic capacity over a 30s-WAnT.  Furthermore, studies should include a 

variety of tests on both men and women as the physiological effects of beta-alanine 

supplementation may differ between sexes.   

 

 

Conclusion 

Various experimental protocols have changed duration and dosing strategy to examine the effects 

of beta-alanine supplementation on aerobic capacity, anaerobic capacity, neuromuscular fatigue, 

carnosine synthesis, and performance improvement.  Results, however, have been equivocal thus 

far.  The data from this study identified that aerobic and anaerobic capacity did not change 

following beta-alanine supplementation in highly competitive cyclists who underwent a similar 

training regime.  The lack of a significant improvement suggests that the assumed increase in 

carnosine concentration was insufficient to utilize its physicochemical buffering ability, subject’s 

basal level carnosine concentrations were significantly elevated where beta-alanine 
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supplementation would not alter its concentration, and/or pH only plays one of many roles 

associated with muscular fatigue. 

 

Based on the data provided, it would seem like a waste of time for elite cyclists to spend money 

on beta-alanine to elicit a performance/capacity improvement.  The law of diminishing effects 

states that being in close proximity to their biological limit, an increase in carnosine within their 

muscles will not improve their muscles buffering abilities.  On the contrary, a true placebo effect 

may occur to the elite population who are naïve about beta-alanine supplementation, believing it 

will improve their performance/capacity, therefore training harder, and subsequently improving 

performance/capacity. 
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Beta-alanine study 

Researcher:  Angus Lindsay 
Contact Details: Phone – 027 320 5373 
     Email – ajl103@student.canterbury.ac.nz 
 
Supervisors:  
- Bill Davison 
Contact Details: Phone – 364 2029 
     Email – bill.davison@canterbury.ac.nz 
 
- Nick Draper 
Contact Details: Phone – 364 2987 ext 4193 
     Email – nick.draper@canterbury.ac.nz 
 
- Steve Rickerby 
Contact Details: Phone – 364 2987 ext 8418 
     Email – Stephen.rickerby@canterbury.ac.nz 
 

Course: This study is a requirement of a Master’s degree in Biological Sciences 

Confidentiality: All data will be locked within the sports science lab of the University of 
Canterbury, offices of Bill Davison, Stephen Rickerby and Nick Draper, as well as password 
protected computers. 

Risks: There are no risks of participating in this study besides the physical demands of the testing 
themselves. 

Addresses: Angus Lindsay – University of Canterbury Sports Science Lab – University of 
Canterbury Recreation Centre, 22 Kirkwood Ave, Christchurch, New Zealand 

Purpose: The purpose of this study is to determine whether oral supplementation of beta-alanine 
affects aerobic and anaerobic capacity in elite cyclists. 

Introduction: Beta-alanine is an amino acid that is used in several medical fields for different 
purposes.  However, the purpose that will be focused on is its ability of it to form a dipeptide 
with another amino acid called histidine.  The combination of these two, of which beta-alanine is 
the rate limiting component, forms carnosine, which acts as the lactate buffer and what will be 
the focus of this study. 

Carnosine, which is located within the cells of the muscles, is able to absorb hydrogen ions from 
the breakdown of glucose via anaerobic gylcolysis.  Most of you will probably think that when 
you exercise at or near maximum, that when you get the burning sensation and fatigue sets in you 
can no longer perform at your best.  This is because of the production of lactic acid.  Forget what 
you’ve heard about lactic acid being harmful, because the body uses this lactic acid as fuel.   In 
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actual fact, it is the hydrogen ions, the by-product of lactate production, which causes this 
burning sensation.  So the science behind this burning sensation is what prevents your muscles 
functioning at their optimum, and to allow this to occur, the pH of your blood (which is 7.4 at 
neutral) has to remain at or around this number.  When the hydrogen ions are produced it 
decreases the pH of your blood and muscles to around 6.5 depending on how hard you are 
pushing, and it is this acidosis of your blood that causes the burning sensation and fatigue. 

Therefore, the proposed hypothesis of carnosine is that when these hydrogen ions are formed, 
rather than causing this acidosis, the carnosine absorbs the hydrogen ions, and allows your 
blood to remain at a neutral pH and subsequently your muscles can function at their optimum for 
longer. 

Previous research has found that oral supplementation of beta-alanine both improves aerobic and 
anaerobic capacity in athletic sprinters, middle distance runners and sedentary people in cycling.  
However, there is no definitive evidence on the effect it has on elite cyclists, and this is where 
using you as subjects will give definitive results in this area. 

So, the use of beta-alanine to produce carnosine will help improve you cycling performance in 
many ways.  Whether you are a sprinter or pursuiter, the use of this substance can help you 
overcome the fatigue effect of the hydrogen ions you produce when you cycle.   It’s quite often 
seen that when a sprinter tries to hold their maximum speed for a long duration, they will 
eventually fatigue.  Even as a pursuiter or road rider, you are always producing some hydrogen 
ions in a race, and when it comes down to a bunch sprint or the last 2 laps of a pursuit, the 
increased carnosine concentration in your muscle will help combat this.  For the road riders, in 
case you think it won’t have much of an effect, a recent study produced significant results 
indicating that supplementing on beta-alanine significantly increased sprinting performance in 
road cyclists after a simulated race. 

Therefore, when you supplement on beta-alanine, the level of carnosine within your muscles 
begins to increase over time.  Past research has indicated that 4 weeks can lead to an increase up 
to 50% above baseline levels and after 12 weeks up to 80%! 

Before the study: Before the study commences, classification has to be conducted to prove that 
you are indeed elite cyclists which is based on previous data.  It has widely been said that 
VO2max is the best predictor of aerobic performance.   Therefore, before any test is started, a 
VO2max test will be done a few days prior to the initial testing. 

Aerobic test: This will include a step test, whereby you bring in your own road bike and we set it 
up your specifications onto a velotron ergometer.  Therefore, we get better indicators of your 
capacity and better specificity.  The step test will include a 20 minute warm up (everyone has to 
do this) and then will commence at 100 watts.   Every 3 minutes, you have to increase your 
power output by 40 watts.  This 3 minute window allows your blood to settle and for the toxins 
you produce to plateau.  At the point where you increase your power, a small blood sample from 



110 
 
the tip of your finger will be taken to analyze the level of lactate in your blood.  This is done by 
giving you a small prick at the tip of your finger and then the blood is analyzed.  This will be 
done every 3 minutes.  Heart rate and lactate concentrations will be measured along the course of 
the test, and we will determine your final finishing power, and also your power (anaerobic 
threshold) when your blood lactate concentrations rise to 4mmol.L-1.  Therefore, it is essential 
that you push yourself to the limit as it will be these two indicators that will prove if you are 
indeed an elite aerobic cyclist. 

Anaerobic test: This test is more for the sprinters whose aerobic performance won’t be that of 
the aerobic athletes, however all endurance cyclists have to participate.  The test will include a 30 
second Wingate test to measure peak power, watts per kg, average power, work done, and fatigue 
index.  It is a very simple test where you cycle maximally for 30 seconds as all the necessary data 
is fed to a computer. 

These tests will be conducted within 5 days of each other.  Each person will be given a time and 
date to come in to the lab to perform these tests. 

Now after getting back many replies, most seem to be able to/or want to do the testing in the 
October-December group.  Because of this, the testing will have to be done in this period so that 
all cyclists are doing approximately the same sort of training.  If it were in April-June, training 
would have changed too dramatically and the results would vary on to big of a scale.  Therefore, 
it is up to the people who wished to do it in April to do the testing in October. 

The testing will be conducted at Canterbury University.  Therefore it will be up to you to make 
arrangements and a decision if you are able to make the testing on a specific day.   

Now it is very important that before you commence testing, that you have no performance 
enhancing substances in your system.  Therefore, no creatine can be taken a month before the 
testing, and if you are taking beta-alanine already, it is essential to stop supplementation 
immediately.  Protein shakes and vitamins etc. are fine to continue with.  Also, please try and 
avoid any caffeinated drinks 2 days prior to the testing. 

When each of you arrives to the do the classification testing, you will be asked to sign a 
declaration form giving your consent to allow me to perform these tests.  I need to state clearly, 
that once you have begun the study, you are able to withdraw from the study for any reason at 
anytime. 

What also is important in these tests, is that if indeed this product does have a significant effect, I 
need to be able to quantify the increased concentration of carnosine in the muscle.  This is to 
prove that it is the increased carnosine concentration that is having the effect and not the type of 
training that you are doing.  There are two ways that can accomplish this.  Firstly, there are 
muscle biopsies which I am NOT going to subject you to, and then there is the use of an MRI 
machine that is able to detect concentrations of the carnosine within your muscle.  Therefore, I 
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will be indicating a date that you will have to meet me at the hospital to undergo a short MRI test 
to quantify the level of carnosine in your muscles. 

 

The study: The study will involve an 8 week block of oral supplementation of beta-alanine.  
Depending upon how many subjects are involved, you will be split up randomly into two groups.  
A beta-alanine group and a placebo group.  Of course, you will be blinded as to which one you 
are on. I will also be blinded to this to give an unbiased results and it will be my supervisors who 
will randomly assign you to a group. 

Each group will come in and do both the aerobic and anaerobic tests on days within 5 days of 
each other, and then given a container of either of the substances and instructed to orally 
supplement on their substance for a given number of times per day for 8 weeks.  Following the 8 
weeks of oral supplementation, each of you will be instructed to go back to the lab that you had 
the classification and first testing conducted, and re-do the testing again. 

From here, I will analyze all of the data and write it up in a thesis and once complete, will report 
to all of you the findings and what sort of an impact beta-alanine has on elite cyclists both in 
aerobic and anaerobic capacity in a summary sheet. 

If I can also get you to fill in a rough training log for the 8 week period that you do during the 
study as the type of training might influence the results depending on what it is that you are 
doing. 

There will also be a slight time difference between the MRI test at the hospital and your second 
set of testing which will go over the 8 week period, but keep using the substance up until the tests 
are over. 
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Researcher:  Angus Lindsay 
Contact Details: Phone – 027 320 5373 
     Email – ajl103@student.canterbury.ac.nz 
 
Supervisors:  
- Bill Davison 
Contact Details: Phone – 364 2029 
     Email – bill.davison@canterbury.ac.nz 
 
- Nick Draper 
Contact Details: Phone – 364 2987 ext 4193 
     Email – nick.draper@canterbury.ac.nz 
 
- Steve Rickerby 
Contact Details: Phone – 364 2987 ext 8418 
     Email – Stephen.rickerby@canterbury.ac.nz 

Considerations 
While there have been a number of studies undertaken examining the effects of beta-alanine on sporting 
performance such testing for differences in power output on a cycle, changes in maximal oxygen uptake, and blood 
lactate concentrations, to date I have not found significant research examining the effects of beta-alanine on one 
kilometer time trial performance and seated 30 second Wingate tests. 

Due to the physical nature of the tests, all subjects will be required to complete a questionnaire prior to any 
testing that covers their medical history including any medication they may be on, current and/or past 
injuries/medical conditions, and any family history of medical conditions. In addition to this, the subjects will 
all have their blood pressure and resting heart rate taken and recorded to ensure they are physically suitable to 
take part. 

Finally, subjects will be informed of the College's complaints procedure if have any concerns regarding the study or 
researchers and wish to raise an issue. Also, the subject consent form will ensure that all subjects are willing to take 
part and confidentially of subjects data will be ensured. 

 

V02 Max Test Procedure 

You will be required to be at the University of Canterbury sport science laboratory at least 60 minutes prior to the 
start of the V02 Max test. This is to make sure there is adequate time to do preliminary tests on resting heart rate, 
blood lactate, and blood pressure levels, as well as an adequate warm-up of 30 minutes. 
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If results from the preliminary results are within acceptable ranges and you are willing to continue, you will be 
fitted with the necessary monitoring equipment such as heart rate monitor and CosMed K4B2 (this includes a small 
pack that will sit on your back and a face mask that will measure oxygen consumption) ready to begin the test. If the 
preliminary test results show anything of possible concern, you must gain written clearance from your GP to take 
part in further testing. 

The test will be completed on a king cycle beginning at a wattage that is reasonably comfortable and then 
increasing by 100Watts every 3 minutes until you choose to cease the test. At each 3 minute interval, blood lactate 
levels will be recorded using Accujet and Lactate Pro equipment. This involves a very small needle pricking the end 
of a finger, and is virtually painless. 

 

Following the completion of the test, you will complete a brief warm-down on the king cycle.  

For this test could you please adhere to the following guidelines: 

S   Try and keep as fresh as possible for the tests by refraining from vigorous training in the 48 hours 
prior to the testing. A period of complete rest from any training should be observed 12 hours prior to 
testing. 

•S   Normally a high carbohydrate diet, low in fat should be followed in the days leading up to testing. 

S   Refrain from tea, coffee, or any other caffeine containing beverages (coke, V, Lift Plus, Redbull, etc.) 
for 7 days leading up to the test. This is very important as consuming caffeine close to the time of 
testing may affect the results. 

S   Alcohol should be avoided for at least 12 hours prior to testing and no large meals should be eaten 3 
hours prior to testing. 

You may choose to bring a high carbohydrate snack or sports drink to consume on 
completion of both tests to aid recovery. 

 

Wingate Procedure 

You will be required to be at the University of Canterbury sport science laboratory at least 60 minutes prior to the 
start of the 30 second Wingate test. This is to make sure there is time for an adequate warm-up of 30 minutes. 

If results from the preliminary results found before the VO2 max test are within acceptable ranges and you are 
willing to continue, you will be fitted to the Wingate machine.  If the preliminary test results show anything of 
possible concern, you must gain written clearance from your GP to take part in further testing. 

The test will be completed on a Wingate cycle machine which gives accurate data output into a computer.  You 
will be asked to remain seated during the effort and go as hard as you can for the entire 30 seconds while getting 
verbal encouragement. 
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Ramp Test Procedure 

You will be required to be at the University of Canterbury sport science laboratory at least 60 minutes prior to the 
start of the ramp test. This is to make sure there is time for an adequate warm-up of 30 minutes. 

If results from the preliminary results found before the VO2 max test are within acceptable ranges and you are 
willing to continue, you will be fitted to the king cycle machine.  If the preliminary test results show anything of 
possible concern, you must gain written clearance from your GP to take part in further testing. 

The test will be completed on a king cycle  which gives accurate data output into a computer.  You will be asked 
to remain seated during the effort.  You will begin the test at 40W at a cadence which suits you.  Every 3 minutes 
you will be asked to increase the wattage by 40W.  At each 3 minute interval, blood lactate levels will be recorded 
using Accujet and Lactate Pro equipment. This involves a very small needle pricking the end of a finger, and is 
virtually painless. 

 

Risks of Maximal Exercise Testing 

With any type of vigorous exercise comes a remote chance of both injury and death. It is also logical to assume 
that such risks are increased when the exercise is pushed to maximal effort, particularly if the supervision of 
the subject is inadequate. Conversely the risks diminish perhaps to vanishing point, when full medical 
precautions are taken including things such as a pre-exercise questionnaire and preliminary testing (e.g. blood 
pressure and heart rate testing). 

With this in mind, there are several criteria that are used to stop any test immediately: 

• Chest pain 
• Severe dyspnoea (difficulty in breathing) 
• Noticeable changes in pallor 
• Cold moist skin 
• Cyanosis (skin turning blue) 
• Confusion of the subject 
• Stumbling-uncoordinated 
• Desire by subject to stop 

The information you divulge during pre-test screening and the actual test results will remain confidential between 
the testers and yourself and is necessary to determine any risks during testing.  In addition, you will be provided 
with a summary of your results and an interpretation of the data. 
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Researcher:  Angus Lindsay 
Contact Details: Phone – 027 320 5373 
     Email – ajl103@student.canterbury.ac.nz 
 
Supervisors:  
- Bill Davison 
Contact Details: Phone – 364 2029 
     Email – bill.davison@canterbury.ac.nz 
 
- Nick Draper 
Contact Details: Phone – 364 2987 ext 4193 
     Email – nick.draper@canterbury.ac.nz 
 
- Steve Rickerby 
Contact Details: Phone – 364 2987 ext 8418 
     Email – Stephen.rickerby@canterbury.ac.nz 
 

 

 

Informed Consent & Release of Liability for 
Participation in a Fitness Testing Programme 

 

 

 

1. Explanation of Testing Procedure 
 

I, the undersigned, consent to voluntarily participate in the fitness testing and 
fitness program at University of Canterbury.  I understand that I will be exercising 
from sub-maximal to maximum levels depending on the test certain data may be 
obtained (this could include; blood pressure, blood samples, oxygen and heart rate). 
All testing will be directed and monitored by a qualified trainer of University of 
Canterbury who will give me exact instructions of any activities to be conducted. 
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I have already informed University of Canterbury of any medical conditions or 
prescribed medications I am taking, and will inform University of Canterbury of 
any changes to these medical conditions or medications made by myself or my 
doctor prior to testing.   
 

 

 

2. Description of Potential Risks 
 

I understand and have been informed that my participation in fitness testing may 
have risks associated with the cardiorespiratory system that cannot always be 
predicted. These include, but are not limited to, abnormal changes to heart rate or 
blood pressure, ineffective functioning of the heart, and in very rare instances, heart 
attack, stroke or even death.  
 

I fully understand the risks that are associated with my testing programme 
including physical injury, heart attack, or in rare instance death, and knowing these 
risks I hereby indicate a desire to participate, and accept any and all risks of injury 
or death. 

 

3. Confidentiality 
 

I have been informed that any information pertaining to me obtained during the 
testing is confidential and will be kept on project leader’s personal computer in a 
locked office and will be held securely for two years and then destroyed. 

 

I have read the preceding information in its entirety and fully understand it.   

 

Any questions that have occurred to me regarding the procedures of this 
programme have been answered to my full satisfaction. 
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I understand that I can withdraw from the testing programme at any time without 
prejudice. 

 

I express full voluntary consent, release all liability and accept all risks associated 
with all services and procedures of University of Canterbury as explained herein. 

 

 

 

 Date: ...............................................................  
 

  

 Participant Signature: ....................................  

 

  

 University of Canterbury  

 Representative: ..............................................  

 

 

 

 

 

Pre-Exercise Medical/Health Evaluation 
 

 

In order for University of Canterbury to design you the safest and most effective 
exercise programme we need information regarding your health.  This information 
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is required purely for your personal safety, and remember that everything you 
record is strictly confidential. 

 
Name: _________________________________________________ Date: _________________________  

 

Are you taking any medication or drugs? 

 No 
 Yes:  Name of medication _____________________________________  
              Reason for using medication _______________________________  

               ______________________________________________________  

               ______________________________________________________  

              Dose__________________________________________________  

 

Name and address of family GP: _________________________________ 
___________________________________________________________________
_______________________________________________________ 

 

Does your doctor know you are participating in this exercise program? 

 No 
 Yes 
 

Do you now, or have you had in the past: (tick) Yes     No 

1. Asthma 
2. History of heart problems, chest pain or stroke.  __   ___  
3. Increased blood pressure.  __   ___  
4. Any chronic illness or condition.  __   ___  
5. Difficulty with physical exercise.  __   ___  
6. Advice from a physician not to exercise.  __   ___  
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7. Recent surgery (last 12 months). 
 

 

 

  __   ___  

8. Pregnancy (now or within last 3 months).  __   ___  
9. History of breathing or lung problems.  __   ___  
 

 

10. Muscle, joint, or back disorder, or any other previous  
                                       injury still affecting you.  __   ___  

11.Diabetes or thyroid condition.  __   ___  

12.Cigarette smoking habit.  __   ___  
  __   

13.Increased blood cholesterol.  __   ___  

14.History of heart problems in immediate family.  __   ___  

15.Hernia or any condition that may be aggravated by  

 lifting weights. ___   ___  

16.Do you have any other medical/health condition not  

 detailed above. ___   ___  

 

If you answer yes to any of the pre-exercise medical questions you may need to be 
excluded from the study.  The tester will discuss with you the risks associated with 
your condition and make a decision based upon this discussion.  This decision will 
be based upon the tester’s assessment of the additional potential health risks 
associated with your condition.  Additionally, if you answer yes to questions 2, 6, 
8, 10, or 15 you would automatically have to be excluded from the study. 
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Please give details below of any of the questions above to which you answered yes: 

 _____________________________________________________________  

 _____________________________________________________________  

 _____________________________________________________________  

 _____________________________________________________________  

 _____________________________________________________________  

 _____________________________________________________________  

 _____________________________________________________________  
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Angus Lindsay 
School of Biological Sciences 
University of Canterbury 
Private Bag 4800 
Christchurch 
8140 
 
October 1st 2009 

 

CONSENT FORM 
 

The effect of beta-alanine supplementation on aerobic and anaerobic capacity in trained 
cyclists. 

 
 
I have read and understood the description of the above-named project. On this basis I agree to 
participate as a subject in the project, and I consent to publication of the results of the project 
with the understanding that anonymity will be preserved.  
 
 
I understand that comments I make may be written down and used in the report discussion. 
 
 
I understand that my name will not be written down next to my comments and that my name will 
not be used in any part of the results, data, and final report.  
 
 
I understand also that I may at any time withdraw from the project, including withdrawal of any 
information I have provided.  
 
I understand that my participation is part of the required field toward a Master’s Degree. 
 
 
I note that the project has been reviewed and approved by the University of Canterbury Human 
Ethics Committee.  
 
 
NAME (please print): …………………………………………………………….  
 
Signature:  
 
Date: 
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