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Abstract 

Onion (Allium cepa) bulbs of the New Zealand-bred cultivars 'Pukekohe Longkeeper' 

and 'Early Longkeeper' produced tumourous growths after inoculation with 25 

virulent strains of Agrobactenum tumejaciens, A. rubi and A. rhizogenes. The 

majority of these tumours produced nopaline, indicating that tumour cells were 

transformed. Some excised tumours produced roots in sterile culture. 

Eight onion genotypes were screened in tissue culture for callus formation, 

regeneration of plantlets from callus and clonal multiplication by shoot proliferation. 

All genotypes could be clonally multiplied and four were readily regenerable from 

callus. A technique for plantlet multiplication, which uses longitudinally-bisected 

stems of in vitro-germinated onion seedlings as explants, was developed. Onion 

(,Pukekohe Longkeeper', 'Southport White Globe', 'Japanese Saporo Yellow' and 

'Hikeeper Fl ') protoplasts were isolated and cultured on a range of media. These 

protoplasts formed new cell walls and sometimes divided, but only first divisions 

were regularly seen. 

Kanamycin, geneticin (G418), hygromycin and chlorsulfuron were evaluated for their 

use as selective agents in onion transformation experiments. Tissues surveyed for 

sensitivity to these selective agents included seeds and seedlings on germination and 

callusing media, established callus on callusing and regeneration media, and shoot 

cultures on shoot proliferation medium. Hygromycin was shown to be the antibiotic 

most toxic to tissues of all the surveyed onion cultivars, with effects being obvious 

in all tissues after 4-5 weeks of culture on concentrations as low as 20 mgt!. 

Kanamycin was shown to be the least toxic of the selection agents surveyed. The 

kanamycin analogue G418 was considerably more toxic to most onion cultures than 

kanamycin. However, responses of cultures to G418 were slower than those to 

hygromycin. The herbicide chlorsulfuron was also shown to be toxic to onion 

seedlings and shoot cultures. 

The ability of Agrobacterium tumefaciens to transfer foreign genes to A. cepa was 



demonstrated. A single, putatively transformed plantlet (RCl), was regenerated 

from an onion seedling stem via callus, following co-cultivation of stem explants 

with Agrobacterium strain LBA4404 harbouring the binary vector pKIWIllO. In 

addition, 41 axillary or adventitious shoots which grew directly from basal plates 

injected in vitro with four strains of A. tumefaciens (each harbouring the binary 

vectors pKIWIllO orpGA643) exhibited resistance to G418 in culture. The binary 

vectors used carry the neomycin phosphotransferase II gene (nptII) controlled by the 

nopaline synthase (nos) promoter. Both RC 1 and some of the shoots growing from 

basal plate explants produced roots when grown on culture media supplemented with 

G418. Southern analyses showed that fragments of DNA from RCI and from five 

of the 41 G418-resistant shoots hybridized to a 1.25 kbp nptII probe. (3-

glucuronidase (GUS) activity was detected in over half of the plantlets derived from 

basal plate tissue injected with A. tumefaciens strains LBA4404 or C58, both of 

which harboured pKIWIllO. Molecular and phenotypic evidence suggested that the 

putatively transformed plants produced from injected basal plate tissues were 

chimeric. 
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1 

Chapter 1: General Introduction 

1.1 Allium cepa 

The onion (Allium cepa L.) is an important monocotyledonous vegetable crop, which 

has historically been classified with other alliums into the Liliaceae family 

(Cronquist, 1968; Takhtajan, 1973). The Allium genus has also been classified into 

the Amaryllidaceae family by at least one prominent taxonomist (Hutchinson, 1973), 

and more recently, following the trend towards small, monophyletic families, it has 

been placed in the Alliaceae family (Dahlgren et ai., 1985). A. cepa is usually 

propagated from seed and is generally regarded as an outcrossing species. Individual 

flowers in the onion inflorescence are highly protandrous, effectively preventing the 

self-pollination of a single flower (Currah and Ockendon, 1978). A. cepa is also 

propagated from bulbs or small sets (bulblets). Field-grown onions are mainly 

cultivated as a biennial crop, having a seed-to-seed generation time of two years. 

This generation time of onions is long in comparison to those of many other major 

crops. 

The onion is grown on all continents of the world, mainly for its flavouring qualities, 

and has become an essential part of the human diet. Worldwide, 2.6 million metric 

tonnes of onion edible dry material are produced annually (Harlan, 1992). It is 

estimated that the value of world annual production of bulb onions approaches $US 

5 billion, more than 90% of which is consumed within the countries of production 

(Rabinowitch and Brewster, 1990). In New Zealand, the onion is grown for both 

local consumption and for the export market. Onions are New Zealand's fourth larg­

est horticultural revenue earner after kiwifruit, apples and squash. New Zealand 

produces approximately 80,000 tonnes of onions annually, of which about half is 

exported, principally to Europe and Japan (Hale et al., 1992). The two cultivars 
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most commonly exported from New Zealand are 'Pukekohe Longkeeper' and 'Early 

Longkeeper', both New Zealand-bred cultivars which store well. Although their 

keeping properties are excellent, these cultivars have been criticized, particularly by 

Japanese consumers, for their high pungency and lack of sweetness (McPherson et 

ai., 1992). The breeding of new characteristics into onions by conventional plant 

breeding methods is a time-consuming process that can take up to several generat­

ions, and so quicker ways to insert desirable genes into the onion genome are being 

sought. 

1.2 The introduction of foreign genes into plants - an overview 

Since early reports of the regeneration of transgenic plants (Horsch et ai., 1984; 

Paszkowski et al., 1984), the area of gene transfer into plants has made substantial 

and significant progress (Gasser and Fraley, 1989). Many laboratories worldwide 

have transferred genes into a wide variety of plants including 'easy' plants, e.g. 

tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) , and 'difficult' or 

recalcitrant plants, e.g. soybean (Glycine max) or cereals, e.g. maize (Zea mays) and 

rice (Oryza sativa). Currently, Agrobacterium-mediated gene transfer is probably 

the most commonly used vehicle for transporting foreign DNA into plant cells (Grant 

et al., 1991). This DNA can subsequently be stably integrated into the nuclear 

genome of a plant and transcribed and translated as normal DNA. Expression of the 

introduced gene or genes can usually be monitored. However, Agrobacterium­

mediated gene transfer cannot yet be successfully used for all plant species. 

Susceptibility, or lack of susceptibility, of plants to Agrobacterium has been 

attributed to a number of factors, some of which will be discussed in this thesis. For 

those plants not susceptible to Agrobacterium there are several other effective ways 

to enable direct gene transfer (DGT) into plant cells. These range from the uptake 

of DNA into isolated protoplasts, which is mediated by chemical procedures or elect­

roporation, to micro- and macroinjection, and bombardment of tissue with high­

velocity particles (microproj ectiles). 
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In this introductory chapter, the non-Agrobacterium methods of gene transfer into 

plants will be briefly reviewed. These will include the direct gene transfer 

techniques already mentioned, and a range of techniques which are less commonly 

used. Agrobacterium-mediated gene transfer and how it could be used for onions 

will then be reviewed in more detail. 

1.2.1 Direct gene transfer into protoplasts 

DGT into plant cells requires the removal of the plant cell wall to form protoplasts. 

In comparison to the transformation of bacteria, yeast and animal cells, the 

transformation of plant protoplasts via the introduction of 'naked' DNA has been a 

relatively recent development. DNA uptake into, and transformation of plant 

protoplasts was first demonstrated conclusively by Davey et al. (1980), who isolated 

Ti plasmid from Agrobacterium tumefaciens and applied it to Petunia protoplasts in 

the presence of poly-L-ornithine, or polyethylene glycol (PEG) and Ca2+. The 

presence of Ti DNA in the plant genome was demonstrated phenotypically by 

hormone-independent growth and the production of opines, and also by Southern 

analysis of DNA extracted from transformants. Subsequent development of anti­

biotic resistance markers also allowed for positive selection of transformed plant 

cells, and led to the development of more simplified protoplast transformation 

techniques, using small plasmid vectors rather than the large Ti plasmids. It was 

first shown that protoplasts could be transformed with small, simple plasmids by 

Pazskowski et al. (1984). They demonstrated the uptake, integration and expression 

of the kanamycin resistance gene aminoglycoside phosphotransferase type II 

(apt(3 ')II) in protoplasts which had been transformed with pABD 1. This was done 

by way of Southern analysis and assays for APH(3 ')II enzyme activity. The pABD 1 

plasmid used was based on pUC8, and contained aph(3')II from the bacterial 

transposon Tn5 under the control of the cauliflower mosaic virus (CaMV) gene VI 

expression signals. CaMV expression signals were chosen because gene VI is 

expressed at very high levels in plant cells during viral infection (Xiong et al., 

1982). The presence and expression of the aph(3')II gene was retained through 

regeneration into plants, and was also inherited by the progeny of subsequent generations. 
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Since the use of the large Ti and other smaller plasmids to deliver DNA into 

protoplasts, the methodology of inserting DNA into protoplasts has developed 

considerably, with chemical and electrical methods now routinely in use. Chemical 

methods almost always include the use of PEG (Antonelli and Stadler, 1989; Krens 

et ai., 1982). The electrical method most commonly in use involves a technique 

known as electroporation, in which the application of high voltage pulses to proto­

plasts induces localized rearrangement of membrane components, resulting in 

transient membrane pores through which macromolecules such as DNA may pass. 

This technique was developed for plants by Fromm et al. (1985) and was originally 

used to transfer DNA to Daucus carota (carrot), Nicotiana tabacum (tobacco) and 

Zea mays (maize) cells. These cells were transiently transformed by supercoiled 

plasmid DNA carrying the chloramphenicol acetyltransferase (cat) gene. 

Transient gene expression, i.e. expression of introduced genes that have not been 

integrated into the host genome, provides information about the expression of foreign 

genes and the activity of their promoters in plant cells. Expression is usually 

measured as the activity of a gene product. Measuring levels of transient gene 

expression in protoplasts derived from different plant organs can provide information 

about promoter expression in cells from these organs and in specialized types of 

cells. However the applicability of these assays is limited, as protoplasts are not 

always physiologically identical to the cells from which they are derived (Dekeyser 

et al., 1990). 

Another less commonly used method for the insertion of foreign DNA into 

protoplasts is that of microinjection. This involves immobilizing protoplasts, usually 

in an agarose matrix (Lawrence and Davies, 1985) and injecting them with a fine 

glass capillary needle through which DNA is passed into the cell's nucleus. This 

technique was first reported to be successful in plant cells by Steinbiss and Stabel 

(1983). 

If the objective of DGT into plant cells is the recovery of transgenic plants, 

removing the cell wall to allow entry of DNA can create the additional problem of 
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regenerating plants from single protoplasts. Regeneration of plants from protoplasts 

remains the limitation to producing transgenics in many plant species, more 

commonly monocotyledonous plants and particularly some cereals, all of which 

belong to the Poaceae (Gramineae) family. Although regeneration from protoplasts 

may not be possible, the regeneration barrier need not stop DGT to such recalcitrant 

species, as important information about gene expression can be gathered by checking 

for transient expression of foreign genes within hours of inserting the DNA (Prals 

et ai., 1988). Such evaluation of transient expression can occur without prior cell 

division or integration of foreign DNA into the plant cell genome. 

Published protocols for the isolation of protoplasts from onion (Zeiger and Hepler, 

1976; Ayeh, 1982; Tashiro et ai., 1984) and garlic (Allium sativum L.) (Opatrnyand 

Havranek, 1977) tissue do exist, but to date there has been only one published report 

of plantlets being regenerated from onion protoplasts (Wang et ai., 1986). The 

original account of this is written in Chinese and is seldom cited in the literature. 

1.3 Microprojectile bombardment (the Particle Gun) 

As regeneration from protoplasts is still not readily achievable in some species, 

alternative methods of inserting DNA into plants, that bypass the protoplast-to-plant 

regeneration step, have since been developed. The most widely used of these is 

microprojectile bombardment. Following an initial demonstration of strong transient 

reporter gene expression in onion epidermal tissue bombarded with DNA-coated 

microprojectiles (Klein et ai., 1987), the technique was adopted and modified 

successfully by numerous groups worldwide. This technique employs high velocity 

metal particles (microprojectiles) to deliver biologically active DNA into plant cells. 

The original concept has been described in detail by Sanford (1988) but briefly, it 

involves DNA-coated microprojectiles being placed on the front surface of a macro­

projectile which is then propelled by either a gunpowder charge or a gas pulse 

towards a stop plate with a small pore. The macroprojectile is stopped by the stop 
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plate, but accelerated microprojectiles continue through the pore in a vacuum 

chamber into the target tissue, thus delivering the DNA into the plant cells. Christou 

et at. (1988) demonstrated that the process could be used to deliver biologically 

active DNA into living cells and result in the recovery of stable transformants. The 

ability to deliver foreign DNA into regenerable cells, tissues and organs appears to 

provide a 'foolproof' method for achieving truly genotype-independent 

transformation in many agronomic crops, bypassing Agrobacterium host-specificity. 

Due to the physical nature of the technique, there is no biological limitation to the 

actual DNA delivery process, thus genotype is not a limiting factor. However, 

regeneration of plants from the 'shot' explants may be genotype-dependent. Reports 

of transgenic plants obtained through this method have been widespread and have 

included crop species as diverse as cotton (Gossypium hirsutum L.) (Finer and 

McMullen, 1990), soybean (Wang et at., 1988), maize (Klein et at., 1989; Gordon­

Kamm et at., 1990) and wheat (Triticum aestivum) (Vasil et al., 1992). 

Although the regeneration-from-single-cell step can be bypassed when using the 

particle gun, Potrykus (1991) considers that this technique does not necessarily offer 

much more hope for recalcitrant species. In a review of gene transfer methods he 

points out that plants difficult to transform with Agrobacterium probably have very 

few 'competent' cells, and that the particle has to reach these rare cells by a random 

hit, after which the DNA has to integrate into the genome of these cells. Because 

of the low conversion rate of transient events to stable integrative events with the 

particle gun system, he expects that integrative transformation in plants recalcitrant 

to transformation will be rare. 

1.4 Other methods of direct gene transfer 

A range of other non-Agrobacterium methods have been used to attempt direct 

insertion of DNA into plants on the multicellular scale. These include microinjection 

into zygotic and microspore-derived proembryos (Neuhaus and Spangenberg, 1990), 
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soaking dry seeds (Ledoux and Huart, 1974) or embryos (Senaratna et at., 1991) in 

DNA, pollen transformation (Ohta, 1986), the 'pollen tube pathway' (Luo and Wu, 

1988), e1ectroporation of walled cells (Lindsey and Jones, 1990) or tissue slices 

(Dekeyser et at., 1990), electrophoresis using shoot meristems (Ahokas, 1989), 

macroinjection (De la Pena et at., 1987), liposome fusion (Caboche, 1990), liposome 

injection (Lucas et at., 1990), microlaser (Weber et al., 1988) and directly pipetting 

DNA into (wheat) flower spikelets (Hess et al., 1990). None of these have become 

established techniques for the production of transgenic plants, since there has been 

little substantial proof so far of integrative transformation, sustained expression, or 

inheritance of the transferred genes (Potrykus, 1991). 

1.5 Agrobacterium as a vector for gene transfer 

Agrobacterium is a soil bacterium, the most important species of which cause crown 

gall (A. tumefaciens) and hairy root disease (A. rhizogenes). It has long been known 

as a plant pathogen, but only relatively recently has the utility of this bacterium as 

a gene transfer system been recognised. This was first conclusively shown by 

Chilton et al. (1977) who demonstrated that crown galls were produced as a result 

of the transfer and integration of bacterial genes into the plant genome. Since then 

it has been established that part of the bacterial Ti (tumour-inducing) or Ri (root­

inducing) plasmid's transferred DNA (T-DNA) is transferred into the nuclear 

genome of plant cells (Fraley et ai., 1986). Some of the inserted T-DNA genes 

encode enzymes responsible for the biosynthesis of phytohormones and/or proteins 

affecting the sensitivity of plant cells to phytohormones. It is the expression of these 

genes that results in overgrowths (tumours) and hairy roots. Other T-DNA genes 

code for enzymes involved in the production and secretion of opines. Opines are 

amino acid and sugar derivatives which are not normally produced by untransformed 

plant cells (Tempe and Goldmann, 1982). These are secreted from transformed plant 

cells into the intercellular regions of a tumour or rhizosphere of a hairy root and the 
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bacterium uses these as a carbon and nitrogen source (Petit and Tempe, 1985). 

Agrobacterium itself does not appear to express the T-DNA genes (Grant et al., 

1991). 

The gene-transferring ability of Agrobacterium has been exploited to transfer foreign 

genes into a large number of dicotyledonous plants, including some important crops 

(for a more detailed review see Gelvin (1990) and Grant et al. (1991», and to a 

limited number of monocotyledonous plants (Table 1.1). Within the last decade, 

many workers have used molecular biology technology to manipulate the T-DNA of 

Agrobactenum for the development of gene vectors to produce transgenic plants. 

1.5.1 Ti and Ri plasmids 

Ti and Ri plasmids are named according to the Agrobactenum strain from which 

they were originally isolated. These plasmids are large in size, ranging from 140 

to 235 kilobase pairs (kbp) (Grant et al., 1991). The regions of importance on Ti 

and Ri plasmids include: 

1) the T-DNA, bordered by two 25 bp direct repeats at each end - any DNA 

between these borders is capable of being transferred to the plant cell, 

2) the virulence (vir) region, which encodes genes responsible for excision, 

transfer and integration of T-DNA into the plant genome, and 

3) opine catabolism genes, which enable Agrobacterium to utilize opines secreted 

from tumours and hairy roots. 

The virulence region of Ti and Ri plasmids occurs outside the T-DNA. It is about 

30 kbp long and is organized into seven distinct complementation groups (operons) 

including vir A, vir B, vir C, vir D, vir E, vir G and vir H (formerly pin F) (Stachel 

and Nester, 1986). These operons encode trans-acting factors essential for T-DNA 

transfer. Mutations in the vir region generally lower the virulence, i.e. DNA trans­

forming potential, of the inciting bacterium (Zambryski, 1992). Within each of 



Table 1.1 Monocotyledonous plants susceptible to Agrobacterium and/or from which transgenic plants or transformed cell cultures have been produced 

Plant Response Reference 

Allium cepa (onion) tumours (opine-positive), hairy root Dommisse et al., 1990 

Anthurium andraeanum in vivo and in vitro tumours (opine positive) Kuehnle and Sugii, 1991 

Arthropodium cirratum (New Zealand rock lily) tumours (opine-positive) Conner and Dommisse, 1992 

Asparagus officinalis tumours (opine-positive); transformed cell cultures; Hemalsteens et al., 1984; Bytebier et al., 1987; Conner 
transgenic plants et al., 1988; Prinsen et al., 1990 

Chlorophytum capense opine-positive swellings Hooykaas-van Slogteren et al., 1984 

Chlorophytum comosum tumours (opine-positive) Feng et al., 1988 

Cordyline terminalis and C. rubra tumours (opine-positive) Suseelan et al., 1987 

Cordyline australis (NZ cabbage tree) tumours (opine-positive) Conner and Dommisse, 1992 

Dioscorea bulbifera (yam) in vitro cell cultures; tumours (opine-positive) Schafer et aI., 1987; Conner and Dommisse, 1992 

Gladiolus sp. opine synthase activity Graves and Goldman, 1987 

Hippeastrum rutilum tumours (opine-positive) Feng et al., 1988 

Hordeum vulgare (barley) tumours (opine positive) Deng et al., 1990 

Monstera deliciosa (fruit salad plant) tumours (opine-positive) Conner and Dommisse, 1992 

Narcissus cv Paperwhite opine-positive swellings Hooykaas-van Slogteren et al., 1984 

Nerine bowdenii tumours (opine-positive) Conner and Dommisse, 1992 

Oryza sativa (rice) transformed cell cultures Raineri et al., 1990 

Polygonatum Xhybridum (Solomon'S seal) tumours (opine-positive) Conner and Dommisse, 1992 

Triticum aestivum (wheat) tumours (opine positive); transformed callus Deng et at., 1990; Mooney et al., 1991 

Tulipa sp. (tulip) transient expression of GUS gene insert Wilmink et al., 1992 

Zantedeschia aethiopica (arum lily) tumours (opine-positive) Conner and Dommisse, 1992 

Zea mays (maize) transient opine synthase activity; transformed plants Graves and Goldman, 1986; Gould et al., 1991 
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the operons are varying numbers of open reading frames which are strongly and co­

ordinately induced by phenolic compounds leached from wound sites on plants 

(Grant et al., 1991). One such phenolic compound often used to enhance the 

frequency of transformation events following inoculation with Agrobacterium is the 

wound response molecule, acetosyringone. This compound was identified as a 

'signal' molecule which activated T-DNA transfer to plant cells, by Stache1 et al. 

(1985). The structurally similar molecule, a-hydroxyacetosyringone was also 

identified by Stachel et al. (1985). Subsequent work by other groups has since 

shown that several other phenolic compounds can act as vir inducers. These include 

lignin precursors such as coniferyl alcohol and sinapinic acid (Spencer and Towers, 

1988; Melchers et al., 1989; Song et al., 1991), and the methyl ester of syringic 

acid (Spencer et al., 1990). It has also been shown that non-phenolic compounds, 

e.g., selected sugars (Shimoda et al., 1990; Cangelosi et al., 1990) and glycine 

betaine at a low pH (Vernade et al., 1988) can further enhance acetosyringone 

induction of the vir gene. Opines have also been shown to induce the vir genes 

(Veluthambi et al., 1989). 

Following induction of vir gene expression, molecular reactions occur on the T-DNA 

element of the Ti plasmid to generate a transferable T-DNA copy (Zambryski, 

1992). Firstly, single-stranded (ss) endonucleolytic cleavages are detected between 

the third and fourth bases of the bottom strand of the 25 bp border repeats (Wang 

et al., 1987; Albright et al., 1987). These nicks are then used as initiation and 

termination sites for displacement of a linear ss copy of the bottom strand of the T­

DNA region, designated the T-strand (Stachel et al., 1986). These reactions reflect 

the polarity and functionality of the T -DNA borders, i. e., the T -strand is generated 

in a right to left direction. After formation of the T-strand, this DNA must traverse 

the bacterial cell membrane and cell wall, the plant cell wall, and the plant cell and 

nuclear membranes. Once inside the nucleus, the T -strand must then stably integrate 

itself into the plant cell genome. Throughout the transfer process, the T-strand must 

avoid degradation by nucleases. It is thought that the T-strand exists as a DNA­

protein complex (the T-complex), in which the DNA is protected from the action of 

nucleases (Howard and Citovsky, 1990). Evidence also suggests that T-DNA 
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preferentially integrates at random into DNA sequences that can be transcribed, i.e. 

single copy DNA (Koncz et al., 1989; Kertbundit et ai., 1991; Topping et ai., 

1991). 

1.5.2 The introduction of Agrobacterium T-DNA into plant cells 

Intentional wounding of the plant to enable Agrobacterium infection has become the 

basis of the most commonly used method to produce transgenic plants via 

Agrobacterium-mediated transformation. Agrobactenum-mediated transformation of 

plant tissue was first achieved by co-cultivation of protoplasts, and subsequent 

regeneration from these (Horsch et al., 1984; De Block et al., 1984). 

Agrobacterium-mediated transformation using the technique of co-cultivation of 

protoplasts did, however, have major limitations, some of which included: not all 

species of plants could be readily regenerated from protoplasts, the entire process 

could take up to six months from protoplast to plant, and plants derived from 

protoplasts were more prone to accumulation of mutations or chromosomal 

abnormalities. Co-cultivation of leaf discs with Agrobactenum, a technique which 

was pioneered by Horsch et al., (1985), was shown to be a much quicker and more 

efficient method of transferring T-DNA genes into plants. In the original 

experiments, leaf discs were co-cultivated with co-integrate vector strains of 

Agrobacterium which contained the chimeric nos-nptII-nos gene, and transformed 

plants were regenerated directly from leaf discs following selection on kanamycin. 

Since these results were reported, transgenic plants have been produced from a wide 

range of species using the leaf disc co-cultivation technique or modifications of it 

(Grant et al., 1991). 

Although Agrobacterium-mediated transformation has been highly successful for a 

number of crop plants, considerable research is still required to establish efficient 

production regimes for transgenic plants in many other crops. For some crops the 

problem is the scale-up of transgenic production, especially where only one or at 

most a few transgenic plants have been produced, e.g. asparagus (Conner et ai., 

1988), peas (Puonti-Kaerlas et al., 1990), and walnut (McGranahan et al., 1988). 
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For others, the problem goes beyond this to the point of being unable to produce any 

transformed plants at all. The latter generally occurs in species which do not form 

tumours after inoculation with Agrobactenum, e.g. cereals. The absence of tumour 

formation following inoculations with virulent Agrobactenum strains has been 

attributed to a lack of wound response (Potrykus, 1990). It is thought that only 

those plants and tissues with a pronounced wound response will develop larger 

popUlations of wound adjacent cells competent for efficient Agrobacterium-mediated 

transformation. 

1.6 Susceptibility of monocotyled.onous plants to Agrobactenum 

Many monocotyledonous plants have for some time been thought to be insensitive 

to Agrobacterium infection and subsequent transformation (De Cleene and De Ley, 

1976; De Cleene, 1985). However, considerable work has recently been done to 

establish a range of monocotyledonous plants as hosts for Agrobacterium. 

Consequently, several monocotyledonous genera have now been reported to respond 

to Agrobacterium inoculation by producing tumours. Published results of tumour 

responses are summarized in Table 1.1. In these studies, opines or enzymes 

involved in the synthesis of opines, were detected in extracts of the tumours (or 

'swellings', as reported in some cases) which were produced in response to 

inoculations with wild type strains of Agrobacterium. This provided biochemical 

evidence for Agrobacterium-mediated transformation at the cellular level in 

monocotyledonous plants. On at least one of these species i.e., onions, a 

pronounced wound response has been observed following both inoculation of bulbs 

with Agrobacterium and injection of bulbs with no bacteria (Dommisse et al., 1990). 

As well as resulting in the production of tumours, Agrobacterium-mediated gene 

transfer has also resulted in transient expression of foreign genes in cells of Tulipa 

(Wilmink et al., 1992) and Zea mays (Graves and Goldman, 1986), and in stable 
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integration of the introduced DNA derived from Agrobacterium. To date, the only 

monocotyledonous species from which stably-transformed, transgenic plants have 

been produced after transformation with Agrobacterium, is Asparagus officinalis 

(Bytebier et at., 1987; Conner et al., 1988). Transformed Triticum (wheat) cell 

cultures (Mooney et al., 1991) and transformed Oryza (rice) (Raineri et al., 1990) 

cell cultures stably expressing foreign genes have also been produced. All of this 

work is summarized in Table 1.1. 

1. 7 Onion (Allium cepa) as a host for Agrobacterium 

Past attempts to infect and transform onion and other Allium species with 

Agrobacterium have either been unsuccessful, or at most have been reported as 

resulting in 'abnormal localized overgrowths' on A. cepa bulbs inoculated with 

Agrobacterium tumefaciens (Jakowska, 1949), suggesting that onions may be a host. 

Because work done in this thesis clearly establishes A. cepa as a host for 

Agrobacterium, as evidenced by tumorigenic responses and the production of opines 

by these tumours, and because a pronounced wound response was evident after 

inoculation of bulbs with or without Agrobacterium, it was thought that the species 

A. cepa could potentially be transformed by Agrobacterium. If transformed plants 

were recovered, onions would join those few monocotyledonous plant species which 

have already been transformed (Table 1.1). Work done in this project determines 

the feasibility of developing a transformation system in A. cepa utilizing the tumour 

response of onions to investigate Agrobacterium-mediated gene transfer. 

1.8 Aims of this project 

The first aim of this project was to establish whether onion was a host to 
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Agrobacterium tume/adens and/or A. rhizogenes (Chapter 2). This was done by 

inoculating bulbs of selected onion cultivars in different places with several virulent 

and avirulent Agrobacterium strains. The growth of tumours in response to inoc­

ulation with virulent Agrobacterium strains, and synthesis of opines in these tumours 

was considered as evidence that bulbs of these cultivars were susceptible to 

Agrobacterium infection, and that T -DNA genes were being expressed. 

Tissue culture experiments were conducted concurrently with bulb inoculations to 

determine the most efficient tissue culture systems for these and other cultivars 

(Chapter 3). This included induction of callus, regeneration of plants from callus, 

shoot proliferation and protoplast culture. A tissue culture system was required so 

that following co-cultivation of explants with Agrobacterium, putatively transformed 

plants could be regenerated from tissue which had survived selection. 

Once tissue culture systems were established, dose response experiments with 

selection agents were performed to determine which concentration of each should be 

used for selection of transformed cells after co-cultivation (Chapter 4). These 

experiments were carried out on tissues which would be used as explants in 

Agrobacterium co-cultivation experiments. Kanamycin, geneticin (G4l8), 

chlorsulfuron and later, hygromycin were the four selective agents chosen. 

With the aim of producing a transformed onion plant or plants, transformation 

experiments (Chapter 5) were carried out on onions using a number of wild-type and 

disarmed Agrobacterium binary vector strains. Two different binary vectors, viz 

pKIWI1lO and pGA643, were used in these experiments. Large numbers of diff­

erent explant types were co-cultivated with log phase cultures of Agrobacterium. In 

addition to this, basal plates of freshly sterilized onion bulb explants and subcultured 

in vitro shoot cultures were injected with log phase cultures of Agrobacterium. 

Plantlets or callus showing resistance to the appropriate selection agent were assayed 

for the expression of the proteins NPTII and GUS where appropriate. Southern 

analyses were also carried out on this tissue. 
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Chapter 2: Onion is a monocotyledonous host for 

Agrobacterium 1 

2.1. Abstract 

Onion (Allium cepa) bulbs and leaves were inoculated with 25 virulent strains of 

Agrobacterium. Eleven strains of Agrobacterium tumefaciens, one of A. rubi and six 

of A. rhizogenes induced tumorous growths at the base of bulbs of the New Zealand­

bred cultivars 'Pukekohe Longkeeper' and 'Early Longkeeper'. One A. rhizogenes 

strain, HRI produced a root-like structure arising from a tumour at the base of an 

'Early Longkeeper' bulb. The majority of these tumours produced nopaline, 

suggesting that transformation had occurred at the cellular level. By contrast, 

nopaline or octopine were never detected in extracts of tumour-free inoculation sites 

which had been inoculated with virulent or avirulent strains. Tumours appeared 

earlier on bulbs inoculated with Agrobacterium cultured in the presence of 

acetosyringone. The tumour response to Agrobacterium inoculations was genotype­

dependent, as only two of four inoculated cultivars produced tumours. After being 

excised and surface-sterilized, some of these tumours produced roots in sterile 

culture. The Agrobacterium strains which induced the root-producing tumours 

comprised wild-type strains as well as some harbouring the binary vector pKIWIllO. 

Although tumour-roots were transferred to a range of media, no further callusing or 

shoot production was seen in the excised tumours. 

1 An earlier version of the tumour work presented in this chapter has been published in Plant Science 69 
(Dommisse et at., 1990). A reprint of this paper is enclosed at the back of the thesis. 



16 

2.2. Introduction 

Monocotyledonous plants have not traditionally been considered as hosts for 

Agrobacterium infection, with only small tumours or swellings being occasionally 

recorded in a few species following inoculation with Agrobacterium (De Cleene and 

De Ley, 1976; De Cleene, 1985). However, recent increased interest in using 

Agrobacterium to genetically engineer plants, has resulted in more thorough 

investigations into the host range of Agrobacterium in monocotyledonous plants. A 

number of monocotyledonous genera have now been reported as hosts for tumour 

induction by Agrobacterium. These are noted in detail in section 1.6 and in Table 

l.l. 

Crown gall tumours result from the overproduction of the plant growth regulators 

(PGRs) auxin and cytokinin, which are encoded by T-DNA genes of virulent A. 

tumejaciens strains. Depending on the strain of Agrobacterium used, the morphology 

of the tumours is typified by either the production of amorphous, unorganized callus 

or by teratomas containing aberrantly organized stem and leaf-like structures (Gelvin, 

1990). Other factors, including the host plant species and even the position of 

inoculation on the plant can determine the incidence of tumour production (Conner 

and Dommisse, 1992)2. 

The presence of opines in tumours of plants which have been inoculated with virulent 

strains of Agrobacterium, is generally taken to indicate that the tissue has been 

genetically transformed (Firmin, 1990) (section l.5). Interest in opines developed 

after the discovery that their synthesis in crown gall tumours (and, as later found, 

in hairy roots) is strain-specific (Goldmann et al., 1968; Petit et al., 1970) and that 

they can be degraded with the same specificity by Agrobacterium (Petit et al., 1970). 

This implied that there was a nutritional relationship between Agrobacterium and the 

diseased tissue of its host. Subsequently, a theory, known as the opine concept was 

2 A proof of this paper is enclosed at the back of this thesis 
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proposed, describing the role of opines as nutritional mediators of parasitism (Petit 

and Tempe, 1985). The opine concept states that 

(i) opines are trophic mediators of parasitism, and 

(ii) this function is essential for survival and propagation of Ti and Ri plasmids. 

According to this theory, everyone of these plasmids should carry genes involved 

in opine synthesis in transformed plant cells and opine degradation by bacterial cells 

harbouring the plasmid (Davioud et al., 1988) 

Opines produced by A. tumefaciens tumours or A. rhizogenes hairy roots are 

generally classified into groups, based on their opine type (Grant et al., 1991). 

Currently, Ti plasmids are represented by five opine types. These include the 

octopine, nopaline, agropine, succinamopine and the 'grapevine' types. Ri plasmids 

are represented by three opine types, including the agropine, mannopine and 

cucumopine types. A detailed summary table of this information can be found in a 

review by Grant et ai. (1991). Two commonly observed opines are nopaline (a 

condensation product of L-arginine and a-ketoglutarate) and octopine (a condensation 

product of L-arginine and pyruvate). The chemical structures of nopaline and 

octopine can be found in the publication of Petit and Tempe (1978). These opines 

can be detected after TLC electrophoresis using Sakaguchi's reagent, which is 

specific for compounds containing a guanidine group (Sakaguchi, 1950). Such 

compounds are usually limited to octopine, nopaline and arginine in plants (Shaw et 

ai., 1988). Both octopine and nopaline stain pink, whilst arginine stains an orange­

pink colour. Sakaguchi's reagent has since been used by some groups to test for the 

presence of nopaline and octopine (Firmin and Fenwick, 1978; Petit and Tempe, 

1978; Dahl and Tempe, 1983; Shaw et ai., 1988). After staining with this reagent, 

opine levels can be quantified by scanning densitometry, which enables detection of 

octopine and nopaline down to levels as low as 1 p,g (Shaw et al., 1988). 

In vitro studies of axenic tumours have shown that this tissue can grow on hormone­

free media (Rudelsheim et at., 1987). Hernalsteens et at. (1984) isolated tumour 

tissue from the monocotyledon Asparagus officinalis after infecting stem fragments 

with the wild-type A.tumefaciens strain, C58. This tumour tissue grew in vitro on 
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a hormone-free medium and the T-DNA-encoded opines, nopaline and agrocinopine 

were detected in these cultures. The tumour lines were subsequently shown by 

Southern analysis to contain T-DNA segments identical to the T-DNA found in 

dicotyledonous plants (Bytebier et ai., 1987). Axenic tumour tissues capable of 

proliferation on hormone-free media, and of producing opines, have since been 

isolated from other monocotyledonous plants, including Anthurium andraeanum 

(Kuehnle and Sugii, 1991), Dioscorea bulbifera (Schafer et al., 1987), and Oryza 

sativa (Raineri et al., 1990). Transfer of Agrobacterium T-DNA to the cells of these 

species has been confirmed by Southern hybridization (Schafer et al., 1987; Raineri 

et al., 1990; Kuehnle and Sugii, 1991). The work described in the following chapter 

establishes onion as a host for Agrobacterium and provides substantial evidence for 

the expression of T -DNA genes. Responses of excised tumours in axenic culture are 

also described. 

2.3. Materials and Methods 

2.3.1 Induction of tumours 

Onion (Allium cepa cvs Pukekohe Longkeeper (PLK) , Early Longkeeper (ELK), 

Southport White Globe (SWG) and Japanese Saporo Yellow (JSY» bulbs were 

inoculated with 27 strains of Agrobacterium comprising 16 strains of A. tumejaciens, 

10 strains of A. rhizogenes and one strain of A. rubi (Table 2.1). Strains LBA4404 

and K1, which are incapable of inducing tumours, were used as bacterial controls. 

All strains of Agrobacterium were grown on solid AB medium (Chilton et al., 1974) 

plus 0.5% (w/v) yeast extract and 20 mgt! cycloheximide at 28°C. 

Bulbs were inoculated by stabbing with sterile needles dipped in Agrobacterium 

colonies. Inoculation sites included the base of the bulb (close to the basal 

meristem), around the equator of the bulb, near the neck of the bulb and in sprouted 



19 

Table 2.1 Tumour responses and opine production of tumours, following inoculation of 'Pukekohe 
Longkeeper' (PLK) and 'Early Longkeeper' (ELK) bulbs with 27 strains of Agrobacterium. 

Strain bJ'ilRi Opine type Tumour response dOpine detected 
plasmid (cultivar) (mg/g FW) 

A. tumefaciens 

LBA4404 pAL4404 null 0.000 

aKI null null 0.000 

B6 pTiB6 octopine 0.000 

H100 pTiHlOO nopaline 0.000 

"A281 pTiBo542 agropine + PLK, ELK _c 

aA722 pTiA6NC octopine + PLK, ELK trace (ELK) 

aC58 pTiC58 nopaline + PLK, ELK 0.184 (ELK) 

6025 UCTi nopaline + PLK 0.473 

6675 UCTi nopaline + PLK 0.250 

8302 UCTi nopaline + PLK, ELK 0.826 (PLK) 

8317 UCTi nopaline + PLK, ELK trace (PLK) 

8326 UCTi nopaline + PLK 0.462 

8330 UCTi nopaline + PLK, ELK 0.410 (ELK) 

8375 UCTi nopaline 0.000 

8367 UCTi nopaline + ELK 0.881 

aA4T pRIA4 agropine + PLK, ELK -c 

A. rhizogenes 

A4 pRIA4 agropine -c 

HRI pRiHRI agropine + PLK -c 

TR7 pRiTR7 mannopine -c 

TRIOI pRiTRIOI mannopine -c 

TRI05 UCRi unknown + PLK _c 

TRI07 UCRi mannopine _c 

1855 pRi1855 agropine + PLK -c 

8196 pRi8196 mannopine + ELK -c 

15834 pRi15834 agropine + PLK _c 

11325 UCTi nopaline + PLK, 0.957 
+ ELK 0.566 

A. rubi 

13335 UCTi octopine + ELK trace 

a These strains have the same C58 chromosomal background but differ in plasmid content. 

b UCTi = uncharacterized Ti plasmid; VCRi = uncharacterized Ri plasmid. 

C = Opine analysis not performed (see text). 
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leaves. Inoculated and control bulbs were placed on top of empty beakers and left 

at room temperature (20-24°C) for up to 50 days. Six or seven weeks after 

inoculation, tumorous growths at basal inoculation sites, and swellings at bulb 

equator inoculation sites were excised. The same regions were cut from the 

inoculated controls (K1 and LBA4404) and the uninoculated controls. 

2.3.2 Opine analysis 

Analysis of opines was carried out on tumour and control tissue by electrophoresis 

on cellulose thin layer plates and staining with Sakaguchi's reagent, as outlined in 

the protocol of Shaw et ai. (1988). Known amounts of nopaline and octopine 

standards were spotted onto the cellulose with and without control inoculation extract 

('PLK' inoculated with LBA4404). This step was carried out to check if sugars in 

the bulb extract were causing retention of the migration of standards. Slowing down 

of migration was sometimes apparent, as spots which stained the pink colour of the 

nopaline standard did not migrate as far as the nopaline standard. 

To enable direct comparison of opine-positive spots on the electrophoretogram, each 

volume of sample spotted was extracted from the same weight of tumour, wound 

response or control bulb tissue. To determine the opine types of strains with 

uncharacterized Ti or Ri plasmids (section 2.4.2; Table 2.1), these strains of 

Agrobacterium were plated on AB medium without NH4CI or glucose. Nopaline, 

octopine or mannopine were included in the medium as the sole source of carbon and 

nitrogen. Nopaline and octopine staining patterns of extracts from tumours induced 

by these strains were used to confirm results. 

2.3.3 Effects of acetosyringone on tumour induction 

To test the effect of acetosyringone on tumour formation and T-DNA expression, 

Agrobacterium strains were cultured overnight (25°C, dark, gyratory shaker, 150 

rpm) in MG/L broth (Garfinkel and Nester, 1980). Each strain was cultured with 

and without 20 p,M acetosyringone (Sheikholeslam and Weeks, 1987). A total of 
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1 ml of bacterial suspension was inoculated with a sterile syringe into several sites 

at the base of the bulb. 

2.3.4 In vitro culture of tumour tissue 

'Pukekohe Longkeeper' onion bulbs were inoculated with several wild-type 

Agrobacterium strains (section 2.3.1), and with virulent and avirulent strains which 

harboured the binary vector pKIWI11 0 (Janssen and Gardner, 1989; see Fig 5.1 for 

detail of the T-DNA region). Four to six weeks after inoculation of bulbs, tumours 

had reached about 4-5 mm in diameter. At this stage the tumours were excised and 

surface-sterilized for in vitro studies. The parts of the bulb which were inoculated 

with the avirulent Agrobacterium strains LBA4404 and K1, and those stabbed only 

with a sterile needle, were also excised and surface-sterilized in the same way. 

Bulbs were stripped of their outermost scale/s, wiped with 95 % ethanol, and tumours 

excised with a scalpel dipped in 95 % ethanol. Excised tumours were surface­

sterilized by immersion in a 25 % v/v solution of commercial bleach (5 % w/w 

sodium hypochlorite), with stirring, for 2-3 minutes. They were then rinsed 3-4 

times in sterile distilled water. All tumours, including those produced after inoc­

ulation with virulent strains containing pKlWI1lO, were excised and cultured as 

described below. 

Tumours were initially placed in the dark (25°C) on two types of media: 

1. BDS (Dunstan and Short, 1977), the basal medium used for callus 

production, seed germination, regeneration and seedling clonal propagation 

(section 3.3), and 

2. onion shoot proliferation basal medium (with 0.12 mgt1 NAA and 2 mgt1 

BA added, see section 3.3.4). 

Half of the root-producing tumours which had resulted from inoculations with the 

virulent strains C58 and A4T harbouring the binary vector pKIWI1lO, were excised 

and cultured on the above media supplemented with 750 mgt1 kanamycin. In addit­

ion, half of the non-root-producing tumours induced by strain A 722 containing 

pKIWI 11 0 , were also cultured on identical kanamycin-supplemented media. 
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Neither media used contained PGRs. Since browning of tumours sometimes 

occurred, in vitro-cultured tumours were subsequently transferred to the same media 

with lowered macro-, micro- and iron salts concentrations. These media contained 

118 X macro-, micro- and iron salts, and half the concentration of vitamins normally 

present in full-strength media. Previous work on non-transformed onion roots 

growing in culture has shown that the roots grow better in media containing as little 

as 1I1Ox concentration of basal salts (Dr J D Ferguson, pers. comm.). Both low 

strength media were made up with PGRs (0.045mgl- l NAA, 1 mgt l BA) and without 

PGRs. These were added in an attempt to stimulate the growth of those tumours 

which had not responded on the hormone-free media. Some root-producing tumour 

cultures were transferred to the light (25°C, 16 h day, 30 p.,E/m2/sec). 

To check for the presence of contaminating, surface-living bacteria, roots which 

grew from tumours were smeared across nutrient agar plates or were dipped into 

liquid nutrient broth, both of which contained 0.5 % (w/v) yeast extract. Nutrient 

media were incubated overnight at 28°C (agar plates), and 25°C (nutrient broth) with 

shaking. 

2.3.5 Opine production by tumour roots 

Roots produced by tumours resulting from inoculations with Wild-type Agrobacterium 

strains HRI and 8367, and with strains C58, A4T and 6675 harbouring the binary 

vector pKIWI1lO, were extracted and analysed for opines using the method of Shaw 

et al. (1988). 

2.3.6 (j-glucuronidase assays on tumour roots 

(j-glucuronidase (GUS) histochemical assays (Jefferson, 1987) were carried out on 

roots growing from tumours incited by A. tumejaciens strain A4T, harbouring the 

binary vector pKIWI1lO. Roots from aseptic onion shoot cultures were used as 

controls. To check that GUS activity was not bacterial in origin, roots were smeared 

across nutrient agar plates and dipped in liquid nutrient broth, both media containing 



23 

yeast extract (0.5 %). Nutrient media were incubated overnight at 28°C (agar plates), 

and 25°C (nutrient broth) with shaking. 

2.4. Results 

2.4.1 Onion tumours 

Three weeks after inoculation, small tumours were visible at inoculation sites close 

to the basal meristem of some of the 'PLK' and 'ELK' bulbs which had been inoc­

ulated with virulent strains of Agrobacterium tumefaciens and A. rhizogenes (Table 

2.1). They appeared as white cell masses immediately surrounding the inoculation 

sites (Plate 2.1). These tumours continued to steadily increase in size until they 

were excised for opine analyses after 6-7 weeks. A higher percentage of tumours 

resulted from inoculations of mature 'PLK' and 'ELK' bulbs which were carried out 

two months after harvesting, than from immature bulbs which had been harvested 

two months earlier than usual. Not all virulent strains induced tumorous growths, 

and these growths were consistently absent from the inoculated (LBA4404, Kl) and 

uninoculated controls (Table 2.1). No tumours were seen at the basal inoculation 

sites of 'SWG' or 'JSY' bulbs. Swollen, watery tissue, thought to be a wound 

response, was visible around basal inoculation sites of bulbs of all four cultivars 

inoculated with avirulent Agrobacterium strains, and around the wounds of 

uninoculated controls. This tissue was also present at sites inoculated with virulent 

strains which did not cause the described tumour results (Table 2.1). 

When inoculated into the base of 'ELK' bulbs, one strain of A. rhizogenes, HRI, 

induced a hairy root-like response which developed from what appeared to be a tum­

our (Plate 2.2). All other A. rhizogenes strains used induced tumours like those seen 

with A. tumefaciens. In bulbs of all four cultivars, including controls, watery 

swellings occurred at the equatorial inoculation sites (Plate 2.3). No tumours or not­

iceable swellings were seen at the neck of the bulb or on inoculated leaves of onions. 
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2.4.2 Opines in tumour tissue 

Eleven strains of A. tumefaciens, six strains of A. rhizogenes and one strain of A. 

rubi used, induced some tumour response in inoculated 'ELK' and 'PLK' bulbs 

(Table 2.1). Only tumours from octopine- or nopaline-producing strains were 

analysed for these opines. Other types of opines were not determined as the method 

commonly used for analysing agropine and mannopine (Petit et al., 1983) was not 

considered specific enough to detect only these two compounds in tumours without 

also detecting other reducing sugars which co-migrated during electrophoresis. 

Eleven strains of Agrobacterium induced opine-positive tumours on either or both of 

the onion cultivars (Table 2.1). Some of the tumour extracts which were subjected 

to electrophoresis and staining are shown in Plate 2.4. Variation between amounts 

of nopaline produced by different tumours was apparent from densitometry readings. 

Strains 8302, 8367 and 11325 consistently produced the highest amounts of nopaline 

(Table 2.1). Sample migration was occasionally retarded by sugars in the extract. 

This retention can be seen in the tumour extract of 'PLK' inoculated with A. 

tumefaciens strain 6025 (Plate 2.4, lane B). No opines were detected in extracts of 

'JSY' and 'SWG' bulb base inoculation sites after inoculations with virulent or 

avirulent strains of Agrobacterium. 

One octopine- and one nopaline-producing strain of A. tumefaciens produced tumours 

on 'PLK' and 'ELK' bulbs which only contained trace amounts of either opine type, 

even when higher levels of extract (10-20 Jll) were spotted onto electrophoresis plates 

(Table 2.1). However, detection of opines in samples applied at these levels was 

more difficult, as high sugar levels made the samples viscous, resulting in suboptimal 

migration. Trace amounts of nopaline were also detected in the bulb equator wound 

response swellings of 'PLK' bulbs inoculated with A. tumefaciens strain 6025. 

However, nopaline was not detected in the bulb equator wound swellings resulting 

from any other inoculations. Quantitation of nopaline from the 6025 wound response 

swellings was not possible, as amounts were below the detection limit of 

densitometry. 
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A.tumefaciens strains for which opine types had not yet been determined (6025, 

6675,8302,8317,8326, 8330, 8367 and 8375) were shown by growth on restricted 

media and/or by electrophoretic staining patterns, to be nopaline strains. Growth of 

bacteria on a medium supplemented only with nopaline indicated that these 

Agrobacterium strains each produce enzymes involved in the catabolism of nopaline. 

2.4.3 Effects of acetosyringone on tumour production 

Bulbs which were inoculated with Agrobacterium cultured in the presence of 

acetosyringone, consistently formed tumours after two weeks, at least a week earlier 

than in non-acetosyringone treatments. However, acetosyringone had no effect on 

the final frequency of tumours, and did not result in tumour production with 

ineffective Agrobacterium strains (data not shown). 

2.4.4 Roots produced by in vitro-cultured tumours 

Tumours which had been excised from inoculated bulbs usually produced roots 

within 3-4 weeks of being established in culture. No further callus was produced by 

tumour explants. Tumours producing roots in culture included those from 'PLK' 

bulbs inoculated with A. tumefaciens strains 8367 and C58, and A. rhizogenes strain 

HRI, and with the A. tumefaciens strains C58, A4T and 6675, each of which was 

harbouring the binary vector pKIWIllO. Other excised tumours did not produce 

roots in culture. Results of inoculation/ in vitro culture combinations are shown in 

Table 2.2. 

Tumours produced 1-6 roots in culture (Plate 2.5; Table 2.2). Some of these roots 

greened when cultures were transferred to the light. Roots continued to elongate 

when transferred to basal media containing NAA and BAP, but no new roots were 

produced. No bacteria grew on the plates across which the roots had been smeared, 

or in the liquid broth into which roots had been dipped. Excised control inoculations 

i. e., those inoculated with an avirulent bacterial strain or with no bacteria, did not 

respond to in vitro culture. Shoots or plantlets could not be regenerated from the in 

vitro tumour roots. After 8-10 months 
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Table 2.2 Production of roots by excised, in vitro-cultured tumours, and responses of some of these 
roots when grown on kanamycin. 

Agrobacterium strain Total no. roots produced by Growth on kanamycin 
excised tumours (750 mgl-I ) 

pKIWI1101 A281 0 n.a. 1 

pKIWI11O/C58 6 root elongation (no new roots 
produced) 

pKIWI110/A722 0 no growth of excised tumour 

pKIWI11O/A4T 4 root elongation (no new roots 
produced) 

pKIWI110/6675 5 n.a. 

pKIWI110/8330 0 n.a. 

pKIWI110/8302 0 n.a. 

C58 1 no binary vector (n.a.) 

6025 0 (n.a.) 

HRI 2 " " (n.a.) 

8367 5 (n.a.) 

I n.a.= not attempted 
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of regular subcultures onto the media specified in section 2.3.4, tumour roots 

stopped growing. Roots which had grown from those excised tumours resulting 

from inoculations with binary vector strains of Agrobacterium, elongated when 

placed on kanamycin-supplemented media, but no further roots were produced on 

these media (Table 2.2). No callus growth was seen when excised tumours from 

binary vector strain inoculations were plated on media with kanamycin (Table 2.2). 

2.4.5 GUS histochemical assays on root tissue 

Roots produced by tumours resulting from inoculations with the Agrobacterium strain 

A4T harbouring pKIWIllO, were shown by the histochemical assay to have GUS 

activity. This activity was localized to the vascular region of the root (Plate 2.6). 

Blue precipitate was also visible in roots of some of the control plantlets assayed for 

GUS activity. 

2.4.6 Opine analysis of root tissue 

Opine analysis showed large amounts of arginine to be present in roots growing from 

tumours and in control roots. However, nopaline and octopine were not detected in 

any of the samples analysed. 

2.5. Discussion 

Although there have been some reports of monocotyledonous species developing 

tumour-like swellings at sites of A. tumefaciens inoculation (De Cleene and De Ley, 

1976; De Cleene, 1985), control inoculations to distinguish between general wound 

responses and tumour induction have not usually been performed. This is clearly 

important in A. cepa which produced a marked general wound swelling at all of the 

inoculation sites around the equator of the bulb (Plate 2.3). These wound swellings 

were visible on bacterial and non-bacterial controls. As these swellings did not look 
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any different to those produced at control inoculation sites, it was initially assumed 

that they were only wound and not tumour responses. However, the presence of 

trace amounts of nopaline detected in these swellings produced by inoculation of 

'PLK' with the virulent strain 6025, indicated that the Agrobacterium present in the 

wound swellings incited small opine-producing tumours in the inoculation sites. 

Biochemical evidence for Agrobacterium-mediated transformation of cells in tumours 

on monocotyledonous species has been established in most cases. Tumours and small 

tumour-like external swellings induced by A. tumefaciens have been shown to 

produce opines in a number of species including Anthurium andraeanum (Kuehnle 

and Sugii, 1991), Arthropodium cirratum (Conner and Dommisse, 1992), Asparagus 

officinalis (Conner et al., 1988), Chlorophytum comosum (Feng et al., 1988), 

Cordyline australis (Conner and Dommisse, 1992), C. terminalis, C. rubra (Suseelan 

et al., 1987), Dioscorea bulbifera (Conner and Dommisse, 1992), Hippeastrum 

rutilum (Feng et al., 1988), Hordeum vulgare (Deng et al., 1990), Monstera 

deliciosa, Nerine bowdenii, Polygonatum xhybridum (Conner and Dommisse, 1992), 

Triticum aestivum (Deng et al., 1990) and Zantedeschia aethiopica (Conner and 

Dommisse, 1992). Opine synthase activity has also been detected at the inoculation 

sites of Agrobacterium in Zea mays (Graves and Goldman, 1986), and Gladiolus 

(Graves and Goldman, 1987), although distinct tumour responses were not observed 

in Zea or Gladiolus. 

This study provides evidence that Allium cepa is a monocotyledonous host for 

Agrobacterium tumefaciens transformation. Results presented here also show that 

onions are a host for A. rhizogenes and A. rubi. The genus Allium is usually placed 

in the Liliaceae, or sometimes in the segregate family, Alliaceae. Five of the other 

21 monocotyledonous species for which there is good evidence for Agrobacterium 

transformation (Table 1.1.), viz Asparagus, Chlorophytum capense and C. comosum, 

Polygonatum and Tulipa, are also in genera usually placed in the Liliaceae. In total, 

10 of the 22 species (including Allium) belong in families classified into the order 

Liliales. Based on these results, one could predict that more plants in the Liliales 

order might be susceptible to Agrobacterium-mediated transformation. 
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A marked contrast was observed between Agrobacterium strains A4T (consistent 

tumour induction in 'PLK' and 'ELK') and A4 (consistently no response in these two 

genotypes). Since both of these strains contain the same Ri plasmid (PRiA4) and 

differ only in their chromosomal backgrounds, this contrast can be attributed to 

chromosomal effects. All other virulent Agrobacterium strains with the same chrom­

osomal background as A4T (C58, A722, A281) also induced tumours in both onion 

genotypes. 

It has been shown that opines may be formed from arginine in wild-type plant tissue 

growing on media supplemented with arginine (Christou et at., 1986). Therefore, 

detection of opines may not always be absolute proof for Agrobacterium-mediated 

transformation of cells. For this reason, uninoculated tissue was analysed in the 

same way as tumourigenic and non-tumourigenic inoculated tissue. Neither octopine 

nor nopaline was detected in any uninoculated tissue. Quantitation of accumulated 

opines in onion tumours by scanning densitometry, showed levels to be at least one 

hundred times more than the minimum detectable level (Table 2.1). In contrast, no 

densitometric readings were recorded from electrophoretograms of inoculated or 

uninoculated control tissue. 

Acetosyringone reduced the time taken for Agrobacterium-induced tumours to 

develop in onions, although it had no effect on the ultimate frequency of tumour 

appearance, or on the range of Agrobacterium strains that were effective. Aceto­

syringone and related compounds are known to induce the expression of 

Agrobacterium virulence genes (Stachel et at., 1985; Bolton et at., 1986) and the 

resulting circularization of T-DNA (Usami et at., 1987). These effects may have 

increased the frequency of transformed cells at the wound site, causing tumours to 

appear earlier. Usami et at. (1987) demonstrated an absence of these vir-inducing 

plant compounds in Allium jistulosum and in other monocotyledonous plants, and 

showed that supplying acetosyringone overcame this limitation for T-DNA circular­

ization. They suggested this as a reason why Agrobacterium-induced tumour form­

ation is often blocked in monocotyledonous plants. However, subsequent work by 

the same group has since shown that wheat and oats contain a substance(s) that 
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induces vir gene expression (U sami et al., 1988). In this study, it has been 

established that provided the correct Agrobacterium strains are used, tumours 

consistently form on onions, even in the absence of acetosyringone or other 

exogenously-supplied vir-inducing compounds. 

It is likely that the tumourigenic and rootlike responses seen in these inoculations 

were mainly localized in the area of the bulb immediately surrounding the basal 

meristem since these cells are younger and likely to be more metabolically active 

than cells further from the meristem. The swellings seen in inoculations around the 

equator of the bulb were assumed to be wound responses for two reasons: firstly, 

they were visible within 48 hours of inoculation and secondly, excepting one case 

where a trace amount of nopaline was found in one of these swellings (,PLK' 

inoculated with strain 6025), no nopaline or octopine was detected in these swellings. 

An observation earlier this century that 'localized abnormal overgrowths' occurred 

on onion bulbs inoculated with Bacterium (sic) tumefaciens (Jakowska, 1949) sugg­

ested that Agrobacterium could infect and transform A. cepa cells. What was then 

thought to be susceptibilty of Allium cepa to A. tumefaciens has been confirmed by 

the work presented here. 

2.5.1 Root production from in vitro-cultured tumours 

The lack of regenerative capacity of onion tumour tissue has also been commonly 

observed in other plants. Gelvin (1990) reported that crown gall tumours rarely 

revert to tissue capable of regenerating plants, although hairy roots of various species 

can spontaneously regenerate plants. Although roots were spontaneously regenerated 

from in vitro-cultured tumours, opines were not detected in these roots. The tum­

ours from which roots grew were probably opine positive, given that previous inoc­

ulations of the same cultivars with the same Agrobacterium strains had resulted in 

opine-positive tumours. This result does not necessarily mean that the roots were 

not producing opines, but possibly that given the small amounts of tissue available 

for analysis, opines were not present in levels high enough to be detected by the 
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technique used. Similar results have been reported for Polygonatum xhybridum and 

Zantedeschia aethiopica, where tumours were small and did not enlarge with age 

(Conner and Dommisse, 1992). However, it is also possible that the tumour ex­

plants established in culture were chimeric tissues consisting of transformed and 

untransformed cells. Consequently, roots may have developed from untransformed 

cells, in response to PGRs being cross-fed from neighbouring transformed tumour 

cells. 

The reason for lack of rapid growth of tumour cells on the hormone-free medium is 

unclear. Other workers have shown that excised Asparagus tumour tissue grew only 

slowly as hard compact calli on hormone-free media and that growth of these calli 

was not enhanced unless they were transferred to media containing PGRs (Conner 

et al., 1988). However, the growth of excised onion tumour tissue was not 

enhanced after transfer to media containing PGRs. It is possible that onion tumour 

cells were sensitive to the ethanol and hypochlorite used to sterilize excised tumours, 

and that their subsequent growth on the medium may have been inhibited for this 

reason. 

The GUS-positive response of tumour- and control roots, i.e. transformed and 

untransformed tissue, has recently been investigated by other workers. Hu et al. 

(1990) uncovered the reason why many workers had been troubled by 'false 

positives' or 'background' activities with GUS assays. They surveyed several organs 

of a range of 52 seed plants, including scallion (Allium jistulosum) , and found that 

A. jistulosum tissues had intrinsic GUS-like activity as detected by the histochemical 

and flurometric assays. These assays were, however, not carried out under sterile 

conditions and it is possible that bacterial enzymes may have also contributed to this 

GUS-like activity. A modified GUS histochemical assay protocol (Kosugi et al., 

1990), which includes the addition of 20 % methanol to the reaction buffer, has since 

enabled intrinsic GUS-like activity to be suppressed (section 5.3.3). Expression of 

the introduced gus gene is reported not to be suppressed under these conditions. 

Twenty percent methanol was not included in the GUS assay reaction buffer when 

onion tumour root tissue was being assayed, as the technique had not been published 
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at this stage of the project. By the time the (methanol) method was in use, there 

were no surviving tumour roots to assay. 

Following this work, co-cultivations of Agrobacterium with onion tissue and in vitro 

i~ection experiments have been carried out in an attempt to produce transgenic 

plants (section 5.3). Co-cultivation of basal meristem tissue with Agrobacterium is 

most likely to be the best approach for transformation of onions because this is the 

tissue type susceptible to Agrobacterium when bulbs are inoculated in vivo, and 

onion plants are readily cultured in vitro from this explant source (Hussey and 

Falavigna, 1980). 
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Plate 2.1 Tumours induced on onion (,Pukekohe Longkeeper') bulb tissue after 

inoculation with Agrobacterium tumefaciens strain C58 (top) and an avirulent control 

strain, LBA4404 (bottom). 
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Plate 2.2 Root-like response (arrow) of onion ('Early Longkeeper') bulb inoculated 

with Agrobacterium rhizogenes strain, HRI, (right) and no response after inoculation 

with an avirulent strain of A. tume/adens LBA4404 (left). 

Plate 2.3 Generalized wound response of onion (,Pukekohe Longkeeper') following 

inoculation with A, strain A4T (virulent); B, no bacteria; C, strain 8317 (virulent); 

D, strain LBA4404 (avirulent). 
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Plate 2.4 Opine analyses of onion tumour tissue. Extracts of Agrobacterium­

induced tumours and control tissue of onion bulbs were subjected to electrophoresis 

on cellulose thin layer plates and stained with Sakaguchi's reagent. A, strain 

LBA4404 (control), 'PLK'; B, strain 6025, 'PLK'; C, strain 8302, 'PLK'; D, 

octopine (0) and nopaline (n) standards (2 p.g each); E, strain 11325, 'PLK'; F, 

strain 11325, 'ELK'; G, strain 13335, 'PLK'. Samples run from anode (+) to 

cathode (-). 
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Plate 2.5 Roots produced by an excised in vitro-cultured tumour which has been in 

culture for eight weeks (xlO actual size). The tumour resulted from inoculation of 

a 'PLK' onion bulb with the strain A4T, harbouring pKIWIllO. 

Plate 2.6 GUS activity in the vascular region of a root produced by a tumour (x40 

actual size). This tumour was the result of inoculations of 'PLK' bulb bases with 

the strain A4T, harbouring pKIWIllO. 
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Chapter 3: Tissue and protoplast culture of Allium cepa 

3.1. Abstract 

Eight onion (Allium cepa) genotypes were screened in tissue culture for callus 

formation, regeneration of pIantlets from callus and clonal multiplication by shoot 

proliferation. All of these genotypes could be clonally multiplied and four of them 

were regenerab1e from callus. A technique for plantlet multiplication, which uses 

longitudinally-bisected stems of 4-6 week-old in vitro-germinated onion seedlings as 

explants, was developed. 

Onion ('PukekoheLongkeeper', 'Southport White Globe', 'Japanese Saporo Yellow' 

and 'Hikeeper FI ') protoplasts were isolated and cultured on a range of specialized 

media. These protoplasts often resynthesized cell walls and sometimes divided. 

However, only first cell divisions were regularly seen. After they had formed walls 

or divided, protoplasts remained alive and intact for up to six weeks. Culturing 

protoplasts in the same media solidified with 0.8% agarose, also resulted in cell wall 

formation and first cell divisions. 

3.2. Introduction 

The assumption that whole transformed plants can be regenerated from transformed 

protoplasts, cells and tissues is implied within all gene transfer techniques currently 

in use for plants. The inability of plants to be regenerated from transformed cells 

or tissues is usually the final barrier to the production of genetically transformed 

plants. Plant regeneration from tissue cultures is most commonly accomplished via 
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somatic embryogenesis or organogenesis. Prior to the development of an efficient 

Agrobacterium-mediated transformation system for onion cultivars, tissue culture 

systems must be established for the genotypes of interest. Important components of 

the tissue culture system include the chemical and physical environment, as well as 

the choice of plant genotype and the explant source (Conner and Meredith, 1989). 

Methods currently available for the in vitro propagation of onion include: 

1. shoot multiplication from axillary buds in meristem tip cultures (Havel and 

Novak, 1985), 

2. direct formation of adventitious shoots on explants removed from basal 

plates (Hussey and Falavigna, 1980) or from flower heads (unripe umbels) 

(Matsubara and Hihara, 1977; Dunstan and Short, 1979) and 

3. indirect formation of adventitious shoots and/or somatic embryos on callus 

tissues established from the proliferating cells of explants (e.g. basal plates, 

leaves, immature inflorescences, segments of roots, ovules, anthers etc.) (see 

Table 3.1). 

The first two methods generally produce plants which are genetically unaltered from 

the explants used (Novak, 1990). The third method, which involves a callusing 

phase, may result in regenerated plants which have altered genotypes due to 

somaclonal variation in culture (Larkin and Scowcroft, 1981; Novak, 1990). 

The literature provides considerable information on regeneration of Allium cepa 

plants from callus, derived from a range of explants and from single cells (Table 

3.1). To achieve the in vitro regeneration of onions from undifferentiated callus, a 

protocol for the induction and maintenance of callus is needed. Dunstan and Short 

(1977) have modified the basal B5 medium of Gamborg (1968) by increasing the 

levels of ammonium, phosphate and nitrate salts, and with the addition of 2,4-D, 

obtained rapidly growing, friable onion callus. This callus was initiated from stem 

tissue excised from sets (bulblets often used for onion propagation). Shoots were 

regenerated from the callus following transfer to a medium containing the cytokinin, 



Table 3.1 A summary of explant types and starting tissues used in tissue culture of Allium cepa and other Allium species. 

Allium cepa (onion) 

A. sativum (garlic) 

A. jistulosum (bunching 
onion) 

A. altaicum 

A. galanthum 

A. roylei 

A. chinense (scallion) 

A. tuberosum (Chinese 
chives) 

1. Dunstan and Short (1978) 
2. Fridborg (1971) 
3. Hussey and Falavigna (1980) 
4. Yoo et al. (1990) 
5. Pike and Yoo (1990) 

Explant type 

Callus Regeneration Shoot proliferation 

set! callus (via organogenesisY twin scales3 

bulbi callus (via somatic inner scales4 

radicle1 embryogenesis )8,10,12 immature flower budss 

aerial bulbs (topsets)2 cell suspension cultures (via axillary buds 7 

seedling shoot meristem tips 12 somatic embryogenesis)lO shoot tips8 
seedling stem 16 
shoot tips 8,12 
umbels 8 

young leaves13 

shoot meristems14 

storage leaves17 

radicle 6 

umbels 8 

umbels 8 
top sets 8 

shoot tips 8 

shoot meristems 14 

seedling stem 16 

6. Shahin and Kaneko (1986) 
7. Hussey (1980) 
8. Phillips and Hubstenberger (1987) 
9. Campion and Alloni (1990) 
10. Phillips and Collins (1983) 

umbels8 

aerial bulbs (topsets)8 
somatic embryos12 

Callus (via organogenesis and shoot meristemslS 

somatic embryogenesis )11,17,18 

callus (via somatic 
embryogenesis )6,8 

callus (via somatic 
embryogenesis )8 

callus (via somatic umbels, topsets (= aerial bulbs)8 
embryogenesis )8 

callus (via somatic shoot tips8 
embryogenesis )8 

callus (via organogenesis and 
somatic embryogenesisi6 

11. Novak and Betlach (1981) 16. Dommisse (1993) 
12. Phillips and Luteyn (1983) 17. Zhou et al. (1980) 
13. Lu et al. (1982) 18. Novak (1980) 
14. Oosawa et al. (1981) 19. Muren (1989) 
15. Bhojwani (1980) 

Haploid plants 

unpollinated ovules9 

unpollinated ovariesl9 
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6-(3-methyl-2-buten-l-ylamino) purine (2iP), and the auxin, naphthaleneacetic acid 

(NAA) (Dunstan & Short, 1978). Phillips and Luteyn (1983) used the auxin-like 

PGR 4-amino-3,5,6-trichloropicolinic acid (picloram) in combination with the 

cytokinin 6-benzylaminopurine (BA) to induce and maintain friable, healthy onion 

callus from seedling shoot meristem tips, and to stimulate regeneration of plants 

from this callus. They also showed that pic10ram was superior to 2,4-D for 

continued maintenance and friability of callus, and subsequent regeneration of plants. 

Work has also been done on regeneration of garlic (Allium sativum) and other Allium 

species and this information is summarized in Table 3.1. 

A range of explant types were used in Agrobacterium transformation experiments 

described in this thesis (section 5.3.2). As regeneration of plants from these explants 

would be necessary for the production of transformed plants, existing protocols were 

examined and new ones established for the regeneration and clonal propagation of 

nine onion cultivars. Attempts to find a suitable protocol for the regeneration of 

onion plants from protoplasts are also described in this chapter. Transformation of 

protoplasts either via Agrobacterium or by direct DNA uptake requires such a 

protocol to have been established in order for transformed plants to be recovered. 

3.3. Materials and Methods 

3.3.1 Onion callusing 

To determine the optimal concentrations of picloram and BA needed for callus 

production from part or parts of Allium cepa 'Pukekohe Longkeeper' ('PLK') 

seedlings, a small range of pic1oram-BA combinations (Table 3.2) was set up on 

BDS basal medium (Dunstan and Short, 1977), pH 5.5, containing 3% sucrose and 

solidified with 0.7% agar (Davis, Bacteriological). Seeds were surface-sterilized in 

a 30% v/v solution of commercial bleach (5.0% w/w sodium hypochlorite) with a 

drop of detergent for 30-45 mins. They were then rinsed at least three times in 
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Table 3.2 Responses of excised 'Pukekohe Longkeeper' seedling stems to vanous BA-picloram 

combinations, on which they were cultured in the dark for 12 weeks. Concentrations used were based on 

those recommended by Phillips and Luteyn (1983). Where callus resulted, the mean weight of callus 

produced per explant is given in brackets. 

Picloram BA concentration (mgl"!) 

concentration 

(mgl"!) 0 1.5 2.0 

0 Shoots Roots (long) Roots (shorter) 

0.75 Callus (mean = 0.825 g), Callus (mean = 0.715 g), Callus (mean = 0.847 g), 

Roots Shoots Roots 

1.5 Callus (mean = 0.988 g) Callus (mean = 0.446 g) Callus (mean = 0.943 g), 

Roots 
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sterile water and plated on the pic1oram-BA media. They were cultured in the dark 

at 25°C for 12 weeks. Following the determination of the PGR concentration which 

optimally induced callus growth, sterilized seeds of A. cepa cvs 'PLK', 'Early 

Longkeeper' ('ELK'), 'Southport White Globe' ('SWG'), 'Hikeeper', 'Odorless', 

'Violet de Galmi', 'Dorata di Bologna' and 'Japanese Saporo Yellow' ('JSY') were 

placed on this callusing medium in the dark at 25°C. Callus was induced from 

seedlings without subculture or transfer to another medium. This medium was also 

used for callus maintenance. 

3.3.2 Regeneration experiments 

The callus used in regeneration experiments was derived from culture on BDS 

supplemented with 1.5 mgt I pic1oram. 

3.3.2.a Regeneration on BA and picloram 

Regeneration experiments were set up on various combinations of pic10ram and BA 

with a wider range of concentrations than had been used for callus induction 

experiments. Callus pieces (5-8 mm in diameter) were cultured in the light (cool 

white fluorescent tubes, 30 p,E/m2/sec) under 16 h days, 8 h nights for 12 weeks. 

The callus used had been cultured for three months since initiation. 

3.3.2.b Regeneration on thidiazuron and picloram 

Regeneration experiments were carried out using thidiazuron (N-Phenyl-N1-I,2,3-

thiadiazol-5-yl urea) (TDZ) as the sole PGR added to BDS basal medium (see Table 

3.3 for concentrations), or with TDZ and pic1oram. TDZ was dissolved in DMSO 

(10 mg mtl) and added after autoc1aving, when media had cooled to about 37°C. 

Nine pieces of callus (5-8 mm in diameter) were placed on each treatment and 

cultured in the light (cool white fluorescent tubes, 30 p,E/m2/sec) for ten weeks, after 

which they were assessed. 



Table 3.3 Responses of 'Pukekohe Longkeeper' callus to a range of thidiazuron concentrations. 
Four-week-old callus was cultured in the light for 10 weeks. Total numbers of roots, shoots, 
green buds and root-like structures are given in brackets. 

Percentage of callil Thidiazuron (TDZ) concentration (mgl-I) 
forming: 

0 0.2 0.5 1 2 4 

Roots 89% 89% 78% 67% 67% 89% 
(187) (42) (30) (21) (40) (25) 

Shoots 0% 0% 0% 0% 11% 11% 
(13) (16) 

Green buds 0% 56% 56% 67% 78% 78% 
(9) (27) (22) (30) (23) 

Root -like structures 0% 0% 0% 11% 0% 0% 
(5) 

I Nine pieces of callus were plated on each different medium. 

8 

45% 
(11) 

0% 

67% 
(18) 

0% 
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3.3.3 Cell suspension cultures 

Most suspension cultures are obtained by transfer of friable callus lumps to agitated 

liquid medium of the same composition as that used for callus growth (Dixon, 1985). 

Friable, undifferentiated callus cultures of 'PLK', 'ELK' and 'SWG' were gently 

crushed with the back of a wide scalpel blade and placed in 50 ml sterile flasks (125 

ml Erlenmeyer) containing liquid BDS supplemented with 1.5 mgt! picloram, as was 

determined to be optimal for onion callus growth (section 3.4.1), and in LS 

(Linsmaier and Skoog, 1965) medium containing 1 mgl-! 2,4-D, a medium used for 

initiation and maintenance of Brassica cell suspension cultures (pers. comm. Dr 

Mary Christey). Flasks were stoppered with sterile cotton bungs, capped with 

aluminium foil and placed on an orbital shaker (Chiltern Scientific, model SS70) 

which rotated at 160-180 rpm. Single cells did not usually come away from starting 

callus to form uniform suspensions. Subsequently, fresh suspension cultures were 

started by filtering cell suspension inocula which contained clumps through a sterile, 

100 /-tm pore size nylon filter (Uremesh). 

3.3.4 Production of axillary and adventitious shoots from basal plate explants 

3.3.4. a Twin scales from onion bulbs 

Most of the bulb scales and roots of mature, field-grown 'PLK' and 'ELK' bulbs 

were peeled off and discarded. Corresponding basal plate tissues of the bulbs were 

also removed, leaving only the main shoot surrounded by the two innermost scales. 

This dissected bulb was cut transversely at its widest point and the lower half cut 

into eight equal sectors. From each sector a 'twin scale' was cut, approximately 10 

mm high and 3-5 mm wide, joined at the base by a small piece of basal plate tissue 

approximately 1-3 mm high (Plate 3.1). The excised twin scales were surface­

sterilized in a 25 % vlv solution of commercial bleach (5 % wlw sodium hypochlorite) 

by stirring for 30-40 mins. These were then washed at least three times in sterile 

distilled water and placed on media. 
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3.3.4.b SpUt in vitro shoots 

In vitro shoots derived from twin scales were used as secondary explants after being 

split longitudinally. Shoots 3-5 mm in diameter were trimmed to a height of 10 mm 

and a thin slice of approximately 0.5 mm was cut from the base to remove old basal 

plate tissue. A longitudinal cut was made so as to divide the shoot into 

semicylindrical halves while destroying the main shoot apex. These explants were 

placed on a medium used for onion shoot proliferation (Hussey and Falavigna, 

1980), of which the concentrations of NAA and BA were adjusted to 0.12 mgt l and 

2 mgt l respectively, to suit growth and maintenance of in vitro 'PLK' shoot cultures. 

Initially, 4 mgt! of BA had been used, but after vitrification was occasionally 

observed in leaf tissue, the concentration of BA was halved, and the concentration 

of sucrose reduced from 3% to 2.5% (see section 4.5.2.d for discussion on 

vitrification) . 

3.3.4. c Production of roots from shoot cultures 

To stimulate the induction of roots from basal plates of shoot cultures, shoots were 

transferred to the same medium, but with twice the amount of NAA and no BA. 

This medium modification was based on a general recommendation for rooting of 

shoots, made by Bhojwani and Razdan (1983). 

3.3.5 Shoot production from seedling stems 

Onion (,PLK', 'ELK' and 'SWG') seeds were surface-sterilized as described in 

section 3.3.1. and placed on 1!2x BDS macro-, micro- and iron salts (Dunstan and 

Short, 1977), which contained no sucrose or PGRs, and was solidified with 0.7% 

agar. They were germinated in the light (cool white fluorescent tubes, 30 t-tEinsteins 

m_2 sec-l
, 16h light, 8h dark) at 20°C. Seedlings were grown until the stem area of 

the seedling (Fig 3.1) which would later become the bulb, had swollen. At this 

stage the stem, which contains the apical shoot meristem, was excised by cutting 
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about 3 mm on either side of it. Regeneration experiments using these explants 

were carried out on BDS containing several combinations of picloram and BA (Table 

3.4). In a subsequent experiment, excised seedling stems were bisected longit­

udinally' so that the apical meristem would be destroyed. Bisected stems were 

placed on the same media as the unbisected stems and cultured in the light (cool 

white fluorescent tubes, 30 /hE m-2 sec-1
, 16h light, 8h dark) at 25°C for 10 weeks. 

3.3.6 Isolation and culture of protoplasts 

3.3.6.a Isolation 

Protoplasts were isolated from hypocotyl and leaf tissue of in vitro-germinated 

seedlings, 15-30 days following germination, and from in vitro shoot cultures of 

'PLK', ' SWG' and 'JSY'. They were also isolated from callus cultures of 'PLK', 

'Hikeeper' and 'JSY', each of which had been growing on BDS containing 1.5 mgt1 

picloram. All tissues from which protoplasts were to be isolated were placed into 

a sterile pre-plasmolysis solution (0.6 M sorbitol, 3 mM CaCl2, 3 mM MES), 3-6 

hours prior to incubation with enzymes. As this pre-plasmolysis step had no 

noticeable effect on the yield and viability of the isolated protoplasts, when compared 

with that of protoplasts isolated from unpre-plasmolysed tissue, it was subsequently 

omitted from the protocol. 

Seedling, shoot and callus tissues were incubated overnight in enzyme mixture (0.6M 

sorbitol, 3 mM CaCl2 and 3 mM MES, with 1 % cellulase 'Onozuka R-lO' and 

0.25% macerozyme 'R-lO'). Both enzymes were obtained from Yakult Biochem, 

Nishinomiya, Japan. In vitro-grown leaves were cut into approximately 5 mm 

sections and placed in sterile glass 5 cm petrie dishes which contained 3 ml of the 

filter-sterilized enzyme mixture. Dishes were sealed with parafilm and incubated in 

the dark overnight at 25°C. The leaf-enzyme mixture was not agitated, as previous 

experiments had shown that agitation resulted in up to 50 % more cell membrane 

breakage (data not shown). The next morning the leaf-enzyme mixture was gently 

swirled for 2-3 minutes to release protoplasts from cell wall material. Crushed callus 



Table 3.4 'Pukekohe Longkeeper' bisected seedling stem explants on various BAlPicloram combinations. The basal medium used wasBDS. 

BA (mgl·') 

Pic 
(mgP) 0 0.25 0.50 0.75 1.00 1.50 

0 several shoots shoots shoots, bulbil, roots, shoots shoots, shoots 
several roots roots roots 

0.25 white callus yellow, nodular callus, rooty callus, yellow, nodular yellow callus, callus, 
shoots shoots callus, shoots roots, 

shoots shoots 

0.50 nodular callus yellow, nodular callus, yellow, nodular callus, yellow, nodular nodular, white-green yellow, nodular 
shoots shoots callus, callus, callus, 

shoots shoots shoots 

0.75 callus, shoots yellow-white callus, callus yellow callus, callus, little response 
roots, shoots shoots 
shoots 

1.00 yellow, nodular callus, yellow, nodular callus, yellow, rooty callus yellow callus, yellow callus, green- callus, 
shoots shoots shoot white callus shoots 

shoots 
rooty callus 

1.50 callus, shoots callus large amounts of white callus, callus callus, 
yellow, nodular callus green callus, shoots shoots, 
(rooty), shoots roots 
shoots 

2.00 yellow callus, hard, yellow callus, callus yellow, nodular yellow callus yellow, nodular 
shoots shoots callus, callus (rooty), 
roots shoot shoots 
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tissue was digested using the same enzyme mixture, but with slow agitation (50 rpm) 

on an orbital shaker (Mistral Multi-Mixer, Lab-line Instruments Inc). Leaf and 

callus protoplasts were separated from undigested cells, cell wall material and other 

debris by successive filtration through two sterile nylon filters (Uremesh), with pore 

sizes of 100 /-tm and 51 /-tm. 

3.3.6.b VVashing 

After filtering, protoplasts were collected and suspended in 3 ml of washing medium. 

This medium consisted of V-KM medium (Bokelmann and Roest, 1983), containing 

0.32M NaCI instead of glucose. Protoplasts were then collected by centrifugation 

(70g, 3 min). Following removal of the supernatant, 6 ml of 0.6M sucrose was 

added to the protoplast pellet, and viable protoplasts were separated from dead ones 

and other cellular debris by centrifugation (70g, 10 min). Viable protoplasts, which 

floated to the top of the sucrose solution, were pipetted off and resuspended in 

washing medium. They were then washed twice, and yields were determined by a 

cell count with a haemocytometer. The percentage of viable protoplasts isolated was 

estimated from small aliquots of protoplasts that were stained with fluorescein 

diacetate, and viewed with fluorescence microscopy (Larkin, 1976). Evan's Blue 

stain, which penetrates only those cells whose membranes are disrupted, was used 

to confirm the percentage of viable protoplasts (Plate 3.2). 

3.3.6.c Culture 

Washed protoplasts were resuspended in appropriate amounts of liquid or agarose 

culture media to bring the final density to approximately 2x105 cells per m!. In some 

cases this density could not be achieved in sufficient volume, as fewer protoplasts 

had been isolated. Consequently, plating densities as low as 2xlQ4 cells per ml were 

recorded. A range of media types, culture vessels and PGR combinations was used 

to determine optimal culture conditions for protoplasts. The basal media used 

included 8p (Kao and Michayluk, 1975), V-KM (Bokelmann and Roest, 1983), MS, 

as modified by Wang et al. (1986) and BDS (Dunstan and Short, 1977). Details of 
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these media are given in Appendix 1. To make 'conditioned media', filtered media 

from one-week-old onion and Nicotiana plumbaginifolia cell suspension cultures 

were added to protoplast media in varying ratios. In addition to this, thin layers of 

cell suspension cultures were put into the wells of multiwell plates (Nunc1on, 

Denmark) adjacent to those containing protoplasts, or into the outer compartment of 

a culture dish with protoplasts cultured in the centre well (Falcon Labware, USA). 

A third method involved embedding cell suspension cultures in a thin layer of low­

melting point agarose in 5 cm petri dishes (Nunc1on, Denmark), above which 

protoplasts in liquid media were cultured. 

A range of low PGR concentrations was added to the media. Concentrations 

originally specified for the four basal media were also trialled. Pic10ram and BA 

were generally used, as previous experiments had established their superiority, as 

compared to NAA and zeatin, or IAA and kinetin, in stimulating cell division and 

cell wall formation (data not shown). Some media were also solidified with O.S% 

agarose (low gelling temp., Sigma Chemical Co.), to which protoplasts were added 

immediately prior to pouring into dishes. Protoplasts embedded in agarose media 

were cultured in thin layers, approximately 2 mm thick, in 5 cm Nunc10n petri 

dishes. 

Two to three weeks after liquid protoplast cultures were established, the osmoticum 

in the medium was 'diluted' down to one half of its initial concentration. This was 

done by the addition of Sp, V-KM, MS or BDS, lacking osmoticum, i.e. no mannitol 

in the case of V-KM, MS and BDS, or reduced glucose in the Sp medium in which 

glucose acts as both the osmoticum and the carbon source. 

3.4. Results 

3.4.1 Callus production 

PGR concentrations which stimulated optimum callus growth from onion seedling 
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stems on BDS basal medium were determined. Callus was produced by 'PLK' 

seedling stems on all media containing picloram (Table 3.2). The highest weight of 

undifferentiated callus was produced from the stem region, i.e. the area at the 

junction of the hypocotyl (cotyledon) and the radicle (primary root) (Fig 3.1), of 

'PLK' seedlings on 1.5 mgt! picloram and no BA (Table 3.2). Seedling stems of 

other cultivars surveyed produced similar amounts of undifferentiated callus on BDS 

containing 1.5 mgt! picloram (Table 3.5). Occasional shoots were produced from 

callus of all cultivars, while on this medium. These shoots were only seen 3-6 

months after callus induction and were more commonly seen on dark- than light­

grown callus. 

3.4.2 Regeneration from callus 

In the first regeneration experiments set up on combinations of picloram and BA, 

shoots were most consistently produced from onion callus on 1.6 mgt! BA and 0.4 

mgt! picloram. Those cultivars producing callus from which plants could be 

regenerated are listed in Table 3.5. Shoots could only be consistently regenerated 

from callus less than six months old. Most of this callus was cream in colour and 

nodular in appearance. Callus older than six months readily produced roots when 

transferred to regeneration media or to POR -free media. Differences were noted 

between different callus lines of the one cultivar, some regenerating more readily 

than others, but no specific data were collected on the regenerative capacities of 

different callus lines. 

When TDZ was used as the sole POR, regeneration of shoots from callus occurred 

on 2 and 4 mgt! TDZ (Table 3.3). Since shoot production occurred at low freq­

uencies, interactions of PORs and light/dark conditions were investigated in more 

detail. Calli were cultured in the light on combinations of TDZ and picloram. Eight 

weeks later they were split in two and one of each treatment was placed in both dark 

and light conditions. Four weeks later, shoots were visible on two of the light­

grown treatments (1.5 and 3 mgl-1 TDZ) with green buds and roots being visible on 

a range of light treatments (Plate 3.3). No shoots were produced from calli 



Table 3.5 Responses of nine onion genotypes on specific tissue culture media. 

Onion genotype (cv) 

PLK 

ELK 

SWG 

Hikeeper 

Odorless 

Violet de Galmi 

Dorata di Bologna 

CMS5 (cv unknown) 

Japanese Saporo Yellow 

! Medium defined in section 3.4.1 
2 Medium defined in section 3.4.2. 
3 Medium defined in section 3.3.4.b 
4 Medium defined in section 3.3.4.c 

Callus production Shoot regeneration from 
(seedling stem)! callu~ 

+ + 

+ + 

+ -

+ + 

+ -
+ + 

+ + 

- -

+ -

Production of Root formation from shoots 
axillary and adventitious in culture4 

shoot~ 

+ + 

+ + 

+ + 

+ + 

+ + 

+ + 

+ + 

+ + 

+ + 

5 eMS = cytoplasmic male sterile line. Only bulbs of this line were available, so callus could not be induced from seedling stems and therefore regeneration from callus was also not carned out. 
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cultured in the dark. 

3.4.3 Production of axillary and adventitious shoots from basal plate explants 

Provided that shoots were not vitrified, an 8-fold increase in shoot number was 

observed every 6-8 weeks, i.e. on average, eight shoots were produced from each 

twin scale explant. Roots were occasionally produced from shoots on the shoot 

proliferation medium, but were produced more frequently (on 90% of the shoots) on 

the root induction medium. 

3.4.4 In vitro responses of seedling stem explants 

Longitudinally-bisected 'PLK', 'ELK' and 'SWG' seedling stem explants responded 

in a variety of ways to the range of concentrations and combinations of BA and pic­

loram used. Responses of these explants included callusing, shoot production and 

root production, some explants producing callus, shoots and roots. The responses 

of 'PLK' explants are presented in Table 3.4. Bisected seedling stems produced 

many shoots and roots on the hormone-free BDS medium (Plate 3.4). 

3.4.5 Cell suspension culture 

Even when the most friable callus available was used to initiate cell suspension 

cultures, only a small proportion of cells dissociated from callus. These cells 

eventually formed small clumps rather than producing a homogeneous cell suspens­

ion. The density of single cells in suspension culture was usually 1-3 x 104 cells per 

m!. Modifications to basal media or to PGR concentrations did not result in inc­

reased cell densities. When sieved suspensions were used as starting inocula, the 

resulting cell suspensions showed poor growth and division. 

3.4.6 Protoplast culture 

During incubation of leaf and callus tissue in the enzyme mixture, the middle lamella 
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appeared to be digested first, resulting in the release of intact cells complete with 

walls. Hydrolysis of cell walls occurred after this (Plate 3.5). Shaking at slow 

speeds did not appear to affect the viability or quality of protoplasts isolated from 

callus. Most protoplasts isolated from seedlings and shoots floated to the surface of 

the sucrose solution after centrifugation, but callus protoplasts, which had smaller 

vacuoles and more dense cytoplasm, did not generally float in the sucrose. The 

sucrose floatation step was consequently omitted from the protocol for callus 

protoplast isolation. 

After two days of culture in a range of media, cell walls were seen to be re-forming 

on some of the protoplasts (Table 3.6). Protoplasts which had been plated in low 

melting-point agarose survived longer than those in liquid media of the same 

composition. Cell wall formation (Plate 3.6) and cell 'budding' (Plate 3.6) occurred 

frequently in most protoplast cultures, but true cell divisions were only occasionally 

observed (Plate 3.6, Plates 3.7a and 3.7b). Of the protoplasts which divided, some 

did so within four days of isolation. These included callus protoplasts derived from 

the cultivars 'Hikeeper' and 'PLK'. Cell wall formation and budding were also 

more common in 'Hikeeper' and 'PLK' callus protoplasts. In general, most cell 

divisions occurred 5-12 days after protoplast isolation. Cell walls re-formed more 

slowly on leaf protoplasts than on callus protoplasts. 

Although the onion protoplast isolation and culture protocol of Wang et ai. (1986) 

was closely followed, the results recorded by this group, i.e. regeneration of 

plantlets from protoplasts of the onion cultivar 'Yellow-skinned Onion', could not 

be replicated using protoplasts derived from onion cultivars 'PLK', 'Hikeeper' and 

'JSY'. This was in spite of several media modifications, including various conc­

entrations of different PGRs, and adjusted levels of sugars. It was not possible to 

obtain the seed of 'Yellow-skinned Onion' from seed companies contacted in Hong 

Kong. When cultured in the medium devised by Wang et ai. (1986), onion 

protoplasts formed new cell walls, and sometimes divided, but no further cell 

divisions occurred and protoplasts eventually died. Those protoplasts which divided 

generally had dense cytoplasms and small vacuoles. Reducing the concentration of 



Table 3.6 

CuUivar 

Seedlings 
'PLK' 
'SWG' 
'JSY' 
'Hikeeper' 

Responses of onion protoplasts cultured in three different basal media. Where no specific additions to the media are mentioned in brackets, the medium used 
was exactly as specified by the authors, as listed below. 

Media on which cell wall formation Media on which cell division Media on which cell budding 
occurred occurred occurred 

V-KM (0.1, 0.2 mgl'! picloram) V-KM (0.1, 0.2 mgt! picloram) V -KM (0.1, 0.2 mgt! picloram) 

Shoot cultures 
'PLK' W-MS with V-KM vitamins W-MS with V-KM vitamins 
'SWG' 
'JSY' V -KM (0, 0.1 mgl'! picloram); V-KM (0, 0.1 mgt! picloram); 

112 x salts W-MS (no PGRs) 112 x salts W-MS (no PGRs) 112 x salts W -MS 
(no PGRs) 

Callus 
'PLK' W-MS, KM8p (0.8% agarose) KM8p (0.8% agarose) W-MS; KM8p (0.8% agarose); 

KM8p (2 mgt! picloram) 
W-MS 

'Hikeeper' W-MS, KM8p KM8p 
'JSY' KM8p (0.8% agarose) 
'SWG' KM8p (0.8% agarose) KM8p (0.8% agarose) 

Media abbreviations: 

V-KM = 

KM8p = 

W-MS = 

the macro elements of the V-47 medium (Binding, 1974) without NH.N03, and the other nutrients of the Kl\18p medium (Kao and Michayluk, 1975). This medium was devised by Bokelmann and 
Roest (\983). 

a medium devised especially for growth of Vicia hajastana protoplasts at low densities in liquid media, by Kao and Michayluk (1975). The mineral salts used were modified from B5 (Gamborg 
et al., 1968). 

The mineral salts ofMS (Murashige and Skoog, 1962) medium, B5 organics and other components as devised by Wang et al., (1986) for the culture of Allium cepa 'Yellow-skinned Onion' protoplasts. 



59 

mineral salts specified in the Wang et al. (1986) medium by half also resulted in first 

cell divisions, cell wall formation and budding of 'JSY' leaf protoplasts (Table 3.6). 

3.5. Discussion 

Protocols for callus initiation and proliferation, regeneration from callus, clonal 

propagation and protoplast isolation of selected cultivars of onions have been 

established during the course of this study. 

3.5.1 Callus production 

Compared to methods for the initiation and maintenance of onion callus described 

in the literature (Table 3.1), the method developed in this study appears to be 

simpler and less time-consuming. Given that seeds are easily surface-sterilized, and 

can be placed directly onto the callusing medium, and also that callus can be prod­

uced from the stems of seedlings within 3 weeks of germination, this technique 

enables the rapid production of callus. Explant surface-sterilization and dissection 

of the plant material no longer present a problem as onion seeds are relatively simple 

to sterilize, and no dissection of tissue is required. 

3.5.2 Regeneration experiments 

Shoots were only regenerated from onion callus with any degree of reproducibility 

if this callus was less than six months old. The loss of regenerative capacity by 

onion callus tissue after six months has also been reported by Dunstan and Short 

(1978), Davey et al. (1974) and Fridborg (1971). Phillips and Luteyn (1983) found 

that plants could be regenerated from 6-12 month old callus, but only on very 

specific media, and at low frequencies. Van der Valk et al. (1990) found that shoots 

could be regenerated from callus which was up to 13 months old, but this was only 

recorded for one of the six cultivars they studied. Other cultivars had lost their 
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regenerative capacity before this time. This inability of older callus to regenerate 

shoots or embryos is not confined to onions and has been seen in a range of other 

species (Lin and Griffin, 1992; Jain and Datta, 1992; Cheng and Smith, 1975; Smith 

and Street, 1974). 

The occasional spontaneous regeneration of shoots from callus growing on callusing 

medium has not been recorded by other groups working on onion tissue culture. 

This regeneration on a medium which normally suppresses differentiation, suggests 

that the primordia responsible for the production of shoots must be 'strong'. 

Alternatively, shoots could have grown from pre-formed meristems that had never 

callused. 

In this study, it was established that a dark period was not necessary for regeneration 

of shoots from callus. This is in agreement with the results of Phillips and Luteyn 

(1983) who also found that dark pre-treatments were not required for onion regen­

eration. However, Dunstan and Short (1978) and Swamy (1983) found the provision 

of a dark period to be critical for shoot formation from onion callus. It is likely that 

interactions between PGRs and light/dark affect the final outcome of onion regen­

eration experiments. Phillips and Luteyn (1983) observed the production of shoots 

and embryoids from callus, without a dark pre-treatment, when picloram and BA 

were used in regeneration media. However, Dunstan and Short (1978) and Swamy 

(1983) had used 2iP and NAA in regeneration media. 

The ability of onion callus to readily regenerate roots regardless of age has also been 

recorded by other workers. Dunstan and Short (1978), Davey et al. (1974) and 

Fridborg (1971) all found that older onion callus maintained its ability to produce 

roots, even when shoots or plantlets could no longer be regenerated. The varying 

regeneration abilities of different callus lines of a single onion cultivar as seen in this 

thesis has also been observed by other workers. Phillips and Luteyn (1983) found 

that somatic embryos were produced at high frequencies only in some callus lines 

of 'Yellow Grano' and 'Yellow Sweet Spanish'. They also found the ability of 

callus tissue to produce green buds or shoots to be dependent on the line used. 
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Thidiazuron, a compound known to have cytokinin-like properties, has been used for 

regeneration of plantlets from callus of other plant species, e.g. apples (Dufor et al., 

1986) and Rosmarinus officinalis (Tawfik and Read, 1990). When used as the sole 

PGR, it stimulated regeneration of shoots from onion callus, but at low frequencies. 

More experimental work is needed to define which concentrations of TDZare 

optimal for shoot regeneration. 

3.5.3 Cell suspension cultures 

One possible reason for suspension-cultured cells dividing slowly or not at all is that 

the density of cells in liquid media was too low. It is also possible that the 

suspension culture medium used (BDS with 1.5 mgt1 picloram), although optimally 

suited to callus growth when solidified with agar, was not optimal for the growth and 

division of suspension-cultured cells. 

To start or to subculture a cell suspension culture, a relatively large initial inoculum 

generally ensures that sufficient single cells andlor small clumps of cells are released 

into the medium to provide a sufficiently high cell density for subsequent growth. 

Although large amounts of apparently friable onion callus were used as inocula, this 

callus released only a small number of individual cells, or clumps of cells, when 

agitated, resulting in low cell densities. This problem may have been alleviated by 

the digestion of calli with a pectinase. This would have released a large number of 

individual cells for inocula. Onion cell suspension cultures may also have been 

induced to grow and divide by the addition of 'conditioned' media. To optimize the 

onion cell supension culture system, experiments with both enzymatic release of cells 

from calli, frequency of subculture, and the culture of low density suspensions in 

conditioned media, need to be carried out. Onion cell suspension cultures could not 

be used for planned purposes (e.g. feeder cells for protoplast culture) due to the 

problems encountered. 
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3.5.4 Production of axillary and adventitious shoots from basal plate explants 

The technique and media (as modified in this project) of Hussey and Falavigna 

(1980) ensured that a regular supply of onion shoot cultures was available for use as 

starting tissue for protoplast isolations and in vitro injections with Agrobacterium. 

The rapid clonal multiplication of plantlets following initiation and subculture of 

shoot cultures will allow rare genotypes (e.g. single transgenic plants) to be clonally 

multiplied within a short period of time. 

3.5.5 Shoot production from seedling stems 

The technique of bisecting seedlings and plating them on PGR-free medium, which 

resulted in a quick shoot multiplication response, has not previously been reported. 

This rapid response is probably due to young seedling tissue being fast-growing. 

Advantages of this method over that of multiplying shoots from twin scales include: 

(a) the sterility of in vitro-germinated seedlings as compared with field grown bulbs, 

which can be very difficult to sterilize for in vitro culture, 

(b) the absence of any vitrified tissue in seedlings and 

(c) the year-round provision of explants for co-cultivation with Agrobacterium. 

As with the twin scaling method described in section 3.3.4, bisection of seedlings 

usually destroys the apical meristem. Therefore, after co-cultivation with Agro­

bacterium harbouring binary vectors with selectable marker genes, only transformed 

axillary meristem cells will produce healthy shoots on selective media. This will 

reduce the frequency of potential escapes arising from rapid elongation of pre­

existing shoot meristems. 

3.5.6 Protoplast isolation and culture 

During the course of this work, it was observed that some of the media and cond­

itions used induced first cell divisions, cell wall formation and cell budding. It is 

unclear as to why subsequent divisions were not seen, and why the cells would in­

variably die after having been alive for up to six weeks. Treatment of plant cells 
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with crude enzyme preparations that probably contained unidentified contaminating 

compounds (Evans and Bravo, 1983) may have had a deleterious effect on cell 

viability. Patnaik et ai. (1981) found that plating efficiency of Petunia parodii leaf 

protoplasts could be increased significantly by using purified enzyme for protoplast 

isolation. High osmotic concentrations in early culture, and the accumulation of 

metabolic compounds in the culture media may also have adversely affected the 

viability of protoplasts. However, this does not explain why some protoplasts 

remained viable in culture for so long but did not divide. 

It is possible that protoplasts which died early on in culture were producing 

substances, such as phenolics (Evans and Bravo, 1983), which, when released into 

the medium, might have inhibited those cells still alive, causing eventual death. 

Another factor which may have been responsible for the lack of subsequent cell 

divisions is the plating density of protoplasts. Although protoplasts were generally 

plated at a density of approximately 2 x lOS cells per ml, densities were sometimes 

lower due to poor release after digestion, or losses during the floatation step. The 

density of protoplasts was always halved when the osmoticum was diluted, but under 

ideal conditions protoplasts would have divided two or three times before this step, 

so that the dilution would only have restored the density of cells to its initial amount. 

The lack of protoplast divisions could also be attributed to hormonal regimes, or to 

one or more other media ingredients not being present at the concentrations required 

to stimulate cell division. Von Arnold and Eriksson (1977) have proposed that 

concentrations of iron, zinc and ammonium salts are too high in some of the standard 

media for the culture of protoplasts of selected species. These standard media 

included MS, the mineral salts of which were used in the medium devised by Wang 

et ai. (1986) for onion protoplast culture. The concentration of ammonium is 

considerably higher in MS medium than in any of the other three media used 

(Appendix I). This was why a range of basal media were used in this study, in 

which one or several of the macronutrients were present in different amounts or, in 

some cases, absent altogether. Van der Valk et al. (1990) isolated protoplasts from 

leaves of young onion seedlings and callus, and cultured these protoplasts on a range 
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of media including MS and V-KM. They observed no responses from seedling­

derived protoplasts, and only protoplasts derived from the callus of a single cultivar 

('Jumbo') formed new cell walls and showed budding. No true cell divisions were 

seen in the course of their work. 

The observation that dividing onion protoplasts were almost inevitably those with 

dense cytoplasm agrees with those made for other species. Yamada et al. (1986) 

used rice suspension cultured cells which were round and rich in cytoplasm, as their 

source of cells from which to isolate protoplasts for regeneration, and Spangenberg 

et al.(1985) found that small Brassica napus protoplasts, which were rich in 

cytoplasm, entered division cycles earlier than large, highly-vacuolated protoplasts. 

The reason why the results of Wang et al. (1986) were unable to be replicated, 

despite methods and materials being closely followed, is unclear, but a major factor 

is likely to be the use of a different cultivar. Different responses from protoplasts 

of different cultivars of the same species, have been recorded for a number of 

species, including rice (Oryza sativa) (Thompson et at., 1986), cucumber (Cucumis 

sativus L.) (Jia et at., 1986), Petunia hybrida (Frear son et at., 1973) and 

Arabidopsis thaliana (Damm and Willmitzer, 1988). 

The progress of the protoplast work presented in this thesis seems to fall somewhere 

between that of van der Valk et at. (1990) and Wang et at. (1986), the former group 

achieving only formation of cell walls, the latter regeneration of plantlets. Although 

in this study cell division was sporadic, and regeneration from protoplasts was not 

achieved, the establishment of a protocol for protoplast isolation does allow for the 

assay of transiently expressed genes following direct DNA uptake by protoplasts. 

3.5.7 Further work 

Although effective and novel tissue culture systems have been established for the 

cultivars studied, further work is required on the regeneration of callus, and 

ultimately plants, from protoplasts. Additionally, a more efficient system for 
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regeneration of plants from callus needs to be established for these cultivars, to 

increase the number of plants produced from each callus. 
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Fig 3.1 An onion seedling at the 'loop' stage, approximately 8-15 days after 

germination, with the stem region at the junction of the hypocoty1 (cotyledon) and 

the radicle (primary root). This figure is reproduced from Jones and Mann (1963). 
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Plate 3.1 Twin scales excised from a 'Pukekohe Longkeeper' bulb. Two bulb 

scales are still attached to the basal plate, and the shoot apex is longitudinally 

bisected. 

Plate 3.2 Protoplasts isolated from in vitro-grown 'Pukekohe Longkeeper' leaf 

tissue and stained with Evan's blue. Only protoplasts with cell membrane damage 

(arrowed) are stained blue. 
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Plate 3.3 Regeneration of (a) shoots (arrowed) and (b) roots from 'Pukekohe 

Longkeeper' callus grown on media containing thidiazuron. Shoots were regenerated 

on 3 mgl-1 thidiazuron and roots on 0.2 mgt1 thidiazuron. Regenerated shoots (c) 

are shown on shoot proliferation medium five days after transfer from the medium 

in (a). 
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Plate 3.4 Shoots and roots produced from a bisected seedling stem on POR-free 

BDS medium. Seedling stems have been in culture for seven weeks. 
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Plate 3.5 Freshly isolated onion leaf protoplasts 

Plate 3.6 The first cell division of a protoplast (top) and formation of cell walls by 

'budding' protoplasts (bottom). Protoplasts were isolated from in vitro shoot cultures 

of 'Pukekohe Longkeeper' and have been in culture for five days on V -KM medium 

with 2 % sucrose, O.5M mannitol, 2 mgl- I 2,4-D and 0.5 mgl-I BA. 
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Plate 3.7 (a) The first cell division of a 'Pukekohe Longkeeper' callus protoplast 

after six days in culture. Protoplasts were cultured on 8p medium without PGRs and 

solidified with 0.8% agarose. 

(b) The first cell division of a protoplast derived from 'Japanese Saporo Yellow' 

shoot cultures. Protoplasts were cultured on a PGR-free liquid W-MS medium with 

half the concentration of macro- and micro-salts. 
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Chapter 4: 

4.1. Abstract 

78 

Responses of onion in vitro cultures to 

selective agents 

The antibiotics kanamycin, geneticin (G418) and hygromycin, and the herbicide 

chlorsulfuron were added to tissue culture media in a survey of responses of in vitro­

cultured onion tissues to selective agents. Tissues surveyed included seeds and 

seedlings on germination and callusing media, established callus on callusing and 

regeneration media, and shoot cultures on shoot proliferation medium. All cultures 

were derived from the onion cultivars 'Pukekohe Longkeeper', 'Early Longkeeper' 

or 'Southport White Globe'. Hygromycin was shown to be the antibiotic most toxic 

to onion tissues, with toxicity effects being obvious in all tissues after 4-5 weeks of 

culture on concentrations as low as 20 mgt l
. Kanamycin was the least toxic of the 

three antibiotics, as 'Pukekohe Longkeeper' callus tissue survived on concentrations 

of up to 750 mgl-l
, after being in culture for 12 weeks. By contrast, at 

concentrations of 30 mgt l or more, the kanamycin analogue G418 was toxic to most 

onion cultures. However, responses of tissues to G418 were slower than those to 

hygromycin and although most tissue types died after eight weeks on media 

supplemented with 30 mgt l G418, both young and established callus survived on this 

concentration for up to six months. Low concentrations (25-150 nM) of the 

herbicide chlorsulfuron were also shown to be toxic to onion seedlings and shoot 

cultures. 

4.2. Introduction 

Selectable marker genes are seen to be essential for the introduction of agronomically 
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important genes into crop plants via plant transformation. The use of antibiotics in 

plant tissue culture media has become widespread in recent years, as selection on 

antibiotics is included in the method of Agrobacterium-mediated transformation of 

most plants. In early Agrobacterium transformation experiments, opine synthesis 

genes from T-DNA were used as markers in the screening for transformed cells 

(Reynaerts et al., 1988). Currently, cells containing a foreign gene insert are 

usually selected for by neighbouring antibiotic- or herbicide-resistance selectable 

marker genes. Only plant cells that contain and express the selectable marker gene 

will survive a selective pressure imposed in culture and plants regenerated from these 

surviving cells are likely to contain the selectable marker joined to the agronomic 

gene of interest. 

In cell selection experiments, an occasional variant cell that can tolerate amounts of 

selective agent normally toxic to wild-type cells, may arise in culture (Binding et 

al., 1970; Chaleff and Ray, 1984). Although it was originally thought that such 

variation was due just to mutant genotypes, the apparent high frequency and stable 

nature of many variants has since led to the postulation of other genetic or epigenetic 

mechanisms such as developmental (Binns, 1981) or somaclonal (Larkin and 

Scowcroft, 1981) variation. Such variants can survive selection in transformation 

experiments. Other cells or plants which can survive selection, despite the lack of 

genetic or phenotypic mechanism/s to cope with it, are known as 'escapes'. Depend­

ing on the stringency of selection, escapes may represent a large proportion of 

initially-selected cells or plants. In the context of transformation, escapes can be 

identified and eliminated after failure to survive a further cycle or cycles of 

screening or selection (Conner, 1986) 

4.2.1 Types and examples of marker genes 

Two main classes of selectable traits have been used in genetic modification of 

plants. These include selectable marker genes encoding proteins which confer 

resistance to antibiotics, and those whose products confer tolerance to herbicides. 

The most commonly used selectable marker is the gene from transposon 5 (Tn5) of 
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Escherichia coli K12, encoding aminoglycoside 3-phosphotransferase II [APH (3') 

II, Chemical Abstracts Registry number 58943-39-8]. This enzyme, more commonly 

known as neomycin phosphotransferase II (NPTII), inactivates kanamycin, geneticin 

(G418) and neomycin sulphate by phosphorylation. In most plant transformation 

experiments, resistance to kanamycin is used to select transformed cells. However, 

it has been found that tissues of certain species, e.g. rice callus (Dekeyser et aI., 

1989) display an endogenous tolerance to kanamycin which allows non-transformed 

cells to survive selection. To overcome this problem, cells transformed with nptII 

can be selected on media containing the kanamycin analogue G418, which is more 

toxic to the cells of some species than kanamycin. Alternatively, genes conferring 

resistance to other selection agents can instead be used in plant transformation 

experiments. Such genes include chimeric constructs conferring resistance to 

hygromycin (Waldron et al., 1985), methotrexate (Dekeyser et al., 1989), chlor­

amphenicol (Umbeck et al., 1989), bleomycin (Hille et al., 1986) and some herb­

icides (see below). With the exception of bleomycin, which interferes with DNA 

synthesis, all of the antibiotics mentioned target protein synthesis at the ribosomal 

level (Maniatis et al., 1982; Colbere-Garapin, 1981; Cabanas et al., 1978). 

In this study, responses of onion tissues to the antibiotics, kanamycin, G418 and 

hygromycin B, and to the herbicide chlorsulfuron were surveyed. Like kanamycin 

and G418, hygromycin is an aminoglycoside which is inactivated by a phosphoryl­

ation reaction mediated by the product of the hygromycin B phosphotransferase (hph) 

gene from E. coli (Waldron et ai., 1985). Chlorsulfuron, a sulphonylurea herbicide, 

is the active ingredient in the Du Pont product 'Glean'. It is a selective pre- and 

post-emergence herbicide, and like other sulphonylureas, inhibits the branched-chain 

amino acid biosynthetic enzyme acetolactate synthase (ALS) (Haughn et al., 1988). 

Resistance to chlorsulfuron was first identified in a mutant cell line of Nicotiana 

tabacum (Chaleff and Ray, 1984), and subsequently in Arabidopsis plants (Haughn 

and Somerville, 1986). The mutant als gene (csrl), which differed from that of the 

wild type by a single base pair substitution, conferred a high level of resistance to 

chlorsulfuron. Resistance was inherited as a single dominant (or semi-dominant) 

mutation, making the gene suitable for use as a selectable marker. To determine 
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which selective agents would be toxic to onion tissues and at what concentrations, 

several types of onion tissues were grown in vitro on a range of kanamycin, G418, 

hygromycin and chlorsulfuron concentrations. 

4.3. Materials and methods 

All media containing antibiotics or chlorsulfuron were solidified with 0.7% agar 

(Davis). When autoc1aved media had cooled to about 37°C, filter-sterilized PGRs, 

antibiotics and chlorsulfuron were added before pouring into tissue culture dishes. 

Unless otherwise stated, all cultures were subcultured after twelve weeks. 

4.3.1 Gennination and early seedling development on selective agents 

'Pukekohe Longkeeper' ('PLK') and 'Early Longkeeper' ('ELK') seeds were surface 

sterilized in a 30% v/v solution of commercial bleach (5 % w/w sodium hypo­

chlorite) and were plated on BDS basal medium (Dunstan and Short, 1977) without 

sucrose or PGRs. Kanamycin concentrations ranged from 0-500 mgl-t, G418 from 

0-150 mgl- l
, hygromycin from 0-100 mgl- l and chlorsulfuron from 0-150 nM. Seeds 

were germinated in the light (cool, white fluorescent tubes, 30 ,uE m-2sec-t, 16 h 

day length) or in the dark, at 20°C. 

4.3.2 Callus fonnation and callus production 

4.3.2.a Kanamycin 

Surface-sterilized 'PLK' seeds were plated on callusing medium (BDS, 3 % sucrose, 

1.5 mgl- l pic1oram) with added kanamycin (0-500 mgl- l
) and placed either in the light 

(cool, white fluorescent tubes, 30 ,uE m-2sec-t, 16 h daylength) or in the dark, at 

20°C to germinate. After germination, seedlings were transferred to light or dark 

at 25°C. Callus produced from seedling stems was weighed 15 weeks later. Estab­

lished 'PLK' callus was plated on callusing medium supplemented with concentrat-
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ions of kanamycin ranging from 0-1000 mgt l
• 

4.3.2.b Geneticin (G418) 

Excised seedling stems were used in G418 dose response experiments, as they were 

the explant type being used in Agrobacterium co-cultivation experiments at the time. 

Stems were excised from 10 day-old 'PLK', 'ELK' and 'SWG' seedlings, and plated 

on callusing medium with added G418 (0-150 mgt!). Explants were placed either 

in the light (cool, white fluorescent tubes, 30 ",E m-2sec-!, 16 h daylength) or in the 

dark, at 25°C. Resulting callus was weighed 6 weeks later. 

4.3.2.c Hygromycin 

Surface-sterilized 'PLK' seeds were placed on callusing medium supplemented with 

hygromycin (0-100 mgt!). They were treated in the same way as seeds on kana­

mycin (section 4.3.2.a), except that callus produced was weighed after 11 weeks. 

As seeds usually took 2-3 weeks to germinate, this 11-week period of culture was 

approximately equivalent to the seven week culture period of excised seedling stems 

on callusing medium with G418. Established 'ELK' callus was also plated on 

callusing medium supplemented with the same concentrations of hygromycin used 

for callusing seedling stems. 

4.3.2.d Chlorsulfuron 

Excised 'PLK' seedling stems were placed on callus-induction medium supplemented 

with chlorsulfuron (0-150 nM). The method used was the same as that used for 

seedling stem callusing dose reponses on G418-supplemented media (section 

4.3.2.b). 

4.3.3 Shoot Culture 

Effects of kanamycin, G418, hygromycin and chlorsulfuron on the growth and 
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multiplication of 'PLK', 'ELK' and 'SWG' shoot cultures were seen after growth of 

these cultures on shoot proliferation medium (section 3.3.4) supplemented with 

various concentrations of each selection agent. Concentrations used are listed in 

Appendices II, IV, V and VII. Shoot cultures on G418 and chlorsulfuron were 

assessed after 6 weeks, those on kanamycin after 8 weeks and those on hygromycin 

after 6 and 12 weeks. 

4.3.4 Regeneration on hygromycin 

'ELK' callus was plated on BDS medium containing 4 mgt l of thidiazuron (section 

3.3.2. b) and concentrations of hygromycin ranging from 0-100 mgt l
. 

4.3.5 Statistical analysis 

Where sample size was considered to be of sufficient size for statistical analyses, 

data were subjected to analysis of variance (ANOVA). 

4.4. Results 

4.4.1 Kanamycin 

4.4.1.a Germination and early seedling development 

On all concentrations of kanamycin surveyed, germination of 'PLK' seeds ranged 

from 55-100 percent (Appendix II). Germination itself was not noticeably inhibited 

by any concentrations of kanamycin in the light or in the dark, but seedlings cultured 

on 150-500 mgt l kanamycin were often bleached, and did not develop beyond the 

single cotyledon stage. 

4.4.1. b Seedling stem callus production 
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Very little callus was produced by excised seedling stems on concentrations of 

kanamycin greater than 100 mgt'. Seedling stems were also bleached at these 

concentrations. On concentrations of 20 mgt' or greater, callus from light-grown 

stems weighed significantly less than that grown on control medium without 

kanamycin (Appendix II). In the dark, significantly less callus growth was seen on 

concentrations in excess of 100 mgt' (Appendix II). On 20-100 mgt' kanamycin in 

light and dark conditions, chlorosis and browning of seedling stems and of callus 

produced from them, first became apparent within nine weeks. Stems cultured in 

the dark on 1 mgl-' kanamycin produced 47% more callus than dark-grown controls 

(Fig 4.1). Similarly, stems cultured in the light on 10 mgt' kanamycin produced 

57% more callus than light-grown controls (Fig 4.1). 

4.4.1.c Growth of established callus 

Established 'PLK' callus was weighed after 24 weeks, when calli on concentrations 

of kanamycin ranging from 100-1000 mgt' were completely bleached and/or brown. 

Growth of callus was significantly inhibited on kanamycin concentrations of 50 mgt' 

or more (Appendix II). Although little callus growth occurred on concentrations of 

kanamycin more than 50 mgl-', 'PLK' callus only bleached and senesced within 12 

weeks when cultured on media containing 1000 mgt' kanamycin. 

4.4.1. d Shoot cultures 

Shoot cultures required at least 12 weeks of culture on kanamycin before chlorosis 

and growth inhibition became apparent. Once tissue bleaching was initiated, leaves 

of shoot cultures senesced quickly (Fig 4.2; Appendix II). 

4.4.2 G418 

4.4.2.a Germination and early seedling development 
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The percentage of 'PLK' and 'ELK' seeds which germinated did not appear to be 

markedly decreased as G418 concentrations increased (Fig 4.3; Appendix III). Not 

all of the seedlings bleached and died within the 10 week period of the experiment. 

4.4.2.b Seedling stem callus production 

After culture on media supplemented with more than 25 mgtl G418, seedling stems 

of all three cultivars produced negligible amounts of callus in the light and in the 

dark (Fig 4.4; Appendix IV). 

4.4.2. c Shoot cultures 

The number of green leaves produced on media containing 10 mg!"l or more of G418 

was significantly less than that produced in control treatments. In addition, leaves 

produced on media supplemented with more than 10 mg!"l were bleached by the end 

of the 11 week culture period (Fig 4.5; Appendix III). Vitrification was frequently 

seen in shoots grown on concentrations of G418 ranging from 5-30 mg!"l. In vitro 

cultures used to start these shoot cultures had not previously been vitrified, and there 

was no evidence of vitrification in non-G418 controls. Roots produced by shoot 

cultures grown on lower concentrations of G418 (5-10 mg!"l) were often noticeably 

greener than those of control plantlets. No roots were produced by shoots on media 

containing more than 30 mgl-l G418. 

4.4.3 Hygromycin 

4.4.3.a Germination and early seedling development 

The percentages of germinating 'ELK' seeds were high on medium containing 0-50 

mg!"l hygromycin. On medium supplemented with 100 mgtl hygromycin, some 

inhibition of germination was apparent (Appendix V). Germination of 'PLK' seeds 

appeared to be slightly inhibited on media with 10 mgl-l or more of hygromycin 

(Appendix V). Seedlings on 20-100 mgl-1 of hygromycin were bleached and no 
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development occurred beyond the cotyledon stage (Plate 4.1). The average length 

of the hypocotyl, or of the first true leaf if produced, was significantly less than that 

of hygromycin-free controls when 'PLK' seeds were germinated in the presence of 

20, 50 and 100 mgt' hygromycin (Appendix V). 

4.4.3.b Seedling stem callus production 

Seedlings usually grew to about 50mm in length before producing callus. Chlorosis 

of seedling tissue was apparent within approximately four weeks of germination 

(Plate 4.2). Average weights of seedling stem callus produced on 5-100 mgt' 

hygromycin was significantly less than that of non-hygromycin controls (Appendix 

V). No callus formed on 'PLK' or 'ELK' seedling stems when they were cultured 

on concentrations of hygromycin in excess of 20 mgt' (Plate 4.2; Appendix V). 

4.4.3.c Established callus 

Chlorosis of callus cultured on 20-100 mgt' hygromycin was apparent within six 

weeks, and all calli on 50 and 100 mgt' had senesced within 11 weeks (Plate 4.3; 

Appendix V). 

4.4.3. d Shoot cultures 

Whereas shoot cultures grown on media containing 0 and 5 mgl-' hygromycin 

produced green leaves, those on all other treatments were bleached within 6 weeks. 

This experiment was continued for a further 6 weeks to check that no new shoots 

were produced. The number of bleached or brown leaves visible on shoots which 

were grown on 5, 10, 20 and 50 mgt I hygromycin, was significantly higher than on 

the hygromycin-free controls. Very few leaves were produced on 100 mgt' 

hygromycin (Fig 4.6; Appendix V). Vitrification was occasionally apparent in shoot 

cultures on hygromycin. 

4.4.3.e Regeneration 
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No shoots were regenerated from calli growing on thidiazuron-supplemented 

medium, including those growing in the absence of hygromycin. Calli growing on 

0,5, 10 and 20 mgl-1 hygromycin produced roots. Some of the roots produced from 

callus growing on 5 mgl-1 hygromycin were green (Plate 4.4). No callus grew on 

media containing 50 or 100 mgl-1 hygromycin. 

4.4.4 Chlorsulfuron 

4.4.4.a Germination and early seedling development 

Although germination of 'PLK' and 'ELK' seeds did not appear to be inhibited by 

high concentrations of chlorsulfuron, subsequent growth of seedlings was (Plate 4.5; 

Appendix VI). Seedlings on concentrations of chlorsulfuron above and including 50 

nM were mostly bleached within 11 weeks of the seeds being put onto germination 

media. On concentrations above and including 50 nM, the percentage of bleached 

seedlings ranged from 73 to 100% ('ELK') and from 43 to 75% ('PLK'). The 

percentage of bleached seedlings increased with increasing chlorsulfuron 

concentrations (Fig 4.7). 

4.4.4.b Seedling stem callus production 

The weight of callus produced by excised seedling stems cultured in the light was 

significantly less than non-chlorsulfuron controls when explants were grown on 25-

150 nM chlorsulfuron (Fig 4.8; Appendix VI). A similar result was recorded in the 

dark (Appendix VI). Negligible callus growth was recorded for seedling stems on 

25-150 nM chlorsulfuron. 

4.4.4.c Shoot cultures 

The number of leaves produced by 'PLK', 'ELK' and 'SWG' shoot cultures within 

six weeks, was significantly less than non-chlorsulfuron controls for cultures grown 

on all concentrations of chlorsulfuron (Fig 4.9; Appendix VII). Shoot cultures of 
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all three cultivars produced an average of less than one leaf on concentrations of 

chlorsulfuron greater than and including 25 nM. With the exception of 'ELK' on 

25 and 100 nM chlorsulfuron, the number of roots produced by shoot cultures grown 

on all of the cultivar-chlorsulfuron combinations was significantly less than that of 

controls (Appendix VII). Roots produced by plantlets growing on 25 and 50 nM 

chlorsulfuron were greener than those of control plantlets. 

4.5. Discussion 

4.5.1 General 

Dose response experiments were carried out to determine the minimum concent­

rations of selection agents which could be used for selection of transformed onion 

cells (Table 4.1). This would avoid the use of excess antibiotic or herbicide in 

selection media, which might otherwise result in the death of transformed cells. 

Death of transformed cells might be caused by excess antibiotic in one of two 

possible ways: firstly, leachates e.g. phenolics and other compounds, produced by 

surrounding untransformed cells when they die on selection media, can cause the 

death of viable transformed cells; secondly, transformed cells in the co-cultivated 

plant tissue are only likely to tolerate as much toxic compound as can be detoxified 

by the enzyme for which the selectable marker gene codes. Saturation of this 

enzyme with substrate (i.e. the selective agent) may result in cell death. 

4.5.2 Effects of kanamycin, G418 and hygromycin 

4.5.2.a Germination and early seedling development 

Germination/seedling growth dose response experiments generally showed that the 



Table 4.1 Concentrations of selection agents suitable for use in selection of transformed 'Pukekohe Longkeeper' tissues. 

Selection Agent 
Tissue Type 

Kanamycin Geneticin Hygromycin Chlorsulfuron 

Seedling stem 100 mgl- l (n.a.) 25 mgt l (n.a.) 5 mgt l (n.a.) 25 nM (n.a.) 
(shoot production) (light) 

Seedling stem 100 mgl- l *** 25 mgt l (n.a.) 5 mgt l *** 25nM 
(callus production) (light) (light) 

Shoot cultures 100 mgl- l (n.a.) 30 mgtl ** 10 mgI-I*** 25 nM *** 
(light) 

Mature callus 600 mgl- l *** 30 mgt l (n.a.) 20 mgl-l (n.a.) not tested 

Regenerating 600 mgl- l *** not tested 20 mgl-l (n.a.) not tested 
callus 

N.B. Statistical comparisons are made with controls following analyses of variance combined with Fisher's least-significant-difference test (*, **, *** = significance at 0.05, 
0.01 and 0.001 levels respectively; n.a. = data not analysed statistically). 
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actual germination event was not directly inhibited by kanamycin, G418 or 

hygromycin. As kanamycin, G418 and hygromycin interfere with ribosomal 

components of the cell, thereby inhibiting protein synthesis (Maniatis et al., 1982; 

Co1bere-Garapin, 1981; Cabanas et al., 1978), their presence in the medium 

probably does not greatly affect pre-formed meristems already in place in the seed. 

In most work done on screening progeny of kanamycin-resistant plants transformed 

with the nptII gene, workers have found germination of seeds to be unaffected by 

kanamycin (Horsch et al., 1984; Deroles and Gardner, 1988). Conversely, seedling 

growth is usually affected by kanamycin, and growth of seedlings on kanamycin­

containing media is used to screen for inheritance of nptII (Horsch et at., 1984). 

After germination, onion seedlings grown on higher concentrations (150-500 mgtI) 

of kanamycin, were bleached and growth-impaired. By comparison, G418, although 

noticeably more toxic to onion shoot cultures than kanamycin, did not appear to 

affect viability of seedlings as much as kanamycin. It appears that these two 

analogues affect different developmental stages of onions in different ways, with 

kanamycin being more toxic to seedlings and G418 to more toxic to mature plants. 

As higher concentrations of hygromycin (50 and 100 mgt-I) did not facilitate any 

growth of seedlings (Plate 4.1), this antibiotic could be reliably used to screen 

progeny of onion plants transformed with hpt. 

4.5.2.b Callus growth 

Of all the onion tissues surveyed for responses to kanamycin, callus was the least 

sensitive. At concentrations greater than and including 50 mgt!, hygromycin was 

more toxic to seedling stem cells than kanamycin or G418, as no callus was formed. 

By comparison, seedling stems produced some callus when grown on 50 mgl- l kana­

mycin, and a smaller amount on 50 mgt l G418. The complete lack of seedling stem 

callus formation on hygromycin, and the marked growth inhibition and bleaching of 

established callus, suggest that hygromycin is more effective than G418 to use in 

selection of transformed onion callus. Regeneration of plantlets from transformed 

callus should also be carried out on media containing hygromycin. Unlike 
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kanamycin, which has been shown to inhibit regeneration of kanamycin-resistant calli 

when added to regeneration media of some species e.g. asparagus (Conner et al., 

1988), potato (Conner et ai., 1991b) and pea (Puonti-Kaerlas et ai., 1990), 

hygromycin has not been shown to inhibit regeneration of hygromycin-resistant calli 

when included in regeneration media of maize (Walters et al., 1992), tobacco 

(Zyprian and Kado, 1990) and pea (Puonti-Kaerlas et ai., 1990). 

In these dose response experiments, growth of young and established onion callus 

has been shown to be only partially inhibited even on high concentrations of 

kanamycin. This has also been noted with callus of other species. Dekeyser et ai. 

(1990) showed that although growth of rice callus is sensitive to low concentrations 

of methotrexate, phosphinothricin and bleomycin, and to moderate concentrations of 

G418 and hygromycin, it is only partially inhibited by relatively high concentrations 

of kanamycin. By comparison, callus of wheat, which like rice is also a member of 

the Poaceae (Gramineae) family, is sensitive to moderate amounts of kanamycin. 

Mooney et ai. (1991) selected for transformed kanamycin-resistant wheat calli on 

100 mg}-l kanamycin, this dose being toxic to untransformed cells. It is clear from 

these and other results, that tolerance/sensitivity to selective agents must be defined 

for each particular species and cultivar being used, prior to transformation 

experiments being performed. 

The hormone-like enhancement of onion callus growth on low concentrations of 

kanamycin, as was seen in these experiments, has also been observed by other work­

ers. Owens (1979) found that low concentrations of kanamycin (2.9-11.65 mgtl) 

enhanced shoot differentiation from carrot callus cultures. The presence of 

kanamycin was necessary for shoot morphogenesis from callus of one of the cult­

ivars. The concentrations of kanamycin which enhanced morphogenesis from carrot 

callus are similar to those which enhanced onion callus growth, i.e., 1-10 mgl-l. It 

is possible that the promotion of onion callus growth at low concentrations of 

kanamycin was not a response of the cells to kanamycin, but rather a response of 

cells to suppressed growth of bacterial contaminants. If any contaminating bacteria 

were suppressed, improved callus growth would probably result. 
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4.5.2.c Regeneration 

Regeneration of shoots or whole plantlets from 'ELK' callus on hygromycin was not 

successful even on hygromycin-free controls. It is thought that regeneration did not 

occur on control tissue because the callus was more than six months old, after which 

time 'ELK' and 'PLK' callus had generally lost its ability to regenerate shoots or 

plantlets (see section 3.4.2). 

4.5.2. d Shoot cultures 

Kanamycin was shown to be ineffective as a selection agent in onion shoot culture 

dose response experiments. The waiting period of at least 12 weeks before it was 

clear if plants had bleached and senesced, was considered too long. Consequently, 

G418 was chosen as an alternative antibiotic for use in the selection of tissue thought 

to be transformed with the nptIl gene. The modes of action of these two analogues 

should be noted here: although kanamycin and G418 both interfere with ribosomal 

componentry of cells, kanamycin binds to 70S ribosomes (Cabanas et al., 1978; 

Colbere-Garapin et al., 1981; Maniatis et al., 1982), which are found in bacteria and 

in the mitochondria and chloroplasts of plant cells, and G418 interferes with the 

function of 80S ribosomes, i.e. eukaryote cell cytoplasmic ribosomes (Eustice and 

Wilhelm, 1984), blocking protein synthesis in the cell. This may account for the 

difference in reponses of onion leaf tissue to the two antibiotics. 

The reason for the vitrification response of leaves to G418 is unclear. Many theories 

have been put forward to explain this glassy, watery condition of shoots in tissue 

culture. Some of the more common ones include deficient lignin synthesis, lack of 

enzyme activity (Phan and Hegedus, 1986), the presence of ethylene, the physical 

state of the culture medium and the presence of cytokinins (Leshem et al., 1988; 

Phan, 1991). It is possible that stress on shoots caused by the presence of G418, 

combined with stress caused by one or several of the above factors, could have been 

responsible for the widespread vitrification of leaf tissue. As vitrification had been 

occasionally seen in some onion shoot cultures not on G4l8, BA and sucrose 
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concentrations in the onion shoot proliferation medium had already been reduced. 

Cultures had also been regularly subcultured (approximately every 6 weeks) to avoid 

the build up of ethylene in culture vessels. 

Growth of onion shoot cultures on hygromycin-supplemented media established that 

10 mgt! was a suitable concentration on which to select for hpt-positive shoots. This 

concentration would allow maximum growth from inoculated basal plates at first, 

allowing transformed shoots to get established, and would then cause any 

untransformed shoots subsequently produced in culture to senesce. 

4.5.3 Chlorsulfuron 

From the data presented here, it would appear that chlorsulfuron is a suitable 

selective agent for use in onion transformation experiments. If selection for 

chlorsulfuron resistance were to be carried out during callusing, a concentration of 

25 nM would be sufficient. This low concentration required for selection 

demonstrates the toxicity of chlorsulfuron to onion cells. The pKIWIllO binary 

vector, which contains the mutant als gene in its T-DNA, was initially used in onion 

transformation experiments described in Chapter 5. However, since pKIWIllO was 

shown by Gardner and Janssen (pers. comm.) to be suboptimal in its delivery of T­

DNA to plants usually readily transformable by Agrobacterium, it has been aband­

oned as a binary vector for use in onion transformation (for more detail see section 

5.5). 

4.5.4 Concluding remarks 

The dose response experiments carried out showed that kanamycin was ineffective 

as a selective agent for use in onion transformation work. By comparison, the 

kanamycin analogue G418 was relatively effective, causing the death of most onion 

tissues at low concentrations. However, responses of tissues to G418 were slower 

than those to the antibiotic hygromycin. Most tissue types died within two months 

on 30 mgl-! G418, but young and mature callus could survive on this concentration 
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for up to six months. Hygromycin was the most toxic antibiotic to 'PLK' onion 

tissue cultures. No callus grew from seedling stems cultured on 20 mgt! or more 

of hygromycin, and all leaves of in vitro cultures grown on hygromycin were 

bleached and dead within eight weeks. These responses suggest that hygromycin is 

even more preferrable as an antibiotic selectable marker for use in onion 

transformation experiments than G418. However, one disadvantage of using the hpt 

gene for selection is that although an assay to detect HPT activity in plant tissue is 

now available (Cabanes-Bastos et al., 1989; Spangenberg et al., 1991), this assay 

is time-consuming, and is not routinely used to screen for transformed plants. 

Because the hygromycin dose response work was carried out late in this project, 

transformation of onions with an hpt expression vector was not attempted (G418-

resistant p1antlets had already been selected by this time). The sensitivity of onion 

tissues to low concentrations (25-150 nM) of chlorsulfuron demonstrated that this 

herbicide would also be a suitable selective agent in transformation experiments. 
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Fig 4.1 The average weight of 'Pukekohe Longkeeper' seedling stem callus 

produced on medium containing kanamycin. Seedling stems were cultured in the 

light and the dark for 15 weeks. 

Fig 4.2 The average number of green leaves produced by 'Pukekohe Longkeeper' 

shoot cultures on medium containing kanamycin. Shoots were cultured for 8 weeks. 
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Fig 4.3 Germination of seeds and seedling growth of (a) 'Pukekohe Longkeeper' 

and (b) 'Early Longkeeper' on medium containing G418. Data was collected 10 

weeks after seeds were plated. 
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Fig 4.4 The average weight of callus produced by light and dark-cultured 

'Pukekohe Longkeeper' seedling stems on medium containing G418. Callus was 

cultured for 6 weeks. 

Fig 4.5 The average number of green leaves and roots produced by 'Pukekohe 

Longkeeper' shoot cultures on medium containing G418. Shoots were cultured for 

6 weeks. 
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Fig 4.6 The average number of green and bleached leaves produced by 'Pukekohe 

Longkeeper' shoot cultures on medium containing hygromycin. Shoots were 

cultured for 12 weeks. 
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Fig 4.7 Germination of seeds and seedling growth of (a) 'Pukekohe Longkeeper' 

and (b) 'Early Longkeeper' seedlings on medium containing chlorsulfuron. 
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Fig 4.8 Germination and production of callus from light and dark-cultured 

'Pukekohe Longkeeper' seedling stems on medium containing chlorsulfuron. 

Seedling stems were cultured for 6 weeks. 

Fig 4.9 Leaf and root production by 'Pukekohe Longkeeper' shoot cultures on 

medium containing chlorsulfuron. Shoots were cultured for 6 weeks. 
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Plate 4.1 Germination of 'Pukekohe Longkeeper' (a) and 'Early Longkeeper' (b) 
seeds and seedling growth on medium containing (from left, top) 0, 5, 10, (bottom) 
20, 50, and 100 mgt! hygromycin. Photographs were taken 11 weeks after seeds 
were plated. 



a 
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Plate 4.2 Germination of 'Pukekohe Longkeeper' seeds and callus production from 
seedling stems on medium containing (from left, top) 0, 5, 10, (bottom) 20, 50, and 
100 mgl-! hygromycin. 

Plate 4.3 Growth of established 'Early Longkeeper' callus on medium containing 
(from left, top) 0, 5, 10, (bottom) 20, 50, and 100 mgl-! hygromycin. 

Both photographs were taken 11 weeks after seeds were plated. 
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Plate 4.4 Growth of mature 'Early Longkeeper' callus on thidiazuron regeneration 
medium containing (from left) 0, 5, 10, (top) 20, 50, and 100 mgt' (bottom) 
hygromycin. 

Plate 4 . .5 Germination of 'Pukekohe Longkeeper' seeds, and seedling growth on 
medium containing (from left) 0, 25, 50, (top) 75, 100 and 150 nM (bottom) 
chlorsulfuron. 

Both photographs were taken 11 weeks after seeds were plated. 
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Chapter 5: Gene transfer to onion (Allium cepa) by 

Agrobacterium tumefaciens 

5.1. Abstract 

The ability of Agrobacterium tumefaciens to transfer genes to a monocotyledonous 

plant species has been demonstrated in onion (Allium cepa L.). A single, putatively 

transformed plantlet (RCl) was regenerated from onion seedling stem callus, follow­

ing co-cultivation of seedling stems with Agrobacterium strain LBA4404 harbouring 

the binary vector pKIWIlI0. In addition, 41 axillary and/or adventitious shoots 

which grew directly from in vitro-injected basal plate meristematic regions, survived 

three cycles of selection on 30 mgt1 of the kanamycin analogue G418 (geneticin) 

following co-cultivation with four strains of A. tumefaciens, each harbouring one of 

the two binary vectors, pKIWIllO or pGA643. This concentration of G418 is 

normally toxic to untransformed shoot cultures. The binary vectors pKIWI1lO and 

pGA643 carry the neomycin phosphotransferase II gene (nptlI) controlled by the 

nopaline synthase (nos) promoter. Both RC I and the shoots growing from basal 

plate explants, produced roots when grown on culture media supplemented with 30 

mgl-1 G418. DNA extracted from RCI and from some of the G4I8-resistant shoots 

produced from injected basal plates, was shown by Southern hybridizations to 

contain the nptII gene, the gene product of which confers resistance to kanamycin 

and G418. /3-glucuronidase (GUS) activity was detected in some of the plantlets 

derived from basal plate tissue which had been injected with the A. tumefaciens 

strains LBA4404 and C58 harbouring pKIWI1lO. Molecular and phenotypic 

evidence suggest that the putatively transformed plants produced from injected basal 

plate tissues are chimeric. 
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5.2. Introduction 

The most common approach used to produce transgenic plants is that of co­

cultivating sterile plant tissue with log phase cultures of genetically modified 

Agrobacterium. Plant protoplasts were used in early Agrobactenum co-cultivation 

experiments (Horsch et al., 1984; De Block et al., 1984; see section 1.5.2). The 

technique of leaf-disc co-cultivation was first used for Agrobacterium-mediated 

transformation of the solanaceous species petunia, tobacco and tomato by Horsch et 

al. (1985). Leaf discs, cut from surface-sterilized leaves were dipped into a 

suspension ofA. tumefaciens harbouring a chimeric nos-nptII-nos gene in the T-DNA 

(section 1.5.2). After being blotted dry, leaf discs were incubated for two days on 

regeneration medium with feeder cells to stimulate growth. They were then 

transferred to the same medium without feeder cells, but with added carbenicillin to 

inhibit Agrobacterium growth, and kanamycin to select for transformed cells. 

Transformation of regenerated plants was confirmed by nopaline analysis, Southern 

blots and Mendelian inheritance patterns of the segregation of kanamycin resistance 

in seedling progeny. Since these experiments, co-cultivation has become a routine 

transformation technique used for plant species that are susceptible to Agrobactenum 

infection and can be readily regenerated from explant tissue. Some explant types 

used for this technique have included leaves, cotyledons, thin cell layers, petioles, 

peduncles, hypocotyls, stems, microspores and pro-embryos (Grant et at., 1991). 

Onions are among a small number of monocotyledonous plants which have been 

found capable of producing true tumours in response to Agrobacterium inoculation 

(Dommisse et al., 1990; see Table 1.1, for detail on other monocotyledonous plants 

which have formed tumours in response to inoculations with Agrobacterium). The 

detection of opines in these tumours has provided additional evidence for expression 

of T-DNA genes, indicating that T-DNA has probably been integrated into the 

genome (Dommisse et at., 1990; see Chapter 2). It should therefore be possible to 

regenerate transformed onion plants from excised, wounded tissue which has been 
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co-cultivated with Agrobacterium. The work reported in this chapter describes a 

number of approaches taken in an attempt to select and regenerate transformed onion 

cell cultures. Evidence for the presence and expression of nptII and gus in the onion 

genome is examined. 

5.3. Materials and Methods 

5.3.1 Bacterial strains and expression vectors 

Explants for co-cultivation and injection were inoculated with A. tumefaciens strain 

LBA4404, C58, A4T or A281, each of which was carrying one of the binary vectors 

pKIWI1lO or pGA643. The avirulent strain LBA4404 without a binary vector was 

used as the control strain in all co-cultivations performed. Simplified diagrams of 

the T-DNA regions of pKIWIll0 and pGA643 can be seen in Fig 5.1 and Fig 5.2. 

A brief description of each of the vectors follows: 

(1) pKIWI110: a complete description of this vector's construction is given 

elsewhere (Janssen and Gardner, 1989). Briefly, its T-DNA contains a chimeric gus 

gene (35S-gus-ocs) from pRAJ275 (Jefferson, 1987), constructed so that it is ex­

pressed in transformed plant tissues but not in bacterial cells. Closer to the T­

DNA's right border is a chimeric kanamycin resistance gene (nos-nptII-nos). Also 

on the T-DNA is a mutant acetolactate synthase gene (als) , the gene product of 

which confers resistance to sulfonylurea herbicides, e.g., chlorsulfuron. 

(2) pGA643: this binary vector is based on an RK2 derivative, pTJS75 (An et al., 

1988). The nptII coding region from Tn5 is inserted between the nopaline synthase 

(nos) promoter and terminator regions. Although nptII is the only selectable marker 

on pGA643, this binary vector contains the DNA fragment carrying the transcript 

7 and 5 terminators of the octopine-type Ti plasmid pTiA6 and the 419 bp DNA 

fragment carrying the 35S promoter of cauliflower mosaic virus (CaMV). A DNA 

sequence inserted into the multiple cloning site of this vector's T-DNA should 
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therefore be efficiently transcribed in plants into which the T-DNA has been 

integrated. 

5.3.2 Plant Material 

S.3.2.a Co-cultivation of seedling stem ex plants 

Allium cepa 'Pukekohe Longkeeper', 'Southport White Globe' and 'Hikeeper' seeds 

were surface-sterilized, with shaking, in a 30% v/v solution of commercial bleach 

(5.0% w/w sodium hypochlorite) plus a few drops of detergent, for 30-45 min. 

They were rinsed at least three times in sterile distilled water. Sterilized seeds were 

placed on 112x BDS salts (Dunstan and Short, 1977), pH 5.5, which was solidified 

with 0.7% agar, and were germinated in the light (cool, white fluorescent tubes, 30 

p,E m-2sec-l, 16 h daylength) at 20°C. Up to 300 five week-old seedlings were used 

for each co-cultivation experiment. Unbisected and longitudinally-bisected stem 

explants were prepared from these seedlings as described in section 3.3.5. All cuts 

were made in liquid log phase cultures of Agrobacterium, with each strain (except 

controls) harbouring one of the two binary vectors. These had been grown up in 

overnight shaking cultures of nutrient broth (Difco Bacto Laboratories, Detroit, 

USA) or LB medium (Miller, 1972), each containing 100 mgl-l (for strains 

harbouring pKIWIIlO) or 20 mg}-l (for strains harbouring pGA643) kanamycin 

sulphate. Cut tissue was left in bacterial cultures for approximately 1 minute, after 

which it was blotted dry on sterile filter paper. Explants were then placed on media 

for callus production (BDS medium with 1.5 mg}-l pic1oram) or shoot production 

(BDS medium with no added PGRs). When media had cooled to approximately 

37°C after autoc1aving, 20 J-tM acetosyringone was added to half of all the BDS­

based media used for co-cultivation (Sheikholeslam and Weeks, 1987). The pH of 

all acetosyringone- and non-acetosyringone-supplemented BDS media was adjusted 

to pH 5.5 prior to autoc1aving. Two days later, co-cultivated explants were 

transferred to the callusing or shoot production media without acetosyringone, but 

with 250 mgt! cefotaxime (Claforan, Roussel Pharmaceuticals Pty. Ltd). One week 

later, explants were transferred to selection medium (30 mgl-l G418, 250 mgl-l 



117 

cefotaxime). Some of the explants which had been co-cultivated with strains of 

Agrobacterium harbouring pKIWI1lO, were placed onto callusing medium containing 

50 nM chlorsulfuron instead of G418. These were also transferred onto 

chlorsulfuron-supplemented media for regeneration. 

After approximately eight weeks, explants which had initiated growth on callusing 

medium with G418 or chlorsulfuron were transferred to regeneration medium (BDS 

medium, 1.6 mgl- l BA, 0.4 mgl- l picloram, pH 5.5), supplemented with 30 mgl- l 

G418. One month later, the concentration of picloram in this medium was dropped 

to 0.1 mgl- l
. Lack of the usual regeneration response by callus, despite otherwise 

healthy growth, prompted the transfer of calli to BDS medium supplemented with 

4 mgl- l TDZ (section 3.3.2.b and 3.4.2) with 30 mgl- l G418. After four weeks on 

the TDZ-supplemented medium, putatively transformed calli were taken off selection 

media and transferred to non-selective regeneration medium for 10-12 weeks. 

Following this, they were transferred back onto the G418-regeneration medium and 

then cultured for a further 10-12 weeks. Only those cultures surviving this second 

period of selection were assumed to be putative transformants. 

5.3.2. b Co-cultivation of callus 

Three-month-old 'PLK', 'ELK' and 'Hikeeper' callus was cut into small pieces in 

log phase cultures of Agrobacterium and co-cultivated on callusing (BDS, 1.5 mgt l 

picloram) or regeneration media (BDS, 1.6 mgt l BA, 0.4 mgt l picloram) for 2-3 

days (see section 3.3.1 and 3.3.2 for detail on media). Half of these media 

contained 20 /-tM acetosyringone. Explants were then transferred to the callusing and 

regeneration media, containing 250 mgt l cefotaxime, but no acetosyringone. After 

a week they were transferred to these media containing cefotaxime and 30 mgt! 

G418. 

5.3.2. c Co-cultivation of protoplasts 

Protoplasts were prepared from callus cultures of 'PLK' as described in section 
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3.3.6. They were plated in liquid KM8p medium (Kao and Michayluk, 1975) with 

V-KM vitamins (Bokelman and Roest, 1983) substituted for KM8p vitamins, at a 

density of approximately 2.S x lOS cells mI-l. To each SOO p,l of freshly isolated 

protoplasts in culture, 1 p,l of log phase Agrobacterium culture was added. The 

Agrobacterium strains LBA4404, CS8 and A4T, each harbouring the binary vector 

pKIWI1lO, were used in this experiment. 

As Agrobacterium is known to bind to cell walls prior to infecting cells (Lippincott 

and Lippincott, 1980), protoplasts were also isolated, and cultured in the medium 

described above for four days without Agrobacterium, so that cell wall resynthesis 

could begin in this time. After four days in culture, the protoplasts were pelleted 

by gentle centrifugation (70g, 2 min) and the supernatant removed with a sterile 

pasteur pipette. Cells from Agrobacterium log phase cultures were pelleted by 

centrifuging for IS min (3000g) at 4°C. The supernatant was discarded and the 

bacterial pellet was resuspended in SOO p,l of fresh LB medium. Five p,l of this 

mixture was added to protoplasts in 1 ml of fresh, sterile culture medium. 

Protoplasts were then incubated with Agrobacterium overnight. The following day 

cefotaxime was added to these cultures to a final concentration of SOO p,g/ml. Two 

days later, the osmoticum of the culture medium was diluted slightly by the addition 

of 150 p,l of KM8p (as above) with no glucose, sucrose or fructose, to 1 ml of 

medium containing the protoplasts (1: 7.6 dilution). Selection of cells on antibiotics 

or chlorsulfuron was not carried out. 

5.3.2.d In vitro injection of twin scales 

Twin scales were cut from onion bulbs and surface-sterilized as described in section 

3.3.4.a. Basal plate explants were injected in 1-4 places with log phase cultures of 

Agrobacterium using a sterile syringe with a fine needle. The needle entered the 

meristematic region of the basal plate. Injected basal plates were co-cultivated on 

onion shoot proliferation medium (PH S.6) (section 3.3.4.b) with or without 20p,M 

acetosyringone, for two days. They were then transferred to the same medium 

without acetosyringone but with 250 mg}-' cefotaxime for 7 days, following which 
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they were transferred to selection medium (30 mgl- l G418, 250 mgt l cefotaxime, pH 

5.6). Cultures remained on this medium until live shoots could be separated from 

bleached and dying shoots. Live shoots attached to their immediate basal plate 

regions were separated from dying shoots at this stage, and were subcultured onto 

the same medium containing G418, to confirm stable resistance to this antibiotic. 

Ten weeks after the subculture, those plantlets still growing on G4l8 were taken off 

selection by transferral to the same medium lacking G418. They were cultured on 

this medium for up to 12 weeks. After this, these plantlets were transferred back 

onto G418-containing medium, on which they remained for at least 12 weeks. Only 

those shoots surviving the third period of selection were considered to be putative 

transformants, and at this stage, the number of shoots/plantlets were counted. 

5.3.2. e In vitro injection of basal meristems of tissue-cultured bulbUs 

Split in vitro shoots were also used as explants for in vitro injections. Shoot cultures 

which had formed bulbils in vitro were split longitudinally (see section 3.3.4.b for 

details), and those which had not formed bulbils were left intact. Leaf growth was 

cut back to about lOmm above the basal plate region before the tissue was injected. 

Basal plates were injected with Agrobacterium in the same way as surface sterilized 

twin scales had been, except that only 1-2 injections per explant were carried out. 

5.3.3 iJ-glucuronidase Assays 

GUS assays were usually only carried out on tissue derived from inoculations with 

pKIWIllO binary vector strains which had survived the third period of selection on 

G4l8. Localization of GUS expression was assessed by the histochemical assay 

which uses 5-bromo-4-chloro-3-indolylglucuronide (X-gluc) as a substrate (Jefferson, 

1987). To suppress the endogenous GUS-like activity seen in control and 

'transformed' onion tissue (section 5.4.5), 20% methanol was included in the 

reaction buffer (Kosugi et al., 1990). Leaf, bulbil and root segments were incubated 

overnight with the reaction buffer containing 1 mM X-gluc, at 37°C. The following 

day, green tissue was soaked in 80% ethanol for at least 6 hours to decolour the 
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chlorophyll so that areas of blue precipitate could be seen. 

5.3.4. NPTII Assays 

Neomycin phosphotransferase II assays were usually only carried out on tissue 

derived from inoculations with either one of the binary vector strains which had 

survived the third period of selection on G418. NPTII enzyme was extracted from 

up to 700 mg of leaf tissue, and assayed using the method of McDonell et al., 

(1987). Protein concentrations in these extracts were determined according to the 

Bradford (1976) technique as modified by Spector (1978). As NPTII activity was 

difficult to detect using the method of McDonell et al. (1987), protein in the 

supernatants was concentrated by precipitation with ammonium sulphate ([N~h 

S04)' This involved adding 561 gl-I (NH4)2S04 to the supernatant (80% precip­

itation). Precipitated protein pellets were stored at 4°C. Prior to the assay each 

individual pellet was redissolved in 50 ttl of fresh extraction buffer (McDonell et al., 

1987). Pellets were redissolved after the addition of extraction buffer by tapping the 

microfuge tube, vortexing, tapping again and then microfuging the mixture at 13 000 

rpm for 5 minutes. The supernatant was saved and 15 ttl was used for each assay. 

Hairy roots of pea (Pisum sativum cv Pania) (Grant et al., 1989) or turnip (Brassica 

campestris var rapi/era cv Red Globe) (Christey and Sinclair, 1992), both of which 

had been transformed with A4 T harbouring the pKIWIIlO vector, were used as 

NPTII-positive controls. In addition, a positive control sample without substrate, 

and substrate with no plant extract were assayed. An onion sample was also assayed 

without substrate. These additional controls were carried out to check that a positive 

signal was not due to substrate degradation or non-specific binding of the 32p to 

samples on the Whatman P 81 paper. The modified NPTII assay of Staebell et al., 

(1990) was also performed on tissue of the same G418-resistant plantlets. To 

determine whether NPTII activity was localized to specific tissue types, leaves, 

bulblets and roots were assayed separately. To check if binary vector Agrobacterium 

strains were still living in the tissues, all plantlets which were to be used for the 

NPTII assay were smeared over an LB plate and dipped into LB broth, both 
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containing kanamycin (100 mgl-! if inoculated with pKIWI1lO, 20 mgl-! if inoculated 

with pGA643). No bacterial growth was seen on the solid or in the liquid LB 

medium. 

5.3.5 DNA Extraction 

The extraction of high molecular weight DNA from onion leaf and bulb tissue was 

initially carried out as described in the extraction method of Evans et al. (1983). As 

this method was very time consuming it was subsequently abandoned in favour of 

the quicker CTAB method of Lassner et al. (1989). Some minor modifications were 

made to this method by Dr J.E. Grant (pers. comm.). Instead of being squashed 

with sap extractor rollers, plant material (50-500 mg), which had been placed with 

1.5 ml of extraction buffer in a small, seal-top plastic bag, was squashed with a 

wallpaper roller or rolling pin. The corner of the bag was cut and leaf/buffer liquid 

collected into a 1.5 ml microfuge tube. Subsequent steps followed the Lassner 

method. All DNA extracted, including controls, was quantified using OD26o/0D28o 

values as measured on a Philips UV/vis spectrophotometer (PU 8625). This quant­

itation assumes that an OD26o of 1 is equivalent to approximately 50 mgt! of double 

stranded DNA. The extinction ratios also provided an estimate of the purity of the 

nucleic acid being measured, with pure preparations of DNA and RNA having 

OD26o/0D28o of 1.8 and 2.0 respectively (Maniatis et al., 1982). 

5.3.6 Southern blot analyses 

In total, 31 different Southern analyses were carried out. In these analyses, onion 

DNA was digested with HindUI, EcoRV, EcoRI or EcoRI/BamHI. DNA for posit­

ive control samples was extracted from transgenic Brassica plants. Each plant had 

been transformed with one of two strains of A. tumefaciens, harbouring the binary 

vector pGV 1047 , pLNl6 or pKIWI1lO, all of which carry the nptII gene. All 

Brassica transformations and DNA extractions were carried out by Dr Mary 

Christey, Crop & Food Research, Lincoln. 



122 

5.3.6.a Digestion of DNA 

To initially establish which enzymes would digest onion DNA to a sufficient extent 

for Southern analyses, onion genomic DNA was at first incubated with a number of 

restriction enzymes including EcoRI, EcoRV, DraI, BamHI, PstI and HindII!. Each 

reaction mix comprised up to 25 /hg DNA, 12-18 units of enzyme, 4 /hI of the lOx 

reaction buffer supplied with each enzyme, and sterile distilled water, if needed, to 

make the reaction volume up to a total of 40 /hI. Digestions were incubated 

overnight at 37°C for approximately 16 h. Because digestion of onion DNA did not 

appear to go to completion with some enzymes (Plate 5 .la), it was decided that the 

reactions should be incubated for longer. After an overnight incubation, a further 

8-12 units of enzyme was added to each digestion, and the reactions incubated for 

a further 4-5 hours. These digestions went to completion (Plate 5.1b). Reactions 

were stopped by the addition of 5 /hI of sample buffer (Appendix VIII). 

5.3.6.b Electrophoresis 

Restriction fragments were separated by electrophoresis on a 0.9% agarose gel (BRL 

Ultra pure) in Ix Tris-Borate-EDTA (TBE) buffer (Maniatis et al., 1982), usually 

run overnight at 35 V. All of the digestion mixture, i.e. up to 25 /hg of DNA, was 

loaded per lane. After electrophoresis, the gel was rinsed in distilled water and 

stained with O.5/hgmt1 ethidium bromide for 20 min. 

5.3.6.c Blotting 

DNA was transferred from the agarose gel to a nylon membrane (Zeta-Probe, GT, 

Biorad) by capillary transfer using the method of Reed and Mann (1985). 

5.3.6.d Probe Isolation 

The plasmids pKIWI339 (constructed by Jeannette Keeling, Dept of Cell Biology, 

University of Auckland, New Zealand) and pKIWIlOl (Janssen and Gardner, 1989) 
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were purified using the alkaline lysis plasmid minipreparation method (Sambrook et 

al., 1989), as modified by Dr G. Timmerman (pers. comm.). The nptII coding 

region (1.25 kbp) excised from pKIWI339 was used to probe DNA extracted from 

G418-resistant plantlets. This probe was excised by digestion of pKIWI339 with 

EeoRI and Xhol for 1 Vz hours at 37°C, in a 10 Itl reaction. A gus probe was also 

prepared to probe DNA from those plantlets which had shown GUS-positive res­

ponses. This probe was prepared from pKIWIlOl by excising the 1.85 kbp gus 

coding region with EeoRI and BamHI. Digestions were stopped by the addition of 

sample buffer. Plasmid fragments were separated on a 1 % low melting point 

agarose (BRL Ultra pure) gel, cast on a microscope slide. The gel was 

electrophoresed at 80-85 V for 1-11/2 h. After staining the gel with ethidium 

bromide, the fragment was excised in an agarose slice (Feinberg and Vogelstein, 

1983). This DNA fragment could be used immediately or stored at 4°C for future 

use. 

5.3.6.e Labelling of probe 

Probes were radioactively labelled with 32p by hexanucleotide random priming using 

the method of Feinberg and Vogelstein (1983). Specific activity of probes was 

measured with a geiger counter and sometimes quantified more accurately following 

TCA precipitation of probe DNA (Maniatis, 1982). When measured, specific activ­

ity was usually in the order of 0.5-2 x l(f cpm/ Itg probe. This compared favourably 

with 1 x 108 cpm/ Itg probe, recommended by the manufacturers of ZetaProbe memb­

ranes. As some problems were experienced with the above-described labelling 

reaction, probe DNA was subsequently labelled using a 'Multi-Prime' labelling kit 

(Amersham, U.K.) 

5.3.6. f Probe controls 

To check that nptH or gus would be detectable in the DNA of transformed onion 

tissue, known amounts of unlabelled nptH or gus probe were loaded into separate 

lanes on the same gels as the DNA from putative transformants and control DNA. 
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Unlabelled probe was combined with one of the control digests to see whether 

detection of probe DNA was affected by the presence of up to 25 Il-g onion DNA. 

Amounts of probe loaded ranged from 0.1 pg to 10 pg. Given that the onion 

genome has a size of 3.11 x 1010 bp per 2C nucleus (Arumuganathan and Earle, 

1991), and that the nptII probe is 1.25 kbp in length, the amount of DNA equivalent 

to a single copy of nptII or gus could be calculated as follows. 

As a percentage of the genome, the nptII probe was 4.02 x 10-6
: 

1.25 X 103 bp x 100 = 4.02 X 10-6 % 

3.11 X 1010 bp 

If loading 10 Il-g of transformed onion DNA onto the gel, a single copy of the nptII 

1.25 kbp coding region would be represented by 0.402 pg: 

4.02 X 10-6 x 10 X 106 =0.402 pg 

100 

The gus probe is 1.85 kbp long. If loading a total of 10 Il-g of transformed onion 

DNA onto the gel, a single copy of gus would be represented by 0.595 pg DNA. 

5.3.6.g Prehybridization 

Freshly blotted, dried membranes were placed singly or doubly (DNA side out) into 

a container and washed in 2x SSC (preheated to 65°C) for 15 min. Membranes were 

then placed into a hybridization bag with 25 ml of prehybridization buffer (preheated 

to 65°C). The bag was sealed and membranes incubated 2-5 hours in a shaking 

waterbath at 65°C. Thirty m! of prehybridization buffer consisted of the following: 

12 m! 

9 m! 

3 ml 

25 % dextran sulphate 

20x SSC (see Appendix VIII) 

10% SDS 



900 t-tl 

0.03g 

5.1 ml 
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10 ng/ml herring sperm DNA (boiled for 5 min, then added to 

buffer at 65°C) 

Na2H2P20 7 

deionized, distilled H20 

5.3.6.h Hybridization 

After prehybridization, 5 ml of the prehybridization buffer to which denatured probe 

DNA (section 5.3.6.e) had been added, was poured into the membrane-prehybrid­

ization mix in each bag. Bags were resealed, placed in a 65°C shaking waterbath 

and membranes hybridized overnight for at least 16 hours. 

5.3.6.i Washing 

After hybridization, the probe mixture was poured off. Membranes were taken out 

of the hybridization bag and washed up to three times, each wash being for 30 min 

in a shaking waterbath at 65°C, in successively more stringent SSC/SDS mixtures. 

These were, in order of washes, 2x SSC, 0.1 % SDS; Ix SSC, 0.1 % SDS; O.lx 

SSC, 0.1 % SDS. 

5.3.6.j Autoradiography 

If after the second wash (or occasionally after the first wash), little radioactivity was 

detected on the blot with a geiger counter, the third (or occasionally second) wash 

was omitted, and the blot autoradiographed at this stage. All washed membranes 

were exposed to Kodak X-Omat film at -70°C with intensifying screens, for periods 

of up to three weeks. The sizes of hybridization bands on the developed X-ray films 

were determined by plotting the mobility (cm from origin) of molecular weight 

markers (1 kbp ladder) against the known size of each marker as specified by the 

manufacturer (Gibco BRL, USA). These were plotted on log graph paper. 

Unknown band sizes were determined by interpolation. 
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5.3.6.k Hybridization controls 

To check that the Southern hybridization techniques used were working effectively 

with onion DNA, control onion DNA was digested with EcoRI and blotted as 

described in section 5.3.6.c. This DNA was probed with a full length cDNA 

(approximately 1. 7 kbp) encoding alliinase, an enzyme which is present in all onion 

tissues (Lancaster and Boland, 1990). The alliinase probe was produced by PCR 

from a cloned cDNA template, using Universal forward and reverse primers comple­

mentary to the flanking vector sequences. The alliinase probe was donated by Sonya 

Clark, and further details of its preparation can be found elsewhere (Clark et at. , 

1993). 

5.3.7 Polymerase chain reaction (peR) 

DNA was extracted from tissue of putatively transformed onions and controls by the 

method of Lassner (1989) and was analysed by PCR using protocols recommended 

by Perkin Elmer Cetus. Each reaction contained 0.1-0.3 p.,g DNA, 1 unit of Taq 

DNA polymerase (Boehringer Mannheim, Germany), reaction buffer (Boehringer 

Mannheim), 1 p.,M of each primer, deoxynucleotides (200 p.,M each of dATP, dGTP, 

dCTP and dTTP), with water to give a final volume of 25 p.,l per reaction. For the 

nptII primers, amplification conditions were 40 cycles of 94°C (1 min), 45°C (1 min) 

and 72°C (2 mins). The nptII pnmer sequences used were 

GAGGCTATTCGGCTAT and ATCTCGTGATGGCAGG. Using gus primers, amp­

lification conditions were 33 cycles of 94°C (1 min), 45°C (1 min) and 72°C (2.5 

min). The gus primer sequences used were TAATGCTCTACACCAC and 

CATACCTGTTCACCGA. 

5.4. Results 

5.4.1 Co-cultivation of excised seedling stems 
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5.4.1. a Unbisected seedling stems on callusing medium 

When transferred to the first regeneration-selection medium (section 5.3.2.a), small 

amounts of callus were visible after two weeks on all co-cultivated seedling stems, 

including the controls. No responses, apart from further callusing, were seen on this 

or the second (reduced pic1oram) regeneration/selection medium (section 5.3.2.a). 

After being transferred to the TDZ-G418 regeneration-selection medium, approx­

imately 20% of calli derived from all co-cultivated stems of the three cultivars, 

including controls, senesced within one month. On the surviving 80% of calli, 

several green, nodular areas were visible within approximately two weeks of transfer 

to this medium, and most of these subsequently produced shoot buds, roots and root­

like structures. A further culture period of at least four weeks was required before 

chlorosis and senescence of control and untransformed callus began. Following 

chlorosis, the callus became watery and brown. By comparison, putatively 

transformed calli were creamy-yellow, usually with green nodular areas, and were 

fast-growing. 

After a total of five months on the TDZ regeneration/selection medium, which 

included ten weeks off selection, only one plantlet (ReI) was regenerated, from 

'PLK' seedling callus (Table 5.1). All other G418-tolerant calli and some control 

calli had taken up to four months to bleach and eventually die on the G418-

supplemented media. From the 200 calli produced from seedling stems, no differ­

ences were observed between those which had been plated on acetosyringone- and 

non-acetosyringone-supplemented media (data not shown). 

Seedling stem callus produced from two of the 'Hikeeper' explants co-cultivated with 

pKIWI110/LBA4404 grew and produced many roots on chlorsulfuron regeneration/ 

selection medium (Plate 5.2). However, no plantiets or shoots could be regenerated 

from these roots. 

5.4. 1. b Bisected seedling stems on shoot proliferation medium 
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Once transferred to G418-supplemented medium, shoot and root production from 

bisected seedling sterns was usually observed within two weeks. Some shoot­

producing controls took up to four months to bleach and eventually die. After five 

months on selection medium, approximately 10% of the putative transformants were 

still alive. The presence of the nptII gene was not detected in the DNA of any of 

these plantlets following Southern analysis. After an eight week period without 

selection, followed by a further eight week period of selection, all plantlets had 

bleached and senesced. 

5.4.2 Co-cultivation of established callus 

After 3-6 months, some putatively transformed calli continued to grow slowly on the 

G418-supplemented medium. By this time most control calli were bleached and 

brown, excepting approximately 5% which had survived (data not shown). The 

presence of the nptII gene was not detected in DNA of any of the putatively 

transformed or control calli following Southern analysis. All co-cultivated calli were 

slow to die on G418-selection media. 

5.4.3 Protoplast co-cultivation 

Protoplasts derived from onion callus were denser and heavier than leaf protoplasts 

and did not generally float to the top of the O.6M sucrose during the sucrose 

floatation step. To overcome this, more washing medium was added to the sucrose 

mixture and protoplasts were pelleted by centrifugation at (70g, 3 min). Co­

cultivation with Agrobactenum did not appear to affect the viability of protoplasts. 

As with onion control protoplasts cultured without Agrobacterium, occasional cell 

divisions were seen, and cell walls were regenerated, but no difference was observed 

between Agrobacterium and non-Agrobacterium treatments. 

5.4.4 In vitro injection of basal meristems 

Providing that minimal damage was done to the basal meristem region during 
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injection with Agrobacterium, growth of new shoots was visible from most explants 

within 3-5 days of injection. When injected explants were first transferred to G418, 

shoot production was as prolific as that of uninoculated, unselected controls for 3-4 

weeks. After this time some shoots began to show signs of chlorosis. Bleaching was 

usually first seen at the tip of the leaf. Within 8 weeks, some shoots were entirely 

bleached, while others remained green. 

Growth of putative transformants on G418-supplemented medium was not usually as 

vigorous as growth of onion cultures on shoot proliferation medium lacking G418 

(Plate 5.3a and b). Despite their slower growth on G418, these shoots continued to 

grow under selection pressure, well after all control shoots had bleached and 

senesced. Most of these shoots also produced roots while growing on G418. When 

taken off selective media, G418-resistant plantlets would grow more quickly than on 

media with G418. Only those plantlets or shoots which survived the third period of 

selection were considered to be putative transformants. Because adventitious and 

axillary shoots were often produced in close proximity to one another on injected 

basal plates, it was not always possible to tell if the G418-resistant clump of shoots 

had arisen from one or more than one of the original G418-resistant shoot clumps. 

(Table 5.1). 

5.4.5 GUS histochemical assays 

Initial histochemical GUS assays resulted in small amounts of activity being detected 

in all samples, including most controls. The inclusion of 20% methanol in the 

reaction buffer (Kosugi et al., 1990) appeared to suppress this GUS or GUS-like 

activity, i.e. when methanol was present no blue precipitate was seen in the controls. 

Those plantlets assaying positively for the GUS gene (Table 5.2) showed only pale 

blue areas of activity (Plate 5.4). The root-forming callus growing on the 

chlorsulfuron-supplemented medium did not stain positively for GUS. 

5.4.6 ~II assays 
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Of the plantlets/shoots which showed resistance to G418 in culture, only one (TS3, 

see Table 5.2) which had been injected with pKIWIllO/A4T, assayed positively for 

NPTII (Plate 5.5). This plantlet had been through one 12-week period of selection 

instead of the usual three, and extraction of the enzyme did not include the 

ammonium sulphate precipitation step. As many cultures were showing healthy 

growth on G418, it was thought that either the NPTII enzyme was being inhibited 

by a substance or substances present in the onion leaf extract, or that levels of 

protein in extracts were too low for the enzyme to be detected. To check for the 

presence of an inhibitor, extracts from onion leaves, bulblets and roots were added 

to the Brassiea positive control samples, making up half of the total reaction volume. 

Addition of these extracts to positive controls did not inhibit NPTII activity. Protein 

concentrations of extracts were generally found to range from 600-2200 p,g/ml, i.e., 

lack of activity in extracts was not due to a low concentration of protein. 

Leaves, bulblets and roots which were assayed separately did not show any NPTII 

activity. Controls without substrate or without extract also did not assay positively 

for NPTII. No tissue assayed using the modified method of Staebell et al. (1990) 

was NPTII positive. 

5.4.7 Southern analyses 

Southern hybridization analyses of total onion DNA extracted from G418-resistant 

plantlets were performed to ascertain whether these tissues contained the expected 

T-DNA fragments. 

Bands of the following sizes were expected: the restriction map of pKIWI1lO 

predicts five internal fragments (1.3, 1.6, 2.1, 4.2, and 4.6 kbp) and two border 

fragments after digestion with EeoRI (Atkinson and Gardner, 1991), and two frag­

ments at least 10.9 kbp and 7.1 kbp in length after digestion with HindIII (see Fig 

5.1) (Janssen and Gardner, 1989). The 1.25 kbp nptII coding region probe should 

hybridize with a single 1.6 kbp band (the excised nos-nptll-nos chimeric gene) of the 

EeoRI digest and a larger band (;:::: 7.1 kbp) of the HindIII digest. DNA extracted 

from plants transformed with pGA643-Agrobaeterium strains and probed with the 
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nptII coding region should show a band of at least 8.65 kbp in length after an 

EcoRIIBamHI digest, a band of at least 3.3 kbp after digestion with HindIII and a 

band of at least 3.1 kbp after digestion with EcoRV (see Fig 5.2). 

The lowest amount of unlabelled probe which could be consistently detected using 

the described probing method was 0.3 pg. Although the probe always hybridized 

with 0.3 pg or more of unlabelled probe, two bands were sometimes seen, instead 

of the single 1.25 kbp band expected (Plate 5. 6a and b). Migration of unlabelled 

probe DNA was slightly retarded when co-electrophoresed with control onion DNA. 

This was evident as the nptII probe hybridized with a band or bands of slightly 

higher molecular weight in the lanes where control onion DNA had been co-loaded 

(Plate 5.6b, lane 1), as compared to the lanes containing only unlabelled probe DNA 

(Plate 5.6b, lanes 2-5). Non-specific hybridization of probe to high molecular 

weight onion control DNA was also observed (Plate 5.6b, lane 1). 

Of the G418-resistant plantlets which were analysed, two contained fragments with 

homology to the nptII probe (Table 5.2). Some fragments were smaller than 

expected. One of these was the 1.0 kbp fragment from the EcoRI digest of RCI 

(Plate 5.6b). The 1.5 kbp EcoRI fragment of RCI which hybridized with the nptII 

probe was, however, close to the size predicted (1.6 kbp) (Plate 5.6a). The 1.5, 2.1 

and 2.7 kbp fragments from the EcoRV digest of BPI (Plate 5. 7a) were smaller than 

expected, as was the 3.7 kbp fragment from the EcoRV/BamHI digest of BPI (Plate 

5.7b) and the 1.7 kbp fragment from the HindIII digest of BPI (Plate 5.7c). The 

intensities of all bands were low. By contrast, strong hybridization signals were seen 

in the DNA of Brassica positive controls which had been digested, blotted and 

probed in the same way as onion DNA (Plate 5.8). After probing DNA extracted 

from pKIWI1lO-inoculated, G4l8-resistant shoots with the 1. 85 kbp gus probe, no 

hybridization of probe to DNA fragments was detected. The gus probe was, 

however, shown to hybridize with 0.3 pg or more of unlabelled gus probe. 

5.4.8 Hybridization controls 

After probing 'PLK' DNA with the alliinase cDNA clone, several positive 
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hybrization bands were visible (Plate 5.9). This established that the DNA 

hybridization method used was sensitive enough to detect the presence of a low copy 

number gene (Clark, 1993) in onion DNA. 

5.4.9 Polymerase chain reaction 

Bands of the sizes expected after PCR with the nptII and gus primers were not 

visible on the gel in which the PCR products were separated. Some bands of 

unexpected sizes were observed. 

5.5. Discussion 

Protocols for the Agrobacterium-mediated transformation of Allium cepa and 

evidence for such transformation have been presented in this chapter. To date, no 

reports of either have been found in the literature. Before considering stable 

transformation as the definite outcome of this work, however, the incidence of G4l8-

resistant variants, escapes, transient expression of T-DNA genes and of Agrobact­

erium living in the inoculated tissue after co-cultivation, must be examined and dealt 

with. Resistance of plantlets to G4l8 was the first and only selection criterion 

(except in the small number of cases where chlorsulfuron was used as a selective 

agent). G4l8-resistance was observed more frequently than hybridization of DNA 

fragments to the nptII probe, or than GUS activity (in plants inoculated with strains 

harbouring pKIWIllO). Hence, it might be assumed that some plantlets have been 

produced from variant or mutant G4l8R cells, or from escapes (see section 4.2 for 

more detail). The incidence of variants is a possibility in the case of BP2 and BIl 

(Table 5.1 and 5.2), for which the only evidence of transformation is the continued 

growth of plantlets on G418, but not in the case of all other shoots or plantlets, for 

which there is further evidence of expression (TS 1, TS2, TS3) or of integration 

(RCl, BPI) of T-DNA genes. Escapes would not have survived the second period 

of selection after being off selective media for 10-12 weeks. 
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The gus gene on the T-DNA of pKIWI1lO has previously been shown to be trans­

iently expressed for 1-4 days after inoculation with Agrobacterium (Janssen and 

Gardner, 1989). Hence it is possible that binary vector T-DNA transferred from 

Agrobacterium into the bulb injection sites, was being transiently expressed, but had 

not been stably inserted into the onion genome. For this reason, it was important 

to establish that the evidence for transformation was not just that of transient T -DNA 

expression. Growth of plantlets on G418 after at least three 10-12 week culture 

periods on selective medium, each of which had been interrupted by 10-12 week 

periods on G418-free medium, indicated that the expression of T-DNA genes was 

more than transient. Transient expression of nptII in plantlets may have been 

responsible for G418 resistance in the first period of selection, but was unlikely to 

be the explanation for growth of plantlets during the third or fourth selection period, 

as transient expression is not this long-lived (Janssen and Gardner, 1989). 

The presence of agrobacteria living in or around the plant cells and thus being 

responsible for the G418-resistant and, in some cases, GUS-positive phenotype, can 

also be dismissed as a likely explanation for expression of these genes, as the nptII 

and gus genes in the expression vectors used were driven by nos and 35SCaMV 

promoters respectively. It has been shown that the nos gene is poorly expressed in 

bacteria, but actively transcribed upon transfer to the plant genome, the nos promoter 

being constitutively expressed in transformed tissues (An et ai., 1986). The chimeric 

gus gene has been constructed so that the 35SCaMV promoter is expressed in trans­

formed plant tissues but not in bacterial cells (Jefferson, 1987, Janssen and Gardner, 

1989). In addition, putatively transformed onion plants were shown to be free of 

surface-dwelling bacteria, as no bacterial growth was seen on LB media. 

Unbisected seedling stems were the only explant type from which a G418-resistant 

plantlet (RCl) was regenerated via callus. Growth and regeneration from this callus 

on G418 provided evidence for expression of the nptII gene in RCI. The regen­

eration of one transformed plantiet out of 200 co-cultivated explants (0.5 % 

regeneration) is not an unusually low frequency for a species which is recalcitrant 

to Agrobacterium-mediated transformation. Other workers (Schrammeijer et al., 
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1990; Chee et ai., 1989)) have recorded similarly low ratios. Following co­

cultivation of sunflower shoot meristems with Agrobacterium, Schrammeijer et ai. 

(1990) found that from a total of 1500 explants, only two of the shoots produced 

were transformed. Similarly, Chee et al. (1989) recorded that only 0.7% of soybean 

plants grown from inoculated plumules, cotyledonary nodes and adjacent cotyledon 

tissues of 2000 germinating seeds were transformed. Given the sample size used in 

both of these studies, it appears that in future onion transformation experiments 

which use seedling stems as explants, at least 2000 explants of the same cultivar, 

tissue type and age should be co-cultivated with a single binary vector strain of 

Agrobactenum. Doing this, one would be able to reliably determine whether the 

1:200 ratio of transformed:nontransformed plants was repeatable or whether this 

result was an anomaly. If the result were repeatable, conditions of co-cultivation, 

culture media, selection procedures and choice of Agrobacterium binary vector strain 

could then be adjusted to enhance transformation frequencies. 

As RCI was a small plantlet and did not provide sufficient tissue for an NPTII 

assay, no conclusions can be drawn about the expression of nptII, except that it was 

presumably being expressed in sufficient amounts to confer a G418-resistant 

phenotype. Southern blots confirmed that the nptII coding region was present in 

RC1. The DNA in both hydridizations was digested with EcoRI, which excises the 

1.6 kbp nos-nptII-nos fragment of pKIWI 11 0 T-DNA (Fig 5.1; Janssen and Gardner, 

1989). This fragment would hybridize to the nptII probe regardless of whether it 

was integrated into the genome or not. However, since the other possible source of 

T-DNA i.e., agrobacteria living in the plant tissue, was not shown to be present, this 

result indicates that integration of the nptII gene into the genome of RCI probably 

took place. As RCI stopped growing and then senesced on G418-supplemented 

medium after approximately 9 months, further Southern analyses, and NPTII assays 

could not be carried out. 

Established callus which had been inoculated with a range of Agrobacterium-binary 

vector strains senesced very slowly on kanamycin- and G4l8-supplemented media. 

It appears that co-cultivation of onion callus with an Agrobacterium-binary vector 
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strain containing the hpt gene, followed by selection on hygromycin-supplemented 

medium (section 4.4.3.c) may result in a better selection system and should be tried 

in future callus co-cultivation experiments. 

It was thought that in vitro inoculations of basal plate tissues would result in a 

response to Agrobacterium, as this technique was effectively an in vitro form of the 

in vivo inoculations which induced tumour formation on bulbs (see Chapter 2; 

Dommisse et ai., 1990). Enzyme assay and Southern results for all plantlets 

putatively transformed via this inoculation method suggest that these plantlets could 

be chimeras. The following reasons offer support to this assumption: firstly, growth 

of 'transformed' plantlets on G4l8 was slower than on G4l8-free shoot proliferation 

medium (Plate 5.3). As soon as the plantlets were taken off their 10-12 week 

passage on G4l8, they grew rapidly, recovering to grow as quickly as those which 

had been off selection medium for weeks; secondly, with the exception of one 

plantlet, no G4l8-resistant plantlets assayed positively for NPTII activity. If the 

plantlets being assayed were chimeras, in which transformed cells contained only a 

single or low copy numbers of nptII, it is plausible that NPTII enzyme would be 

present in such low levels, that it would not be detected using this assay. The slow 

growth of the G4l8-resistant shoots and plantlets on G4l8 also implies that if 

present, the enzyme would only be there in small amounts. These two reasons may 

also be explained by poor nptII expression; thirdly, the bands produced in the 

Southern analyses were generally fainter than those of onion DNA laced with a 

single copy amount of nptII DNA, or than those resulting from onion DNA probed 

with alliinase. With the exception of DNA from one putatively transformed plantlet 

(BPI), fragments which hybridized with the nptII probe in the Southern analyses 

shown here are likely to have contained only a single copy of the nptII gene. This 

can be seen from the single hybridization bands seen in Plates 5.6a, 5.6b, 5.7b and 

5.7c. The exception to this is seen in the blot containing DNA from BPI, which 

shows five hybridizing bands. This suggests that more than one copy of the insert 

is present in the genome of this transformant (see Plate 5.7a). This result was, 

however, not repeatable; fourthly, GUS activity was only detected in some of the 

shoots produced from the putative Agrobacterium/pKIWIllO transformants (Table 
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5.2). If each shoot was multiplied from a single GUS-positive transformed plantlet, 

one would expect GUS activity to be detectable in all or most of the shoots. 

Single copies of nptII present in cells of chimeric transformants may have been 

effectively 'diluted' by the DNA of untransformed cells present in the extract. 

Given that the 2C onion genome is 32.2 pg, or 3.11 X 1010 bp (Arumuganathan and 

Earle, 1991), i.e., one of the largest known of the flowering plants, single copy 

genes may be difficult to detect. Single copy genes in chimeric tissue would be even 

more difficult to detect. It is possible that loading more than 25 p,g of DNA from 

G418-resistant plantlets in each lane may have improved the detection of nptII by 

Southern analysis. A recent report of Agrobacterium-mediated transformation of 

wheat (Mooney et al., 1991), mentions difficulties that were encountered with 

transformation and with detection of low copy number inserts in the large wheat 

genome (3.19 x 1010 bp, Arumuganathan and Earle, 1991). Mooney et al. (1991) 

found that foreign DNA was transferred to wheat via Agrobacterium at very low 

frequencies. Furthermore, when only single copies were transferred, the T-DNA 

had often undergone extensive rearrangements. 

The low intensity of the band detected by the nptII probe in HindlII-digested DNA 

(thought to be a positive hybridization signal, Plate 5.7c), could probably have been 

increased by increasing the probe concentration 2-4 fold. Although the labelling 

reaction was not always optimal (section 5.3.6.e), the times when it was found to be 

optimal resulted in a high specific activity probe (0.5-2 x 1if cpm/p,g). To obtain 

a probe of greater specific activity, PCR labelling of the probe could be performed. 

This was not done because of time limitations, but should be looked at in future 

onion transformation work. 

A factor which should also be considered in these results is the condition of the nptII 

gene itself. Because nptII was the selectable marker widely used at the time this 

transformation work was initiated, all selection steps following co-cultivation were 

initially carried out on kanamycin, or, when kanamycin was shown to be ineffective 

as a selection agent (see section 4.4.1), on its analogue G418. The binary vector 
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first used, pKIWIllO, was also being used at that time for Agrobaeterium-mediated 

transformation experiments in other laboratories. However, it was observed by Drs 

Richard Gardner and Bart Janssen (Cellular and Molecular Biology Dept, Auckland 

University, N.Z.) that after co-cultivation with pKIWI1lO, and selection for stable 

transgenic events on kanamycin-supplemented media, the frequency of kanamycin­

resistant calli or shoots was lower than had been obtained with other binary vectors. 

They found kanamycin resistance of transformants to be increased 5-10 fold when 

pGA643-based vectors were used instead 9f pKlWI1lO. The assumption made was 

that the pKlWI1lO nptII gene may have been defective. After these findings, the use 

of pKlWI1lO for onion transformation was stopped and pGA643 was used as a 

replacement binary vector. 

As with the EeoRI-digested RCI DNA, hybridization of the nptII probe to 

EeoRIIBamHI fragments of BPI DNA provided proof ofT-DNA integration into the 

genome. EeoR! was one of a number of restriction enzymes initially used to digest 

onion DNA for Southern analyses with nptII. Subsequent to this result, DNA of 

G418-resistant plantlets which had been co-cultivated with Agrobaeterium carrying 

pKlWIllO was mainly digested with HindIII, which restricts at a single site in the 

T-DNA. Similarly, DNA from G418-resistant plantlets which had been co-cultivated 

with strains carrying pGA643 was usually digested with EeoRV or HindIII, these two 

enzymes each restricting at single T-DNA sites (Fig 5.2). 

The faint band seen in the HindIII digest of 'PLK' transformed with pGA643 (Plate 

5.7c) shows that nptII DNA was probably integrated into the plant genome. Re­

autoradiographing this blot resulted in a darker band, but background hybridization 

was also darker, which prevented a clear photograph from being taken. The 1.7 kbp 

band was smaller than the 3.3 kbp minimum size expected. This could have been 

be due to incomplete transfer or rearrangements of the T-DNA. Original analyses 

of T-DNA in plant tumour tissue showed that the T-DNA region was transferred 

intact into the plant genome (Lemmers et at.,1980), but subsequent work revealed 

the presence of truncated T-DNA insertions missing the right border region and 

some rearranged plant T-DNA inserts (De Beuckeleer et at., 1981; Hepburn et al., 



138 

1983; Ooms et ai., 1982). More recently, Deroles and Gardner (1988) found that 

at least 25 % of transgenic petunias which had been selected for kanamycin 

resistance, were simple deleted derivatives that had lost one or both ends of the T­

DNA. Approximately 20% of the T-DNAs of this 25% lacked the left border and 

at least this many lacked the right border. In addition, approximately 3 % of plants 

contained grossly rearranged T-DNAs. This could also explain the smaller-than­

expected bands seen in other digests (see Table 5.2). Although several HindIII 

digests of each G418-resistant onion plantlet were probed with nptII, the faint 1.7 

kbp band from BP1 was the only band seen, suggesting that this may have been the 

most optimized Southern analysis performed with HindIII- digested DNA. This 

result was not repeatable. 

Unexpected bands seen after Southern hybridizations, particularly as seen in Plates 

5.6a, 5.7b and 5.7c, and the lane background seen in Plates 5.6a, 5.6b, 5.7b and 

5.7c, may have been due to contaminated probe DNA. This could have happened 

if non-nptII DNA was present in the area immediately surrounding the 1.25 kbp 

nptII fragment isolated from a low melting-point agarose gel, and was therefore 

excised from the gel along with nptII DNA. As contaminating bands of the same 

size were present in digests from a number of different putatively transformed plants, 

each of which had been produced from separate inoculations, sometimes with 

different binary vectors, these bands could not be regarded as true positive 

hybridization signals. It should be noted that most of these blots were 

autoradiographed for 2-3 weeks, and when exposed to film for less than four days, 

no bands, except for those from hybridizations with Brassica positive control 

samples and the molecular weight markers, were visible. 

The single NPTII-positiveenzyme assay result obtained was not reproducible, despite 

repeated attempts and the modifications made to the method. In addition to the 

reasons already discussed, it is possible that the use of 80% ammonium sulphate to 

precipitate cellular proteins may have affected the NPTII activity. Similarly, it is 

also possible that insufficient protein pellet was redissolved after precipitation, as a 

good deal of the pellet was observed to be insoluble in the extraction buffer. This, 
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together with low copy number in chimeric tissue and/or poor expression of nptII, 

would more than account for the enzyme's activity not being detected. 

The lack of detectable GUS activity in RC 1 could be attributed to the particular 

shootls assayed having been regenerated from a cell/s which did not contain a copy 

of the gus gene. The gus gene is further from the pKIWIllO T-DNA's right border 

than nptII (see Fig 5.1). Because T-DNA transfer is initiated from the right border 

(Grant et ai., 1991) and the T-DNA is not always transferred in its entirety (De 

Beuckeleer et ai., 1981), it is likely that some G418-resistant cells contain the nptII 

gene, but not the gus or als genes. Atkinson and Gardner (1991) noticed that stable 

transgenic pepino plants arising from transformation with pKIWIllO had a low 

frequency of co-expression of kanamycin resistance with GUS activity and/or 

chlorsulfuron resistance. This was thought to be due to incomplete transfer of the 

large T-DNA of pKIWIllO. 

The failure to detect the nptII and gus genes in 'transformed' onion plants following 

PCR analysis may be due to the absence of these genes. It could be also be due to 

any number of factors being suboptimal for the PCR. This work was started late in 

the project, with insufficient time being available to optimize the PCR conditions. 

It is possible that the concentration of the integrated genes may have been too low 

to allow sufficient amplification for a band to be visualized on agarose gels. 

Unexpected bands may have been due to partial complementarity of primer 

sequences to some areas of onion DNA, resulting in non-specific product amplif­

ication (pers. comm. S.A. Clark). Adjusting factors such as the annealing temp­

eratures and/or buffer conditions should be tried in future PCR analyses. 

Of the several reasons why transformation has not been unequivocally demonstrated 

in onions, another one which must be considered is the strength of the promoters 

driving the nptII and gus genes. In both pKIWIllO and pGA643, the nptII gene is 

driven by a nos promoter. The production of large amounts of nopaline by Agro­

bacterium-induced tumours on onions (section 2.4; Dommisse et ai., 1990) is an 

indication that this T-DNA promoter can function in transformed onion tissue. It is 
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possible however, that the nos promoter region does not function optimally in onion 

tissue under in vitro culture conditions. 

No clear evidence has emerged from these experiments to show that acetosyringone 

enhances the frequency of transformation. Although acetosyringone was added to 

some of the co-cultivation culture media, frequencies of G418-resistant shoots were 

similar on media with and without acetosyringone. This lack of noticeable response 

to acetosyringone was also seen in onion bulbs inoculated in vivo with Agrobacterium 

(section 2.4.3). Godwin et al. (1991), who co-cultivated onion seedling segments 

with virulent Agrobacterium strains, recorded no response to the bacterium, with or 

without 200J-tM acetosyringone in the culture media. 

5.5.1 General comments and some suggestions for future work 

Strains of Agrobacterium harbouring a binary vector which carried the hpt gene were 

not used in the transformation experiments carried out in the thesis. Work on onion 

responses to hygromycin was carried out towards the end of the project, not allowing 

time for such co-cultivations. Given that chlorosis and senescence of onion tissues 

occur more quickly in response to hygromycin than to G418 (section 4.4), future 

onion transformation experiments should involve the use of a binary vector with the 

hpt gene. 

Chimeric transgenic plants resulting from inoculations with Agrobacterium have 

already been reported by other workers (Feldman and Marks, 1987; Chee et al., 

1989). Feldman and Marks (1987) co-cultivated imbibed seeds and Chee et al. 

(1989) injected germinating soybean seeds with Agrobactenum. Both of these 

transformation methods resulted in the production of chimeras. In such chimeras 

there are sectors of transformed and untransformed tissues. The transformed tissues 

may have arisen from one or more independent transformation events. Progeny 

from chimeras can be screened for completely transgenic plants which have resulted 

from individual transformation events (Grant et al., 1991). 'Transformed' onion 

plants which are currently in tissue culture need to be transferred to the greenhouse 
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or field and allowed/induced to bulb, flower and set seed. Progeny from these 

chimeras should then be screened for G418-resistance at various stages of growth 

throughout their life cycle. Screening on G418-supplemented media during 

germination and growth of seedlings alone would not be sufficient, as germination 

is not effectively prevented by this antibiotic, and some 'PLK' seedlings appear to 

have an endogenous tolerance to G418 (section 4.4.2.a). Alternatively, the chimeras 

could be 'undone' by allowing shoots to callus and reselecting regenerated plants on 

G418. Time has not allowed for either approach to be carried out, as the cycle of 

a three month period of selection of transformed shoots, followed by 2-3 months off 

selective media needs to be repeated at least twice and preferably three times to 

confirm stable resistance of onion tissues to G418. 



Table 5.1 G418-resistance of 'Pukekohe Longkeeper' and 'Early Longkeeper' shoots and plantlets regenerated from tissue inoculated with two Agrobacterium binary vector 
strains. All plants showing healthy growth on G418 were assayed for NPT II activity 

Cultivar and tissue type Inoculation technique Agrobacterium binary No. explants co- No. shoots Code name for 
vector strain cultivated regenerated froEm plantlets/shoots1 

explant1 

'PLK', twin scales in vitro injection, co- pKIWIIlO/LBA4404 48 4 TSI 
cultivation 

'PLK', excised seedling stems co-cultivation pKIWII10/LBA4404 200 1 RCt 

'PLK', basal plates of in vitro in vitro injection, co- pGA643/LBA4404 50 5 BPI 
shoots cultivation 

'PLK', twin scales in vitro injection, co- pKIWIIlO/C58 56 15 TS2 
cultivation 

'PLK', twin scales in vitro injection, co- pKIWIllO/A4T 25 02 TS3 
cultivation 

'PLK', basal plates of in vitro in vitro injection, co- pGA643/A281 40 15 BP2 
shoots cultivation 

'ELK', bulblet of immature in vitro injection, co- pGA643/C58 30 2 BIl 
plant cultivation 

1 This number of shoots grew from what appeared to be a single shoot, but because adventitious and axillary shoots were often produced in close proximity to each other on injected basal plates, it was not always 

possible to tell if the G418-resistant clump of shoots was derived from one or more than one original G4l8-resistant shoot. For the purposes of this project, they are referred to as being derived from a single shoot. 

2 Shoots regenerated from twin scale explants did not survive the third selection period on G418. 



Table 5.2 NPTII and GUS activity, and Southern analyses of G418-resistant shoots and plantlets. 

Code name for No. plantlets assaying % G418-resistant shoots Size of fragment expected to Size of bandls seen in 
plantlets/shoots positively for NPTII showing GUS activity hybridize with the nptll probe Southern analyses 

(restriction enzyme) 

TSI 0 75% (n=12) as for ReI -

Ret not carried out (see text) 0% (n=5) EcoRl: 1.6 kb 1.5 kb (EcoRl) 
1.0 kb (EcoRl) 

BPI 0 no gus gene on T-DNA EcoRV: ;:::3.1 kb 1.5,2.1,2.7, 3.3, 4.5 kb 
(EcoRV) 

EcoRlIBamHI: ;::: 8.65 kb 3.7 kb (EcoRl, BamHI) 
HindIII: ;:::3.3 kb 1. 7 kb (HindIII) 

TS2 0 57% (n=7) as for ReI -

TS3 1 36%1 (n=ll) as for ReI -

BP2 0 no gus gene on T -DNA as for BPI -

Bn 0 no gus gene on T-DNA as for BPI -

1 These assays were carried out before methanol was routinely used to inhibit intrinsic GUS-like activity. Plantlets did not survive the third passage on G418 and so could not 
be re-assayed for GUS activity. 
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Fig 5.1 A simplified diagram of the T-DNA region of the binary vector pKIWIllO 

(taken from Janssen and Gardner, 1989). This diagram is not to scale. 



T-DNA of pKIWI11 0: 
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nptll probe 
(1.25 kbp) 
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Fig 5.2 A simplified diagram of the T-DNA regions of the binary vector pGA643 

(for details of vector construction see An et al., 1988). This diagram is not to scale. 



T-DNA of pGA643: 
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Plate 5.1 Incomplete (a) and complete (b) digestions of onion DNA after 

restriction with (a) EcoRI and (b) EcoRV 



a 

b 
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Plate 5.2 Roots produced by 'Hikeeper' seedling stem callus on regeneration 

medium (see text) with 50 nM chlorsulfuron (x5 actual size). 

Callus was produced from explants co-cultivated with LBA4404 

harbouring the binary vector pKIWI1lO. 
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Plate 5.3 (a) Shoot cultures produced from basal plates of 'PLK' twin scales 

inoculated with (from left to right) (1) LBA4404 (control), and (2), (3) 

LBA4404 harbouring pKIWI1lO. Shoots in (1) and (2) have been on 

shoot proliferation-selection medium (30 mg}-l G418, 250 mgl- l 

cefotaxime) for 12 weekS, and shoots in (3) were on shoot proliferation 

medium with G418 for 10 weeks, after which they were transferred to 

medium without G418. These shoots have been offG418 for one week. 

(b) Shoots produced from basal plates of 'PLK' in vitro shoots 

inoculated with LBA4404 containing pGA643. Shoots have been 

on shoot proliferation-selection medium (30 mgtl G418, 250 mgl-l 

cefotaxime) for 8 weeks. 
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Plate 5.4 

Plate 5.5 

Areas of GUS activity in putatively transformed leaf tissue of 

'Pukekohe Longkeeper' shoots. Leaves were produced from twin 

scales excised from bulbs which had been inoculated with 

A.tume/adens strain C58 harbouring the binary vector pKIWIllO. 

NPTII assay: samples are (top left to right) (1) 'PLK' inoculated 

with LBA4404 (control), (2) 'PLK' inoculated with 

LBA4404/pKIWI11O, (3) 'PLK' inoculated with C58/pKIWI11O, 

(4) 'PLK' inoculated with HRl/pKIWI1lO, (5) 'PLK' inoculated 

with A4T/pKIWI1lO, (6) 'SWG' inoculated with A4T/pKIWIllO 

and (7) Pisum sativum cv Pania hairy roots produced after 

inoculation with A4T/pKIWI1lO (positive control). Samples la-7a 

(2nd row left to right) are the same as those in 1-7, but with no 

substrate. 



1 

' a 
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Plate 5.6 Southern analyses of DNA from G418-resistant shoots and plantlets. In 

both (a) and (b), 'PLK' DNA was digested with EcoRI and probed with 

the 1.25 kbp nptll probe. 

(a) Lanes (from left to right) contain DNA from (1) and (2) separate 

shoots of TS3, (3) a shoot from TSl, (4) young leaves and (5) older 

leaves from the same shoot of ReI, (6) positive control i.e. transformed 

Brassica campestris cv Red Globe plantlet (see Plate 5.8 (1) for details), 

(7) blank lane, (8) a separate shoot of ReI (the 1.5 kbp band is 

arrowed), (9) onion control shoots, (10) 10 pg probe, (11) 5 pg probe, 

(12) I pg probe, (13) 0.5 pg probe and (14) 0.5 pg probe co­

electrophoresed with untransformed onion DNA. 

(b) Lanes (from left to right) contain DNA from (1) onion control digest 

with added nptll probe DNA (0.5 pg), (2) 0.5 pg probe DNA, (3) 1 pg 

probe DNA, (4) 5 pg probe DNA, (5) 10 pg probe DNA, (6) ReI (the 

1.0 kbp band is arrowed), (7) TSl, (8) and (9) separate shoots of TS2 

and (10) onion control shoots. 
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Plate S.7 Southern analyses of DNA from G4I8-resistant shoots and 

plantlets, probed with the 1.25 kbp nptII probe. DNA was 

digested with (a) EcoRV, (b) EcoRVIBamHI and (e) HindIII (see 

overleaf for S.7 (e». 

(a) Lanes (from left to right) contain DNA from (1) onion control shoots, 

(2) BP2, four separate plantlets of TS2 (3), (4), (5) and (6), (7) onion 

control shoots and (8) BPI. 

(b) Lanes (from left to right) contain DNA from (I) onion control 

plantlet, (2) roots of RCI, (3) leaves of RCI, shoots of TSI (4), BPI 

(5), BIl (6) and TS2 (7). The 3.7 kbp band in the digest of BPI is 

arrowed. 
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Plate 5.7 (continued) 

Plate 5.8 

(c) Lanes (from left to right) contain DNA from (1) TSl, (2) BPI, (3) 

BIl, (4) TS2, (5) the transformed Brassica positive control (see Plate 

5.6a) and (6) onion control plantlet. The faint 1.7 kbp band thought to 

be a positive hybridization signal is arrowed. 

Southern blot showing hybridization of DNA from transgenic 

Brassica plantlets (see section 5.3.6 for details). DNA samples 

were digested with EcoRV and probed with the 1.25 kbp nptII 

probe. Lanes (from left to right) contain DNA from (a) 

transformed rapid cycling (RC) Brassica oleracea plantlets 

regenerated after co-cultivation with EHAlOlIpGVI047, (b) 

another regenerant from the same co-cultivation as (a), (c) RC B. 

oleracea control inoculation (co-cultivated with LBA4404), (d) 

transformed giant rape (B. napus) plantlets regenerated from hairy 

roots (co-cultivated with A4T/pLN16) and (e) transformed turnip 

(B. campestris cv Red Globe) plantlets regenerated from hairy 

roots (co-cultivated with A4T/pKIWIllO). DNA from 

'transformed' and control onions has been electrophoresed in lanes 

(f) to (1). Although very faint bands are visible in lanes (g) and (h), 

these bands were also visible in the control DNA lanes when the 

blot was exposed to X-ray film for longer. 
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Plate 5.9 Southern analysis of untransformed 'Pukekohe Longkeeper' DNA 

probed with a 1.7 kbp eDNA clone of alliinase. DNA was 

digested with EeoR!. Lanes (from left to right) contain DNA from 

in vitro shoot cultures 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e). 
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Chapter 6: General discussion 

6.1 Summary of findings of this thesis 

This study has conclusively shown that Allium cepa is a host for Agrobacterium 

tume/aciens, A. rhizogenes and A. rubi infection (Chapter 2). Nopaline- and 

octopine-producing tumours were formed on bulbs of 'Pukekohe Longkeeper' and/or 

'Early Longkeeper' onions, after inoculation with 25 virulent Agrobacterium strains. 

The production of tumours in response to inoculations with 72 % of the wild-type 

strains used, indicated that 'PLK' and 'ELK' bulb tissue had a wide range of strains 

to which it was susceptible. However, tumour responses were tissue- and genotype­

specific. Of all the plant regions inoculated, only the area of the bulb surrounding 

the basal meristem consistently produced tumours in response to Agrobacterium 

inoculations. This response was thought to be due to the proximity of the cells to 

the basal meristem. A genotype-specific response to Agrobacterium was demon­

strated, with only two of the four cultivars inoculated showing susceptibility to 

Agrobacterium infection. After excision and surface sterilization, some of the 'PLK' 

tumours produced roots in sterile culture. Despite several attempts at regeneration 

on a range of media, plantlets could not be regenerated from in vitro-cultured 

tumours or from roots produced by these tumours. 

Following numerous attempts at co-cultivation with armed and disarmed strains of 

Agrobacterium harbouring the binary vectors pKIWI110 or pGA643 , a single trans­

formed 'Pukekohe Longkeeper' plant was regenerated (Chapter 5). This originated 

from callus derived from onion seedling stem tissue which had been co-cultivated 

with LBA4404 harbouring pKIWI1lO. Growth of this plantlet on G418-supplement­

ed media over an extended time period, and positive Southern hybridization results 

provided evidence for transformation. In addition, 41 of the axillary or adventitious 
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shoots, growing from basal plate regions which had been injected with Agrobact­

erium harbouring the above binary vectors, showed resistance to G418 over an 

extended time period, when grown in in vitro culture. Most of the shoots 

regenerated roots in culture on G418. DNA from five of these shoots was shown 

by Southern analysis to hybridize with an nptII probe, indicating the presence of this 

gene in plantlets thought to be transformed. Nineteen of the 41 G418-resistant 

shoots produced from inoculated basal plate tissue were produced after inoculations 

with Agrobacterium harbouring the binary vector pKIWI1lO. Of these, 75 % of 

shoots/plantlets produced following inoculation with Agrobacterium strain 

LBA4404/pKIWI11O showed GUS activity, and 57 % of shoots/plantlets produced 

following inoculation with strain C58/pKIWIllO showed GUS activity. Due to the 

evidence for transformation of all shoots/plantlets produced by the in vitro-injection 

technique, which included slow growth on G418-supplemented media, faint bands 

in Southern hybridizations and irregular results in GUS histochemical assays, it was 

thought that plantlets/shoots produced by this technique were chimeric. 

Tissue culture experiments carried out with eight onion genotypes showed that all of 

these genotypes could be clonally multiplied from bulb basal plate tissue and that 

four of them were regenerable from callus of seedling origin (Chapter 3). 

Subsequently, a technique was developed that enabled multiplication of plantlets 

directly from the longitudinally-bisected stems of onion seedlings. These explants 

would be ideally suited to Agrobacterium co-cultivation experiments, but transformed 

plantlets or shoots have not so far been produced via this technique. Culture of 

onion protoplasts in a range of media resulted in first cell divisions, formation of 

new cell walls and cell budding, but no further progress was made. 

Work done following these transformation experiments showed that hygromycin was 

more toxic to all in vitro-grown onion tissues tested than G418 or kanamycin 

(Chapter 4). Earlier work had shown that onion tissues grown on kanamycin-supple­

mented media responded only slowly to kanamycin, with chlorosis of shoot tissue not 

being evident until twelve weeks after transfer of shoots to the antibiotic. G418 was 

shown to be more toxic than kanamycin to shoot tissue and also to most other onion 
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tissues surveyed. For this reason, explants which had been co-cultivated with 

Agrobacterium harbouring pKIWIllO or pGA643, both of which carried the nptII 

gene as their antibiotic selectable marker, were screened on G418-supplemented 

media. The herbicide chlorsulfuron was also shown to be toxic enough to onion 

tissues to be an effective selective agent. 

6.2 A general discussion of results 

In a recent review on gene transfer methods, Potrykus (1991) states that proof of 

integrative transformation of plants requires the following: 

1. controls for treatment and analysis, 

2. a tight correlation between treatment and predicted results, 

3. a tight correlation between physical (e.g. Southern blot) and 

phenotypic (e.g. enzyme assay) data, 

4. complete Southern analysis containing (a) the predicted signals in high 

molecular weight DNA, including hybrid fragments between host DNA 

and foreign gene, and the presence of the complete gene, and (b) 

evidence for the absence of contaminating DNA fragments or 

identification of such fragments, 

5. data that allow discrimination between false positives and correct 

transformants in the evaluation of the phenotypic evidence, 

6. correlation of the physical and phenotypic evidence with transmission 

to sexual offspring and 

7. molecular and genetic analysis of offspring populations. 

Although some of the above types of evidence for Agrobactenum-mediated trans­

formation of onions have been presented in this thesis, further evidence is still 

needed to provide unequivocal proof of transformation. Limitations to the transfer 

of foreign genes to onions via Agrobactenum have become apparent. Transform-
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ation at the cellular level was more readily achieved following in vivo inoculations 

of onion bulbs which incited opine-positive tumour responses, than with in vitro­

inoculated explants which were co-cultivated with Agrobacterium. The production 

of several G418-resistant shoots from inoculated basal plates has limitations because 

of the likely chimeric nature of the putatively transformed plantlets produced, and 

the resulting difficulty in obtaining reproducible positive DNA hybridization results. 

The traditional lack of susceptibility of most monocotyledonous plants to 

Agrobacterium has in the past been attributed to a number of factors, some of which 

have since been shown to be incorrect. These include the theory that Agrobacterium 

fails to bind to monocotyledonous cell walls in the same way that it does to dicot­

yledonous walls (Rao et ai., 1982). Since this theory was first put forward, scanning 

electron microscope studies have shown the attachment of Agrobacterium cells to cell 

walls of wheat embryos (Mooney and Goodwin, 1991) and to cell wall-regenerated 

protoplasts of rice and asparagus mesophyll cells (Terouchi et ai., 1990). It has 

more recently been hypothesized that only plants and tissues with a pronounced 

wound response will develop larger popUlations of wound-adjacent cells competent 

for efficient transformation, i.e. dicots that have so far been untransformable, 

probably do not show the appropriate wound response (Potrykus, 1990). Transform­

ation of 'monocots' as a group appears therefore to be of no particular importance 

in the context of difficulties experienced in trying to transform recalcitrant plants, 

e.g. cereals, as the reason cereals are difficult to transform is not because they are 

monocots, but rather because they do not show a wound response. According to this 

theory, monocots with a wound response are probably as readily transformed as 

dicots with a wound response. Similarly, dicots without a wound response are as 

difficult to transform as cereals. 

By the use of cladistic methods to analyse anatomical, biochemical and molecular 

data, taxonomists have shown that the Class Monocotyiedones is probably 

monophyletic, i.e., it comprises all the descendants of a single ancestral species. By 

contrast, the dicotyledons are now thought of as a paraphyletic group i.e., they do 

not comprise all the descendants of a single ancestral species and have therefore been 
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grouped together under what is for some genera and families, an artificial classif­

ication system not based on common ancestry (Dahlgren and Bremer, 1985). 

Although monocotyledons are probably a monophyletic group, it is possible that the 

more basal groups within the monocotyledon monophyletic group (clade), may share 

the same response as the dicotyledons to a pathogen such as Agrobacterium. The 

response typical of cereals and grasses (Poaceae or Gramineae family) is probably 

a derived response within the monocotyledons, and not characteristic of the entire 

group. 

The basal clades of monocotyledons may thus share numerous ancestral 

(plesiomorphic) biochemical or molecular characteristics (e.g. plant cell wall 

structure, DNA sequences) with dicotyledons rather than with more derived 

monocotyledons such as grasses. Such plesiomorphic characteristics are of no value 

in assessing evolutionary relationships, but it is important to consider them in the 

context of this study. Analysis of onion cell walls has shown that (4')-linked 

galactans and a substituted xyloglycan are major cell wall components (Mankarios 

et al., 1980). Xyloglucan showed structural features in common with the 

xyloglucans of dicotyledonous plants, indicating that onions resemble dicotyledonous 

plant species more than they resemble those belonging to the Poaceae in their cell 

wall composition (Redgwell and Selvendran, 1986). Jarvis et al., (1988) also found 

that mono cots which did not belong to the graminoids (Poaceae, Cyperaceae, 

Juncaceae and Restionaceae) had high galacturon and other pectin contents, 

comparable with those of dicots. Furthermore, Bacic et al., (1988) postulated that 

the monocots that lacked wall-bound ferulic acid (including onions) had walls with 

similar compositions to those of dicotyledons. A recent study of codon usage, i.e. 

selective and non-random use of synonymous codons by an organism to encode 

amino acids in the genes for its proteins, has resulted in similar conclusions 

(Campbell and Gowri, 1989). These workers found that two classes of genes could 

be recognized in monocots. One set of monocot genes used codons similar to those 

used in dicots, while genes from plants in the Poaceae family were highly biased 

towards codons ending with the bases cytidine (C) or guanosine (G). Another study 

of restriction fragment maps of the chloroplast DNA (cpDNA) of four lilioid 
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monocots, including Allium cepa, showed that chloroplast genome arrangements of 

these monocots were more typical of dicots than they were of species belonging to 

the Poaceae (Chase and Palmer, 1989). This adds support to the above explanation 

(Potrykus, 1990) of dicot/monocot susceptibility to Agrobacterium. 

It appears, from work carried out in this thesis, that onions fall into the group of 

mono cots described by Potrykus (1990) as having a distinct wound response and 

therefore being potentially as 'transformable' as dicotyledonous plants which show 

wound responses. Some progress has been made towards the transformation of 

onions, but barriers preventing the production of transformed plants consisting 

entirely of transformed cells, i.e. not chimeric, still need to be overcome. 

6.3 Suggested improvements to the protocol for Agrobactenum­

mediated transformation of onions 

Throughout the course of this study, it has become apparent that further work should 

be done on some parameters which facilitateAgrobacterium-mediated transformation 

of onions. One such parameter is the use of a good selectable marker. The work 

done on dose responses to antibiotics with a range of onion tissue types showed that 

hygromycin is clearly more toxic to all types of tissue tested than kanamycin or 

G418, indicating that hpt appears to be a good selectable marker for use in onion 

transformation experiments. 

In future experiments, different binary vectors, each having the hpt gene controlled 

by a different promoter, e.g. nos, 35S, and the 2' transcript of the octopine TR-DNA 

(Velten et ai., 1984; Dekeyser et ai., 1989), should be used in Agrobacterium­

mediated transformation of onions. Enhancing the frequency of onion transformation 

may however require the use of a promoter which is known to function optimally in 

onion tissue. One such promoter is the region of DNA which drives the onion gene 
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alliinase. Alliinase is expressed in a range of onion (and other Allium) tissues 

(Lancaster and Boland, 1990). This promoter region is currently being isolated by 

Brent Gilpin (Crop & Food Research, Lincoln, New Zealand). Once isolated, the 

alliinase promoter region attached to an hpt gene may be an effective chimeric gene 

to use in onion transformation experiments. Another promoter which should be 

considered for use in onion transformation experiments is the recombinant promoter 

region, pEmu. This promoter has been constructed from four discrete elements, and 

has been shown to give a high level of gene expression in five different 

graminaceous monocots (Last et al., 1991). Finding a promoter which has optimal 

activity in onions, using sufficiently large numbers of seedling stem explants in co­

cultivation experiments and making appropriate modifications to the co-cultivation 

procedure could well enhance Agrobacterium-mediated transformation of onions. 

Factors which have been discussed as reasons for sub-optimal transformation of 

onion tissues should also include appropriateness of tissue types. In addition, co­

cultivation conditions required for the successful transfer of T-DNA to the DNA of 

inoculated onion tissues may also not have been optimal. The transformation 

frequencies of other monocotyledonous species have been found to be very dependent 

on the type of explant which was co-cultivated. Kuehnle and Sugii (1991) found that 

after inoculation with Agrobacterium, in vitro tumours were induced on etiolated 

internode tissue of Anthurium andraenum (Araceae family) 16 times more frequently 

than on green leaf tissue, and ten times more frequently than on petiole explants. 

With the exception of dark-grown callus and dark-grown seedlings, etiolated onion 

tissue was not generally included in co-cultivation or in vitro injection experiments. 

In future, experiments involving the co-cultivation of etiolated onion tissue with 

Agrobacterium should be carried out. 

6.4 Agronomic applications of Agrobacterium-mediated trans­

formation of onions 
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When Agrobacterium-mediated transformation of onion has been optimized, and the 

frequency of transformation events is more predictable, attempts to transfer genes 

of agronomic importance into this crop can commence. The Agrobacterium vector 

system is already being extensively used to transfer desirable traits to other crop 

plants and is also used for the study of gene function in plants. Genes which have 

to date been transferred to plants include those affecting traits as diverse as herbicide 

tolerance (De Block et ai., 1987), virus resistance (Powell-Abel et al., 1986), altered 

flower colour (van der Krol et al., 1988), lengthened shelf life (of tomato) (Smith 

et al., 1988), male sterility (Mariani et al., 1990), cold tolerance (Hightower et al., 

1991), altered source-sink relationships (von Schwaenen et ai., 1990), altered starch 

composition (Visser et al., 1991), starch derivatization to cyclodextrin (Oakes et al., 

1991) and resistance to pathogenic bacteria (Anzai et al., 1989). Extensive field 

testing is currently being carried out on these modified crops, and it will not be long 

before some of them are available to the consumer. 

6.4.1 Engineering genes conferring resistance to bacterial and fungal diseases 

into Allium cepa 

One of the principal cost factors currently affecting onion production in New Zealand 

is disease control. Damage to onions caused by pathogens, particularly those causing 

bacterial soft rot and onion white rot, results in significant losses of export earnings 

each year. Bacterial soft rot (also termed 'vinegar rot') is one of the most complex 

and intractable problems faced by New Zealand onion growers, as no effective 

control measures are known (Hale et ai., 1992). It can affect onions at any stage 

of growth or storage. Several species of soil-borne bacteria, including Pseudomonas 

marginalis, P. viridiflava, P. gladioli pv. alliicola and Elwinia carotovora can cause 

soft rot. The presence of diseased onion bulbs led to a decline in exports to Japan 

from 78.7% of total exports in 1984 to 20.7% in 1987. Diseased bulbs were most 

commonly infected with bacterial soft rot. The fungus Sclerotium cepivorum Berk. 

causes onion white rot. This fungus is present in all onion growing areas of New 
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Zealand and has been of increasing concern in the Pukekohe district, the area of 

New Zealand in which all exported onions and 75 % of the national crop are grown 

(Hale et ai., 1992). Onion white rot is a disease which most commonly affects 

plants during growth but it can continue as bulb rot during storage. Other pathogens 

which can be responsible for considerable crop losses during growth or storage 

include Botrytis allii Munn (neck rot) and other Botrytis species which cause only 

minor damage, Sclerotium roifsii, Peronospora destructor (Berk.) Pr (downy 

mildew), Pyrenochaeta terrestris (Hansen) Gorenz, Walker and Larsen (pink root 

rot), Urocystis cepuiae (smut) and a variety of fungi which cause pre- and post­

emergence damping off of onion seedlings. 

Resistance to bacterial and fungal pathogens would be a desirable characteristic to 

engineer into onions, boosting New Zealand's export earnings from the crop. 

Durable resistance, i.e. resistance that remains effective while the cultivar possessing 

it is widely cultivated in an environment that favours the disease, may be conditioned 

by a single gene or by many genes (Johnson, 1983; Sharp, 1983). Such resistance 

has already been introduced into tobacco via Agrobacterium, conferring resistance 

to wildfire disease which is caused by Pseudomonas syringae pv tabaci (Anzai et ai., 

1989). The introduced acetyltranferase gene (ttr) encoded the enzyme responsible 

for detoxifying tabtoxin, the toxin produced by P. syringae pv tabaci. This strategy 

could be widely applied to combat other bacterial diseases, including those affecting 

onions, which produce pathogenic toxins. One drawback of this strategy is that a 

number of genes must be introduced into a single plant to detoxify the variety of 

toxins produced by an array of different pathogens. In contrast to insect-tolerant 

plants engineered with a bacterial insect-toxin, microbial-tolerant plants have also 

been obtained by using insect-derived lytic peptides. This area of research has been 

reviewed in detail by Destefano-Beltran et ai., (1990), but briefly, it involves the 

incorporation of genes encoding insect-derived potent anti-microbial proteins to 

increase resistance of plants to bacterial and fungal pathogens. In future exper­

iments, this strategy could also be employed to combat onion diseases, using 

Agrobacterium-mediated transformation. 
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Resistance to fungal pathogens in plants is conferred by several classes of defence­

related genes. Expression of these genes is triggered by pathogen attack, environ­

mental stress and biotic or abiotic elicitors (Chakravorty and Scott, 1991). Such 

defence-related genes are grouped into three classes by Bowles (1990). These 

include those encoding (1) glycoproteins, glycine-rich proteins and enzymes involved 

in strengthening and repairing the cell walls, (2) antimicrobial proteins and (3) 

pathogenesis-related (PR) proteins, the function of which is still unclear. 

Introduction of these genes into plants is still in the experimental stages in most 

cases, but progress has been made towards the production of transgenic plants which 

are resistant to fungal infection. As well as increasing the yield of healthy bulbs, 

Agrobactenum-mediated transfer of a gene which, when expressed, protects onions 

from fungal disease damage, would offer onion growers a less labour-intensive and 

less toxic alternative to spraying with fungicides. 

6.4.2 Engineering genes conferring resistance to viral diseases into Allium cepa 

The most important Allium virus which affects onions is the onion yellow dwarf 

virus (OYDV). This virus is sap-transmitted, principally by aphids (Walkey, 1990). 

OYDV is not seed-transmitted, however, so that onions grown from seed, as is the 

practice in New Zealand onion-growing areas, are initially free of virus infection 

when first established in the field. 

So far, plant genetic engineering approaches used to produce virus-resistant plants 

have mostly involved the integration of viral cDNA sequences into plant genomes 

(Timmerman, 1991). Powell-Abel et al. (1986) first used Agrobacterium to introd­

uce a cloned cDNA of the coat protein (CP) gene of tobacco mosaic virus (TMV) 

into tobacco. Transgenic tobacco plants expressed the CP gene which resulted in a 

virus-resistant phenotype. Since then, a non-structural coding region from TMV has 

also been used to produce virus-resistant plants (Golemboski et al., 1990). Other 

strategies for producing virus-resistant plants include the introduction of satellite 

RNAs (reviewed in Timmerman, 1991) or antisense RNAs which are complementary 

to viral positive-sense sequences (Cuozzo et at., 1988). Genetically modified Agro-
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bacterium could in future be used as a vector to introduce viral DNA or RNA to 

onions. Expression of these viral nucleic acids could confer resistance to OYDV and 

other less important viral diseases. 

6.4.3 Engineering genes conferring resistance to insect pests into Allium cepa 

The production of onions in New Zealand can also be affected by insect pests, some 

of which include the shallot aphid (Myzus ascalonicus Doncaster), onion thrips 

(Thrips tabaci Lindeman), cutworm (Agrotis ipsilon Hufnagel), small narcissus fly 

(Eumerus strigatus Fallen), large narcissus fly (Merodon equestris F .), leek or 

shallot fly (Delia platura Meigen), the beetle species Agrypnus variabilis Cand., the 

weevil species Ctenicera strangulata White, red spider mites (Tetranychus 

cinnabarinus) and brown wheat mites (Petrobia latens) (Soni and Ellis, 1990). 

The major emphasis in developing insect-resistance of plants has been on the 

development of plants containing a protein isolated from the soil-dwelling bacterium 

Bacillus thurigiensis (B. t.). Protein crystal spore preparations of B. t. have been used 

as commercial preparations for several years and it is estimated that over 2000 

tonnes of this preparation have been applied to crops worldwide with no undesirable 

effect (Dunwell and Paul, 1990). To date, several genes encoding insecticidal B.t. 

proteins have been inserted into plants and have been shown to protect plants against 

lepidopteran insect pests (moths and butterflies) under field conditions (Delannay et 

al., 1989). More recently, additional genes which are specifically active against 

coleoptera (beetles), diptera (flies) and nematodes have been isolated (Dunwell and 

Paul, 1990). As well as plants being transformed with the B.t. gene, at least one 

plant species has been transformed with a gene driven by the wound-inducible 

promoter of proteinase inhibitor II K (pin2) (Thornburg et at., 1990). In response 

to insect feeding, plants transformed with pin2-controlled chimeric genes can 

specifically direct the synthesis of insecticidal proteins. With the Agrobacterium 

transformation of onions in place, genes conferring resistance to insect pests may 

possibly be engineered into the New Zealand cultivars of onion which are susceptible 

to the above-mentioned insects. 
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6.4.4 Engineering genes conferring resistance/tolerance to herbicides into Allium 

cepa 

Another biological factor which is responsible for significantly reduced yields of 

onion crops is that of weed competition. Due to their slow germination, slow 

growth rate and upright, narrow-leaved habit, onions are very sensitive to early 

season weed competition. Weeds competing with onion seedlings for light, CO2, O2, 

water and mineral nutrients can significantly reduce the final crop yield even if for 

a short period early in the growth/development of seedlings (Bleasdale, 1959). The 

'critical period' of competition has been identified by Hewson and Roberts (1971) 

as the period during the development of the third true leaf. 

The regeneration of tobacco plants resistant/tolerant to the herbicide glyphosate (the 

active ingredient of the Dupont herbicide Roundup) was the first example of such 

resistance being engineered into a plant species via Agrobactenum (Comai et al., 

1985). Since then, genes coding for herbicide resistance functions have been 

introduced into some of the major crops. Three types of approaches tried have been 

successful. These are (i) overexpression of the sensitive target enzyme of the 

herbicide, (ii) altering target sites on enzymes via point mutations and (iii) 

incorporating a gene for an enzyme that inactivates the herbicide. As an example 

of (i), glyphosate-tolerant canola and soybean have been produced. These plants, 

which show a tolerance to Roundup, were transformed with DNA coding for over­

production of herbicide-resistant analogues of 5-enolpyruvylshikimate-3-phosphate 

synthase (EPSPS), the target of Roundup activity (Shah et al., 1986). Resistance to 

sulfonylurea compounds, the active ingredients of Glean and Oust, has been 

conferred by a mutant acetolactate synthase (als) gene (see section 4.2) introduced 

into canola and cotton, thus demonstrating the approach outlined in (ii) (Haughn et 

al., 1988). Resistance to gluphosinate, the active ingredient in Basta (De Block et 

al., 1987) and bromoxynil (Stalker et al., 1988) has been conferred via 

Agrobacterium-mediated transformation by approach (iii) above, i.e. introducing 

bacterial genes encoding enzymes that inactivate the herbicides by acetylation or 
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nitrile hydrolysis respectively. Gluphosinate-tolerant corn, soybean and canola, and 

bromoxynil-tolerant cotton have all proved themselves in field trials. One of the 

three described approaches should also be eventually feasible for onions. Herbicide­

resistant seedlings could in this way survive applications of herbicide that are toxic 

to competing weeds. 

Herbicide resistance also offers some new applications to hybrid seed production in 

onions where there are problems with environmental effects on expression and 

stability of male sterility. In the past, fertility restoration in certain male-sterile lines 

of onions has made it uneconomical to produce hybrid seed from otherwise excellent 

crosses (Grant, 1983). If hybrid seed is produced from a 'male' parent that is 

homozygous for a single dominant herbicide-resistance gene and from a 'female' 

(i.e. male-sterile) parent, all true hybrid seed harvested from the 'female' parent 

would be heterozygous for resistance to the herbicide. Any plants arising from 

contaminating pollen can be simply eliminated by their sensitivity to the herbicide 

(Conner et aZ., 1991a). 

6.4.5 Manipulation of onion flavour 

In addition to the need for disease-, insect- and herbicide-resistant onion breeding 

lines, there is also a demand, particularly from Japanese consumers, for onions 

exported from New Zealand to have a milder, less pungent flavour (Wood, 1986). 

A cDNA copy of the gene alliinase, a vacuolar enzyme which catalyzes the ultimate 

reaction responsible for flavour, odour and pungency of onions and other alliums, 

has recently been cloned and partially sequenced (Clark et aZ., 1993). It is possible 

that onions, when transformed with a reverse copy of the alliinase gene, may show 

inhibited expression of alliinase, due to the presence of transcribed antisense RNA. 

Such inhibition of a gene's expression by an antisense copy of the same gene has 

already been achieved in transgenic tomatoes which were stably transformed with 

antisense DNA of the developmentally-regulated gene polygalacturonase (Smith et 

aZ., 1988). Plants expressing the antisense RNA showed a striking inhibition of 

polygalacturonase activity. Similarly, it may be possible that onions transformed 
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with an antisense copy of alliinase will, due to the inhibition of alliinase expression, 

have a milder flavour. 

6.S Conclusion 

In conclusion, this thesis reports that: 

- Allium cepa is a host for Agrobacterium tumejaciens, A.rhizogenes and 

A. rubi as is evidenced by the production of opine-positive tumours, 

- the New Zealand-bred onion cultivars 'Pukekohe Longkeeper' and 

'Early Longkeeper' were susceptible to Agrobacterium infection, whereas 

other cultivars showed no evidence of susceptibility to this bacterium, 

despite the distinct wound responses which were recorded in non­

susceptible cultivars, 

- two of the trialled protocols were shown to be successful in achieving 

production of putatively transformed onion plantlets, 

- an onion plantlet putatively transformed via A. tumejaciens was 

regenerated from callus, and a number of putatively transformed 

chimeric plantlets or shoots were produced from basal plates injected 

with strains of Agrobacterium harbouring the binary vectors pKIWIllO 

or pGA643, 

- hygromycin appears to be the most suitable antibiotic for use in onion 

transformation experiments ana 

- onion seedling sterns and twin scales or split in vitro shoots are the 
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most suitable explants for use in onion transformation experiments. 
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Appendix I Formulations of basal media used for protoplast culture. 

Concentrations of basal salts 

MS 8p V-KM BDS 

Macro (ruM) 

NH4N03 20.6 7.49 - 4.0 

KN03 18.8 18.7 14.6 25.02 

CaCI2·2H2O 3.0 4.08 5.0 1.02 

MgS04·7H2O 1.5 1.22 4.0 1.00 

KH2P04 1.25 1.25 0.5 -
NH4H2P04 - - - 2.0 

(NH4)2S04 - - - 1.01 

NaH2P04·Hp - - - 1.04 

KCI - 4.02 - -

(NH4)2S04 - - - 1.01 

Micro (J-tM) 

Kl 5 4.5 4.5 4.52 

H3B03 100 48 48 49 

MnS04.4H2O 100 59 59 45 

ZnS04·7H2O 30 7 7 6.95 

NazMo04·2H2O 1.0 1 1 1.03 

CuS04·5H2O 0.1 0.1 0.1 0.1 

CoCI2·2H2O 0.1 0.1 0.1 0.105 

Iron (J-tM) 

Na2EDTA 100 - 100 100 

FeS04·7H2O 100 - 100 100 

SequestreneR330 Fe - 28 mgt' - -



Appendix II Responses of in vitro-cultured 'Pukekohe Longkeeper' tissues to kanamycin 

Kanamycin % gennination Average weight of callus produced by Average weight of Average no. of Appearance of 
concentration seedlings (g) mature callus (g) green leaves per shoots in culture 

(mgl-1) culture 
Light Dark Light Dark 

0 70 100 0.717 0.712 0.778 9.57 green 

1 80 55 0.544 ns 1.045 ns - 9.00 green 

5 - - - - - 3.00 green 

10 60 95 1.128 ns 0.579 ns 0.772 ns 3.00 green/white 

20 65 65 0.128 ** 0.432 ns 0.625 ns 1.00 green/white 

50 85 50 0.138 ** 0.080 ns 0.153 ** 1.00 green/white 

100 55 70 0.023*** 0.030 ** 0.055*** 0 white 

150 70 80 0.021*** 0.018 ** - 0 brown/white 

200 70 70 - 0.008 ** 0.050*** 0 brown/white 

250 60 65 0.010*** 0.010 ** - 0 white 

300 80 80 0.006*** 0** 0.036*** 0 brown/white 

400 - - - - 0.038 ** 0 brown/white 

500 70 85 0.007*** 0.008 ** 0.036*** 0 brown 

600 - - - - 0.034*** - -

750 - - - - 0.038 ** - -

1000 - - - - 0.054 ** - -

*, **, *** = significance at 0.05, 0.01 and 0.001 levels respectively and ns = not significant, as determined by analysis of variance 



Appendix ill Germination, leaf production and leaf condition on G4181
• 

% germination 
G418 concn Average no. of green Average no. of roots Appearance of leaves in culture 

(mgl-I ) 'PLK' 'ELK' leaves per plantlet per plantlet 

0 60 80 4.50 1.25 green 

5 60 73 3.00 ns 0.25 ns green 

10 53 87 1.00 ** 1.25 ns green, but brown at leaf base and white at leaf 
tips 

20 40 67 0.75 ** 0.50 ns some leaves green, some white, but all 
vitrified 

30 33 87 1.00 ** o ns some leaves green, some white, but all 
vitrified 

50 33 67 0.75 ** o ns white, leaf bases brown 

100 40 67 0.50 *** o ns white or grey-brown 

*, **, *** = significance at 0.05, 0.01 and 0.001 probability levels respectively and ns = not significant, as determined by analysis of variance 

IUnless otherwise stated, the cultivar tested is 'PLK'. 



Appendix IV Responses of callusing 'PLK', 'ELK' and 'SWG' seedling stems to G418 

G418 concentration Average weight (± SE) of 'PLK' seedling Average weight (± SE) of 'ELK' seedling Average weight (± SE) of 'SWG' seedling 
(mgl· l ) stem callusl (g) stem callus (g) stem callus (g) 

Light Dark2 Light Dark Light Dark 

0 0.196 ± 0.002 0.121 0.227 ± 0.022 0.297 ± 0.004 0.302 ± 0.030 0.195 ± 0.044 

25 0.016 ± 0.003 0.020 0.016 ± 0.007 0.005 ± 0.001 0.014 ± 0.001 0.014 ± 0.001 

50 0.009 ± 0.001 0.006 0.010 ± 0.005 0.010 ± 0.003 0.013 ± 0.006 0.007 ± 0.001 

75 0.014 ± 0.004 0.012 0.021 ± 0.004 0.009 ± 0.003 0.009 ± 0.004 0.025 ± 0.001 

100 0.008 ± 0.003 0.009 0.012 ± 0.005 0.004 ± 0.001 0.006 ± 0.002 0.014 ±O.OOI 

150 0.004 ± 0.003 0.012 0.013 ± 0.001 0.009 ± 0.002 0.016 ± 0.004 0.007 ± 0.002 

I seedling stems were cultured for six weeks 

2 insufficient samples to calculate standard errors 



Appendix V Responses of in vitro-cultured 'PLK' and 'ELK' tissues to hygromycin 

Average length oflongest leaf Average weight of callus 
Hygromycin % germination or hypocotyl (rom) produced by seedlings (g) Average weight Average no. of Average no. of 
concentration of mature 'ELK' green leaves per bleached leaves 

(mgl-I) 'PLK' 'ELK' 'PLK' 'ELK' 'PLK' callus I (g) . plantlet per plantlet 

0 75 92 122.8 230 0.289 0.708 2.6 0.20 

5 50 83 97.8 ns 162 0.042 *** 0.390 1.2 * 3.00 * 

10 42 83 89.4 ns 105.3 0.057 *** 0.402 0*** 6.40 *** 

20 33 100 47.5 * 69.5 0.020 *** 0.154 0*** 4.20 ** 

50 33 83 18.8 ** 30.4 0*** 0.100 0*** 2.80 * 

100 42 67 8.9 ** 14.1 0*** 0.087 0*** 2.00 ns 

*, **, *** = significance at the 0.05,0.01 and 0.001 probability levels respectively and ns = not significant, as determined by analysis of variance 



Appendix VI Germination and seedling stem callus production of 'PLK' and 'ELK' on chlorsulfuron 

Chlorsulfuron % germination Average weight of 'PLK' seedling stem 
concentration callus (g) 

(nM) 
'PLK' 'ELK' Light Dark 

0 67 90 0.354 0.013 

25 60 80 0.013 *** 0.005 ** 

50 47 80 0.014 *** 0.005 * 

75 27 73 0.010 *** 0.004 ** 

100 47 60 0.008 *** 0.003 ** 

150 53 73 0.010 *** 0.003 ** 

*, **, *** = significance at the 0.05, 0.01 and 0.001 levels respectively and ns = not significant as determined by analysis of variance 



Appendix VII Responses of in vitro-cultured 'PLK', 'ELK' and 'SWG' shoot cultures to chlorsulfuron 

Chlorsulfuron Average no. of green leaves per plantlet Average no. of roots per plantlet 
concentration 

CnM) 'PLK' 'ELK' 'SWG' 'PLK' 'ELK' 'SWG' 

0 3.25 1.75 3.75 3.25 1.75 3.38 

25 0.25 *** 0.25 *** 0.13 ** 0.50 *** 1.25 ns 0.25 ** 

50 0.50 *** 0*** 0.63 * 1.50 * 0.50 ** 0.13 ** 

75 0*** 0.50 ** 0.13 ** 0*** 0.38 ** 0.75 * 

100 0*** 0.75 * 0.50 * 0*** 0.88 ns 0** 

150 0*** 0.37 *** 0.13 ** 0*** 0.38 ** 0.88 * 

*, **, *** = significance at the 0.05,0.01 and 0.001 levels respectively and ns = not significant as determined by analysis of variance 



Appendix vm Reagents used in Southern Analyses: 

Sample buffer: 

5 ml glycerol 
1 ml lOx TBE (Maniatis et al., 1982) 
4 ml H20 
bromophenol blue (add small amounts until desired intensity of 

colour is reached) 

20x sse: 

175.3 g}-l NaCI (3M final concentration) 
88.2 gl-l trisodium citrate (0.3 M final concentration) 
Adjust to pH 7.0 with a few drops of 10 N NaOH 

Ix STE: 

10 mM TrisHCI (pH 8.0) 
1 mM EDTA (PH 8.0) 
100 mM NaCI 
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