
Investigations into the capabilities of the SDM

and

combining CMAC with PURR-PUSS

A Thesis

presented for the degree of

Doctor of Philosophy

in Electrical and Electronic Engineering

in the

University of Canterbury,

Christchurch, New Zealand

by

Shaun W. Ryan BE (Hons)
"

University of Canterbury

1996

Abstract

This thesis consists of two sections analysing aspects of associative memories. The first

section compares the usefulness, limitations, and similarities of the sparse distributed memory

(SDM), the cerebellar model articulation controller (CMAC) and the Hopfield network. This

analysis leads in the second section to a proposal for combining CMAC with an a form of

robot learning through exploration, the PURR-PUSS system. It is then demonstrated the

combination of the PURR-PUSS and CMAC systems produce a system capable of robot

control.

There are a number of critical factors in the performance of a neural network as a memory.

These include the capacity and the efficiency of the training. Of the three networks

considered, the Hopfield network is by far the most common in the literature. In spite of this,

this thesis shows that the SDM and CMAC are almost identical and, in fact, have significant

advantages over the Hopfield network in terms of capacity. This is particularly evident in the

storage of sequences, where the SDM shows a significant improvement over the Hopfield

network.

The major contribution of this thesis is the analysis and development of the full potential of

the SDM for data storage. The first contribution is a correction of an error in the existing

analysis of the capacity of the SDM. The corrected figure is verified both theoretically and

experimentally. The second contibution is an improvement in capacity resulting from an

alternative method of generating the outputs. Finally, the capacity is further improved, by

using an iterative approach to information storage previously employed on the Hopfield

network. The latter aproach helps produce a significant advantage in capacity for SDM.

Another contribution of this thesis is the combination of associative memory with the a means

of learning through experimentaion. The PURR-PUSS system was originally developed as a

means to enable a robot to learn through interacting with its environment. It is shown that its

strengths and weaknesses complement those of the CMAC and SDM systems. PURR-PUSS

and CMAC are combined and the result is a system which is capable of superior control than

either system by itself This is demonstrated through an example, in which the combined

system learns to control a ball rolling in a tilting maze of unknown dynamics.

The system begins by learning through random exploration controlled by the PURR-PUSS

system. As the knowledge of the environment increases, the PURR-PUSS system is able to

successfully achieve goals, although the quality of the control is poor. However the addition

of CMAC which in tum learns from PURR-PUSS's movements produces an improvement in

the quality of the control.

Table of contents

Acknowledgements 1

CHAPTER 1

Introduction 2

CHAPTER 2

The Hopfield Network ... " 6
2.1 Introduction .. 6

2.l.1 Content addressable memories 6
2.2 The Hopfield network 8

2.2.1 Convergence properties of the Hopfield Network " 10
2.2.2 An example of the Hopfield network 12

2.3 The capacity of the Hopfield network 14
2.4 Alternative views of the Hopfield network " 17

2.4.1 The Hopfield network as an associative memory 18
2.5 Summary .. 20

CHAPTER 3

Sparse Distributed Memory (SDM) " 21
3.1 Introduction .. 21
3.2 The Sparse Distributed Memory (SDM) " 21

3.2.1 The structure of the SDM 22
3.2.2 A simple example of the SDM. 27

3.3 The performance of the SDM " 30
3.3.1 An alternative method of reading from the SDM 33

3.4 Assigning the variable weights iteratively " 36
3.5 Associating real valued inputs and outputs " 40

3.5.1 Real valued inputs 40
3.5.2 Real valued outputs " 42

3.6 A comparison between the SDM and Hopfield memory. 43
3.7 Summary .. 44

CHAPTER 4

CMAC .. " 45
4.1 Introduction .. 45
4.2 The cerebellar model articulation controller (CMAC) " 45

4.2.1 A simple example of the CMAC 49
4.3 Storing binary patterns " 52
4.4 Comparing the CMAC and the SDM .. 52
4.5 Summary .. 53

CHAPTER 5

Storing sequences on neural networks 55
5.1 Introduction .. 55
5.2 Storing sequences in the Hopfield network .. 56

5.2.1 Using additional connections with delays to store complex
sequences 59

5.2.2 Using decaying local fields to store complex sequences. 61
5.3 Storing complex sequences in the SDM .. 63

5.3.1 An example .. 64
5.4 Recognising sequences .. 65

5.4.1 A sequence recognition example - recognising speech 66
5.5 Summary .. 68

CHAPTER 6

The PURRPUSS system
6.1 Introduction

.. 70
70

6.2 Production learning 71
6.2.1 Short Term Memory (STM) .. 71
6.2.2 Long term memory (LTM) .. 73

6.2.2.1 Contexts .. 73
6.2.2.2 Production templates 74
6.2.2.3 Clusters. .. 75
6.2.2.4 Productions .. 75
6.2.2.5 Predictions 75

6.3 Leakback learning .. 76
6.3.1 An example of leakback learning 78

6.4 Performing actions for the first time 79
6.5 Marking contexts as goals. .. 80
6.6 An example of the PP system 81

6.6.1 The maze. .. 81
6.6.2 The configuration of the PP system 82
6.6.3 Learning in the PP system .. 85

6.6.3.1 Learning from random actions. 86
6.6.3.2 Choosing goal directed actions. 87
6.6.3.3 Learning from reflexes to respond to verbal

commands .. 88
6.7 Summary 90

CHAPTER 7

A hybrid PP-CMAC system .. .
7.1 Introduction
7.2 A demonstration of the hierarchical PP-CMAC system

7.2.1 The configuration of the PP-CMAC system
7.2.1.1 CMAC configuration
7.2.1.2 Routing goals to the CMAC - the GO action
7.2.1.3 Which part has control, PP or CMAC?

91
91

91
92
94
94

7.2.l.4 The teacher
7.2.2 Learning in the PP-CMAC system

7.2.2.1 The quality of control
improves .. .

7.2.3 Summary of features of combined system
7.3 Comparisons with other systems

7.3.1 Open-loop vs closed-loop control.
7.3.l.1 Open-loop control
7.3.l.2 Closed-loop control
7.3.1.3 The PP-CMAC system

7.4 Extending the PP-CMAC combination - future work.
7.5 Summary

CHAPTER 8

Conclusions

95
96
96

99
101
101
101
102
102
103
105
106

107

References . 109

APPENDIX Al

Derivation of error rates in Hopfield memory, (13) " 114

APPENDIX A2

Derivation of the correction to Kanerva's theory,
equation (38) .. 116

APPENDIX A3

Derivation of equation (42) . 119

APPENDIX A4

The dynamic maze model ... 123

APPENDIX AS

PP's interaction with the maze - the first 256
steps. . .. 124

APPENDIX A6

PP's memory .. 130

Acknowledgements

I would like to thank my supervisor, John Andreae, for his guidance, support and patience

over the last six years. John always returned my work quickly with constructive criticism,

showing that he took time to read it carefully.

I am grateful to the University Grants committee for the scholarship during the first three

years of my postgraduate study.

Finally, I am grateful to my family and friends for their support and encouragement

throughout my decade at University.

1

CHAPTER 1

Introduction

Artificial neural networks originated from models of biological neurons (McCulloch & Pitts,

1943). Since then the study of artificial neural networks has grown and it is now an

established field of research. There are many different types of artificial neural network and

they have many practical applications. This thesis demonstrates the usefulness, and examines

the limitations, of two types of artificial neural network which are not currently widely used.

These artificial neural networks are called the sparse distributed memory (SDM) and the

cerebellar model articulation controller (CMAC).

Some of the practical applications of artificial neural networks include language processing

(Sejnowski & Rosenberg 1987; Rumelhart, McClelland et aI, 1986), image compression

(Cottrell et al 1987), character recognition, (Fukishima 1987, 1988, 1993; Fukishima &

Imagawa, 1993), pattern recognition in images (Gorman & Sejnowski 1988; Glover 1988),

signal processing (Lapedes & Farber 1987), and servo control (Millar et aI, 1988). New

applications are being discovered regularly. Some examples of applications of the SDM and

CMAC networks are given in this thesis. Chapter 5 describes how the SDM can be applied

to a simple speech recognition problem. Chapter 7 describes how the CMAC can be used in

a robot control application.

An artificial neural network consists of an interconnected group of units, some of which

receive input signals from outside the network, and some which transmit output signals. The

units which receive input signals are called input units and they receive the input signals

along input connections. The units which transmit output signals are called output units and

they transmit signals along output connections. Units which neither receive input signals or

transmit output signals are called hidden units because they do not have any direct connection

with the outside. Often the units in an artificial neural network are arranged in layers, as

shown in Figure l.l.

All connections between units are associated with weights. The weight of a connection

2

determines the extent to which the signal

is modified in passing through the

connection. Weights may be fixed or

variable. Variable weights allow an

artificial neural network to store

information. The process of storing

information is referred to as training. It

will be seen later that when an artificial

neural network is trained the weights are

adjusted according to a training algorithm

using example data.

The most widely used type of artificial

neural network is the multi-layer network

using the back-propagation algorithm

Output
Units,

layer 2

InpUt SIgnals

output SIgnals

Connections
wifl1 weights

Figure 1.1 An artificial neural network with three
layers of units, input units, hidden units and output
units. The connections between units have weights
associated with them.

(Rumelhart, McClelland et aI, 1986; Parker 1985), or variations of it, to adjust the weights.

The main advantage that the CMAC and SDM have over networks using back-propagation

is that the CMAC and SDM can be trained much faster. In a speech recognition example

given in chapter 5 an SDM and a back-propagation-based multi-layer network are trained with

the same data. The performance of the two networks is the same after training in the speech

recognition task. However, training takes only 25 iterations for the SDM and 65000 iterations

for the back propagation network. An iteration involves adjusting the weights once for every

set of data in the training set using the training algorithm. In this example the SDM trains

much faster than the back-propagation network. The training speed will not be important in

all applications but when it is the SDM or the equivalent CMAC are clearly superior. The

main disadvantage of the SDM and the CMAC is that they require more units than a back­

propagation network. In the example in chapter 5 the SDM had 500 units and the back­

propagation network had only 32.

Before the SDM and CMAC are introduced in chapters 3 and 4 respectively, research on

another type of artificial neural network, called the Hopfield network, is summarised in

chapter 2. The summary of the work on the Hopfield network is included because some of

3

this research can be applied to the SDM and CMAC as will now be briefly described.

Chapter 2 describes how the number of patterns that the Hopfield memory can store is limited

by the number, N, of binary elements in a pattern. Hopfield (1982) estimated the number of

patterns that can be stored to be 0.15N. A mathematical analysis performed by Gardner (1988)

shows that by using a different training algorithm it is possible to store up to 2N uncorrelated

(random) patterns. This limitation on the number of patterns is significant for large N because

with N binary elements in a pattern there are 2N possible patterns and it is quite likely that

an application would need to store more than 2N patterns. For example, if N is 100 then there

are 2100~ 1030 possible patterns and the Hopfield network could only store 200 of these which

is a tiny fraction of the possible patterns.

The capacity limitation of the Hopfield network can be overcome by using the SDM. Kanerva

(1988) analyzed the capacity of the SDM and showed that the number of patterns that can be

stored depends mainly on the number of location units, s, which can be chosen arbitrarily in

the SDM. Chapter 3 introduces the SDM and analyses its capacity to show that it does

overcome the limitation of the Hopfield network. An error in Kanerva's analysis of capacity

is highlighted and corrected. It is also shown that a small improvement in the capacity can

be achieved by using an alternative method of generating the outputs. Chapter 3 then goes on

to describes how Gardner's analysis of the Hopfield network can be applied to the SDM with

the 2N limit of the Hopfield network becoming the much larger 2s for the SDM. The analysis

of the SDM has been published in Ryan & Andreae (1995).

As is demonstrated in chapter 2, the Hopfield memory stores static patterns. For many

applications temporal information is critical, as for example in speech recognition. A

significant amount of research has been performed on modifications to the Hopfield network

which allow it to store sequences of patterns rather than just single patterns. A sequence of

patterns can represent a time varying pattern sampled at regular intervals. When the Hopfield

network is modified to store sequences of patterns it still has the capacity limitation described

above. However, as before, this limitation on the number of patterns which can be stored can

be overcome by using the SDM. Chapter 5 describes how the modifications that allow the

Hopfield network to store patterns can be applied to the SDM and the CMAC. Using an

4

SDM, the length of the sequence that can be stored is limited by the number of location units,

s, which can be chosen arbitrarily.

Chapter 6 introduces a system called PURR-PUSS (PP for short) which is designed to enable

a robot to learn. This system was developed by Andreae and others (Andreae, 1977; Andreae

& MacDonald, 1991; Andreae et aI, 1993). The PURR-PUSS system is introduced because

it is used in Chapter 7 with CMAC (this is discussed in more detail below). Two features new

to the PP system are introduced in Chapter 6: learning from random actions and the goal­

setting GO command. Chapter 6 shows how, with these new features, PP can learn to control

a ball rolling around in a tilting maze.

The control of the ball that PP learns in Chapter 6 is adequate but it is not perfect because

the ball often overshoots. In Chapter 7, this same problem is used to demonstrate how PP and

CMAC can operate together, with PP providing coarse discrete actions, and CMAC learning

from those actions and interpolating to produce smooth, fine tuned movements. The resulting

system controls the ball much better than the PP system alone.

5

CHAPTER 2

The Hopfield Network

2.1 Introduction

The Hopfield network was first introduced by 1. Hopfield in 1982. Since then much work has

been done on the Hopfield network and its variations (e.g. Hopfield, 1984; Amit & Gutfreund,

1985; Gardner, 1988; Barro et aI, 1991; Bauer & Krey, 1991; Bressloff & Taylor, 1991). This

thesis compares the Hopfield network to the CMAC and SDM networks (covered in chapters

3 and 4 respectively). All these networks have similar structures and some of the work that

has been done on the Hopfield network is also applicable to the SDM and CMAC networks.

The format of this chapter is as follows:

• Because the Hopfield network was first described as a content addressable

memory, section 2.1.1 describes what a content addressable memory is.

• Section 2.2 describes the Hopfield network as a layer of N fully connected

units. This includes an example of a small Hopfield network.

• Section 2.3 summarises work which has analyzed the capacity of the Hopfield

network, and it introduces an iterative learning algorithm which allows the

maximum capacity to be realized. This work is applicable to the SDM and

CMAC networks.

• Section 2.4 shows how the Hopfield network can be viewed as a two layer

network, with connections between the layers. This alternative view of the

Hopfield network makes it easier to compare it to the CMAC and SDM, which

can also be viewed as having a layered structure.

2.1.1 Content addressable memories

A content addressable memory (CAM) is a memory from which a stored item can be retrieved

by presenting an incomplete or noisy version of the stored item. The stored item is the content

of the memory. The noisy or incomplete version of the stored item is the input to the memory

(also referred to as the address). So the memory is addressed by a version of the content of

6

Noisy version
of stored item

CAM

Stored item
the memory; hence the name content

addressable memory. Figure 2.1 shows a

simple example of what a CAM may do.

The CAM in Figure 2.1 has stored in it an

image of a grey box on a white background.

The stored image should be retrievable by

presenting the memory with a noisy version

of it, such as the one on the left in

Figure 2.1.

Figure 2.1 In a CAM stored items can be
retrieved from noisy versions of the stored
item.

The Hopfield network (also referred to as the Hopfield memory) is a content addressable

memory. The items which are stored in the memory are patterns of N binary elements. The

Hopfield network is described in detail in section 2.2. A brief description of the operation of

the Hopfield network follows here.

An input pattern puts the Hopfield network into a state corresponding to that input. From that

input state, the Hopfield network retrieves an item stored in the memory by changing the state

according to a set of equations (this is explained fully in section 2.2). Eventually the Hopfield

network settles into a stable state which corresponds to a stored pattern. The dynamics of the

Hopfield network guarantee that it will settle into a stable state.

In an example network (detailed in 2.2.2) two patterns pI and p2, each consisting of ten

elements, are stored. The patterns are:

pI: -1 1 -1 -1 -1 -1 1 -1 1-1

p2: -1 1 -1 1 -1 -1 -1 -1 -1 -1

The following pattern is used as an input to the network:

II: -1 1 -1 -1 1 -1 -1 -1 -1 1

After the pattern, II, has been presented to the network, the network begins to change state

and eventually settles into a state corresponding to pattern p2. The input pattern, II can be

viewed as a noisy version of pattern pI (four elements are different) or pattern p2 (three

elements are different). In this case pattern p2, which is closer to the input, is retrieved. This

is an example of a content addressable memory; stored patterns are retrieved using inputs

7

(addresses) which are noisy versions of the patterns.

The Hopfield network will now be described in detail.

2.2 The Hopfield network

The Hopfield network consists of a single

layer of fully connected units (see

Figure 2.2), i.e. each unit is connected to

every other unit and not to itself. Unlike

other neural networks discussed in this

thesis, the connections between the units in

the Hopfield network are bidirectional, i.e.

signals can flow in both directions. This

means that between every pair of units there

is only one connection. Each connection has

a weight, which indicates the strength of the

connection. There are N units in total so the

input and output patterns each consist of N

elements, (1[, ... , IN) and (0[, ... , ON)

Input pattern

t

o 0
1 2 OUtput pattern

Figure 2.2 The Hopfield network

connections
with weights

Wjj

respectively. Each unit receives a signal from the input pattern and from the other units, and

combines these to produce an output signal. The range of values of the input and output

signals depends on how the network is configured. Only networks with binary inputs and

outputs (elements of {I, -I}) will be considered here. The output of a unit is also referred to

as the state of the unit, and the outputs from the N units together define the state of the

network.

The Hopfield network can be viewed as having two modes:

the input mode, where the input determines the state of the units and the

connections between the units have no effect:

(1)

8

and,

• the settling mode where the inputs have no effect and in each time step a

randomly chosen unit, unit i (I sisN), is updated according to the following

expressiOn:

(2)

where T is a threshold (typically T=O), t is the time in steps, t= 0, 1,2, "" and

hJt), termed the local field of unit i, is given by the following expression:

N

h;(t+l)=L wiJOlt)
j=l

(3)

where Wjj is the strength of the connection (referred to as the weight) from unit

j to unit i, for i, j= LN,

A particular pattern, pi is a stable pattern on the Hopfield network if, after it has been asserted

(in the input mode), none of the outputs change when updated according to (2), If the

threshold, T, is ° then the pattern will be stable if, for each unit, the local field has the same

sign as its output:

P/h/>O for i=1..N (4)

where plj is the ith element of pattern pi, plj=±I, and h/ is the local field of unit i when the

network is in the state pi, Replacing OJ in (3) with plj' using this to expand (4), and bringing

the factor plj inside the sum gives:

N

L 1 1 w .. P,P,>O
IJ I J

j=l

9

(5)

One way of choosing wij to ensure that (5) is positive and pi is stable is to set

(6)

This will ensure that each term of the sum in (5) is a square, (p/p/t and so the sum will

be positive. When there are Np patterns to be stored as stable states, pI, ... , pNp (Np is the

number of patterns to be stored), Hopfield proposed that the weights be given by summing

(6) over the Np patterns, i.e.

{

NP

w .. :::: E p/p/ for i*j
!1 1=1

o for i::::j

(7)

This method of assigning weights, (7), does not guarantee that all of the Np patterns will be

stored as stable states. However if the number of patterns stored, Np, is low compared to N

(Np <0.15N) then there is a high probability that the patterns will be stored as stable states.

This is demonstrated in section 2.3.

The weights specified by (7) are symmetrical, that is the weight from unit j to unit i equals

the weight from unit i to unit j, or wij = wji . Equation (7) shows that there are no connections

from a unit to itself by setting the diagonal weights, W ii ' to zero. Having these weights zero

is one of the requirements that ensures the network will converge towards stable patterns, as

described below.

2.2.1 Convergence properties of the Hopfield Network

Hopfield formulated the dynamics of the network in terms of spin glass physics (Amit &

Gutfreund, 1985). This allows the state of the network to be viewed as an energy surface. The

energy surface has a number of minima which correspond to stable states. Hopfield defined

the energy of the system to be:

10

(8)

Now it will be shown that when the Hopfield network changes state its "energy" always

decreases and the state will keep changing until the energy reaches a local minimum. When

the output unit k changes by ilOk(t)=Ok(H 1)-Ok(t) then, using (8), the energy is:

The change in energy is:

l1E(t)=E(t+ l)-E(t)
N

=-110k(t)L wkj°/.t)
j=l

=-110k(t)hk(t)

(10)

When there is a threshold of T=O, ilOk(t) and hk(t) will have the same sign (see (2» and so

L1E will always be negative, i.e. the energy function is a monotonically decreasing function.

This means the energy of the network will decrease until it reaches a local minimum. The

Hopfield network is therefore guaranteed to settle into a stable state.

11

An example of the Hopfield network is given in the following section.

2.2.2 An example of the Hopfield network

Figure 2.3 shows a simple example of the Hopfield network. In this example there are only

N=IO units, and two patterns, pI and p2, are stored on the network. Half of the weight matrix,

as calculated by (7) is shown (only half needs to be shown because of the symmetry).

The results of a test are shown in Figure 2.3. In this test, a pattern, TI is presented at the

input and then randomly chosen units are updated according to (2). A threshold of T=O is

used. As the units are updated the energy of the network, as given by (8), either decreases or

stays the same, and the network converges towards one of the stored patterns. In this example

the network begins in the state TI and then moves through two intermediate states, Xl and X2,

before settling on p2.

The units which are updated are listed on the right, in the results section of Figure 2.3. Also

listed is the energy of the Hopfield network, E, as given by (8). If the output of the unit

changes, then on the following line the new states of all the units are shown, along with the

new value of the energy. For example after the test pattern (TI) is presented the energy is O.

Units 3 and 6 are updated, but there is no change. Then on step 3 unit 5 is randomly selected

to be updated. The calculation for the local field, hs(3), using (3), is:

hs(3) =(-1).(2) +(1),(-2) +(-1).(2)+(-1).(0) +(1).(0)

+(-1).(2) +(-1).(0) +(-1).(2)+(-1).(0) +(1),(2)
=-8

(11)

Using (2), output 0 5(3) will be -1 because hs(3) in (11) is negative. This is shown on the

second line of the results, steps 4-6. Also shown is the new value for the energy. The

calculation for the change of energy, using (10), is:

12

stored Patterns

Pattern pl: -1 1 -1 -1 -1 -1 1 -1 1 -1
Pattern p2: -1 1 -1 1 -1 -1 -1 -1 -1 -1

Weights wij (given by (7) , where Wij=Wji)

unit j=l 2 3 4 5 6 7 8 9 10
i=l 0

2 -2 0
3 2 -2 0
4 0 0 0 0
5 2 -2 2 0 0
6 2 -2 2 0 2 0
7 0 0 0 -2 0 0 0
8 2 -2 2 0 2 2 0 0
9 0 0 0 -2 0 0 2 0 0
10 2 -2 2 0 2 2 0 2 0 0

Results

step Pattern Name Output of units 1-10 E units updated
(t) 1 2 3 4 5 6 7 8 9 10
1-3 Tl -1 1 -1 -1 1 -1 -1 -1 -1 1 0 3,6,5
4-6 Xl -1 1 -1 -1 -1 -1 -1 -1 -1 1 -16 9,1,4
7-17 X2 -1 1 -1 1 -1 -1 -1 -1 -1 1 -24 6,6,6,2,2,8,8,1,6,5,10
18 p2 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -48

Figure 2.3 A Hopfield network with N=10 units. Patterns pI and p2 are stored. Pattern TI
is presented and the network converges to p2. The energy decreases when a unit changes state.

LlE(3) = - Ll 0s(3)hs(3)
=-(-2).(-8)
=-16

(12)

This is the difference in the energy between steps 3 & 4 in Figure 2.3. After 17 steps the

network settles into one of the stored patterns, in this case pattern, p2. p2 is a stable pattern

(i.e. no units will change state when updated).

This example shows how patterns can be stored in the Hopfield network. It also shows how

each time a unit's output changes the energy decreases, until a stable pattern is reached.

13

2.3 The capacity of the Hopfield network

The capacity of the Hopfield network in its original content addressable form is the number

of patterns that can be stored as stable patterns at the same time. Hopfield (1982) estimated

the capacity of the network to be approximately O.15N, where N is the number of units in the

network. This estimation was obtained experimentally.

If a pattern is stored correctly on a Hopfield network then it should be stable, i.e. if the

network is in the state corresponding to the pattern then none of the outputs should change.

If Np random patterns are stored on a network then when the network is in a state

corresponding to one of those patterns the probability that an output will change is: 1

(13)

where <I> is the standard cumulative normal distribution and a is the number of patterns stored

as a proportion of N, a=N/N.

An experiment was performed to confirm

the validity of (13). In this experiment a

content addressable Hopfield memory was

set up with N=lOO inputs. Fifty random2

patterns were chosen. The patterns were

stored in the memory in groups of five.

After each group of five patterns had been

stored, the memory was tested using all the

stored patterns. Testing with a pattern

involved setting the memory into the state

...
g
Q)

c:
III
"-
0

~
:.a
III
.0
0 ...

0..

0.08

0.06
..

0.04 ..
..

0.02 ..
O~~~~~~~~~~~~U
o 0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48

Number of patterns per unit, Np/N

- Theoretical results ... Experimental results

Figure 2.4 The theoretical and experimental
error rates for the Hopfield memory.

Ithe derivation of (13) is given in appendix A.!,

2the random number generator used to generate the random patterns is a standard random
number generator known as the additive congruential generator [Rubinstein, 1981; Knuth,
1969].

14

corresponding to the pattern and then checking to see if any output units changed state. Each

output unit that did change state was recorded as one error and the total number of errors was

recorded. The experiment was performed 100 times with different sets of random patterns.

The results from the 100 experiments were averaged and are shown in Figure 2.4. The

experimental error rates are very close to those predicted by (13)3.

Gardner (1988) has performed a thorough analysis of the capacity of the Hopfield memory.

For a pattern to be stable it must satisfy (4) for all i. Gardner used the stronger condition that

for a pattern to be stored it must satisfy the following:

(14)

for all i, where K is a non-negative constant. If K=O then (14) is the same as (4). Larger

values of K should imply larger basins of attraction. The basin of attraction for a particular

pattern, pi, is the set of starting patterns for which the network will converge towards pl. A

pattern, pk, which is similar to pi, will have a small number of elements which are different.

This means that, for any particular unit (say unit i), the local field from pk, hik, will be slightly

different than it would be for pi, hl
i. If this difference between the size of the local fields of

pi and pk is less than K~ t w~ then the unit's output 0, will be the same as P,'. Ibis is

demonstrated below.

F or unit i to have an output of p/ when the state of the network corresponds to Pi
k (15) must

be true:

(15)

By adding and subtracting the term P/h/ this can be rewritten as:

3The small difference can be put down to the assumptions made in the derivation given
in appendix A.I.

15

(16)

If (14) is true then (16) becomes:

(17)

If all of the units satisfy (15) then the network will converge to pk. Larger values of K will

mean more patterns satisfy (17) and hence (15) and so by definition this means larger values

of K will result in a larger basin of attraction.

Gardner demonstrated that for uncorrelated (random) patterns and K=O the capacity is 2N. The

capacity decreases as K increases and the capacity increases if the patterns are correlated (the

capacity tends to infinity as the patterns tend towards being completely correlated). Only sets

of uncorrelated patterns are considered in this thesis. Gardner demonstrated this capacity by

showing that solutions exist for the inequality given in (14). Furthermore Gardner gave an

iterative learning algorithm that would converge to the solution. The algorithm is derived from

the generalization of the perceptron convergence theorem (Rosenblatt 1962, Minsky and

Papert, 1969). The algorithm defines an array of errors for each pattern pI:

~
N

I 2 I I E·='K ~w··-p.~w .. p·
I L.-J IJ IL.-J IJ J

j=l j=l

(18)

If this error is positive then (14) will not be true. The algorithm attempts to make all these

errors non-positive. Note that if K=O then making the error non-positive is the same as making

(4) true. For the iterative algorithm, the weights to a unit are updated only if the error for that

unit is positive. Unlike (6), which sets the weight to the product of p/ and p/' this algorithm

uses this product to give the direction of the weight change, scaled by the error, E/, and the

learning rate, a. Hence the weights for unit i are updated according to the following

expressIOn:

16

(19)

The weights must be updated over all the patterns, and iterated until E/ ~ 0 for all the units,

i and all the patterns, I. This algorithm can also be used in the CMAC and SDM memories

described in chapters 3 and 4. Experimental validation of the ability of the iterative algorithm

to realise the full capacity of 2N has not been performed here, but an equivalent experiment

was performed using the SDM. That experiment is described in section 3.4 of the next

chapter.

2.4 Alternative views of the Hopfield network

An alternative way of viewing the Hopfield

network is as a two-layer network rather than

a fully interconnected group of units. The

Hopfield network is described here as a two­

layer network because in this format it has a

similar architecture and uses similar

Input
units,

layer 0

Weights

Output
terminology to the SDM and CMAC units,

layer 1
networks described in the next chapters. The

two layers in the Hopfield network consist of

a layer of input units (layer 0) and a layer of
Feedback
connections

output units (layer 1), with the outputs Figure 2.5 T~~p~O~:~m network can be

connected to the inputs (as shown in viewed as a two-layered network.

Figure 2.5).

When the network is in input mode the state of input units is determined by the inputs:

(20)

17

where OJ[kJ(t) is the output of unit i in layer k at time step t. The input layer is layer k=O.

When the network is in settling mode the state of the input units is determined by the state

of the output units:

(21)

When the network is in settling mode a randomly chosen output unit is updated in each time

step according to the following:

{
1 if h,~ll(t»T

O.[ll(t)=
I -1 if hlll(t)~T

The local field, hPj, of output unit i is:

N

hr1(t+1)='L O.r(t)Wij
j=l

where Wjj is the weight from unit j on layer 0 to unit i on layer 1.

(22)

(23)

When viewing the Hopfield network as a two-layer network, the connections with weights are

in one direction only; from the input units to the output units. However, the weights of the

connections can be assigned in exactly the same way as they are in the original Hopfield

memory, (7).

The reason for presenting the Hopfield network in this way is because then the terminology

and the architecture are similar to that of the SDM and CMAC networks described in the

following chapters. The SDM and CMAC have units arranged in layers like those in the

alternative view of the Hopfield network given above. The major difference is that the CMAC

and SDM have an extra layer of units between the input layer and the output layer, and they

have no feedback connections.

2.4.1 The Hopfield network as an associative memory

18

Up to this point the Hopfield network has been described as a content addressable memory;

however it can be configured as an associative memory. An associative memory associates

input patterns, Xl, with output patterns, yl. The Hopfield network can be configured as an

associative memory by removing the feedback connections from the output to the input in the

two-layer model of the Hopfield network (described above). Some of the equations which

describe how the network operates also change.

The state of the input units is always determined by the input patterns:

(24)

The state of the output units IS gIven by the same equations as before, (22) and (23).

However, all the output units are updated in a single time step rather than just one randomly

chosen unit in each time step.

The weights can be assigned in a similar way to those in the original Hopfield network, (7):

N
[1] ~ I I

Wij = L.,; Xj Yj

1=1

(25)

where Yi l is the ith element of output pattern yl. Note that the stipulation that diagonal

elements be 0 has been removed and the weights are no longer symmetrical.

Gardner's algorithm, which was described in the previous section, can be applied to the

Hopfield memory when it is configured as an associative memory. The errors are defined as:

(26)

and the weights are updated using the following:

(27)

19

The Hopfield network as an associative memory earl be used to store sequences of patterns,

pI, p2, p3, ... To do this each pattern in the sequence is associated with the next pattern in the

sequence, i.e the Hopfield network associates Xl=pl with yl=pl+l. This is explained further in

chapter 5.

2.5 Summary

The Hopfield network was originally described (Hopfield, 1982) as a content addressable.

memory consisting of N fully connected units. This memory is guaranteed to settle into a

stable state when the weights are assigned using Hopfield's algorithm (7).

The number of patterns that can be successfully stored in the content addressable Hopfield

network is approximately 0.15N when using the original algorithm for assigning weights, (7).

Gardner (1988) has demonstrated that using an iterative algorithm for assigning weights the

number of patterns that can be successfully stored is 2N.

The Hopfield network can be viewed as a two-layer network with connections between the

two layers, and feedback connections from the output to the input. Without the feedback

connections the Hopfield network becomes an associative memory.

20

CHAPTER 3

Sparse Distributed Memory (SDM)

3.1 Introduction

The sparse distributed memory (SDM) is an associative memory which was proposed by

Pentti Kanerva (1988)1. The SDM is very similar to the CMAC described in the following

chapter. This chapter introduces the SDM in section 3.2, which shows how the SDM can

associate binary patterns. Section 3.5 explains how patterns of real valued numbers can be

associated. An example of a small memory is given in section 3.2.2.

Section 3.3 compares the actual performance of the SDM for storing associations against the

theoretical performance outlined by Kanerva (1988) and finds a discrepancy. A corrected

theory is proposed which fits the actual performance better. An alternative method of reading

from the SDM is also proposed which improves the performance. The results outlined in

section 3.3 have been published in Ryan & Andreae (1995).

Section 3.4 outlines how Gardner's analysis of the capacity of the Hopfield network can be

applied to the SDM. Using an iterative method of storing data the capacity is found to be

twice the number of location units. This is confirmed experimentally. Section 3.6 lists the

major differences between the SDM and Hopfield memory.

Chapter 5 describes how the SDM can be used to store sequences.

3.2 The Sparse Distributed Memory (SDM)

The SOM is an associative memory. When an input pattern, I, is presented to the memory,

it produces an output pattern, 0, as described below. The input pattern consists of N elements

and the output pattern consists of M elements. The elements of the input and output patterns

can be binary or real. Only binary elements (II' OJ = ±1, i=l..N, j=l..M) will be considered

21

in this section. Section 3.5 explains how real valued elements are handled.

As an associative memory the SDM is able to associate input patterns, Xl, with output patterns

yl. If the associations are stored correctly then, when the input is I=X/, the output will be

O=yl. This is analogous to a computer memory, which is able to store data (groups of

numbers) at addresses. Given a particular address the computer memory produces the stored

data. The input pattern of the SDM is analogous to the address of the computer memory and

the output patterns are analogous to the data.

One significant difference between the SDM and a conventional computer memory is that the

SDM has a built-in ability to generalize. This means that when an association, (Xl, yl), is

stored then for inputs which are similar enough to Xl (i.e. inputs in which not more than a

small percentage of the elements are different) the SDM will produce outputs which are the

same as yl. This ability to generalize would be very undesirable in a conventional computer

memory, but there are a number of applications where this ability would be useful.

For example if an SDM is used to recognise spoken words then the input patterns for a

particular word said by two different people will not be exactly the same, but they should be

similar. The SDM's ability to generalize means that it should be able to recognise these two

words as the same without having been trained with their exact inputs. An example of the

SDM being used to recognise speech is given in Chapter 5 (section 5.4.1).

The SDM can also be configured as a content addressable memory (CAM). CAMs are

described in the previous chapter in section 2.1.1. To configure the SDM as a CAM the

number of elements in the input and output patterns should be the same, and the outputs

should be connected to the inputs. Storing a pattern, pi, on the SDM when it is configured as

a CAM involves storing association (Xl, y/) with Xl=y/=pl. The SDM as a CAM is a special

case of the SDM as an associative memory and so the rest of this chapter will consider the

SDM as an associative memory only.

3.2.1 The structm'e of the SDM

22

The SDM consists of three layers of units

(see Figure 3.1):

InpUt patIem

•

•

•

a layer of N input units, one

for each element of the input

pattern, layer 0,

a layer of s location units

(which Kanerva termed hard

locations), layer 1, and

a layer of M output units, one

for each element of the output

pattern, layer 2.

Input
Units,
layer 0

Location
Uni1s,
layer 1

Output
Units,

layer 2

o!i1

output pa11em

Figure 3.1 A diagram of Kanerva's sparse
There are two sets of connections m the distributed memory (SDM).

SDM:

• one set from the input units to the location units, which have fixed weights,

and

• one set from the location units to the output units, which have weights which

change according to the associations stored in the memory.

The input units each receive one element from the input pattern, and they output the same

value:

(28)

where O/kl(t) is the output of unit i on layer k at time 1. The input units are layer k=O.

The fixed weights of the connections from the input units to the location units, are chosen

when the SDM is set up. The weights have a value of either -lor 1 and are chosen randomly

at set-up. Each location unit has N weighted connections going to it (one from each input

unit), the values of which form a point in N-bit input space. These N binary values of the

fixed weights of the connections going to a location unit are also referred to as the address

of the location unit.

23

The location units in the SDM are analogous to the physical locations in a conventional

computer memory and the input and output patterns are analogous to an address and data

respectively. A conventional computer memory has a physical location, where the data is

stored, for every possible address, i.e. there are 2N addresses and so 2N locations. An SDM

however, has only s location units, s<2N, and the addresses of these (the fixed weights) are

chosen randomly from the set of possible addresses.

In the example given in section 3.2.2 the SDM has N=4 inputs and so there are 24 = 16

possible input patterns. There are 8 location units and so the fixed weights of the connections

going to the location units represent 8 of these possible patterns. For example the fixed

weights of the connections going to location unit 1 (an arbitrary label) are: {-I 1 -II}.

In a conventional memory each address (or input) points to a unique location. This is not

possible in the SDM because there is not a unique location unit for every possible input.

Therefore in the SDM each input effectively points to the set of location units having

addresses "close" to the input.

In the SDM an input pattern is "close" to an address of a location unit if the Hamming

distance between the two patterns is less than or equal to a number, r, where r is a parameter

of the memory, termed the access radius. The Hamming distance between two patterns is the

number of elements which are different. For example the Hamming distance between the

patterns {-III I} and {-I 1 -II} is one because there is one element which is different

(the third element).

The output of the location units indicates which location units have addresses which are close

to the current input. Location units have two possible outputs: 1 (active, address is close to

the input) and 0 (not active). The output of a location unit is called its activation. The

Hamming distance between two patterns can be calculated by finding half the difference

between the number of elements and the sum of the product of the elements of the two

patterns. Thus the activation of location unit i at time (HI) is:

24

(29)

where Or1(t) is the signal from input unit j (layer 0) at time t and wtl is the weight of the

connection from input unit j to location unit i; Or, wpl=±l.

Therefore, rather than pointing to one location, like a computer memory, an input to the SDM

points to a set of location units which have addresses close to the input. The location units

which have addresses close to the current input, have an activation of one (the others have

an activation of zero). In a computer memory data is stored and retrieved from the single

location pointed to by the address. In the SDM the data is stored in, and retrieved from, the

weights of the connections from the active location units to the outputs. The weights have

signed integer values.

Data is retrieved from the variable weights by the output units. An output unit will output one

if the sum of the connection weights from the active location units is positive, otherwise it

will output negative one. The output of unit i in the output layer at time tis:

if hl21(t»T

if h?l(t):::.T
(30)

where the local field, hFl(t), is the sum of the weights of the connections from the active units

at time t:

hl2
](t+ 1) =1: wb2

]OP1(t)
j

(31)

where wl /
c] is the weight of the connection from location unit j to output unit i, and O?](t)

is the activation (lor 0) of the location unit j at time t as given by (29).

25

When an SDM is set up all the variable weights are set to zero. Data is stored in the SDM

by adjusting the variable weights of the connections from the active location units to the

output units. If a one is to be stored at an output unit then the weights from the active

location units to that output are incremented (by one). If a negative one is to be stored then

the weights are decremented (by one). In the example in section 3.2.2 the input pattern X I={_l

1 II} activated location units 1, 3, and 8. The output pattern (data) stored at Xl is yl= {-I

II}. When this pattern is stored the weights of the connections from location units 1, 3 and

8 to output unit 1 (Wll [2], W\3[2 j and W I8 [2]) are decremented and the weights of the connections

to output units 2 and 3 (W
21

[2], W 23[21, W 28 [21, W 31 [21, W
33

[2] and W38[21) are incremented.

An (input pattern, output pattern) pair or (address, data) pair is referred to as an association.

Using the algorithm described above to store an association, (Xl, yl), the weight of the

connection to each output unit will change by

(32)

where ot]l is the activation of location unit j when the input is Xl, and y/ is the ith element

of output pattern yl.

If there are Np associations to be stored in an SDM, {(X\ yl) ... (XNP, yNp)}, then the weights

will be given by summing (32) over Np:

(33)

The expression, (33), giving the weights between the location units and the output units is

very similar to (25) that gives the weights for the Hopfield network as an associative memory.

The only difference is that rather than summing the products of the input and the output

elements, the SDM sums the products of the activations of the location units, OF JI, and the

output elements, y,t. Section 3.6 compares the SDM and the Hopfield network.

The name "sparse distributed memory" was given by Kanerva. Kanerva compared the SDM

26

to a computer memory which has a physical location for every address and for which data

stored at an address is stored in only one location. The sparse distributed memory is termed

"sparse" because the number of location units (or addresses), s, is very small (sparse)

compared to the number of possible location units, 2N. The memory is termed "distributed"

because the storage of any association is distributed over the weights from the set of active

location units.

The following section outlines a simple example of an SDM.

3.2.2 A simple example of the SDM.

This example shows how associations are stored. For each input this involves calculating

which location units will become active, and adjusting the weights from the active location

units to the output units. This example also shows how associations are recalled and how the

SDM has the ability to generalize.

The example is presented in four tables which show:

• the fixed weights giving the location units' addresses and the Hamming

distance between the location units' addresses and the inputs used (Table 1);

• the location units activated by each of the five inputs used (Table 2);

• the value of the variable weights after the associations have been stored

(Table 3), and

• the output of the memory over a range of inputs (Table 4).

For this example a very small network is used with just N=4 binary inputs M=3 binary

outputs and s=8 location units. The memory is to associate the input-output patterns:

(Xl, yl) ({-1 1 1 1}, {-1 1 1})

(X2, y2) ({ -1 1 -1 -1}, {-1 -1 -1})

As well as the input patterns above, three other input patterns will be used to test the memory,

27

X3 = {-III -I}, X4 = {III I}, and X5 = {-I -I -I -I}.

The randomly chosen fixed weights of the connections from the input units to the location

units are shown in Table 1 along with the Hamming distance between the input patterns used,

XI .. XS, and the addresses of each location unit. For example the Hamming distance between

the weights of the connections going to the first location unit, { -1 1 -II} and Xl, {-III

I}, is one. There is one element that is different between these patterns, w 13[1] =1= X1
3. These

Hamming distances are used to determine the active location units for each input.

Table 1 The fixed weights and the Hamming distances between the input patterns and the
location unit addresses.

Location Fixed weights Hamming distance between location unit address and
unit (location unit the 5 inputs
number addresses)

J 1 2 3 4 Xl X 2 X 3 X 4 X 5

- 1 1 1 1 -11-1-1 -1 1 1 -1 1 1 1 1 -1-1-1-1

1 -1 1 -1 1 1 1 2 2 2

2 1 1 -1 -1 3 1 2 2 2

3 -1 1 1 1 0 2 1 1 3

4 -1 -1 -1 1 2 2 3 3 1

5 -1 -1 1 -1 2 2 1 3 1

6 1 1 1 -1 2 2 1 1 3

7 -1 -1 -1 -1 3 1 2 4 0

8 -1 1 1 -1 1 1 0 2 2

With an access radius of r= 1, location units whose addresses are less than or equal to a

Hamming distance of 1 away from the input pattern will have an activation of 1. Table 2

shows the I~cation units activated by the input patterns, XI .. X5. For example Xl activates

location units 1, 3 and 8. Table 1 shows that the Hamming distance between Xl and the

addresses of those location units is less than 2. The other five units (2, 4, 5, 6, 7) will have

an activation of O.

28

One point to note about the sets of active

location units in Table 2 is that inputs which

are close to each other (in terms of

Hamming distance) have overlapping sets of

active location units. For example inputs Xl

and X4 are close (there is a Hamming

distance of 1 between them) and they both

activate location unit 3. However X5 is not

very close to Xl (a Hamming distance of 3

away) and none of its active location units

are the same as those for Xl.

Table 2 The location units activated by each
input.

Input pattern Location units
activated

Xl 138

X2 1 278

X3 3 568

X4 3 6

X5 457

Table 3 shows the value of the weights from the location units to the output units after the

associations have been stored, using (33). For example, the weight from location unit 1 to

output 1, W Il [2] = -l. This value is calculated as follows: when the input is Xl, the activation

of location unit 1 is 0/1
] = 1, and 01[2]=0 when the input is X2. The outputs are Y\ = -1 and

Y\ = l. (33) becomes:

[2LO[1]lyl 0[1]2y2
Wll - 1 1 + 1 1

=(1),(-1)+(0),(1)
=-1

(34)

Finally, Table 4 shows the local fields and

the outputs of the SDM for each of the five

inputs. The local fields are calculated using

(3). For example:

N=8

h [2]1_ ~ 0[1]1 [2]
1 - L4 j Wlj

j=!

(35)

=(1),(-1)+(0)(-1)+(1),(-1)+(0),(0)
+(0).(0) +(0).(0) +(0),(-1) +(1).(-2)

=-4

Table 3 The variable weights

Location Variable weights, wp1

unit no. Output unit number, i

J

1 2 3

1 -1 1 1

2 -1 -1 -1

3 -1 1 1

4 0 0 0

5 0 0 0

6 0 0 0

7 -1 -1 -1

8 -2 0 0

29

Table 4 shows that the stored patterns are stored correctly i.e. the memory is successfully

associating yl with Xl and y2 with X2. The other input patterns were used to demonstrate the

ability of the memory to generalize. X
4 is closer to Xl than X

2 and its output is the same as

that of Xl. X
5 is closer to X2 and its output is the same as X2

. X
3 is similar to both Xl and

X
2

, its output being that which was associated with X2.

Table 4 The response of the SDM to each input. The output is shown for each of the five
inputs. Also shown are the local fields at the 3 output units, which are used to calculate the
outputs.

Input Local fields Output

Xl h [2]1
I

h [2]1
2

h [2]1
3

0[2]1

Xl -4 2 2 -1 1 1

X2 -9 -1 -1 -1 -1 -1

X3 -8 0 0 -1 -1 -1

X4 -7 1 1 -1 1 1

X5 -6 0 0 -1 -1 -1

J.J The performance of the SDM

Kanerva (1988) defined the term fidelity as a measure of performance of the SDM. Fidelity

is the probability that, when an association, (X, Y) is stored in memory, the output pattern,

y, can be recalled when the input is I. The closer the input I is to X, the higher the fidelity.

The maximum fidelity occurs when the input I is the same as the input pattern, X, of the

association. Kanerva derived an expression for the fidelity of the SDM as a function of:

.. the number of associations stored, Np,

.. the number of inputs, N,

.. the number of location units, s, and

.. the access radius, r.

A major part of Kanerva's derivation for the expression for fidelity involves deriving an

30

expression for the probability that an element of an output pattern of a stored association is

stored incorrectly. This expression gives the theoretical error rates for the stored output

elements as a function of the number of patterns stored. As is outlined below, these error rates

are easy to verify experimentally. The results of my experiments revealed that there was a

significant difference between the experimental and theoretical error rates (Ryan & Andreae,

1995). An analysis of Kanerva's derivation leads to a new expression for the error rate which

closely matches the experimental results. Section 3.3.1 describes an alternative method of

reading from memory which improves the error rates.

Kanerva's expreSSIOn for the probability of an element in an output pattern m a stored

association being stored incorrectly is:

s
P Error = <J> --;:==========

(36)

where <I> is the standard normal cumulative distribution function, p is the probability that a

location unit will be active for a given input (a function of r and N), Np is the number of

associations stored in the SDM and hp is4
:

(37)

An experiment was performed to confirm the validity of (36). The experiment was designed

to obtain error rates for output elements in stored associations (described below) so that the

actual error rates could be compared to those predicted by (36). In the experiment a SDM was

simulated on a computer. The SDM had N=48 inputs, s=500 location units, M=8 outputs and

4see Appendix A.2 for a description of the meaning of hp'

31

an access radius of r= 17. The experiment consisted of 100 trials. For each trial 500 random5

associations (pairs of randomly selected inputs and outputs6
) were stored using (33). The

associations were stored in groups of 50 and after each group of 50 all the stored associations

were checked. The percentage of elements in the output patterns which were not recalled

correctly was calculated and averaged over 100 trials. The fixed weights and the associations

were randomized for each trial.

30

25

----~ 0 20
........
Q)
ro 15
I...

I...
0
I... 10 I...

W

5

0
0 50 100 150 200 250 300 350 400 450 500

Number of associations stored (Np)

-- Experimental result -+- Kanerva's original theory -a- Corrected theory

Figure 3.2 There is a discrepancy between the error rate predicted by Kanerva's theory and
the experimental results. A corrected theory is closer to the experimental results.

The experimental results and those predicted by (36) are shown in Figure 3.2. This graph

shows there is a significant difference between the theoretical and actual results with the

actual results giving a higher error rate. Inspection of the derivation of (36) shows that the

variance of the output data was not taken into account (it was assumed to be 0). When this

5the random number generator used to generate the random associations and weights is
a standard random number generator known as the additive congruential generator
[Rubinstein, 1981; Knuth, 1969].

6 A check was made when the associations were created that none of the inputs were the
same. This check was done because in the unlikely even that two or more inputs were the
same the set of associations would be impossible to store under any circumstances.

32

is taken into account the probability of an error becomes7
:

s
p Error =<1> ---;::=============

(38)

Figure 3.2 also shows the error rate predicted by (38). This prediction IS close to the

experimental results8
•

3.3.1 An alternative method of reading from the SDM

A significant improvement can be made to the SDM by changing the way the output units

produce their values. For this alternative method the local field is the average of the weights

(rather than the sum of the weights as in (31» from the active location units:

(39)

Whereas in the original SDM the output units have a threshold of T=O (see equation (30»,

for this method each output unit has its own threshold equal to the average weight of the

connections from all of the location units to that unit. Thus the output is given by:

7see Appendix A.2 for a derivation

S A explanation for the small difference between the corrected theory and the experimental
results is given in the appendix 3.3 with the derivation of the corrected theory.

33

O.[21(t) ={ 1
I -1

if hf1(t» Ti

if hi[2
1(t)s.T

i
,

(40)

where the threshold, Ti , for output i is the average of the weights from all s of the location

units to output i:

(41)

This means that the output units are now comparing the average weight from the active

location units to the average weight from all the location units. Previously the output units

were comparing the sum of the weights from the active units to zero, (30). Using this new

method of reading from memory the probability of an error is9
:

s
p Error =4> -;:::===============

(42)

This expression is very close to that derived by Kanerva, (36) because the terms p and p2 are

small compared to 1. p is the probability that a location unit will be active. For the SDM used

in these experiments approximately a tenth of the location units would be active for any input,

i.e. p~O.l. For the memory Kanerva (1988) often used for an example only a thousandth of

the location units would be activated, p~O.OO1. Another experiment was performed, this time

to confirm (42). The experiment was the same as above (in section 3.3) but used the

alternative method of reading from the SDM. The results of this experiment are shown in

Figure 3.3.

Figure 3.3 also shows that the alternative method of reading from the SDM (equation (40»

9 see Appendix A.3 for a derivation

34

.........
'#-........,
Q)
~
L-
0
L-
L-

LU

30

25

20

15

10

5

0
0 50 100 1~ 200 2~ 300 3~ 400

Number of associations stored
4~ 500

-e- Experimental results -+- Predicted results -+- Original 80M

Figure 3.3 Experimental results using the alternative method of reading are close to the
theoretical results, (42). The error rate is significantly better than that for original SDM.

is significantly better (the error rate is lower) than the original, (equation (30». In these

experiments the patterns were chosen so that on average there was the same number of l's

and -1 's in the patterns. A further experiment was performed to demonstrate the superiority

of the alternative method of reading from SDM. In this experiment the patterns were chosen

so that 75% of the elements of the output patterns were 1 IS. The experiment was performed

using both the alternative method of reading and the original method. The results are shown

in Figure 3.4.

Figure 3.4 shows that the original method of reading from memory does not work well at all

when the probability of a 1 in the output patterns varies from 0.5. The reason for this is that

when there are different numbers of l's and -l's the average weight (from the location units

to the output units) becomes non-zero. The average weight is a measure of the noise from the

other stored patterns. In this case the average weight will be positive and so as more

associations are stored, more outputs which were originally stored as -1 will be read

incorrectly (using the original method of reading from memory) as 1. Eventually (as more

associations are stored) the average weight will become so positive that every bit will be read

as a 1. The alternative method of reading from memory, presented here, is not significantly

affected by having data with a non-zero mean. This is because, although the average weight

35

30

....-..
"(f:.
'-'" 20
<J.)
co
....
0 10
w

a 50

10.75 Probability of a 1 in the output pattern~

100 150 200 250 300 350

Number of associations stored

-a- 80M using alternative method of reading

..... Original 80M

400 450 500

Figure 3.4 When there are unequal numbers of 1 s and -1 s, the alternative method of reading
from the SDM is much better than the original method.

is still positive, the weights are less positive from location units where a -1 has been stored.

The experimental and theoretical work outlined above shows that, when (33) is used to assign

the variable weights, the number of associations the SDM can store before the error rates start

to become significant is approximately one tenth of the number of location unit~. O.ls. The

capacity of the SDM when (33) is used has also been analyzed by Chou (1989) and Keeler

(1988). The capacity can be increased if an iterative algorithm is used to assign the weights.

This is outlined in the following section.

3.4 Assigning the variable weights iteratively

The SDM, like the Hopfield network, can store a lot more associations if the associations are

stored by assigning the weights using an iterative training algorithm rather than using (33).

In (33), for each association, the weights from the active location units to each output unit are

either incremented or decremented by a fixed amount, depending on whether the output is to

be a 1 or -1. Prager & Fallside (1989) suggested an iterative algorithm which differs from

36

(33) in three major ways:

• The set of associations to be stored is presented to the SDM repeatedly until

all of the associations are stored correctly.

• When an association (Xl, yl) is presented to the SDM only the weights to the

output units which are in the wrong state are adjusted. An output unit (unit i)

is in the wrong state if the output using (30), 0i[2l1 is not the same as the

desired output, V/. i.e. the weights from the active location units to output unit

i are adj usted if:

(43)

• The weights which are adjusted when (43) is true, are not adjusted by a fixed

amount, but are adjusted by just enough to change the polarity of the output.

The polarity of the output depends on the sign of the local field, hpll (31). The

sign of the local field can be changed by adjusting each of the weights from

h.[211

the active location units by -p-' - where NI
A is the number of active location

Nl

units when the input is Xl,

s

Nl=I:0pll (44)
j~l

and ~ is a constant greater than one. Then when the association (Xl, yI) is

being presented, the weight from location unit j to output unit i changes by

(45)

37

This is very similar to the iterative training algorithm for the Hopfield network, (19), which

was proposed by Gardner (1988). In fact, as shown below, Gardner's analysis of the capacity

of the Hopfield network and the iterative algorithm can be applied to the SDM. For the

original SDM10 an association (Xl, yl) is stored correctly if for all of the output units, the

local field, h;[2J1 has the same sign has the desired output, yli:

(46)

for all i=l..M (M is the number of output units). The stronger condition that Gardner (1988)

used for storing associations in the Hopfield memory (see chapter 2) can also be used for the

SDM. Namely, a pattern is stored correctly if:

s
1 I ~ (Wi/[.21l\2 Yjh j >K L...J)

(47)

j=l

for all i= l..M, where K is a non-negative constant. Like the Hopfield memory larger values

of K should imply larger basins of attraction (see page 15 for a description of basins of

attraction).

Storing a set of Np associations In the SDM is equivalent to finding solutions to the

inequalities, (46) (or (47) if larger basins of attraction are desired). For each output unit there

are Np inequalities in s variables (the weights from the s location units) to solve. The number

of variables, s, restricts the number of inequalities for which solutions will exist and hence

restricts the number of associations which can be stored. Gardner demonstrated that, when the

patterns are uncorrelated and K=O, the maximum number of inequalities for which a solution

exists (i.e. the number of associations that can be stored) is twice the number of variables in

the inequalities. For the Hopfield network there are N variable weights to each output unit and

so the capacity (the number of associations which can be stored) is 2N. For the SDM there

are s variable weights (one from each of the s location units) to each output unit and so the

IUThe method of reading has little effect when an iterative method is used to store the
weights, so the Kanerva's original method of reading (which is simpler) is used here. The
experiments detailed on page 39 were performed using both methods of reading and there was
no significant difference in the results.

38

capacity is 2s.

Furthermore, the iterative algorithm Gardner used, (18) and (19), that converges to a solution

of the inequalities, (14), for the Hopfield network can also be used in the SDM to converge

to a solution to the inequalities in (47). This algorithm defines errors at every output unit for

each pattern and gives an expression to adjust the weights iteratively to reduce these errors.

For the SDM, the error at output unit i for input pattern Xl is:

(48)

The algorithm attempts to make all these errors non-positive. The change for weight wij when

(Xl, yl) is presented is:

(49)

o if E/S:O

where a is a positive constant, termed the learning rate. Gardner's algorithm is applied by

iteratively changing the weights using (49) until all the errors are non-positive. The iterative

algorithm proposed by Prager and Fallside, (45), is the same as Gardner's, (49), when a=p

and K=O.

An experiment was performed to see if the capacity, 2s, predicted by applying Gardner's

theory is correct. In this experiment a memory was used that had N=48 inputs, and M= 1

output. Five tests were performed with 100, 200, 300,400 & 500 location units respectively.

In these tests random associations were stored using Gardner's iterative algorithm, (49). For

each test the number of associations stored, Np was increased until no more associations could

be stored. Each test was repeated 50 times and the number of associations that could be stored

was recorded and averaged. For each test the fixed weights and associations were randomized.

39

The results are shown in Figure 3.5. As can be seen the experimental results give a capacity

of almost exactly 2s, confirming Gardner's theory.

3.5 Associating real valued inputs

and outputs

Section 3.2 described how binary inputs and

outputs can be associated in the SDM. The

SDM can use real inputs and outputs, as is

described below in sections 3.5.1, and 3.5.2

respectively.

3.5.1 Real valued inputs

-0
~
0 1000 1ii
I/)
c: 800 0

~
'0

600 0

~ co 400 0
0
c:
Q) 200
Q)
C)

!!! 0

~ 0 100 200 300 400 500
No of location units

Figure 3.5 Results of an experiment, showing
the number of associations that can be stored
in an SDM as a function of the number of

If the elements in the input patterns are real location units

then the fixed weights of the connections

going to the location units will also be real. The addresses of the location units represent

random points in the continuous input space. For example, in Figure 3.6 the input space of

a two-input SDM is represented by a plane. Each dot on the plane in Figure 3.6 represents

the address of one location unit.

A location unit becomes active if its address is "close" to the input pattern. For binary input

patterns, the Hamming distance metric was used to measure distance. For real inputs, a

number of metrics can be used to measure distance. Two metrics are described here:

.. one creates an N- dimensional sphere of active location units around the input

point, and

.. the other creates an N-dimensional cube of active location units.

An N-dimensional sphere is created if the Euclidean distance is calculated between the input

points and the location unit addresses, and then only those units that are less than r away from

the input point become active:

40

(50)

where O/O](t) the state of input unit j at time

t (a real number, given by (28», wtl is the

fixed weight of the connection from input

unit j to location unit i, and r is the access

radius. Note that in (50) the fixed weights

are not used in the standard way. Normally

connection weights scale the strength of the

signal through the connection. This method

creates an N-dimensional sphere of active

location units. The sphere is centred around

the input point and has a radius, r. This is

shown graphically in Figure 3.6, where a

• •• • ..
• • •• '" .. , .. .'" 0.8 ..

•
'" • .-

N 0.6 .. • • '" ::J

'" 0- .. '" c .. • .. - 0.4 .. •
0.2 • •• .. • • .. • • • ••• • ••

0 ..
o 0.2 0.4 0.6 0.8

Input 1

Figure 3.6 A graphical representation of the
fixed weights and active location units of an
SDM with two real inputs.

circle is shown centred around an input point, (0.5, 0.5) with a radius of r=0.2. The points

within the circle represent the set of active location units when the input is (0.5, 0.5). Also

shown in Figure 3.6 is a square. This square represents the set of active location unit if the

activation is given by the second method:

(51)

The expreSSIOn 10 (51) reqUires significantly less computation than (50) and so is more

desirable. The extra location units activated by this method will have a negligible effect on

the performance of the memory.

(50) and (51) show how real inputs can be used to obtain a set of active location units. The

41

SDM then operates in exactly the same way as it does when there are binary inputs. The

output is given by (30), if the outputs are binary, or (52) if the outputs are real. Similarly the

weights are given by (33) or (49) if the outputs are binary and (54) if they are real.

3.5.2 Real valued outputs

Real valued outputs can be obtained by the output units averaging the weights from the active

location units, i.e. the output of unit i is:

h [2](t)
O.[2](t) __ i __

I s

EOP]
j=l

(52)

where hPl(t) is given by (31). A different method of determining the values of the variable

weights is required if real valued outputs are to be stored. One way of determining the

weights is through an iterative algorithm which works by defining an error for every training

pattern at every output, E/:

£,' = y.' _O~2]'
I I I

(53)

where Y/ is the desired output and Oil2ll is the actual output when the input is Xl. This error

is corrected if it is too large by adjusting the weights:

(54)

where ~i is an acceptable error for output i and a is a learning rate.

When real outputs are stored, the number of associations that can be stored in the SDM is less

than when binary outputs are stored, as will now be shown. Each association, (Xl, Y\ to be

42

stored puts the following restraint on the weights:

(55)

For small ~i this is approximately equivalent to:

O.[2]I=y.l
I I

(56)

If (56) is true then the association will be stored correctly. When there are Np associations to

be stored there are Np linear equations, (56), in s variable weights which must be true for each

output unit. Standard linear algebra shows that the maximum number of independent equations

in s variables for which a solution exists is s, so the maximum number of associations that

can be stored in the SDM when the outputs are real is equal to the number of location units,

s. This is half the number of binary associations that can be stored.

3.6 A comparison between the SDM and Hopfield memory.

The mam difference between the SDM and the Hopfield memory is in the number of

associations that can be stored. The SDM can store many more associations than the Hopfield

memory. The number of associations that can be stored by the Hopfield memory is restricted

by the number of inputs, N, whereas for the SDM it is restrained by the rather arbitrary

number of location units, s (s <2N for binary inputs).

The SDM achieves this greater capacity by performing a random mapping from the N inputs

to the s location units. This mapping increases the number of variable weights to each

location unit from N (for the Hopfield memory) to s (for the SDM).

Another significant difference between the two memories is that there is no guarantee that the

SDM will converge to a stable pattern when it is configured as a content addressable memory.

The Hopfield memory does have this guarantee if Hopfield's original method of assigning

weights is used, (7).

43

3.7 Summary

The sparse distributed memory is an associative memory consisting of three layers of units:

input units, location units and output units. There are two sets of connections, a set of

connections with fixed, random weights from the input units to the location units, and a set

of connections with variable weights from the location units to the output units. The memory

can be configured with either binary or real inputs and outputs.

Computer-based experiments were performed to verify the theoretical performance of the

SDM. These experiments showed that there was a significant difference between the

theoretical and actual error rates. This difference occurs because there was an incorrect

assumption that the data has a variance of zero. A corrected theory is proposed which

accurately predicts the experimental error rates.

An improved method of reading from the SDM was proposed which reduces the effect of the

non-zero variance of the data. This method performs just as well when the mean of the data

is not zero, unlike the original method which deteriorates quickly.

Gardner's analysis of the capacity of the Hopfield memory applies equally well to the SDM.

The iterative algorithm proposed by Gardner can also be adapted to the SDM, predicting that

the maximum number of associations that can be stored will be 2s. This was verified

experimentally.

The maximum number of associations that can be stored in the SDM is 2s which is much

greater than the 2N associations that can be stored in the Hopfield network. This is because

the number of location units can be much greater than the number of inputs. The capacity is

only restrained by s<2N for binary inputs. For real inputs there are no theoretical restraints on

the number of location units (and hence the capacity).

44

CHAPTER 4

CMAC

4.1 Introduction

Proposed by Albus (1975a & 1975b), the cerebellar model articulation controller (CMAC) is

an associative memory whose structure is based on that of the cerebellum in the human brain.

This chapter describes the CMAC which is used in an experiment described in chapter 7. The

format of this chapter is as follows:

• section 4.2 describes how the CMAC associates input and output patterns

consisting of sets of real numbers, (an example is given in section 4.2.1),

• section 4.3 describes how binary patterns can be stored in the CMAC, and

• the CMAC is compared to the SDM in section 4.4.

4.2 The cerebellar model articulation controller (CMAC)

Albus (1975a) proposed the CMAC, outlined below, as a realistic method for controlling robot

manipulators. Put simply, controlling a manipulator involves finding what each actuator

should do at every peint in time and under every set of circumstances. The signal to anyone

actuator is a function of time and a number of other variables, such as the state of other joints

and sensory feedback data. Calculating the signals to carry out manipulator tasks routinely

performed by biological organisms would require an enormous amount of computation (Albus

gave the example of squirrels leaping from tree to tree).

As an alternative to explicitly calculating the complex functions Albus proposed using a form

of look-up table, where the input variables used in the function point to a location in the

look-up table, which contains the outputs. These outputs would be connected to actuator

control circuits if the look-up table was being used to control manipulators. The structure of

the look-up table was modeled on the way the cerebellum stores data, which Albus believed

to be intimately involved in the motor control proce~s. The resulting CMAC network is able

45

to store complex functions with many input and output variables. It is also able to interpolate

between stored points (generalize). The CMAC is described below and an example is outlined

in section 4.2.1.

The input to the CMAC network consists of a set of N numbers which together are called the

input pattern. The set of all possible input patterns is an N-dimensional space called the input

space. An input pattern can also be referred to as a point in input space or, simply, an input

point. The output of the CMAC is a set of M numbers called the output pattern. The CMAC

can have binary outputs (see section 4.4) but for the moment only output patterns with real

valued numbers will be considered.

The CMAC is able to store a set of associations. Each association consists of an input pattern,

X (Xl' X2, ... XN) and a corresponding output pattern, Y (Y 1, Y2, ... YM). If there are Np

associations to be stored then this set of associations is {(X\ yl), ... , (XNp, yNP)}, where (Xl,

yl) is one association.

The CMAC, like the SDM, can be viewed as

an associative memory consisting of three

layers of units:

.. a layer of N input units, one

for each number in the input

pattern, layer 0,

• a layer of s location units,

layer 1, and

a layer of M output units, one

for each number in the output

pattern, layer 2.

Input
Units,
layer 0

Location
Units,
layer 1

Output
Units,
layer 2

Input pattem
I~

Fixed

~)

output pattern

Figure 4.1 A diagram of Albus's cerebellar
There are two sets of connections between model articulation controller (CMAC).

these layers of units:

.. a set of connections from the input units to the location units, the weights of

which are fixed, and

46

• a set of connections from the location units to the output units, the weights of

which change according to the associations stored in memory as described

below.

A diagram of the connections between the units is shown in Figure 4.l. Note that this

structure is exactly the same as that of the SDM described in the previous chapter

(Figure 3.1).

The input units operate in the same was as the input units in the SDM, (28).

There are N connections from the input units to each location unit. The N weights of these

connections specify a point (or address) in the N-dimensional input space for each location

unit. The set of weights of the connections going to a location unit are referred to as the

location (in input space) of that unit. The fixed weights are chosen when the network is set

up. For the CMAC the weights are chosen so that the weights of the connections going to

the location units form a regular grid over the input space (see Figure 4.2). This is the major

difference between the CMAC and the SDM; in the SDM the weights are chosen randomly.

For example, Figure 4.2 shows the input

space for a CMAC with N=2 numbers in the

input pattern. The possible values of each

number in the input pattern varies between 0

and 1. Each dot in Figure 4.2 represents the

weights of the two connections going to a

location unit from the two input units. For

example the dot in the top left-hand corner

represents the weights {O.1, l.O} going to a

location unit. In this case the weights form a

regular lOx I 0 grid over the input space.

Input POII'lt. X 1

Input 2 ,--___ -+ _____ ----,
Input
space~

i

02 L.

0.2

o

0.2 I 0.2

Active I""ellon
units

1 Input 1

Figure 4.2 A schematic of a two input CMAC.
Each dot represents the weights to one location
unit.

An input pattern activates a set of location units which have locations that are "close" to the

input pattern. The location units have two possible outputs: 1 (active) and 0 (not active). A

47

location unit is active if its location (given by the fixed weights) is close to the input pattern,

I. For the CMAC the active location units form an N-dimensional rectangle in input space

around the input point (see Figure 4.2). The activation of the location units is given by the

expression (57):

0.[1](t+ 1)={1 if IOr](t)-wb
1
] I<rj for j=I .. N

I 0 otherwise
(57)

where 0i[k1(t) is the output of the ith unit in layer k on time step t, wJ1l is the fixed weight

of the connection from input unit j to location unit i, i= 1..s. rj is termed the access distance

for the jth number of the input pattern. Note that weights are not used in the normal way in

(57). Normally weights modify the strength of the signal travelling through the connection.

The access distances are analogous to the access radius in the SDM. In the example in

Figure 4.2 the access distances are the same for both inputs, r1=r2=0.2. With a spacing of 0.1

between the location units this means that for each input pattern a block of 4x4= 16 location

units are active, as shown.

In the CMAC an output pattern is generated by reading the variable weights from the active

location units. Each output unit simply sums the weights connected to it from the active

location units to produce an output:

s

Oi[2](t+ 1)=hl2](t+ 1)= E W~2] OP](t)
j=1

(58)

where h/21(t+ 1) is the local field of unit i at step t+ 1 and wPl is the weight of the connection

from location unit j to output unit i.

Associations are stored in the CMAC by adjusting the variable weights from the location units

to the output units. The weights are adjusted using an iterative training algorithm outlined by

Albus (1975b). For this algorithm an error is defined for each association (Xl, yl) at each

output unit:

where yll is the desired output of unit i for association I, and 0/ is the actual output of unit

48

(59)

i (using (58» when the input pattern is I=XI. The weights are then adjusted by ~Wi/ to correct

this error if it is too large:

(60)

where a is a learning rate, and ~i is the size of an acceptable error for output i. The size of

~i will depend on what the output is being used for.

This training method has been criticised for being slow to converge by Parks and Militzer

(1992), who suggest a number of other training algorithms. They conclude that the best

algorithm in terms of convergence and computational requirements is the "maximum error"

training algorithm. For this algorithm the weights to an output unit are only updated, using

(60), if its error is larger than the error of the previous x iterations, where lsxsNp' The

algorithm works best if x=Np. If x=l then this algorithm is the same as that proposed by

Albus.

4.2.1 A simple example of the CMAC

This simple example shows:

" a graphical representation of active location units in the CMAC,

" how sets of neighbouring input points overlap

.. the iterative leaming algorithm converging to store some sample associations,

and

.. a surface plot of the data stored in the CMAC.

In this example the CMAC has only N=2 input units, M= 1 output unit, and s= 1 00 location

49

units. The numbers in the input pattern are in

the range (0, 1). The weights of the

connections going to the location units are

distributed over the input space at regular

intervals of 0.1, as shown in Figure 4.3,

where each dot represents the weights to one

location unit. For example the dot in the top

left hand corner represents the weights {0.1,

1.0} going to one location unit.

Input point. X 1
Input2,-___ -+-_____ --,

1 •

Input point. X2

Input point. X3
, ________________ '!r _=-= __ ::=_ ----j-----,

,
__ -"- __ :__ =- _'=_:.:c:-.. --'----'----'---J

o 1 Input 1

Figure 4.3 The blocks of active location units
for three input points, XI' X2, and X3.

Each access distance is set to 0.2, i.e. rl=r2=0.2. This results in a 4x4 block of active location

units becoming active around the input point. Three blocks of active location units are shown

in Figure 4.3, for the points XI=(0.54, 0.51), X2=(0.77, 0.36) and X3=(0.46,0.34).

Outputs patterns are going to be associated with the input patterns XI and X2• These output

patterns are Y I= (0.4) and Y 2 =(-0.6), respectively. Input pattern X3 is used as a test. The

blocks of active location units for XI and X2 overlap. The weights of the connections going

from the four location units which are activated by both input patterns (XI and X2) will, for

this example, be referred to as W12. The weights from the twelve location units activated by

only Xl (and neither of the other two inputs) will be referred to as WI' and the weights from

the twelve location units activated only by X2 will be referred to as W 2'

Iteration WI W2 WI2 0 1
I 0 2

I EI I EI
2 I1WI I1W2

0 0 0 0 0 0 0.4 0.025

1 0.D25 0 0.025 0.4 0.1 0 -0.7 0 -0.044

2 0.025 -0.044 -0.019 0.225 -0.6 0.175 0 0.011 0

3 0.036 -0.044 -0.008 0.4 -0.556 0 -0.044 0 -0.003

4 0.036 -0.046 -0.011 0.389 -0.6 0.011 0 0.001 0

5 0.037 -0.046 -0.01 0.4 -0.597 0 -0.003 0 0

Table 5 shows the results of the iterative learning algorithm, (60). This table shows 4 iteration

50

using (60). Each iteration shows:

• The values of the three groups of weights, WI' W2 and W 12.

• The value of the output and errors when Xl and X2 are presented, 011, Ell and

0 1
2

, E/ respectively.

• The value of the change in weights as calculated by (60). These values !1WI

and !l W 2 are both added to W 12 and are added to WI and W 2 respectively.

Output

0.4
0.2

o
-0.2
-0.4
-0.6

Input 2

Figure 4.4 A graphical representation of the information stored in the CMAC.

The iterations alternate between using the associations (Xl, yl) and (X2, Y} The first

iteration uses (Xl, yl). Table 5 shows that the CMAC weights converge, for this example, in

just five iterations. Figure 4.4 shows a graphical representation of the information stored in

the CMAC when the learning is complete. The output has a peak of 0.4 at input X I=(0.54,

0.51) and a trough of -0.6 at input X2=(0.77, 0.36). The output for the rest of the input space

depends on how much the active location units overlap with those of Xl and X2. the output

for X3 will be given by the following expression:

3 0 1 =4W1+2W12+2Wz
==4.(0.037) +2.(-0.01)+2.(-0.047)
==0.033

(61)

The CMAC network has a built-in ability to perform local generalization, i.e. inputs which

are close to each other will have similar values. This local generalization occurs because

51

inputs which are close have overlapping sets of active location units. Figure 4.4 graphically

shows this local generalization; inputs which are close to the stored points, Xl and X2
, have

values which are close to those stored at Xl and X2. For example X 3 is closer to Xl than X2

and its output is closer to that stored at Xl than that stored at X2
.

4.3 Storing binary patterns

The CMAC is not suited to handling binary inputs, but it can handle binary outputs by

comparing the sum of the weights from the active units to a threshold:

{
I if h.>T

OJ = 0 if h:~T,
(62)

where T is the threshold and hi is given by (58). Equation (62) is exactly the same as the

equation specifying the binary output for the SDM, (30).

When binary outputs are stored an iterative algorithm can be used, such as the one proposed

by Gardner for the Hopfield memory. This algorithm is exactly the same for the CMAC as

it is for the SDM, (49).

4.4 Comparing the CMAC and the SDM

The SDM and CMAC are very similar. They both have three layers of units with a layer of

fixed weights between the input and location units and a layer of variable weights between

the location units and the output units. All the units compute the same functions in the SDM

as they do in the CMAC. The only significant difference between the two is in the way the

fixed weights are chosen. In the SDM the fixed weights are chosen randomly, whereas in the

CMAC the weights are chosen so they are spaced regularly over the input space.

The main effect of this regular spacing rather than random is that the CMAC is easier to

implement on a serial computer that the SDM. The difference arises because it is easier to

find the set of active location units for the CMAC than it is for the SDM. When an input

52

pattern is presented to the SDM it must be compared to the address of every location unit,

using (29), (50) or (51) (depending on the configuration of the SDM). This can be a lengthy

process if there are many location units. The CMAC however can take advantage of the

regular spacing of the location units and use a simple algorithm to calculate which units are

active. This is much faster than comparing the input pattern with the weights going to every

location unit. The ability of the CMAC to run quickly on a serial computer has meant that

it has been able to be used in real time control applications (Miller et al, 1988).

If there are a large number of inputs, then the SDM may be a better choice than the CMAC

because the number of location units activated by the CMAC will be too large. For example

if there are 100 inputs and the memory is configured so that the 100 dimensional rectangle

of active location units is two locations wide for each input, then the number of location units

activated for any input will be 2100. Obviously it is not practical to implement such a memory.

In the SDM however the number of location units could be chosen to reflect the number of

associations which are going to be stored. For example, if there are going to be 50

associations stored then about 500 location units could be used.

The capacity of the CMAC, like the SDM is dependent on the number of location units. for

binary output patterns the capacity will be 2s (for independent patterns with K=O) and for real

output patterns the capacity will be s.

4.5 Summary

The CMAC is an associative memory which has the same structure as the SDM. It has three

layers of units: input units, location units and output units. There are two layers of weights:

fixed weights from the input units to the location units, and variable weights from the location

units to the output units.

The points represented by the fixed weights going to the location units form a regular pattern

over all of the input space. The variable weights are defined by an iterative learning

algorithm. Either binary or real outputs can be stored.

53

The CMAC and SDM are very similar. The only difference is the way the fixed weights are

assigned. The regular pattern of the fixed weights in the CMAC make it easier to implement

on a serial computer.

54

CHAPTER 5

Storing sequences on neural networks

5.1 Introduction

The artificial neural networks in the previous chapters (the Hopfield network, SDM and

CMAC) have been configured as either content addressable memories, which store patterns,

or associative memories, which associate pairs of patterns. In both cases the patterns used are

static, i.e. they do not change over time. For many applications this is adequate, for example,

if the neural network is being used to recognise still images. On the other hand many other

applications use patterns which change with time; for example, in speech recognition the

speech consists of a time varying sound wave. It would be useful if, for these applications,

a neural network could use patterns which vary with time. This chapter shows how the

Hopfield network and SDM can be adapted to operate with time varying patterns.

For the purpose of this chapter a time varying pattern will be represented as a sequence of

patterns

(63)

with a time of 1: between consecutive patterns. Ns is the number of patterns in the sequence.

An associative memory can be configured to store a sequence of patterns by storing

consecutive pairs of patterns as associations. Such a memory would store the following

associations: (pl, p2), (p2,p3), The sequence can then be recalled: with pl the association

(PI, p2) recalls p2, with p2 the association (p2, p3) recalls p3, and so on. This is explained in

more detail in the following section (section 5.2).

When using associative memories to store sequences, a problem arises if a particular pattern

occurs more than once in a sequence because two associations would have this pattern as their

first pattern. A sequence in which a pattern occurs more than once is called a complex

55

sequence. A significant amount of work has been published on how to overcome this problem

and allow Hopfield networks to store complex sequences. This work is summarised in section

5.2.

The number of associations that can be stored in a Hopfield network is limited by the number,

N, of elements in the input pattern. This was discussed in section 2.3. A sequence consisting

of Ns patterns requires Ns-l associations to be stored, and so the size of a sequence that can

be stored in the Hopfield is also limited by the number of elements in the patterns. This

limitation can be overcome by using the SDM. The number of associations that can be stored

in the SDM is not limited by the number of elements. The techniques used for storing

complex sequences in the Hopfield network can also be used to enable the SDM to store

complex sequences. Section 5.3 describes some tests with the SDM using one of these

techniques to store complex sequences.

Section 5.4 describes how the techniques for storing complex sequences can be adapted to

allow the SDM to recognise sequences. An example application is described in section 5.4.1

which involves recognising spoken digits. The performance of the SDM at recognising the

spoken digits is compared to that of a multi-layer neural network trained with the back­

propagation algorithm.

5.2 Storing sequences in the Hopfield network

To store sequences, the Hopfield network is configured as an associative memory with

feedback as shown in section 2.4.1. That section describes how the Hopfield network can be

configured as an associative memory. Sequences are stored by associating consecutive

patterns. An association consists of an input pattern and an output pattern (I ,0). So for each

association the input pattern is I=pl and the output pattern is O=pI+l giving the following set

of associations: {(p\ p2), (p2, p3), ... (pNs-l, pNS). Ns-l associations are required to store a

sequence of Ns patterns.

The set of associations can be stored by using Gardner's iterative algorithm, (26) and (27),

to assign the weights. In (26) and (27) Xl is replaced with pi, and yl is replace with phI

56

Using this algorithm the change of the

weight of the connection from unit j in the

input layer to unit i in the output layer, for

association (pi, pl+I), is:

Il 1 exEj Pj Pj if Ej >
{

I 1+1 I. 1 0

wlj= 0 if E/:;:O

where Eli is the error at output unit

association (pI, pl+I):

K is a positive constant.

(64)

for

(65)

Input
units

Output 1
units

0\1 0&11 0~1

't 't 't 't 't Delays

Figure 5.1 The Hopfield network as an
associative memory with the same number of
inputs as outputs and with feedback
connections.

Once the sequence has been stored it can be retrieved by using the first pattern of the

sequence as the input, I=pl. When the first pattern of the sequence has been presented the

network is in input mode. In input mode the state of the input units is given by the input

signals, (24). After the first pattern has been presented in input mode the network goes into

retrieve mode. In retrieve mode the state of the input units is given by the state of the

corresponding output unit, (21). The state of the output units is given by (22) and (23).

The time steps that are represented by t in (24), (21), (22) and (23) should have a duration

of 'to If the associations have been stored correctly then after the first pattern has been

presented to the input the output will be pattern P2 after a time of't. The next output should

be P3' then P4' until the whole sequence has been recalled.

In the format outlined above, the Hopfield memory is only able to store simple sequences. A

simple sequence is one in which each pattern in the sequence occurs only once, i.e. pi :;i:pk for

I, k = 1 .. Ns. In this configuration the Hopfield memory is only able to store simple sequences

because the output generated using (20) , (22) and (23) depends only on the current input

57

pattern, and not any of the other input patterns. This is explained further in an analogy to a

computer memory below.

The Hopfield memory can be compared by analogy to a computer memory in the same way

that the SDM was in Chapter 3, section 3.2.l. The input patterns are analogous to addresses

and the output patterns are analogous to data in a computer memory. Storing an association

(pi, pl+l) is analogous to storing data pl+I at address pl. Trying to store a sequence in which

a pattern occurs more than once is analogous to trying to store two different data at the same

address. For example if patterns I and k in a sequence are the same, pi = pk, then the

following associations would be stored as part of storing the whole sequence: (pi, pl+I) and

(pk, pk+I). This is analogous to storing data pl+l and data pk+l at address pl=pk which is not

possible for a normal computer memory or for the Hopfield network as described above.

Hence sequences in which patterns occur more than once can not be stored on the Hopfield

network in this configuration.

A sequence in which a pattern occurs more (A, B, C, 0, E, F, G, H, I)
than once is called a complex sequence. The C=O

order of complexity of a sequence is the

length of the largest repeating sub-sequence

within the sequence. The order of complexity

will be referred to as C. Some examples of

sequences with different orders of

complexity are given in Figure 5.2. A simple

sequence has an order of complexity of C=O.

At any position in a sequence, which has an

(A, Ji, C, 0, Ji, E, F, Ji)
C=1

(A,B,C,D,E,B,C,F,G)
C=2

Figure 5.2 Letters in the 3 sequences above
represent patterns. Shown are examples of
sequences with C of 0, 1 and 2. The repeating
sub-sequences are underlined.

order of complexity of C, it is necessary to know the previous C+ 1 patterns in order to

unambiguously determine what the next pattern will be. For example, in simple sequence

(C=O) it is only necessary to know the previous pattern to determine what the next pattern

will be. In another example, the third sequence shown in Figure 5.2 has an order of

complexity of C=2. For this sequence it is necessary to know the previous three patterns in

order to determine the next pattern. If for example it was only known that the previous two

58

patterns were B and C then it would not be possible to determine if the next pattern was D

or F.

One way to allow the Hopfield network to store complex sequences is to somehow allow the

output to depend, not only on the current input, but also on previous inputs. Two techniques

for achieving this are discussed below:

• using additional connections with delays (section 5.2.1), and

• using decaying local fields (section 5.2.2).

5.2.1 Using additional connections with delays to store complex sequences

To store complex sequences it is necessary

that the output is influenced by at least the

previous C+l patterns. One method of

allowing the output of the Hopfield network

to depend on previous patterns is to include

additional connections with delays between

units (Guyon & Personnaz, 1988; Kleinfield,

1986; Kuhn et aI, 1989), as shown III

Figure 5.3. Each connection has an

adjustable weight which indicates the

strength of that connection. In this

configuration the local field is:

N C+l

hj(t)=L L WijkO/t-k) (66)
j=l k=1

The local field IS now a weighted

combination of the previous C+ 1 patterns.

Feedback

Input unit, j

\\'jj7
//

Weights

) Output unit i

°i Figure 5.3 Input units have C+ 1 connections
to each output unit. Each connection has a
time delay, and a variable weight, indicating
the strength of the connection.

The value C is the order of complexity of the sequences being stored. C+ 1 is the minimum

number of previous patterns which are required to unambiguously determine the next output.

59

The weights can be determined using an iterative algorithm based on Gardner's, (64) and (65)

(as suggested by Bauer & Krey, 1991). When pattern I of the sequence is being stored the

change of the weight of the connection from input unit j to output unit i, delayed by kt, is:

where the error, Eli is:

I I l-k Ilw =aE.P.P·
II" I I J

C N
I ~~ 'hl-l Ej ='K: £..J £..J Wijk -Pj i

k=l j=l

(67)

(68)

where K is a non-negative constant and h/-1 is the local field, (66), when pl-l is the current

input. This technique for storing sequences will be referred to as the multiple delayed weights

technique.

Other methods of assigning weights for this type of Hopfield network are discussed by

Guyon & Personnaz, (1988).

The concept of weights from delayed inputs has also been applied to back-propagation

networks by Wan (1993). A derivation of the back--propagation algorithm (Rumelhart,

McClelland et aI, 1986; Parker 1985) is used to assign the weights. The resultine discrete time

neural networks were found to be effective at time series prediction. Each set of delayed

weights between units forms a finite impulse response (FIR) filter. Wan (1993) argues that

the FIR filter models the processes of axonal transport, synaptic modulation and charge

dissipation in biological neurons better than the single weight normally used.

Another method of allowing past inputs to affect the current output is to have only one

weighted connection between each input md output unit, but give each connection a fixed

random delay, Tij't, where Tjj is a random positive integer within a specified range, l..T/'lax

(Bauer & Krey, 1990, 1991; Herz et aI, 1988, 1989; Mato & Parga, 1991). The local field is

then given by the following expression:

60

N

hj(t)=E wijO/t-Tij)
j=l

(69)

The output therefore depends on a random combination of the previous outputs. A learning

algorithm similar to those above can be used to assign the weights.

A network with fixed random delays can store complex sequences, if some of the delays go

back at least C+l steps (C is the order of complexity), i.e. TijMax> C. However there are some

sequences that will not be able to be stored. From (69) it can be seen that output i at time t

depends on a pattern made up from elements of the previous Tirax outputs:

If this particular combination of elements in

a set of patterns occurs more than once in a

sequence then the sequence will not be able

to be stored correctly. For example, a

network with four input units has the

following delays associated with the

connection to tht;; first output unit: Til = T 12

= 2 and T13= T 14=1. The sequence of

patterns shown in Figure 5.4 could not be

stored on this network because when the

sequence is being recalled the local field for

output unit 1, hi' will be the same when

(70)

~-~

P1 (1 1~~_~_~_~
P2 -1 1 \}_~_~,
P3 I. 1 ~1 -1

p 4 -11-~f~\l-~=}J
P5 -I -1 -1 -1
Figure 5.4 A delayed pattern occurs twice,
making the sequence of patterns impossible to
store (for some delays).

recalling patterns P 3 and P 5 but the outputs are supposed to be different.

5.2.2 Using decaying local fields to store complex sequences.

Another method of allowing the output of the Hopfield network to depend on preVIOUS

61

patterns is to modify the way the local field of the output units is calculated so that it

represents a decaying sum of all of the previous inputs to that unit:

N t

hj(t+ 1)=E wijE ~{k)dt-k
j=l k=l

N

=dhj(t) + E Wij~{t)
j=l

(71)

where d is the decay rate, d< 1. This modification to the Hopfield network was suggested by

Bressloff & Taylor (1992). This modification allows complex sequences to be stored because

the local fields and hence the state of the output units is often a function of all the previous

patterns. Again the weights of the connections can be assigned using Gardner's algorithm, (64)

and (65).

This technique for storing complex sequences will be referred to as the decaying local fields

technique. A similar technique for storing complex sequences on a neural network was

devised by Wang & Arbib (1990).

The decaying local fields technique for storing complex sequences has some advantages over

the multiple delayed weights technique described in the previous section. The main advantage

is that fewer weights are required for the decaying local field technique (N2 weights) than

multiple delayed weights technique ((C+l)N2 weight). The second advantage is that if

decaying local fields are being used then it is not necessary to know the order of complexity

of the sequences before determining the format of the network. For the delayed weights

technique the required number of delayed weights depends on the order of complexity of the

sequences which are being stored on the network.

A sequence of Ns patterns reqmres Ns-l associations to be stored in order to store the

sequence. The number of associations that can be stored on the Hopfield network with

decaying local fields will depend on the number of inputs N. Hence the maximum length of

the sequences that can be stored will also depend on the number of inputs, N. One way to

overcome the limitation on the maximum length of sequences that can be stored is to use an

62

SDM to store the sequences, as will now be described.

5.3 Storing complex sequences in the SDM

To store sequences on the SDM it should be Input pattern

configured with the same number of inputs

and outputs, N=M, and, like the Hopfield

network, the outputs should be fed back to

the inputs. In this format, shown in

Figure 5.5, the SDM is able to store only

simple sequences because the output pattern

depends solely on the input pattern. Kanerva

(1988) suggested that, to store complex

Input
Untts,
layer 0

Fixed
Weights

W[I]

Location 'J

Units.
layer 1

Output
Units,
layer 2

II I,

output pattern

~I

Feedback
connections

sequences, weights from delayed inputs

should also contribute towards the output.
Figure 5.5 The SDM has the same number of
inputs and outputs, and has feedback
connections from the output to the input.

This is equivalent to the delayed weights

configuration of the Hopfield memory described above.

Another method of storing complex sequences on the SDM is to change the SDM so that the

influence of the inputs decays exponentially. This is an adaptation of the techniques used to

store complex sequences by Bressloff & Taylor (1991) and Wang & Arbib (1990). One way

of allowing previous inputs to have a decaying affect is to change the behaviour so that the

activations of the location units decay exponentially with time. The activation of the location

units is then given by:

N

1 if:E Or](t)w~1]~N-2r
OP1(t+l) = i;; (72)

dOP1(t) if :E OJ01(t)w~11<N-2r
J=l

where d is the decay rate, 0 < d < 1. The output units can operate in the same way as in the

63

original memory, (30). The only difference is that in the calculation of the local field, (31),

the activations will now have real values 0 ~ OP1(t) ~ 1. In the original SDM the activations

could only be 0 or 1.

The variable weights are assigned using Gardner's iterative algorithm, where the change of

weight from location unit j to output unit i, for association (p\ pk+l) is:

(73)

where Op1k is the activation of location unit j when the input is pk. The error is

(74)

This is similar to the Hopfield network with exponential decays proposed by Bressloff &

Taylor (1991), but there is an advantage with the SDM in that it has a much larger capacity

(as outlined in Chapter 3).

5.3.1 An example

To demonstrate that the SDM can store complex sequences an SDM was simulated with the

above configuration, using N=20 inputs and outputs, s=500 location units, an access radius

of r=7, and a decay rate of d=0.5. The inputs were arranged in blocks of 5 rows of 4, so that

letter shapes could be represented by the inputs. For example the pattern:

(1 -1 -1 1 1 -1 -1 1 1 I 1 1 1 -1 -1 1 1 -1 -1 1)

r

64

where I represents +1 and . represents -1

Two sequences, representing the words HELLO and GOODBYE, were stored using the

learning algorithm described above (with K=O). They were stored as cyclic sequences. A

cyclic sequence is one in which the first pattern is associated with the last pattern. After

learning, the presentation of an H to the input would result in the following repeating

sequence:

l ""l""o." . "
...
'" l ""l""o."H"

where each block of 20 (5x4) represents the input at a different time. Similarly the

presentation of a G would result in:

0."0."
..

. ., . "v" E" 0."
..

. . . .

These sequences have an order of complexity of 2. The sequences could also be recalled if

there was some noise in the original input pattern.

5.4 Recognising sequences

Up to this point it has been discussed how the SDM can be used to store and retrieve

sequences. It is also possible to use the SDM to recognise sequences. This can be achieved

by configuring an SDM with one output for each sequence to be recognised and by allowing

the activations to decay exponentially (72). There are no feedback connections.

Sequences are learnt by first presenting the whole sequence to the ne.twork, pattern by pattern,

allowing the activation of the location units to decay after each pattern (72). This results in

a pattern of decaying activations over the location units which is then associated with an

output pattern which has a 1 at the unit used to represent that sequence and -l's elsewhere.

65

The association is stored using Gardner's iterative algorithm.

A sequences is recognised by presenting it to the network, pattern by pattern, allowing the

activation of the location units to decay, and then calculating the local fields for each output.

There is one output for each sequence to be recognised. The sequence is recognised as the

sequence represented by the output which has the highest local field.

To test the ability of the SDM to recognise sequences, an SDM was set up with the same

configuration as in 5.3.1 but with only two outputs (one for each sequence to be recognised).

The sequence HELLO was associated with the first output and the sequence GOODBYE was

associated with the second output, using the technique outlined above.

After the two associations had been stored the memory was easily able to identify the two

sequences correctly. After the sequence HELLO was presented to the network, pattern by

pattern the first output had a higher local field and after the sequence GOODBYE was

presented the second output had a higher local field. A more demanding test of the ability

of the SDM to recognise sequences was performed. These tests involving the recognition of

spoken digits are outlined in the following section.

5.4.1 A sequence recognition example - recognising speech

This task involves recognising the spoken digits 0-9. There were 8 samples of each digit (not

all from the same speaker). Each sample was processed to give a formant track for that

sample ll
. The formant track consists often points in sequence, each point given by two values

which represent the two dominant formants. Figure 5.6 shows the average formant tracks for

each digit (normalised to values between 0 and 1).12

i ISee Witten (1982) for an introduction to speech processmg and a description of
formants.

i:Each of these formant trajectories consists of 10 points. The trajectory for the digit '6'
contains several zero points because it has very little spoken sound in comparison to the other
digits.

66

Formant 1
1 ~J Start

1 · End
I

1 o.~

i ,~~"-;~I·~-r---"-I ~f'--'-f-,-,-,---j
0.08 0.12 0.16 0.2 0.24 0.28 0.32

Formant 2

Figure 5.6 Averaged formant tracks for the digits 0-9

A memory was set up with n=2 inputs (I for

each formant), m= I 0 outputs (I for each

digit to be recognised), s=500 location units

and an access radius of r=O.l. A decay rate

of d=0.9 was used. Because the inputs are

real valued, the randomly selected location

units also have real values chosen randomly, 0.5

RiP O<Rij<l. After a series of experiments it Figure 5.7 The addresses of the location units
have the same distribution as the inputs. Each

was found that the best performance is dot represents the address of one location unit.

obtained when the distribution of the location

unit addresses matches that of the input patterns (as suggested by Keeler [26]). Figure 5.7

shows an example of randomly selected location units. With real valued inputs the activation

of a location unit is gi ven by:

67

N

1 if L I OJ[O](t)_W~l] I ~r
OJ[1](t+ 1)= j~l

dOP](t) if L I olO](t) -WJl] I <r
j=l

In the first test the memory was trained with
8

Error 7

6
5

4

3

2

half of the data (selected randomly) and

tested over the full set. The best performance

gave 95% recognition (76/80). In a second

test the memory was trained using the

average formant tracks (shown in Figure 5.6)

and tested using the original data. The best

'.-.~-

0
10 8l 00

Iterations

(75)

... 50 eo

performance for this test was 93.75% (75/80) Figure 5.8 The total error decreases to
approximately 0 after 61 iterations

of the digits being recognised correctly. This

performance equalled the best a back-propagation network could do with exactly the same

dataJ3
. The 20-10-10 back-propagation network took approximately 20000 iterations14 during

its training whereas the SDM took only 61 iterations. The total error is shown in Figure 5.8

as a function of the number of iterations. The total error is the error used in Gardner's training

algorithm summed over all the outputs and training sequences.

5.5 Summary

Simple sequences of patterns can be stored in an associative memory by storing associations

consisting of consecutive patterns. The first pattern in the sequence is used to recall the rest

of the patterns.

A complex sequence has patterns occurring more than once in it. Complex sequences cannot

1 'Thanks to John Kirkland for supplying both the formant data and the results of his tests
with a backpropagation network (personal communication).

1-1 The stopping criterion was Kirland's

68

be stored in associative memories as described above because it would be necessary to store

associations which have the same inputs but different outputs.

Several techniques for storing complex sequences in the Hopfield network have been

proposed. These techniques involve either using extra sets of connections which incorporate

delays or using decaying activations. These techniques used to store complex sequences in

the Hopfield network can also be successfully applied to the SDM. The advantage of using

the SDM over the Hopfield network is that the SDM has a larger capacity and so more or

larger sequences can be stored. Simple examples confirm that sequences can successfully be

stored on the SDM using the decaying activations method.

The same techniques used for storing sequences in the SDM can be used to recogmse

sequences. This is confirmed using both simple examples and a more complex speech

recognition example. In the speech recognition example the SDM with decaying activations

is able to recognise formant tracks with the same accuracy as a backpropagation network.

The SDM however takes much fewer iterations to train (50 iterations) than the

backpropagation network (20000 iterations).

69

CHAPTER 6

The PURRPUSS system

6.1 Introduction

PURR-PUSS (PP for short) is a system designed to enable a robot to learn. The PP system

has been developed over several years [Andreae, 1977; Andreae & MacDonald, 1991;

Andreae et aI, 1993] and it continues to be developed. This chapter describes one

implementation of the PP system and gives an example of its operation. There are several

features that have been used in previous PP systems (such as threading events, recency

productions and contexts of contexts) which are not mentioned in this thesis because they are

not relevant (see Andreae 1974-1991 for a full account of the PP system). There are two

features new to PP that are introduced in this chapter: learning from random actions, and the

goal-setting GO command. Chapter 7 shows how the PP system can be combined with the

CMAC system and together learn to effectively control continuous outputs.

There is little consensus on how much knowledge is innate in a human brain and how much

is learnt through experience. In an attempt to shed some light on this, the PP system was

designed to contain as little built-in (or innate) knowledge as possible. The PP :;ystem has

built into it reflexes and two learning mechanisms. Reflexes are robot movements in response

to some triggers (usually specific stimuli). The learning mechanisms are called production

learning and leakback learning (described in sections 6.2 and 6.3 respectively).

The PP system is goal seeking, that is, it chooses actions that, according to its calculations

will lead towards goals. Section 6.5 discusses how goals are given to PP. Section 4.6

demonstrates how PP operates by showing how PP can learn to move a ball in a tilting maze

towards a goal.

Previous research has shown that the PP system, with its minimal built in knowledge can,

among other things (Andreae, 1972-1991):

• emulate a Universal Turing machine and so can calculate any computable

70

function [MacDonald & Andreae, 1981],

• learn from reflexes [MacDonald, 1984], and

• learn multilevel tasks [Andreae et aI, 1993].

6.2 Production learning

For this thesis a robot will be considered to consist of a body and a brain (or control centre)

that controls the body. The body has several effectors that perform actions and influence the

environment in which the robot exists. The robot also has a number of sensors that respond

to stimuli in the environment. The PP system is the robot controller; it sends signals to the

robot effectors and receives signals from the robot sensors.

The PP system operates in discrete time. In

each time step PP can send signals to its

effectors and receive signals from its sensors.

If there are m effector signals and n sensor

signals then there are m+n=S signals in any

particular time step. These signals are termed

events, signals to effectors are called output

events and signals from sensors are called

input events. For example an output event

may be move_arm "up", where move_arm

indicates which effector the signal is sent to

(the arm) and "up" represents the signal. This

signal would cause the robot's arm to move

up. Figure 6.1 shows the channels of

communication between the environment,

effectors, sensors, short and long term

memory (STM and L TM) and the reflexes.

All these parts are explained below.

6.2.1 Short Term Memory (STM)

Figure 6.1 A simple schematic of the PP
system. PP sends signals to the robot effectors
and receives signals from the robot sensors.

71

PP learns from the S sequences of discrete events, which either go to the effectors or come

from the sensors. These sequences can be represented as follows:

(76)

where sequence Seqs' s= 1.. S is either an input sequence coming from the sensors or an output

sequence going to the effectors. At any time, the current events (the signals currently going

to the effectors and coming from the sensors) are described by the terms Es,o' The events

immediately before the current events are given by E5,_I' and the events before that are given

by Es -2' Thus all the events are defined relative to the current events. Each input and output

event can have a range of values (including a "null" value) depending on what is being

represented, The last x events, for some fixed x, of each sequence are stored in STM, i.e. the

events E5,0 to Es,_x+ I'

For example, in Figure 6.2 there are five sequences of events, two input sequences, coming

from the eye and the ear, representing what is seen (e.g. 'see square 1') and what is heard, and

three output sequences, representing a body movement (tilt), an eye movement (look) and an

execution action (go). Figure 4.2 shows how the sequences may progress.

Time Step
Stimuli

1 2 3

Actions

Sequence 1 see square 1
Sequence 2 hear "move 2"

square 1
null

square 2
null

Sequence 3 tilt east south east
Sequence 4 look null square 2 null
Sequence 5 go null null GO

Figure 6.2 An example of five sequences. The discrete time steps have been labelled 1, 2,
3, ... The stimuli are sensed in the first half of each time step and the actions are performed
in the second half.

In Figure 6.2 a "null" indicates that there is no signal going to the effector (if it is an output

sequence) or coming from the sensor (if it is an input sequence) during that time step. In this

case at step 1, the current events held in STM are:

E1.0 = 'see square " E'I) = 'hear "move 2"', -, - E3,() = 'tilt east',

72

E == 'look null' 4,0 , E5,0 == 'go null',

In step 2 the current events in STM are

EI,o == 'see square 1 " E2,0 == 'hear null'

E4,0 == 'look square 2' E5,o == 'go null',

E == 'tilt south' 3~ ,

and the events prior to the current events (the previous current events) are also held in STM:

E == 'see square l' E == 'hear "move 2'" 1,-1 , 2,-1 _ , E == 'tilt east' 3,-1 ,

E == 'look null' 4,-1 , E5 -I == 'go null',

6.2.2 Long term memory (LTM)

PP learns by storing productions in LTM according to a set of predetermined production

templates, Tk . These productions allow PP to make predictions which are used for planning

and choosing actions. This section describes what productions are, how they are stored and

how they are used to make predictions. Each production consists of a prediction event, and

a set of events, called a context,

6.2.2.1 Contexts

A context is a group of events that have at some stage occurred together in STM. Production

templates prescribe exactly which events in STM are combined to form contexts. A context,

Ci, i==l..Nc (Nc is the number of contexts that have been stored), is given by:

_ U 12 U Cj-E ,E , ... , E (77)

where the Eij are events from STM (76) as prescribed by the production templates, and I is

the number of events in the context.

For example, with the appropriate production templates, a context with two events (/=2) may

be:

C1 == 'hear "move_2"', 'look square 1',

Likewise, a context with one event in it (/= 1) may be:

c ~ == 'see square 1',

73

6.2.2.2 Production templates

The production templates prescribe which events from the sequences, Seqs, are to be

associated in productions. An event which is t events before the current event in the sth

sequence would be called Es _to Each template, T k is of the form:

Tk:[Es -t' Es -t ' ••• , Es -t Es 0]
kl' kl 1;2> k2 Idt' Idt Af)t (78)

Context -+ Prediction

where lk is the number of events in each context which is stored as a result of template k. The

events to the left of the "-t" prescribe which events from the sequences Seqs will form

contexts, and the event to the right prescribes the prediction events that will be associated

with the contexts in LTM. The coefficients Skj and tkj, j=O .. lb prescribe where in the above

sequences (76) each event for the productions will come from. The Skj prescribe which

sequence, l..S, and the tkj prescribe which step, relative to the current step, l..tkrax
, is to be

used.

A simple production template may appear as follows:

Productions stored as a result of this production template would consist of a context with just

one event, from sequence 2, and a prediction event, from sequence 4. The prediction event

would have occurred one time step after the context event, e.g. if the events had progressed

as detailed in Figure 6.2 then on step two E4,0 = 'look square 2' and E2,_1 = 'hear "move_2",

and so the following production would be stored:

Pll .l ['hear "move_2'" -t 'look square 2'].

P,)k refers to the jth production stored from template i. The production consists of the jth

context stored in the cluster of which template i is a part (see the following section for a

definition of clusters) and the kth prediction associated with that context. In this case the

74

production is stored as a result of template 2, 'hear "move 2'" is the first context stored in its

cluster, and 'look square 2' is the first prediction associated with that context.

6.2.2.3 Clusters

The templates are arranged into groups called clusters. The templates in each cluster are

designed so that, of all the contexts stored as a result of the templates, no more than one

context can be active at a time. A context is active if all of its events are in the correct places

in the sequences in STM, as prescribed by the template from which it originated.

Section 6.3 describes how connections are formed between productions that occur

consecutively. These connections can only be formed between productions in the same cluster.

Templates are grouped into clusters so as to reduce the number of connections between

productions. This can eliminate many unnecessary connections thereby reducing the amount

of computation required in the leakback process (section 6.3).

The PP system described in Section 6.6.2 has three production templates grouped into two

clusters.

6.2.2.4 Productions

A production is stored whenever all of the events prescribed by a production template have

non-"null" values. In the example above, the production P1,1,1' was stored at step two on that

step because both events, E2,_1 and E4,0, specified by template, T1, were non-"null". Whereas

on step three no production is stored because the specified events are both "null" (although

only one of the specified events needs to be null for there to be no production stored).

A context can have more than one prediction event associated with it. The context and

prediction(s) forming the production(s) are stored in LTM.

6.2.2.5 Predictions

75

A context in LTM is said to be active for prediction if, in the following step all its events will

be in the places in the sequences prescribed by the template from which it originated. i.e.

context i which originated from template k is currently active if: If context i is active then,

in the following step, all of its events will be in the places prescribed by template k. A

context active for prediction is able to predict an event to be used in the following step. The

prediction event can be used as either:

1) an output, if it is an output event, or

2) a prediction of the next input (used for planning), if it is an input evenes.

If, in the example above, the robot hears Imove_2", then the current event in sequence two

will be E2,o = 'hear Imove_2"'. This will cause the context of Pl,l to become active for

prediction because in the following step E2,_1 will be 'hear Imove_2"', i.e. in the following

step the event Imove_2" will be in the same time step (relative to the current step) it was

when the production was first stored. The prediction event of Pl,l is an output event and so

it will be used as an output in the following step, that is, in the following step the robot will

do the action 'look square 2'. If there was more than one prediction associated with the

context then leakback would be used to determine which prediction would be chosen. Section

4.3 describes the operation of leakback.

6.3 Leakback learning

Often one context will have two or more different prediction events, for example the context

'see square I' could be associated with the prediction events 'tilt east' and 'tilt west'. All stored

prediction events will be possible predictions and when the context occurs PP must choose

which of these events to predict. To do this PP uses what is known as leakback and a network

of probabilities to choose prediction events most likely to reach goals. Leakback estimates the

expectation that a particular event will lead to a goal. The event with the highest expectation

is chosen as the prediction. This is the way actions (output events) are chosen which will lead

to goals. Goals are marked contexts; Section 4.5 discusses how contexts are marked as goals.

l5See Andreae & MacDonald (1991) for more information on planning

76

Assigning numbers, i to each context which has occurred in duster 1, and j to each prediction

associated with context i, the expectation of the jth prediction of context i, Xij is calculated

using the following expression:

NcZ

Xij=DF x LPijkXk
k~l

(79)

where Ncz is the number of contexts that have been stored in cluster I, Xki is the expectation

of context k:

{

I if context k is a goal
Xk= ~ax(XJg) otherwise

}=l..NCz

(80)

and Pijk is the probability that context k will be active next, given that the events forming

context i and prediction j have just occurred. This probability is estimated by calculating the

ratio of

• the number of times context k has become active immediately after the

production consisting of context i and prediction j have occurred, Nijb and

• the number of times the production of context i and prediction j has occurred,

(81) .

Pijk
Nijk

Ncz (82)

LNijk
k=l

N'jk is stored as a weight associated with a connection from the production consisting of

context i and prediction j to context k. Most Nijb and hence Pijk will be zero because only a

few of the Ncz contexts will have ever been active after the events of any context i and

prediction j have occurred. There are no connections between contexts in different clusters

77

/~,,- /

Prediction 1 /' /' \ V
/' Y

/'/' /\

Context 1
-

Context k
/' .-L-

/' --.:. -- "---- -
: Prediction 2

Context i
Context Nc

Prediction j
Figure 6.3 A schematic of the connections made between context and all the other
contexts in the cluster.

(see 6.2.2.3). The updating of these weights is what was referred to as leakback learning.

The discount factor (DF) in (79) is a number between 0 and 1. This factor gives more weight

to actions which have shorter paths to a goal.

6.3.1 An example of leakback learning

The example is taken from the PP system

described in section 4.6. The production: PIA

['see 6' ~ 'move north'] can be followed by

productions with several different contexts,

e.g. 'see square 2', 'see square 5', or 'see

square 7'. At one particular stage of the

learning the production PIA has occurred 429

times and of those 429 occurrences the

0.6
.-----------------------~

7.5 15 22.5
Steps

(Thousands)

30

context 'see square 2' has been active in the Figure 6.4 Graph showing the changing

following step 354 times. PP calculates probability that a North tilt action will result in
a movement from square 6 to square 2.

(using (82» the probability of the context

'see 2' being active after the production PIA has occurred to be 354/429 = 0.825. Figure 6.4

78

shows how this particular probability changes over time.

6.4 Performing actions for the first time

The PP system performs actions which are the prediction events of productions stored in

L TM. The PP system begins with no stored productions and so the question arises, how can

PP perform an action that is not stored in a production? There are a number of ways in which

actions can be performed initially, before they are stored as prediction events in productions:

• a teacher can perform actions for the PP system,

• the actions can be performed by built in reflexes,

• PP can mimic the actions of others,

• PP can perform random actions for a period of time.

In order for a teacher to perform actions for the PP system, the teacher must either be able

to send the signals to the robot's effectors, or physically lead the robot's limbs. PP can easily

learn actions if the teacher generates the effector signals, although the human brain could not

learn to perform actions in this fashion because no teacher can send signals through another

human's nervous system. In order to learn actions when being lead, PP must be able to

calculate what effector signals would generate the movement it senses [MacDonald, 1984].

Both these methods are useful for teaching PP to perform tasks and has been used often

[Andreae 1977; Andreae & MacDonald 1993].

MacDonald (1984) showed that PP can learn from actions which are initially performed as

reflexes. This is important because human babies are born with many reflexes and could

possibly learn to move from them in a similar manner. Section 6.6.3.3 discusses how reflexes

are used to perform actions in the demonstration PP system.

Mimicking in PP has only been implemented as a type of reflex which was used in learning

to say words [Andreae 1977]. In order to be able to mimic the actions of others the PP system

must know or learn the relationship between the stimuli (e.g. what is heard) and the command

signals which perform the action (e.g. the signals sent to the speech effectors).

79

Section 6.6 shows an example of a PP system which learns from random actions. In this

example a random action is selected if there is no production predicting an action or if there

is a production but the number of times its context has occurred is below a certain amount

This technique for initially performing actions does not require a teacher to know anythmg

about how the robot body operates and so could possibly occur in human brains.

There is some evidence that random-like (chaotic) behaviour could occur in the brain in

unfamiliar situations. One of the conclusions of Skarda & Freeman's (1987) study of the

olfactory system of rats was that an unfamiliar odour would produce chaotic activity in the

olfactory neurons, whereas a familiar odour would produce a more ordered activity.

6.5 Marking contexts as goals

The network of probabilities and the expectation calculations allow PP to choose actions that

will lead towards goal contexts. Goals are contexts which are marked as a goal and given an

expectation of 1. There have been three different ways of marking contexts as goals:

• novelty learning [Andreae 1977],

• external reward [Andreae 1977], and

• internal reward or self set goals.

With novelty learning PP marks each new context as a goal. The goal mark is removed when

the context occurs for a second time. This encourages PP towards new experiences and it has

been found that this is very useful when teaching PP to perform new tasks [Andreae, 1977].

Goals can be given to PP using external reward [Andreae 1977]. This typically consists of a

button which when pushed will cause all the contexts currently active to be marked as goals.

A new, third way of contexts being marked as goals is through internal reward. This

comprises of a command which marks all the contexts currently active as goals. The

command is called the GO command. The GO command will strictly be classed as an output

event which will not influence the environment through an effector but will influence the state

80

of the PP system. An example of internal reward being used is given in 6.6.

This new way of marking goals is introduced to allow a robot to be controlled through verbal

commands rather than through an external reward mechanism. When the robot is learning a

task it is still necessary to have an external reward mechanism to set goals. But rather than

the external reward marking contexts as goals directly it will trigger the GO command which

will then mark the goals. If the GO command is the prediction event in a template then this

means that at some latter date PP can perform the GO command itself and thus set its own

goals.

In the example in section 6.6 there is a template that associates an audio stimulus with the

GO command. This means that after learning has occurred PP is able to set its own goals in

response to an audio stimulus, i.e. in response to a verbal command.

A context which is marked as a goal will have the mark removed when the goal is reached,

i.e. when the context becomes active (the events in STM match those stored in the context).

6.6 An example of the PP system

This demonstration shows how PP can select actions to achieve goals. It also shows how

actions can be learnt from random actions and from reflexes, and how contexts can be marked

as goals through internal reward. The task used is that of controlling a ball rolling in a maze

by tilting the maze. This task is also used in the following Chapter where a hybrid PP-CMAC

system is able to provide superior control.

This section proceeds by describing the maze which PP learns to control (6.6.1), the

configuration of the PP system (6.6.2), and then a summary of how PP learnt and the results

of that learning (6.6.3).

6.6.1 The maze

The tilting maze is shown in Figure 6.5. The maze is divided into 12 squares with walls

81

between some of the squares. The maze can

be tipped along two axes of rotation. The

angles of tilt are given by two variables, ex
and ey . The PP system must learn to control

the tilting of the maze so as to move the ball

from wherever its current position is to some

goal square. The ball and maze are

simulated. The details of the simulation are

given in appendix A.4.

6.6.2 The configuration of the PP system

Ball By Qy.axls

0 23

x·axls - -.'---.-
I , -0'" -~ -------~ ---...J - ' J,

e i ,

x I I - -~-
,.j

~'I

c::'x 'I 9
, !

Wolls .k1 ==~~i

10 11 12

. .J

Figure 6.5 A simple maze, divided into 12
squares. The two axes of rotation are shown.

Figure 6.6 shows the channels of communication between the PP system, maze, eye, ear,

command processor, visual processor and the teacher. For this exercise PP has five sequences

of events, two input and three output:

Input sequences

Sequence I: A sequence of visual inputs from an eye, which give the square which the ball

is in, from square I to square 12.

Sequence 2: A sequence of audio inputs from an ear. These inputs can be anything that is

said to PP, e.g. "move_I". Audio inputs are always written with double quotes.

Output sequences

Sequence 3: A sequence of tilt actions, North, South, East or West. These actions tilt the

maze more towards the North, South East or West if the ball is not already

moving in that direction. The action is translated into ex and ey increments

(±O.05 radians) by the command processor (Figure 6.6). The command

processor uses a direction of velocity signal from a visual processor to decide

if the ball is already travelling in the direction specified by the tilt action.

82

Teacher ..--~ Light Maze

Environ ment

Figure 6.6 The channels of communication between the teacher, the maze, and the robot.

Sequence 4: A sequence of eye movement actions, 1 .. 12. These actions make the eye glance

briefly at the given square and then back to its original position.

83

Sequence 5: A sequence of GO actions. This is an internal reward command which does not

have a direct effect on the outside body. This command marks, as goals, any

contexts that are active in cluster 1 in the following step.

The output from the visual processor (Figure 6.6) is a representation of the square (1..12) in

which the gaze of the eye lies. The eye operates almost entirely by reflex. If there is no eye

movement command (Sequence 4) then the eye follows the ball by reflex and so the visual

processor gives the position of the ball in the maze. There is another reflex which is triggered

by a flashing light. This reflex causes an eye movement command (Sequence 4) to glance at

the square where the light flashed and then move back to the ball. The flashing light also

causes a reflex GO command (Sequence 5) which is executed in the step immediately after

the eye movement command.

The actions of moving the eye to the flashing light and performing the GO action are

examples of actions which will be learnt from reflexes. Initially these actions are performed

in response to a stimulus (the flashing light) but after learning, the actions will be performed

because they are prediction events of productions in L TM.

PP is configured with three templates, arranged in two clusters:

Cluster 1
T1:[E1,o E3,o]

Cluster 2
T2:[E2,-1 E4,o]

T3:[E2,_2' E4,-1 Es,o]

(83)

Productions stored in the first cluster allow PP to use leakback to calculate which actions are

most likely to lead to goals. Template, TI means that the current visual stimulus is used to

predict the next tilt action. This template would apply, for example, when the ball is in square

6, the visual input is 'see square 6', and a 'tilt north' action is performed resulting in the

following production being stored:

PI,2: ('see square 6' 'tilt north'].

84

The next time the visual stimulus is 'see square 6', PP will predict a 'tilt north' action.

Productions stored in the second cluster allow PP to respond to verbal commands from the

teacher and set goals in the first cluster (see 6.6.3.1). T2 predicts an eye movement action in

response to an audio stimulus, e.g. P2,): ['hear "move_2'" ~ 'look square 2']. T3 predicts a GO

action in response to an audio stimulus followed by an eye action, e.g. P3,): ['hear "move_2'",

'look square 2' ~ 'GO']

As the PP system is configured here, it reacts whenever its inputs or outputs change or after

a certain time (100 steps) if there has been no change. When the PP system reacts it updates

its short term memory. This may cause some previously stored contexts to become active and

allow some actions to be chosen as described in section 4.3. Updating STM may also cause

some new productions to be stored and the weights between contexts to be updated.

Every 10ms the ball position, velocity and acceleration are updated using equations (l16)­

(118) (in A.4) and the command processor updates 8x and 8y if necessary according to the

current PP tilt command.

The PP system is configured so that at first its tilting actions are random but after a time they

become goal directed. If PP is unable to

choose an action, or an action is chosen

using a context with an age less than 50

then a random action is used. The age of a

context is the number of times it has

occurred. The number 50 was chosen so that

there was enough time for the probabilities

to be estimated roughly.

6.6.3 Learning in the PP system

o 500 1000 1500 2ODO l50Q lOOO l~ 4000

Number ofstepa

Figure 6.7 Graph showing the transition from
random to goal directed actions.

With the PP system configured as above, PP begins choosing random actions and learning.

PP goes through two phases which are outlined below: choosing actions randomly (Figure 6.8)

85

and using productions to choose goa! directed actions (6.6.3.2). The change from random to

goal directed actions is gradual. The actions are random until the contexts have an age of 50

or more. As more contexts age over 50, the actions become more goal directed.

Time Step tilt see GO look hear Flash Production Productiorr
Step Lerrgth No

1 1 east 1 "move 2" F P1, 1, 1 [1 » east)
2 1 south 1 2 P1,1,1 [1* » south]

["move 2"* » 2'-]
3 1 east 2 GO P1,1,2 [2* »-east*]

["move 2" 2 » GO]
4 1 west 1 P1,1,1 [1 » west]
5 100 east 1 P1, 1,1
6 1 east 2 "move 3" F Pl,1,2 [2 » east] -
7 1 north 2 3 P1, 1,2 [2 » north]

["move 3" » 3]
8 1 west 3 GO Pl, 1,3 [3 » west]

["move 3" 3 » GO]
9 1 north 2 Pl,1,2 [2 » north]
10 40 west 1 Pl, 1, 1
11 100 west 1 Pl, 1,1
12 100 north 1 P1,1,1 [1 » north]
13 100 east 1 Pl,l,l
14 30 north 2 P1,1,2
15 100 east 2 P1,1,2
16 100 west 2 P1,1,2 [2 » west]
17 30 east 1 P1,1,1
18 13 east " P1,1,2 L

19 100 east 2 Pl,1,2
20 100 east ", P1, 1,2
21 100 east 2 El, 1, ~
22 100 north 2 P1, 1,2
23 100 west 2 P1,1,2
24 30 west 1 Pl,l,l
25 100 south 1 Pl, 1, 1
26 100 west 1 P1,1,1
27 100 west 1 P1,1,1
28 100 east 1 P1, 1, 1
29 30 east :' P1,1,2
30 2 north 6 Pl, 1, 4 [6 » north]

Figure 6.8 The first 30 steps of PP's learning during the demonstration.

When PP is learn i '1g, the teacher stipulates the goal square by flashing the light in the square

where s/he wants PP to move the ball. At the same time the teacher says the number of the

square where the light is flashed. In the future the teacher will only need to say the number

of the square rather than flash the light to get PP to move the ball there. The mechanism PP

uses to achieve this responsiveness to verbal commands is described in section 6.6.3.3.

6.6.3.1 Learning from random actions

While PP is choosing tilt actions randomly it is storing productions and updating connections

between contexts in each cluster. The connections in cluster 1 show the probable consequence

of each tilt action in every context. For example, after a short time PP has learnt that after a

'tilt north' action, when the visual stimulus is 'see square 6', there is an 82.5% chance the next

visual stimulus will be 'see square 2' (as shown in figure 4.6), a 7% chance it will be 'see

86

square 6' a 0.9% chance it will be 'see square 7', etc. There are a number of reasons why the

'tilt north' action does not always result in a transition from square 6 to square 2 such as, if

there is a large velocity component in the east or west directions then the ball could move to

square 5 or square 7 respectively or if the velocity is low then the ball will remain in square

6 for longer than 100 steps. As time goes by these probabilities converge to stable values.

Figure 6.4 shows how one of the probabilities stabilises over time.

6.6.3.2 Choosing goal directed actions.

Probability Contexts
e'(ent (Visual Stimuli)
will
lead 3
to 0.11 1.0

/ Goal context

Prediction

context

1
/

events
(tilt actions)

North: 0.22/
p:= 0.17

..."...-,----

East: 0.09

p::: 0,76

East: 0.15 ----Expectations
Figure 6.9 Some connections between contexts in cluster 1, showing transition probabilities,
Pijk and expectations, Xij' that different actions will lead to a goal.

Figure 6.9 demonstrates how leakback is used in cluster 1 to choose tilt actions which lead

to goals. PP's other actions, move eye (sequence 4) and GO (sequence 5), are chosen using

templates from cluster 2, as described in the following section. At any time there are 4

possible tilt actions to choose from. In square 6 the east action has the highest expectation of

leading to the goal context, square 3, and so the west action is chosen. Similarly the north

action is chosen is square 7. The expectations shown in Figure 6.9 were calculated using (80)

and the probabilities were calculated using (82). Appendix A.6 shows the full PP memory

87

after a period of learning.

6.6.3.3 Learning from reflexes to respond to verbal commands

The move eye and GO reflexes and the templates in the second cluster (see (83» were

designed to allow PP to learn to respond to verbal commands. Productions stored from

template T 2 associate a verbal command with a move eye action. Productions from template

T 3 associate the same verbal command and eye action with performing the GO command. The

eye action and GO command are originally performed as a reflex to a flashing light. When

a light flashes two actions are performed by reflex in the following steps:

• In the step immediately following the flashing light a move eye action will be

performed by reflex. The eye moves to where the light flashed as described in

Section 6.6.2 above. For example, if in Step 1 the light was flashed in square

3, then in step 2 the action 'move eye 3.' would be performed by reflex.

• In the next step the GO action is performed by reflex. In the previous example

the GO action would be performed on step 3. The GO command sets the

current context in cluster 1 as a goal context. In this case the context 'see

square 3' would be marked as a goal.

The teacher can take advantage of these

reflexes to train the system to respond to

commands to move the ball to any square.

To do this the teacher has to, for each

square, say the command to move to that

square and flash the light in the square. It is

necessary to do this once for each square

that is going to be a goal square. After that

the teacher only has to repeat the command

and the productions in cluster 2 will respond,

causing the eye to move to the desired

square, the GO command to be executed,

and the goal square to be set.

:lquare 12 to square II :)quare 11 to square ;;

Square 3 to square 12

Square 4 to sqlW"e 1 Square 1 to square 6

~~-L!
I J

Figure 6.10 The path of the ball is shown for
a sequence of goals, beginning in square 10
the goals are squares 11, 3, 13, 4, 1 and 6.

88

It is important to note that the verbal commands issued by the teacher and heard by PP have

no meaning themselves to PP. The only meaning given to the words is given by the context

in which they occurred.

When the eye moves to the goal square the visual stimulus will indicate that square and so

the active context in cluster 1 will be the one consisting of the goal square stimulus. When

the GO command is executed it will cause the active context in cluster 1 to be marked as a

goal which will cause PP to choose actions which should lead to the goal, and hence move

the ball to the goal square.

For example if the teacher says "move_3" and flashes the light in square 3 then as a reflex

to the light, the eye will move to square 3 and production P 2,2 will be stored according to

template 2: P2,2: ['hear "move_3" ~ 'move_eye 3']. In the next step the visual stimulus will

be 'see square 3' and PP will do the GO command (also as a reflex response to the flashing

light). On execution of the GO command production P3,2 will be stored according to template

3:

P3,2: ['hear "move 3"', 'move_eye 3' ~ GO].

Meanwhile in cluster 1 the context' see square 3' will be active ifit exists and will be marked

as a goal by the GO command. This will influence the leakback calculations (82) and PP

should begin choosing actions which will lead to square 3 as outlined in section 6.6.3.2.

Appendix A. 5 shows PP's interaction with the world for the first 790 steps.

Using the tilt actions the PP system is able to learn to control the position of the ball in the

maze but the control is not necessarily very good. The next chapter describes how a hybrid

PP-CMAC system can control the ball position better.

Note: Another experiment was performed, in which there was no command processor. The

purpose of this experiment was to show that the command processor was not crucial to the

previous demonstration. PP is able to perform the function of the command processor. In the

experiment PP's tilt actions were increment/decrement 8i8y, and there were some inputs

representing the direction of the velocity. In the experiment with no command processor more

contexts were stored in cluster 1 (~80 compared to 12). The simpler system with the

89

command processor and fewer productions was chosen to be presented here so that the

operation of the system could be followed more easily.

6.7 Summary

The PP system is able to learn through its interaction with the world the consequences of its

actions. The learning occurs by storing productions according to a predetermined set of

production templates and by updating connections between consecutively occurring contexts.

Through leakback PP can choose events which have the best chance of leading to a goal. A

working PP system has been presented which demonstrated:

• how PP can learn to control the movements of a ball rolling in a tilting maze,

• how contexts can be marked as goals using an internal reward command, and

• how PP can learn from random actions.

90

CHAPTER 7

A hybrid PP-CMAC system

7.1 Introduction

This chapter demonstrates how the two learning systems PP and CMAC can be combined and

how together the two systems can learn to effectively control smooth movement.

There is evidence (Go witzke & Milner, 1980; Bloedel, 1992) that one of the functions of the

cerebellum is to control smooth movement following discrete instructions from the cerebral

cortex. Albus proposed CMAC as a model of the cerebellum and it has been used to produce

smooth movement in control systems (Millar, Glanz & Kraft, 1988). The previous chapter

described the PP system which is able to learn from its environment and produce plans which

lead to goals. When executing these plans PP produces a series of discrete actions. The

proposed PP-CMAC system is, perhaps, analogous to the cerebral cortex-cerebellum system

in the brain, with PP providing discrete actions from plans and CMAC using those actions

to produce smooth movements.

The PP-CMAC system is introduced through an example in section 7.2. In that section the

system is configured to learn to control a ball in a tilting maze (a control problem that was

introduced in the last chapter). That section describes the system and then analyses the

learning that takes place in a specific experiment. The features of the combined system are

summarized in section 7.2.3. The PP-CMAC system is compared to other forms of motor

control in section 7.3.

7.2 A demonstration of the hierarchical PP-CMAC system

To demonstrate the design of this hierarchical system a simple sequential problem which

needs smooth control was required. Ideally, a model would have been constructed of some

human bodily part such as an arm or the speech organ. For simplicity, the task used is that

91

of controlling a ball rolling in a maze. The movement of the ball is controlled by tilting the

maze. The maze and baH are the same as that which PP learned to control in Chapter 6. The

dynamics of the model are described in appendix A.4. Although PP learned to control the ball

in the maze in chapter 6, it did not control it very well, as can be seen in Figure 6.10.

PP-CMAC learns to control the ball in the tilting maze better than PP did by itself. When

learning is complete in PP-CMAC, the control of the ball is smoother and the ball moves

more directly to the goal square from its current position.

For a robot to move an arm smoothly to a new position, the dynamics of the arm, constraints

imposed by the joints, and loading of the arm have to be taken into account. Similar

constraints must be taken into account when using speech organs. The ball and maze are not

a good model of an arm, the speech organs, or any bodily function but they do present the

PP-CMAC combination with a dynamic situation, requiring complex control and having

constraints (the ball bounces off the walls). Controlling the position of the ball is fairly

complex because the position of the ball at time t+'t depends not only on the control signals

at time t but also on the position and velocity of the ball at time t.

The following sections describe the configuration of the system (7.2.1) and what is happening

during the learning process (7.2.2).

7.2.1 The configuration of the PP-CMAC system

Figure 7.1 shows the interactions between a human teacher, PP, CMAC and the maze.

Figure 7.1 is similar to Figure 6.6 which shows how PP is set up to control the maze by

itself. The major difference is that the CMAC system is in Figure 7.l.

CMAC receives inputs from the eye and from the visual processor. The inputs from the eye

give the x and y coordinates of the gaze. The input from the visual processor is a number,

l .. l2, indicating the square that the eye was looking at when the GO action was last

performed by PP. It will be seen later (in section 7.2.1.2) that the input from the visual

processor to CMAC is in fact the goal square. The GO action and the setting of goals is

discussed further below. The output of CMAC is the two components of the tilt, 8x and 8 y .

92

Figure 7.1 An outline of the PP-CMAC system

The tilt from CMAC forms one input to the maze, the other is from the light which flashes

in a square. The configuration of the CMAC system is discussed in section 7 2 1

93

PP is configured in the same way it was in Chapter 6, with two types of stimulus (audio and

visual) and three types of action (tilt, move eye, and GO). All PP's actions perform the same

function as they did previously, except the GO action has an additional function of routing

goal information to the CMAC. The way this happens will not be obvious from Figure 7.1,

but it is explained clearly in section 7.2.1.2 below. The GO action sets the goals for both PP

and CMAC.

PP and CMAC communicate in two ways. The first (described in 7.2.1.3) is through the

command processor which, by incrementing ex and ey, supplies training examples for CMAC.

The second channel of communication is the GO command which routes the visual stimulus

from the visual processor to the CMAC input.

7.2.1.1 CMAC configuration

For the experiment, CMAC had s=4800 location units (arranged in a 12x20x20 block - goal,

x-coordinate, y coordinate). The access distances were chosen so that a set of lx4x4=16

location units became active for any input. Note that the block of active units has a width of

only 1 in the goal dimension which means there is no generalisation possible between

different goals. This was chosen deliberately because goals that are neighbours should not

necessarily be treated in a similar way (eg square 9 and square 10). A learning rate of a=0.6

was used. At the beginning of the experiment all the weights in CMAC are set to O.

Like the PP system, CMAC reacts whenever its inputs or outputs change. If its inputs change,

then new outputs are calculated using equation (58). If its outputs are changed by the

command processor, then its weights are updated using equation (60). The command processor

can increment or decrement the tilt in either the x- or y-direction. The learning that occurs

in CMAC is discussed in more detail in section 7.2.2.

7.2.1.2 Routing goals to the CMAC - the GO action

In the experiment described in chapter 6 the GO action was first performed as a reflex to the

94

flashing light. After learning, PP was able to perform the GO action in response to a verbal

command. The GO action set the goals in PP, and PP operates in exactly the same way here

as it did in the experiment in that chapter.

In this experiment the GO action has an additional effect. When the GO action is executed,

the current output of the visual processor (PP's visual stimulus) is routed to the input of

CMAC and remains there until the next GO action is performed. In Chapter 6, when the GO

action was performed the visual stimulus was the goal square. PP is operating in exactly the

same way and so in this experiment the visual stimulus is also the goal square when the GO

action is executed. This means that the GO action sends the visual stimulus of the goal square

to CMAC. Section 7.2.2 describes how, after learning is complete, sending the goal visual

stimulus to CMAC causes CMAC to move the ball to the goal square.

The GO action therefore sets goals, based on the visual stimulus, in CMAC and PP at the

same time. This ensures that PP and CMAC are coordinated, that is they are each consistently

trying to achieve the same goal. This allows the CMAC system to use a combination of PP's

current corrective actions and knowledge of previous actions for a particular goal to produce

output commands that will lead to that goal.

The GO command was inspired by its namesake in Bullock & Grossberg (1988), which has

some similarities to the system presented here but also significant differences; these are

discussed in 7.3.

7.2.1.3 Which part has control, PP or CMAC?

The tilt that is sent to the maze is the output of CMAC modified by the increments or

decrements of the command processor. The command processor only produces these changes

if the ball is not rolling in the direction indicated by PP's tilt action. In the beginning CMAC's

weights are all zero and so it produces no output. The only effect on the output is due to the

tilt changes from the command processor. So in the beginning PP has complete control.

As CMAC learns, it begins preempting PP's actions, causing the ball to roll in the desired

95

direction. In this case the command processor produces no increments in response to PP's

actions. So PP's actions have less and less effect as the CMAC learns and in this way CMAC

takes control gradually from PP.

7.2.1.4 The teacher

The teacher has to perform the same combination of light flashing and verbal commands, as

in the previous chapter, to teach the system to respond to audio commands. For this

demonstration the teacher is automated; audio commands are chosen to ensure that the ball

travels every path between possible goals. There are 12* 11 possible paths, ie from square 1

to squares 2 .. 12; from square 2 to squares 1, 3 .. 12; etc. When the ball moves into a goal

square the automated teacher selects the least travelled path from that square and says the

appropriate command indicating the new goal square. If there is a set of paths which have

been travelled the least, then one of that set is chosen at random.

This procedure ensures that the system learns every possible movement that can be specified

by the teacher. This is a more rigorous procedure than just choosing random goals.

7.2.2 Learning in the PP-CMAC system

The PP-CMAC system begins with little knowledge of the maze problem it is about to learn.

The only knowledge in the system is within the structure and the built-in learning mechanisms

of PP and CMAC. During learning the system goes through three stages:

" random PP actions,

" goal-directed PP actions, and

.. goal-directed CMAC actions.

Initially learning progresses in the same way as it did in Chapter 4, with PP performing

random actions and building up a network of transition probabilities. As the age of PP's

contexts goes over 50, PP begins performing goal-directed actions using the network of

probabilities and leakback (see Chapter 4 for a full description ofPP's learning). At this stage

CMAC begins learning.

96

cr,AAC will only learn if a PP action results

in the command processor incrementing one

of the control signals (ex or e y), i.e. if the

ball does not already have a component of

movement in the direction specified by PP's

action. PP will only produce a new tilt action

when the ball moves from one square to

another (see Figure 7.2) because this is when

the visual inputs to PP change. When a tilt

~ l~!_'
4

5 6 0: 7 8

............................ i-----i----+ --................... .
Goal
Square

9 10 11 12

N

Figure 7.2 PP does a south action when the
ball enters square 2. With no south component
of movement the command processor tilts the
maze south and CMAC learns.

action results in the command processor incrementing one of the control signals, the new

control signal provides a new target for the CMAC network. The CMAC uses this target to

adjust its weights using its learning algorithm, equation (60).

For example, suppose that for a particular ball position and goal, CMAC's ex output is 0

radians (as it would be in the beginning, before any CMAC learning, when all the weights

are 0) and that PP performs a South action. If the ball does not already have a component of

motion in the south direction then the command processor will produce a tilt increment of

0.05 radians and in CMAC, the weights of the connections to the ex output will be updated,

using equation (60). The error in the ex output (output 2) is E2=0.S-0=0.S. Sixteen location

units are active at anyone time, so, in this case, the weights of the connections from the

sixteen active units will change by dw=aO.S/16. a is 0.6 so the weights change by 0.3/16.

This means the new CMAC ex output will be 0.3 radians. The next time CMAC's inputs are

the same (ie the ball is in the same position and the goal is the same), then the ex output will

again be 0.3. Note that, if the ball is in a nearby position, then many of the same location

units will be active and so, the output will probably be close to 0.3. This means that as the

ball approaches the same position the x-axis tilt will approach 0.3. If, as it is approaching this

position, the ball's movement does not have a very large component in the north direction

then this tilt will be large enough to start it moving in the south direction. If this is the case

then, when PP performs the south action, the command processor will not increase the tilt and

so no CMAC learning will take place. However, if the ball continues moving in the north

direction then the command processor will increase the tilt. The weights of the connection to

97

the CMAC output will increase and so the next time the CMAC will tilt the maze even more.

As learning progresses PP's actions will start

to be preempted more and more often by

CMAC, e.g. by the time the ball moves into

a square where PP does a South tilt action

CMAC will have already tilted the maze to

make the ball move in the south direction

and so the command processor will not try to

increment the tilt. As time goes by, PP's

actions have less and less effect as CMAC

takes control. With less effectual PP actions

(i.e. more actions which do not cause the

command processor to adjust the tilt) there

are fewer updates of the CMAC weights,

120

(J) 110 -
Q) 100 ro

"C 90 c..
::::> 80

() 70

« 60
::::2!
() 50 - 40 0

0 30

Z 20

'0

20 40 60 80 100 120 140 160 160

Time (minutes)
Figure 7.3 The CMAC weights start being
updated as PP actions start becoming goal­
directed. The number of updates per minute
decreases as CMAC takes control.

until eventually CMAC has learnt the whole problem and PP's actions never have an effect.

This reduction in the number of CMAC weight updates for this experiment is shown in

Figure 7.3.

When CMAC is learning, it is effectively constructing a different surface for each goal. These

surfaces cause the ball to roll towards the goal which is at the lowest point on the surface.

Figure 7.4 shows the surface which results when the goal is "square 9", the bottom left square

of the mazel6
. This surface indicates the tilt of the maze at all ball positions in the maze. For

example when the ball is in the middle of square 12 the inputs to the CMAC are (x=0.875,

y=.0167 ,goal=9) and the tilt of the maze is given by the outputs (8x= 0.314, 8y=O.l92).

After CMAC has completed training, PP's actions cease to have any effect at all. This is

because at any stage the output of the CMAC will cause the ball to roll with a component of

its motion in the direction specified by PP's tilt action and so the command processor will be

16 The surface is constructed by generating the angle controls for each point, ex, 8)
(giving the slope in two directions), and integrating with respect to ball position. The slopes
between points with walls between them are ignored.

98

doing nothing.

7.2.2.1 The quality of control

improves

As the system moves through each of the

stages outlined above, the quality of control

improves. Initially when all the actions are

random, the ball will only move to the goal

square by chance. In this stage the system is

finding out what the actions do and how to

use them to solve the given problem. When

the actions are goal-directed, under PP

Figure 7.4 A perspective view of the surface
obtained from the CMAC when the goal is the
bottom left square (9). The surface shows the
tilt of the maze as a function of the ball

control, the ball moves to the goal square position over the whole of the maze

fairly reliably, although there can be

problems with overshoot as is the case in Figure 7.5 (top). However, when CMAC is in

control there are none of these problems, as is evident in Figure 7.5 (bottom). As the control

transfers from PP to CMAC the system is improving with practice.

The reason for these improvements can be explained in terms of degrees of freedom

(Bernstein, 1967). In this task there are two degrees of freedom, 8x and 8y . The PP system,

through the command processor, can only adjust one degree of freedom at a time, but to

skilfully perform this task the operator must be able to adjust both degrees of freedom at the

same time. For example, in going through squares 6 & 7 to square 3, in square 7 the operator

needs to adjust 8x so there is an acceleration in the north direction and at the same time adjust

8y so there is an acceleration in the west direction. The western acceleration reduces any

velocity component in the east direction and ensures that the ball does not overshoot and go

into square 8 rather than 3. With two outputs, the CMAC system is able to adjust both these

degrees of freedom simultaneously.

This ability to adjust 8x and 8y simultaneously is shown graphically in Figure 7.4. For

example when moving from square 11 to 7 the CMAC has to change the 8y tilt from giving

99

THE LIBRARY
UNIVERSITY OF

an acceleration in the east direction to one

which gives an acceleration in the west

direction while at the same time adjusting ex
to give an acceleration in the north direction

(to move from square 12 to 8) followed by

an adjustment to give an acceleration in the

south direction (to avoid overshooting into

squares 4).

It has been observed (Turvey, Flitch &

Tuller, 1982) that when people learn a skill

they simplify the learning process by

eliminating some degrees of freedom. As

they become more skilled the number of

degrees of freedom used increases. For

example when a child learns to hit a baseball

slhe stands quite rigid, only moving the arms

when swinging the bat. This reduces the

Figure 7.5 The path of the ball in the maze
from square 1 to 3 under PP control (top) and
CMAC control (bottom).

number of degrees of freedom being controlled, simplifying the problem and allowing

learning to take place. As the child improves, he or she will include shoulder movements in

the swing, increasing the number of degrees of freedom. A good batter will have movement

in the hips, shoulders and wrists. The example given in the present paper shows that the PP­

CMAC system can learn in the same way, adjusting only one degree of freedom at a time

initially and gradually adjusting two degrees as the skill is learnt.

The system improving as it practises can be likened to a person learning to hit a tennis ball.

In the beginning the person may use high level commands, given by a coach, such as to hold

the racket in a certain way and swing. People are generally not very good at hitting tennis

balls using these higher level commands, but with practice they improve and find they are

doing it automatically. This automatic hitting of the ball is analogous to the stage when

CMAC is controlling the system.

100

The concept of a goal being used as an input to a control system may explain the disruptive

effect of a tennis player focusing on the stroke production. Instead of concentrating on the

position where the ball is supposed to go, the player focuses on the movement of the tennis

racket, so the control system is deprived of the goal information (where the ball is supposed

to go) and the shot is not played well.

7.2.3 Summary of features of combined system

Two learning systems are combined, PP and CMAC. The PP system is capable of performing

complex tasks in an unknown environment, and produces goal-directed movements. However

the PP system is not suited to controlling smooth movements. The CMAC system is suited

to controlling smooth movements. The systems communicate in two ways:

• The GO command routes goal information to the CMAC. In section 7.2 the

information was routed from the sensors. The information could also come from a

memory of the sensors (if the direct sensory information is not available).

• The CMAC system learns from PP's performing error-based, incremental actions. The

actions are termed error-based because commands will be sent to the effectors only

when there is an error (or difference) between the desired movement and the sensed

movement (the visual processor senses which direction the ball is moving in.). This

allows control to gradually transfer from PP to CMAC. The actions are incremental

in that they adjust the output from CMAC by a small amount. This allows previous

knowledge stored in CMAC to have an effect and for performance to improve with

practice.

When the CMAC is fully trained, the sequence of commands which are sent to the effectors

are accessed from memory using a combination of the goal and sensory information.

7.3 Comparisons with other systems.

7.3.1 Open-loop vs closed-loop control.

Human motor control has been characterized in two ways: open-loop models and closed-loop

101

models (Stelmach, 1982; Abernethy &

Sparrow, 1992). These models take goal

information and produce a sequence of

motor commands for muscles.

7.3.1.1 Open-loop control

In open-loop models, the sequence of

commands sent to the muscles are retrieved

from memory in a way somewhat similar to

how a computer executes commands in a

program (see Figure 7.6). In its purest form

there are no means for correcting errors

usmg feedback. There are problems

concerning these models with how many

variations of motor programs can be stored

and how motor programs are generated for

novel movements. These problems have

been addressed by Schmidt (1982) who

suggested that we store generalized motor

programs, termed schema.

Open loop Control

Goal Information

Motor Command
Generator
(Memory)

Motor
commands

~,

Muscles

~,

Movement
Figure 7.6 Open-loop control: a sequence of
commands are retrieved from memory in
response to a goal cue.

Some forms of open-loop control do make use of feedback. One example of this, shown in

Figure 7.7, is Neilson, Neilson and O'Dwyer's (1992) Adaptive Model Theory (AMT). In this

theory a desired response trajectory is converted to movement commands through an inverse

model of the controlled system (the effectors). Feedback is used to update a forward model

of the controlled system from which inverse parameters are extracted for the inverse model.

In this model the feedback is used to adapt the controller to any changes in the effectors'

responses.

7.3.1.2 Closed-loop control

102

Closed-loop models (e.g. Adams, 1971) use

sensory feedback to produce an error

Goal
Information

Memory

Error

Motor
command
generator

Motor
commands

Muscles

Sensed
Movement

Sensors

Goal information

Memory

Desired
response

Motor

inverse model
of effectors

commands

I Effectors J
-1-~-

Movement

inverse
model

parameters

movement

sensors

Figure 7.7 Neilson, Neilson and O'Dwyer's
(1992) Adaptive Model Theory.

between the desired movement and the

detected movement (see Figure 7.8). The error

is then converted to muscle commands which

should reduce the error. Although this form of

control gives very good accuracy, these models

are undermined by their limited ability to
Movement

Figure 7.8 Error based closed -loop control. explain control of rapid actions (Kelso &

Stelmach, 1976) and the ability of both

humans and animals to produce movement in the complete absence of sensory information

(Taub, 1977).

7.3.1.3 The PP-CMAC system

When the PP-CMAC system is under PP control, the motor control is closed-loop, because

movement commands are only sent to the effectors if there is a difference (or error) between

the desired movement and the sensed movement. In the example given in 7.2 the maze was

tilted more only if the ball was not already moving in the desired direction. This is a very

simple form of feedback control because the motor commands are not augmented by the size

103

of the error; nevertheless it IS a form of

closed-loop control.

When the PP-CMAC system is under CMAC

control, there is no error calculated at all

(see Figure 7.9), which indicates that it is not

using closed-loop control. However, the type

of motor control is not open-loop because it

depends not only on the input (the goal co

information) but also on the sensed output

(the movement). It can be classed as a type

of closed-loop control which does not

calculate an error but uses a combination of

goal and sensory information to generate

Goal
Information

..
Motor

command
generator

(CMAC memory)

Motor
mmands ., ,.

Muscles

~ ,

Sens
Mov

Sensors

ed
ement

Movement
movement commands from memory. The Figure 7.9 Control in the PP-CMAC system.

commands accessed from the memory are an

accumulation and generalization of PP's error-based commands.

One problem with the closed-loop control used in the PP-CMAC system (Figure 7.9) is that,

because it uses sensory information, it is subject to the same criticisms as other closed-loop

systems outlined in section 7.3.l.2. In particular it would not be possible to produce

movement if there was no sensory information. One possible solution, shown in Figure 7.9,

would be to have another neural network which modeled the muscles, estimating their

movement. The model would use the motor commands (which are sent to the muscles) as

inputs and it would produce an estimation of the movement (from those commands) as an

output. If the model was 100% accurate then the estimated movement would be the same as

the sensed movement and so the input to the CMAC in Figure 7.9 would be the same as it

is in Figure 7.9. The model would use the actual movement (detected by the sensors) to train

itself.

If a model of the muscles was included in the system, as described above, then it would be

possible to produce movement in exactly the same way as before but without sensory

104

feedback. The system would then be using open-loop control. No experiment has been done

to test this theory.

In the open-loop control depicted in Figure 7.6 a sequence of motor commands are generated

from memory in response to a cue representing the goal. In the closed-loop control depicted

in Figure 7.8 the sequence of motor commands is generated from the error between the

desired movement and the sensed movement, but a sequence of desired movements must be

generated from a cue representing the goal. In the model of Neilson et al a sequence

representing the desired response trajectory must be generated, again in response to a goal

cue, from which the motor commands are then derived. Although it is possible to store

sequences on neural networks (see Chapter 5) the PP-CMAC system avoids this problem

because it does not require a memory to produce a sequence of commands or desired

movements in response to a single cue. Instead the constantly changing sensory information

is used to generate a sequence of motor commands.

The closed-loop control used in the PP-CMAC system also has an advantage over open-loop

control in that the feedback provides verification that the movements were successful and the

commands are adjusted in response to the feedback.

7.4 Extending the PP-CMAC combination - future work.

The simple task used in this demonstration did not require much of PP with only 36 contexts

stored. The combined PP-CMAC system could learn more complicated tasks which the

CMAC system would not be able to learn in full and so PP would have a larger role.

The primary role of the CMAC is to provide smooth control of the robot movements. This

can be done by configuring the CMAC in the same way as it was in this experiment: with

inputs representing the goal and current state of the body and outputs representing the signals

necessary to control the body. We propose that the goal input will come from sensory

information as directed by PP through the use of GO commands and the current state will be

given by either actual or estimated stimuli.

105

It has been shown that this configuration is capable of learning to control the position of a

ball in a tilting maze. This is analogous to controlling any body function, e.g. the movement

of an arm. A control system for an arm could have proprioceptive and/or visual inputs, giving

the position of the arm, and a visual input giving a goal. These are analogous to the x-y

position coordinates and the visual goal respectively.

A complicated task usmg an arm will involve movmg through a sequence of different

positions. To do this using the control system outlined above it will be necessary to have a

sequence of visual goals directed to the input. It will be the role of the PP system to

coordinate the visual system to do this so that the goals arrive in the correct order and at the

correct time. Similarly a complicated task involving the ball and maze could involve moving

the ball through a series of positions in sequence. For example, move the ball from its current

position to square 1 then to square 3. An example of PP performing complex tasks using a

set of simple movements is given in (Andreae et aI, 1993)

7.5 Summary

This chapter has shown how two learning systems, PP and CMAC, with different capabilities,

can be combined. It has been shown that PP, which is able to discover how to use its actions

to achieve goals, can train a CMAC network to perform smooth skilled movements necessary

to complete a simple task. The CMAC is configured with inputs representing the goal and

current state. We have demonstrated how the system improves with practice, initially

controlling one degree of freedom at a time and finally controlling both. The quality of

control of the PP-CMAC system is better than what PP achieves by itself.

106

CHAPTER 8

Conclusions

The conclusions drawn in this thesis can be grouped into two main areas:

• the sparse distributed memory, SDM

• the combined PURR-PUSS and CMAC system.

The work in Chapter 3 analyzed the capacity of the SDM. The work stemmed from an

experiment which was performed to determine if the theoretical error rates, put forward by

Kanerva (1988), were correct (section 3.3). This experiment showed that there was a

discrepancy between the theoretical and actual rates. A modified theory was proposed which

agreed better with the experimental results.

This first experiment led to further investigations into the capacity of the SDM. An alternative

method of reading from the memory was proposed (section 3.3) which decreased the error

rates. Section 3.4 described how the capacity could be improved by an order of magnitude

by using an iterative algorithm to store information in the SDM. The iterative algorithm was

derived from Gardner's (1988) iterative algorithm for the Hopfield network. It was confirmed

experimentally that Gardner's (1988) analysis of the capacity of the Hopfield network could

be applied to the SDM.

Section 3.6 outlines the differences between the SDM and the Hopfield memory. The

capacity of the Hopfield network is proportional to the number of input units, N, whereas the

capacity of the SDM is proportional to the number of location units, s. The number of

location units in the SDM cat'. be much larger than the number of input units in the Hopfield

memory and so the capacity of the SDM can be much larger than that of the Hopfield

memory.

Chapter 5 showed how the SDM could be used to store, retrieve and recognise sequences. A

significant amount of work had been done which showed how the Hopfield network could

107

store sequences. Chapter 5 showed how the techniques used to store sequences in the

Hopfield networ.k could be applied to the SDM. The advantage of using the SDM rather than

the Hopfield network is that the SDM has a larger capacity, as was pointed out in earlier

chapters.

Chapter 4 describes the CMAC network which is very similar to the SDM. It is argued that

the capacity limitations of the CMAC are the same as those of the SDM. The major difference

between the two networks from an operational point of view is that it is easier to get the

CMAC to run quickly on a computer. For this reason the CMAC network was used in the

experiments in Chapter 7.

The second major section of work involves combining the PURR-PUSS system with CMAC

to give a system which has the benefits of both. First, Chapter 6 describes the PURR-PUSS

system. Two features which are new to the PURR-PUSS system are described in Chapter 6,

learning from random actions, and the goal-setting command, GO.

Chapter 7 shows how the PURR-PUSS and CMAC systems can be combined to form a

system which is able to learn how to perform skilled movement tasks proficiently. In the

combined system PP discovers how to use its actions to achieve goals and it trains the CMAC

network to perform skilled smooth movements. The system improves its skill at a task with

practice.

108

References

Abernethy B. & Sparrow, W. A. (1992), "The rise and fall of dominant paradigms in motor

behaviour", in JI J. Summers (ed), Approaches to the Study of Motor Control and

Learning, Amsterdam: North-Holland, 3-4S.

Adams, J. A. (1971), "A closed-loop theory of motor learning", Journal of Motor Behaviour,

3, 111-1S0.

Albus, J. S. (197Sa), "A new approach to manipulator control: the Cerebellar Model

Articulation Controller (CMAC)", ASME Transaction Series, Journal of Dynamic

Systems, Measurement, and Control, 97, 220-227, 1975.

Albus, J. S. (197Sb), "Data storage in the Cerebellar Model Articulation Controller (CMAC)",

ASME Transaction Series, Journal of Dynamic Systems, Measurement, and Control,

97, 228-233.

Amit, D. J. & Gutfreund, H. (198S), "Spin-glass models of neural networks", Physical Review

A, 32, 2, 1007-1018.

Anderson, J. A. (1972), "A simple neural network generating an interactive memory",

Mathematical Biosciences, 14, 197-220.

Andreae, J. H. (1972-1991), Man-Machine Studies Progress Reports UC-DSEIl-41, Dept. of

Electrical and Electronic Engineering, University of Canterbury, Christchurch, New

Zealand.

Andreae, J. H. (1977), "Thinking with the teachable machine" Academic Press Inc. (London)

Ltd.

Andreae, J. H. (198S), "The first moment", Man-Machine Studies Progress Report UC­

DSEI26, 44-SS, Dept. of Electrical and Electronic Engineering, University of

Canterbury, Christchurch, New Zealand.

Andreae J. H. & MacDonald, B. A. (1991), "Expert control for a robot body", Kybernetics,

20, 4, 28-S4.

Andreae, J. H., Ryan, S. W., Tomlinson, M. L. & Andreae, P. M. (1993), "Structure from

Associative Learning", Int. Journal Man-Machine Studies, 39, 1031-10S0.

Barro, S., Bugarin, A., Yanez, A. (1991), "Systolic implementation of Hopfield networks of

109

arbitrary size", Lecture notes in Computer Science 540, Artificial Neural Networks,

International Workshop IWANN '91, Granada, Spain, September 17-19, 1991,

Proceedings, ed A. Prieto, Springer-Verlag, 268-276.

Bauer, K. & Krey, U. (1990), "On learning and recognition of temporal sequences of

correlated patterns", Zeitschrijt fiir Physik B - Condensed Matter, 79, 461-474.

Bauer, K. & Krey, U. (1991), "On the storage capacity for temporal pattern sequences of

correlated patters", Zeitschrijt for Physik B - Condensed Matter, 84, 461-474.

Bernstein, N. (1967), The Coordination and Regulation of Movement. London: Pergamon

Press.

Bloedel, J. R. (1992), "Functional heterogeneity with structural homgeneity: How does the

cerebellum operate?", Behavioral and Brain Sciences, 15, 4, 666-678.

Bressloff, P. C. & Taylor, J. G. (1991), "Temporal sequence storage capacity of time­

summating neural networks", Journal of Physics A: Mathematics & General, 25,

833-842.

Bullock, D. & Grossberg, S. (1988), "Neural dynamics of planned arm movements: Emergent

invariants and speed accuracy properties during trajectory formation", Psychological

Review, 95, 1, 49-90.

Chou, P. A. (1989), "The capacity of the Kanerva memory", IEEE Transactions on

Information Theory, 35, 281-298.

Cottrell, G. W., Munroe, P. & Zipser, D. (1987), "Learning internal representations from gray­

scale images:An example of extentional programming". In Proceedings of the 9th

Annual Conference of the Cognitive Science Society, pp 461-473.

Freeman, W. J. (1987), "Simulation of chaotic EEG patterns with a dynamic model of the

olfactory system", Biological Cybernetics 56, 139-150.

Fukushima, K. (1987), "A neural network model for selective attention in visual pattern

recognition and associative recall", Applied Optics, 26, 23, 4985-4992.

Fukushima, K. (1988), "Neocognitron: A hierarchical neural network capable of visual pattern

recognition", Neural Networks, 1, 2, 119-130.

Fukushima, K. & Imagawa, T. (1993), "Recognition and segmentation of connected characters

with selective attention", Neural Networks, 6, 1, 33-41.

Fukushima, K. (1993), "Neural network for connected character recognition", Proceedings of

the first New Zealand two-stream conference on artificial neural networks and expert

110

systems", ed N. K. Kasabov, IEEE Computer Society Press.

Gardner, E. (1988), "The space of interactions in neural network models", Journal of Physics

A: Mathematics and General, 21, 257-270.

Glover, D. E. (1988), "A hybrid optical fourier/electronic neurocomputer machine vision

inspection system", Proceedings of Vision 1988 Conference, sponsored by SMEIMVA.

Gorman, R. P. & Sejnowski, T. J. (1988), "Analysis of hidden units in a layered network

trained to classify sonar targets", Neural Networks, 1, 75-89.

Gowitzke, B. A. & Milner, M. (1980), Understanding the Scientific Bases of Human

Movement, Williams & Wilkins.

Grossberg, S. "Adaptive pattern classification and universal recoding: I. Parallel development

and coding of neural feature detectors", Biological Cybernetics, 23 121-134.

Guyon, I. & Personnaz, L. (1988), "Storage and retrieval of complex sequences in neural

networks", Physical Review A, 38, 12, 6365-6372.

Herz, A., Sulzer, B., Kuhn, R. & J. L. van Hemmen (1988), "The Hebb rule: Storing static

and dynamic objects in an associative neural network", Europhysics Letters, 7, 7, 663-

669.

Herz, A., Sulzer, B., Kuhn, R. & J. L. van Hemmen (1989), "Hebbian learning reconsidered:

representation of static and dynamic objects in associative neural nets", Biological

Cybernetics, 60, 457-467.

Hopfield, J. J. (I982), "Neural networks and physical systems with emergent collective

computational properties", Proceedings of the National Academy of Sciences, USA,

79, 2554-2558.

Hopfield, J. J. (1984), "Neurons with graded response have collective computational

properties like those of two-state neurons", Proceedings of the National Academy of

Sciences, USA, 81, 3088-3092.

Kanerva, P. (I988), Sparse Distributed Memory, MIT Press.

Keeler, J. D. (1988), "Comparison between Kanerva's SDM and Hopfield-type Neural

Networks", Cognitive Science 12, 229-239.

Kelso, J. A. S. & Stelmach, G. E. (1976), "Central and periphial mechanisms in motor

control", in G. E. Stelmach (ed), Motor Control: Issues and Trends, 1-49, New York:

Academic press.

Kleinfield, D. (1986), "Sequential state generation by model neural networks", Proceedings

111

of the Natural Academy of Sciences, USA, 83, 9469-9473.

Knuth, D. E. (1969), The Art o.f Computer Programming, vol 2, Addison-Wesley.

Kuhn, R, van Hemman, J. L. & Reidel, U. (1989), "Complex temporal association in neural

networks", Journal of Physics A: Mathematics & General, 22, 3123-3135.

Lapedes, A. & Farber, R (1987)" "Non-linear signal processing using neural networks:

prediction and system modelling", Los Alamos National Laboratory report LA-UR-87-

2662.

MacDonald, B. A. (1980), "Turing machine power for a multiple context learning system",

Man-Machine Studies Progress Report UC-DSEI16, Dept. of Electrical and Electronic

Engineering, University of Canterbury, Christchurch, New Zealand, 11-38.

MacDonald, B. A. (1984), "Designing teachable robots", Ph.D. Thesis, Department of

Electrical and Electronic Engineering, University of Canterbury, Christchurch, New

Zealand.

MacDonald, B. A. & Andreae, J. H. (1981), "The competence of a multiple context learning

system", Int. J. General Systems, 7, 123-137.

Mato, G. & Parga, N. (1991), "Sequences in neural networks with temporal association",

Zeitschrift fur Physik B - Condensed Matter, 84, 483-486.

McCulloch, W. S. & Pitts, W. H. (1943), "A logical calculus of the ideas immanent in neural

nets, Bulletin of Mathematical Biophysics, 5, 115-133.

Millar, W. T. III, Glanz, F. H. & Kraft, L. G. III, (1988) "Application of a general learning

algorithm to the control of robotic manipulators", The International Journal of

Robotics Research, 6, 2, 84-98.

Minsky, M. L. & Papert, S. S. (1969), Perceptrons, MIT Press, Cambridge, MA.

Neilson, P. D., Neilson, M. D., & O'Dwyer, N. J. (1992), "Adaptive Model Theory:

Application to disorders of motor control", in 1. 1. Summers (Ed) Approaches to the

Study of Motor Control and Learning, 495-548, Elsevier Science Publishers.

Parker, D. B. (1985), "Learning logic". Report TR-47, Cambridge, MA: Massachusetts

Institute of Technology, center for computational research in economics and

management science.

Parks, P. C. Militzer, 1. (1992), "A comparison of five algorithms for the training of CMAC

memories for learning control systems", AUfomatica, 28, 5, 1027-1035.

Prager, R. W. & Fallside, F. (1989), "The modified Kanerva model for automatic speech

112

recognition", Computer Speech and Language, 3, 61-81.

Rosenblatt F. (1958), "The perceptron: A probabilistic model for information storage and

organization in the brain", Psychological Review, 65 386-408.

Rosenblatt, F. (1962), Principles of Neurodynamics, New York: Spartan.

Rubinstein, R Y. (1981), Simulation and the Monte Carlo method, John Wiley & Sons.

Rumelhart, D. E., McClelland, J. L. & the PDP research group (1986), Parallel Distributed

Processing. Explorations in the Microstrncture of Cognition, volumes 1 & 2, MIT

Press, Cambridge, MA.

Ryan, S. W. & Andreae, J. H. (1995), "Improving the performance of Kanerva's associative

memory", IEEE Transactions on Neural Networks, 6, 1, 125-130.

Schmidt, R A. (1982), "The schema concept", in J. A S. Kelso (ed), Human Motor

Behavior: An introduction, 219-238, Lawrence Erlbaum Associates.

Sejnowski, T. J. & Rosenberg, C. R (1987), "Parallel networks that learn to pronounce

English text", Complex Systems, 1:145-168.

Skarda, C. A. & Freeman, W. J. (1987), "How brains make chaos in order to make sense of

the world", Behavioral and Brain Sciences, 10, 161-195.

Stelmach, G. E. (1982), "Motor control and motor learning: The closed-loop perspective", in

J. A. S. Kelso (ed), Human Motor Behavior: An introduction, 93-116, Lawrence

Erlbaum Associates.

Taub, E. (1977), "Movements in nonhuman primates deprived of somatosensory feedback",

Exercises and Sport Science Reviews, 4, 335-374.

Turvey, M. T., Flitch, H. L. & Tuller, B. (1982), "The Bernstein perspective: I. The

problems of degrees of freedom and context-conditioned variability", in J. A. S. Kelso

(ed), Human Motor Behaviour: An Introduction, Hillsdale, NJ: Lawerence Erlbaum

Associates, 239-252.

Wan, E. A (1993), "Discrete time neural networks", Journal of Applied Intelligence, 3, 91-

105.

Wang, D. & Arbib, M. A. (1990), "Complex temporal sequence learning based on short-term

memory", Proceedings of the IEEE, 78, 9, 1536-1543.

Witten, I. H. (1982), Principles of Computer Speech, London: Academic Press.

113

APPENDIX A.l

Derivation of error rates in Hopfield memory, (13)

When pattern pk is presented to a Hopfield memory the output of unit i is correct if the

following is true:

substituting (3) and (7), (84) becomes:

p,j; (~ PiP/}/>O
Ii';

-~ (~ PiP/k,>p/)>o
j"'i -t ((~ pip /j.(P;kP/) +(PtP/tj>o

J"" I"'k
N Np

-I: I: p/p/ptp/>-N
j=l 1=1
j"'i I"'k

N

since I: (Pjkp/t=N-l
j=l
j",j

(84)

(85)

Assuming the patterns are uncorrelated and the probability of a 1 in a pattern is the same as

that for a -1, then the product, p\p'lkjpk
J

will be a random variable with the probability of

there being a 1, p(1)=p(-1)=0.5. If another variable is introduced, which represents the number

of times the product, p\p'lkjpk
j , equals 1, N j , then the sum of the products in (85) will be:

(86)

Using (85) there will be an error if:

N(N -l)-N
N< p

1 2
(87)

N 1 is a binomial variable. There are N(Np -1) terms in the sum so N j will have an expectation

114

of:

The variance of NI will be:

(N-l)(Np-l)
E[N]=----

1 2
(88)

(89)

Using the normal approximation to the binomial distribution, the probability of an error is:

[

(N-l)(Np-l)-(N-l) 1
p = J N < (N-l)(Np-l)-(N-l)] = 2 -E[N1

]

~11 2 • o~
(N-l)(Np-l)-(N-l) (N-l)(Np-l)

2 2

(N-l)(Np-l) (90)

4

where a=Np/N.

115

APPENDIX A.2

Derivation of the correction to Kanerva's theory,

equation (38)

An expression for the probability of an error is obtained by measuring the variance of the

local field of output i, when the input is Xi, This local field is given by the following

expressIOn:

N
• P • k

h(=I:L!cYj (91)

k=l

where L\ is number of location units which are active for both Xi and X k
,

The variance of hJ j is

(92)

because the term:; L\ Y\ are independent. At this stage of the derivation Kanerva treats yk[

as a constant (zero variance) which results in the incorrect assumption that

. k . VaT< L1Yj }= Var{Lf}

But by definition,

Var { Liyt} = E {(LiYjkt} -[E{ LiY/} j
=E{ (Liytt} -[E{ Li}.E{ ynt
=E{(Lit}
= Var{Li}+[E{Li}j

where E(x) is the mean of variable x,

116

since Lf and Yi k are independent

(93)

(94)

From Kanerva17
,

where hp is the value of the slope of the normalised function L\ when the distance between

Xi and Xk is O.SN. An expression for hp is given in (37).

The expectation of Uk is:

(96)

so,

(97)

If bit Y\ is a 1 then there will be an error if hi
i < O. Assuming a normal distribution,

(98)

E{hJJ=ps, so,

17in deriving this expression for the variance, Kanerva writes Uk as:

Lf=~Li)+ef (1)

and makes two simplifying assumptions:
1. that the expectation of L\ IS a linear function of the Hamming distance

between Xi and Xi, and
2. that the variance of eik is constant.

These two assumptions could account for the small, but consistent, difference between the
experimental and theoretical results in Figure 3.2.

117

(99)

118

APPENDIX A.3

Derivation of equation (42)

If the output of unit i is supposed to be 1 then, using the alternative method of reading from

the SDM, there will be an error if the average weight from the active location units, ~iactivc is

less than the average weight from all the location units, ~\otal' Therefore the probability that

an output unit has an incorrect output is given by the probability that ~iactive - ~\otal < O. To

calculate this probability expressions for Var{ ~iactive - ~\otal} and E{ ~iactive - ~\otal} are

required.

where Cov{x,y} is the covariance of variables x and y. The average weight from the active

location units to output unit i is:

i hi
IL • = __
racttve N

p .

(101)

Ea!
k=l

where ali is the activation of location unit i from input Xi. To simplify the calculations the

119

Np

number of location accessed by Xi, :E a/
k=1

is treated as a constant
18

of value E{t a/}=ps '
k=l

The variance of the average weight from all the location units to output unit i IS:

The average weight from all the location units to output unit i is:

s

Using the same reasoning as above the variance of f..l\otal will be:

s

:E aiY{ can be described by the binomial distribution so
k=1

(104)

(105)

(106)

18Note: this will have some variance but the effect of this variance in this equation is

Np , "i\' Lkjy"k small, This is because :E af is large compared to L.... (which has a mean of 0) and
bl ~

,Np ,
L! = "i\' a! ' However neglecting the effect of this variance means the error rate should be

J L.... I
k=1

slightly higher than (42), This probably explains why the experimental rate is slightly higher
than the theoretical rate in 34,

120

and

so,

E{t aiY/} =ps
k=l

{

j }_ Npp(l-p+ps)
Var I-1total ----!...---­

S

The covariance of J..liactive and J..litotal is given by:

Cov{ l-1~ctive, l-1~tal} = E{I-1!u:tivel-1~tal} -E{I-1!u:tive }E{ 1-1~}
=E{I-1!u:tivel-1~tal} since E{I-1!otal}=O

Therefore,

(108)

(109)

(110)

(111)

(112)

In the product of the sums in the above equation all the terms will average to 0 except those

where the Y\ are the same. This gives the covariance as:

121

s
. k

Np LiL a,
i }=E ~ '=1

IJ. tota' L...t s
k=1 k La,s

'=1
s

E{Li}.E a,k
=N '=1

p s

La,ks
'=1

2
=N P s.ps

p ps.s
=N p2

p

Therefore the variance of f.1'active - f.1\otal will be:

(113)

(114)

E{f.1iactive } will be 1 and E {f.1\otal } will be O. So E{f.1iactive - f.1\otal }=l. Therefore, using (98),

the probability of an error is:

s
P Error = <P -;::===============

(115)

122

APPENDIX A.4

The dynamic maze model

The model is of a ball within a tilting maze, shown in Figure 7.1. The movement of the ball

is controlled by tilting the maze along two axes of rotation. At time t, the angles of tilt along

the y-axis and x-axis, Sit) and Sx(t), give the components of acceleration of the ball in the

plane of the maze, in the x and y directions respectively:

ait)=g.sin6yCt) and
ayCt) = g.sin6 it),

where g is the gravitational acceleration.

Acceleration normal to the plane of the maze is ignored.

(116)

The velocity and acceleration are updated at regular intervals, t. t= 10ms was used for this

demonstration. The x and y components of velocity at time Ht are given by:

vx(t+'t')=vx(t) +'t'ait) and
vyCt+'t')=Vy(t) +'t'ayCt)

Similarly the x and y components of position at time Ht is given by:

Px(t+'t')=Px(t)+'t'vit) and
pyCt+'t')=pyCt) +'t'vyCt)

(117)

(118)

When the ball collides with a wall the component of velocity normal to the wall changes sign

and is halved. This gives a bouncing effect off the walls.

123

APPENDIX A.5

PP's interaction with the maze - the first 256

steps.

Time Step tilt see Go look hear flash Production Production
Step Length

I I east "move 2" F PI,I,I [I » east"']
2 south 2 PI,I,I [1 » south]

P2,1,1 ["move_2" » 2]
3 east 2 GO PI,I,2 [2 » east]

P2,2,2 [ltmove_21t 2 »GO]
4 west PI,I,l [I »westJ
5 100 east PI,l,1
6 I east 2 "move 3" F PI,I,2 [2 » east]
7 north 2 3 PI,I,2 [2 » north]

P2,1,3 [ltmove_3" » 3]
8 west 3 GO PI,I,3 [3 » west]

P2,2,4 ["move_3" 3 »GO]
9 north 2 PI,t,2 [2 » north]

10 40 west PI,t, I
11 100 west PI,I,I
12 100 north PI,I,1 [1 » north]
13 100 east Pl,l,l
14 30 north 2 Pl,1,2
15 100 east 2 PI,I,2
16 100 west 2 Pl,I,2 [2 » west]
17 30 east Pl,l,l
18 13 east 2 Pl,1,2
19 100 east 2 Pt,1,2
20 100 east 2 PI,l,2
21 100 east 2 Pl,t,2
22 100 north 2 Pl,1,2
23 100 west 2 PI,1,2
24 30 west Pl,l,I
25 100 south Pl,1,1
26 100 west Pl,1,1
27 100 west PI,I,1
28 100 east PI,I,I
29 30 east 2 PI,1,2
30 2 north 6 Pl,I,4 [6 » north]
31 13 west 7 PI,I,5 [7 » west]
32 north 3 "move 4" F PI,1,3 [3 » north]
33 east 3 4 PI,I,3 [3 » east J

P2,1,5 [lt move_ 41t »4]
34 south 4 GO PI,I,6 [4 » south]

P2,2,6 [lt move_ 4" 4 »001

35 ,vest 3 Pt,I,3 [3 » east]
36 tOO east 3 Pl,t,3 [3 » east]

124

37 100 north 3 PI,I,3
38 100 north 3 PI,I,3
39 100 north 3 PI,I,3
40 100 west 3 PI,I,3
41 100 west 3 PI,I,3
42 100 south 3 PI,I,3 [3 » south)
43 100 south 3 PI,I,3
44 100 west 3 PI,I,3
45 100 north 3 PI,I,3
46 100 east 3 PI,I,3

47 100 south 3 PI,I,3
48 100 south 3 PI,I,3
49 100 north 3 PI,I,3
50 100 west 3 PI,I,3
51 100 north 3 PI,I,3
52 100 west 3 PI,I,3
53 100 south 3 PI,I,3
54 34 south 7 PI,I,5 [7 » south]
55 3 west 6 PI,I,4 [6 »west]
56 18 west 5 PI,I,7 [5 »west]
57 II east 9 PI,I,8 [9 »east]
58 100 east 9 PI,I,8
59 100 south 9 PI,I,8 [9 » south)
60 100 north 9 PI,I,8 [9 » north)
61 25 east 5 P 1,1,7 [5 » east]
62 3 east 6 PI,I,4 [6 » east]
63 7 north 2 PI,I,2
64 100 south 2 PI,I,2 [2 » south)
65 25 west 6 PI,I,4
66 4 west 7 PI,I,5
67 II east 6 PI,I,4
68 20 east 7 PI,I,5 [7 »east]
69 15 south 8 P1;l,9 [8 »south)
70 5 north 12 PI,I,IO [12 » north)
71 10 west 8 PI,I,9 [8 »west]
72 south 4 "move 5" F PI,I,6 [4 »south]
73 east 4 5 PI,I,6 [4 »east]

P2, 1,7 ["move 5" »5) 'A
south 5 GO PI,I,7 [5 »south)

P2,2,8 ["move_5" 5 »GO]
75 west 4 Pl,l,6 [4 »west I

76 100 west 4 P 1,1 ,6
77 100 south 4 PI,I,6
78 22 west 8 PI,I,9
79 3 north 7 PI,I,5 [7 »north)
80 15 north 6 PI,I,4
81 5 east 2 PI,I,2
82 100 west 2 PI,I,2
83 30 south PI,!,!
84 100 north PI,I,I
85 100 south PI,l,l
8G 100 east PI,I,I
'/<,7 25 west 2 PI,I,2
88 2 north 6 PI,I,4

125

Time Step tilt see Go look hear flash Production Production
Step Length

89 23 east 2 PI,I,2
90 100 east 2 Pl,l,2
91 100 west 2 Pl,l,2
92 30 north PI,I,I
93 100 east PI,l,1
94 25 west 2 PI,I,2
95 13 north PI,1,l
96 100 north PI,I,I
97 100 east PI,I,I
98 30 south 2 PI,I,2
99 25 south 6 PI,I,4 [6 » south]
lOa II south 7 PI,I,5
101 17 north 8 PI,I,9 [8 » north]
102 2 north 12 PI,I,IO
103 20 east 8 PI,I,9 [8 » east]
104 10 west 4 PI,I,6
105 100 north 4 PI,I,6 [4 » north]
106 lOa north 4 PI,I,6
107 100 north 4 PI,I,6
108 lOa east 4 PI,I,6
109 100 north 4 PI,I,6
110 100 east 4 PI,I,6
III 100 south 4 PI,I,6
112 lOa north 4 PI,I,6
113 100 south 4 PI,I,6
114 100 north 4 PI,I,6
115 lOa north 4 PI,I,6
116 100 south 4 PI,I,6
117 100 east 4 PI,I,6
118 lOa west 4 PI,I,6
119 100 east 4 PI,I,6
120 73 east 8 PI,I,9
121 lOa west 8 PI,I,9
122 30 east 7 PI,I,5
123 13 north 8 PI,I,9
124 12 west 4 PI,I,6
125 lOa south 4 PI,I,6
126 20 south 8 Pl,l,9
127 3 north 7 PI,I,5
128 15 west 6 Pl,l,4
129 5 north 2 Pl,l,2
130 10 east I PI,l,l
131 23 east 2 PI,l,2
132 100 west 2 PI,l,2
133 30 north PI,I,I
134 100 north PI,I,I
135 100 south PI,I,I
136 100 south PI, I ,I
137 100 west PI,I,I
138 lOa south PI,I,I
139 100 east PI,l,l

126

Time Step tilt see Go look hear flash Production Production
Step Length

140 30 east 2 Pl,1,2
141 2 north 6 Pl,1,4
142 13 south 7 Pl,1,5
143 26 west 8 Pl,l,9
144 3 west 12 PI,l,IO
145 13 south 11 Pl,l,ll [11 » south]
146 15 east 10 PI,I,12 [10 » east]
147 24 north 11 P1,1,I1
148 15 east 12 Pl,l,l0 [12 » east]
149 13 east 8 PI,1,9
150 10 north 4 Pl,l,6
151 100 north 4 P1,1,6
152 100 north 4 Pl,1,6
153 100 west 4 Pl,1,6
154 100 west 4 P1,1,6
155 100 south 4 P1,1,6
157 3 east 7 P1,1,5
158 15 east 8 P1,1,9
159 14 east 12 Pl,l,10
160 100 east 12 Pl,1,10
161 100 east 12 Pl,l,l0
162 100 north 12 Pl,1,IO
163 20 east 8 PI,I,9
164 10 south 4 PI,I,6
165 13 west 8 Pl,1,9
166 10 north 12 Pl,l,lO
167 20 east 11 Pl,l,ll [11 » east 1
168 13 east 12 Pl,l,l0
169 3 north 8 Pl,I,9
170 10 south 4 P1,1,6
171 19 west 8 PI,I,9
172 10 north 12 PI,l,IO
173 21 west 8 Pl,I,9
174 2 east 7 PI, 1 ,5
175 8 east 3 Pl,1,3
176 100 south 3 Pl,1,3
177 100 west 3 PI,I,3
178 100 east 3 Pl,1,3
179 100 south 3 PI,1,3
180 100 west 3 Pl,I,3
181 100 south 3 Pl,1,3
182 100 west 3 PI,1,3
183 100 west 3 Pl,I,3
184 41 north 7 PI,I,5
185 I north 3 Pl,1,3
186 100 east 3 PI,I,3
187 100 north 3 PI,1,3
188 100 north 3 PI,I,3
p\() 100 west 3 PI,1,3
190 100 west 3 PI,1,3
191 100 east 3 PI,I,3

127

Time Step tilt see Go look hear flash Production Production
Step Length

192 100 north 3 PI,I,3
193 100 west 3 Pl,l ,3
194 100 north 3 PI,1,3
195 100 east 3 Pl,l,3
196 100 east 3 PI,1,3
197 100 south 3 Pl,I,3
198 100 south 3 PI,l,3
199 100 south 3 PI,I,3
200 100 east 3 Pl,l,3
201 74 east 7 PI,I,5
202 30 east 8 PI,I,9
203 100 west 8 PI,I,9
204 30 north 7 PI,I,5
205 13 south 3 PI,I,3
206 10 north 7 PI,l ,5
207 13 west 6 Pl,l,4
208 8 south 2 PI,I,2
209 9 east I Pl,l,1
210 13 west 2 PI,I,2
211 8 west 6 PI,I,4
212 east 5 "move 6" F PI,I,? [5 » south]
213 west 5 6 Pl,l,? [5 » south]

P2,1,9 ["move_6" » 6]
214 south 6 GO PI,I,4 P2,2,10 ["move_6" 6 »GO]
215 west 5 PI,I,?
216 2 south 9 Pl,l,8
217 100 west 9 PI,I,8
218 100 west 9 PI,I,8
220 100 north 9 PI,I,8
221 100 east 9 PI,I,8
222 100 south 9 PI,I,8
223 100 north 9 PI,I,8
224 28 east 5 PI,I,?
225 100 north 5 Pl,l,? [5 » north]
226 100 south 5 Pl,l,7
227 25 north 9 PI,I,8
228 13 west 5 PI,I,?
229 100 south 5 PI,l,?
230 100 west 5 PI,I,?
231 100 east 5 PI,I,?
232 100 north 5 PI,I,7
233 100 north 5 PI,I,?
234 lOa east 5 PI,I,?
235 100 east 5 PI,I,?
236 100 west 5 Pl,l,?
237 100 east 5 PI,I,?
238 I north 6 "nl0ve 7" F Pl,l,4
239 west 6 7 PI,I,4 P2,1,11 ["move_7" » 7]
2+1) east 7 GO Pl,l,5 P2,2,12 ["move 7" 7 »GO]
2+1 \vest 2 PI,I,2
242 15 north PI,I,I

128

Time Step tilt see Go look hear flash Production Production

Step Length

243 100 north PI,I,I
244 100 north PI, I, I

245 100 east Pl,l,1
246 30 west 2 PI,I,2
247 13 north PI,l,1
248 100 south PI,I,I
249 100 north PI,I,I
250 100 north PI,I,I
251 100 north PI, I ,I
252 100 west PI,I,I
253 100 west PI,I,I
254 100 west PI,l,1
255 100 east PI,I,I
256 100 east PI,l,1

l29

APPENDIX A.6

PP's memory

Actions and stimuli

Action
tilt

Instances
west* east* north south
GO Go

Move_Eye 1 * 2* 3* 4* 5* 6* 7* 8* 9* 10 11 12

Instances Stimulus
see 1 * 2* 3* 4* 5* 6* 7* 8* 9* 10 11 12
Hear

Templates

Cluster 1

"move 1"*
"move 7"*

No of templates = 1
1 [.see »tilt]

Cluster 2
No of templates = 2
1 [.Hear »Move_Eye]

"move 2"*
"move 8"*

2.[.. Hear, .Move_Eye » Go]

Memol-Y map

Contexts stored for cluster 1

Context Context no
1* (1)
2* (2)
3* (3)
6* (4)
7* (5)
4* (6)
5* (7)
9* (8)
8* (9)
12 (10)
11 (11)
to (12)

Memory map for cluster 1

"move 3"* "move 4"* "move 5"* "move 6"* - - - -
"move 9"* "move 10" "move 11" "move 12" - -

130

Context Production Prediction Next Number of times context
no no Context has followed production

1 Pl,I,1 east* 1 57
2 112

south 1 16
west* 1 29
north 1 26

2 Pl,I,2 east* 2 20,
4 1

north 2 30,
4 1,

2
west* 1 86,

2 24
south 4 307,

2 76,
1 23

3 Pl,I,3 north 3 30
east* 3 25
west* 3 25
south 5 Ill,

3 60

4 Pl,l,4 north 5 107,
2 101,
7 195,
4 23

west* 7 118,
2 10,
4 11,
5 10

south 2 5,
5 14,
7 8,
4 2

east* 2 192,
4 104,
5 565,
7 15

5 Pl,I,5 west* 3 36,
9 14,
4 512,
5 63

south 4 21,

131

9 11,
5 30,
3 3

east* 3 5,
9 204,
4 12,
5 48

north 3 67,
5 24,
4 150,
9 146,
2 1

6 Pl,I,6 south 9 828,
6 73

west* 6 16,
9 1

north 6 31
east* 6 25,

9 1

7 PI,I,7 north 7 17,
8 2,
4 4

east* 4 328,
7 116,
8 50

west* 8 4,
7 16

south 7 19,
8 74,
4 4

8 Pl,l,8 east* 8 18,
7 1

south 8 33
north 7 157,

8 60
west* 8 21

9 PI,l,9 north 10 20,
6 84,
5 2,
9 16

east* 6 14,
10 14,
9 6

west* 6 731,

132

Context Production Prediction Next Number of times context
no no Context has followed production

10 607,
5 372,
9 37

south 10 158,
9 23,
5 1,
6 1

10 Pl,I,10 north 9 798,
10 90,
11 138

west* 10 33,
11 139,
9 5

east* 10 22,
9 4

south 10 22,
11 2,
9 1

11 PI,I,l1 east* 10 258,
11 53

south 12 10,
10 7,
11 2

north 10 14,
12 10,
11 1

west* 12 89,
11 16

12 Pl,I,12 east* 11 109,
12 60

west* 12 27
north 12 23
south 12 31

Productions stored in cluster 2

Template 1
Context Production Prediction

No (Move Eye action)
"Inove 2"* P2,l,1 2
"move 3"* P2,1,2 3

133

Context Production Prediction Next Number of times context
no no Context has followed production

"move 4"* P2,1,3 -4
"move Y'* P2,1,4 5
"move 6"* P2,1,5 6
"move 7"* P2,1,6 7
"move 8"* P2,1,7 8
"move 9"* P2,1,8 9
"move 10" P2,l,9 10
"move 11" P2,l,10 11
"move 12" P2,1,l1 12
"move 1"* P2,l,121 1

Template 2
Context Context no
"move 2"* 2* P2,2,1 GO
"move 3"* 3* P2,2,2 GO
"move 4"* 4* P2,2,3 GO
"move 5"* 5* P2,2,4 GO
"move 6"* 6* P2,2,5 GO
"move 7"* 7* P2,2,6 GO
"move 8"* 8* P2,2,7 GO
"move 9"* 9* P2,2,8 GO
"move 10" 10 P2,2,9 GO
"move 11" 11 P2,2,10 GO
"move 12" 12 P2,2,11 GO
"move 1"* 1* P2,2,l2 GO

l34

	Abstract
	Table of contents
	Acknowledgements
	Chapter 1
	Chapter 2
	2.1 Introduction
	2.2 The Hopfield network
	2.3 The capacity of the Hopfield network
	2.4 Alternative views of the Hopfield network
	2.5 Summary

	Chapter 3
	3.1 Introduction
	3.2 The Sparse Distributed Memory (SDM)
	3.3 The performance of the SDM
	3.4 Assigning the variable weights iteratively
	3.5 Associating real valued inputs and outputs
	3.6 A comparison between the SDM and Hopfield memory
	3.7 Summary

	Chapter 4
	4.1 Introduction
	4.2 The cerebellar model articulation controller (CMAC)
	4.3 Storing binary patterns
	4.4 Comparing the CMAC and the SDM
	4.5 Summary

	Chapter 5
	5.1 Introduction
	5.2 Storing sequences in the Hopfield network
	5.3 Storing complex sequences in the SDM
	5.4 Recognising sequences
	5.5 Summary

	Chapter 6
	6.1 Introduction
	6.2 Production learning
	6.3 Leakback learning
	6.4 Performing actions for the first time
	6.5 Marketing contexts as goals
	6.6 An example of the PP system
	6.7 Summary

	Chapter 7
	7.1 Introduction
	7.2 A demonstration of the hierarchical
PP-CMAC system
	7.3 Comparisons with other systems
	7.4 Extending the PP-CMAC combination - future work
	7.5 Summary

	Chapter 8
	References
	Appendices
	APPENDIX A.1
	APPENDIX A.2
	APPENDIX A.3
	APPENDIX A.4
	APPENDIX A.5
	APPENDIX A.6

