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Abstract

Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast can-

cer screening technology, relying on image-based measurement of surface vibrations in-

duced on a breast by mechanical actuation. Knowledge of frequency response char-

acteristics of a breast prior to imaging is critical to maximize the imaging signal and

diagnostic capability of the system. A non-invasive image based modal analysis system

that is designed to be able to robustly and rapidly identify resonant frequencies in soft

tissue is presented in this thesis.

A feasibility analysis reveals that three images per oscillation cycle are sufficient

to capture the relative motion behavior at a given frequency. Moreover, the analysis

suggests that 2D motion analysis is able to give an accurate estimation of the response

at a particular frequency. Thus, a sweep over critical frequency ranges can be performed

prior to imaging to determine critical imaging settings of the DIET system to maximize

diagnositc performance.

Based on feasibility simulations, a modal analysis system is presented that is based

on the existing DIET digital imaging system. A frequency spectrum plot that comprises

responses gathered from more than 30 different frequencies can be obtained in about 6

minutes.

Preliminary results obtained from both phantom and human trials indicate that

distinctive resonant frequencies can be obtained with the modal analysis system. Due

to inhomogeneous properties of human breast tissues, different imaging location appear

to pick up different resonances. However, there has been very limited clinical data for

validating such behavior.

Overall, a modal analysis system for soft tissue has been developed in this thesis. The

system was first evaluated in simulation, then implemented in hardware and software,

and finally successfully validated in silicone phantoms as well as human breasts.
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Chapter 1

Introduction and Background

1.1 Breast Cancer

Breast Cancer is the most common type of cancer found in women both in developed

and developing countries, accounting for as much as 16% of worldwide female cancer

registrations [1]. Successful early detection of breast cancer using screening modalities

such as mammography can significantly reduce the mortality rate, by as much as 30%

[2].

In New Zealand, breast cancer is the most common type of cancer registered for

women aged between 25 to 74, accounting for more than 27% of all new female registra-

tions [2]. Over the past decade, the government has increased the availability of its free

screening programs to cover those aged between 45 and 69, and this is believed to be the

main cause behind the uptrend in detection rate and downtrend in mortality rate seen

in Figure 1.1. However, breast cancer remains to be the second most common cause of

cancer death for the female population, accounting for more than 16% of female cancer

deaths [3, 4].

Although the risk of developing breast cancer increases with age, incidence among

younger women is rising. The exact causes of breast cancer remain unknown. Researches

have identified a number of risk factors for breast cancer, including high-fat diet [5], high

level of alcohol intake [6–9], obesity [10], radiation, genetic markers [11] and endocrine

disruptors [12, 13].

Surgery is usually the first line of attack against breast cancer when the tumor is

localized. However, many other adjunct treatments also exist, including chemotherapy,

1
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radiation therapy, hormonal therapy, and targeted therapy. Together with early de-

tection through breast cancer screening programs, these treatments have shown to be

effective in reducing the mortality rate.
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Figure 1.1: Female breast cancer registration and mortality rates in New Zealand,
between the 1997 and 2007 [3].

Mammography is currently one of the most commonly used modalities for reliable

detection of early, non-palpable breast cancer. Despite its safety and efficacy, mam-

mography suffers from several major drawbacks. It is known to have a poor sensitivity

that can sometimes lead to false positives [14, 15]. Furthermore, the screening process
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requires heavy mechanical stress imposed on the breasts, causing pain and discomfort

[16]. Moreover, ionizing radiation (X-rays) is used during mammography screenings and

many believe the screening process itself may increase the likelihood of developing cancer

[17].

The issue of X-ray radiation induced cancer has been a controversial and a much

disputed subject within the medical field. Although radiation-induced breast cancers

are indistinguishable from other breast cancers, the adverse consequences of ionizing

radiation are well established and there has always been doubts on their use in a screening

program that aims to detect cancer at an early stage [18]. The rate of cancer detection

and that induced by breast screening has been the subject of a series of publications by

Law and Faulkner [17, 19, 20].

The past decades have seen increasingly rapid advances in the field of medical imag-

ing. There has been an increasing interest in developing alternative breast imaging

techniques. Detecting tumors in soft tissues using elastography, is a promising approach

being researched in the medical imaging community [21, 22]. Preliminary results on

magnetic resonance elastography (MRE) [23, 24] and ultrasound elastography [25–28]

have all shown promising results. All elastographic imaging modalities are aiming to

provide a more accurate diagnosis of cancerous tissues. Due to the costly nature of MRE

and ultrasonic elastography, these modalities are not very well suited for screening ap-

plications.

1.2 DIET System

Digital Image Elasto Tomography (DIET) is an emerging non-invasive and cost-effective

elastographic imaging system designed for breast cancer screening. The DIET system is

intended to be compact and can be easily deployed, even in remote areas, where people

have very little accesses to the breast cancer screening facilities. As shown in Figure 1.2,

its design is relatively simple, comprising five consumer digital cameras and a mechanical

actuator. Based on external tissue compression and subsequent strain profile analysis,

DIET is able to compute elastic modulus profile of the full breast volume. Such elastic

properties can then be used to evaluate and detect areas of higher stiffness, potentially

cancer, within the breast volume.

During a DIET screening session, the breast undergoes actuations from a sinusoidal

vibrating source and its surface is imaged. A typical DIET screening process using the

current prototype is depicted in Figure 1.3 and described in more detail here.
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(a) Design drawing (b) DIET Prototype

(c) Rendered design artwork (d) Inside of the current prototype

Figure 1.2: DIET prototype.

1) A voice-coil actuator is used to induce sinusoidal oscillation on the breast volume.

Typically, the actuation has a frequency of 10− 100Hz and an amplitude of 0.5− 1mm.

Once the breast is moving in its steady state motion, imaging may begin.

2) An array of 5 digital cameras are used to capture the steady state motion of the

breast surface. Once the breast is moving in steady state, all points on the breast surface

are at the same locations in space at the same point relative to the actuation period.

By synchronizing the LED strobe light system to illuminate only at the desired point in

time, a single image can be exposed to capture the same state from multiple cycles [29].

This averaging approach effectively enhances the image quality by averaging out noise.

Ten images with linear spacing in time between adjacent images are taken to capture a

single oscillation cycle. Figure 1.4 illustrates the points in time that are captured by a

three image per oscillation setting.

3) Fiducial markers found on the surface are tracked through a single oscillation

period on all cameras [30, 31]. By parameterizing the motion, a full description of the

frequency response of the breast surface can be obtained and processed.
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Figure 1.3: DIET work-flow describing the imaging procedure.

4) A diagnostic result can be obtained by comparing experimental motion with sim-

ulated results. Geometry of the breast volume is reconstructed using 2 steps. First

interpolating surface data points using software package FASTRBF, followed by filling

a volume into these points using software package GMSH [32]. This geometric property

is then used by Finite Element (FE) packages to simulate surface disturbances when in-

clusions are present. Such as shown in Figure 1.5, surface motion data is then compared

with simulation results and can lead to an estimation of the location and size of any

stiffer masses [32].
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Figure 1.4: An example to illustrate 3 images per oscillation cycle, where T corre-
sponds to a single oscillation period. Instead of high speed imaging, sharp images are
achieved by long exposure taken over multiple oscillation cycles with illumination from
the LED strobe light system. The LED strobe light system is synchronized with the
actuation frequency and will only illuminate part of the oscillation cycle allowing for

sharp images to be taken.

Figure 1.5: Tumor diagnosis by comparing Finite Element (FE) simulation results
with surface motion data. Motion data (right) demonstrates a reasonably good match
with Finite Element (FE) simulation results (left), therefore the two should have similar

health status.

A system diagram of the control software of the current prototype is shown in Fig-

ure 1.6. Imaging devices are solely controlled by the PC and all other hardware is

controlled by a National InstrumentsTM Reconfigurable Input Output (RIO) system.

The RIO system provides real-time control capabilities to ensure accurate actuator op-

eration and strobe synchronization.

1.3 Motivation

In DIET, the actuation frequency is an important experimental parameter that can be

altered in a clinical or experimental setting. Due to the damped and viscoelastic behavior

of breast tissue, the actuation frequency can strongly influence the motion seen on the

breast surface. As shown in Figure 1.7, a slight change in actuation frequency can have

severe impacts on the surface motion. This effect is seen both on human breasts as well

as silicone phantoms.



Chapter 1. Introduction and Background 7

������

���

	�
�����

������

���������	
��

��

�
������	
��

���

���


�������

�����
���

����

Figure 1.6: System diagram of the DIET setup.

(a) Fundamental frequency 18Hz (b) Nearby frequency 22Hz

Figure 1.7: Real displacement amplitude at different actuation frequencies of a 3 kPa
phantom. A slight change in actuation frequency can have severe impact on surface

motion.
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The contrast in stiffness between healthy and cancerous tissues can be maximized

when the analysis is carried out around the resonant frequency of the breast tissue,

where largest oscillatory responses in surface displacement occur. This amplification, in

contrast, can significantly enhance the performance of tumor identification algorithms.

Consequently, it is desired to identify the resonant frequencies on each breast prior to

imaging. Resonant frequencies can vary significantly in different breasts due to the

complex anatomical structures and geometries. The successful identification of such

crucial parameter can lead to an increase in performance of the overall system.

Lotz et al. [33] have developed a new concept for identifying the tumor’s position

by solely analyzing surface motions. Some preliminary phantom studies show that such

approach is able to outperform the existing system in processing time by omitting the FE

simulations. However, this approach requires relatively large surface motions in order to

make accurate estimations. Consequently, the imaging should be concentrated around

the actuation frequencies that can result in large surface motions.

The resonant frequency, or sometimes called the natural frequency, is the tendency

of a vibrating structure to oscillate with larger amplitudes at some frequencies than

at others. Hence, prior inspection of the fundamental frequency of a breast using a

suitable fundamental frequency detection platform ought to be carried out. A non-

invasive platform that could operate in an efficient yet accurate fashion is desired. Once

the resonant frequencies are identified, thorough imaging could be carried out around

this frequency. A possible new work flow is illustrated in Figure 1.8. This particular

approach eliminates the need for any FE simulations.

1.4 Preface

This research presents a non-invasive resonant frequency detection system for soft tissue,

particularly designed for the DIET system in breast cancer imaging. This thesis has been

organized in the following way.

Chapter 2

begins by laying out the theoretical background of the research, and looks at

a number of popular modal testing platforms and vibration sensing modalities.

Most importantly, merits and potential pitfalls associated with those methods

are identified. This chapter proposes that an imaging sensor fulfills the design

requirements.

Chapter 3

assesses the feasibility of the proposed approach through simulation studies using
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Figure 1.8: Proposed DIET work-flow with imaging only diagnosis.

silicone phantoms. Key parameters are investigated and their optimal values are

determined. Accuracy of the method is evaluated by comparing results with a

reference sensor.

Chapter 4

describes the design and performance of the current implementation. This chapter

also reviews the suitability of several other motion recognition algorithms and

imaging modalities.

Chapter 5

presents characterization and evaluation of some results from phantom studies as
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well as human trials.

Chapter 6

provides conclusions and suggests future work.



Chapter 2

Modal Analysis

This chapter provides an overview of various vibration sensing modalities and different

modal analysis platforms. The importance of the modal analysis system is explained

first followed by a selection of the most appropriate sensing solution for DIET. A ret-

rospective feasibility study using the selected vibration sensing modality is performed

before implementing the modal analysis system.

2.1 Experimental Modal Analysis

In order to identify the resonant frequencies of a breast, it is necessary to assess its

vibration response. One common way to investigate dynamic behavior of a structure

is through experimental modal analysis. This technique consists of applying a known

vibrational excitation to a structure and measuring its output response at different points

of interest. The structural resonances can be seen in the response spectra. By analyzing

the frequency response, such as using Bode plots, a better understanding of the elastic

properties can be obtained.

In a DIET system, the frequency response can be used to identify optimal frequencies

for the FE optimization algorithms, or to identify the overall response on the surface

and develop alternative diagnostic algorithms. One example of a diagnostic application

of modal analysis is to model breasts using simple mechanical systems [34]. Bode plots

provide excellent data for system identification. Based on curve fitting of these plots,

mechanical model parameters can be identified. The identified stiffness and damping

values can lead to diagnostic results.

11
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2.2 Vibration Theory

Vibration is the repetitive, periodic, or oscillatory response of a mechanical system.

“Repetitive motions that are regular and occur at relatively low frequencies are com-

monly called oscillations whereas any repetitive motion, even at high frequencies, with

low amplitudes and having irregular and random behavior falls into the general category

of vibration” [35]. Usually the terms vibration and oscillation are used interchangeably,

as is done in this thesis.

In order for a structure to vibrate, it must have two main characteristics: elasticity

and mass. Soft tissue such as the human breast has both characteristics. Previous studies

have reported a damped viscoelastic behavior of soft human tissue [36, 37]. Thus, it is

safe to assume normal human breast structure would have similar characteristics as a

spring-mass-damper system shown in Figure 2.1.

k

m

c

F = F0sinω t

Figure 2.1: Damped single DOF system undergoing F0 sin(ωt) excitation, where m
is the mass, c is damping and k represents stiffness.

Given motion of a harmonic ψ(t) can be expressed by displacement amplitude A,

angular frequency ω and phase delay φ.

ψ(t) = Asin(ωt+ φ) (2.1)

Equation 2.1 contains three parameters; A, ω and φ. During a cycle of vibration, ψ

takes on all values between the limits ±A. The rate of vibration cycles, or the number

of cycles per unit time, f = ω
2π is its frequency, which has an unit of s−1.
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When external time-varying driving force is applied to soft tissue for a period of

time; the soft tissue reaches steady state, a regime in which the structure is vibrating

harmonically at the same frequency as the driving force.

When applying a harmonic excitation u(t) = F0 sin(ωt) to the single degree-of-

freedom (DOF) system, such as shown in Figure 2.1, the equation of motion is shown

in Equation 2.2, which then yields Equation 2.3. During steady state, Equation 2.4 and

Equation 2.5 are used to describe amplitude A and phase φ of the vibrating soft tissue

that has mass m, spring constant k and viscous damper of damping coefficient c.

F0 sinωt = mẍ+ cẋ+ kx (2.2)

ẍ+ 2ξωẋ+ ω2
nx =

F0

m
sinωt (2.3)

where F0 is the excitation force; x ẋ ẍ are the position, velocity and acceleration;

and ξ = c

2
√

km
describes the damping coefficient of the soft tissue.

A(ω) =
F0

k

ωn
2

√

(ωn
2 − ω2)2 + (2ξωnω)

(2.4)

φ = arctan
2ξωnω

ωn
2 − ω2

(2.5)

where ωn is the natural frequency of the soft tissue; and ω is the frequency of the

input harmonic, or the actuation frequency.

Maximum displacement of the soft tissue occurs when ω = ωn

√

1− 2ξ2. Depending

on the damping coefficient of soft tissue, maximum displacement would occur around the

natural frequency ωn. An example response is illustrated in Figure 2.2. For relatively

small ξ, maximum displacement occurs at a frequency ω that is slightly higher than ωn.

If the system has relatively high damping, response becomes maximum at a frequency

ω that is slightly smaller than ωn. Given the actuation frequency ω ≈ ωn, large tissue

vibration displacements can be achieved.

The relationship between displacement, velocity and acceleration of the soft tissue

during harmonic actuation can be obtained through differentiating Equation 2.1 with

respect to t, where first differentiation gives the velocity and second differentiation gives

the acceleration as shown in Equation 2.6 and Equation 2.7.



Chapter 2. Modal Analysis 14

ω

‖A‖

ωn

Figure 2.2: Ideal frequency response for a single DOF mechanical system, where
maximum displacement occurs around its fundamental frequency ωn.

ψ̇(t) = −ωAsin(ωt+ φ) ≡ ωA cos(ωt+ φ+
1

2
π) (2.6)

ψ̈(t) = −ω2Acos(ωt+ φ) ≡ ω2Acos(ωt+ φ+ π) (2.7)

According to Equation 2.6 and Equation 2.7, ψ(t), ψ̇(t) and ψ̈(t) all vary harmoni-

cally with the same frequency. Notably, acceleration leads velocity by π
2 while velocity

itself leads displacement by π
2 . A much more visual illustration using phasors can be

seen in Figure 2.3.

ωt
π
2

π 3π
2

2π

ψ

ψ̇

ψ̈

ω

Figure 2.3: Phasor relationships between displacement ψ, velocity ψ̇ and acceleration
ψ̈.

In practice, boundary conditions, also known as initial conditions, tend to have

strong influences over the initial values of displacement A and phase φ. Different starting

experimental arrangements would lead to different initial values for A and φ.
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2.3 Vibration Sensing

The field of vibration measurement in the domain of industrial, architectural and geo-

logical vibrations has already been intensively studied and the associated difficulties are

well known. However, vibration measurement on soft tissue, such as human breasts, is

a less well-known topic. In order to carry out the modal analysis on a breast surface, an

appropriate sensor must be selected for measuring the vibrations.

A wide range of electronic transducers are available for sensing surface vibrations.

Some of these sensors are sensitive to the displacement and acceleration while others are

sensitive to optical harmonics such as ultrasound and laser. Regardless of their working

principles, these approaches can be subdivided into two broad categories, depending

on whether or not it has any physical contacts with the vibrating object that is being

measured.

Since the main objective of the DIET system is to deliver breast cancer diagnoses in

a non-invasive and cost effective manner, it is best to keep the modal testing platform

alike. A number of well-known vibration sensing techniques are presented in this section

and discussed for their suitability in the DIET context which concerns the question of

the sensor deployment: exactly how least invasive, rapid and low cost can the vibration

sensing method be?

2.3.1 Piezo-electric Accelerometer

A piezo-electric accelerometer is a device that is frequently used to monitor vibrations.

It measures the acceleration at the point where it is attached, converting mechanical

acceleration into a proportional electrical voltage signal. Most accelerometers are able to

monitor motion occurring along one or more axes. The acceleration sensitivity associated

with most accelerometers is only valid for a certain range of frequencies [38]. Hence,

a suitable accelerometer must have the appropriate bandwidth that covers all possible

DIET actuation frequencies.

Since the accelerometer only measures the acceleration of the object, displacement

can only be obtained by performing integrations on the readings. A number of suitable

accelerometers are presented in Table 2.1.

Rendon et al. have developed a system for studying soft tissue vibrations, presenting

a system that uses two ENDEVCO 752A12 accelerometers to map the surface of neck

and thorax using the mean power levels of acceleration signal in different frequency

bands [39]. Patient’s heart beat, breathing movement, snoring sounds are recorded by
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Table 2.1: A selection of suitable accelerometers for tracking tissue vibrations. Some
of the accelerometers offer voltage potentials mV (milli-volts) output while others offer

capacitance pC (pico-farads) as the output signal.

Product Weight Sensitivity Frequency Response
Model (gm) /Uncertainty ±%

Dytran 3032A 1.5 10(mV/g) 1Hz-10kHz/5%
Dytran 3133A1 0.8 10-15(mV/g)) 0.25Hz-10kHz/10%
Dytran 3133A2 0.8 2-3(mV/g) 0.25Hz-10kHz/10%
Dytran 3133A3 0.8 5-7(mV/g) 0.25Hz-10kHz/10%
Dytran 3224A1 0.2 10(mV/g)) 1.8Hz-20kHz/5%
Dytran 3225F2 1.0 10(mV/g) 2Hz-10kHz/10%
Dytran 3225F1 0.6 10(mV/g) 1.6Hz-10kHz/10%
Dytran 3225F3 0.6 10(mV/g) 1.6Hz-10kHz/10%

ENDEVCO 22PICOMIN 0.14 0.4(pC/g) 1Hz-10kHz/5%
ENDEVCO 752A12 13 100(mV/g) 1Hz-8KHz/5%

B&K 4374 0.65 0.15(pC/g) 1Hz-26kHz/10%
B&K 4375 2.6 3.1(pC/g) 0.1Hz-16.5kHz/10%

accelerometers attached to the skin. However, such design neglects the additional weight

being put onto the skin, as its main intention is to find out the relationships of the power

levels between different skin surface areas, not their actual displacements.

Cano et al. have developed a system to measure displacement of machine points by

merging computer vision and accelerometers [40]. Essentially, the design uses a camera

to measure displacements, and compares the results with acceleration measurements.

The system is designed to operate on industrial machines with much larger vibrations.

The overall complexity of the design also made the approach less appealing to others.

Vibrating

Surface

Accelerometer

Signal wire

Figure 2.4: Example setup for vibration sensing using a compact accelerometer. Note
the requriement of contact between the sensor and vibration surface. Not only can this
affect the resulting measurements, but also make the testing procedure a lot more

complicated.

One of the most difficult aspects of using an accelerometer is finding a method to

attach the sensor to the skin. The sensor must be rigidly attached to the skin throughout

the actuation process in order to carry out any measurements. Some manufacturers,
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such as Dytran, have designed very compact accelerometers that just weigh less than

a gram and can be connected to any external data acquisition platform via a thin

piece of wire. Since the patients will be lying on their chest, any additional weight

attached onto the breast will disturb the surface motion pattern, and this disturbance

can lead to incorrect diagnoses. Slight rotation of the accelerometer’s sensitive axis by

a few degrees will severely affect the acceleration measured. During actuation, there is

absolutely no guarantee on whether the accelerometer will stay in the same orientation.

In addition, the measurements can be easily affected by the surrounding environment,

such as temperature, humidity, frequency of operation and earth gravity.

In a short summary, some of the obstacles associated with using accelerometers are,

• Models with high accuracy are fairly expensive (For example, lower end Dytran

3032 model costs just a little over NZ$200 while ultra light weight ENDEVCO

22PICOMIN itself is valued around about NZ$1500)

• Difficulty in attaching the sensor to the patient’s skin and the presence of signal

wires may impose inconveniences

• Sophisticated second integrations are required to obtain displacement, especially

with low accelerations

• Signal magnitude is position dependent and can be strongly affected by the sur-

rounding environment

• Output is position dependent. For example, rotation of the sensitive axis of the

accelerometer by a few degrees from the horizontal axis can produce a much smaller

acceleration.

2.3.2 Ultrasound

Ultrasonic vibration sensing is an alternative non-invasive sensing technique. A con-

tinuous high frequency ultrasonic beam is emitted towards the moving surface and the

reflected beam is captured. Doppler shifts in the received signal can be analyzed to

estimate the amplitude and frequency of the vibration. This method is reasonably sen-

sitive to surface movements. Furthermore, the sensitivity can be enhanced by applying

various signal modulation schemes to the ultrasonic beam.

Over the years, many have studied such non contact vibration measurement systems

using ultrasonic interferometry. Zhao et al. have been able to detect amplitudes as little

as 30 nm using the pulse echo Doppler method [41], while Matar et al. have proposed
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several other improvements that can be made to increase the sensitivities of ultrasonic

vibration sensors [42]. This method would have been much more convincing if the

author had considered to test it on various vibrating surfaces that are made of different

surface shapes and materials. Yamakoshi et al. [26], Matsumura et al.[27] and Sinkus

et al. [28] all have implemented similar systems for detecting inner tissue vibrations

based on ultrasound measurements. The performance of these systems is good, but not

particularly useful in DIET since they are targeted at inner tissue vibrations.

The energy of the ultrasonic pulse is transmitted in form of a cone along the trans-

ducer axis, and the majority of the limitations of ultrasonic sensors are related to this

cone-shaped emitting pulse. As shown in Figure 2.5, the further the sensor is positioned

from the vibrating surface, the larger the angle of beam, and the larger the surface it

is measuring. The reaction time also increases with sensor-to-target distance to avoid a

large beam cone diameter. Most accurate detection occurs when the vibrating surface is

perpendicular to the transducer’s beam axis, and the sensor must be positioned as close

as possible to the vibrating surface.

Vibrating

Surface

Ultrasonic

Sensor Beam cone d

Figure 2.5: Example setup for vibration sensing using an ultrasonic sensor. The
further the sensor is positioned from the vibrating surface, the larger the beam cone

diameter. The area monitored depends on the length of d.

It is difficult for the ultrasonic sensor to discern between the breast surface and its

surroundings, because the beam will bounce back as soon as it has reached any obstacles.

Previous experiments have indicated that breast surface area close to the actuator tends

to have a synchronized motion with the actuator, and thus must be ignored. However,

this can be a difficult task as the area covered by the sensor is dependent on the angle of

beam as well as the sensor-to-target distance. In order to detect movement of a specific

region of interest, precise positioning of the sensor is required. One other possible

solution is to employ an array of sensors focusing on the area of interest and average

the resulting measurements. But due to the high pricing on accurate narrow beamed
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ultrasound transducers (for example, NZ$3000 for a Migatron RPS-412A-10-V [43]),

other options must be considered.

2.3.3 Laser Doppler Vibrometer (LDV)

Laser-based remote sensing techniques have emerged and appear to be expanding its

applications across the biomedical field; for example, Jenkins et al. have used LDV

to study anatomical noise vibrations [44], Wang et al. have used a similar setup to

detect human life signs [45] and Wilson et al. have used it to monitor cardiac motions

[46]. Smutz et al. have used scanning LDV to study vibration transmissibility on

animal tissues[47]. Lorenzo et al. adopted a similar approach to study local hand

transmissibility [48].

The basic LDV employs a two beam laser interferometer. Displacements of a target

point can be calculated by comparing the Doppler-shifted beam and its internal reference

beam. It has very high performance in terms of processing speed, precision, accuracy and

ability to track motion of a relatively small area. Single-point LDV is most commonly

used and it is able to measure the small vibrations occurring at a single point without

the need for scrupulous setup or surface preparation. Scanning LDV is also popular due

to its ability to simultaneously monitor numerous locations for vibrations. However,

LDV is only able to detect out of plane motion; that is, motion occurring perpendicular

to the vibrating surface.

Apart from its costly nature, some concerns also exist around its safety in a practical

clinical environment. Extreme care must be taken when LDV is used, as it is a class II

laser device and could potentially harm the eyes. The LDV is the perfect device that

can be used for modal testing, but its high cost makes it unsuitable for creating a cost

effective cancer screening system. However, it is important to note that LDV is still a

good reference sensor for validating the accuracy of other vibration sensors.

2.3.4 Fibre Optic Vibrometer (FOV)

Optical fibres have been used as sensors for measuring vibration amplitude and several

other physical parameters. There are two distinct types of optical fibre sensors:

• Intrinsic, the fibre is used as a sensing element, where the parameter of interest

affects the light propagation through the fibre

• Extrinsic, the fibre is used to relay data from one end to another.
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Chitnis et al. have designed an extrinsic optical sensing system that is able to detect

displacement as little as 0.1µm [49]. Dib et al. have designed a similar system that

would work with a flat vibrating surface with an accuracy of 2nm [50]. Alberto et

al. have designed a calibration scheme to enhance the design by Dib et al. to work

on non-spatially uniform reflectivity and non-flat vibrating surface with an accuracy

of 1µm [51–53]. However, all approaches of this kind carry with them some serious

limitations in a clinical environment. For example, the sensor needs to be repositioned

and calibrated manually for every trial, and this can seriously reduce the efficiency of a

screening session.

Most of the displacement vibration fibre optic sensing methods are of extrinsic type.

This approach utilizes optic fibre cables that are placed at a distance d away from the

vibrating surface as shown in Figure 2.6. A light emitting source can then transmit light

pulses along one fibre to the vibrating surface, and the other fibre picks up the light and

transmits it back. At the receiving end, the light is detected by a photodiode. There

are many design variations, but all based on the same principle, light intensity captured

by the receiving end is directly proportional to distance d. Ideally, the vibrating surface

should be perpendicular to the fibre axis for maximum accuracy.

LED

Photodiode

Fibre Optic Cable
Vibrating

Surface

d

Figure 2.6: Example setup using an extrinsic fibre optic sensor for vibration sensing,
where d is the fibre-to-target distance. Such distance can strongly affect the sensitivity

and performance of the overall system.

Although there is no strict requirement on the fibre-to-target distance, according

to Alberto et al., uncertainty drops when working with longer distances d. Sensitivity

increases when working with shorter distance d. In other words, the sensor working

position has to be chosen as a compromise between the sensitivity and the uncertainty

since they both increase for shorter fibre-to-target distance d. Moreover, a reference

sensor should be used for calibrating the photodiode. For the modal testing platform,

this could impose some problems. Under a clinical environment, it is unpractical to

work with long fibre-to-target distances due to a compact build requirement for the

DIET setup. Manual adjustments of fibre cables to make sure they stay perpendicular

to the vibrating surface can also be challenging. This procedure may need to be repeated
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for every imaging session. Last but not least, the performance of fibre optic sensors on

soft tissue is unclear, and may require further investigations.

There are commercial FOV products which are far more economical compared to

LDV devices yet have similar accuracy, but its setup during clinical trials will be rather

difficult.

2.3.5 Optical Image Sensor

Nearly all the sensors described in this chapter can only measure 1D motion, that is,

movements occurring along one particular axis, such as the out of plane motion occurring

perpendicular to the vibrating surface. When the breast undergoes an actuation force,

its vibrational response can be far more complicated than from a single plate, which most

of those sensors are designed to measure. Therefore, multiple sensors may be required to

capture motions occurring in different axes. However, this introduces further problems:

unless the sensor’s sensitive beam is in parallel with the particular axis of interest, precise

movements in that axis cannot be measured. This is especially difficult with Z-axis

measurements due to the presence of the actuator setup, such as shown in Figure 2.7.

Actuator

a

b sensor

Z

X

Figure 2.7: Difficulty in measuring Z axis motion associated with using sensors that
are capable of measuring 1D motion, where a is the sensor’s sensitive axis and b is the
nearest possible location for sensor deployment. As a direct result, the measurements

can only be done at one angle.

Digital (CCD or CMOS) image sensors are becoming increasingly popular due to

their low costs. Advances in image processing techniques in recent decades have made

this approach very versatile and robust. The image contains 2D information regarding

the movements in any 2 axes depending on the location of the camera. This is very ben-

eficial since the vibration of breast volume occurs in more than one axis. With active

research on fiducial tracking and skin tracking algorithms, performance of the motion

tracking system is being continuously improved. Fiducial markers have greatly enhanced



Chapter 2. Modal Analysis 22

its performance by allowing the camera sensor to monitor movements occurring at dif-

ferent locations on the surface simultaneously. Each fiducial marker has the equivalent

functionality of a point-vibration measuring device, such as LDV, fibre optic sensor,

or ultrasound. Moreover, one has the choice of evaluating a Region Of Interest (ROI)

of an arbitrary size on the breast surface. Instead of altering any equipment setups,

this is achieved easily in software by ignoring fiducial marker movements in unwanted

regions after the fiducial tracking stage. On the contrary, such ROI evaluation feature

is unavailable with other sensors mentioned in this chapter.

2.4 Sensor Comparison

The benefits and disadvantages of using each sensor are shown in Table 2.2. Notably,

digital image sensor and accelerometer are the only ones that can detect 3D movements

with just a single sensor. Whereas the others would require multiple sensors to measure

3D movements.

Despite the fact that some of these sensors require complicated setups and manual

calibration, most of them are effective and accurate in measuring small oscillations, with

some more expensive than the others. Apart from the accelerometer, all sensors are able

to operate in a non-invasive manner.

The digital image sensor is the most economical solution since it makes full use of

the existing imaging setup in the DIET system. The LDV on the other hand is the most

expensive solution. It is important to note that, apart from the digital image sensor,

all others could only measure displacement at a given point on the surface. This means

multiple sensors will have to be deployed in order to measure displacements at different

locations on the surface.

2.5 Summary

Popular vibration sensors, such as accelerometers, laser vibrometers, ultrasonic and fibre

optic vibration sensors are all not suitable in this application due to their invasiveness,

cost or both.

Based on the availability of imaging devices in DIET, the most cost-effective solution

would be to conduct modal analysis using the existing imaging devices. A frequency

sweep on the breast is conducted before the DIET imaging session. Since these imaging

devices can guarantee the absence of contact, a non-invasive yet cost-effective modal
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Table 2.2: Comparison of a list of vibration sensors.

Accelerometer

• Accurate • Invasive and difficult to attach
• Measures 3D motion at a point • Measurements can be affected by the

surroundings
• Cannot measure displacement
• Moderately expensive

Ultrasound

• Non-invasive • Only measures 1D motion at a single
point
• Setup and calibration are complicated
• Cannot distinguish between the ob-
ject and background
• Narrow beam sensors are expensive

LDV

• Very accurate • Health & Safety concern
• Non-invasive Only measures 1D motion at a single

point
• Simple setup • Very expensive

FOV

• Very accurate • Setup and calibration are complicated
• Non-invasive • Only measures 1D motion at a single

point
• Accurate FOV sensor is very expen-
sive

Digital Image Sensor

• Good accuracy • Accuracy depends on the image pro-
cessing algorithm used

• Non-invasive
• Able to detect 3D motion in a given
region
Make use of the current imaging setup

testing platform can be established. This approach will be tested in the following chap-

ters.





Chapter 3

Retrospective Feasibility Study

This chapter details the feasibility studies using the vibration sensing modality selected

in the previous chapter. A number of objectives are defined and a list of optimal param-

eters are determined from the simulation studies. Part of the research described here

has been presented at IEEE EMBC 2010 [54].

3.1 Feasibility Study Objectives

A camera-based modal testing system that can operate in a time efficient manner us-

ing the least amount of resources is desired. Conducting necessary feasibility studies

prior to implementing a preliminary design based on an image-based vibration sensor is

important as there are several unknown parameters that require further investigations.

These are i.e. the number of images to capture during a single oscillation period and

the number of imaging devices to use.

In order to obtain the full frequency response of the breast, an appropriate method

for calculating its response at a particular actuation frequency is required. The feasibility

study described in this chapter is carried out with the intention to establish a frequency

response sensing method that has following characteristics:

• minimum number of image captures in a single oscillation period to maximize speed

• minimum number of imaging devices to achieve a simple, yet cost-effective system.

The frequency response is identified through analyzing fiducial motion patterns based

on these underlying assumptions:

25
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• Stiffness of healthy breast volume is relatively homogeneous

• All fiducial markers move in an elliptical path

• Largest fiducial motion occurs at the breast’s fundamental frequency.

Once the appropriate calculation method is chosen, full frequency response over a

selected spectrum can be obtained by repeating the analysis on all frequencies that are

to be examined.

In short summary, the primary objective of the feasibility study is to identify an

appropriate method for calculating a response value based on evaluating surface motion.

Ideally, such a method should be able to generate a satisfactory approximation of the

real average frequency response using the minimal amount of image captures with the

least amount of imaging resources.

The software package MATLABTM is used to simulate results obtained from different

number of image captures as well as different number of cameras. Quality of the method

may be assessed by how accurate the predicted harmonic frequencies are compared to

the results obtained from a single-point LDV.

3.2 Fiducial Marker Movement

During a DIET imaging procedure, fiducial markers are randomly applied onto the

breast surface. These fiducial markers act as grid points allowing precise measurement

of vibrations in 3D space. Knowledge of the motion paths generated by these markers

during actuation is important to minimize the number of image captures, and is the

main focus of this study.

As shown in Figure 3.1, the motion path of a fiducial marker during a single oscillation

on a phantom breast resembles the shape of an ellipse. This steady state harmonic

response is also seen in FE simulations [31] as well as human trials. Moreover, the

magnitudes of the major and minor axes of the ellipse can be strongly influenced by

the actuation frequencies. For example, the particular motion pattern of the phantom

shown in Figure 3.1 recorded at its fundamental frequency is approximately 8 times

larger than the motion pattern at a nearby frequency.

Thus, by studying these elliptical patterns at various frequencies, one may be able

to draw conclusions on where the fundamental frequency is. Theoretically, magnitudes

of the major and minor axes of all the elliptical motion paths should be maximized at

the fundamental frequency. However, as seen in most experiments, it will also depend
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Figure 3.1: Elliptical-shaped oscillatory movement of a fiducial marker seen on a
silicone phantom breast tracked in 10 discrete images. The fundamental frequency of
this phantom is centered around 50Hz (o), motion is also recorded at a nearby frequency

35Hz(x). The motions are approximately 8x larger at this fundamental frequency

on the location of the fiducial marker. Fiducial markers that are close to the actuator

tend to have synchronized motion with the actuator. On the other hand, markers near

the base of the breast, have very little motion throughout the frequency sweep as they

are attached to a fixed surface. Consequently, motions seen at these locations will be

relatively constant, independent of the actuation frequency. Therefore, when analyzing

the characteristics of the ellipses on the surface, these factors must also be accounted

for.

3.3 Data Interpolation

In order to evaluate the performance of a specific number of image captures per cycle

on a particular phantom, experimental imaging sets with different image numbers are

required. Various interpolation techniques can be used to up-sample the existing ex-

perimental data and then down-sample to simulate the output with the desired number

of samples/captures. There are readily available and post-processed data recordings

from past experiments, which contain fiducial positions over the entire breast on various

phantoms.

An example of a soft healthy phantom Mk3 imaged at a F=16Hz, A=0.5mm ac-

tuation setting is shown in Figure 3.2. These data were acquired by 5 cameras at 10

images per oscillation period. The actuation path of the fiducials resembles an ellipse



Chapter 3. Retrospective Feasibility Study 28

−0.1

0

0.1

−0.1

0

0.1
−0.02

0

0.02

0.04

0.06

X Axis

3D view

Y Axis

Z
 A

xi
s

Figure 3.2: Reconstructed 3D motion data acquired a silicone phantom.

and can thus be robustly interpolated to generate more synthetic images. It is thus

possible to generate additional data entries by interpolation of the 10 measurements per

cycle to N measurements per cycle. Depending on the number of required test cases

(n1, n2, ..., nk), N is chosen to be the Least Common Multiple LCM of the number of

test cases. Appendix A provides a detailed explanation on LCM and its importance in

the data interpolation process.

Examples of possible number of image captures per cycle that can be decimated

from N images per cycle are shown in Table 3.1. If existing 10-sample data are chosen

to be interpolated to N = 24 samples, one will be able to study the behaviors at

(n1, n2, ..., nk) = 1, 2, 3, 4, 6, 8, 12, 24 images per cycle. But the accuracy of simulation

studies will heavily rely on the interpolation method that is used.

The impact of various numbers of image captures per cycle on the magnitude of

elliptical axes is to be investigated in detail as this is the key for evaluating responses

at given frequencies at a minimum number of samples.

Simulations on (n1, n2, ..., nk) = 2, 3, 4, 5, 6 are performed and N is chosen to be 60

as it can be used to decimate to 2,3,4,5,6 images per cycle. Interpolation techniques

tested were linear and elliptical, which are described in more detail here.

3.3.1 Linear Fitting

In 2D space, a line can fitted between two points (x0, y0) and (x1, y1) by Equation 3.1,

where x is a value between(x0, x1) and the value of y defines the value along the straight
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Table 3.1: Possible image captures per oscillation cycle that can be simulated with
N number of images per cycle through decimation. N is the least common multiple of

the list.

N Image captures per cycle that can be studied
≡ lcm(...) (n1, n2, ..., nk)

4 1,2,4
6 1,2,3
8 1,2,4,8
10 1,2,5,10
12 1,2,3,4,6,12
24 1,2,3,4,6,8,12,24
36 1,2,3,4,6,9,12,18,36
48 1,2,3,4,6,8,12,16,24,48
60 1,2,3,4,5,6,8,10,12,15,20,30,60

72 1,2,3,4,6,8,9,12,18,24,36,72
84 1,2,3,4,6,7,12,14,21,28,42,84
90 1,2,3,5,6,9,10,15,18,30,45,90
96 1,2,3,4,6,8,12,16,24,32,48,96

line.

y = y0 + (x− x0)
y1 − y0
x1 − x0

=
(x− x0)y1 + (x1 − x)y0

x1 − x0
(3.1)

Once the equations for the lines are known, additional points on the line can be

interpolated easily. Full 3D interpolation is achieved by performing the 2D interpolation

method on data from each axis.

3.3.2 Elliptical Fitting

As seen earlier in Section 3.2, a typical fiducial marker moves in an elliptical path. Fitting

the group of samples with an ellipse would generate much more realistic samples.

Recall that a point in 3D space
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The parameters A and φ of an ellipse are obtained by using an integral-based fitting

method [55]. The method is convex and not starting point dependent. It is described

here on the example of fitting a sinusoidal motion path. Recall that a harmonic motion

can be described by Equation 3.3.

u = A sin (ωt+ φ) ≡ A[sinωt cosφ+ cosωt sinφ] (3.3)

By integrating Equation 3.3 with respect to ωt between ωt0 and ωt1 , Equation 3.4 is

obtained.

∫ ωt1

ωt0

u dωt = A cosφ[− cosωt1 + cosωt0] +A sinφ[sinωt1 − sinωt0 ] (3.4)

The integral of the displacement
∫

u can be approximated by the area under the

curve of the experimental displacements.

∫ ωt1

ωt0

u dωt = um(ωt1−ωt0) =
u(t1) + t0

2
(ω(t1 − t0)) (3.5)

where um is the mean displacement between t0 and t1. Equation 3.5 consists of two

unknowns x = A cosφ, y = A sinφ and can be written in the form

d0 = xC1 + yC2 (3.6)

where d0 is the area under the curve between samples u(t0) and u(t1), C01 = − cosωt1 +

cosωt0 and C02 = sinωt1 − sinωt0 .

Equation 3.6 can then be repeated for other time steps to obtain a set of linear

equations. The optimization problem is thus reduced to solving a set of linear equations:

d = B

(

x

y

)

(3.7)

After solving Equation 3.7 for

(

x

y

)

, phase angle φ and amplitude A can be obtained

by solving the following equation.

(

x

y

)

= A

(

cosφ

sinφ

)

(3.8)



Chapter 3. Retrospective Feasibility Study 31

Similar to the linear interpolation approach, full 3D interpolation using the ellipse

method is achieved by performing the interpolation on data from all three axes: first

Ax, Ay, Az and φx, φy, φz are identified, then the desired number of samples can be

generated with Equation 3.2.

3.3.3 Results

Both interpolation techniques are compared. As shown in Figure 3.3, for certain input

patterns that have very little or irregular motions, elliptical fitting is able to generate

much more realistic motion than linear interpolation. Furthermore, noisy measurements

can be filtered more easily by knowing the shape of the motion path. With good quality

input data, both methods are able to generate additional synthetic motion samples.

Therefore, based on the assumption that all fiducial markers shall move approximately

in an elliptical pattern, ellipse interpolation is preferred.

3.4 Frequency Response Analysis

Frequency responses obtained by evaluating displacement of fiducial markers at different

frequencies can be used to assess the modal response of the system.

This study proposes three types of methods for calculating response at a given ac-

tuation frequency: 1D, 2D and 3D analysis. All three analyses are based on maximum

displacement found in motion pattern of a fiducial marker in an oscillation cycle. Their

methodology and performance is discussed in this section.

• 1D displacement analysis with data from a single axis, ∆x or ∆y or ∆z

• 2D displacement analysis with data from 2 axes, ∆xy or ∆xz or ∆yz

• 3D displacement analysis with data from all 3 axes, ∆xyz.

The main difference between these methods lies in how many dimensions of the

input data the computation requires. For example, 2D XZ analysis on motion pattern

illustrated in Figure 3.4 would require measurements in both X and Z axis; that is, ∆x

and ∆z are used to determine the response at a particular frequency.

Given the elliptical fitting technique is able to generate relatively realistic motion

data in an efficient manner, previous experimental data can be interpolated from 10

measurements to 60 measurements per oscillation cycle. This enables simulations of
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(a) An example to show that linear interpolation may become inadequate when input motion data is less than
ideal. XYZ axis coordinates are linearly fitted and interpolated from 10 samples to 60 samples. Interpolated data
points (x) with input (o).
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(b) An example to show that ellipse interpolation will be able to generate sensible data regardless of the quality
of input motion data. XYZ axis coordinates are fitted with an ellipse and interpolated from 10 samples to 60
samples. Interpolated data points (x) with input (o).

Figure 3.3: Examples comparing linear and elliptical interpolation. Notably, the
elliptical approach is able to interpolate in a sensible manner.

multiple numbers of capture settings. As shown in Figure 3.4, 3D data is interpolated

to have 60 measurements. ∆x ∆y ∆z represent the largest displacements of a selected

fiducial marker in one oscillation cycle measured in the X Y Z directions respectively.

It is interesting to note that almost all fiducial markers move in a particular pattern

that contain a relatively dominating ∆z component due to the same direction of actu-

ation force. However, depending on the geometric properties of the breast volume, ∆x

and ∆y can occasionally become much larger than ∆z. Large motions occurring in the

X or Y direction, which are perpendicular to the actuation axis, are most likely induced

by significant compression to the breast volume. Therefore, the characteristics can be
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Figure 3.4: Typical fiducial pattern displacements along all three axes in the XZ and
YZ planes with equal scale, where ∆x, ∆y and ∆z are displacements along X, Y and

Z axes, respectively.
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identified in a much more accurate manner with displacements measured in 2 or more

dimensions.

3.4.1 1D Displacement Analysis

In 1D displacement analysis, only one of the 3D components of a given fiducial marker

motion path is registered. This method simulates responses that can be obtained by a

data acquisition platform with 1D motion capturing capability, such as:

• 1 camera

• 1 accelerometer

• 1 LDV

• 1 fiber optic sensor

• 1 ultrasound sensor.

For example, studying the motion in the X axis only would require to use Equa-

tion 3.9. ∆x is computed for all fiducial patterns found in a specified region and the

largest is selected to represent the response at this actuation frequency.

∆(x) = max(∆x)

∆(y) = max(∆y)

∆(z) = max(∆z)

(3.9)

This is the simplest method, but is also the most limited. The major pitfall is that

frequency responses can differ greatly depending on the coordinate direction being mon-

itored. Selecting the correct axis to conduct motion sensing is not as trivial as it seems.

In certain occasions, one component may play a more dominant role at certain frequen-

cies while others dominate at other frequencies. This can be either due to equipment

arrangement or simply variability in geometrical shapes of the breast volume.

3.4.2 2D Displacement Analysis

In 2D displacement analysis, any two out of the three coordinate directions are evaluated.

This method is designed to simulate responses captured by 2D motion capable data

acquisition platforms; such as:
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• 1 camera

• 1 accelerometer (3-axis)

• 2 LDVs

• 2 optic sensors

• 2 ultrasound sensors.

For example, displacement ∆x (horizontal) and ∆z (vertical) can be used to inves-

tigate frequency responses. Results are calculated for every fiducial marker found in a

specific region and the largest of the two is computed using Equation 3.10.

∆(xy) = max(max(∆x),max(∆z))

∆(xy) = max(max(∆x),max(∆y))

∆(yz) = max(max(∆y),max(∆z))

(3.10)

3.4.3 3D Displacement Analysis

During 3D displacement analysis, Equation 3.11 is used to determine the maximum

displacement. It evaluates full 3D motion of the fiducial movement, that is, motion

occurring simultaneously in X Y Z axes. The following sensing setups are able to generate

equivalent results.

∆(xyz) = max(max(∆x),max(∆y),max(∆z)) (3.11)

• 2 cameras (Current DIET system employs 5 cameras to reconstruct the entire

breast volume for full 3D analysis)

• 1 accelerometer (3-axis)

• 3 LDVs

• 3 optic sensors

• 3 ultrasound sensors.

As can be seen from these three cases, different levels of accuracy but also complexity

are achievable with the level of accuracy required. Using a single camera of the exist-

ing setup enables 2D sensing without added complexity. If it turns out that an extra

dimension is required, a second camera can always be added.
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3.5 Simulation Study

The 1D, 2D and 3D methods outlined in the previous section are tested using images

from a phantom imaging database which consists of images acquired from experiments

carried out previously. The performance of using a single camera is assessed on a number

of healthy as well as cancer simulating phantoms. A healthy 3kPa soft phantom is

considered to have the best representation of human breast tissue, hence its results

are presented in this section. Simulation results from other phantoms can be found in

Appendix B.

The two system setups that need to be evaluated in this study are

• Number of cameras required for robust 2D sensing

• Number of image captures per oscillation cycle.

3.5.1 Number of Cameras

The number of cameras required to determine an accurate representation of the fre-

quency response depends on whether 1D, 2D or 3D analysis is employed, and on the

level of homogeneity of the observed breast. Images captured by a single camera contain

displacements in 2 directions. This data can be used for 1D as well as 2D analysis.

When carrying out a 2D analysis, depending on where the camera is positioned, mo-

tions occurring in the XZ plane, YZ plane, or XY plane are able to be captured. Unlike

1D or 2D analysis, 3D information can only be obtained if images are taken simultane-

ously from different angles; more specifically, imaging will be needed from two locations.

Consequently, this has implications on the number of cameras required.

Since the least amount of imaging devices is desired, methods which use a single

camera are to be considered first. Out of all methods, 2D analysis appears to be the

most attractive candidate as it can be operated with just a single camera. However, if

the area covered by a single camera is insufficient to determine the harmonics, additional

cameras would have to be brought in.

With the existing 3D phantom data, a Region Of Interest (ROI) such as the one

shown in Figure 3.5 is applied to mask out any fiducial markers that should be dis-

regarded by the single camera. Such ROI only examines a portion of the breast and

neglects fiducial movements in unwanted regions as defined in Section 3.2. These are the

area near the top and bottom of the phantom. By altering the ROI confinement, differ-

ent camera positions can be simulated. This provides accurate assessments of whether it
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is possible to use a single camera with limited field of view for detection. The frequency

response is obtained by computing relative maximum displacement values from all the

fiducial movements found in such ROI over all actuation frequencies.
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(a) Confinement observed in the YZ plane.
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(b) Confinement observed in the XY plane.

Figure 3.5: Confinement to simulate the view of a single camera. Areas near the
chest wall (bottom) and the actuator (top) are neglected.

3.5.2 Number of Images

The number of images required per oscillation cycle plays a very important role as it can

affect the results of detection. Since the requirement is to use least amount of images,

the system should capture at a minimum number of images that does not compromise

the quality of results.

The maximum displacement for an ellipse is the maximum difference in amplitude

between any two samples. Figure 3.6 shows obvious effects that different image captures

per oscillation cycle may have on the maximum displacement. For example, due to the

elliptical shape, displacement obtained by 2 images per cycle would be maximized if the

first image is taken at φ = 0.25T or φ = 0.75T . More specifically, displacement is at

its minimum when φ = 0. However, 3 captures or more are not so much affected by

the value of starting phase φ. Therefore, a minimum of 3 image captures per oscillation

cycle is desired.

Since the imaging does not necessarily start at φ = 0 during the oscillation cycle,

different possible starting points must be evaluated. For example, if there are 60 captures

in one oscillation cycle, there are 60/k different starting points, where k is the number of

images taken (due to cyclic behavior). By repeating the appropriate analysis for a range

of different starting points, a distribution of maximum displacements at a particular

actuation frequency is obtained. 90th percentile of the distribution represents the best

case and 10th percentile the worst case.
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Figure 3.6: Impact of different numbers of image capture per oscillation cycle and
its ability to reinterpret the ellipse. Motion path of the ellipse obtained by folding
the sinusoid response at its half point. As shown in red dots, imaging may start at a
random position; therefore there is absolutely no guarantee if the desired number of

captures is sufficient to capture the shape of the ellipse.

The optimal number of captures should have a tight distribution between the worst

and the best case. In the worst case scenario, the displacement measured at the modal

frequency could be lower than at another frequency, only due to a lack of samples over

one cycle. Therefore, in the worst case, one should still able to identify the fundamental

frequency. To evaluate the minimal number of images required, 2, 3, 4 and 5 images

are used to calculate displacements. The 90th, 50th and 10th percentile results at each

frequency are calculated and compared.

3.5.3 Results

1D analysis results gathered from a soft 3kPa healthy phantom are shown in Figure 3.7.

Evidently, it demonstrates the inadequacy of 1D analysis. Simply looking at the motion

in a single direction will not be able to reveal the true response of the vibration. All 3

cases in the 1D analysis can successfully identify the location of first harmonic, but fails

to agree on the presence of a second harmonic. Notably, 1D ∆x and 1D ∆z analysis

have larger peak values compared to 1D ∆y. 1D ∆z analysis seemed to have completely

missed the second harmonic. This behavior has also been seen on other phantoms.

On the contrary, as shown in Figure 3.8, 2D analysis is sufficient to reveal locations

of both harmonics. The locations are also confirmed by a full 3D analysis. Therefore, 2D
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(a) 1D analysis with Max(∆x).
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(b) 1D analysis with Max(∆y).
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(c) 1D analysis with Max(∆z).

Figure 3.7: 1D analysis for 2,3,4,5 captures on a healthy 3kPa soft phantom, where
∆x, ∆y and ∆z are displacements along X, Y and Z axes, respectively. 90th percentile
(solid) represents the best case and 10th percentile (dotted) indicates the worst case.
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analysis is the most optimal selection for determining frequency response with a single

camera.

With the number of image captures increasing, the distribution of 90th percentile

best case and 10th percentile worst case can be seen to become tighter. Moreover, the

10th percentile worst case for 2 image captures fails to identify any harmonics at all.

Therefore, an oscillation cycle with at least 3 image captures will be required in order to

capture a full elliptical motion. Interestingly, four image captures perform worse than

three, which is due to the even number that can lead to more cases of low displacements

measured.

Figure 3.9 shows results obtained using 3D analysis, and this is considered to be the

ground truth data for accuracy assessment. Notably, it has higher peak values at both

modal frequencies. Figure 3.10 shows the best cases of 1D and 2D analysis compared

with this ground truth data, whereas Figure 3.11 shows the comparison with the worst

cases. This fluctuation in performance is expected as the imaging may not commence

at phi = 0. Although 1D best case is able to perform reasonably well with its best case,

there is no guarantee that imaging will start at the desired phase delay. On the other

hand, 2D analysis has the best overall performance.

A single-point LDV is also used to validate the 3kPa soft phantom’s frequency re-

sponse and the result is shown in Figure 3.12. The measurement is taken from 5Hz to

88Hz and has a resolution of 1Hz. As shown in Figure 2.7, due to the experimental setup,

the LDV’s sensitive beam is unable to be in parallel with the 1D Z-axis. Displacements

are determined based on integrating surface accelerations.

All harmonics are able to be identified and are within 2Hz of error compared to the

1D ∆y analysis. Some portion of these uncertainties may be caused by the interpolation

process as it could only generate data entries that are close to the real ones. In addi-

tion, the responses from LDV have significantly smaller amplitudes compared to image

based analysis, which once again proves the inadequacy of using acceleration data for

calculating displacements because the main source of uncertainly originates from the

integration process.

3.6 Alternative Metrics

Alternative metrics for assessing vibrational behavior have also been introduced during

the studies, such as standard deviation, averaging and root-mean-square (RMS) of all the

fiducial displacements. Absolute displacement such as ∆xz remain the best choice due

to its simplicity and capability of capturing harmonic frequencies on phantom breasts.
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(a) 2D displacement analysis with Max(∆x,∆y).
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(b) 2D displacement analysis with Max(∆x,∆z).
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(c) 2D displacement analysis with Max(∆y,∆z).

Figure 3.8: 2D analysis for 2,3,4,5 captures on a healthy 3kPa soft phantom, where
∆x, ∆y and ∆z are displacements along X, Y and Z axes, respectively. 90th percentile
(solid) represents the best case and 10th percentile (dotted) indicates the worst case.
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(a) 3D displacement analysis with Max(∆x,∆y),∆z).

Figure 3.9: 3D analysis for 2,3,4,5 captures on a healthy 3kPa soft phantom, where
∆x, ∆y and ∆z are displacements along X, Y and Z axes, respectively. 90 percentile
(solid) represents the best case and 10 percentile (dotted) indicates the worst case.
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Figure 3.10: Comparison between 3D analysis ground truth data with best cases of
1D, and 2D analysis.

However, its exact performance on human breasts are yet to be confirmed as more trials

are required to validate this.

Evaluation of standard deviation of all the fiducial displacements during one oscil-

lation cycle can be potentially beneficial with a breast volume that has non-uniformly

distributed density, because it measures the spread of the fiducial displacements in a

given area. The feasibility analysis is carried out with the assumption that all healthy

breasts should have homogeneous density distribution. In fact, the healthy silicon tissue

found on all phantoms used in these studies is homogeneous.
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Figure 3.11: Comparison between 3D analysis ground truth data with worst cases of
1D, and 2D analysis.
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Figure 3.12: Single-point LDV validation of the frequency response from a healthy
3kPa soft phantom.

The metric for determining vibrational behavior will have to be revised if absolute

displacement measurements ∆ become inadequate.

3.7 Summary

Modal testing on the breast structure is required in order to determine its resonant

frequencies. This aids the post processing software for successful identification and
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location of cancerous tissues. The locations of fiducial markers during a single oscillation

period are recorded and are used for subsequent displacement calculations.

Before carrying out any further studies on fiducial motion, more measurements of

the fiducial positions in a single oscillation period must be acquired. However, this is rel-

atively time-consuming. Therefore elliptical interpolation is used to generate additional

data entries to simulate a variety number of image captures per oscillation cycle.

Retrospective feasibility studies based on a single image sensor have been carried

out on a number of phantoms with different density and health status. Results suggest

that absolute displacement measurements carried out in 2D with 3 image captures per

oscillation cycle are sufficient to capture the frequency response of a breast volume,

irrespective of the size and the shape of the breast. It is important to note that breast

volumes with homogeneous density distributions are assumed. A single-point LDV is

used to verify the frequency response of various phantoms using the setup illustrated in

Figure 2.7. Validation once again proves 2D analysis is sufficient to identify all harmonic

frequencies.



Chapter 4

Modal Analysis System

This chapter describes the structure and performance of the developed modal analysis

system. Design considerations for each major component of the system are discussed in

detail. It also describes communication protocols between components of the system.

This is a key element in the system as it delivers the data that can be used for computing

responses at various frequencies.

4.1 System Overview

The modal analysis system depicted in Figure 4.1 is implemented in such a manner that

the frequency response of the breast can be obtained non-invasively and efficiently. In

order to minimize resources and fully exploit the current imaging setup in the DIET

system, the current modal testing system is designed to share imaging devices with

the DIET system. Consequently, the imaging platform from the current DIET system

is completely upgraded with newer cameras that increase the overall imaging speed.

This setup allows five default imaging locations for carrying out the sweep. Additional

imaging locations can be created by repositioning one of the cameras.

As shown in Figure 4.1, dSweep is the entry point for an imaging session. It carries

out the imaging and data processing by coordinating communications between the three

key components of the modal testing system, using physical wiring connections as well

as TCP/IP communication sockets. A typical session is illustrated in Figure 4.2.

1) Appropriate initializations with user-specified capture settings on all hardware

are performed. Once all initializations are completed and a list of frequencies is read

from the configuration file, the program will try to establish communication channels

with the camera, the actuator and the image tracking program. Once the system is up

45
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Figure 4.1: The system diagram of the modal testing system.

�� ���

�����	 
��
���

Figure 4.2: dSweep control during a typical imaging session. DSweep only takes care
of imaging while tracking is carried out simultaneously by MATLAB
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and running, dSweep will collect images at all frequencies found in the configuration

file. This process is completely automated, as the program will step through the list

sequentially.

2) Prior to commencing any imaging, dSweep instructs the actuator to operate at

a particular frequency and amplitude. The program will then control the camera to

capture a single oscillation cycle with a given number of captures. Once imaging at a

particular frequency is completed and all the images are written to the local drive, the

program will signal the dSweep server, that manages a queue of jobs that are ready

to be tracked by the tracking application. Following this, the actuation and imaging

step will move onto the next frequency and repeat this for all frequencies specified

by the configuration file. The main purpose of the dSweep server is to facilitate the

image tracking application with tracking new jobs as soon as they are imaged, simply

by querying the dSweep server. Not only does this make full use of the computing

resources, but also significantly increases the speed of the overall program. Once all the

frequencies are captured, a special termination flag is raised.

3) Simultaneous to dSweep capturing, the image tracking program will constantly

query the dSweep server running inside dSweep for new jobs to track. This is done via

TCP/IP, so it is possible to use a separate computer on the network for processing those

images. As shown in Figure 4.3, once a new job is detected, the image tracking program

will store it into its own local queue for processing. This process repeats itself until

there are no more jobs to process. Once the termination flag is received, it will generate

a frequency response plot and let the server know it has finished.

4) Finally, dSweep server will terminate itself once tracking is finished. Following

this, dSweep will then release all the hardware and all programs exit.

4.2 Main Application (dSweep)

This application is written entirely in C++ and is the entry point for an imaging session.

It has two functionalities, namely to first carry out the imaging, and secondly to control

the image tracking application via TCP/IP. The application exits when all frequencies

are imaged and tracked.

4.2.1 Imaging

Most consumer cameras are capable of delivering images of sufficient quality. However,

only a few brands allow its non-DSLR products to be controlled by third party software.
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Figure 4.3: Matlab image processing.

Canon TM maintained Software Development Kits (SDK) for some of its non-DSLR

products, such as the G series. The aim of PowerShot G series of cameras is to give

users some of the advanced features of its DSLR cameras while maintaining the cost and

portability of its point-and-shoot models.

However, Canon has discontinued manufacturing G9 cameras and dropping SDK

support for its newer non-DSLR products, replicability of the current imaging system

is very much constrained. Moreover, there are difficulties associated with embedding

these cameras into a portable commercial medical imaging unit. Therefore, alternative

imaging devices will have to be introduced eventually, so the prototypes can be upgraded

and replicated at ease. One obvious solution would be to employ DSLR cameras that

are manufactured by both Nikon and Canon, which are extremely versatile and have

relatively longer life cycles. However, these cameras are likely to be more expensive and
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each model requires a different SDK. On the contrary, industrial cameras are becoming

affordable, very compact and come with a universal SDK. Although these industrial

cameras carry similar price tags compared to DSLR cameras, they are specifically de-

signed to be embedded into other applications. This SDK is generally applicable to

all cameras of a specific brand and the already written software can be recycled for

upgraded camera systems

As aforementioned, in order to fully utilize the imaging setup in the DIET system, the

modal testing system would have to share the imaging devices with the DIET system.

This means a complete upgrade of the imaging system was required. A number of

advantages were identified with using the PowerShot G9 cameras, and consequently

they are chosen to replace the old G5 cameras in the DIET prototype.

• Superior processor, G9 employs DIGIC III for image processing while G5 uses

DIGIC I. As a result, the imaging response time is significantly increased.

• Superior transferring speed, G9 uses USB 2 for data transfer while G5 uses USB

1. This was the main reason for the upgrade.

• A more sophisticated SDK, PowerShot RemoteCapture Software Development Kit

(PRSDKTM) is employed to control the G9. PRSDK uses fast and reliable Picture

Transfer Protocol (PTP) while G5 can only be accessed with Canon Digital Camera

SDK (CDSDK), which is outdated and less reliable.

• Controllability and versatility, PRSDK enables third party software to alter much

more critical capture settings, such as Aperture, Shutter, ISO, Auto-focus mecha-

nism, Auto-focus distance and Metering mode.

The G9 camera is attached to the PC via USB. A typical imaging session is illustrated

in Figure 4.4. Default imaging settings, such as shown in Table 4.1, will be used if the

user decides not to pass the program with a list of new parameters. With this list

of special parameters, the program can apply system-wide changes in a way that is

predictable and requires minimal effort. Refer to Appendix C for a full documentation

on the list of parameters that the program supports.

Since all image captures are executed by threads, the main program will not lock up

while the camera is taking a photo. This is beneficial as other routines can be carried out

simultaneously and uninterruptedly. Using settings shown in Table 4.1, the performance

of capturing and saving three images is recorded for a number of trials and results are

shown in Table 4.2. Notably, compression to JPEG, transfer and write to hard disk

altogether takes around 1second. Since each image itself requires 1second exposure,
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Figure 4.4: Communication channel between dSweep and the G9 camera during an
imaging procedure.

imaging a set of three images would take less than 7seconds each to complete. This is

far better compared to the performance from a G5 camera.

4.2.2 Tracking Control

dSweep server is embedded into the main program and runs on a separate thread. This

particular server actively monitors a queue structure of untracked jobs. The imaging

routine can add jobs to the queue while the tracking application can retrieve jobs from

the queue. With the help from this server, image tracking is able to be performed in

real time, parallel to imaging of the frequency sets.

4.3 Image Tracking Application

The image tracking application has the ability to work autonomously, and is also able to

communicate and work efficiently with the dSweep server when required. The application
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Table 4.1: Default imaging parameters.

Setting Default value

Aperture f/8
Shutter Speed 1s
ISO Sensitivity 100

Exposure Compensation 0
Exposure Mode Manual
Auto-Focus Mode Single Shot

Auto-Focus Distance Close-up
Auto-Focus Assist Disabled

Flash Disabled
Metering Evaluative

Image Quality Fine
Image Size 1600x1200

Zoom 5
White Balance Auto White Balance

Table 4.2: Time taken to capture and save three image captures. Each capture itself
uses 1 second exposure. The test is repeated 8 times. Note that each set contains three

images.

Set 1 2 3 4 5 6 7 8

Total (s) 6.00 6.62 6.30 6.57 6.23 6.87 6.96 6.99
JPEG + Tx + Write (s) 3.00 3.62 3.30 3.57 3.23 3.87 3.96 3.99

Per image (s) 1.00 1.21 1.10 1.19 1.08 1.29 1.32 1.33

is written in MATLABTM and the communication channel with dSweep is via sockets.

A typical image processing session is shown in Figure 4.5, which consists of two main

parts: first fiducial displacements are tracked at all the imaged frequencies, and second

a frequency response is computed based on those displacements.

4.3.1 Tracking Fiducial Displacements

Feature tracking should take less time than image capturing so that both tasks can

be carried out simultaneously and finish at approximately the same time. Therefore, a

robust yet highly efficient feature tracking method is required for identifying fiducial mo-

tion on the images captured during a single oscillation period. Feature extraction based

on thresholding and matching by nearest neighborhood is chosen for this application. A

number of popular feature extraction methods are also presented.

4.3.1.1 Thresholding and Nearest Neighborhood

This is the method currently employed because of its reliability and accuracy. It is

developed by Brown [31] and current implementation uses both C language as well as
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Figure 4.5: Communication channel between dSweep and MATLAB during an imag-
ing procedure.

MATLABTM.

In this particular approach, positions of the fiducial markers are obtained by simple

thresholding technique. Since there are only three colors of fiducial markers and all three

colors are fairly well-defined, their approximate positions and color can be determined.

Let r(x, y), g(x, y) and b(x, y) be red, green and blue color values of a pixel (x, y) in 2D

space. The resulting R, G and blue B feature pixels sets are defined by Equation 4.1.
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R = {(x, y)|r(x, y) > 80, r(x, y) > 1.2 ∗ g(x, y), r(x, y) > 1.2 ∗ b(x, y)}

G = {(x, y)|g(x, y) > 80, g(x, y) > 1.2 ∗ r(x, y), g(x, y) > 1.2 ∗ b(x, y)}

B = {(x, y)|b(x, y) > 80, b(x, y) > 1.2 ∗ r(x, y), b(x, y) > 1.2 ∗ g(x, y)}

(4.1)

Following this, a continuous block of pixels that have the same color are recognized

to be an individual fiducial marker and its position is approximated by computing the

centroid of the block of pixels. Once feature extraction on all frames is finished, feature

matching of all frames is achieved by comparing the euclidean distance of the closest

neighbor to the second closest neighbor in the same color set. Location of the feature in

the adjacent frames should be nearest neighbors.

It is important to note that prior to extracting features, a bounding box is calculated

to isolate the breast from the background and minimize the number of pixels examined.

Table 4.3 shows the performance of feature extraction and matching on three different

sets of images, where each set contains three images describing the oscillation cycle.

Notably, ∼ 3seconds is required to extract features from three images and no more

than 2seconds to match those features. Consequently, tracking a set of three images

should finish well within 5seconds. Since most of the image tracking code is running in

MATLABTM, the speed of execution is constrained.

Table 4.3: Performance of thresholding-based tracking and nearest neighborhood
matching on three images. The quantity of feature points detected and time of execution
are recorded. Note that each set contains three images. Individual performance is
recorded on the number of feature points (pts) detected and the time taken in seconds

(s).

Image 1 Image 2 Image 3 Matched(s) Total(s)

Set 1 554pts/0.95s 579pts/1.00s 591pts/1.05s 527/1.57s 4.57s
Set 2 573pts/0.98s 560pts/0.94s 601pts/1.03s 495/1.34s 4.29s
Set 3 564pts/1.00s 539pts/0.93s 527pts/0.90s 511/1.49s 4.32s

4.3.1.2 SIFT and SURF

Scale-invariant feature transform (SIFT) described by Lowe et al. [56, 57] is a feature

identification algorithm designed for extracting and recognizing salient regions or feature

points in images. SIFT detector uses the difference of successive Gaussian-blurred images

to identify potential points of interest. This is achieved by removing low contrast points

and rejecting edge responses. An orientation histogram based on local image gradient

directions is formed to achieve invariance in scale, rotation and location.
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Speeded Up Robust Features (SURF) proposed by Bay et al. [58] is another scale

and rotation-invariant interest point detector and it employs a slightly different way to

detect features [59]. It is based on the sums of approximated 2D Haar wavelet responses

and uses integral images to compute responses of rectangular box filters in an efficient

manner.

The studies performed by Bauer et al. [60] and Juan et al. [61] indicate SURF

outperforms SIFT during the feature point identification process due to its superior

processing speed and higher accuracy. However, SURF detects slightly less feature

points than SIFT.

SIFT and SURF both have their own advantages; SURF is known for its speed of

processing while SIFT is good at detecting rotating objects. Several implementations of

both algorithms exist in the open-source community. OpenSURF (written in C++) is

tested with existing phantom images. Figure 4.6 depicts a tracked frame from a series

of images that describes a single oscillation cycle. Notably, the tracking speed is faster

than the thresholding method, partially because it detects less points. For example,

experimental results shown in Table 4.4 suggest that ∼ 2seconds are required to extract

features on three images compared to the ∼ 3seconds required by thresholding. In addi-

tion, there have been several implementations that are specifically designed to increase

the performance. Those designs use Graphics Processing Unit (GPU) to carry out cal-

culations and the speed is even faster [62, 63]. In both algorithms, feature matching can

be achieved by nearest neighborhood method.

Figure 4.6: OpenSURF tracking features in a single image, 434 interest points are
detected in 0.61 seconds. Note that unwanted features can be filtered in order to

enhance the accuracy.
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Table 4.4: Performance of feature extraction using OpenSURF on sets of three images.
The quantity of feature points detected and the program execution time are recorded
for each image. Individual performance is recorded on the number of feature points

(pts) detected and the time taken in seconds (s).

Image 1 Image 2 Image 3

Set 1 434pts/0.61s 512pts/0.82s 414pts/0.54s
Set 2 462pts/0.77s 497pts/0.80s 459pts/0.67s
Set 3 471pts/0.72s 450pts/0.69s 421pts/0.59s

The main advantage of using SIFT/SURF is that many well-maintained implementa-

tions are available in the open-source community. Furthermore, no additional software

package is required to analyze fiducial movements. It is thus possible to incorporate

the motion tracking algorithm into the imaging program, creating a standalone control

application.

4.3.1.3 FastNCC

The Fast Normalized Cross Correlation (FastNCC) described by Hii et al. is an ac-

curate method for motion tracking [64]. For a given window of pixels, Fast NCC will

search for the most similar landmark in the upcoming frame through template match-

ing. Landmarks such as fiducial markers are approximated with rectangular functions,

so the speed of matching in dramatically enhanced. Its performance is much improved

compared to traditional FFT Normalized Cross Correlation algorithm, but still slower

than desired. Current computationally expensive implementation requires MATLAB

runtime and is unable to track all images within a sensible time frame. This algorithm

can become quite accurate when smaller sized windows are used, but this may have

some detrimental effects on the overall processing time. Faster processing time may be

achieved if the algorithm is reimplemented in low level languages.

4.3.1.4 Skin Tracking

Results from preliminary research show that a sequence of ordered images allow the

estimation of motion of the skin as either instantaneous image velocities or discrete

image displacements [65]. Optical flow, or apparent motion between two images can be

estimated by a differential method such Equation 4.2, assuming movement is small.

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0 (4.2)
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I(x, y, t) defines the intensity of a pixel at location (x, y, t). u and v represents image

velocities in the directions of x and y respectively. Unfortunately, optical flow can not

be directly estimated due to the presence of two unknowns in one equation. Additional

constraints must be introduced in order to solve for motions. Adding epipolar constraints

such that requires two corresponding points to be epipolar compatible in a single frame

and multiple frames would solve the equation. The biggest advantage of using this

method is that no fiducial markers are require. More research into this is required.

4.3.2 Frequency Response Reconstruction

A number of reconstruction methods have been introduced in the previous chapter,

which are all based on absolute displacements of the fiducial markers. Image tracking

software described in this chapter computes frequency responses using ∆xz 2D analysis.

All displacements are calculated in pixels and the harmonic with largest displacement is

highlighted. An example response is shown in Figure 4.7, where a sweep between 10Hz

to 40Hz is studied using default capturing parameters. Two harmonics are detected; the

natural frequency at 18Hz and a second harmonic at 30Hz.
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Figure 4.7: Frequency response is reconstructed from a sweep of 16 different frequen-
cies that are spaced equally apart between 8Hz to 40Hz. The sweep is performed on a
soft 3kPa phantom with three image captures per oscillation, and uses default imaging

parameters. Evidently, the first two harmonics can be identified well
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4.4 Communication Protocol Between Applications

A dSweep server is running on a dedicated non-blocking thread, as part of the dSweep

program. Capturing and tracking are able to reach such server on port 6789. It is

important to note that direct communications between capturing and tracking is pro-

hibited. A simple protocol is developed to synchronize all components of the system.

See Appendix D for a summary on all available packet structures. These packets can be

classified into three categories, depending on their origins.

4.4.1 Imaging

Once a particular frequency is imaged, the file path of the folder containing those images

is transmitted to dSweep server using the following packet.

DSWEEP&=PATH_TO_JOB

Imaging routine is only able to “enqueue” new jobs and will not be allowed to modify

the content of the job queue.

4.4.2 Tracking

Tracking on the other hand, has full rights to modify and retrieve contents of the job

queue located on the server. A simple job query can be carried out by the following

packet.

DTRACK&=

Job queries are made on a consistent basis, the server replies with either job entries

or operation flags. Once all jobs are tracked and frequency response is generated, the

termination flag is passed back to the server.

DTRACK&=JOBRXD

4.4.3 dSweep Server

The server looks after both imaging and tracking and runs on its own thread. This

thread is embedded into the capture application and it manages a job list of unfinished

jobs. Its main job is to acknowledge any query packets that are sent from the two clients.
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ACKDSWEEP&=

The server acknowledges any new jobs that have been submitted by the imaging rou-

tine with the above packet. On the other hand, three different types of acknowledgment

packets can be issued to the tracking application.

ACKDTRACK&=PATH_TO_JOB

ACKDTRACK&=QEMPTY

ACKDTRACK&=JOBFIN

The first acknowledgment packet is transmitted whenever there is a job available on

the queue for tracking. When there are jobs ready to be processed, queue empty flag

is issued with the second acknowledgment packet. Termination flag is issued whenever

imaging is completed on all frequencies.

4.5 Performance Analysis

If imaging and tracking take approximately the same time to complete, interleaving

these two tasks would maximize the performance, saving as much as half of the time

originally required. As mentioned earlier, imaging and tracking of three images would

take no more than 7seconds each. Execution time of dSweep for the current setup with

three image captures per oscillation using one camera is shown in Table 4.5. Standard

sweeps of 33 frequencies, from 8Hz to 40Hz with a resolution of 1Hz are carried out.

On average, each set of three images take about 10seconds to complete. However, due

to additional time overheads, those numbers do not truly reflect the actual time that is

spent on imaging and tracking. Overheads include

• Time taken to initialize the imaging device (∼ 5seconds)

• Since the current actuation system requires some time to stabilize its motion, an

extra 2seconds delay is added into the imaging routine. Therefore it must be taken

out from the 10seconds total time spent

• The image tracking software checks jobs from the server once every 5seconds, so

there may be a slight delay

• Since tracking of the last set can only start when all n sets are imaged, time taken

for imaging and tracking should be approximately (n+ 1) ∗ t.
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Table 4.5: Overall performance of the current setup.

Session Number Images Total Total Avg. time
name of sets per set images created time (s) per set (s)

MK3 10mm 33 3 99 330 10.00
MK3 20mm 33 3 99 332 10.06
MK3 Clean 33 3 99 350 10.61
Stiff 10mm 33 3 99 320 9.70
Stiff 22mm 33 3 99 330 10.00
Stiff Clean 33 3 99 310 9.39

Sometimes, it is possible for the tracking program to detect a number of new jobs

on the dSweep server, which generally creates a backlog that could have a detrimental

impact on the performance of the overall system. This is because the frequency response

can only be reconstructed if responses at all frequencies are calculated. An increase in

size of the backlog indicates that tracking takes longer than imaging. Theoretically, the

efficiency of the overall system reaches its highest when there is zero backlog. Conse-

quently, it would be a good idea to run the tracking application on a faster computer

somewhere else on the network if there the backlog starts to build up.

4.6 Summary

The setup of the developed modal analysis platform has been presented in this chapter.

The system setup uses Canon G9 for imaging, thresholding to extract the positions of

fiducial markers and nearest neighborhood for matching those features. Performance-

wise, the time it takes to image three captures is approximately the same as tracking

(less than 7 seconds), so it is possible to maximize the overall performance by running the

two processes concurrently. As seen in test-runs, 10 seconds is sufficient for completing

imaging and tracking for a three image capture set. As a result, the system is able

to produce a full frequency response consisting of results at 33 different frequencies

within 6 minutes. Alternative imaging and image processing solutions are presented, so

clearly improvements can be made to the existing system. Appendix C describe a full

documentation and user guide of the programs described in this chapter.





Chapter 5

Experimental Results

Using the experimental setup described in the previous chapter, studies have been car-

ried out on silicone phantoms and some results are obtained from human breasts. This

chapter presents those frequency responses and attempts to examine the implications

the tumor properties and system settings may have with its frequency responses. More

specifically, the impact on modal frequencies due to different imaging locations, dimen-

sion of tumor, tumor location and phantom stiffness are presented.

5.1 Phantoms Trials

All silicone phantoms used in this study are homogeneous, apart from their inclusions.

As shown in Figure 5.1, the precise location of an inclusion can be described by its

horizontal distance h and vertical distance v from the center.

h

v

Figure 5.1: Graphical representation of the tumor position, where h is the horizontal
distance and v is the vertical distance measured from the center.

Unless otherwise stated, an experiment is conducted with default capturing param-

eters: three image captures per oscillation with a single camera and default camera

settings shown in Table 4.1.
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5.1.1 Imaging locations

Results are obtained from six different imaging locations: the 5 default imaging locations

shown in Figure 1.2 and an additional location shown in Figure 5.2. The additional

camera position is created by clamping the camera onto the side-rail. This position is

parallel to the top surface.

(a) Additional imaging location (b) The clamp

Figure 5.2: Additional imaging location created by clamping the camera onto the
side-rail.

As shown in Figure 5.3, camera location has very little impact on the frequency

responses of all phantoms. Although the magnitude of response varies depending on

the imaging locations, frequencies of the harmonics remain unaffected. It is somewhat

interesting to note that Camera 6, which is positioned on the side-rail, has much weaker

responses compared to the other cameras. A possible explanation for this might be that

this camera uses a different zoom setting since it is positioned further than the others.

Consequently, the motion may appear differently at this available zoom setting than

the others. Another possible explanation for this is that Camera 6 has a completely

different view of fiducial movement compared to the others, so a smaller motion is

detected. Despite of this downscaling behavior, the fundamental frequency still appears

to be very distinctive and consistent with predictions from the rest of the cameras.

5.1.2 Phantom Stiffness

The results shown in Figure 5.4 suggest that stiffer phantoms have higher resonances.

This finding is in agreement with the simulation results shown in Chapter 3. On the

question of surface displacement measured, responses from the stiffer phantom are signif-

icantly smaller compared to surface displacements on the soft phantom. This weakened

behavior is much expected since the stiff material that the phantom is molded from

requires a much stronger actuation force to cause any deformation.
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(b) 2.5mm inclusion at h = 15mm,v = 40mm
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(c) 5mm inclusion at h = 12mm,v = 40mm
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(d) 10mm inclusion at h = 15mm,v = 40mm

Figure 5.3: Frequency responses of 4 different phantoms imaged at 6 locations.
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Figure 5.4: Effect of phantom stiffness on modal frequencies.
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5.1.3 Dimension and Location of Inclusion

Three different dimensions of inclusions are tested using the soft phantom and their

responses are shown previously in Figure 5.3. Modal frequencies detected from those

responses are tabulated in Table 5.1. Notably, the observed difference between locations

of fundamental frequencies is not significant. However, the displacement amplitudes

suggest that a link may exist between the size of the inclusion and the damping coefficient

of the breast volume.

Table 5.1: Modal frequencies for a soft 3kPa phantom with inclusion.

Radius (mm) Location (mm) Fundamental (Hz) Second Harmonic (Hz)

2.5 h = 15,v = 40 18 34
5 h = 15,v = 25 20 34
5 h = 15,v = 40 20 34
5 h = 25,v = 40 20 34
5 h = 35,v = 25 20 32
10 h = 15,v = 25 20 30
10 h = 15,v = 40 20 34
10 h = 25,v = 40 20 32
10 h = 35,v = 25 20 32

Table 5.1 did not show any significant changes in modal frequencies with different lo-

cations of inclusions. Figure 5.5 illustrates responses for two different sizes of inclusions:

5mm and 10mm. It has been observed that inclusions with larger horizontal distances

to the center weaken the overall responses; that is, motions appear to be constrained by

inclusions that are placed further away from the actuation axis and closer to the surface.
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Figure 5.5: Responses with different tumor positions, where HxVy indicates the exact
location of the inclusion in mm.
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5.2 Human Trials

As shown in Figure 5.6, preliminary results from trials carried out on several healthy

human breasts indicate that typical human breasts share similar fundamental frequencies

compared to the 3kPa soft phantom, between 15Hz and 20Hz. Moreover, the imaging

location does have some slight impact on the magnitudes of responses obtained. This

finding is in agreement with the finding in phantom studies.
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Figure 5.6: Frequency responses from several healthy human breasts.

In contrast to earlier findings in phantom studies, responses from Camera 4 and 5

shown in Figure 5.6(b) show completely different modal frequencies compared to all other

cameras. A possible explanation for this might be that the breast was moving during

the imaging procedure. It is probable therefore that human-induced breast movement

during the imaging has strong influences on the quality of results. Another possible

explanation for this is that human breasts are not homogeneous and hence density of

the tissue is likely to be variable at different locations. Consequently, the resonant

frequencies are expected to be affected by different imaging locations.
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One unanticipated finding is that all healthy cases shown in Figure 5.6 do not seem

to have distinctive second harmonics. This finding has important implications for devel-

oping phantoms in the future. However, more human trials will have to be conducted in

the future in order to validate such behavior. This finding is in agreement with previous

findings documented by Peters [32] which showed that typical healthy breast volumes

have similar stiffness.

5.3 Summary

The results shown in this chapter provide an insight into the performance of the modal

analysis platform on both silicone phantoms and human breasts. The potential impact

of phantom properties and imaging settings on responses are investigated.

Silicone phantoms of two types of stiffnesses were tested: 3 kPa and 33 kPa. As

expected, an increase in tissue stiffness results in much higher resonances. As seen in

phantom studies, resonant frequencies are not so much affected by the imaging location,

dimension or location of its inclusion. However, these parameters have influences on

the magnitude of responses. The fundamental frequency for the silicone phantoms were

centered around 20Hz.

In human trials, several healthy breasts were examined. This finding, while prelimi-

nary, suggests that different imaging location can sometimes lead to different responses

because human breasts are not homogeneous. Further testing on unhealthy breasts

should be undertaken to reveal the modal analysis platform’s true performance. The

fundamental frequency for the healthy human breasts tested were between 15Hz to

25Hz.

It is apparent that the soft silicone phantoms are well-suited for modeling the breast

tissues given their frequency responses are relatively similar. A sweep between 8Hz and

40Hz is sufficient for detecting the fundamental frequencies in all cases.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This project was undertaken to design a cost effective, yet accurate modal analysis

platform for the Digital Image-based Elasto-Tomography (DIET) breast cancer screening

system, so natural frequencies of the breast can be obtained prior to imaging.

The requirements for the system were low cost and non-invasive sensing. Various

sensing methods were evaluated and an image-based motion tracking approach was cho-

sen for this application

The designed 2D sensing method was evaluated on retrospective motion data to

determine optimal settings and limitations. Before implementation in hardware and

software with default parameters, the designed system is able to produce a full frequency

response in a short time frame. A full response that consists of 33 different frequencies

can be reconstructed within 6 minutes. This is possible because image processing and

capturing are carried out simultaneously in an automated fashion.

Validation of the developed system was undertaken on silicone phantoms and human

breasts to assess the impact of camera numbers and positioning.

The phantom studies have found that imaging location had very little impact on the

resonant frequencies, mainly because the silicone phantoms have equal density for all

healthy tissue. However, results from human trials suggest the opposite, due to the fact

that human breast tissues are likely to be inhomogeneous.

These phantom studies also showed that generally the dimension and location of

inclusion will not affect the location of harmonics. But the behavior of responses from

human breast with presence of inclusions are yet to be determined. The main limitation
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of this study is that the number of human trials was relatively small, and future human

trials are required so a relationship can be established between the phantom studies and

human trials.

Overall, the modal analysis system developed in this thesis proved to be functional in

assessing modal behavior of soft tissue. The system was designed on prior imaging data,

implemented in hardware and software and validated on silicone and human breasts.

The imaging performance improvements introduced by this system will help contribute

to an improved overall DIET system.

6.2 Future Work

The hardware choice of G9 PowerShot cameras has proven to work well as it is able

to deliver satisfactory images in a timely manner. However, CanonTM is phasing out

PRSDK supports for its non-DSLR products and alternative imaging solutions are re-

quired for building future prototypes. Industrial cameras in particular are attractive

due to their compact size and light weight, and programming support. More generally,

research is also needed to determine the best way for sensing vibrations non-invasively.

The image tracking application has proven to be fast enough to allow the processing

to run in real time. However, the current implementation is fully written in MATLAB,

and the processing speed is severely constrained by the MATLAB runtime environment.

The speed can be dramatically increased if the software could be rewritten in lower level

languages. While simply thresholding and nearest neighbor matching appears to be

sufficient to track fiducial displacements, it may be worthwhile to evaluate alternative

image tracking techniques such as optical flow and feature descriptor tracking because

these methods can reveal more interesting characteristics of the fiducial movement. Con-

siderably more work will need to be done to determine the most robust tracking solution.

Absolute displacements in 2D is the metric currently employed for computing re-

sponses at different frequencies. The algorithm can be easily adapted to use other

metrics, such as standard deviation and RMS of displacements. Future work should

look at how the performance varies with different metrics.

Preliminary results from human trials suggest that human breasts share similar fre-

quency responses with the 3kPa soft silicone phantom; hence, extensive phantom studies

using the soft silicon material were conducted. It has been revealed that the fundamen-

tal frequencies of those phantoms are centered around 20Hz, whereas the human breast

is seen to have its fundamental frequency somewhere between 15Hz to 25Hz. A typical

sweep from 8Hz to 40Hz is sufficient to reveal both harmonics of the silicone phantom.
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In human trials, the second harmonic is either negligibly small or not picked up. Further

experiments are essential, so more realistic phantoms can be constructed.





Appendix A

Least Common Multiple

A.1 Data Interpolation

It is ideal to conduct a separate experiment with the required image per cycle settings.

However, this is relatively time-consuming as there is a large number of phantoms and

different images per cycle settings that needs to be evaluated.

One way of shortening this cumbersome process would be: image a particular phan-

tom with N images per cycle, where N is the least common multiple (LCM) of all the

images per cycle that one wants to study; for example (n1, n2, ..., nk). These number of

images per cycle (n1, n2, ..., nk) can then be precisely obtained from thisN images per cy-

cle measurement through decimation. This eliminates the need to perform (n1, n2, ..., nk)

images per cycle on the same phantom numerous times. However, the major drawback

of this method is that a large amount of images are required to be captured to study a

large group of images per cycles. The LCM of a series (n1, n2, ..., nk) = (2, 3, 4, 5, 6, 7, 8)

is calculated to be 840; that is, 840 images per oscillation cycle. This will be the amount

of data generated at one particular actuation frequency. It will need to be multiplied

by the number of actuation frequencies one wants to investigate to get an idea of the

data storage required. This becomes highly impractical and even more computational

expensive to process. Therefore, other solutions for generating additional measurements

are sought after.
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A.2 Finding LCM by prime factorization

The LCM of any two numbers a and b, denoted by lcm(a, b) can be calculated using the

smallest positive number m for which there exist positive integers na and nb, such that

m = ana = bnb (A.1)

The LCM for more than two numbers is similarly defined.

m = a1na1 = a2na2 = a3na3 = a4na4 = a5na5 = ... = aknak (A.2)

The LCM of any two numbers a and b can be obtained by their prime factorizations,

such that

a = pa11 ...p
ak
k (A.3)

b = pb11 ...p
bk
k (A.4)

where the p elements represents all the prime factors of a, b. If a particular p does

not occur in one factorization, the corresponding exponent is assigned to 0. The LCM

is then given by the following equation.

lcm(a, b) =
n
∏

k=1

p
max(akbk)
k (A.5)

For example, LCM(3,4,5,6) would result in the following:

3 = 203150

4 = 223050

5 = 203051

6 = 223150

(A.6)

∴ lcm(3, 4, 5, 6) = 223151 = 60

A.3 Finding LCM by Greatest Common Divisor

LCM of two numbers can also be defined by Equation A.7, where GCD is the great

common divisor of the two.
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lcm(a, b) =
ab

GCD(a, b)
(A.7)

Since LCM is associative, LCM of more than two numbers can be computed by

Equation A.8.

lcm(a1, a2, a3, ..., ak) = lcm(a1, lcm(a2, lcm(a3, lcm(..., lcm(ak−1, ak))))) (A.8)





Appendix B

Retrospective Feasibility Studies

On Various Phantoms

B.1 Unhealthy 3kPa soft phantom with 20mm tumor

Figure B.1, Figure B.2 and Figure B.3.

B.2 Healthy 30kPa stiff phantom

Figure B.4, Figure B.5 and Figure B.6.

B.3 Unhealthy 30kPa stiff phantom with 22mm tumor

Figure B.7, Figure B.8 and Figure B.9.

B.4 Unhealthy 30kPa stiff phantom with 10mm tumor

Figure B.10, Figure B.11 and Figure B.12.
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(a) 1D analysis with Max(∆x).
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(b) 1D analysis with Max(∆y).
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(c) 1D analysis with Max(∆z).

Figure B.1: 1D analysis for 2,3,4,5 captures on an unhealthy 3kPa soft phantom
with 20mm tumor, where ∆x, ∆y and ∆z are displacements along X, Y and Z axes,
respectively. 90th percentile (solid) represents the best case and 10th percentile (dotted)

indicates the worst.
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(a) 2D displacement analysis with Max(∆x,∆y).
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(b) 2D displacement analysis with Max(∆x,∆z).

Frequency (Hz)

D
is

pl
ac

em
en

t (
m

)

0 20 40 60
0

2

4

6
x 10

−3

←@13Hz

2 images

0 20 40 60
0

2

4

6
x 10

−3

←@13Hz

3 images

0 20 40 60
0

2

4

6
x 10

−3

←@13Hz

4 images

0 20 40 60
0

2

4

6
x 10

−3

←@13Hz

5 images

(c) 2D displacement analysis with Max(∆y,∆z).

Figure B.2: 2D analysis for 2,3,4,5 captures on an unhealthy 3kPa soft phantom
with 20mm tumor, where ∆x, ∆y and ∆z are displacements along X, Y and Z axes,
respectively. 90th percentile (solid) represents the best case and 10th percentile (dotted)

indicates the worst.
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(a) 3D displacement analysis with Max(∆x,∆y,∆z).

Figure B.3: 3D analysis for 2,3,4,5 captures on an unhealthy 3kPa soft phantom
with 20mm tumor, where ∆x, ∆y and ∆z are displacements along X, Y and Z axes,
respectively. 90th percentile (solid) represents the best case and 10th percentile (dotted)

indicates the worst.
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(a) 1D analysis with Max(∆x).
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(b) 1D analysis with Max(∆y).
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(c) 1D analysis with Max(∆z).

Figure B.4: 1D analysis for 2,3,4,5 captures on a healthy 30kPa stiff phantom, where
∆x, ∆y and ∆z are displacements along X, Y and Z axes, respectively. 90th percentile

(solid) represents the best case and 10th percentile (dotted) indicates the worst.
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(a) 2D displacement analysis with Max(∆x,∆y).
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(b) 2D displacement analysis with Max(∆x,∆z).
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(c) 2D displacement analysis with Max(∆y,∆z).

Figure B.5: 2D analysis for 2,3,4,5 captures on a healthy 30kPa stiff phantom, where
∆x, ∆y and ∆z are displacements along X, Y and Z axes, respectively. 90th percentile

(solid) represents the best case and 10th percentile (dotted) indicates the worst.
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(a) 3D displacement analysis with Max(∆x,∆y,∆z).

Figure B.6: 3D analysis for 2,3,4,5 captures on a healthy 30kPa stiff phantom, where
∆x, ∆y and ∆z are displacements along X, Y and Z axes, respectively. 90th percentile

(solid) represents the best case and 10th percentile (dotted) indicates the worst.
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(a) 1D analysis with Max(∆x).
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(b) 1D analysis with Max(∆y).
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(c) 1D analysis with Max(∆z).

Figure B.7: 1D analysis for 2,3,4,5 captures on an unhealthy 30kPa stiff phantom
with 22mm tumor, where ∆x, ∆y and ∆z are displacements along X, Y and Z axes,
respectively. 90th percentile (solid) represents the best case and 10th percentile (dotted)

indicates the worst.
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(a) 2D displacement analysis with Max(∆x,∆y).
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(b) 2D displacement analysis with Max(∆x,∆z).
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(c) 2D displacement analysis with Max(∆y,∆z).

Figure B.8: 2D analysis for 2,3,4,5 captures on an unhealthy 30kPa stiff phantom
with 22mm tumor, where ∆x, ∆y and ∆z are displacements along X, Y and Z axes,
respectively. 90th percentile (solid) represents the best case and 10th percentile (dotted)

indicates the worst.
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(a) 3D displacement analysis with Max(∆x,∆y,∆z).

Figure B.9: 3D analysis for 2,3,4,5 captures on an unhealthy 30kPa stiff phantom
with 22mm tumor, where ∆x, ∆y and ∆z are displacements along X, Y and Z axes,
respectively. 90th percentile (solid) represents the best case and 10th percentile (dotted)

indicates the worst.
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(a) 1D analysis with Max(∆x).
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(b) 1D analysis with Max(∆y).
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(c) 1D analysis with Max(∆z).

Figure B.10: 1D analysis for 2,3,4,5 captures on an unhealthy 30kPa stiff phantom
with 10mm tumor, where ∆x, ∆y and ∆z are displacements along X, Y and Z axes,
respectively. 90th percentile (solid) represents the best case and 10th percentile (dotted)

indicates the worst.
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(a) 2D displacement analysis with Max(∆x,∆y).
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(b) 2D displacement analysis with Max(∆x,∆z).
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(c) 2D displacement analysis with Max(∆y,∆z).

Figure B.11: 2D analysis for 2,3,4,5 captures on an unhealthy 30kPa stiff phantom
with 10mm tumor, where ∆x, ∆y and ∆z are displacements along X, Y and Z axes,
respectively. 90th percentile (solid) represents the best case and 10th percentile (dotted)

indicates the worst.
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(a) 3D displacement analysis with Max(∆x,∆y,∆z).

Figure B.12: 3D analysis for 2,3,4,5 captures on an unhealthy 30kPa stiff phantom
with 10mm tumor, where ∆x, ∆y and ∆z are displacements along X, Y and Z axes,
respectively. 90th percentile (solid) represents the best case and 10th percentile (dotted)

indicates the worst.





Appendix C

Program User Guide

This program user guide covers the key software introduced in this thesis.

C.1 Modal Testing System

Make sure all hardware are operational, LabVIEW is running and camera at the selected

imaging location is turned on. Note there are five different cameras available in the

current DIET system, so make sure the other four unused cameras are switched off.

Otherwise, dSweep will initialize on the first camera connected. Additional imaging

locations can be created simply by repositioning the camera from the DIET setup to

a desired location. When imaging at positions other than the default positions, zoom

value must be determined by visual inspection using RelCtrl.

Two pieces of software are involved and required to be started. In general, the order

of startup does not matter, but it is good to start the main application (dSweep) first

as it will take a few seconds to setup the actuator and imaging device. Their usages are

described in the following sections.

C.1.1 dSweep

dSweep takes a number of parameters. To get a list of supported parameters, invoke the

program with “-h”. For example,

C:\Work\software\dTrackingSoftware\bin\Release>dSweep.exe -h

dTracking.dSweep Build Sep 27 2010 @ 20:24:55

89
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Usage dSweep <options> [default values]

-i ip RIO <i>p [10.0.0.2]

-p port RIO <p>ort [2345]

-n x <n>umber of photos [3]

-d dir <d>irectory to store photos [C:\DIET]

-a amp Actuator <a>mplitude [0.500000]

-u f/x Camera apert<u>re [56]

32 = AV_2f8

35 = AV_3f2

37 = AV_3f5_3rd

40 = AV_4f

43 = AV_4f5_3rd

45 = AV_5f6_3rd

48 = AV_5f6

51 = AV_6f3

53 = AV_7f1

56 = AV_8f

-t spd Camera shu<t>ter speed [56]

For a complete list of values, see SDK/datasheet.

37 = TV_5s

40 = TV_4s

44 = TV_3s

48 = TV_2s

56 = TV_1s

-o ISO Camera IS<o> value[69]

69 = ISO_80

72 = ISO_100

80 = ISO_200

88 = ISO_400

96 = ISO_800

104 = ISO_1600

-z zoom Camera <z>oom[5]

0 <= zoom <= 19

-q qual Image <q>uality[5]

1 = IQ_ECONOMY

2 = IQ_NORMAL

3 = IQ_FINE

4 = IQ_LOSSLESS
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5 = IQ_SUPERFINE

-s size Image <s>ize[7]

0 = IS_LARGE 4000x3000

1 = IS_MEDIUM1 3264x2448

2 = IS_SMALL 640x480

3 = IS_MEDIUM2 2592x1944

7 = IS_MEDIUM3 1600x1200

BUILD Sep 27 2010 20:24:55

Default values are shown in square brackets ([]) and all available settings are shown.

The following command starts a session with zoom value of 8 and three image capture

per oscillation cycle (refer to Table 4.1 for default settings).

dSweep -z 8 -n 3

This example starts a custom session with f4, 2second exposure, ISO 200 and actu-

ation amplitude of 1mm.

dSweep -z 8 -n 3 -u 40 -t 48 -o 80

dSweep communicates with LabVIEW actuation control program using port 2345

and the its internal job queue can be accessed on port 5678 using packets shown in

Appendix D.

C.1.2 Image Tracking Software

Tracking software will communicate with the dSweep job queue on port 6789. Tracking

will retrieve jobs from the queue and default setting assumes dSweep is running on the

same computer. Start the program in by typing the following in MATLAB.

>>dclient

If dSweep is running on a different computer on the network, use the following.

>>dclient(ip,6789) % ip that dSweep is running on
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The program will add all subdirectories found in program folder to MATLAB’s path.

This is done by the following piece of code. If, for some reason, the program does no

start from the program’s directory, problems are likely to occur. It is important to make

sure MATLAB includes those paths.

currentExpDIR = pwd; % current directory

addpath(currentExpDIR)

addpath([currentExpDIR ’/matlab_bgl’])

addpath([currentExpDIR ’/cubedata’])

addpath([currentExpDIR ’/substitution_toolbox’])

C.2 DIET Imaging (gCapture)

The imaging system previously used G5 cameras for imaging, and are all upgraded

to G9 cameras. Since G9 uses a newer SDK (PRSDK), imaging software has to be

reimplemented. This is done with a server/client setup.

C.2.1 Server

The imaging server supports a list of options that can be changed during startup, default

values are shown in square brackets.

C:\Work\software\gCapture\bin\Release>gCapture.exe -h

##################################################

gCapture(PRSDK) Build Oct 7 2010 @ 11:42:19

##################################################

Usage dSweep <options> [default values]

-f filepath <f>ile containing list of frequencies to capture

[./sweep.cfg]

-i ip RIO <i>p [10.0.0.2]

-p port RIO <p>ort [2345]

-n x <n>umber of photos [10]
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-d dir <d>irectory to store photos [C:\DIET]

-a amp Actuator <a>mplitude [0.500000]

-u f/x Camera apert<u>re [56]

32 = AV_2f8

35 = AV_3f2

37 = AV_3f5_3rd

40 = AV_4f

43 = AV_4f5_3rd

45 = AV_5f6_3rd

48 = AV_5f6

51 = AV_6f3

53 = AV_7f1

56 = AV_8f

-t spd Camera shu<t>ter speed [56]

For a complete list of values, see SDK/datasheet.

37 = TV_5s

40 = TV_4s

44 = TV_3s

48 = TV_2s

56 = TV_1s

-o ISO Camera IS<o> value[69]

69 = ISO_80

72 = ISO_100

80 = ISO_200

88 = ISO_400

96 = ISO_800

104 = ISO_1600

-z zoom Camera <z>oom[5]

0 <= zoom <= 19

-q qual Image <q>uality[5]

1 = IQ_ECONOMY

2 = IQ_NORMAL

3 = IQ_FINE

4 = IQ_LOSSLESS

5 = IQ_SUPERFINE

-s size Image <s>ize[7]

0 = IS_LARGE 4000x3000

1 = IS_MEDIUM1 3264x2448

2 = IS_SMALL 640x480
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3 = IS_MEDIUM2 2592x1944

7 = IS_MEDIUM3 1600x1200

-v verbose

BUILD Oct 7 2010 11:42:19

Depending on the number of cameras chosen by user, gCapture will try to initialize

on all those devices. For example, following command starts a imaging sever with five

cameras, ten images per oscillation capture, and at a zoom value of 5.

gCapture -c 5 -n 10 -z 5

However, since above command uses all default values for those options, user may

omit these options. The following command will be equivalent.

gCapture

Different settings of ISO, Aperture and Shutter Value can be specified during the

startup. These values will not be allowed to be changed once the server is started. To

use different capture settings, the program must be terminated by the client before being

restarted.

Calibration is compulsory as each startup will result in a different focus. Once

calibration is finished and server is started, the client can be run.

C.2.2 Client

A remote control application is developed, so multiple patients can be imaged without

recalibrating the cameras with every different patient. Simply have the server running

and run client to enqueue different imaging jobs.

C:\Work\software\gCaptureRC\bin\Release>gCaptureRC.exe -h

Usage dietclient.exe <opt>

-k: to kill the server

-i <dSpace ip> : Specify the dSpace Ip adress [127.0.0.1]

-p <dSpace port> : Specify the dSpace port [3456]

-f <cfgfile> : Specify the actuator frequency [50]
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BUILD Oct 5 2010 13:10:00

The following command enqueues a new configuration file “file.cfg” into the job pool.

User may queue up new jobs at anytime, even during imaging. Server will immediately

recognize and acknowledge the job request and will read out the frequencies from the

supplied configuration file once it finishes imaging the current frequency. It’s a good

idea to store the configuration files in the same directory or lower than the program.

gCaptureRC -f file.cfg

To terminate the server at anytime, use the following command. Server will ac-

knowledge the kill signal and terminate itself once it has finished imaging the current

frequency. This is possible because server is running on a dedicated thread.

gCaptureRC -k

C.3 RelCtrl

Note that this program is only intended to be a tool for determining appropriate zoom

values.

RelCtrl is a piece of software that comes with almost all PRSDK distributions. It

is a demo application that can be used for live viewing. Additional functionalities are

brought in so live visual feedbacks on zoom adjustments can be seen. The main window

is shown in Figure C.1. Execute the following procedure to obtain an appropriate zoom

value.

First have the strobe system on full brightness.

Second connect to camera and start view finder.

Third adjust the zoom setting to obtain a good visual of the targeted object and

remember the zoom value.

Finally refocus the lens. Having full brightness helps the lens with focusing.
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Figure C.1: RelCtrl program provides visual feedback that aids zoom selection.



Appendix D

Communication Protocol

D.1 Imaging and Tracking

The protocol shown in Table D.1 is employed to keep imaging and tracking synchronized.

The dSweep server keeps things in the correct order. Since all communications are bi-

directional, additional features can be included quite easily.

97



A
p
p
en
d
ix

D
.
C
o
m
m
u
n
ic
a
ti
o
n
P
ro
to
co
l

98

Table D.1: Communication protocol.

Content Origin Destination Functionality

DSWEEP&=C:/DIET/Sweep - DATE/Motion.16Hz/ Imaging Server Imaging at 16Hz is finished
Payload contains path to the folder

DTRACK&= Tracking Server Requesting for a new job to track

DTRACK&=JOBRXD Tracking Server Acknowledging packets from
the tracking program to server, new job received

ACKDSWEEP&= Server Imaging Acknowledging packets from Imaging routine

ACKDTRACK&=C:/DIET/Sweep - DATE/Motion.16Hz/ Server Tracking Acknowledging packets from server
for the image tracking program. Payload is

the path that leads to those images

ACKDTRACK&=JOBFIN Server Tracking Acknowledging packets from server
to image tracking program.

Imaging is finished

ACKDTRACK&=QEMPTY Server Tracking Acknowledging packets from server
to image tracking program. Queue is empty
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