
COMPUTING PROCEDURES FOR A

LEARNING MACHINE

A thesis presented for the degree of

Doctor of Philosophy in Electrical Engineering

in the University of Canterbury,

Christchurch, New Zealand

by

P.M. CASHIN, B.E.(Hons), M.E.(Dist.)

1970

Ii) , ACKNOWLEDGEMENTS

I am deeply indebted to Professor J.R. Andreae who

has been my supervisor and has provided cont-inual

guidance, support and enthusiasm. I have also had

valuable assistance from his methodically indexed

library of papers and bookso

Unfortunately, it is impossible to individually

acknowledge all the people who have helped me through

discussion, argument and cooperative effort during the

course of this worko In particular the staff and post~

graduate students in the Electrical Engineering

Department have contributed; many actively, all by

good willo

I am grateful to the University Grants Committee

for their scholarship which has supported me through

this work.

Finally, I am grateful to my wife, Trish~ for her

patience and interest in my work.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1-1 Introduction

1-2 Path Finding

1-3 Stochastic Learning Automata

1-4 Rote learning and Markov Process Theory

CHAPTER 2: THE BANDIT ALGORITHM FOR MINIMUM COST

PATH FINDING WITH INCOMPLETE COST

'INFORMATION

2-1 Introduction

2-2 Proplem Statement

2-3 Illustrative Example

2-4 The Two Armed Bandit Problem

2~5 The BANDIT Algorithm

2-6 Some Comparative Results

2-7 Extensions to Path Finding

2-8 An Admissible Algorithm

2-9 Arc Cost Estimates

2-10 On-line Algorithm

2-11 Convergence Theorem

2-12 Applications of the BANDIT Algorithm

2-13 Results

2-14 Conclusions

References

PagQ

1-1

1-1

1-5

1-8

1-9

2-1

2-1

2-2

2-5

2-7

2-10

2-13

2-13

2-15

2-15

2-16

2-16

2-18

2-25

2-27

CHAPTER 3: STOCHASTIC LEARNING AUTOMATA

3-1 Introduction

3-2 Notation

3-3 Modified Linear Reinforcement Procedure

3-4 The BANDIT Algorithm

3-5 Environments with Perception and Performance

Measures

3-6 Results

3-8 Conclusions

References

CHA~ER 4: ROTE LEARNING AND MARKOV PROC~SSES

4-1

4-2

4-3

4-4

4-5

4-6

4~7

Table Building

Operator Selection Strategy

Planning from Rote Learning

Interaction as a Markov Process

An Example of Optimal Policy Failure

Stochastic Simulation

Operator Decision Procedure

4-8 Expectance Function

4-9 Operator Decision based on Expectance

4-10 E~pectance Entry in the Rote Learning Table

4-11 BANDIT-EXPECTANCE MaQhine

4-13 Fox and Dogs Game

4-14 Extensions to the Rote Learning Table

RefE?rences

~

3-1

3-5

3-8

3-9

3-16

3~25

3-35

3-37

4-1

4-6

4-10

4-1/!

4-20

4-26

4-33

4-36

4-40

4-49

4-52

4-55

4-62

4-67

CHAPTER 5: CONCLUSIONS

5-1 Reinforcement Le~rning 5-1

5-2 Against Reinforcement Learning 5~2

5-3 Learning by Being Told 5-3

5-4 Why the Gap? 5-7

5-5 Grafting Learning Ability onto a Program 5-8

5-6 Summary of Main Points 5-10

APPENDICES ------,-.-
APPENDIX A: LINKN~T: A Structure for Computer

Representation and Solution of Network

Problems

Abstract

A-1 IJ;ltrQduction

A-2 The Basic Structure

A-201 Graphs

202 LINKNET Elements

2.3 Lists

204 Access to apc attributes

205 Access to node attributes

A-3 Cre~tion of LINKNET

301 Construction of a LINKNET Structure

A-4 Applications of LINKNET

4.1 Minimum length path finding ,

4.2 Finding Meshes and Spanning Trees

A-7

A-10

A-10

A-10

A-13

A-13

A-17

A-5 Conclusions

References

APPENDIX B: GEAPHIC DISPLAY SYS~EM
-~.,.....

B~1 Introduction

B~2 Bas~c System Requ~r8m~nts

B-3 The Edit Phase

- D~rect Draw Facility

- Disp~ay Language Facility

B-4 The Run Time Phase

- Display Order Inter

- Display File Editing

B-5 Editor~Interpreter

References

APPENDIX 0: Analytic Calculation of BANDIT
....,........-

Selection Probability for Normal Probability

Densitieso

APPEND~: The BANDIT Algorithm in Heuristic

Search Algorithms,

Page

A-22

A-24

B-1

B-4

B-5

B-5

B-7

B-""10

B-11

B-15

B-19

:$-26

CHAPTER ONE

INTRODUCTION

1 - 1

CHAPTER ONE

1 - 1 INTRODUCTION

This thesis presents the highlights of work done

in the field of artificial intelligence - more particul­

arly machine learning. Artificial intelligence research

is accepted [3J as a wide ranging discipline, and no

attempt will be made to define or delimit it. The

areas of most importance to this thesis are, heuristic

programming, problem solving and associated learning

models.

Such important areas as pattern recognition are

scarcely mentioned in this thesis; this is not to imply

that such areas do not contribute to or supplement the

main theme of machine learning. It is simply that the

work reported has contributed no new concepts in these

areas, or linked them any closer to machine learning 0

The view has been taken that every learning machine

must face the problem of continually having to decide on

an action on the basis of some current set of collected

data and deductions. Each action can be thought of as

producing a 'value'. The problem is that the estimated

'value' of each action is based on the current data,

while each action may produce a 'side effect' of con-

tributing more data.

1 - 2

This problem is exemplified by the 'Dual Control!

problem [4] and in its most basic form by the 'Two

Armed Bandit Problem' [2] 0 The Two Armed Bandit

Problem is first considered in Chapter 2, where the

BANDIT algorithm is first introduced. The BANDIT

algorithm is not only contributed as an algorithm for

solving the Two Armed Bandit Problem, but it is

designed to be a basic mechanism in the learning

machine faced with the more complex and general problem

outlined above.

The heuristic that the BANDIT algorithm is based on

can be stated like this:

If one of a number of al ternati ves has a probability

'p! of beirig the best alternative, then choose this

alternative 100.p% of the timeo

To assess the probability 'pi of one alternative

being better than any other, it is necessary to know not

only the estimated mean 'valueo of each alternative but

also the probability density of these mean 'value i

estimates. The BANDIT algorithm provides a concise com­

putational procedure to perform this decision processo

The applications, implementation and results from

using the BANDIT algorithm form a central core to this

thesis.

The second contribution that plays a major part

in this thesis is the 'expectance' function. This

function is based on the 'expectation' used by

Andreae (1) and Gaines and Andreae [6 J in the STeLLA

learning machine. It is similar to the expectimaxing

scheme proposed by Michie and Chambers [9].

The purpose of the expectance function can be

thought of (for now) ,as .. a way of assessing an action's

long term 'value'. That is, not only is the immediate

'value' resulting from the use of the action considered,

but also account is taken of the future actions that

will become available, and of their expectance functions

or expected 'values i •

The development contributed by the expectance

function is its generality~ and equally important is its

recursive formulation and on-line evaluation. The

expectance function is introduced near the end of

Chapter 3, and is fully discussed ih Chapter 4.

Just as important as the BANDIT algorithm and the

expectance function themselves~ is their use in linking

together and extending several distinct areas of

current research interest. The three main areas con­

cerned are:

Path finding (graph searching) - considered from a

particular point of view where incomplete information

is involved,

1 - 4

Stochastic automata - with the introduction of an

extended problem class for these machines, and

Markov process theory and its use in the development

of a rote-learning table-based learning machineo

These topics are dealt with in Ohapter 2, 3 and 4

respectively. A brief 'over-view' of these topics is

given in this introductory chapter under sections 1-2,

1-3 and 1-4.

The function of the appendices is two fold. First

they contain some support material that is not approp-

riate 'in-line', but more important they contain some

originai material of their own 0 This material is not

included in the main body since it is concerned with

computational tools that have been used (transparently)

to develop the algorithms and examples contained in the

main body. The two main topics in this class are:

10 A technique based on linked list structures that

enables problems involving networks or graphs to be im-

plemented in a rather uniform manner. It is not so much

that the teChniques involved are in any way new? but

rather that the particular way of applying the techniques

to the network itself - rather than to the various

information structures that may arise in the course of a

particular problem - leads to structural and procedural

convenience. The ideas here have been developed in

conjunction with MoRo Mayson and Ro Podmore who have

1 - 5

used the technique on several power system problems.

20 A discussion of work done in implementation of a

graphical display system for the Electrical Engineering

Department's EAI 640 computer. Although this display

system was develop~d from scratch in cooperation with

M.R. Mayson, the details of this work are not consider­

ed relevant to this thesis~ The philosophy developed is

considered relevant however and is based on a large

effort devoted to establishing a framework for the

software.

1 - 2 PATH FINDING

Chapter 2 is concerned with a particular class of

path finding problems. Briefly these problems involve

repeated traversal of the minimum cost path that can be

found on the basis of current (incomplete) arc or path~

segment cost information. This is combined with the

upaating of the arc cost information for those arcs that

are traversed, on anyone path traversal. This problem

has been given the name 'on-line 9 path finding.

Chapter 2 is written in the form of a paper describing

an operations research technique for this class of

problem.

The presentation in Chapter 2 is thus rather closer

to the basic problem than if the sophisticated heuristic

graph searching techniques used by artificial

1 - 6

intelligence workers had been explicitly employed. It

should be made clear however that by the very nature of
I

graph searching in problem solving or game playing they

often fall into the 'on-line v path finding class.

Oonsider for example a small board game where it is

possible for a machine to search enough of the game

graph (tree) to establish that it can not possibly win

if the opponent plays optimally. An example of such a

problem is considered near the end of Ohapter 4~ with

the French Military Game or Fox and Dogs.

In such situations we would like the machine to

make a move that maximized its chances of a win - that

is, try to put the opponent ~n a position where he is

most likely to blunder. Such performance is just not

possible by many successful tree searching programs,

since the basis of back-tracking up the game tree is a

mini-max strategy. On the oth~ band the efficiency of

the search (the work that it involves) is very dependent

on the search strategy and this aspect has received

considerable attention [7][10J [11J.

A similar problem can occur in situations where a

complete search is not possibly by any strategyo In

this (normal) case the usual technique is to back-track

up the game tree from an estimation of the value or

merit of the various terminal nodes that have been

established. Probably the best known program of this

1 - 7

form is Samuel's checker player [12J. An evaluation of

various search techniques is given by Slagel and Dixon

[14 J.
The problem arises not from the search and back up

procedures themselves but occurs as soon as the

estimates used for the value of each node are allowed to

be learned by the machine from its own experience. In

fact as soon as the learning is directly derived from

the machine's own play we have an 'on-line' path

finding problem. Chapter 2 shows that without an

algorithm such as the BANDIT algorithm the learning

process in such cases is liable to get istuckO below

the optimal performance level.

The above comments apply equally well to problem

solving and theorem proving - except that in these cases

it may only be required to search once for a solution.

In other words the information update from one solution

to the next is not present. In such cases the ion-lineo

path finding problem does not exist and the best avail­

able estimate gives the best that can be achieved.

There is no benefit from the ° side-effect' of the

actions giving more data;

1 - 8

1 - 3 STOCHASTIC LEARNING AUTOMATA

Stochastic automata have recently been receiving

attention as models for learning behaviour and a survey

of this work is given by Fu (1970) [5Jo Chapter 3 is

concerned with this approach to learning machines,

starting with a brief introduction to the current

established work.

One recent scheme in particular [13J is then

developed and shown to be similar to a BANDIT algorithm

stochastic learning automaton, which is introduced at

this point. A benefit of this is that a proof of con­

vergence is given for the first automata scheme [13 J and

a modified BANDIT automaton can be derived which falls

within the scope of this proof 0

Stochastic learning automata schemes are viewed in

Chapter 3 as procedureso For this point of view a

notation used in computer algorithm formulation is shown

as an attractive method for presenting the stochastic

learning automata procedures.

Finally the environment-automaton interaction is

generalized to enable this approach to tackle the class

of problems considered by several 'heuristic programmingi

schemes (for want of a better definitive). STeLLA [1,6J

in particular tackles such a class of problems.

1 - 9

1 - 4 ROTE LEARNING AND MARKOV PROCESS THE0RY

The basic memory strucpures and strategy used by

STeLLA were seen as similar to work on Markov process

theory developed by Howard '[8J. With this starting

point an attempt was made to bridge this gap by building

from the Markov theory towards the STeLLA strategy.

Unfortunately the complexity of the STeLLA heuristics

and special purpose parameters proved too great to allow

the theory to meet up with the STeLLA implementation.

By working in reverse a very basic STeLLA structure

was extracted in order to move closer to the Markov

theory. This basic structure was (eventually) formed

into the BANDIT-EXPECTANCE algorithm as presented in

Chapter 4. At this point the algorithm proved of

enough interest in its own right - and the road back to

STeLLA rather torturous - that the linking of the Markov

theory through to the BANDIT-EXPECTANCE algorithm was

considered as replacing the original objective.

Chapter 4 briefly presents the relevant Markov

theory and develops from this to end up with the BANDIT­

EXPECTANCE algorithm. Throughout this development the

idea of a rote learning table is uS,ed to tie the

presentation together.

The idea of a rote learning table is a simplificat­

ion of the 'control policyo which STeLLA employed. In

the course of Chapter 4 the rote learning table

1 - 10

progresses from a simple record of events~ through to a

more functional 9 control policyQ formo The structure of

the rote learning table is not too important in Chapter

4, except that it contains the learning machineos long

term memoryo However, the format is developed in such

a way as to be extensible, and an indication of such

future directions completes Chapter 40

1 - 11

REFERENCES

1 Andreae, JoH., Learning Machines: A Unified View.

Encyclopaedia of Linguistics Information and

Control. Edo Meethan,AoRo and Hudson,RoAo

Pergamon Press, 1969.

2 Bellman,R. A Problem in the Sequential Design of

Experiments. SANKHYA Vol016, parts 3 and 4, 19560

pp 221-229·

3 Feigenbaum,E.A. Artificial Intelligence: Themes

in the Second Decade. Stanford Artificial

Intelligence Project Memo AI-67o Invited paper

IFIP68 Congress, Edinburgh, Aug. 1968,

4 Fel'dbaum,A.Ao Dual Control Theory I-IV in Optimal

and Self-Optimizing Control, Ed. Oldenburger,Ro

MoI.T. Press, 1966.

5 Fu,KoS. Stochastic Automata as Models of Learning

Systems. pp 393-431, Adaptive, Learning and

Pattern Recognition Systems, Edo Mendel~JoMo and

Fu,K.So Academic Press, 1970.

6 Gaines,BoRo and Andreae,JoH. A Learning Machine

in the Context of the General Control Problem,

3rd IFAC Congress, London, June 19660 ernsto Mecho mgo)

1 - 12

7 Hart,P., Nilsson 9 No, Raphael~Bo A Formal Basis

for the Heuristic Determination of Minimum Cost

Paths. IEEE Trans. on Syso Sci. Cybernetics,

July 1968, pp 100-1070

8 Howard,R.Ao Dynamic Programming and Markov

Processeso MIT Press 19600

9 Michie,Do and Chambers, R.Ao Boxes: An experiment

in adaptive control 0 Machine Intelligence 29

Edinburgh University Press 19680

10 Pohl?Io First Results on the Effect of Error in

Heuristic Searcho Machine Intelligence 5, Edo

Meltzer,Bo and Michie,Do Edinburgh University

Press, 1969, pp219~2360

11 Samuel,AoLo Some Studies in Machine Learning

Using the Game of Checkerso IBM Jo Reso Develop.

3 (July 1959), pp 211~229o

12 Samuel,AoLo Some Studies in Machine Learning

Using the Game of Checkerso II - Recent Progresso

IBM Jo Res. Developo 11, 6 (Novo 1967)9 pp 601~617o

13 Shapiro,I.Jo and Norendra,KoSo Use of Stochastic

Automata for Parameter Self~Optimization with

Multimodal Performance Criteria. Trans 0 IEEE

Systems Science and Cybernetics, Vol. SSC-5 No04,

October 1969, pp352-3600

14 Slagle,JoR. and Dixon,JoKo Experiments with some

Programs that Search Game Treeso JACM Volo16,

No.2, April 1969, pp 189-2070

CHAPTER TWO

THE BANDIT ALGORITHM FOR MINIMUM COST PATH

FINDING WITH INCOMPLETE COST INFORMATION

2 - 1

CHAPTER TWO

2 - 1 INTRODUCTION

The problem of finding the minimum cost path

through a graph (network) of interconnected nodes where

the arcs? or node interconnections have associated costs

has been solved in many wayso The applications of this

problem range from transportation routing problems

[1] through automatic control, [2] to artificial intel­

ligence research [3] 0

2 - 2 PROBLEM STATEMENT

Existing algorithms cannot satisfactorily tackle

certain problems having incomplete cost informationo

Here we attempt to solve a class of problem that we

have termed ion-line Q
0 These problems have the follow-

ing characteristics:

a) The graph is to be traversed from a start node to

one of a set of goal nodes N timeso

b) The costs associated with the arcs are not fully

known and may be stochastico

c) Information gained from each traversal of the

graph is to be used to update the corresponding

arc cost estimates 0

d) We wish to minimize the total cost incurred by the

N traversals of the grapho

2 - 2

In descriptive terms the problem is that of decid~

ing whether to travel a known path or to spend money in

exploring for a short cut. It is clear that a 'search

for the best pathQ policy may well precede a 'use the

best path that has been foundo policyo

-

THE O~-LINE PROBLEM

Traverse graph from start to goal. J
Path Cost = sum of costs of arcs traversed.

1
C=UPdate arc cost estimates ~ '----.-J ------

Select the next path to traverse on the

basis of the current arc cost estimateso

The object is to minimize the total cost

over a number of traversals of the grapho

2 - 3 ILLUSTRATIVE EXAMPLE

To illustrate the on-line path finding problem

consider the case of a transport operator who has a

contract to transport goods between city A and city Bo

The contract is such that time is the important factor,

so that the cost of any particular route (path) from

2.- - 3

city A to city B is the travel time rather than the

mileage or fuel cost or anything else.

In this example the arcs are the separate lengths

of road that may be travelled as part of some path from

A to B. The arc cost is the travel time for an arc.

Notice that the arc cost is a random variable since

hills, bends, traffic density and so on will all

affect the travel time. Notice also that a reasonable

apriori estimate of the mean travel time is available

using road maps and so on.

Every time the transport operator runs an assign­

ment from A to B he is able to update his cost eSimates

for the roads (arcs) that he chose to travel.

Consider the simple case where there are only two

possible paths from A to Bo Assume that the paths have

costs uniformly dis.tributed in the range 0.7 to 008 and

008 to 0.9 respectively. In our ignorance we may well

assign apriori estimates of 1.0 for the cost of each

route. Making an arbitrary choice we proceed by the

second path on the first occasion and find it better

than the apriori assumption. From this moment onwards

the simple strategy of travelling the minimum (estimat­

ed) cost path, would never get around to trying the

other route, although quite obviously it is better.

A heuristically derived algorithm - the BANDIT

algorithm - is proposed to tackle this and similar

2 - 4

problems. The BANDIT algorithm accepts apriori estim-

ates not simply as a mean cost but as a probability

distribution for the mean costo

Although the BANDIT algorithm is not guaranteed to

be optimal in the sense that it will minimize the total

cost over a number of traversals, it is shown to be

very near optimal for simple problems and is computat­

ionally feasible for large problems. All known methods

for optimal solutions are impractical (or even

currently impossible) for large problems, but they can

be used on small 'artificial v problems.

The optimal solution for simple problems will be

given by use of Bellman's method [~? which was propos­

ed for the 'two armed bandit problem' 0 This problem

(to be described in the next section) can be taken as

equivalent to the two path problem described above by

considering the two slot machines to be the two paths?

and the payoff probability as relating to the path cost.

For example, a slot machine ~YQff probability of 0075

can be interpreted as 0025 mean path cost (normalized).

Note that the two armed bandit problem (next

section) is considered because it is only for this

simple case that Q£timal solutions can be computedo

The BANDIT algorithm is then described and shown to

match up very well to these optimal solutions.

2 - 5

2 - 4 THE TWO ARMED BANDIT PROBLEM

The simplest form of the path finding problem is

equivalent to the two-armed bandit problemo This is a

classical mathematics problem that is still not com-

pletely solvedo The basic two-armed bandit problem is

outlined below:

Suppose that we have two slot machines in front of

us, one with known properties and one with unknown

propertieso When the handle on the first machine is

pulled, there is a known probability, s, of receiving a

dollar; when the second machine is played, there is a

fixed, but unknown, probability or success, ro

The process assumes the following formo We try

the second (unknown) machine a number of times to be

determined by the outcomes, and then* decide to use the

first machine from then ono

The object is to maximize the expected value of

the criterion function:

R n a z
n

where 0 < a < 1 is a discount factor and zn represents

the return obtained on the nth trial.

This criterion function enables the problem to be

treated as an unbounded process with discount factor, a,

rather than a finite sequence of choices where we have

*could be never

2 - 6

N trials.

Bellman's dynamic programming approach [4] to this

problem gives a computational method that is feasible

for the case of one unknown and one known payoff prob­

ability to choose between (as above). For multiple

choice problems the co-mputation would quickly become

impractical. No analytic solution has been derived for

an optimal policy.

Bellman defines:

f (s) = the expected return obtained using an optimal mn
policy for an unbounded process after the

second (unknown) machine has had m successes

and n failures.

It is assumed [4J that the probability distribut­

ion Fmn (r) ,r/1'or r in [0, 1J after m successes and n fail­

ures, is updated from the apriori eSimate. Let the

expected value of Fmn(r) be Pmn0

The basic functional equation can now be written,

Max

s/(1-a)

Bellman gives an existence and uniqueness theorem

that enables the above equation to be solved by a

method of successive approximations &

Bellman's method has been outlined above since it

shows the difficulty involved in this problem; also it

provides a computational method for the optimal policyo

These optimal policies will be compared with the results

from a heuristic algorithm which is described belowo

2 - 5 THE BANDIT ALGORITHM

We will leave the two-armed bandit problem for a

moment in ord~r to set out a heuristic decision proced­

ure that will be central to the rest of this chaptero

The heuristic that the BANDIT algorithm is based

on can be stated like this:

If one of a number of alternatives has a probab­

ility 'pi of being the best alternative, then choose

this alternative PQ100% of the timeo

To assess this probability of one alternative

being better than any other, it is necessary to know not

only the estimated mean costs for each alternative but

also the distribution probability of these mean costso

The apriori distribution to be used is not an

objective probability corresponding to some random ex­

periment, but rather degrees of belief based on prior

analysis of conditions relevant to the particular prob­

lem. Thus apriori distributions including a zero prob­

ability for some range of values imply a complete belief

or certainty that values in this range never occuro A

2 - 8

common apriori distribution would be a normal

(Gaussian) form, the variance reflecting the confidence

in the mean estimateo

Consider the case of only two alternatives as in

the case of two possible paths from A to Bo If the

cost of one path is estimated to be 0085 with variance

of 0015, and the other path is ~nown to have a mean

cost of 0075; roughly, the BANDIT algorithm will give

the 0075 cost path preference about 84% of the timeo

The other 16% of the traversals are used to establish

a better estimate of the 0085 estimated mean cost path -

making sure that it really is a greater cost than 00750

As we become surer the variance drops and the 16% falls

lowero

We will now frame the BANDIT algorithm in a more

formal and precise manner:

Let S1~S2,S3?00,SN. be N alternatives 0 We must

select one of these and the estimated mean cost of

selecting S. is x. 0 Let f.(x) be the probability dis-
l l l

tribution for x., it is to be understood that this is
l

the current distributlon and updating occurs to fi(x)

after S. has been selected and its cost measuredo The
J.

measured cost is treated as a sample from an unknown

distribution g.(x) and the expected value of f.(x) is a
~ ~

mean estimator for gj,(x) , The object is to minimize

the total cost incurredo

From the f.(x) we can calculate the current
l

probability that the cost of S. will be less than any
l

of the other alternatives, p(xi = min {xj ij =1,2,oooN,'}).

BANDIT Algorithm

Select Si with a probability P(Si) such that

p (S.) = P (x . ;.:: min { x . ; j = 1 ,2 , ° ° • ,N}) Q

l l J

The direct computation of p(S.) would require
l

evaluation of the integral:
0<)

p(s.) =1 IT(1 - F.(x))of.() d
l 0 j I i J l X ° X

X
F.(x) = 1 f.(x)odx; the cumulative distri-

J 0 J
Where

bution (see Appendix C for details)o

Fortunately since we only need to select one of

the possible strategies, Sj~{Si}' we can employ a Monte

Carlo type procedure to avoid calculating P(Si) for

each i, i. e ° { P(Si) J. The procedure is to take a set

of random samples, {y.; i=1,2,oo.N)' where each y. is a
l . l

random sample from the probability distribution fi(x)o

If the minimum of this set is Yj' where Yj =

min { y i : i=1 ,2, 0 • oN}, then select strategy S j ° Notice

that unlike normal Monte Carlo procedures only one set

of random samples is taken in this procedure ° If the

2 - 10

procedure were repeated a large number of times then

the set of probabilities of selection for each strategy,

{P(Si)}' could be evaluated.

An additional simplification can be made in the

procedure by assuming that the f.(x) are all normal dis-
1

tributions. This will usually be an acceptable assump-

tion since the central limit theory proves that the dis­

tribution of a mean estimator will tend to be normal as

the number of samples becomes large~ regardless of the

form of the parent populationo Further, if the parent

population is normal in its distribution then the dis-

tribution of the mean estimator will always be normal.

2 - 6 SOME COMPARATIVE RESULTS

In order to illustrate the operation of the BANDIT

algorithm we have compared its performance on some two-·

armed bandit problems with the optimal solution

(computed by Bellman's method) 0

The optimal solution involves a switch from the un-

known machine to the known one after a particular

sequence of successes and failures. For any given num-

ber of trials, the probability of different sequences of

success and failure can be computed and hence the prob-

ability of a switch to the known machine.

The BANDIT algorithm has a probability of selecting

either machine that depends on the sequence of successes

and failures for each machine. In the same manner as

2 - 11

above we compute for each given number of trials the

probability of each possible sequence of success and

failure, and hence the overall probability that the

known machine will be selected.

The above procedure has given the results for

both the optimal solution and the BANDIT algorithm in

the form of a probability that the known machine will

be selected after any given number of trials. These

results can be directly compared and this is done in

figure 2. Discount factors, a, of 005 and 008 are shown

for the optimal policy. Both methods used the same

apriori eSimate for the unknown machine payoff and also

the same updating procedure. The distribution of the

payoff probability for the unknown machine was assumed

normal with an apriori variance of 0025.

?ROB. of
~~8 I

~ ___ ~-.r r- _ -.J r-~ r-:;. :2~]~~-
~-=~;~~ OPTIMAL a=O 0 8
: 0 a=Oo5

I • t BANDIT ALGORITHM
I I

.J I'
I I
I •

PAYOFF PROBe
M/C I known
MfC II unknown I :

0.25
.= Oe10

o ~--~--~--------~----~--'i TRIAL
o 10 20 30

PROBe of
M/C I
100 PAYOFF PROBe

M/C I known 0.25
M/C II unknown = 0.30

;

\

BANDIT ALGORITHM

OPT IMAL a=O 0 8 ~I
. a=O 051
....r---~~ _ _ f J i- - ~ - ~ -t:J -IU".......,,~=-.rr~ - -~.

: :~ -J-' - - - - -- - - • ~-

i I
I

O I-__ -LIL; ____ ~------_,._-------~ 1 TRIAL
6 10 20 30

Figure 2

PROBe of
M/C I
1 0

OPTIMAL a = 008 .j-
a = rO~~;j __

!- - -n-"'_::::-I
r- -~-.- -Rd- '!=- - -),

r-~.r-
~.-.....i BANDIT ALGORITHM .

...J I I
I i

I I
I
i '

PAYOFF PROBe
M/C I known
M/C II unknown

O+---~----~--------~-------, TRIAL
o 10 20 30

PROBe of
M/C I

1001 PAYOFF PROBe
M/C I known
M/C IT unlmown

1 ',. BAHDIT ALGORITHM

0.25
0.40

005 1
'" OPTIMAL a=008 1
~ a=0·5 1
~

-1 ;_ ~-:'~_j-.~ _ _ _ _ _ _ _
',,----. ~-~ - -~T:L~ ---
It[\)

O~---~!~;----~--------~------~I TRIAL I

o 10 20 30 I~

TWO ARMED BANDIT PROBLEM

2 - 7 EXTENSION TO PATH FINDING

It is not practical to calculate an optimal solut­

ion for even a small on-line path finding problem. We

can appreciate this by considering the extensions that

need to be made to the two-armed bandit problem:

1. Extension to an m-armed bandit problem. (m al ter­

native paths).

2. The cost of all m paths may be unknown apriori.

30 The traversal of one of the paths allows updating

of a set of arcso These sets of arcs for each of

the m paths are not necessarily mutually exclusive.

4. It requires considerable calculation to evaluate

the set of arcs that form the minimum cost path

(on the basis of the cost estimates). In general

it is impracticable to list all of the m alternat­

ive paths an~ their costs.

Point 4 leads on to the procedure that will be used

to find a path through the network.

2 - 8 AN ADMISSIBLE ALGORITHM

We shall use the definition in [5J for an admiss­

ible algorithm, which (briefly) is any algorithm that is

guaranteed to find an optimal path from the start node

to a .. goal node. Dynamic Programming [1] and the A*

algorithm [5J are examples of admissible algorithms.

2 - 14

An optimal path from node i to node j has the low­

est cost over all possible paths from node i to node jo

An admissible algorithm considers only the set of arc

costs it has to work with so that the optimal path that

it finds is more correctly the current-optimal patho

It is only optimal on the basis of the current arc cost

estimateso

In the on-line path finding problem the current­

optimal path on the basis of the current arc cost

estimates may not be the true minimum cost path (the

optimal based on the, unknown, true mean arc costs)o

This fact can cause the admissible' algorithm to I sit i

on one particular path each time it is used during the

course of an on-line path finding problem, even though

this path may not be the true-optimal 0 The feedback

that comes from the measured arc costs between each use

of the admissible path finding algorithm (used to up­

date the arc cost estimates) may not help simply because

only those arc costs on the current-optimal are being

measuredo This failure of an admissible algorithm in

the on-line case is considered further in the next

sectioniilo

2 - 9 ARO OOST ESTIMATES

We will denote the cost of the arc i-j from node i

to node j as c .. , and its estimate c. .. The C .. are lJ . lJ lJ
updated every time arc i-j is traversed. A form of

stochastic approximation can be used;

c. . ~ a. c. . + (1-a). c. . i
lJ lJ lJ

where c .. I is the arc co st as measured, and 0 ~ a .. ~ 1. * lJ '
If cij is known to be deterministic, use a = o. More

sophisticated forms of this process can be found in [6J.

Figure 3 illustrates this process, and shows how the

variance of the estimate can be maintained in a similar

manner.

We will use O. to denote the cost of path i, one of
l

the set of possible paths from the start node to a goal
/'.

node. O. will be the estimate of 0.; i.e. the sum of
l l

c .. for all arcs i-j on path i 0

lJ

2 - 10 ON-LINE ALGORITHM

The on-line algorithm applies an admissible algor­

ithm at each traversal under the on-line conditions 0

A

'" A
If O. < O. for all i I- j, and for simplicity

J l

OJ = OJ' then the on line algorithm will select path j
A

to be traversed. However, if Ok > OJ and OJ> Ok for

*The:~,;~. implies that at each updating, the variable

on the LHS is given the value of the eJg;lression an the RHS.

2 - 16

some k then the on-line algorithm will have converged

onto a non-optimum path since Ck < Cjo

2 - 11 CONVERGENCE THEOREM

The on-line algorithm is guaranteed to converge

onto the optimum path under the following conditions:

A
c ..
1J

A

c ..
1J

c .. -7 c ..
1J 1J

for all i-j

as arc i-j is repeatedly

traversedo

The proof of the convergence theorem follows from

contradiction of the hypothesis of convergence onto a

non~optimum or non-convergenceo

If we cannot satisfy the conditions of the conver­

gence theorem we have shown that the use of the on-line

algorithm will not always be successful. The BANDIT

algorithm is proposed to overcome this difficult yo

2 - 12 APPLICATION OF THE BANDIT ALGORITHM

We have shown that the BANDIT algorithm performs

well in comparison to the optimal solution for some

simple two armed bandit problems, which is the basis of

the on-line path finding problem. There is no known

method that is practical for computation of the optimal

solution for the more complex on-line problem. The

BANDIT algorithm (which requires only modest computat­

ion) cannot therefore be compared with an optimal

solution. Instead we must rely on the vreasonablei

nature of the algorithm - as with most heuristic proced­

ureso

We have found proof of convergence for a modified

form of the BANDIT algorithm in terms of the theory of

variable structure automata, [8Jo This is discussed in

the next chapter (Chapter 3). This chapter however

will rely on an example to support the worth of the

algorithm.

The application of the BANDIT algorithm to the on­

line path finding problem requires:

10 A procedure to maintain and update a distribution

for the mean estimator for each arc cost~ If

advantage is taken of the fact that by the central

limit theorem this distribution will tend to be

normal, then only two parameters (mean and var­

iance) will be required for each arc cost estimat­

iono One possible procedure for updating these

parameters has been outlined in figure 3.

20 A procedure for obtaining a random sample from each

of the mean arc cost e~mator distributions 0 There

are many random number generators available -

again the computation is simplified if a normal

distribution is assumed.

30 An admissible algorithm that can be applied to the

set of arc costs obtained by 20 There may well be

2 - 18

a standard minimum-cost past finding program to

hand and this could be used directlyo

The operation of these three procedures is shown

in figure 40

The application of the BANDIT algorithm to heur-

istic search algorithms used in artificial intelligence

research is discussed in Appendix Do However, the

notation for algorithm presentation developed in

Chapter 3 is used,so that a detailed study of Appendix

D is best left for the presento

2 - 13 RESULTS

The small network shown in figure 5 was used to

demonstrate the BANDIT algorithm as applied to the on-

line path finding problemo The true mean arc costs for

this example are shown in figure 5 and the true optimal

path is shmn with the dotted lineo The apriori arc

cost estimates were all taken as equal so that the

apriori current optimal path will be either around the

top or around the bottom in figure 50

Two other methods apart from the BANDIT algorithm

were applied to the same example 0 One was the on-line

algorithm which in 'this case will not have the condit-

ions specified in the convergence theorem satisfiedo

The results from this show the trap of applying a stan-

dard minimum cost finding program to the on-line

Probability

Unknown
Distribution

~----+--------:>~ c ..
c· .
lJ

lJ

~ean estimator distribution:

Probability

Approxo Normal
Distribution

_ Estimated
--~----A~i---------?;>Pmean cost

c ..
lJ

Lgure 3

Each traversal of arc ij lncurs a cost c· ·0 lJ
Cost at time t = c .. (t) .

lJ
Estimate of c .. (t) -C .. (t) 0

lJ lJ
Variance of ~ .. (t) = v .. (t).

lJ lJ

S.T.Do of ~ .. (t) d .. (t).
lJ lJ·

Update

~ .. (t)

of mean and variance for the cost of arc ij.

lJ
v .. (t)
lJ

d .. (t)
lJ

a.~ .. (t-1)
lJ

aov .. (t-1)
lJ 1

(v .. (t))2
lJ

m

+ (1-a).c .. (t);
lJ

+ (1"':'a)o(-C .. (t)
lJ

2 - c .. (t))
,lJ

m = the number of samples,

m is limited to (1+a)/(1-a), the moving average sample

the exponential smoothing

that if a=(m-1)/m, and m lS

number that is equivalent to

equation, Brown [7 Jo Notice

the total number of samples available, then the above

equations reduce to the standard (classical) mean and

variance estimators 0 I~
I~

Mean Arc Cost Estimates Random Samples
Prob 0 -

Mean 1 A ~--~--------~~ Estimate

prObej,_---'------; /f'''.
/ ~. \, Mean 2

: ~ ;;. Estimate

I

Probo

THE BANDIT ALGORITHM

APPLIED TO ON-LINE

PATH FINDING.

Apply Dynamic Prog.

or A* algoritbm

/. Travel Minimum Cost Path

(Any minimum cost path

finding algoritbm may

be used).

1t Update Estimates
~ ----~~--~

Figure 4

I~
I

I~

2 - 21

problem. The other method was an algorithm that

selected a path with probability inversely proportional

to the relative cost of the patho

Figure 6 has a graph of the results expressed as

incremental costs (total cost incurred divided by the

number of trials) 0 These graphs can be viewed as a

form of 'learning' curve 0 T.he BANDIT algorithm is the

only one to converge onto the true minimum cost patho

The same results obtained from the BANDIT algorithm

are shown in a different form in figure 70 Here the

probability that each of the possible paths will be

chosen is graphed against the number of trials (plotted

for three of the paths) 0

START

Figure 5

SMALL NETWORK EXAMPLE

True Mean Arc Costs

Apriori estimates: All arc costs 50
Std deviation 30

True arc costs: As shown above with

Std deviation = 10.

GOAL

[\)
[\)

igure 6

250

200

150

100

50

Incremental Cost Total Cost
Number of Runs

Probability of travel
inversely proportional

r to estimated cost. /
I.

I

Traverse minimum

~ cost path (estimated)

BANDIT Algorithm

- -- - - - - - - - - - - - - - ~ - - - - - - - -- - - - --
Minimum Path Cost

o +---------,---------,----------r---------r----~--_.--------_r--------~
o 20 40 60 80

Number of Runs

100 120 140

II\)

Probo of Traversal
100

'/
0.8

True Minimum Cost Path

r Apriori Minimum Cost Patho

I -2nd to Minimum Cost Path.

004 -\.

I'
i
I
I

002 1
i

BANDIT ALGORITHM

-EXAMPLE RESULTS

I Figure 7

o 1----~~------~~ ~~~--_, I~ o 20 40 60 80 100 120 140 160

2 - 14 CONCLUSIONS

A class of path finding problems that involve a

simultaneous maximization of information gain and minim­

ization of incurred cost has been described as the u on-

line' path finding problema A heuristically derived

algorithm - the BANDIT algorithm - is proposed to tackle

these problems a

Simplest form of the on-line path finding problem

is the two armed bandit problemo An optimal solution

for this problem is compared with results from the

BANDIT algorithmo

The application of the BANDIT algorithm to the full

on-line path finding problem is then outlined and some

results given for a small example problemo

The computation of the optimal solution for the two

armed bandit problem is an iterative procedure requiring

considerable computation 0 The extension of this method

to the on-line path finding problem is not practical 0

The BANDIT algorithm on the other hand requires very

little computation if the method outlined is followedo

A convergence theorem with the particular conditions

under which a standard path finding method (such as

dynamic programming) can be successfully applied to the

on-line path finding problem is given 0 The BANDIT algor­

ithm can however be applied to any standard procedure

(admissible algorithm) in order to extend the range of

2 - 26

problems that can be successfully tackledo

No discussion has been given for the case where the

random arc costs have time variable statistics (such as

drift in the mean cost of some arcs)o Preliminary

results show that the BANDIT algorithm is capable of

tackling such problems and the methods suggested leave

this possibility openo There is no known optimal solut­

ion to this class of problem even for the simple two­

armed bandit situation.

A convergence proof for a modified form of the

BANDIT algorithm has been found in terms of the theory of

variable - structure automata [8]0 This will be discuss­

ed in Chapter 30

REFERENCES

1 Kaufman, Ao, Graphs Dynamic Programing and Finite

Games, Academic Press, 19670

2 Bellman, Ro, & Kalaba, Ro, Dynamic Programing and

Modern Control Theory, Academic Press, 19650

3 Slagle, JoRo & Dixon, JoKo, Experiments with some

Programs that Search Game Trees, JACM Volo116, No02

April 1969; pp 189-2070

4 Bellman, Ro, A Problem in the Sequential Design of

Experiments, SANKHYA Vol0116 pt. 3 & 4, 1956; pp

221-229.

5 Hart, P.E., Nilsson, N.Jo & Raphall, B., A Formal

Basis for the Heuristic Determination of Minimum Cost

Paths, lEE Trans, on System Science & Cybernetics,

SoS,C. 4 Noo 2 July 1968; pp 100-107.

6 Fu, KoSo, Stochastic Automata as Models of Learning

Systems, Computer & Information Sciences II, Ed. JoTo

Tou, Academic Press, 1967; pp 177-1920

7 Brown, RoGo, Smoothing forecasting and prediction of

discrete time series, Prentice Hall, 19620

8 Chandrasekaran, Bo & Shen, DoW.C" On Expediency and

Convergence in Variable - Structure Automata, IEEE

Trans. on Systems Science & Cybernetics, March 1968,

SSC - 4 No.1; pp 52-590

CRAFTER THREE

STOCHASTIC LEARNING AUTOMATA

3 ~ 1

3 - 1 INTRODUCTION

This introduction gives a brief survey of the

development of stochastic learning automata and develops an

algorithmic notation for the concise description of these

schemes. Following this 9 a new development called the

BANDIT scheme is described and some of its advantages

considered.

The class of problems considered 9 or the environment

for the stochastic learning automaton 9 is then extended to a

much wider problem class that cannot be tackled by the

automata schemes described 9 but has been considered in the

field of 'heuristic programming Q for learning machines as

robots and game players. The BANDIT automaton is extended

by the development of an iexpectance Q function in order to

tackle this extended problem class o Illustrative results are

then given"

A more detailed historical development of ~ost of

the material outlined here ~an be found in Fu (1970) [11]

The behaviour of a finite state (deterministic)

automaton operating in a random environment was first studied
, '

by Tsetlin (1961) [15] A simple block diagram of the

system is shown in figure 10

u €

Random '
U ~ Environment]

Automaton
"""

Y € Y

- Figure 1.

3 - 2

The response of the'environment can be y = 19

called a penalty response 9 or Y = 0 called a nonpenalty or

reward responseo Tsetlin characterised the environment by a

vec t or C = (C 1 9 00. 9C) where~
r

C. = Pr (y (t) = 1 I u (t) = u.) j = 1 I 0.. 9 r (1)
J J

u(t) = automaton's output or action at time t9

yet) = the environments response to this actiono

C.
J

= the probability of a penalty response for action Ujl

and (1-C.) = the probability of a reward response.
J

A stationary random environment is considered

which means that the C. are all constant values over time,
].

Following Tsetlins approach Varshavskii and

Vorontsova (1963) (16J have used a variable structure automaton

as a model of a learning system operating in a random

environment. Their approach was to modify the state

transition probabilities in such a way as to minimize the

1
probability of a penalty response. If p .. (t) is the

l.J

transition probability from Automaton state qi to state qj

for the environment's response Y=Yl, at time t, then~
r

1
Pij (t) = 1 for all i and t. (2)

j= 1

The idea i~ to minimize the probability of a

penal ty response by a decrease of p .. 1 every time a transition
l.J

from state q1 to qj due to response Y1' is followed by a

penalty responseo
1

follows 9 then Pij

If however a nonpenalty or reward response

is increased. This modification of the

3 = 3

state transition probabilities constitutes a transition

probability update procedure. An admissible transition

probability update procedure must be such that (2) applies

after every update.

Fu et al (1965~1966) [7J [8] hav~ extended

Varshavskii and VorontsovaVs work 06J to the more general

case where:

1. Instead of updating the transition probabilities, any

convenient probability function is treatedo (The total

state probabilities for example).

20 The performance of the automaton is measured not by a 1

(penalty) or 0 (reward), but by any value between 0 and 1.

The system now looks like figure 20

-
\

~ Random
/ Environment J Y E Y

u E U Performance
Evaluation

'--
/' I

Automaton '" Z
, Figure 2.

-

Let the probability of the automaton taking the ith

decision, choosing the ith action 9 or being in the ith state

be p. 0

~
The index i=19 000 ,r 9 ~here r is the total number of

possible (quantize~ parameter settings, or the number of states

of the automaton.

written as:

A linear reinforcement algorithm to update p. can be
~

1 p. (t+1) ::
~

1
Where 0 < (,)\ <. 1 ~ 0 ~. z. (t) ~~ 11 and

).

r

i:::1

1
z, (t) ;:: 1.

).

3 ~ 4

p.l(t) = the probability of action u. due to input (environment
). J.

response) Y11 at time to

1 z. (t) = a performance measure evaluated from the environments
).

response to action u. Cu. due to y]) at time t.
).). .

A slightly different viewpoint is to consider the

use of a learning automaton as a hill climber to maximize or

minimize some performance measure. The environment can now

be considered as providing an output that is a performance

measure I(u.) for action or parameter setting U.c
).).

The output

from the environment that is available to the automaton is

denoted g(u.) and this will be a noisy observation or
).

measurement of I(u.).
).

The expectation of g(u.) will be the
).

actual performance measure for action u., l(u.)Q
).).

The aim of

the automaton is to give an output or parameter setting u t op

such that I(u t) is an extremumo op From now on only a maximum

will be considered , in contrast to the minimization of a penalty

probability considered previously.

Shapiro and Narendra (1969) (14J have considered this

use of a learning automaton as a hill climber in situations

where only noisy measurements of performance are available and

the performance hill may be multi-modal. Their scheme is

outlined below because it comes closest to the BANDIT algorithm

that is to be described 1ater l and results from the scheme are

compared with results from the BANDIT algorithm.

3 - 5

An important point about the scheme proposed by

Shapiro and Narendra is that it can achieve optimal performance j

whereas the schemes previously outlined can 9 in genera1 9 only

achieve expedient performance. Convergence and expediency

have been considered for several learning procedures by

Chandrasekaran and Shen (1968) [5] Expediency in the context

of hill climbing 9 is said to occur when for;

k=1j ••• r 9 klj (4)

in the limit as t ~. 00 , the probability p.(t) of selecting
J

action j is greater than Pk(t), in either a deterministic or

probabilistic sense as the particular case may apply •

. Optimality is a stronger result than expediency

and it requires that;

1 im p. (t) = 1
t- cO J
and

1im Pk(t) = 0 for k;lj
t-+«>

Before giving more details of particular procedures

some notation will be introduced to clarify the presentation.

20 NOTATION.

An algorithmic notation is used because it eliminates

an explicit reference to time which is a particular advantage

for variables that are updated but not necessarily updated

every time interval. More than this it is desirable to give

a clear indication of the uform v of a procedure j without

restricting the procedure to a particular set of rules. The

format for presenting the algorithms is based on the excellent

3 = 6

work of Knuth (1968)[10J and is introduced belowo

Consider for example the statement:

A 1 0 fUpda te]

Here ~ is an estimate (indicated by the hat) of a variable Xo

Whenever the step A1 is carried out ~ is updated by

replacing its current value by the evaluation of the

expression to the right hand side of the arrow (~)o The

phrase in the square brackets at the start of the step~ in

this case [Update] is s brief summary of the principal content

of the stepo There will sometimes be parenthesized comments

at the end of the steps; in A1 the range for alpha is a

commento

Now consider a more detailed procedure:

B 1 [I ni t i al i z e a at +- 0 9 k -+' 1 0

B2 [ObservationJ X <- observationo

B3. [ppdate mean estimatorJ 'i -1.-Q(~ + (1=c{)xo

B4 [CountJ k <~. k+19 <X «- (k=1)/k 9 go to step B20

This B=procedure is simply a method for evaluating

the classical mean of a set of observations (samPles) xJ.

Note that there is no final answer 9 the procedure is qon line q

and simply maintains an estimator ~o

k
A 1 ~--x = X·

k L....... j

j::::1

(6)

If however IX is a fixed constant:

C1 [Initialize oj 0< + value in the range 0 to 1 0

3 - 7

C2 [Input.] X +·observationo

C3 [UPdate mean estimate~ x 4-- 0\, ~ + (1- O<)X9 go to C20

The C-procedure is a moving average or exponential

smoothing procedure 9 Brown (1962) (2). The procedure may also

be interpreted as a linear reinforcement learning procedure j

Bush and Mosteller (1958) [3].

In a similar manner we can maintain some estimator

of the variance of observations Xg written:

D1 [Variance updateo] ~ -4- o(~ + (1-(1{) <£_x)2 0 (0<0(:;;1)0

And for the variance'of the mean estimator:

E1 [Mean variance updateJ
A .A
W <+- B V

I
(p~ 1/number of samples)

Where for a classical estimator of the variance

of the mean, ~ would be 1/(k-1) j k being the number of samples

or observations of Xo

Now the step A1 by itself can be interpreted as

part of a B-procedure or part of a C-procedure or any similar

procedure where 0< may be a more complex function Fu (1967) [9]

However instead of leaving a step like A1 in an

algorithm where ~ is not specified the notation:

~ ~ UPDATE (x 9 x).~ will be used 0

It is to be understood that any of the procedures

described or referred to above are appropriate for the

UPDATE functiono For that matter it may be any procedure to

do a similar job under the particular circumstances that may

applyo

3 - 8

3. MODIFIED LINEAR REINFORCEMENT PROCEDURE.

The modified linear reinforcement scheme developed

by Shapiro and Narendra [14J will now be described in terms

of the notation discussed above. Remember that

g = the environments response to the automaton 9 s action U ,

u €. { u i 9 i= 1 i • 0 0 9r } 9 U is a noisy performance measureo

A
the probability that Pi = the automaton will select action ui9

the hat indicating that these probabilities are estimates

of the probabilities that will give optimum performanceo

F10 [Observation 0] g ~ observed environment responseo

F2. [Reward set up J Let g. = max {g.
J 1.

. 1 . 1
~ 1.= 9 0 0 0 9 r f 0

If 000 ,r • (No reward.)

A
Else if g ~ g. I and u = U. 9 (The last action was u.)

J 1. 1.

o (Reward i th
action).

F3. [Record performanceJ if u = u. (Last action was u.).
1. 1.

then + (1- iT) g

k. ~ k. + 1 ,~4- (k. = 1) /k .•
1. 1. 1. 1.

F40 [Update.] if z. := 0, i=1, 000 9r I then go to F5. • . 1.

(No update unless reward) 0

A A
Else p. -+-- o{p. + (1= C<)z. , for i=1, 000 ro

1. 1. 1.

(ct.=constant,O<0<.<1).

F50 [Select actionJ Select action u. with probability p. 0
1. 1.

u -+' U. (execute action u.)
1. 1.

go to step F1. • ••

A In the above procedure g. is a mean estimator for
1.

the performance measure resulting from the use of action u. 0
1.

3 ~ 9

Reward is given for the current action if the

observed performance is better than any of the current mean

performance estimators. Notice that the update procedure

f9r the performance estimators is a classical mean estimation j

while the update procedure for the action probabilities is a

linear reinforcement procedure. The function UPDATE is not

used because a particular procedure was being described.

The update procedure for the action probabilities

/\
only modifies the PiQs for a reward condition 1 not for a

non~reward or penalty condition. This is a feature

introduced by Shapiro and Narendra [14] to obtain optimal

performance rather than expedient performanceo

4. THE BANDIT ALGORITHM

The BANDIT Algorithm description

Following the general approach outlined above let

A
gi be a mean estimator of the noisy observations of performance

for action u. 9 as beforeo
1

A
In addition let w. be an estimator

1

of the variance of the mean estimator g. (as in E1 and D1).
1

A normal distribution based on these two estimators

as mean and variance 9 N(g. j ~')j will be taken as a summary of
1 1

the current information about the performance evaluation of

each action u. 0
1

The validity of assuming a normal distribution

will be dealt with later. The BANDIT algorithm for the

functioning of an automaton is now given:

3 - 10

BANDIT Algorithmo

G10 [Observation J g ~ Environment response. (noisy per formanc e)

G20 [UPdate estimatorso] For u = ui ~ (current action is ui)

(mean estimator)

~. ~- UPDATE(W. ~ (g'._g)2) (variance of mean estimator)
~ ~ ~

r. 1 (/, A), lSample oJ X.; "t-- sample from N g. ~ w. ,0
ok ~ ~

G40 Welect actionJ if Xj = max {Xi ~ i=19 000 9r}

then u <,- u.
J

go to step G10

(output action u.)
J

_ " 0

To illustrate the process involved in the BANDIT

Algorithm the case with only two possible actions u19 and u29

will be consideredo The distributions N(g19 ~1) and N(g2 9 ~2)

will both start off as ibroad Q distributions indicating the

initial lack of exact knowledge about the true expectation of

g following action u 1 and u2 respectivelyo As the mean and

variance of these distribut~ons are updated the distributions

will become QsharpV with the means g1 and g2 being more and

more accurate estimates of the expectation of g ~fte~action

u
1

and u2 0

Probo
Density

Figure 3 indicates the general processo

Before many samples
have been used to
update the
distributions o

Figure 3 (a).

Probo
Densityo

Probo
Densityo \1'; w1)

Yil
A
fj,

\(g2'
_Yl\ __

w
2

)

,I,

~h.
, 3'

3 = 11

After some
updating.

F:!:.gure 3(b)0

After consider­
able updatingo

Figure 3(c)0

The probability of the automaton selecting action

u. is defined by the BANDIT equation as:
~

A r x. == { Xj 9
r }] (7) Pi = Pr max ~ j=19 o 0 0 -. ~

Where 1\ /\) xi == a random sample from N(gi 9 wi 0

The BANDIT algorithm is a procedure that will obey
A

the BANDIT equation~ without explicit evaluation of the p. iso
~

The corresponding reduction of calculation is very significant

since methods to ~xplicitly evaluate the BANDIT equation

involve either a convolution integral over the distributions

('" A) . N gil Wi 9 or a Monte Carlo evaluat~ono Notice that the

BANDIT algorithm is almost a Monte Carlo method except that

only one sample is neededo If steps G3 and G4 are repeated

/\
a large number of times the Pi can be calculated by the

standard Monte Carlo technique of counting the number of times

each possible action u. is selectedo
~

4010 COMMENTS ON THE BANDIT ALGORITlU;1.

In the presentation of the BANDIT algorithm a

normal distribution N(go9 ~.) was assumed for the following
~ ~

3 = 12

reasons:

1. The procedure and its description are simplified.

2. The distribution for any mean estimator will tend to be

normal in the limit, by the central limit theorem. This

is true even if the parent distribution (that the gUs are

drawn from) is not a normal distribution. I f the parent

distribution is a normal distribution then the

1\ .
distribution for g,Qs wlll always be a normal

l

distribution o

A general BANDIT algorithm does not exclude a more

general distribution function 9 although the class of distri-

but ions that could be used may be limited by the particular

update scheme usedo

As mentioned above the BANDIT algorithm has no

""-explicit evaluation of the action probabilities p., unlike all
l

the previous work outlined in the introduction. Since the

sum of the action probabilities must sum to unity (analogous

A
to equation (2») explicit update of one p, always requires the

l
/\

adjustment of all the other p,Qs to meet this constrainto
l

The BANDIT algorithm avoids this while introducing only one

other set of estimators to be updatedj a reduction of

computation but an increase in storage ,(if explicit p.9S kept).
l

Notice also that there is no-need to normalize the

performance evaluation into the range 0 to 1 before it is used

in the update procedure. This normalization is done by

Fu (1970) ~1] and is also done in effect by Shapiro and Narendra

with the creation of a reward functiono

3 = 13

402 CONVERGENCE

It would be very desirable to give a convergence

proof for the BANDIT algorithm but this has only been

achieved ifor a modified form of the BANDIT algorithm.

Results are presented later that show the convergence of the

BANDIT algorithm for the particular problems used by Shapiro

and Narendra [141 and we have no reason to suppose that this

is a special caseo

MODIFIED BANDIT ALGORITHM

H10 [Observa ti'bn oJ g ~ noisy performanc e measure observa­
tion

H2o [Update 0] For u = u,
~

9 (l8.st action was u.)
~ ,..,

gi -E-- UPDATE (gi 9 g)

A
UPDATE(W. 9 (gi- g) 2) (mean variance) w. -Eo-

~ ~

H30 [Sample~] x, -E-- sample from N(g. 9 q;,) 0
~ ~ ~

H4. [Reward.] If Xi = max {x. ; j= 19 o 0 0 9r }
J

and u ;;: tii (last action was ui)

then z. = 1 ; zk = 0 k= 19 o 0 0 r 9 kilo
~

otherwise go to H6.

H50 [Action probabilities .]
,.... A

(1= O<)z, i=19 (update proboos) Pi -E- 0<: p, -I- 9 o 0 0 9r
~ ~

H60 [Select action.] Select action u. with probability Pji J

u~u, (execute action u
j

)
J

go to step H10 o 0 0

Notice that the modified BANDIT algorithm has the

essential features of the BANDIT algorithm (G-proqedure) but

3 - 14

it has been put into the same F=procedure form used by

A
Shapiro and Narendra [14J The update of p, only for a reward

1.

response and the use of z, as a reward derived from the
1.

/\
current information (estimation) of performance measures g'9

1.

are both established in the F=procedureo

The basis of a convergence proof relies on the

A
stationary state of the action probabilities p, being defined

1.

qy the expectation of p, at time t+1 being equal to the value
1.

A-
of p, at time to

1.

E(p,(t+1»;: p,(t)
1. 1.

This is one of the criteria originally given by

Varshavskii and Vorontsona (1963) [16J,

Details of the convergence proof will not be given

for the H=procedure sinc~ it closely copies the proof given

by Shapiro and Narendra (for their method which has been

presented here as the F=procedure)0

403 COMMENTS ON CONVERGENCE,

An intuitive understanding of why the BANDIT

algorithm should converge onto an optimal rather than an

expedient strategy can be gained by consideration of the

distributions N(g,~ ~.)o
1. 1.

Referring back to figure 3 showing

the trend of these distributions as they are updated 9 notice

that if there is any probability of using action u. then
1.

A A.

Neg. 9 w.) becomes osharper o
0

1. 1.
It will tend towards a delta

function at gi ;: gig where gi is the true mean value of g

for action u, ~ that is I(u,)o For a stationary environment
1. 1.

leU,) will be a constant valueo Since all the distribution
1.

3 = 15

functions tend towards a delta function in the limit so all

~ ~
the random samples xi from distribution N(gi~ wi) tend to the

A
value gi (which itself tends to the value l(ui»)o Thus in

the limit, and assuming no equal maxima, the probability of

selecting action u. corresponding to the maximum performance
J

index l(u.) becomes unity, and the probability of selecting
J

any other action tends to zero. Before this limiting case

is reached the probability of choosing action u. (the optimal
J

action) will become very large even though the distribution
A A

N(g., w.) for the non optimal actions may be far from a delta
l 1

function o This is illustrated by figure 3(c) where the

probability of action
A A

u2 would be very large 9 and N(g29 .w2)

often updated whereas N(g19 ~1) is infrequently updated since

the probability of action u
1

is very smallo

The situation described above indicates that the

information collected about N(g'9 ~.) where u. is the optimal
J J J

action 9 is more than that for N(g., ~.) iljo If this were
1 1

not the case convergence would be slow and in the worst case

the adaptive automaton scheme would have no advantage as a hill

climber over an exhaustive search strategyo This conflict

between gaining information to update each distribution

A A
N(g., w.) and so gain more accurate information about the

1 1

performance of action ui9 as against the use of the optimal

action as it is currently known 9 is the heart of the learning

problem. This basic problem in a simple form is embodied

in the well known Two Armed Bandit (T.A.B.) problem; Yakowitz

(1969) (17] gives a detailed account and historical references.

3 - 16

The use of the BANDIT algorithm for minimum cost path finding

Cashin (1970) (4J gave rise to its application to the T.A,B.

problem and hence the name BANDIT algorithm. (Chapter 2)

5. ENVIRONMENTS WITH PERCEPTION AND PERFORMANCE MEASURES

5.1 An Extended Problem Class

All the work mentioned in the introduction, in fact

all known work on stochastic adaptive automata, has considered

a performance measure as the only output or response of the

environment. It is true that the response has been

generalized a long way from the first steps with a 1 or 0

penalty or nonpenalty response but never the less the output

of the environment or input to the automaton has been a

performance indication. Consideration will now be given to

the case depicted in figure 4, where there are two separate

channels from the environment to the automaton. The important

point is that the environment output y i~ available to the

automaton as a vperceptioni of the environment; it gives the

automaton a Vlook! at the state of the environment but does

not directly indicate performance. The response from the

environment labelled g is a performance measure in the same

sense as the (only available) environment response considered

before this section. The automaton input g will direct the

performance of the automata as before, the object being to

maximize the expectation of go There is no reason why g may

not be a function of y in which case the original arrangement

of figure 2 may be considered adequate. But this is not

necessarily sOi the problems that will now be considered have

3 = 17

the property that the perception y is absolutely necessary

for the automaton to be successful in maximi~ing the expectance

of the performance go

Random
--)

Environment.

action u performance g
V

Perception y

Automaton ...
'"- "'

Fi~ure 4.

This class of problems has been cohsidered by

Andreae (1968) [1 J Michie and Chambers (1968) [12J and Doran

(1969) [6] None of this work arose directly in the field of
\

stochastic automaton lear~ing theory as considered in the

introduction, but rather in the field of °heuristic learning

machine work Q 0 The problems will now be put asa logical

extension to the learning automaton work considered previously.

Thus a link will be formed between two distinct research areas

which will hopefully lead to advantages for botho

5. 2 AN EXAMPLE PROBLEM.

The idea of a perception signal y being necessary

for the maximization of the expectance of the performance g

is best seen from an exampleo The example used here will be

the game of NIM. In this game two players take turns to

remove 1, 2 br 3 stones from a.pile initially containing 16

stones. The player to remove the last stone of the pile is,

in. this version, the winner. However it will always be

allowable to remove 1~ 2 or 3 stones, to be subtracted modulo

3 - 18

16 from the pile. The game thus cycles continuously with

a win for the player leaving his opponent with exactly

16 stones.

In terms of figure 4 the possible automaton actions

ui ' i=1,2,3, are the moves corresponding to the removal

of 1,2 or 3 stones. The perception of the environment y,

will be considered as the number of stones on the pile just

prior to the automaton choosing an action (making a move).

Notice that the automaton can not isee' the result of its

action, only th~ result of its action followed by the

environments actiono

The environment will be considered to be a pseudo

random player that knows the optimal moves but occasionally

makes random mistakes. If the environment were to play

only optimal moves the automaton would never win a game, and

could not hope to learn anything useful at all.

The performance indication g given from the

environment will be g=1 for a move by the automaton that wins

a game, otherwise g=Oo This performance indication g need

not come from the environment but could be calculated from

y and u by the automaton itself. This does not alter the

concept of having both g and y as necessary inputs to the

learning procedure, so that the arrangement in figure 4 will

still be considered as an adequate description.

Table 1 gives a complete description of the game,

together with the optimal moves that the automaton should learn

to play. These optimal moves are closely related to the

3 - 19

perception y and a little consideration will show that only

the last three optimal moves could be learned by an automaton

denied the perception yo

TABLE 10 Description of the game of NIM.

p t' ercep J.on A t' C J.on 1 At' c J.on 2 , At' c J.on 3 'ot' 1 M p J.ma oves

u = u·
1 u = u2 u = u3

y = g = g = g = u =

16 0 0 '" 0 u1
15 0 0 0 u

3
14 0 0 0 u2
13 0 0 0 u1

d '" 12 0 0 u1
11 0 0 0 u

3
10 0 0 0 u2
9 0 0 0 u1

8 0 0 0 '" u1
7 0 0 0 u

3
6 0 0 0 u2
5 0 0 0 u1

4 0 0 '" 0 u1
3 0 0 1 u

3
2 0 1 0 u2
1 1 0 0 u

1

"'There is no true optimal move in that a win cannot

be forced from these positions 9 but a move of u, maximizes the

probability of a wino

3 - 20

It is interesting to note that given only a set

of lights for the y and g signals and asked to select a series

of actions u. (3 buttons) to maximize the probability of light
~

g being on a human player often takes several hours to learn

a near optimal set of moves Q

One of the difficulties of the situation is, that

a non optimal move may~ because of a °mistake i by the

environment 9 lead to a wino The probability of a win for

this move is determined by the °mistake l probability of the

environment. If such moves are discovered by the learning

~layer (human or automaton) care must be taken to ensure that

these moves do not become established as the best moves simply

because of inadequate °researchO on the other moves o This is

the old Two Armed Bandit Problem again9 that of information

gain against cost of a move as currently knowno Michie and

Chambers (1968) ~2J discuss this problem with reference to

NIM and present their solution to this problem in terms of a

control problemo The following section is a similar approach

that is suitable to stochastic learning automatao It is

essentially a development of the o expectation functionO used

in the STELLA '~earning machine of Andreae (1968) [1].

60 EXPECTANCE.

A function is now developed called the expectance flJ

that gives a performance measure for each perception Y9

associated response u~ and environment response g. The

expectance value for perception y. followed by action u. will
~ J

be denoted ¢ .. 0

1.J

3 = 21

The purpose of the expectance function is to give a

value to each input=action association (y=u) that reflects

the probability of getting a reward response l g=1 9 but also

takes into account the probability of getting a reward response

in the future. Thus once the expectance function has been

derived the extended problem can be viewed as a series of

problems suitable for the automata first considered in this

paper.

For example consider the NIM game of Table 19 and

take the situation y = 6 or Y6~ The optimal move in this

situation is u = u2 (or move 2) but the reward for this action

g = 1, will not come until after the next move j and only then

if the next move is optimal o The expectance ¢62 should

however have a value higher than ¢61 or ¢63 (non optimal moves).

This gives rise to what can be viewed as a new set

of subproblems: Given situation i (y

u j based on a performance measure ¢ijO

= y.) choose an action
1.

The situation is shown

in figure 59 where each of the 16 parallel automata is similar

to those originally discussed (ego a G-procedure)0

3 - 22

Action u Random Environment
r-7' (NIM player for example)

1---
Perception
y

Action for
Situation 10

Action for
Situation 20

-
u.

J

u.
J

j= 1 I 0 0 0 . 9 r

Action for
Situation s.

u .
." J

Automaton
A1

.-------

Automaton
A2

.-
Automaton

A s

¢1 . Y1
<~ ~.--

Situation 1

¢2' Y2 ,. J
J'

Situation 2

¢
I

, i= 1 9 0 00 9 S

I

¢Sj Ys
-'-

Situation s

-
Figure 50

It can be seen from figure 5 that there is an

automaton for each situation y. 0
~

In practice a completely

separate set of automata is not needed but this representation

serves to give an understanding of the situation. The

automaton A2 would in the NIM problem handle situation 2

(There being 16 possible situations). Situation 2 corresponds

to 2 stones in the pile 9 and the action u. (1929 or 3) is based
J

on the performance measure ¢2j which are provided to it for

each action by the expectance function calculation.

Now that the expectance function's purpose has been

established, the function can be defined recursively as .

1
.0ij = (1 + 'd) [g ..

~J

3 - 23

Where '.1 = a discount factor 9 O:;f, is ,~ 10

Pij~kl = the probability of situation Yk with action u~ 9

given situation y. and action U.o
1 J

= the performance measure on action u, given situation
J

s

r

= the number of possible situations o

= the number of possible actionso

y. 0

1

The discount factor ~ can be thought of as setting

the importance of potential future reward against immediate

reward (g=1) response for this actiono If «:=: 1 equal account

is taken of the probability of future reward and immediate

reward~ if 0 = 0 then no account is taken of future reward

probab~lity and the situation reverts to the original problem

with a performance signal g9 but no perception signal yo

The probability p. , ko1 can be thought of as the
lJ 9 .I-

situation.- action transition probabilityo An on=line

calculation similar to the B or C-procedure could be used to

estimate this probability but even given this the expectance

function would be difficult to calculate directly from the

recursive definition (9)0

In order to avoid the iterative calculation inherent

in equation (9) the following on-line Procedure can be used to

give a QrunningQ estimate of the expectance values ¢ij

without any explicit calculation of the transition probabilit-

ies Pij9kl0

3 - 24

Expectance Algorithm.

110 [Perform action.] If Y=Y, 9 let u=u, be the action
1. J

selected and used by the automaton.

I2. [Observe response 0] Y -f- new situation observed.

g 4- new performance measure.

13. [Select action & Update ¢oJ If Y=Yk and the automaton

selects action u = U
1

9 theng

go to 110 (IS = discount factor 9 0 $. ({ ~ 1)

Now that the procedure for calculation of the

expectance has been described the complete procedure for an

automaton that acts as if it were s parallel automata

(as shown in figure 5) will be defined. The selection of

actions based on a performance measure 9 that is now an

o 0 0 0

expectance function~ will be done by the same BANDIT algorithm

described by the G~procedure.

J1. [Observe.] y ~ environment situation response.

g ~ environment performance response.

J2. [Sample.] F.or Y = Yi 9 (situation i9 ith automaton)

'" .A,

xi -<~. sample from NC,e)ij 9Gij) 9 i=19 0 •• 9r
A

(¢ij = expectance estimator 9 action j)

r. A

(G" = l.J
variance of .0")

l.J

J 3. [S e 1 e c t ac t ion ~J I f x j = max {Xk 9 k= 1 9 ••• 9 r } 9

U ~ u
J
' 0 (output action u

J
' to environ=

ment)

3 - 25

J4. [Update expectanceJ For y = Yk 9 u = u 19

and oldy = Y
i

9 oldu = u
j

; (last situation & actio~

z ~ 1 + ~

1
(oldg + c{Jk1) , (o~C(~ 19

discount factor)
f\ A

J2l ij -E- UPDATE(¢ij , z) 9

...... A A. 2
G .. ~ UPDATE(G. . (G .. - z))

1J 1J I 1J

J5. [Step on oneJ

oldy ~ Y 9

oldu -E-- U

oldg- g ,

go to step J1.

7. RESULTS

7.1 BANDIT Automaton Results

Results from the G-procedure (BANDIT algoritbm)and

the H-procedure (modified BANDIT algorithm) are compa~ed with

resu+ts from the F-procedureo The problems used are from

Shapiro and Narendra (1969) [14] and their results agree with

the results from the F-procedure as they should.

The problem can be described by the two simulated

multi~modal performance curves shown in figure 6. The

environment performance response g is the height of the

performance curve I(u) at the particular value of u output

by the automaton, with a superimposed noise uniformly

distributed, in the range ± 2 units.

3 - 26

Figure 6 (a) is a relatively easy case~ while 6 (b)

is a more difficult case since the differences of performance

for the different actions are masked by the large noise

component.

The particular UPDATE procedures used were a

classical mean and variance -estimation (B-procedure) for the

estimation of g. and w. ~ and a linear reinforcement procedure
~ ~

(C-procedure) for the estimation of p.'so
~

This applies to

all the results except that the BANDIT algorithm which

does not use an explicit UPDATE procedure for the p.'s.
~

The coefficient, ~ ~ used in the linear reinforcement equation

(B3) are given on the results in graph 70

As can be seen from the results in graph 7 the

modified BANDIT algorithm (H-procedure) was quicker to converge

than the S & N scheme (F-procedure)9 while the BANDIT algorithm

was faster than botho These results are accounted for by the

fact that the estimation of W9 the variance of the mean

estimator g9 gives more information per stepo Also avoiding

a double stage estimation 9 that is an estimator that is

derived fr~m an estimator, gives a faster over-all time constanto

Table II summarises these factors as they apply to each of

the three procedures (F,G,&H)o

I(u)
- Mean

--- Limits distribution
/"

8.0 I
, ,

/ ,
1'..... /

/ I

600 / '-../
/

/
/ /

400 I /
I

/ \ I ...
/ , / \ I /

.....
'/ 200 \ I " / " /

\ I V
/ \ I

0 I
0 1 2 3 4 5 6 7 8 9 10

ACTION GRAPH 6~A)

,/
/'-- -~ --...--",...- -- ,~ ----- -- - -'

6.0

~, ..
409 4.9

4.0
...... ------....... ---.".- -.- --... --- -- -"'2_

200

mean

Limits of uniform
distribution (noise) GRAPH 6(E) ---

0 ! i i I ! i i
0 1 2 3 4 5 6 7 8 9 10

ACTION

PROB, of
OPTIMAL

0.6

0.4

002

o

PROB. of
OPTIMAL

008

006

004

o

TABLE II

100

1

~

1000·

~ANDIT, 10 sample delay 2-- 28

200
TRIAL

Mod. BANDIT
eX, == 0098

~

2000
TRIAL

F-procedure
,:< == 00975 .

Modo BANDIT
0< == 00975

GRAPH 7(A)
I

300
I

400
I

500

t BANDIT, 10 samples
~ delay.

~

3000

GRAPH 7(B)
ij

4000
.j

5000

Procedure Primary estimators
mean go var of, w.

Secondary estimator
action probe po

S&N,F-procedure

Modo BANDIT (H)

BANDIT (G)

yes

yes

yes

no yes

yes yes

yes no

---------------~ .• ----.--~---------~--------------------

3 - 29

Care is needed in interpreting the results since

they are averages over a number of runs (at least 20). It is

not true that the algorithms with faster convergence rates are

by this fact alone preferrable to ones with slower convergence.

The convergence rates of the different algorithms

need careful interpretation and for this two dafinitions will

be helpful. Let 'primary convergence' be defined as the

condition when the probability of one particular action exceeds

some arbitrary value~ say 0.99. If primary convergence occurs

for a suboptimal action it will be called a 'premature primary

convergence' •

Premature primary convergence occurs because there

is always a probability that over any finite number of samples

for each action, the optimal action does not show itself as the

best action available. The smaller the number of samples the

greater the probability of the true optimal action having a

mean performance estimator that is less than its true mean

performance measure and also less than some other suboptimal

actions true mean performance measure.

With premature primary convergence there can only be

a small probability of the optimal action being used. It is

thus very probable that a considerable number of actions will

have to be taken before the performance estimator(s) for the

optimal action can be updated sufficiently to cause a 'switch 9

to convergence on the optimal action.

It can be seen that for any given situation the

faster the rate fo convergence the greater the probability of

3 - 30

a premature primary convergence. Notice that the rate of

convergence for any given small probability of premature

primary convergence is dependent on the random environment.

In the spec~al case where the noise is very small compared to

the difference in true mean performance measures for each

action, one sample from each action would be sufficient

evidence on which to allow primary convergence. For ten

actions in this environment primary convergence after 10 or 20

actions could be quite satisfactory. In the environment with

performance measure as shown in figure 6(b) the performance

measure difference for different actions is 9buried v under all

the noise. In this case several thousand actions need to be

taken before primary convergence occurs, as shown in the

results on graph 7(b)o

In the case of the B&N scheme (F-procedure) and

also the modified BANDIT algorithm (H-procedure) the rate of

convergence can be set by the parameter 4 in the linear

reinforcement equation for the p.IS. This is not the case for
~

the BANDIT algorithm (G-procedure). However even in the

difficult case for the performance measure in graph 6(b) there

was about 0.8 probability of convergence in the practical sense

on to the optimal action. The result shown in graph 7(b) 2

is better than this (100% optimal convergence over the 20 trial

runs) because it incorporates a feature to be described

belowo

3 - 31

The reason that the BANDIT algorithm can sometimes

converge (in a practical sense) onto a suboptimal action is

that the optimal action occasionally gives its first few per­

fo~mance responses lower than the long term mean and close to

each other. This results in the mean estimator being low

and also the variance of the mean estimator being low.

Because of the assumption (that is made for computational

convenience) that the mean estimator has a normal distribution

the optimal action can in this case be udiscarded' by the

algorithm. Tha~ iS 9 it gets only a small probability of being

tried again. There are at least two methods of overcoming

this problem without introducing any significant extra

computation.

The first method is to use an UPDATE procedure that

has the property that it converges smoothly from apriori

selected values onto the estimated value. The linear

reinforcement equation (C=procedure) or a more complex form of

stochastic approximation (Fu& Nickolic1966 [8]) have this

propertY9 while the classical estimators (B-procedure) do not.

The rea~on for using such UPDATE procedures is that the apriori

variance of the mean estimator can be set to some suitably high

value so that the BANDIT algorithm will need to take a

significant number of samples before the probability of any

action can become very small. The BANDIT algorithm can be

thought of as being forced to try each alternative a number

of times before it can be discarded. Alternatively it can be

thought of as a relaxation of the assumption of a normal

distribution for the mean estimators. A variation of this

3 - 32

approach is to keep using an apriori variance of the mean

estimator until some arbitrary number of samples have been

acquiredo This simple scheme was used for graph 7(b)2 v

A second method for avoiding a long time convergence

(in the practical sense) onto a suboptimal action is to decay

the variance estimator for each step that the estimator does

not get updated. This method is suggested mainly for time

varying situations since it essentially says that if a mean

estimator has not been updated then the confidence in it should

be decreased~ or the variance should be increased. Notice that

unlike iforgettingn schemes that have in the past been suggested

(Samuel 1963 ~3J) this decay of the variance does not alter

the value of the mean estimator. Information is not lost9 but

the confidence in the information is decreased.

Both the methods suggested above improve the

assumption that the distribution for the mean estimator is

normal. All the above suggestions have been successfully

demonstrated 9 but not fully investigated.

The comments made above apply in the main to the

extended problem class where the automaton is learning to

maximize the expectance of each move 9 rather than the performance

measure itself.

702 NIM Results

For the game of NIM discussed earlier (refer to

TABLE I) some of the results from use of the BANDIT-EXPECTANCE

algorithm9 or J=procedure 9 are shown in figure 8. Only three

of the optimal moves are shown simply to keep the figure

3 = 33

uncluttered. Notice that the first optimal actions to be

established are those leading directly to a win; in figure 8

the move shown is for y=2~ u=2, resulting in g=1 (TABLE I).

After these 9direct wino moves have been established and their

expectance values have increased~ the moves 90ne away from

reward 9 are established. In figure 8 the move for y=6! u=2

always results in g=O, but the next situation must be. y=1,2

or 3 for which the optimal moves are now established. Hence

the expectance of the moves 90ne away from reward o build up and

so the process continues.

A point of interest is the fact that the probability

of the optimal actions leading to immediate reward (a win) are

not as great as those for actions one or mOre step from

immediate reward (see figure 8)0 This arises from the

particular UPDATE procedure used in the BANDIT=EXPECTANCE
. "

algorithm (J-procedure)0 There was no update of an expectance

value if the update information (z in step J4) was zero.

That is, if the action resulted in situations still having their

apriori expectance and no reward (g=O)! then it was considered

that no information had been gained to update the expectance

of the action just used. The non optimal moves from y=1 9 2 or 3

result in g=09 and y=15 or 16. Until a complete set of optimal

moves has been established (so that optimal moves from y=15 and

y=16 are established) the no~ optimal moves from y=1 9 2 or 3 do

not have their expectance values updated~ for the reason given

above 0 Hence the optimal actions from y=1,2 and 3 are competing

with the apriori (non updated) expectance for the non optimal

PROBe of
OPTIMAL MOVES
1.0

0.8 ~

0.6

o
o 100 200 300

GAMES
500 game optimal move probabilities:

Random player

= 0.5 optimal

400

l4--_o..::....c.97 _____ t~ .1.~ o9L~ °J?-113-1

WIN 095 [2=2 1 o£'-i6-2 o9~110-2 0~14-2

.94 3-3 1·~17_~ .9~:11-3 07~

1000 game optimal move probabilities

099 1-1 1 o~15-1 1 0~9-1 o9~113-1

WIN 099 12-2 1 0~6_2 1 oQ-[10-2 . 9~ 114-2

~- .99 13-3 1 O~!7-3 1 0£-111-3 1 0~115-3

~ 10 OJ 4-1 1 oJ \.8-1 0~112-1 o 2-t 16-1

Probe -,-I / I 02~112_2 03U'16-2
Stones
Move .61-f12-3 o~ -[16-3

500

3 = 35

actions 9 resulting in the lower probability seen in figure 80

The situation can be thought of as 9known good actions verses

actions of unknown worth~ •

80 CONCLUSIONS

Automata schemes have been described in a new way

for the following reasons:

By their nature schemes for learning stochastic automata

are procedures and an algorithmic notation can describe

them concisely.

Algorithmic presentation has been developed in the computer

science literature that can be used to advantage.

o An attempt h~s been made to give this notation some

•

generality so that one procedure can be set down to describe

a whole class of partipular implementations.

When presented in this uniform manner it is much easier to

compare different schemes 9 see their differences~' get an

idea as to the differing computational requirements! and

so on.

After introducing the main points in the development

of stochastic learning automata 9 one of the latest published

schemes is presented as a procedure in the notation mentioned

aboveo Using this as a basis of comparison a new scheme - the

BANDIT scheme - is described. The key points about the BANDIT

algorithm are:

Mean and variance information is gained from each action that

the au~omaton performs 9 so that the convergence rate can be

increased.

No explicit estimation of the action probabilities is made

so that the storage of an extra estimator, variance, need not

take additional storage space.

Estimators that are estimated from other estimators are

eliminated.

The performance measure does not have to be normalized to

any particular range.

The algorithm can be implemented with very modest computation.

The algorithm is suited for qon-line q use coping with time

varying stochastic environments.

In addition to this new algorithm an extended class of

problems for stochastic learning automata are introduced!

together with a scheme, the BANDIT-EXPECTANCE algorithm! to

enable these problems to be tackled.

this extended problem class are:

The main points about

The extended class of problems cannot be satisfactorily

tackled by the learning automata discussed in the early parts

of this paper.

This extended class of problems has been considered in

~heuristic learning machine u research! so that a link is

formed between this and the stochastic learning automata

considered here.

The extended problem class includes the interesting cases of

board games and robot problemso

3 - 37

REFERENCES

1 Andreae~ J.H. j Learning Machines: a unified view.

In Encyclopaedia on Linguistics, Information and Control

Pergamon Press, 19680

2 Brown, R.G., Smoothing Forecasting and Prediction of

Descrete Time Series 9 Prentice Hall, 19620

3 Bush, P.R. and Mosteller~ F. , Stochastic Models for

learning, WileY9 19580

4 Cashin, P.M. The Bandit Algorithm for Minimum Cost Path

Finding with Incomplete Cost Information,

Refer to chapter 2, also Proc. 3rd International Conf.

on system Science. Hawaii 1970.

5 Chandrasekaran, B. and Shen, D.W.C., On expediency and

ponvergence in variable=structure automata, IEEE Trans o

Systems Sci. Cybernetics, ssc~4, No01, pp52=60, March 1968

6 Doran, J.E. Planning Generalization in an automaton/
\

environment system, Machine Intelligence 4, pp433-454~

Ed. Meltzer, B. Michie, D., Edinburgh University Press

7 Fu, K.S. and McMurtry, G,J., A variable structure

automaton used as a multi-modal searching techniqueo

Proc. Natho Conf., 21, pp494=499. 1965.

3 - 38

REFERENCES

8 Fu, K,So and Nickolic, A,J'9 On some reinforcement

techniques and their relation with stochastic

approximation. IEEE Trans~ Auto. Control AC-11,

pp756-758, 19660

9 Fu KoS., Stochastic Automata as Models of Learning

Systems, Computer & Information Science - II, Ed.

Tau, J.T.Academic Press, pp177-191, 1967.

10 Knuth D,E. The Art of Computer Programming, Vo01,

Fundamental Algorithms, Addison-Wesley, 1968.

11 Mendel, J.Mo, & Fu~ K,S. Adaptive, Learning & Pattern

Recognition Systems Theory and applicatiori.

Academic Press 1970 0

12 Michie, Do, and Chambers, R.A., Boxes: An experiment in

Adaptive Control, Machine Intelligence 2, pp137-152

Ed. Dale, E. and Michie, D., Oliver & Boyd, 1968.

13 Samuel, A.L. Some Studies in Machine Learning using the

game of Checkers. Computers & Thought, Ed. Feigenbaum,

E.A. and Feldman, J. McGraw - Hill, 1963, pp71-105.

14 Shapiro, roJo and Narendra, K.So, Use of Stochastic

Automata for Parameter Self~optimization with Multimodal

Performance criteria. IEEE Systems Sci. Cybernetics,

SSC-5, No.4, pp352-360, October 1969.

3 - 39

REFERENCES

15 T8etlin~ M.L., On the behaviour of finite automata in

random media. Automation & Remote Control 22 NOo10

pp1210=1219~ 1961.

16 Varshavskii, V.I. and Verontsova~ I,P' 9 On the behaviour

of stochastic automata with variable structureo

Automation & Remote Control 249 No.3, pp327=333 9 1963.

17 Yakowitz 9 S.J, Mathematics of Adaptive Control Processes 9

Elsevier 9 1969.

CHAPTER FOUR

ROTE LEARNIJ;ifG

AND MARKOV PROCESSES

4 - 1

CHAPTER FOUR

4 - 1 TABLE BUILDING

A table can be constructed to record the history of

all machine/environment interactions. The basic events

consist of 4-tuples:

<y, u, z, t>
where y = the observed state, € Y = {Ya' Yb ' .•. } ,

u = the operator applied, E: u = {ua,ub , ••• },

z = the valuation resulting from this,

and t = tne time.

Notice that the z in these 4~tuples is the valuation

that is observed aft~ the application of operator u to

state y. This is a basic assumption of cause and effect,

an example of which is given in 'figure 1.

Initial

observed state

and valuation

Recorded as

4-tuple:

uk
~
~~~ 

z 
q 

Resulting 

observed state 
and valuation. 

Figure 1 

We now make the important assumption that the z 

appearing in <y,u,z,t> has an expected vall,le z up to 

this particular event. 



4 - 2 

That is the expectation of z, E(z), in the event 

<y,u,z,tn> given by the history<y,u,z,tn _1>,oo • 
... , <y,u,z,tO>' is equal to E(z) of z in the event 

<y,u~z,tn> with unknown history. 

A stronger assumption that will be made for the 

present but will be relaxed later, is that of time 

stationary: 

E(z) of <y,u,z,tn> 

for all n and m. 

= E(z) of <y,u,z,t > n+m (2) 

Because of these assumptions we can 'condense v the 

historical record of 4-tuples (1) into a smaller set of 

triples: 

1\ 

/\ 
<y,u,z> 

where z = the mean value of z in <y, u, z, t> for each 

unique pair y := y.and u := U. over all to 
l J 

The 2 will be treated as a running estimate of the 

true mean value of z~z), by updating it after each event. 

For example, given event < y i ,uk' z, t.>: 

Z;' = (1+) 

1.1. Information Structur~ 

The set of triples <y,u,z> can be thought of as 

recorded in an information table in the form of a tree; 

represented by the list structure: 



list (y,list(u,z» 

or simpl'y (y,(u,£» (6) 

This list structure has the form of a tree since it 

has a number of particular y's, the states that have 

been observed and recorded in the table, and each y 

branches out to a number of particular operators u that 

have been applied to each state. For example: 

table 

(tree) 

table := 

y. 
l 

y. 
J 

yp 

A 

U. , Z 
l 

'" u ,z q 

/'" 

U ,z 
P 

/'0 

<Uq,~ 
u., z 

J 

A <Uk': 
ul'z 

(y,(u,z» 

1.2. Transition Probabilities 

~igure 2 

Although ~his table has all the events that have 

occurred stored in it, it does not give any record of 

the seguence of events. The table will enable us to 

answer the q.uestion: "what is the expected value E(Z) 

after the use of operator uk if the current state is yp?" 

But the question: "what is the expected state y if 



4 - 4 

operator u is used from the current state y?" cannot k p' , 

be answered from the table. 

This information will be required, and it can be 

included in the table (tree) py inserting an estimate of 

each particular state following particular state operat­

or pairs, as they are observed. For example, if state 

y. has been obs$rved as a result of the use of operator 
J 

uk in state Yi' then the table will have an estimator 

for the probability of y. given y., uk' i.e. J . 1 

PrcrjIYi'uk). The table will contain an entry (or a 

branch in the information tree): 

where p = estimate for Prey j I y i ' uk) • The form of the 

table is now; 

list(y,list(u,~,list(y,~))) (8) 

or (y,(u,z,(y,p))) (9) 

To make the table construction quite clear consider the 

situation illustrated in figure 3. 



z=0.2 

z=0.8 

Table entries: 

< 
Tree 

(y ------- A 
(u,z ------- (y,p 

1.3. Information Extraction 

y ,0.8 p 

Y ,0.2 q 

))) 

4 - 5 

Consideration will now be given to .the extraction of 

information from the information tree. The form 

(y,(u,£,(y,p))) can take a slightly more general form: 

( , ( " ( , III ))) y, ••. ,x ,.~., u, ... ,x , ... , y , •.• ,x , ... 

where x' = information item pertaining to y, 

Xl' = information pertaining to operator u applied 

to state y, 



4 - 6 

x' " = information pertaining to state y' that is 

observed after the use of operator u in state 

y. 

Now to extract the items x', Xi' and x' " from the 

table the following notation will be used: 

x'<y> x' '<y,u> Xi' '<y,u,y'> 

Examples of this notation used on the table given 

in the example of figure 3 

and 

instances of u in the table, given y .• 
1 

4 - 2 OPERATOR SELECTION STRATEGY 

Consideration is now given to the utilization of the 

table (y,(u,z,(y,p») in order to select a 'good' 

operator u to apply to a given state y. To decide if an 

operator is 'good' or not it is necessary to define a 

criterion or objective function. 

Objective_1: Given a state y, choose u such that 

the expected value of the resulting 

valuation z is maximized: 

In order to meet objectiv8_1 the first strategy that 

comes to mind is simply to choose the operator u such 
A· 

that z < y, u> iso'maximized: 



.A. • A 
Z<y,Uk > = maximum over z<y,~u>, 

U_MAX_Z(y)~ uk. (Random choice for 

several equal max.) 

This seemingly reasonable strategy suffers a 

severe defect as will be illustrated by the following 

example: 

Table: 

Entry: 

or 

for which 

.A 

(y,(u,~,(y,p») 

y.((u.,0.5((---»,(uk ,0.75,(---») 
1 J . 

A 
Now z<y. , u.> 

1 J = 0.5 and z<Yi'uk> = 0.75, but it 

be that the true values are 0.8 and 0.75, since 

an estimate, and it may be' based on only a very 

could 

"- is Z 

few 

samples. In this case the operator that satisfies 

objective_1 is u = u j , not u = uk as given by 

well 

only 

U MAX Z(y.). The serious defect with U MAX Z(y) is that 
~ - l - '-

not only oan it be misled, but as in this example it will 

never discover its error, i.e. z<Yi'uk> will be updated 

(and retain its value of 0.75) but z<y. ,u.> = 0.5 will 
1 J 

never be updated to reveal the true value of z = 0.8 

for operator u .• 
J 



4 - 8 

This example illustrates a general defect in 

U_MAX_Z(y) that arises from the basic problem of utiliz-

ation of information, versus the gathering of more 

information. This is a key problem in machine learning 

and the same problem pased by the Two Armed Bandit prob­

lem [ 2], [3]. To overcome this problem some form of 

probabilistic selection must be used. 

2.1. Probabilistic Selection 

Consider first the probability of different operat­

ors u being selected by U_MAX_Z(y), using the example 

from the last section 

Pr(D MAX Z(y.) = 
- - l 

u .) 
J 

o 
Pr(D MAX Z(y.) 

- - J, = Uk) = 1 

(10) 

This is typical of U_MAX_Z(y), unless there are 

several equal maximum values in the set ~<y. ,~u> the 
l 

probability of selecting any given u will be 0 or 1. It 

is this deterministic property that can cause D_MAX_Z(y) 

to get 'stuck' and keep returning a u that does not 

satisfy objective 1. 

A probabilistic operator selection strategy will now 

be defined. This strategy, D_RAN_Z(y) will select an 

operator with a probability determined by the relative 

value of z for each alternative. This strategy may be 

called a 'linear probability weighting rule'. 



U_RAN_Z(Y): Label z<y,V'u> as {z(1),z(2), ••. }, 

ZTOT~ L £'<y,u>, 
Vu 

R ~ a randum number in the range 0 to 1, 

R~ R . ZTOT (scale the range) 

Z~ 0 I ~ 1, 

loop: Z ~ Z + z(I) 

If Z ~R go to set, 

eise I ~ I + 1, go to loop. 

set: If z(I) = f'<y,uk> then 

Now we will write 

Pr(u
1
· I y.) to mean Pr(U RAN Z(y.) = u.). 

J - - J l 

(11) 

( 12) 

For any operator selection strategy we desire one 

and only one operator to be selected S0 that 

~ 
L. Pr ( u· I y.) 
Vi 1 J 

( 13) 

This will be true for Pr(u. I y.) defined by equation 
1 J 

(12), and if (as we shall later) the procedure 

U~RAN_Z(y) is replaced by some other procedure it must 

be ensured that (13) still holds true. 



4 - 10 

4 - 3 PLANNING FROM ROTE LEARNING 

In the last section we considered the selection of 

an operator u given some observed state y in order to 

maximize the expected value of z, as dictated by object­

ive 1. This is planning, but only in a limited sense 

since it is only the immediate outcome of an operator 

that is considered. As sufficient rote learning is 

entered into the information table it is possible to 

plan not just for the immediate outcome of an operator 

but the planning horizon can be extended to maximize the 

expected value of z over 2,3 or many more steps into the 

future. 

In this section it will be assumed that there is a 

procedure (U_MAX_Z(y), U~R~N_Z(y) or some other) that has 

been defined to determine Pr(ul·y). Given this it is 

possible to calculate state transition probabilities and 

the expected value of each state, which are needed to be 

able to plan over many steps into the future. 

3.1. State transition probabilities 

The estimated probability of observing state y. 
J 

after use of action uk while in state Yi can be extracted 
A 

directly from the rote learning table as p<y. ,uk,y.>. 
J. J 

The state transition probability Pr(y. I y.) is the prob­
J l 

ability of observing state y. given state y.. These 
J l 

transi tion probabilities can be estimated !:Ii.n the 

following manner: 



4 - 11 

Pr(y. I y.) 
J 1 

= L Pr (y. I y. ,uk) . Pr (uk I y. ) 
'Vk J 1 1 

(14 ) 

for which an estimate can be made using: 

A 

Pr(y. I y. ) 
J 1 

= L p<y. ,uk'y .>.Pr(uk I y.) 
\lk 1 J 1 

( 15) 

3.2. State valuation 

The valuation z exhibited by the environment has 

been attributed to the preceeding state action pair 

(Section 4 - 1). To evaluate the expected value of a 

state E(zIY) the following equations can be used: 

E(zly·) 
1 

= ~ E (z I y. ,uk) . Pr (uk I y. ) , 
'v'k 1 1 

( 16) 

for which an estimate can be made using: 

A 

E(zly.) 
. 1 = ~ ~<y. ,uk>·Pr(uk I y.) 

Vk 1 , 1 

4 - 4 INTERACTION AS A MARKOV PROCESS 

4.1. Relationship to Markov Processes 

A Markov process is a mathematical model that is 

useful in the study of complex systems. The purpose of 

relating the machine-environment interaction to a Markov 

process is to enable use to be made of results establish­

ed for this mathematical model [7J. In particular, 

reference will be made to the book by R. Howard, 

'Dynamic Programming and Markov Processes', [5J. 



4 - 12 

The basic concepts of a Markov process are those of 

'state' of a system and state 'transition'. A system is 

said to occupy a state when it is completely described 

by the values of the variables that define the state. 

For a simple Markov process the state transition probab-

ilities are dependent on the current state and not on 

the previous states. 

The system we are now considering is the complete 

machine-environment with the state of the system taken 

to be the observation of the state of the environment y, 

with the machine and environment 'frozen' in time. 

For the frozen system: 

1. The environment is assumed to retain its current 

performance so that Prey I u) remains constant. 

2. The machine is assumed to retain its current perfor­

mance so that Pr(u I y) remains constant, also the 

table (y,(u,£,(y,p))) will be constant and not up-

dated after each machine-environment interaction 

step. 

3. The machine is assumed to have some memory that is 

not part of the rote learning table - a scratch pad 

memory. This memory is used for planning operations. 

It may for example hold a temporary estimate·of the 

probability of a transition from y. to y. by any 
l J 

3 step path. This memory can be actively used in 

the frozen state. 



The frozen system can be thought of as continuing 

to interact with time frozen, by means of a simulation 

of reality, or in more colourful terms as 'thinking' or 

'dreaming'. This is the mode that the machine will use 

to undertake planning into the future on the basis of 

its current (frozen) knowledge. 

It is important to remember that we are considering 

the machine-environment system as a Markov system at 

some given time. At some time later it may again be 

considered as a Markov process, but not necessarily the 

same Markov process. The tran$ition probabilities, for 

example, may have changed considerably with better est­

imates available; more than this the states in the 

Markov process may have been expanded as more entries 

are made into the table (y,(u,z,(y,p»). 

4.2. Total Expected Earnings 

Let us now consider the observed value of z at 

each step as the 'earnings' for that step. With this 

interpretation a question we may ask is: What will be 

the expected total earnings in the next n steps? This 

question has been answered for a Markov process by 

Howard [5], and the following sections outline the 

methods that can be used. 



4 - 14 

Let v(n I Yi)* be defined as the expected total 

earnings over the next n steps given the current state 

is Yio From this definition we can formulate the 

recursive relationship, 

= E(z I y.) + L Prey. I y. ).v(n-1 I y.). (18) 
1 'Vj J 1 J 

In a step from y. to y. the expected earnings are 
1 J 

the expected value of z, E(z I Yi). The total earnings 

are the expected value for this one step plus the total 

expected earnings with one fewer step remaining from the 

state Yj' weighted by the probability of a transition 

from state y. to y .• 
1 J 

4.3. Value Iteration 

We now look at the problem of determining the 

operator selection rule to achieve objective_2: 

Objective_2: Maximize the expected total earnings over 

the next n step period. 

The operator selection rule can be thought of as 

giving a decision dey) that determines the operator for 

state y; if this decision is dependent on the stage n 

then the decision will be denoted as d(y,n). When 

d(y,n) has been specified for all y and for all n t~h~en __ __ 

*Note that v(n I y.) is not in the rote-learning table; 
1 

it is in another memory space (scratch pad), and can 

thus not be denoted u(n) < y i>. 



4 - 15 

a 'policy' has been determined. The optimal policy is 

the policy which meets objective_2 and maximizes the 

expected total earnings. 

We now redefine v(n I y.) as the total expected 
l . 

return in n steps starting from state y., if an optimal 
l 

policy is followed. For any n: 

v(n I y.) = 
l 

maximum 
over all 
possible 
policies. 

[ 
E (z I y.) + L. Pr (y. I y.). v (n -1 I y . )J. 

l Vj J l J 
( 19) 

This is the application of the 'Principle of 

Optimality' of dynamic programming to the Markovian 

decision process, as given by Howard [51 and, along 

with other applications, Bellman [2J. 

The solution of the recursive relation (19) gives 

the set of decisions~ d(y,n), that determine the 

operator u to be selected for each y at each stage n in 

order to follow an QptimRl policy. 

This method of finding the optimal policy is called 

the value-iteration method .since the v(nly) or 'values' 

are determined iteratively. The following sections will 

indicate the basis of an alternative method directed at 

long term optimal policies, that is at decisions when n 

is very large. 



4 - 16 

4.4. Dis.££untigg 

Discounting has the effect of giving less and less 

weight to steps further and further ahead as we are 

planning. Planning is done on the Markov system corres-

ponding to the frozen machine-environment as a 'thinking' 

process, as discussed previously. In economic terms the 

present value of earnings has a greater value than that 

of future earnings; for the learning machine the future 

is uncertain and future earnings are not as certain as 

immediate expected earnings. Discounting can be 

thought of as describing a process with uncertain durat-

ion, the discount factor being the probability that the 

process will continue to earn after each step. 

The expected value of earnings over n steps with a 

discount factor of ~ can be written as 

== E(z I Yi) - ~L Pr(y. I y.) .v(n-1 I y.) (20) 
Vj J 1. J 

where 0 < (5 < 1 • 

4.5. Pol~Improvement 

The policy-improvement method (Howard l5J) of 

obtaining an optimal policy is aimed directly at long 

term policies where the decisions are for large n, and 

there is a discount factor~. Without the discount 

factor it is still possible to use a method that is very 

similar to the policy-improvement routine but it requires 

consideration of asymptotic behaviour and will not be 



4 - 17 

included in the present discussion. 

The basis of the policy-improvement method is the 

replacement of the expected total value for n steps, 

v(nly), with the limit as n tends to infinity v(y), 

called the present value. With this substitution we 

obtain 

E (z I y.) + 6' 2:: Pr ( y. I y.) 0 v (y . ) 
l Vj J l J 

(21 ) 

For a given set of transition probabilities and a 

given set of expected immediate earnings equation (21) 

can be used to find the present value v(y.) for each 
l 

state y., i=1, 2, 0 •• 

l 
The particular values for the ex-

pected immediate earnings E(zlY) and the transition 

probabilities Pr(Yj I Yi) are dependent on the particular 

policy that is being used. 

The optimal policy is the one that has the highest 

present value, v(y), in all states. Suppose that the 

present values for an arbitrary policy have been deter­

mined. Then a better policy, one with higher present 

values in every state, can be found by the following 

procedure, which is called the policy-improvement 

routine. 

For each state y., find the decision d(y,) which 
l l 

gives the operator that maximizes 

E(z I Yl') + ~ LPr(y., y.).v(y.) 
Vj J l J 

(22) 



4 - 18 

using the present values v(y) determined for the original 

policy. When a new decision d(Yi) has been found for 

every state, then a new policy has been determined. At 

this point we can go back to the present value equations 

(21) to determine the new present values for the new 

policy. This iterative loop has been shown to converge 

onto the optimal policy, each successive iteration 

produces a better policy (with higher present values 

v(y)) so that the optimal policy is found when two iter-

ations produce the same policy. 

The policy-improvement iteration loop as it could 

be carried out using estimates from the rote learning 

table (y,(u,z,(y,p))), is shown in figure 1. The 
A 

present values v(y) are given a hat to indicate that 

they are estimates because they are based on the current 

values in the rote learning table. Although this proced-

ure produces an optimal policy it is an optimal policy 

on the basis of the current estimates in the rote 

learning table and this is of key importance in the 

learning machine system since the improvement of the 

table is dependent on the policy that is used. The 

deficiency of an opti~al policy in this regard is consid­

ered in the following section. 



Value-Determination Operation 

Solve the set of equations 

A 

V(Yi) '" 
Z < Yi' uk> + 

~ ,,,- A) 
(5 L- P <y. ,uk' Y . >. v( Y

J
' 

. 1 J 
J 

where,uk = d(Yi)' the decision for the 

given policy. This produces the set of 

"-
present values v(y) for each §tate Y 

using the given policy. 

Policy-Improvement Routine 

4 - 19 

For each state Yi find uk' that maximizes 

~ L p<y. ,uk,y·>·v(y.) 
~j 1 J J 

using the present values v(y) from the 

previous policy. Then d(Yi) becomes uk' , 

the new decision for the state y., which 
1 

for all states y. defines a new policy. 
1 

Figure 401: Iteration cycle for discrete decision 

process with discounting. Following liwmrl[5]. 



4 - 20 

4 - 5 AN EXAMPLE OF OPTIMAL POLICY FAILURE 

5.1. Failure of the Optimal POlicy 

The last section considered the machine-environ-

ment as frozen and then showed how to obtain the optimal 

policy for such situations. Optimality was defined as 

the maximization of total expected earnings over an n 

step period with a discount factor ~. For a limited 

range of n the value-iteration method was given and for 

large n the policy-improvement method. 

The optimal policy consists of a set of decisions~ 

d(y,n), giving the operator u to be used for state y at 

step n. This policy has the property that Pr(u I y,n) 

will be 1 or O. As discussed in Section 4-2 this form 

of deterministic operator selection policy takes no 

account of the uncertainty in the properties of the 

Markov process it is based on. The optimal policy can 

get 'stucki by not allowing for the update of transition 

probability estimates and immediate expected earnings 

estimates in the rote learning table. 

The two examples in the following section will 

illustrate the use of both the value-iteration and the 

policy-improvement methods, and will show for this very 

simple system how the optimal policy can be undesirable. 



4 - 21 

5.2. Policy Planning Example 

The Markov system will be taken to be: 

U3 
z::;:0.2 z=0.8, 

A 
U1 z=0.6 

z=Oo75, 
i\ 

U2 z=0075 
z=0.1 

U
3 

Pr(Y2 IY1 9U1) 100, E( z I Y1 ,u1 ) 008 

Pr(Y3 IY1'u2 ) 1.0, E( z I Y1 9 u2 ) :=; 0.75 
True values. 

Pr(Y1 IY2'u3 ) = 100, E(zIY2'u3 ) 002 

Pr(Y1 IY3'u3) 100, E(zIY3'u3 ) 001 

For this example the operator selection decisions for 

states Y2' and Y3' are uniquely determined since there 

is only one possible operator, u
3

0 

The optimal policy will determine whether 



4 - 22 

Assume that the state of the rote learning table is: 

A A 

(y, (u, z , (y, p ))) 

u1 ? 0.6 Y2' 1.0 

< Y1 
u 2 , 0·75 Y3' 1.0 

Y2 u
3

, 0.'2 Y1 ' 1.0 

Y3 u
3

, 0.1 Y1 ' 1.0 

Note that A 
the only estimate not the true z<Y1,u1>is = 

value. 

Value-iteration method 

The basic equation used by the value-iteration 

method is 

maximum 

over all 
policies [ 

E( z I y.) + 't ~ Pr(y.1 y. ) . v(n-1 !y.)] 
l Vj J l J 

and when computed by use of the rote learning table 

maximum [ 
over all "£<y. ,dey· ,n» + 

l l 

dey. ,n) 
l 

~Llky. ,dey· ,n),y.>.~(n-1IY')] 
. Vj l l J J 

/\ 

With ~ = 0.5, and using v(Oly) = 0, the value-iteration 

method produces the following -



4 - 23 

n= ° 1 2 3 4 

v(nIY1) ° 0.75 0.800 0.988 1.000 

~(nIY2) ° 0.20 0.575 0.600 0.694 

"-v(nI Y3) ° 0.10 0.475 0.500 0.594 

d(Y1,n) u 2 u 2 u 2 u 2 

An example step in this process 

If d(Y1,2) :::: u 2 

~(2IY1) :::: 0.75 + 0.5*1.0*0.10 0.80 

If d(Y1,2) :::: u 1 

5 

1.047 

0.700 

0.600 

u 2 

~(2IY1) 0.6 + 0.5*1.0*0.20 :::: 0.70 

and so for the optimal policy d(Y1,2) = u 2 • 

6 . . . 
o 0 0 0 I;) 

o I;) El • G 

For the true values (not known in the rote-learning 

table) -

If d(Y1,2) u 2 

~(2IY1) :::: 0.75 + 0.5*1.0*0.10 = 0080 

If d(Y1,2) = u1 

~(2IY1) = 0080 + 005*1.0*0.20 = 0.90 

and so the true optimal policy d(Y1,2) = u 1 . 

Policy-improvement method 

We shall start the policy-improvement iteration 

with the assumption of the decision d(Y1) = u 1 • Remem­

ber that n is assumed to be large and v (the expected 



4 - 24 

total earnings for n steps v(nly)) have been replaced by 

the present values v(y). 

Value-determination: 

~(y.) = z<y.,d(y.» + (5) p<y.,d(y.),y.>.~(y.) 
l l l Vj l l J J 

and for d(Y1) = u 1 

~(Y1) = 0.6 + 0.5(1.0 v(Y2)) 
A 

V(Y2) 0.2 + 0.5(1.0 v(Y1)) 

:V(Y3) = 0.1 + 0.5(1.0 v(Y1)) 

giving 
."-

v(Y1) = 0.934 

~(Y2) 0.667 
A 

v(Y3) 0.567 

and now the policy-improvement routine can be used, for 

maximizing 
A ~A A 

Z <y. ,Uk> + "IS' L- P <y. ~ Uk ' Y . > . v ( y . ) 
l Vj l J J 

d(Y1) = u 1 gives 

0.6 + 0.5(1.0 0.667) = 0.933 

d(Y1) = u 2 gives 

0.75 + 0.5(100 0.567) = 1.03 ... maximum 

now back to the value-determination with d(Y1) = u 2 gives 

9(Y1) 0~75 + 0.5(1.0 ~(Y3)) 
.A 

V(Y2) 
A 

0.2 + 005(1.0 v(Y1)) 
A 

V(Y3) = 001 + 0.5(1.0 v(Y1)) 

with solutions 



4 - 25 

~(Y1) 1007 

~(Y2) 0·745 

v(Y3) 0.645 

Returning once more the the policy-improvement routine 

wi th this set of present values yields 

for d(Y1) 

and for d(Y1) = u 2 

0.75 + 0.5(1.0 00645) = 10073 .00 maximum. 

Because the policy-improvement routine has produced 

the same policy with d(Y1) = u 2 ? this must be the 

optimum policy and the iteration terminates. (The 

policy is only optimum with respect to the values in tpe 

table~ it is not necessarily the true optimal policy). 

Comments 

The optimal policy based on thewble with 

~<Yi,u1> = 0.6 gives d(Y1) = u 2 0 If the table were up-
A 

dated so that z<Y1,u1>converged onto the true value of 

0.8, then the optimal policy would become d(Y1) = u 1 0 

If the optimal policy as found above is used exclusively 

then this updating will never occur, and the true 

optimal policy will never be discovered. 

The optimal policy on the basis of a frozen system 

is thus not suitable to determine the policy for a 

learning machine because the lear~ing (by estimator 



4 - 26 

updating) can be impeded, as in the example just consid­

ered. The following sections are based on the idea of 

an optimal policy but take into account the uncertainty 

in the estimators contained in the rote learning table. 

4 - 6 STOCHASTIC SIMULATION 

6010 Operator Selection Probability 

The present value equations that have been used are? 

v(y.) = E(zly·) + ()~ Pr(y.ly·)ov(y.) 
1 1 V'j J 1 J 

and for a particular policy with decision d(y.), 
1 

A A. ~A " v(y.) = z<y. ,d(y.» + ~ L.. p<y. ,d(y,) ,y .>oV(Y·) 
1 1 1 j 1 1 J J 

(23) 

(24) 

Now we will return to the idea used in 4-2(1) that 

Pr(uly) is not restricted to the value 0 or 1, and the 

present value equations become, 

,A 

v(y. ) 
1 

= L Pr(ukl y.) :2<y. ,Uk> + 
Vk 1 1 

~L L pr(ukIY.)oP<y.,uk'Y'>O~(Y') 
V j Vk 1 1 J J 

(25) 

When there is a policy with this probabilistic 

nature, dey) may be a range of possible operators u, 

with associated probabilities Pr(uIY)o To keep this in 



4 - 27 

mind decisions for such policies will be denoted D(y) 

rather than dey) to indicate that the decision does 

not always result in the selection of the same operator 

u. 

D(y. ) 
l 

(26) 

6.2. Simulation Method 

The value~determination routine in the policy-

improvement method if extended to the present value 

equations ( 25) would treat them as a set of simultan-

eous equations and solve them by standard techniques. 

An alternative method for solving these equations is to 

use an iterative method that simulates the machine-

environment interaction. 

To use this simulation method we will need a 

routine SIMULATE(y,u) that, for a given state y and 

operator u, uses the rote learning table (y,(u,£,(y,p))) 

to select a subsequent stateo 

Pr [S~MULATE(Yi,Uk) = yj] 

and this is estimated by 

Pr [SIMULATE(Yi'uk ) = yjJ = 

Pr(Y·1 y. ) 
J l 

A 
p<y. ,uk'U'> 

l J 
(28) 

We can now simulate a trip from any state, say y., 
l 

and as we travel the present value ~(y.) can be updated 
l 

by use of the simulated zand v(y.) that result from a 
J 



4 - 28 

step to y. from y .. 
J l 

If a number of trips starting from 

Yi are simulated, then the present value v(Yi) will 

converge onto the value given by the particular policy 

decision being used, D(y.). There will be a number of 
l 

different trips involved, the probability of any part-

icular route depending on the transition probabilities 

Prey .1 y.) and the operator selection probability 
J l 

Pr(uly.). 
l 

An algorithm for the simulation approach will now 

be given. The main points should now be clear and the 

details will be discussed in what follows. 

TRIP(y.): 
l 

1. [Initialize] pi ~ 1, y ~ Yi 0 (p' will keep track of 

the probability along the path.) 

2. [Select operator] u~D(y). (u = uk with probability 

Pr ( uk I y i ) . ) 

30 [Expected value] z ~ £<y, u> 
4. [Simulate a step] y' ~ SIMULATE(y,u) (y' = Yj with 

probability Pr(Y.IY'» 
J l 

5. [Update present value estimator] 

v(y)~ UPDATE(v(y), z+<I'ov(yV» 

6 .. ' [Check probability of travelling this far] 

. I 'I A l-.t P ~ P .p<y,u,y >.0 

If pi < pmin, exit from TRIP. 

7. [Simulate move onto next step] 

y~y', go to 2. 



Notice that the direct solution to the present 

value equations ( 25) will give the present value for 

all states whereas the simulation method can generate 

the present value for state y., V(Y')1 without necess-
l l 

arily evaluating the present value of all the other 

stateso To see this imagine the states as a network 

connected together by possible paths 9 the present 

value of a state is determined by its location in the 

network; that is it depends on the present values of all 

its near neighbourso This comes about because the 

transition probability for a long trip away from the 

immediate neighbourhood of the starting state is the 

product of the probability for each stepo Just as 

important the discount factor weights the contribution 

of distant states to make them less important 0 For 

example~ if the discount factor is 005 then the 

importance of direct neighbours (one step from the 

start) is at least 1024 times the importance of the 

present value of states 10 steps away 0 

In step 6 of the TRIP algorithm the probability pi 

is updated to give the probability of travelling to 

this point from the start, weighted by the discount 

factor Q at each stepo This variable pi is used to 

determine if it is worth continuing on this trip9 in a 

similar manner to a convergence error stopping an iter-

ative calculationo 



4 - 30 

A 

To evaluate v(Yi) by the ion method the 

edly until ~(y.) procedure is to execute TRIP(Yi) 
l 

lS changed to an acceptably small increment each time. 

6.3. Estimator distributions 

Up to t 
. .... /\. 

S stage the estlmators z and p In the rote 

learning e have been simply mean estimators. C ar-

ly the ion that has been co ected for particul-

ar estimators may be vastly diff , some estimators 

may have been well established reliable mean 

estimates, othe~s may have had only one or two 

occurrences to base their estimates on. To embody s 

information as to the re ab.l:li ty of the mean es 

into rote learning table we will talk of an 

estimated stribution b maintained; rather 

storage the number of samples (observations) their 

mean, variance and so on. It may well be that 

latter me d is used in practice but it will still be 

assumed an estimator di ion is available. 

Let z1,z2,oo.,zn be n observations of the z that 

has oc after some parti 

observed operator uk used. T 

state y. has been 
l 

probability den 

distribution that these observations can be thought as 

being drawn from, will be called the parent distribution 

s set of observations we 

can obt a mean estimator 'i which estimates E(zl 



4 - 31 

the mean of g(zIYi3uk)o The mean estimator z<Yi'uk> 

will itself a probability density distribution, which 

we will denote f(zIYi'uk)o Similarly the parent distri­

bution for the transition probability y. to Yo given 
l J 

operator uk will be g(P!Yi,uk'Yj)o (This will be a 

binomial distributiono) The probability density distri­

bution of the mean estimator, P<Yo ,uk3 Y o>, of this 
l , J 

distribution will be f(plu. ,uk~Y')o These mean estimat-
l J 

or distributions contain the best mean estimate (their 

mean) together with the probability of the mean of the 

parent distribution being other valueso 

The rote learning table now becomes 

(29) 

and f(z)<Yi'uk> := the probability density distribution 

for the mean estimator of g(zIYi'uk ). 

the probability density distribution 

for the mean estimator of 

g(pIY· ,uk3Yo). 
l J 

The simulation method is ideal for accommodating 

these distributions 0 The only alterations to the TRIP 

algorithm being to replace 

and to extend SIMULATE(y,u) to produce a state y' based 

on the probability density distribution f(p)<y ,u ,~>o 



6.4. Present Value Distribution 

The uncertainty in the mean estimators for E(zIY~u) 

and Pr(YjIYi~uk) will produce uncertainty in the 

present value estimates ~(y)o This uncertainty in the 

value of v(y) can be represented by a probability 

density distribution for v(y), written g(vly). Notice 

that the simulation method uses a series of simulations 

to sup~ly samples to update the mean estimate of v(y). 

It is not a big step to extend this into an estimation 

g(vIY), of the distribution of ~(y). 

Unlike the estimates of z and p we will not be 

concerned with the distribution of the mean estimator of 

v(y) but' with the distribution of the variable itself 

(the parent distribution). This is because the values 

or sa,mples for v(y) e,;re de;ri'ved froID e. ~imula,tiQn tht,1,t 

uses the distribution of mean estimator~ a$ parent 

distributions for generating sam~leso The se~uence is 

shown below. 



Machine-environment interaction 

Parent distributions g(Z!Yi~uk) 

g(PIYi~uk~Yj) 

Rote learning table contents 

Estimator distributions 

Simulation trips 

f(~IYi~Uk) 

f(P/Yi 9Uk'Yj) 

Distribution of present values 

4 - 7 OPERATOR DECISION PROCEDURE 

4 - 33 

Observations 

Samples 

We are now in the position that a distribution for 

the present value can be calculated using the distribut-

ions of the mean estimators that are currently available 

in the rote learning tableo With this distribution the 

operator decision strategy is not restricted to choice 

of an operator leading to the best present value~ but 

account can be taken of both the value of the present 

value estimate and its uncertainty - as given by the 

distribution g(~IY)o 

Since we are going to use the simulation method only 

the D(Yi) that occur in TRIP need be decided - a complete 

policy as considered for the policy improvement method is 



not necessarily neededo The decision process can be 

summed up as: 

Problem: Given state Yo, choose D(yo) = uk such that 
l l 

operator uk will maximize the estimated 
A 

present value v(Yiluk) but also minimize the 

chance that the true present value v(Yi1ul) 

for some other operator u l may be larger than 

~(Yiluk)o The estimate v(Yi1Uk) is based on 

the current contents of the rote learning 

table 0 

This is an n-armed bandit problem of the same form 

that has been discussed in Chapters 2 and 30 Applying 

the BANDIT algorithm to this situation? 

BANDIT Algorithm: 

Set pr~(Yi)=UkJ = Pr [~(YiIUk) ~ v(YiIUl)~VUllukJ (31) 

The probability of one estimated present value 

being greater than another 

Pr [~(YiIUk) ~ ~(Yil u l ) ~ ulluk ] (32) 

can be estimated by sampling ~s 

where S(y(x» = a sample of x given probability density 

function Y of xo 



4 - 35 

Since the simulation method has been described as produc­

ing a probability density distribution for ~(y) rather 

than ~(YIU), samples S(g(vlu~y)) are not directly 

available, but they can be created as 

S(g(vIYi'uk )) S(f(£ly, ,uk)) +~oS(f(vly.)) 
l J 

(34) 

where the probability of the use of a particular Yj in 

this equation for a particular sample is 

Pr(y, ) 
J 

] (35) 

We are now in a position to calculate the 

pr[D(Yi) := uk] by use of 

f(p)<y, ,uk,y,> from the rote learning 
l J 

table, used in equation (35)? and 

value computed by the simulation 

method as explained in the previous 

sections, and 

fC~)<'Yi,uk> from the rote learning 

table, used in equation (34) 0 



4 - 8 EXPECTANCE FUNCTION 

As seen in the last section the BANDIT algorithm is 

not directly estimated from g(vIY.) but rather from 
l 

g(~IYijUk)o This leads us to define a new function 

h(Yi'uk ) called the expectance of the state-action pair 

Yi,uko The expectance can be used directly by the 

BANDIT algorithm~ and it has the advantage of being 

readily computed on-line 'J as will be discussed latero 

The definition of the expectance h(Yi'uk ) is given by 

the (recursive) equation~ 

h (Y
l
' j uk) = E ( z I Y

l
' ~ uk) + ¥ L ~ Pr (y . I Y, ) ° Pr ( u I Y . ) 

yj Vm J l m J 

o h(y. ,u ) 
J m 

(36) 

This can be seen to be similar to the definition 

of present value v, except that the expectance h is 

defined on state-action pairs rather than on stateso 

From equation 36, it may be thought that the expectance 

would be more difficult to calculate than the present 

value v, however, this is not the case despite the 

greater complexity of the defining equation 0 

A 

The current estimate of h(Yi'uk ) denoted h(Yi'uk ) 

can be obtained from the rote learning table 

(y,(u,z,(y,p))) by the (recursive) equation: 



4 - 37 

~ ;;<Yl' ,uk> + '15) L p<y. ,uk'y .>0 
Vj \/m l J 

/\ 

Pr (u /y.). h (y . ~ u l ) 
m J J 

Just as for the present value ~(y.) we will extend . l 
", 

from h(Yi'uk ) to the probability density distribution 
A A 

of h(Yi'uk ) , g(hIYi'uk ). 
1\ 

To obtain the probability density g(hIYi,uk)~ an 

extension of the simulation method described in section 

4 - 6(2) can be used. A rote learning table of the 

form - (y,(y,f(z),(y,f(p)))) will be assumed, where 

f(Z)<Yi'uk > is the probability density for the mean 

estimator of z resulting from state Yi with operator uk' 

and f(p)<y. ,uk,y.> is the probability density for the 
l J 

estimator of the probability of state y. following state 
J 

Yi with operator uk usedo 

The procedure to simulate a step can be redefined 

as -



Let x = S(f(p)<y. ~uk~y »,Vy (see footnote*) q l q q 

label {Xq , 'iq} as {x( 1) ,x( 2) , . •• } 

R ~ a random number in the range 0 to 1. 

xsum«- L x 
yq q 

R «- R. xsum (Scale the random number) 

x ~ 0, index ~ 1 . 

Loop: x ~ x + x(index) 

If x ~ R go to set. 

else index <4E- index + 1, go to loop 0 

Set: If x(index) = S(f(p)<y. ,uk~Y'» 
l J 

then SIMULATE ( y. ,uk) ~ y . 
l J 

The extended UPDATE procedure to handle a probab-

ility density rather than a simple mean estimator will 

not be detailed here since a variety of algorithms may 

be used, dependent mainly on the assumptions that are 

made about the form of the density function. In general; 

A /, 

g(hly,u) ~ UPDATE (g(hly,u), sample) 

will be taken to mean the value of 'sample' is to be 

*Where S(y(x» = a sample of x from the probability 

density y of x. 



A 

incorporated into the probability density g(hly,u). For 
A 

example if g(hly,u) is a histogram then the probability 
,t-

of h falling in the range containing the value of 

'sample' will be incremented and the other ranges of 

the histogram will be decremented. 

The basic algorithm for the simulation method 

TRIP(y) will now be given in outline; for simplicity a 

fixed number of steps, 'limit', will be used rather than 

a probability limit of TRIP(y) as described in section 

4-6(2). 

TRIP(y.): 
l 

1. [Initialize.] y~ y., u ~ D(y), step 0(,- 0 
l 

(u will be uk with probability Pr(uk!Yi).) 

2. [Simulate a step.] y'-E-SIMULATE(y,u) 

u'oE-D(y') 

3. [Simulate earnings.] 
A 

sample ~S(f(z)<y,u» + 'O.S(g(hly' ,u')) 

(S(y(x)) = sample of x, probe density y of x.) 

4 • [Update density .J 
A A 

g(h/y,u) ~ UPDATE(g(hly,u), sample) 

5. [Next step if necessary.] 

If step = limit, exit from TRIP(y.). 
l 

else step ~ step + 1, 

y ~ y', u ~ u', go to 2. 



4 - 40 

To summarize; we have defined an expectance 

function which is very similar to the present value dis­

cussed previous to this section, except that the expect-

ance is define~ over a state-action pair rather than on 

a state alone, as was the case with present valueso 

The calculation of expectance by the simulation method 

has been considered and the main procedures TRIP(Y) and 

SIMULATE(y,u) have been outlined. These result in 
A 

values for the probability density functions g(hly,u) 

for each state-action pair given a rote learning table 

of the form (y,(u,f(~),(y,f(p»». It only remains now 

to consider the operator decisions D(y) in terms of 

expectances rather than present values. 

4 - 9 OPEBATOR DECISION BASED ON EXPECTANCE 

In section 4-7 we considered the application of the 

BANDIT algorithm to the present values v(y) of states y, 

in order to select an operator Uo Restating the object 

of the decision procedure: 

Given state y., choose D(y.) = uk' such that 
l l 

A 
the expectance h(Yi'uk ) is maximized, but also 

minimize the chance that the true expectance 

h(Yi'ul ) for some other operator u l may be larger 

. A ) than the current estlmate h(Yi,uk 0 



4 - 41 

Applying the BANDIT algorithm: 

Unlike the case for present values, the procedure 

to implement the BANDIT algorithm with expectances is 

given directly by: 

p(y. ): 
1 

Let == 
A 

S(g(hly· ,U )), \iu . 
1 q q 

(samples) 

It can be seen from this that the decision proced-

ure is quite straightf9rward given the probability 

density funetion for the expectance of each possible 

action from state y .• 
1 

It is because of this direct use 

of the expectance by the BANDIT algorithm, that the 

expectance h(y,u) is preferred to the present value v(y), 

and expectance will thus be used from now ono The 

advantage of present values is that these are used for 

Markov processes and details of their properties and 

uses are available (Howard [5J). 

The calculation of the probability density for ex-

pectance, and its use in the operator selection decision 

are summarized in figure 9.1. 



U 
..... , 

u 

(y,(u,f(z),(y,f(p)))) 

Rote learning table. ] 

L-.....-----.---r-II-- -
f(z)<y,u> 

f(p)<y,u,y> 

r--- il 
Simulation of a trip 

TRIP(y),SIMULATE(y,u) 

II 
--

UPDATE 

,- :ll 
Current values of prob. 

.. 

density for expectance. 
A 

g(hly,u) 

Jt 
BANPIT algorithm operator 

decisiQn. 

Pr(uly) based on 

g(hly,u) 

D(y) = u 
--

4 - 42 

y 

y 
/' 
........ 



10.1. Exam~le of Expectance Calculation 

The same example used in section 4-5(2) to illus-

trate value-iteration and policy-iteration will now be 

used to illustrate expectance calculation by simulation, 

with the added complexity of probability density func-

tions for the estimators. 

As in section 4-5(2) the transition probabilities, 

given any action will be 1 or O. For simplicity all 

probability density functions will be assumed to be 

normal distributions, so that mean and standard 

deviation can be used to fully describe them. 

Assumed state of rote learning table: ---- \. 

(y, --------- (u, fez), ----------(y, ) ) ) 



4 - 44 

As an example consider the simulated steps (as 

they may occur in the TRIP algorithm of section 4-8) -

y u 

y' u' 

Assume that the expectance probability densities are 

initialized to the normal distributions N(1.0, 005). 

This corresponds to an apriori assumption and the 

standard deviation must not be made smaller than the 

information available allows. The values used here 

assume a little knowledge of the situation. One way of 

gaining this knowledge is to solve the problem by the 

policy-iteration method (without probability densities) 

and use the present values to eqtimate the expectance 

in a manner similar to that used in section 4-7 to 

obtain the BANDIT decision from the present values. 

There ar~ several alternatives along the same lines but 

we will show that the apriori values are:not very 

critical and it is probably better to use very conserv-

ative apriori expectance estimates, for example 

N(0,100) and apply the simUlation method for a larger 

number of aeps. This problem will be made easier by 

normalizing the expectance into the range ° to 1 as will 

be done in later work. 

Notice that u = D(y) becomes a random decision 

when all expectance probability densities are the same, 



N(1.0,0.5). Using the BANDIT algorithm for D(y) in 

section 4-6(7) -

/\ 

Samples Xg of g(hIY1'ug ) S(N(1.0,0.5)) 

say x1 = 1.2, x2 = 0.7 

then D(Y1)~ u1 ' (This time through.) 

Since g(hly,u) = N\f'v) let 

g(h Iy, u) ~ UPDATE (g(h Iy, u), sample) be 

p. ~ <i.-ji + (1-o{).sample 

I:T ~ (oc.u-2 + (1- o() • 0 -sample) 2) ~ 

where d = a smoothing constant, ° ~ ex: ~ 1. Let 0( 0.8 9 

and 

and 

sample = S(g(z)<y,u» + '6S(g(hly' ,u')) 

sample = S(N(0.6,Q.3)) + 0.5.S(N(1.0,0.5)) 

say 0.71 + 0.5*0.86 

= 1~.1.4 

0.8*1.0 + 0.2*1.14 = 1.03 
2 .1. 

(0.8*0.25 + 0.2(1.03-1.14) )2 0.41 

A 

hence g(hIY1'u1 ) now is = N(1.03" 0.41). 



4 - 46 

Results from a simulation run of 100 $teps: 

step ° 50 1000 

A 

g(hIY1,u1 N(1.0,0.5) N(0.99,0.36) N(0.92,0.32) 
A 

g(hIY1 ,u2 ) N(1.0,0.5) N(1.14,0.14) N(1.07,0.09) 

/\ 

g(hIY2 ,U
3

) N(1.0,0.5) N(0.83,0.24) N(0.73,0.14) 

A 

g( hIY3'u3) N(1.0,0.5) N(0.74,O.14) N(0.57,O.20) 

Pr(D(Y1 )=u1 )* 0.5 0.35 0.33 

A sketch graph of the convergence for this simulat-

ion run is given ;Ln figure 9.2. 

A 

g(hIY,u) 
1.5 

1 . ° g ChI Y 1 ' u2 ) =N (/2 ' U"'2) 
A 

g(hl Y1' U1 )=N(f1' {/1) 0.5 

Simulated 

° 50 100 steps 

Figure 9.2 

To illustrate that the apriori values are not 

critical a subsequent +un was started with the values; 
A 

g(hIY1'U1 ) ~ N(1.5,0.5) 
A 

g(hIY1'U2 ) N(O.5,O.5) 

*See Appendix C. 



after a simulation of 100 steps these estimates 'crossed 

over' to reach the values; 

A 

g(hIY1'U2 ) N(1.05,0.10), 

a sketch of this run is shown in figure 9.3 

A 
g(h/y,u) 

1.5 

1.0 

0.5 

° 50 

g(hIY1,U2 ):::;N(f2,02) 

g(hIY1,u1 )=N(fl1,if1 ) 

Simulated 
100 steps 

Figure 9.3 

With this simple example it is a straight-forward 

matter to compare the present values produced by the 

policy-iteration method, with the expectance values as 

produced by the simulation method. Remember that the 

present value v(Yi) is 

::; ( y.) = ~<y., d ( y. ) > + 0 L P < y. ,d ( y. ) ,y . > • V (y . ) 
l l l Vj l l J J 

and for this example there are only two possible policies 

namely d(Y1) = u1 or d(Y1) = u2 ' from section 4-5(2) we 

saw that 

if d(Y1) = u1 ' then ~(Y1) = 0.93; 

if d(Y1) = u2 ' then v(Y1) = 1.07. 



4 - 48 

For the expectance (and ignoring the fact that 

probability densities are to be considered), 

+ oL p<y. ,uk,y·>. \r'j 1 J 

. L Pr (Ull y . ) . h( y . , Ul ) . \11 J J 

Now for the example, 
1\ 

h(Y1'u1 ) :::: 
1\ A 

Z<Y1'U1> + ~.h(Y2'U3) 
1\ 

h(Y1'V2) == 
1\ A 

Z<Y1'U2> + i.h(Y3'U3 ) 

1\ 1\ 

Z<Y2'U3> + ~ .Pr(u1 IY1)·h(Y1'u1 ) 
(" 

+ ~ .Pr(u2~Y1)·h(Y1'U2) 

A A 1\ 

h(Y3'U3) :::: Z<Y3'U3 > + ~ .Pr(u j lY1)·h(Y1'U1 ) 
A 

+ ~ .Pr(u2 IY1)·h(Y1'U2 ) 

By inspection it is seen that, if 

Pr(u1IY1) :::: 1, i.e. D(Y1) :::: u1 always, then 

h(Y1'U1 ) r ~(Y1) with d(Y1) :::: u1 ; similarly for 
1\ /\ 

Fr(u1IY1) :::: 0 then h(Y1'u2) :;: v(Y1) for d(Y1) u2 ' 

Pr(u1 IY1) = 

Pr(u2 IY1) :;: 

1 .0: 

1.0: 

A 

h(Y1'U1 ) = 
1\ 

h(Y1'u2 ) = 

/I. 
v(Y1) :::: 0.93 
A 
V(Y1) "" 1.07 

From the simulation run for finding the expectance 

values; 

Pr(u 1 IY1 ) :::: 0.33: 
A 

h(Y1'U1) :;: 0.92 

Pr(u2 IY1) :::: 0.67: 
r. 
h(Y1'u2) :::: 1.07. 



4 - 10 EXPECTANCE ENTRY IN THE ROTE LEARNING TABLE 

Up to here the rote learning table has had only 

two forms of information stored in it -

1. Basic rcordings of machine environment interaction, 

2. Statistics measured over a number of interactions 

and continually updated. 
A 

The estimated expectance h(y,u) or more generally 

the probability density function for this expectance 
A 

g(hly,u), has been calculated from the rote learning 

table alone. By this fact the estimated expectance is a 

'summary' or·' interpretation' of the rote learning table 

contents. However, the expectance is used to enable 

each operator selection to be made by the machine, and 

to recalculate it each time by the stochastic simulation 

method previously considered would be a very time consum-

ing procedure. With this motivation for putting the 

estimated expectance values into the rote learning 

table we will now consider the implications of doing so. 

The form of the rote learning table will now be: 

(y,(u,f(~),g(~),(y,f(~)))) (38) 

We now have the current value of the estimated 

expectance available at every step and can make the 

small but very important step of saying that the expect­

ance estimates can be updated not only by simulated 

steps, but also by actual machine environment interaction 



steps. As for a simulated step: 

1\ 

h(y,u) can be updated with the value 
A 

z(y,u) + ~.h(y' ,u'), where y' ,u' follow 

y,u. 

Notice that z(y,u) may be the best estimate from the 

rote learning table z<y,u>, or it may simply be the 

observed valuation z resulting from the step. 

From this we can write -

A A A 
'h(y,u) ~ UPDATE (h(y,u), z + ~ .h(y' ,u')) 

which may be done as -

A A A 
h(y,u) ~ d.h(y,u) + (1-o\)(z+~h(y' ,u')) O~, d.. ~ 1, 

where y' ,u' follows y,u and z is observed at y'. With 
A 

g(hly,u) in the rote learning table the above equations 

can be extended to -

A A A 
hm<y,u> -E--~hm<Y'u> + (1-dt)(z+~hm<Y' ,u'» 

A A A 

where g(h!y,u) is assumed to be normal - N(h ,h ). m v 

The important point about these equations is that: 

1. The expectance estimates are being maintained 'on 

line' with the machine environment interaction, 

using some straightforward UPDATE procedure, and 



4 - 51 

2. None of the 'statistical' entries in the rote 

learning table are involved. That is the expected 

. earnings £<y,u> and the estimated conditional 
A 

transition probabilities p<y,u,y> are not required 

in the UPDATE procedure. 

From section 4-9 we have the operator selection 

procedure 

D(y.): 
A 

(samples) Let x = S(g(hly. ,u )), Tju . 
1 q 1 q q 

for xk ~ xq ' 'rIq 

D(Y·) ~ 
1 xkO 

Since this procedure does not require the 

'statistical' entries in the rote learning table 

either, we may choose to eliminate them leaving the new 

rote learning table ~ 

A 

(y,(u,g(h))) (39) 

As a refinement the expectance can also be normal-

ized into the range 0 to 1 -

/' A A 

h(y,u)~ Q(h(y,u) + ~ (z+~h(y' ,u')) 

where ~ = (1,... ot) / ( 1 + l() • 



4 - 11 BANDIT-EXPECTANCE MACHINE --.--

With the expectance estimates in the rote learning 

table, (y,(u,g(h»), as discussed in the last section, 

we are in a position to define a basic learning machineo 

This machine is based on the concepts developed in the 

previous s~ctions but as will be seen it takes an 

extremely simple form. 



4 - 53 ---,-

BANJDIT-EXPECTANCE Machine Algorithm 

1. [ObservationJ y ~ observed environment state, 

z.e- observed valuation. 

2. [Operator selection, D(y).] 
x == S(g(h)<y,u », T/u (S - sample) q q q 

if xk ~ xq,'v'g 
then u *-"" uk. 

3. [Perform action.] Output operator u == uk to the 
environment, and observe the response: 

y' +- observed environment state, 

z' ~ observed valuation. 

4. [Che<;k if new state is 'known'.] 

if {g(h)<y' ,Yu> } I- null, then go to step 6. 

5. [Create new entry.] Put all entires of the form: 
(y' ,( u' , ,g (h) ) ) , 

into the rote learning table. 
Where - u" == all possible operators. 

,A 

g(h) == an apriori probability density for 

the expectance, say N(O.5,O.5). 
, . 

60 [Select operator, D(y').] 
A 

Xq == S(g(h)<y' ,uq» ,V'uq (S - sample) 

if Xl :p. x ,Vq q 
then u' ~ u l • 

7. [Update expectance probability density.] 
g(h)<y,u>~ UPDATE(g(h)<y,u>, ~(z+~g('h)<y' ,u'») (ti 

(n normalized to the range ° to 1). 

8. [Step from y to y' . ] y oE- y' 

Z ~ z' 

u ~u', go to step 3 . 
• • G III 0 0 



It should be noted that by starting with a rote 

learning table, and considering its contents at any 

given time as defining a Markov process, we have event­

ually ended up with the same algorithm that was present­

ed (rather intuitively) in Chapter 3, as a logical 

extension of stochastic learning automata schemes. 

Although the automata scheme presented in Chapter 3 can 

be considered as a presentation of the results of this 

chapter without the background detail and foundation, 

this is not the full picture since although the BANDIT­

EXPECTANCE algorithm is essentially the same, it has 

now been developed as an algorithm working on a rote 

learning table - a co~cept quite different in approach 

to that of the stochastic learning automata work. 

While the BANDlT EXPECTANCE machine uses a minimal 

rote learning table, (y,(U,g(h))), in the sense that no 

transition probabilities or z valuations are explicitly 

recorded, it has not attempted to 'generalize' entries 

to enable each to cope with a number of 'similar' 

states. This important area is a main part of the 

ST:eLLA scheme and the concepts will be discussed in 

section 4~13. 

Some idea of the performance of the basic BANDIT 

EXPECTANCE machine may be obtained from the example 

described in the next section. 



4 - 13 FOX AND DOGS GAME 

The 'French Military Game' or 'Fox and Dogs Game' 

[9J was used to demonstrate the BANDIT-EXPECTANCE 

machine. This game is played on a board as illustrated 

in figure 13.1. The IF' indicates the position occuped 

by the Fox &nd the 'D's indicate the three Dogs. 

Figure 13.1 

The Dogs (one at a time) and the Fox take alternate 

moves, a legal move being from the current pqsition 

(circle) to. any adjac~nt position joined by a line on 

the board. The Dogs have the additional constraint of 

only being allowed to move 'up' or 'across' relative to 

figure 13.1. 

The aim for the Dogs is to surround the Fox so that 

he has no legal move, and thus win the game. For 

example, the position with the Fox at A and the Dogs at 

1, 2 and 3 is a win to the Dogs if the Fox is to move, 

but a win to the Fox if the Dogs are to move. This 



4 - 56 

position will be written as A-123; other winning posit­

ions for the Dogs (with the Fox to move) are 4-157 and 

6-359. If the Fox can 'evade' the Dogs, the Dogs will 

eventually have to concede defeat since they are unable 

to move 'down' the board after the Fox. An example is 

the position 5-468, which is an effective win for the 

Fox regardless of who is to move, although the Dogs may 

not concede defeat until several moves later in the 

game (assuming the Fox has not made a silly move in the 

meantime - which before the machine has learned very 

much is quite probable). 

This game was programmed (using the LINKNET tech­

nique described in Appendix A) to be played interactive­

ly with an operator, using a CRT display (Appendix B) to 

show the current board positions. The BANDIT-EXPECTANCE 

machine can play either the Fox or the Dogs or both, but 

we will assume that the machine is to play the Fox for 

simplicity. It was left entirely up to the operator to 

concede defeat giving a win to the Fox, while a win by 

the Dogs was detected by the Fox finding no legal moves 

available, or at any other time by an input from the 

operator. 

For this game .the machine environment interaction 

(all within the computer program)is via: 



Observed state Y ~ tF-D1D2D3 = F, D1, D2, D3 are 

mutually exclusive members of 

{A , 1 ,2 , ... ,8, 9 , B} } 

Valuation 

Operators 

z {-1 ,0,+1} -1 a loss 

° = no indication 

+1 ~ a win. 

U = {up to 6 possible moves computed by 

a legal move generator for a given 

state y €. Y. } 

Internal to the BANDIT-EXPECTANCE machine program 

the rote learning table took the form: 

A 

(y, (u, g (h) ) ) 

with Y the observed states, 

u = the possible actions for each state, 
A 

g(h) ~ the expectance probability density, taken as a 

normal distribution N\f'V), with mean normal­

ized into the range -1(10ps) to +1(win). 

Apriori density used was N(0,0.5) corresponding 

to a "don't know" condition. 

Points of interest about this formulation: 

There are 165 possible states since symmetry is not 

recognized. 

A loss may occur after several state-move combinat-

ions. 

A win is not clearly defined (being at the operator's 



discretion), and may occur after a large number of 

different state-move combinations. 

The number of operators available varies from state 

to state (between 1 and 6), Although the operators 

are given in the rote lear~ing table, their effect 

on the board position is definitely Qot known to the 

machine. (They must be known in a game playing 

program based on a look ahead tree search program 

like most chess and checkers machines.) 

The game can always be won by the Dogs if they play 

an optimal game [9J. This means that tree search 

programs would have trouble with this game since 

although they could possibly plan a complete game 

they could not then choose the best move without 

learning the operator's most likely errors (non 

optimal moves). 

An example of some of the contents of the rote 

learning table for the BANDIT-EXPECTANCE machine is 

given below (after about 40 games experience): 



A 

Y u g(h)=N(,Jl,I1) Comments 

2-531 2A -.99, .00 Almost certain loss 

3-652 3A +.30, .02 Cycles with A-651 

3-651 3A -.61 , .04 Probable loss with 
32 -.63, .05 either move 

A-651 A2 .00, .50 Not updated yet 
A3 +.48, .03 Good, cycles with 3-652 

3-621 3A -.20, .13 Poor move, small evidence 
+.74, .04 Good move and better 

evidence 

Remembering that each expectance estimate is up-

dated from the next expectance to be 'seen', the build 

up of the'rote learning table illustrated may be better 

understood by the following diagram of probable board 

positions assuming a reasonable level of play by the 

Dogs -

Positions Moves Positions 

-<
32~ 

3-651 . 3A ../ 2-531 - 2A ~ Loss 

A2/ 
A-651 ~ 
~ A3 ----., 3-256 

3A ../ 

(Eventual win) 

Board Lgyout 

The quantitative assessmant of the learning ability 

of the machine is extremely difficult. The machine can 



4 - 60 

not be played against an operator for such assessment 

since it is virtually impossible 'for him to maintain a 

consistent level of performance - he also is learning~ 

A player with consistent performance can be built from 

a BANDIT-EXPECTANCE machine by having it learn to play 

to some level of performance and then fixing its rote 

learning table so that no further improvement (or 

degradation) can occur. By playing this 'fixed memory' 

BANDIT-EXPECTANCE machine against another 'free' one, a 

learning curve can be compiled. This was tried but, 

although interesting, the reqults were of little signif-

icance since among other things there is no way to 

indicate the performance level of the 'fixed-memory' 

machine. 

As an indication of-the performance of the BANDIT­

EXPECTANCE machine, it was found that(after less than 

100 games experience) a novice player would often query, 

after a few games, whether it was possible for him to 

win at all. An experienced player (but not knowing the 

optimal strategy) could nearly always beat the machine, 

but often after quite a long game. The teaching 

operator usually admitted defeat as soon as the Fox had 

clearly evaded the Dogs. Because of this the machine, 

after evading the Dogs, had little aversion to going 

back up the board amongst the Dogs again~ (This 

'stupidity' in the early stages of learning would be 



4 - 61 ---

exploited by opponents to recover from their blunders, 

and thus was self correcting.) It is interesting to 

note that the machine assumed a 'personality' (HIM) to 

the operator, in particular during the early stages of ' 

learning when changes in performance could be observed. 

"Oh good he's learnt not to make that silly movet!, or 

"H'm, he's getting tricky now~ ,t 

Important game strategy such as ~ move to position 

5 if at all possible - require generalization over 

states, which is not possible with the simple BANDIT­

EXPECTANCE scheme. After learning all the possibilities, 

the result may be the same as knowing the rule - but the 

method is far less attractive. However, it is not 

possible to generate these 'higher level' heuristics 

without the evidence from performance of a sound 'low 

level' machine. It is hoped that the BANDIT-EXPECTANCE 

machine can assume such a role. The next section ends 

this chapter by considering further extension to the 

rote learning table concept to reduce the memory required 

and to cope with 'generalization' over states. 



4 - 62 

4 - 14 EXTENSIONS TO THE ROTE LEARNING TABLE 

The rote learning table has been developed from a 

simple record of past events; through a record of 

estimators over past events; to a control strategy for 

the learning machine. Expectance has been shown as 

looking forward from a given state-operator combination, 

to assess the long term earnings of this particular 

operator, by taking into account future earnings, trans-

ition probabilities, and operator selection probabilit-

ies. We are now concerned with ,looking 'across' the 

state-operator combinations to see if any of them are 

essentially 'saying the same thing'. By finding groups 

of state-operator pairs that can be condensed into a 

single composite entry in the rote learning table we 

may achieve the two benefits: 

1. A rote learning table memory space reduction, 

2. An ability to select an operator for a previously 

uns~en state on the basis that this state probably 

belongs to a known composite. This avoids starting 
A 

it as a new entry with apriori g(h) and hence ran-

dom operator selection. 

The first point can Qe achieved to some extent by 

simply eliminating 'poor' entries. This was tried (and 

worked) for the BANDIT-EXPECTANCE machine playing the 

NIM game. The procedure was to overlay a new entry 

(required by a state not currently in the rote learning 



table) on top of the current entry with the smallest 

maximum (over operators) expectance. This is a crude 

method of reducing memory and it does not have the 

benefit of point 2 - it throws away hard earned informat-

ion rather than generalizing over it. 

Point 2 is 'generalization' over states, and- has 

been established as a workable scheme by STeLLA [1~6J 

and in a slightly different way by Doran's robot [4J. 

The method: for generalization over states is very wide, 

it includes a large class of pattern recognition schemes. 

The change in the rote learning table is that 

several entries, (y,(u,g(h))), become a single entry 

(y-rule, (u,g(h))). Where y-rule is a pattern template 

or procedure for determining if some observed state y is 

'similar' or 'belongs' to this rote learning table 

entry. At this stage the term 'control-policy' as used 

by Gaines and Andreae [6 J becomes a more meaningful term 

than 'rote learning table entry'. 

It can be noted that if there is a maximum of N 

possible operators for any possible state y, then given a 

powerful enough pattern recognition system, only N con­

trol policies are required by a fully 'mature' learning 

machine. This is not to say that it is possible to 

learn these N policy elements without utilizing a much 
'\ 

larger humber. 



4 - 64 

The problems of state generalization have not been 

covered in this thesis work on the grounds that this is 

a higher level function that can be reasonably grafted 

on to the rote learning table without any drastic 

alteration to the underlying algorithms that build, up­

date and hltilize the contents of this table. The con-

cept is of a pattern recognition procedure observing 

the rote learning table all the time trying to condense 
·A 

several entries (y,(u,g(h))) into a composite entry 
/\ 

(y-rule,(u,g(h))), or even condense several composites 

into a single more powerful composite. This idea is 

illustrated in figure 14.1. 

Operator ~_u __ ~ Env~nment I 
-

19orithm 
u given 

BANDIT a 
selects 
y using 
g(il)< y-r 

-
ule, 'f/u.> 

y Observed state 

-
, 

v 
" 

v 

Generalize by 
condensing 
entries, and 
giving pattern 
recognition 
rules. 

--=T 1 
earning 

A 
e, (u, g (h) ) ) 

... 
[; 

I" 

;---

Sim -:late triPn 
update g(ll) to 

--

v 

Observe y,z,u an~~' 
update entries y,z,u 

-- --

Figure 14.1 



Another idea is to have a predictor that can make 

use of the rote learning table, predict ahead from the 

current state y, and hence select an operator y, even 

though the current state y is not it$elf in the rote 

learning table. This method is in some ways similar to 

the idea of a composite entry (y-rule) since the infor-

mation that allows prediction is the same information 

available in forming the y-rule composite entries. 

A second mechanism for reducing the memory 

requirement of the: rote learning table is to condense 

operators for a given state Or state composite entry. 

For example, the composite -

could 

(u1 ' (Oo9~ 0.01) 

(u2 , (0.5, 0.04) 
(y-rule, 

(u
3

, (0.6, 0.03) 

(u4 , (0.1 , 0008) 

well be condensed into -

_________ (u1 , (0.9, 0.01) 
(y-rule, ____ 

(u-group, «0.6, 0.03) 

without any significant change in performance since the 

probability that the BANDIT algorithm will choose any 

operator other than u 1 is very small. To illustrate, 

the probability of a sample from a normal distribution 

being over 3 standard deviations away from its mean is 

less than 0.0001, and u 1 is 100 standard deviations 



4 - 66 

above u 2 , u
3

, or u4~ (This is an extreme example.) If 

the u-group does get selected than u 2 , u
3

? u 4 could be 

selected among by uniform random selection. 

All the preceding comments are intended merely to 

indicate the fields that are open to extend the basic , 

rote learning table, and BANDIT-EXPECTANCE machine. In 

fact STeLLA has exte~ded well into these areas on a 

heuristic basis. The advantages are not that the 

BANDIT-EXPECTANCE machine has progressed further, but 

it has, consolidated the basic system by -

Linking the basic heuristics to stochastic learning 

machine theory, and the theory of 'Markov processes, 

Extending the linear-weighted - random-choice to the 

more powerful BANDIT selection algorithm, 

Extending 'expectation' into the more general form 

of the expectation function (accepting any range of 

z) which is linked to the 'present value" of Markov 

process theory. 

Developing an on-line method for keeping expectance 

updated, which allows (if desired) an elimination of 

transition probabilities and valuation expectation 

estimators. 



REFERENCES 

1 Andreae,J.H. Learning Machines: A Unified View. 

Encyclopaedia of Linguistics Information and 

Control, Pergamon Press~ 1969 

2 Bellman,R. A Problem in the Sequential Des~gn of 

Experiments. SANKHYA Vol.116, pt 3 and 4 1965, 

pp 221-229. 

3 Bellman,R. and Kalaba,R. Dynamic Programming and 

Modern Control Theory. Academic Press 1965. 

4 Doran,J.E. Planning and Generalization in an 

Automaton/Environment System. Machine Intelligence 

4, Ed. Meltzer,B. and Michie,D. Edinburgh 

University Press 1969. pp 433-454. 

5 Howard,R.A. Dynamic Programming and Markov 

Processes. MIT Press 1960. 

6 Gaines,B.R. and Andreae,J.H. A Learning Machine in 

the Context of the General Control Problem, 3rd 

IFAC Congress, London, June 1966. (])st .. Mecho Eng.) 

7 Kemeny,J.G. and Snell,J.L. Finite Markov Chains. 

D. Van Nostrand Co. 1960. 

8. Scientific American, Mathematical Games, by Martin 

Gardiner. Vol.209, No.4, October 1963 and Vol.209, 

No.5, November 1963. 



CHAPTER FIVE 

CONCLUSION 



CHAPTER 5 

5 - 1 REINFORCEMENT LEARNING 

Throughout this thesis we have essentially been 

considering 'learning by reinforcement'. The 'values' 

that have been adapted or reinforced have been based 

on arc-costs (Chapter 2), reward probability (Chapter 

3), and expectance (Chapters 3 and 4). 

Now we shall consider these processes from a 

higher view point, and talk of 'value' reinforcement to 

cover all these cases. By the phrase "the 'value' of 

an alternative" will be meant the measure of this alter­

native relative to other alternatives, the measure being 

based on reinforced 'values'. 

The major decision process that has been used to 

select alternatives given their 'values' has been the 

BANDIT algorithm. However, this algorithm is a 

decision maker - not a reinforcement learner. The 

decision has been separated out from the adaptive 

'value' assignment process. 

Reinforcement learning can also be referred to as 

'incremental' or 'statistical' learning. The following 

section presents something of the viewpoint opposed to 

reinforcement learning as a central part of an 

intelligent machine. 



5 - 2 

5 - 2 AGAINST REINFORCEMENT LEARNING 

Arguments against the use of reinforcement learning 

have been positively given by M. Minsky (M.I.T.). These 

views are clearly expressed, and carry the authority of 

his prominance and experience in the field of artificial 

intelligence. The view point will thus be presented by 

direct quotation: 

M. Minsky 1963 [6J in "Computers and Thought". 

" I am not convinced that such 'incremental' or 

'statistical' learning schemes should playa central 

role in our models. They will certainly appear as 

components of our programs but, I think, mainly by 

default. The more intelligent one is, the more often he 

should be able to learn from an experience something 

rather definite; e.g. to reject a hypothesis, or 

to change a goal. (The obvious exception is that of a 

truly statistical environment in which averaging is in­

escapable. But the heart of the problem is always, we 

think, the combinatorial part that gives rise to 

searches, and we should usually be able to regard the 

complexities caused by 'noise' as mere annoyances, 

however irritating they may be.)" 

More recently in the introduction to 'Semantic 

Information Processing, 1969 I7J ... 
"00. Consider the qualitative effect, upon the sub­

sequent performance of Bobrow's STUDENT [7J, of telling 



5 - 3 

it that 'distance equals speed times time' ~ That one 

experience alone enables it to handle a large new 

portion of high-school algebra: the physical position­

velocity-time problems. It is important not to fall 

into the habit, suggested by so much modern work in 

psychology, of concentrating only on the kinds of 

'learning' that appear as slow-improvement-attendant-
• II 

upon sickeningly-of ten-repeated experlence~ 

"Bobrow's program does not have any cautious 

statistical devices that have to be told something over 

and over again, so its 'learning' is too brilliant to be 

called so. It seems that as we incorporate more and 

more sophisticated heuristic methods, the need for 

senseless sources of variation in behaviour become less 

and less necessary. 

"Of course I do not suggest that there is no us~ in 

having cautious evidence-assessing mechanisms. I only 

want to present a sufficiently positive view to set the 

negative view in perspective •.. " 

5 - 3 LEARNING BY BEING TOLD 

The idea of 'telling' a machine some facts which 

will help it, is an important idea that appears to 

clash with the idea of reinforcement learning. However, 

it is the 'value' assignment that is influenced by 

'telling', not the decision making. It seems quite 



5 - 4 

possible that a BANDIT decision algorithm could be used 

in a~heme involving both reinforcement and telling. 

Consider the use of the variance of a ivalue~ 

estimator. The variance~is a measure of the confidence 

in the 'value'. In this light there is no reason to 

calculate variance from the sum of the deviations 

squared if there is a richer source of information 

available that can give a direct assessment of the con­

fidence that can be placed in a 'value' estimator. 

Following this up we see that 'telling' can hold 

more information than simply an observation; it says 

not only that the V value , is such-and-such but it may 

also specify a confidence in this. We may well be able 

to 'tell' the machine that the value of an alternative 

is 1.0, wishing to inform it not that the mean value of 

samples will be 1.0 but simply that the 'value' always 

will be 1.0 - a perfect action for the particular 

situation. 

Telling from this view point is rather like 

assigning an apriori 'value' - it forces the 'value' to 

some condition, rather than simply contributing an 

observation or sample. The methods for fully Rsing 

subjective assessment as apriori data are not yet com­

pletely formulated, although there is considerable inter­

est in such techniques for decision analysis [4,5Jo 



5 - 5 

Once 'values' have been assigned, regardless of 

whether they were arrived at by analysis of a large 

number of observations or by a 'telling' or 'forcing' 

process, the BANDIT decision algorithm is still 

appropriate. If the 'values' are absolutely known with 

zero variance (maximum confidence) the BANDIT algorithm 

reduces to simply selecting the maximum (or minimum). 

As a point of interest~ it may well be that even a 

poor confidence in some 'values' may be sufficient to 

almost completely separate them out as far as the 

decision process (BANDIT) is concerned. For example, 

let us 'tell' the machine that alternative A has a 

'value' of 5.0 with a confidence assessed as a variance 

of 0.5, while alternative B is known to be 5.75 exactly. 

With this information the probability of the BANDIT 

algorithm choosing alternative A (when trying to choose 

a maximum value) is less than 0.00001 - alternative B is 

for all practical purposes always chosen. We are still 

assuming normal distributions since that is what a 

large number of observations would lead to. However, it 

is reasonable to alter this to cater for some desired 

performance or for computational convenience; the 

criteria being that the variance specifies the confid­

ence in the 'value' 0 



5 - 6 

The complexity needed to be able to ~tell~ the 

machine more meaningful' (and useful) facts in a 

straightforward manner is of course a major problemo It 

is not the intention to side-step this problem (which is 

behDnd Minsky 9 s comments) but simply to point out that a 

road into at least some form of compatibility between 

'telling' and reinforcement learning ('observing') may 

be available 0 

Although the approach of semantic modelling [7J has 

shown impressive progress it is not the only way to 

develop language for man-machine communication 0 An 

entirely different approach is to try and design a 

machine that is capable of generating its own internal 

language to describe its experience 0 A feature of such 

a language is that the semantics are not predetermined 

and imposed onto the machines but are developed as 

relevant to the machine's experience 0 Tentative steps 

in this direction are presented in a paper describing 

'monologue' for STeLLA, Andreae and Cashin (1969) [2Jo 



5 - 4 WHY THE GAP? 

It is the authoris opinion that the gap between re­

inforcement learning and semantic modelling is an area 

deserving much greater research effort than is currently 

evident. It is not an area that is likely to produce 

spectacular progress. but the eventual results seem to 

be invaluable to both camps. It does not seem reason­

able to follow one line or the other simply because the 

common ground between the two is almost non-existent at 

present. The important question is, surely: Why is 

there no common framework? 

To better the current question-answering systems or 

robot manipulators there is certainly evidence to 

suggest that starting with a reinforcement learning 

schem~is not likely to lead to success. On the other 

hand there is a definite but hard to define attraction 

in the general idea of learning from experience, and of 

simulating the human brain, that are absent from the 

more successful acheivements in matching the human's 

'external' intelligent abilities. Also there is little 

evidence to show that designing a machine that can match 

a human at some task (thought of as requiring intell­

igence) has necessarily achieved more in advancing the 

mechanization of intelligence than designing a low 

level machine that can learn to develop its own limited 

model of its environment - although there is no doubt 

which could be more useful in action~ 



5 - 8 

An attempt was made at one stage during this thesis 

work~ to embed a STeLLA type scheme [1J into the frame­

work of the Stanford Research Institute's Robot 

project [8J 0 This attempt showed clearly the gap between 

such projects, and how difficult it is to establish 

common ground to fill the gapo We know these schemes 

are in many ways incompatible, but we do not clearly 

know the basic reasons why this should be sOo 

5 - 5 GRAFTING LEARNING ABILITY ONTO A PROGRAM 

The idea that an intelligent program need not 

learn to be intelligent~ and that learning potential 

can be realized through VtellingV, has certainly led to 

a number of successful programs (eogo SIR, STUDENT 9 

ANALOGY [7J)0 However the pitfalls of updating the 

information data~base for such programs have not been 

clearly statedo Put another waY1 the programs seem to 

be designed to do the best they can on the basis of 

their current data~ but do nothing to try and attain ."tihe 

best data, 

Heuristic search programs illustrate this point 

well since they have been called "the central paradigm 

of artificial research" (Feigenbaum 1938 [3 J) 0 The 

search strategy aims to find a path through a problem 

tree~ the vvaluesu involved being supplied from the 

information data~baseo Now the search technique is 



5 - 9 

designed to find the best V value V alternative (path)~ 

and most important, to do so in the most efficient 

manner 0 It may well be that finding any solution 

(path) is a sufficient goalo However, if several poss­

ible solutions can be found then the best (maximum or 

minimum 'value i
) is chosenQ More basic than this the 

search itself is directed to try the most promising or 

best 'value' alternative at each point through the 

searcho 

It is tempting once having an efficient heuristic 

search program, to simply say: Use this on the best 

information data-base (eogo arc costs) available, and 

as more information comes to light simply improve the 

data-base accordinglyo The pitfall is that unless it 

can be established that the information comes to light 

entirely independently of the performance of the 

search program9 then the problem is in the class of 

'on-line' problems discussed in Chapter 20 As shown in 

Chapter 2 the 'on-line i problem needs more than an 

effective search strategy - it also needs a BANDIT 

(type) decision makero 

The idea that a program which does the vbest poss­

ible' with a given data-base can simply embody learning 

by having its data-base updated with new information is 

not restricted to heuristic search problemso Any 

program that acta on a data-base which is updated in a 



5 - 10 

way that depends on how it has acted in the past needs 

to have its decision process elaborated (BANDIT'ised~) 

to successfully cope with the 'learning' situation. 

5 - 6 SUMMARY OF MAIN POINTS 

A review of the introduction in Chapter 1 may be 

fruitful, in retrospect, as an 'over view' of the 

material presented. 

The points to be emphasised in this thesis are: 

• The BANDIT algorithm, as a fundamental mechanism for 

any scheme involving the choice of the best alternat­

ive based on valuation using a current (incomplete) 

set of data: Data collected being dependent on the 

choice made. 

• The expectance function, particularly the way it is 

developed from the idea of 'present value', and the 

on-line implementation that results from its recur­

sive definition. 

· The need for the BANDIT algorithm (or another with 

the same purpose) in a class of problems called 'on­

line' path finding that occur not only in artificial 

intelligence work but also in the operations 

research area. 

• The linking together of stochastic automata theay and 

a class of hueristic programming work. Also the 

extension of the stochastic learning automata 



5 - 11 

machine-environment interaction in doing this . 

. The linking together of Markov process theory with 

the BANDIT algorithm, expectance function and rote 

learning tables . 

• The comp~tational tools, LINKNET and the display 

system philosophy, given in the appendices. 

More detailed lists of points have been given at 

the end of each chapter. 



5 - 12 

REFERENCES 

1 Andreae,J.H. Learning Machines: A Unified View. 

Encyclopaedia of Linguistics Information and 

Control, Pergamon Press, 1969. 

2 Andreae,J.H. and Cashin,P.M. A Learning Machine 

with Monologue. Int. J. of Man-Machine Studies, 

Vol.1, No.1, 1969, pp 1-20. 

3 Feigenbaum,E.A. Artificial Intelligence: Themes 

in the Second Decade. Invited paper IFIP68, 

Stanford Artificial Intelligence Project Memo AI-67. 

4 Howard,R.A. The Foundations of Decision Analysiso 

IEEE Trans on Sys. Scio Cybernetics, Volo SSC-4, 

No.3, September 1968, pp 211-219. 

5 Jaynes,E.T. Prior Probabilities. IEEE Trans on 

Sys. Sci. Cybernetics, Vol. SSC-4, No.3, September 
I 

1968, pp 227-240. 

6 Minsky,M. Steps towards Artificial Intelligence 0 

Computers and Thought, Ed. Feigenbaum, E.A. and 

Feldman,J. McGraw Hill 1963, pp 406-4520 

7 M~nsky,M. Ed. Semantic Information Processing. 

MIT Press, 1968. 

8 Nilsson,N.J. A Mobile Automaton: An application of 

artificial intelligence techniques. Proc. Int. 

Joint Conf. on Artificial Intelligence. Ed. 

Walker,D.E. and Norton,L.M., A.C.M. 1969, pp 509-520. 



APPENDIX A 

LINKNET -

A Structure for Comput~r Representation and Solution of 

Network Problems 



A - 1 

ABSTRACT 

LINKNET is an information structure for represent-

ing any network of nodes and interconnecting arcs. The 

structure applies linked lists and enables list-

processing techniques for problem solving with networks. 

The LINKNET structure has provided a concise implement-

ation of algoritbms arising in a wide variety of net­

work problem solving, such as power system analysis, 

game playing programs, minimum cost path finding and 

the determination of certain trees and meshes in a net-

work~ 

The work reported in this appendix was carried out 

in cooperation with M.R. Mayson and R. Podmore. M.R. 

Mayson has been applying the LINKNET technique to power 

system load flow studies and particularly the problem of 

finding 'clumps' of 'tightly connected' nodes in a 

power supply network. R. Podmore 'has also been applying 

LINKNET to power system network problems; with special 

attention to short circuit studies and transient 

stability. Separate pUblications are being prepared on 

these applications of LINKNET~ This appendix serves as 

a more general 'over view' of the technique itself. 



A - 2 

1. INTRODUCTION 

The methods of linked list-manipulation of data 

structures as used in this work are will known to com-

puter scientists; unforrunately the use of these tech­

niques in the general run of application problems is not 

so common. Experience with a number of application 

programs, both in assembler language and FORTRAN, has 

shown that the representation of networks and the imple­

mentation of network problem solving algorithms is a 

particularly fruitful area. 

As Knuth [1J has noted: Although List-processing 

systems such as IPL-V, LISP, and SLIP are useful in a 

large number of situations, they impose constraints on 

the programmer than are often unnecessary; it is usually 

better to use the methods of List-processing (as 

described by Knuth [1J) in one's own programs, tailoring 

the data formats an~ processing algorithms to the partic­

ular application. LINKNET follows this philosophy even 

though it is concerned not with a particular application 

but with a whole class of problems - those involving 

problem solving with networks. The LINKNET scheme is 

not being described as a rigid protocol for network 

problems, but rather it is described to direct attention 

to the applications of List-processing to network 

problems by showing a framework that has proved itself 

very effective. 



A - 3 

The LINKNET structure was developed for two prob­

lems, one of power system analysis and the other a game 

playing progr~m. The common element between these two 

problems is that they have both to deal with networks, 

one in the form of bus bars and power')ines, the other 

in the form of positions and legal moves. It quickly 

became apparent that the LINKNET structure was useful 

not only because it gave a way to represent and mani­

pulate the networks, but also it facilitated the comput­

ational procedures used. Further applications confirmed 

that the LINKNET structure is well suited to a general 

class of problems involving such operations as searching, 

iterative scanning, modification and organization of any 

network and its attributes. 

2. THE BASIC STRUCTURE 

2.1 Graphs 

A network, or graph, consists or 'nodes' which are 

the junction points for the 'arcs' or interconnecting 

lines. An example network with 4 nodes and 8 arcs is 

shown in figure 1. Notice that, except as may be 

dictated by particular applications, there are no 

restrictions on loop cross overs or parallel arcs. 



Node --------

Arc 

4 - node 

8 - arc 

network 

A - 4 

The nodes and arcs may each have a set of 

attributes; for example the arcs may have associated 

flow rates as in the case of.a network of water pipes, 

or they may have directions as in the case of a directed 

graph' with arrows on the arcs. 

2.2 LINKNET Elements 

The network is represented in the computer by the 

LINKNET structure and although this can be implemented in 

machine language or in a high level language such as 

FORTRAN or ALGOL it is easier to develop the ideas and 

notation at the machine language levelo Thus it will be 

assumed that groups of words can be assigned as contig-

uous blocks or 'elements', and that the addresses of 

these words are available to enable any of them to be 

accessed. 

Each node of the network is represented in the 

LINKNET structure by a 'node-element' which holds the 

identity of the node and all its attributes, and in a 

similar manner each arc is assigned an 'arc-element'. 

In addition the structure has 'bead-elements' that are 

used to give the topology of the network by connecting 



the node-elements to appropriate arc-elements in a 

manner to be described shortly. 

The elements (node - arc - or bead-elements) can be 

thought of as one or more consecutive words of computer 

memory, with subdivision into fields, each field holding 

one or more attributes of the entity (node or arc) being 

represented. Some of the fields contain addresses 

rather than attributes. The address of an element, also 

called a link pointer, or reference to that element, is 

the memory location of its first word. Figure 2 shows a 

node-element, an arc-element and a bead-element with 

their fields and the names given to the fields; all the 

fields shown are basic to the LINKNET structure and 

additional fields may be specified for the purposes of 

particular problems. 



Node-element: 

------_._--
NUMBER 

LIST 

NODE-DATA 

A - 6 

NUMBER - This field holds a number 

(or characters) to identify the node. 

LIST - This field holds a link to a 

bead-element at the top of a list of 

~--~---------- beads specifying the arcs connected 

Arc-element: 

NAME 

ARC-DATA 

~-----------

Bead-element: 

NEXT 

ARC 

END 
----------' 

Figure 2 

to this node. 

NODE-DATA - This field is a composite 

of one or more fields holding the 

attributes of the nodea 

NAME - This field holds a number (or 

characters) to identify the arca 

ARC-DATA - This field is a composite 

of one or more fields holding the 

attributes of the arca 

NEXT.- This field holds a link to the 

next bead in a list of bead elements. 

ARC- This field holds a link to an 

arc-element. 

END - This field holds a link to the 

node-element of the node at the other 

end of the arc specified by the ARC 

fieldo 



Lists 

As specified in figure 2 the LIST field of a node-

element is a link to a list of bead-elements; the NEXT 

field of the bead-element gives a link to the next bead-

element on this list, or is 'null' if there are no more 

bead-elements on the list. To dis~lay a list of bead-

elements a diagram like that in figure 3 is used. 

Figure 3 also introduces a link-variable (or pointer 

variable), NODE, which is a computer variable whose 

value is a link, in this case pointing to node 1. 

NODE 

Node 1 

NUMBER 

LIST 

NODE-DATA 

Bead 1 Bead 2 

r--
N
_
EXT ==t1 NEXT '---I 

AR C -----4 II ARC 

_EN_D ____ J tEND _-_ 

Figure 3 

To refer to a field within an element the name of 

the field is given, followed by a link to the desired 

element in parentheses; for example in figure 3: 

LIST(NODE) = The address of bead 1, and 

NEXT (LIST(NODE)) = The address of bead 2. 

Notice that the fields LIST, NEXT, END, NODE-DATA and so 

on only have values when qualified by a link-variable 

(or a link-constant), they are not themselves variables. 



A - 8 

We are now in a position to consider the LINKNET 

representation of a simple network, as illustrated in 

figure 4. 

NETWORK: 
Node 1 ~ 

"'-J Arc 1 

Node 3 

Node 2 

LINKNET representation: 

........ 

Node-element 
for Node 1. 

Bead-element 

NUMBE~~NEXT 
LIST' ~ 
NOD E-D~A ",--EN--:;D'--_--l 

NUMBER --
LIST 
NODE-DATA 

Node-element 
for Node 30 

Ar c - element 
for Arc 1. 

NUMBER 
LIST 

NODE-DAT 

Node-element 
for Node 2. 

Arc-element 
for Arc. 2. 

Figure 40 

Figure 5 uses the simple network used in figure 4 but 

shows the pointers (with less detail) in separate 

diagrams in order to bring out the way LINKNET gives a 



A - 9 

'direct' representation of the network. It is an import-

ant point that LINKNET attempts to represent the network 

rather t;han any data structures that arise during 

problem solving 0 This representation primarily of net-

work, with data structures overlaid onto it as needed, 

has given the programmer a good 'feel' for what a program 

is doing and has contributed directly to the success of 

LINKNET applications. 

NETWORK 

Node 1 

Node 3 

Elements of LINKNET: 

LIST(NODE) 

NEXT (BEAD) 

~ 
~ 

ARC (BEAD) 

Node 2 

END(BEAD) 

Figuru 

Two simple data access operations will now be used 

to illustrate the notation and show how the LINKNET 

structure facilitates certain procedureso 



A - 10 

2.4 Access to arc attributes 

The attributes of all the arcs connected to any 

chosen node of the network can be accessed in turn by 

'scanning' the list of bead-elements attached to the 

node and using the link in the bead-element's ARC 

field: 

arc attribute = ARC-DATA(ARC(BEAD)) 

where . BEAD ~ LIST(NODE) (NODE points to the 

chosen node; ~ indicates the value replacement operation) 

and then BEAD ~ NEXT (BEAD) 

BEAD = NULL. until 

2.5 Access to node attributes 

The attributes of all the immediate neighbours to 

any chosen node can be accessed in a similar manner: 

neighbour node attribute = NODE-DATA(END(BEAD)) 

where 

and then 

BEAD ~ LIST(NODE) 

BEAD ~ NEXT (BEAD) 

until BEAD = null. 

3. CREATION OF LINKNET 

3.1 Construction of a LINKNET structure 

The LINKNET construction algorithm will be written 

in such a way as to be directly related to a high 

level language such as, FORTRAN or ALGOL. The basic 



A - 11 

difference from the machine language implementation 

considered up to now is that the fields of each element 

are assigned as separate arrays or vectors, thus the 

fields of each element are not consecutive memory storage 

locations (although it may still be easier to think of 

them as consecutive). Also since storage for the 

elements is assigned as a set of arrays, identification 

of a node or arc can be made by specification of an 

index value, index i being a link or pointer to the 

ith node or arc element 0 

Let us assume that the input data that describes 

the network is arranged in two parts; the first giving a 

description of the nodes of the networks, and the second 

giving a description of the arcs of the network, and 

which nodes they connect. 

A1 [Allocate storage.] Assign as single dimensional 

arrays; NUMBER, LIST, NODE-DATA, NAME, ARC-DATA, 

NEXT, ARC, END. 

A2 [Input information about a nOde.] 

Read in the values; index, identity, data 

NODE -E- index 

NUMBER0NODE) ~ identity 

NODE-DATA(NODE) ~ data 

If more node 'information exists go to A20 



A - 12 

A3 [Initial bead-elementsJ 

BEAD1 +- bead-index (BEAD1 & BEAD2 are indices 

BEAD2 ~ BEAD1 + 1 for two beads) 

A4 [Input information about an arc.] 

Read in the values; index, identity, node1, node2, 

data ARC1 ~index, NAME(ARC1)~ identity, 

NODE1 ~ node1, ARC-DATA(ARC1) -+- data, 

NODE2 ~ node2, 

(NODE1 & NODE2 are indices to the node elements at each 

end of the new arc). 

A5 [Attach a bead-element to NODE1.] 

If LIST(NODE1) null, LIST (NODE1 ) ~ BEAD1 ; 

Else BEAD ~ LIST(NODE1) 

loop: If NEXT(BEAD) = null, NEXT(BEAD) ~ BEAD1, 

Else BEAD ~ NEXT (BEAD), go to loop. 

A6 [Attach a bead-element to NODE2oJ 

Repeat step A5 but for NODE1 read NODE2 and for 

BEAD1 read BEAD2. 

A7 [Set bead-element links oJ 
NEXT (BEAD1 ) ~ null, ARC (BEAD1 ) ~ ARC1, 

END (BEAD1 ) ~ NODE2, 

NEXT(BEAD2)~ null, ARC(BEAD2) -E:- ARC1 , 
£ 

END(BEAD2) ~ NODE1 0 

A8 [Repeat for next arc information.] 

If more arc information exists, BEAD1.(;- BEAD1 + 2, 

BEAD2 +- BEAD1 + 1, go to step A4. 



A - 13 

4. APPLICATIONS OF LINKNET 

4.1 Minimum length~h finding 

As an example of the use of a LINKNET structure a 

minimum length path finding algorithm will be described. 

In this problem the arcs each have a given length and 

the object is to find the minimum length path from a 

given start node to a given goal node. The path finding 

algorithm to be used aims to try as few paths as poss­

ible in the course of finding the minimum length path; 

the particular algorithm to be used is a simplified 

version of the powerful A* algorithm of Hart, Nilsson 

and Raphael [2J: 

B1 Mark the start node 'open' and all the other nodes 

'closed'. Set the distance attribute of all nodes 

to zero. 

B2 Select the 'open' node, n, with minimum 'distance'. 

B3 If n is the goal node terminate the algorithm. The 

length of the minimum length path is the 'distance' 

of n, and the path can be traced back to the start 

by use of the predecessors or 'parents' marked at 

each node. 

B4 Set the distance of each node m that is adjacent to 

node n to be the minimum of its current 'distance' 

value or the 'distance' of node n plus the length of 

the arc from node n to node m. 



A - 14 

B5 Mark all the nodes that have had their distances 

altered by step B4 'open' and note their predecessor 

was n. Mark node n as 'closed' and go to step B2. 

To implement the above algorithm it will be 

assumed that the LINKNET structure for the network has 

been set up and that in addition to the fields shown in 

figures 2 and 4 there are the following fields initial-

ized to the values givenl 

DISTANQE(NODE) = 0, this field will hold the distance 

value of each node as used in the 

B-procedure. 

PARENT (NODE) = null, this field will hold the predec-

essor of the node. 

STATE(NODE) = closed, this field will indicate if 

the node is 'open' or ' closed' . 

OTHER(NODE) = null, this field holds a link to the 

next node in a list of 'open' nodeso 

LENGTH(ARO) = length of the arc. 

01 [Put the start node on the 'open' list.] 

OPEN-LIST -E- start-node (OPEN,-LIST is a pointer.) 

02 [Find the minimum distance 'open' nodeJ 

NODE ~ OPEN-LIST, MIN-DIST ~ large-value, 

Loop: If MIN-DIST > DISTANOE(NODE), 

Then 

and 

MIN-DIST *'- DISTANOE(NODE) , 

MIN -NODE ..(,- NODE: 



A - 15 

In any case continue with NODE +- OTHER(NODE) , 

If NODE I null, go to Loop. 

C3 [Check if i3.lgor i tbm terminates.J 

If MIN~NODE = goal-node, terminate algoritbm. 

C4 [Update distance of nodes.] 

NODE +- MIN-NODE, BEAD +-LIST(NODE), 

Begin: NEW-DIST ~DISTANCE(NODE) + LENGTH(ARC(BEAD)), 

NEW-NODE ~ END(BEAD), 

If DISTANCE(NEW-NODE) > NEW-DIST, 

Then DISTANCE(NEW-NOJDE) +-:- NEW-DIST, 

and PARENT(NEW-NODE)~ NODE, 

and if STATE(NEW-MODE) = closed, 

then STATE(NEW-NODE)~ open, 

and OTHER(NEW-NODE)+- OPEN-LIST, 

and OPEN-LIST +.- NEW ... NODE: 

In any case continue with BEAD ~NEXT(BEAD), 

If BEAD I null, go to Begin. 

C5 [Delete node from 'open' list.] 

If OPEN-LIST = NODE, then OPEN-LIST ~ OTHER(NODE), 

Else N +- OPEN-LIST, (N is a link variable) 

Step: If OTHER(N) = NODE, 

then OTHER(N) ooE--- OTHER(NODE); 

Else N ~ OTHER(N) , 

After this go to step C2. 
c 



A - 16 

Figure 6 shows an example minimum length path 

finding problem with an indication of the distance 

values and 'open' list members at the stage when the 

algorithm has been through step 05 six times and has 

three times more to execute step 05 before terminating. 

The arrows on the arc indicate the parent nodes for each 

node, on termin~tion a path could be traced back from 

the goal node to the start node using these pointers. 

The minimum length path, and distance of the goal node 

on termination of the algorithm, is 14 units. 

start 
node 

---OPEN-LIST 

, 
'\ \ goal-node 

15 /1 

I I 
I I 

I I 
I 

J J 
J J 

The numbers on the arcs are the arc lengths. 
The numbers at the nodes are the distances. 
The arrows on the arcs are the parent pointers. 

Figure 6 



A - 17 

This implementation of the minimum length path 

algorithm shows that the programming can very closely 

follow~_ the algorithm' s descriptive terms. This is a 

common ~eature in algorithms that apply to networks 

since very frequently they 'look at' adjacent nodes or 

expand out from a node; with the LINKNET structure this 

is simply a matter of scanning down the bead-element 

list attached to the node being considered. Admittedly 

the algorithm is quite simple and the implementation 

given is slightly clumsy but extension to having an 

ordered list of 'open' nodes (thus eliminating the need 

for the STATE field of the node-elements) and adding 

the extra function that is used in the A* algorithm [2J, 

are ~efinements that do not destroy the basic simplicity 

of implementation. 

The example used in figure 6 appears in Berge (3]9 

along with some different algorithms for minimum length 

path finding. 

4.2 Finding Meshes and Spanning Trees 

A problem will now be considered that has several 

different applications. The applications will be men­

tioned briefly later but for now the problem will be 

treated just as a network manipulation problem. 

Starting with any network, for example, the network in 

figure 7, the aim is to label a set of arcs that 



A - 18 

connect up all nodes of the network without forming any 

loops. Such a tree is called a spanning tree and the 

arcs that form this tree are to be labelled 'branches' 

while all the remaining arcs are to be labelled 

'links'. Once the spanning tree is set up the meshes 

of the network can be defined as-loops containing one 

link and a path along tree branches, thus there are the 

same number of meshes as links. The particular spanning 

tree found by any algorithm may be quite important~ 

research is still underway [4] to find efficient algorithms 

to find the best 'root' node or starting node for an 

algorithm to produce a spanning tree that is minimal in 

some sense. The algorithm given here simply finds a 

spanning tree starting from a given root node. 

Briefly the algorithm 'expands' out from the root 

node marking all arcs as 'branches' and all nodes at the 

ends of these branches as 'tree members'. Subsequent 

expansions occur from nodes that are members of the 

" ,ree, and if any arc leads to a node also in the tree 

then this arc is marked as a 'link' rather than a 

'branch'. The algorithm terminates after all nodes 

that are members of the tree have been expanded once. 

Assume that the LINKNET structure has been set up 

for the network with the following extra fields: 

TAG(NODE) = 0 initially and 1 after it has been found. 

PARENT(NODE) will receive a pointer to the node from 



A - 19 

which this node was reached, i.e. its predecessor 

in the spanning tree. 

TYPE(ARC) will be set to 'branch' for an arc in the 

spanning tree or to 'link' for all other arcs. 

Three stacks (push-down lists) will also be used: 

STACK holds nodes to be expanded from, 

STACK1 and STACK2 hold the nodes at the ends of each 

'link', one in each stack. 

D1 [Put root node onto working stack.] STACK 4= root-node. 

D2 [ Get next node to expand from.] 

NODE {::. STACK, 

If NODE ~ null terminate algorithm. 

D3 [Tag nodes and classify arcs.] Scan down the list 

of bead-elements pointed to by LIST(NODE) and for 

each bead on this list: 

NODE1 ~ END(BEAD), ARC1 4:-ARC(BEAD) , 

If TYPE(ARC1) ~ branch or link, step on to next BEAD. 

Else if TAG(NODE1) ~ 0, then TAG(NODE1) ~ 1 , 

and TYPE(ARC1) ~ branch, 

and PARENT (NODE1 ) ~ NODE, 

and STACK ~ NODE1 ; 

Else if TAG(NODE1) = 1, then TYPE(ARC1) -<E:- link 

and STACK1..¢::::. NODE, 

and STACK2 -¢; NODE1 ; 

After all beads are done go to step D2. 



A - 20 

Figure 7 shows a simple network after the algorithm 

has specified the spanning tree, the branches are shown 

as solid lines with an arrow indicating the parent 

pointer, while the links are marked as dotted arcs. It 

should be clear that from this structure the meshes can 

be found by tracing back from each end of each link 

(STACK1 and STACK2 hold these nodes); after the trace 

reaches the root node from each end of the link, common 

branches (if any) can be eliminated. 

Root-node 

I 

0--· 
- branch arcs STACK ::; null 

---link arcs STACK1 ::; 6,6,3,2 

~ parent pointers. STACK2 ::; 5,3,4,7 

Figure 7 

Use of Trees and Meshes 
"""t""" 

One application for this algorithm is to find mesh 

loops in an electrical network so that a set of simul-

taneous equations can be set up to solve for the 

currents flowing in each mesh loop. In practice there 



A - 21 

may be the additional complication of mutual coupling 

between arcs by way of magnetic fields. The network 

now consists not only of nodes interconnected by arcs 

but also of arcs interconnected by 'mutuals'. However 

the LINKNET structure can be expanded to cope with this 

complication in the manner indicated by the diagrams in 

figure 8. 

Node 1 

Node 2 

Node ~ 

Node-elements Arc-element Mutual-element 

The mesh loop current equations can themselves be 

ttought of as a n~w network, where the nodes are mesh 

loops, and the arcs are mesh loop interactions. A 

program has been written (in FORTRAN) that after finding 

the meshes of an electrical network, constructs a 

second LINKNET structure to represent the mesh loop 



A - 22. 

equations. Further than this it is possible to solve 

these equations by an iterative procedure that utilizes 

this new LINKNET structure. 

5. CONCLUSIONS 

The LINKNET structure for representing networks by 

the use of linked lists has been described in some 

detail. The structure represents the network in the 

computer without any immediate regard to processing that 

may occur on the network or on attributes of network 

elements. The structure is put forward as a basic form 

that can be elaborated as required to include features 

that are special to any particular network. 

After the LINKNET structure is established the 

implementation of several procedures is considered. It 

is shown that for particular problem procedures the 

LINKNET structure can be easily extended to facilitate 

the desired manipulations of the network or its 

attributes. More than this it is often the case that 

the LINKNET structure can be used to guide the course 

of the procedures from node to node .and arc to arc in 

the required manner. 

The saving of memory space that can be achieved by 

the use of a linked list data structure rather than a 

matrix method have not been stressed in this presentat­

ion. It is often the case however, that networks are 



very large; power systems or transportation networks 

for example may have several hundred nodes. Not only are 

such networks often large but they are far from fully 

interconnected giving rise to very sparse entries in a 

matrix representation. In such cases the saving in 

memory by use of a LINKNET type structure may be 

extremely important. 

The main aim of this appendix has been to bring 

attention to the ease of applying linked-lists and 

List-processing methods to network problems. It is 

hoped that the LINKNET structure and network procedures 

demonstrated here will give more programmers an 

incentive to consider this attractive alternative to 

matrix methods for network problem solving. 



A - 24 

I 

REFERENCES 

1 Knuth, D.E. The Art of Computer Programing 

Volume 1, Fundamental Algorithms, Chapter 2, Data 

Structures, Addison-Wesley, 1968. 

2 Hart, P.E., Nilsson, N~J. and Raphael, B. A Formal 

Basis for the Heuristic Determination of Minimum 

Cost Paths. I.E.E.E. Trans on System Science & 

Cybernetics, Volume SSC - 4, No.2, July 1968, 

pp 100-107. 

3 Berge, C. The Theory of Graphs, Methuen and Co. 

London, 1962. 

4 Snow, C.R. and Scoins, H.I. Towards the Unique 

Decomposition of Graphs. Machine Iiltelligence 4 

Ed. Meltzer,B. and Michie,D. Edinburgh University 

Press 1969, pp45-55. 



APPENDIX B , 

GRAPHICS DISPLAY SYSTEM 



B-1 

APPENDIX B 

1. INTRODUCTION 

This appendix briefly covers some of the main 

points in the overall organization of a graphical display 

system that was designed and constructed in the course 

of this thesis work in cooperation with M.R. Mayson. 

It is only intended to give the basic concepts of system 

organization that emerged from the work, with ttle 

implementation detail and only a functional outline of 

the hardware that involved. 

The display system runs on an EAI640 computer. 

This is a conventional 16 bit word, 1.6 }is access, 8K 

machine with high speed paper tape and a fixed head 

disc. The machine is inst ed in the Electrical 

Engineering Department as part of an 640/580 (590) 

hybrid computer system. 

The CRT display chosen was a Tektronix 611 (11") 

storage display-scope; a storage system being selected 

almost entirely on a cost basis. This type of storage 

CRT can retain an image after a single write operation, 

or it can display a repetitively written image as done 

by a n9rmal CRT. An additional feature the 'write­

through' mode which enables information to be displayed 

by repetitive writing without storage, while other 

previously written information retained as a display 



B-2 

image. This was one of the first 611's produced (before 

commer9ial use in computer terminals, etc.) and it has 

been in use for almost two years~ It is interesting 

(and important) to note that the use of this facility 

is almost always for text output - disc map dumps, 

text editing and so on - very seldom is the full graph­

ical ability required. 

Another basic decision (that has proved reasonable) 

was to put in a minimal amount of hardware and cope with 

as much as possible in software. The only functions 

built into the hardware are for the output of points~ 

CRT mode control (store, write-through, eraze), 

together with control for inputs from function buttons, 

status switches, and a joy stick for moving a write-

-through 'crusor' with ability to read in the 

co-ordinates. Line drawing, character generation and 

so on are all executed by the software; the speed is 

normally very well matched between hardware ( ~ 20us/dot 

required) ~d the software (about 6 instructions/dot). 

The basic functions of the hardware are illustrated 

in figure B-1. 



B-3 
To CPU I/O BUS. 

Control & 
Timing. 

DO - Data out command. 
~ DI - Data in command. 

DF - Device function command. 
SI - Status input command. 
Z - CRT bright up control. 
CLOCK 

REGISTERS X-BUS. 

DO X 

. DI X 

DO Y-

DI Y 

DF 

SI 

TRACK 

TRACK 

CLOCK 
Y-BUS. 

TRACK 

X 

Digital to 
Analogue .' 

X Counter 

'TR1W! Y Counter 

Y 
Digital to 

Analogue 

X 

Deflection. 

X 

Joy-stick. 

Y 

Joy-stick. 

Y 

Deflection. 

~~ TRACK - Device set to read back joy-stick 
co-ords, CRT displays cursor. 

STORE - CRT to store on screen .all points 
put out in this wade. 

~~ ERAZE - Clear all stored data off CRT 

STATUS SWITCHES 
Device status indicators 

BASIC DISPLAY HARDWARE 
Figure B-1 



B - 4 

The hardware has been built twice, the first was a. 

'lash-up' using RTL logic, and the current version was 

built commercially (to our design) using CTpL circuitry. 

The software is into its second major version. 

The experience gained from the mistakes made with the 

first software package is the main reason for this 

appendix. The software effort has been very large 

(almost too much for the two of us part time) and like 

most software it always remains an open ended job. 

2. Basic System Requirements 

A list of the features that were considered 

necessary in ~oughly their order of implementation is: 

1) Character generator. 

2) Teletype simulator, allowing text to be put out on 

the teletype, the display, or both, at any time by 

use of the status switches. 

3) Line drawing routine (between any two co-ordinate 

pairs). 

4) Display options for standard system programs -

particularly the text editor. 

5) Display data file interpreter to draw points, lines 

and text from information in a picture data file 

(figure B-2). 

6) A graphics editor to create and edit the display 

data files in an interactive manner (figure B-2). 



B - 5 

Items 1) through 4) are quite straightforward and 

will not be referred to again. Items 5) and 6) 

involve the vast majority of the effort and will be 

considered in more depth. 

First we will define two distinct activities -

An Editing phase - at this time display data files are 

edited interactively before prepar­

ation as relocatable data files 

(modules). 

A run-time phase - at this time memory is restricted 

since the display must co-exist in 

core with a user's application 

programs. 

Figure B-2 shows the interpreter, the editor, and their 

relationship. 

3. The Edit Phase 

The editing problems can be tackled in two differ­

ent ways - although these two approaches are not necess­

arily incompatible or mutually exclusive. 

1) Direct Draw Facility 

The idea here is to allow the user to create and 

edit a picture directly on the display screen. For 

example to draw a line he could position the cursor 

with the joy stick and press 'BEGIN POINT' (function 

button) then move the cursor and press 'DRAW LINE'. In 



In core for Edit 
Phase only. 

EDITOR 

Instruct 
ions and 
messages 

In core for both 
Edit Phase and 
run-time phaseo 

~----------~Display Data 
File 

(orders) 

B - 6 

Scan of file 

I 

SOFTWARE 

HARDWARE 

INTERPRETER 

Control and data 
words output 
---------

Also: Function buttons, 
Status switches, 
Joy-stick. 

BASIC FUNCTIONS OF DISPLAY EDITOR AND DISPLAY INTER-

PRETER 

Figure B-2 



B - 7 

a similar manner 'FIND', 'CHANGE', 'DELETE', 'INSERT', 

'TEXT' and so on can be used to create and edit a data 

file. 

This philosophy was embodied in our first display 

system of software and it is undoubtedly attractive and 

very easy for an operator to use. Unfortunately (as 

will be discussed) it leads to some very difficult 

software problems unless the da t,a files are of quite a 

simple form. 

Direct draw is probably the best approached as an 

eventuai extension of approach 2) -

2) Display Language Facility 

A high level display language is a far more satis­

factory system from the software point of view since it 

is possible to design a modular and extensible system. 

For anything approaching the direct draw facility the 

display language must be reasonably rich (with pseudo 

operations and macro generation). A compiler or inter­

preter could be used to generate the basic display file 

data from the high level language instructions. Figure 

B-3 illustrates this. 

A subtle and interesting point is that even if 

direct draw facilities are created the operator still 

has the ability to edit the picture £Eogram rather than 

the picture itself as it appears on the display. The 



In core only for edit 
phase. 

In core for both the 
edit phase and the 
run-time phase. 

DISPLAY DATA TRANSLATOR 
Interpreter 
or Compiler 

1------4-~--~~ FILE 

DISPLAY 
LANGUAGE 
PROGRAM 

EDITOR 

SOFTWARE 

(Orders). 

INTERPRETER 

B - 8 

---- --

HARDWARE 

Also: ,Function buttons, 
Status switches, 
Joy-stick. 

USE OF A DISPLAY LANGUAGE 

Figure B-3 



importance of this type of editing is for operations 

like naming a picture, inserting a call to a sub­

picture, linking run~time variables into a place in a 

picture, and so on. In fact for all the operations 

associated with picture editing that do not necessarily 

appear directly as parts of the image. These features 

are mentioned again under Run-time Phase, below. 

Rather than define a high level language directly, 

the approach we have chosen is to embed the low level 

data file information into a higher level interpreter 

system so that together they form a self-extensible 

higher level display language. The user can employ 

pre-programmed high level commands or he can create new 

ones of his own or he can create even higher level 

instructions that employ the original high level 

instructions. 

The higher level interpreter (higher level than 

the display file processor to be discussed later) used 

in this case is TRAC (Text Reckoning And Compiling) [1J, 

[2J. This is a String processing and macrogenerator 

language, similar to GPM [3J. The features that make 

TRAC suitable for this work are: 

a) It is designed as an interactive language. 

b) It is able to define text macro forms with formal 

parameter creation and sUbstitution. 



B - 10 

c) It has the ability to embed itself into higher 

level interpreters written in TRAC itself. 

4. The Run-Time Phase 

At run-time the display programs co-exist in core 

with a user's non display programs. The user's 

programs have the ability to request the display of a 

display data file, or to take an active role in the 

display if so desired. It is desirable to have a mod­

ular set of display programs so that if only the basic 

display features are required the core overhead can be 

kept accordingly low. 

It has been found that it. is not the direct display 

of display data files which causes difficulties, but 

rather the communication between display files and run­

time programs, and the flow of program control. Some of 

these p.roblems are generated by the following require­

ments: 

1) The display data files need to be available as re­

locatable modules or subroutines that can be named 

and loaded along with standard relocatable modules 

produced by assembler and FORTRAN programs. 

2) Display files should be able to call other data 

files as subroutines (subpictures). 

3) Display files should be able to request the value 

of run-time (computed) variables for inclusion in 

the display. 



B - 11 

4) Display files should be able to initiate computat­

ional programs as subroutines during picture cons­

truction. 

5) Run-time programs should be able to control the 

execution of a display by modification of display 

files and also by control over the programs that 

display the display data files. 

Rather than go through the display development 

chronologically the development given here is our 

latest approach. This is (overall) considered to be 

the most fruitful approach for any small machine~ 

storage tube display system, in order to meet the sort 

of requirements outlined in the sections above. 

Comments will be interspersed at points where the 

approach is considered to have particular advantages 

over alternative approaches (and our previous attempts~). 

Display Order Interpreter 

The basic software and first requirement for imple­

mentation is the display order interpreter. The function 

of this program is to interpret and execute the display 

orders from the display data file. This can be looked 

on as a simulation of the hardware used in refresh CRT 

systems to display from code in memory. The display 

da.ta files instructions are called 'orders' to distin­

guish them from the CPU 'instructions' of the normal 



B - 12 

machine code. It is worth considering designing the 

interpreter to handle orders with the same format as some 

particular refresh system hardware. In this way the 

same display files could be used either on the storage 

display via the interpreter or on a refresh CRT 

(perhaps on another computer) using the hardware. 

However, if such hardware is not likely to be available 

it is not worth restricting the order set in this way. 

If the order set is only for use by an interpreter 

the set is easily left open-ended for future extensions 

and alterations. More interesting the orders can be 

made considerably more complex and specialized with very 

little extra software overhead. For example, different 

orders can be made 1, 2, 3 or more words long, and the 

x and y coordinates can be given as memory base and dis­

placement addresses rather than actual values (relative 

or absolute). It seems well worth while taking advantage 

of the sto'rage mode of the storage tube CRT by allowing 

more complex display orders than is possible with 

refresh CRTs. 

A critical factor that has become apparent is that 

the display order set should include not only display 

instructions (point, line etc.), but also procedural 

orders including at least the following: 

1) Jump and link (to subroutine) orders. 

2) An end order that may serve as a subroutine return. 



B - 13 

3) A change or link order that allows for a change or 

branch to normal machine CPU (non interpreter) 

instruction execution. 

Notice that an order to go to machine instruction 

mode (point 3)) eliminates the need for a fuller set of 

interpreter orders to handle arithmetic, logical, and 

test operations. 

In the design of the interpreter itself the 

following points should be considered: 

1) The interpreter must be re-entrant. 

2) All registers used by the interpreter that may 

alter the interpretation of orders (the 'state' of 

the interpreter) should be made available external 

to the interpreter (as global names or absolute 

locations). Preferably the complete stack of 

registers for each entry (activation) should be 

available. 

3) There should be no flags conters etc. that are not 

either clearly defined as parts of the registers 

(point 2)), or reset prior to any exit from the 

interpreter or the completion or an order. (This 

may be obvious in view of point 1) but it is vital 

to the success of the interpreter). 

4) On exit from a picture subroutine (or computational 

subroutine) the 're-entry' of the interpreter should 



B - 14 

allow the two possibilities: 

a) Retaining the interpreters registers (the X,Y 

coordinates in particular), as they are on exit 

from the subroutine, or 

b) Restoring the registers to their condition 

before the last interpreter entry (before the sub-

routine was called, i.e. the normal activation 

record 'pop up' operation of are-entrant program) 0 

5) All input and output from the interpreter to the 

display CRT function buttons and so on should be 

routed through a common I/O routine. The purpose 

of this is: 

a) This enables the same interpreter and display 

files to be routed to different device controllers 

for example the CRT display could be put out to a 

X-Y plotter. The only restriction on this i8~the 

available hardware (the I/O routine should take 

care of device pecuflarities). 

b) The output can be intercepted in the I/O 

routines so that the output of a display file can 

be 'simulated' at high speed. This enables us to 

find points in the display that are not explicitly 

in the display data file but are computed during 

the course of the display output. The simplest 

example I of this is points in the middle of a line 

which is drawn with a single display order. 



B - 15 

6) The 'instruction fetch' operation of the interpret­

er that sequentially fetches display orders for 

execution, should be made as an accessible 

program module. The purpose behind this is to 

enable data files to be executed even though the 

orders are not sequential in core storage. A par­

ticular use of this facility (to be mentioned 

again later) is to enable the 'order fetchV 

program to fetch a string of characters off a 

linked list, assemble a group into a binary word 

and return this to the interpreter as the next 

instruction. 

Figure B-4 summarizes the main points in the inter­

preter construction. Notice that the design looks very 

much like a CPU organization. This is a good way to 

look at the interpreter architecture, and will serve as 

a sound design guide. 

Display File Editing. 

With a display order set established and the 

associated interpreter working we can move on (both in 

this description and in implementation~) to a higher 

level interpreter for compiling and editing the display 

orders. Because of the requirement to have the display 

data files (orders) in the form of standard relocatable 

modules (standard object program format) there are 



-----~-----

( DISPLAY 
DATA FILE 

ORDERS 

Sequential 
or program­
med scan 

r-~'---'" --~~ 

ORDER 
FETCH 

ROUTINE 

/ I' Reque 
next 

st . supply 
order II,next order 

.... 
INTERPRETER 
MAIN BODY r 

Order decode 
Address anq!or 
data calculat-
ion 

Scale factor 
1-

---Execute 

...:::.. 

"""'" 

----
--"" 

~ 

-~ 

order --.--

\1; 

I/O MODULES 

- - -

,~ 

B - 16 

DATA 

INTERPRETER 

REGISTERS 

X-coordinate 

Y-coordinate 

P-program counter 

I-instruction (order) 

S-scale factor 

M-mask (restore/retain) 

R-return address 

o 0 0 0 

INTERPRETER 
- - .-

HARDWARE 

Figure B-4o 



B - 17 

several advantages in having a program that accepts 

mnemonics for the display orders and rather than produc­

ing the display data file itself producing these 

mnemonics in terms of standard assembler mnemonics. 

That is, the picture 'source' file is translated into an 

assembler source program in such a way that the 

assembler will process this into relocatable program 

module which when loaded will have the desired display 

orders, address references and so on. Figure B-5 shows 

the overall process involved. The particular 

advantages of this two stage process all relate to mak­

ing the higher level interpreter (or compiler) easier 

to write: 

1) Mnemonics for standard display orders such as 

absolute points or lines, can be translated into 

assembler idata' type statements. 

2) All resolution of symbolic names and relative 

addressing can be resolved by the assembler in the 

normal way. 

3) Global and local symbols, including a global 

(external) name for the display data file as a 

whole, can be coped with by inserting standard 

assembler language pseudo-operations into the 

source code. 



System 
Software 

Edit phase 

Display 
Software 

Hardware 

elocatable 
Modules 

ASSEMBLER 

ASSEMBLER 
SOURCE 

PROGRAM 

PRE-PROCESS 

B - 18 

LOADER 

+ 

- -- .... 
Run-time 

DISPLAY 
LANGUAGE 

SOURCE 

EDITOR 

I ---r.- - .~- -

DISPLAY 
DATA FILE 

ORDERS 

INTERPRETER 

Figure B-5 



B - 19 

If the standard assembler has the ability to have 

additional mnemonics added to it~ it may be possible to 

use the (modified) assembler directly on the picture 

'source' program. In this case no additbnal precompiler 

program would be needed, this possibility was not avail­

able (easily) with the EAI 640 assembler. 

There is one real disadvantage of a scheme 

requiring an assembly process before the display data 

file is in a suitable condition to be loaded and dis­

played - that is, the lack of editing ability in the 

direct dr~w vein. The editing of a picture takes on 

the same form as the editing of a computational program. 

The round of source editing, assembly, loading, and 

debugging is far from the interactive ideals of the 

direct draw facility. Figure B-5 shows the overall 

process involved. 

A far more powerful and flexible scheme that can be 

built up towards a direct draw capability is the use of 

a high level interpreter as discussed in the next 

section. See also figure B-6. 

5. EditoE-InterpreteE 

The high level interpreter used in our implementat­

ion was TRAC, as mentioned previously. Rather than talk 

of a higher level interpreter in general, TRAC will be 

referred to, even though some of the comments apply to 



B - 20 

other interpreters that may be used in place of TRAC. 

, The key feature that makes TRAC a more attractive 

system than a simple pre-processor is the ability to 

draw a picture onto the CRT direct from a character 

string that can be defined using TRAC, This is best 

described by a simple example: 

A display data file of orders to draw a square 

100 by 100 (octal) would appear in core -

Display orders in a 
binary file (octal) 

70000 

30000 

70100 

130000 

70000 

130100 

73700 

130000 

70000 

133700 

177777 
-----~---------

Interpreter action 

Output a point to the CRT 

at coordinates O~Oo 

Draw a line from the current 

position for Ax=100,Ay=0 (horiz.) 

Line AX=O~ Ay=100. 

Line .6 x=-1 00, ,Ay=O 0 

End of picture 

In TRAC this list of display orders could be 

defined in the form of a string of (ASCII) characters 

called, say, BOX. This is done by typing -

~(DS,BOX,(70000,30000,70100,130000,.oo,133700,177777))i 



B - 21 

The TRAC primitive DS defines a string with name BOXo 

To fetch this string from memory the following can be 

typed -

.~( CL, BOX) , resulting in a returned value 

that is the string of characters listed above 0 

An additional primitive to the basic TRAC set can 

be defined as ~(DR,list) where 'list V is a string of 

octal-digit characters; the function of DR being to 

issue each set of digits as a binary word to an external 

programo The program used in our case is the fetch 

order routine for the display order interpreter. Thus 

the command -

~(DR,~(CL,BOX))' results in the drawing via the 

interpreter of a box (100 x 100) on the CRT, starting 

at position X,Y = 0,0. 

TRAC has the ability to place formal parameters 

into a string of characters by the use of the SS 

(segement string) primitive 0 The commands 

~(DS,BOX,(X,Y,70100,130000,ooo,133700,177777))i 

.'*( SS, BOX, X, Y) , 

would result in a string BOX being defined as above but 

with formql parameters in place of the X and the Yo 

The parameters can be substituted for by a call 

to the string BOX -

*(CL,BOX,70000,30000) v 

which would result in the same string of characters as 



B - 22 

in the first definition of BOX given previouslyo 

The primitive BU forms the boolean union of its 

two arguments, for example -

~(BU, 100 ~ 201) v would result in the value 3010 

We can now define BOX as a string of characters as 

before but with formal parameters for the X and Y posit­

ion of the first corner of the box ~ 

~(DS,BOX,(~(BU,70000,X) (BU,30ooo,Y), 

70100~130000,ooo~133700,177777))O 

~( ss , BOX, X, Y) I 

Now a command -

~(DR,~(CL,BOX,0,0)~(CL,BOX,50,50))i 

would result in the drawing on the CRT of two boxes 

something like this: 

This ability can be embedded into higher level 

functions to allow a simpler set of commands to be 

typedo The TRAC programs to do this are shown in 

figure B-6 as 'TRAC DRAW PROGRAM', with an arrow 

indicating the use of the DR primitive to activate the 

interpretero 

Also shown in figure B-6 is a TRAC program called 
1 

'PRE-PROCESS' program. This program allows TRAC to 

produce a standard format assembler language source 



ASSEMBLER LOADER 

ASSEMBLER 
SOURCE 

System PROGRAM 
software ~ 
Edi tPh-a-s-e- - r--~-=----'-- Edit and 

TRAC Run-time 
Phase 

DISPLAY 
LANGUAGE 

SOURCE 

Display 
software 

Hardware 

PRE-PROCESS 
PROGRAM 

TRAC 
SYSTEM 

TRAC 
DRAW 
PROGRAM 

TRAC 
EDIT 
PROGRAMS 

DISPLAY'" 
DATA FILE 

ORDERS 

INTERPRETER 

-~-
Teletype 

Figure B-6 



B - 24 

file for the production of relocatable modules for use 

at run-time. The operating procedure would be to 

create and edit a picture as a TRAC source program, 

with the effect of this picture being viewed on the CRT 

with the TRAC DRAW PROGRAM. After the picture is 

finished a source program may be saved for future edit-

ing and an assembler source program produced by 

execution of the TRAC PRE-PROCESS PROGRAM. 

To give some idea of how PRE-PROCESS can work 

consider the following illustrative example: 

~ DS ,PROGRAM, ( * 

*ASSEMBLER SOURCE OF TRAC STRING FRED. 

* 

REL o 

NAME FRED 

* 
FRED OCT ~(SS,FRED, (,) )~(CL,FRED,( 

OCT)) 

OCT 177777 

END o 

) ) ~(SS ,PROGRAM, FRED) i 

~(DS,BOXES,(~(CL,BOX,O,O)~(CL,BOX,50,50)))1 

Notes:-

*marks 
comments. 

Relocatable 
form. 
External 
name. 
OCT = 
assembler 
nmemonic for 
octal data. 

Display end 
order. 
Assembler 
end. 

~ DS, BOXES, ~(SS, BOXES, 177777 )-£( CL, BOXES) ) I Delete end 
orders 

The following order should result in a value that 

is a text string fora complete assembler source program 



B - 25 

for a display data file to draw the two boxes illustrat­

ed previously. 

~(CL,PROGRAM,BOXES)i BOXES replaces 

FRED each time. 



B - 26 

REFERENCES 

1 Mooers,C.N. TRAC a procedure-describing language 

for th$ interactive typewriter. Comm.ACM 1965 

p.215. 

2 Mooers,C.N. How some fundamental problems are 

treated in the design of the TRAC language. Symbol 

Manipulation Languages and Techniques, Ed. Bobrow, 

D.G., North Holland 1968. From Proc. IFIP working 

conference on Symbol Manipulation, Pisa, 1966. 

3 Strachey,C. A general purpose macrogenerator. 

Computer J. 1965, p.225. 

Other material not referenced directly in the text: 

Interactive Graphics in Data Processing. IBM 

System Journal, Vol.7, No.3 and 4, 1968. 

This volume contains more than a dozen papers and has 

a large number of references. 



APPENDIX C 

ANALYTIC CALCULATION OF BANDIT SELECTION PROBABILITY 

FOR NORMAL PROBABILITY DENSITIES 



C - 1 

APPENDIX C 

BANDI~Selection Probability for Normal Distributions 

The BANDIT algorithm makes a decision on the basis 

of a set of samples; one from each of the 'value' prob­

ability densities of each of the alternatives involved. 

The probability that any particular alternative will be 

taken is not explicitly calculated. There is some 

interest in knowing this probability while observing 

the performance of the BANDIT algorithm and it may be 

calculated in two ways: 

1. By repeated application of the BANDIT algorithm the 

probability of selecting each of the possible 

alternatives can be assessed by counting the pro­

portion of the total decisions assigned to each 

alternative (Monte Carlo method). 

2. By direct calculation from the (assumed known) 

analytic form of the 'value' probability densities. 

This method is useful as a check against method 1, 

and in obtaining more accurate results with less 

computation. 

This appendix is concerned with the details of 

method 2 for the case of Normal distributions for the 

'value' probability densities. 



c - 2 

First consider the choice between two normal probability 

densities 

Alternative A1 x 

Al ternative A2 
y 

For the BANDIT algorithm, selecting for a maximum: 
"" )( 

Pr (A 1 ) " J f 1 (x) • J f 2 ( y) . dy. dx 

00 " J f 1 (x).F2 (x).dx 

where F2(x) is the cumulative distr~bution for f 2(x)o 

L---~~=-~----~--~---------------- x 



Pr(A1) 

J-x ·1 

. v -( 2-1T-)"""'~ 
~OO 2 

2 2 exp(-(y-m2 ) /2v2 ) dy.dx 

where erf(x) is the error function*. 

Now substitute, 

Pr(A1) 

dt 

:= j«J 1 l exp( _t2/2) [i( 1 
(211') 2 

-«I 

now erfc(~) = 1 - erf(x) 

By extension, for N alternatives: 

. dt 

Pr(Ai) 

0() -J 1 exp(-t2/2) 
- (2TI)~ 

n (t.v.+m.-m.) 
ierf( l l~) .dt 

j=1,N ( v .• 2 2 ) 
_ c>O j,fi J 

*Handbook of Mathematical Functions. Ed. M. Abramaowitz 

and I.A. Segun. Dover 1964, p.298. 



APPENDIX D 

THE BANDIT ALGORITHM IN HEURISTIC 

SEARCH ALGORITHMS 



D - 1 

APPENDIX D 

This appendix shows how the BANDIT algorithm may 

be embedded into a heuristic graph search algorithm to 

allow fo~ updating of thetBuristic function for informat­

ion gained by traversal of a previously found path (the 

'on-line' path finding problem o~ Chapter 2). 

The Heuristic Path Algorithm (HPA) , Pohl 1969 [3]~ 

is used here because it is typical of he~ristic graph 

search algoritbms, and particularly simila~ to the 

Graph Traverser of Doran and Michie 1966 [1J, and the 

A* algorithm of Hart, Nilsson and Raphael 1967 [2Jo 

The problem space for heuristic search is a 

directed graph G, which is a set of nodes X and edges E 

(arcs in Chapter 2) which are ordered pairs from the 

node set. 

G : X = { x1 ,x2 ' 0 • • 'Xn 1 
E = {(x. ,x.)lx. ,X.EX,X. ~r(x.)} 

1 J 1 J J 1 

r is the successor mapping. In using directed graphs to 

characterize problem domains the node xi has a data 

structure that specifies a state of the problem. The 

mapping r(xi ) represents the set of possible states 

(nodes) resvlting from one mOVe or operator applied to 

state (node) x .. 
1 



D - 2 

The heuristic function hex) is a measure of the 

estimated distance from node x to the goal node. For a 

transportation problem the heuristic function may be 

the distance from location (node) x to the desired 

destination via a direct line rather than the true 

(unknown) distance. 



First the BFA algorithm by itself: 

s = start node, t = terminal node (goal). 

g(x) = the number of edges from s to x, as found in the 

search. 

hex) = an estimate of the number of edges between x and 

t, the heuristic function. 

f(x) = (1-w)g(x) + w.h(x) 

8 = set of nodes already visited. Also called the 

expanded nodes. 

8'= set of nodes directly reachable (in one edge) from 

8, also called the candidate nodes. 
" 

1. Place s in 8 and calculate res) placing them in 8' 0 

If x ec r (s) the;n g(x) = 1 and 

f(x) = (1-w) + w.h(x). 

2. 8elect n ~ 8' such that fen) is a minimum. 

3. Place n in 8 and r (n) in 8' (if not already in 8 ,) 

and calculate f for the successors of n (r(n)). 

If x €. r (n) and x ¢ 8 then g(x) = g(n) + 1 and 

f(x) = (1-w).g(x) + w.h(x). 

4. If n is the goal state then halt, otherwise go to 

step 2. 

o 0 • 0 0 II 



D - 4 

The BFA algorithm q~ilds a tree; as each node is 

reached a pointer to its predecessor is maintained. 

Upon termination the solution path is traced back from 

the goal node through each predecessor. 

The Graph Traverser [1J is similar to the HPA 

if only hex) and not g(x) is used (W=1); while the A* 

algorithm [2J uses f = g + h (w=~). 

After a path has been found it is traversed, and 

at this stage the hex) ~or nodes along the traversed 

path can be updated with observations of their value 

on this traversal of this particular path. 



The update process can be written 

q(h(x))~ UPDATE (q(h(x)), H(x)) 

where q(hCx:)) == the probability density distribution for 

the heuristic function h of node x. 

h'(x) == the observed value of hex) on a 

traver$al. 

BANDIT-EPA, ..... 

1. Place s in S and calculate res) placing them in SV 0 

If ;x:E: r (s) then g(x) = 1 and 

f(x) = (1-w) + w.sample (q(h(x))). 

2. Select n ~ S' such that fen) is a minimum. 

3. Place n in Sand r(n) in S' (if not already in S') 

and calculate f for the successors of n (r(n)). 

If x E: r (n) and x ¢. S then g(;x:) = g(n~ + 1 and 

f(x) ~ (1-w).g(x) + w.sample(q(h(x)))~ 

4. If n is not the goal node go to step 2. 

5. Trace back to find the solution path, and then 

traverse this path. 

6. During the traversal -

q(h(x») ~ UfDATE (q(h(x)), h'(x) ) 

7. At the end of the traversal go to step 1 to prepare 

for the next traversal. 

o 0 •• 0 0 



D - 6 

REFERENCES 

1 Doran,J.E. and Michi~,D. Experiments with the 

Graph Traverser program. Proc. R. Soc. A, 294~ 

1966, pp 235-259. 

2 Hart,P., Nilsson,N. and Raphael,B. A Formal 

Basis for the Heuristic Determination of Minimum 

Cost Paths. IEEE Trans. Sys. Sci. Cybernetics, 

July 1968, SSC-4, No.2, pp 100-107. 

3 Pohl,I. F~rst Results on the Effect of Error in 

~euristic Searyh. Machine Intelligence 5~ 

Edinburgh Univers~ty Press 1969, pp 219-236. 


	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	CHAPTER ONE
	1 - 1 INTRODUCTION
	1 - 2 PATH FINDING
	1 - 3 STOCHASTIC LEARNING AUTOMATA
	1 - 4 ROTE LEARNING AND MARKOV PROCESS THE0RY
	REFERENCES

	CHAPTER TWO
	2 - 1 INTRODUCTION
	2 - 2 PROBLEM STATEMENT
	2 - 3 ILLUSTRATIVE EXAMPLE
	2 - 4 THE TWO ARMED BANDIT PROBLEM
	2 - 5 THE BANDIT ALGORITHM
	2 - 6 SOME COMPARATIVE RESULTS
	2 - 7 EXTENSION TO PATH FINDING
	2 - 8 AN ADMISSIBLE ALGORITHM
	2 - 9 ARC COST ESTIMATES
	2 - 10 ON-LINE ALGORITHM
	2 - 11 CONVERGENCE THEOREM
	2 - 12 APPLICATION OF THE BANDIT ALGORITHM
	2 - 13 RESULTS
	2 - 14 CONCLUSIONS
	REFERENCES

	CHAPTER THREE
	3 - 1 INTRODUCTION
	3 - 2 NOTATION
	3 - 3  MODIFIED LINEAR REINFORCEMENT PROCEDURE
	3 - 4 THE BANDIT ALGORITHM
	3 - 5 ENVIRONMENTS WITH PERCEPTION AND PERFORMANCE MEASURES
	3 - 6 RESULTS
	3 - 7 CONCLUSIONS
	REFERENCES

	CHAPTER FOUR
	4 - 1 TABLE BUILDING
	4 - 2 OPERATOR SELECTION STRATEGY
	4 - 3 PLANNING FROM ROTE LEARNING
	4 - 4 INTERACTION AS A MARKOV PROCESS
	4 - 5 AN EXAMPLE OF OPTIMAL POLICY FAILURE
	4 - 6 STOCHASTIC SIMULATION
	4 - 7 OPERATOR DECISION PROCEDURE
	4 - 8 EXPECTANCE FUNCTION
	4 - 9 OPERATOR DECISION BASED ON EXPECTANCE
	4 - 10 EXPECTANCE ENTRY IN THE ROTE LEARNING TABLE
	4 - 11 BANDIT-EXPECTANCE MACHINE
	4 - 13 FOX AND DOGS GAME
	4 - 14 EXTENSIONS TO THE ROTE LEARNING TABLE
	REFERENCES

	CHAPTER FIVE
	5 - 1 REINFORCEMENT LEARNING
	5 - 2 AGAINST REINFORCEMENT LEARNING
	5 - 3 LEARNING BY BEING TOLD
	5 - 4 WHY THE GAP?
	5 - 5 GRAFTING LEARNING ABILITY ONTO A PROGRAM
	5 - 6 SUMMARY OF MAIN POINTS
	REFERENCES

	APPENDICES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D


