COMPUTING PROCEDURES FOR A
LEARNING MACHINE

A thesis presented for the degree of
Doctor of Philosophy in Electrical Engineering
in the University of Canterbury,

Christchurch, New Zealand

by

P.M.‘QASHIN, B.E.(Hons), M.E.(Dist.)

1970

¢

v

FYSICHL,

SR
332
by 7

[0

SCIENCES

BARY

ACKNOWLEDGEMENTS

I am deeply indebted to Professor J.H. Andreae who
has been my superviéor and has provided continual
guidance, support and enthusiasm. I have also had
valuable assistance from his methodically indexed
library of papers and books.

Unfortunately, it is impossible to individually
acknowledge ali the people who have helped me through
discussion, argument andfcooperaﬁive effort during the
course of this work. In particular the staff and post-
graduate students in the Electrical Engineefing |
Department have contributed; many actively, all by
good will,

I am grateful to the University Grants Committee
for their scholarship which has supported me through
this work.

Finally, I am grateful to my wife, Trish, for her

patience and interest in my work.,

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
1-1 Introduction
1-2 Path Finding

1-% Stochastic Learning Automata

1-4 Rote learning and Markov Process Theory

CHAPTER 2: THE BANDIT ALGORITHEHM FOR MINIMUM COST
PATH FINDING WITH INCOMPLETE COST

INFORMATTION
2-1 Introduction
2-2 Problem Statement
2-% Tllustrative Example
2-4 The Two Armed Bandit Problem
2-5 The BANDIT Algorithm
2-6 Some Comparativé Results
2-7 Extensions to Path Finding
2-8 An Admissible Algorithm
2-9 Arc Cost Estimates
2-10 On-line Algorithm

2-11 Convergence Theorem

2-12 Applications of tThe BANDIT Algorithm

2-13 Results
2-14 Conclusions

References

fage

2-1
2-1
2-2
2-5
2=7
2-10
2-1%
2-13
2-15
2-15
2-16
2-16
2-18
2-25
2-27

CHAPTER 3: STOCHASTIC LEARNING AUTOMATA

3-1
3-2
5=5
34
5-5

5-6
5=8

Introduction
Notation
Modified Linear Reinforcement Procedure

The BANDIT Algorithm

Environments with Perception and Performance

Measures
Results
Conclugions

References

CHAPTER 4: ROTE LEARNING AND MARKOV PROCESSES

2]
4-2
4-3
Lott
4-5
4-6
4-7
4-8
4-9
4-10
14-11
413
T

Table Building

Operator Selection Strategy

Planning from Rote Learning
Interaction as a Markov Process

An Example of Optimal Policy Failure
Stochastic Simulation

Operator Decision Procedure
Expectance Function

O?erator Decision based on Expectance
Expectance Entry in the Rote Learning Table
BANDIT-EXPECTANCE Machine

Fo% and Dogs Game

EXfensions to the Rote Learning Table

References

Page
3-1
=5
3-8
5-9
3-16

5-25
5=-55
5-57

4-6

14-10
11
14-20
4-26
4-33
4-%6
4—40
1149
452
4-55
4-62
4-67

CHAPTER 5: CONCLUSIONS Page

5-1 Reinforcement Learning 5-1

5-2 Against Reinforcement Learning 5-2

5-% Learning by Being Told 5-%

5~4 Why the Gap? 5-7

5-5 Grafting Learning Ability onto a Program 5-8

5-6 Summary of Main FPoints 5-10
APPENDICES

APPENDIX A: LINKNET: A Structure for Computer

Representation and Solution of Network

Problems
Abstract A~
A-1 Introduction A=-2
A-2 The Basic Structure A-3
A-2.1 Graphs A-3
2.2 LINKNET Elements A-4
2.5 Lists A-77
2.4 Access to arc attributes A-10
2.5 Access to node attributes A=-10
A-% Creation of LINKNET ' A-10
5.7 .Construction of a LINKNET Structure A-10
A-4 Applications of LINKNET A-13
4.1 ’Minimum length path finding A-15%

4.2 Finding Meshes and Spanning Trees A-17

A-5

Conclusions

References

APPENDIX B: GRAPHIC DISPLAY SYSTEM

B~-1 Introduction
B-2 Basic System Requirements
B-%2 The Edit Phase
- Direct Draw Facility
- Display Language Facility
B-4 The Run Time Phase
- Display Order Inter
- Display File Editing
B-5 Editor-Interpreter
Reférenoes
APPENDIX C: Analytic Calculation of BANDIT
Selection Probability for Normal Probability
Densities.
APPENDIX D: The BANDIT Algorithm in Heuristic

Search Algorithms.

B-1

B-5
B-5

B-10
B-1"
B-15
B-19
B-26

CHAPTER ONE

INTRODUCTION

CHAPTER ONE

1 - 1 INTRODUCTION

This thesis presents the highlights of work done
in the field éf artificial intelligence —.more particul-
arly machine learning. Artificial intelligence research
is accepted [5] as a wide ranging discipline, and no
attempt will be made to define or delimit it. The
areas of most importance to this thesis are, heuristic
programming, problem solving and associated learning
models.,

Such important areas as patbtern recognition are
scarcely mentioned in this thesis; this is not to imply
that such areas do not contribute to or supplement the
main theme of machine 1earning; It is simply that the
work reported has contributed no new concepts in these
areas, or linked them any closer to machine learning.

The view has been taken that every learning machine
must facé the problem of continually having Tto decide on
an action on the basis of some current set of collected
data and deductions. Fach action can be thought of as
producing a 'value'. The problem is that the estimated
'value' of each action is based on the current data,
while each action may produce a 'side effect' of con-

tributing more data.

This problem is exemplified by the 'Dual Control’
problem [4] and in its most basic form by the 'Two
Armed Bandit Problem' [2]. The Two Armed Bandit
Problem is first considered in Chapter 2, where the
BANDIT algorithm is first introduced. The BANDIT
algorithm is not only contributed as an algorithm for
solving the Two Armed Bandit Problem, but it is
designéd to be a basic mechanism in the learning
machine faced With the more complex and general problem
outlined above.

The heuristic that the BANDIT algorithm is based on

can be stated like this:

If one of a number of alternatives has a probability
'p' of being the best alternative, then choose this

alternative 100.p% of the time.

To assess the probability 'p' of one alternative
being better than any other, it is necessary to know not
only the estimated mean 'value' of each alternative but
also the probability density of these mean 'value'
estimates. The BANDIT algorithm provides a concise com-
putational procedure to perform this decision process.

The applications, implementation and results from
using the BANDIT algorithm form a central core to this

thesis.

The second contribution that plays a major part
in this thesis is the 'expectance' function. This
function is based on the 'expectation' used by
Andreae [1] and Gaines and Andreae [6] in the STeLLA
learning machine. It is similar to the expectimaxing
scheme proposed by Michie and Chambers [9].

The purpose of the expectance function can be
thought of (for now) as a way of assessing an action's
long term 'value'. That is, not only is the immediate
'value' resulting from the use of the action considered,
but also account is taken of the future actions that
will become available, and of their expectance functions
or expected 'values'.

The development contributed by the expectance
function 1s its generality, and equally impOftant is its
recursive formulation and on-line evaluation. The
expectance function is introduced near the end of
Chapter 3, and is fully discussed ih Chapter 4.

Just as important as the BANDIT algorithm and the
expectance function theméelves9 is their use in linking
together and extending several distinct areas of
ourrent research interest, The three main areas con-
cerned are:

. Path finding (graph searching) - considered from a
particular point of view where incbmplete information

is involved,

1 -4
. Stochastic automata - with the introduction of an
extended problem class for these machines, and
. Markov process theory and its use in the development
of a rote-learning table-based learning machine.

These topics are dealt With.in Chapter 2, % and 4
respectively. A brief 'over-view' of these topics is
given in this introductory chapter under sections 1-2,
1-% and 1-4.

The function of the appendices is two fold. First
they contain some support material that is not approp-
riate 'in-line', but more importaﬁt they contain some
original material of their own. This material is not
included in the main body since it is concerned with
computational tools that have beenused (transparently)
to develop the algorithms and examples contained in the
main body. The two main topics in this class are:

1. A techniqué based on linked list structures that
enables problems involving networks or graphs to be im-
plemented in a rather uniform manner. It is not so much
that the techniques involved are in any way new, but
rather that the particular way of applying the techniques
to the network itself - rather than to the various
information structures that may arise in the course of a
particular problem - leads to structural and procedural
convenience. The ideas here have Been developed in

conjunction with M.R. Mayson and R. Podmore who have

1 -5

used the‘technique on several power system problems.

2. A discussion of work done in implementation of a
graphical display system for the Electrical Engineering
Department's EAI 640 computer. Although this display
éystem was developed from scratch in cooperation with
M.R. Mayson, the details of this work are not consider-
ed relevant to this thesis. The philosophy developed 1is
considered relevant however and is based on a large
effort devoted’to'establishing a framework for the

software.

1 - 2 PATH FINDING

Chaptér 2 is concerned with a particular class of
path finding problems. Briefly these problems involve
repeated traversal of the minimum cost path that can be
found on the basis of current (incomplete) arc or path-
segment cost information. This is combined with the
updating of the arc cost information for those arcs that
are traversed, on any one path traversal. This problem
has been given the name 'on-line' path finding.

Chapter 2 is written in the form of a paper describiﬁg
an operations research technique for this class of
problem.

The presentation in Chapter 2 is thus rather closer
to the basic problem than if the sophisticated heuristic

graph searching techniques used by artificial

intelligencé workers had been explicitly employed. It
should be made clear however that by the very nature of
graph searching in problem sblving or game playing they
often fall into the 'on-line' path finding class.

Consider for example a small board game where it is
possible for a machine to search enough of the game
graph (tree) to establish that it can not possibly win
if the opponent plays optimally. An example of such a
problem is considered near the end of Chapter 4, with
the French Military Game or Fox and Dogs.

In such situations we would like the machine to
make a move that maximized its chances of a win - that
is, try to put the opponent in a position where he is
most likely to blunder. ©Such performance is just not
possible by many successful tree searching programs,
since the basis of back-tracking up the game tree is a
mini-max strategy. On the other hand the efficiency of
the‘searéh (the work that it involves) is very dependent
on the search strategy and this aspect has received
considerable attention [7][10] [11].

A similar problem can occur in situations where a
complete search is not possibly by any strategy. In
this (normal) case the usual technique is to back-track
up the game tree from an estimation of the value or
merit of the wvarious tTerminal nodes that have been

established. Probably the best known program of this

1 =7

form is Samuel's checker player [4210 An evaluation of
various search technigues is given by Slagel and Dixon
[147.

The problem arises not from the search and back up
procedures themselves but occurs as soon as the
estimates used for the value of each node are allowed to
be learned by the machine from its own experience. In
fact as soon as the learning is directly derived from
the machine's own play we have an 'on-line' path
finding problem. Chapter 2 shows that without an
algorithm such as the BANDIT algorithm the learning
process in such cases is liable to get 'stuck' below
the optimal performance level.

The above comments apply equally well to problem
solving and theorem proving - except that in these cases
it may only be required to search once for a solubion.
"In other words the information update from one solution
to the next is not present. In such cages the 'on-line'
path finding problem does not exist and the best avail-
able estimate gives the best that can be achieved.

There is no benefit from the iside—effect’ of the

actions giving more data.,

1 - 3 STOCHASTIC LEARNING AUTOMATA

Stochastic automata have recently been receiving
attention as models for learning behaviour and a survey
of this work is given b& Fu (1970) [5]0 Chapter 3 is
concerned with this approach to learning machines,
starting with a brief introduction to the current
established work.

One recent scheme in particular [15] is then
developed and éhown to be similar to a BANDIT algorithm
stochastic learning automaton, which is introduced at
this point. A benefit of this is that a proof of con-
vergence igs given for the first automaté scheme [15] and
a modified BANDIT automaton can be derived which falls
within the scope of this proof.

Stochastic learning automata schemes are viewed in
Chapter % as procedures. For this point of view a
notation used in computer algorithm formulation is shown
as an attractive method for presenting the stochastic
learning automata procedures.

Finally the environment-automaton interaction is
generalized to enable this approach to tackle the class
of problems considered by several 'heuristic programming’
schemes (for want of a better definitive). STeLLA [1,6]

in particular tackles such a clasgss of problems.

1 - 4 ROTE LEARNING AND MARKOV PROCESS THEORY

The basic memory strucpures and strategy used by
STeLLA were seen as similarlto work on Markov process
theory developed by Howard '[8]° With this starting
point an attempt was made to bridge this gap by buillding
from the Markov theory towards the STeLLA strategy.
Unfortunately the complexity of the STeLLA heuristics
and special purpose parameters proved too great to allow
the theory to meet up with the STeLLA implementation,

By working in reverse a very basic STeLLA structure
was extracted in order to move closer to the Markov
theory. This basic structure was (eventually) formed
into the BANDIT-EXPECTANCE algorithm as presented in
Chapter 4. At this pbint the algorithm proved of
enough interest in its own right - and the road back to
STeLLA rather tofturoﬁs - that the linking of the Markov
theory thrdugh to the BANDIT-EXPECTANCE algorithm was
considered as replacing the original obJjective.

Chapter 4 briefly presents the relevant Markov
theory and develops from this to end up with the BANDIT-
| EXPECTANCE algorithm. Throughout this development the
idea of a rote learning table is usea”to tie the
presentation together,

The idea of a rote learning table is a simplificat-
ion of the 'control policy' which STeLLA employed. In
the course of Chapter 4 the rote learning table

1 - 10
progresses from a simple record of events, through to a
more functional ‘control policy' form. The structure of
the rote learning table is not too important in Chapter
4, except that it contains the learning machine's long
term memory. However, the format is developed in such
a way as to be extensible, and an indication of such

future directions completes Chapter 4.

REFERENCES

1 Andreae, J.H., Learning Machines: A Unified View.
Encyclopaedia of Linguistics Information and
Control. . Ed. Meethan,A.R. and Hudson,R.A.
Pergamon Press, 1969.

2 Bellman,R. A Problem in the Sequential Design of
Experiments., SANKHYA Vol.16, parts % and 4, 1956.
pp 221-229.

3 Feigenbaum,E.,A. Artificial Intelligence: Themes
in the Second Decade. Stanford Artificial
Intelligence Project Memo AI-67. Invited paper
IFIPe8 Congress, Edinburgh, Aug. 1968.

4 Fel'dbaum,A.A. Dual Control Theory I-IV in Optimal
and Self-Optimizing Control, Ed. Oldenburger,R.
M.I.T. Press, 1966.

5 Fu,K.5. Stochastic Automata as Models of Learning
Systems. pp %93-4%1, Adaptive, Learning and
Pattern Recognition Systems, Ed. Mendel,J.M. and
Fu,K.8. Academic Press, 1970.

S Gaines,B.R. and Andreae,J.H. A Learning Machine
in the Context of the General Control Problem,

2rd IFAC Congress, Lbndon3 June 1966, (Tnst. Mech. Fg.)

10

11

12

1,

14

1 =12

Hart,P., Nilsson,N., Raphael,B. A Formal Basis
for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. on Sys. Sci. Cybernetics,

July 1968, pp 100-107.

Howard,R.A. Dynamic Programming and Markov
Processes., MIT Press 1960.

Michie,D. and Chambers, R.A. Boxes: An experiment
in adaptive control. Machine Intelligence 2,
Edinburgh University Press 1968,

Pohl,I. First Results on the Effect of Error in
Heuristic Search. Machine Intelligence 5, Ed.
Meltzer,B. and Michie,D. ZEdinburgh University
Press, 1969, pp219-236.,

Samuel ,A. L. Some Studies in Machine Learning
Using the Game of Checkers. IBM J. Res. Develop.
3 (July 1959), pp 211-229,

Samuel,A. L, Some Studies in Machine Learning
Using the Game of Checkers. II - Recent Progress.
IBM J. Res. Develop. 11, 6 (Nov. 1967), pp 601-617.
Shapiro,l.J. and Norendra,K.S. Use of Stochastic
Automata for Parameter Self-Optimization with
Multimodal Performance Criteria. Trans. IEEE
Systems Science and Cybernetics, Vol. S8C-5 No.4,
October 1969, pps52-3%60.

Slagle,J.R. and Dixon,J.K. Experiments with some

Programs that Search Game Treeg. JACM Vol.o,
No.2, April 1969, pp 189-207,

CHAPTER TWO

THE BANDIT ALGORITHM FOR MINIMUM COST PATH
FINDING WITH INCOMPLETE COST INFORMATION

CHAPTER TWO

> - 1 INTRODUCTION

The problem of finding the minimum cost path
through a graph (network) of interconnected nodes where
the arcs, or node interconnections have associated costs
has been solved in many ways. The applications of this
problem range from transportation routing problems
[1] through automatic control, [2] to artificial intel-

ligence research [3].

2 - 2 PROBLEM STATEMENT

Existing algorithms cannot satisfactorily tackle
certain problems having incomplete cost information.,
Here we attempt ﬁo solve a class of problem that we
have termed 'on-line'. These problems have the follow-
ing characteristics: |
a) The graph is to be traversed from a start node to

one of a set of goal nodes N times.

b) The costs associated with the arcs are not fully
known and‘may be stochastic.

c) Information gained from each traversal of the
graph is to be used to update the corresponding
arc cost estimates.

d) We wish to minimize the total cost incurred by the

N traversals of the graph.

In descriptive terms the problem is that of decid-
ing whether to travel a known path or to spend money in
exploring for a short cut. It is clear that a 'search
for the best path' policy may well precede a 'use the

best path that has been found' policy.

THE ON-LINE PROBLEM

Traverse graph from start to goal.

Path Cost = sum of costs of arcs traversed.

Update arc cost estimates

Select the next path to traverse on the
basis of the current arc cost estimates.

The object is to minimize the total cost
over a number of traversals of the graph,

Figure 1

2 - 5 ILLUSTRATIVE EXAMPLE

To i1llustrate the on-line path finding problem
consider the case of a transport operator who has a
contract to transport goods between city A and city B.
The contract is such that time is the important factor,

so that the cost of any particular route (path) from

2, = 2

city A to city B is the travel time rather than the
mileage or fuel cost or anything else.

In thié example the arcs are the separate lengths
of road that may be travelled as part of'some path from
A to B. The arc cost is the travel time for an arc.
Notice that the arc cost is a random variable since
hills, bends, traffic density and so on will all
affect the travel time. Notice also that a reasonable
apriori estimate of the mean travel time is available
| using road maps and so on.

Every time thé transport operator runs an assign-
ment from A to B he is able to update his cost esimates
for the roads (arcs) that he chose to travel.

Consider the simple case where there are only two
possible paths from A to B. Assume that the paths have
costs uniformly distributed in the range 0.7 to 0.8 and
0.8 to 0.9 respectively. In our ignorance we may well
asslgn apriori estimates of 1.0 for the cost of each
route. Making an arbitrary choice we proceed by the
second path on the first occasion and find it better
than the apriori assumption. From this moment onwards
the simple strategy of travelling the minimum (estimat-
ed) cost path, would never get around to trying the
other route, although quite obviously it is beftero

A heuristically derived algorithm - the BANDIT

algorithm - is proposed to tackle this and similar

problems. The BANDIT algorithm accepts apriori estim-
ates not simply as a mean cost but as a probability
distribution for the mean cost.

Although the BANDIT algorithm is not guaranteed to
be optimal in the sense that it will minimize the total
cost over a number of traversals, it is shown to be
very near optimal for simple problems and is computat-
ionally feasible for large problems. A1l known methods
for optimal solutions are impractical (or even
currently impossible) for large problems, but they can
be used on small 'artificial' problems.

The optimal solution for simple problems will be
given by use of Bellman's method Pﬂ, which was propos-
ed for the 'two armed bandit problem'. This problem
(to be described in the next section) can be taken as
equivalent to the two path problem described above by
considering the two slot machines to be the two paths,
and the payoff probability as relating to the path cost.
For example, a slot machine payoff probability of 0,75
can be interpreted as 0.25 mean path cost (normalized).

Note that the two armed bandit proﬁlem (next
section) is considered because it is only for this
simple case that optimal solutions can be computed.

The BANDIT élgorithm is then described and shown to

match up very well to these optimal solutions.

2 - 4 THE TWO ARMED BANDIT PROBLEM

The simplest form of the path finding problem is
equivalent to the two-armed bandit problem. This is a
classical mathematics problem that is still not com-
pletely solved. The basic two-armed bandit problem is
outlined below:

Suppose that we have two slot machines in front of
us, one with known properties and one with unknown
properties. When the handle on the first machine is
pﬁlled, there is a known probability, s, of receiving a
dollar; when the second machine is played, there is a
fixed, but unknown, probability or success, r.

The process assumes the following form., We try
the second (unknown) machine a number of times to be
determined by the outcomes, and then* decide to use the
first machine from then on.

The object is to maximize the expected value of

the criterion function:

where O < a < 1 is a discount factor and zZ. represents
the return obtained on the nth trial.

This criterion function enables the problem to be
treated as an unbounded process with discount factor, a,

rather than a finite sequence of choices where we have

*could be never

N trials.

Bellman's dynamic programming approach [4] to this
problem giVes a computational method that is feasible
for the case of one unknown and one known payoff prob-
ability to choose between (as above). For multiple
choice problems the computation would quickly become
impractical. No analytic solution has been derived for
an optimal policy.

Bellman defines:
fmn(s) = tThe expected return obtained using an optimal

policy for an unbounded process after the
second (unknown) machine has had m successes
and n failures.

It is assumed [4] that the probability distribut-
ion an(r)ygor r in[0,1] after m successes and n fail-
ures, is updated from the apriori edgimate. Let the
expected value of an(r) be p_ -

The basic functional equation can now be written,

<1+a°fm+1,n(s>>pmn * a</|_pmn>fm,n+’l<s>
fmn(s) = Max '

s/(1-a)

Bellman gives an existence and uniqueness theorem
that enables the above equation to be solved by a

method of successive approximations.

2 =7

Bellman's method has been outlined above since 1t
shows the difficulty involved in this problem; also it
provides a computational method for the optimal policy.
These optimal policies will be compared with the results

from a heuristic algorithm which is described below.

2 = 5 THE BANDIT ATLGORITHM

We will leave the two-armed bandit problem for a
moment in order to set out a heuristic decision proced-
ure that will be central to the rest of this chapter.

The heuristic that the BANDIT algorithm 1s based
on can be stated like this:

If one of a number of alternatives has a probab-
ility 'p' of being the best alternative, then choose
this alternative p.100% of the time.

To assess this probability of one alternative
being better than any other, it is necessary to know not
only the estimated mean costs for each alternative but
also the distribution probability of these mean costs.

The apriori distribution to be used is not an
objective probability corresponding to some random ex-

periment, but rather degrees of belief based on prior

analysis of conditions relevant to the particular prob-
lem. Thus apriori distributions including a zero prob-
ability for some range of values imply a complete belief

or certainty that values in this range never occur. A

common apriori distribution would be a normal
(Gaussian) form, the variance reflecting the confidence
in the mean estimate.

Consider the case of only two altermatives as in
the case of two possible paths from A to B. If the
cost of one path is estimated to be 0.85 with variance
of 0.15; and the other path is known to have a mean
cost of 0.75; roughly, the BANDIT algorithm will give
the 0.75 cost path preference about 84% of the time.
The other 16% of the traversals are used to establish
a better estimate of the 0.85 estimated mean cost path -
making sure that it really is a greater cost than 0.75.
As we become surer the variance drops and the 16% falls
lower,

We will now frame the BANDIT algorithm in a more
formal and precise manner:

Let Sq,Sg,Sagaoc,SN‘ be N alternatives., We mus?t
select one of these and the estimated mean cost of
selecting 8, is X, o Let fi(x) be the probability dis-
tribution for Xs it is to be understood that this is
the current distribution and updating occurs to fi<X>
after Sei has been selected and its cost measured. The
measured cost is treated as a sample from an unknown
distribution gi(x) and the expected value of fi(X> is a
mean estimator for gi(x)a The object is to minimize

the total cogt incurred.

From the fi(X) we can calculate the current
probability that the cost of Si will be less than any

of the other alternatives, p(xi = minrixj;j=1,2aoooN;}%

BANDIT Algorithm

Select Si with a probability p(Si) such that

p(si> = p<Xi = min{Xj;jz/legacos,N}>o

The direct computation of p(Si) would require

evaluation of the integral:

p(s;) - AP ASEEAC RN

Where Fj(x) = JQX fj(x)odx; the cumulative distri-
bution (see Appendix C for details).

Fortunately since we only need to select one of
the possible strategies, sje{si}7 we can employ a Monte
Carlo type procedure to avoid calculating p(Si) for
each 1, ieeo‘{p(si)}b The procedure is to take a set
of random samples, {yi; i=192900.N]’Where each Ts is a
random sample from the probability distribution fi(x)a
If the minimum of this set is s where yj =
min~{yi:i=1,2,,@.N}, then select strategy Sjo Notice

that unlike normal Monte Carlo procedures only one set

of random samples is taken in this procedure. If the

2 - 10

procedure were repeated a large number of times then
the set of probabilities of selection for each strategy,
{p(Si)}, could be evaluated.

An additional simplification can be made in the
procedure by assuming that the fi(x) are all normal dis-
tributions. This will usually be an acceptable assump-
tion since the dentral limit theory proves that the dis-
tribution of a mean estimator will tend to be normal as
the number of samples becomes large, regardless of the
form of the parent population. Further, if the parent
population is normal in its distribution then the dis-

tribution of the mean estimator will always be normal.

2 - 6 SOME COMPARATIVE RESULTS

In order to illustrate the operation of the BANDIT
algorithm we have compared its performance on some two-
armed bandit problems with the optimal solution
(computed by Bellman's method).

The optimal solution involves a switch from the un-
known machine to the known one after a particular
éequenoe of succesges and féilureso For‘any given num-
ber of trials, the probability of different sequences of
success and failure can be computed and hence the prob-
ability of a switch to the known machine.

The BANDIT algorithm has a probability of selecting
either machine that depends on the sequence of successes

and failures for each machine. In the same manner as

2 = 11

above we compute for each given‘number of trials the
probability of each possible sequence of success and
failure, and hence the overall probability that the
known machine will be selected.

The above procedure has given the results for
both the optimal solution and the BANDIT algorithm in
the form of a probability that the known machine will
be selected after any given number of trials. These
results can be directly com?ared and this is done in
figure 2. Discount factors, a, of 0.5 and 0.8 are shown
for the optimal policy. Both methods used the same
apriori edimate for the unknown machine payoff and also
the same updating procedure. The distribution of the
payoff probability for the unknown machine was assumed

normal with an apriori variance of 0.25.

ROB. of
/6 T
] I P ity
E_f':"-—:_—._r—‘f"‘J j
. R OPTIMAT, 8=0.8
. a=0.5
005.‘
| i ' LBANDIT ALGORITHM
| 1 1! pavorr PrOS.
. 'l M/C I known - 0.25
i1 M/C II unknown = 0.10
0 - n - I TRIAT,
0 10 20 30
FROB. of
E/g I PAYOFF PROB.
9] M/C T ¥nown = 0.25
> M/C II unknown = 0.30
_BANDIT ALGORITHM
0.5 | K OPTIMAL a=0.8 -
1 a=0057/
| J_F—;“Lﬁ’?—= = Tz e 11}_
| T T T T T T T
I
0. Ly T T i TRTAT,
O 10 20 %0

PROB. of
M/C I
1.0)
- OPTIMAL a = 0.8 -
N a = 0.5 /
, N e
0.5 r—~—%5;g?ﬂ“d3_Jq£_J K\\..
i "—-—' BANDIT ALGORITHM -
14 1 PAYOFF PROB.
’ L M/C I knmown = 0.25
1 ¢li M/C II unknown = 0.20
o) ! T T TRTAT
0 10 20 %0
PROB. of
M/C I
1.07 PAYOFF PROB.
M/C I known = 0.25
M/C IT unknown = 0.40
- BAUDIT ALGORITHM
0.51¢ OPTIMAL a=0.8
. - ;, a:O.5]
_j—"“;.,.,
;fb-iﬁq_%:ir; U O
ﬁr_-__,n_f:___,_—l-l_r,’l:r__:ﬁﬂ_ —
0 L ﬁ g | TRIAT,
0 10 20 %0
TWO ARMED BANDIT PROBLEM

2 — Y EXTENSION TO PATH FINDING

It is not practical to calculate an optimal solut-
ion for even a small on-line path finding problem. We
can appreciate this by considering the extensions that
need to be made to the two-armed bandit problem:

T Extension to an m-armed bandit problem. (m alter-
native paths).

2. The cost of all m paths may be unknown apriori.

5. vThe traversal of one of the paths allows updating
of a set of arcs. These sgets of arcs for each of
the m paths are not necessarily mutually exclusive.

4 It requires considerable calculation to evaluate
the set of arcs that form the minimum cost path
(on the basis of the cost estimates). In general
it is impracticable to 1list all of the m alternat-
ive paths and their costs. |
Point 4 leads on to the procedure that will be used

to find a path through the network.

2 = 8 AN ADMISSIBLE ALGORITHM

We shall use the definition in [5] for an admiss-
ible algorithm, which (briefly) is any algorithm that is
guaranteed to find an optimal path from the start node
to_éﬁgoal node. Dynamic Programming [1] and the A*

algorithm [5) are examples of admissible algorithms.

2 = 14

An optimal path from node i to node J has the low-
est cost over all possible paths from node i to node Jo
An admissible algorithm considers only the set of arc
costs 1t has to work with so that the optimal path that
it finds is more correctly the current-optimal path.

It is only optimal on the basis of the current arc cost
estimates.,

In the on—line path finding problem the current-
optimal path on the basis of the current arc cost
estimates may not be the true minimum cost path (the
optimal based on the, unknown, true mean arc costs).
This fact can cause the admissible‘algorithm to 'sit!
on one particular path each time it is used during the
course of an on-line path finding problem, even though
this path may not be the tfue—optimalo The feedback
that comes from the measured arc costs between each use
of the admissible path finding algorithm (used to up-
date the arc cost estimates) may not help simply because
only those arc costs on the current-optimal are being ”
measured. This failure of an admissible algorithm in
the on-line case is considered further in the next

sections.

N
I |

RN
\J1

2 - 9 ARC COST ESTIMATES

We will denote the cost of the arc i-Jj from node 1

. . A o~ "
to node j as ¢4, and its estimate . The‘?ij are

J-n
updated every time arc i-~j is traversed. A form of

stochastic approximation can be used;

~ ~ _ 9
Cij<“ aocij + (1 a)ocij

1

where i3 is the arc cost as measured, and O £ a € 1.*

If is known to be deterministic, use a = 0. More

cij
sophisticated forms of this process can be found in [e].
Figure % illustrates this process, and shows how the
variance of the estimate can be maintained in a similar
manner,

We will use Ci to denote the cost of path i, one of
the set of possible paths from the start node to a goal

o
node. Ci will be the estimate of Oi; i.e. the sum of

eij for all arcs i-J on path i.

2 = 10 ON-LINE ALGORITHM

The on-line algorithm applies an admissible algor-
ithm at each traversal under the on-line conditions.
~
If 63 < C, for all i # Jj, and for simplicity
A
C. = C.,
J J N
to be traversed. However, if Ok >-Cj and Cj > Ck:for

then the on line algorithm will select path J

*The +ve&—ul implies that at each updating, the variable

on the LHS is given the value of the expression an the RHS.

some k then the on-line algorithm will have converged

onto a non-optimum path since Ck < Cjo

2 = 11 CONVERGENCE THEOREM

The on-line algorithm is guaranteed to converge

onto the optimum path under the following conditions:

A .

cia. < Cij for all 1i-j

A , .. s

Oij - cij as arc i-j 1s repeatedly
traversed.

The proof of the convergence theorem follows from
contradiction of the hypothesis of convergence onto a
non-opbimum or non-convergence.

If we cannot satisfy the conditions of the conver-
gence theorem we have shown that the use of the on-line

algorithm will not always be successful. The BANDIT

algorithm is proposed to overcome this difficulty.

2 - 12 APPLICATION OF THE BANDIT ATGORITHM

We have shown that the BANDIT algorithm performs
well in comparison to the optimal solution for some
simple two armed bandit problems, which is the basis of
the on-line path finding problem. There is no known
method that is practical for compubation of the optimal
solution for the more complex on-line problem. The
BANDIT algorithm (which requires only modest computat-

ion) cannot therefore be compared with an optimal

2 = 17

solution. Instead we must rely on the 'reasonable'

nature of the algorithm - as with most heuristic proced-

ures.
We have found proof of convergence for a modified
form of the BANDIT algorithm in terms of the theory of

" variable structure aufomata, [8]. This is discussed in

the next chapter (Chapter 3). This chapter however

will rely on an example to support the worth of the
algorithm.

The application of the BANDIT algorithm to the on-
line path finding problem reguires:

To A procedure to maintain and update a distribution
for the mean estimator for each arc costi: 1f
advantage isbtaken of the fact that by the central
limit theorem this distribution will tend to be
normal, then only two parameters (mean and var-
iance) will be required for each arc cost estimat-
ion. One possible procedure for updating these
parameters has been outlined in figure 3.

2 A procedure for obtaining a random sample from each
of the mean arc cost estimator distributiqnsu There
are many random number génerators available -
again the computation is simplified if a normal
distribution is assumed.

3, An admissible algorithm that can be applied to the

set of arc costs obtained by 2. There may well be

a standard minimum-cost past finding program to

hand and this could be used directly.

The operation of these three procedures is shown
in figure 4. |

The application of the BANDIT algorithm to heur-
istic search algorithms used in artificial intelligence
research is discussged in Appendix D. However, the
notation for algorithm presentation developed in
Chapter % is used,so that a detailed study of Appendix

D is best left for the present.

2 - 13 RESULTS

The small network shown in figure 5 was used to
deménstrate the BANDIT algorithm as applied to the on-
line path finding problem. The true mean arc costs for
this example are ghown in figure 5 and fhe true optimal
path is shown with the dotted line. The apriori arc
cost estimates were all taken as equal so that the
apriori current optimal path will be either around the
top or around the bottom in figure 5.

Two other methods apart from the BANDIT algorithm
were applied to the same example. One was the on-line
algorithm which in this case will not have the condit-
ions spéoified in the convergence theorem satisfied.
The results from this show the trap of applying a stan-

dard minimum cost finding program to the on-line

Probability

Unknown
Distribution

S S

Cs -
1d

lean estimator distribution:

Probability

Approx. Normal
Distribution

. tstimated
mean cost

o2 4

iJ

lgure %

. variance estimators.

Each traversal of arc ij incurs a cost Cy e

J

Cost at time t = cij(t).

. —_— e
Estimate of Cij(t> = cij(t)o

. e
Variance of cij(t) = vij(t).

PaN
S.T.D. Qf cij(t) = dij(t).
Update of mean and variance for the cost of arc ij.
~ S
cij(t) = a@cij(t—ﬂ) + (1—&).cij(t); 0< ac< 1
_ ~ >

vij<t> = a°vij<t—;> + (1—a)o(cij(t) - Cij<t>>
dij(t> = <Vij(t>) ; m = the number of samples,

m

m is limited to (1+a)/(1-a), the moving average sample
number that is equivalent to the exponential smoothing
Notice that if a=(m-1)/m, and m is

the total number of samples available, then the above

equation? Brown.[7]°

equations reduce to the standard (classical) mean and

THE BANDIT ALGORITHM

Mean Arc Cost Estimates Random Samples APPLIED TO ON-LINE
R PATH FINDING.
Prob. -
f?\ s -
M//S \\ Mean 1 Cﬂ
: Estimate
Prob. 1 Apply Dynamic Prog.
rob.
~ or A* algorithm
\\ C .) v
| L Mean 2 2 :> Travel Minimum Cost Path D
: = o Estimate ' —_—
: (Any minimum cost path
[finding algorithm may
i be used).
§
Prob.] . ~
i /1 o
g f:% Mean n =)
t R TR .)
AR > Estimate
A\ o
d E Update Estimates i?
§
b
| s

Figure 4

2 = 21

problem. The other method was an algorithm that
selected a path with probability inversely proportional
to the relative cost of the path.

Figure 6 has a graph of the results expressed as
incremental costs (total cost incurred divided by the
number of trials). These graphs can be viewed as a
form of 'learning' curve. The BANDIT algorithm is the
only one to converge onto the true minimum cost path.

© The same fesults obtained from the BANDIT algorithm
are shown in a different form in figure 7. Here the
probability that each of the possible paths will be
chosen is graphed against the number of trials (plotted

for three of the paths).

START

Figure 5

SMALL NETWORK EXAMPLE

True Mean Arc Costs

GOAL

Apriori estimates:

True arc costs:

A1l arc costs = 50
Std deviation = %0

As shown sbove with
3td deviation = “10.

cc - ¢

250 1 ‘ B Total Cost
Incremental Cost = Tamber of Runs
Probability of travel
, a\ _ inversely proportional
500 \ / to estimated cost.
150 ‘ .
Traverse minimum
/f cost path (estimated)
| \—\‘__\[BANDIT Algorithm
100
Minimum Path Cost
50 7
O R] § T - T : - T 7 ~1
0 20 40 60 80 100 120 140

Number of Runs

gz - ¢

Prob.
1.0

0.8

0.4

of Traversal

e True Minimum Cost Path BANDIT ATGORITHM

-EXAMPTLE RESULTS

r Apriori Minimum Cost Path.

~2nd to Minimum Cost Path.

Figure 7

) -§V/R\gv/g\w Number of Runs

N
20 10 60 80 100 120 140

i

160

w2 -

c

2 - 14 CONCLUSIONS

A class of path finding problems that involve a
simultaneous maximization of information gain and minim-
ization of incurred cost has been described as the 'on-
line' path finding problem. A heuristically derived
algorithm - the BANDIT algorithm - is proposed to tackle
these problems.

Simplest form of the on-line path finding problem
is the two armed bandit problem. An optimal solution
for this problem is compared with results from the
BANDIT algorithm.

The application of the BANDIT algorithm to the full
on-line path finding problem is then outlined and some
results given for a small example problem.,

The computation of the optimal solution for the two
armed bandit problem is an iterative procedure requiring
considerable computation. The extension of this method
to the on-line path finding problem is not practical.
The BANDIT algorithm on the other hand requires very
little computation if the method outlined is followed.

A convergence theorem with the particular conditions
under which a standard path finding method (such as
dynamic programming) can be successfully applied to the
on—iine path finding problem is given. The BANDIT algor-
ithm can however be applied to any standard procedure

(admissible algorithm) in order to extend the range of

2 = 26

problems that can be successfully tackled.

No discussion has been given for the case where the
random arc costs have time variable statistics (such as
drift in the mean cost of some arcs)o Preliminary
results show that the BANDIT algorithm is capable of
tackling such problems and the methods suggested leave
this possibility open. There is no known optimal solut-
ion to this class of problem even for the simple two-
armed bandit situation.

A convergence proof for a modified form of the
BANDIT algorithm has been found in terms o% the theory of
variable - structure automata [8]. This will be discuss-

ed in Chapter 3%.

REFERENCES

1

Kaufman, A., Graphs Dynamic Programing and Finite
Games, Academic Press, 1967.

Bellman, R., & Kalabé, R., Dynamic Programing and
Modern Control Theory, Academic Press, 1965.
Slagle, J.R. & Dixon, J.K., Experiments with some
Programs that Search Game Trees, JACM Vol.116, No.Z2
April 1969; pp 189-207.

Bellman, R., A Problem in the Sequential Design of
Experiments, SANKHYA Vol.116 pt. 3 & 4, 195635 pp
221-229.

Hart, P.E., Nilsson, N.J. & Raphall, Ba, A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths, IEE Trans. on System Science & Cybernetics,
S5.5.C. 4 No. 2 July 1968; pp 100-107.

Fu, K.S., Stochastic Automata as Models of Learning

Systems, Computer & Information Sciences II, Ed. J.T.

Tou, Academic Press, 1967; pp 177-192.

Brown, R.G., Smoothing forecasting and prediction of
discrete time series, Prentice Hall, 1962.
Chandrasekaran, B. & Shen, D.W.C., On Expediency and
Convergence in Variable - Structure Automata, IEEE
Trans. on Systems Science & Cybernetics, March 1968,

SSC - 4 No. 13 pp 52-59.

CHAPTER THREE

STOCHASTIC LEARNING AUTOMATA

3 =1 INTRODUCTION

This introduction gives a brief survey of the
development of stochastic learning automata and develops an
algorithmic notation. for the concise description of these
schemes, Following this, a new development called the
BANDIT schemé is described and some of its advantages
considered,

The class of problems considered, or the environment
for the stochastic learning automaton, is‘then extended to a
much wider problem class that cannot be tackled by the
automata schemes described, but has been considered in the
field of 'heuristic programming’ for learning machines as
robots and game players. The%BANDIT automatén‘is extended
by the development of an 'expectance!’ function in order to
tackle this extended problem class. Illustrative results are

then given,

| A more detailed historical development of most of
the material outlined here can be found in Fu (1970) [11]

The behaviour of a finite state (deterministic)
automgton operating in a random environment was first studied
by rfsetlin (1961)' [15] . A simple block diagram of the

system 1s shown in figure 1.

Random
Environment
u € U yexX
Automaton
Figure 1

5 =2

The response of the environment can be y = 1,
called a penalty response, or y = O called a nonpenalty or
reward reéponse° Tsetlin characterised the environment by a

vector C = (C,]9 voo °Cr) where:

0, = Pr (y(1)=1 l u(b)=uy) §=1, eeo o7 (1)
u(t) = automaton's output or action at time t,
y(t) = the environments response to this action.
Cj = the probability of a penalty response for action ujg

and (1=Cj) = thg probability of a reward response,
A stationary random environment is considered
which means that the Ci are all constant values over time,
Following Tsetlins approach Varshavskii and
Vorontsova (1963)[16] have used a variable structure automaton
as a model of a learning sysfem operating in a random
environment. Their approach was to modify the state
transition probabilities in such a way as to minimize the
probability of a penalty response. If pijl(t) is the
transition probability from Automaton state a to state qj

for the environment's response y=yy, at time t, thens
r

1
2 P ; (t) = 1 for all i and t. (2)
3=1
The idea is to minimize the probability of a
penalty response by a decrease of pij]'every time a transition
from state a, to qj due to response yy, is followed by a
penalty response. If however a nonpenalty or reward response

1
follows, then pij is increased, This modification of the

5=3

state transition probabilities constitutes a transition
probability update procedure. An admissible transition
probability update procedure must be such that (2) applies
after every update.

Fu et al (1965,1966) [7] [8] have extended
Varshavskii and Vorontsova's work [16] to the more general
case where:

1. Instead of updating the transition probabilities, any
convenient probability function is treated. (The total
state probabiiities for example).,

2. The performance of the automaton is measured not by a 1
(penalty) or O (reward), but by any value between O and 1.

The system now looks like figure 2.

| Random
I Environment y e X
s/
ue v Performance
Evaluation
Automaton 43__—"_-“J
Z Figure 2.

Let the probability of the automaton taking the ith
decision, choosing the ith action, or being in the ith state
be Py The index i=1, cc0 4r gﬁwhere‘r is the total number of
possible (quantized) parameter settings, or the number of states
of the automaton.

A 1inear reinforcement algorithm to update p__,L can be
written as:

pt(e+1) = p NE) + (-)z, M(8) (3)

Where O« <1, 0 ¢ zil(t) “ 1, and;zwg zil(t) = 1,
i=1
pil(t) = the probability of action Uy due to input (environment
response) yq, at time t.
zil(t) = a performance measure evaluated from the environments

response to action us (ui due to yl) at time t,

A slightly differenﬁfviewpoint is to consider the
use of a learning automaton as a hill climber to maximize or
minimize some performance measure. The environment can now
be considered as providing an output that is a performance
measure I(ui) for action or parameter setting u; . The output
from the environment that is available to the automaton is
denoted g(ui) and this will be a noisy observation or
measurement of I(ui)o The expectation of g(ui) will be the
actual performance measure for action Uy I(ui)e The aim of
the automaton is to give an output or parameter setting uopt
such that I(uopt) is an éxtremumo From now on only a maximum
will be considered, in contrast to the minimization of a penalty
probability considered previously.

Shapiro and Narendra (1969) [1@] have considered this
use of a learning automaton as a hill climber in situations
where only noisy measurements of performance are available and
the performance hill may be multi-modal. Their scheme is
outlined below because it comes closest to the BANDIT algorithm
that is to be described later, and results from the scheme are

compared with results from the BANDIT algorithm,

2 =2

P Y

An important point about the scheme proposed by
Shapiro and Narendra is that it can achieve optimal performance,
whereas the schemes previously outlined can, in general, only
achleve expedient performance. Convergence and expediency
have been considered for several learning procedures by
Chandrasekaran and Shen (1968). [5j Expediency in the context
of hill climbing, is said to occur when for;

I(uj) > I(uk) k=1, oo0 T k# j (L)
in the limit as't - 00 . the probability pj(t) of selecting
action j is greater than pk(t), in either a deterministic or
probabilistic sense as the particular case may apply.

. Optimality 1s a stronger result than expediency

and 1t requires that;

1im p.(t) = 1 if I(u.)> I(u) for all kfj. (5)
teow] J k

and

1im pk(t) =0 for k#j

>0

Before giving more details of particular procedures

some notation will be introduced to clarify the presentation.

2, NOTATION,

An algorithmic notation is used. because it eliminates
an explicit reference‘to time which is a particular advantage
for variables that are updated.but not necessarily updated
every time interval., More than this it is desirable to give
a clear indication of the 'form' of a procedure, without
restricting the procedure to a particular set of rules. The

format for presenting the algorithms is based on the excellent

work of Knuth (1968)[10] and is introduced below.

Consider for example the statement:
A1, [Update] X «xX + (1-o)x . (0<% <1),
Here X is an estimate (indicated by the hat) of a variable x.
Whenever the step A1 is carried out % is updated by
replacing its current value by the evaluation of the
expression to the right hand side of the arrow (<). The
phrase in the square brackets at the start of the step, in
this case [Updafe] is s brief summary of the principal content
of the stepo There will sometimes be parenthesized comments
at the end of the steps; in A1 the range for alpha is a
comment,

Now consider a more detailed procedure:
B1 [Initialize, o < 0, k < 1.
B2 [Observation)] x < observation.
BIB. [Update mean estimator:_ﬁ X aeuX + (1-¢e0) x,
B4 [Count)] k < k+1, & < (k-1)/k, go to step B2,

This B-procedure is simply a method for evaluating
the classical mean of a set of observations (sampes) Xja
Note that there is no final answer, the procedure is 'on line!’
and simply maintains an estimator %,

k

'qgmw X (6)

3=1

Vi
X =

Cso

1
k
If however of is a fixed constant:

C1 [Initialize;] W « value in the range O to 1.

we

c2 [inputJ X 4-O0bservation.
C3 [Update mean gstimateﬁ ¥ < ¥ + (1- «)x, go to C2.

The C-procedure is a moving average or exponential
smoothing procedure, Brown (1962) {2} . The procedure may also
be interpreted as a linear reinforcement learning procedure,
Bush and Mosteller (1958) {3].

In a similar manner we can maintain some estimator
of the variance of observations x, written:

D1 [Variance updateo] Vo4 AT+ (1-0) ()’c\mx)2 o (O<g1),

And for the variance of the mean estimator:

1 [Mean variance updategj [113"?? (@s 1/number of samples)

Where for a classical estimator of the variance
of the mean, @ would be 1/(k-1), k being the number of samples
or observations of x,

Now the step A1 by itself can be interpreted as
part of a B-procedure or part of a C-procedure or any similar
procedure where & may be a more complex function Fu (1967){ 9]

However instead of leaving a step like‘A1 in an
algorithm where o is not specified the notation:
X « UPDATE (X, X)4 will be used.

It is to be understood that any of the procedures
described or referred to above are appropriate for the
UPDATE function, For that matter i1t may be any procedure to

do a similar Jjob under the particular circumstances that may

apply.

3, MODIFIED LINEAR REINFORCEMENT PROCEDURE,

The modified linear reinforcement scheme developed
by Shapiro and Narendra [14] will now be described in terms
of the notation discussed above. . Remember that

the environments response to the automaton's action u,

o
i

u €-{ui;i=19 000 gr}‘g u is a noisy performance measure,
Py = the probability that the automaton will select action u
the hat indicating that these probabilities are estimates

of the probabilities that will give optimum performance.

F1, EbservationJ g = observed environment response.
F2. [ﬁeward set upa Let g, = max'{g s i=1, oo ‘r1 o
j i 9 9 9 j
If g < gj ; then z, <« O, i=1; 0o s o (No reward.)
Else if g > 259 and u = us (The last action was ui)

then z, « 1, 2z -« 0, k=1, .c0 ,r , k#i . (Reward ith

k action).
F3. [Record performanceJ if u = u, (Last action was Mi)o
then &, « ¥8, + (1- g
i i
< o % -
k, < k41, (k=) /K, o
F4. [Update.] if z, = 0y i=1, .oc T , then go to F5.
(No update unless reward).
A A .
Else p, < 0(pi + (1= D()zi , for i=1, ceo To
(& =constant, O<® <1),
F5. !ﬁelect actiong Select action uy with probability Pye
u s ug (execute action ui)
go to step F1, 000

-\ s N
In the above procedure g; is a mean estimator for

the performance measure resulting from the use of action e

2 -9

e)

Reward is given for the current action if the
observed performance is better than any of the current mean
performance estimators, Notice that the update procedure
for the performance estimators is a classical mean esStimation,
while the update procedure for the action probabilities is a
linear reinforcement procedure. The function UPDATE is not
used‘because a particular procedure was being described.

The update procedure for the action probabilities
only modifies the $£°s for a reward condition, not for a
non-reward or penalty condition. This is a feature
introduced by Shapiro and Narendra [14] to obtain optimal

performance rather than expedient performance,

4L, THE BANDIT ALGORITHM

The BANDIT Algorithm description

Following the general approach outlined above let
@i be a mean estimator of the noisy observations of performance
for action ui9 as before. In addition let @i be an estimator
of the variance of the mean estimator é} (as in E1 and D1).

A normal distribution based on these two estimators
as mean and variance, N(é,“igJ ﬁg)g will be taken as a summary of
the current information about the performance evaluation of
each action U, o The validity of assuming a normal distribution
will be dealt with later. The BANDIT algorithm for the

functioning of an automaton is now given:

32 =10

BANDIT Algorithm.

G1. [bbservation% g o« Environment response. (noisy performance)
G2, [Update estimators{] For u = u, , (current action is ui)

gi < UPDATE(gig g) (mean estimator)

Qi < UPDATE(¥,, (Eimg)e) (variance of mean estimator)
G3, &le% x; < sample from N(@i, @i)o
Gh. [Select action)] if Xy = max { X, 3 =1, eoo 9r}

then u-@=uj . (output action uj)

go to step G1. so o

To illustrate the process involved in the BANDIT

Algorithm the case with only two possible actions u,, and u

1 2°
will be considered. The distributions N(§19 ﬁq) and N(%,, WZ)
will both start off as 'broad' distributions indicating the
initial lack of exact knowledge about the true expectation of
g following action u, and Uy respectively. As the mean and
variance of these distributions are updated the distributions
will become 'sharp' with the means é} and éé being more and

more accurate estimates of the expectation of g after, action

u1 and Usyo Figure % indicates the general process,

Prob. ‘ Before many samples
Density : N(g19 w1) have been used to
K N() update the
[B2 o distributions.

/}if‘*'fm“‘\ /ﬁi .

! NI
" e,
- \({““\‘ \%“‘%

/ - . /{/’/ ;“\m\ } T
A VA
g'] 82

Figure 3 (a).

3 = 11

Prob.
Density., N(g19 w1) N(g2$ WZ) After some
, updating.
; 1
A
pa N\ e
| ! %2>% ank

é P) Figure 3(b).

‘}‘ ﬁa
Prob. (g19 w) N o0 W) After consider-
Density. able updating.

?\k\h |

I v

]

l

Figure 3(c).

ﬂ

The probability of the automaton selecting action

uy is defined by the BANDIT equation as:

A ' I3
Py = Pr [X, = max {;Xj $ J=1y oo 9?}J (7)
PaS A
Where x; = a random sample from N(gi’ Wi)o

The BANDIT algorithm is a procedure that will obey
the BANDIT equation, without explicit evaluation of the g&ﬂso
The corresponding reduction of calculation is very significant
since methods to explicitly evaluate the BANDIT equation
involve either a convolution integral over the distributions
N(’g\i‘B ﬁi)? or a Monte Carlo evaluation. Notice that the
BANDIT algorithm is almost a Monte Carlo method except that
only one sample is needed. If steps G3 and G4 are repeated
a large number of times the ﬁi can be calculated by the
standard Monte Carlo technique of counting the number of times
each possible action u, is selected.

4,1. COMMENTS ON THE BANDIT ALGORITHM.

In the presentation of the BANDIT algorithm a

normal distribution N(§£9 @}) was assumed for the following

3 = 12
reasons:

1. The procedure and its description are simplified.

2. The distribution for any mean estimator will tend to be
normal in the limit, by the central limit theorem. This
is true even if the parent distribution (that the g's are
drawn from) is not a normal distribution. If the parent
distribution is a normal distribution then the
distribution for g&vs will always be a normal
distribution,

A general BANDIT algorithm does not exclude a more
general distribution function, although the class of distri-
butions that could be used may be limited by the particular
update scheme used.

As mentioned ébove the BANDIT algorithm has no -
explicit evaluation of the action probabilities ﬁgg unlike all
the previous work outlined in the introduction. Since the
sum of the action probabilities must sum to unity (analogous
to equétion (2)) explicit update of one ﬁi always requires the
adjustment 6f all the other ﬁivS to meet this constraint.

The BANDIT algorithm avoids this while introducihg only ohe

other set of estimators to be updated; a réduction of

computation but an increase in storage.(if explicit pivs kept) o

Notice also that there is no need to normalize the
performance evaluation into the range O to 1 before it is used
in the update procedures This normalization is done by
Fu (1970) [11] énd is also done in effect by Shapiro and Narendra

with the creation of a reward function.

3 = 13

L,2 CONVERGENCE
It would be very desirable to give a convergence

proof for the BANDIT algorithm but this has énly been
achievedifor a modified form of the BANDIT algorithm.
Results ére presented later that show the convergence of the
BANDIT algorithm for the particular problems used by Shapiro
and Narendra [14] and we have no reason to suppose that this

is a special case,

MODIFIED BANDIT ALGORITHM

H1, [bbservatibnﬂ g =+ noisy performance measure observa-
tion

H2, [Update,] For u = U (last action was ui)
el o)
< P
8, UPDATE (gi* g)
A
W,

< UPDATE(@i, (Qimg)a) (mean variance)

~

H3. [SampleJ X, & sample fom N(§19 Wi)o

ik, [Reward] If %, = max'{xj 5 =1y oo gr}

and u = u (last action was ui)

it
-

then z, 32, =0 5 k=1, 000 T , kfio

k
otherwise go to H6.
H5. [Action probabilities.]
ﬁi 4~ro<§i + (1= M)zi o 1=1y oo 4T (update prob.'s)
H6. [Select actiona] Select action uj with probability pj;
u-%-uj : (execute action uj)
go to step H1. ooo
Notice that the modified BANDIT algorithm has the

essential features of the BANDIT algorithm (G-procedure) but

3 - 14

" it has been put into the same F-procedure form used by
Shapiro and Narendra [14] The update of ﬁi only for a reward
response and the use of z, as a reward derived from the
current information (estimation) of performance measures Qi.,
are both established in the F=procedure.

The basis of a convergence proof relies on the
stationary state of the action probabilities §£ being defined

by the expectation of ﬁi at time t+1 being equal to the value

A
of Py at time t.

i

B(P,(t+1)) = P, (¢) (8).
i
This is one of the criteria originally given by
Varshavskii and Vorontsona (1963) {1630
Details of the convergence proof will not be given
for the H-procedure since it closely copies the proof given

by Shapiro and Narendra (for their method which has been

presented here as the F-procedure).

4,3 COMMENTS ON CONVERGENCE.

An intuitive understanding of why the BANDIT
algorithm should converge onto an optimal rather than an
expedient strategy can be gained by consideration of the
distributions N(’g’\i9 Q;)o Referring back to figure 3 showing
the trend of these distributions as they are updated, notice
that if there is any probability of using action u, then
N(@ig Qi) becomes !sharper’, It will tend towards a delta
function at gi = Egg where Ei is the true mean value of g

for action Uy that is I(ui)° For a stationary environment

I(Ui) will be a constant value, Since all the distribution

5= 15

functions tend towards a delta function in the limit so all
the random samples X, from distribution N(§£° Qi) tend to the
value gi (which itself tends to the value I(uy)). Thus in
the limit, and assuming no equal maxima, the probability of
selecting action uj corresponding to the maximum performance
index I(uj) becomes unity, and the probability of selecting
any other action tends to zero. Before this limiting case
is reached the probability of choosing action u'j (the optimal
action) will become very large even though the distribution
N(é&, G;) for the non optimal actions may Be far from a delta
function., This is illustrated by figure 3(c) where the

probability of action u_ would be very large, and N(@ég‘ﬁz)

2
often updated whereas N(é}g ﬁ}) is infrequently updated since

the probability of action u, is very small.

1
The situation described above indicates that the
information collected about N(é\j9 Qj) where uj is the optimal
action, is more than that for N(é}, @&) iZj. If this were
not the case convergence would be slow and in the worst case
the adaptive automaton scheme would have no advantage as a hill
climber over an exhaustive search strategy. This conflict
between gaining information to update each distribution
N(é}, @;) and so gain more accurate information about the
performance of action u19 as agains; the use of the optimal
action as it is currently known, is the heart of the learning
problem., This basic problem in a simple form is embodied

in the well known Two Armed Bandit (T.A.B,) problem; Yakowitz

(1969) [17] gives a detalled account and historical references.

3 - 16
The use of the BANDIT algorithm for minimum cost path finding

Cashin (1970) [4] gave rise to its application to the T.A.B.

problem and hence the name BANDIT algorithm, (Chapter 2)

5. ENVIRONMENTS WITH PERCEPTION AND PERFORMANCE MEASURES

5.1 An Extended Problem Class

A1l the work mentioned in the introduction, in fact
all known work on stochastic adaptive automata, has cénsidered
a performance measure as the only output or response of the
environment. 'It is true that the response has been
generalized a long way from the first steps with a 1 or O
penalty or nonpenalty response but never the less the output
of the environment or input to the automaton has been a
performance indication. Consideration will now be given to
thé case depicted in figure &4, whefe there are two separate
channels from the environment to the automaton, The important
point is that the environment output y i§‘available to the
automaton &s a ‘perception' of the environment; it gives the
automaton a 'look' at the state of the environment but does
not directly indicate performance. The response from the
environment labelled g is a performance measure in the same
sense as the (only available) environment response considered
before this section. The automaton input g will direct the
performance of the automata as before, the object being to
maximize the expectation of g. There is no reason why g may
not be a function of y in which case the original arrangement
of figure 2 may be considered adequate. But this is not

necessarily soj; the problems that will now be considered have

3 - 17

the property that the perception y is absolutely necessary
for the automaton to be successful in maximizing the expectance

of the performance g

Random

Environment.

action u performance g Perception y

Automaton

Figure L,

This class of problems has been considered by
Andreae (1968) [1] "Michie and Chambers (1968) [12] and Doran
(1969) [6] None of fhis\work arose directly in the field of
stochastic automaton learning theory as considered in the
introduction, but rather in the field of 'heuristic learning
machine work?®. The p;oblems will now be put as a logi&al
extension to the learning automaton work considered previously.
Thus a link will be formed between two distinct research areas

which will hopefully lead to advantages for both,.

5.2 AN EXAMPLE PROBLEM.

The idea of a perception signal y being necessary
for the maximization of the expectance of the performance g
is best seen from an example, The exémple used here will be
the game of NIM. In this game two players take turns to
remove 1, 2 6r 3 stones from a pile initially qontaining 16
stones, The player to remove the last stone of the pile is,
in. this version, the winner, However it will always be

allowable to remove 1, 2 or 3 stones, to be subtracted modulo

3 - 18

16 from the pile. The game thus cycles continuously with
a win for the player leaving his opponent with exactly
16 stones,

In terms of figure 4 the possible automaton actions
U, i=1,2,%, are the moves corresponding to the removal
of 1,2 or 3 stones, The perception of the environment y,
will be considered as the number of stones on the pile just
prior to the automaton choosing an action (making a move).
Notice that the automaton can not '"see' the result of its
action, only the result of its action followed by the
environments action.

The environment will be considered to be a pseudo
raﬁdom player that knows the optimal moves but occasionally
makes random mistakes, If the environment were to play
only optimal moves the automaton would never win a game, and
could not hope to learn anything useful at all,

The performance indication g given from the
environment will be g=1 for a move by the automaton that wins
a game, otherwise g=0, This performance indication g ﬁeed
not come from the environment but could be calculated from
y and u by the automaton itself. This does not alter the
concept of having both g and y as necessary inputs to the
learning procedure, so that the arrangement in figure 4bwill
still be considered as an adequate descrip?iono

Table 1 gives a complete déscription of the game,
together with the optimal moves that the automaton should learn

to play. These optimal moves are closely related to the

5 -19

perception y and a little consideration will show that only

the last three optimal moves could be learned by an automaton

denied the perception y.

TABLE 1. Description of the game of NIM.
Perception Action 1 Action 2 ' Action 3 ' Optimal Moves
u = u1' u = U.2 u = 'lJ.3
y = g = g = g = u =
16 0 0 0 u1*
15 0 0 0 u,
14 0 o} 0 u,
12 0 0 0 u,
12 0 0 0 u1'
11 0 6] 0
'3
10 0 0 0 u2
9 0 0 0 u1
8 0 0 0 u1"
7 0 0] 0 u3
6 0 0 0 u,
5 0 (0] 0 u1
['3
n 0 0 0 u,
0 0 1 u
> 3
2 0] 1 0] u2
1 1 0] 0 u1

*There is no true optimal move in that a win cannot

be forced from these positions, but a move of Uy maximizes the

probability of a win,

3 = 20

It is interesting to note that given only a set
of lights for the y and g signals and asked to select a series
of actions uy (3 buttons) to maximize the probability of light
g being on a human player often takes several hours to learn
a near optimal set of moves,

One of the difficulties of the situation is, that
a non optimal move may, because of a 'mistake' by the
environment, lead to a win, The probability of a win for
this move is determined by the 'mistake' probability of the
environment. If such moves are discovered by the learning
“player (human or automaton) care must be taken to ensure that
these moves do not become established as the best moves simply
because of.inadequate 'research! on the other moves. This is
the 0ld Two Armed Bandit Problem again, that of information
gain against cost of a move as currently known, Michie and
Chambers (1968) [12] discuss this problem with reference to
NIM and present their solution to this problem in terms of a
control problem. The following section is a similar approach
that is suitable to stochastic learning automata. It is
essentially a development of the 'expectation function' used

in the STELLA learning machine of Andreae (1968) [1].

6. EXPECTANCE,
A function is now developed called the expectance @
that gives a performance measure for each perception y,

associated response u, and environment response g. The

expectance value for perception v followed by action uj will

3 - 21

be denoted ﬂijo

The purpose of the expectance function is to give a
value to each input-action association‘(y=u) that reflects
the probability of gettiﬁg a reward response, g=1, but also
takes into account the probability of getting a reward response
in the future° Thus once the expectance function has been |
derived the extended ﬁroblem'can be viewed as a series of
problems suitable for the automata first considefed in this
papere

For example consider the NIM game of Table 1, and
take the situation y = 6 or Ygo The optimal move in this
situation is u = Uy (or move 2) but the reward for this action
g = 1, will not come until after the next move, and only then
if the next move is optimal. The expectance ¢62 should

however have a value higher than ¢61 or ¢65 (non optimal moves)

This gives rise to what can be viewed as a new set
of subproblems: Given situation i (y = yi) choose an action
uj based on a performance measure ﬂijo The situation is shown
in figure 5, where each of the 16 parallel automata is similar

to those originally discussed (eg. a G-procedure).

3 - 22

Action u Random Environment Perception
(NIM player for example) J
Action for | U, Auzomaton ¢1j ‘?1 Situation 1
Situation 1. 1 N -
pction for | Uj AuZomaton ¢2j Y5 Situation 2
Situation 2. 2 & <
¢ [}
' _. I !
| ! ; [
j=1, coo I : '1—19 ‘ooo B
' r | \
3
Action for u, |Automaton g . y Situation s
X . 3 53 s

Situation s. AS st

Figure 5.

It can be seen from figure 5 that there is an
automaton for each situation yi o In practice a completely
separate set of automata is not needed but this representation
serves to give an understanding of the situation. The

automaton A, would in the NIM problem handle situation 2

2
(There being 16 possible situations). Situation 2 corresponds
to 2 stones in the pile, and the action u (1,24 or 3) is based
on the performance measure ¢2j which are prov1ded fo it fpr
each action by the expectance function calculation.

Now that the expectance function's purpose has been

established, the function can be defined recursively as .

r

1 1
_ , g.. + Y% p.
ﬁij = T ij \ £i1 — 1J,k1 k1 | (9)

3 - 23

Where ¥ = a discount factor, 0= ¥ & 1,
pij,kl = the probability of situation Yy with action Uy s
given situation Yy and action uja
gij = the performance measure on action uj given situation
. yi°
s = the number of possible situations,
T = the number of possible actions.

The discount factor ¥ can be thought of as setting
the importance of potential future reward against immediate
reward (g=1) response for this action, If § = 1 equal account
is taken of the probability of future reward and immediate
reward, if ¥ = O then no account is taken of future reward
probability and the situation reverts to the original problem
with a performance signai g, but no perception signal y.

The probability P. . can be thought of as the
9

Jokl
situation -~ action transition probability. An on-line
calculation similar to the B or C-procedure could be used to
estimate this probability but even given this the expectance
function would be difficult to calculate directly from the
recursive definition (9).

In order to avoid the iterative calculation inherent
in equation (9) the following on-line procedure can be used to

give a 'running' estimate of the expectance values ¢ij

without any explicit calculation of the transition probabilit-

1Les pijgklo

3 = 2k

Expectance Algorithm.

I, [Perform actiono] If Y=¥q s let u:uj be the action
selected and used by the automaton.
I2, [Observe responsea] ¥ <« new situation observed,
g =~ new performance measure.
I3, [Select action & Update 601 If Y= and the automaton

selects action u = u, , then:

1
) N 1 K/\))
Py UPDATEC f, 45 3¢ (& +¥8.))
go to I1," (¥ = discount factor, 0 & ¥ < 1)

¢ o000

Now that the procedure for calculation of the
expectance has been described the complete procedure for an
automaton that acts as if it were s parallel automata
(as shown in figure 5) will be defined. The selection of
actions bhased on a performance measure, that is now an
expectance function, will be done by the same BANDIT algorithm
described by the G-procedure.

Jd1, [Observeoj ¥y % environment situation response.
| g <— environment performance response.

J2. [Sampleé] For y = y (sittiation i, ith automaton)

i 9

. o o~
X e sample from N(ﬂij9g°°) s 121 coo o1

1]
(¢ij = expectance estimator, action j)
Pl Fed
o] = i
(i = variance of gij)

J3. [Select action.] If x; = max {xk § k=1y ooo oF |y

ué u, o (output action u, to environ-
J J ment)

3 - 25
Jh, [Update expectanceJ For y = y, » W= U,

and oldy = y, , oldu = Uy (last situation & action

Zé—,l—j_-—g— (Oldg-@-&@k,‘), (0g ¥ < 1,
discount factor)
~ A
¢ijﬁ+~ UPDATE(Q)ij ,lz)g
0 UPDATE(® (6)
. . Y .. = Z
1] hl 13 1]

J5; [étep on one]
oldy « y
oldu - u ,
oldg‘«—;g s
go to step J1.
7. RESULTS

7.1 BANDIT Automaton Results

Results from the G=procedﬁre (BANDIT algorithm)and
the H-procedure (modified BANDIT algorithm) are compared with
results from the F-procedure. The problems used are from
Shapiro and Narendra (1969) [14] and their results agree with
the results from the F-procedure as they should.

The problem can be described by the two simulated
multi-modal performance curves shown in figure 6. The
environment performance response g is the height of the
performance curve I(u) at the particular value of u output
by the automaton, with a superimposed noise uniformly

distributed, in the range & 2 unifso

3 - 26

Figure 6 (a) is a relatively easy case, while 6 (b)
is a more difficult case since the differences of performance
for the different actions are masked by the large noise
component .

The particular UPDATEvprocedures used were a
classical mean and variance estimation (B-procedure) for the
estimation of 8 and LIE and a linear reinforcement procedure
(C-procedure) for the estimation of §i°s° This applies to
all the results except that the BANDIT algorithm which
does not use an.explicit UPDATE procedure for tlhe pi's°
The coefficient, & ; used in the linear reinforcement equation

(B3) are given on the results in graph 7.

As éan be seen from the results in graph 7 the
modified BANDIT algorith@ (H-procedure) was quicker to converge
than the 8 & N scheme (F=procedui~e)9 while the BANDIT algorithm
was faster than bétho These results are accounted for by the
fact that the estimation of w, the variance of the mean
estimator g, gives more information per step. Also avoiding
a double stage estimation, that is an estimator that is
derived from an estimator, gives a faster over-all time constant.
Table II summarises these factors as they apply to each of

the three procedures (F,G,&H).

6.0

3 = 27
CI(u)
— Mean
ql --- Limits of un:;\form distribution , RN -
’ /
~ 7/ \ / h ~
" T] 7 1 T T T i 7 1
0 1 2 % 4 5 6 7 8 9 10
ACTION GRAPH o6(4A)
I(w)
/’/\\‘*'\ ,‘/// \\\\~“\\
, 5.6
"//5:\5\%\» 5a5 5
4.9 4.9
—— mean
—== Limits of uniform
distribution (noise) GRAPH &6(B)
! ! [[] T T i] ¥
0 1 2 4 6 7 8 9 10

PROB. of \ - 5 = 28
OPTTMAT, RBANDIT <EfNDIT, 10 sample delay N
~“F-procedure
0.8 - o = 0.95
0.6 - F-procedure
o = 0.975 .
0.4 =
: s Mod. BANDIT
x = 0.975
0.2
GRAPH 7(A)
7 T T T !
0 100 200 300 400 500
’ TRIAL
PROB. of
OPTIMATL BANDIT BANDIT, 10 samples
A & - K e delay.
vOoS - g
F-procedure
® = 0.98
0.6 A4 1
004 -~ g
<— Mod. BANDIT
(3(= 0998
002 "'J
GRAPH 7(B)
. ¥ ¥ [3 !
o) ‘ 1000- 2000 3000 4000 5000
TRTAL
TABLE IT
: Primary estimators |Secondary estimator
, Procedure mean g. { var of, w.|action prob. p.
S&N ,F-procedure| yes no yes
Mod. BANDIT (H) yes yes yes
- BANDIT (G) ves yes no

3 -29

Care is needed in interpreting the results since
they are averages over a number of runs (at least 20). It is
not true that the algorithms with faster convergence rates are

by this fact alone preferrable to ones with slower convergence.

The convergence rates of the different algorithms
need careful interpretation and for this two définitions will
be helpful. Let "primary convergence' be defined as the
condition when the probability of one particular action exceeds
some arbitrary value, say 0.99. If primary convergence occurs
for a suboptimal action it will be called a 'premature primary
convergence',

Premature primary convergence occurs because there
is always a probability that over any finite number of samples
for each action, the optimal action does not show itself as the
best action available; The smaller the number of samples the
greater the probability of the true optimal action having a
mean performance estimator that is less than its true mean
performance measure and also less than some other suboptimal
actions true mean pgrformance measure.

With premature primary convergence there can only be
a small probability of the optimal action being used. It is
thus very probable that a considerable number of actions will
have to be taken before the performance estimator(s) for the
optimal action can be updated sufficiently to cause a 'switch'
to convergence on the optimal action.

It can be seen that for any given situation the

faster the rate fo convergence the greater the probability of

3~ 30

a premature primary convergence, Notice that the rate of
convergence for any given small probability of premature
primary convergence is dependent on the random environment.
In the special case where the noise is very small compared to
the difference in true mean performance measures for each
action, one sample from each action would be sufficient
evidence on which to allow primary convergence. For ten
actions in this environment primary convergence after 10 or 20
actions could be'quite satisfactory. In the environment with
performance measure as shown in figure 6(b) the performance
measure difference for different actions is 'buried’' under all
the noise, In this case several thousand actions need to be
taken before primary convergence occurs, as shown in the
results on graph 7(b).

In the case of the S&N scheme (F-procedure) and
also the modified BANDIT algorithm (H-procedure) the rate of
convergence can be set by the parameter ¢ in the linear
reinforcement equation for the pi°so This is not the case for
the BANDIT algorithm (G-procedure). However even in the
difficult case for the performance measure in graph 6(b) there
was about 0.8 probability of convergence in the practical sense
on to the optimal action° The result shown in graph 7(b) 2
is better than this (100% optimal convergence over the 20 trial
runs) because it incorporates a feature to be described

belowe

3 - 3

The reason that the BANDIT algorithm can sometimes
converge (in a pra¢tical sense) onto a suboptimal action is
that the optiﬁal action occasionally gives its first few per-
formance responses lower than the long term mean and close to
edch other, This results in the mean estimator being low
and also the variance of the mean estimator being low,

Because of the assumption (that is made for computational
convenience) that the mean estimator has a normal distribution
the optimal action cén in this case be 'discarded' by the
algorithm, That is, it gets only a small probability of being
tried again. There are at least two methods of overcoming
this problem without introducing any significant extra
computation,

The first method is to use an UPDATE procedure that
has the propertj that it converges smoothly from apriori
selected values onto the estimated value, The linear
reinforcement equation (C-procedure) or a more complex form of
stochastic approximation (Fug Nickolic1966 [8]) nave this
property, while the classical estimators (B-procedure) do not.
The reason for using such UPDATE procedures is that the apriori
variance of the mean estimator can be set to some suitably‘high
value so that the BANDIT algorithm will need to take a
significant number of samples before the probability of any
action can become very small, The BANDIT algorithm can be
thought of as being forced to try each alternative a number
of times before it can be discarded, Alternatively it can be
thought of as a relaxation of the assumption of a normal

distribution for the mean estimators. A variation of this

3 - 32
approach is to keep using an apriori variance of the mean
estimator until some arbitrary number of samples have been

acquired. This simple scheme was used for graph 7(b)2 .

A second method for avoiding a long time coﬁvergence
(in the practical sense) onto a suboptimal action is to decay
the variance estimator for each step that the estimator does
not get updated. This method is suggested mainly for time
varying situations since it essentially says that if a mean
‘estimator has not been updated then the confidence in it should
be decreased, orvthe variance should be increased. Notice that
unlike *forgetting' schemes that have in the past been suggested
(Samuel 1963 [ﬁ}]) this decay of the variance does not alter
the value of the mean estimator. Information is not lost, but
the confidence in the information is decreased,

Both the methods suggested above improve the
assumption that the distribution for the mean estimator is
normal, A1l the above suggestions have been successfully
demonstrated, but not fully investigated,

The comments made above apply in the main to the
extended problem class where the automaton is learning to
maximize the expectance of each move, rather than the performance

measure itself.

7,2 NIM Results

For the game of NIM discussed earlier (refer to
TABLE I) some of the results from use of the BANDIT=-EXPECTANCE
algorithm, or J=procedure, are shown in figure 8. Only three

of the optimal moves are shown simply to keep the figure

3= 33

uncluttered. Notice that the first optimal actions to be
established are those leading directly to a winj; in figure 8
the move shown is for y=2, u=2, resulting in g=1 (TABLE I).
After these 'direct win' moves have been established and their
expectance values have increased, the moves 'one away from
reward' are established. In figure 8 the move for y=6, u=2
always results in g=0, but the next situation must be y=1,2

or 3 for which the optimal moves are now established. Hence
the expectance of ihe moves ‘'one away from reward" build up and
so the process continues,

A point of interest is the fact that the probability
of the optimal actions leading to immediate reward (a win) are
not as great as those for actions one or more step from
immediate reward (see figure 8). This arises from the
particular UPDATE procedure use@ in the BANDIT-EXPECTANCE
algorithm (J=-procedure). There Was no update of an expé;tance
value if the update information (z in step J4) was zero.

That is, if the action resulted in situations still having their
apriori expectance and no reward (g=0), then it was considered
that no information had been gained to update the expectance

of the action just used. The non optimal moves from y=1,2 or 3
result in g=0, and y=15 or 16, Until a complete set of optimal
moves has been established (so that optimal moves from y=15 and
y=16 are established) the non optimal moves from y=1,2 or 3 do
not have their expectance values updated, for the reason given
above, Hence the optimal actions from y=1,2 and % are competing

with the apriori (non updated) expectance for the non optimal

PROB., of
OPTIMAL MOVES
1.0

Random player

= 0.5 optimal

T T) T T
o) 100 200 300 400 500
GAMES
500 game optimal move probabilities:

T e T
Wiy <22 57 12 (62 9[-z ‘L [E2

RIS LN B I e S e S

1000 game optimal move probabilities

& .99 ’/I__/] 1 °€9‘g!—5‘:7 1 Dg’“‘rﬁ 09-%‘_]-/'—5—;—;"
WIN di“@ 1 og_mﬂ”g‘é’ 1 0@ . 92__@
= v e S S

q L9 2y e M fTeT
Prob, — ./ .28 .38
e // | 8 romp % e

Move 6] _ripozm 42 [76-%

Figure 8

3 - 35

actions, resulting in the lower probability seen in figure 8.
The situation can be thought of as 'known good actions verses

actions of unknown worth'.

8. CONCLUSIONS

Automata schemes have been described in a new way
for the following reasons:

. By their nature schemes for learning stochastic automata
are procedures and an algorithmic notation can describe
them concisely.

o Algorithmic presentation has been developed in the computer
sclence literature that can be used to advantage,

o An attempt has been made to give this notation some
generality so that one procedure can be set down to describe
a whole class of particular implementations,

» When presented in this uniform manner it is much easier to
compare different schemes, see their differences, get an
idea as to the differing computational requirements, and

SO Ol

After introducing the main points in the development
of stochastic learning automatg9 one of.the latest published
schemes is presented as a procedure in the notation mentioned
above., Using this as a ?asis of éomparison'a ﬁew scheme = the
BANDIT scheme - is described. The key points épout the BANDIT
algorithm are: |
. Mean and variance information is géihed from each action that

the automaton performs, so that the convergence rate can be

increased.

3 - 36

o No explicit estimation of the action probabilities is made
so that the storage of an extra estimator, variance, need not
take additional storage space.
. Estimators that are estimated from other estimators are
eliminated.
. The performanqe measure does not have to be normalized to
any particular range.
o The algorithm can be implemented with very modest computation.
o The algorithm is suited for ‘on-line' use coping with time

varying stochastic environments,

In addition to this new algorithm an extended class of
problems for stochastic learning automata are introduced,
together with a scheme, the BANDIT-EXPECTANCE algorithm, to
enable these problems to be tackled. The main points about
this extended problem(class are:

o The extended class of problems cannot be satisfactorily
tackled by tHe learning automata discussed in the early parts
of this paper.

o This extended class of problems has been considered in
"heuristic learning machine' research, so that a link is
formed between this and the stochastic learning automata
considered here. |

o The extended problem class includes the interesting cases of

board games and robot problems.

1

5 - 37

REFERENCES

Andreae, J.H., Learning Machines: a unified view.
In Encyclopaedia on Linguistics, Information and Control

Pergamon Press, 1968,

Brown, R.G., Smoothing Forecasting and Prediction of

Descrete Time Series, Prentice Hall, 1962,

Bush, P.R. and Mosteller, F., Stochastic Models for

learning, Wiley, 1958,

Cashin, P.M. The Bandit Algorithm for Minimum Cost Path
Finding with Incomplete Cost Information,
Refer to chapter 2, also Proc. 3rd International Conf.

on system Sciencé. Hawaii 1970,

Chandrasekaran, B, and Shen, D.W.C,, On expediency and
convergence in variable-structure automata, IEEE Trans.

SyStems Sci. Cybernetics, S8C-4, No.1, pp52-60, March 1968

Doran, J.E. Planning Generalization in an automaton/
environment system, Machine Intelligence 4, ppl433-454,
Ed. Meltzer, B. Michie, D., Edinburgh University Press

1969.

Fu, K.S5. and McMurtry, G.J., A variable structure
automaton used as a multi-modal searching technique.

Proc. Nath, Conf., 21, pphok-499., 1965,

3 - 38

REFERENCES

10

11

12

13

14

Fu, K.5. and Nickolic, A.J., On some reinforcement
techniques and thelr relation with stochastic
approximation. IEEE Trans, Auto. Control AC-11,

pp756-758, 1966,

Fu K.S., Stochastic Automata as Models of Learning
Systems, Computer & Information Science -~ II, Ed.

Tou, J.T. Academic Press, pp177-191, 1967,

Knuth D.E. The Art of Computer Programming, Vo.1,

Fundamental Algorithms, Addison-Wesley, 1968,

Mendel, J.M., & Fu, K.5, Adaptive, Learning & Pattern
Recognition Systems Theory and application,.

Academic Press 1970,

Michie, D., and Chambers, R,A., Boxes: An experiment in
Adaptive Control, Machine Intelligence 2, pp137-152

Ed. Dale, E. and Michie, D., Oliver & Boyd, 1968,

Samuel, A.L. Somé Studies in Machine Learning using the
game of Checkers. Computers & Thought, Ed. Feigenbaum,

E.A, and Feldman, J. McGraw - Hill, 1963, pp71-105,

Shapiro, I.J. and Narendra, K.S., Use of Stochastic
Automata for Parameter Self-optimigation with Multimodal
Performance criteria. IEEE Systems Sci. Cybernetics,

S8C=5, No.4, pp352-360, October 1969,

3 -39

REFERENCES

15

16

17

Tsetlin, M.L., On the behaviour of finite automata in
random media. Automation & Remote Control 22 No.10

pp1210=1219, 1961,

Varshavskii, V.I, and Verontsova, I,P,, On the behaviour
of stochastic automata with variable structure.

Automation & Remote Control 24, No.3, pp327=333, 1963,

Yakowitz, S.J. Mathematics of Adaptive Control Processes,

Elsevier, 1969,

THE LIBRARY
UNIVERSITY OF CANTERBURY
CHRISTCHURCH, N.Z.

CHAPTER FOUR

ROTE LEARNING
AND MARKOV PROCESSES

CHAPTER FOUR

4 - 1 TABLE‘BUILDING
A table can be constructed to record the history of
all machine/environment interactions. The basic events

congsist of 4-tuples:

<Tu,2z,t2 (1)
where y = the observed state, €Y = {ya’yb"°°}’
u = the operator applied,€u = {ua’ub’°‘°}’
z = the valuation resulting from this,

and t = the time.

Notice that the z in these 4-tuples is the valuation
that is observed after the application of operator u to
state y. This is a basic assumption of cause and effect,

an example of which is given in ‘figure 1.

Initial u Resulting

observed state observed state

and valuvation and valuation.

Recorded as
4-tuple: - (yi,uk,zq,t>

Figure
We now make the important assumption that the z
appearing in <y,u,z,t>.has an expected value z up to

this particular event.

That is the expectation of z, E(z), in the event
<y,u,z,tn>bgiven by the history*(ygu,z,tn_q>9ooo
oy <Y,u,2,55>, is equal to E(z) of z in the event
<y,u,z,tn> with unknown history.
A stronger assumption that will be made for the
present but will be relaxed later, is that of time

stationary:

E(z) of <Yyu,z,t > = E(z) of <y u,z,b o> (2)
for all n and m.

Because of these assumptions we can 'condense' the
historical record of 4-tuples (1) into a smaller set of

triples:

<yusZ > (%)
where 2 = the mean value of z in <y,u,z,t>» for each
© unique pair y = yi‘and u = uj over all t,
The Z will be treated as a running estimate of the
true mean value of zﬁi), by updating it after each event.

For example, given event <yi,uk,z,t>:
Al FaS A A ;
z of <y, ,u,2> <— UPDATE (Z of <Y 0Uy 2>y 7)

z' = 1z of <Yy Upa%, b ' (4)

1.1, Information Structure
The set of triples <y,u,z> can be thought of as
recorded in an information table in the form of a tree;

represented by the list structure:

list (y,list(u,2)) (5)
or simply (y,(u,g)) (6)

This list structure has the form of a tree since it
has a number of particular y's, the states that have
been observed and recorded in the table, and each y
branches out to a number of particular operators u that

have been applied to each state. For example:

U, ,2
NES U-qaZ
up,%
. el
table <::::::::Uqaz
y.
J ~
(tree) | uy,?
\ uk,g
yp < ~
Uy, 2
table = (y,(u,2)) Figure 2

1.2, Transition Probabilities

Although this table has all the events that have
occurred stored in it, it does not give any record of
the seguénce of events. The table will enable us to
answer the question: VWhat is the expected value E(Zz)
after the use bonperator Uy if the current state i1s yp?n

But the question: "what is the expected state y if

operator U is used from the current state yp?”, cannot
be answered from the table.

This information will be required, and it can be
included in the table (tree) by inserting an estimate of
each particular state following particular state operat-
or pairs, as they are observed.. For example, if state
y. has been observed as a result of the use of operator
Uy in state Tio then the table will have an estimator
for the probability of yj given Tir Vo i.e. .
‘Prgﬁlyi,uk). The table will contain an entry (or a

branch in the information tree):
(yi’(uk’%’<yj’§)>> ' (7)

where D = estimate for Pr(yjl yi,uk)° The form of the

table is now;

list(y,list(u,?,1list(y,5))) (8)

or (y’(u’27(y7§)>> (9)

To make the table construction quite clear consider the

situation illustrated in figure 3.

operator and

probability of /if

traversing arc

Table entries: y. ,0.8

Tree —— T3

1.%. Information‘Extragtion

Consideration will now be given to the extraction of
information from the information tree. The form

(y,(u,2,(y,D))) can take a slightly more general form:

(y,noa,X".Qo’<u,noo,X",'lc,(y',all,X"‘,oao)))

' information item pertaining to y,

where X

ft

x"'! information pertaining to operator u applied

to state y,

x'''" = information pertaining to state y' that is
observed after the use of operator u in state
yo

Now to extract the items x', x'' and x''' from the

table the following notation will be used:
x'<y> x''<y,u> x'''<y,u,y'>

Examples of this notation used on the table given

in the example of figure 3

Q<yi,u2> = 0.6
P<Yi2UqsT > = 0.2
and 2<yi)fu> = {002,006}, Y implies all

instances of u in the table, given Ve

4 - 2 OPERATOR SELECTION STRATEGY

Consideration is now given to the utilization of the
table (y,(u,2,(y,P))) in order to select a 'good'
operator u to apply to a given state y. To decide 1f an
operator is 'good' or not it i1s necessary to define é

criterion or objective function.

ObJjective_1: Given a state y, choose u such that
the expected value of the resulting
valuation z is maximized:
In order to meet objective_1 the first strategy that
comes to mind is simply to choose the operator u such

that 2 <y,u> is maximized:

U_MAX_7Z(y): Find u, such that
2<y}uk> = maximum over 2Z<y,vu>,

U MAX Z(y)<- u,. (Random choice for

k@
several equal max.)

This seemingly reasonable strategy'suffers a

severe defect as will be illustrated by the following

example:

Table: | (ya<u323(y’§>))

Entry: ¥; ((uy,0.5((===)) (0 ,0.75,(-==)))
uj,O,5 _Z- ———

or yi<:::::j -~ ——_—
uk,Oo75 <_"\" T

for which U_MAX Z(y;) = u, .

Now 2<yi,uj> = 0.5 and #<y,,u> = 0.75, but it could well
be that the true values are 0.8 and 0.75, since z is only
an estimate, and 1t may be based on only a very few
samples. In this case the operator that satisfies

- objective_1 is u = uj, not u = u, as given by
U_MAX_Z(yi). The serious defect with U_MAX Z(y) is that
not only can it be misled, but as in this example it will
never discover its error, i.e. 2<yi,uk> will be updated
(and retain its value of 0.75) but 2<yi,uj> = 0.5 will

never be updated to reveal the true value of z = 0.8

for operator Uy

This example illustrates a general defect in
U _MAX Z(y) that arises from the basic problem of ubiliz-
ation of information, versus the gathering of more
information. This is a key problem in machine learning
and the same problem pased by the Two Armed Bandit prob-
lem [2], [2]. To overcome this problem some form of
probabilistic selection must be used.

.. Probabilistic Selection

Consider first the probabllity of different operat-
ors u being selected by U_MAX Z(y), using the example

from the last section —

uj)

k> -

Il
O

(10)

]

Pf(U_MAX_Z(yi)

1l

i
N

Pr(U_MAX_Z(yi) u

This is typical of U_MAX Z(y), unless there are
several equal maximum values in the set Q(yi,vu>ythe
probability of selecting any given u will be O or 1. It
is this deterministic property that can cause U_MAX Z(y)
to get 'stuck' and keep returning a u that does not
satisfy obJjective_1.

A probabilistic operator selection strategy will now
be defined. This strategy, U RAN _Z(y) will select an
operator with a probability determined by the relative
value of 2 for each alternative. This strategy may be

called a 'linear probability weighting rule'.

U_RAN 7Z(y): Label 2<y,wu> as {z(1),2(2),...},

ZT0T<—) B<y,u>,
vu

R ¢~ a randum number in the range O to 1,
R« R . ZTOT (scale the range)
Z< 0, I<1,

loop: Z<7Z + z(I)
If Z 2R go to set,
else I<~ I + 1, go to loop.

set: If z(I) = Z<y,u,> then

U_RAN_Z(y) < u, . (11)

Now we will write

Pr(uil yj) to mean Pr(U_RAN_Z(yj) = ui). (12)

For any operator selection strategy we desire one
and only one operator to be selected so that |

5; Pr(ui| yj) = 1,\dj. (13)
This will be true for Pr(ui| yj) defined by equation
(12), and if (as we shall later) the procedure
U_RAN_Z(y) is replaced by some other procedure it must
be ensured that (13) still holds true.

4 - 5 PLANNING FROM ROTE TLEARNING

In the last section we considered the selection of
an operator u given some observed state y in order to
maximize the expected value of z, as dictated by object-
ive_1. This is planning, but only in a limited semnse
since 1t ié only the immediate outcome of an operator
that is considered. As sufficient rote learning is
entered into the information table it 1s possible to
plan not Jjust for the immediate outcome of an operator
but the planning horizon can be extended to maximize the
expected value of z over 2,3 or many more steps into the
future.

In this section 1t will be assumed that there is a
procedure (U_MAX_Z(y), U_RAN Z(y) or some other) that has
been defined to detefmine Pr(uly). Given this it is
possible to calculate state transition probabilities and
the expected value of each state, which are needed to be
able to plan over many steps into the future.

1. State transition probabilities

The estimated probability of observing state yj
after use of action Uy while in state y; can be extracted
directly from the rote learning table as §<yi,uk,ya.>o
The state transition probability Pr(yjl yi) is the prob-
ability of observing state yj given state v These
transition probabilities can be estimated{ﬁn the

following manner:

Pr(y; lyi)” = %{ Pr(y; |y; u) Prly | v;) (14)

for which an estimate can be made using:

N
A
Pr(yslyy) = % Dy a0y s T > Prlyy | ;) (15)

3.2, State valuation

The valuation z exhibited by the environment has
been attributed to the preceeding state action pair
(Section 4 - 1). To evaluate the expected value of a

state E(z|y) the following equations can be used:
E(Zlyi> = %{: E(z | yiauk>-Pr<uk | yj_)a (16)

for which an estimate can be made using:

E(Z_Iyi) = ‘v’zk /Z\<yi,uk>.Pr(uk |» yi) (17)

4 - 4 TINTERACTION AS A MARKOV PROCESS

4,17, Relationship to Markov Processés

A MarkovAprocess is a mathematical model that is
useful in the study of complex systems. The purpose of
relating the machine-environment interaction to a Markov
process is to enable use to bemade of results establish-
éd for this mathematical model [7]. In particular,
reference will be made to the book by R. Howard,

'Dynamic Programming and Markov Processes', [5].

4 — 12

The basic concepts of a Markov process are those of
'state' of a system and state 'transition'. A system is
said to occupy a state when it is completely described
by the values of the variables that define the state.

For a simple Markov process‘the state transition probab-

ilities are dependent on the current state and not on

the previous states.

The system we are now considering is the complete
machine-environment with the state of the system taken
to be the observation of the state of the environment A
with the machine and environment 'frozen' in time.

For the frozen system:

1. The environment is assumed to retain its current
performance so that Pr(y']u) remains constant.

2. The machine is assumed to retain its current perfor-
mance so that Pr(u| y) remains constant, also the
table (y,(u,z,(y,D))) will be constant and not up-
dated after each machine-environment interaction
step.

o The machine is assumed to have some memory that is
not part of the rote learning table - a scratch pad
memory. This memory is used for planning operations.
It may for example hold a temporary estimate of the

. by any

dJ
% step path. This memory can be actively used in

probability of a transition from Ts to y

the frozen state.

4 - 13

The frozen system can be thought of as continuing
to interact with time frozen, by means of a simulation
of reality, or in more colourful terms as 'thinking' or
'"dreaming'. This is the mode that the machine will use
to undertake planning into the future on the basis of
its current (frozen) knowledge.

It is important to remember that we are considering
the machine—environment system as a Markov system at
some given time. A% some time later it may again be
considered as a Markov process, but not necessarily the
same Markov process. The transition probabilities, for
example, may have changed considerably with better est-
imates available; more than this the states in the
Markov process may have been expanded as more entries
are made into the table (y,(u,z,(y,p))).

.2, Total Expected Earnings

Let us now consider the observed value of z at
each step as the 'earnings' for that step. With this
interpretation a question we may ask is: What will be
the expected total earnings in the next n steps? This
question has been answered for a Markov process by
Howard [5], and the following sections outline the

methods that can be used.

4 - 4

Let v(n | yi)* be defined as the expected total
earnings over the next n steps given the current state
is Vi From this definition we can formulate the

recursive relationship,
v(n|y,) = E(zlyy) + 2 Pr(y,|yy).-v(n-1| y5). (18)
V3 !

In a step from ¥s to yjithe expected earnings are
the expected value of z, E(z |yi)° The total earnings
are the expected value for this one step plus the total
expected earnings with one fewer step remaining from the
state yj, weighted by the probability of a transition
from state ¥s to y..

J
.5, Value Iteration

We now look at the problem of determining the

operator selection rule to achieve objective_2:

Objective_2: Maximize the expected total earnings over
the next n step period.
The operator selection rule can be thought of as
giving a decision d(y) that determines the operator for
state y; 1f this decision is dependent on the stage n

then the decision will be denoted as d(y,n). When

d(y,n) has been specified for all y and for all n then
*Note that v(n | yi) is not in the rote-learning table;
it is in another memory space (scratch pad), and can

thus not be denoted u(n)<:yi>,

4 - 15

a 'policy' has been determined. The optimal policy is
the policy which meets objective_2 and maximizes the
expected total earnings.

We now redefine v(n | yi) as the total expected
return in n steps starting from state N if an optimal
policy is followed. For any n:

v(n Iyi) = maximum [IE(Z |yi) + z;:Pr(yj| yi)av(n—ﬂ‘yj{}
over all Y3
possible ’ , (19)
policies. .

This is the application of the 'Principle of
Optimality' of dynamic programming to the Markovian
decision process, as given by Howard [5] and, along
with other applications, Bellman [2].

The solution of the recursive relation (19) gives
the set of decisions, d(y,n), that determine the
operator u to be selected for each y at each stage n in
order to follow an optimal policy.

This method of fihding the optimal policy is called
the value-iteration method since the v(n|y) or 'values'
are determined iteratively. The following sections Will
indicate the basis of an alternative method directed at
long term optimal policies, that is at decisions when n

1s very large.

4 - 16

4.4, Discounting

Discounting has the effect of giving less and less
weight to steps further and further ahead as we are
planning. Planning is done on the Markov system corres-
ponding to the frozen machine-environment asg a 'thinking'
proéess, as discussed previously. In economic terms the
present value of earnings has a greater value than that
of future earnings; for the learning machine the future
is uncertain and future earnings are not as certain as
immediate expected earnings. Discounting can be
thought of as describing a process with uncertain durat-
ion, the discount factor being the probability that the
process will continue to earn after each step.

The expected value of earnings over n steps with a

discount factor of ¥ can be written as
vinly) = E(zly) -¥2_ Pr(y:| y).v(a-1]y.) (20)
V3 J J .

where 0 L ¥ < 1.

4.5, Policy Improvement

The policy-improvement method (Howérd [5]) of
obtaining an optimal policy is aimed directly at long
term policies where the decisions are for large n, and
there is a discount factor ¥. Without the discount
factor it is still possible to use a method that is very
similar to the policy-improvement routine but it requires

‘consideration of asymptotic behaviour and will not be

4 - 17

included in the present discussion.

The basis of the policy-improvement method is the
replacement of the expected total value for n steps,
v(n|y), with the limit as n tends to infinity v(y),
called the present value. With this substitution we

obtain
v(yy) = E(z|yy) ¥ 2 Pr(yslyy)-v(yy) (21)
V3

For a givén set of transition probabilities and a
given set of expected immediate earnings equation (271)
can be used to find the present wvalue V(yi) for each
state T i=1,2,... The particular values for the ex-
pected immediate earnings E(z|y) and the transition
probabilities Pr(yj| yi) are dependent on the particular
policy that is being used.

The optimal policy is the one that has the highest
present value, v(y), in all states. Suppose that the
present values for an arbitrary policy have been deter-
mined. Then a better policy, one With higher present
values 1in every state, can be found by the following
procedure, which is called the policy-improvement '
routine. |

For each state yi,‘find the decision d(yi) which

gives the operator that maximizes

E(z 'yi>.+ ¥ %'Pr(yj | yi)oV(yj> (22)

using the present values v(y) determined for the original
policy. When a new decision d(yi) has been found for
every state, then a new policy has been determined. At
this point we can go back to the present value equations
(21) to determine the new present values for the new
policy. This iterative loop has been shown to converge
onto the optimal policy, each successive iteration
produces a better policy (with higher present values
v(y)) so that the optimal policy is found when two iter-
ations produce the same policy.

The policy-improvement iteration loop as it could
be carried out using‘estimates from the rote learning
table (y,(u,Z,(y,B))), is shown in figure 1. The
present values Q(y) are given a hat to indicate that
they are estimates because they are based on the current
values in the rote learning table. Although this proced-
ure produces an optimal policy it is an optimal policy
on the basis of the current estimates in the rote
learning table and this is of key importance in the
learning machine system since the improvement of the
table is dependent on the policy that is used. The
deficiency of an optimal policy in this regard i1s consid-

ered in the following section.

Value-Determination Operation

Soive the set of equations

V(Yj_) = ,Z\<yiauk>+

A\ A
% % p<yi ’uk’yj>°v<yj>
where w, = d(yi>, the decision for the
given policy. This produces the set of
present values %(y) for each state y

using the given policy.

Policy-Improvement Routine

For each state Ts find uk° that maximizes

2<yi,uk> +

A A
< he u 3 QV .
KVZJ DYy s U s 74> V(5 5)

/N

using the present values v(y) from the
previous policy. Then d(yi) becomes u, ',
the new decision for the state Tio which

for all states Ts defines a new policy.

Figure 4.71: Iteration cycle for discrete decision

process with discounting. Following Howard [5].

4 - 20

4 - 5 AN EXAMPLE OF OPTIMAL POLICY FAILURE

.1. Failure of the Optimal Policy

The last section considered the machine-environ-
ment as frozen and then showed how to obtain the optimal
policy for such situations. Optimality was defined as
the maximization of total expected earnings over an n
step period with a discount factor ¥. For a limited
range of n the value-iteration method was given and for
large n the policy-improvement method.

The optimal policy consists of a set of decisions,
d(y,n), giving the operator u to be used for state y at
step n. This policy has the property that‘Pr(u [y.n)
will be 1 or O. As discussed in Section 4-2 this form
of deterministic operator selection policy takes no
account of the uncertainty in the properties of the
Markov procesgs it is basgsed on. The opfimal policy can
get 'stuck' by not allowing for the update of transition
probability estimates and immediate expected earnings
estimates in the rote learning table. |

The two examples in the following section will
illustrate the use of both the value-iteration and the
policy-improvement methods, and will show for this very

simple system how the optimal policy can be undesirable.

4 - 21

5.2, Policy Planning Example

The Markov system will be taken to be:

0.8 |

Pr(Yleqﬂ«M) = 1.0, E<ZIY/|911/|) =
Pr(yz|¥.sus) = 1.0, E(z|y,,us) = 0.75
501072 9 U2 ;s True values.
Pr(yq|y2,u5) = 1,0, E(Z]yggua) = 0,2
Pr(y4|y5,u5) = 1.0, E(Z|y59u5> = 0,7

For this example the operator selection decisions for
states Tos and Tz, are uniquely determined since there

is only one possible operator, Uz
d(yg,n) = Uz, and d(yB,n) = Uz.
The optimal policy will determine whether

d(yq,n) = U, OT Us.

4 - 22

Assume that the state of the rote learning table is:

A A
(y’ - (us 2y ———= (ya b)>>
u/l9 006 e yg, /loO
I <::::::j y
us, 0.75 Y55 1.0
Jp ———— Uz 0.2 — T 1.0
Y5 Uz, 01— 3, 1.0

Note that Q<y4,u1>is the only estimate not = the true
value., |

Value-iteration method

The basic equation used by the value-iteration

method is

maximum ,
v(nly;) = over all | E(zly,) +X§: Pr(y ly;)-v(a-11y5)
policies d

and when computed by use of the rote learning table

maximum
@(n]yi) = over all g<yi,d(yi,n)> +
d(yian>

z TS ~
¥ 3Dyl an),y > a1y)
¥ '

With ¥ = 0.5, and using v(0|y) = O, the value-iteration

method produces the following -

4 - 2%

V(aly) 0 0.75 0.800 0,988 1.000 1.047 e
V(n|y,) O 0.20 0.575 0.600 0.694 0.700 e
G(n|y5) 0 0.10 0.475 0.500 0,594 0,600 ‘e

d(yq,n)A - uy us Us U, U, o ee e

An example step in this process

If d(y4,2) = u,

v(2ly,) = 0.75 + 0.5571.0x0,10 = 0.80
If d(y,.2) = u,

V(2ly) = 0.6 + 0.5x1.0+0.20 = 0.70

and so for the optimal policy d(yq,E) = Us,
For the true values (not known in the rote-learning
table) -

If a(y,,2) = u,

%(2|y1) = 0,75 + 0,541.0%0.10 = 0.80
If d(y,l,2) = u/l
V(2]y,) = 0480 + 0.5x1.0+0.20 = 0.90

and so the true optimal policy d(y4,2) = Uy

Policy-improvement method
We shall start the policy-improvement iteration
with the assumption of the decision d(yq) = u,. Remem-

ber that n is assumed to be large and v (the expected

total earnings for n steps v(nl|y)) have been replaced by
the present values v(y).
Value—-determination:

~ T A)
V<yi> = 2<yi’d<yi>> + QS%T‘p<yi9d(yi>ayj>°V<YJ)
J

and for d(yq) u,

V(y,) = 0.6 + 0.5(1.0 v(y,))

v(y,) = 0.2 + 0.5(1.0 v(y,))

F(yz) = 0.1 + 0.5(1.0 v(y,))
giving

v(yy) = 0.934

%(yg) = 0.667

A

V(yz) = 0.567
and now the policy-improvement routine can be used, for
maximizing

gkyiauk> + 2‘%:.P<yisukeyj>°§<Yj)
‘ J

d(yq) = u, gives
0.6 + 0.5(1.0 0.667) = 0.933
d(yq> = u, gives
0.75 + 0.5(1.0 0.567) = 1.03% oo o MAXimum
now back to the value-determination with d(yq) = U, gives
0.75 + 0.5(1.0 Q(ya))
V(y,) = 0.2 + 0.5(1.0 $(y,))
V(yz) = 0.1 + 0.5(1.0 ¥(y,))

with selutions

Il

v(y,)

1.07
T(y,) = 0.745
V(yg) = 0.645

Returning once more the the policy-improvement routine

{;(Y/ﬂ

with this st of present values yields

for d(yq) =,

0.6 + 0.5(1.0 0.745) 0.975

il

and for d(yq) = U
0.75 + 0.5(1.0 0.645)

1

1.07% oo maximum.

Because the policy-improvement routine has produced
the same policy with d(yq) = U, this must be the
optimum policy and the iteration terminates. (The
policy is only optimum with respect to the values in the

table, it is not necessarily the true optimal policy).

Comments

The optimal policy based on the teble with
Q<yi,u1> = 0.6 gives d(yq) = u,. If the table were up-
dated so that 2<y1,uq>oonverged onto the true value of
0.8, then the optimal policy would become d(yq) = u,.
If the optimal policy as found above is used exclusively
then this updating will never occur, and the true
optimal policy will never be discovered. |

The optimal policy on the basis of a frozen system
is thus not sﬁitable to determine the policy for a

learning machine because the learning (by estimator

4 - 26

updating) can be impeded, as in the example Jjust consid-
ered. The following sections are based on the idea of
an optimal policy but take into account the uncertainty

in the estimators contained in the rote learning table.

4 - 6 STOCHASTIC SIMULATION

6.7. Operator Selection Probability

The present value equations that have been used are,

v(y;) = Ezlyy) + 25.3:3 Pr(y | yy)-v(yy) (23)
and for a particular policy with decision d(yi),

A A ' A~
yy) = B<yy,aly)> ¢ ¥ 3 DeyHa(r) iy (28
J

Now we will return to the idea used in 4-2(1) that
Pr(uly) is not restricted to the value O or 1, and the

present value equations become,
A A
V(y:L) = % Pﬂ(uk’yi>.z<yi,uk> +

A A
X% % Pr(ug |y,) P<yy 0y 74> v(y5) (25)

When there is a policy with this probabilistic
nature, d(y) may be a range of possible operators u,

with associated probabilities Pr(uly). To keep this in

4 - 27

mind decisions for such policies will be denoted D(y)
rather than d(y) to indicate that the decision does
not always result in the selection of the same operator

U

D(yi) = with probability Pr(uklyi> (26)

6.2, Simulation Method

The value-determination routine in the policy-
improvement method if extended to the present value
equations (25) would treat them as a set of simultan-
eous equations and solve them by standard techniques.
An alternative method for solving these equations ig to
use an 1lterative method that simulates the machine-
environment interaction.

To use this simulation method we will need a
routine SIMULATE(y,u) that, for a given state y and
operator u, uses the rote learning table (y,(u,Zz,(y,D)))

to select a subsequent state.

Pr [SIMULATE(yi9uk) = yjﬁ = Pr(yj|yi) (27)
and this is estimated by

7 A
Pr [SIMULATE(yi,uk) = 73 | = Bergoweoup (28)

We can now simulate a trip from any state, say Tio
and as we travel the present value Q(yi) can be updated

by use of the simulated z and Q(yj) that result from a

4 - 28
step to yj from Ty If a number of trips étarting from
y; are simulated, then the present value Q(yi) will
converge onto the value given by the particular policy
decision being used, D(yi)o There will be a number of
different trips involved, the probability of any part-
icular route depending on the transition probabilities
Pr(yjlyi) and the operator selection probability |
Pr(ulyi)o

An algoriﬁhm for the simulation approach will now
be given. The main points should now be clear and the
details will be discussed in what follows.

TRIP(y;):

1. [Initialize] p'<— 1, y«v;- (p" will keep track of
the probability along the path.)

2. [Select operatorJWAG—IKyDo (u = v, with probability
Pr(u,]3;)) |

5 [EXpected Value] Z~e-2<y9u>

4, [Simulate a step] y' «— SIMULATE(y,u) (y' = V5 with
probability Pr(yj|yi)) A

5. [Update present value estimator |
9(y)€— UPDATE(v(y), z+¥%.v(y'))

6. [Check probability of travelling this far]
ple D' Dy, UL,y > Y

If p' € pmin, exit from TRIP.
7 [Simulate move onto next step]

y<vy', go to 2.

4 - 29

Notice that the direct solution to the present
value equations (25) will give the present value for
all states whereas the simulation method can generate
the present value for state y., ‘(\r(yi)9 without necess-
arily evaluating the present value of all the other
states. To see this imagine the states as a network
connected together by possible paths, the present
value of a state is determined by its location in the
network; that is it depends on the present values of all
its near neighbours. This comes about becaﬁse the
transition probability for a long trip away from the
immediate neighbourhood of the starting state is the
product of the probability for each step. dJust as
important the discount factor weights the contribution
of distant states to make them less important. For
example, 1f the discount factor is 0.5 then the
importance of direct neighbours (one step from the
start) is at least 1024 times the importance of the
present value of states 10 steps away.

Iﬁ step 6 of the TRIP algorithm the probability p'
is updated to give the probability of travelling to
this poinf from the start, weighted by the discount
factor ¥ at each step. This variable p' is used to
determine if it is worth continuing on this trip, in a
similar manner to a convergence error stopping an iter-

ative calculation.

4 - 30

To evaluate %(yi) by the simulation method the
procedure is to execute TRIP(yi} repeatedly until %(yi)

is changed to an acceptably small increment each time.

6.5. Estimator distributions

Up to this stage the estimators Z and § in the rote
learning table have been simply mean estimators. Clear-
ly the information that has been collected for particul-
ar estimators may be vastly different, some estimators
may have been well established giving reliable mean
estimates, otheprs may have had only one or two
occurrences to base their estimates on. To embody this
information as to the reliabzlity of the mean estimator
into the rote learning table we will talk of an
estimated distribution being maintained; rather than the
storage of the number of samples (observations) their
mean, their variance and so on., It may well be that the
latter method is used in practice but it will still be
assumed that an estimator distribution is available.

Let ZgsZoaees sy be n observations of the z that
has occurred after some particular state Ti has been
observed and operator Uy, used. The probability density
distribution that these observations can be thought of as
being drawn from, will be called the parent distribution
and denoted g(zlyi,uk)a From this set of observations we

can obtain a mean estimator 2 which estimates E(z]yi,uk),

4 - 3

the mean of g(zlyiguk)o The mean estimator §<yi,uk>
will itself a probability density distribution, which
we will denote f(%lyi,uk)o Similarly the parent distri-
. given

3 g
operator u, will be g(plyi,uk,yj)o (This will be a

bution for the transition probability Vi to y

binomial distribution.) The probability density distri-
bution of the mean estimator, §<yi,uk9yj>, of this
distribution will be f(ﬁlui7uk3yj); These mean estimat-
or distributions contain‘the best mean estimate (their
mean) together with the probability of the mean of the
parent distribution being other values.

The rote learning table now becomes

(7, (0, £(2), (7, £(P)))) : (29)

and f(%)(yi,uk> = the probability density distribution
for the mean estimator of g(zlyi,uk)o
f(%)<yiauk9ye> = the probability density distribution

J
for the mean estimator of

g(plyiaukeyj)'
The simulation method is ideal for accommodating
these distributions. The only alterations to the TRIP

algorithm being to replace
A A
ze—2<y;, > Dy 2z < a sample from f(z)<yiguk> (%0)

and to extend SIMULATE(y,u) to produce a state y' based

on the probability demsity distribution £(D)<y ,u s D

6.4, Present Value Distribution

The uncertainty in the mean estimators for E(z|y,u)
and Pr(yj|yi,uk) will produce uncertainty in the
present value estimates ’\\r(y)° This uncertainty in the
value of ¥(y) can be represented by a probability
density‘distribution for ¥(y), written g(¥ly). Notice
that the simulation method uses a series of simulations
to supply samples to update the mean estimate of v(y).
It is not a big step to extend this into an estimation
g($1y), of the distribution of T(y).
| Unlike the estimates of z and p we will not be
concerned with the distribution of the mean estimator of
v(y) but with the disbribution of the variasble itself
(the parent distribution). This is because the values
or samples for v(y) are derived from a simulation that
uses the distribution of mean estimators as parent
distributions for generating samples. The sequence is

shown below.

4 - 25

Machine—-environment interaction

Parent distributions g(z!yiauk)

g<p|yieuk9YJ>

Rote learning table contents lJ‘ Observations
J

Estimator distributions f(giyiguk

f(ﬁlyisuk9YJ)

Samples

;

¢

Simulation trips \L

Distribution of present values g(@!yi)

4 - 7 OPERATOR DECISION PROCEDURE

We are now in the position that a distribution for
the present value can be calculated using the distribut-
ions of the mean estimators that are currently available
in the rote learning table. With this distribution the
operator decision strategy is not restricted to choice
of an operator leading to the best present value, but
account can be taken of both the value of the present
value estimate and 1its uncertainty - as given by the
distribution g(¥|y).

_ Since we are going to use the simulation method only
the D{yi) that occur in TRIP need be decided - a complete

policy as considered for the policy improvement method is

not necessarily needed., The decision process can be

summed up as:

Problem: Given state y;» choose D(yi) = u, such that
operator Uy will maximize the estimated
present value Q(inuk) but also minimize the
chance that the true present value V<yilu1>

for some other operator may be larger than

el
A . N s

V(yi|uk)o The estimate v(yiluk) is based on
the current contents of the rote learning

table,

This is an n-armed bandit problem of the same form
that has been discussed in Chapters 2 and 3. Applying

the BANDIT algorithm to this situation,

BANDIT Algorithm:
gt Pr[D(yp)=w] = Pr [yl 2 9y lup) Vuydn | 61

The probability of one estimated present value

being greater than another
P A,
can be estimated by sampling as
A A
er(s(e(@ 1y,) 3 8@y, 005 vy A | (33)

where S(y(x)) = a sample of X given probability density

function y of x.

4 - 35

Since the simulation method has been described as produc-
ing a probability density distribution for G(y) rather
than Q(yguj, samples S(g(¥lu,y)) are not directly

available, but they can be created as

S((Flyym)) = 8GEEIy;,w)) + ¥.8(2(F Iy) (34)
where the probability of the use of a particular yj in
this equation for a particular sample is

PI‘(YJ) = Pr [S(f(ﬁtyisuksyj)> :2* S<f<§ﬁyisukayl>>9

71 # 75 J (35)
We are now in a position to calculate the

Pr[D(yi) = uk] by use of

f(ﬁﬁyi9uk,yj> = f(ﬁ)<yi9uk9yj> from the rote learning
table, used in equation (35), and

f(ﬁgyj) = value computed by the simulation
method as explained in the previous
sections, and

f(giyi,uk) = f(§)<yi,uk> from the rote learning

table, used in equation (34).,

4 - 8 EXPECTANCE FUNCTION

As seen in the last section the BANDIT algorithm is
not directly estimated from g(@lyi) but rather from
g(%lyiauk)ﬁ This leads us to define a new function
h(yi9uk) called the expectance of the state—action pair
Ty oV The expectance can be used directly by the
BANDIT algorithm, and it has the advantage of being
readily oomputed on-line, as will be discussed later.
The definition of the expectance h(yi,uk) is given by
the (recursive) equation:
h(y,ou) = B(zlyysu) +‘XZ ZPr(yjlyi%Pr‘(umlyj)

YJ ¥m
(Y50 (36)

This can be seen to be similar to the definition
of present value v, except that the expectance h is
defined on state-action pairs rather than on states.
From equation %6, it may be thought that the expectance
would be more difficult to calculate than the present
value v, however, this is not the case despite the
greater complexity of the defining equation,

The current estimate of h<yi’uk> denoted E(yi,uk)
can be obtained from the rote learning table

(y,(u,%,(y,0))) by the (recursive) equation:

4 - 27

A ’ A .-
h(y,,u,) = z<y;,u, > + KZ L /I;<ZY° s Uy 9y s>
1’7k 177k Y3 ym 177k

Pr(uﬁ]yﬁ)oﬁ(yjaul> - (37)

Just as for the present wvalue ?(yi) we will extend
from %(yi,uk) to the probability density distribution
of /ﬁ(yieuk), g(ﬂlyi,uk%

To obtain the probability density g(alyi,uk), an
extension of the simulation method described in section
4 - 6(2) can be used., A rote learning table of the
form - (y,(y,£(2),(y,£(3)))) will be assumed, where
f(%)<yi,uk> is the probability density for the mean
estimator of gz resulting from state vy with operator Uy
and f(§)<yi,uk,yj> is the probability density for the
estimator of the probability of state yj following state
yi with operator Uy used.

The procedure to simulate a step can be redefined

as -

SIMULATE(yi,uk):

Let xq = S(f(§)<yi,uk,yq>),qu (see footnote*)

label '{Xq,Vq} as {X(ﬂ),X(E),eeo }

R« a random number in the range O to 1.

XSUm<—) Xq
ya

R« R.xsum (Scale the random number)
x<— 0, index « 1.

Loop: ¥ «—x + x(index)
If x 2 R go to set.

else index «—index + 1, go to loop.

Set: If x(index) = S(f(§)<yi,uk,yj>)
then SIMULATE(yi,uk)<——yj
The extended UPDATE procedure to handle a probab-
ility density rather than a simple mean estimator will
not be detailed here since a variety of algorithms may
be used, dependent mainly on the assumptions that are

made about the form of the density function. In general;

g(hly,un) <— UPDATE (g(hly,u), sample)

will be taken to mean the value of 'sample' is to be

*Where S(y(x)) = a sample of x from the probability

density y of x.

4 - 29

incorporated into the probability density g(%ly,u)o For
example if g(ﬁly,u) is a histogram then the probability
of % falling in the range containing the value of
"sample' will be incremented and the other ranges of
the histogram will be decremented.

The basic algorithm for the simulation method
TRIP(y) will now be given in outline; for simplicity a
fixed nﬁmber of steps, 'limit', will be used rather than
a probability limit of TRIP(y) as described in section
4-6(2).

TRIP(yi):

LY
°

[Initializea] Y i u <« D(y), step «0
(u will be U, With probability Pr(uklyi),)
2. [Simulate a step.] v'e— SIMULATE(y,u)
Cu'eD(y')
3. [Simulate earnings.}
sample « S(£(2)<y,u>) + Xos(g(%ly',u'))
(8(y(x)) = sample of x, prob. density y of x.)
4, [Update density J
g(ﬁly,u)é—-UPDATE(g(ﬁ]y,u), sample)
5. [Next step if necessary.]
If step = limit, éxit from TRIP(yi).
else step<«— step + 1,

y<y', u<«u', go to 2.

L - 40

To summarize; we have defined an expectance
function which is very similar to the present value dis-
cussed previous to this section, except that the expect-
ance is defined over a state-action pair rather than on
a state alone, as was the case with present values.

The calculation of expectance by the simulation method
has been considered and the main procedures TRIP(y) and
SIMULATE(y,u) have been outlined. These result in
values for the probability density functions g(ﬁly,u)
for each state-action péir given a rote learning table
of the form (y,(u,f(2),(y,£(%)))). It only remains now
to consider the operator decisions D(y) in terms of

expectances rather than present values.

4 - 9 OPERATOR DECISION BASED ON EXPECTANCE

In section 4-7 we considered the application of the
BANDIT glgorithm to the present values %(y) of states y,
in order to select an operator u. Restating the obJject

of the decision procedure:

Given state y;, choose D(yi) = u,, such that

the expectance ﬁ(yi,uk) is maximized, but also
minimize the chance that the true expectance
h(yi,ul) for some other operator u, may be larger

than the current estimate /ﬁ(yi,uk)o

Applying the BANDIT algorithm:

f A e
Set Pr [D(yi) = uk] = Pr [h(yi,uk> 2 h(yy,uq),Yuy # uk]
Unlike the case for present Values; the procedure

to implement the BANDIT algorithm with expectances is

given directly by:

D(;Yi) :
Let X, = S(g(hlyi,uq)), qu. (samples)

if X > anvq

then D(yi)<— Ty e

© 0 o

It can be seen from this that the decision proced-
ure is quite straightforward given the probability
density function for the expectance of each possible
action from state T It is because of this direct use
of the expectance by the BANDIT algorithm, that the
expectance h(y,u) is preferred to the present value v(y),
and expectance will thus be used from now on. The
advantage of present values ié that these are used for
Markov processes and details of their properties and
uses are available (Howard [5])°

The calculation of the probability density.for ex—
pectande, and its use in the operator selection decision

are summarized in figure 9.1.

Rote learning table.

(y,(u,f(%>,(y,f(§))))

f(2)<y,u>

F(P)<y,u,y>

U

W\

Simulation of a trip

TRIP(y) ,SIMULATE(y,u)

4o~ 4p

UPDATE

U

Current values of prob.
density for expectance.

g(hly,u)

U

BANDIT algorithm operator

decision.

Pr(u|y) based on
A
~ g(hly,w
D(y) = u

_—

F;gure 9.1

10.1. Example of Expectance Calculation

The same example used in section 4-5(2) to illus-
trate value-iteration and policy-iteration will now be
used to illustrate expectance calculation by simulation,
with the added complexity of probability density func-

tions for the estimators.
Z=Oo2
f(z)<y2,u5>=

7 = O.q
f(ﬁ)<y5,u3>=

As in section 4-5(2) the transition probabilities,
given any action will be 1 or O. For simplicity all
probability density functions will be assumed to be
normal distributions, so that mean and standard

deviation can be used to fully describe then.

Assumed state of rote learning table:

T —— T ¢ ——— (v, ())

«Vﬂ/

\ ug, /A=O.75,W=O.O5——— yB,/I;/I oO,V=O

uq,/M=O.6,o*=O.5 - y2,ﬂ=1.o,v‘=o

Yo uB,/=O.2, q =0.05--= yq,/=1.0,v=0

Y3 u5,/u=O.’l, 9 =0.05--~ y,,4=1.0,9=0

As an example consider the simulated steps (as

they may occur in the TRIP algorithm of section 4-8) -

Y T4 u = uy

'

y Yor W' = Ug

Assume that the expectance probability densities are
initialized to the normal distributions N(1.0, 0.5).
This corresponds to an apriori assumption and the
standard deviation must not be made smaller than the
information available allows. The values used here
assume a little knowledge of the‘situation. One way of
gaining this knowledge is to solve the problem by the
policy-iteration method (without probability densities)
and use the present values to estimate the expectance
in a manner similar to that used in section 4-7 to
obtain the BANDIT decision from the present values.
There‘arelseveral alternatives along the same lines but
we will show that the apriori values arenot very
critical and it is probably better to use very conserv-
ative apriori expectance estimates, for example
N(0,100) and apply the simulation method for a larger
number of aépé. This problem will be made easler by
normalizing the expectance into the range O to 1 as will
be done in later work. |

Notice that u = D(y) becomes a random decision

Wheﬁ all expectance probability densities are the same,

N(1.0,0.5). Using the BANDIT algorithm for D(y) in

section 4-6(7) -

A
D(yq): Samples Xy of g(h!yq,uq) = S(N(1.0,0.5))
say X4 = 1.2, Xy = 0.7
then D(y,) <« u,. (This time through.)

Since g(hly,un) = Ng#,V) let
g(hly,u) «— UPDATE (g(hiy,n), sample) be
pu < dp + (1-d).sample

A
2

v < (dﬂz + (1~d),9u—sample)2)

where o« = a smoothing constant, O < £ £ 1. Let of = 0.8,
and | .

sample = 8(g(2)<y,u>) +¥s(gChiy ,u'))
Let ¥ = 0.5, then for simulated step Tqalg —m Tpols

S(N(0.6,0.3)) + 0.5.8(N(1.0,0.5))
say 0.71 + 0.5+0.86

sample

= /I\o/l.q'
4 &— 0.841.0 + 0.2471.14 = 1.0%
a
and T <— (0.8+0.25 + 0.2(1.03-1.14)°)% = 0.4

-hence ‘g(%qu,uq) now is = N(1.03,.0.41),

4 - 46

Results from a simulation run of 100 steps:

step

o)

50

1000

Va)
g(hlyq’uq

Pal
g<hly4,u2)

g<%|y5’u5>

Pr(D(y,)=u,)*

N(1.0,0.5)
N(1.0,0.5)

N(1.0,0.5)

N(1.0,0.5)

0.5

N(0.99,0.3%6)
N(1.14,0.14)

N(o.85;o,24)
N(O.74,0.14)

0.55

N(0.92,0.32)
N(1.07,0.09)

N(0.73,0.14)
N(Oo5’790020)

0.3%

A sketch graph of the convergence for this simulat-

ion run is given in figure 9.2,

g(hly,u)
/](:5‘
1.0 4

0.5 -

, A
,é g(HIyq’u2>=N</27vé)
g<hIY1’uq)=Ngﬂq9V4>
Y Simulated
100 steps
Figure 9.2

To illustrate that the apriori values are not

critical a subsequent run was started with the values;

g(hIYq7u4>
g(hly,,us)

1l

N(1.5,0.5)
= N(O-5,005>

*See Appendix C.

after a simulation of 100 steps these estimates 'crossed

over' to reach the values;

g(hly,,u,) = ¥(0.93,0.28)
g(%lyq,ug) - N(1.05,0.10),

a sketch of this run is shown in figure 9.3

Vel
g(hly,u)
1.5 \
4 “
1.0 - | 4’—__§“ g1y, u)=N(us,v,)
0.5 : g(?ll;}’q ’U-/])=N(/(/] 9V/|)
‘ ME— T Simulated
0 50 100 steps
Figure 9.%

With this simple example it is a stfaight—forward
matter to compare the present values producedlby the
polioy—itefation method, with the expectance values as
produced by the simulation method} Remember that the

present value §(yi) is

LA
V(yy) = z<yy,aly 0> + xg;l§<yi,d(yi),yj>»9(yj>
J |

and for this example there are only two possible policies

namely d(yq) = u, or d(yq) = u,, from section 4-5(2) we

saw That
if d(y,) = u,, then ¥(y,) = 0.93;
if d(yq) = u,, then G(yq) = 1.07,

For the expectance (and ignoring the fact that
probability densities are to be considered),
h<yi’uk> =2 YooYW ot K%P<:}Tiauk’yj>°

ZZ: Pr(u,|ys) B(y.,uq)-
S R L M A

Now for the example,
A A
h(yq,uq) = 2<y1,u4> + X.h(yg,ua)
A A) A
h(yqaup) = 2<y4,up> + ¥.0(yz,u5)

A A A
h(y2,u5) = Z<ypauz> + §.Pr(uglyq) by ,uq)
‘ ~
’ + K.Pr(uequ),h(yq,ug)
A A A
h(ya,ua) = Z<yz,uz> + K.Pr(uj‘yq).h(yq,uq)

K.Pr(u2|y1){£(yq,ug)

-+

By inspéction it is seen that, if
Pr(uquq} =1, i.e. D(yq) = u, always, then
ﬁ(yq,uq) = G(yq) with d(yq) = u,; similarly for
Pr(u,ly,) = O then %(yq,ug) = Q(yq} for a(yq) = uy.

A

1.0: h(yq,u,) = %(yq) = 0,93
A

1.0: h(y,,uy) = %(y,) = 1.07

Pr(u,|yq)

)]
[l

Pr(u2| 3’/|>

From the simulation run for finding the expectance

values;
Pr(uy|y,) = 0.33: h(y,,u,) = 0.92
Pr(u2|y1> = 0.,67: h(yq,ug) = 1.07.

4 - %9

4 - 10 EXPECTANCE ENTRY IN THE ROTE LEARNING TABLE

Up to here the rote learning table has had only
two forms of information stored in it -

1. Basic rcordings of machine environment interaction,
2. Statistics measured over a number of interactions
and continually updated.

The estimated expectance ﬁ(y,u) or more generally
the probability density function for this expectance
g(ﬁly,u), has been calculated from the rote learning
table alone. By this fact the estimated expectance is a
'summary' or 'interpretation' of the rote learning table
contents. However, the expectance is used to enable
each operétor selection to be made by the machine, and
to recalculate it each time by the stochastic simulation
method previously considered would be a very time consum-
ing procedure. With this motivation for putting the
estimated expectance values into the rote learning
table we will now consider the implications of doing so.

The form of the rote learning table will now be:

(7, (u,2(2),8(R), (3, £(B)))) (38)

We nowbhéve the current value of the estimated
expectance available at every step and can make the
small but very important step bf‘saying that the expect-
ance estimates can be updated not only by simulated

steps, but also by actual machine environment interaction

4 - 50

steps. As for a simulated step:

%(y,u) can be updated with the value
z(y,u) + Xoﬁ(y',u'), where y',u' follow

YW

Notice that z(y,u) may be the best estimate from the
rote learning table 2<y,u>, or it may simply be the
observed valuation z resulting from the step.

From this we can write -
A(y,u) <— UPDATE (R(y,u), z + ¥ .h(y',u'))
which may be done as -

A A
A(y,0) «— 4h(y,w) + (1-K)(z+8h(y',u')) O < d ¢ 1,
where y',u' follows y,u and z is observed at y'. With
g(ﬁ]y,u) in the rote learning table the above equations

can be extended to -

A A
%m<Yau> «—oh <y,u> + (1-d)(z+ 80 <y',u'>)

2

a
2

y N A A
b<yu> <—d(h <y, + (1-0) (B <y ,u-(2+¥B <y'n'>))%)

where g(aly,u) is assumed to be normal - N(ﬁm,ﬁv)o
The important point about these equations is that:
1. The expectance estimates are being maintained 'on
line' with the machine environment interaction,

using some straightforward UPDATE procedure, and

4 - 51

2. None of the 'statistical' entries in the rote
learning table are involved. That is the expected
Aearniﬁgs 2<y,u> and the estimated conditional
transition probabilities §<y,u,y> are not required

in the UPDATE procedure.

From section 4-9 we have the operator selection
procedure
A
D(yi): Let X, = S(g(hlyi,uq)), qu. (samples)
for Xy > Xq, Yq

D(yi) — %

Since this procedure does not require the
'statistical' entries in the rote learning table
either, we may choose to eliminate them leaving the new

rote learning table -

(v, (u,g())) (39)

As a refinement the expectance can also be normal-

ized into the range O to 1 -
”n ’”~ A
h(y,u) <« «h(y,u) + g(z+8h(y',u'))

where @ = (1-0)/(1+¥).

4 - 11 BANDIT-EXPECTANCE MACHINE

With the expectance estimates in the rote learning
table, (v,(u,g(h))), as discussed in the last section,
we are in a position to define a basic learning machine,
This machine is based on the concepts developed in the
previous sections but as will be seen it takes an

extremely simple form.

BANDIT-EXPECTANCE Machine Algorithm

T, [pbservatianJ y « obgerved environment state,

7 «— Observed valuation.

2. [Operator selection, D(y)aJ
Xy = S(g(%)<y,uq>),’qu (8 - sample)
if Xp 2 Xq,Vq
then U <.
2. [Perform action.] Output operator u = u, to the
environment, and observe the response:
y.' «— observed environment state,

7' e«— Obsgserved valuation.

u, [Check if new state is 'known'ﬁ]
if {g(ﬁ)<y',Vu>} # null, then go to step 6.

5. [Create new entryy] Put all entires of the form:
(7', ,s(h))),
>into the rote learning table.
Where — u'' = all possible operators.

g(h)

an apriori probability density for
the expectance, say N(0.5,0.5).

6o [Select operator, D(y').]
~
Xq = S(g(h)<y',uq>),qu (S - sample)
if X 2 xq,Vq
then u'<—uq.
7. [Update expectance probability density.]
g(h)<y,uw> <« UPDATE(g(R)<y,u>, g(z+¥g(B)<y' ,u'>))
(h normalized to the range O to 1).
8, [Step from y to y'.] Y« 3
Z ¢~ 7'
u<«<u', go to step 3.

o o 8 0 0 0

&

It should be noted that by starting with a rote
learning table, and considering its contents at any
given time as defining a Markov process, we have event-
ually ended up with the same algorithm that was present-
ed (rather intuitively) in Chapter 3, as a logical
extension of stochastic learning automata schemes.
Although the automata scheme presented in Chapter % can
be considered as a presentation of the results of this
chapter without the background detail and foundation,
this is not the full picture since although the BANDIT-
EXPECTANCE algorithm is essentially the same, it has
now been developed as an algorithm working on a rote
leafning table - a concept quite different in approach
to that of the stochastic learning automata work.

While the BANDIT EXPECTANCE machine uses a minimal
rote learning table, (y,(u,g(8))), in the sense that no
transition probabilities or z valuations are explicitly
recorded, it has not attempted to 'generalize' entries
to enable each to cope with a number of 'similar'
states. This important area is a main part of the
STeLLA scheme and the concepts will be discussed in
section 4-13%,

Some idea of the performance of the basic BANDIT
EXPECTANCE machine may be obtained from the example

described in the next section.

=~
I i

\J1
\J1

4 - 15 FOX AND DOGS GAME

The 'French Military Game' or 'Fox and Dogs Game'
[9] was used to demonstrate the BANDIT-EXPECTANCE
machine. This game is played on a board as illustrated
in figure 1%.1. The 'F' indicates the position occuped

by the Fox and the 'D's indicate the three Dogs.

Figure 13%.1

‘The Dogs (one at a time) and the Fax take alternate
moves, a legal move being from the current position
(circle) to any adjacent position joined by a line on
the board. The Dogs have the additional constraint of
only being allowed to move 'up' or 'across' relative to
figure 13.1,

The aim for the Dogs is to surround the Fox so that
he has no 1ega1:move, and thus win the game. For
example, the position with the Fox at A and the Dogs at
1, 2 and 3 is a win to the Dogs if the Fox is to move,

but a win to the Fox if the Dogs are to move. This

4 - 56

position will be written as A-123; other winning posit-
ions for the Dogs (with the Fox to move) are 4-157 and
6-359. If the Fox can 'evade' the Dogs, the Dogs will
eventually have to concede defeat since they are unable
to move 'down' the board after the Fox. An example is
the position 5-468, which is an effective win for the
Fox regardless of who is to move, although the Dogs may
not concede defeat until several moves later in the
game (assuming the Fox has not made a silly move in the
meantime - which before the machine has learned very
much is quite probable).

This game was programmed (using the LINKNET tech-
nique described in Appendix A) to be played interactive-
ly with an operator, using a CRT display (Appendix B) to
show the current board positions. The BANDIT-EXPECTANCE
machine can play either the Fox or the Dogs or both, but
we will aééume that the machine is to play the Fox for
simplicity. It was left entirely up to the operator to
concede defeat giving a win to the Fox, while a win by
the Dogs was detected by the Fox finding no legal moves
available, or at any other time by an input from the
operator.

For this game the machine environment interaction

(21l within the computer program)is via:

4 - 57

Observed state Y

i

{¥-p1p2D3 : F, D1, D2, D3 are
mutually exclusive members of

{4,1,2,...,8,9,8} }

Valuation Z = {—1,0,+1}- -1 = a loss
O = no indication
+1 = a win.
Operators U = {Up to 6 possible moves computed by

a legal move generator for a given
state y & Y.}
Internal to the BANDIT-EXPECTANCE machine program

the rote learning table took the form:

(y,(u,g(h)))

the observed states,

with y
u = the possible actions for each state,

g(h)

I

the expectance probability density, taken as a
normal distribution Ngﬂ,v), with mean normal-
ized into the range -1(loss) to +1(win).
Apriori density used was N(0,0.5) corresponding
to a "don't know" condition.
Points of interest about this formulation:
. There are 165 possible states since symmetry is not
recognized.
. A loss may occur after several state-move combinat-
ions.

A win is not clearly defihed (being at the operator's

discretion), and may occur after a large number of
different state-move combinations.

The number of operators available varies from state
to state (between 1 and 6). Although the operators
are given in the rote learning table,vtheir effect
on the board position is definitely not known to the
machine. (They must be known in a game playing
progrém basedAonva look ahead tree"search progran
like most chess and checkers machines.)

. The game can always be won by the Dogs if they play
an optimal game [9]. This means that tree search
programs would have trouble with this game sinoé
although they could possibly plan a complete game
they could not then choose the best move without
learning the operator's most likely errors (non‘
optimal moves).

An example of some of the contents of the rote
learning table for the BANDIT-EXPECTANCE machine is

given below (after about 40 games experience):

=
!

3

NO

|

v u g(ﬁ)=N(ﬁ,v) Comments
2-531 oA ~,99, .00 Almost certain loss
3-652 24 +.30, .02 Cycles with A-651
3-651 24 -6, 04 Probable loss with
32 -.6%, .05 either move
A-651 A2 .00, .50 Not updated yet ,
A3 +,48, .03 Good, cycles with 3%-652
3-6271 34 -.20, .13 Poor move, small evidence
+.74, 04 Good move and better
evidence

Remembering that each expectance estimate is up-

dated from the next expectance to be 'seen', the build

up of the rote learning table illustrated may be better

understood by the following diagram of probable board

positions assuming a reasonable level of play by the

Dogs -

Positions Moves

52~
3-651 < y 271 — 2h > Loss

A2 /
*§A5
™ 3056

3n

A-651

(Eventual win)

Positions

Board Layout

VAN
WY

The quantitative assessmant of the learning ability

of the machine is extremely difficult. The machine can

4 - 60
not be ﬁlayed against an operator for such assessment
since 1t is virtually impossible for him to maintain a
cqnsistent level of performance - he also is learning:!
A player with consistent performance can be built from
a BANDIT-EXPECTANCE machine by haviné it learn to play
to some level of performance and then fixing its rote
learning table so that no further improvement (or
degradation) can occur. By playing this 'fixed memory’
BANDIT-EXPECTANCE machine against another 'free' one, a
learning curve can be compiled. This was tried but,
although interesting, the results were of little signif-
icance since among other things there is no way to
indicate the performance level of the 'fixed-memory'
machine,

As an indication of-the performance of the BANDIT-
EXPECTANCE machine, it was found that(after less than
100 games experience)a novice player would often query,
after a few games, whether it was possible for him to
win at all. An experienced player (but not knowing‘the
optimal strategy) could nearly always beat the machine,
but often after quite a long game. The teéching
operator usually admitted defeat as soon as the Fox had
clearly evaded the Dogs. Because of this the machine,
after evading the Dogs, had little aversion to going
back up the board amongst the Dogs again! (This

"'stuplidity' in the early stages of learning would be

exploited by opponents to recover from their blunders,
and thus was self correcting.) It is interesting to
note that the méchine assumed a 'personality' (HIM) to
the operator, in particular during the early stages of '
learning when changes in performance could be observed.
"Oh good he's learnt not to make that silly move", or
"H'm, he's getting tricky now!"

Important'game strétegy such as - move to position
5 if at all possible - require géneralization over
states, which is not possible with the simple BANDIT-
EXPECTANCE scheme. After learning all the possibilities,
the result may be the same as knowing the rule - but the
method is far less attractive. Howeﬁer, it is not
possible to generate these 'higher level' heuristics
without the evidence from performance of a sound 'low
level"machine. It is hoped that the BANDIT-EXPECTANCE
machine can assume such a role. The next section ends
this chapter by obﬁéidering further extension to the
rote learning table ooncept to reduce the memory required

and to cope with 'generalization' over states.

4 - 14 EXTENSIONS TO THE ROTE LEARNTNG TABLE

The rote learning table has been developed from a
simple record of past events; through a record of
estimators over past events; to a control strategy for
the learning machine. Expectance has been shown as
looking forward from a given state—oﬁerator combination,
to assess the long term earnings of this particular
operator, by taking into account future earnings, trans-
ition probabilities, and operator selection probabilit-
ies. We are now concerned with looking 'across' the
state-operator combinations to see if any of them are
essentially 'saying the same thing'. By finding groups
of state-operator pairs that can be condensed into a
single composite entry in the rote 1earning table we
may achieve the two benefits:

1, A rote learning table memory space reduction,

2, An ability to select an operator for a previously
unseen state on the basis that this state probably
belongs to a known composite. This avoids starting
it as a new entry with apriori g(%) and hence ran-
dom operator selection.

The first point can be achieved to some extent by
simply eliminating 'poor' entries. This was tried (and
worked) for the BANDIT-EXPECTANCE machine playing the
NIM game. The procedure was to overlay a new entry

(required by a state not currently in the rote learning

table) on top of the current entry with the smallest
maximum (over operators) expectance. This is a crude
method of réduoing memory and it does not have the
benefit of point 2 - it throws away hard earned informat-
ion rather than generalizing over it,

Point 2 is 'generalization' over states, and has
been established as a workable scheme by STeLLA [196]
and in a slightly different way by Doran's roboﬁ [4]0
The method: for generaiization over states is very wide,
it includes a large class of pattern recognition schemes.

The change in the rote learning table is that
several entries, (y,(u,g(h))), become a single entry
(y-rule, (u,g(ﬁ))), Where y—ruie is a pattern template
or procedure for determining if some observed state y is
'similar' or 'belongs‘ to this rote learning table
entry. At this stage the term 'oontrol—policy' as used
by Gaines and Andreae [6] becom&sam&re meaningful term
than 'rote learning table entry';:

It can be noted that if there is a maximum of N
possible operators for any possible state y, then given a
powerful enough pattern recognition system, only N con-
trol policies are required by a fully 'mature' learning
machine. This is not to say that it is possible to
1earn~these N policy elements without utilizing a much

larger number.

4 - 64

The problems of state generalization have not been
covered in this thesis work on the grounds that this is
a higher level function that can be reasonably grafted
on to the rote learning table without any drastic
alteration to the underlying algorithms that build, up-
date and utilize the contents of this table. The con-
cept is of a pattern recognition procedure observing
the rote learning table all the time trying to condense
several entries (yg(u,g(%))) into a composite entry
(y—rule,(u,g(ﬁ)>), or even condense several composites
into a single more powerful composite. This idea is

illustrated in figure 14.1.

Operator u Environment y Observed state

- - -

BANDIT algorithm
selects u given:
¥y using -

g(R)<y-rule,Yu>

Generalize by ¥

condensing ’ : :
entries, and Rote learning 5| Simulate tr%%s
- table - to update g(h)

giving pattern (y-rule, (u (ﬁ)))

recognition J » (1,8

rules.

Y ‘ v

| Observe y,z,u and |, l
update enfries < A .

Figure 14.71

Anoﬁher idea is to have a predictor that can make
use of the rote learning table, pfedict ahead from the
current state y, and hence select an operator y, even
though the current state y is not itself in the rote -
learning table. This method is in some ways similar to
the idea of a composite entry (y-rule) since the infor-
mation that allows prediction is the same information
available in forming the y-rule composite entries,

A second mechanism for reducing the memory
requirement of the: rote learning table is to condense
operators for a given state or state*composite entry.

For example, the composite -

(uq, (0.9, 0.07)
(u,, (0.5, 0.04)
(y-rule,
(uz, (0.6, 0.03)
(u,, (0.1, 0,08)

could well be condensed into -
‘ : (uq, (0.9, 0.01)
(y-rule, <:::::::: |
(u-group, (<0.6, 0.03%)

without any significant change in performance since the
probability that the BANDIT algorithm will choose any
operator other than u, is very small. To illustrate,
the probability of a sample from a normal distribution

being over 3 standard deviations away from its mean is

less than 0.0001, and u, is 100 standard deviations

4 = 66

above u,, Uz, OT Uy, ! (This is an extreme example.) If
the u-group does get selected than Vs, u59 Uy could be
selected among by uniform random selection.
All the preceding comments are intended merely to
indicate the fields that are open to extend the basic
rote learning table, andyBANDIT—EXPECTANCE machine. In
fact STeLLA has extended well into these areas on a
heuristic basis, The advantages are not that the
BANDIT—EXPECTANOE machine has progréssed further, but
it has, consolidated the basic system by -
Linkiﬁg‘the basic heuristics to stochastic learning
machine theory, and the theory of Markov processes,

. Extending the linear-weighted - random-choice to the
more powerful BANDIT selection algorithm,

. Extending 'expectation' into the more general form
of the expectation function (accepting any range of
z) which is linked to the 'present value' of Markov
process theory.

. Developing an on-line method for keeping expectance.
updated, which allows (if desired) an elimination of
transition probabilities and valuation expectation

estimators.

REFERENCES

1 Andreae,J.H, Learning Machines: A Unified View.
Encyclopaedia of Linguistics Information and
Control, Pergamon Press, 1969

2 Bellman,R. A Problem in the Sequential Design of
Experiments. SANKHYA Vol,116, pt 3 and 4 1965,
pp 221-229.

% Bellman,R. and Kalaba,R. Dynamic Programming and
Modern Control Theory. Academic Press 1965.

4 Doran,Jd.E. Planning and Generalization in an
Automaton/Environment System. Machine Intelligence
4, Ed. Meltzer,B. and Michie,D. ZEdinburgh
University Press 1969; pp 453-454.

5 Howard,R.A. Dynamic Programming and Markov
Processes. MIT Press 1960.

o Gaines,B.R. and Andreae,J.H. A Learning Machine in
the Context of the General Control Problem, %rd
IFAC Congress, London, June 1966, (Tnst, Mech. Eng.)

7 Kemeny,J.G. and Snell,J.L. Finite Markov Chains.
D. Van Nostrand Co. 1960.

8, Scientific American, Mathematical Games, by Martin
Gardiner. Vol.209, No.4, October 1963 and Vol.209,
No.5, November‘1965.

CHAPTER FIVE

CONCLUSION

CHAPTER 5

5 = 1 REINFORCEMENT LEARNING

Throughout this thesis we have essentially been
considering 'learning by reinforcement'. The 'values'
that have been adapted or reinforced have been based
on arc-costs (Chapter 2), reward probability (Chapter
3), and expectance (Chapters % and 4).

Now we shall consider these processes from a
higher view point, and talk of 'wvalue' reinforcement to
cover all these cases. By the phrase "the 'value' of
an alternative" will be meant the measure of this alter-
native relative to other alternatives, the measure being
based on reinforced 'wvalues'.

The major decision process that has been used to
select alternatives given their 'wvalues' has been the
BANDIT algorithm. However, this algorithm is a
decision maker - not a reinforcement learner. The
decision has been separated out from the adaptive
'value' assignment process.

Reinforcemént learning can also be referred to as
'incremental' or 'statistical' learning. The following
section presents something of the viewpoint opposed to
reinforcement learning as a central part of an

intelligent machine.

5 — 2 AGAINST REINFORCEMENT LEARNING

Arguments against the use of reinforcement learning
have been positively given by M. Minsky (M.I.T.). These
views are clearly expressed, and carry the authority of
his prominance and experience in the field of artificial
intelligence. The view point will thus be presented by
direct quotation:

M. Minsky 1963 [6] in "Computers and Thought".

",.. I am not convinced that such 'incremental' or
'statisgtical' learning schemes should play a central
role in our models. They will certainly appear as
components of our programs but, I think, mainly by
default. The more intelligent one is, the more often he
should be able to learn from an experience something
rather definite; e.g. to reject a hypothesis, or

to change a goal. (The obvious exception is that of a
truly statistical environment in which averaging is in-
‘escapable, But the heart of the problem is always, we
think, the combinatorial part that gives rise to
searches, and we should usually be able to regard the
complexities caused by 'noise' as mere annoyances,
however irritating they may be.)"

More recently in the introduction to 'Semantic
Information Processing, 1969 [7] ...

"... Consider the qualitative effect, upon the sub-

sequent performance of Bobrow's STUDENT [7], of telling

2 =5
it that 'distance equals speed times time'! That one
experience alone enables it to handle a large new
portion of high-school algebra: the physical position-
velocity-time problems. It is important not to fall
into the habit, suggested by so much modern work in
psychology, of concentrating only on the kinds of
'learningi‘that appear as slow-improvement-attendant-
upon sickeningly-often-repeated experience!f

”Bobrow's.program does not have any cautious
statistical devices that have to be told something over
and.over again, so its 'learning' is too brilliant to be
called so. ... 1t seems that as we inoorporate more and
more sophisticated heuristic methods, the need for |
senseless sources of variation in behaviour become less
and less necessary.

"Of course I do not suggest that there is no use in
having cautious evidence-assessing mechanisms. I only
want to present a sufficiently positive view to set the

negative view in perspectivec.."

5 - 3 LEARNING BY BEING TOLD

The idea of 'telling' a machine some facts which
will help it, is an important idea that appears to
clash with the ideé of reinforcement learning. However,
it is the 'value' assignment that is influenced by

'telling', not the decision making. It seems quite

5 - 4

possible that a BANDIT decision algorithm could be used
in ascheme involving both reinforcement and telling.

Consider the use of the variance of a 'value'
'_estimator° The variance’is a measure of the confidence
in the 'value'. In this light there is no reason to
calculate variance from the sum of the deviations
squared if there i1s a richer séuroe of information
available that can give a direct assessment of the con-
fidence that cén be placed in a 'value' estimator.

Following this up we see that 'telling' can hold
more information than simply an observation; it says
not only that the ‘value' is such-and-such but it may
alsd specify a confidence in this. We may well be able
to 'tell' the machine that the value of an alternative
is 1.0, wishing to inform it not that the mean value of
samples will be 1.0 but simply that the 'value' always
will be 1.0 - a perfect action for the particular
situation.

Telling from this view point is rather like
assigning an apriori 'value' - it forces the 'value' %o
some condition, rather than simply contributing an
observation or sample. The methods for fully msing
subjective assessment as apriori data are not yet com-
pletely formulated, although there is considerable inter-

est in such techniques for decision analysis [4,5]°

Once 'values' have been assigned, regardless of
whether they were arrived at by analysis of a large
number of observations or by a 'telling' or 'forcing'
process, the BANDIT decision algorithm is still
appropriate. If the 'values'are absolutely known with
zero variance (maximum confidence) the BANDIT algorithm
reduces to simply selecting the maximum (or minimum).

As a point of interest, it may well be that even a
poor confidencé in some 'wvalues' may be sufficient to
almost completely separate them out as far as the
decision process (BANDIT) is concerned. For example,
let us 'tell' the machine that alternative A has a
'value' of 5.0 with a confidence assessed as a variance
of 0.5, while alternative B is known to be 5.75 exactly.
With this information the probability of the BANDIT
algorithm choosing alternative A (when btrying to choose
a maximum value) is less than 0.00001 - alternative B is
for all practical purposes always chosen. We are still
agsuming normal distributions since that is what a
large number of observations would lead to. However, it
is reasonable to alter this to cater for some desired
performance or for computational convenience; the
criteria being that the variance specifies the confid-

ence in the 'value'.

5 -6

The complexity needed to be able fo "tell' the
machine more meaningful' (and useful) facts in a
straightforward manner is of course a major problem. 1t
is not the intention to side-step this problem (which is
behind Minsky's comments) but simply to point out that a
road into at least some form of compatibility between
'telling' and reinforcement learning ('observing') may
be available.

Although.the approach of semantic modelling [7] has
shown impressive progress it is not the only way to
develop language for man-machine communication. An
entirely different approach is to try and design a
machine that is capable of generating its own internal
language to describe its experience. A feature of such
a language 1s that the semantics are not predetermined
and imposed onto the machine, but are developed as
relevant to the machine's experience. Tentative steps
in this direction are presented in a paper describing

'monologue' for STeLLA, Andreae and Cashin (1969) [2]°

5 - 4 WHY THE GAP?

It is the author's opinion that the gap between re-
inforcement learning and semantic modelling 1s an area
deserving much greater research effort than is currently
evident. It is not an area that is likely to produce
spectacular progress. but the eventual results seem to
be invaluable to both camps. It does not seem reason-
able to follow one line or the other simply because the
common ground between the two is almost non-existent at
present. - The important question is, surely: Why 1is
there no common framework?

To better the current question-answering systems or
robot manipulators there is certainly evidence %o
suggest that starting with a reinforcement learning
scheme- is not likely to lead to success. On the other
hand there is a definite but hard to define attraction
in the general idea of learning from experience, and of
simulating the human brain, that are absent from the
more successful acheivements in matching the human's
'external' intelligent abilitiesa Also there is little
evidence to show that designing a machine that can match
a human at some task (thought of as requiring intell-
igence) has necessarily achieved more in advancing the
mechanization of iﬁtelligence than designing a low
level machine that can learn to develop its own limited
- model of its environment - although there is no doubt

Whioh could be more useful in action.

5 - 8

An attempt was made at one stage during this thesis
work, to embed a STeLLA type scheme [4] into the frame-
work of the Stanford Research Institute's Robot
project [8]° This attempt showed clearly the gap between
such projects, and how difficult it is to establish
common ground to fill the gap. We know these schemes
are in many ways incompatible, but we do not clearly

know the basic reasons why this should be so.

5 - 5 GRAFTING LEARNING ABILITY ONTO A PROGRAM

The idea that an intelligent program need not
learn to be intelligent, and that learning potential
can be realized through ‘telling', has certainly led to
a number of successful programs (e.g. SIR, STUDENT,
ANALOGY [7])0 However the pitfalls of updating the
information data-base for such programs have not been
clearly stated. Put another way., the programs seem to
be designed to do the best they can on the basis of
their current data, but do nothing to try and atbain the
best data.

Heuristic search programs illustrate tThis point
well since they have been called "the central paradigm
of artificial research" (Feigenbaum 1938 [5})0 The
search strategy aims to find a path through a problem
tree, the 'values' involved being supplied from the

information data-base. Now the search technique is

designed to find the best 'value' alternative (path),
and most important, to do so in the most efficient
manner. 1t may well be that finding any solution
(path) is a sufficient goal. However, if several poss-
ible solutions can be found then the best (maximum or
minimum 'value') is chosen. More basic than this the
search itself isg directed to try the most promising or
best 'value' alternative at each point through the
search, |

It is tempting once having an efficient heuristic
search program, to simply say: Use this on the best
information data-base (e.g. arc costs) available, and
as more information comes to light simply improve the
data-base accordingly. The pitfall is that unless it
can be_established that the information comes to light
entirely independently of the performance of the
search program, then the problem is in the class of
'on-line' problems discussed in Chapter 2. As shown in
Chapter 2 the 'on-line' problem needs more than an
effective search strategy - it also needs a BANDIT
(type) decision maker.

The idea that a program which does the 'best poss-
ible' with a given data-base can simply embody learning
by having its data-base updated with new information is
not regtricted to heuristic search problems. Any

program that acta on a data-base which is updated in a

5 - 10
way that depends on how it has acted in the past needs
to have its decision process elaborated (BANDIT'ised!)

to successfully cope with the 'learning' situation.

5 - 6 SUMMARY OF MAIN POINTS

A review of the introduction in Chapter 1 may be
fruitful, in retrospect, as an 'over view' of the
materiai presented.

The pointé to be emphasised in this thesis are:

. The BANDIT algorithm, as a fundamental mechanism for
any scheme involving the choice of the best alternat-
ive based on valuation using a current (incomplete)
set of data: Data collected being dependent on the
choice made.

. The expectance function, particularly the way it is
developed from the i1dea of 'present value', and the
on-line implementation that results from its rebur—
sive definition. ‘

. The need for the BANDIT algorithm (or another with
the same purpose) in a class of problems called 'on-
line' path finding that occur not only in artificial
intelligence work but also in the operations
research area.

. The linking together of stochastic automata theay and
a class of hueristic programming work. Also the

extension of the stochastic learning automata

5 = 11

machine-environment interaction in doing this.

. The linking together of Markov process theory with
the BANDIT algorithm, expectance function and rote
learning tables.

. The computational tools, LINKNET and the display
system philosophy, given in the appendices.

More detailed lists of points have been given at

the end of each chapter.

REFERENCES

d Andreae,J.H. Learning Machines: A Unified View.
Encyclopaedia of Linguistics Information and
Control, Pergamon Press, 1969,

2 Andreae,J.H. and Cashin,P.M. A Learning Machine
with Monologue. Int. J. of Man-Machine Studies9
Vol.1, No.1, 1969, pp 1-20.

5 TFeigenbaum,B.A. Artificial Intelligence: Themes
in the Second Decade. Invited paper IFIPGE,
Stanford Artificial Intelligence Project Memo AI-67.

. Howard,R.A. The Foundations of Decision Analysis.
IEEE Trans on Sys. Sci. Cybernetics, Vol. SSC-4,
No.%, September 1968, pp 211-219.

- 5 Jaynes,E.T. Prior Probabilities. IEEE Trans on

| Sys. $ci. Cybernetics, Vol. SSC-4, No.3, September
1068, pp 227-240.

6 Minsky,M. Steps towards Artificial Intelligence.
Computers and Thought, Ed. Feigenbaum, E.A. and
Feldman,d. McGraw Hill 1963, pp 406-452.

7 Minsky,M. Ed. Semantic Information Processing.
MIT Press, 1968.

“8 Nilsson,N.J. A Mobile Automaton: An application of

artificial intelligence techniques. Proc. Int.

Joint Conf. on Artificial Intelligence. Ed.

Walker,D.E. and Norton,L.M., A.C.M, 1969, pp 509-520.

APPENDIX A

LINKNET -

A Structure for Computer Representation and Solution of

Network Problems

ABSTRACT

LINKNET is an information structure for represent—‘
ing any network of nodes and interconnecting arcs. JThe
structure applies linked lists and enables list-
processing techniques for problem solving with networks.
The LINKNET structure has provided a concise implement-
ation of algorithms arising in a wide variety of net-
work problem solving, such as power system analysis,
game playing programs, minimum cost path finding and
the determination of certain trees and meshes in a net-

work.

The work reported in this appendix was carried out
in cooperation with M.R. Maysen and R, Podmore. M.R.
Mayson has been applying the LINKNET technique to power
system load flow studies and particularly the problem of
finding 'clumps' of 'tightly connected' nodes in a
power supply network. R. Podmore has also been applying
LINKNET to power system network problems; with special
attention to shorﬁ circuit studies and transient H
stability. Separate publications are being prepared on
these applications of LINKNET , This appendix serves as

a more general 'over view' of the technique itself.

1. INTRODUCTT ON

The methods of linked list-manipulation of data
structures as used in this work are will known to com-
puter scientists; unfortunately the use of these tech-
niques in the general run of application problems is not
SO common. Expérience Wifh a number of application
programs, both invassembler language and FORTRAN, has
shown that thevrepresentation of networks and the imple-
mentation of network problem solving algorithms is a
~particularly frﬁitful area.

As Knuth [1] has noted: Although List-processing
systéms such as IPL-V, LISP, and SLIP are useful in a
large number of situations, they impose constraints on
the programmer than are often unnecesgsary; it is usually
better to use the methods of List-processiﬁg (as
described by Knuth [1]) in one's own progréms, tailoring
the data formats and processing algorithms to the partic-
ular application. LINKNET follows this philoéophy even
though it is concerned not with a particular application
but with a Whoie class of problems - those involving
problem solving with networks. The TLINKNET scheme is
not being described as a rigid protocol for network
problems, but rather‘it is described to direct attention
to the applications bf List-processing to network
problems by showing a framework that has proved itself

very effective.,

A -3

The LINKNET structure'was developed for two prob-
lems, one of power system analyéis and the other a game
playing program. The common element between these two
problems is that they have both to deal with networks,
one in the form of bﬁs bars and powerj}ines; the other
in the form of positions and legal moves. It quickly
became apparent that the LINKNET structure was useful
not only because it gave a way to reépresent and mani-
pulate the'networks, but also it facilitated the comput-
ational procedures used. Further applications confirmed
that the LINKNET structure is well suited to a general
class of problems involving such operations as searching,
itérative scanning, modification and organization of any

network and its abttributes.

2. THE BASIC STRUCTURE

2.1 Graphs

A network, or graph, consists or 'nodes' which are
the juncfion points for the 'arcs' or interconnecting
lines. An examplebnétwork with 4 nodes and 8 arcs 1is
shown in figure 1. Notioe that, except as may be
dictated by particﬁlar applications, there are no

restrictions on loop cross overs or parallel arcs.

4 - node
8 - arc
network

Figure 1.

The nodes and arcs may each have a set of
attributes; for example the arcs may have associated
flow rates as in the case of.a network of water pipes,
or they may have directions as in the case of a directed

graph with arrows on the arcs.

2.2 LINKNET Elements

The network is represented in the computer by the
LINKNET structure and although this can be implemented in
machine language or in a high level language such as
FORTRAN or ALGOL it is easier to develop the ideas and
notation at the machine language level. Thus it will be
assumed that groups of words can be assigned as contig-
uous blocks or 'elements', and that the addresses of
these words are available to enable any of them to be
accessed.

Each node of the network is represented in the |
LINKNET structure by a 'node-element' which holds the
identity of the node and all its attributes, and in a
similar manner each arc is assigned an 'arc-element'.

In addition the structure has 'bead-elements' that are

used to give the topology of the network by connecting

the node-elements to appropriate arc-elements in a .
manner to be described shortly.

" The elements (node — arc - or bead-elements) can be
thought of as one or moré‘consecutive words of computer
memory, with subdivision into fields, each field holding
one or more attributes of the entity (node or arc) being
represented. Some‘of the}fields contain addresses
rather than attributés° The address of an element, also
called a link pointer, or reference to that element, is
the memory location of its first word. Figure 2 shows a
node-element, an arc-element and a bead-element with
their fields and the names given to the fields; all the
fields shown are basic to the LINKNET structure and
additional fields may be specified for the purposes of

particular problems,.

Node—-element:

NUMBER

LIST

NODE-DATA

Arc-element:

NAME

ARC-DATA

Bead-element:

NEXT

ARC

END

ure 2

L%j'

Field Descriptions

NUMBER - This field holds a number
(or characters) to identify the node.
LIST - This field holds a link to a
bead-element at the top of a list of
beads specifying the arcs connected
to this node.

NODE-DATA - This field is a composite
of one or more fields holding the

attributes of the node.

NAME - This field holds a number (or
charaoters) to identify the arc.
ARC-DATA - This field is a composite
of one or more fields holding the

attributes of the arc.

NEXT - This field holds a link to the
next bead in a list of bead elements.
ARC .= This field holds a link to an
arc~element.

END - This field holds a link to the
node-element of the node at the other
end of the arc specified by the ARC

field.

2.5 Lists

.As Speéified in figure 2 the LIST field of a node-
element is a link to a list of bead-elements; the NEXT
field of the bead-element gives a link to the next bead-
element on this list, or is 'null' if there are no more
bead-elements on the list. To display a list of bead-
elements a diagram like that in figure 3 is used.
Figure 3 also introduoes a link-variable (or pointer
variable), NODE, which is a computer variable whose

value is a link, in this case pointing to node 1.

Node 1 Bead 1 Bead 2
NODE —3 NUMBER - NEXT o——3 NEXT o
| nIsT ~ | ARC ARC
NODE-DATA END END
Figure 2

To refer to a field within an element the name of
the field is given, followed by a link to the desired

element in parentheses; for example in figure 3:

LIST(NODE) = The address of bead 1, and

NEXT (LIST(NODE)) = The address of bead 2.

I

Notice that the fields LIST, NEXT, END, NODE-DATA and so
on only have values when qualified by a link-variable

(or a link-constant), they are not themselves variables.

A -8

We are now in a position to consider the LINKNET

representation of a simple network, as illustrated in

figure 4.
NETWORK : _‘
Node 1 O/_\
Arc 1 Node 2
Arc 2
Node 3
LINKNET representation:
Node-element Read-element Arc—-elements .
for Node 1. for Arc 1.
-~ NUMBER aﬂ///fm~? NEXT =~ NAME
TIST - ARC @,? ARC-DATA
NODE-DATEA END A~ [/
A NEXT e/ ~—z| NUMBER
(ARC e’ S TIST
5 < BN D NODE-DATA
(\ AU
P DEXT . o Node—-element
ARG e— for Node 2
£9 ¢ END °
[NUWBER s [NEXT = WANE
TIoT = IRC ARC—DATE
NODE-DATA END &t
Node-element Arc-element
for Node 3. for Arc. 2,
Figure 4.

Figure 5 uses the simple network used in figure 4 but
shows the pointers (with less detail) in separate

diagrams in order to bring out the way LINKNET gives a

A -9

'direct' representation of the network. It is an import-
ant point that LINKNET attempts to represent the network
rather than any data structures that arise during
problem solving. This representation primarily of net-
work, with data structures overlaid onto it as needed,
has given the programmer a good 'feel' for what a program
is doing and has contributed directly to the success of
LINKNET applications.
NETWORK

Node 1

Arc 1
Arc 2

Node %
Elements of LINKNET:

LIST(NODE) ARC(BEAD) END(BEAD)
NEXT(BEAD)
Figﬁre 5

Two simple data access operations will now be used
to iliustrate the notation and show how the LINKNET

structure facilitates certain procedures,

2.4 Access to arc attributes

The attributes of all the arcs connected to any
chosen node of the network can be accessed in turn by
'scanning' the list of bead-elements attached to the
node and using the link in the bead-element's ARC
field:

arc attribute = ARC-DATA(ARC(BEAD))
where 'BEAD < LIST(NODE) = (NODE points to the
chosen node; ¢« indicates the value replacement operation)
and then BEAD <« NEXT(BEAD)
until BEAD = NULL.

2.5 Accegs o node attributes

The attributes of all the immediate neighbours to

any chosen node can be accessed in a similar manner:

neighbour node attribute = NODE-DATA(END(BEAD))

where BEAD <= LIST(NODE)
and then BEAD 4~ NEXT(BEAD)
until BEAD = null,

5o CREATION OF LINKNET

5.1 Construction of a LINKNET structure

The LINKNET construction algorithm will be written
in such a way as to be directly related to a high

level language such as FORTRAN or ALGOL. The basic

P

difference from the machine language implementation
considered up to now is that the fields of each element
are assigned as separate arrays or vectors, thus the
fields of each element are not consecutive memory storage
locations (although it may still be easier to think of
" them as consecutive). Also since storage for the
elements is assigned as a set of arrays, identification
of a node or arc can be made by specification of an
index value, index i being a link or pointer to the
ith node or arc element. |

Let us assume that the input data that describes
the network is arranged in two parfs; the first giving a
description of the nodes of the networks, and the second
giving a description of the arcs of the network, and

which nodes they connect.

A1 [Allocate storageo] Assign as single dimensional
arrays; NUMBER, LIST, NODE-DATA, NAME, ARC-DATA,
NEXT, ARC, END.

A2 [Input information about a node,]

Read in the values; index, identity, data
NODE =<=— index
NUMBER(NODE) <— identity
NODE-DATA(NODE) ;%— data

If more node:information exists go to A2.

A% ['Initial bead-—elements{l
BEAD1 <— Dbead-index (BEAD1 & BEAD2 are indices
BEAD2 <— BEADT + 1 for two beads)
A4 [Input information about an arcil
Read in the values; index, identity, nodel, nodeZl,
data ARG <—index, NAME(ARC1) «— identity,
NODE1 «— nodel1, ARC-DATA(ARCT)<— data,
| NODEZ2 < node?2,
(NODE1 & NODEZ2 are indices to the node elements at each
end of the new arc).
A5 [Attach a bead-element to NODE1.]
If LIST(NODE1) = null, LIST(NODE1) <— BEADT;
Else BEAD<— LIST(NODE1)
loop: If NEXT(BEAD) = null, NEXT(BEAD) <— BEAD1,
Flse BEAD < NEXT(BEAD), go to loop.
A6 [Attach a bead-element to NODE&]
Repeat step A5 but for NODE1 read NODEZ2 and for
BEADT read BEAD2.
7A7 [Set bead-element links,]
NEXT(BEAD1) <— null, ARC(BEAD1) <— ARC1,
END(BEAD1)<— NODE2,
NEXT(BEAD2) <— nullc , ARC(BEAD2) <— ARC1,
.- END(BEAD2) <— NODE1.
A8 [__Repeat for next arc information.,]
| If more arc information exists, BEADT «— BEAD1 + 2,

BEADZ2 «—— BEADT + 1, go to step A4,

A - 13

4. APPLICATIONS OF LINKNET

4.1 Minimum length path finding

As an example of the use of a LINKNET structure a
minimum length path finding algorithm will be described.
In this problem the arcs each have a given length and
the object is to find the minimum length path from a
given start node to a given goal node. The path finding
algorithm to be used aims to try as few paths as poss-
ible in the coﬁrse of finding ﬁhe minimum length path;
the particular algorithm to be used is a simplified
version of the powerful A* algorithm of Hart, Nilsson
and Raphéel [2]: |
B1 Mark the start node 'open' and all the other nodes

'closed'. Bet the distance attribute of all nodes

to zero.

B2 Select the 'open' node, n, with minimum 'distance'.

B3 If n is the goal node terminate the algorithm. The
length of the minimum length path is the 'distance'
of n, and the path can be traced back to the start
by use of the predecessors or 'parents' marked at
each node.

B4 BSet the distance of each node m that is adjacent to
node n to be the minimum of its current 'distance'
value or the 'distance' of node n plus the length of

the arc from node n to node m.

A - 14
B5 Mark all the nodes that have had their distances
altered by step B4 'open' and note their predecessor

was n. Mark node n as 'closed' and go to step BZ2.

To implement the above algorithm it will be
assumed that the LINKNET structure for the network has
been set up and that in addition to the fields shown in
figures 2 and 4 there are the following fields initial-
ized to the values given:

DISTANCE(NODE) = O, this field will hold the distance
. value of each node as used in the

B-procedure.

PARENT(NODE) = null, this field will hold the predec-
essor of the node.
STATE(NODE) = closed, this field will indicate if
the node is 'open' or 'closed'.
OTHER(NODE) = null, this field holds a link to the
| next node in a list of 'open' nodes.
LENGTH(ARC) =

length of the arc.

C1 [Put the start node on the 'open' list.]
| OPEN~LIST<—-start-hode (OPEN-LIST is a pointer.)
Cce [Find the minimum distance 'open' nodeJ |
NODE <« OPEN-LIST, MIN-DIST <« large-value,
Loop: If MIN-DIST > DISTANCE(NODE),
Then MIN-DIST < DISTANCE(NODE),
and - MIN-NODE < NODE:

A - 15

In any case continue with NODE < OTHER(NODE),

If NODE # null, go to Loop.

C3 [Check if algorithm terminatesJ

If MIN-NODE = goal-node, terminate algorithm.

¢4 [Update

distance of nodes.]

NODE < MIN-NODE, BEAD <—LIST(NODE),

Begin:

If
Then
and
and 1if
then
and
and.

In any

NEW-DIST «<— DISTANCE(NODE) + LENGTH(ARC(BEAD)),
NEW-NODE «— END(BEAD) ,

DISTANCE(NEW—NODE) > NEW-DIST,
DISTANCE(NEW-NODE) <— NEW~DIST,

PARENT (NEW-NODE) < NODE,

STATE(NEW-MODE) = closed,

STATE(NEW-NODE) <— open,
OTHER(NEW~-NODE) <— OPEN-LIST,
OPEN—LIST-&—NEW~NODEE

case continue with BEAD <« NEXT(BEAD),

If BEAD # null, go to Begin.

C5 [Delete node from 'open' listo]
If OPEN-LIST = NODE, then OPEN-LIST <«— OTHER(NODE),
Else N < OPEN-LIST, (N is a link variable)

Step:

If OTHER(N) = NODE,

then OTHER(N) <— OTHER(NODE) ;

Else N < OTHER(N),

After this go to step C2.

Figure 6 shows an example minimum length path
finding problem with an indication of the distance
values and"open' list members at the stage when the
algorithm has been through step C5 six times and has
three times more to execute step C5 before terminating.
The arrows on the arc indicate the parent nodes for each
node, on termination a path could be traced back from
the goal node to the start node using these pointers,
The minimum length path, and distance of the goal node

on termination of the algorithm, is 14 units.

~-OPEN-LIST

gtart
node

The numbers on the arcs are the arc lengths.
The numbers at the nodes are the distances.
The arrows on the arcs are the parent pointers.

Figure)

This implementation of the minimum length path
algorithm shows that the programming can very closely
follow.the algorithm's descriptive terms. This is a
common feature in algorithms that apply to networks |
since very frequently they 'look at' adjacent nodes or
expand out from a nodej; with the LINKNET structure this
is simply a matter of scanning down the bead-element
list attached to the node being considered. Admittedly
the algorithm is quite simple and the implementation
given is slightly clumsy but extension to having an
ordered list of 'open' nodes (thus eliminating the need
for the STATE field of the node-elements) and adding
the extra function that is used in the A* algorithm [2],
are refinements that do not destroy the basic simplicity
of implementation, |

The example used in figure 6 appears in Berge [3],
along with some different algorithms for minimum length

path finding.

4.2 Finding Meshes and Spanning Trees

A problem will now be considered that has several
different applications. The applications will be men-
tioned briefly later but for now the problem will be
treated Jjust as a network manipulation problem.
Starting with any network, for example, the network in

figure 7, the aim is to label a set of arcs that

connect up all nodes of the network without forming any
loops. ©Such a tree is called a spanning tree and the
arcs that form this tree are to be labelled 'branches'
while all the remaining arcs are to be 'labelled
'links'. Once the spanning tree is set up the meshes

of the network can be defined as~loops containing one
link and a path along tree branches, thus there are the
same number of meshes as links. The particular spanning
tree found by ény algorithm may be quite important,
research is still underway [4]to find efficient algorithms
to find the best 'root' node or starting node for an
algorithm to produce a spanning tree that is minimal in
some sense. The algorithm given here simply finds a
spanning tree starting from a given root node.

Briefly the algorithm 'expands' out from the root
node marking all arcs as 'branches' and all nodes at the
ends of these branches as 'tree members'. Subsequent
expansions occur from nodes that are members of the
" ree, and if any arc leads to a node also in the tree
then this arc is marked as a 'link' rather than a
'"pbranch'. The algorithm terminates after all nodes
that aré members of the tree have been expanded once.

Assume that the LINKNET structure has been set up
for the network with the following extra fields:
TAG(NODE) = O initially and 1 after it has been found.
PARENT (NODE) will receive a pointer to the node from

A - 19

which this node was reached, i.e. its predecessor‘
in the spanning tree.

TYPE(ARC) will be set to 'branch' for an arc in the
spanning tree or to 'link' for all other arcs.
Three stacks (push—down lists) will also be used:

STACK holds nodes to be expanded from,

STACK1 and STACK2 hold the nodes at the ends of each

'link', one in each stack.

D1 [Put root node onto working stack.] STACK &« root-node.
D2 [Get next node to expand from.]
NODE < STACK,
If NODE = null terminate algorithm.

D3 [Tag nodes and classify arcs.] Scan down the list
of bead-elements pointed to by LIST(NODE) and for
each bead on this list:

NODE1 <— END(BEAD), ARC1 <—ARC(BEAD),
If TYPE(ARC1) = branch or link, step on to next BEAD.
Else if TAG(NODE1) = O, then TAG(NODET)<—1,
and TYPE(ARC1) <— branch,
and PARENT(NODE1) <— NODE,
and STACK <= NODE1;
Else if TAG(NODE1) = 1, then TYPE(ARC1) < link
and STACK1 <= NODE,
and STACKZ2 <= NODE1;

After all beads are done go to step D2.

Figure 7 shows a simple network after the algorithm
has specified the'spanning tree, the branches are shown
as solid lines with an arrow indicating the parent
pointer, while the links are marked as dotted arcs. It
should be clear that from this structure the meshes can
be found by tracing back from each end of each link
(STACK1 and STACK2 hold these nodes); after the trace
reaches the root node from each end of the link, common

branches (if any) can be eliminated.

Root-node

— branch arcs

—--1link arcs STACK1 = 6,6,3,2
—» parent pointers. STACK2 = 5,%,4,7
Figure /

Use of Trees and Meshes

One application for this algorithm is to find mesh
loops in an electrical network so that a set of simul-
taneous equations can be set up to solve for the

currents flowing in each mesh loop. In practice there

A - 21

may be the additional complication of mutual coupling
between arcs by way of magnetic fields. The network
now consists not only of nodes interconnected by arcs
but also of arcs interconnected by 'mutuals'. However
the LINKNET structure can be expanded to cope with this

complication in the manner indicated by the diagrams in

figure 8.
Node 1
Mutual 1 Node 2
Arc 2
Node 3 '
Node-elements Arc—-element Mutual-element

Figure 8

The mesh loop current equations can themselves be
thought of as a new network, where the nodes are mesh
loops, and the arcs are mesh loop interactions. A
program has been written (in FORTRAN) that after finding
the meshes of an electrical network, constructs a

second LINKNET structure to represent the mesh loop

A - 22

equations. Further than this it is possible to solve
these equations by an iterative procedure that utilizes

this new LINKNET structure.

5. CONCLUSIONS

The LINKNET structure for representing networks by
the use of linked lists has been described in some
detail. The structure represents the network in the
computer Withoﬁt any immediate regard to processing that
may occur on the network or on attributes of network
elements. The structure is put forward as a basic form
that can be elaborated as required to include features
that are special to any particular network.

After the LINKNET structure is established the
implementation of several procedures is considered. It
is shown that for particular problem procedures the
LINKNET structure can be easily extended to facilitate
the desired manipulations of the network or its
attributes. More than this it is often the case that
the LINKNET structure can be used to guide the course
of the procedures from node to node,aﬁd arc to arc in
the required manner.

The saving of memory space that can be achieved by
the use of a linked list data structure rather than a
matrix method have not been sﬁressed in this presentat-

ion. It is often the case however, that networks are

A - 23

very large; power systems or transportation networks

for example may have several hundred nodes. Not only are
such networks often large but they are far from fully
interconnected giving rise to very sparse entries in a
matrix representation. In such cases the saving in
memory by use of a LINKNET type structure may be
extremely important.

The main aim of this appendix has been to bring
attention to the ease of applying linked-lists and
List—processing methods to network problems. It is
hoped that the LINKNET structure and network procedures
demonstrated here will give moreprogrammers an
incentive to consider this attractive alternative to

matrix methods for network problem solving.

A - 24

REFERENCES

1 Knuth; D.E. The Art of Computer Programing
Volume 1, Fundamental Algorithms, Chapter 2, Data
Structures, Addison-Wesley, 1968.

2 Hart, P.E., Nilsson, N.J. and Raphael, B. A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths. I.E.E.E. Trans on System Science &
Cybernetics, Volume SSC - 4, No.2, July 1968,
pp 100-107.

3 Berge, C. The Theory of Graphs, Methuen and Co.
London, 1962,

4 Snow, C.R. and Scoins, H.I. Towards the Unique
Decomposition of Graphs. Machine Inbelligence 4
Ed. Meltzer,B. and Michie,D. ZEdinburgh University

Press 1969, pp45-55.

APPENDIX B

GRAPHICS DISPLAY SYSTEM

APPENDIX B

1. INTRODUCTION

This appendix briefly covers some of the main
points in the overall organization of a graphical display
system that was designed and constructed in the course
of this thesis work in cooperation with M.R. Mayson.

It is only intended to give the basic concepts of system
organization that emerged from the work, with little
implementation detail and only a functional outline of
the hardware that is involved.

The display system runs on an EAIG40 computer.
This is a conventional 16 bit word, 1.6 gs access, 8K
machine with high speed paper tape and a fixed head
disc. The machine is installed in the Electrical
Engineering Department as part of an ©40 /580 (590)
hybrid computer system.

The CRT display chosen was a Tektronix 611 (11")
storage display-scope; a storage system being selected
almost entirely on a cost basis. This type of storage
CRT can retain an image after a single write operation,
or it can display a repetitively written image as done
by a normal CRT. An additional feature is the 'write-
through' mode which enables information to be displayed
by repetitive writing without storage, while other

previously written information is retained as a display

image. This was one of the first 611's produced (before
commercial use in computer terminals, etc.) and it has
been in use for almost two years. It is interesting
(and important) to note that the use of this facility
is almost always for text output - disc map dumps,
text editing and so on - very seldom is the full graph-
ical ability required. | 7
Another basic decision (that has proved reasonable)
was to put in é minimal amount of hardware and cope with
~as much as possible in software. The only functions
built into the hardware are for the output of points,
CRT mode control (store, write-through, eraze),
together with control for inputs from function buttons,
status switches, and a Jjoy stick for moving a write-
“through 'crusor' with ability to read in the
co-ordinates. Line drawing, character generation and
so on are all executed by the software; the speed 1is
normally very well matched between hardware (» 20us/dot
required) and the software (about 6 instructions/dot).
The basic functions of the hardware are illustrated

in figure B-1.

To CPU I/0 BUS.

1

~——= DO - Data out command.
o o ——> DI - Data in command.
ontrol & > DF - Device function command.
Timing. —=> SI1 ~ Status input command.
- ——> 2 ~ CRT bright up control.
—= CLOCK
REGISTERS X-BUS.
> X
ol = Digital to ' %
’ Analogue o .
DO X = _TRACK X Counter Deflection.
~ =< <
. ‘TRACK —, X
DI X & - Joy-stick.
CLOCK — .
Y-BUS. £)
Y S
= - Comp. X
\————-%» TRACK _, Joy-stick.
DO Y F TTRACK Y Counter
< bt - B
=i Digital to _ Y
Analogue Deflection.
I Y &

—> TRACK - Device set to read back joy-stick
co-ords, CRT displays cursor.
— STORE - CRT to store on screen .all points
put out in this made.

— ERAZE - Clear all stored data off CRT

le—— STATUS SWITCHES
e Device status indicators

T

BASIC DISPLAY HARDWARE
ST I — . Figure B-1

The hardware has been built twice, the first was a
'lash-up' using RTL logic, and the current version was
built commercially (to our design) using CTpL circuitry.

The software is into its second major version.

The experience gained from the mistakes made with the
first software packagé is the main reason for this
appendix. The software effort has been very large
(almost too much for the two of us part time) and like

most software it always remains an open ended Jjob.

. Basic System Requirements

A list of the features that were considered
necessary in roughly their order of implementation is:
1) Character generator.

2) Teletype simulator, allowing text to be put out on
the teletype, the display, or both, at any time by
use of the status switches. |

3) Line drawing routine (between any two co-ordinate
pairs).

4) Display options for standard system programs -
particularly the text editor.

5) Display data file interpreter to draw points, lines
and text from information in a picture data file
(figure B-2).

6) A graphics editor to create and edit the display

data files in an interactive manner (figure B-2).

B -5

Items 1) through 4) are quite straightforward and

will not be referred to again. Items 5) and 6)

involve the vast majority of the effort and will be

considered in more depth.
First we will define two distinct activities -

An Editing phase - at this time display data files are
edited interactively before prepar-
ation as relocatable data files
(modules).

A run-time phase - at this time memory is restricted
since the display must co-exist in
core with a user's application
programs.

Figure B-2 shows the interpreter, the editor, and their

relationship.

The Edit Phase

The editing problems can be tackled in two differ-
ent ways - although these two approaches are not necess-
arily incompatible or mutually exclusive,

1) Direct Draw Facility

The idea here is to allow the user to create and
edit a picture directly on the display screen. For
example to draw a line he could position the cursor
with the Jjoy stick andApress 'BEGIN POINT' (function

button) then move the cursor and press 'DRAW LINE'. 1In

In core for Edit In core for both B -6
Phase only. Edit Phase and T
run-time phase.

\Jgisplay Data

) File
EDITOR (, (orders)

b Scan of file

Instruct
ions and
messages
i
INTERPRETER
| .
SOFTWARE Control and data

words output

- - — - —

HARDWARE

/|
[E;E;;yp;’fL

Also: Function buttons,
Status switches,
Joy-stick.

BASIC PUNCTIONS OF DISPLAY EDITOR AND DISPLAY INTER-

PRETER

Figgre B-2

B -7

a similar manner 'FIND', 'CHANGE', 'DELETE', 'INSERT',
'"TEXT' and so on can be used to create and edit a data
file. |

This philosophy was embodied in our first display
system of software and it is undoubtedly attractive and
very easy for an operator to use. Unfortunately (as
will be discussed) it leads to some very difficult
software problems unless the data‘files are of quite a
simple form.

Direct draw is probably the best approached as an

eventual extension of approach 2) -

2) Display Language Facility

A high level display language is a far more satis-
factory system from the software point of view since 1t
is'possible to design a modular and extensible system.
For anything approaching the direct draw facility the
display language must be reasonably rich (with pseudo
operations and macro generation). A compiler or inter-
preter could be used to generate the basic diSplay file
data from the high level language instructions. Figure
B-% illustrates this.

A subtle and interesting point is that even if
direct draw facilities are created the operator still
has the ability to edit the picture program rather than

the picture itself as it appears on the display. The

In core only for edit In core for both the B -8
phase. edit phase and the —_—
run-time phase.

TRANSLATOR DISPLAY DATA\
‘ = FILE
Interpreter
or Compiler a \ (Orders).
DISPLAY !
LANGUAGE
PROGRAM ¢
I
INTERPRETER
EDITOR
|
A
SOFTWARE
HARDWARE
Teletype

Also: Function buttons,
Status switches,
Joy-stick.

USE OF A DISPLAY TLANGUAGE

Figure B-3%

importance of this type of editing is for operations
like naming a picture, inserting a call to a sub-
picture, lihking run-time variables into a place in a
picture, and so on. In fact for all the operations
assoclated with picture editing that do not necessarily
appear directly as parts of Tthe image. These features
are mentioned again under Run-time Phase, below.

Rather than define a high level language directly,
the approach we have chosen igs to embed the 1ow‘level
data file information into a higher level interpreter

system so that together they form a self-extensible

higher level display language. The user can employ
pre-programmed high level commands or he can create new
ones of his own or he can create even higher level
instructions that employ the original high level
instructions.

The higher level interpreter (higher level than
the display file processor to be discussed later) used
in this case is TRAC (Text Reckoning And Compiling) Eﬂ],
[2] . This is a String processing and macrogenerator
language, similar to GPM [3]. The features that make
TRAC suitable for this work are:

a) It is designed as an interactive language.

b) It is able to define text macro forms with formal

parameter creation and substitution.

c) It has the ability to embed itself into higher

level interpreters written in TRAC itself.

« The Run-Time Phase

A¥ run-time the display programs co-exist in core
with a user's non display programs. The user's
programs have the ability to request the display of a
display data file, or to take an active role in the
display if so desiréd. It is desirable to have a mod-
ular set of display programs so that if only the basic
display features are required the core overhead can be

kept accordingly low.

It has been found that it: is not the direct display

of display data files which causes difficulties, but

rather the communication between display files and run-

time programs, and the flow of program control. Some of

these problems are generated by the following require-

ments:

1) The display data files need to be available as re-
locatable modules or subroutines that can be named
and loaded along with standard relocatable modules
produced by assembler and FORTRAN programs.

2) Display files should be able to call other data
files as subroutines (subpictures).

3) Display files should be able to request the value
of run-time (computed) variables for inclusion in

the display.

4) Display files should be able to initiate computat-
ional programs as subroutines during picture cons-
truction.

5) Run-time programs should be able to control the
execution of a display by modification of display
files and also by control over the programs that

display the display data files.

Rather than go through the display development
chronologically the development given here is our
latest approach. This is (overall) considered to be
the most fruitful approach for .any small machine,
storage tube display system, in order to meet the sort
of requirements outlined in the sections above.
Comments Will be interspersed at points where the
approach is considered to have particular advantages

over alternative approaches (and our previous attempts!).

Digplay Order Interpreter

The basic software and first requirement for imple-
mentation is the display order interpreter. The function
of this program is to interpret and execute the display
orders from the display data file. This can be looked
on as a simulation of the hardware used in refresh CRT
systems to display from code in memory. The display
data files instructions are called 'orders' to distin-

guish them from the CPU 'instructions' of the normal

machine code. It is worth considering designing the
interpreter to handle orders with the same format as some
particular refresh system hardware. In this way the

same display files could be used either on the storage
display via the interpreter or on a refresh CRT

(perhaps on another computer) using the hardware.
However, if such hardware is not likely to be available
it is not worth restricting the order set in this way.

If the order set 1s only for use by an interpreter
the set is easily left open-ended for future extensions
and alterations. More interesting the orders can be
made considerably more compléx and specialized with very
little extra software overhead. For example, different
orders can be made 1, 2, 3 or more words long, and the
x and y coordinateé can be given as memory base and dis-
plaoement addresses rather than actual values (relative
or absolute). It seems well worth while taking advantage
of the storage mode of the storage tube CRT by allowing
more complex display orders than is possible with
refresh CRTs.

A critical factor that has become apparent is that
the display order set should include not only display
instructions (point, line etc.), but also procedural
orders including at least the following:

1) Jump and link (to subroutine) orders.

2) An end order that may serve as a subroutine return.

B - 13

3) A change or link order that allows for a change or
branch to normal machine CPU (non interpreter)

instruction execution.

Notice that an order to go to machine instruction
mode (point 3)) eliminates the need for a fuller set of
interpreter orders to handle arithmetic,logical, and
test operations.

In the design of the interpreter itself the
following points should be considered:

1) The interpreter must be re-entrant.

2) A1l registers used by the interpreter that may
alter the interpretation of orders (the 'state' of
the interpreter) should be made available external
to the interpreter (as global names or absolute
locations). Preferably the complete stack of
registers for each entry (activation) should be
available..

3) There should be no flags conters etc. ﬁhat are not
either clearly defined as parts of the registers
(point 2)), or reset prior to any exit from the
interpreter or the completion or an order. (This
may be obvious in view of point 1) but it is vital
to the success of the interpreter). |

4) On exit from a picture subroutine (or computational

subroutine) the 're-entry' of the interpreter should

5)

allow the two possibilities:

a) Retaining the interpreters registers (the X,Y
coordinates in particular), as they are on exit
from the subroutine, or

b) Restoring the registers to their condition
before the last interpreter entry (before the sub-
routine was called, i.e. the normal activation
record 'pop up' operation of a re-entrant program).
A1l input.and output from the interpreter to the
display CRT function buttons and so on should be
routed through a common I/0 routine. The purpose
of this is:

a) This enables the same interpreter and display
files to be routed to different device controllers
for example the CRT display could be put out to a
X-Y plotter. The only restriction. on this is-the
available hardware (the I/0 routine should take
care of device pecullarities).

b) The output can be intercepted in the I/0
routines so that the output of a display file can
be 'simulated' at high speed. This enables us to
find points in the display that are not explicitly
in the display data file but are computed during
the course of the display output. The simplest
example of this is points in the middle of a line

which is drawn with a single display order.

6) The 'instruction fetch' operation of the interpret-
er that sequentially fetches display orders for
execution, should be made as an accessible
program module. The purpose behind this is to
enable data files to be executed even though the
orders are not sequential in core storage. A par-
ticular use of this facility (to be mentioned
again later) is to enable the 'order fetch'
program to fetch a string of characters off a
linked list, assemble a group into a binary word
and return this to the interpreter as the next

instruction.

Figure B-4 summarizes the main points in the inter-
preter construction. Notice that the design looks very
much like a CPU organization. This is a good way to
look at the interpreter architecture, and will serve as

a sound design guide.

Display File Editing.

With a display order set established and the
associated interpreter working we can move on (both in
this description and in implementation!) to a higher
level interpreter for compiling and editing the display
orders. Because of the requirement to have the display
data files (orders) in the form of standard relocatable

modules (standard object program format) there are

B - 16

o e e g

/ DISPLAY

DATA FILE
ORDERS

DATA
Sequential INTERFPRETER
or program-
med scan
ORDER
FETCH
ROUTINE
Request supply REGISTERS ,E
next order next order ' i
- # X~-coordinate f
INTERPRETER]
MAIN BODY < > Y-coordinate ;

Order decode <> P-program counter
Address andbr

data calculat- | I-instruction (order)
ion

=1 3-scale factor

Scale factor * M-mask (restore/retain)

Execute R-return address

order ——

I/0 MODULES

INTERPRETER

HARDWARE

’ CR’T‘)
N ‘ Figure B-4,

B - 17

several advantages in having a program that accepts
mnemonics for the display orders and rather than produc-
ing the display data file itself producing these
mnemonics in terms of standard assembler mnemonics.

That is, the picture 'source' file is translated into an
assembler source program in such a way that the
assembler will process this into relocatable program
module which when loaded will have the desired display
orders, addresé references and so on. Figure B-5 shows
the overall process involved. The particular

advantages of this two’stage process all relate to mak-
ing the higher level interpreter (or compiler) easier

to write:

1) Mnemonics for standard display orders such as
absolute points or lines, can be translated into
assembler 'data' tType statements.

2) A1l resolution of symbolic names and relative
addressing can be resolved by the assembler in the
normal way.

3) Global and local symbols, including a global
(external) nsme for the display data file as a
whole, can be coped with by inserting . standard
‘assembler language pseudo-operations into the

source code.

elocatable

Modules

B - 18

J

ASSEMBLER LOADER
System
Software
ASSEMBLER !
SOURCE
PROGRAM
;
PRE-PROCESS
i
Edit phase Run-time
DISPLAY | DISPLAY
LANGUAGE DATA FILE
SOURCE ORDERS
' /
EDITOR INTERPRETER
|
Display
Software
Hardware : "

TE;letype

Figure B-5

B - 19

If the standard assembler has the ability to have
additional mnemonics added to it, it may be possible to
use the (modified) assembler directly on the picture
"source' program. In this case no additional precompiler
program would be needed, this possibility was not avail-
able (easily) with the EAI 640 assembler.

There i1s one real disadvantage of a scheme
requiring an assembly process béfore the display data
file is in = sﬁitable condition to be loaded and dis-
played - that is, the lack of editing ability in the
direct draw vein. The editing of a picture takes on
the same form as the editing of a computational program.
The round of source editing, assembly, loading, and
debugging is far from the interactive ideals of the
direct draw facility. Figure B-5 shows the overall
process involved.

A far more powerful and flexible scheme that can be
built up towards a direct draw capability is the use of
a high level interpreter as discussed in the next

section. See also figure B-6.

. BEditor-Interpreter

The high level interpreter used in our implementat-
ion was TRAC, as mentioned previously. Rather than talk
of a higher level interpreter in general, TRAC will be

referred to, even though some of the comments apply to

B - 20

other interpreters that may be used in place of TRAC.

« The key feature that makes TRAC a more attractive
system than a simple pre-processor is the ability to
draw a picture onto the CRT direct from a character
string that can be defined using TRAC. This is best

described by a simple example:

A display data file of orders to draw a square

100 by 100 (octal) would appear in core -

Display orders in a

binary file (octal) Interpreter action
70000 Output a point to the CRT
50000 at coordinates 0,0.
707100 Draw a line from the current
130000 position for 4x=100,4y=0 (horiz.)
70000 Line ax=0, ay=100.
130100
73700 Line 4x=-100,4y=0.
130000
70000 Line Ax=0,4y=-100,
153700
177777 End of picture

In TRAC this list of display orders could be
defined in the form of a string of (ASCII) characters
called, say, BOX. This is done by typing -

#(DS,BOX, (70000, 30000 ,70100,130000, . . « ,133700,177777))"

B - 21

The TRAC primitive DS defines a string with name BOX.
To fetch this string from memory the following can be
typed -

#%(CL,BOX) " resulting in a returned value
that is the string of characters listed above.

An additional primitive to the basic TRAC set can
be defined as X(DR,list) where 'list' is a string of
ootal—digit characters; the function of DR being to
lssue each set.of»digits as a binary word to an external
program., The program used in our case is the fetch
order routine for the display order interpreter. Thus
the command -

(DR,%(CL,B0OX))' results in the drawing via the
interpreter of a box (100 x 100) on the CRT, starting
at position X,Y = 0,0.

TRAC has the ability to place formal parameters
into a string of characters by the use of the 885
(segement string) primitive. The commands
%*¥(DS,BOX, (X,Y,70100,130000, . ..,133700,177777))"

A 8S,BOX,X,Y)!
would result in a string BOX being defined as above but
with formal parameters in place of the X and the Y.

The parameters can be substituted for by a call
to the string BOX -

% (CL,B0OX, 70000, 30000)"

which would result in the same string of characters as

B - 22

in the first definition of BOX given previously.
The primitive BU forms the boolean union of its
two arguments, for example -
(BU,100,201) " would result in the value 3%01.
We can now define BOX as a string of characters as
before but with formal parameters for the X and Y posit-
ion of the first corner of the box -
X(DS,BOX, (¥(BU,70000,X) (BU,30000,Y),
70ﬂOQ,4BOOOO,oae,155700,177777))“
¥(S8,BOX,X,Y)!'
Now a command -
¥ (DR ,%(CL,B0OX,0,0)#(CL,B0X,50,50))"
would result in the drawing on the CRT of two boxes

something like this:

This ability can be embedded into higher level
functions-to allow a simpler set of commands to be
typed. The TRAC programs to do this are shown in
figure B-6 as 'TRAC DRAW PROGRAM', with an arrow
indicating the use of the DR primitive to activate the
interpreter.,

Also shown in figure B-6 iS‘§ TRAC program called
'"PRE~-PROCESS' program. This program allows TRAC to

produce a standard format assembler language source

RELOOATABL£>\ l

MODULE /
|

ASSEMBLER LOADER

ABSEMBLER

: SOURCE f
System PROGRAM
software - ‘
Edit Phase ‘Edit and Phase
TRAC Run-time ,
PRE-PROCESS i
PROGRAM DISPLAY
— |- ~-=- - DATA PILE
DISPLAY TRAC ORDERS
LANGUAGE SYSTEM
SOURCE
TRAC '
DRAW
PROGRAM \\\\\\\\ﬁs
%%%g | INTERPRETER
PROGRAMS
Display
software
Hardware

| CRT
[j;;letype

Figure B-6

file for the production of relocatable modules for use
at run-time. The operating procedure would be to
create and edit a picture as a TRAC source program,
with the effect of this picture being viewed on the CRT
with the TRAC DRAW PROGRAM. After the picture is
finished a source program may be saved for future edit-
ing and an assembler source program produced by
execution of the TRAC PRE-PROCESS PROGRAM.

To give sbme idea of how PRE-PROCESS can work

consider the following illustrative example:

#(DS, PROGRAM, (* Notes: -
*ASSEMRLER SOURCE OF TRAC STRING FRED.

* *marks
comments.
REL 0 Relocatable
form.
NAME FRED External
name.
oCcT =
assembler
FRED OCT ¥(SS,FRED, (,) W(CL,FRED nmemonic for
‘ ‘ octal data.

*

0CT))
00T 199997 Display end
order.
END 0 Asgembler
end.
))(SS,PROGRAM,FRED)
#(DS,BOXES, (%(CL,BOX,0,0)%(CL,B0X,50,50)))"

%KDS,BOXES,%(SS,BOXES,177777)%(CL,BOXES))' Delete end
orders

The following order should result in a Value that

is a text string for a complete assembler source program

B - 25
for a display data file to draw the two boxes i1llustrat-
ed previously.

%(CL ,PROGRAM , BOXES) ' » BOXES replaces
FRED each time.

B - 26

REFERENCES

1 Mooers,C.N. TRAC a procedure-describing language
for the interactive typewriter. Comm.ACM 1965
p.215.

2 Mooers,C.N. How some fundamental problems are
treated 1in the design of the TRAC language. Symbol
Manipulation Languages and Techniques, Ed. Bobrow,
D.G., Norfh Holland 1968. From Proc. IFIP working
conference on Symbol Manipulation, Pisa, 1966.

3 Strachey,C. A general purpose macrogenerator.

Computer J. 1965, p.225.

Other material not referenced directly in the Text:

. Interactive Graphics in Data Processing. IBM
System Journal, Vol.7, No.?% and 4, 1968.

This volume contains more than a dozen papers and has

a large number of references.

APPENDIX C

ANALYTIC CALCULATION OF BANDIT SELECTION PROBABILITY

FOR NORMAL PROBABILITY DENSITIES

APPENDIX C

BANDIT Selection'Probability for Normal Distributions

The BANDIT algorithm makes a decision on the basis
of a set of samples; one from each of the 'value' prob-
ability densities of each of the alternatives involved.
The probability that any particular alternative will be
taken is noﬁ explicitly calculated. There is some
interest in knbwing this probability while observing
the performance of the BANDIT algorithm and it may be
calculated in two Ways:

1. By repeated application of the BANDIT algorithm the
probability of selecting each of the possible
alternatives can be assessed by counting the pro-
portion of the total decisions assigned to each
alternative (Monte Carlo method).

2, By direct calculation from the (assumed known)
analytic form of the 'wvalue' probability densities.
This method is useful as a check against method 1,
and in obtaining more accurate results with less
computation.

This appendix is concerned with the details of
method 2 for the case of Normal distributions for the

'value' probability densities.

First consider the choice between two normal probability

densities
£,(x) .
! N(mq5vq)
|
Alternative A1 B B : b4
4
£5(y)
N\)
Alternative A2 , i
m, J

For the BANDIT algorithm, selecting for a maximum:

. g X
Pr(A1) = jﬂfq(x).j[fg(y)edyadx

o0

. ~/ﬂfq(x).Fg(x).dX

-0

where F2(X) is the cumulative distribution for fg(x),

£4(x) | F5(x)

Pr(A1) = ———1——1 e‘xp(—(x—m,])2/2"\7,l

v1(2ﬂ)2

2)n
x
,J/ ———1——% eXp(—(y—m2)2/2v22) dy.dx

v_(2TM)
— 2

J[—1 exp(-(x-m,) /2v42)o

V4(2ﬂ)2

. (1 + erf((X—mg)/V22%)).dx

where erf(x) is the error function*.
Now substitute,

t = (x—mq)/vq, dt = dx/v,.

1 2 (g +mq-mp)
Pr(a1) = ——r exp(-t/2) | (1 + erf(————=)) | .4t
/<2n>2 C vt)
now erfc(x) = 1 - erf(x)
% | (.7,)
v, +m,,~
Pr(a1) = Jf ——1—1 eXp(—t2/2) Yerfc (1 1 2) .at
: oo<2n)2 < V222)

By extension, for N alternatives:

(t. m.)
Pr(Ai) __,_T exp(-t2/2)]—7- derf(N = J) Ldt
3;4 ,N C vy.2®)
J#1 ‘

*Handbook of Mathematical Functions. Ed. M. Abramaowitz

and I.A. Segun. Dover 1964, p.298.

APPENDIX D

THE BANDIT ALGORITHM IN HEURISTIC

SEARCH ALGORITHMS

APPENDIX D

This appendix shows how the BANDIT algorithm may
be embedded into a heuristic graph search algorithm to
allow for updating of theleuristic function for informat-
ion gained by traversal of a previously found path (the
'on-line' path finding problem of Chapter 2).

The Heuristic Path Algorithm (HPA), Pohl 1969 [3],
ig used here because'it is typical of heuristic graph
search algorithms, and particularly similar to the
Graph Traverser of Doran and Michie 1966 [1], and the
A* algorithm of Hart, Nilsson and Raphael 1967 [2].

The problem space for heuristic search is a
directed graph G, which is a set of nodes X and edges E
(arcs in Chapter 2) which are ordered pairs from the
node set.

G: X

{Xﬂ,xg,o..,xn}

E {(Xi,XJ.)lXi,XjéX,XJ. ér'(xi)}

11

r‘is the successor mapping. In using diredted graphs to
characterize problem domains the node X5 has a data
structure that specifies a state of the problem. The
mappiﬁg~P(Xi) represents the set of possible states
(nodes) resulting from one move or operator applied to

state (ode) X, .

The heuristic function h(x) is a measure of the
estimated distance from node x to the goal node. For a
transportation problem the heuristic function may be
the distance from location (node) x to the desired
destination via a direct line rather than the true

(unknown) distance.

First the HPA algorithm by itself:

s =

g(x)

h(x)

f(x)
S =

8=

start node, t = terminal node (goal).

the number of edges from s to x, as found in the

1l

search.

1]

an estimate of the number of edges between x and

t, the heuristic function.

i

(1-w)g(x) + w.h(x) o gw <"1,

set of nodes already visited. Also called the
expanded nodes.

set of nodes directly reachable (in one edge) from
S, also called the candidate nodes.

Place s in 8 and calculate ['(s) placing them in S'.
If x€ ['(s) then g(x) = 1 and

f(x) = (1=w) + w.h(x).

Select n € 8' such that f(n) is a minimum.

Place n in 8 and |' (n) in 8' (if not already in S')
and calculate f for the successors of n (['(n)).

If x€ ['(n) and x & 8 then g(x) = g(n) + 1 and
f(x) = (1-w).g(x) + w.h(x).

If n is the goal state then halt, otherwise go to
step 2.

The HPA algorithm builds a tree; as each node is
reached a pointer to its predecessor is maintained.
Upon termination the solution path is traced back from
the goal node through each predecessor.

The Graph Traverser [1] is similar to the HPA
if only h(x) and not g(x) is used (W=1); while the A*
algorithm [2] uses £ ='g + h (w=%).

After a path has been found it is traversed, and
at this stage.the h(x) for nodes along the traversed
path can be updated with observations of their wvalue

on this traversal of this particular path.

The update process can be written

q(h(x)) =— UPDATE (q(h(x)), H(x))

[}

where q(h(x)) the probability density distribution for

the heuristic function h of node x.

h'(x) the observed value of h(x) on a

1t

traversal.

BANDIT-HPA

1. Place s in S and calculate ["(s) placing them in 8%,
If x€ " (s) then g(x) = 1 and
f(x) = (1-w) + w.sample (g(h(x))).

2. Select n € 8' such that f(n) is a minimum.

3. Place n in S and ["(n) in 8' (if not already in S')
and calculate f for the successors of n ('(n)).
If x€'(n) and x € S then g(x) = g(n) + 1 and
£(x) = (1-w).g(x) + w.sample(q(h(x))). |

4, If n is not the goal node go to step 2.

5. Trace back to find the solution path, and then
traverse this path.

6. During the traversal -

g(h(x)) <— UPDATE (q(h(x)), h'(x))
7. At the end of the traversal go to step 1 to prepare

for the next traversal.

REFERENCES

1 Doran,J.E. and Michie,D. Experiments with the
Graph Traverser program. Proc. R. Soc. A, 294,
1966, pp 235-259.

2 Hart,P., Nilsson,N. and Raphael,B. A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE Trans. Sys. Sci. Cybernetics,
July 1968; S8C-4, No.2, pp 100-107.

% Pohl,I. TFirst Results on the Effect of Error in
Heuristio Search. Machine Intelligence 5,

Edinburgh University Press 1969, pp 219-23%6.

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	CHAPTER ONE
	1 - 1 INTRODUCTION
	1 - 2 PATH FINDING
	1 - 3 STOCHASTIC LEARNING AUTOMATA
	1 - 4 ROTE LEARNING AND MARKOV PROCESS THE0RY
	REFERENCES

	CHAPTER TWO
	2 - 1 INTRODUCTION
	2 - 2 PROBLEM STATEMENT
	2 - 3 ILLUSTRATIVE EXAMPLE
	2 - 4 THE TWO ARMED BANDIT PROBLEM
	2 - 5 THE BANDIT ALGORITHM
	2 - 6 SOME COMPARATIVE RESULTS
	2 - 7 EXTENSION TO PATH FINDING
	2 - 8 AN ADMISSIBLE ALGORITHM
	2 - 9 ARC COST ESTIMATES
	2 - 10 ON-LINE ALGORITHM
	2 - 11 CONVERGENCE THEOREM
	2 - 12 APPLICATION OF THE BANDIT ALGORITHM
	2 - 13 RESULTS
	2 - 14 CONCLUSIONS
	REFERENCES

	CHAPTER THREE
	3 - 1 INTRODUCTION
	3 - 2 NOTATION
	3 - 3 MODIFIED LINEAR REINFORCEMENT PROCEDURE
	3 - 4 THE BANDIT ALGORITHM
	3 - 5 ENVIRONMENTS WITH PERCEPTION AND PERFORMANCE MEASURES
	3 - 6 RESULTS
	3 - 7 CONCLUSIONS
	REFERENCES

	CHAPTER FOUR
	4 - 1 TABLE BUILDING
	4 - 2 OPERATOR SELECTION STRATEGY
	4 - 3 PLANNING FROM ROTE LEARNING
	4 - 4 INTERACTION AS A MARKOV PROCESS
	4 - 5 AN EXAMPLE OF OPTIMAL POLICY FAILURE
	4 - 6 STOCHASTIC SIMULATION
	4 - 7 OPERATOR DECISION PROCEDURE
	4 - 8 EXPECTANCE FUNCTION
	4 - 9 OPERATOR DECISION BASED ON EXPECTANCE
	4 - 10 EXPECTANCE ENTRY IN THE ROTE LEARNING TABLE
	4 - 11 BANDIT-EXPECTANCE MACHINE
	4 - 13 FOX AND DOGS GAME
	4 - 14 EXTENSIONS TO THE ROTE LEARNING TABLE
	REFERENCES

	CHAPTER FIVE
	5 - 1 REINFORCEMENT LEARNING
	5 - 2 AGAINST REINFORCEMENT LEARNING
	5 - 3 LEARNING BY BEING TOLD
	5 - 4 WHY THE GAP?
	5 - 5 GRAFTING LEARNING ABILITY ONTO A PROGRAM
	5 - 6 SUMMARY OF MAIN POINTS
	REFERENCES

	APPENDICES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D

