
THE NULL FIELD APPROACH 

TO DIFFRACTION THEORY 

A thesis 

presented for the degree 

of 

Doctor of Philosophy 

in the 

University of Canterbury 

Chris tchurch 

New Zealand 

by 

D.JeN .. Wall, B.E .. (Hans .. ) 

1976 



S(:;:~:>.'; 
Li' ;:,;W 

L 

ACKNO}fLEDGEMENTS 

I am especially indebted to my supervisor Professor RoHoTo 

Bates whose insight, guidance and encouragement have contributed so 

much to this thesis. 

I thank Dr A.W. McInnes and Dr J.H. Andreae for helllful 

discussions and guidance. 

I am grateful to my wife Frances, for the typewriting of this 

thesis. 

The financial assistance of the University Grants Committee 

is gratefully acknowledged. 



ii. 

MATHEMATICilL SYMBOLS, NOTATIONS AND ABBREVIATIONS 

(This does not include those defined in the text.) 
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vector scalar (dot) product 

vector gradient operator 

vector gradient operator in surface coordinates 

vector curl operator 

vector divergence operator 
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exponential function 
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electric permittivity of free space - 8.85~ x 10 farad/ 
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ABSTRACT 

The diffraction of both scalar and vector monochromatic waves 

by totally-reflecting bodies is considered from a computational 

vie'wpoint. Both direct and inverse scattering are covered. By 

invoking the optical extinction theore'm (extended boundary condition) 

the conventional singular integral equation (for the density of 

reradiating sources existing in the surface of the scattering body) 

is transformed into infinite sets of non-singular integral equations 

- called the null field equations. There is a set corresponding to 

each separable coordinate system. Each set can be used to compute 

the scattering from bodies of arbitrary shape but each is most approp­

riate for particular types of body shape, as is confirmed by comput­

ational results. 

The general null field is extended to apply to multiple 

scattering bodies. This permits use of multipole expansions in a 

computationally convenient manner, for arbitrary numbers of separated, 

interacting bodies of arbitrary shape. The methoo. is numerically 

investigated for pairs of elliptical and square cylinders. 

A generalisation of the Kirchoff, or physical optics, approach 

to diffraction theory is developed from the general null field method. 

Corresponding to each particular null field method is a physical optics 

approximation, which becomes exact when one of the coordinates being 

used is constant over the surface of the scattering body. Numerical 

results are presented showing the importance of choosing the physical 

optics approximation most appropriate for the scattering bbdy concerned. 
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Generalised physical optics is used to develop two inversion 

procedures to solve the inverse scattering problem for totally­

reflecting bodies. One is similar to conventional methods based on 

planar physical optics and, like them, requires scattering data at 

all frequencies. The other enables shapes of certain bodies of revol­

ution and cylindrical bodies to be reconstructed from scattered fields 

observed at two closely spaced frequencies. Computational results 

which confirm the potential usefulness of the latter method are 

presented. 



PREFACE 

This thesis is concerned with the treatment, from a 

computational viewpoint, of the diffraction of waves by totally­

reflecting bodies. -The computational method considered is the 

"null field method" which is a development of a technique 

based on what has been variously called the "field equivalence 

principle", the "optical extinction theorem" and the "extended 

boundary condition"" Scalar (acoustic) and vector (electro­

magnetic) waves are considered. Both direct and inverse 

scattering are coveredo 

The direct scattering problem involves calculating 

the scattered field, given the field incident upon a body 

of known constitution and location. Solutions to this problem 

are straightforward in principle - they can be formulated 

without difficulty and programmed for a digital computer. 

However, as emphasised in two recent reviews (Jones 1974h, 

Bates 1975b:) ~ there is no shortage of computational pitfalls. 

We assert that, of the many available techniques, the null 

field method is perhaps the most promising because of two 

of its propertieso First, the solutions are necessarily 

unique; the complementary problem (that of the cavity 

resonances internal to the scattering body) is automatical~ 

decoupled from the problem of interest (the exterior scattering 

problem) - other methods have to be specially adapted to ensure 



this. The second property stems from the regularity of the 

kernels of the null field integral equations (the conventional 

integral equations have singular kernels) - it is usually easy 

to expand the wave functions in terms of any desired basis 

functions, so that the latter can be chosen for computational, 

rather than analytic, convenience& 

The inverse scatterL~g problem involves calculating 

the shape of the body, given the incident field and the 

scattered far field (i.e. the asymptotic, or Fraunhofer, 

form of the scattered far field). This is a much more demand­

ing problem than the direct scattering one and new approaches 

must always be v~lcome. It is shown in this thesis that it 

is possible to develop a new approximate approach to inverse 

scattering via the null field formulationo 

This thesis consists of three parts. Part 1 is 

introducto~. New results are presented in Part 2, and 

Part 3 contains conclusions and suggestions for further 

research. 

Up to the present, in the null field methods that are 

based on Waterman's (1965) formulation, the extended bounda~ 

condition is satisfied explicitly within the circle (for two­

dimensional problems) or the sphere (for three-dimensional problems) 

inscribing the scattering body. Although such "circulartl and 

"sphericalll null field methods are theoretically sound, they tend 

to be unstable numerically when the body has a large aspect ratio. 
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In (I) of Part 2,Waterman i s formulation is generalised to satisfy 

the extended boundary condition explicitly within the ellipse (for 

two-dimensional problems) or the spheroid (for three-dimensional 

problemB) inscribing the body. It is shown that this allows 

rapid numerical convergence to be obtained, in situations where 

the circular and spherical null fi'eld methods lead to computational 

instabilities. 

The calculation of multiple scattering by closely spaced 

bodies tends to be demanding of computer storage and time, which 

may account for the several iterative techniques which have been 

suggested. In (II) of Part 2 it is shown that the null field 

method leads to efficient, direct computation of the simultaneous 

scattering from several cylinders of arbitrar,y cross section. 

Numerical algorithms based on exact solutions to direct 

scattering problems become computationally expensive if the 

dimensions of the scattering bodi~s are large compared vdth the 

wavelength, when it becomes appropriate to use approximate techniques 

such as the "geometrical theory of diffraction" and "physical 

optics". The term "physical optics" is used in this thesis to 

describe the approximate techniques based on Kirchoff's approach 

to diffraction (c.f. Bouwkamp 1954) - the reradiating sources 

induced at each point on the surface of the body are assumed to 

be identical to those which would be induced, at the same point, 

on an infinite totally-reflecting plane tangent to the point. 

The term "planar physical optics" is used to describe this con­

ventional Kirchoff approach, because it is exact when the body is 

infinite and flat. In (III) of Part 2, "circular physical optics tl , 



"elliptic physical optics", "spherical physical optics" etc. are 

developed. These approximations become exact when the body is a 

circular cylinder, elliptic cylinder, sphere etc. 

The inverse scattering problem is much more demanding 

computationally than the direct scattering problem, as is evinced 

by certain analytic continuation techniques which seem to be the 

only known, exact (in principle) means of treating inverse scattering. 

Approximate, computationally efficient methods based on geometrical 

optics and planar physical optics have been used with some success 

for certain simple scattering bodies. (IV) of Part 2 contains 

a new approximate approach to inverse scattering, based on the 

extensions of physical optics developed in (III) of Part 2. 

As considerable time has been spent in presenting the 

research results pertinent to this thesis in a form suitable for 

pUblication as a series of papers (Bates and Wall 1976 a,b,c,d) -

see end of Preface - these papers are presented in a virtually 

unaltered form in Part 2 of this thesis. 

All numerical calculations performed to obtain the results 

presented in this thesis utilised computer programs written in the 

FORTRAN IV language and were executed on the Boroughs B6718 digital 

computer (48 bit word) at the University of Canterbu~. All the 

co~puter programs used were either written by the author, or 

modified from published algorithms. Some of the numerical techniques 

utilised in the computer programs are discussed in Appendix 3. 



All the results reported in Part 2 of this thesis are solely 

the author's work, with the exception of those items listed below. 

Part 2, (I) 

At Professor R.H.To Bates' suggestion and in conjunction with 

him, the elliptic null field method and spheroidal null field 

methods, which were formulated by the author, were extended to 

obtain the general null field formulation presented in § 3. 

Part 2, (II) 

At Prof. Bates' suggestion and in conjunction with him the 

circular and elliptic null field methods applicable to multiple 

scattering bodies, which were formulated by the author, were 

extended to obtain the formalism applicable for general null field 

methods, as presented in § 3. 

Part 2, (III) 

The formulations presented in this section are based on 

previous work of Prof. Bates (1968, 1973) who obtained the 

approximations applicable to the circular null field method. In 

conjunction with Prof. Bates the author extended this approximate 

approach to apply to general null field methods. § 4, which shows 

how the scattered field satisfies the extinction theorem within the 

scattering body, is due to Prof. Bates. 

Part 2, (IV) 

The formulations presented in this paper are based on 

previous work of Prof. Bates (1973). In conjunction with him 
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this initial work has been improved upon to obtain the two methods 

of reconstructing the scattering body surface reported in §9 4 

and 5. The method of determining the minimum radius for which the 

multipole expansion of the scattered field is uniformly convergent, 

as presented in § 3, is due to Prof. Bates. 

The following papers have been produced during the course 

of this research: 

Wall, D.JoNo 1975 "Surface currents 'on perfectly conducting elliptic 

cylinders", IEEE Trans. fu'1tennas and Propagat. AP-n, 301-302. 

Bates, RoH.T. and Wall, D"J .. N. 1976 ItGhandrasekhar transformations 

improve convergence of scattering from linearly stratified 

media", IEEE Trans. Antennas and Propagat. (to appear). 

Bates, R.H.T. and Wall, D.J.N. 1976 "Null field approach to direct 

and inverse scattering! 

(I) The general method a. 

(II) Multiple scattering bodies b. 

(III) New approximations of the Kirchoff type c. 

(IV) Inverse methods d. 

submitted to Royal Society (IJondon). 



PART 1: INTRODUCTION AND LITERATURE REVIEW 

FOR DIRECT SCATTERING 

Unless otherwise specified all referenced equation, table and 

figure numbers refer only to those equations, tables and figures 

presented in this part. 
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P.ART 1. I: INTRODUCTION AND NOTATIQIT, 

The notation used throughout this thesis and the fundamental 

equations describing the scattering phenomena a.re introduced. 

1. INTRODUCTION 

This thesis is concerned with the treatment of the diffraction 

of ha.rmonic waves by totally-reflecting solid bodies. The results 

presented apply to small amplitude acoustic fields and to electro-

magnetic fields . 

. {e,) Acoustical Eguations 

If the medium surrounding the scattering body is a gas with 

neglible viscosity, in which small perturbations from the rest 

condition occur, the equations that describe the motion of the gas 

at all ordinary points in space are Newton's equation 

( 1 .1 ) 

and the continuity equation 

2 ° c 'V.v o -
( 1.2) 

where 

In the above equations '00 and Po are the density and pressure 

respectively of the gas at rest, K is the ratio of the specific heat 

at constant pressure to that at constant volume, v is the gas particle 
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velocity, p is the excess pressure (Le. the difference between the 

actual pressure and po) and t is the time. It is convenient to 

introduce a velocity potential ~ so that 

VIJ} = v ( 1 .4-) 

(1.1) then becomes 

For harmonic waves with time dependence exp(iwt), where w is 

the angular frequency, (1.1), (-1.2) and (1.5) become: 

i 
v = woo Vp 

i 2 
P = - 0 c V·v w 0 

P =-iwo IJ} o 

(1.6) 

Totally-reflecting acoustic scattering bodies are either 

sound-hard (in which case the component of y normal to the surface 

of the scattering body is zero) or sound-soft (in which case the 

excess pressure p is zero on the surface of the scattering body). 

ib) Electromagnetic Equations 

The electromagnetic field at a time t and at any ordinary 

point in a linear, homogeneous and isotropic medium is described by 

the Maxwell equations: 

VXEd 
oR = - I-l -= at 

(1 .7) 

V·R = 0 

These equations govern the behaviour of the electric field E and the 
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magnetic field li, both produced by the current density ~, at points 

in the space with electric permittivity € and magnetic permeability Me 

The current density ~ is related to the charge density q by the 

continuity equation 

\/-i!.=-
aq 
at 

For harmonic waves with time dependence exp(iwt), (1.7) 

become 

\/ X H = J + iw€ E 

(1.9) 

(1.10) 

Totally-reflecting electromagnetic scattering bodies have 

perfectly conducting surfaces (in which case the component of E 

tangential to the surface of the scattering body is zero). 

2. NOTATION 

As indicated in Fig. 1, three-dimensional space (denoted by y) 

is partitioned according to 

where y and Y , respectively, are the regions inside and outside 
+ 

the closed surface S of a totally reflecting body. Arbitra~ points 

" in y and on S are denoted by P and P respectively. With respect 

/ 
to the point 0, which lies in y_, the position vectors of P and P 

are £ and£/respectively. The unit vector B'is the outward normal 

to S at P~ Cartesian coordinates (x,y,z) and orthogonal curvilinear 

coordinates (u
1
,u

2
,u

3
) are set up with 0 as origin; u

1 
is a radial 

type of coordinate, u
2 

is an angular type of coordinate, and u
3 

is 

either the same as z (for cylindrical coordinate systems) or is 
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an angular type of coordinate (for rotational coordinate systems). 

The surfaces E and E+, on which u
1 

is constant, inscribe and circum­

scribe S in the sense that they are tangent to it but do not cut it. 

Ynull &~d Y++ are defined as 

Y ~ region inside E_; 
null (2.2) 

The remaining parts of,Y_ and Y+ are Y_+ and y+_ respectively, as is 

indicated in Fig. 1. The values of u
1 

on E+ and E_ are denoted by 

'u
1 

and 'u . resuectively. It is necessary to partition S 'max '1 mlll ~ 
+ 

when considering the behaviour of fields in y_+ and y+_, S-(u
1

) is 

defined from 

I S-(u
1
), u; > u

1 PE 
S+(u

1
), u;:;;; u

1 

Note that S-(u
1

) is empty when u
1 

> (u
1

)max' and S+(u
1

) is empty 

Monochromatic (angular frequency w, wavelength 'A., wave number 

::: k ::: 21T/'lI.) impressed sources exist within the region Yo C y'H' 

These sources radiate an incident field (to" either scalar or vector, 

which impinges on the body inducing equivalent sources in S that 

reradiate the scattered field ~. All sources and fields are taken 

to be complex functions of space, with the time factor exp(iwt) 

suppressed, There is no need to make a formal distinction between 

scattering and antenna problems, but it is worth remembering that 

Yo is usually far from y_ for the former and is always near to y_ 

far the latter. 

Those fields whose propagation is governed by the Helmholtz 



t o t equa lOn 

/ 
are considered, where ~ is the source density at P. 

11 • 

In the scalar 

case Y reduces to the velocity potential~, and in the vector case 

~ reduces to either the electric field E or the magnetic field g. 

Later, a double-headed arrow -- is used to denote "reduces to". 

Note that, in this thesis, symbols representing vector quantities 

are indicated by a single underlining. Symbols representing dyadic 

quantities are indicated by a double underlining. 

The scattered field at P can be written as (Morse and Ingard 

1968 § 7.1, Jones 1964 81 .26) 

~=A [JJ ~ g dS] 
S 

where A is the appropriate operator and g is the scalar free-space 

Green's function: 

g = g(kR) = [exp(-ikR)]/4rrR 

I 
where R is the distance from P to P: 

R = Ir - il 

(2.6) 

It should be noted that the integral representation (2.5) ensures 

that the Sommerfeld radiation condition, for scalar fields, and the 

corresponding vector radiation condition for vector fields (Jones 

1964 §1.27), is automatically satisfied. 

_4B many previous investigators have found, it is often useful 

and instructive to treat cylindrical scattering bodies, of infinite 

length but of arbitrary cross section. When 8'3-0' /8z == 0, all sources 

1 This equation can be obtained from the harmonic equations in§§ia and ib. 
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and fields are independent of z; and the explicit dimension of all 

quantities of interest decreases by one, when compared with the 

general case. It is sufficient to examine ':Y within 0, which is the 

infini te plane z = 0, and er on C, which is the closed curve formed 

when 0 cuts S. Table 1 compares quantities appropriate for scattering 

bodies of arbitrary shape and cylindrical scattering bodies - the 

table also serves to define quantities not previously discussed in 

the text. The explicit functional dependence of fields and sources 

is indicated - note that C is used to denote both the curve and 

distance along it, measured anti-clockwise from the outermost inter-

section of C with the x-axis. 

The forms assumed by '1- andA for the scalar and vector cases 

are now listed. The form of a' is included for completeness, even 

though in the analysis it is convenient to treat ~ as an independent, 

initially Q~~nown, function of either 71 and 72 Or C (see Table 1). 

(a) Scalar Field~nd SOlmd-Soft Bod~ 

':f --- 'lt, A = -1 , d ___ Lim a('lt + '¥)/an 
" 0 

(2.8) 
P ->p 

where the n-direction is parallel to the h-direction, but the operator 

a/an is applied to fields at P, whereas the operator a/an/is applied 

I 

to fields at P. 

(b) Scalar Field and Sound-Hard Bod~ 

'd- --- '¥, A=-a/an, ~ --- Lim I ('lt o + 'It) 
P ->P 

where, in both (2.8) and (2.9), 'lto is the scalar form of ~O. 



(s) Vector Field 

The source density is the surface current density J : 
-s 

~ ~ J = Lim £ X (H + H). 
-s p...". p" -0 -

13· 

(2.10) 

where H is the magnetic field associated with :fo• There are two 
-0 

alternative forms for 'ir and A: 

2 
A = -i[lJlJ· + k ]/wSo 

A = IJ X (2.12) 

It is worth recalling that ~ and li are interconnected via the Maxwell 

equations (1.10), where in this case ~ and S become respectively the 

permeability ~o and permittivity So of free space. 

(d) Special Notation 

An electromagnetic field can always be decomposed into two 

independent fields (c.f. Jones 196LJ. § 1.10) in each of which either 

H or E has no component parallel to a particular coordinate direction, 

which in this thesis is always taken to be the z-direction. Therefore 

the notation 

E-polarised field 

H-polarised field 

H = 0 z 

E = 0 z 

( 2.13) 

is used. It is worth noting that E-polarised and H-polarised fields 

are sometimes called TM (transverse magnetic) and TE (transverse 

eleotrio) respectively. 

There is an equivalent multipole expansion for g in each of 

the separable coordinate systems (c.f. Morse and Feshbach 1953 
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chapters 7 and 11): 

u
1 

~ u; (2.14) 

where the c. are normalising constants and h~2)(.) and;. (0) are 
Jd. J,l. Jd 

those independent solutions, to the radial part 0f the scalar Helm-

holtz equation, corresponding respectively to waves which are out-

going at infinity and waves which are regular at the origin of 

coordinates. The radial solutions in the spherical coordinate system 

are independent of the subscript j, as is discussed further in § 5c 

of Part 2, (1). 
1\ 

The functions Y. (0) are regular solutions of the, 
J,j. 

part of the Helmholtz equation vmich remains after the radial part 

has been separated out. 
I A (2) 

Vllhen u
1 

> u , the aro.o'ument of h. becomes 
1 J,! 

u
1
/ ,1<: and the argument of 1 . becomes u

1
,1<:. The way in which y and 

J,j.. 0 

~O are defined ensures that the latter can be written as 

co J." 

~O = I I c . 
J,f" 

1\ 

Ci j ,1 d j,J." (U1 ,1<:) Y j,.e. (U2 ,Uy k), P E y_ 

2. =.0 j=.- i 

vrhere the Q. are appropriate scalar or vector expansion coefficients. 
J,.t 

A finite set of integers is denoted by 

where Ii and 12 are integers, with 12 ~ Ii· fI2 ~ Ii} are defined 

to be the null set unless I = I • 
2 1 

(e) Particular Notation for Cylindrical Bodies 

~Yhen the scattering body is cylindrical and the fields exhibit 
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no variation in the z-direction, only one angular coordinate enters 

into the functional dependence of the wave functions. So, the two 

integer-indices j and 1 can be replaced by a single one, m say_ The 

wave functions are either even (denoted by the superscript e) or odd 

(denoted by the superscript 0) about any suitable datum, which is 
/\ 

chosen to be the x-axis. Consequently, Y. (u?,u
3

,k) is replaced by 
Jd -

To accord more closely with conventional 

notation for wave functions appropriate to cylindrical coordinate 

/\ and h~2) systems, the symbols j .. - which accord with conventional 
J ,j. J,j. A 

notation for rotational coordinate systems - are replaced by J and 
m 

A(2) 
Using the symbol W to denote either 

/" "'-(2) 
it should be H • J or H , 

m 

noted that, in general, there must be a We(u ,k) and a vrO(u
1 
,k). It 

m 1 m 

is convenient to have a notation which represents both even and odd 

wave functions, taken either together or separately. Wilen a quantity 

such as X is used, this means 
m 

either Xm 

or Xm 

e 0 ( 2.17) =X + Xm m 

either 
e 

Xm 
= (2.18) 

0 
Or v 

"m 

Note that X represents a wave function (or a product of wave functions) 
m 

multiplied by an appropriate expansion coefficient. 



Table 1. Quantities appropriate for arbitrary scattering 

bodies and cylindrical scattering bodies. Note 

that not all circumflex accents introduced in 

this thesis denote unit vectors, but only those 

which surmount symbols that are underlined. 

/ 

Regions of space 

Boundaries 

Coordinates 

Unit vectors 

Fields 

Source densities 

Green's functions 

s 

U
1
,u

2
,u

3 
T T which are 
l' 2 

orthogonal parametric 

coordinates lying in S 

c 

.Any vector symbol (underlined) surmounted by 

1\ 

a circumflex accent, e.g. ~, 
/\ 

X 

et= ;)(c) 

[exp( -ikR) J/lmR 
"Hankel function of 

second kind of zero 

order" 
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\ 
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R 
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I 

// ~+ 
/' 

I 

I 
I 
I 
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I 
I 
I 
I 

y 
++ 

Fig. 1 Gross section of a three-dimensional scattering body 

showing a Cartesian coordinate system and a general 

orthogonal curvilinear coordinate system" In the 

17. 

Cartesian coordinate system the z-axis is perpendicular 

to, and directed out of the page. 



P.ART 1, II: REVIElf OF NlJl\ffiRICAL METHODS FOR 'rHE: SOLU'rION 

OF THE DIRECT SCAT'rERllIG PROBLEM 

18. 

A survey is presented of the various numerical methods used 

to calculate the field surrounding a scattering body, when the 

characteristic dimension of the body is less than or of the order of 

the wavelength. 

Recent reviews of the current numerical methods for the solution 

of the direct scattering problem have been given by Poggio and Miller 

(1973), Jones (1974b) and Bates (1975b). Some of the major, and, in 

the author's opinion, most profitable numerical techniques are reviewed 

here. 

Reviews of the various analytical approaches to the direct 

scattering problem are given by Jones (1964) and Bowman, Senior and 

Uslenghi (1969, chapter 1). 

1. DIFFERENTIAL ~UA'rION APPROACH 

In these methods the scattering problem is formulated in 

terms of differential equations, and these equations are then solved 

numerically. 

(a) Finite Difference and Finite Element Methods 

The finite difference method (Forsythe and V[asoVl 1960) is 

perhaps the oldest and most commonly used technique for the solution 
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of boundary-value problems (Davies 1972, Silvester and Csendes 1974, 

Ng 1974). 

In this method the solution to the scattering problem is obtained 

by replacing the Helmholtz equation (2.4) of (I), by a linear system 

of algebraic equations. This is achieved by approxima:ting ':f at a ne,t­

work of discrete points throughout Y+' and then replacing the 

Laplacian operator, in (2.4) of (I), by one of its difference approx-

imations. The solution of the system of algebraic equations so 

obtained is straightforward, since the resultant matrix is sparse. 

An equivalent approach is to use a variational technique to reformulate 

(2"L;-) of (I) prior to discretising the problem (Varga 1962). One 

advaiJ.tage of formulating via the variational expression is that it 

brings close together the finite difference and finite element teoh­

niques. The finite element technique (Zienkievricz 1971, Silvester 1969), 

an alternative and almost Parallel approach to finite differences, uses 

a continuous piecewise linear approximationtfor ~ in the variational 

expression, instead of the point representation of the latter. 

Although both of these methods are useful for the finite domain 

problems - e.g. wave guide transmission - they have been found generally 

unsuitable for the exterior harmonic scattering problem because of the 

difficulty in enforcing the radiation condition on ~ (c.f. Jones 1974h) 

~b) State-Space Formulation 

This method may be considered as a combination of the differ­

ential and series (see § 2) approaches. It is discussed here as it 

requires numerical solution of a system of differential eql~tions. 

r A piecewise polYnomial approximation to 'j- is also often used. 
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This technique has been used to calculate the wave scattering 

from a penetrable body by V~cent and Petit (1972) and Hizal and 

Tosun (1973). It has also been used to calculate the wave scattering 

from a totally reflecting grating (Neviere, Cadilhac and Petit 1973). 

The formulation discussed here is based on the work of Hizal 

(1974) and is applicable to bodies that are volumes of revolution. 

In this case suitable coordinate systems are those possessing rotational 

symmetry, such as the spheroidal and spherical coordinates. For these 

coordinates u
3 

becomes the azimuthal angular coordinate <p ,I For 

simplicity, only the scalar sound-hard case is considered, although 

the scalar sound-soft and the electromagnetic cases can be developed 

using similar procedures. 

Taking note of (2.5), (2.9), (2.14) and (2.15) all of (I), the 

total field can be written as 

a. ] d). (U
1
,k)] Y. (u

2
,<p,k) 

J,l J,1 J,JI. 

( 1 .1) 
+ 

when Yo is located outside ll'. The B~ (.) in (1.1) are 
+ J,i . 

ff ;r 
,+ 

<[. - (' ) 1\ (I I ) ] A I \/. -w'. u ,k Y. u, u
3

,k • n ds 
hR, 1 J,l 2 -

(1.2) 

where 

1\ 

::: -d; (1.3) 

The vector surface element h'as for a surface of revolution can be 

written as 

( 1.4) 
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( " ,. where £ u
1
,u

Z
) can be found for any particular coordinate system 

(c.f. Moon and Spencer 1961 chapter 1). For a surface of revolution, 

I 
is independent of ~. Therefore vdth the lille of the formula 

F(x) 

~ J f(x) ax = f(F) 

n!(x) 

dF dD 
ax - fen) ax (1 .5) 

(1.2) can be converted into an infinite set of first order differential 

equations of the form 

+ A J 'V[1t1"'~ (u ,k) Y. (U
2
,q:>',k)]. 6(U ,u ) ~' 

Jd .. 1 J,l - 1 2. u = [u (u )] 
221 m 

(1.6) 

where m = 1,2 ••...••••• M(U
i
), and M(u

2
) is the order of the angular 

multiplicity of the surface; e.g. in Fig. 1(a) and i(b), M(U
i

) =8 

and 4, respectively. In (1.6) [u
2

(u
1

)]m is the value taken by u
2 

at 

the mth intersection of the curve u
1 

= constant with the generatrix of 

S [see Fig. 1(a) and (b)]. It is assumed that the origin of coordinates 

is chosen such that ~(u1 ,u2) ~~~ is never singular [cases ·where this 

factor is singular are treated by Hizal (1974, § 2.2)]. The state space 

equations may now be obtained by substituting (1.1) into (1.6) with use 

of (2.9) of (I) ; 

co 

=L 
IL':£) 

J..E [o~rol, jE {-1~..e.l 

(1.7) 

I . 
1 '; , i 
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where 

211' 

J 
o 

Y.I ,(u2,<p',k) 1tr~1 ,(u
i
,k) a.cpJ' 

J,i. J,l u == [u (u )] 
221 m 

The boundary values associated with (1.7) are 

B;,Q (ui ) == 0 u
1 ~ 

u . 
1 '''mJ..n i E fo -» CO L jE {-i~.QJ 

B~ (u
i

) ::: 0 u
1 ~ 

!u I 

(109) J,:,j. ' 1 Imax 

The boundary values (1.9) are sufficient to solve (1.7) as a two point 

boundary value problem. 

The state space equations (1.7) are of infinite order, and to 

develop numerical solutions to these equations they must be truncated. 

The number of equations retained is dependent upon the ratio of a 

characteristic dimension of the scattering body to the incident wave-

length. The method is of interest as it replaces the numerical 

integration of surface integrals and numerical inversions associated 

with most other techniques, by numerical integration of a system of 

first order linear differential equations in state space form. The 

computer time is proportional to the difference I u -
1 max 

which shows that the coordinate system which minimises this difference 

should be chosen. 

A disadvantage of this method is that the resulting two point-

boundary value problem may pose more difficulties than those associated 

with other techniques unless (1.7) can be converted into an initial 

value problem. 
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2. MODAL FIELD EXPANSIONS OR 1m SERIES APPROACH 

In this approach n is divided into a number of sub-regions, 
+ 

and within each sub-region the scattered Vlave ::r is expanded in a 

series of wave functions which are proper solutions of the Helmholtz 

equation (2.4) of (r). The initially unknown constant coefficients, 

by which each of the wave functions is multiplied, are then determined 

by a systematic application of the boundary conditions existing 

between the sub-regions and on the surface of the scattering body. 

Of fundamental importance in this approach is the Rayleigh hypothesis. 

For simplicity and clarity in this SUb-section the analysis is 

restricted to fields 'which vary only in two dimensions; cylindrical 

bodies of arbitrary cross-section are therefore considered. To 

further reduce complexity, only the sound-s-oft . cylindrical body or 

E-polarised electromagnetic fields incident upon a perfectly conducting 

cylindrical body are examined. The boundary condition on C in either 

case is 

PEC 

Most of the techniques discussed here have been, or are capable of 

being, applied to more general scalar and vector scattering problems 

and this is commented on where applicable. 

la} The Rayleigh Hyp~thesis 

In the late nineteenth centUFy, Lord Rayleigh (1945 § 272a) 

considered the scattering of a normally incident, scalar plane wave 

by the infinite corrugated interface separating two different homo-

geneous media. In order to obtain a tractable solution he made the 



assumption that the scattered field may be represented by a linear 

combination of discrete plane waves, each of vlhich either propagates 

or is attenuated away from the surface, even within the corrugations 

and on the surface itself. 1'his assumption has become known as the 

Rayleigh hypothesis and has been generalised to apply in the case of 

finite scattering objects (Millar 1971, Bates 1975b). 

The Rayleigh hypothesis was the sub ject of considerable contro-

versy from the nineteen fifties (Lippmann 1953) until recently (Millar 

and Bates 1970; Bates, James, Gallett and Millar 1973), but is now 

fully understood, mainly because of Millar's work (1969, 1970,1971). 

Reference to 82 of (1) shows that the exterior mul tipole 

expansion of ~ is: 

OJ 

'" + !\ ( 2) !\ j- = } c ir H (u
1

,k) Y (u
2

,k) 
,,--,m m m m 
m=O 

where the c are normalising coefficients and the ,e.+ are initially 
m m 

unknown scalar or vector expansion coefficients. Noting § 2e of (r), 

the equation (2.2) can be obtained by substituting (2.1~) of (1) 

into (2.5) of (1). Examination of the RHS of (2.2) shows that it is 

a series of the "Laurent type"; i.e. it converges for all lu11>-l u
11, 

where u
1 

is some value of u
1 

for which it is knovm that the RHS of (2.2) 

converges. The RHS of (2.2) can therefore be used to analytically 

continue ~ inside 0_ until u
1 

reaches the value it has on the curve 
!\ !\ 

r - where r is yet to be defined. 
+ + 

!\ 

r is defined to be the smallest 
+ 

closed surface on which u
1 

is constant and which encloses all the 

singularities of the analytic continuation of Y into 0_. The region 
!\ 

enclosed within r is denoted by ° . 
+ s 
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Millar's statement of the Rayleigh hypothesis relies upon the 

fact that the direct analytic continuation of the solution to the 

Helmholtz equation is unique (Garabedian 1964-). Millar has shown that 

"a necessary and sufficient condition for the Rayleigh hypothesis to 

be valid is that Os C 0null"· 

Millar (1971) has also shown that the convex hull of the 

singularities of the analytic continuation of ~ into 0_, when ';1 + '.f 0 

has boundary values ~(C) on G, coincides with the convex hull of the 

singularities of the analytic continuation of the solution to Laplace's 

equation into 0_ for the same body and boundary values ~(G). For 

the particular case considered here [see (2.1)] the boundary values 

.'~(G) are zero. For cylindrical bodies, this enables the theory of 

functions of a complex variable to be used to find the convex hull of 

the singularities. For the rest of this sub-section, it is convenient 

to think of a complex plane - the w plane, where 

w ;::: U + iv 

- superimposed on the real plane 0, the origin of the complex plane 

coinciding with 0 (see F:ig. 2). 

The problem of finding the convex hull of the singularities 

therefore reduces firstly to finding a solution of Laplace's equation, 

denoted by g(w). This is subject to the boundary condition 

g(w) ;::: 0 wEG 

and behaves asymptotically for large w in the same manner as the 

function -In\w\. Secondly the convex hull of the singularities is 

found by looking for the singularities of the analytic continuation of 

g(w) into 0_" 
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It is found that g(w) is related to the conformal mapping 

of 0+ onto the exterior of the unit circle in the complex S-plane -

i.e. onto the region IsI>I. Since both 0+ and the image domain contain 

the point at infinity (in their respective planes), a mapping function 

F(w), defined by 

C = F( w) 

can be found which is such that F(ro) = co. It may be then shown 

that g(w) can be v~itten (Nehari 1961 chapter 6) 

g(w) = -In IF(w)\ (2.6) 

The singularities of the analytic continuation of g(w) into 0_. are 

therefore completely determined by the singularities of the mapping 

function F(w). The branch points of F(w) Occur where the inverse 

transformation to (2.5), i.e. 

w = f(C) 

has critical points such that (Carrier, Krook and Pearson 1966 

chapter 4-) 

(2.8) 

Neviere and Cadilhac (1970) have used (2.8) to locate the convex hull 

of the singularities for several totally reflecting infinite gratings. 

~b) Point-matching (Collocation) Methods 

In these methods the unknoTITl. coefficients in each multipole 

expansion of :Y, in a particular sub-region, are determined numerically 

by applying the particular boundary values at a finite number of points 

betvleen the regions and on C. The series expansions are of necessity 

truncated, in order to obtain numerical solutions. The results, being 

derived from a non-analytic process, are not exact; but it is assumed 
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that if a sufficient number of points is used, the numerical solution 

will converge appropriately to an adequate engineering solution. As 

pointed out by Lewin (1970), there are two cases for which this does 

not occur. The first results from the use of an incomplete multipole 

expansion in any of the sub-regions. The second case occurs when 

the Rayleigh hypothesis is violated in any sub-region; the series 

expansion ·will then be divergent, but this divergence may not show up 

when only a srnall number of terms is retained in each expansion. 

However, nhen they are valid, point-matching methods a.re appealing for 

two reasons. The first is that the cost of programming and obtaining 

numerical solutions is considerably lower than with most other methods; 

the second, that they yie.ld cr directly - which is often all that is 

required - without having to first calculate the source density on C. 

A genera.l solution of the Helmholtz equation (2.4) of (I), 

valid in at least the region n ,is (2.2). In the simplest form of 
++ 

point matching only one series expansion of ;r is used throughout n , 
+ 

namely (2.2), in conjunction with the series expansion of j- 0 [see 

§ 2(d) of (I)J: 

CD 

c 
m 

where the Q are appropriate (known) scalar or vector expansion 
m 

coefficients. ~o + d is then wade to satisfy the boundary condition 

(2.1) at a finite number of points on C. In order to obtain numerical 

solutions the expansions (2.2) and (2.9) are truncated so that the 

number of unknown coefficients ~+ is equal to the number of collocation 
ill 

points on C. This technique clearly fails when the Rayleigh hypothesis 

is invalid, although it has been used to solve electromagnetic 
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scattering problems (Mullen, Sandbury and Velline 1965; Bolle and Fye 

1971), acoustic radiation problems (Williams, Parke, Moran and Sherman 

1964-) and interior waveguide problems (c.f. Bates and Ng 1973 and 

references quoted therein). 

Although the formal series (2.2) may be divergent for some 

points on C it has been shown by several authors (Vekua 1967, Yasuura 

and Thuno 1971, Y/ilton and Mi ttra 1972 and Millar 1973) that a truncation 

point of the series, say M, and a set of scattering coefficients f'r (M) 
m 

can always be found such that the mean-square error in the scattered 

field representation on C can be made as small as desired. This mean 

square error ( is defined by 

(2.10) 

Therefore the field represented by the series in (2.2) - truncated to 

M + 1 terms - with coefficients 1r (M), converges in the mean (as M 
m 

increases) to the true field in the region outside the scattering 

body. The coefficients lr (M) have been written to show explicitly 
. m 

. their dependence on M, because it is precisely this dependence which 

enables this field representation to be used in a 
+-

If the eX,ac t 

scattered mode coefficient is denoted by lr+, then in the limit 
m 

Lim frm(ltI) ::: Irm+' when the Jr (M) are chosen to minimise (. M ..,.co m 

The numerical solution on (2.10) may be obtained in an approx-

imate. sense if ( is minimised over a set of points on C rather than 

over the entire boundary curve. Although this method can yield 

accurate solutions for the far scattered field, as a becomes ~pprec­
s 

iably larger than anull' M must be chosen progressively larger in 



(2.10), However only the first few coefficients may actually contribute 

significantly to the far scattered field pattern. This is because, 

in order to obtain the first few coefficients accurately, a large 

matrix must be inverted. The usefulness of this method therefore 

appears to be limited to scatteril~ bodies with boundary curves C 

that deviate only slightly from the boundary curve of 0null' 

When this simple method of point-matching fails a more elaborate 

form may be used. The region 0 is divided into a number of overlapping 
+ 

sub-regio!:'.£) and in each of these '5 is represented by an appropriate 

series expansion. The wave functions and the sub-regions are chosen 

so that the Rayleigh hypothesis is valid. The representations for 

all the sub-regions are made to satisfy the bounda~J conditions at 

discrete points on their respective parts of C. The continuity of 1 

is ensured by matching the series representations and their normal 

derivatives at points along a line in the common area between the 

overlapping regions. The difficulty with this method lies in finding 

suitable series expansions. This method has been used in interior 

waveguide problems (Bates and Ng'1973) but does not appear to have 

been applied to exterior scattering problems. 

By making use of analytic continuation, point-matching methods 

have been extended to be useful to scattering bodies of a more general 

cross section (Mittra and Wilton 1969, Wilton and Mittra 1972)? 

Reference to Fig. 3 and § 2(a) shows that the RHS of (2.2) converges 

I 

absolutely at P, when the coordinate system is centred at 0; hence 

this series representation can be made to satisfy the boundary condition 

here. By using an appropriate addition theorem - these addition 
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theorems are discussed more fully in (II) of Part 2 - for the wave 

functions in (2.2), this series representation can be translated to a 

new origin °
1

, It is therefore analytically continued into a different 

region (see Fig. 3). A neVI' exterior expansion for 'j- about the point 

01 is then 

. Ij ~ + '"'(2) ) A ) 
J = L cm t-m1Hm (u11 ,k Ym(u21'k (2,11) 

m=O 

wnere (u ,u 1,z1) are cylindrical coordinates of a point P with 
11 2 

respect to the origin °
1

, In (2.11) the coefficients ~~1 are related 

to an infinite series involving the coefficients k+ the explicit 
m' 

formula being found through the exterior form of the appropriate 

addition theorem [explicit formulae for the ~:1 in terms of the k: 
are considered in (II) of Part 2], Reference to Fig. 3 and § 2 a: 

shows that the PES of (2.11) converges 
/ 

absolutely at Pi- On substit-

uting into (2.11) the appropriate formulae connecting the fr+ 
m1 

coeffic-

ients to the k+ coefficients, 
m 

the suitably truncated form of the RHS 

I 

of this equation can be used immediately to satisfy (2_1) at Pi' The 

representation (2.2) can also be continued analytically to obtain an 

interior expansion, with a new origin 02' of the form 

(2.12) 

where (u
12

,u
22

,z) are the cylindrical coordinates of a point P with 

respect to the origin 02. In (2.12) the coefficients ~:; are related 

to an infinite series involving the coefficients fr+, the explicit 
m 

form being found through the interior form of the appropriate addition 

theorem, Reference to Fig. 3 and 92 a shows that the RHS of (2.12) 
/ / 

converges absolutely at P
2 

and P
3 

and is therefore useful for point-

matching concavities of C. On substituting into (2.12) the formulae 
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connecting the ~:; coefficients to the ~: coefficients, the RHS of 
/ / 

this equation can be used immediately to satisfy (201) .at P2 and P.3 0 

It should be noted that the origin 02 must be chosen such that the 

smallest possible region of convergence of the analytically continued 

representation about 02 intersects the original region of convergenceo 

By judicious choice of a sufficient number of exterior and 

i.n.terior expansions the contour C may be adequately covered and the 

resulting set of equations solved for the unknown k+ coefficients. 
m 

A limitation of the method is the number of terms introduced by each 

additional continuation step, which results in considerably increased 

computation time compared with the simple point matching method. The 

follov7ing describes a method of alleviating this problem. 

In the last method each series representation for ~ about a 

particular origin, say 0., is used only to match the boundary values 
J 

at points on C where the closed curve - formed when u
1j 

assumes its 

smallest possible value, while u
2 

,varies over its range - is tangent 
J . 

to C (this curve must also not cut C). A particular series represent-
A 

ation will, however, converge at points within (L until the curve r + 

is reached [see § 2 'a 'J. It may therefore be deduced that a more 

efficient point-matching method would result if each series represent-

at ion were utilised along as much of C as is valid. To apply such a 

technique it must be assumed that the location of the singularities 

is known. 

Fig. 4 shows the same scattering body and coordinate systems 

as are depicted in Figo .3, but with the region of singularities drawn 



in: this region 
1\ 

is bounded by the curve r . 
s 

1\ A /\ 
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It is necessary to 

define curves r . and r . as r [see § 2aJ and r ,respectively, 
+-+J +-J + 

for the jth coordinate system. r is defined to be the largest 
+-

1\ 

closed curve when the origin of coordinates is outside r , On 
s 

which u
1 

is constant and which does not intersect rs (see Fig. 4). 

Arc lengths on the boundary curve C are defined by specifying the 

two end points of each arc, the arc length being taken in the anti-

clockwise direction from the first point specified. 

Reference to Fig. 4 now shows that the exterior series represent-

/\ 

ations of :Y, (2.2) and (2.11), converge absolutely outside rand 
+ 

/\ 

r+1 respectively, whereas the interior representation (2.12) converges 
/\ 

inside r 2. The RHS's of equations (2.2), (2.11) ar~ (2.12) can now 
+-

be used to point-match the boundary values on G along the arc lengths 

I I I I I I ()1 I" .. I ( 
P4P5' P6

P9 and P1oP
13 

[for 2.2 J; P15PS and P11
P14 [for 2.11)]; and 

PI~2 [for (2.12)J. It can be seen that G can be covered with many fewer 

"-
analytic continuations once r is known. The saving in numerical effort 

s 

which this approach affords in solving the exterior scattering problem 
/\ 

would make it worthwhile to develop techniques for determining r • 
s 

(c) Boundary Perturbation Technigue 

In this technique the boundary curve G is considered as a 

boundary perturbation from the curve C
1 

(where G
1 

is the closed curve 

obtained by keeping u
1 

constant and letting u
2 

vary throughout its 

range). Therefore, by use of perturbation theory, the boundary conditions 

satisfied by 1- may be explicitly satisfied everywhere on G. It should 

be noted that this is in contrast to the point-matching methods 

discussed in the last sub-section 'where the boundary conditions are 
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explicitly satisfied at only a finite number of points on C. 

The technique - described here for cylindrical bodies - is 

applicable to bodies whose boundary curve C can be described by an 

equation of the form 

In (2.13) a is a constant representing the value u
1 

takes on the 

unperturbed curve C l' E. is a constant "smallness parameter ll and f( u;) 

is a function which must obey the restriction I ef( u;) I -< 1 throughout 

I 
the range of u

2
, but is otherwise arbitrary. It should be noted that 

both the value a and the location of the centre of the cylindrical 

coordinate system may be chosen arbitrarily. Hence, it is clear 

that all arbitrary curves C, for which it is possible to locate the 

centre of the coordinate system in such a way that u; in the equation 

(2.13) is single-valued, can be described in this manner. 

The scattered and incident fields are then expanded in the 

series expansions (2.2) and (2.9) respectively. On application of 

these expansions to the boundary condition (2.1), it follows that 

OJ 

~ c raJ (11
1
1 ,k) + 

~ m l m m 
m:::O 

vmere u; is given by (2.13). It should be noted that to obtain (2.14) 

the expansion (2.2) has been assumed valid throughout Qt" If the 

boundary curve C is the unperturbed curve C
1

, t-: can be found as 

The perturbation technique is now to write the coefficients ft-+ in 
m 
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the form 

w 

j;.f = '\' E: P ir+, 
m L mJp 

p=O 

(2.16) 

d+ th vmere v I represents the p order corrections to the unperturbed 
m)p 

scattering coefficients 1--:)0' given by (2.15). (2.16) is then 

substituted into (2.14) and all functions in (2.14) involving u; are 

I 
expanded in a Taylor series about u = a. The critical step now 

1 

consists of making the coefficients of each power of E:, in the result-

ing equation (2.14), vanish individually. This in effect replaces the 

necessary boundary condition by an infinite set.· of sufficient boundary 

conditions. The resultant infinite set of equations enables a recur-

rence scheme to be found which enables all the ~+ is to be evaluated 
m)p 

in terms of j;-+, • 
m)O 

This method has two major desirable features. The first is 

that a matrix does not have to be inverted in order to obtain the 

scattered field solution. The second feature is that it is relatively 

easy to obtain a more accurate solution simply by carrying on the 

recurrence scheme for extra J-+ I. It may also be possible to obtain 
m)p 

error estimates of the solution from the study of the recurrence 

relationships. A disadvantage of this method is that it assumes that 

A 

the Rayleigh hypothesis is valid so that a priori knowledge of r (see 
+ 

§ 2a) is essential to have confidence in the solution. 

Yeh (1964) has used this technique to calculate the electro-

magnetic scattering from dielectric bodies which are volumes of 

revolution. Erma (1968) has developed this technique to handle the 

electromagnetic scattering problem from an arbitrary three dimensional 

body_ 
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~~GRAL EQUATIONS 
h' 

For an acoustic or electromagnetic wave incident upon a body, 

integral equations can be derived from which to determine the surface 

source density on the body. Although these are capable of exact 

solution for only a limited number of geometries (c.f. Bowman et al 

1969), they do form the starting point for most numerical methods. 

The concern here is with "conventional" integral equations. Extended 

integral equations or integral equations derived by use of the extinc-

tion theorem are discussed in Part 2. "Conventional" is used in the 

sense that the integral equations for the surface source density are 

obtained from the integral representation of the field by taking the 

limit, as the observation point P approaches the surface S from y+, 

and then applying the appropriate boundary conditions. 

The two important integral equations for electromagnetic 

scattering from a perfectly conducting body are the electric field 

integral. equation (EFIE): 

/ . 
/'.1 (p) l n X E =-

- -0 wE: nl 

X H (k2..Isg - V~' ..Is Vg) ds 

S 

and the magnetic field integral equation (MFIE): 

£/X tioCP) = ~ !Ls- B'x H !!sX Vg ds (3.2) 

s 

Where g is given by C2.6) and ff is used to denote the principle value 

t S 
integral over S. Although these equations are usually derived via 

Green's theorem, they may also be obtained from the Franz integral 

i V~ represents the surface divergence operator in source coordinates 
s 



formulation (1948) given in § 2 of (r) (see Tai 1972 and Jones 19611-

§ 1.26). The derivation of (.3.1) and (.3 :2) can be found in Poggio 

and Miller (197.3) for surfaces whose tangents may not be differentiable 

functions of position at all points on the surface. Either of these 

equations can be used to solve for ~s. Of the two equations, the 

~WIE is generally preferable, as it is a Fredholm integral equation 

of the second kind; while the EFIE is a Fredholm equation of the 

first kind. However when S shrinks to an infinitely thin body the 

geometrical factors in the integrand of the :WWIE make this equation 

useless. Since the EFIE is suitable for thin bodies, it therefore 

finds its greatest use for this type of body, whereas the MFIE is 

used mainly for fatter, smooth bodies. 

Unfortunately the solutions to (.3.1) and (3~2) are not unique, 

because solutions to the complementa~ problem (the cavity resonances 

internal to the scattering body) may be added to each without altering 

equations. This may be stated more concisely for each equation in the 

following manner. The (.3.1) operator does not have a unique inverse 

and generates an infinite number of solutions, differing by the eigen­

functions at the eigenfrequencies of the complementa~ problem. The 

(.3.2) operator is singular at the eigenfrequencies of the complementary 

problem. 

Because of the approximations which must be made to obtain 

numerical solutions to (.3,.1) and (.3.2), and the use of computations 

using a finite number of significant figures, the complementary 

problem couples with the external problem over a range of frequencies 

aro~~d each eigenfrequency of the complementary problem, to yield 

fictitious solutions. These equations must therefore be used with 
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great care once the frequency approB,ches the first eigenfreguency of 

the complementary problem. Numerical methods of solving equations 

(3.1) and (.3:2) are discussed by Harrington (1968), Poggio and Miller 

(1973) and Jones (1974b). 

As (3.1) and (3.2) are both non-unique at different wave 

numbers (the EFIE and MFIE are non-unique at the interior resonant 

electric and magnetic modes of oscillation respectively) the two 

equations may be combined to obtain an equation unique at all wave 

numbers. This yields 

where L(') and M(') are the integral operators in the EFIE and MFIE 

respectively, and a is an arbitrary constant 0 ~ a ~ 1. This method, 

at the cost of a substantial increase in computing time, provides a 

unique ~sat all wave numbers provided a is neither zero nor purely 

imaginary. The value of a is usually determined numerically for a 

particular problem. This method appears to have first been suggested 

by Mitzner (1968). 

The acoustic integral equations corresponding to (3.1) and (3.2) 

are not discussed here (see BOivman et al, 1969 chapter 1), although 

needless to say the same non-uniqueness problem also occurs (see 

Copley 1968 for further details). 

The EFIE and the MFIE have found extensive use in solving the 

exterior scattering problem over the past decade notwithstanding the 

non-uniqueness problem. Some recent applications of the MFIE to 



three-dimensional bodies that are not volumes of revolution have 

been made by Knep'p (1971) and Tsai, Dudley and Wilton (1974-). 
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A more sophisticated approach based on integral equations has 

recently been suggested which generalises the idea of characteristic 

modes. These modes have long been used in the analysis of radiation 

and scattering by conducting bodies whose surfaces coincide with 

coordinate surfaces of coordinate systems in which the Helmholtz 

equation is separable [see § 1 of Part 2, (r)]. Recently it has 

been shown that similar modes can,be defined and calculated numerically 

for conducting bodies of arbitrary shape (Garbacz and Turpin 1971, 

Harrington and Mautz 1971). The formulation is based upon the EFIE, 

and the characteristic mode currents so obtained form a vreighted 

orthogona.l set over the conduotor surface; the oharactel~istic mode 

fields a.lso form an orthogonal set over the sphere at infinity 0 
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Fig. 4 The same cylindrical body as depicted in Fig. 3, 

but with convergence regions of the series expansions 

for several coordinate systems shown. 



PART 2: RESEARCH RESULTS 

Unless otherwise specified all referenced equation, table 

and figure numbers refer only to those equations, tables 

and figures presented in this part. 



PART 2. I: THE GENERAL NULL FIELD METHOD 

The numerical solution of the direct scattering 

problem is considered. Invoking the optical extinction 

theorem (extended bounda~ condition) the conventional 

singular integral equation (for the density of reradiating 

sources existing in the surface of a total~-reflecting bo~) 

is transformed into infinite sets of non-singular integral 

equations - called the null field equations. There is a set 

corresponding to each separable coordinate system (the 

equations are named "elliptic", "spheroidal" etc. null field 

equations when the coordinate systems used are the "elliptic 

cylindrical", "spheroidal" etc.)" Each set can be used to 

compute the scattering from bodies of arbitra~ shape, but 

each set is most appropriate for particular types of body 

shape, as the computational results confirm" 

Computational results are presented for scattering 

from cylinders of arbitra~ cross section and from axially 

symmetric bodies, the latter being chosen to correspond to 

practical antenna configurations. 

1. INTRODUCTION 

As multipole expansions of the Greens function of 

the form given in (2.14) of Part 1, (I) are obtainable in 
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all coordinate systems permitting separability of the Helm­

holtz equation, these coordinate systems are of interest in 

this thesis. 

A distinction is made between scalar and vector 

fields because the scalar-separability of the Helmholtz 

equation (c.f. (2.4) of Part 1 , (I) ) is wider than its 

vector-separability. Examination of the separation conditions 

for the Helmholtz equation (c.f. Morse and Feshbach 1953 

chapter 5, Moon and Spencer 1961 chapter1 ) reveals that 

the scalar Helmholtz equation is separable for general 

scalar fields in the following eleven coordinate systems. 

Cylindrical coordinates 

1 Rectangular coordinates 

2 Circular-cylinder coordinates 

3 Elliptic-cylinder coordinates 

4 Parabolic-cylinder coordinates 

Rotational coordinates 

5 Spherical coordinates 

6 Prolate spheroidal coordinates 

7 Oblate spheroidal coordinates 

8 Parabolic coordinates 

General coordinate,S 

9 Conical coordinates 

10 Ellipsoidal coordinates 

11 Paraboloidal coordinates 
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In the vector case the term IIseparability" implies, 

in addition to the usual reducibility of the original partial 

differential equation to a set of ordina~ differential 

equations, that the solutions be of a form which allows the 

satisfying of the bounda~ conditions. In only six of the 

eleven coordinate systems in which the scalar Helmholtz 

equation is separable is it possible to obtain solenoidal 

solutions of the vector Helmholtz equation which are transverse 

to a coordinate surface (Morse and Feshbach 1953 chapter 13, 

Moon and Spencer 1961 chapter 3). These are the four cylind­

rical, the spherical and the conical coordinate systems. It 

should be noted that for special vector fields the vector 

Helmholtz equation may separate in more coordinate systems than 

the above six. Particular interest is taken in this thesis 

of coordinates 2,3,5,6 and 7 in the above list. 

The optical extinction theorem is examined and stated 

in § 2. In § 3 the generalised null field methods are 

developed. These null field methods are applicable to all 

those separable coordinate systems that form a closed surface 

when one of the coordinates being used is kept constanto 

It should also be noted that the shapes of the scattering 

bodies can be arbitrary. Various numerical questions are 

discussed in §4. The characteristics of particular null 

field methods are tabulated in § 5 and computational results 

are presented in § 6 for scattering from cylinders of arbitr~ 

cross section and from axially symmetric bodies, the latter 

being chosen to correspond to practical antenna configurations. 

It is indicated in § 7 how the techniques developed here for 

totally reflecting scattering bodies may be extended to 



handle partially-opaque bodies. 

Fig.1 of Part 1, (I) is reproduced in this section 

for convenience@ 

2. THE EXTINCTION TI-illOREM: 

When a body is totally reflecting, the incident and 

scattered fields are confined to y+. Once cl is known, ~ 

can be calculated from it using (2.5) of Part 1, (I). This 

means that the actual material body need not be taken into 

account explicitly - it can be replaced by a "disembodied" 

distribution of surface sources, identical in position and 

in complex amplitude with the actual surface sources. ';Yo 

can then be thought of as passing undisturbed throughout y 

and ~ can be considered to radiate into y_ as well as into 

y+, so that (2.5) of Part 1, (I) can be taken to apply 

throughouty. The optical extinction theorem states (the 

obvious physical fact) that 

P E y_ 

Even when a body is partially-opaque it is possible 

to define ~ such that the right hand side (RRS) of (2.5) 

of Part 1, (I) gives the actual scattered field in y+ and 

yet PJiS (2.5) of Part 1, (I) "extinguishes" ~O in y_, as 

seems to have been noticed first by Love (1901)0 Hanl, 
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Maue and Westpfahl (1961) discuss the electromagnetic form 

of this principle- In the optical literature (cof. Born and 

Wolf 1970 § 2.4.2) the theorem is prefixed with the names 

Ewald (1916) and Oseen (1915). The partially-opaque case is 

discussed in § 7. 

On substituting (2.5) of Part 1, (I) into (2.1) it 

follows that 

P E y_ 

which in this thesis is called the "extended integral equationtl 

for 2t, because Waterman (1965, 1969a,b, 1971, 1975) refers 

to the extinction theorem as the "extended boundary conditiontlo 

Waterman expands g as in (2.14) of Part 1, (I), using wave 

functions appropriate to spherical polar coordinates. This 

allows him to obtain from (2.2) an infinite set of non-

singular integral equations which satisfy the extinction 

theorem explicitly within the inscribing sphere centred on 

the origiri of the coordinates. Avetisyan (1970), Hizal and 

Marincic (1970) and Bates and Vrong (1974) have developed 

computational aspects of Waterman's approacho 

The two-dimen~ional analogue of Waterman's approach 

has been developed both for scattering problems (Bates 1968, 

Hunter 1972, 1974, Bolomey and Tabbara 1973, Bolomey and 

Wirgin 1974, Wirgin 1975) and for the computation of Vlave-



guide characteristics (Bates 1969a,Ng and Bates 1972, Bates 

and Ng 1972, 1973). 

Various methods have been developed in which the 

extinction theorem is satisfied either on surfaces, or at 

sets of points, arb-itrarily chosen within y ... (Albert and 

Synge 1948, Synge 1948, Gavorun 1959, 1961, Vasil'ev 1959, 

Vasiltev and Seregina 1963, Vasiltev, Malushkov and Falunin 

i 
1967, Copley 1967, Schenck 1968; Fenlon 1969, Abeyaskere 1972, 

Taylor and 'Wilton 1972, Al-Badwaihy and Yen 1974)" While 

these methods are useful for specific problems they do not 

have the generality of Waterman's approach, which satisfies 

the extinction theorem implicitly throughout y_ (this is 

discussed further in 93)" Al-Badwaihy and Yen (1975) have 

recently discussed the uniqueness of Waterman's approach and 

the aforementioned methods" 

Hizal (1974) has incorporated Waterman's approach 

into a state space formulation of the direct scattering 

problem. There could be significant computational advantages 

if an initial-value bounda~-value problem could be set up 

(c.L Bates 1975b)but it seems difficult to avoid the 

conventional two~point bounda~-value problem (Hizal 1975)0 

The null field method appears to provide added justi-

fication for the aperture-field method - an approximate 

design procedure useful in radio engineering (c@f. Silver 

1965 § 5.11) - and for physical optics (Bates 1975a). It is 
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amusing to note that the latter reference is among the first 

to remark that studies by acousticians and electrical engineers 

have run close on occasion to those of optical scientists, 

who have recently re-examined the extinction theorem in 

detail (Sein 1970, 1975; De Goede and Mazur 1972; Pattanayalc 

and -.'lolf 1972) e 

3. THE GENERAL METHOD 

It is shown here how to extend Waterman's approach by 

expanding g in wave functions appropriate to any separable 

coordinate system. It is necessa~ to make a distinction 

between scalar and vector fields, because the vector Helmholtz 

equation is separable in fewer coordinate systems than is 

the scalar Helmholtz equation. 

Note that RHS (2.5) of Part 1, (I), and RHS (2.2) 

are analytic throughout y_, so that if er is chosen such that 

(2.,2) is satisfied explicitly for all P within a finite part 

of y_ then, by elementa~ analytic continuation arguments 

(Waterman 1965, Bates 1968), (2.2) is necessarily satisfied 

implicitly for all P wi thin y_. In the spirit of Waterman, 

(2.2) is manipulated so that it is satisfied explicitly for 

aJ.I P within Ynull' which is necessarily finite if the body 

has a finite interior. Consequently, (2.2) is satisfied 

implicitly for all P ~rithin Y_o This method therefore has 
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greater generality than alternative techniques (listed in 

§2) in which the extinction theorem is satisfied explicitly 

only at points or on lines or on surfaces within Y_0 

In an actual computation, (2.2) can only be satisfied 

approximately, even at points within Y
null

" In order that 

I j. + 10 I shall not exceed a required threshold, anywhere 

within Y_, ~ must be computed to a particular tolerance, 

which must be made smaller the larger Y_ is in comparison 
-

50. 

with Ynull & As Lewin (1970) forecasted, numerical instabilities 

have tended to occur because of this - when Waterman's approach 

has been used to compute the scattering from bodies of large 

aspect ratio, and g has been expanded in wave functions 

appropriate to cylindrical or spherical polar coordinates 

(Bolomey and Tabbara 1973, Bolomey and Wirgin 1974, Bates and 

Wong 1974). The work reported in this thesis began when it 

was realised that, by using elliptic cylinder coordinates or 

spheroidal coordinates, the tendency towards numerical 

L~tability could be reduced by decreasing the size of the 

part of Y_ not included in Ynull • 

(a) Scalar Field and Sound-Soft Body 

On referring to the definition (2.2) of Y
null

' (2.8), 

(2.14) and (2.15) all of Part 1, (I), permit (2.2) to be 

rewritten as 
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co 
" L Y. (u

2
/ ,u

3
/ ,k) c1s, 

J,j. 

P E Ynull 

since u
1
/ >- u

1 
in Ynull " 

(c.f. Morse and Feshbach 

1\ 

The properties of the Y. (.) are such 
J,2. 

1953 chapters 7 and 11) that they 

form an orthogonal set on any closed surface u
1 

::: constant. 

Since any surface u
1 

::: constant is closed within Ynull ' by 

. definition, it follows that the individual terms in (3.1) are 

independent, so that 

Jf 'V 1\ (2) (/ ) 1\ (/ / k) d 
- <!J h. u

1 
,k Y. u

2
, u

3
, s::: - 8.. , 

J,t J,i J,{ 

S 

which in this thesis are called the null field equations for 

a sound-soft body, for the particular separable coordinate 

system (u
1
,u

2
,u

3
). The integrands are regular at all points 

on S because h~2~(.) is only singular on the surface 
J,1. 

u~ ::: 0, which by definition cannot intersect S. 
1-

(b) Scalar Field and Sound-Hard Body 

It follows from (2.9) of Part 1, (I) and (2.2) that 

P E y_ 

S 
which can be rewritten, on account of the antisymmetry of g 



,,­
with respect to r and r~ as 

- '±I 0 :::: J J J-' og/all'd.s 

s 
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where use has been made of the definition of a/an~ relative to 

alan, as given in B2a of Part 1, (I). Restricting P to lie 

within y ull' expressing g and ~ . in their multipole expansions n ru 

(2.14) and (2.15) both of Part 1, (r), and again noting the 
A 

orthogonality of the Y. (.) within y ull' it follows that J,t n 

(3.4) leads to 

JJ;) a[h~~~(U~'k) ij,~(U;'U;,k)J lan/ds 

S 

=-8.. , J,i 

which are the null field equations for a sound-hard body, for 

the particular separable coordinate system (u
1
,u

2
'U

3
). 

(c) Vector Field 

It is convenient to split the vector field, existing 

at an arbitrary poL~t P Ey, into what are lcnown as longitudinal 

and transverse parts (c.f. Morse and Feshbach 1953 81.5). 

The transverse part of ~ is denoted by (l-t. The latter 

characterises ~ completely in any source-free region. 

Since the interest here is in computing the behaviour 

of ~ in y+~ which is by definition source-free as far as 1 is 

concerned, the extended boundary condition is only explicitly 

satisfied for ~t. The unit dyad~, defined by 

I :::: xx + yy + ZZ 
::::.. ..,........ -- (3.6) 



is introduced in order to be able to define the dyadic Green's 

function 

which can be decomposed into, respective~-, its longitudinal 

and transverse parts: 

(3.8) 

It then follows from (2.10) of Part 1, (r), (2.2), (3.7) and 

(3.8) that 

- ~ ~ == A [ J J !Ls • ~t ds J 
s 

Whenever it exists, the equivalent multipole expansion of Gt 
== 

has the form (c.f. Tai 1971) 
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where ~~p) (.) and !i~p) (. ), for which p E {1 -+ 4-1, are independent 

eigen-solutions of the vector Helmholtz equation, obtained by 

separation of variables. They satisfy 

and there is a denumerable infinity of them, which is why 

it is possible to order them by using only a single integer-

index q. The c are normalising constants. The superscripts 
q 

(1) and (4-), which are interchanged when u; > u
1

, repectively 

denote wave functions which are regular at the origin of 



coordinates and wave functions which are outgoing at infinity. 

The radial dependence of M(1)(.) and N(1)(.) is proportional 
-q -q 

to d. (u 9k), where the relation of the integers j,i and q 
J, j. 1 

to each other is governed by the particular way in which the 

vector wave functions are ordered. The radial dependence of 

M(4)(.) and N(4)(o) is proportional to h~2)(u ,k). Since 
-q -q Jd. 1 

~~ is analytic throughout y_, it can be expanded there in 

terms of the functions M( 1) ( • ) and r:r< 1) (. ). It is necessary 
-q -q 
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to consider the tvro cases: 1- +?o ;§. and ':Y +?o n. For convenient 

normalisation of the null field equations the expansions are 

written in the forms 

co 

~t ~ Et::: i w 11
0
)c [a. M(1)(u

1
,u

2
,U

3
;k) o ~. L.....; q 1 ,q -g 

q~ . 

+ a 2,q IT~1)(U1'U2,u3;k)} 

co 

::: -k '\' c [a N(1)(u ,u ,u ;k) 
L-, q 1 ,q -q 1 2 3 
q:::O 

+ a 2,q M~1)(U1'U2,u3;k)J' P E y_ 

where the a
1 

and a are scalar expansion coefficients. 
,q 2,q 

The analytic properties (orthogonality being the most pertinent) 

of the M(P)(.) and the N(P)(.) permit (2.11) of Part 1, (I) 
-q -q 

and (3.9) through (3.13) to be combined (whether ~~] or 

~ ~ n) to give (c.f. Morse and Feshbach 1953 chapter 13) 

ff ~s· (4) ( /' / /.) ds ~ u1 ,u2, u3'k ::: 

a
1
,q I 

S 
qE {o~col (3.14) 

ff ~s· N(4)(u/ u/ u/·k) ds ::: a 
-g l' 2' 3' 2,q 

S 
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which are the (coupled} null field equations for a perfectly 

conducting body for the coordinate system (u
1
,u

2
,u

3
), under 

conditions allovving vector separability. It must be emphasised 

that vector separability can occur for coordinate systems 

which do not allow vector separation in general, provided 

that both ~O and the shape of S are suitably constrained 

(refer to § 5d) • 

i d) Far Fields 

Once ~ has been determined, by solution of the null 

field equations, the far-scattered-field can be conveniently 

computed from (2.5) of Part 1, (I), with g assuming its asymp­

totic form: in RHS (2.6) of Part 1, (r), R is taken as a 

constant in the denominator, whereas in the exponent it is 

taken to be given by (2.7) of Part 1, (I), but with 

I.EI = R + r o£// Irl 

Alternatively, ~ may be written in its partial wave expansion 

by expanding g in terms of mul tipoles as in (2.14-) of Part 1, 

(I) or in (3.8) and (3.10), and then expressing the 't/ 2) (u ,k) 
J, Q. 1 

in their asymptotic forms (c.f. Morse and Feshbach 1953 

chapters 10 to 13). 

~. NUMERICAL CONSIDERATIONS 

The numerical solution of the null field equations 

can be accomplished by adapting standard moment methods (c.f. 



Harrington 1968), But there are several subtle points which 

are not encountered with the conventional integral equations. 

They vary slightly for sound-hard and sOtmd~soft bodies and 

for scalar and vector fields. But the important aspects are 

common to all the null field equations. In this section the 

detailed argument is confined to scalar fields and sound-

soft bodies, in order to simplify the symbolism as much as 

possible. Vector fields and sound-hard bodies are discussed 

when they involve noticeably different considerations. 

Referring to Table 1 of Part 1, (I), ~ is ·written as 

co p 

~ \' ~ fp, q (7
1

,,'72) :: 
L., L .. ap;<l 

p:=O q='-p 

where the a are expansion coefficients. The choice of 
p,q 

the basis functions f is discussed laterQ Substituting 
p,q 

(4.1) into (3.2) gives 
co p 

~ '\" a if) :: 
L L" p,q - £,p,j,q 
p=O q::-p 

where 

if) • =-JJf ( -l,p,J,q p,q 

S 

So, the infinite set of integral equations (3.2) has been 
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transformed into the infinite set of linear, algebraic equations 

(4.2) • 

To solve (4.2) numerically it is necessary to truncate 

the infinite set of equations. It is therefore desirable to 
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ascertain, if possible, in wDat sense the a so obtained 
p,q 

are approximations to the true a 
p,q 

It is convenient to introduce the generalised scalar 

product 

<: A,B > = 11 A( 7
1

,7 2) B( 7
1

,12) as 

S 

t I'l' d I'. th . t d f Note that he functions of u
1

, u
2 

an u
3 

J..n e J..n egran s 0 

(3.2) and (4.2) are, in effect, functions of T and 1 because 
1 2 

the integrals are over the surface of the body (refer to 

Table 1 of Part 1, (I) )., Because there is a denumerable 

1\(2) 1\ ) 
infinity of the functions-h. (0) Y. (. , they can be ordered 

J,£ J,l 

using a single integer-index, L say, and a typical one of them 

can be identified by the symbol B
L

, so that (4.2). becomes 

where the G. have been similarly ordered and identifiedo 
Jd. 

By Schmidt orthogonalisation (c.f. Morse and Feshbach 

1953 pp. 928-931) it is possible to construct the functions e
Q 

defined by 

Q 

eQ = J. DQ .. BL; 
--: ,L 
L::::O 

where Q and K are arbitrary non-negative integers, the DQ,L 

are the expansion coefficients obtained from the Schmidt 

procedure and the asterisk denotes the complex conjugate. 

0KQ is the Kronecker delta and is 1 for K = Q and 0 for K ft Q. 

Combining (4.5) and (4.6) gives 



Q 

< J', eQ >::: -L DQ,L 8.. L, 

L=O 

QE {o~ool 

from which it follovm that, if ~ is written as 

N 

~N ::: LPQ e;, 
Q:::O 

the orthogonality of the e
Q 

ensures that the P
Q 

are given by 

Q 

PQ ::: -LDQ,L a L 
L:::O 

as follows from (4.6) through (4.8). It also follows that 

00 

<: ~ ~, J"' N > ::: < ;:y* ~ ~ > - I I P Q I 2 

Q::::N"+1 

so that the mean square difference between 21N and ~ decreases 

as N increases. 

Unfortunately, it is often inefficient computationally 

to represent ~ in terms of the basis functions e
Q 

(c.f. 

Bates and Ylong 1974). Experience shows that it is usually 

desirable to use basis functions, fQ say, which are not 

orthogonal over S (c.f. Bates 1975b). This suggests that 

partial sums of the form 

M 

~ M ::: L aQ fQ 
Q:::O 
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should be investigated, where the a
Q 

and fQ are to be identified 

with the a and f (0), repectively, appearing in (4.1), 
p,q p,q 

using the single intege~index Q which is analogous to the 

integer index L introduced in (4.5). 

Computational experience indicates that ~ M often appears 



to approach a limit when M is large enough (c.f. Bates 19751:/):. 

Nothing can be proved by citing computational examples, but 

they certainly fortify one's confidence that numerical con~ 

vergence has actually been achieved in many important problems. 

It is knOYffi that a particular truncated e:x."Pansion - i. e. (4.8) 

- is a convergent approximation to 21, so it is reasonable to 

assume that (4.11) is another convergent approximation when 

it is found in practice that l;;:r M+1 - d Ml is decreasing with 

increasing M - at a rate far faster than I ~ N+1 -;r NI is 

decreasing with increasing N - up to the largest value of M 

which it is economic to use. 

There seems to be no alternative, at present, to the 
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brute-force procedure of increasing M until numerical convergence 

is (apparently) manifest. 

The value of M needed to represent d to an acceptable 

accuracy can be reduced by careful choice of the fQ. Experience 

shows that the greatest savings in computational effort accrue 

when the fQ accord ,vith the required physical behaviour of 

(c.f., Bates 1975b). When S is an analytic surface the fQ 

should be analytic also. If there are points and/or lines 

on S, at or on which S ceases to be analytic, the fQ sholud 

exhibit the appropriate singular behaviour - such as that 

demanded by the edge conditions (c.f. Jones 1964 § 9.2) -

at the singularities of S, In fact, in the neighbourhood 

of each singularity of S, ~ can be ivcitten in the form 



where 1.IY is analytic and V is either integrably infinite or 

is singular in its nth order, and higher, derivatives (the 

value of n characterises the ty-pe of singulari"ty of s) 0 

The computational advantage of using fQ with the correct 

singular behaviour for investigating finite, right-circular, 

cylindrical antennas has been demonstrated by Bates and Wong 

(1974). Hunter and Bates (1972) and Hunter (1972, 1971l-) 

deal with several singularities (simultaneously present on 

the surfaces of infinite, cylindrical bodies) by dividing 
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the surfaces of the bodies into contiguous sections, on each 

of which ~ is approximated by a series of the form of (4.11). 

'l'his technique is computationally efficient; its only defect 

is that it is sometimes avikward to ensure that cl is continuous 

across the boundaries of the sections. 

"Variations in curvature of S affect the mutual inter-

action between the surface sources existing in S, thereby 

causing concentrations and dilutions of J'. Even when ;J is 

analytic over all of S, it is not ideal to represent it by 

basis functions whose mean effect is the same everywhere -

i.e. functions such as exp(i [K 1 '1 + K2 '2] ), where K1 and 

K2 are real constants. There does not appear to be any way 

of handling this explicitly, for a scattering body of arbitrary 

shape. But there does exist a suitable method for a cylindrical 

scattering body, for which the surface S reduces to the 

boundary curve C, and the three-dimensional space y reduces to 

the two-dimensional space 0 (refer to Table 1 of Part 1, (r) ). 



Considering the conformal transformation of n onto 
+ 

the exterior of the unit circle, it is found that the element 

of arc dC and the differential angular increment around the 

circle are related by 

dC ::: h d-J 

where h is the metric coefficient characterising the "geometric 

irregularity" of C. If C is analytic then so is h, but the 

latter exhibits integrable singularities at values of -J 

corresponding to any points where C ceases to be analytic. 

Table 1 lists the metric coefficients which are used in the 

various computational examples presented in this thesis. 

Bickley (1929,1934) gives larger lists, based on the exterior 

form of the Schwarz-Christoffel transformation (c.f. ~forse 

and Feshbach 1953 § 4.7). General shapes can be transformed 

using formulas given by Kantorovich and Krylov (1958 chapter 5). 

Shafai (1970) shows that, if h is considered as a 

function of C rather than of -J, it satisfies 

h ::: 1/V 

at each singularity (if there is one or more such) of G, for 

scalar fields and sound-soft bodies or for E-polarised electro-

magnetic fields. Reference to (4.12) then suggests that ~ 

should be approximated, a-t all points on C, by 

M 

~ M ::: t I aQ fQ 

Q=O 

rather than by (4.11). After the transformation (4.13) is 

applied to the integrals in the null field equations, the 



irregularities of the boundary curve are completely smoothed 

out, since a circle exhibits no changes of curvature. This 

suggests that the basis functions fQ in (4.15) should have 

the same mean effect eve~here - i.e. it is ideal if they 

are trigonometric functions or complex exponentials, which 

are convenient computationally. The final result is even 

more convenient computationally because the factor hin 

(4.13) cancels the factor (1/h) in (4.15), in the integrands 

of the null field equations. 

For scalar fields and sound-hard bodies, or for H­

polarised electromagnetic fields, there is no convenient 

cancellation of metric coefficients because there is no simple 

formula such as (4.14) connecting h andv. However, a' is 

always finite at singularities of Co So, it can be convenient 

to approximate ~ by (4.11) with smooth fQ having the same 

mean effect everywhere on C, and to make use of the trans­

formation (4.13), so that h can account for all geometric 

irregularities of C. However, numerical instabilities can 

occur in the neighbourhoods of singularities of C, so that 

it is sometimes prefex'able to employ appropriately singular 

fQ and to forgo the transformation (4.13). 

In conventional integral equation formulationst of 

scattering problems, the kernels are usually singular, and 

it is often inconvenient to use other than the simplest basis 

functions - pulse-like functions, or even delta functions -

i c.f. §3 of Part 1, (II). 
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so that one solves the integral equations by the method of 

subsections (Harrington 1968). It usually requires a large 

number of simple basis functions (in comparison vTith the 

required number of extended basis functions that mirror more 

accurately the Jerue behaviour of ~). to obtain a representation 

of ~ accurate to within some desired tolerance, so that it 

follows inescapably that M must be large. Since solutions are 

obtained by inverting the appropriate matrix of order M, and 

since the number of operations involved in this inversion is 

proportional to M3, there is a premium on small values of M. 

Consequentl~ conventional integral equation formulations are 

computationally wasteful, in a very real sense. On the other 

hand, the magnitudes of their matrix elements are usually 

largest on the diagonal of the matrix, which eases its numerical 

inversion. 

The matrix elements - the ~ . defined by (4.2) 
1,P,J,q 

and (L1-.3) - obtained from tha null field equations rarely 

exhibit any diagonal tendency. Consequently, if full comput-

ational advantage is to be taken of the low values of M 

offered by the null field approach, the matrix elements have 

to be evaluated very carefully (Ng and Bates 1972), which 

means that special checking procedures have to be introduced 

into the numerical integration routines. These precautions 

have been taken in the computations reported in this thesis. 



20 PARTICULAR HULL FIELD 1,~THODS 

In this subsection pertinent details are presented 

of those null field methods which are illustrated in § 6 

with particular computational examples or which are discussed 

further later in this thesis. 

Formulas suitable for digital computation are presented, 

and so all series expansions are explicitly truncated. But 

it must be understood that the upper limits of the truncated 

series are not fixed ~ Eriori. Results for several of these 

upper limits must be. computed in order to determine the 

accuracies of tDe results. 

(a) Cylindrical Null Field Methods 

Note that for totally-reflecting scattering bodies and 

fields which ey_~ibit no variation in the z-direction, there is 

complete equivalence between E-polarised electromagnetic 

fields and scalar fields interacting with sound-soft bodies. 

There is also complete equivalence between H-polarised electro­

magnetic fields and scalar fields interacting with sound-hard 

bodies. We can therefore write 

Take particular note of the notation introduced in 

Table 1 and S 2e both of Part 1, (r). Expansion coefficients 

which are explicitly scalar are introduced into the series 

representation for ~O: 



P E fL 

where the notation (2.17) of Part 1, (I) is Lmplied, so that 

the series actually has (~~ + 1) terms. It should be noted 

that we have taken 

in passing from (2.15) of Part 1, (r) to (5.2), and the c in 
m 

(5.2) are the normalising constants in the multipole expansion 

of g. 

The null field equations - i.e. (3.2), (3.5) and(3.1~) 

- can be expressed in the general form 

J 'J' (C) K~ (e) de 

.,G 

= -a , m ill E [0 -;. M3 (5.~) 

where the notation (2.18) of Part 1, (r) is implied, and it 

is noted that because of (5.1) the pairs of coefficients 

a and a
2 

,appearing in (3.14), reduce to the single 
1, q ,q 

coefficient a. Implying the notation (2.17) of Part 1, (I) 
m 

the partial wave expansion of the scattered field is 

M 

j- = ~ C b+ li(2)(u ,k) Ym(U
2
,k), 

~ m m m 1 

which is obtained from (2.5) of Part 1, (r) by expressing g 

in its multipole expansion (2.14) of Part 1, (I) - but ~~th 

the J . and h~2) functions replaced by the 3 and H(2) functions 
J,.e. J,j, m m 

- and then operating with A - refer to (2.8) and (2.9), both 

of Part 1, (r) - after recognising the antisymmet~J between 

alan and alar: noted in §3b. We can therefore i~Tite 



b~ = J 
c 

The detailed forms of K+(C) and K- (C) are given in Table 4-. 
m m 

'J'is expressed in the form 

M 

cl ( C ) = CJ( C) '" a f ( C) L.., q q 

where CJ(C) is a weighting function (defined in Table 2) and 

the f (C) are chosen according to the criteria discussed in 
q 
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§4. To solve the scattering problem, the a must be evaluated~ 
q 

which is done by substituting (5.7) into (5.4-) and then 

eliminating the a
q 

in standard fashion (c.fo Wilkinson and 

Reinsch 1971). It follows that 

e 
o 

= -a , 
m 

where the four different ~ are defined by 
m,q 

Vllien the transformation (4.13) is used the f (C) are always 
q 

given the form 

Table 2 indicates how the quantities defined above differ as 

between E-polarised and H-polarised vector fields and between 

scalar fields interacting with sound-soft and sound-hard 

bodies. Additional notation is introduced for ~(C) in order 

to relate to established notation - see many references quoted 

in §§ 2 and 3; in particular Bates (1 975b) '. 



The cylindrical null field methods of interest here 

are the circular null field method, for which u
1 

and u
2 

become 

the cylindrical polar coordinates p and ~, and the elliptic 

null field method, for which u and u become the elliptic 
1 2 

cylinder coordinates ~ and n. Table 3 lists the wave functions 

appropriate for these null field methods. Note that the 

elliptic null field method reduces to the circular null field 

method when kd ~ o. 

Table 4 lists the forms assumed by the kernels of the 

integrals in (5.4) and (5.6), for the circular and elliptic 

null field methods. The recurrence relations for Bessel functions 

(c.f. Watson 1966 chapter 3) have been used to simplify the 

formulas. 

(b) General Null Field Method, Scalar Fields. 

Because the fields are scalar, it is convenient to 

replace the general expansion coefficients in (2.15) of Part 

1, (I) by eA~licitly scalar ones; 

To anticipate the needs of (II) we introduce, by analogy with 

(5.4) through (5.6), the three equations: 

JJJ( 
S 



b";,r = 11';)( Ii' 12) K~.d_( 11,12) ds 

S 

Note that (5.12) represents the null field equations (refer 

to B 3a, b) and the c. are the normalising constants 
J,t 

appearing in (2.14) of Part 1, (r). Thus 

_ ( ) A (2) ( / ) A (I' / . 
K. 11'12 =-h. u1~k Y. u2,u

3
,k), J,t J,t J,'£' 

and K~ ( .) is given by the 
J,J 

replacing h~2)(.)o 
J,J. 

Sound~soft bodies 

Y. (u21"U~:lk)J /an~ 
J,J. J . 

Sound-hard bodies 

same formulas, but with 5'. ( , ) 
J,;' 

(c) Spherical Null Field Method, Scalar Fields and Sound-... 

Soft Bodies 

The spherical null field method is obtained when 
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spherical polar coordinates r, 6 and <.p are employed. Relevant 

quantities are listed in Table 5. The kernels of (5.12) and 

(5.14) specialise to 

K~ ( 
J,.1 71 ' 

7
2

) = -h (,l) (k/ ) P~(cos 61' ) exp( -ij cP'); (5.16) 

K~ ( 
J,l 

T
1

, .)_ .(2) (krl') 
T 2 --j..e. piCcos e/) ( .. /) exp -l.J <.p ; (5.17) 

Null Field Methods Vector Fields and odies 

Both Rotationally Symmetric 

The analysis of § 3c is specialised to fields and 

bodies which are rotationally syw~etric. The projection of 

the surface S of a typical body onto the x,z-plane is depicted 
.. 



in Figo 2. The source of the incident field ~O is 

taken to be a ~ directed~vhere this azimuthal unit vector is 

the same as appears in cylindrical polar and spherical polar 

coordinates) ring (of radius b) of magnetic current of unit 

strength (c.f. Otto 1967, Bates and Wong 1974-), lying in the 

plane z == K. The special symmetry ensures that the density 

(5.18) 

where I(.) is the total current and p is the x-coordinate of 

an arbitrary point, identified by the parametric coordinate r 

lying in S (refer to Table 1 of Part 1, (I»). Note that 

the symbol T denotes both the curve and distance along it 

measured anticlockwise from the (outermost) point where r 

crosses the x-axis. 

I( r,b,K) could also be termed a "Green's current" in 

the sense that it is due to a "delta" ring source. If the 

source of the actual ~O were a distribution R(b,K) of 

magnetic ring currents then the actual electric surface 

current density would be I( T)/2~ p, where 

co co 

I ( r) == J J I ( r, b ,K) R (b ,K) db dJe. (5.19) 

-():> 0 

The null field methods of interest here are both the 

prolate and oblate spheroidal null field methods, for which 

u
1 

and u
2 

become sand n respectively, (c.f. Flammer 1957). 

The coordinate u
3 

becomes the azimuthal angle ~. Table 6 

lists the wave functions appropriate for these null field 

methods, under the special symmetries considered here (e.g. 

the wave functions are independent of ~). Note that the 



spheroidal null field methods reduce to the spherical null 

field method when kd ~ 0, 

To obtain null field equations, such as (3.14), the 

expansion RES (3.10) must exist, which is only possible in 

spheroidal coordinates when certain symmetries (such as the 

ones considered here) apply. On using the Rayleigh-Ohm 

procedure, as described by Tai (1971), and the properties 

of spheroidal wave functions (c.f. Flammer 1957) it follows 

that the normalisation coefficients in RES (3.10) are t 

1 

c q = -ik / 2rr J S;, q+1 (kd,T/) d7J/ 

-1 

The nature of the magnetic ring sources ensures that 

the expansion coefficients a
1 

,introduced in (3.12) and ,q 

(3.13), are necessarily zero. 

written as 

a = a 2,q q 

It also follows that 

So, for convenience a 2 is 
,q 

so that the first of the coupled equations (3.14) becomes 

trivial. On account of the form assumed by RES (3.10) in 

spheroidal coordinates and noting the position and radius 

of the unit magnetic ring source, it follows that 
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where the intersection of the particular spheroidal coordinates 

U
1 

and u2 corresponds to the intersection of the particular 

i These coefficients are derived in Appendix 1. 



cylindrical polar radial coordinate p and the particular 

axial coordinate K. As is confirmed by Table 6, M~4)(.) 

is independent of ~ so that a is a constant (as anticipated). 
q 

The symmet~J permits the surface integration in the second 

equation in (3.14) to be reduced immediately to a line integ-

ration along T, so that on account of (5.18) and (5.21) it 

follows 

J I( q E f 0 -l> MI 

r 

where it is estimated that (M + 1) of these null field equations 

axe needed to permit I( T,b,K) to be calculated to some 

required accuracy. The kernels of the null field equations are 

q E {O -l> M1 , 

where the angles ~1 and S2 are·defined in Table 4 (but with 

A A) Q replaced bYI • 

To evaluate I( r,b,IC) numerically it is written in the 

form 

1'1 

= "'a f (r) L p p 
p:::O 

(5.26) 

where the f (7) are chosen according to criteria discussed 
p 

in § 4. Substitution of (5.26) into (5.24) yields 
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q E to -> MJ; 

ill == J f (7') K-.(T) dT. 
p ,q P, q 

T 

6. APPLICATIONS 

The results of a number of numerical solutions to 

particular direct scattering problems are presented, in order 

to demonstrate the computational usefulness of the null field 

methods developed in §5. 

The crux of each solution is the inversion of a matrix. 

A typical element of a typical. matrix is denoted by Z and 
pq 

the norm Z is denoted by 

Z == determinant ~ • pq' (6.1 ) 

M 

[2: IZ \2 f 'pq == Z . 2 (6.2) pq mq 
m:::O 

This norm has been previously shown to be useful (Bates and 

Wong 1974), and Conte (1965, chapter 5) shows that it is a 

good measure for comparing the relative condition of 

different matrices. The order of Z is tabulated in this thesis 

where appropriate, i.e. O(Z). The smaller Z is, the greater 

is the error in the computed inverse matrix, for a given 

round-off error in individual arithmetic operationso 

The computer time needed to perform a calculation is 
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perhaps the most important factor which must be taken into 

account when attempting to assess a particular numerical 

technique. Unfortunately, there are such great differences 

between the many existing computing systems that bare state­

ments of CPU (central processing unit) times are not too 

meaningful. However, we feel that it should become accepted 

practice to record CPU times, if only to give an Itorder-of­

magnitude II idea of the amount of computation involved. 

Pertinent CPU times are listed in Table 8 and in the captions 

to Figs 9, 10 and 12. The extended Simpson's rule (Abramo­

witz and Stegun 1970 formula 25.4.6) is used in this thesis 

for all numerical evaluation of integrals unless stated other­

wise. As the integrands are oscillatory there seems to be 

little point in attempting to use higher quadrature formulas 

(cof. Ng and Bates 1972). The methods used for computing 

Bessel, Mathieu and spheroidal functions are discussed in 

Appendix 3. 

As is pointed out in 9 4 there is no alternative at 

present to the brute-force procedure for checking whether 

numerical convergence is occurring. The current densities 

are obtained by inverting matrices (refer to second paragraph 

of this subsection). Using the notation introduced in (4.11), 

we say (arbitrarily) that a computed current density is 

convergent, when the order of the matrix is (M + 1), if the 

greater of the largest (over all of S, for arbitrary bodies) 

or over all of C, for cylindrical bodies) calculated values 

of l clM+1 -JI,f1 and I ~ M+2 - ~MI is less than 3% of the 



74. 

largest calculated value of I~MI 0 

fa) Cylindrical Null Field Methods 

The cross section of a typical cylindrical scattering 

body is shown in Fig. 3. Yo is taken to be a plane wave 

incident at the angle~. The appropriate expansion coefficients 

a for the saries RHS (5.2) are listed in Table 7. All the 
m 

bodies examined here are symmetric about ~ = 0, which means 

that the even-odd and odd-even matrix elements, introduced 

in (5.8) and (5.9) are automatically zero: 

iDeo = ('poe = 0, 
- q,m q,m q,m E [0 4 M3 (6.3) 

This significantly reduces the amount of computation required 

to obtain values, of ;Y and ::r to a particular, desired accuracy. 

In fact, it reduces from (2£~ + 1) to (M + 1) the order of the 

matrix that must be inverted • 

. The basis :functions (5.10) are used for cl(C) and the 

transformation (4-.13) is employed in (5.9). The direction 

(identified by the angle ~) of the incident wave is taken to 

be either ° or n/2, because it is found that by so doing all 

the points we wish to mru(e can be illustrated. This also 

means that the symmetry existing in all the examples considered 

here permits the complete behaviour of ~(C) to be displayed 

by plotting it on only half of C, as is done in Figs 5 through 

'i o. C denotes the value of C at the point on C where ~ = ~ 

(there is only one such point on each of the bodies investigated 
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here - refer to Fig. ~). For convenience, ~(C) is 

normalised so that 

1;Y (C - 0)/ == 1 (6.4) 

Fig. 4 shows the. cross sections of the types of cylindrical 

scattering bodies considered here. It should be recognised 

that the forward scattering theorem (c.f. De Hoop ,(1959) BoWman 

et al.'1969. ,§1.2.4.) is a powerful check on any 

scattering computation. The accuracy to vlhich this theorem is 

satisfied is used as an "energy test!!. On introducing the 

quantity E defined by 

E == error in energy test 

we consider that a computation has "failed" if E > 10-3• 

ib) Circular Null Field Method 

Use is made of the entries) applying to the circular 

null field method, listed in Tables 3,4 and 7, and we take 

I/J == O. 

Figs 5 through 8 show I ~ (C) I for some· triangular and 

square bodies. The notation for ~(C) introduced in Table 2 

is used. For comparison the experimental results of Iizuka 

and Yen (1967) and computational results of Hunter (1972) 

are reproduced. The computational efficiency of combining 

Shafai's (1970) transformation with the circular null field 

method is dramatically emphasised by the low values for M and 

the large value for Z quoted in Table 8. 
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To illustrate how the circular null field method 

becomes ill-conditioned as the aspect ratio of the body 

increases, it is shovm in Table 9 how O(Z) and O(E) va~J 

with the elongation of an elliptical body, for E-polarisation. 

(c) Elliptic Null Field Method 

Use is made of the entries, applyjng to the elliptic 

null field method, listed in Tables 3, ~ and 7, and we take 

if; = 1(/2. 

Figs 9 and 10 show I ~(C)I for an elongated rectangular 

body with rounded corners. The notation for ~(C) introduced 

in Table 2 is used. To obtain these results the semi-focal 

distance d of the elliptic cylinder coordinates is taken as 
v 
d, where 

. 1 
v 2 '2 
d = [1 - (b/a) . J a, (6.6) 

which m~ces 0null as large a part of G_ as poss~ble. If did 

is reduced to zero, the elliptic null field method becomes 

the circular null field method and the part of 0_ spanned by 

0nullis decreased. 

As is emphas is ed in the final paragraph of § 4, the 

accuracy of the numerical integrations is crucial for the 

success of null field methods. L is used to denote the 

factor by which the number of ordinates, used when the extended 

Simpson's rule is employed to evaluate (5.9), has to be 

increased - in order to obtain solutions from (5.8) for the 



a , to the required accuracy ~ when the semi-focal distance 
q 

v 

77. 

of the elliptic cylinder coordinates is changed from d to some 

other value. Table 10 shows the marked increase and decrease 

v 
of Z and L, respectively, as d is increased from zero to d, 

for a rectangular cylinder, for E-polarisation. 

(d) Prolate Spheroidal Null Field Method 

By combining the equivalence principle with image 

theory (Harrington 1961 chapter 3) it can be shown that an 

axially symmetric monopole antenna, mounted on a ground plane 

and symmetrically fed from a coaxial line, is exactly equivalent 

to a dipole which is suspended in free space and is driven 

by a frill of magnetic current (Otto 1967). The complex 

amplitude of the frill is proportional to the radial component 

of the electric field in the mouth of the coaxial line, which 

has inner and outer radii of a and b respectively (see Fig o o 

11). The field in the mouth of the line is complicated and 

could be expressed as a sum over all radially symmetric TM 

modes. Experience shows that the propagating modes have the 

greatest effect on the antenna current. _42 is usual in practice, 

only frequencies of operation for which there is a single mode 

of propagation are considered. This is the fundamental TEM 

mode whose electric field is inversely proportional to the 

radial distance from the axis of the coaxial line. The 

complex amplitude of the frill - which can be identified with 

the distribution R(b,K) introduced in (5.19) but with K = 0 

because the mouth of the coaxial line is in the plane z = 0 



78. 

(see Fig. -11) - is therefore represented by 

R(b,O) = -2V/[ln(b /a) b] o 
(6.7) 

Where the constant of proportionality is introduced for 

later convenience; V is the voltage between the inner and 

outer conductors of the coaxial line at its mouth (c.f. Otto 

1967) . 

Rather than solve for r(r,b,IC) and then calculate r(T ) 

from (5.19), it is more convenient to look on the a appearing 
. q 

in (5.21), (5.23) and (5.24-) as "Green's expansion coefficients" 

- so that they could be written as a (b,IC) - and then to 
q 

compute the expansion coefficients (redefined as a ) of the 
q 

actual field incident upon the antenna from 
b' o 

aq = J aq(b,O) R(b,O) db 

a 

(6.8) 

rf r(T,b,IC) in (5.24-) and (5.26) is now replaced by r(r) then 

the ~ appearing in (5.27) are the expansion coefficients 

of reT) itself. This procedure is equivalent to the way 

Bates and Wong (1974-) use the spherical null field methodo 

The 9 point Bode's quadrature :t'ule (Abramowitz and Stegun 1970 

formula 25.4-.18) is used to evaluate the integral in (6.8). 

Since the monopole shown in Fig. 11 can be treated as 

half of a symmetrical dipole and since it is driven in a 

radially symmetric manner, it is physically necessary that 

I (_.r.) = I ( r ) ; reT) = ° (6.9) 

where T is defined in the caption to Fig. 11. These conditions 



79. 

, I 

are satisfiediby the basis functions 

(6.10) 

which lead, however, to slow numerical convergence of the 

imaginary part of r(7) with M for r close to zero. Sometimes 

useful numerical convergence is obtained for T > 7
1

, vmere 71 

is small enough that r(T) can be extrapolated throughout 

o ~ 7 ~ 71 by inspection. Nevertheless, it is often found 

to be convenient to expand the real part of I(T) in the basis 

functions (6.10) and the imaginary in Chebyshev functions of 

the first kind. This doubles the order of the matrix which 

has to be inverted, but it does lead to manifest numerical 

convergence. 

Fig. 12 shows the total current on monopole antennas 

with flat and hemispherical ends. The semi-focal distance 
v 

d of the prolate spheroidal coordinates is taken as d, where 
1 

v 2 '2 
d ::: [1-(a/H) ] a 

which maximises the volume spanned by y null' in relation to 

y- • Table 11 shows how Z increases markedly as d increases 

from zero (corresponding to the spherical null field method) 

v 
to d, for a monopole with a hemispherical end. The admittance 

Y of the monopole, referred to its base, is given conveniently 

and sufficiently accurately (although Otto's 1967, 1968 methods 

are perhaps more accurate - they are less convenient here) for 

our purposes by 

Y = I(O)/V (6.12) 

Fig. 13 shows the variation of Y with a/H for monopoles with 
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flat and hemispherical ends. For eaoh value of a/H, the 
v 

coordinates were chosen such that d == d. Holly's (1971) 

measured values are also shown. It is clear that monopoles 

of arbitrary height-to-radius ratio oan be investigated 

computationally in an efficient manner with spheroidal null 

field methods. 

7. APPL1CATIO~'T OF NULL FIELD IIIETHODS '1'0 P1I.RTLALLY 

OPA~UE BODIES 
.j 

As is indicated in the second paragraph of §2, the 

null field approach can be applied rigorously to partially-

opaque (p~netrable) bodies. 

For partially opaque bodies the scattered field at a 

point P in y can be written as (Morse and Ingard 1968 § 7.1, 
+ 

Jones 1964 § 1 .26) 

s s 

where Ai and A2 are appropriate operators and g is the free 

space scalar Green's function of (2.6) of Part 1, (I). Wben 

treating partially opaque bodies it is conveni:ent to split 

the source density into two parts ~ and n - these and the 

attached subscripts are defined later. 

The total field 1T at a point P in y_ can be written as 



s s 

where gintis the scalar Green1s function of (2.6) of Part 1, (1), 

but the subscript !lint" is added to indicate that the wavenumber 

appearing in ~ntis k
int

, the wavenumber appropriate to the interior 

of the body. _~ equations (7.1) and (7.2) and their associated 

definitions are used only in this subsection there should be no con-

fusion vnth those definitions introduced on (r) of Part 1 which apply 

to the rest of this thesis. 

The forms assumed by ~"n, Ai and 11.2 for the scalar and 

vector cases are now listed. 

(a) Scalar Field 

;r ~ Lim a ('l'o + 'l')/on, P E Y ; 
+ P-7 pI + 

~ _ ~ Lim ;0 'liT/an, P E y_ 
P-7P 

PEy· 
+' 

n ~ Lim -'II , 
- ;' T 

P -7P 

[c.f. §2(a) of Part 1, (I)). 

(b) Vector Field 

The source densities J and M are respectively the surface -s -s 

electric and magnetic current densities: 

tJ _ ->-> .ir
s

_ = Lim -£. X H
T

, P E y_ 
P-7 P 

(7.6) 
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en ~ -M = Lim I £ X (§!O + ]) , P E Y ; 
+ s+ P .."P + 

= Lim -~ X E 
I -- T ' 

P-?P 

where EO and !:!o are the electric and magnetic f'ields associated with 

1
0

, There are alternative forms f'or '5-, 'if T, Ai and A
2

: 

'1 ~ ], '5-T~!r' A1 = -i[VV. + k2]/WE: tI. = V X (7.8) - 2 

'5- ~ H, J-T ~ HT, Ai i[ VV . 2 (7.9) = V X A2 = + k ]/wJ1 

(c} The ItExtended" Extinction Theorem 

Vr..<1en a "disembodied" distribution of surf'ace sOurces is set 

up on the interior and exterior sides of' S in the manner described 

by (7.1) and (7,2), an "extended" f'orm of' optical extinction theorem 

can be utilised to obtaL'1 a null field method. The "disembodiedfl 

distribution of surface sources d and n can be considered as 
+ + 

residing on the outside of S, developing a null f'ield in y_ and 

the actual scattered field in y. Similarly another "disembodied" 
+ 

distibution of surf'ace sources 'J' and n can be considered as 

residing on the inside of S, developing a null f'ield in y and the 
+ 

actual transmitted f'ield in y_, The "extended" optical extinction 

theorem then states 

7f = - ~ o 

".f
T 

= 0 PEy 
+ 

On substituting (7.10) Emd (7.11) into (7.1) and (7.2) respectively, 

it f'ollovrs that 



83. 

- PJ == A 11 ~+ g ds 
+ A2 IJ1%+ g ds PEy o 1 -

S s (7.12) 

O==A JJ~- g. t ds + A2 JJn- g. ds PEy 
1 In :mt + 

S S 

The boundary conditions on the surface of the partially-opaque 

body require that 

Equations (7.13), in combination with (7.12 ), constitute a set of 

simultaneous integral equations that may be solved using similar 

techniques to those developed in §3.' 

In situations for which a single series expansion of the interior 

field holds throughout y_, equation (7.1) is much simplified and the 

surface sources and interior field may be found straightforwardly and 

efficiently, as Waterman (1969a) shows for the spherical null field 

method and Waterman (1969b) and Okamoto (1970) show for the circular 

null field method. 



Table 1. Metric coefficient h(~) obtained by transformation of the 

region 0+ for a square, rectangle, equilateral triangle and 

ellipse onto the exterior of the unit circle. 

Cross sectional h(~) Transformation 
shape constants 

1 

Square aGcos (2~)J2 /L L = 0.847 
a = half length of a side 

a = half length of 
longest side 

b = half length of 
shortest side 

2 i b 
Rectangle a(m-sin ~)2/L For - = <> 1 , m = .1055 

a 

L = 0840 

Refer to Bickley (1934) 
for other 12. ratios. 

a' 

Equilateral a[cos(% ~) /L L = 1 @186 
triangle a = half length of a side 

Ellipse 
( 2 . 2 2 2 i a Sln {). + b cos fJ.) 2 a = semi-major axis 

b = semi-minor axis 



Table '2. General notation for cylindrical null field 

~(C) 

methods. 

, E-polarised fields H-polarise~ fields 

('6-+7E) 
z 

(~+7H) 
z 

Qr sound-soft bodies or sound-hard bodies 

F(C) G(C) 

1 

~~en the f (C) are themselves appropriately 
q 

singular where C ceases to be analytio 

o-(c) (refer to '94-) 
f r---------------------.---------------------~ 

1/h 1 

~Vhen the transformation (4.13) is employed 



Table 3. Wave functions appropriate for cylindrical null field methods. 

Null field 
method 

Circular I 

Elliptic 

e 
JO(u ,k) 

m 1 

J (kp) 
m 

Bessel function of first 
kind of order m. 

R ( 1) (kd,r;) 
~m 

Modified Mathieu function 
of first kind, even and 
odd, of order m. 

H(2)~( k) m u1 , 

H(2) (kp) 
m 

Hankel function of second 
kind of order m. 

R (4) (kd,r;) 
~m 

Modified Mathieu function 
of fourth kind, even and 
odd, of order Ill. 

A e 

Y~(u2,k) 

cos . 
sin (mcp) 

S (kd,7]) 
~m 

Mathieu function even 
and odd, of order m. 

c 
m 

-i/2, m > 0 

-i/4, m = 0 

e 
-iiI 0 

m 

d = semi-focal distance of elliptic cylinder coordinate system. Refer to Morse and 
]'eshbach (1953) chapter 11 . 

1 

1
0 = S (kd,T]) (1"7T] fZ dT] e J 2 2 i 

m ~m 

-1 co 
CJ\ 



Table 4. Kernel functions appropriate for cylindrical null field 

methods, 

Null field method 

Ciroular 
E-polarised 

Ciroular 
H-polarised 

Elliptic 
E-polarised 

Elliptic 
H-polarised 

1 
kd 

( ?\ 
-H ~) (k ') o~s (m ') 

m P Sln <P 

e ~ 

The formulas for K+O(C) differ from those for K O(C) only in 
m m 

that J replaoes H(2) and R(1) replaces R(4). 
m ill ~m ~m 

The angles S1 and S2 are defined by 

A /\ 
A (1\ /\ 

oos S1 := -Q'~; sin S1 :::: -~' ~ X Q); 
/\ 1\ 

1\ ( ") cos S2 :::: Tl·x' sin S2 :::: ~. ~ X Tl - -' -
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Table 5. Quantities appropriate for the spherical null field method. 

General null field Spherical null field method 
method" 

u
1
,u

2
,u

3 
r,6,<p 

J. (u
1

,k) d J. (kr) , spherical Bessel function of order 1 
J d .. 

A (2) ( ) h. u" ,k 
J, Q. I 

h i2
) (kr), spherical Hankel function of order.J... 

Y. C u2' u
3

,k) piCcos 6) exp(ij<p), where pj C· ) is an 
f. 

J,t associated Legendre fUr'1.ction. 

ik 
(f-j) !/(~+j)! c. J.. -41[" (2£+1) 

J, 



Table 6. Wave functions appropriate for spheroidal null field methods and for fields and bodies that are 

rotationally symmetric (i.e. independent of ~). 

Null field 
method 

Prolate 
spheroidal 

Oblate 
spheroidal 

N(P) (u ,u ;k) 
-q 1 2 ~~p) CUi ,u

2
;k) 

k~ (t;;~-rh-~ [S1,q+1 (kd,7]) :t;;[(l;2_1)t R;~~+1 (kd,l;)]a 

- R1(P~ 1 (kd,l;)dd [(1_7]2)t S1 1 (kd,7])J€]' 
'>j.+ ,7] ,q+ -

R(P) (kd,l;) S1 1 (kd,7])~ 
1, q+1 ,q+ -

Same functional form as the prolate spheroidal 'wave functions, but with l; replaced 
by it; and d replaced by -id in the arguments of the spheroidal functions. 

3
1 

(.), spheroidal angle function of azimuthal index 1 and order q 
,q 

It (p) (. ), spheroidal radial function of the p th kind with azimuthal index 1 and of 
1, q 

order q. 

d = semi-focal distance of spheroidal coordinate system. Refer to Fla®ner (1957). 

co 
"-0 . 
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Table 7. Coefficients in plane wave expansions for cylindrical 

null field methods. 

e 0 
Null field method a a 

m m 

Circular Ltim+1 cos (mt};) 4· m+1 . ( I) l Sln mlj1 

Elliptic :8 .m+1 S (kd,cos tjJ) /8 .m+1 S (kd,cos tjJ) l l 
em om 



I 

Table 8, Values of M and CPU times r~equired for the convergent I ~ (0) I shown in Ii'igs 5 

through 8. Z = 0(1) in each case. 

Triangluar cross section Square cross section' 

bla = 1.0 t = 0 in Fig. 4b 

E-polarisation H-polarisation E-polarisation H-polarisation 

ka ka ka ka 

1.0 5·0 1 .0 5.0 0.1 1.0 500 0.1 1.0 5.0 

M 8 15 8 15 5 10 14- 5 10 14-

CPU time in 7 9 7 15 6 7 11 6 7 15 
seconds 

'-0 ..,. 
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Table 9. Circular null field method applied to elliptical body 

(Fig. 4); E-polarisation, M = 14, ka = 3.14 

b/a LO 008 0,,6 004 002 

O(z) 10
0 10-1 10-4 10 

-8 10-12 

O(E) 10-9 10-7 10-6 -'( 
10 ./ fail 



9.3. 

Table 10: 0 Elliptic null field method applied to rectangular 

c y 1 i nd e r (s e e Fig. 4b: b I a :::! 0" 1 p t ::: 0) for 

E-polarisation. 

did 0 0.25 0 0 5 0.75 1 .. 0 

ka ::: t .0, M := 1 0 

o (z) 1 ° 
-10 10-4 10-4 1 0 -2 10° 

L >8 8 4 2 1 

ka ::: ).1 11-, M ::: 14 

10-20 10-11 10-9 10-5 -1' 
O(z) to 

T >4 >4 >4 4 1 &J 
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Table 11. Prolate spheroidal null field method applied 

to monopole antenna wit~ hemispherical end. 

! v 
dId 0 0.2 0.4 0.8 1 .. 0 

o (z) 10-13 1 0 -11 to 
-10 

10 
-6 10-1 
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Fig. 1 Cross section of a three-dimensio~al scattering bo~ 

showing a Cartesian coordinate system and a general 
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Cartesian coordinate system the z-axis is perpendicular 

to, and directed out of the pagee 
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Fig. 2 Projection of a rotationally symmetric body onto 

x,z-plane. The surface S of the body is obtained 

by rotating the curve T about the z-axise The 

points 0 are where the ring source intersects the 

x, z-plane. 
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Fig. 3 Cross section of arbitrary cylindrical body and associated 

coordinate systems. The z-axis is perpendicular to, and 

directed out of the paper. 
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4 Cylindrical scattering bodies 

(a) Equilateral triangular body 

(b) Rectangular body with corners of variable curvature 

(c) Elliptical body 
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Fig. 5 Surface source density on a triangular cylinder when the 

incident plane wave is E-polarised. 

ka ::: 5.0 

ka ::: 1.0 

ka ::: 1.0 (measured by Iizuka and Yen, 1967) 
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Fig. 6 Surface source density on a triangular cylinder wnen the 

incident plane wave is H-polarised. 

ka := 5.0 

ka := 1 .0 

ka = 5.0 (calculated by Hunter, 1972) 
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Fig. 7 Sur~ace source density on a square cylinder (b/a = 1.0, t = 0 in 

Fig. 41) when the incident plane wave is E-polarised. 

ka = 5.0 
ka = 1.0 

ka = 0.1 

.& ka = 1.0 (measured by Iizuka and Yen, 1967) 
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Fig. 8 Surface source density on a square cylinder (b/a ::: 1.0, 

t ::: 0 in Fig. 4b) when the incident plane wave is H-polarised. 
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ka ::: 1.0 (measured by Iizuka and Yen, 1967) 
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Fig. 9 Surface source density on a rectangular cylinder (b/a : 0.1, 

t ::: 0 in Fig. ltb) when the incident plane wave is H-polarised. 

ka : 3.14, M : 14, CPU time = 22s 

ka = 1.0, M: 10, CPU time.: 208 

ka = O. 1 , M::: 4, CPU time = 1 58 
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Fig. 10 Surface source density on a rectangular cylinder (b/a == 0.1, 

t == a in Fig. 4b) when the incident plane wave is 

H-polarised. 

ka == 3.14, M = 10, CPU time == 62s 

ka = 1.0, M = 6, CPU time == 32s 

ka == 0.1, CPU time = 22s 
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Fig. 11 Cross section of the cylindrical monopole antenna. 

T = half-length of monopole cross seotion 

= H + ~t/2 - 2t + a 
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Fig. 12 Total current distribution on the cylindrical monopole antenna. 

H;A. = 0.25, a;A. = 0.007, bola = 1.125 

real part of I 

................ _ .. imaginary part of I 

(a) t = a in Fig. 11 , :tv! = 5, CPU time = 408 . 

(b) t :::: 0 in Fig. 11 , M :::: 5, CPU time :::: 408 
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Fig. 13 Input admittance of cylindrical monopole antenna. a~ = 0.1129, 

bola = 1.22 

" AI. 

real part of Y 

imaginar,y part of Y 

Ineasured admittance (Holly 1971) 

(a) t = a in Fig. 11 

(b) t = 0 in Fig. 11 
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PART 2. II: MULTIPLE SCATTERING BODIES 

The general null field method is extended to multiple 

scattering bodies. This permits use of multipole expansions 

in a computationally convenient marmer, for arbitrary numbers 

of separated, -interacting bodies of arbitrary shape. Examples 

are presented of computed surface source densities induced on 

pairs of elliptical and square cylinders. 

1. INTRODUCTION 

Rayleigh (1892) is perhaps the first to have studied 

soattering from multiple bodies. He considered rectangular 

arrays of oircular cylinders and spheres~ Comprehensive 

surveys of the work which has followed are given by Twersky 

(1960), Burke and Twersky (1964) and Hessel and Oliner (1965)0 

As is remarked in (I), exact methods for solving 

diffraotion problems for large (oompared with the wavelength) 

bodies are impracticable - i.e. they would involve enormously 

expensive digital computations. Similarly, exact methods for 

solving multiple scattering problems are impracticable when 

the separations of the bodies are large, in which cases it has 

been shown that approximate methods can often provide solutions 

of useful accuracy (Karp and Zitron 1961a,b; Twersky 1962a,b),' 

Vfuen the bodies and separations are both small, low frequency 

approximations apply (Twersky 1962a,b, 1967). Exact solutions 
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are most needed when the linear dimensions of the bodies and 

their spacings are of the order of the wavelength - this is 

fortunate because it means that useful digital computations 

can often be done efficiently. 

In a scattering problem it is usually convenient to 

take the origin of coordinates inside the body. This implies 

that it is likely to be convenient to shift the origin during 

the solution of a multiple scattering problem. Such shifts 

can be accomplished with the aid of addition theorems, which 

exist for all wave functions which are solutions of the Helm-

holtz equation in separable coordinate systems (Morse and 

Feshbach 1953 chapters 10 to 13). The addition theorems have 

been applied to multiple bodies, on the surface of each of 

which one coordinate of a separable coordinate system (having 

its origin inside the body) has a constant value - i.e. each 

body is a spheroid, sphere, elliptic cylinder or circular 

cylinder. Direct solutions (c.f. Row 1955, Liang and La 1967) 

of the equations so obtained have tended to require excessive 

computer time, so that iterative methods have been developed 

(Cheng 1969, Olaofe 1970), but these are often found to 

converge slowly (Cheng 1969). Howarth and Pavlasek (1973), 

Howarth (1973) and Howarth, Pavlasek and Silvester (1974) 
,/ " 

have recently developed nQ~erically efficient techniques 

which they have applied to arrays of circular cylinders. 

Addition theorems are employed here, and the methods of 
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solution are direct. The improvement is that we can deal 

'with multiple scattering bodies of arbitrary shape in a 

numerically efficient manner. 

The essential steps in the method are outlined in § 2 

and § 3; the formalism of (I) is extended so that it is 

explicitly applicable to multiple scattering bodies. In § 4-

the formalism of § 3a is specialised to pairs of bodies and 

to cylindrical polar coordinates - i~eo§ 4 states the circular 

null field for tVI0 bodies. Brief discussions of what is 

necessary to ensure computational efficiency are included in 

§ 4. In § 5 results are presented of digital computation of 

the source densities induced in the surfaces of pairs of 

elliptic and square cylinders. 

2. NULL FIELD .4PPB.OACH TO MULTIPLE SCATTEB.rL~G 

Fig. 1 sho7l'S a pair of t.otally-reflecting bodies 

embedded in the space y, within which P denotes an arb i trary 

point. In keeping vlith the notation introduced in § 2 of 

Part r, (r), y is partitioned according to 

where 8
1 

is the surface of the first body and y-1 and y +1 

are, respectively, the parts of space inside and outside 8
1

0 

The point 01 E y-1 is taken as origin for an orthogonal 

curvilinear coordinate system (u
11

, u
21

, U
31

)e The surfaces 



1:_1 and 1:+1' on each of which the radial-type coordinate u
11 

is constant, respectively inscribe and circUillBcribe S1' in 

the sense that they are tangent to it but do not cut it. 

Y and Y 1 are defined as 
null 1 ++ 

Y ~ region inside 1:_
1

; 
null 1 -

Y++1 ~ region outside 1:+1 

111 • 

The notation for the second body is similaro Y is defined as 
++ 

Y++ ,... Y++1 n Y++2 

A monochromatic field ~O' originating from sources 

existing entirely within y ,impinges upon the bodies inducing 
++ 

equivalent sources in their surfaces. Referring to (2.5) of 

Part 1, (r), and employing an obNious extension of notation, 

it follows that the scattered field ~ can be written as 

( 2.6) 

where cl
1 

is the density of equivalent surface sources induced 

in S1 • ~ 2 is written similarly. It is convenient to intro­

duce the terminology: "the exterior and interior multipole 

expansions of ':1-
1

11 by which is meant the expansions, valid for 

P E Y++1 and P E Ynull 1 respectively, of the right hand side 

(RRS) of (2.6), got by expanding g as in (2.14) of Part 1, (r). 

The first essential step in the approach is, by analogy 

wi th § 2 of (r), to replace the material bodies by "disembodied" 
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distributions of surface sources, identical in position and 

in complex amplitude with ~1 and ~2. Then ~ can be v~itten 

as 

PEy 

with 1j-1 given by (2.6), and 'Y 2 expressed similarly. 

Application of the optical extinction theorem to the two 

bodies separately yields: 

P E Y • 
-1 ' 

P,E Y 2 I _ 

which lead'tosimultaneous sets of extended integral equations, 

by analogy with (2.2) of (IL for eJ
1 

and J->2" 

empty. 

Since the bodies are separated, y -1 n y -2 is necessarily 

However, in certain cases E intersects E and/or 
-1 +2 

1\ 

E_2 intersects E+1· E_1 is defined to be the largest closed 

surface, on which u
11 

is constant, contained within Ynull 1 
1\ 

and not intersecting E • Y is defined to be the region 
+2 null 1 

1\ A 

of space inside E_
1

• It follows that y ~ y when null 1 null 1 
/\ 

E+2 does not intersect E_1• Ynull 2 is defined similarly. 

Null field equations, analogous to (3.2), (3.5) and 

(3.14), all of (I), are obtained in the following way. By 

analogy with §3 of (1), (2.8) is satisfied explicitly for 
/\ 

P E Ynull 1; the analytic continuation arguments quoted in 

(1) then ensure that (2.8) is satisfied throughout Y 
-1' 

"-
provided that Ynull 1 is not infinitessimal. In the latter 

case the null field method can still be applied if the exterior 
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multipole expansion of j. 2 converges within a finite part of 

y null 1 containi.l1g °
1

• This is the same as requiring that 

the singularities of the exterior multipole expansion of ~2 

lie within a surface, on which u
12 

is constant and is less 

than the value u12 has at 01 (refer to Bates· 1975b discussion 

of the Rayleigh hypothesis and related matterJ). g is expanded 

in multipoles and then the procedure follows exactly as in 

§ 3 of (I) to develop the iriterior multipole e:A'"Pansion of (t1. 

~2 is re-expressed as a function of the coordinates (u
11

, 

u21 , u
31

) , instead of the coordinates (u
12

, u22, u
32

), using 

the appropriate addition theorem (Zavisha 1913, Saermark 1959, 

Sack 1964, Cruzan 1962, King and Van Btrren 1973). It is 

then found that :y 2 can be expanded, within y null l' in the 

same sort of interior multipole expansion as 'it 1" After 

handling (2.9) similarly, there are sufficient null field 

equations to give 6' and ~ uniquely - the formalism is 
1 2 

developed in detail in B 3. 

'When there are N bodies (N :> 2) the subscripts p and 

t are attached to the same symbols as have been employed above, 

to identify quantities associated with individual bodies. 

The sources of d-O are again constrained to lie within y , 
++ 

which are now defined by 

N 
'I == n y 
y ++ t==1 "++t 

The extinction theorem is satisfied separately within each 

body. 
th 

For the p body the theorem is satisfied explicitly 

A A 
within y un c y ull ,where y ull is the part of space n p n p n p 

T See also g 2a of Part 1. (II). 
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inside the closed surface E ,which is yet to be defined. 
-p 
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" Recalling (2.16) of Part 1, (I), Z+t' t E t1 ~ Nl is defined 

to be the smallest closed surface on which u
1t 

is constant 

and which encloses all the singularities of the exterior multi-

pole expansion of ~t' 
1\ 

If any of the ~ t' t J p, enclose ° , 
+ p 

for any pEt i- ~ Nl, then the method introduced in this section 

1\ ~ 
fails. When none of the ~+t enclose 0 , ~ 

p +p 
is defined to be 

that member of t E t -1 ~ p-11 U, [p+1 ~ Nl ] which approaches 

closest to ° . p 
does not intersect ~ 

-p 
then it follows 

1\ 

that 4 
-p 

P>D ~ 
-p 

does intersect ~ 
-p 

1\ 

then ~ 
-p 

is defined 

to be that surface on which u
1p 

is constant and which is 

~ 
tangent to ~ but does not cut it. 

+p 

It is Vlorth realising that in the great majority of 

situations of interest none of the ~+t will intersect each 
/\ 

other, let alone enclose any of the Ope Since ~+t cannot 

enclose ~+t' because the latter must enclose all the 

singularities of the exterior expansion of ~t (cofo Bates 
1\ 

1975b). it follows that usually ~ "" ~ for all p E f 1 ~ NI • , -p -p 

However, the previous paragraph is included for completeness. 

1\ 

~ is expanded within y 11 in its interior multi-
p nu p 

pole expansion. All other 'j- t are then expanded wi thin 

Y un in a similar multipole expansion by applying the 
n p 

appropriate addition theorems to their exterior multipole 

expansions. Repeating this procedure for all p E t1 ~ Nl, 

sufficient null field equations are obtained to give all 

members of [ ~ t; t E [1 ~ Nl ] uniquely. 
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3.. NULL FIELD F'ORMAL1SM FOR MULl'IPLE BODIES 

Fig .. 2 shows the pth of a number of separated, inter-

acting scattering bodies. The notation used accords with 

that introduced in § 2 and § 2 of Part 1, (1). 

Scalar and vector fields are considered separately, 

in conformity with (1). In the scalar and vector cases, 

respectively, 'j- is replaced by the velocity potential '1'. 

and the electric field E. As (2.12) of Part 1, (1) indicates, 

the vector case could also be formulated in terms of the 

magnetic field li. Reference to § 3c of (1) confirms that the 

resulting vector nQll field equations are the same. 

(a) Scalar Field 

The analysis is based on the equations presented in 

§5b of (1)0 

The j,lth term of the interior multipole expansion of 

Il' .is 
p 

where 

b~d,P = 11 
s 

p 

~ (T 1 ,Y2p) K~ (T
1 

'T2p) ds 
p p J,l P 

The j,lth term of the exterior multipole expansion of Il't is 



where t f. p and 

::: if ~ t(T1t,T 2t) K;,.Q- (Tit" 2t) ds 

St 

Use of the appropriate addition theorem (see references 

quoted L."l § 2) allows (3.3) to be revlritten as 

/Xl ,t' 

c. b ~ "" ~ At ..1" ~I d ./ ,( u1 ,k) J,f. J,l"t L "-' ,P,J,J,L, ... J,.Q. P 
t' =0 j ~-.t' 

1\ 
within y , where 

null p 
00 .tIl 

L \' 1\(2) 
At .. 1 1 = / a: •• 1 .11 0 n' /f h~/1 1,(u1t ,k) ,p, J, J, J.. ,1- /--J J, J, J, 1., J-, J, J.d. P 

('-::.0 j':::.-t 
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where the a. .1.11 '1" depend upon the particular addition 
J,J,J,i,l, 

theorem being invoked and (u1~ ,u
2t 

,u3~ ) are the coordinates 
up p up 

of 0 in the tth coordinate system. 
p 

It should be remarked that the superscripts + and - are 

appended to the symbol b to distinguish between the exterior 

and interior multipole expansion coefficients respectively. 

(The + superscript has already been introduced in§ 5 of (I) ). 

An arbitrary point 0 within y is chosen as origin for 

a further system of coordinates identified by t = o. (2.15) 

of Part 1, (I), is then used to represent the incident field 

'¥ with respect to this new coordinate system, but with 
o 

u
1

, u
2

, and u
3 

replaced by u
10

, u
20

, and u
30 

respectively. 

The aforementioned addition theorems allow ~ to be represented 
o 

A 
similarly vnthin y null p' but in terms of wave functions 
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depending upon u ,u and u • A further subscript is 
1p 2p 3p 

added to the a. to identify the latter representation. It 
J,£ 

is then found that 

= 1 

1\ 

Note that [yo (u2p,u
3

,k); i.E: fo~o:>L jE {-i->ilJ is a 
J,l p 

set of functions orthogon"l,l on any closed surface which is 

1\ 

contained ni thin Y null p and on which u
1 , p 

extinction theorem, applied to the fields 

then ensures that 

C. D 
J,.t 

is constant. The 

1\ 

within Y null p' 

(308) 

where the superscript (p) on the summation sign indicates that 

the term. for t = p is missing. There is a set of equations 

(3.8) for all p E [1 ~ NJ • 

(b) Spherical Null Field Method for Vector Field 

As is remarked in § 5a of (I), the cylindrical null 

field methods are identical for scalar and vector fieldso 

Spherical polars are the only rotational coordinates in which 

the vector Helmholtz equation is separable in general. It 

seems that the kinds of symmetry made use of in § 5 and § 6 

of (I) are unlikely to be of interest for separate(l bodies 

whose scattered fields interact significantly. It therefore 

appears to be pointless to develop vector null field methods 
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other than spherical, when considering bodies of arbitrary 

shape. 

The analysis presented here is based on the equations 

developed in § 3c of (r) 0 The coordinates and scalar wave 

functions (appertaining to the spherical null field method) 

used are listed in Table 5 of (r). The forms of the vector 

wave functions appropriate for spherical polar coordinates 

are listed in Table 1. 

th 
The q term of the interior multipole expansion of 

E is 
-p 

c [bM- M(1)(r ,8 ,cp ;k) + bN- N(1)(r 8 ,cp ;k)] 
q q,p -q p p p q,p -q p' p p 

where 

(4) (/ I I ) J • Q r,8 ,<p jk ds 
-s,p -q P P P 

s 
p 

where Q stands for either M or N. 

multipole expansion of ~t is 

where t /. p and 

(1)( I I I \ 
J t· Q r k ,8 t ,cpt;k) as -s, -q v 

th 
The q term of the exterior 

Use of the vector addition theorem (cofo Stein 1961, Cruzan 

1962) allows (3011) to be rewritten as 
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co 

I [ M+ [ . ( 1) • ) ( 1 ) • ) c b t At I M I (1' ,8 ,<p ,k + B
t 

,N I (1' ,8 ,<p ,k ] q q, -,p,q,q -q p p p .,p,q,q :-q p p p 
q=O 

N+ 
+ b t q, 

[ (1)( . ) A ,g I l' ,8 ,<p ,k 
t,p,q,q q p p p 

(1) . )J] +B
t 

,M 1(1' ,8 ,<p ,k 
,p,q,q -q p p p 

(3.13) 

" within y 11 ,where nu ~ p 

00 f.-

A ,-)' '\' 
t,p,q,q - t-J L at I. h\2)(krtP)P~(cos 8tp)exp(i j tptp) ,p,q,q,J,1. .J- 1-

J.. ~ j=-£, 

where the at I., 'which depend upon Wigner 3-j 
,p, q, q, J,j 

coefficients, are tabulated by Cruzan (1962 § 4) and SteL.'1 

(1961 Appendix 1). The B
t 

I have similar forms which are 
,p,q,q 

also given by Cruzan. The coordinates r. ,8
t 

and <Pt define 
,'tp p P . 

the position of 0 in the tth coordinate system. 
p 

Use is now made of the coordinate system identified by 

t = 0, introduced in § 3a above. The representation (3.12) 

of (r) is used for the incident field aDd a further subscript 

P is added to a
1 

and a
2 

to denote the expansion coefficients 
,q ,q 

when the aforementioned addition theorem is used to generate 

the equivalent expansion referred to ° as origin: 
p 

::: 
1 

c 
q 

00 

c ,[a A / + a B I] 
q 1 q/ 0, p, q, q 2, 0, p, q, q 

2' l' q 

A 
The extinction theorem, applied to the fields vTithin Y null p' 

then ensures that 

M­
b 

q,p 

::: a , 
1, q,p 

q E lo -!pco] 

N· .. ] + BIb ~ 
t,p, q, q q, t 



N-
b + q,p 

1 
c 

q 

N co 

L (p)\ [A bN+ 
C I I I 

-J L q t,p,q,q q,t 
t=1 q:::O 

:::;·a , 
2,q,p 

which are the equivalent of (3.8). There are pairs of sets 

of equations, (3.16) and (3.17), for all p E t1 ~ Nl e 

4. CIRCULAR NULL FIELD METHOD' FOR TiNO BODIES 

The formulas needed for the computational examples 
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discussed in § 5 are presented here. Recall from § 5a of (I), 

that scalar and vector fields are equivalent for cylindrical 

scattering bodies, with sound-soft bodies corresponding to 

E-polarisation and sound-hard bodies corresponding to H-polar-

isation. 

Fig. 3 shows two separated cylindrical bodies. Neither 

the bodies nor the fields associated with them exhibit any 

variation in the direction perpendicular to the plane 0, in 

which the cross sections C
1 

and C
2 

are embeddedo The coordinates 

Pi' ~1 and P2, ~2 referred to the origins 0
1 

and O
2

, respectively, 

are cylindrical polars, implying that the analysis is restricted 

to the circular null field method. Refer to § 5a aBdTables 

3 and 4 all of (I). Consequently, it can be expected that 

useful computational results can be obtained provided that 

the aspect ratios of the individual bodies are not too large. 

If Z (0) denotes any Bessel function of order m, the addition 
m 
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theorem (c.f. Watson 1966 chapter 11) gives 

sin( )] J (k ) 
cos\~p n Pp , 

m E ~ ° -7 co } (4-.1 ) 

provided that Pp < P
12

' where t,p E [1 -7 23 and p ~ t and 

€. 

2m [Z (kp -l- ) cos f(m-n)cpt J + (--1) n Z (kPt ) cos f (m+n)cptplJ m-n up p m+n . p 

€. m 
2 

(4-,,2) 

[+ Z (kPt ) sinf(m-n)cpt: J + (_1)n Z (kPt ) sinHm+n)cptplJ - m-n p ... p m+n . p 

(4-.3) 

where the Neumann factor €. is 1 for n = 0 and 2 for n > O. 
n 

The formulas presented here are suitable for digital 

computation - refer to the second paragraph of § 5 of (I). 

Instead of referring the multipole expansion of the incident 

field to an arbitrary point 0 E n as origin, in oonformity 

with the general treatment presented in § 3 above", \lI is 
o 

referred to 

\lI = (-i/4-) 
o 

e 

01 as origin: 

M1 

"\' €. [ae 
L", m m,1 
m=O 

cos(~1) + a:,1 sin(~1)J Jm(kP 1) 

(4-,,4-) 

where the a O are given. The addition theorem (4-.1) then 
m,i 

shows that the expansion coefficients of the representation 
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for q, referred to 02 as origin are 
0 

e M1 e e 0 e 
0 I [a 0 AO e BO L mE to ~ 1.12J a m,2 = + a 1 n,1 1,2,n,m n, . 1,2,n,m 

n=O (If- 0 5) 

where Z is replaoed by J in RES (4.2) and RES (403), whioh 

means that the constraint P2 < P12 no longer applies (o.f@ 

Watson 1966 § 1103). In general, M1 and M2 need to be 

different if the surface source densities on both bodies 

are to be computed to the same accuracyo 

In conformity with the notation introduced in § 3 

the exp8J1Sion coefficients of the interior and exterior 

multipole expansions of ~t' t E f1 ~ 21, are i~~itten as 
_ e +e 

b °t and b °t respectively, where § 5a and Tables 3 and 4 all 
m, m, 

of (I) indicate that 

dC, 

It is then fOlmd that on applying the extinction theorem 

wi thin Y ull ,p E f 1 ~ 2J, n p , 
that the null field equations 

equivalent to (308) are 

_e Mtp 
b 0 "\' 

m,p + L, 
e e e +0 

[A 0 b +0 + BO be] 
t,p,n,m n.t t,p,n,m n,t 

n=0 

e 
=_ao , p,t E i1 ~ 21; 

m,p 
pJt 

where Z is replaced by H(2) in (4.2) The values 

of M12 and M21 depend upon M
1

, M2 and the accuracy to whioh 

~1(C) and ~2(C) are required - this is commented upon 

further, later in this subseotion and § 5. ~t(C) is written as 
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~t(C) 

b\ 
== 0- (C) )' at f t ( C) , 

t ~-..J ,q ,q 
t E r 1 -> 2} 

q=O 

where the. 0-, (C) are equivalent to the weighting function o-(C) 
"{; 

introduced in Table 2 of (I). The forms of the f (C) are 
t,q 

chosen according to the same criteria as are discussed in 

§4 of (I) for the f (C). Substituting (4.8) into (4@6) 
q 

permits (4.7) to be written as 

where 

Mt '\' [e .:h -e6 
> a '±' + 

L.; t, q t"m" q 
q==O 

° -06 
at iI>t ] ,q ,m, q 

e 

° ;: -a .... , 
m,'" 

p, t E [1 -> 21: p f. t 

there are four different G . • p,m,q 

e e Mpt e e e e e ° GO 0 L [A 0 
.1-

-+0 0 BO -+0 e ] 
== q.J + q.J , 

p,m,q p, "',n,m p,n,q p,t,n,m p,n,q 
n=:O 

p,t E [1 -i> 21; p J. t; mE 10 -i> M l; 
p 

q E 10 -> ~,\J 

(4010) 

where Z is replaced by H(2) in (402) and (4.3). There are 

eight different iI>t : ,m,q 

P .1 t· r- , 

e +e 
f

t
O (C) K-O(C) dC, 
,q m 

mE{O->M.J; pt 

e e 
Inspection of (4010) shows that the GO 0 are got by 

p,m"q 

truncating sUJJ1Jnations to M .... terms. But it is clear from 
p", 

(LI-@9) that the accuracy with which each ~ (e) is computed 
p 

depends upon the relative values of Mp and Mpt. This is a 
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manifestation of what is known as the "relative convergence 

problem" (Mittra, Itoh and Li 1972). It is discussed further 

in § 5, in so far as it bears on the particular computational 

examples presented there - it seems that, at present, each new 

relative convergence problem has to be treated as a special case. 

It is convenient to denote bYJl the matrix with 
~ 0.'·····13 

elements ~ where a through ~ are integer indices. It 
a, ... · [3 

then follows that (402) and (4.3) can be re-expressed as 

e + 
AO 

::: 
~t,p,m,n 

cos (m <fl
t 

) H cos (n<P.
t 

) + ......- p -m,n ~ p sin(m<P.
t 

) H+ 
- p -m,n 

sin(n<flt ) 
- p 

(4.12) 
e + 

BO 
::: 

-t,p,m,n + sin(m<flt· ) H cos(n<flt ) + cos(m<flt ) H+ 
~ p -m,n ~ p ~ p ~m,n 

sin(n<flt ) 
~ p 

(4.13) 

where the ~(.) and ~(.) matrices are defined to be diagonal, 
+ 

and the elements of the matrices H- are Howarth and Pavlasek's 
-m,n 

(1973) "separation functions!!; 

Reference to (L .... 11) above and to § 5a of (I) shows that 
+e e 

~ 0 0 is simply related to the matrix which has to be inverted 
~t,m,q , 

th 
to compute the scattering from the t body when it is isolated -

i.e. when the other body is removed. It is found to be convenient 
+e e 

to first evaluate the <P
t

O 
0 , for t equal to 1 and 2, and then to 

e e "" ,m,q 

evaluate the GO 0 ,for p equal to 1 and 2. 
"""p,m,q 

given by 

as (1+-.10) shows. 

The latter are 



A significant computational advantage of the method of 
+e e 
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ordering the matrix manipulations is that the -0 0 
ip need only 
~t,m,q 

be pre-multiplied by rotation matrices if the tth body is 

rotated about 0t" 

5. APPLICATIONS 

Several examples are presented of surface source densities 

induced in pairs of cylindrical bodies, computed from the 

formulas developed in § 4. The numerical techniques and the 

methods of assessing convergence are identical to those out-

lined in 9 6 of (I). In conformity with the results presented 

in (I) the surface source densities on the graphs are identified 

by the notation introduced in Table 2 of (I), and the boundary 

conditions on the bodies are indicated by the polarisation of 

the equivalent electromagnetic field. \If is taken to be a plane 
o 

wave incident at an angle corresponding to <Pi :::: if; and C\ denotes 

the value of C
t 

at the point where <Pt :::: if;. There is only one 

such point on each of the bodies examined here - refer to Figo 4- -

and also recall the definition of C in § 6a of (1). 

The purpose here is to demonstrate the computational 

convenience of the method, described in § 4, and the examples 

are simplified as much as is consistent with this. Both bodies 

are therefore made about the same size, so that we can take 

where the integers M and N are introduced for convenience. 



126. 

Fig. 4 shows the three pairs of bodies investigated here. 

Their symmet~ ensures that 

+eo +oe 
CP- ::::ill- ::::0; 
~t,m,q ~t,m.?q 

which have the effect of significantly reducing the required 

computational effort. The coefficients of the multipole expan-

sions of ~ are then 
o 

e 
o m+1 ( () co. s (m I) ~ am,2 :::: 4i exp~ikp12 cos <?12- if; Sl.n If' 5 

e 
o Note that in this simple case the forms of the a can be 
m,2 

deduced without the aid of (4.5). 

Shafai's (1970) use of conformal transformation is 

employed, which means that the transformation (4;013) of (I) 

is applied to the integrals in equation (4.11). The f. (C) 
-c,q 

introduced in (4.8) are to be identified with the f (C) of 
q 

(5.10) of (I). 

The energy test introduced in § 6 of (I) is used as a 

check on computations. We say (arbitrarily) that a computation 

has failed if E > 10-3, where E is defined by (6.5) of (I). 
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e e 
The values of IG~.~ q" evaluated when N has a particular 

" e e 
o 0 

value, are denoted by IGt IN· The value of at ,evaluated ,m,q ,q 

when M has a particular value, is denoted by at,q)M" The 

elegant approach of Mittra et al (1972) to relative convergence 

is impracticable here, but the following "relative convergence ti 

lat,q)M1 is required to differ by 

from both lat ,q):M_1 1 and \a t ,q)M-21 

while demanding that N is large enough to ensure that each 

test is found effective. The 

less than some desired amount 

e e 
IG~ ~ IN differs by less than one part in 10

K from both 
"q e e e e 

o 0 0 0 IG
t 

IN-
1 

and IGt I
N

- 2 . Tables 2 through ~ confirm ,m,q ,m,q 

that numerical convergence is manifested by this procedure when 

K = 3. We can increase our confidence in the results by applying 

the energy test. Table 5 indicates the variation of E with M 

for the pair of cylinders to which Table 2 refers. The energy 

test is successful for M as small as 5, which might be thought 

remarkable when recalling the slow convergence of some previously 

reported methods (quoted in § 1). 

Figs 5 through 9 display the magnitudes of the surface 

source densities, plotted versus (C
t 

- c
t
), for the three 

types of pairs of cylinders shown in Fig. ~, when Il' is incident 
a 

at an angle ~ = w/2. This means that the symmetry existing in 

the examples involving identical cylinders (c0f® Fig. ~ and 4b) 

permits the complete behaviour of ~1 and ~2 to be displayed 

by plotting ~t on either cylinder, as is done in Figs 5 through 

7. Multiple resonances of the kind discussed by Howarth (1973) 

are clearly indicated. These resonances are due to the field 

reflected from One body onto the other being in places more 

intense than the incident field. 



Reference to Fig® 4a,b shows that the value of P
t 

on 

r .L. (refer to § 2 and Fige 3) for the square cylinders is 
+t. 

greater than the value for the elliptic cylinders. This 
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shows up in the increased values of N for the square cylinder 

compared with the elliptic cylinder (see captions to Fig~ 6 and 

7), required to satisfy the relative convergence test. Reference 

to Fig. 4b also shows that when the square cylinders are so 

close that D < 2.41a then r+1 and f+2 intersect C2 and C1 

respectively (refer to Fig. 3), which means that the sizes of 

0null 1 and 0null 2 are reduced. Examination of Tables. 3 and 4 

shows that the at are increasingly sensitive in their higher 
,q 

significant figures to N as D decreases. As 0null 1 and 0null 2 

are progressively reduced K must be increased to maintain the 

same accuracy of the at • . ,q 

+e e 
The CPU time needed to compute the matrices ip 0 0 

~t,m:,q 

- for the elliptical and s quare cylinders to 'which Figs 5· 

through 9 apply - waS 6s and 13s respectively (vrith M::::13 and 

N=35). The additional CPU time required to compute the surface 

source densities shown in Figs 5 through 9 was close to 1lJ-S 

in each case. Only about 0.2s was needed to compute the matrices 
e 

A 0 
• The simplifications inherent in (5.2) through (5.5) 

~t,p,m,n 

should not be forgotten. 



'Table 1 0 Spherical vector wave functions 0 rChe correspondence between the integer q and the integers j and..£ 

is described in § 4c of (1). 

M(1)C·) 
-q 

• A 

.:h.L.. . (kr) pJecos e) expeij~I))Q 'ji t 

. ( ) apiccos e) exp(ij<p)~ 
-'j kr ae 

1 

M(4) (~) 
-q 

Same form as 

M C 1 ) ( .) but with 
q 

-::i (J) replaced 
i. 

by h (2) C. ) 
i 

NCi ) (~) 
--q 

i(1+1) . (kr)pj(cos e) exp(ij<p)r 
kr <lL 1. . 

_1 ~ [r;j (kr)J[api(cos e)exp(ij<p)Q 
+ kr ar i. as 

~ P~(cos e) exp(i j <p)2]· + s~n e L 

N(4) (~) 
-q 

Same form as 

N(1)(o) but with 
q 

d ( ,) replaced 
I 

(2) 
by h f.. (.). 

-'-
rv 
\.D 
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Table 2@ Numerical convergence of the first six 
e 

a; iI and 
R , q 

a;C for the pair of cylinders shown in Fig@4a. 
2,q 

with b/e. ;:::; .. 76, ka ::: 1,,54, kO c "",,Ot H~polarisationt 

cp ::: 0 (hence In each 

entry in the table, the real part of 

the imaginary part of IX ~ " 
>qq 

i~ 4 6 8 10 

0 - .097966 -.097733 -.097749 -.097749 

-.037092 -.037752 -,,037772 - .. 037772 

=.132527 -0130935 - .. 130979 - .. 1.30981 
1 

-.175235 -.175666 -.175697 -0175698 
-

,,112851 0106871 " 10681 9 .. 106810 
a;c 2 

- .. 056340 -.056320 -,,056/1-76 -.056485 1 , q 

-.00668/t - .. 006905 - .. 006946 - ,,0069!1-9 
3 .. 030580 .028691 .028624 .. 028618 

- .. 011436 - .. 011489 - .. 011513 
4 -,,003294 -.00:)658 -.003689 

-.000700 -0000805 -.000817 
5 -.002774 -0002905 -.002921 

-.044558 - .044673 - .. 044697 -.044699 
0 

.103017 .. 103800 .103780 .103779 . 

- .. 092042 -.090970 -.090919 -.090914 
1 

" 1 95611 .19560.3 .. 195641 .195643 

e - .. 158362 .152364 .. 1 52.382 -.152383 
cr. 2 2,q -.167660 -.165631 - 0165746 - .1657 

.02L~354 .023350 .023336 .023336 
3 

-,,020391 -.019466 -.019436 - .019/1-32 

0010720 .010766 .010777 
l~ .006534 .006.334 .006.326 

-~001900 -",001946 -.001951 
5 0001172 .001194 .001199 
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e 0 
Num~rical convergence of the first seven 0:

1 
D 0: 

9 q 1 9 q 

for the pair of cylinders shown in r:-0 
A'l g • 4b p wi th 

e e 
( 0 0) he nc e 0: 1 ::: a 2 I' M /::: 13. 

U I> q P q 
In each entry in the 

table, the rea 1 par t o.r a.. i s abo vet h e i rna g.i n a r-y 
I jOy 

part of 0:
1 

• The relative convergence test is ,q 
satisfied when N = 30. 

e 0 
0: 

1 ~ q 
a 

1 p q 

1 2 1 .5 35 • 11\ 
I 4 1 5 35 

-,,250245 -.249979 -~249982 

.028165 .028227 .028229 

8506148 .. 506562 .506557 -.920619 -.920548 -.92049 

-.140652 -.1!~0831 - .111- 082 8 .358002 .358060 .358061 

1.25160 1 .. 2 51 97 1.25197 - .01 -I 035 -.010970 -.010970 

-.070592 -.070763 -.070758 .324950 .32l}982 .3 2/t-984 

.3881 L~8 .388433 .38843/} .401695 .. 401757 .401752 

.005621 .. 005526 ,,005531 .682449 ,,682520 .682521 

,,309475 .309167 0309168 - .. 22848!1- -.228379 - .. 228382 

-,,213278 -0 2 13499 -,,213'1-97 03.0811-93 .308160 .308159 

.143397 .1/1-3382 @143385 - .. 035410 -.035569 -.035570 

@114938 .1'1482,4- 0114-825 .221693 .,221711 ,,221713 
p 

0142208 0142189 .1/,,2190 ~.103601 -,,103596 -,,103594 

.089844 -,,089845 -.089843 ,,001584 .001563 ,,001 553 

I 

, 



Table 4-. 

I~ q 

0 

1 

2 

3 

4-

I 5 

6 
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. e 0 
Numerical convergence of the flrst seven "1 ,ex 

,q 1,q 

for the pair of cylinders shown in Fig" 4b, with 

ka = 3.14-, kD = 7.61, E-polarisation, ¢ = rr/2 
.~. e 

(hence "1 . = "0 ), 1.1 = 1 3. In each entry in the ,q 2,q 

table, the real part or " is above the imagL~~ 
1, q 

part of "1 • The relative convergence test is ,q 

satisfied when N = 4-2. 

e 0 
ex 1,q " 1, q 

20 35 4-2 20 35 

-.5634-18 - .561913 -,,561905 

.064-934- .068325 ,,0684-94-

-.085861 -Q08784l+ - .. 087960 -1.00278 -1,,00179 

-.066684- -.064-534- - .. 064478 ,,109593 .105853 

.74-3689 .739456 .7394-50 - .. 113282 -· .. 111922 
-000380l/- -000392 - .. 003981 -0112723 -,,115332 

-.008291 -.014434- -.014-574- ,,394478 .391873 
.067807 .066239 .066106 .153272 .152979 

.016.,4-0 .009097 .00874-1 -0067097 -0080593 
-.160202 -.160763 -0160885 - .. 126332 -.122468 

-.073251 - .. 056012 -0065372 .134-04-1 .. 137h40 
.14-5867 " 14-5084- 014-514-1 ,,041+4-96 .04-5850 

.009671 ,,019729 .019898 -0067366 - .. 057729 
-.0764-90 -.078301 -007821+9 -,,026791 -,,028713 

4-2 

-1 ,,00178 

,,105858 

-" 111914-

-.115322 

.. 391866 

.152971 

- .. 080764-

-.,122532 

" 1371..32 

.. 04-5853 

-0057725 

- .. 028694-



Table 5. Energy test for the pair of cylinders 

to which Table 2 refers. 

I 
I 111 E 

3 -.5'1 x -10-2 

1.1- .19 x 10-2 

5 -.56 x 10 -3 

6 "-028 x 10-4 

_h 
8 013 x 10 ..I 

10 .27 x10 
-6 
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Fig. 5 Surface source density on cylinder 1 when B.n E-polarised 

wave is incident upon two identical elliptic cylinders 

(ka = 3.14, bla = .8 in Fig. 4a) 

kD = 6.28 (contact), M = 13, N = 25 

kD = 12.57, M = 13, N = 20 

kD = 15.72, M = 13, N - -15 
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Fig. 6 Surface source density on cylinder 1 when an H-polarised 

plane wave is incident upon two identical elliptic cylinders 

(ka = 3.14, b/a = .8 in Fig. 4a). 
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Fig. 9 Surface source density on cylinder 2 when an E-polarised 

plane wave is incident upon a square and an elliptic cylinder 

(cylinder 2) (ka::: 3,'14, b/a = .8 in Fig. 4c). 
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kD ::: 11 .5, M ::: 13, N ::: 30 

~----- kD ::: 15.72, M ::: 13, N = 25 
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PlI.J.TC.T 2. III: NEff P.PPROXll.'IAl'IONS OF THE KIRCHOFF rI'J:PE 

From the generalised null field method presented in (I) 

a generalisation of the Kirchoff, or physical optics, approach 

to a.iffractioD. theory is developed. Corresponding to each of 

the particular null field methods developed in (r) there is a 

corresponding physical optics approximation, which becomes 

exact when one of the coordinates being used is constant over 

the surface of the scattering body. It is shovTn how to improve 

these approximations by a computational procedure which is 

more efficient than those introduced in (I). The reradiations 

from the physical optics surface sources more nearly satisfy 

the extinction theorem the deeper they penetrate the interiors 

of the scattering bodies. The computational examples TIhich 

are presented show that the scattered fields are in several 

particulars superior to those obtained from the conventional 

KiJ:,choff approach. It is important to choose that physical 

optics approximation most appropriate for the scattering body 

. -,-. ln quesvlon. 

Boukamp (1954) recalls that when Kirchoff ViaS attempting 

to find tractable methods for calculating the diffraction of 

waves by a hole in a plane reflecting screen, he realised 

thnt he could obt8.in quite simple formulas if he were to aSSlUne 

tilat the field in the hole was identical v,ith the field thQt 



would be there if the screen were removed. As is now well 

known, the diffracted fields calculated on the basis of this 

assumption are in useful agreement with experiment even when 

the dimensions of the hole are only moderate in comparison 

with the wavelength. 

The success of Kirchoff's approach led gradually to what 

is now called (by electrical engineer~ at least) the physical 

optics approximation. It is assumed that the source density 

induced at any point on the surface of a totally-reflecting 

scattering body is identical with that which would be induced in 

a totally-reflecting, infinite plane tangent to the body at the 

said point. P.n inevitable corollary to this is that it must 

be assumed that no sources are induced on those parts of the 

body's surface that are not directly illuminated by the incident 

field. Physical optics is a 1Igeometric optics" type of approx­

imation, and it is sometimes loosely referred to as geometric 

optics, which is a pity because physical optics predicts several 

diffraction effects quite adequately whereas conventional 

geometric optics cLoes not. From no'" on we choose to give 

physical optics the name "planar physical optics" because it is 

8X[cct when the scattering bo·dy becomes an infinite plane. 

Beckmann and Spizzichino (1963 chapter 3) show that planar 

physical optics source densities can be usefully postulateo. on 

the surfaces of penetrable bodies. 

Planar physical optics is a "local" theory - when 

calculating the surface source density at any point it is only 



necessary to consider the incident field in the neighbourhood 

of the :point, and it is only there that account must be taken 

of the shape of the body and its material constitution, It is 

a single-scatteri..YJ.g apIJroximation - in fact, it is a kind of 

Born approximation for scatterers with well defined boundaries. 

It is an tlasYl1lptotic" theory (c.f. Kouyournjian 1965). Ursell 

(1966) shows that it is exact for smooth, convex bodies in the 

lir!lit of infinitely high frequencies. Crispin and Maffett 

(1965) point out that it gives remarkably accurate results for 

some bodies having linear dimensions not much larger than the 

wavelength. The chief secret of its success is that it usually 

predicts the scattered field most accurately where it is largest 

(e.g. "specularH reflections, c.f. Senior 1965), 

The main defects of planar physical optics are that it 

can violate reciprocity, it does not take 8.ccount of multiple 

sC8,ttering and it pr'edicts no polarisation dependence for 

electromagnetic fielcl.s back-scattered from totally-reflecting 

bodies. 

We have discovered that the null field approQch leads 

to a gem")ral:L;~ed ph,y;;;;icnl 'ahich 1Jecor;;es exact nhen the 

sur'face of the totally~reflecting scattering body coincides 

wi th a s urfcwe on 'which the radial coordine,te (of the coordinate 

system in vlhich the particular null field method being used is 

expressed) is constant. The generalised physical optics leads 

to useful approxirna.tions to the surfo.ce source density in the 

penumbra and wnbra of the body - something which planar physical 



optics is incapable of, by definition. The defects noted in 

the previous paragraph largely remain. So we thi:r1k it point-

less to develop a vector fo~ of the theory. There are no 

significant theoretical differences when the generalised physical 

optics is applied to sound-soft and sound-hard bodies. Consequently, 

this discussion is restricted to the former (its formulas are 

somewhat simpler and are, therefore, more readily understood). 

It is easy enough to vITitedovm the formulas for sound-hard 

bodies, The germs of the techniques are in a previous account 

(Bates 1968), but the present generalised approach is quite newo 

In § 2 the formulas of planar physical optics are quoted 

and generalised physical optics is developed from the generalised 

scalar null field method, itself developed in (I). The f'ormlLlas 

for cylindrical (circular and elliptic) physical optics are also 

given because the illustrative examples presented here are for 

cylindrical s ound·-s oft bodies (they can have any desired cross 

section) , It ShOllld be noted that the results apply equally 

to perfectly-conducting bodies scattering E-polarised electro­

mc.gnetic \'Taves - refer to §.5( a) of (I) 0 In § 3 it is shoY]n 

hoVl the physical optics surface source densities can be improved. 

Since physical optics is approximate, the radiations 

from physical optics surface sources 0.0 not satisfy the 8xtinc-

tion theorem - Le. 8.t almost every point, P say, in the interior 

of 8. scattering body there is a finite difference betvreen these 

radi2.tions a~ld. the nSGG.tive of the incident fieldo In § 4., an 

observation of Bates (1975a) that this difference tends to 



decrease as P penetrates deeper into the interior is generalised. 

In ~ 5 examples are presented of surface source densities and 

scattered fields oomputed using the oircular and elliptic 

physical optics approximations. These computations are compared 

with others obtained by inherently accurate techniques - ioeo 

the circular and elliptic null field methods, which are 

developed in (I) - and by planar physical optics. 

2. GENERilLISED PHYSICAL OPTICS FOR 30UJ'm- 301fT BOD:!!§ 

I"ig. 1 shows the surface S of a totally-reflecting body 

of arbitrary shape embedded in the three-dimensional space y, 

which is partitioned into y and y ,the regions inside and 
+ 

outside S respectively. A point 0, within y_, is tW~en as 

origin for orthogonal ourvilinear coor<linates of a kind allo"ling 

the separation of the scalar' Helmholtz equation. Arbitrary 

points in Y and on S are denoted respectively by P, with 

coordinates (u
1
,u

2
, u

3
), and P; with coordinates (u;, u;, u;)o 

The ooordinate n/describes the outward normal direction to S 
/ 

at P. The surfaces Z and E , on both of which the coordinate 
+ 

u
i 

is constant, respectively inscribe dud circUllllicribe S, in 

the sense that they are tangent to it but do not cut it. The 

points of tangency between E and S, and between E and S, are 
+ 

P /. , and P / • The values of u
1 

at P / and P / are u / . 
mln ma:x. min max 1 mill 

and u
1
/ respectively. Note that p/ andP/, are points 

max min' max 

on S nearest to, and fQ~thest from, O. The part of y outs ide 
+ 

L.; is denoted by y ,andche part of y inside I: is denoted 
+ ++ 



by Y null' Other aspects of' this notation are covered in § 2a 

of Part 1, (r). 

The formulas given in § 5b of (r), and Table 1 of Part 

1, (r) should now be referred to. The monochromatic field 

~ incident upon the body is written in the form 
o 

~ o P E y_ 

where the time factor exp(iwt) is suppressed and k is the wave 

number. The c. are normalisation constants appropriate for 
Jd. 

. ~ 

the particular coordinate system for which.J. (.) and Y. (.) 
J,J.. J,,~. 

are radial and angular eigen-wavefunctions. The a. are 
J, i 

constants characterising the form of the incident wave -

Table 7 of (r) lists the a. appropriate for several coordinate 
J,£ 

systerns men W is a monochromatic plane wave having the free 
o 

space wave number k, and the v;avelength 'A. == 2fT/k. The surface 

source density J'(p) is characterised by the null field equations, 

which for sound-soft bodies take the form 

A (2) (I \ 1\ (/ / \ ~ 
h. u

1
,k) Y .. u2,U~,k) c<s 

Jd.· . J,Q :; 

where T 1 and T 2 are sui table parametric coordinates in S. 

fiIultipole expansions of the field ~ scattered from the body 

can be written 

ro J-

" '\' ':II == 
\ C. / 1.--1 J ,.e. IY. __ -J 

1:=0 j=-j 

OJ £. 

\' ') == L c, 
~ J,t 

£=0 j=-i 

h u. 
J,Q 

/\ 

.-i. (u,k) 
~J"e. 1 

+ " (2) 
b. h. (u ,1<:) 

J ,1. J,t 1 

~ 

Y. (u2, U3'k), 
Jd 

A 

Y, (u2,u3'1<:), J,.e. PEy 
++ 



Vlhere the h \2) (.) are the "outgoing" radial eigen-wavefunctions, 
+ J,£ 

and the b -~ are constants given by 
Jd, 

s 
+ 

where the X-: (.) are defined by (5.15) of (I). 
J,k, 

The form of the scattered field in the Fraunhofer or far 

field region (usually called !lfar field tl by electrical engineers) 

is usually of interest. It is often convenient to calctuate 

the far scattered field by using the asymptotic forms intro-

duced in 83d of (I) to simplify the integral in (2.5) of 

Part 1, (I). The position vectors (with respect to 0) of p 

and pI are denotea, by .E and .E/respectively, and we 'write Lrl = r. 

It follows that 

T 
e:xp ( - iJ.r.r ) 

\11 --
- 41iT 

P E Y-o 
laX' 

where y" is the part of y vlhich is far enough away froID 
raX' ++ 

the body to be in the Fraunhofer region (remember that this 

becomes increasingly distant as the wavelength decreases) • 

.A tilde is used to denote any quantity that is computed 

on the basis of a physical optics approximation e.go q;' is the 
'V 

physical optics scattered field, and J"(r 1 ,'I' 2) is the physical 

optics surface source density. It is not necessary to identify 

which type of physical optics is implied, since it is always 

clear from the contexto 



150. 

When the incident field originates from a point, such 

as Q in Fig. 2, it is convenient to partition S into the part 

S which is directly illuminated by the source at Q, and the 
+ 

part S which is shadowed from it. S is defined by stating 
+ 

that when P'E S the straight line QPI does not intersect S 
+ 
/ I , 

between Q and P, whereas when PES the straight line QP must 

/ 

intersect S between Q and P. This is illustrated in Fig. 2. 

The planar physical optics surface source density is 

defined to be 
J _ 

PES 

= 20'1'/ jan, pIE S 
0 + 

(2.6) 

where '1' 
/ 

is the value of '1' at p; 
0 0 

(b 2 Generalised Physica;h_ Optics 

The true surface source density is not identically zero 

on S , as defined in § 2a above. The new approximate theory 

introduced here becomes exact for certain finite boeties. So 

different definitions of "directly illuminated" and "shadowedlt 

a:ce needed from those introduced in § 2a. 

The dashed lines in Fig .. 3 represent curved rays in 

space on each of 'which the coordinates u
2 

and. u
3 

have particular, 

constant values, On each ray the coordinate u
1 

increases 

monotonically with distance from O. S. is partitioned into a 

"directly illuminated" part S and. a "shadowedll part S. For 
-t. 
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a particular ray the value(s) of u
1 

at its intersection(s) 

vii th S are denoted by u
1 

(m)' "where m := 1,2, .. 0 •••••• ,ill. The 

u
1 

(m) are ordered such th8.t they increase monotonically with m. 

/ 
The ray passing through a particular PES is considered, and 

/ 
S is defined by stating that vmen P ~ S then u - u - '" 1 - 1 (-\' + + ,ill; 

/ 

whereas when PES then u
1 

:= U
1

(p) where ill must be greater 

than p. This is illustrated in Figo 3. 

For any separable coordinate system the dominant asymptotic 

behaviour of h~2)(.) is described for small u by 
J ,.e. 1 

where p = 0 for rotational coordinate systems and p := 1 for 

cylindrical coordinate systems, and where CG is the factor 

by \Thich u
1 

has to be multiplied to make 0: u
1 

asymptotically 

equivalent to conventiona,l metrical distance (refer to Table 1). 

For large u
1 

the asymptotic behaviour is 

where v = 1 for rotational coordinate systems and v := ~ for 
11) 

cylindrical coordinate systems. The K\2 are constants 
jd~.-

(refer to Table 1). 

Denote by L, the value assumed by f when the error 

irulerent in (208) is less than some prescribed tolerance for 

u
1 

:=u
1
/ . • It then follows that, for L ~ L, the null field 

mlll 

equatioDs(202) can be approximated, to vlithin this tolerance, 

by 
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the form of TIhich suggests that the substitution 

should be made "here 11 ( .) is fOlmd, in any particular cEl.se, 

by inspection of S - note that it may not be possible to 

define I::. (9) uniquely at points w.'1ere S ceases to be analytic; 

but it is always possible to treat each analytic region of S 

piecewise and define I::. ( .) uXliquely over each piece (note that 

the surfaces of bodies of physical interest cannot be so 

singular that they cannot be partitioned into denumerable 

analytic pieces). In general, 1::.(.) is not a single-valued 

function of / and / over all Ol'=' S. But? [\ ( . ) is necessarily u
2 

u
3 

single-valued function of / and 1.1/ S We postulate a u
2 

over . 
3 + 

the generalised physical optics slU~face source clensity ~(.) 

is zero over ,S : 

" PES 

which f!,eans that, if' :J' in (2.9) is replcwed by ;;r, immediate 

use can be made of (2010) to arrive at 

B.. , 
Jd. 

The way in vihich S is defined ensures thc-;.t it spans 
+ 

that 

continuously and single-valuedly the full ranges of u
2 

and u
3

, 
j\ 

which means that the Y,. (uC), u7.,k) are orthogolla,l with a 
Jd. c.. ;J 



therefore that 

t\ 

over S • 
+ 

I 

PES 
+ 

where the T are the usual normalisation constants. Both 
- j,J, 
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t\ 

I. and w(.) are given for the separable coordinate systems 
J,1-

by l:orse and ]'eshbach (1953, chapters 10 and 11). 

Inspection of (2.8) indicates that, to within the 

() [( ")VI (21~ ( ') tolerance to ,':hich 2.12, holds, ko.;u I K • -I J exp :U::o.;11
1 l' Jld 

, J d' (~1 3) b 1/"'h ( 2) ( I 1 ) " t can De rep _ace J_n "'-. Y . 11
1
,K. But rererence 0 

Jd .. 

(2.7) indicates that h\2)(u',k) becomes 1arb~e everyvvhere on 
J,~ 1 

S for all Jl somewhat greater than L. Consequently, the 
+ 

expression 

I 

PES 
+ 

correspond closely to their equivalents in (2.13). The terms 

There can 

be a significant discrepancy - discussed further in § 3 ~ 

for some terms for >'Thich i is close to L. 

;,'ihen S itself coincides ;','ith a particu18T surface on 

Vlhich u is constant then S is empty, S is tn::; Vlh01e of S 
1 + 

1\ / / ) '"'-' 
and the Y. (u

2
,u

3
,k are orthogonal over S. If 2)(.), as 

Jd -
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given by (2.'1~.), is substituted for ~(,) in (2.2), it follows 

on substituting (2.10) into (2,2) that the latter is satisfied 

identically for all i E [0 -5> CD J, j E [- 2.. -+ £ J. Consequently, 

The formula on RHS (2.14) is convenient becaLwe it can 

be computed straightforvmrdly without having to incorporate 

tests for the applicability of asymptotic expansions of the 

Purely numerical considerations determine the 

;\(2) ) f\ 

formulas used for computing the h ~ t. (. and the Y. (. ), and 
J,~ J,~ 

the value of i at which the series is truncated. 

i.£2 Cylindrical Physic.al_~s 

7iben the scattering body is an infinite cylinder - it 

can have any cross section - coordinates (u ,u ,z) are used, 
"I 2 

TIhere z is a Cartesian coordinate parallel to the cylinder 

axis. TDe plane z = 0 is denoted by Q. The intersection of 

S with Q is denoted by C. The sul)scripts 'we append to Q and C 

correspond to those which have already been appendecl to y and 

S. In conformity vlith the nob,tion introduced in TabJ.e 2 of 

Part 2, (I), the surface source density i.s clenoted by FCC) 0 

Invoking the notation introduced in Table 4 ana. § 2(e) 

- take special note of (2.17) - of Part 1, (1), the incident 

field is written in the form 

o 
" 0 

Ct:J 

,,"'" ~~ ) 
i~~,~J 

m:::O 

A /\ 

C a J (u ,k) Y (u ,k), 
mm m 'I m 2 

PED 

The formula, corresponding to (2.11) and (2.'ll1-) is 
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F(U
2
) 

/ 

= O. FE C 
7 

d1../ <Xl 1\ I 
a Y (u ,k) 

( I' 2 m m 2 I 
(2016) = Vi u)-

I H (2) (u/,k) 
, PE C 2 dC + 

m=O m. m 1 

It is worth noting that dC/du
l 

is the one-dimensional equivalent 
2 

of the quantity b.(u~,u;) introduced in (2010). The quantities 

I I (I) I' 
U U 'Iv U ,I are tabulated in Table 2 for circular and 
l' 2' 2 m 

elliptic physical optics. 

DENSITY 
~ -

It is convenient to rewrite (2014) as 

v1here ~ (.) includes those terms On RHS (2.14) for I'i'nich 
1 

rv 

i.E to.." LJ, and ~3(') includes the terms forvvhich 
"> 

1. E i L + n + 1 -7 co 1· The remaining terms make up ~2 (. ) • 

The positive integer n is defined to be the sm8~lest consistent 
rv 

with tr..,(,) being negligible, to within the tolerance inherent 
:J 

in the definition of L - refer to (208) et sequentia. 

As has already been argued in § 2, the part of RHS 
rv 

(2.11-1-) which corresponds to ~(.) satisfies (2.2), for 

1. E \ 0 -> LJ, to within the prescribed tolerance. It follows 
rv 

that cl
2 
(.) can be expected to be the wain seat of difference 

"-' 

betVleen ey(.) and 8"(.). 



The preceJ.ing sU2;gests that it might be possible to 
rv 

improve on a'(.) by defining 

'Y ( 1) (-r T) 
~ improved 'I' 2 

VThere ~~1)(.) is defined over all of S. The superscripts 

(1) are appended in anticipation of a further improvement" 

~(1)(.) is expressed in terms of N basis functions, where 
2 

N :::: [2 + n + 2LJn 

Vlhic~ is the nwnber of YfaVe functions indexed by the integers 

j and 9. when i.E 1L + 1 ~ L + nJ and j E f-J.-> .0. The basis 

flUlCtions are chosen according to the criteria outlined in 

§Lf- of (r). Then ~~1) d(') is substituted into the N 
JJnprove 

null field equations for nhich 1 E lL + 1 ~ L + nl and 

j E i-J.->.,q, and the expansion coefficients characterising 

a'; 1) ( .) are found by elimination. This is a straightforward 

procedure which, in our experience, is a useful improvement; 

~>; 1) (.) is free of much of the error inheren-l:; in ~2(')' But 

an e"18n further ilnprovement can be made. 

"-J 

Reee.ll that .;y C·) is given by the terms in (2,,1J+) for 
1 

'" 
which tEl 0 ~ Lj 0 In general, ~1 (.) can be improved by 

reph.cinO' th3 relev8.nt a. in (20'111-) bV modified coefficients 
to J>i, • 

a. 
J,J 

The improved ~1 ( .) is denoted by ~-l ( • ), which, it 

must be emphasised, is still identically zerO over S. So, 

the complete improved s1.ll~face SOurce density is 

~. d(-r
1

,T2) :::: ~1(u?/,u3~) + ~2(Tl,-r2) lmprove· _ . 

where ~ 2(') is an improved version of ~2(1) (.), expressea, in 



terms of the same nwnber of basis functions. 

If there were no further device to rely on, it would be 

necessary to expend as much computational effort to evaluate 

@"improved ( • ) as is needed to evaluate ~(. ) \ I by the ±'ull null 

fielcl method, and it would be less efficient because the basis 

functions in terms of which ~ (.) 
1 

is expressed are not ideal 

for the null field methoa. - refer to (I). But it is possible 

to appeal to the approximations yrhich ptn-'mitted (2.9) to be 

deduced. Vie postulate that, in the j,Q. th null field equation, 

~(.) can be replaced by 

provided that i ~ L. 
th 

The j,J, null field equation then gives 

where the a./ /are the expansion coefficients characterising 
J~.x-

~2(' ), and each <P../ / is got by substituting the j,j th of 
J,J,l,l 

the basis functions (in terms of which eY).) is expressed) 

for :;t(.) in the integral in (2.2). 

In the null field equations for which J!. E [L -I- 1 -+ L -I- n) , 

J'(.) is replaced by the whole of cl-'. d(')' But (305) 
lmprove 

can be used, for f E 10 -> L1 and j E 1-10+1 J, to elirainate all 

the 
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The procedure which has just been described has consider-

able computational advantages. As is confirmed in § 5, it can 

represent a significant improvement on physical optics, and it 

can approach the accuracy obtainable with the full null field 

method. However, the un..\:nown ex • are determined from a 
J ,)L 

system of only N simultaneous, linear, algebraic equations 

whereas [(L +-1)2 + NJ equations are needed to evaluate the 

unknovms when the null field method is used in the form 

developed in (I). 

The evaluation of ~ improved (.) involves tv70 main steps. 

First, there is the determination of the ex. r. from the inversion 
J .. u. 

of a matrix of order N, requiring a number of operations 

proportional to N3. Second, there is the determination of the 

a. by sUbstituting the ex. into the (1. -I- 1) 2 equations 
J d. J ,2, 

(305), requiring a number of operations proportional to (L + 1)~. 

However, tl1is C2,n cOlr.pare very favourably with the full null 

field method nhich requires a number of oper2.tions proportional 

2 3 
to [(L + 1) -I- N] • 

In general, the value of N increases with (u
1
/ 

max 

U / . ) and. \lith increased. tortuousness of So HO'71eve:r~~ the 
1 rrrl11 

ne.ture of radial vrave functions is such that Ii can be e:h.rpected 

to be almost independent of k for a particular scattering 

body - this is seen to be very significant when one remelllbers 

that I, increases roughly linearly with k. 

In § 5 this improvement is applied to a cylindrical 
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scattering body, in which case the already established notation 

is invoked and (3 4.) is rewritten as 

F1 (.) can be expressed in terms of (2M + 1) basis flillctions, 

(M + 1) even and JIll odd; whereas F
2
(') is expressed in terms of 

2N -basis functions, N even and N odd& 

4. EXTINCTIOI'J DEEP INSIDE BODY 

The true field~, reradiated by the true sources induced 

in S, extinguishes the incident field ~o throughout Y_· 

However, the physic2.1 optics field~, reradiated by the source 
rv 

density ~, is not equal and opposite to \fr everyvrhere vii thin 
o 

y_o As follo,{s from (2.1) ano_ (2.3), it is f'OUIld that 

co fl.. 

(4.1 ) 

TIh9re the symbol b is surmounted by a tilde because the 

phys iCB.l optics, rather than the true field, is being considerea .• 

Reference to (2.2) and (2.4) of this paper and (5015) of (r) 

indicE.tes that the null field equations can be Yiritten as 

:::: 0, i.E to -» co 1 ~ 

The furwtions d' (u
1 

,k) can be considered negligible, 
J ,1 

to within some prescribed tolerance, for .Q> (k CJ, u
1 

+ n
1
), 

where the actual value of the positive integer n
1 

depends upon 
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tha actual tolerance ~ however, experience with spherical 

and cylindrical Bessel functions suggests that n
1 

need rarely 

be greater than 3. Consequently, the upper limit on the first 

summation on RHS (Li~.1) can be replaced by L1 := L1 (u
i

) which is 

the smallest integer greater than (k a u
1 

+ n
1
). 

by 

It is argued in §3 that if ~(,) in (2c2) is replaced 
rv 

~ (.) then the null field equations are satisfied, to 
1 

within the prescribed tolerance, for Q E to ..". 13. This means 

that a tilde can be placed over the symbol b in (4.2) for all 

~E to..". LJ. Consequently, whenu
1 

is small enough that 

L1 ~ L then RHS (4-01) is effectively zero, implying tha,t the 

extinction theorem is satisfied. Clearly, the prescribed 

tolerance can be increasingly ti,ghtened as 0 is approached. 

The generalised physical optics therefore satisfies the 

extinction deep inside the body. \1hen applying planar physical 

optics to rough surface scattering it is fOlmd that a similar 

analysis gives support to the contention that the differences 

between the true ahd the planar physical optics scattered far 

fields are likely to be less than the differences between the 

corresponding near fielcls (Sates '1975a). A similar conclusion 

is perhags less compellinG for the generalised physical optics, 

but it is nevertheless reinforced by our computational 

e:;c:uerience (refer to § 5) . 



5. APPL1CA1'10NS 

Surface source densities on, and far fields scattered 

from, cylindrical bodies having the cross sections sho~m in 

Fig. L~ are presented. Results computed by both the rigorous 

null field method o.eveloped in (I) and the physical optics 

approximations 8,pproximations introduced here are compared. 

Planar physical optics, circular physical optics and elliptic 

physical optics are examined (refer to Table 2). 

Scatterecl f8,r fields are computed either by substituting 

(2.8) into (203), or by evaluating the integral in (2.5); 

remembering thc1,t, for cylindrical coordinate systems, b ~ 
Jd. 

and eJ'(7 ,7 ) become b + and F(C), respectively, and the (louble 
12m 

integral in (205)' reduces to a single integraL Vihen computing 

physical optics fields, b + and F(C) are replaced by b'+ and 
m m 

Fi(C) respectively. 

\Ii is taken to be a plane wave incident at an angle ifJ. . 0 

Recall from (I) that the symbol C is used to denote both the 

curve and the distance along it. The value of C at the point 

on C ','ihere <p ::: ifJ is denotecl by C. Inspection of Figo 2j- shows 

that there is only one such point for any of the scattering 

bodies which 8,re investigated here 0 

Because of the sj-'111ITlstries possessed by the cylinders 

shovm in Fig. It-, the scattered fields are symmetrical about 

<p ::: ifJ and the surface source densities are symmetrical about 



C :::: G, provided that \u is chosen to be an integral multiple 

of H/2. Advantage of this is t8~en and, consequently, fields 

and surface sources are computed over only half their full 

ranges. In the graphs, only the magnitudes of fields and 

surface source densities are shown. But remember that the 

phase as well as the magnitude of a surface source density 

affects the corresponding scattering field. So, when the 

magnitude of the latter is accurate, to within some useful 

tolerance, then the phase of the former must be similarly 

accurate. 

In Figs 5 through 13 typical results are presented for 

bodies having the cross sections shown in Fig. 11-. Vlhen 

cornputing the solid curves in Figs 8 and 9, the semi·-focal 

distances of the elliptic cylinder coorclinates were chosen 

to be the same as the semi-focal distances of the scattering 

bodies. Consequently, elliptic physical optics is exact for 

Figs 8 and 9, so that the solid. curves can be assumed accurate, 

to within the tolerance set by the draughtsmanship. !;Then 

computing the solid curves in Figs 10 and 11, the semi-focal 

distances of the elliptic cylinder coorclinates vrere chosen 

su<::h that )I null occupied 3.S much of )I_as possible - refer to 

§ 6c of (I). Consequently, we are confident on acco'unt of the 

results vrhich have already been reported in (I) that the solid 

curves in Figs 10 and 1 'J are accurate, to within the tolerance 

set by the draughtsmanship. 

Fig. 11f- shows the result of applying the improvement to 



physical optics (see § 3) to a square cylinder \,iith rotmded 

corners. For such a cylinder, C+ is equivalent to C, and c_ 

is emptyo Consequently, it is convenient to express F
1

(<p) and 

F 2 (C) in terrr,s of the same family of basis functions 0 ~Che 

differences between the accurate and approximate computations 

are almost negligible for most practical applications, and yet 

N VJaS 11 while (I'T+M) Vias 18, It was not necessary to compute 

any odd wave functions because of the sym.metry of the scattering 

body. It must be pointed out that the computational economy 

of the approximate over the exact method would be more marked 

for an asymmetrical body. 

6. CONCLUSIO~'TS 

A striking aspect of the computed results presented in 

§ 5 is that the new physical optics can make recognisable, and 

sometimes accurate, predictions of the surface source densities 

in the umbra and penumbra of scattering bodies. The formulas 

(2.1ll-) and (2016) can abrays be applied straightfoY"IVardly, 

without the tedious precautions 1'Thich seem to be unavoidable 

in general vii th either Fock theory (c. f'. Goodrich '1959) or the 

geometrical theory of diffraction - for bodies of complicated 

shape the latter can, of course, provide more accurate results. 

Vlhen comparing the new physical optics methods with 

planar physical optics it can be seen that they always predict 

forward scattered fields more accurately. They tend to be 

superior for all scattering directions except close to the 



actual back scattering direction. Even for specular scattering 

from a body 'with a flat surface, for which planar physical 

optics is ideal, the new physioal optics is not muoh inferior 

(refer to Fig. 7). 

The results suggest that it is important to use the 

type of physical optics most appropriate for the body in ~uestion. 

As has been reported in (r), the efficienoy of t!'le m.:tll field 

method i:;)proves as Y null spans more of y _, or 0null spans more 

of IL. We oonjecture that the same criterion should be applied 

to the choice of physical optics method. 



Table 1, 
A (2' 

Parameters in asymptotic expressions for hj, ~ (1.1
1 

,k) 

in several separable coordinate systems. Note that 

the K \ 
1 ) are valid when 1 » kd for the elliptic 
J,~ 

cylinder coordinate system, and when Q » kd and 

U
1 

» 1 for the prolate and oblate systems. 

Coordinate system 
(1) (2) 

0: K' t 1(. i J, J, 

-i [1..11: [qt [2ilt t 
Circular cylinder i 1 

1TJ-j ej 1TJ 

· -t f2l ~ -\ ;2-
Elliptic cylinder -1.Q. 2 - (2i)2 1 d 

l ej 

Spherical polars · c1 [2114 i 1+1 
1 -1 

e j 

Prolate spheroidal · 2.-1 r2!h~ .£.-,,-1 d -1 lej 1 

Oblate spheroidal ~i~ 
,,1 Gt1> .£,+1 

1. d 

d = semifocal distance of the elliptic cylinder, 
prolate spheroidal, or oblate spheroidal coordirlate 
systems. 
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Table 2. Quantities aPiJropriate to cylindrical physical 

optics. The relevant wave functions are presented 

in Table lj-. of (r). 

Circular Elliptic 
Physical Optics Physical Optics 

u
1
,u

2 P ,<p t;"T] 

w(u
2

) 1 (1-T] 2r-t 
/\ 1 r 2TT, m = 0 r ",2 m 

(kd,7]) vr(T]) d T] I c, 

rr, mJO J em 
-1 0 
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Fig. 1 Totally-reflecting scattering body of arbitrary shape
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Fi80 2 Directly illmninated and shadowed parts of S, for 

planar physical optics. Note that P~ is on S+, 
I I _ 

whereas P2 and P3 are on S_. 
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Figo 3 "Directly illt1.minatedtt and tlshadowed" parts of S, for general~ 

/ / 

ised physical optics. Note that Pi is on S+, whereas P 2 

d p / C1 an ~ 3 are on u_. 
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Fig" II- Cylindrical scattering bodies. 

(a) Rectangular cylinder with rounded corners 

(b) Elliptical cylinder 

(c) Cylinder with concavities 
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Fig~ 5 Scattered far fields (a) and surface source densities (b) for 

a square cylinder with rounded cOrners (refer to Figo 4a). 
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circular null field method 

------- circular physical optics 
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Fig. 6 Scattered far fields (a) and surface source densities (b) for 

a square cylinder vlith rounded corners (refer to l"ig. 4a). 
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circular null field method 

------- circular phys ical optics 
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Fig. 7 Scattered far fields (a) and surf2,ce source densities (b) for a 

square cylinder (refer to Fig. 4a), if; ::: 0, a ::: 1. SA, b ::: a, t ::: 0. 
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Figo 10 Scattered far fields (a) and surface source densities (b) 
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Part 2. rV: INVERSE METHODS 

On the basis of the spherical and cylindrical physical 

optics approximations presented in (III) an inversion procedure 

is developed, similar to conventional procedures based on planar 

physical optics-and like them needing scattering data at (effect­

ively) all frequencies, suitable for totally-reflecting bodies. 

Another method is developed, also based on spherical and circular 

physical optics, whereby the shapes of certain bodies of revolution 

and cylindrical bodies can be reconstructed from scattered fields 

observed for only two closely spaced frequencies. Computational 

examples vmich confirm the potential usefulness of the latter 

method are presentedo 

1. INTRODUCTION 

The general inverse scattering problem is posed as: 

determine the shape and constitution of a scattering body, 

given the incident field 8,nd the scattered far field. De 

Goede (-1973) shows that the extinction theorem can be inverted 

to give an integral equation for the material constituents of 

an in..1-J.omogeneous medium in terms of the field existing at the 

bOl . .mdary of the medi1.un. Unfortunately, the kernel of the 

integral involves a propagator (Green's function) which itself 

depends on the material constituents, so that the problem 

cannot be said to be reo.uced to a form whereby the solution 

can be computed - nevertheless, this is a comparatively new 
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approach which, hopefully, will be developed further. The 

established inversion technique with the widest application is 

Gel'fand and Levitan's method (c.f. Newton 1966) which has 

been most highly developed by Kay and Moses (196-1) and 7fadati 

and Kamijo (1974) - a method of wider potential applicability 

has recently been suggested (Bates 1975c). 

In most situations of physical interest a fair amount 

of information concerning the general shape and/or size and/or 

material constitution of the scatterin~ body is available 

a priori. Because of this, many specialised inverse scattering 

problems have been posed (c.f. Colin 1972). 

Only totally-reflecting bodies are considered here 

The main intention is to make clear both the pO'l"Ter and the 

limitations of the methods. Accordingly, detailed analysis is 

restricted to scalar fields and sound-soft bodies. 7lhenever 

pertinent the vector case is cliscussed. It seems that the 

analysis associated Ylith sound-hard bodies is only different 

in detail, so that it is not examined explicitly. 

In § 2 ·ehe formulas that are needed here are gathered 

from (I) and (III). Since it is the shape of a body T'ihich, 

it is hoped, nill be discovered from observation of its scattered 

field, it seems pointless to employ coordinate systems especially 

suitable for bodies of particular aspect ratios. Consequently, 

only the spheric8,1 null field method, for bodies of arbitrary 

shape, and the circular null field methoCJ., for cylindrical 
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b odles, are invoked. In § 3 the relevance of the null field 

method to the exact approach to inverse scattering based on 

analytical continuation (see Weston, in Colin 1972), is out­

lined. Introduced in § 4- is an alternative to the usual inversion 

procedures based on planar physical optics (c.f. BOjarski, in 

Golin 1972). As with those whose work precedes this, the 

scattered field at effectively all frequencies needs to be 

knovm; but the technique seems to be rather more widely 

applicable. The main contribution of this section is introcLuced 

in § 5, where it is shown that the shape of certain bodies 

can be reconstructed from the scattered fields observed at 

only two closely spaced frequencies. The computational examples 

presented in § 6 confirm that useful results can be obtained 

in situations of physical interest. 

2. PRELDUtlARIES 

Fig. 1 shows the surface S of a totally-reflecting 

body of 'lrbitrary shape embedCLed in the three-CLimensional 

spe,ce y, which is partitioned into y_ and y,p the regions 

inside and outside S respectively. A point 0 within y _ is 

taken as origin for a spherical polar coorrlinate systemo 

Arbitrary points in y and on S are denoted by P, vlith 

coordinates (r,e,<p), anc1P~ with coordinD,tes (r~e~<p), 

respectively. The points on S closest to, and furthest from, 



1 1 o are denoted by P. and P ,respectively. The radial 
mln max 

coordinates of pl. 
mm 

and pi are r I. and r I respectively. 
max mm max 

y null denotes the parts of y_ within which r < 

denotes the parts of y + wi thin which r > r / 
max 

/ 
r . $ 

mln 

The remaining 

parts of y_ and y+ are y_+ and y+_ respectively, as is indicated 

in Fig. 1. Extensions of this notation are defined in 3 2 of 

Part 1, (I), and §2'Of (III). 

In conformity with § 2b of (III) the spherical physical 

optics "illuminated!! and IIshadowed" parts of S, called S+ and 

S_ respectively, are introduced. These are carefully defined 

/ 

in (III). Here it is sufficient to remark that P E S+ if and 

only if the extension of its radial coordinate from 0 does 

/ I I 

not again intersect S0 Refer to the points Pi' P2 and P3 

lying on the straight, dashed line shown in Fig0 1. It is 

1/1 
seen that Pi E S+ whereas P2,P

3 
E 3_. It is also necessary 

to partition S in another way, when considering the behaviour 
+ 

of fields in y_+ and y+_. S-(r) is defined from 

1 
r > r 

I r ::; r 

Note that S-(r) is empty when r > rl ,and S+(r) is empty 
max 

"hen r < 
I 

r . mln 

Reference back to (2.5), (2.8) and (2.14) all of Part 1, 

(I), must novl be made and certain formulas from §5b ,c of Part 

1, (r) are abstracted. The sources of the monochromatic field 

- denoted by Ii' :::: I±t (r,e,c.p,k) - incident upon the body are 
o 0 

confined to parts of y for which r ) r . 
o 

So, Ii' can be ,vritten 
o 



as 
Y-eo 

Iii = '\" I c. a. (k) j (kr) pi(cos e) exp (ij<p), 
0 L J,l J,i i 

1=:0 j=-.Q. 

o ~ r < r 0' o :::; cp .( 21T, 

where the a. = a. (k) are the expansion coefficients which 
J,j.. Jd 

determine the precise form of qr , and k is the Wave number. 
o 

The time factor exp(iwt) is suppressed. The normalisation 

constants c. are listed in Table 5 of (I): 
J,t 

= -ik (1-j)! (21+1)/41T 
U+j) ! 

The scattered field f[1 = qr(r,e,<p,k) Can be written as 

00 !l 

qr = \ Y' c. [B~ (r,k) -j (kr) 
L '--' J"Q. J,l J.. 
..e =:0 j=-J. 

+ B: (r,k) h\2)(kr)] P1j(cos e) exp(ij<p), 
J,l .L 

PEy 

'where, for 1 E i 0 -> OJ J and j E i - j ~ .. £.l , 

(2 <>4-) 

B~'JI (r, k) ~ -JJ <r (T l' T 2) } (k~) P~( cos 8) exp( -ij,p) ds (2.5) 

S±(r) 

where 

(2,,6) 

and ;)(7
1

,7
2

) is the a.ensHy of reradiating SOuroes induced 

in the surface (in which 71 and 72 are convenient, orthogonal, 

parametric coordinates) of the "sound-soft" body. Conformity 

with the notation previously introduced in (I), (II) and (III) 

is maintained by TIriting 

/ > r 
r max 

/ < r . mln 

(207) 
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The slJ.rface source density is found by solving the null field 

equations: 

b ~ (k)::: 
J,t 

For the approximate approach developed in § 5 it is 

necessary to have the form of the spherical physical optics 

surface source density vmen the incident field is characterised 

by 

2.> ° (2" 9) 

the physical implications of which are disc~3sed in the 

Appendix,;?,. The normalisation 

is convenient. It follovrs from § 2b of (III) that the spherical 

.. 
physical optics surface SOl~ce density is 

'V 

eY(e,<p) ::: 0, 

::: 
krl'sin(e''') 

exp(ik~) , 

where ~(e:~) ::: ds/de/~: Note that use has been made of the 

formulas 

o( 8') P
n 

cos ::: 1 
u 

Recall from § 2b of (III) th/:Lt the coordinates <pI' and e 
/ 

span S+ single.-.valuedly and continuously throughout the ranges 

[O,2rrJ and [O,rr] respectively. So, if ~(.) is replaced in 

(2.5) by ~(.), and note is made of (20'1) fwd (2.7), it is seen 

that 



1f 21f 

-k J J r/ exp(ik~) -j.t (k~) piccos e) exp(-ij~~) sinCe) dq{ de" 

o ° 

on account of (2.6) and (2.11)0 An "approximately equals fl 

sign is used in (2,,13) because the physical optics surface 

source density has been invoked rather than the exact surface 

source density - but this is the only approximation implicit 

in (2.13). The definition 

co IJ.. 

E(e,cp,k) 
'\'" (21+ 1) . f,\, (Q-j)l 

;::: > 1. ) 
L-t '-' Ce+j) ! i::::O j::::-J. 

wnen combined with (2$13), leads to 

1f2Tr 

b ~ (Ie) 
J,i. 

pi(cos e) 

-k J f r/ exp(ikA 1 + cOS(8) ]) sin(e) cup' de' ~ E(e,cp,k) 

exp(ij(p) 

(2., 14) 

o 0 (2.15) 

because 

co 

exp (ikr' cos e) 

and 

1. 

pOc \' (f--j)! ~j( 
piccos 

/ 

cos 8) :::: / Pi cos e) e) 
1- ,"---i 

U+j) ! j::::-t 

exp(ij [(P-<p]) 

when (cof. Abramowitz and Stegun 1968, chapters 8 and ~IO) 

, I 

cos(8) ;::: cos(e) cos(e) + sinCe) sinCe) cos«p- <p) (2.18) 

Yrnsn neither the fields nor the cross-section of the 



body exhibit any variation in the direction perpendicular to 

the plane of Fige 1 then S can be replaced by C, which is 

the cross section in a particular plane denoted by Q. 

" Cylindrical polar coordinates are used to io_entify P and P, 

i.e. (p,~) and (p~~) respectively. The previous notation is 

modified accordingly. 

'['he formulas needed later are now listed. It is, 

however, worth referring to § 2c of (III). The incident field 

is Ylri tten as 

w 

1Jl ::: (-i/4) \' € [ae(k) COS(Ilkp) + aO(k) sin(~)]J (kp), 
o L m m m m 

m:::O 

(2.19) 

where the sources of 1Jl are confined to parts of D for Ylhich 
o 

The Neumam1 factor € ::: 1 for m ::: 0, but € ::: 2 for 
m m 

m > O. ,The scattered field is written in the form 

co 

1Jl ::: (-i/4) \' € [b+e(k) cos(m(p) -I- b+O(k) sin(mtp)] H
m
(2)(kP), 

L_, m m m 
m:::O 

where 

+6() (F(C) J (k/) cO.S(m(~) dC. b m k ::: -j \ m ~p sm y , 

c 

where F(C) is the surface source density. 

'71hen the incident field is characterised by 

e 
o a ::: 0, m > 0 
m 

and the normalisation 
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is made, the circular physical optics surface source density 

becomes 
I 

:= 0, P E C_ 

dq/ ( I)~ I ~ dO ,kp exp(Dcp) , 

TIhere the lIapproximately equals lt sign is used because there is 

no exact formula of the same kind as the second one in (2012) 

However, . 1 I 1f cp. > 2rr, the formula 
m1n 

is less than 2% in error. The formula corresponding to (2013) 

is 
2rr 

- J I (p)~ exp(ilqS) Jm(kp) ~~~(m~) d q/ 

o 

mEfo~rol 

The definition 

. m[ +e () () +0 () . ( ) ] 1 b k cos mcp + b k Slll mcp 
m m 

when combined with (2G26) gives 

2rr 

-l~~ r (p)~ exp[ikp[ 1 + cos«p-<p)]l dcp' ~ E(cp,k) 
J 

o 

because 

IX> 

)€ i
m 

cos[m(cp"-cp)J J>m(kp) = exphkp' cos (<f-<p)1 
b-J m 
m=O 

(2026) 

Recall that formulas appropriate for scalar fields and 

cylindrical sound-soft bodies also apply to E-polarised 
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electromagnetic fields and perfectly-conducting bodies. 

Because of (2.1) and the sentence following it, and 

because of (2.4) through (207), it follows that 

P E Y-I+ 

The equivalent formula for cylindrical hodies is (2020). The 

available data for the inverse scattering problem are the 

scattered far field and the incident field throughout y_ U y+_ 

(it may also be knovm within a large part of y-!+, but this is 

strictly unnecessary). The incident field 

by the complete set of the a. (k), or the 
Jd. 

is characterised 
e 

aO(k) for cylindrical 
m 

bodies, or as many of them that have magnitudes exceeding a 

threshold set by the specified error permitted in the final 

solution to the problem. In the far field, the spherical 

Hankel functions appearing in (2.30) can, by definition, be 

replaced by the leading terms in their asymptotic expansions 

(c 0 f 0 Abramowitz and Stegllli 1968, chapter 10) 0 It follows that 

co i 
e xp ( - Ll<r) "'\' "'> 

kr ~ L.J 
1=0 j=-.t 

P E Y.D .Lar 

where Y
far 

is the part of y++ far enough mmy from the body to 

be in its scattered far field. Given llJ in the far field, for a 

particular r and for all <p and e in the ranges [0,2 m and 

[0,1T] respectively, the complete set of b~ (k) (or as many of 
J,l 
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them that have magnitudes exceeding an appropriate threshold) 

can be immediately obtained on account of the orthogonality 

of the functions [Pi(cos e) exp(ij~)J. So, inspection of (2030) 

indicates that, using the available data; W can be immediately 

computed anywhere within y, • The problem is to reconstruct S • • + ... 

Reference to (2014) oonfirms that the available inform-

ation concerning the .scattered field is contained in E(8,~,k)0 

For cylindrical bodies the equivalent quantity is E(~,k). 

To recapitulate; the inverse scattering problem can be 

posed as: Find S, given the a. (k) and the b ~ (k), or 
J,JL J,l 

equivalently, given E( e ,~,k). For cylindrical bodies the 
e e 

problem is: find C, given the a O(k) and the b +O(k) , or 
m m 

equivalently, given E(~,k). 

The uniqueness of analytical continuation ensures that 

(c.fo Bates 1975b) 

where y+ is the part of y throughout which the right hand side 

(mrs) of (3.1) is uniformly convergent. It follo\7s necessarily 

from (204-) through (207) that 

When the scattering body and the incident field are such that 



Y + ~ Y + then the inverse scattering problem can be solved 

exactly, straightforwardly. The standard boundary condition 

for sOlmd-soft bodies is 

I 

PES 

Since '-II and the b~ (k) are given (refer to '92'0), pJ{S (3,,1) 
o . Jd.. 

can be computed. It follows that the points P E Y where 

('-II + '-II ) vetnishes.can easily be found by computation. 
o 

Ordinary interference can cause the total field to vanish at 

points, along lines and even along surfaces none of which 

coincide Vii th S. So, the points P must be found for sufficient 

'Have mlillbers to ensure that the true surface is mapped out 

(only those P that reappear for all wave numbers are accepted 

as lying on S)" 

Vrnen the body is cylindrical, the formula co~~espondL~g 

to PJrs (3" 1) has unique singulari ties (Millar 1973) e There 

seems to be no good reason for doubting that the singularities 

for RHS (3.1) are also unique. These singularities must lie 

in y_. When they lie in Y
null

' RHS (3.1) can replace '-II in (3.3) 
/ 

for all PES. When the singularities lie in Y_+, as in many Gases 

they must, RHS (3.1) is not uniformly convergent throughout Y+c_o 

'rhe scattered field must be well-behaved througholJ.t 

Y.1-_O Consequently, the ad3.ition theorems for spherical wave 

functions can be invoked to continue RES (3. -I) uniquely 

throughout y+_, in much the same way as these theorems are 

employed in § 2'0 of Pe.rt -I, (II), and § 3 of (II), as VTeston, 

B oVllnan and. p,J:' (1 968), '.7 est on and 



Boerner (1969) and Imbriale and Mittra (1970) have investigated 

in detail. AhluvJalia and Boerner (1974-) and Yerokhin and 

Kocherzhevsk~y (1975) have extended the method to those sorts 

of penetrable bodies that can be usefully characterised by 

surface impedances. 

Multip1e use of addition theorems is tirne~consuming 

computationally, and care is needed to prevent errors accUilllQ-

ating. Also, one is trying to discover the shape of the body, 

so that it is by no means obvious which is the best position 

for the new coordina,te origin when one is making a particu1a:t' 

application of an addition theorem. Conseguent1y, there are 

severe difficu1ties associated vlith analytical continuation 

methods, and these difficulties are accentuated by the usual 

problems with numerical stability (Cabayan, Mttrphy andPavlasek 1973) 

Analytical continuation methods vlould be easier to use 

if a sharp test could be devised for estimating the minimum 

value of r for which RHS (3.1) is uniformly convergent. 

Inspection of (2.4-) through (207) reveals that 

.f 

\ c" [B~ (r,k) j" (kr) - B"~- (r,k) h (02 ) (kr) 
1-, J,.Q J,l 1 J,i A-

j=-1. 

PEy 

where, for £ E r 0 -? (X) and j E i - i -? .Q 1 , 

B;~J (r,k) = -II ~(T1 ,T 2) d,(k~) P~(cos e) exp(-ij~) ds (3.5) 

S-(r) 

It follows necessarily from (3.1) tha.t 
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P E y+, 

(3.6) 

where, for P. E [0 -700 J and j E [-J. -7 J. J 

The first value of r which will be found to satisfy 

is r / 
max 

less than r / 
max 

Consider a particular value of r, say r , 
, p 

If all the points on S, for which r/> r , 
p 

are found from (3.3) then S-(r ) is known, which means that 
p 

/ . 

can be computed for all P E S-(r
p

) using (2.8) of 

Part 1, (r). Reference to (205), (3.5) and (3.7) of this sub-section 

confirms that (3. (r ,k) can be calculated for Q E [0 -7 0::> ( 
J,1 P j 

and j E t-£"", 11. For each r = r , the left hand side (L.qS) of 
p 

(3.6) can be computed. If there is found to be a value of r, 

which is denoted by r . t . l' for which 
cr~ ~ca 

ILHS (3.6)1 > threshold, r < r ." 1 crrcaca 

where the threshold is related to computationa,l round-off 

errors and to the quality of the data, then it can be assumed 

that the PBS (3.1) is not uniformly convergent for r< r O.!-" 1. 
cr~ ... ~ca . 

Similar reasoning to that developed in the previous 

paragraph has been previously presented for cylindrical bodies 

(Bates 1970)0 In this earlier analysis Bates suggested that 

analytical continuation 'would allow the whole of S to be 

recovered, witholJ.t having to use addition theorems 0 This is 

801.md. theoretically because the nonconverging part of RHS (301) 

is exactly cancelled by the nonconverging part of LHS (306), 
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for all ~ <' r 
.L ~ • critical' But a computationally satisfactory way 

has not been found of taking advantage of ,this, which is not 

surprising i...'1 the light of the results of Gabayan et al (1973). 

However, it is felt that the method for testing for l' 't' 1 crl lca 

described in the previous paragraph is computationally viable, 

because LHS (306) is necessarily zero for r > l' 't' l' This crl lCa 

test could also be applied with equal facility to vector fields 

and perfectly conducting bodies; the surface density would 

be computed using (2010), instead of (208), of Part 1, (r). 

The positions of scattering bodies in space can be 

determined with useful accuracy in many sorts of situation 

by conventional radar and sonar techniques. The precision of 

the position measurement increases as the bandwidth of the 

transmissions is increased. Sophisticated systems have been 

developed for estimating the shapes, as well as the positions 

(and the velocities of moving bodies), of the bodies (c.f. 

Bates 1969b), The estimation procedures involve various FOUl'ie~(' 

transformations of the scattered field, which is assumed to be 

close to that predicted by planar phys ica.l optics (c.f. Bates 

1969h, Lewis 1969) 0 Theoretically, the scatterecl field must 

be known for all frequencies, or wave numbers. 

Jill alterna.tive invers ion technique is presenced here, 

for which the complete scatterea, field at all frequencies is 

required, The procedltre is based on spherical physical optics, 
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which like planar physioal optics becomes increasingly 

inappropriate as the wave number increases beyond a certain 

limit, corresponding roughly to where the largest linear 

dimension of the body equals 'the wavelength. However, as 

follows from the analysis developed in § 3 of (III);; we can 

claim that, vrhen (2.9) applies, the form of the physical 

optics surface source density used here is in general more 

accurate than the forms employed in previously reported inversion 

methods. 

Multiplying (2013) by C2/7rk3y~ and integrating with 

respect to k from 0 to 00 gives (o.f. Watson 1966, § 13042) 

1T 21T 

i). J J (~)~ piccos e) exp(-ij~) sinCe') &pI del 

o 0 CIl 

~-C2/i'rr)~(1+ i)J k--& b ~~ (k) d};:, 1 E fo -l> co J, 
J,j. 

o jEt-l-l>11 (401) 

Examination of ms (2.13), in the limit as k -l> 0, indicates 

tha t RHS C 4-0 '1) exis ts • 
, , 

Since r lS a single-valued function 

, f S·... b of e and <p over +, l(' can e seen that leads i~nediately 

to 
I / / ..1.. 

[r(e,Cjl)F ~ 
1 en 

Ucrr2f2 L 
1=0 

exp(ij~) 

because 
c:v J.. 

1 "> (2Q.+ '" U-j) ! 
1 ) ) 

Lf-1T / U+j)! L,,_, t. __ , 

1=0 j=-..i 

::; o(<p-~) o(6~e) 

sinCe) 

2-

( )
2 n-t.E...,--. (2.-J')', J' e') 

2 n " 1 (_,;).L . 2 > p ( .L ~ -'- L..-J C.t+j) t .t cos 
j=-.! 

Q:) 

J k-~ b~'l(k) dk 

o 

pic cos e) piccos 
I 

e) exp[ijCcp-cp')] 

(1+.3) 
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where 0(.) denotes the Dirac delta function, 

An estimate of the shape of S+ is obtained from (4.2). 

It is worth noting that (4.1) and (4.2) emphasise the 

necessity of defining physical optics surface source densities 

over parts of S which can be described single-valuedly by 

convenient coordinate systems. If r'were not necessarily a 

, I ( single-valued function of e and ~,RES 4.2) could not 

I 1. 
necessarily be identified with a single value of (1')2. 

(a) Cylindrical B2£y 

Integrating (2.26) vyith respect to k from 0 to CD gives 

(c.L Abramowitz' and Stegun 1968, formula 11 0[!-.12) 

27T 1 

i
m J (p)4 cos ('\ / "" . m I()) a.~ F'-' 

Sln y, 

00 5 

f f 1~4 b +~(k) 
m m 

elk, 

o o 

where 
1 

f =_2
4
exp(-i7T/8) r(~) r(m+~) 

m r (m+k) r (~) 

( ) An p/:cc pl(I~) and r' o_enotes the gamma function. fti:> ;:::-: y is single 

valued over C+, (4 0 11-) leads immediately to 

because 

1 
27T 

CD 

'~'E: cos m«p~~) = o(~-(p) 
i ... ,J m 
ID::::O 
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ill estimate of the shape of C+ is obtained from (1t-.6). 

5. ::tUJPROXD(JJ1'rE APPROACH - TWO FREQUENCIES 

A new -inversion procedure applicable to bodies of 

revolution and cylindrical bodies is presented. There are 

two significant improvements over the methods discussed in § ll-o 

Jhrst, the scattered field need only be observed for two 

closely spaced frequencies. Second, these frequencies can be 

high enough that spherical physical optics is appropriate, 

provided that the shape of the scattering body is suitable 

(i.e, it is such that there is little multiple scattering). 

In fact, the higher these frequencies are the more Qccurately 

can details of body shape be recovered. 

It is convenient to introduce the notation 

::= 

where v is any scalar function and }{ is any variable. 

113.) Bo~y of Revolu~ 

Consider a body of revolution whose axis coincides 

with the polar axis of the spherical coordinates introduced 

in § 2. Using these coordinates it can be seen that 

which implie,s that E(e,(p,k) is itself' independent of cp, so that 

all 2,vailable information is contained in E( e ~O ,k). 
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Values of k are chosen high enough ths,t the integrals 

in (2.15) can be evaluated usefully by stationary- phase. 

Because of (5.2), the integrals over ~I and e
l 
can be treated 

separately. It is convenient to deal with the former first. 

When ~ ::: 0, the phase of the integrand is stationary when 

I I ( 
~ ::: ° and ~ ::: rr. Proceeding in the usual way c.f. Jones 

196~, § 8.5), it is found from (2.15) and (2.18) that 

rr 

E(e,O,k) ;::::-(-i2krr/sin e)~ J (rl sin e)~ exp~i2krl cos2[(e-e)/2]~ del 

° rr 

- (i2krr/sin e)~ J (rl sin e)~ expli2kr/cos 2[(e+e)/2Jl del 

o 

The phases of the two integrands in PBS (5,,3) are stationary· 

when 
/ 

cos[(6:;e)/2] ::: ° 
and 

I I I / 

tan[(e::r-e)/2] ::: re(e,o)/r(e,o) (5.5) 

where the minus and plus signs apply to the first and second 

integrands respectively. Because the body is, by definition, 

I 
symmetrical about the polar axis, it is apparent that r e ::: ° 
when e ::: ° or e ::: rr (the surface of the body is e,ss1.uned to 

have no singularities at these points). Consequently, when 

e :::: ° or e ::: rr, both (5. 21-) and (5.5) give stationary phase 

points for both integrands at e ::: ° and 8 := rro IVhen 0 < e < 17, 

the only solution to (5.4-) which lies within the range [O~rr] 

of the integrands in (5.3) is 

8
1 

::: 17 - 8 ( 5 06) 

vrhich applies only to the second integrand. 
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It cannot be expected that useful results will be 

obtained from (5.3) when the surface of the body has 3uf:ficiently 

deep concavities that appreciable multiple scattering occurs, 

because (5.3) is based on physical optics which is not capable 

of predicting multiple scattering effects. Concavities in the 

body1s surface are related to the occurrence of multiple 

stationary phase points in the integrands on lUiS (5.3). It 

must be assumed that each L"Yltegrand possesses only one 

stationary phase point. The one for the first integrand is 

given by 

tan[ (e'- e) /2] " I f = re(e,O)/r(e,O) 

I 

which, it is assumed, has itself only one solution for 0 < e < 7T. 

The one for the second integrand is given by (5.6). It must 

I I 

be assumed that, 11'8(8,0)1 is never large enough that there is 

/ 

a solution to (5.5) for ° < e < 7T, when t~~ plus sign is taken. 

A recognisable reconstruction of the shape of the body can be 

obtained only 1ivhen it is such that our 'assumptions are valido 

, I I 

The recovel~ of r(e,O) from (5.3) is very similar to 

the recovery of p(~) from the equivalent equation for a 

cylindrical body, which is discussed in sub'-section (b) below', 

Since the illustrative examples which are presented in § 6 

concern cylindrical bodies, it seems better to give the 

detailed analysis in the following sub-section. 

Stationary phase points of the integrand in (2028) 
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ooour when 

and 

There is one solution to (5.8) / 
for 0 ~ cp ~ 21T; 

I 
cp ::; <p + 1T, 

For the same reasons as those previously given in the 

penul tiroate paragraph of sub-section (a) above, it must be 

assumed that there is only one solution to (509) for 

I o ~ cp ~ 27T. We say too t 

represents the solution to (5.9). It is oonvenient to define 

P i::; p(tjJ); ,. / ( ) p=p"tjJ. cpcp 

WL1en (5.9) through (5.12) are invoked, the stationar-y 

phase approximation to (2.28) reduces to tvro integrals 'whioh 

oorrespond, respeotively, to the first and second integrals 

on RHS (5.3). The usual technique (c.f. Jones 1964, § 8.5) 

gives 

1 1 

- 82 :B~(cp,k) ~ 22 
1 

+ [exp[i2kP COS2[(~'-~)/21lJ/~ - N)2 -, trcOS[(~-~)/2J 
(5013) 

Inspeotion of PJIS (5,13) reveals no obvious, direot 

way to recover p as a flULction of tjJ, and tjJ as a function of cp. 

However, the exponential is of modulus unity and, 17hioh is 
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more important, it is the only factor on mrs (5Q13) that depends 

on k. This suggests that the modulus of the partial derivative 

of E(ep,k) should be investigated with respect to k. After 

some algebraic manipulation it is f01.md from (5.9) and (5.-11) 

through (5.'13) that 

p I Ek «9 ,k) i 
12E(cp,k) - 11 

Suppose that E(ep,k) for two closely spaced wave numbers, (k-tS) 

and (k- S) say, are observed or are given. If S is small 

enough, it follo1,11S th8.t 

(5.15) 

and 

E(ep,k) ~ [E(ep,k+S) + E(ep,k-S)J/2 

to within some prescribed tolerance. 

The formula (5.14) can be 1oo}ced on as a differential 

equation for recovering p = p(</J) and </J ::= </J(ep). An initial 

condition is required to start the solution. Values of ep 

are looked for about which E(ep,k) is locally even, in the 

follo,ving sense. If ep is such a value of ep then 
o 

is smaller than some prescribed threshold over a range of (j" 

The width (extent, length, support) of this range is denoted 

by R. The value of ep fOr which R is greatest h9.S been chosen, 
a 

/ 

" and called q) • 
o 

It is pos tule.ted that for the point PEe 

whose angular coordinate is ~ , the centre of curvature lies 
o 
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/ 

on the line OF, or on its extension. This is equivalent to 

/ (1\ • 
assuming that p/,ql ) :::: 0, 

ql 0 

(5.11) and (5.12) gives 

,., 
t/J ::: ql when ql ::: ql • 

o 

which when combined with (5.9), 

This is sufficient to start a numerical solution to (5.11!-) 

for t/J ::: t/J(ql) and p ::: p(t/J). The latter describes the shape 

of the body, as the definitions (5.12) show. 

6 0 APPLICATIONS 

Examples of the reconstruction are presented, by the 

inversion procedure described. in § 5b, of the cross sections 

of the cylindrical bodiGS shown in Fig. 2. The scattered 

field.s, on which the inversion procedure operates, were computed 

using the rigorous null field methods, themselves developed 

in (I). 

In all examples € is given the value 

€ ::: O. 005 ( 6 • 1 ) 

where E: is introcluced in (5.15) and (50 '16). For a.ll the 

bodies sho·wll in :B'ig. 2 

~o :::: 0 (6.2) 

where $ is defined in the final pa.ragraph of 9 5. The 
o 

symmetries of all the bodies are such that one qua,rter of C 

completely defines the rest of it. Accordingly, reconstructeo. 

cross sections a.re shovm only for ~0 in the range [0 ,1T/2J -

note that this is equivalent to If; being restricted to the 

range [0,1T/2] , on account of the symmetries of the bodies and 
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the definition (5.11) of if; in terms of (P~ It is more graphic 

to relate the results to the vlavelength A. of the field, rather 

than to its wave nurrber k or its frequency. In terms of k, 

A. is wri tten as 

A. = 21T/k 

Since circular physical optics is exact for circular 

cylinders, such cylinders can be reconstructed perfectly. 

The greater the departure from circtuarity of the cross section 

of the body, the more difficult it is to reconstruct it 

accurately. Fig • .3a shows that elliptical cross sections of 

moderate ellipticity can be reconstructed almost perfectly, 

even when the wavelength is only a little less than the smallest 

linear dimension of the body_ Fig . .3b confirms that the error 

in reconstructing the cross section tends to increase with 

the ellipticity. 

The results presented in Fig. 4 illustrate two featu;ces 

of this (and any other, for that matter) reconstruction 

procedure. First, keeping constant the ratio of A. to the 

smallest linear cLimension of the body, the accuracy of 

reconstruction improves with ti1e smoothness of the cross 

section - note that the differences between the dashed and 

full curves tend to decrease in going from }1'igo 4c to Fig. Ll-b 

to Fig. 4a. The second feature is that the error in recon­

struction decreases with the ratio of· A. to the slilD.llest 

linear dimension - note the differences between the dotted, 

a_ashed and full curves in Fig. 4b, c . 
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The major probletl with all shape reconstruction 

procedures, whether rigorously based or approximate, is to 

reproduce accurately concavities in scattering bodies. The 

reconstruction errors associated with the dashed curve in 

Fig. 5 are appreciably greater than those associated with 

the dashed curve in fig. 4c, even though the wavelength 

is shorter for the former. Nevertheless, the reconstructions 

shovm in Fig. 5 are encouraging and seem to be improving 

with decreasing wavelength. It was found to be inconvenient 

to obtain results for values of a~ of, say, 5 or 10 because 

of restrictions within the computer program used for calc­

ulating the scattered field accurately by the null field 

method. 

The CPU time needed to compute e~ch of the reconstructed 

cross sections shown in Figs 3 through 5 was close to 53. 
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x 

x 

Figo 3 Reconstruction of the cross section of an elliptic cylinder 

(refer to Figo 2b) 

(a) b ::: 0.8a 

boundary curve C 

A reconstructed points when a :::: 1 .5A and a ::: 2A 

(b)b:::O.65a 

boundary curve G 

reconstruction of C when a ::: 2/\ 
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Fig. )+ Reconstruction of the cross section of a square cylLnder 

with rounded corners (refer to Fig. 2a) 

(a) t ::: 0.5a 

boundary curve C 

reconstruction of C when a ::: 2~ 

(b) t ::: o. 25a 

(c) t ::: 0 

..... ~ .. ..... , .... 

------ .... 

boundary curve C 

reconstruction of C when a ::: 1 o5~\' 

reconstruction of C when a ::: 2 f... 

boundary curve C 

reconstruction of C when a ::: 1 .511. 

reconstruction of C when a ::: 2/, 



---
t·········~·~ ---
1--- -----

o 

- - - - -

1 • 
I .: 
I : 

( :' 
I : 
I i 

I .: 
I : 
I .... 

I : 
I .: 
I i 
I : 

I : 
I .: 

I f 
I ; 

~-~, - ~ 

x 

Fig. 5 Reconstruction of the cross section of 9. cylinder 

with concavities (refer to Fig" 20) (t
1 

== 0.5a, 

t2 == 0.58,) 

boundary curve C 

reconstruction of C when 9. ::::; 2/1.. 

-------. reconstruction of C when a - 2·5/1.. 
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PART 3: CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER RESEARCH 

Unles3 ot~ler-,7ise specified all referenced equation, table 

and figure numbers refer only to those equations, tables 

and figL~es presented in this part 0 
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Numerical solutions of the direct end inverse scatterill.g 

problems by the use of the general null field method have been 

considered in this thesis. 

The investigation into the munerical solution of the ctirect 

scattering problem by the elliptic and spheroidal null field methods 

presented_ in §6 of Part 2, (I), shovlTS that these methods can handle 

bodies of any aspect ratio. The essential thing is to choose the 

pare,meters of the respective elliptic or spheroidal coordinates such 

that D occupies as much of D_ as possible or Ynull occupies as 
null 

much of y_ as possible. Vihen this is done the solutions are virtually 

ind_ependent of aspect ratio; and yet the orders of the matrices 

vlhich need to be inverted are as small as those previously reported 

in studies, by the circular and spherical null field methods, of 

bodies of small aspect ratio (c.f. Ng and Bates '1972, Bates and I'[ong 

197,11--)' It shoulCl_ be noted that the general null field approaoh is a 

generalisec1 systematio prooec1ure of the sort which Jones (1971 ... -8,) -

VJho examines the YTork of Schenck (-1967) and Ursell (1973) .:. suggests 

should be derivable from the extend.ed boundary condition. 

In (II) of Part 2, the null field approaoh has permitteCl_ the 

developr:lent of a formalism to evaluate the source density on, and the 

sca-;"tered field from, several interacting bodies. The signifioance 

of this method is that it ha;:; enabled the convenient use of multipole 



213· 

expansions for bodies of arbitrary shape - vihile still retaining all 

tha advantages of the general null field method. The munerical 

investigations carried out confirm the computational convenience and 

efficiency of the formulae for two interacting cylindrical bodies of 

similar and different shapes. 

In (III) of Part 2, the null field approach has been used to 

develop a generalisation of planar physical optics. }}'rom the numer­

ical investigations of the circular and elliptic physical optics it 

has been confirmed that these approximate methods can often yield 

recognisable estimates for the source density and the scattered field 

when the 'wavelengths are short enough compared with the linear 

o.imensions of the body. The improvement to generalised physical 

optics introduced in 9 3 of Part 2, (III), may be significant comput-· 

ationallY,on two counts. First, it is a step towards developing 

accurate methods which are much more efficient than the rigorously 

posed methods, and yet are straight-fornardly related to them theoretic­

aI1y (the ge ometric theory of diffraction is very powerful but it is 

usuaI1y extremely diffioult, in speoific oases, to determine the 

order of the o.ifferencesbetween it and exact theory). Second, H 

is the kind of approach from which may come useful a priori aSsess­

ments of the orders of the matrices vlhich must be inverted to solve 

particular direct scattering problems to required. accuracies - 8,S 

Jones (1974b) and Bates (1975b) point out, this is probably the 

outstanding computational problem for diffraction theorists. 

In (IV) of Part 2, the null field approach has been used to 

develop methods for solving the inverse scattering problem. The 
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method introduced in § 4 requires the scattered field to be knovm 

at all frequencies (this is similar to other methods reported in the 

literature .~ see Bates 196%, Lewis 1969). Any attempts to introduce 

modifications designed to permit limited scattering data to be used 

must overcome numerical instabilities noticed by Perry (1974). 

It is evirlent that the inversion procedure which is presented 

in § 5 and illustrated in 1} 6, both of Part 2, (IV), is a significant 

improvement on previously reported techniques because it requires 

only that scattering data be available at two closely spaced frequencies 

which are high enough that the .Ylavelengths are short compared with the 

linear dimensions of the scattering bOdy_ Even though the inversion 

procedure is based on the principle of stationary phase, and might 

therefore be expected to work satisfactorily for only very short 

wavelengths, the results presented in § 6 of Part 2, (IV), indice,te 

that useful results can be obtained when the wavelength is comparable 

"lith the smallest linear dimension of the scattering body. 

The formulae which are derived in § 5 of Part 2, (IV), are 

reminiscent of those reported by Keller (-1959) -, and later examined 

computationally by 'Neiss (1968) - v,ho based his arguments on classical 

geometrical optics, The lJBe of physical optics enables the handling 

of diffraction effects, which is not possible with methods based on 

geometrical optics. 

Although the spheroidal null field method has only been used 
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to treat totally reflecting bodies of oylindrical shape, it oan be 

used to treat totally reflecting bodies having large concavities by 

us ing a method devised by Bates and Wong (1974). In this paper they 

treat a totally-refleoting body of oomplicated shape by enclosing it 

I 

within a surfaoe S - whose interior is y':' - which has a simple shape 

and which is tangent· to S but does not cut itt. In the region contai.lied 

I 

bet·ween Sand S the field is expressed in suoh a way that the con-

ventional boundalJ conditions are satisfied on S, and equivalent 

surface sources are conveniently found on S~ The extended optical 

extinction theorem [see § 7 of Part 2, (I) ] is then sa~isfied within 

Y'~fI This procedure Call. be combined satisfactorily 'with the spherical 

I 

null field metho3., provided that the aspect ratio of S is not large 

(Bates and Wong 1974). It may be conjectured that if this procedure 

were combined vTith the spheroidal mLLl field method, it would be useful 

I 

whateve:c the aspect ratio of S. 

The spherical null field method applied via the multiple 

scattering body formalism of § 3(b) of Part 2, (II), could lead to a 

oonvenient and efficient numerical method for studying the mutua~ 

interaction of electrically thick dipole antennas. 

It may be possible to increase the efficiency of the improved 

physical optics [developed in § 3 of Part 2, (III) ] 0 In particular, 

asymptotic (for large k) estimates of integrals appearing in each 

<P •• I ,term in (3.5) of Part 2, (III), may significantly increase 
J,J,j.d .. 

the efficiency of the method over the accurate null fiel(1 methods 

developed in (I) of Part 2 without greatly decreasing the accuracy 

of the n:ethod. 

t See Fig. 1. 
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The improvement to the ane,lytic continuation method of Mittra 

and 'Hilton (-1969) proposed in § 2(b) of Part '1, (II), as a means of 

providing a rigorously b[~,secl and yet numerically efficient point­

matchLDg method, should provide incentive for developing nl~erical 

methods for finding the convex hull of the singularities of the 

analytic continuation of d- into Q __ 
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Fig. 1 Scattering body Ylith concavities enclosed by 

" / / sur'fs,ce S; region insic1e S u8110ted by y~. 



APPENDICES 

Unless othervfise specified all referenced equation, table and 

figure numbers refer only to those e(}uations, tables and 

figures presented in these appendices. 
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Q1QlEN'S FUNQTION EXPANSION IN THE SPHEROIDAL 

COORDINA'l'E SYS'I'EW3. 

In § § 3c and 5d of Part2, (I) the expansion of the free space 

dyadic Green's function for circularly symmetric fields is quoted; 

this e::-cpansion is derived here. The method of derivation is the 

Ra:Tleigh-Ohm technique as described by Tai (197-1). 

The analysis is restricted to the prolate spheroidal coordinate 

system for 1'ihich u
1 

and u
2 

become t; and TJ respectively. The coordinate 

u
3 

becomes the azimuthal angle <p. It is shovm how the analysis can be 

used to determine the dyadic Green's function expansion in the oblate 

sp~eroidal coordinate system. 

The vector wave functions M(P) (.) and NCP) (.) which are suitable 
-q -q 

for ~~ns prolate spheroidal coordinate system, vlhen the field is con-

strained to be circularly symmetric, are listed in Table 6 of Part 2, 

(I) • 

of <p 0 

It is noted that these vector wave functions are ina.ependent 

Hence for convenience they will be written as M
ep) (t;, TJ;K) 

-q 

and N(P) (I:: TJoK) for the 1rave number Ko _q '0,' 

Before deriving the dyadic Green's function expansion it is 

necessary to obtain two preliminary results. 

It is convenient to use the shorthano. notation 
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2.1. ( \ 
V (n) ::: ('I -n )2 8

1 
kd,T]) , 

q ,q 

17here the spheroidal V'lave functions and are defined 

in Table 6 of Part 2, (1). 

The ordinary differential equations that R(P) (.) and 8 C·) 
1,q 'I)q 

se,tisf'y, can then be written as (Vrait '1969) 

(l;2 -1) 
d 2 uC P) (l;) 

- [A. - k 2d 2l;2] U(P)(l;) 0 q ::: 

"T' 2 
. 1, q q 

Os 

2 cL 2V (T]) [ 222.) (1 -T]) 9. + A.1 - k d T] ] V (T] ::: 0 

dT] 
2 

,q q 

',7}o_ere l\ 1 is the angular separation constant nhich is chosen so that , , q 

8 (kd,-1)::: 8
1 

(kd,1), 
1, q , q 

The sphel'oidal angle f1..mc~cions can be shovm to satisfy the orthogonaJ_ity 

condition 

1 

J S 1, q(kd, T]) 

-1 

S (kd, T]) dT] ::: 8 ,Ii ' 
1, q qq ,q 

I is given by (:Flammer 1957 ehapter 3) 
'I, q 

I ::: I (kd) 
1,q 1,q 

co 
::: )" (d'1 q) 2 2(m+2)! 

L-.J m (2m+ 3)m! ' qEI1--> CXJ l 
E1:::0 

(1" 7) 

-,yhere here, and fOl' the rest of these Appendiees, the prime over the 

sUll'1lation sign indicates that only even values of mare includecl if 
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q is odd ana only odd values of El are included if q is even. 
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From the definitions of the vector wave functions [c.f 0 'l'able 

6 of Part 2 (I)lJ it follows that , , / 

rtt (1) (-i) 
'M (1:" ,n . K) .]\I C" n·k) dv = 0 i J',' ~-q '0,' -q _ '0, , I , 

J . 
qE fo-?coj (1 .8) 

y 

To show the orthoo"'onality of the N( 1) I \ wave functions it is -q \') 

convenient to define 

y 

In order to express the element of volume dv in terms of the prolate 

spheroidal coordinates, it is necessary to employ the appropriate 

forms for the metric coefficients h ,h and h. In terms of an element 
i; n <p 

of length dl, these are defined by 

2 2 2 2222222 
(al) = (ax) + (ay) + (dz) := h~ dl; + h an + h (1cp 

c; TJ <p 

17here 

, 1 '1 

r~2- 2]" d tS2- n2r: hi; := d '" 7) h
n 

::; 

[I; 2 - 1 ' 1 - 7) 2 

'1 

h ::; d[(1;2_ 1)(1- 7)2)J2 
<p 

and x, y 8.nd z are rectangular ce'.rtesian coordins,tes. The element of 

vohune can then be vrritten as 

Use of the definitions of the vector wave functions in Table 6 of 

Part 2, (I) enables (109) to be vT£itten as 

r The coefficients 
the equations 

f... is kno'i'm. 
1, q 

d 1 q which are functions of led can be determined via 
m (1.3) or (1.4) once the angular separation constant 



2rr 1 co 

I ,I (' ('j 
:;: I I 

J ,j 

o -1 1 

v (n) 
+ q 
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To simplify (1013) use is made of the following relationships obtained 

by integration by parts: 

i 

r dVq (TJ) 

J dTJ 
-'I 

1 

== j V (TJ) V 1(11) 
q q 

-1 

f
tc (1) ( 1) (. , 2 2 2) :;: - u (r;) u: (r;) '\"l,q - K dr; dl; 

q q 2 
1 (r; - 1) 

To obtain these relationslJ.ips use has been made of the differential 

ec:.~'3,tions (1.3) and (101.1-) and the prol)erties of the spheroidal wave 

functions (cof. Flammer 1957). Use of (1;14-.) and (1;'15) enables (1.13) 

to be reduced to 

rtf' () ) 
I ::: JJ.J ~q~ (r;,n;K)' ~~1 (r;,11;k) dv (1016) 

y 

It therefore is sufficient to consio.er only the orthogonality of the 

1i(1)(.) functions. 
-~o 
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EXEl-mination of the functional form of the M(1)(_) wave functions 
~q 

and use of (1.6) shows that I :::: 0 in (1016) unless q/:::: q) so it will 

be sufficient to consider (1016) when q :::: q. 

The prolate spheroidal wave functions can be expressed in terms 

of the spherical wave f1..llctions [these are listed in TEl-ble 8 of Part 

2, (I) ] (]11ammer 1957 chapter 5)t. 

ro I 

R~'l)(l(d,l;) S1' (Icd,n):::: '\' d
1q

( lCd) pi (cos e) -j1 (/~r), 
I , q , q L~ m 1 +m +m 

ID=O 

r > 0., 

Use of the definition of the M( 1) (.) wave functions enables 
q 

(1.17) to be substituted into (1016). Then on e1..-pandinr; the elemental 

volume in spherical coordinates (-1016) becomes 

1 
Pi (c os e) ::i 1 (I( r) ] +m +m 

00/ 

() d
1q

(kd) p11 (cos e) d 1 (kr)] r
2
sin e de dr Ckp 

L.-I m +ID +m 

The orthogonality of the associated Legendre functions (cof. IEorse and 

}~eshbach 1953 chapter '10) enables (1.18) to be reduced to 

co / OJ 

I 2'[f '\' d1<l(lCd) 0.'1 q(kd) 2 (m+2)! 

J .j (" r) . (kI') :::: / 

L--J m m (2m+3) m! 1 +m <11 +m 
m::::O 0 

The integral relationShip (c.fo 'l'yras 1969 chapter 1) 

2 
1T 

co 

. ! -jq(Kr) dq(I(~) 
o 

2 0 (r-~) 
I( die:::: 2 

r 

t The origin of the r,e,'{J and the l;,7),cp coordinate systems coincide. 

2 
r dr 

(-1.19) 

(1 020) 



when comb ined with (107) allov!s (-1.19) to be vlritten as 

It therefore follows from (1016) and (1021) that 

I l..' , ( .) 'I} I ~ .1-) :::: , 11, l;;l],K • M \>--,iJ,A dv J
rr II) (0\ 

JJ -q' -q ~ 

y 

ib) s\n Integral Id~ntit~ 

The integral 

o 

is evaluated here. In (102.3), g(/C) denotes an even analytic ftmction 

of K, i.eo g(-K) = g(K). 

The use of (Plammer 1957 ehe,pter Lf.) 

( 1) ( ) ·1 ( (3) ( ) - (1+) ( ) I R Kd,l;:::: "2 (R Kd,l; +.J:( kd,l; j 
m,n m,n m,n 

in (1023) allows the RHS of (-102.3) to be written as a sum of tvlO 

integrals. It is convenient to examine the integral involving 

R (.3) ( .) first; this integral is 
m,n 

OJ 

:::: ~ j_g(_K)_ 

o 
/ 

where it is assumed that l; > l;. With the change of variable 

( 1 .25) 



~ ) K ::: e /( and taldng note of the following [Meixner and Schafke (1954 

R (p) (lCde i7T ,I;) (p)( ~ i7T) 
:= R lCo.,l;e • 

miln. m~n . 

R (3) (Kd ~e i7T) ::: e -i7TR (4) (lCd,I;); 
m,n ,"" m,n 

R ( 1 ) (IC 0. I; e i7T ) := e i7TR ( 1) (lCd,l;) 
m,n ' , m,n 

(1.25) can be written as 

_ i. fO 
- 2 

-(Xl 

pE ! 1 -> 4l ; 

OX, 

Combining (1" 27) v7ith the second integral involving R~~~ (.) obtained 

from (1.23) by use of (1024) yields 

/ 

dlC, I; > t; 

-co 

The integral in (1.28) can be evaluated by allowing IC to take 

on complex values and integrating along the contour C of Fig. 1, in 

the /C--plane. Then the integrand has two poles in the complex K-plane 

B.t the points K ::: ± 1L If k has a non-zero negative imaginary part, 

I " t:;en k ::: k .- ik and the poles are found in the second and. fourth 

quadrants, as shown in Fig. 1" i%en the imaginary part vanishes, 

/I 

k ::: O. The poles then lie on the real axis, 8.nd the contour C must 

be indented above Ie ::: k and below K ::: -k. 

It is easy to sho'lT that the contribution from the large semi-
/ 

circle vanishes in the limit as its radius becomes infinite when l; > l;, 



225, 

aml the integral is equal to 27Ti times its residue at the pole /( ::: k. 

"n .: <::' R ( 1 ) ( d :) l' n ,Inen "" > "'" /( ''''' m,n 
(1023) is replaced by (1.24) and a similar 

proced1.U~e to the above is followed to evaluate the resulting integralQ 

Thus (1023) becomes 

I i7T 
g(k) R ( 1 ) (led ;) C~·) (1 ' '" I(!;)!;) ::: Rm, n \.<:d,!;) , !; > !; 

2k m,n ''''' 

C 1 029) 

i7T 
g(k) R (-1) (kd,!;) R (4) (kd Ii) '" ::: :; > l; 

2k m .. n m,n ' , 

_( c) D;Z~tdic Green IS FUllCtion E:x::e~ns ion 

The transverse part of the circularly symmetric dyadic Green's 

function satisfies a.n in...h.omogeneous vector Helmholtz equation of' the 

form 

The dya.dic ring f~~~ction 
t 
~ C·), -which is imlependent of <p, can be 

defined as a dyaa. which, when operating on any circularly symmetric 

vector field, say F(i, n), yields (on integrating over the!; and r/ 
coordinates) just the transverse part of KC!;,17) (Morse and Feshbach 

'1953 chapter 13). 

The cOldplehmess of the vector ',"iave flme cions :r./1 ) (.) and 
'-q 

(1) t !I
q 

(.) for circularly symmetric vector fields ensures that E (~) can 

be written as 

co 
.J._ I I 

~V(l;'17;!;'17) ::: 
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where the unknovm posterior functions A (.) and B (.) are to be 
~q ~q 

determined. By taking the anterior scalar product of (1.31) with 

M( 
1

) (.) (N( 1) (.))\ and integrating the resultant equation over y 
-q '-q 

the A (.) _~U1d B (.) are determined as a consequence of (1.8) and 
~q -q 

( 1 .22) to be 

(1032) 

:::;: (K)2 N(i)(~/ "K)/r 
rr -q ~,n, i,q 

The free space dyadic Green's function is assumed to be of 

the form 

co co 

G :::: (-).\. /' -- 0; M (s WK) M (s no/c) + t 1 K 2 ""-~1 1 [(1) (1) 'I 

rr f....... r q -q " -q " 
o q:=O 1,q 

By substitution of ,(1.33) and (-1.31) into (,! .30) and use of (1.8), 

(1022) and (1.32) the unknown functions IX and [3 can be dete:cmined as 
q q 

2 2 
IX :::: [3 ::: 1/(" ~ k ) (1.34) 

q q 

'l'he dependence on R
1
(i) i(Kd,s) R(i) (IC (1 'S/) of a dyad such 
,q+ 1,q+1 

as H ( 1) (s, n; K) r/ 1) (s'. n';K) can 'be written in an operational form 
-q -q' 

M(i)(s)n;K) M(1)(s:n
/
;K) :::: ~e [R(i) (Kd,s) R~1) (Kd,i)J, 

-q -q ::::q 1, q+1 I , q+1 

where T is some linear operator. _An opere,tional form of (1029), 
::::q 

vlith g(K) :::: K2, can then be vlritten as 



co 

r 
J 

2 
J( 

-irrk ( 1) ( . (4-\ I I 
::: -- M \ ;:: .7) • k) M' I (~ 77' k) _ 2 --q "" - , . -q '0,' , 

I 

1; > 1; 

I 

1; > 1; 

By repeating the same technique an operational integral relationship 

involving the N (~) functions can be obtained. Equation (1033) with -q 

0; an(1 [3 given by (1.34) can be simplified by use of the operational 
q q 

integral relationship (1.36), and the corresponding equation involving 

the N( 1) wave functions, to perform the J( integra.iioIl. The expa,nsion 
-q 

for the circularly symmetric free space dyadic Green's function can 

then be vIT'itten as 

/ / 

G(1;, 7];1;, 7]) 

co 
-ik '" 

= 2"17 L,., 
q:::O 

(1) (1,) I I .., 
N (1; 7]"k) N' ,- (<: 7]'k) ( 
-q " '-q S" >. J' 

I 

1; > l; 

/ 

T'he superscripts (1) and (4) are interchanged when 1; > 1;. 

The dyadic Green! s i'tmction expansion in terms of the oblate 

spheroidal "NaVe functions can be obtained in a manner identical to 

Cc:ce G,bov8. T:le forn of the expansion obtainell is the same as (1 oyl) 

but with 1; replaced by i1; and (1 replaced by -id in the arguments of 

the spheroidal functions. 
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I rm K 

Ie-plane 

+ o Ileal K 

+ 

c 

J'igo 1 Contour for eVEi,luB,tion of the int,3gral in (1 028) • 



APPENDIX 2: ZERO OIwBI{ l-'ARI'IAL VTAVE EXGITA'l'ION 
~==---=-=-____ ~_""-~~~~,.,,,_~'_~_~_ =="""""""'~~ _____ ~-____ ......,L=<=~ 

It is virtually impossible to arrange physical 

sources such tha,t (2.9) of Pa,rt 2, (IV) holds. However, 

it is possible to arrive at (2.9) of Part 2, (IV) by 

averaging over several incident fields. 

A convenient point within the source distribution 

producing the incident field is chosen as a local origin, 

denoted by O. 0 
o 0 

is placed at a Dlunber, l'T say, of) position.s 

t1 th "t' . - 1e n POSl lon lS denoted by 0 - a,ll of which are at 
on 

the same radial distance from the point 0 of Fig. 1 of 

Part 2, err). The same "aspect\! of the incident source 

distribution is always maintained, in the sense that the 

line 00 can be thought of as a rigid roo. glued into the 
0 

inciclent source dis trib ution, I'Thich is itself rigid. TIle 

rod 00 can be taken to possess a universal joint at 0, 
o 

thereby allov-ring ° to be moved to the points ° 
o on 

lNhen 0 is positioned at each of several of the 0 
o on 

we observe the number, N say, of scattered partial waves 
n 

I 

that are of significant amplitucle 0 N is used to den(J-~e the 

largest of the N . N is then chosen such that 
n 

N :::: N 

When 0 is at 0 the incident field iSl7ritten as 
o on 

\1' == i±' (r, e ,~ ,cp ,cp ,k) where () ana. cp are the angular' 
o 0 n" n n n 

coordinates of 0 ,in the spherical polar coordina.te system 
on 
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(with origin 0) introd.uced in § 2 of Part 2~ (IV). The 

definitions introduced in this Append.ix enSllre that the 

error in the approximate relation 

N 7T 2rr 
1 )' 11' 
N ,,--' 0 

n=1 

(1",0, lJ ,cp,cp , 
n n 

k) ~ 
4rr 

J r 11' (r,e,cp,k) . J 0 

o 0 

sinCe) dcp de 

(2.2) 

is of the same order as the sum of the scattered partial 

waves whose amplitudes are considered too small to be 

significant. Inspection of (202) of Part 2, (IV) indicates 

that 

7T 27T 

4~ J J l1'o(r,e,cp,k) sin ( e) d<p de = -ika (k);:i (kr) 
0,0 0 

o 0 

which is equivalent to (2.9) of Part 2, (IV). 

Vrn.en 0 is at 0 the scattered fielcL can be written 
o on 

as 11' = l1'(r,8,-8 ,cp,cp ,k). To the same level of approximation 
n n 

as before, 

CD 

'\' 
I 

t-..I 

f ::0 

it can be seen that 

J-

'" L 
j=··i 

N 

b~ (k) h (2) (kr) C. 
J,.o. J,.Q. 1. 

l1'(r,8,~ ,cp,cp ,k), 
n n 

plccos e) exp(ijep) 

PE y++ 

where the b~ (k), of which only N have significant amplitude, 
J ,). 

characterise the scattered field when the incident field is 

characterised by (209) of Part 2, (IV). 
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Some of the nw'Tlerical techniques used in tho numerical 

investigations discussed in Part 2 are outlinea .. 

The algorithms used to evaluate the Ylave functions appearing 

in the null field method forrrmlation play an important part in the 

effioiency of the method. Choice of algorithms that are aoourate, 

effioient and rapid is essential if the method is not to be degraded 

by excessive computation time - this is especially true for the 

elliptic and spheroidal null field methods. Some of the methods of 

achieving this are disoussed here. 

1\lany of these i7aVe functioI:S depend upon a parameter, called 

their inclez, order, or degree, and satisfy ,3, linear difference 

equat~Lon (or' recurrence relation) with respect to this parameter. 

Generally hypel~geometric or confluent hypergeometric functions satisfy 

suoh relationships - e.g. the spherical Bessel function of the first 

kind s8,tisfies 

-i 1 (x) 
"'m+" 

= -' I (x) + (2m+1). (x) 
jm-1 x -;]n 

Other fmlCtions, such as the ellipt ic cylinder or spheroidal 'wave 

functions, do not satisfy such recurrence relations. However, they 

may be expresseo. in terms of an infinite series of' circular cylinder 

(for elliptic) or spherical (for spheroidal) wave functions, and the 

coefficients of these series satisfy recurrence relationso 

In computing these functions (coefficients) the reC1.Jrrenoe 
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relations provide an important and pov,erful tool; 8,S, if values of 

the function (coefficient) are lenovm for two su_ccessive values of the 

parameter, say m, then the function (coefficient) may be computed 

for other values of rn by successive applications of the relation, 

Since generation is carried out perforce ,'lith rounded values, it is 

vi tal to know how errors may be propagated. If the errors relative 

to the function (coefficient) value do or do noJe grow, the process 

is said to be unstable or stable respectively. Stability of the 

recUTrence relation may depend on 

(i) the particular solution of the relation being computed 

(ii) the values of any other parameters appearing in the relation 

(iii) the direction in which the recurrence is being carried out, 

In actu;:cl calculations the two successive values of m for 

nhich the function (coefficient) is generally known (or can easily 

be calculated) are the lowest values of m'. It is therefore in the 

for,;,?,rd direction .- i. e 0 m increasing - that reCU:Cl~enee is generally 

ctesired. Functions such as the Bessel functions of the second lci..nd 

and Legendre functions cf the first kind are stable in the forward 

direction (Abramowitz and Stegun 1964, IntrOduction), However for 

many flIDctions (coefficients) the recurrence relation in unstable in 

the fOrYiRCQ Qir~ction. Blanch (-1964) has proposed u, method basecl on 

a continued fraction form of the recurrence relation that allo1;7s 

fo~\'ard recurrence to be effectively achieved. 

The routines used to evaluate the Bessel functions and elliptic 

cylinG_er ViB,ve fl:.llctions employed in t:1e circular and elliptic null 

field methods are modified versions of the routines viritten by Clemrn 
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(1909). Clemm uses the methodfJ discussed by Blanch (196LI-, 1966) in 

these routines. The modifications carried out on these routines 

'wore designed to increase efficiency and decrease computation time 

at the expense of some accuracy. 

All routines used to calculate the spherical and prolate 

spheroidal vvave functions were vv-.ri tten by the author of this thesis. 

The routines use the techniques discussed by Blanch (196Lf-) and the 

essential featm'es 0:;:' these methods applied to the functions will 

be briefly described here. 

Spherical Bessel functions of the first kind satisfy the 

recurrence relation (3.1); this relation is lli'1.stable in the:: forward 

direct.ion.. It cannot therefore be llsecl in -ellis form for c-omputing 

all spherical Bessel functions up to, say, 3
1
/.)' given 3

0
(.) amI 

.j 1 (.). There is an efficient continued. fraction, hO'ilever, which can 

be used. Using the definition 

G 
m 

equation (.3.1) may be revlritten as 

G == 1 / (2m+ 1 - G ) 
m x m~·1 

Clearly G also has the same form, but with Cm+1) replacing m. The 
m+1 

process may be continued to obtain 

G 
1 1 1 (3.4) _. 

2m+1_ 2m+) ... 2m+2k+1 m 
G ~Of)(ilOOO*,(>OQ000 

____ 0. 
X X x m+k+1 

-r[here the \"lel1 lmoym notation for continued fractions is employed. 
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For a particular x it can be shown, from the theory of continued 

fractions, that for the continued fraction (3.4) a k (such that 

mtk~1 ~ 1:1) can be found so that the "tail!! of (3.4) [i.e. the term 

G- 1 J can be estimated to any desired accuracy (Blanch 1964-). A 
m+xc+1 

stable procedure to use (3.3) can then be devised to determine all 

the G- Hithout loss of significant figures (Blanch 1964). Once these 
ill 

have been determined all the A (.) up to A (.) can be evaluated from 
"n -'m· 

the given j 0 ( .) Eilld j 1 ( • ) . 

As is mentioned in Appendix 1 vvi th reference to the equations 

satisfied by the prolate spheroidal wave functions, the angular 

separation constant Ai must be determined before the wave functions 
,q 

can be evaluated. It is kno-rm that there exists a countable set of 

values for "1 ,for every kd~ such that S1 (kd,7)) is periodic in 7) 
,q ,q 

and. of period 7T. A series expansion in terms of the associateo. 

Legendre functions can therefore be written for the 8
1 

(kd,7)) as 
,q 

'''[ith reference to this equation, the significance of the prime on 

the surmaation is discussecl in Appendix 1 
-1 q 

and the 0. ~ are the same as 
m 

t110se appearing in (1.7) of Appendix 1 . 

It is now shovm how a numerically efficient 8. nO. accurate 

procedure may be developed using the methods of Blanch ( 196LI-) to 

deterwine the )'1 and 0.1 q, Using the 
q ill 

where 0.
1 

q .- 0, for m' < 0 and defining 
ill 

coefficient ratios 

(3. 6) 



(2m+S) (2m+7) 
am - (m+4)(m+3)(kd)2 

m ;;: 0 

13 m = (m+1)(m+2) + 
2(m+1)(m+2) -3 (kd) 2 

(2m+1) (2m+S) 

m(m-1)(2m+5) (2m+7) 0' ::: m ~ 2 
TIl (2m-i) (2m+1) (m+4) (m+3) 

V
q 

::: a [Ai - 13 ] m m ,q m 
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m '" 0 

} (3-7) 

J 

it can be shown that the recurrence relation between the expansion 

coefficients d
1q 

can be written as (Flammer 1957) 
m 

and 

m "" 2 

m ?; 2 

Lim G
q 

::: 0 
m"" co m 

Every G-
q 

can be computed through (3.8) - (3.10), the "forward" 
m 

method, or else through (3.11) - U.12), the "backward'l process. In 

the fOr'Taro. algorithm, let G q be denoted by G q In the b,:w:;Cv{a,rd. 
m . m,'1 

scheme, let the corresDonding G·
g 

be denoted by G
q 

It can then be 
l m . m,2 

verified that an eigenvalue A mw,t satisfy the transcendental 
1, q 

equation 

T (A )::; G q ., - G q ::: 0, 
1q,r.l m,~ m,1 

~Hith regard to using a nwnerical process to solve U.13) for 1"'lq the 

question arises: at what m = In'l' say, shall the "chaining" (see 



Blanch '1964-) required in U.13) be made? Although in theory any m 

[subject to (3.13)J can be used, in practical computations when a 

finite number of significant figures is available it; is necessary to 

me some discrimination. The method described here ensures that m
A 
I 

is chosen so th8.t a numerically stable method of determining Ai 
,q 

resw,ts> 

The method of determining the eigenv8,lues 11.1 is to use some 
,q 

• ., \ 0 I- '\ • • • 
aI)prQ):lma-clon, say /\'1, q' '",0 /1. , and then to lmprove the approXllllatlon 

1, q 

by Newton's method. A set of G
q 

1 is computed from m:=2 to m
1

, through 
In, 

U.s) - U.'IO). Similarly the tail in (3.11) is computed for an 

appropriate value' of rn, say m~4 [this tail can be computed to any 

desired accuracy by choice of m'(. - see theorems in Blanch (1964-) J; 

and then successive G
q 

rJ are generatecl through (3.11) dorm to 111 :::: m'l. 
m,c:. 

'llne air;: is to choose m'
1 

so that the G
q 

1 can be generated without ill, 
103s of significant figures [for full details see Blanch (1964-)]0 

I~e\T.:;on' s method is then used on (3.13\) with this value of m • 
'I 

In 

2-ctU2-1 computation it VIas found that 8,n initial value A~1 == 0 and 

Ie 0 == A + 6 (where 6 is a small increment) was s uffic ient initial 
1,q+1 1,q 

dato, to determineA
1

, q to 15 3 ignificant figures in approxin18,tely Lf-

iterations. It is important to realise in this chaining process that 

ths 8,1;;orithm 8,utomatically chooses an m
1 

such that the determination 

of t.. is stable with respect to round-off error. 
1, q 

Once the t..1 have been determined (rememl)ering that the GCl 
,q m 

have been calculated on the way) the d
iq 

can be evaluated to one of 
m 

the st;andard normalisations (:::?lamDer 1957) from (3.6). When the 

1 r' 
d L: have been 8v.r;.luated £'01' a particular k(l the spheroidal ,'{ave 

D 



func+:ions cem be generated rapidly using the appropriate formulae 

as listed in hjo:cse and Feshbach (1953 chapter 11), Neixner and Schiifke 

(19%.) and Flammer (1957) D 
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