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MATHEMATICAL SYMBOLS, NOTATIONS AND ABBREVIATIONS

(This does not include those defined in the text.)
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ABSTRACT

The diffraction of both scalar and veétor monochromatic waves
by totally-reflecting bodies is considered from a computational
viewpoint. Both direct and inverse scattering are covered. By
invoking the optical extinction theorem (extended boundary condition)
the conventional singular integral equation (for the density of
reradiating sources existingvin the surface of the scattering body)
is transformed into infinite sets of non-singular integrai equations
~ called the null field equations. There is a set corresponding to
each separable coordinate system. Eaéh set can be used to compute
the scattering from bodies of arbitrary shape but each is most approp-
riate for particular types of body shape, as is confirmed by compub-

ational results.

The»general null field is extended to apply to multiple
scattering bodies. This permits use of multipole expansionsvin a
computétionally convenient manner, for arbitrary numbers of Separateﬂ,
interacting bodies of arbitrary shape. The method is numerically

investigated for pairs of elliptical and square cylinders.

A generalisation of the Kirchoff, or physical optics, approach
to diffraction theory is developed from the géneral null field method.
Corresponding to each particular null field method is a physical optics
approximation, which becomes exact when one of the coordinates being
used is constant over the surface of the scattering body. Numerical
results are presented showing the importance of choosing the physical

optics approximation most appropriate for the scattering body concerned.
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Generalised physical optics 1s used to develop two inversion
procedures to solve the inversé scattering problem for totally-
reflecting bodies. One is similar o conventional methods based on
planar physical optics end, like them, requires scattering data at
all frequencies. The other enables shapes of certain bodies of revol-
ution and cyliﬁdrical bodies to be reconstructed from scattered fields
observed at two closely spaced frequencies. Computational results
which confirm the potential ﬁsefulness of the latter method are

presented.



PREFACE

This thesis is concerned with the treatment, from a
computational viewpoint, of the diffraction of waves by totally-
reflecting bodies. "The computational method considered is the
"null field method" which is a development of a technique
based on what has been variously called the "field equivalence
principle", the "optical extinction theorem" and the "extended
boundary condition". Scalar (acoustic) and vector (electro-
magnetic) waves are considered. Both direct and inverse

scattering are covered.

The direct scattering problem involves calculating
the scattered field, given the field incident uponba body
of known constitution and lqcation, Solutions to this problem
are straightforward in principle = they can be formulated
without difficulty and programmed for a digital computex.
However, asjemphasise& in two recent reviews (Jones 1974b,
Bates 197550, there is no shortage of computational pitfallsa‘
We assert that, of the many available techniques, the null
field method is perhaps the most promising because of two
of its propertieéa First, the solutions are necessafily
unique; the complementary problem (that of the cavity.
resonances internal to the scattering body) is automatically
decoupled from the problem of iﬁterest (the exterior scattering

problem) - other methods have %o be specially adapted to ensure



2o

this. The second property stems from the regularity of the
kernels of the null field integral equationé (the conventional
integral equations have singuler kernels) - it is ﬁsually easy
to expand the wave functions in terms of any desired basis
functions, so that the latter can be chosen for computational,

rather than analytic, convenlenceo.

The inverse scattering problem involves calculating
the shape of the body, given the incident field and the
scattered far field (i.e. the asymptotic, or Fraunhofer,
form of the scattered far field). This is a much more demand-
ing problem than the direct scattering one and new approaches
nust always be welcome. It is shown in this thesis that it
is possible to develop a new approximate approach to inverse

scattering via the null field formulatiocne

This thesis consists of three parts. Part 1 is
introductory. New results are presented in Part 2, and
Part 3 contains conclusions and suggestions for further

regsearch.

Up to the present, in the nuli field methods that are
based on Waterman's (1965) formulation, the extended boundary
condition is satisfied explicitly within the circle (for two-
dimeﬁsional problems) or the sphere (for three-dimensional problems)
inscribing the scattering body. Although such "circular" and
"spherical" null field methods are theoretically sound, they tend

to be unstable numerically when the body has s large aspect ratio.



In (I) of Part 2,Waterman's formulation is generalised'to satisfy
the extended boundary condition explicitly within the ellipse (for
two-dimensional problems) or the spheroid (for three-dimensional
problems) inscribing the body. It is shown that this allows

rapid numerical convergence to be obtained, in situations where

the circular and spherical null field methods lead to computational

instabilities.

The calculation of multiple scattering by closely spaced
bodies tends to be demanding of computer storage and time, which
may account for the several iterative techniques which have been
suggested. In (II) of Part 2 it is shown that the null field
method leads to efficient, direct computation of the simultaneous

scattering from several cylinders of arbitrary cross section.

Numerical algorithms based on exact solutions to direct
scattering problems become computationally expensive if the
dimensions of the scattering bodiés are large compared with the
wavelength, when it becomes appropriate to use approximate techniQues
such as the "geometrical theory of diffraction" and "physical
optics". The term "physical optics" is used in +this thesis td
describe the approximate techniques based on Kirchoff's approach
to diffraction (c.f. Bouwkamp 1954) ~ the reradiating sources
induced at each point on the surface of the body are assumed to
be identical to those which would be induced, at the same point,
on an infinite totally-reflecting plane tangent to the point.

The term "planar physical optics" is used to describe this con-
ventional Kirchoff approach, because it is exact when the body is

infinite and flat. In (III) of Part 2, “circular physical optics",



"elliptic physical optics", "spherical physical optics" etc. are
developed. These approximations become exact when the body is a

circular cylinder, elliptic cylinder, sphere etc.

'The inverse scattering problem is much more demanding
computationally than the direct scattering problém, as is evinced
by certain analytic continuation techniques which seem to be the
only knowm, exéct (in principle) means of treating inverse scattering.
Approximate, computationally efficient methods based on geometrical
optics and planar physical optics have been used with some success
for certain simple scattering bodies. (IV) of Part 2 contains
. a new approximate approach to inverse scattering, based on the.

extensions of physical optics developed in (III) of Part 2.

As considerable time has been spent in presenting the
research results pertinent to this thesis in a form sultable for
publication as a series of papers (Bates and Wall 1976 a,b,c,d) -
see end of Preface ~ these papers are presented in a virtually

unaltered form in Part 2 of this thesis.

A1l numerical calculations performed to obtain the results
presented in this thesis utilised computer programs written in the
FORTRAN IV language and were executed on.the Boroughs B6718 digital
computer (48 bit word) at the University of Canterbury. All the
computer programs used were either written by the éuthorg or
modified from published algorithms. Some of the numerical techniques

utilised in the computer programs are discussed in Appendix 3.
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A1l the results reported in Part 2 of this thesis are solely

the saubthor's work, with the exception of those items listed below.

Part 2, (I)

At Professor R.H.T. Bates'! suggestion and in conjunction with
him, the elliptic null field method and spheroidal null field
- methods, which were formulated by the author, were extended to

obtain the general null field formulation presented in § 3.

P.art 2, (I1)

| At Prof. Bates' suggestion.and in conjunction with him the
circular and elliptic null field methods applicable to multiple
scatterihg bodies, which were formulated by the author, were
extended to obtain the formalism gpplicable for general null field

methods, as presented in § 3.

Part 2, (III)

The formulatidns presented in this sebtion are based on
previous work of Prof. Bates (1968, 1973) who obtained the
approximationé applicable to the circular null field method.A In
conjunction with Prof. Bates the author extended this approximate
approach to apply to general null field methods. § 4, which shows
how the scattered field gaﬁisfies the extinction theorem within the

scattering body, is due to Prof. Bates.

Part 2, (IV)
The formulations presented in this paper are based on

previous work of Prof. Bates (1973). In conjunction with him



this iniﬁial work has been improved upon to obtain the)two methods
of reconstructing the scattering body surface reported in §8 &

and 5. The method of determining the minimum radius for which the
multipole exﬁansion of the scattered field is uniformly convergent,

as presented in B3, is due tvo Prof. Bates.

The following papers have been produced during the course

of this research:

Wall, DedoNo 1975 "Surface currents on perfectly conducting elliptic
cylinders", IBEEE Trans. Antennaé and Propagat. AP=-23, 301-302.
Bates, ReH.To and Wall, DsJ.N. 1976 "Chandrasekhar transformations
~ improve convergence of scattering from linéarly stratified
media", IEEE Trans. Antennas and Propagat. (to appear).
Bates, R.H.T. and Wall, D.J.N. 1976 "Null field approach to direct

and inverse scattering:

(I) The general method a.
(II) Multiple scattering bodies b.
(III) New approximations of the Kirchoff type c.
»(IV) Inverse methods da

submitted to Roysl Society (London). .



PART 1:¢ INTRODUCTION AND 'LITERATURE REVIEW

FOR DIRECT SCATTERING

Unless otherwise specified all referenced equation, table snd
figure numbers refer only to those equations, tables and figures

presented in this part.



PART 1. I3 INTRODUCTION AND NOTATION

The notation used throughout this thesis and the fundamental

equations describing the scattering phenomena are introduced.

1. INTRODUCTION

This thesis is concerned with the treatment of the diffraction
of harmonic waves by totally-reflecting solid bodies. The results
presented apply to small amplitude acoustic fields and to electro=

magnetic fields.

. (8) Acoustical Equations

If the medium surrounding the scattering body is a gas with
neglible viscosity , in which small perturbations from the rest
condition occur, the equations that describe the motion of the ges

at all ordinary points in space are Newton's equation

51 g—;-vla (1.1)

ap _ _ 2
5t =~ %0 V¥ (1.2)
where
5 :
¢” =up, /5, (1.3)

In the above equationsi&o and p, are the density and pressure
respectively of the gas at rest, x is the ratio of the specific heat

at constant pressure to that at constant volume, v is the gas particle



velocity, p is the excess pressure (i.e. the difference between the
actual pressure and Po) and t is the time. It is convenient to

introduce a velocity potential ¥ so that
W =v (1.4)
(1.1) then becomes

ov '
p:”’605'%- ) (1«5)

For harmonic waves with time dependence exp(iwt), where w is

the angular frequency, (1.1), (1.2) and (1.5) become:

i
Vv = —— VP
= 7 wd,
i 2
p=_—-06c"Vy (1.6)
P =—:'Lw60\11 ;\ St

Totally-reflecting acoustic scattering bodies are either
sound-hard (in which case the component of v normal to the surface
of the scattering body is zero) or sound-soft (in which case the

excess pressure p is zero on the surface of the scattering body).

(b) Electromagnetic Equations

The electromagnetic field at a time t and at any ordinary
point in a linear, homogensous and isotropic medium is described by
the Maxwell equations:

vxg=—ug—% VIH=J+€ & (1.7)

V-E = gk V-H =0 (1.8)

These equations govern the behaviour of the electric field E and the



magnetic field H, both produced by the current density J, at points
in the space with electric permittivity € and magnetic permeability p.
The current density J is related to the charge density q by the

continuity equation

(e}

9

Vg = = o2 v(1e9)

jey
QO

For harmonic waves with time dependence exp(iwt), (1.7)
become
VXE=-iwp H VXH=J + 4w & (1.10)
Totally-reflecting electromagnetic scattering bodies have
perfectly conducting surfaces (in which case the component of B

tengential to the surface of the scattering body is zero).

2. NOTATION

As indicated in Fig. 1, three—dimensionai space (denoted by y)

is partitioned according to
y~y-UsUy, », (2.1)

. where Y_ and y+, respectively, are the regions inside and outside
the closed surface S of a totally reflecting body. Arbitrary points
in ¥ and on S are denoted by P an.d-Plrespectively° With respect
to the point O, which lies in y., the position vectors of P and P/
are r and(g’respectivelya The unit vector é'is the outward normal
to § at P. Cartesian coordinates (x,y,2) and orthogonal curvilinear
coordinates (u1,u ,u_) are set up with O as origin; u1 is a radial

2" 3

type of coordinate, u, is an angular itype of coordinate, and u_ is

2 3.

either the same as z (for cylindrical coordinate systems) or is
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an angulsr type of coordinate (for rotational coordinate systems) .

The surfaces %L_ and Z,, on which u is constant, inscribe and circum—

1
scribe S . in the sense that they are tangent to it but do not cut it.
Y pull and y,, are defined as

3% ~ region inside I

null (2.2)

Y4+ ~ reglon outside 3.
The remaining parts of y_ and vy, are y_, end y,.- respectively,'aS»is
indicated in Fig. 1. Thé values of u/l on 2+ and X_ are denoted by
Wy e and u, hin respectively. It is necessary to partition S

+
when considering the behaviour of fields in y_,_ end y,.. S_(u1) is

defined from
S (w,), uw > u

o / E

s~8 (w)ust), Pe T T (2.3)
1 1 s(w), u <u

177 71 T
- . + .

Note that S (u1) is empty wﬁen a, > <u1)max’ and S (u1) is empty

)

when u < (u

1 1 min’

Monochromatic (angulér frequency w, wavelength K, wave number
=k = 2r/A) impressed sources exist within tﬁe region y, C ¥y, .-
These sources radiate an incident field a&, either scalar or vector,
which impinges on the body inducing equivalent sources in 3 that

'reradiate the scattered field F. All sources and fields are taken
to be complex fupctions of space, with the time factor exp(iwt)
suppressed. There is no need to make a formal distinction between
scattering and antenna problems, but it is Worth_remembering that
Y, 1s usually far‘from y.. Tor the former and is always near to y._

for the latter.

Those fields whose propagation is governed by the Helmholtz
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equation+

vzéﬂukz'} = - (2.4)

are considered, where o is the source density at PC In the scalar
case ¥ reduces to the velocity potential ¥, and in the vector case
& reduces to either the electric field E or the magnetic field H.
Later, a double-headed arrow -~ is used to denote "reduces to",
Note that, in this thesis, symbols representing vector quantities
are indicated by a single underlining. Symbols refresentingvdyadio

guantities are indicated by a double underlining.

The scattered field at P can be written as (Morse and Ingard

1968 §7.1, Jones 1964 §1.26)

'}=AU/3’5 dS} (2.5)
s | |

where A is the appropriate operator and g is the scalar free-space

Green's function:

g = g(kR) = [exp(-ikR)]/umR (2.6)
where R is the distance from P to ?:

R = Ir - 7l (2.7)

It should be noted that the integral representation (2.5) ensures
that the Sommerfeld radistion condition, for scalar fields, and the
corresponding vector radiation condition for vector fields (Jones

196 §1.27), is automatically satisfied.
As many previous investigators have found, it is often useful

and instructive to treat cylindrical scattering bodies, of infinite

length but of arbitrary cross section. When aﬁbf/éz = 0, all sourices

1 This equation can be obtained from the harmonic equations in§§1a andr'lb .
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and fields are independent of z; and the explicit dimension of all.

- quantities of interest decreases by one, when compared with the
general case. It is sufficient to examine ¥ within Q, which is the
infinite plane z = 0, and ¥ on C, which is the closed curve formed
when ) cuts S. Table 1 compares gquantities appropriate for scattering
bodies of arbitrary shape and cylindrical scattering bodies = the
table also serves to define quantities not previously discussed in

the text. The explicit functiénal dependencerof fields and sources

is indicated - note that C is used to denote both the curve and
distance along it, measured anti~clockwise from the outermost inter-

section of C with the x-axis.

.The forms assumed by ¥ and A for the scalar and vector cases
are now listed. The form of & is included for completeness, even
though in the analysis it is convenient to treat o as an independent,
initially unknown, function of either r, and 7, or C (see Table 1.

1

(a) Scalar Field and Sound-Soft Body _

F s ¥, A=-1, T s Lim (¥ +¥)/on (2.8)
PP

where the n-direction is parallel to the n~direction, but the operator
9/on is applied to fields at P, whereas the operator a/bn/is applied

to fields at P

(b) Scalar Field and Sound-Hard Body

$os U, A=-8/0n, &> Lin (¥, + V) (2.9)
P-P

" where, in both (2.8) and (2.9), ¥, is the scalar form of % .
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(¢) Vector Field

The source density 1s the surface current density QS:

T o> Jd =Limn X (H + H). (2.10)
=5 = o =
PsP

where H, is the magnetic field associated with Bba There are {two

alternative forms for % and A:
5 ,
¥ B, A =-i[W- 4 KJe (2.11)
$os H, A =V X ‘ (2.12)

o

Tt is worth recalling that E and H are interconnected via the Maxwell
equations (1.10), where in this case p and € become respectively the

permeability p, and permittivity € of free space.

(d) Special Notation

An electromagnetic field can alweys be decomposed into two
independent fields (c.f. Jones 1964 §1.10) in each of.which either
H or E has no component parallel to a particular coordinate direction,
which in this thesis is always taken 4o be the g-direction. Therefore
the notation

E-polarised field Hz =0

(2.13)

H-polarised field E, =0

is used. It is worth noting that E-polarised and H-polarised fields
are sometimes called TM (transverse magnetic) and TE (transverse

electric) respectively.

There is an equivalent multipole expansion for g in each of

the separable coordinate systems (c.f. Morse and Feshbach 1953



1h.
chapters 7 and 11):

Z Z (2)(11 k) 4 5 (uq, k) Y (uz,ujsk) Yj’z(uésu;,k)a

£=0 3~=£
u, z U (2.14)

A
where the c, are normalising constants and h<2)(~) and. g, (o) are
NEP2 ’ Jdat NEY

those independent solutions, to the radial part of the scalar Helm-
holtz equation, corresponding respectively to waves ﬁhich are out-
going at infinity and wavéé which are regular at fhe origin of
coordinates. The radial solutions in the spherical coordinate system
are independent of the subscript j, as is discussed further in § 5¢
of Part 2, (I). The functions §j l(') are regular solutions of the

2

part of the Helmholtz equation which remeins after the radial part

~(2)

has been separated out. When u1 > u1, the argument of h beccmes
,
u;,k and the argument of gj l'becomes u1,k. The way in which Yo and
?

ﬁb are defined ensures that the latter can be written as

o L . | 7
3’0=ZZC. &. /’\. (u:k)Y. (U-,u

X P .
dsh Js,QGJ:!LA 1 Jsg 2 3’{)’ E“:y_-_ (2 15)

vhere the Qj . are appropriate scalar or vector expansion coefficients.
3

A finite set of integers is denoted by

{1, » I3~ {1 ,I +1, I + S 123 (2.16)

1 2 127 772
where I, and. 12 are integers, with I2 > 119 {IZ - 11} are defined
to be the null set unless I2 = 11o

(e) Particular Notation for Cylindrical Bodies

When the scattering body is cylindrical and the fields exhibit
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no variation in the z-direction, only one angular coordinate enters
into the functional dependence of the wave functions. So, the two
integer~indices j and [ can be replaced by a single one, m say. The
wave functions are either evén (denoted by the superscript e) or odd
(denoted by the superscript 6) about any suitable datum, which is

N
chosen to be the x-axis. Consequently, Yj l(uo,u ,k) is replaced by

se "0 ?
Ym(uz,k) or Ym(u2,k). To accord more closely with conventional
notation for wave functions appropriate to cylindrical coordinate
A .
systems, the symbols gj 4 and hg?z - which accord with conventional
. 3 3 .

A
notation for rotational coordinate systems - are replaced by Jm and
~(2) . . . r (2
Hm . Using the symbol W to denote either J or H' ’, it should be
noted that, in general, there must be a'W;(u1,k) and a'W;(u1,k). It
is convenient to have a notation which represents both even and odd

‘wave functions, taken eilther together or separately. When a quantity

such as Xy is used, this means

either Xp = Xm + Xm (2.17)
either Xe
-C_)EE: Xm = ICI)I (2018)
or X
m

Note that Xm>represents a wave function (or a product of wave functions)

multiplied by an appropriate expansion coefficient.



Table 1.

bodies and cylindrical scattering bodies.

16.

Quantities appropriate for arbitrary scattering

Note

that not all circumflex accents introduced in

this thesis denote unit vectors, but only those

which surmount symbols that are underlined.

/
Regions of space Ys Yoo Yas Yoo ynull Q, Qo, Qus Q- Qnull
L ‘ o 3 C~S8SNQ
Boundaries Sy B, T, T,
u1,u2,u3 u1,u2,z
Coordinates T1’ 72 which ere
orthogonal parametric

coordinates lying in S

Unit vectors

Any vector symbol (underlined) surmounted by

° A N
a circumflex accent, e.g. n, X

Fields '3“ = '3’ (U.1 )u2’u3) % o= ?(u'l Duz)
Source densities | ¢ = @”(T19 72) &= ()
(-3 52 ()
) "Hankel function of
Green's functions lexp(~ikR) ] /4R

second kind of zero

order"
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Fig. 1 Cross section of a three-dimensional scattering bod&
showing a Cartesian coofdinate system and a general
orthogonal curvilinear coordinate system. In %he
Cartesian coordinate system the ZNaXié is perpendicular

to, and directed out of the page.
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PART 1. IIs RREVIEJ OF NUMBRICAL METHODS FOR THE SOLUTION

OF THE DIRECT SCATTERING PROBLEM

A survey is presented of the various numerical methods used
to calculate the field surrbunding a scattering body, when the
characteristic dimension of the body is less than or of the order of

the wavelength.

Recent reviews of the current numerical methods for the solution
of the direct scattering problem have bheen giveﬁ by Poggio and Miller
(1973), Jones (1974b)and Bates (1975b). Some of the major, and, in
the author's opinion, most profitable numerical techniques are reviewed

here.

Reviews of the various analytical approaches to the direct
scattering problem are given by Jones (1954) end Bowman, Senior and

Uslenghi (1969, chapter 1).

1. DIFFERENTIAL EQUATION APPROACH
In these methods the scattering‘problem is formulated in
terms of differential equations, and these equations are then solved

numerically.

(a) Finite Difference and Finite Element Methods

The finite difference method (Forsythe and Wasow 1960) is

perhaps the oldest and most commonly used technique for the solution
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of boundary-value problems (Davies 1972, Silvester and Csendes 197L.,

Ng 1974) .

In this method the solution to the scattering problemiis obtained
by replacing the Helmholtz equation (2.4) of (I), by a linear system
of algebraic equations. This is achleved by approximating ¥ at a net-
work of discrete points throughout Yy and then replacing the
Laplacian operator, in (2.4) of (I)) by one of its difference approx-
imations. The solution of the system of algebraic equations so
obtainsd is straightforward, since the resultant matrix is sparse.
An equivalent approach is to use a variational technique to reformulate
(2.4) of (I) prior to discretising the problem (Varga 1962) . One
advantege of formulating via the variational expression is that it
brings close together the finite difference and finite element tech-
niques. The finite element technique (Zienkiewicz 1971, Silvester 1969),
an alternative and almos+t parallel approach to finite differences, uses

U

a continuous piecewise linear approximation' for ¥ in the variational
expression, instead of the point representation of the latter.

Although both of thesé methods are useful for the finite domain

problems = e.g. wave gulde transmission - they have been found generally

unsuitable for the exterior harmonic scattering problem because of the

difficulty in enforcing the radiation condition on ¥ (c.f. Jones 1974b)

(b) State-Space Formulation

This method may be considered as a combination of the differ-
entisl and series (see §2) approaches. It is discussed here as it

requires numerical solution of a system of differential equations.

T A piecewise polﬁomial epproximation to 3 is also often used.
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This technique has been used to calculate the wave scattering
from a penetrable body by Vincent and Petit (1972) and Hizal and
Tosun (1973). It has also been used to calculate the wave scattering

from a totally reflecting grating (Neviere, Cadilhac and Petit 1973).

The formulation discussed here is based on the work of Hizal
(1974) and is applicable to bodies that are volumes of revolution.
Tn this case suitable coordinate systems are those possessing rotational
symmetry, such as the spheroidal and spherical coordinates; For these
coordinates u3 becomes the azimuthal angular coordinate @J For
simplicity, only the scalar sound-hard case is considered, although
the scalar sound-soft and the electromagnetic oaées can be developed

using similar procedures.

Taking note of (2.5), (2.9), (2.14) and (2.15) all of (I), the
total field can be written as

® L
bt 53 e B e

1=0 j:—],

[Bn’l<u1) + ] (j/ (L‘L ’k)} 3 l(uzaq)ak)
(1.1)

+
when yq is located outside E . The BT (.) in (101) are

B (u)— / é}“v‘[w (u ,k) Ya,i(u, J)l.n%as (1.2)
S"(u1)
whers

PTAR B W :'g(z) - (1.3)
The vector surface element n 7ds for a surface of revolution can be
written as

A

B/ds = é’(u; ’ulz) d(P/ dulz ‘ (101-{-)
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where é(u;9u;) can be found for any particular coordinate system

(cmfe Moon and Spencer 1961 :chapter 1). For a surface of revolution,
+ )
S7(+) is independent of ¢-. Therefore with the use of the formula

F(x)

g:x/ £(x) ax = £(F) %‘ ~ £(D) % (1.5)

D(x)
(1.2) can be converted into an infinite set of first order differential

equations of the form

. M(u )y
a .

o 3\
o 85, () ZU)

1

a4 23‘{)31()} A(u 9u) d‘P}

/2w
dup J v u, ,k Y
{d‘ﬂ A [W h : = [u,(u )]

lefosmw}, jc{-254} (1.6)

where m = 152 ccecocacos M(u1), and M(uz) is the order of the angular
multiplicity of the surface; e.g. in Fig. 1(a) and 1(b), M(u1) =8
and 4, respectively. In (1.6) [uz(u1)]m is the value taken by u, at

4

»uhe mth intersection of the curve uy = constant with the generatrix of
S [see Fig. 1(a) and (b)].‘ It is assumed that the origin of coordinates
is chosen such that é(u1,u2) ggf is never singular [cases where this
factor is singular are treated by Hizal (197, § 2.2)]. The state space
equations may now be obtained by substituting (1.1) into (1.6) with use

of (2.9) of (I); the result is:

o
at (v) [
—dat 1 "Z Z °a§z’ N a,ﬂ!(“)

1 =0 j%
. B, + Q, )]
* SJ,J,’JL,JL’( S Y |
w ! Lefo>w}, j€ {-2-21
a” (u,) < [ - +
= s.t., BT (u |
@J’E ! Z Z Ca Uar 3500 " 1) (1.7)
1 10 je=g’

. , (B, .+ @G, ,)]
* SjsJ/:£3f_ ( Jo 3oy
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where
2
- +
- du - n
s ., =~ 2 Vv, k 1 .
3 d5ast Z ( 0" { f W5 ) Yy, (] e 8 u)
. 0
T (u,¢hk) o, (u k) aq;} (1.8)
Jsg” 2 Jsa A [u (u )]

The boundary values associated with (1.7) are

BY (u ) =0 u, < ‘u1m _

oy i tefosm}, j€ {-4s4}
:0 ! !

J,i(u ) u1 z Y max (1.9)

The boundary values (1.9) are sufficient to solve {1.7) as a two point

boundary value problem.

The state space equations (1.7) are of infinite order, and %o
develop numerical solutions to these equations they must be truncated.
The number of eguations retained is dependent upon the ratio of a
characteristic dimension of the scattering body to the incident wave-
length. The method is of interest as it replacés the numerical
integration of surface integrals and numerical in%ersions associated
with most other techniqueé, by numerical integration of a system of
first order linear differential equations in State space form. The
computer time is proportional to the difference | u1 max u1 ;in!’

which shows that the coordinate system which minimises this difference

should be chosen.

A disadvantage of this method is that the resulting two point-
boundary value problem may pose more difficulties than those assoclated
with other techniques unless (1.7) caen be converted into an initial

“ value problem.
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2. MODAL FIELD EXPANSIONS OR THE SERIES APPROACH

In this approach Q+ is divided into a number of sub-regions,
and within each sub-region the scattered wave & is expanded in a |
series of wave functions which are proper solutions of the Helmholtsz
equation (2.4) of (I). The initially unknown constant coefficients,
by which each of the wave functions is multiplied, are then determined
by a systematic application of the boundary conditions existing
between the sub-regions and on the surface of the scattering body.

-Of fundamental importance in this approach is the Rayleigh hypothesis.

For simplicity and clarity in this sub-section the analysis is
restricte&.to fields which vary only in two dimensions; c¢ylindrical
bodies of arbitrary cross—section are therefore considered. To
further reduce complexity, only the sound—aoft:cylindrical body or
E-polarised electromagnetic fields incident upon a perfectly conducting
cylindrical body are examined. The boundary condition on C in either
case is

43 =0 PEC (2.1)

Most of the technigques discussed here have been; or are capable of
being, applied to more general scalar and vector scattering problems

and this is commented on where applicable.

(2) The Rayleisgh Hypothesis

In the late nineteenth century, Lord Rayleigh (1945 § 272a)
considered the scattering of a normally incident, scalar plane wave
by the infinite corrugated interface separating two different homo-

geneous media. In order to obtain a tractable solution he made the
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assumption that the scattered field may be repressnted by a linear

combination of discrete plane waves, each of which either propagates
or is attenuated away from the surface, even within the corrugations
and on the surface itself. This assumption has become known as thev
Rayleigh hypothesis and has been generalised to apply in the case of

finite scattering objects (Millar 1971, Bates 1975b).

The Rayleigh hypothesis was the subject of considerable contro-
versy from the nineteen fifties (Lippmamn 1953) until recently (Millar
and Bates 1970; Bates, James, Gallett and Millar 1973), but is now

fully understood, mainly because of Millar's work (1969, 1970,1971).

Reference to §2 of (I) shows that the exterior multipole

expansion of 'F is:

- %c 210 0 T (k) | | (2.2)

T4 mTm 1’ m' 2’ °
m=0

where the c  are normalising coefficients and the .%; are initially>
unknown scalar or vector expansion coefficients. Noting §2e of (I),
the equation (2.2) can be oﬁtained by substituting (2.14) of (I)
into (2.5) of (I). Examination of the RHS of (2.2) shows that it is
a séries of the "Laurent type"; i1.e. it converges for all |u1|2|51|,
where 31 is some value of u, for waich it is knovn that the RHS of (2.2)
converges. The RHS of (2.2) can therefore be used to analytically
continue F inside Q_ until uq reaches the value it has on the curve
§+ - where §+ is yet to be defined. §+ is defined +o be the sﬁallest
closed surface on which u1 is constant and which encloses all the

singularities of the analytic continuation of & into Q . The region

A
enclosed within T+ is denoted by Qs'



25.

Millar's statement of the Rayleigh hypothesis relies upon the
fact that the direct analytic continuation of the solution to the
Helmholtz equation is unique (Garabedian‘1964)w Millar has shown that
"a necessary and sufficient condition for the Rayleigh hypothesis to
be valid is that Qs C Qnull"°

Millar (1971) has also shown that the convex hull of the
singularities of the analytic continuation of % into Q., when ¥4 5'0
has boundary values C(C> on G, coincides with the convex hull of the
singularitiés of the analytic continuation of the solution to Laplace's
equation into Q_ for the same body and boundary values {(C). For
the particular case considered here [see’(2.1)] the boundary values
TZ(C) are zero. Fbr cylindrical bodies, this ensbles the theory of
functions‘of s complex variable to be used to find the convex hull of
the singularities. For the rest of this sub-section, it is convenient
to think of a complex plane - the w plane, where

W =\u+4 1v (2.3)
- superimposed on the real plane Q, the origih of the complex plane

coinciding with O (see Fig. 2).

The problem of finding the convex hull of the_singuiarities
therefore reduces firstly to finding a solution of Laplace's equation,
denoted by g(w). This is subject to the boundary condition

glw) =0 wEC _ '(2.,4)
and behaves asymptotically for large w in the saﬁe manner as the
function -Injw]. Secondly the convex hull of the singularities is
found by looking for the singularities of the analytic continuation of

g(w) into Q_.
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Tt is found that g(w) is related to the conformal mapping

of Q, onto the exterior of the unit circle in the complex {-plane ~
i.e. onto the region [{]|>]. Since both Q, and the image domain contain
the point at infinity (in their respective planes), a mapping function
F(w), defined by

¢ = F(w) | (2.5)
can be found which is such that F(@ ) = o . It may be then shown
that g(w) cen be written (Neﬁari 1961 chapter 6)

g(w) = -1n |F(m)| : (2.6)
The singularities of the analytic continuation of g(w) into Q- are
therefore completely determined by the singularities of the mapping
function F(W). The branch points of F(w) occur where the inverse
transformation to (2.5), i.e.

w=t(l) (2.7)
hes critical points such that (Carrier, Krook and Pearson 1966

chapter“ﬁ)‘

‘%Q =0 | , (2.8)

Neviere and Cadilhac (1970) have used (2.8) to locate the convex hull

of the singularities for several totally reflecting infinite gratings.

(b) Point-matchingz (Collocation) Methods

In these methods the unknown coefficients in each multipole
expansion of %, in a particular subwregion,varevdetermined nuﬁerically
by applying the particular boundary values at a finite number of points
between the regions and on C. The series expansions are of necessity
truncated, in order to obtain numerical solutions. The resultg, being

derived from a non-analytic process, are not exact; but it is assumed
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that if a sufficient number of points is used, the numerical solution
will converge appropriately to an adequate engineering solution. As
pointed out by Lewin (1970), there are two cases for which this does
not occcur. The first results from the use of an incomplete multipoie
expansion in any of the sub-regions. The second case occurs when

the Rayleigh hypothesis is violated in any sub-region; thé series
expansion will then be divergent, but this divergence may not show up
when only a small number of‘terms is retained in each expansion.
However, when they are valid, point-matching methods are appealing for
two reasons. The firSt'is that the cost of programming and obtaining
numerical solutions is considerably lower than with most other methods;
the second, that they yileld F directly - which is often all that is

required -~ without having to first calculate the source density on C.

A general solution of the Helmholtz equation (2.4) of (I),
valid in at least the region Q , is (2.2). In the simplest form of
point matching only one series expansion of ¥ is used throughout Q+,

namely (2.2), in conjunction withi the series expansion of ?}O [see
§2(a) of (I)1: '

30 = :i: c &m 3 (u, ,k) §m<u2’k) | B (2.9)

=0

where the Qm are appropriate (known) scalar or vecto? expansion
coefficients. ?O + & 1s then made to satisfy the boundary condition
(2.1) at a finite number of points on C. In order to obtain numerical
solutions the expansions (2.2) and (2.9) are truncated so that the
number of unknown coefficilents ﬁg'is equal to the number of collocation
points on C. This technique clearly fails when the Rayleigh hypothesis

is invalid, although it has been used to solve electromagnetic
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scattering problems (Mullen, Sandbury and Velline 1965; Bolle and Fye
1971), acoustic radiation problems (Williams, Parke, Moran and Sherman
196)) and interior waveguide problems (c.f. Bates and Ng 1973 and

references quoted therein).

Although the formal series (2.2) may be divergent for some
points on C it has been shown by several authors (Vekua 1967, Yasuura
and Tkuno 1971, Wilton and Mittra 1972 and Millar 1973) that a truncation
point of the series, say M, and a set of scattering coefficients ﬂh(Mj
can always be found such that the mean-square error in the scattered
field representation on C can be made as small as desired. This mean

sguare error € is defined by

M ’
¢ =f 15 - S e #00) 82 (0,0 € (u,10]% ac (2.10)
m=0

C
Therefore the field represented by the series in (2,2) - truncated to
M + 1 terms - with coesfficients ﬁb(M), converges in the mean (as M
'increases) to the true field in the region outside the scattering
~body. The coefficients lh(M> have been written to show explicitly
~their dependence on M, because it is precisely this dependence which
enables this field representation to be used in Q+m» If the exact
scattered mode coefficlent ié denoted by Z;} then in the limit
Lim 0 o ﬂﬁ(M) = ﬂé; when the ﬁﬁ(m) are chosen to minimise €.

The numerical solution on (2.10) may be obtained in an approx-
imate sense if € is minimised over a set of points on C rather than
over the entire boundary curve. Although this method can yield
accurate solutions for the far scattered field, as QS becomes apprec-

igbly larger than Qnull’ M must be chosen progressively larger in
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(2.10). .HOWever only the first few coefficients may actually contribute

significantly to the far scattered field pattern. This is because,

in order to obtain the first few coefficients accurately, a large

matrix must be inverted. The usefulness of this method therefore

appears to be limited %o séattering bodies with boundary curves C

that deviate only slightly from the boundary curve of Qnull°
When this simple method of point-matching fails a more elaborate

form may be used. The region Q+ is divided into a number of overlapping

sub-regions and in each of these & is represented by an appropriate

series expension. The wave functions and the sub-regions are chosen

so that the Rayleigh hypothesis is wvalid. The representations for-

all the sub-regions are made to satisfy the boundary conditions at

discreté points on their respective parts of C. The continuity of %

is ensured by matching the serdies representations and their normal

derivatives at points aibng a line in the common area between the

overlapping regions. The difficulty with this method lies in finding

sultable ' series expansions. This method haé been used in interior

waveguide problems (Bates and Ng'1973) but does not appear to have

been applied to exberior scattering problems.

By meking use of analytic continuation, point-matching methods
have been extended to be usefui to scattering bodies of a more general
cross section (Mittra and Wilton 1969, Wilton and Mittfa 1972)3 C
Reference to Fig. 3 and § 2(a) shows that the RHS of (2.2) converges
absolutely{at P: when the coordinate system is centred at O; hence
this series rspresentation can be made to satisfy the boundary condition

here. By using an appropriate addition theorem - these addition
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theorems are discussed more fully in (II) of Part 2 - for the wave
functions in (2.2}, this series representation can be translated to a

new origin 010 It is therefore analytically continued into a different

region (see Fig. 3). A new exterior expansion for 7 about the poiht
O1 is ‘then

L A Zom ﬁ;1ﬁ1$12)(u11,k) ?m(um,k) (2.11)
m=0

wnhere (u11,u2 ’Zﬂ) are cylindrical coordinates of a point P with

1
respect to the origin 010 In (2.11) the coefficients @;1 are related
to an infinite series inv01ving'the coefficients ﬁ;, the explicit
formula being found through the exterior form of the appropriate
addition theorem [explicit formulae for the ﬁg1 in terms of the ﬁi
are considered in (II) of Part 2]. Reference to Fig. 3 and §2a|

e
N

uting into (2.11) the appropriate formulae comnecting the ﬂ;1 coeffic-

shows that the RHS of (2.11) converges sbsolutely at P On substit-

ients to the ﬁ; coefficients, the suitably truncated form of the RHS

of this equation can be used immediately to satisfy (2.1) at Pgo The

representation (2.2) can also be continued analytically to obtain an

interior expansion, with a new origin 02, of the form

(o9}
=N = 7 T k
Fo=poop dup T p00) ¥ (uy %) (2.12)
m=0
where (u12,u229z) are the cylindrical coordinates of a point P with
respect to the origin Oza In (2.12) the coefficients &;; are related

to an infinite series involving the coefficients ﬁ;, the explicit
form being found through the interior form of the appropriate addition
theorem. Reference to Fig. 3 and §2 a shows that the RHS of (2.12)
converges absolutely at;Pé and P; and is therefore useful for point-

matching concavities of C. On substituting into (2.12) the formulae
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connecting the ﬂg; coefficients to the ﬂ; coefficients, the RHS of
4

I'd
this equation can be used immediately to satisfy (2.1) at P2 and P3

It should be noted that the origin 02 must be chosen such that the
smallest possible region of convergence of the analytically continued

representation about 02 intersects the original region of convergence.

By.judicious choice of a sufficient number of exterior and
interior expansions the contour C may be adequately covered and the
resulting set of equations solved for the unknown ﬁ; coefficients.

A limitation of the method is the number of terms introduced by each
additional continuation step, which results in considerably increased
computation time compared with the simple point matching method. The

following describes a method of alleviating this problem.

Tn the last method each series representation for ¥ about a
particular origin, say Oj’ is used only to match the boundary values
at points on C where the closed curve - formed when u1j assumes its
smallest possible value, while uzjvaries.over its rangg - is tangent
to ¢ (this curve must also not cut C). A particular series represent-

4 A
ation will, however, converge at points within Q_ until the cuxve T

of
is reached [see §2 'a']. It may therefore be deduced that a more
efficient point-matching method would result if each series represent-
ation were utilised along as much of C as is valid. To apply such a

technique it must be assumed that the location of the singularities

is knowmn.

Fig. 4 shows the same scattering body and coordinate systems

as are depicted in Fig. 3, but with the region of singﬁlarities drawm
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in: this region is bounded by the curve fse It is necessary to

A "N
define curves I' , and f .25 T [see §2a] and § , respectively,

+J +=J + =
N

for the jth coordinate system. T+m is defined to be the largest

. A
closed curve when the origin of coordinates is outside TS, on
which u1 is constant and which does not intersect fs (see Fig. 4).
Arc lengths on the boundary curve C are defined by specifying the

two end points of each arc, the arc length being taken in the anti-

clockwise directlon from the first point specified.

Reference to Fig. 4 now shows that the exterior series represent-
ations of %, (2.2) and (2.11), converge absolutely outside f+ and
‘ f+1 respectively, whereas the interior representation (2.12) converges

3 ) 3 /\
inside P+ .

,+ The RHS's of equations (2.2), (2.11) and (2.12) can now

be used to point-match the boundary values on C along the arc lengths

7.7 / 4 / / 4 / 7 /
P, P d P, P 22)3; : 3 ] . ;
P, Pys» BoPg and P, Pl [for (2.2)]; P/ Pg and P PI, [for (2.11)]; end
' P%P;2 [for (2.12)]. It can be seen that C can be covered with many fewer
analytic continuations once fs is known. The saving in numerical effort

which this approach affords in solving the exterior scattering problem

VAl
would make it worthwhile to develop techniques for determining TS.

(c) Boundary Perturbation Technigue

In this technigue the boundary curve ¢ is considered as a
boundary perturbation from the curve C1 (where C1 is the closed curve
constant and letting u

obtained by keeping u vary throughout its

1 2

range)a Therefore, by use of perturbation theory, the boundary conditions
satisfied by F may be explicitly satisfied everywhere on C. It should
be noted that this is in contrast to the point-matching methods

discussed in the last sub-section where the boundary conditions are
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explicitly satisfied at only a finite number of points on C.

The technigue - described here for cylindrical bodies ~ is
applicable +t0o bodies whose boundary curve C can be described by an

equation of the form

u; = u;(ué) =4a[1 + €f(u;)] (2.13)

In (Z.ﬂﬁ) a is a constant representing the value u, takes on the
unperturbed curve 01, € is a constant "smallness parameter'" and f(u;)
is a function which must obey the restriction l€?f(u;)[ < 1Athroughout
the range of ué, but is otherwise grbitrary. It should be noted that
both the value a and the location Qf the centre of the cylindrical
coordinate system may be chosen arbitrarily. Hence, it is clear

that all arbitrery curves G, for which it is possible to locate the
centre of the coordinate system in such a way that u; in the equation

(2.13) is single-valued, can be described in this manner.

The scattered and incident fields are then expanded in the
series expansions (2.2) and (2.9) respectively. On application of
these expansions to the boundary condition (2.1), it follows that
S : 4 0 ) %

N / + A 4 /

Z om{ aJ (ufx) + fH (u1,k):§ ¥ (u) =0 (2.15)
m=0

where u1’ is given by (2.13). It should be noted that to obtain (2.14)

the expansion (2.2) has been assumed valid throughout Q+o If the

&* can be found as

boundary curve C is the unperturbed curve C1, o

b= - § () /10 (o) (2.15)

The perturbation technique is now to write the coefficients ﬁ; in
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the form

©
4= NP gt (2.16)
m e m)p

p:O

where ,ﬂ;)b represents the pth order corregtioﬁs to the unperturbed
scattering coefficients %;)O’ given by (2.15). (2.16) is then
substituted into (2.14) and all functions in (2.14) involving u{ are
expanded in g Taylor serdies about u; = a. The critical step now
éonsists of making the coefficients of each power of €, in the result-~
ing equation (2.14), vanish individually. This in effect replaces the
necessary boundary condition by an infinite set  of sufficient boundary
conditions. The resultant infinite set of equations enables a recur—
rence scheme to be found which enables all the ‘%;)P'S to be evaluated
in terms of ‘&;f0°
This method has'two_major desirable feabures. The first is
that a matrix does not have to.be inverted in order to obtain the
scattered field solution. Thé second feature is that it is relatively
- ‘easy to obtain a more accurate solution éimply by carrying on the
recurrence scheme for extra ,ﬂ;bb. It m;y also be possible to obtain

error estimates of the solution from the study of the recurrence

relationships. A disadvantage of this method is that it assumes that

the Rayleigh hypothesis is valid so that a priori knowledge of §+ (see

§2a) is essential to have confidence in the solution.

Yeh (1954) has used +this technigue to calculate the electro-
magnetic-soattering from dielectric bodies which are volumes of
revolution. Erma (1968) has developed this téchnique to handle the
electromagnetic scattering problem from an arbitrary three dimensional

body.
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%. INTEGRAL EQUATIONS

For an acoustic or electromagnetic wave incident upon a body,
integral equations can be derived from which to determine the surface
source density on the body. Although these are capable of exact
sblution for only a limited number of geometries (c.f. Bowman et al

1969), they do form the starting point for most numerical methods.

The concern here is with "conventional" integral equations. Extended
integral equations or integral equations derived by use of the extinc-
tion theorem are discussed in Part 2. "Conventional" is used in the
sense that the integral equations for the surface source density are
obtained from the integrél representation of the field by teking the
limit, as the observation point P approaches the surface S from Yo

-and then applying the appropriate boundary conditions.

The two important integral equations for electromagnetic
scattering from a perfectly conducting body are the electric field

integral. equation (BFIE):

i Al f 2 /) ’ v
=0 Cl)_é E £ (k g_sg - VS .,"ZSVg) ds (5»1)

e,

and the magnetic field integral equation (MFIE):

A / 4 ‘
n' X gO(P =% J- _f;x ﬁ JXVgds (3.2)

vhere g is given by (2.6) and.fi:is used to denote the principle value
§
integral over Sj Although these equations are usually derived via

Green's theorem, they may also be obtained from the Franz integral

: !

. . i

T V; represents the surface divergence operator in source coordmates f
’ !
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formulation (1948) given in §2 of (I) (see Tai 1972 and Jones 1964
§1.26). The derivation of (3.1) and (3.2) can be found in Poggio
and Miller (1973) for surfaces whose tangents may not be differentiable
functions of position at all points on the surface. Either of these
equations can be used to solve for J,. Of the two equations, the
MEIE is generally preferable, as it is a Fredholm integral equation
of the second kind; while the EFIE is a PFredholm equation of the
first kind. However when S shrinks to an infinitely thin body the
geometrical factors in the integrand of the MFIE make this eqﬁation

" useless. Since the EFIE is suitable for thin bodies, it therefore
finds its greatest use for this type of body, whereas the MFIE is

used mainly for fatter, smooth bodies.

Unfortunately the solutions to (3.1) and (3%.2) are not unique,
because solutions to the complementary problem (the cavity resonances
internal to the scattering body) may be added to each without altering
equations. This may be stated more concisely for each equation in the
following manner. The (3.1). operator does not have a unique inverse
and generates én infinite number of solutions, differing by the eigen-
functions at the eigenfrequencies of the complementary problem. The
(3.2) operator is singular at the eigenfrequencies of the complementary

problem.

Because of the approximations which must be made to obtain
numerical solutions to (3%1) and (3.2), and the use of computations’
using a finite number of significant figures, the complementary
problem couples with the external problem over a range of frequencies
around each eigenfrequency of the complementary problem, to yield

fictitious solutions. These equations must therefore be used with
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great care once the frequency approaches the first eigenfrequency of
the complementary problem. Numerical methods of solving equations
(3.1) and (3.2) are discussed by Harrington (1968), Poggio and Miller

(1973) and Jones (1974b).

As (5.1) and (3.2) are both non-unique at different wave
numbers (the EFIE and MFIE are non-unique at the interior resonant
electric and magnetic modes of oscillation respectively) the two
equations may be combined to obtain an equation unique at all wave

numbers. This yields

4

T3+ 8XLE)-MII=8XH +a ra'x (@xg)  (-3)

N
where L(¢) and M() are the integral operators in the EFIE and MFIE
respectively, and ¢ is an arbitrary constant 0 € ¢ < 1. This‘méthod,
at the cost of a substantial increase in computing time, provides a
unique Joat all wave numbers provided g is neither zero nor purely
imaginary. The value of ¢ is usually determined numerically for a

particular problem. This method appears to have first been suggested

by Mitzner (1968).

The acoustic integral equations corresponding to (3.1) and (3.2)
are not discussed here (see Bowman et al. 1969 chapter 1), although
needless to say the same non-uniqueness problem also occurs (see

Copley 1968 for further details).

The EFIE and the MFIE have found extensive use in solving the
exterior scattering problem over the past decade notwithstanding the

non-uniqueness problem. Some recent applications of the MFIE to
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three-dimensional bodies that are not volumes of revolution have

been made by Knepp (1971) and Tsai, Dudley and Wilton (197.4).

A more sophisticated approach based on integral equations has
recently been suggested which generalises the idea of characteristic
modes. These modes have long been used in the analysis of radiation
and scattering by conducting bodies whose surféces coincide with
coordinate surfaces of coordinate systems in which the Helmholtz
equation is separable [see §1 of Part 2, (I)]. Recently it has
‘been shown that similar modes can:be defined and calculated numerically
for conducting bodies of arbitrary shape (Garbacz and Turpin 1971,
Harrington and Mautz 1971). The formulation is based upon the EFIE,
and the characteristic mode currents so obtained form a weighted
orthogonal set over the conductor surface; the characteristic mode

fields also form an orthogonal set over the sphere at infinity.
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Fig. 1 Generatrix of body of revolution and surface functions

with several extremum points.
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Fig. 3 A cylindrical body and several coordinate systems
shown for the analytic continuation point-

matohing method.
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Fig. 4 The same cylindrical body as depicted in Fig. 3,
but with convergence regions of the series expansions

for several coordinate systems shown.



PART 2: RESEARCH RESULTS

Unless otherwise specified all referenced equation, table
and figure numbers refer only to those equations, tables

and figures presented in this part.
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PART 2. I: THE GENERAL NULL FIELD METHOD

The numerical solution of the direct scattering
problem is considered. Invoking the'optical extinction
theorem (extended boundary condition) the conventional
singular integral equation (for the density of reradiating
sources existing in the surface of a totally-reflecting bo@y)‘
is transformed into infinite sets of non-singular integral
equations - called the null field equations. There is a setb

corresponding to each separable coordinate system (the
equations are named "elliptic", "spheroidal® etc. null field
equations when the coordinate systems used are the "elliptic
cylindrical", "spheroidal" etc.). Hach set can be used to
compute the scattering from bodies of arbitrary shape, but
each set is most appropriate for particular types of body

shape, as the computational results confirm.

Computational results are presented for scattering
from cylinders of arbitrary cross section and from axially
symmetric bodies, the latter being chosen to correspond to

practical antenna configurations.

1. INTRODUCTION

As multipole expansions of the Greens function of

the form given in (2.14) of Part 1, (I) are obtainable in



all coordinate systems permitting separability of the Helm=

holtz equation, these coordinate systems are of interest in

this thesis.

A distinction is made between scalar and vector
fields because the scalar-separability of the Helmholtz
equation (c.f. (2.4) of Part 1, (I) ) is wider than its
vector-separability. BExemination of the separation conditions
for the Helmholtz equation (c.f. Morse and Feshbach 1953
chapter 5, Moon and Spencer 1961 chapteri ) reveals that
the scalar Helmholtz equation is separable for generai

scalar fields in the following eleven coordinate systems.

Cylindrical coordinates
1 Rectangular coordinates
2 Circular~cylinder coordinates
3 Elliptic-cylinder coordinates

}. Parabolic-~cylinder coordinates

Rotational coordinates

5 Spherical coordinates

6 Prolate spheroidal coordinates
7 Oblate spheroidal coordinates
8 Parabolic coordinates

General coordinates
9 Conical coordinates
10 Ellipsoidal coordinates

11 Paraboloidal coordinates
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In the vector case the term "separability" implies,
in addition to the usual reducibiiity of the original partial
differential equation to a set of ordinary differential
equations, that the solutions be of a form which allows the
satisfying of the boundary conditions. In only six of the
eleven coordinate systems in which the scalar Helmholtz
equation is éeparable is it possible to obtain solenoidal
solutions of the vector Helmholtz egquation which are transverse
to a coordinate surface (Morse and Feshbach 1953 chapter 13,
Moon and Spencer 1961 chapter 3). These are the four cylind-
rical, the spherical and the conical coordinate systems. It
should be noted that for special vector fields the vector
Helmholtz equation may separate in more coordinate systems than
the above six. Particular interest is taken in this thesis

of coordinates 2,3,5,6 and 7 in the above list.

The optical extinction theorem is examined and stated
in §2. In §3 the generalised null field methods are
developed. These null field methods are applicable to all
those separable coordinate systems that form a closed surface
when one of the coordinates being used is kept constant.

It should also be noted that the shapes of the scattering
bodies can be arbitrary. Various numerical questions are
discussed in 8%4. The characteristics of particular null

field methods are tabulated in §5 and computational results
are presented in 8 6 for scattering from cylinders of arbitrary
cross section and from axially symmetric bodies, the latter
being chosen to correspond to practical antenna configurations.
It is indicated in 8§ 7 how the techniques developed here for

totally reflecting scattering bodies may be extended to



handle partially-opague bodies.

Fig.1 of Part 1, (I) is reproduced in this section

for convenience.

2, THE EXTINCTION THEOREM

When a body is totally reflecting, the incident and
_ scattered fields are confined to y,. Once d is known, &
can be calculated from it usiné (2.5) of Part 1, (I). This
means that the actual material body need not be baken into
account explicitly ~ it can be replaced by s "disembodied"
distribution of surface sources, identical in position and
in complex amplitude with the actualvsurface sources. Fo
can then be thought of as passing undisturbed throughout y
and & can be considered to radiate into y_ as well as into
Yss SO that (2.5) of Part 1, (1) can be taken to apply
throughout;y. The optical extinction theorem states (the

obvious physical fact) that

$=-%,  Pey (2.1)

Bven when a body is partially-opaque it is possible
to define & such that the right hand side (RHS) of (2.5)
of Part 1, (I) gives the actual scattered field in Y. and
yet RHS (2.5) of Part 1, (I) "extinguishes" ﬂb iny_, as

seems to have been noticed first by Love (1901). Honl,

&



Maue and Westpfahl (1961) discuss the electromagnetic form
of this prinoiple; In the optical literature (c.f. Born and
Wolf 1970 5294,2) the theorem is prefixed with the names
Ewald (1946) and Oseen (1915). The partially-opaque case is

discussed in § 7.

On substituting (2.5) of Part 1, (I) into (2.1) it

follows that

-@O=A{/fzfgas} Py (22

3
ﬁhich in this thesis is called the "extended integral equation"
for &, because Waterman (1965, 19%9a,b, 1971, 1975) fefers
to the extinction theorem as the "extended boundary condition.
Waterman expands g as in (2.14) of Part 1, (I), using wave
functions appropriate to spherical polar coordinates. This
allows him to obtain from (2.2) an infinite set ofvnonm=
singular integral eguations which satisfy the extinction
theorem explicitly within the inscribing sphere centred on
the origin of the coordinates. Avetisyan (1970), Hizal and
Marincic (1970) and Bates and Wong (197L4) have developed

'computational»aspects of Waterman's approache.

The two-dimensional analogue of Waterman's approach
has been developed both for scattering problems (Bates 1968,
Hunter 1972, 1974, Bolomey and Tabbara 1973, Bolomey and

Wirgin 1974, Wirgin 1975) and for the computation of wave-

&



guide characteristics (Bates 1969a,Ng and Bates 1972, Bates

and Ng 1972, 1973).

Various methods have been developed in which the
extinction theorem is satisfied either on surfaces, or at
sets‘of points, arbitrarily chosen within y. (Albert and
Synge 1948, Synge 1948, Gavorun 1959, 1961, Vasil'ev 1959,
Vasil'ev and Seregina 1963, Vasil'ev, Malushkov and Falunin
1967, Copley 1967, Schenck 1968, Fenlon 1969, Abeyaskere 1972,
Taylor and Wilton 1972, Al-Badwaihy and Yen 1974). While
these methods are useful for specific problems they do not
have fhe generality of Waterman's approach, which satisfies
the extinctioh theorem implicitly throughout y. (this is
discussed further in 83). Al-Badwaihy and Yen (1975) have
recently discussed the uniqueness of Waterman's approach and

the aforementioned methods,.

Hizal (1974) has incorporated Waterman's approach
into a state space formulation of the direct scattering
problem. There could be significant computational advantages
if an initial-value boundary-value problem could be set up
(c.fe Bafes 1975£)bu$ it seems difficult to avoid the

conventional two-point boundary-value problem (Hizal 1975).

The null field method appears to provide added justi-
fication for the aperture-field method -~ an approximate
design procedure useful in radio engineering (c.f. Silver

1965 §5.11) - and for physical optics (Bates 1975a)o It is
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emusing to note that the latter reference is among the first

to remark that studies by acousticians and éleotrical engineers
have run close on occasion to those of optical scientists,

who have recently re-examined the extinction theorem in

detail (Sein 1970, 1975; De Goede and Mazur 1972; Pattanayak

and FJolf 1972).

3. THE GENERAL METHOD

It is shown here how to extend Waterman's approach by
expanding g in wave functions appropriate to any separable
coordinate system. It is necessary to make a distinction
between scalar and vector fields, because the vector Helmholtsz
equation is Separable in fewer coordinate systems than is
the scalar Helmholtz equation.

Note that RHS (2.5) of Part 1, (I), and RHS»(z.zj ,
are analytic throughout y., so that if &° is'chosen such that

(2.2) is satisfied explicitly for all P within a finife part
of vy. then, by elementary analytic continuation arguments
(Waterman 1965, Bates 1968), (2.2) is necessarily satisfied
implicitly for all P within y.. In the spirit of Waterman,
(2.2) is manipulated so that it is satisfied explicitly for
all P within ynull’ which is necessarily finite if the body
has a finite interior. Consequently, (2a2),is satisfied

implicitly for a1l P within y.. This method therefore has
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greater generality than alternative techniques (listed in
§2) in which the extinction theorem is satisfied explicitly

only at points or on lines or on surfaces within y..

In an actual computation, (2.2) can only be satisfied
approximately, even at points within ynull° In order that
| 4+ ?Ol shall not exceed a required threshold, anywhere
within y., J° must be computed to a particular tolerance,
which must be méde smaller the larger y. is in comparison
with y ., AS Lewin‘(1970) forecasted, numerical instabilities
have tended to occur because of this ~ when Waterman's approach
has been used to compute the scattering from bodies of large
aspect ratlo, and g has been expanded in wave functions
appropriate to cylindrical or spherical polar coordinates
(Bolomey and Tabbara 1973, Bolomey and Wirgin 1974, Bates and
Wong 1974)g The work reported in this thesis began when it
was realised that, by using elliptic cylinder coordinates or
spheroidal coordinates, the tendency towards numerical
instability could be reduced by decreasing the size of the

part of y. not included in Yull”

(a) Scalar Field and Sound-Soft Body

On referring to the. definition (2.2) of Y 1 (2.8),
(2.14) and (2.15) all of Part 1, (I), permit (2.2) to be

rewritten as
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gk
1=

Jod “dss

3 (u ok) Y (u ooV k)/f&“h(z)(u ,k) Y (u ,ug,k) ds

e
S
()
i
~

o0

. ~

Z ZCM jog 9 ,E(u’l +k) Yjs,q(u2’u3’k)’ PEYum
£=0 3=4

(3.1)
A
since u{'> u, iny q,¢ The properties of the Yj’i(s) are such
(c.f. Morse and Feshbach 1953 chapters 7 and 11) that they
form an orthogonal set on any closed surface u1 = constant.
Since any surface u1 = constant is closed within Y ou1l? by

definition, it follows that the individual terms in (3.1) are

independent, so that

./fa’ h(z)(u ,k) Y (ué,ug,k) ds = - @,

NFY4

le {0 >}, JE -2 » 2} (3.2)

which in this thesis are called’the null field equations for
~a sound-soft body, for the particular separable coordinate
system (u1,u2,u3). The integrands are regular at all points
on S because %g?)(-) is only singular on the surface
u = 0, which by definition cannot intersect S.

1

(b) Scalar Field and Sound-Hard Body

It follows from (2.9) of Part 1, (I) and (2.2) that

= 9/on { ffé)’ g ds }, PEy. (3.3)
3 z ;

which can be rewritten, on account of the antisymmet:y of g
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with respect to r and r: as
~¥, =[/3‘ag/an’ds (3.%)
S

vhere use has been made of the definition of a/%nj relative to
9/on, as given in §2a of Part 1, (I). Restricting P to lie
within Youll? expressing g and Woyin their multipole expansions
(2.14) and (2.15) both of Part 1, (I), and again noting the
A .
" . . s . 1
orthogonality of the Yj,g( ) within ynull’ it follows that

(3.4) leads to

; .A(Z) 4 o, s’ s s’ _
f[?)’ ) {hj,ﬂ(u1,k) Yj,ﬂ(uz,uj,k)} /on’ ds =8, (3.5)

S
which are the null field equations for a sound-hard body, for

27
“the particular separable coordinate system (u1,u ,uj).

(¢) Vector Field

It is convenient to split the vector field, existing
at an arbitrary point P € y, into what are known as longitudinal
and transverse parts (c.f. Morse and Feshbach 1953 §1.5)«
The trensverse part of & is denoted by 4t . The latter

characterises & completely in any source-free region.

Since the interest here is in computing the behaviour
of ¥ in Y4, which is by definition source-freec as far as F is
concerned, the extended boundary condition is only explicitly

satisfied for %%. The unit dyad I, defined by

I=XX+yy+ 28 (3.6)

=



53.

is introduced in order to be able to define the dyadic Green's

function

&2
[

g (3:7)
which can be decompoSed into, respectively, its longitudinal
and transverse parts:

¢ = ¢ gt (3.8)
It then follows from (2.10) of Pért 1, (1), (2.2), (3.7) ana

(3.8) that

-3 :A{fjfg_sagt‘ ds} (3.9)
' S

Whenever it exists, the equivalent multipole expansion of gt

has the form (c.f. Tai 1971)

o0©
t ' L . (1) - .
Gt = g o {yg )(u1,u2,u3,k) Eq )(u,],ué,ug,k)
q-_-O

(}-l-) o (1) S /. s
+ Eq (u1’u2:u3’k) Eq (u1:u23u3:k)}; u1 2 u, (3.10)

where Mép)(') and Eép)(')afOT which p € {1 - 4}, are independent
eigen-solutions of the vector Helmholtz equation, dbtainea by

separation of variables. They satisfy

v x E(p) e E(p); v 21;(P) Cx 2é(:p) (5.11)
q q q

and there is a denumerable infinity of them, which is why
it is possible to order them by using only a single integer-
index q. The Cq are normalising constants. The superscripts

(1) and (4), which are interchanged when u > uq, repectively

1

denote wave functions which are regular at the origin of
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coordinates and wave functions which are outgoing at infinity.
The‘radial dependence of }_J_ic(;)() and E\_I((;)() is proportional
to gj,lﬁl’l”k)’ where the relation of the integers j,{ and q

to each other is governed by the particular way in which the
vector wave functions are ordered. The radial dependence of
M((;")() and _1\1((;’")0) is proportional to /ﬁgi(u’l',k}. Since

f}g is analytic throughout y., it can be expanded there in
terms of the functions Mé”() -and E((;)() It is necessary
to consider the two cases: 'F - E and ¥ »»> H. For convenient
normglisation of the null field equations the expansions are

written in the forms

[s0)
3'6 NN _}g}_g =iw qucq{ . c(;)(u ,uz,u k)
q=0
ta, N (4)(11 sUysU g ,kﬂ Pe€y.; (3.12)
3

@®
bt Ne) :
Fo o = kch{1 g By " (uyatippussk)
-0

ey
a u_,u_sk Pevy. .1
+ 2,q q (U- it ) Y (3 3)
where the a and a are scalar expansion coefficients.
159 259

The analytic properties (orthogonality being the most pert:'ment)
of the zgép)(-) and the ;\g((lp)(e) permit (2.11) of Part 1, (I)
and (3.9) through (3.13) to be combined (whether % =+ E or

p S H) to give (c.f. Morse and Feshbach 1953 chapter 13)

ff J . H(L")(u ,uz,u 3k) ds

a
159

1

q€ {0 >0} (3.14)

1}
o

f/ oN(l*)(u uégu k) ds
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which are the (coupled) null field equations for a perfectly

conducting body for the coordinate system (u1,u23

conditions allowing vector separability. It must be emphasised

u3)9 under

that vector separability can occur for>coordinate systems
which do not allow vector separation in general, provided
that both ?O and the shape of S are suitably constrained

(refer to §5d4).

(a) Far Fields

Once ¢ has been determined, by solution of the null
field equations, the far-scattered-field can be conveniently
computed from (2»5) of Part 1, (I), with g assuming its asymp—-
totic form: in RHS (2.6) of Part 1, (I), R is taken as a
constant in the denominator, whereas in the exponent it is
taken to be given by (2.7) of Part 1, (I), but with
| Izl =R+ z-z?/ Izl (3.15)
Alternatively, s may be written in its partial wave expansion
by expanding g in terms of multipoles as in (2.14) of Part 1,
(1) or in (3.8) and (3.10), and then expressing the %gfg(u1gk)
in their asymptotic forms (c.f. Morse and Feshbaéh 1953

chapters 10 to 13).

L. NUMERICAL CONSIDERATIONS

The numerical solution of the null field equations

can be accomplished by adapting standard moment methods (o.f,



Harrington 1968). But there are several subtle points which
are not encountered with the conventional integral equations.
They vary slightly for sound-hard and sound-soft bodies and
for scalar and vector fields. But the important aspects are
common to all the null field eqguations. In this section the
detailed argument is confined to scalar fields and sound-
soft bodies, in order to simplify the symbolism as much as
pdssible. Vector fislds and sound-hard bodies are discussed

when they involve noticeably different considerations.

Referring to Table 1 of Part 1, (I), o is written as

[ea)
= T
= > : T T N
g =Y Sa ot lrr,) (1)
P:O g==p
where the ap q are expansion coefficients. The choice of
. 2
the basis functions fp is discussed later. Substituting
9

(%-1) into (3.2) gives

:ﬁ % =~ le {0 sw i felos @
Z @apaq " 2,P5d,4 ' Qj,]_’ i - Z’ J { -> }
p=0 g=-p (#‘2)

where

56.

19P:J:q ]:/ Psq T T) h( )(u ? ) Y (U‘;’ug?k) ds (Lo3) -

So, the infinite set of integral equations (3.2) has been

transformed into the infinite set of linear, algebraic equations

(4e2) .

To solve (L4.2) numerically it is necessary to truncate

the infinite set of equations. It is therefore desirable to
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ascertain, if possible, in wnhat sense the . 50 obtained
g

are approximations to the true ¢
' Psa
It is convenient to introduce the generalised scalar

product

< A, > =ff a(r,,m) B 7,,m) s (1)
S

Note that the functions of u{@ ué’and ug in the integrands of

(3.2) and (4.2) are, in effect, functions of T1 and 7, because
the integrals are over the surface of the body (refef to
Table 1 of Part 1, (I) ). Because there is a denumerable
NP _ ~(2) A ' ,
infinity of the functlons-hj Q<°) Yj 2(')’ they can be ordered
3 2

using a single integer-index, L say, and a typical one of them
can be identified by the symbol BL’ 50 that (4.2)\becomes

<J5. By > = -G, L& {0 (4.5)
where the Gj have been similarly ordered and identified.

?

By Schmidt orthogonalisation (c.f. Morse and Feshbach

1953 pp. 928-931) it is possible to construct the functions e

Q
defined by

Q
%
eQ = :EjDQ,L BL’ < eK,eQ S = 6KQ (4..6)
L,=0

where @ and X are arbitrary non-negative integers, the DQ I
b

are the expansion coefficlents obtained ffom the Schmid@
procedﬁre andkthe.asterisk denoﬁes the complex conjugate,

5KQ is the Kronecker delta and is 1 for X = Q and O for K £ Q.
Combining (4.5) and (4.6} gives
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Q
<Jyeq > =) Dy @, Q€ {0 »n] (47)
L=0

from which it follows that, if ¢ is written eas

Nes-

N
I = Lin &3 fN :ZpQ eg, | (4.8)
Q=0 '

the orthogonality of the e, ensures that the BQ are given by

Q
9

pQ = '—Z DQ,L a’L (4‘9)
L=0

as follows from (4.6) through (4.8). It also follows that

<§*ﬁ, §JN>=<UJ%,3’>—Z[$Q |2 (%4.10)
Q=N-+1

so that the mean square difference between ZtN and o decreases

as N increases.

Unfortunately, it is often inefficient computationally
to represent J in terms of the basis functions eQ (c.f.
Bates and Wong 1974). Experience shows that it is usually

desirable to use basis functions, f. say, which are not

Q
orthogonal over S (c.f. Bates 1975b). This suggests that

. partial sums of the form
M

Ty =2 o T (4-11)
Q=0 |

should be investigated, where the aQ end fQ are to be identified

with the o and £ (+), repectively, appearing in (4.1),
_ bsq Psq
using the single integer-index Q which is analogous to the

integer index L introduced in (4.5) .

Computational experience indicates that ZTM of'ten appears
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to approach a limit when M is large enough (caf@‘Bates 1975b33
Nothing can be proved by citing computational examples, but
they certainly fortify one's confidence that numerical con—
vergence has actually been achieved in many important problems.
Tt is known that a particular truncated expansion -~ i.e. (4.8)
- 18 a convergent approximation to ET, so it is reasonsble to
assume that (4.11) is another convergent approximation when

it is found in practice that Ig’ -EJNﬂ is decreasing with

M4

increasing M - at a rate far faster than IZFN+1 ~:iyl

decreasing with increasing N - up to the largest value of M

is
which it is economic to use.

There seems to be no slternative, at present, to the
brute-force procedure of increasing M until numerical convergence

is (apparently) manifest.

The value of M needed to represent ET to an acceptable
aceuracy can be reduced by eareful choice of the fQ.‘ Experience
shows that the greatest savings in computational effort accrue
when the fQ accordiwith the required physical behaviour of &
(c.fg Bates 197Sb)¢‘When S is an analytic surface the fQ
should be analytic also. If there are points and/or lines
on S, at or on which S ceases to be analytic, the fQ should
exhibit the appropriate singular behaviour - such as that
d%mmbdbth3mgecmﬁﬁﬁmm(cﬁ.Jmms1%4 §9.2) -
at the singularities of S, In fact, in the neighbourhood

of each singularity of S, J’ can be written in the form

J =v w . (2{-012)
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where w* is analytic and v is either integrably infinite or

is singular in its nth order, and higher, derivatives (the
value of n characterises the type of singularity of S).

The computational advantage of using fQ with the correct
singular behaviour for investigating finite, right-circular,
cylindrical antennas has been demonstrated by Bates and Wong
(1974). Hunter and Bates (1972) and Hunter (1972, 1974)

deal with several singularities (simultaneously present on
the surfaces of infinite, cylindrical bodies) by dividing

the surfaces of the bodies into contiguous sections, on each
of which o is approximated by a series of the form of (4.11).
This technique 1s computationally efficient; its only defect

is that it is sometimes awkward to ensure that ET is continuous

across the boundaries of the sections.

.Variations in curvature of S affect the mutual inter-
action between the surface sources existing in 3, thereby
causing concentrations and dilutions of J. Even when O is
analytic over a1l of 3, 1t is not ideal‘to represent it by
basis functions whose mean effect is the same everywhere -

i.e. functions such as exp(i [K1 7 + Ky 72] ), where K, and

K, are real constants. There does not gppear to be any Wéy

of handling this explicitly, for a scattering body of arbitrary
shape. But there does exist a suitable method for a cylindrical
scattering body, for which the surface S reduces to the

boundary curve C, and the three-dimensional space y reduces to

the two-dimensional space O (refer to Table 1 of Part 1, (I) ).
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Considering the conformal transformation of Q+ onto
the exterior of the unit circle, it is found that the element
of arc dC and the differential angular increment around the
circle are related by

dC = h d¢ (4.13)
vhere h is the metric coefficient characterising the "geometric
irregularity" of C. If C is analytic then so is h, but the
latter exhibits integrable singularities at values of d
correspondingAto any points where C ceases to be analytic.
Table 1 lists the metric coefficients which are used in the
various computational examples presentedrin this thesis.
Bickley (1929,193L) gives larger lists, based on the exterior
form Qf_the Schwarz-Christoffel transformation (c.f. Morse
and FeshBach 1953 §A4.7). General shapes can be transformed

using formulas given by Kantorovich and Krylov. (1958 chapter 5).

Shafai (1970) shows that, if h is considered as a

function of C rather than of ¢, it satisfies

h =1k (L1)
at each singularity (if there is one or more such) of G, for
scalar fields and socund-soft bodies or for B-polarised electro-
magnetic fields. Reference to (4,12) then suggests that J

should be approximated, at all points on C, by
M
1 Ty
Ty =7 Z ag Ty | (4.15)
Q=0

rather than by (4.11). After the transformation (4.13) is

applied to the integrals in the null field eguations, the
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irregularities of the boundary curve are completely smoothed
out, since a circle exhibits no changes of curvature. This
suggests that the basis functions fQ in (4.15) should have
the same mean effect everywhere - il.e. it is ideal 1f they
are trigonometric functions or complex exponentials, which
are convenient computationally. The final result is even
more convenient computationally because the factor h.in
(4.13) cancels the factor (1/h) in (4.15), in the integrands

of the null field equations.

For scalar fiélds and sound-hard bodies, or for H-
polarised electromagnetic fields, there is noAconQenient
cancellation of metric coefficlents because there is no simple
formule such as (4.14) connecting h and v. However, J is
always finite at singularities of C. So, it can be convenient

to approximate ¢ by (4.11) with smooth f_ having the same

Q
mean effect everywhere on C, and to make use of the trans-
formation (L.13), so that h can account for all geometric

irregularities of C. However, numerical instabilities can
occur in the neighbourhoods of singularities of C, so that

it is sometimes preferable to employ appropriately singular

fQ and to forgo the transformation (4m13)¢

In conventional integral equation formulationsTof
scattering problems, the kermels are usually singular, and
it is often inconvenient to use other than the simplest basis

functions -~ pulse-like functions, or even delta functions -

T c.f. §3 of Part 1, (II).
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so that one solves the integral equations by the method of
subsections (Harrington 1968). It usually requires a large
number of simple basis functions (in comparison with the
required number of extended basis functions that mirror more
aécurately the true behaviour of Q’).to obtain a representation
of ¥ accurate to within some desired tolerance, so that it
follows inescapably that M must be large. Since sdlutions are
obtained by inverting the appropriate matrix of order M, and
since the number of operations involved in this inversion is
proportional to MB, there is a premium on small values of M.
Consequently, conventional integral equation formulations ére
computationally wasteful, in a very real sense. On the other
hand, the magnitudes of their matrix elements are usually

largest on the diagonal of the matrix, which eases its numerical

inversion.

The matrix elements - the & . defined by (4.2)
£,95,3,Q

and (4.3) - obtained from the null field equations rarely
exhibit any diagonal tendency. Consequently, if full comput-
ational advantage is to be taken of the low values of M
offered by the null field approach, the matrix elements have
to be evaluated very carefully (Ng and Bates 1972), which
means that special chebking procedurés have to be introduced

into the numerical integration routines.  These precautions

have been taken in the computations reported in this thesis.
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5. PARTICULAR NULL FIGLD VETHODS

In this subsection peritinent details are presented
of those null field methods which are illustrated in §6
with particular computational examples ox which are discussed

further later in this thesis.

Formulas suitable for digital computation are presented,
and so all series expansions are explicitly truncated. But -
it must be understood that the upper limits of the truncated
series are not fixed a priori. Results for several of these
upper limits must be. computed in order to determine the

accuracies of the results.

(s) Cylindrical Null Field Methods

Note that for totally-reflecting scattering bodies and
fiélds which exhibit no variation in the z-direction, there is
complete equivalence between E-polarised electromagnetic
fields and scalar fields interacting with sound-soft bodies.
There is alsc complete equivalence between H-polarised electro-
magnetic fields and scalar fields interacting with sound-hard

bodies. We can therefore write

}L = '§ (5;1)

Take particular note of the notation introduced in
Table 1 and §2e¢ both of Part 1, (I). Expansion coefficients
which are explicitly scalar are introduced into the series

representation for %b:
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Mo
Y, = zg: omam"fm(u1,k) ?m(uzgk), Peaq. (5.2)
m=0
where the notation (2.17) of Part 1, (I) is implied, so that
the series actualiy haé (2 + 1) terms. It should be noted
that we have taken

szl - &m (5.3)

in pessing from (2.15) of Part 1, (I) to (5.2), and the c in
(5.2) are the normalising constants in the multipole expansion

of g.

The null field equations ~ i.e. (3.2), (3.5) and (3.14)

- can be expressed in the general form

i

/ET@)K;(®<w -a,  m€ {0~ (5.4)

C

where the notation (2.18) of Part 1, (I) is implied, and it

is noted that because of (5«1) the pairs of coefficients

a and a,_ , appearing in (3.14), reduce to the single
1,9 259 :

coefficient a Implying the notation (2.17) of Part 1, (I)

the partial wave expansion of the scattered field is
NS
- + 5l T \
2= Zcmbm Ho (u,l 2k) Ym(ug,k,, PEQ,, (5.5)
n=0 '

which is obtained ' from (2.5) of Part 41, (I) by expressing g
in its multipole expansion (2.14) of Part 1, (I) - but with

A ~~
the Sj and hgzz functions replaced by the 3m and Hiz) functions
2

sl
- and then operating with A - refer to (2.8) and (2.9), both
of Part 1, (I) - after recognising the antisymmetry between

3/2n and 9/2n  noted in §3b. We can therefore write
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bt :f J(c) x*(c) ac (5.6)
m m
G :
The detailed forms of K;(C) and K;(C) ave given in Table k.

J is expressed in the form
M

V@) =ol0) T o £, © (5.7)

q=0
where G(C) is a weighting function {(defined in Table 2) and.
the fq(C) are chosen according to the criteria discussed in
4. To solve the scattering problem, the aq must be evaluated,
wiich is done by substituting (5.7) into (5.4) and then
eliminating the aq in standard fashion (c.f. Wilkinson and

Reinsch 1971). It follows that
M : e e

e o e '
e o) o ) 0
Z{ o @m’q +ag %,q } = -8 me {0 M (5.8)
q.—_O
where the four different @m q are defined by
J
85 8oy 15
& = [ o(C) £7(C}) K "(C) ac .
mea = [ 7(0) 750 K7(0) (5-9)
c

Vhen the transformation (4.13) is used the fq(C) are always

given the form

e

f; (6) = So°(aw) - | (5.10)
Table 2 indicates how the quantities defined above differ as
between E-polarised and H-polarised vector fields and between
scalar fields interacting with sound-soft and sound-hard
bodies. Additional notation is introduced for EV(C) in order

to relate to established notation - see many references quoted

in $82 and 3; in particular Bates (1975b).
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The cylindrical null field methods of interest here
are the circular null field method, for which u1 and u2 hecone
the cylindrical polar coordinates p and ¢, and the elliptic
null field method, for which u1 and u2 become the elliptic
cylinder coordinates £ and n. Table 3 lists the wave functions
appropriate for these null field methods. Note that the
elliptic null field method reduces to the circular null field

method when kd - O.

Table L. lists the forms assumed by the kernels of the
integrals in (5.4) and (5.6), for the circular and elliptic
null field methods. The recurrence relagtions for Bessel functions
(c.f. Watson 1966 chapter 3) have been used to simplify the

formulas.

(b) General Null Field Method, Scalar Fields.

Because the fields are scalar, it is convenient to
replace the general expansion coefficients in (2.15) of Part
1, (I) by explicitly scalar ones:

& (5.11)

. > a,
Jsd Jst
To anticipate the needs of (II) we introduce, by analogy with

(5.4) through (5.6), the three equations:

K, ds = -a
[/M T T Ky, (T T 8 ey

te o1}, . j€ {-L-1ul; (5.12)
T 1 i
- A 2 A
= . bf h? u k) Y. u_.u_sk Pe 3
F Z Z ©50n dos 391( 1° ) J,x( 273’ ) Ve
2.—_0 j:‘-‘f_

(5.13)



=f Y(Crpp ) K () s (5.12)

Note that (5.12) represents the null field equations (refer.

to § 3a,b) and the c; , @re the normalising constants
3

appearing in (2.14) of Part 1, (I). Thus
- (2 y A R
K, (7 7’2) I—hgsi(u,’ak) Yj’},(uz/,ug’IC),
Sound~soft bodies

:l,a[%SfZ(u;,k) Y, (u ,u7,n)] /bn,

Souna—hard bodies

(5.15)

and ¥* (+) is given by the same formulas, bub with 3. 1(')

ds L s
SUOL

replacing h
Jdat

(¢) Spherical Null Field Method, Scalar Fields and Sound-

3oft Bodies

The spherical null field method is obtained when
spherical polar coordinates r, 0 and ¢ are employed. Relevant
quantities are listed in Teble 5. The kernels of (5.12) and

(5.14) specialise to

Ky, 7 )"‘“h(g)(kr‘ ) Py(cos 67) exp(-i ¢ (5.16)

Kt (1 ) ==i P ) Ploos &) w15 0); (5.47)

(d) Spheroidal Null Field Methods, Vector Tields and Bodies

Both Rotationally Symmetric

The analysis of § 3c is specialised to fields and

bodies which are rotationally symmetric. The projection of

68.

the surface S of a typical body onto the x,z-plane is depicted



in FMigo. 2. The source of the incident fieid ??O is

taken to be a @ directed (where this szimuthal unit vector is
the same as eppears in cylindrical polar and spherical polar
coordinates) ring (of radius‘b) of magnetic current of unit
strength (c.f. Otto 1957, Bates and Wong 1974), lying in the
plane z =k . The special symmetry ensures that the density
3, =1 I( 7sbyk)/2m p (5.18)
where I(+) is the total current and p is the x-~coordinate of
an arbitrary point, identified by the parametric coordinate 7
lying in S (refer to Table 1 of Part 1, (I) ). Wote that
the symbol 7 denotes both the curve and distance along it
measured anticlockwise from the (outermost) point where 7

crosses the x—axis.

I( 7,b,k) could also be termed a "Green's current" in
the sense that it is due to a "delta" ring source. If the
source of the actual Y?O were a distribution R(b,x) of
magnetic ring currents then the actual electric surface

current density would be I( 7)/2r Ps where

® o
( 7) =ff I( 7,b,x) R(b,k) db dr. | (5.19)
— O ’
The null field methods of interest heré are both the
prolate and oblate spheroidal null field methods, for which

1 2

The coordinate u, becomes the azimuthal angle ¢. Table 6

3

lists the wave functions appropriate for these null field

u, and u. become £ and 7 respectively, (c.f. Flammer 1957).

methods, under the special symmetries considered here (e.g.

the wave functions are independent of ¢). Note that the
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spheroidal null field methods reduce to the spherical null

field method when kd = O.

To obtain null field equations, such as (3.14), the
expansion RHS (3.10) must exist, which is only possible in
spheroidal coordinates when certain symmetries (such as the
ones considered here) apply. On using the Rayleigh~Ohm
procedure, as described by Tai (1971); and the properties
of spheroidal wave functions (c.f. Flammer 4957) it follows

that the normalisation coefficients in RHS (3.10) areT

1 .
. 2 . |
oy = —m/zwfshq_m (kd,n) an. .; (5.20)
-1

The nature of the megnetic ring sources ensures that

thé expansion coefficients a s introduced in (5.12) and

1,9
(3.13), are necessarily zero. So, for convenienc:e'a2 a is
b
written as
a = & 021
2,q4 = % (5.21)
It also follows that
O A A '
'{S &Eq (u/l’uz’(P’k) = O . (5’22)

so that the first of the coupled equations (3.14) becomes
trivial. On account of the form assumed by RHS (3.10) in
spheroidal coordinagtes and noting the position and radius
of the unit magnetic ring source, it follows that

1
_ 5 (e? RTLUS
s = i {u} 2r b § M (5, 0,9550) (5.23)

where the intersection of the particular spheroidal coordinates

ﬁ1 and. ﬁg corresponds to the intersection of the particular

T These coefficients are derived in Appendix 1.
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pylindrical polar radial coordinate p and the particular
axial coordinate k. As is confirmed by Table 6, M((;*)(»)

is independent of ¢ so that aq is a constant (as anticipated).
The symmetry permits the surface integration in the secdnd
equation in (3.14) to be reduced immediately to a line integ-
ration along T, so that on account of (5.18) and (5.21) it

follows

f I( 7,b,k) K(;(T) ar = a qe fo-m  (5.24)

T
where it is estimated that (M + 1) of these null field equations
are needed to permit I( T;b,K) to be calculated to some

required accuracy. The kernels of the null field eguations are

Ko(r) =2 189 (o ugougn)

- P , . 5
.—_-'l“{‘a‘(g ""7],2) 2 {COS(gZ —-§1) 81’q+1 (kd,?] )él[(gé _1)2

(4) N1 s e (&) <! 2l .
Ry, 0a,E)] - sin(ey ~CIR Y () S0 )2, (kd,n)]},

q € {0~ M, (5.25)

where the angles ¢, and are -defined in Teble 4 (but with
1 2 '

§ replaced by"_r’:)o

To eveluate I( 7,b,1) numerically it is written in the

form
M
I( 7,b,1) = Zap £ (r) (5.26)
p=0

where the ﬁp(T) are chosen according to criteris discussed

in §)4. Substitution of (5.26) into (5.24) yields
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M
Z , ‘@p a =% Q2 € {0 M} (5.27)
p:O
= | Y K (1) ar. | .
@p’q ffP,(T) q’(T} dr. (5.28)
-

6. APPLICATIONS

The results of a number of numerical solutions to
particular direct scattering problems are presented, in order
to demonstrate the computational usefulness of the null field

methods developed in §5.

The crux of each solution is the inversion of a matrix.
A typical element of a typical matrix is denoted by qu and

the norm Z is denoted by

7z = det inant £ 3 ’ 6.
eterminent {3 (6.1)
M o
o 2 (6.2)
=2 Z .
o = Tpg | 2, lagl”

m:O
This norm has been previously shown to be useful (Bates and
Wong 1974), and Conte (1965, chapter 5) shows that it is a
géod measure for comparing the relative condition of
different matrices. The order of Z is tabulated in this thesis
where appropriate, i.e. O(Z). The smaller % is, the greater
is the error in the computed inverse matrix, for a given

round-off error in individual arithmetic operations.

The computer time needed to perform a calculation is
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perhaps the most important factor which must be taken into
account when attempting to assess a particular numerical
technique. Unfortunately, there are such great differences
between the many existing computing systems that bare state-
ments of CPU (central proceésing unit) times are not too
meaningful. However, we feel that it should become accepted
practice to record CPU times, if oniy to give an "“order-of-
magnitude" idea of the amount of computatioh involved.
Pertinent CPU times are listed in Table 8 and in the captions
to Figs 9, 10 and 12. The extended Simpson's rule (Abramo-
witz and Stegun 1970 formula 25.4.6) is used in this thesis
for all numerical evaluation of integrals unless stated other=
wise. As the integrands are oscillatory there seéms to be
little point in attempting to use higher quadrature formulas
(c.f. Ng and Bates 1972). The methods used for computing
Bessel, Mathisu and spheroidal functions are discussed in

Appehdix 3

As is pointed out in .§h.there is no alternative at
present to the brute—fofce procedure for checking whether
numerical convergence is occurring. The current densities
are obtained by inverting matrices (refer to second paragraph
of this subsection). Using the notation introduced in (4.11),
we say (arbitrarily) that a computed current density is
convergent, when the order of the matrix is (M + 1), if the
greater of the largest (over all of 8, for arbitrary bodies)

or over all of C, for cylindrical bodies) calculated values

of tZ)‘MM "'J.Ml and 33'1%2 =-;)JMi is less than 3% of the
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largest calculated value of i;YM[B

(a) Cylindrical Null Field Methods

The cross section of é typical cylindrical scattering
body is shown in Fig. 3. E&O is taken to be a plane wave
incident at the angle (). The appropriate expansion coefficients
am for the series RHS (5.2) are listed in Table 7. All the
bodies examined here are symmetric about ¢ = 0, which means

that the even-odd and odd-~even matrix elements, introduced

in (5.8) and (5.9) are automatically zero:

ag:‘:m - @g‘jm =0, em € {0 1] | (6.3)

This significantly reduces the amount of computation required
to obtain values of ¢ and F to a particular, desired accuracy.
In fact, it reduces from (2M + 1) to (M + 1) the order of the

matrix that must be inverted.

- The basis functions (5.10) are used for QY(C) and the
transformation (4.13) is employed in (5.9). The direction
(identified by the angle ¢) of the incident wave is taken to
be either O or m/2, because it is found that by so doing all
the points we wish to make can.be illustrated. This also
means bthat the symmetry existing in all the examples considered
here permits the complete behaviour of EV(C) to be displayed
by plotting it on only half of G, as is done in Figs 5 through
10. C denotes the value of C at the point on C where ¢ = {

(there is only one such point on each of the bodies investigated
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here - refer to Fig. 4). For convenience, EY(C) is

normalised so that

3@ =-0)=1 (6.4)

Pig. 4 shows the cross sections of the types of cylindrical
-scattering bodies considered here. It should be recognised
that the forward scattering theorem (c.f. De Hoop (1959) Bovman
et al.»1969, §1.2.4.) is a powerful check on any
scattering computation. The accuracy to which this theorem is
satisfied is used as an."energy test". On introducing the
quantity E defined by

E = error in energy test (6.5)

we consider that a computation has "failed" if E » 10_3.

(v) Circular Null Field Method

Use is made of the entries, applying to the circular
null field method, listed in Tables 3,4 and 7, and we take

U = 0.

Figs 5 through 8 shqw IQY(C)I for some triangular and
Squarefbodiesa The notation for éY(C) introduced in Table 2
is used., For comparison the experiméntal results of Iizuka
and Yen (1957) and computational results of Hunter (1972)
are reproduced. The computational efficienéy of combining
Shafai's (1970) transformation with the circular null fiela
method is dramatically emphasised by the low values for M and

the large value for Z quoted in Table 8.
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To illustrate how the circular null field method
becomes ill-conditioned as the aspect ratio of the body
increases, it is shown in Table 9 how 0(Z) and O(E) vary

with the elongation of an elliptical body, for E-polarisation.

(c) Elliptic Null Field Method

Use is made of the entries, applying to the elliptic

null field method, listed in Tables 3, 4 and 7, and we take

G = /2.

Figs 9 and 10 show | J°(C)| for an elongated rectangular
body with rounded corners., The notation for ET(C) introduced
in Table 2 is used. To obtain these results the semi-focal
distance 4 of the elliptic cylinder coordinates is taken as

A\
d, where
y 2‘-% v .
d=1[1=(/2)7 ] a, (6.6)

which mekes Q ., as large a part of Q_as possible. If a/d
is reduced to zero, the elliptic null field method becomes
the circular null field method and the part of (_ spanned by
Qnull}ls decreased.

As is emphasised in the final paragraph of 8.4, the
accuracy of the numerical integrations is crucial for the
success of null field methods. L is used to denote the
factor by which the number of ordinates, used when the extended
Simpson's rule is employed to evaluate (5.9), has to be

increased - in order to obtain solutions from (5.8) for the
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aqj to the required accuracy = when the semiwfocal.distance

of the elliptic cylinder coordinates is changed from é to some
other value. Table 410 shows the marked increase and decrease
~of Z and L, respectively, as d is increased from zero to é,

for a rectangular cylinder, for E~polarisation.

(d) Prolate Spheroidal Null Field Method

By combining the equivalence principle with image
theory (Harrington 41961 chapter 3) it can be showﬁ that an
axially symmetric monopole anteﬁna, mounted on a ground plane
and symmetrically fed from a coaxial line, is exactly eguivalent
to a dipole which is suspended in free space and is driven
by a frill of magnetic current (Otto 1967). The complex
amplitude of the frill is proportional to the radial component
of* the electric field in the mouth of the coaxial line, which
has inner and outer radii of a and bo respectively (see FPige
11). The field in the mouth of the line is complicated and
could be expressed as a sum over all radially symmetric TM
modes. BExperience shows that the propagéting modes have the
greatest effect on the entenna current. As is usual in practice,
only frequencies of operation for which there is a single mode
of propagation are considered. This is the fundamental TEM
mode whose electric field is inversely proportional to the
radial distance from the axis of the coaxial line. The
complex amplitude of the frill - which can be identified with

the distribution R(b,x) introduced in (5.19) but with « = O

because the mouth of the coaxial line is in the plane z =0
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(see Fig. 11) — is therefore represented by
R(b,0) = -2V/[1n(b /2) b] (6.7)

where the constant of proportionality is introduced for
later convenience; V is the voltage between the inner and

outer conductors of the coaxial line at its mouth (c.f. Otto

1967) .

Rather than solve for I(7,b,x) and then calculate I(r )
from (5.19), it is more convenient to look on the aq appearing
in (5.21), (5.23) and (5.24) as "Green's expansion coefficients"
- 50 that they could be written as aq(b,x) - and then to
compute the expansion coefficients (redefined as aq) of the
actual field incident upon the antenna from

by |

o =f a,(b,0) R(6,0) & (6.8)

a
If T(7,b,%) in (5.24) and (5.26) is now replaced by I(7) then
the o, appearing in (5.27) are the expansion coefficients
of I(7) itself. This procedure is equivalent to the way
Bates and Wong (1974) use the sphericai null field method.
The 9 point Bode's quadrature rule (Abramowitz and Stegun 1970

formuls 25.4.18) is used to evaluate the integral in (6.8). -

Since the monopole shown in Fig. 11 can be treated as
half of a symmetrical dipole and since it_is driven in a
radially symmetric manner, it is physically necessary that

I(~7) = I(1); I(T) =0 (6.9)

where T is defined in the caption to Fig. 11. These conditions
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) ry
are satisfiled by the basis functions

£ (1) = sinl(20-1) wr/1], p € {11 (6.10)

which lead, however, to slow numerical convergence of the
imaginary part of I(T) with M for r close to zero. Sometimes
useful numerical convergence is obtained for 7 » 7., where 7

1
is small enough that I(7) can be extrapolated throughout

1

0<T < T by inspection. Nevertheless, it is often found
to be convenient to expand the real part of I(T) in the basis
functions (6.10) and the imaginary in Chebyshev functions of
the first kind. This doubles the order of the matrix which
has to be inverted, but it does lead to manifest numerical

convergence.

- Pig. 12 shows the total current on monopole antemmas
with flat and hemispherical ends. The semi~focal distance

v
d of the prolate spheroidal coordinates 1s taken as d, where
z
2
d=01-(e/m)° 1 a (6.11)

which maximises the volume spanned by Youl1? in relafion to
Y-. Table 11 shows how Z increases markedly as d increases
from zero (corresponding to the spherical null field method)

to é, for s monopole with é hemispherical end. The admittance
Y of the monopole, referred to its base, is given convéniently
and sufficiently accurately (although Otto's 1967, 1968 methods
are perhaps more accurate - they are less éonveniant here) for
our purposes by

Y = 1(0) /v (6.12)

Fig. 15 shows the variation of Y with a/H for monopoles with



80.

flat and hemispherical ends. For each value of a/H, the
coordinates were chosen such that d = d. Holly's (1971)
measured vslues are also shown. It is clear that monopoles
of arbitrary height-to-radius ratio can be investigated
computationally in an efficient menner with spheroidal null

field methods.

7. APPLICATION OF NULL FIELD METHODS 10 PARTTALLY

OPAQUE BODIES

As is indicated in the second paragraph of §2, the
null field approach can be applied rigorously to partially-

opaQue (penetrable> bodies.

For partially opaque bodies the scattered field at a
point P in y+ can be written as (Morse and Ingard 1958 87.1,

Jones 1964 §1.26)

9=A1/fa’+gds+zx2/fm+gés (7:1)
S S

vihere A1 and A2 are appropriate operators and g is the free
space scalar Green's function of (2.6) of Part 1, (I). When
treating partially opaque bodies it is convenient to split

the source density into two parts & and 7l - these and the

attached subscripts are defined later.

The total field ?%T at a point P in y_ can be written as
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9 = A, jfj[g; B 05 + A, /f%“ Eint ds (7.2)
S ' S

where gintis the scalar Green's functiocn of (2.6) of Part 1, (I),

but the subscript "int" is added to indicate that the wavenumber
appearing in Bint is kint’ the wavenumber appropriate to the interior
of the body. As equations (7.1) and (7.2) and their associated
definitions are used only in this subsection there should be no con-
fusion with those definitions introduced on (I) of Part 1 which apply
to the rest of this thesis.

The forms assumed by o b, A, and A2 for the scalar and

1

vector cases are now listed.

(2) Scalar Field

1 s 0, %T > \I!T, A, = -1 A, = ~-3/an (7.3)

Y > Lim (¥, +¥)/on, PEyYy ; & > Lim -3 ¥_/on, P E y_
+ ’ 0 o+ - / T
P> P PP
| (7.4)

}?”L+->..>Lim/(tyo+\p), PEy+; 7, »> Lim -y, PEy_ (7.5)

3
P P pp T

[c,f’A, §2(a) of Part 1, (1)].

(b) Vector Field

The source densities ~J-s and g@s are respectively the surface

electric and magnetic current densities:

o A
a’+—>—> £S+ :;prlg X (HO + H), ?E L%
‘ (7.6)
¥ d _=Lin-DXH, PEy_

Ps P
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. N .
T, > M= Lin 8 X (QO +E), P€ v,
PP
(7.7)

il

Mo M me§XEm, PEy

/
PP -

where E. and EO are the electric and magnetic fields associated with

=0
?b, There are alternative forms for 7, ?T, A, and A,
L iton. 22 .
F o> B, Fpo> B A, = il e + k7] /e A, =V X (7.8)
o B, Yoo Hp A =V X a, = 3lvee « ¥ o (7.9)

(¢) The "Extended" Extinction Theorem

Vhen a "disembodied" distribution of surface sources is set
up on the interior and exterior sides of 8§ in the manner described
by (7.1) and (7.2), an “extended" form of optical extinction theorem
can be utilised to obtain a null field method. The "disémbodied"
distribution of surface sources B; and Té'can be considered as
residing on the outside of S, developing a null field in y_ and
- the actual scattered field in y+. Similarly another "disembodied"
distibution of surface sources ET_ and 7@L can be considered és
residing on the inside of 3, developing e null field in Y, and the
ectual transmitted field in y_. The "extended" optical extinction

theorem then states

F = -%,  Pey. - (7.10)
'}T =0 Pey, . (7.11)

On substituting (7.10) snd (7.11) into (7.1) and (7.2) respectively,

it follows that
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!
R
i

o A’l&[fa’vkgdsma-j\?f\/p%%‘gds Pey
S S (7.12)

o
i

r .
4 /jQ’_ Bint %9 *’Aszﬂn Bt 4 FEY,
S S

The boundary conditions on the surface of the partially-opaque

body require that

=y
Tem - (7.13)

Equations (7.13), in combination with (7.12 ), constitute a set of

simultaneous integral equations that may be solved using similar

techniques to those developed in §3.

Tn situations for which a single series expansion of the interior
field holds throughout y_, equation (7.1) is much simplified and the
surface sources and interior field may be found straightforwardly and
efficiently, as Waterman (1969a) shows for fhe spherical null field
method and Waterman (1969b) and Okamoto (1970) show for the circular

null field method.
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Table 1. Metric coefficient h(d) obtained by transformation of the
“region Q, for a square, rectangle, equilateral triangle and

ellipse onto the exterior of the unit circle.

Cross sectional - n() Transformation
shape constants
L
Square afcos(29)]2 /4 L = 0,847
a = half length of g side
a = half length of

longest side

b = half length of
shortest side

2 4
Rectangle a(m-sin” ¢ )2 /L For E = ol, m = 1055
L = 0840

Refer to Bickley (1934)
for other B ratios.
a A

Equilateral alcos(£9) /L L =1.186

triangle a = half length of a side
4

Ellipse (azsin25}+ b2cos2§)2 a = semi-major axis

b = semi-minor axis




Table-2.

General notation for cylindrical null field

methods.

" E~polarised fields
(% > EZ)

or sound=-soft bodies
(% > )

H-polarised fields
(h& -=->=—>HZ>
or sound-hard bodies

('5('-»‘1/)

J(c)

F(C)

a(c)

o(C)

fhen the fq(C) are themselves appropriately

(refer to §L)

- singular where C ceases to be analytic

1/

1

When the transformation (4.13) is employed




Table 3. Wave

functions appropriate for cylindrical null field methods.

Null field ~% ~(2)% A
method Jm(u1,k) H | (u1:k) Ym(uz’k) e
| (2)
I, kp) H ™ (k) ~i/2, m > O
Circular . €05 (mg)
Bessel function of first Hankel function of second o sinv -i/L o =0
kind of order m. kind of order m. ‘ ? -
1 .
zt )(kd,g) p () (kd,z) S (xd,n)
em 8m gm e
s ‘ -i/1°
Elliptic Modified Mathieu function | Modified Mathieu function | Mathieu function even m

of first kind, even and
odd, of order m.,

of fourth kihd, even and
odd, of order m.

and cdd, of order m.

d = semi-focal distance of elliptic cylinder coordinate system.
Feshbach (1953) chapter 11.

Q

g 1
2 -1
1;’1 =fse (kd,n) (1-.-772) 2 ap
m

Refer to Morse and

"98



Table 4. EKernel functions appropriate for cylindrical null field

methods.

e
Null field method Kmo(C)
Circular (2} /N COS,
E-polarised _Hm (16) sin(mw)
%12 0 e ¢
Circular
H~polarised : ( .
2) /¢ SN : r o
1,2 (1) cos“m-”‘f’%ﬂ}
B1liptic 2 e, Ey s (kd,7)
E-polarised gm gm
)~k ) :
1 12 2. i ;o ,
gy Gy {(g ~1)Zeos(¢,¢ ) S%m(kdm)
Elliptic a (4)
H~polarised dg (id, 5) -

- (=) Esin(E L, >R<A’<Ka,g> 5 (kd,n)}

& e
The formulss for K;O(C) differ from those for KmO(C) only in

that Jm replaces

Héz) end 21

()

replaces R
€m &m

The angles 51 and §2 are defined by

cOs §1 ::>'=

cOos §2

-2+(% x 0);

I

3 sin §1

i
I

s sin ¢y %u(% X a)




Table 5. Quantities

88.

appropriate for the spherical null field method.

eneral null field
method.

Spherical null fisld method

u1 3u23u3

r, 0,0

i<u1 :k)

di(kr), spherical Bessel function of order 1

A (2),
85 (%)

hiz) (kr‘), spherical Hankel function of order AL

(u,u.,%) Pi(cos 0) exp(ijo), where Pz(') is an
2
J:l 2’73’ associated Legendre function.
~=ik . .
cj,,(?, _l:;r (22-1-1) (Q"J)!/(!Z-!-J)!




Table 6. Wave functions appropriate for spheroidal null field methods

rotationally symmetric (i.e. independent of ).

and for fields and bodies that are

Null field (p) - f
method Hq (u1,u2;k) : Mg?)(u15u2;k)
- 12N, L ean e 2P o)
Prolate kd 1, ’ A (p) R
spheroidal o+ 1( :E) S 1(kdsn)¢
o 1 ) 1. B
<P) o d,g)—- [(1-n%)Z 5 oot (kd,n)lg}
J
Oblate Same functional form as the prolate spheroidal wave functions, but with £ replaced
spheroidal

by i and d replaced by ~-id in the arguments of the spheroidal functions.

31 q(°), spheroidal angle function of azimuthal index 1 and order g
3

s Spheroidal radial function of the pth kind with azimuthal index 1 and of

order g.

_(p)
Rﬁfq(=)

d = semi~-focal distance of spheroidal coordinate system. Refer to Flammer (1957) .

°68



Table 7. GCoefficients in plane wave expansions for cylindrical

null field methods.

Null field method a® a’
m m
. m+1
Circulaer 1™ cos (mi) lg.im+1sin(m¢!)
Elliptic z\!r8 im+1 Sem(kd’cos ) im+1 Som(kd,cos )




Table 8. Values of M and CPU times required for the convergent |d (C)| shown in Figs 5

through 8. 2 = 0(4) in each case.

Triangular cross section

E-polarisation

H-polarisation

Square cross section

b/a = 1.0 t = 0 in Fig. Lb

E-polarisation

H-polarisation

ka ka ka ka
1.0 5.0 1.0 5.0 0,1 1.0 5.0 | Q.1 10 5.0
M 8 15 8 15 5 10 14 5 10 14
CPU time in 7 9 7 15 6 7 11 6 7 15
seconds

16



Table 9.

92,

Circular null field method epplied to eliiptical body

(Fig. 4); E-polarisation. M = 14, ka = 3.1k

b/a 1,0 0.8 0.6 Ooly | 0.2
0 - - -8 -1

o(z) | 10 107 10 o 10712
- T 06| 4973

o(g) | 10 10 10 10 fail
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Table 10/, Elliptic null field method applied to rectangular
cylinder (see Fig. 4b: b/a = 0.1, t = 0) for
Eapoiarisation‘

a/d 0 0.25 0.5 0.75 1.0
ka 1.0, M =10
0(z) 1010 1074 104 1072 160
L >8 8 YA 2 1
Ka = 3.14, M o= 14
o(z) 10720 T 1077 1077 o7t
L ‘>4 >4 >4 4 1
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Table 1§. Prolate spheroidal null field method applied
to monopole antenna with hemispherical end.

H/X = 0,25, ¢ = a, a/\ = 0,007, M = 7.

0(z) 10713 4ol 1o~t0 1078 o




o~

i

Pige 1 Créés secﬁion of a three-dimensional SCaétering bod&
showing a Cartesian coordinaté-system and a general.
' orthogonal curvilinear coordinéte system. Ig.the
Cartesian coordinate system the z-—axis ia{perpendicular

to, and directed out of the Page.s

95.




Fig. 2 Projection of a rotationally symmetric body onto
x,2=plane. The surface S of the body is obtained
by rotating the curve 7T about the z-axis. The

points (¢) are where the ring source intersects the

x,z=plane.
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- _ P(E.n50,0)

incident plane

wave

PEmyeLd)

Fige 3 Cross section of arbitrary cylindrical body and associated
coordinate systems. The z-axis 1s perpendicular to, and

" directed out of the paper.



98.

(a)

»
¥

(¢)

Fig. 4 Cylindrical scatterihg'bodies

(a) Equilateral triangular body
(b) Rectangular body with corners of variable curvature

(¢) Elliptical body



[F(C)-

Normalised

Fig. 5 Surface source

99.

2 ® 0 ] T T T ¥
1.5 o
“M""'\-«.,,_,_
0.5
[ . /
0 L I } i e e
0 1.0 2.0 3.0

density on a triangular cylinder when the

incident plane wave is E-polarised.

T ')
ka

A ka

i

5.0
1.0

1.0 (measured by Iizuka and Yen, 1967)

THE LIBRARY
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IG (C)

Normalised

Fig. 6 Surface source density on a triangular cylinder when

incident plane wave is H-polarised.

k& = 5.0
——— ka o= '] ° O

A ka

i

5.0 (calculated by Hunter, 1972)

the




[F(C)

Normalised

101.

C/a

Pig. 7 Surface source density on a square cylinder (b/é =1.0, t =0 in

Fig. 4b)
ka

——— ka
ka

A ka

when the incident plane wave is E-polarised.
= 5.0

= 1ao

= 0.1 .

= 1.0 (measured by Iizuka and Yen, 1957)



1G(C )l

Normalised

005

102.

i ¥ T
N
o \ ]
.\-
kY
2% m\ l: L
\'5 ) -

Fig. 8 Surface source density on a square cylinder (b/a = 1.0,

t = 0 in Pig. 4b) when the incident plane wave is H-polarised.

ka

ka,

ka

1

500
= 1.0

= 0.1

i

1.0 (measured by Tizuka and Yen, 1967)



|F(C)I

‘Normalised

OI
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C/a

Surface source density on a rectangular cylinder (b/a = 0.1,

t = 0 in Fig. 4b) when the incident plane wave is H-polarised.

ka,

= 301}4_, M= '14-, CPU time = 22s
ka = 1.0, M = 10, CPU time.= 20s
ke = 0.1, M =14, CPU time = 15s
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[ (C)I

Normalised

1 t ) L Il

0 0.5 1.0 1.5 2.0

Fig, 10 Surface source density on a rectangular cylinder (b/a =
t = a in Fig. 4b) when the incident plane wave is

H-polarised.

— ka = 3.4, M = 10, CPU time = 62s
———— ka =1.0, M =6, CPU time = 32s
ka = 0.1, M =14, CPU time = 22s
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Fig. 11 Cross section of the cylindrical monopole antenna.

T = half-length of monopole cross section

il

H+mt/2 - 26 + &

fl
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Current mA

(a) _ - (b)

Fig. 12 Total current distribution on the cylindrical monopole antenna.

H/A = 0.25, a/h = 0.007, by/a = 1.125

real part of I

imaginary part of I

(2) %
(b)) ¢

a in Fig. 11, M

5, GPU time = 40s.

i

1

0 in Fig. 11, M

5, CPU time = 40s
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Admittance

mS

Admitfance

i . 107.
40
30 L
20 B
io L
0 1 i t L L 1 1 1 1\ 1 \ | ' |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
H/\
40 L
30 |
20 L
10 |
0 1 ] 1 1 L | 1 | ' | 1 i L. l
0 0.1 0,2 0.3 0.4 0.5 0.6 0.7
H/ X\
Fig. 13 TInput admittance of cylindrical monopole antemna. a/A = 0.1129,

bo/a = 1.22

real part of Y

imaginary part of Y
measured admittance (Holly 1971)

.,A
(a) t = a in Fig. 1
(b) t =0 in Fig. 11
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PART 2. II: MULTIPLE SCATTERING BODIES

The general null field method is extended fo multiple
scattefing bodies. This permits use of multipole expansions
in a computationally convenient mammer, for arbitrary numbers
of separated, interacting bodles of arbitrary shape. Examples
afe presented of computed surface source densities induced on

pairs of elliptical and squérevcylinders@

1. INTRODUCTION

Rayleigh (1892) is perhaps the first to have studied
scattering from multiple bodies. He considered rectangular
“arrays of circular cylinders and spheres. Comprehensive
surveys of the work which has followed are given by Tﬁersky

(1960), Burke and Twersky (1964) and Hessel and Oliner (1965).

As 1is remarked in (I), exact methods for solving
diffraction problems for large (compared with fhe Wavelength)
bodies are impracticable - i.e. they Would involve enormously
expensive digital oomputations. Similarly, exact methods for
solving multiple scattering problems are impracticable when
the separations of the bodies are large, in which cases it has
been shown that approximate methods can often provide solutions
of useful accuracy (Kerp and Zitron 1961é,b; Twersky 1962a,b) .
When the bodies and separations are both small, low frequency

approximations apply (Twersky 1952a,b, 1967)0 Exact solutions
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are most needed when the linear dimensions of the bodies and
their spacings are of the order of the wavelength - this is
fortunate because it means that useful digitel computations

can often be done efficiently.

In a scattering problem it is ususlly convenient to
take the origin of coordinates inside the body. This implies
that it 1s likély to be convenient to shift the origin during
the solution of a multiple scattering problem. Such shifts
can be accomplished with the aid of addition theorems, which
exist for all wave functions which are solutions of the Helm~
holtz equation in separable coordinate systems (Morse and
Feshbach 1953 chapters 10 to 13). The addition theorems have
been applied to multiple bodies, on the surface of each of
which one coordinate qf a separable coordinate system (having
its origin inside the body) has a constant value - i.e. each
body is a spheroid, sphere, elliptic cylinder or circular
cylinder. Direct solutions (c.f. Row 1955, Liang and Lo 1957)
of the equations So obtained have tended to require excessive
computer time, so that iterative methods have been developed
(Cheng 1969, Olaofe 1970), but these are often found to
converge slowly (Cheng 1959). Howarth and Pavlasek (1973),
Howarth (197?) and Howarth, Pavlasek and Silvester (1974)
have recently developed numerically efficient techniques

which they have applied to arrays of circular cylinders.

Addition theorems are employed here, and the methods of
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solution are direct. The improvement is that we can deal
with multiple scattering bodies of arbitrary shape in a

numerically efficient manner.

The essential steps in the method are outlined in §2
and § 3; the formalism of (I) is extended so that it is
explicitly applicabie to multiple scattering bodies. In 84
the formalism of § 3a is specialised to pairs of bodies and
to cylindrical polar coordinates - i,e. § A4 states the circular
ﬁull field for two bodies. Brief diséussions of vhat is
necessary‘to ensure computational efficiency are included in
84. In §5 results are presented of digital computation of
the source densities induced in the surfaces of pairs of

elliptic and square cylinders.

2. NULL FIELD APFROACH TO MULTTIPLE SCATTERING

Fige. 1 shows a pair of totally-reflecting bodies
embedded in the space Yy, within which P denotes an arbitrary
point. In keeping with the notation introduced in §2 of

Part I, (I), v is partitioned according to

where S1 is the surface of the first bédy and vy ’ and y y
: - +

©

are, res pectively, the parts of space inside and outside S

1
The point O1 € Y_4 is taken as origin for an orthogonal

curvilinear coordinate system (u, , u_ , u31)o The surfaces

11 21
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% eand % ,, on each of which the radial-type coordinate u
3

=1 1

is constant, respectively inscribe and circumscribe 8 , in

1
the sense that they are tangent to it but do not cut it.

H

and v are defined as
e

Y a1l ¢
Youli 1~ region inside 2_4; (2.2)
y++1 ~ region outside 2+1 (2.3)

The notation for the second body is similar. vy N is defined as
+

Vo ™ Y i n V2 (2.4)

A monochromatic field ‘3b, originating from sources
existing entirely within y++, impinges upon the bodies inducing
equivalent sources in their surfaces. Referring to (2.5) of
Part 1, (I), and employing an cbvious extension of notation,

it follows that the scattered field % can be written as

R A ¥, Pc—_yﬂn Y, (2.5)
g, :A'{ f/ Y, 6 &s} (2.6)
5 '

where €Y1 is the density of equivalent surface sources induced
in§,. ', is written similarly. It is convenient %o intro-
duce the terminoldgy: "the exterior and interior multipole
-expansions of '§1" by which is meant the expansions, valid for

P&y, 4 o0d PEY .., respectively, of the right hand side

(RHS) of (2.6), got by expanding g as in (2.14) of Part 1, (I).

The first essential step in the approach is, by analogy

with §2 of (I), to replace the material bodies by "disembodied"



112.

distributions of surface sources, ldenticael in position and
in complex amplitude with 3} and Qém Then 'F can be written
as

'3(': '3'1'}’ '3’"29 PEy (2»7)

with '&1 given by (2.6), and 2}2 expressed similarly.
Application of the optical extinction theorem to the two

bodies separately yields:

%= =% PEy_; (2.8)

Moo - 7 o9 ' | P’G Yoo (2.9)

which lead to simultaneous sets of extended integral equations,

by analogy with (2.2) of (I), for éfq and éyz.

Since the bodies are separated, y_ F\y_z is necessarily

1

empty. However, in certain cases 2—4 intersects 2+2 and/or

A
% 5 intersects X 1° % is defined to be the largest closed

s + o
surface, on which u11 is constant, contained within Yol ]

N
and not intersecting 2+2. ynull 1

n N
of space inside 2_1. It follows that Youll 1

is defined to be the region
~ Ypui1 4 ER

% _ does not intersect I ;. is defined similarly.

"N
T2 1° Ynull 2
Null field equetions, analogous to (3.2), (3.5) and
(3.14), all of (I), are obtained in the following way. By
analogy with §3 of (I), (2.8) is satisfied explicitly for
P e Youll 1; the analytic continuation arguments quoted in

(I) then ensure that (2.8) is satisfied throughout y 1
. e 9

provided that y .. , is not infinitessimel. In the latter

case the null field method can still be applied if the exterior
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multipole expansion of Eé converges within a finite part of
Ypull 1 containing 016 This is the same as requiring that

the singularities of the exterior multipole expansion of Eé
lie within a surface, on which u12 is constant and is less

than the value u12 has at 01 (refer to Bates® 1975b discussion
of the Rayleigh hypothesis and related matterés, g 1is expanded
in multipoles and then the procedure follows exactly as in

§3 of (I) to develop the interior multipole exﬁansion of 3H°
52 is re-expressed as a function of the coordinates (u11,
), instead of the coordinates (u12, Lo u32), using

Y212 U3y
the appropriate addition theorem (Zavisha 1913, Saermark 1959,
Sack 1964, Cruzan 1962, King and Van Buren 1973). It is

then found that 32 can ?e expanded, within ynull 4 in the
same sort of interior multipole expansion as ?1. After
handling (2.9) similarly, there are sufficient null field

equations to give aq and QE uniquely = the formalism is

developed in detail in 83.

When there are N bodies (N » 2) the subscripts p and
t are attached to the same symbols as have beén employed above,
to identify quantities assoclated with individual bodies.
The sources of 30 are again constrained to lie within y++,

which are now defined by
N
LYl - n . : .
Yoy L . (2.10)
t=1
The extinction theorem is satisfied separately within each

body. For the pth body the theorem is satisfied explicitly

A N .
within Y qull b - Y il o’ where Youll . is the part of space

1 See also 82a of Part 1, (II).
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N
inside the closed surface Ewp, which is yet to be defined.

A
Recalling (2.16) of Part 1, (I), 3 t € {1 - N} is defined

+t’

to be the smallest closed surface on which Uy is constant
u

and which encloses all the singularities of the exterior multi-

N
pole expansion of ﬁ%e If any of the DI t £ p, enclose OP,

for any p € {1 = N}, then the method introduced in this section

A

A
fails. When none of the J enclose O , § is defined to be
+& R 5

A
that member of [E;t; t € {1 - p-1} U {p+1 » N} ] which approaches
AN
closest %0 O . If %+P does not intersect %  then it follows
: » i " '
that % o ~ 3 P' It E+ does intersect Ehp then X% is defined

to be that surface on which u1P is>constant and which is

N
tangent to §+P but does not cut it.

It is worth realising that in the great majority of

situations of interest none of the E+t will intersect each
N

other, let alone enclose any of the Op. Since Z‘._*'JG cannot
enclose E+t’ bebause the latter must enclose all the
singularities of the exterior expansion of %1;(Cefo Bates

1975%), it follows that usually §_ ~3_, for all p € {1 » N} .

However, the previous paragraph is included for completeness.

%) is expanded witain §nu11 , n ibs interior multi-

pole expansion. All other '}t are then expanded within

A
ynull D

appropriate addition theorems to their exterior multipole

in a similar multipole expansion by applying the

expansions. Repeating this procedure for all p € {1 » N},
sufficient null field équations are obtained to give all

members of [D)t; t € {1 =N} ] uniquely.



115.

3, NULL FIBLD FORMALISM FOR MULTIPLE BODIES

. th .
Pig. 2 shows the p of a number of separated, inter—
acting scattering bodies. The notation used accords with

that introduced in §2 and 82 of Part 1, (I).

Scalar and vector fields are considered separately,
in conformity with (I). In the scalar and vector cases,
respectively, ¥ is replaced by the velocity potential ¥
band the electric field E. As (2.12) of Part 1, (I) indicates,
the vector case could also be formulated in terms‘of the
magnetic field H. Reference to §3c of (I) confirms that the

. resulting vector null field equations are the sanme.

(a) Scalar Field

The analysis is based on the eguations presented in

§5b of (I).

The j,ith term - of the interior multipole expansion of

¥ is
P
. b Y (u Lk %_ u_ ,u. sk o1
Cid 35 LoD 3391( 1p’ ) J;i( 2p’ 3p’ ) G-1)
where
b = T X7 (¢ a .
2P g[[ Tp(TipTap) Ky, (rpe7ap) 93 (3-2)
3
P

The jyjth term of the exterior multipole expansion of Wt is

~ 2) A
oy h§ u,,.k) ¥, (u_ ,u, .k .
OJ»K Jsl st J}i’.( 17 ) Jﬂl( 247 T3’ ) (5 3)
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where t £ p and

J;!Zg f]”@’ <th”2+) K% (T1t$72t) ds (3.4)

S

Use of the appropriate addition theorem (see references

quoted in §2) allows (3.3) to be rewritten as
P _
- /\
. H N Y k
J:£ J»l:t E;‘ taPsJanl 3 (u C) /ﬂ(uZP BP’ )
Iy
! (3.5)

5 * /\
within ynull p’ where

2(2)
. rh /; I/ u1tpgk) Y // /, uth 3‘t , )

1'=0 jZ~1’ (3.6)

AL .. = 5
toDydsdstst’ Z Lo %3,50300,050

where the o, ./ »depend upon the particular addition
JsJ:J:l lﬁl

theorem being invoked and (u1Lp,u ) are the coordinates
[

3.(.

. th
of OP in the t = coordinate system.

It should be remarked that the superscripts + and = are
appended to the symbol b to distinguish between the exterior
and interior multipole expansion coefficients respectively.

(The + superscript has already been introduced in §5 of (I) ).

An arbitrary point O within vy is chosen as origin for
a further system of coordinates identified by t = 0. (2.15)
of Part 1, {(I), is then used to represent the incident field
Wo with respect to this new coordinate'system, but with
u

u_, and u_ replaced by u, _, u " respectively.

12 T2 3 10 30

The aforementioned addition theorems allow @O to be represented

50° and u

similarly within Qnuil - but in terms of wave functions
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depending upon u, UZP and u_ . A further subscript is

1p Sp
added to the a, . to identify the latter representation. It

Jdoa

is then found that

o 2
N0
Jod JLZ Al ,C i :.Q- OzPsJ:J:Q ¥4 (5‘7)

O
[N
i
i
(o8

A
Note that Y, (u. ,u_,k); £&€ {0-»w je (-4~ is a
ohat (1, (u, 00, K5 L€ {00}, §€ {-1o1]]
set of functions orthogonal on any closed surface which is
contained within §hull p and on Whic@ u1p is constant. The

A
extinction theorem, applied to the fields within ynull o’
then ensures that

- 1 Tj‘(p) +
b, 4 = E b A R
Js dsP C- Z 9!’ J;[pt t’P:J;J:Igﬂ
dsk t =1 V=0 j&~g/

:—‘aj,ﬂdP, le {O-—)CO}, Jj&€ g"'»ﬁ*»‘lz (3"8)

where the superscript (p) on the summation sign indicates that
the term for t = p is missing. There is a set of equations

(3.8) for all p € {1 » N}.

(b) Spherical Null Field Method for Vector Field

As is reﬁarked:h1 § ba of (I), the cylindrical null
field methods are identical for scalar and vector fields,
Spherical polars are the only rotational coordinates in which
the vector Helmholtz equation is separable in general. It
seems that the kinds of symmetry made use of in §5 and 86
of (I) are unlikely to be of interest for separated bodies
whose scattered filelds interact significantly. It therefore

appears to be pointless to develop vector null field methods
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other than spherical, when considering bodies of arbitrary

shape.

The analysis presented here is based on the equations
developed in 8 3c of (I). The coordinates and scalar wave
functions (appertaining to the spherical null field method)
used are listed in Table 5 of (I}). The forms of the vector
wave functions appropriate for spherical polar coordinates

are listed in Table 1.

t .
The g b term of the interior multipole expansion of

E is
E,
M- (1) N- . (1) |
o b M r .6 sk) « b NM Y/ (r ,0 ik 3.9
qu{ aP ~a ( 0p51) + By o By ( p” p*%p’ ) (3.9)
where
Q- (4
b = J  .Q r’,0 k) ds .10
g,p [f =s,P —q (P’ 3({) ’) <3 )
S
P
th

where Q stands for either M or No The q = term of the exterior

multipole expansion of Et is

e gy () Ne o (4) )
cq{ g o (pyaBp0,3%) 4 b TN (2,040, 51) (3.11)

where t # p-and

gsP Ss,t —q

bQ+ =f/ (1)(17' t’q)tﬂk) ds | (3(]2)

!

Use of the vector addition theorem (c.f. Stein 1961, Cruzan

1962) allows (3.11) to be rewritten as
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04}
Mo () ()
e sk 0 e
Gq Zi: { qst[ .05 q q (r ’ 9@ k) + t,p,q,q q (r s ,@ sk)]

=0
N4 ) ( )

+ b A 8 k B M 0 sk
q,t [ 50505 q q <r ? -’(Pp’ )+ t,0,9,9 —q’ (r Pp*Pp’ )]}

(3.13)

e

N
within ynu17 o’ where

‘ (2) pd iy
= . h : P )
AfﬁP:qu/ Z Z at,pgq,qgg,]‘ ) (LI‘_tP) l(COSv tp)e@(l‘wtp)

1=0 j=1t
(301L)
where the ¢ 7, which depend upon Wigner 3=j
t5P5d5Q5 Jod’ ’ P “8 =4

coefficients, are tabulated by Cruzan (1962 84) and Stein
(1961 Appendix 1). The B ,have similar forms which are
. t,P5959

also given by Cruzan. The coordinates rtP, th and_@t Qefine

the position of Op in the tth coordinate systenm.

Use is now made of fhe coordinate system identified by
t = 0, introduced in §3a above. The representation (3.12)
of (I) is used for the incident field and a further subscript
p is added to a1,q and a2,q to denotevthe expansion coefficientg

when the aforementioned addition theorem is used to generate

the equivalent expansion referred to Op as origin:

oo
1 )
a = = c Jla A + a B. ] (3.15
Lar a4 9" g 0spsata T 2/ 70,p,d50 )
q= 2 1

The extinction theorem, applied to the‘fields within Qnull o’

then ensures that

N
M- 1 (p) M Nt
b 4o Y;‘o [A b + B b ]
©Lp | c Z Lo d'Espsdhq it T Tt,pea7q aft
't::"] q._.o .
- a , g€ {0 -m] | (3.16)

15,95P
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N o0
Ne 1 (p)< N4 M+
b + - c /LA b + B ; bod]
©p e 4w L.7d Ttp.dia qit T tp,aia st
t=1 q_:O
:a qE O m m1
23Q9P3 E ~ 3 (3 7)

which are the equivalent of (3.8). There are pairs of sets

of equations, (3.16) and (3.17), for all p € {1 » N}.

L. CIRCULAR NULL FIELD METHOD ' FOR TWO BODIES

- The formulas needed for the computational examples
discussed in §5 are presented here. Recall from §5a of (I),
that scalar and vector fields are equivalent for cylindrical
scattering bodies, with sound-soft bodies corresponding to
Evpolariéation and sound-hard bodies corresponding to H-polar-

isation.

Fig. 3 shows two separated cylindrical bodies. Neither
the bodies nor the fields associated with them exhibit any
variation in the direction perpendicular to the pléne 0, in
which the cross sections‘c1 and Cé are embedded. The coordinates

Pys 9, and Por @y referred to the origins 0, and 029 respectively,

1
are cylindrical polars, implying that the analysis is restricted
to the circular null field method. Refer to §5a and Tables

3 and L. all of (I)e Consequently, it can be expected that
useful computational results can be obtained provided thatb

the aspect ratios of the individual bodies are not too large.

Ir Zm(°) denotes any Bessel function of order m, the addition
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theorenm (c.f. Watson 1966 chapter 11) gives

v (1. ) COS _
[es}
1 N cos e sing
5; z{:EH LAt’Pﬂmﬁn Sin(nwp) ¥ Bt,Pgm,n cos\nwp)] Jn(kpp)’
=0

me {0l (L.1)

provided that Py < Pro where t,p € {1 » 2} and p £ t and

e e
(e] =1 .o

A = (=1 A =
t,p,m,n ( ) pPytsm,n

?? [Zm—n<kptp) cos{(m»n)wtpz + (-1)" Zm+n<kptp) cos{(m+n)¢tpi]

(4o2)
g m-n o
B = (=1 B =
typsmyn ( ) pPyTsm,n
€
m . I / .
5 [+ Zm—n(kptp) 31n{(m—n)@tpl + (1) Zm+n\kptp) 51n{(m+n)@tpz]

(403)

where the Neumann factor en is 1 forn =0 and 2 for n > 0.

The formulas presented here are suitsble for digital
computation - refer to the second paragraph of §5 of (I).
Instead of referring the multipole expansion of the incident
field to an arbitrary point O € Q as origin, in conformity
with the general treatment presented in § 3 above, Wo is

referred to 01 as origin?

M
1 :
. e 0 . ‘
vy = (-i/k) Y€ [ar | cos(mp,) + o  sinlwp,)] d (ko))
m=0 (4‘»4)
e
where the a; 4 are given. The addition theorem (4.1) then
E

shows that the expansion coefficients of the representation



122,

for @o referred to 02 as origin are

R 2 8

T2 T Z [an,"l Aon,m t 2,1 vB’192,n,m]’ m€ {0 )
= (4.5)

where % is replaced by J in RHS (4.2) and RHS (4e3), which

means that the constraint Py < p12 no longer applies (c.f.

Watson 1966 §11.3). 1In general, M  and M2 need to be

1

different if the surface source densities on both bodies

are to be computed to the same accuracys.

Tn conformity with the notation introduced in § 3
the expanslon coefficients of the interior and exterior

multipole expansions of ¥, t & {1 » 21, are written as

- e +e

bm",G and bmot respectively, where §5a and Tables 3 and 4 all
2 H

of (I) indicate that

bic%t': ‘f aﬂc(c) Ki%(C) ac, -tAe {1 2} (L06)

m,
Ct
It is then found that on applying the extinction theorem

within Qn w1 p’ PE {1 > 2], that the null field equations

equi&alent to (3.8) are

5 o e R 2
A b B b
bm,p * ZE: [ t,psn,m n,t.+ t;pen,m n;t]
n=0
e
=-a’ Pt € {12l p At (4e7)
my,P _

(2)

where 7 is replaced by H in (4w2) and (4.3). The values

of M12 and M21

8}(0) and éfé(C) are required - this is commented upon

depend upon M1, M2 and the accuracy to which

further, later in this subsection and §5. 9;(0) is written as
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i
Bt

3,(0) =0 (0) > e £, (6), v {1 2] (1.8)
g=0
where theﬁC%(C) are equivalent to the weighting function o (C)
introduced in Table 2 of (I). The forms of the ft,q(c) are
chosen according to the same criteria as are discussed in
§1) of (I) for the fq(C). Substituting (4.8) into (4e6)

permits (4.7) to be written as

Mt e e

=g =0
N [ae i _O + ao ® 0
Lo t.q tym,g tsq “tomyg
q:O

8 e
4] _ _.0

MP
e
+ za [0 ¢° v ol G do=ma
Psq Pyl g P>9 P,m,9 Mt
g=0

p,t € {1 >2}: p ALt (1. 9)
whers there are four different G H
P,m,q
e e Mot o Le e 48 0
°° o 37‘ [A° . 70 0 . po gto e q,
Psmyq Lt Psteni,m P,y,N, g pstyn,m pyn,qg

n=0
p,t € {1 21 p £ mE{OeMPE; QE{O»MJG}

(14.10)

o 3 e (2) . ,
where Z is replaced by H in (432) and (4.3). There are

eight different & H
& tymyq
*3 8 3 (o) 15 '
+ , * ) ..
tom,q = f o‘t\C) ft’q(c) K (¢) ac, p,t € {1 - 2};
Cy
pAt; m€ {0~ Mpt}; q€ {0 = Mt} (Le11)
e e
Inspection of (4.10) shows that the G; ; are got by
39

truncating summations to MP* terms. But it is clear from
[
(4.9) thet the accuracy with which each 9?(0) is computed

depends upon the relative values of MP and M . This is a
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manifestation of what is known as the "relative convergence
problem" (Mittra, Ttoh and Li 1972). It is discussed further
in 85, in so far as it bears on the particular computational
examples presented there - it seems that, at present, each new

relative convergence problem has to be treated as a special case.

Tt is convenient to denote by A “ the matrix with
2 dyeg

elements A “ where ¢ through B are integer indices. It
s

then follows that (4.2) and (4.3) can be re-expressed as

€ | o -
° = - R -+ .
At pymyn = 008m@ey ) B cos(ng ) + sin(mg ) HT  sin(ne, )
(4.12)

e
o

+ oo
- sinlmo ) H- - il
Qt,p,m,n = 51n(m¢%P) Em,n oos(n@tp) + qgg(m@tp) Em,n 31n(n¢tp)

(4e13)
where the QSE(”)Aand 5}3(') matrices are defined to be diagonal,
and the elements of the matrices gi,n are Howarth and Pavlasgk‘s
(1973) "separation functions";

T _e 42 (2) -
Hm,n =J?? [Hm—n (thp) + Hm+n (kptp)]. (hoils)

Reference to (4.11) above and to §5a of (I) shows that

e e
+0 o

) & is simply related to the matrix which has to be inverted
e TyMy g )

. % .
t0 compute the scattering from the © f body when it is isolated -

i.e. when the other body is removed. It is found to be convenient
. _+3 &

to first evaluate the &
o Btymyg

evaluate the G; ; @’ for p egual to 1 and 2. The latter are
~tls

, Tor t equal to 1 and 2, and then to

2

given by
e e e e e e e o
00 o +3 o a -to &

= A - @ (#“15)
~P,yy g ~p,t,n,m ~p,n,q ~p,t,n,m "p,n,q

as (4.10) shows.
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A significant computational advantage of the method of
+e e
ordering the matrix manipulations is that the @;omoq need only
mbgily

be pre-multiplied by rotation matrices if +the t#h’body is

rotated about Ote

5, APPLICATIONS

Several examples are presented of surface source densities
induced in pailrs of cylindrical bodies, computed from the
formulas developed in § 4. The numerical techniques and the
. methods of assessing convergence are identical to those out-
lined in 66 of (I). In conformity with the results presented
in (I) the surface source densities on the graphs are identified
by the notation introduced in Table 2 of (I), and the béundany
conditions on the bodies are indicated by the polarisatiOn of
the equivalent electromagnetic field. @O is taken to be a plane
weve incident at an angle corresponding to ¢y = P andab denotes
the value of G, &t the point where @t': . There is only one
such point on each of the bodies examined here -~ refer to Fige 4 =

and also recall the definition of € in §6a of (I).

The purpose here is to deﬁonstrate the computational
convenience of the method, described in &4, and the examples
are simplified as'much as is consistent with.this. Both bodies
are therefore made about the same.size, s0 that we can take

M, =M, = M =N | (5.1)

1 Mo = M21

where the integers M and N are introduced for convenience.
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Fig. 4 shows the three pairs of bodies investigated here.

Their symmetry ensures that

+e0 +oe

g;,m,q = gt,m,q = 0; ' (5.2)
+ee +o0

St,mq = 6,m,q = 0 for (mea) odd; (5.3)
5 *

é%,p,m,n = ~m,n (5.4)
S

Et,p,m,n =0 , » (5.5)

which have the effect of significantly reducing the required
computational effort. The coefficients of the multipole expan=-

sions of WO are then

o

_ .+l cos 5

a'm’,] - zl’l sjn(m()b) (/"6)
% . m4] . cos

= - / °

en,p = emlikp,, cosp, - ¢) 5 (mh)] (5.7)
e
Note that in this simple case the forms of the a; 5 can be
' 7

deduced without the aid of (4.5).

Shafai's (1970) use of conformal traﬁéformation is
employed, which means that the transformation (%Q13) of (I)
is applied to the integrals in equation (4.11). The ft,q(c>
introduced in (4.8) are to be identified with the fq(C) of

(5.10) of (I).

The energy test introduced in §6 of (I) is used as a
check on computations. We say (arbitrarily) that a computation

has failed if E > 10”3, where E is defined by (6.5) of (I).
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e e
00 |

The values of |G |
t,m,q

, evaluated when N has a particular
e e '
0 0
. 1
t,m,qIN The value of at,q’ evaluated

when M has & particular value, is denoted by ¢

value, are denoted by |G

t,q)M° The

elegant approach of Mittra et al (1972) to relative convergence
is impracticable here, but the following "relative convergence"

test is found effective. The (g is reguired to differ by

i
t,q)M

less than some desired amount from both |g

b, -] 2P oy oy ol

while demanding that N is large enough to ensure that each

e e
6o ° | differs by less than one part in 10° from both
FRUTRS] 8 % g o |
th,m,qlN-1 and th,m,qlN—Z' Tables 2 through 4 confirm

that numerical convergence is manifested by this procedure when

¥ = 3. We can increase our confidence in the results by applying
the energy test. Table 5 indicates the variation of E with M

for the pair of cylinders to which Table 2 refers. The energy
test is successful for M as small as 5, which'might be thought
remarkable when recalling the slow convergence of some previously

reported methods (quoted in §1).

Figs 5 through 9 display the magnitudes of the surface

source densities, plotted versus (C, - C,), for the three
[N

+
.types of palrs of cylinders shown in Fig. L., when @o'is incident
at an angle ¢ = /2. This means that the symmetry existing in
the examples involving identical cylinders (cefe Fig. 4a and 4b)
permits the complete behaviour of Q} and Sé to be displayed
by plotting Eft on either cylinder, as is done in Figs 5 through
7. Multiple resonances of the kind discussed by Howarth (1973)
are clearly indicated. These resonances are due to the field

reflected from one body onto the other being in places more

intense than the incident field.
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Reference to IFig. 4a,b shows thgt the value of pt on
T+t (refer 0 82 and Fig. 3) for the square cylinders is
greater than the vaiue for the elliptic cylinders. This
shows up in the increased values of N for the square cylinder
compared with the elliptic cylinder (see captions to Fige. 6 and
7), required to satisfy the relative convergence test. Reference
to Fig. 4b also shows that when the square cylinders are so

close that D < 2.41a then T and T intersect C_ and C
+1 +2 2 1

respectively (refer to Fig. 3), which means that the sizes of

Qnull y and Qnull 5 are reduced. Examination of Tables 3 and 4

shows that the ¢ are increasingly sensitive in their higher

t,q

significant figures to N as D decreases. As‘Qnull ’ and Qnull 5

are progressively reduced i must be increased to maintain the

same accuracy of the o .

tsq
8 8
The CPU time needed to compute the matrices gt m,q
E el

- for the elliptical and square cylinders to which Figs 5.
through 9 apply - was 65 and 13s respectively (with M=13 and
N=35). The additional CPU time required to compube the surfaée
source densities shown in Figs 5 through 9 was close to 1i4s

in each case. Only sbout 0.2s was needed to compute the matrices

e
e}

~t,p,m,n
should not be forgotten.

The simplifications inherent in (5.2) through (5.5)



‘Table 1. Spherical vector wave functions. The correspondence between the integer g and the integers J and [(

is described in 8ic of (I).

o ), (. | @) (,
1) 1 () 10 () 18 ()
szan 5 51(1{1‘) Pg(cos 8) exp(ijq))_g_ Same form as A’é—%ﬂdk(kr)Pi(cos 8) exp(ijgr Seme form as

J (1) - 0 (1) .

op 6 . w7/ (-) but with 1 3 ap9(cos © .34 ‘

_51(]:]_") aei(oos ) e:q:(:l.,j(p)@ Eq (-) but wi o [rd,q,(kr)]{agl(c S )exp(lj<P)_6_ Nq (+) but with

3,(+) replaced o | 5,(+) veplaced
——t DY A

by h(f)(’) + Toimg Ppleos ) exp(l&@(ﬁ} by h(f)(-),

62t



Table 2@

Numerical convergence of the first six o

e

1,9
as q for the pair ¢f cylinders shown in Fig.ba,
9
with b/a = .76, ka = 1.54, kD = 4,0, H-polarisation,
¢ = 0 (hence ai R te{i ~2%}), N = 23,
P

entry in the table,

the real part of «

tod
‘the imaginary part of €, o
u
g 4 6 8 10
0 ~.,097966 -,097733 -.097749 = ,097749
=,037092 =, 037752 -, 037772 =, 037772
1 -.132527 =.130935 -,150979 =,130981
"’0175235 “0175666 ”0175697 "‘5175698
.112851 ,106871 .106819 ,106810
5 2 | ..056340 | -.056320 | ~.056476 | -.056485
-.006684 -,006905 ~-.006946 -,006949
3 030580 028691 028624 028618
~.011436 | =,011489 | -,01151%
4 -,003294 | -.003658 | -.003689
-,000700 | -.,000805 | -.000817
5 ~,002774 | =.002905 | -.002921
~.044558 | -.044673 | -.044697 | -.044699
© | 103017 | .103800 | .103780 | .103779
~.092042 | -.090970 | -.090919 | -.090914
1
.195611 .195603 0195641 2195643
e ) ~.158362 | =.152364 | ~.152382 | -,152383
2,9 « 167660 | =.165631 | =.165746 | -.165752
, | -024354 | 023350 .023336 023336
~,020391 =.,019466 -,019436 -,019432
.010720 .010766 ,010777
4 006534 | ,006334 ,006326
~,001900 | -.001946 | -.001951
5 .001172 ,001194 ,001199

is above
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Table 3. Numerical convergence of the first seven a@ o a0
1oq i,9
for the pair of cyl;nders shown in Fig. 4b, with
ka = 3.14, kD = 10,0, E-polarization, ¢ = 7 /2
e e :
{hence a?gq =czgpq)9}%/= 13. In each entry in the
table, thes real pari of «, g is above the imaginary
» 8
part of ai q' The relative convergence test is
. .
satisfied when N = 30,
<& «®
I,q 1yq
N P
q 2 15 35 12 15 35
=:250245 [ =.249979 |=.249982
G .
.028165 .028227 ,028229
«506148. . 506562 2506557 |=.920619 |=,920548 |=,92049
‘5 .
~.140652 |=,140831 |-.140828 - 358002 .358060 » 358061
1.25160 1.25197 1.25197 =,011035 1-.,010970 |~,010970
2
~,070592 |~.070763 |[~.070758 2324950 2324982 0324984
. 388148 388435 388434 401695 401757 401752
3
- .005621 .005526 . 005531 682449 682520 682521
6309475 .309167 0309168 |~<,228484 |-.228379 |-,228382
4 .
=e213278 | =.213499 |-.213497 0308493 .308160 . 308159
143397 143382 0143385 |=,035410 |=.035569 |=,035570
5 v
114938 114824 .114825 0221693 0221711 0221713
] .142208 .142189 2142190 |=.103601 |~-.103596 |-.103594
=,089844 | -,089845 |-,089843 .001 584 .001563 .001 553
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Table 4. Numerical convergence of the first seven ae s ao
1,¢° 71,9
for the pair of cylinders shown in Fig. 4b, with
= 3.14, kD = 7.61, E-polarisation, ¢ = 7/2
e
(hence ¢ al ), M =13. In each entry in the
1 s q 2
table, the real part of o q is above the imaginary
bl
part of ¢ 1,q° The relative convergence test is
2
satisfied when N = 42.
o}
a1’q a1:q
N }
g 20 35 42 20 35 L2
o ~-.563418 -.551913 ~.561905
L054.934 .068325 068491
] ~.085861 -.0878L4 -.087960 | -1.00278 ~1,00179 -1 ,00178
-.056684 | -,06453h @ -.064478 »109593 .105853 105858
5 L74.3589 739456 . 739450 ~-.113282 ~-o111922 - 111914
-.003804 | -.00392 - 003981 ~e112723 ~e115332 -.115322
3 -.00829 ~ 0142 30 - 014574 « 394,78 «391873 « 391865
.067807 .066239 066106 .153272 . 152979 «152971
N 016540 005097 008741 ~.067097 ~-,080593 - . 080784
-~.160202 -.160763 ~.160885 -.126332 ~-.122468 ~.122532
5 | m07725 ~.056012 | =.055872 o1 34,044 oA 3TH0 137432
145867 145084 21451141 o0l 56 045850 2045853
c 005571 .019729 .019898 -.0673656 -o057729 -o057725
-.076490 -.078301 -.078249 -0025791 ~.028713 -.02869




Table 5. Energy test for the pair of cylinders

to which Table 2 refers.

I "
3 ~51 % 107°
I 19 x 1072
5 -56 % 10~
6 ~.28 x 107*
-5
8 . 015 x 10
10 .27 x.1o”6
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Fig. 1 A pair of scattering bodies
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t
Fig. 2 The p b scattering body
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Fig. 3 Cross sectional geometry of scatiterers.
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Tig. 4 Cylindrical scattering bodies.
(a) Two identical elliptic cylinders
(b) Two identical square cylinders

(¢) An elliptic cylinder and a square cylinder

(a)

(c)
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Fig. 5 Surface source density on cylinder 1 when en E-polarised

wave is incident upon two identical elliptic cylinders

(ka = 3.14, b/a = .8 in Fig. La)

kD = 6.28 (contact), M = 13, N = 25

KD = 12.57, M = 13, N = 20
13, N =15

XD =15.72, M =
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0 1.0 2.0 3.0 4.0 5.0
(C1—6])/a

Mig. 6 Surface source density on cylinder 1 when an H-polarised
plane wave is incident upon two identical elliptic cylinders

(ka = 3.14, b/a = .8 in Fig. 4a).

kKD = 7.5, M =13, N = 25

1

KD = 9.43, M = 13, N = 22

______ kD = 12.57, ¥ =13, N = 20
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Fige 7 Burface source density on cylinder 4 when an E-polarised plane
wave is incident upon two identical square cylinders (ka = 3.1L

in Fig. 4b).

kD

1l

7.61, 1 =13, N = 42

¥D = 10.0, ¥ =13, N = 30

|

I

l

|

!

}
=
lw)
il

12.57, ¥ = 13, N = 25
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Fig. 8 Surface source density on cylinder 1 when an E-polarised plane
wave is incident upon a square cylinder (cylinder 1) and an

elliptic cylinder (ka = 3.14, b/a = .8 in Fig. 4e).

KD = 7.61, ¥ =13, N = 42
kD = 11.5, M =13, ¥ = 30
------ kD = 15.72, ¥ = 13, N = 25
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By

0 1.0 2.0 3.0 4.0 5.0
(Cz—CQ)/a

Fig. 9 Surface source density on cylinder 2 when an E-polarised

plane wave is incident upon a square and an elliptic cylinder
(cylinder 2) (ka = 3.1L, b/a = .8 in Fig. 4o).

k:D = 7561? I‘\"I joved 135 N = Z]—Z

XD = 11.5, ¥ =13, N = 30

~~~~~~ kD = 15.72, M =13, N = 25



PART 2. III: NEJ APPROYTIMATIONS OF THE = KIRCHOFF TYPH

From the generalised null field method presented in (I)

a gensralisation of the Kirchoff, or physical optics, approach
to diffraction theory is developed. Corrasponding to each of
the particular null field methods developed in (I) there is a
corresponding physical optics approximation, which becomes
exact when one of the coordinates being used is constant over
the surface of the scattering body. It is shovm how to ilmprove

these approximations by a computational procedure which is
more efficient than those introduced in (I). The reradiations
from the physical optics surfece sources more nearly satisfy
the extinction theorem the deeper they penetrate the interiors
of the scattering bodies. ‘The computational examples which
are presented show that the scattered fields are in several
particulars superior to those obtained from the conventional
Kirchoff approach. It is important to choose that physical

optics approximation most appropriate for the scattering body

in guestion.

GOLION

Boukamp (1954) recalls that when Kirchoff was attemphing

to find tractable methods for calculating the dif'fraction of

waves by a hole in a plane reflecting screen, he realised

fa

hat he could obtain quite simple formulas if he were to assume

that the field in the hcle was identical with the field that
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would be there if the screen were removed. As is now well
known, the diffracted fields calculated on the basis of this
assumption are in useful agreement with experiment even when
the dimensions of the hole are only moderate in comparison

with the wavelength.

The success of Kirchoff's approach led gradually to what

is now called (by electrical engineers, at least) the physical
optics approximation. It is aséumed that the source density
induced at any point on the surface of a totally-reflecting
scattering body is identical with that which would be induced in
a totally-reflecting, infinite plane tangent to the body at the
said point. An inevitable corollary to this is that it must
be assumed that no sources are induced on those parts of the
body's surface that are not diréctly illuminated by the incident
field. Physical optics is a Ygeometric optics" type of approx-
imétion, and it is sometimes loosely referred to as geometric
optics, which is a pity because physical‘optics predicts several
diffraction effects quite adequately whereas conventional
geometrio‘optics'does not. From now on we choose to give
physical optics the name "planar physical optics" because it is
exact when the scattering body becomes an infinite plane.
Beckmann and Spizzichino (1963 chapter 3) show that planar
physical optics source densities can be usefully postulated on

the surfaces of penetrsble bodies.

Planar physical optics is a "local" theory - when

calculating the surface source density at any point it is only
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necessary to consider the incident field im the neighbourhood
of the point, and it is only there that account must be taken
of the shape of the body end its material constitution. It is
a single~scattering approximation ~ in fact, it is 2 kind of
Born approximation for scatterers with well defined boundaries.
It is an "asymptotic" theory (c.f. Kouyoumjian 1965). Ursell
(1956) shows that it is exact for smooth, convex bodies in the
limit of infinitely high frequencies. Crispin and Maffett
(1965) point out that it gives remarkably accurate results for
some bodies having linear dimensions not much larger than the
wavelength. The chief secret of its success is that it usually

predicts the scattered field most accurately where it is largest

(e.g. "specular' reflections, c.f. Senior 1965).

The main defects of planar physical optics are that it
can violate reciprocity, i1t does not take sccount of multiple
scattering and 1t predicts no polarisation dependence for
electromagnetic fields back-scattered from totally-reflecting

bodies.

We have discovered that the null field approach leads
Lo a generaliaéd physical ostics, which becomes exact when the
surface of the totailymreflecting scattering body coincides
with a surface on which the radial coordinate (of the coordinate
system in which the particular rnull field méthod being used ié
expressed) is constant. The generalised physical optics leads
to useful approximations to the surface source density in the

penumbra and umbra of the body -~ something which planar physical



optics i1s incapable of, by definition. The defects noted in

the previous paragraph largely remain. So we think it point-

less to develop & vector form of the theory. There are no
significant theoretical differences when the genefalised physical
optics is applied to sound-soft and sound-hard bodies. Consequently,
this discussion is restricted to the former (its formulas are
somewhat simpler and are, therefore, more readily understood).

It is easy enough to write down the formulas for sound-hard

bodies. The germs of the techni@ues are in a previous acooﬁnt

(Bates 1958), but the present generalised approach is guite newe.

In §2 the formulas of planar physical optics are quoted
and generalised physical optics is developed from the generalised

~scalar null field method, itself developed in (). The formulas

for cylindrical (oiroular and elliptic) physical optics are also
given because the illustrative examples presented here are for
cylindrical sound-soft bodies (they can have any desired cross
section). It should be noted that the results apply equally

to perfectly-conducting bodies scattering EB-polarised electro-

tic waves - refer to §5(a) of (I). In &3 it is showm

how the physical optics surface source densities can be improved.

Jince physical optics 1s approximate, the radiations

)

from physical optics surface sources do not satisfy the extinc-

tion theorem - i.e. alt almost every point, P say, in the interior

of o scattering body Tl

nere is a finite difference between these

5

radistions and the negative of the incident field. In 8 4, an

AL

obhservation of Bates (1975&) that this difference tends to
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decrease as P penetrates deeper into the interior is generalised.
In §5 examples are presented of surface éource densities and
scattered fields computed using the circular and elliptic
physical optics approximations. These computations are compared
with others obtained by inherently accurate techniques - i.e.

the circular and elliptic null field methods, which are

developed in (I) - and by planar physical optics.

2. GENERALISHED PHYSICAL OPTICS FOR 30UND- SORT BODIES

Fig. 1 shows the surface § of a totally-reflecting body
of arvitrary shape embedded in the three-dimenslonal space ¥y,
which is partitioned into y_ and y+ , the regions inside and
outside § respectively. A point O, within y_, 1is taken as
origin for orthogonal curvilinesr coordinates of a kind allowing
the separation of the scalar Helmholtz equation. Arbitrary

points in y and on 3 are denoted respectively by P, with.

/

coordinates (u1 s U ’

’ . . . , ; )
o’ uj), and P, with coordinates (u1, Uy ug)e

The coordinate n’describes the outward normal direction +o 3
/
at P. The surfaces % and % , on both of which the coordinate
- +
u1 is constant, respectively inscribe and circumscribe S, in

the sense that they are tangent to it but do not cut it. The

points of tangency between & and &, and between 2+ and 3, are

7/

/
P ., and P . The values of u
max

/ /
at P, and P are u.’
min min m

1 ax 1 min

. / Ve .

and u/ respectively. Note that P, , and P~ , are points
1 max min max .

on S nearest to, and furthest from, 0. The part of y+ outside

% is denoted by y , and the part of y inside & is denoted
4t - -

+
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by'ynull“ Other aspects of this nobtation are covered in §2a

of Part 1, (I)a

The formulas given in §5b of (I), and Table 1 of Part
15 (I) should now be referred to. The moOnochromatic field

¥ incident upon the body is written in the form

[e]
@ L
RN n -~ .
o= ¢, 8, . v oL,k) Y. U_,U_,k Pc
0 " Lo La Ty Tdss QJ:}L( 1’ ) J:L( 2’73 ) Y-

=0 j==g (2.1)
where the time factor exp(iwt) is suppressed and k is the wave
number. The cjg' are normalisation constants appropriate for

. A N
the particular coordinate system for WhiCh<dj,£(') and Yj,x(')
are radial and angular eigen-wavefunctions. The ajsﬁ are
constants characterising the form of the incident wave - .
Table 7 of (I} lists the aj,z appropriate for several coordinate
3ystems wﬁen @O is a monochromatic plane wave having the free
space wave number k, and the wavelength N = 2r/k. The surface

source density oJ(-) is charascterised by the null field equations,

which for sound-soft bodies take the form

5 ,
Qﬁ(7 ) (O>(u 5k> Yj (u/,u’,x) ds

277
S
= 8. , le {0 >}, je -4 L] (2.2)
Jal
where T, and T, are sultable parametric coordinates in S.

Multipole expansions of the field ¥ scattered from the body
can be written

/\

=

C,
Lot Jdsl JSQ Jﬂ£
J=—1

i

-

A
¥ = fu k) v, (u.,u.,,k Pe
P ng( 57 59 )» Vn

ull

¢, bt ( >(u
fmd Jﬁﬂ, J.’L Jgi 1
5=t

o

(2.3)

|
Cie P

LX) Y l(uZ;uB,k), Pey
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2 . o . .
where the hg Z(H) are the "outgoing" radial eigen-wavefunctions,
2/
ot

and the bg are constants given by
Ll
ST ) K ) )
b, = 7,.7.) K. (7, ,7.) ds 2ol
st /] AT WAPELEY (
S

EN

ﬁhere the K?Jz(é) are defined by (5.15) of (I).
The form of the scattered field in the Fraunhofer or far

field region (usually called "faf field" by electrical engineers)

is usually of interest. It is often convenient to calculate

the far scattered field by using the asymptotic forms intro-

duced in §3d of (I) to simplify the integral in (2.5) of

Part 1, (I). The position vectors (with respect to 0) of P

and P are denoted by r andlg’respectively, and we write |ri= r.

It follows that

exp(-ikr) [f (Vi :
¥ r J[J 3(71,72) expli(r-r)k/r] ds, PEya ..
S (2.5)

where Yoor is the part of y+L which is Tar enough away from
the body to be in the Fraunhofer region (remember that this

becomes increasingly distant as the wavelength decreases) .

A tilde is used to denote any quantity that is computed
on the basis of a physical optics approximation e.ge. ¥ is the
physical optics scattered field, and iF(TﬂgTZ) is the physical
optics surface source density. It is not ﬁecessary to identify

wiich type of physicel optics is implied, since it is always

clear from the contexto.
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(a) Planar Physicsel Optics

When the incident field originates from a point, such

es Q in Fig. 2, it is convenient to partition S into the part

S+ which is directly illuminated by the source at Q, and the

part §” waich is shadowed from it. §+ is defined by stating

that when P’ € §+ the straight line QP/does not intersect S

/

between Q and P, whereas when P € § the straight line QF must

intersect S between Q and P. This is illustrated in Fig. 2.
The planar physical optics surface source density is
defined to be

8’(71 97’2)

i

/ =
0, PEs

1l

28\I1;/8n’, p'c §+ - (2.6)

/. ” 4
where WO is +the value of Wo at P.

(b) Generalised Physical Optics

The true surface source density is not identically zero
on 8 , as defined in §2a above. The new approximate theory
introduced here becomes exact for certain finite bodies. So

different definitions of "directly illuminsted" and "shadowed"

are needed from those introduced in §2a.

The dashed lines in Fig. 3 represent curved rays in
space on each of which the coordinates U, and u3 have particular,
constant values, On each ray the coordinate u.1 increases

monotonically with distance from O. S is partitioned into a

"directly illuminsted" part 3 and a "shadowed" pert S . For
o -
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e particular ray the value(s) of u, at its intersection(s)

1

with S are denoted by u1(m vhere m = J,2,c.00000005e LheE

‘)9
u1(m) are ordered such that they increase monotonically with m.
The ray passing through a particular ?/E,S'is‘consideredg and

S+ is defineq by stating that when P/GS+ then u1 = u1

/
whereas when P € S then u1 = u1(#) where m must be greater

than p. This is illustrated in Fig. 3.

=19
(@)

For any separable coordinate system the dominant asymptotic

. 202y s .
behgviour of ﬂj £<') is described for small u1 by
3 ' .

*(2) o (1) L4=
hj,l(u'l’k) SN (»ﬁ/au,l) s kau <4 (2.7)

where u = O for rotational coordinate systems and g = 1 for
cylindrical coordinate systems, and where o is the factor

by wnich u, has to be multiplied to make(xu1 asymptotically

1

equivelent to conventional metricsl distance (refer to Table 1).

For large uH the asymptotic behaviour is

s L

A 4
hgzi(u1,k) Q:M(z) exp(wikau1)/(kau )Vg k¥ a u1 >> L (2.8) -

1

where v = 1 for rotational coordinate systems and v = % for

(1

. - (3)
cylindrical coordinate systems. The & 2

are constants
Js L ;

(refer to Table 1),

Denote by L, the value assumed by £ when the error

inherent in (208) is less than some prescribed tolerance for

' u, :u1/ ige L& then follows that, for L< L, the null field

equations (2.2) can be approximated, to within this tolerance,

by



A

.(2) f[ - N / Vs / R N . RN . 8D
“int j] gy(‘ﬂgTZ) Yj,g‘u29u33k} exp( ik, ) do/(kau1)
S

L€ {015}, Je&f-Ls1] (2.9}

~ a

30’
the form of which suggests that the substitution

ds = A(ué;u%) dué dug 4 (2.10)

should be made where A(-) is found, in any particular case,

by inspection of S = note that it may not be possible to

o)

define A(°) uniquely at points where S ceases to be analytic;
but it is salways possible to treat each analytic region of S
piecewise and define A(-) uniquely over each piece (note that
the surfaces of bodies of physical interest cannot be so
singular that they cannot be partitioned into denumerable
analytic pieces). In general, A(-) is not s singlémvalued

. T4 n oo . .
function of u/ and u. over all of S. But, A(-) is necessarily

2 3

a single-valued function of u/ and u’ over S . Ve postulate that
o

2 3 .

the generalised physical optics surface source density &(-)

g Q’(ué,u%) =0, Pes (2.11)

. o . T N . 5 . I
which mesns that, if J in (2.9) is replaced by o , immediate

use can be made of (2.10) to arrive at

2 A PR 7 . Vg /s P s ’ AN
Kgpl [/ Er(uégui) Yjpl(ué’HB’k) eXp(wlkauﬂ) A(uzguﬁ) dugduB/(kau1)

3
+

~ a, , Lefo-1}, j€ {~L>g} (2.12)
Jal

The way in vhich 3 1is defined ensures that it spans
o

continuously and single-valuedly the full ranges of U, and uB;
ra) . )
which means that the Y. l(uq§u7,k) are orthogonsl with a
: Js <0
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1
N

weight function W(uz,u3 ) over S%a Tt follows from (2.12)

therefore that

~
{ o) D) G )1 explesiand) ug,u)
s" <
L&
T (2) 2 )% (,uln), Pes
.;.{,40 <aj9l/}{ja,@ jﬂi> jaﬁ\\lzsuzj—>; D“**
10 j=-1 (2.13)

A
where the I, are the usual normalisation constants. Both

NED A
A

5 N . N
I, and w(.) are given for the separable coordinate systems
NESA

by liorse snd Feshbach (1953, chapters 10 and 11).

Inspection of (2.8) indicates that, to within the
tolerance to which (2.12) holds, [(kau ) /k( >] exp(ikau;)
can be replaced in (2.13) by L/h‘f)(u/,k) But reference to
(2.7) indicates that h( >(U ,k) becomes large everywhere on

3 for all £ somewhat greater than L. Conseqguently, the
+

expression
/ 7% oo £z /}, / 4
~ wlu U, __ a, Y, (u ,u_,k
(,‘/ LI/ = ( 2:] 5) ';‘ \?—‘ dsl J;l( 2’ 3, ) P/E g
u23 ] - A( Yz />_.£;4 ya ~ ,\(2> ? L
U ., .
2 L=0 J=—f I, (u k
3 RS WA )

(2.14)
is often almost equivalent s (2015)0 The teras for f< L
correspond closely to their equivalents in (2.13). The terms
for A apireciably greabter than L tend to be small. There can
be a significant discrepancy =~ discussed further in 8§53 -

for some terms for which £ is close to L.

Yhen 5 itself coincides with a particulzr surface on

wrich u, is constant then S is empiy, 34 1s ths whole of 3

>

and the Yj Q(u;,ujgk) are orthogonal over 3. If ET(“)y
, st < ‘

3
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ziven by (2.14), is substituted for J(-) in (2.2), it follows
on substituting (2.10) into (2.2) that the latter is satisfied
identically for all L€ {0+ o}, € {~0-> §}. Consequently,

(2.14) is exact in such a case.

The formuls on RHS (2.1#) is convenient because 1t can
be computed straightforwardly without having to incorporate
tests for the applicability of asymptotic expansions of the
I
hgzi(’), Purely numerical considerations determine the

- . A (2) 2
formulas used for compubing the hS (+) and the Yj g(»), and.
| J

2

the value of { at which the series is truncated.

(c) Cylindrical Physicsl Optics

Wnen the scattering body is an infinite c¢ylinder ~ it
can have any cross section = coordinates (quug,z) are used,
where z 18 a Cartesian coordinate parallel to the cylinder
axis. The plane z = 0 1ls denoted by (1. The interseotion of
3 with 0 is denotéd by C. The subscripts we append to  and C
correspond to those which have already been appended to y and

L1

S,  In conformity with the notation introduced in Table 2 of

Part 2, (I), the surface source density is denoted by F(C).

Invoking the notation introduced in Table 4 and §2(e)
~ take speciel note of (2.17) - of Part 1, (I), the incident

field is written in the form

oo

- A A
vo= ) oA Jm(uﬂjk} Ym(uz,k)s PeEQ (2.15)

-
] Ll

m=0

The formule corresponding to {2.11) and (2.1k4) is
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ﬁ(uZ) = 0, Pe C_
N
aw, L oa v (u/ k)
(/2 S m w2’ /
= w(uz)wawéw /. re G, (2.16)

120 Im.Hm (uq,k) .

It is worth noting that dC/du; is the one-dimensional equivalent
of the quantity A(ué,u;) introduced in (2.10). The guantities
/

’ / -~ . . = .
u ,u29 W(u2), Im are tabulated in Table 2 for circular and

1
elliptic physical optics.

3e  TVPROVEMENT ON PHYSTCAL OPTICS SURFACE SOURCE DENSITY

It is convenient to rewrite (2.14) as

aj(u;su):) = OT_I(UIZN/B) + a)z(uézu;) + a}(uénug) (5~1)

~

- whers Er (+) includes those terms on RHS (2.14) for which
1 ~J
1€ {0~ 1}, and . (-) includes the terms for which
3 ~ '
€ {L +n 4+ 1 ->w}. The remaining terms mske up ET%('>m
The positive integer n is defined to be the smallest consistent
~ ,
with E};(.) being negligible, to within the tolerance inherent

in the definition of L = refer to (2.8) et sequentia.

As has already been argued in §2, the part of RHS
(2.1)) waich corresponds to 8’\”1(”) satisfies (2.2}, for
le {O - L}? to within the prescribed tolerance. It follows
that ﬁi(a) can be expected to be the main seat of differehce

between Ef(n} and Er(-),



The preceding suggests that it might be possible to

improve on U () by defining

(1) : AT S P
Zrimproveét(‘"1’Tz) - 33(“*23“3' # Jy () (3.2)

. ~(1, 5 . : . :
where aﬂé )() ig defined over a2ll of S. The superscripts
(1) are appended in anticipation of a further improvement.
b1 . . n .4 .
QJ,() >() is expressed in terms of N basis functions, where
2 .

N=[2+n+ 2Ln : (3.3)
which is the number of wave functions indexed by the integers
jand Lwhen L€ {L +1- L +n} and € {~L~ £}. The basis
functions are chosen according to the criteria outlined in

Iy ”<1) s L L 4 \I
8§24 of {I). Then & (+) is substituted into the N

improved

null field equations for which L€ {L + 1~ L + n} and
j&€ {~1-» L}, and the expansion coefficients characterising
il \ 4 e .. . .
g]dg )() sre found by elimination. This is a straightforward
rocedure which, in our experience, is a useful improvement;
1Y Py T s
——— 4 a4
@’;')() is free of much of the error inherent in 3’2('):» But

an even further improvement can be made.

Recall that 8,’1 (*) is given by the terms in (2.1)4) for
| ¥
1

replacing the relevant a, . in (2.14) by modified coefficients
- Jy

which £€ {0 » Li. In general, (+) can be improved by

8. .
Jad
A

must be emphasised, is still identically zero over 8 . 3o,

The improved ai](-) is denoted by ’3’1(-)? which, it

the complete improved surface source density is

o) = T v Tyler)  (54)

J . r
1mproved\ 1

where 5:2() is en improved versilon of 842(1)@)? expressed in
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terms of the same number of basis functions.

If there were no further device to rely on, it would be

necessary to expend es much computational effort to evaluate
~

improved(") as 18 needed to evaluate ET(«) by the full null

fieldbmethod, and it would be less efficient because the basis
functions in tevms of which 52(') is expressed are not ideal
for the null field method - refer to (I). But it is possible
to appeal to the approximatioﬁs which permitﬁed (2.9) to be
deduced. We postulate that, in the j,ﬁth null field equation,

EY(-) can be replaced by

ca, W u Y u/,ul,k _
-aJazl( 2’ 3) Jsl ( 2 5’ ) MRy (r 7 )
A(ulul) T (2)( . 27172
273 Tiap it

)

) .t o
provided that L< L. The j,1 o aull field equation then gives

Lin L
%550 T %ase “/Zi, %;~ AN
L =L+t J=-
te {01}, J€{-L~4] (3.5
vinere the o, gﬂ/are the expansion coefficients characterising
53( ), and each Q ,1is got by substituting the j,ﬁ

Fodst

the basis functions (1n terms of which EYE(-) is expressed)

or J(-) in the integral in (2.2).

In the null field equations for which £ € {L + 1 = L + n},

(+). But (3.5)

gf(«) is replaced by the whole of Erimproved

can be used, for £€ [0 11 and j € Ewﬂ»&ﬂ}, to eliminate all

the 2_ o
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The procedure which has Just been described has consider-
able computational advantages. As is confirmed in §5, it can
represent a significant improvement on physical optics, and it
can approach the accuracy obtainable with the full null field

method. However, the unknown ¢. are determined from a

a4

system of only N simultanesocus, linear, algebraic equations -
. 2 - ) b SR o

whereas [(L + 1) + N] equations are needed to evaluate the

unknowns when the null field method is used in the form

developed in (I).

The evalustion of o, (.) involves two main steps.

improved

First, there is the determination of the ¢. . from the inversion

Je &
of a matrix of order N, requiring a number of operations

3

proportional to N7, Second, there is the determination of the

Zj ’ by substituting the @5 into the (L + 1)2 equations
J 2 X,

(3.5), requiring a number of operations proportional to (L + ’I)ZNa
However, this can compare very favourably with the full null
field method which regulres a number of operations proportional

to [(L+ 1)2 + N]z.

- . . 7/
In general, the value of N increases with (u1 nax
1 o>

w ) and with increased tortuousness of 5. However, the
min

nature of radilal wave functions 1is such that N can be expected
to be almost independent of k for a particular scattering

body -~ this 1s seen to be very significant when one remembers

that L increases roughly linearly with k.

In §5 this improvement is applied to a cylindrical
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scattering body, in which case the already established notation

is invoked and (334) is rewritten as

(©) =T, (¢) + F,(c (3.6)

N
\.._..t

Fimproved

(+) can be expressed in terms of (2M + 1) basis functions,
(M + 1) even and M odd; vwhereas Ez('} is expressed in terms of

2N basis functions, N even and N odd.

Lo EXTINCTION DEEP INSIDE BODY

The true field ¥, reradiated by the true sources induced
in 8, extinguishes the incident field @O throughout v -
However, the physicel optics field ¥, reradiated by the source

density o, is not equal and opposite to WO everywhere within

y « As follows from (2.1) and (2.3), it is found thab

@ L
o~ T T\ P N
v c. la. + b U k) Y u_yu k)
5 2. G tRan M] ( ) ;w@( 22 U5K)
ﬂ:O J:-—,Q,

PEY_ 11 )

vhare the symbol b is surmounted by a tilde because the
vhysical optics, rather than the true field, is being considered.
Reference to (2.2) and (2.4) of this paper and (5.15) of (I)

indicstes that the null fleld eguations can be written as

a, +b. =0, L€f{0sw}, j€{-Ls4] (4o2)

ihe functions d (u ,kK) can be considered negligible,

to within some prescrlbed tolerance, for f» (k ¢ u1 + n )

where the actual value of the positive integer n1 depends upon
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the actual tolerance - however, experience with spherical

and cylindrical Bessel functions suggests that n, need rarely

1
be greater than 3. Consequently, the upper limit on the first

summation on RHS (4.1) can be replaced by L1 = L1(u1) which is

fhe smallest integer greater than (k ¢ u, o+ n1)e

It is argued in §3 that if &(.) in (2.2) is replaced
by ﬁa(“) then the null field equations are satisfied, to
within the prescrived tolerance, for (€ {0 - Lze This means
that a tilde can be placed over the symbol b in (4.2) for all
{€ {0 » L]. Consegquently, when}u/I is small enocugh that
L, < L then RHS (o1) is effectively szero, implying that the
extinction theorem is satisfied. Clearly, the prescribed
tolerance can be increasingly tightened as O is approached.

»

The generalised physical optics therefore satisfies the
extinction deep inside the body. Then applying planar physical
optics to rough surface scattering it is found that a similar
analysis gives support to the contention that the differences

~between the true and the planar physical optics scattered far
fields are likely to be less than the differences between the
corresponding near fields (Bates 1975a). A similar conclusion
is perhaps less compelling for the generalised physical optics,

but it is nevertheless reinforced by our computational

experience (refer to §5).
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5. APPLICATTONS

Surface source densities on, and far fields scatfered
from, cylindrical bodies having the cross sections shown in
Fig. L are presented. Results computed by both the rigorous
null field method developed in (I) and the physical optics
approximations approximations introduced here are compared.
Planar physical optics, circular physical optics and elliptic

physical optics are examined (refer to Table 2).

Scattered far fields are computed either by substituting
(208) into (2.3), or by evaluating the integral in (295);
remembering that, for cylindrical coordinate systems, bt
2\
and ET(T1$72) become b; and F(C), respectively, and the double
integral in (2055 reduces to a single integral. VYhen computing

physical optics fields, b: and F(C) are replaced by b; and,

-Ei‘(c> respec”bively"

@O is téken to be a plane wave incident at an angle ¢.
Recall from (I) that the symbol C is used to denote both the
curve and the distance along it. The value of C at the point
on G where ¢ = is denoted by‘E, Inspection of Fig. 4 shows
that there is only.one such point for any of the scattering

bodies which are investigated here-

Because of the symmetries possessed by the cylinders
showm -in Fig. 4, the scattered fields are symmetrical about

)

¢ = ¢ and the surface source densities are symmetrical about
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C = E, provided that ¢ is chosen to be an integral multiple
of 7/2. Advantage of this is taken and, consequently, fields
and surface sources are computed over only half their full
ranges. 1In the graphs, only the magnitudes of fields and
surface source densities are shown. But remembér that the
phase as well as the magnitude of s sﬁffaoe source density
affects the corresponding scattering field. 8o, when the
magnitude of the latfer is accurate, to within some useful

tolerance, then the phase of the former must be similarly

accurate.

In Figs 5 through 13 typical results are presented for
bodies having the cross sections shown in Pige & ¥Then
computing the solid curves in Figs 8 and 9, the semi~focal
distances of the elliptic cylinder coordinastes Weré chosen
to be the same as the semi-focal distances of the scattering
bodies. Consequently, elliptic physical optics is exsct for
Figs 8 and 9, so that the solid curves can be assumed accurate,
to within the tolerance set by the draughtsmanship. When
computing the solid curves in Figs 10 and 11, the semi~focal
distances of the elliptic cylinder coordinates were chosen

such that vy occupied as much of v as possible -~ refer to

null
§6c of (I)0 Consequently, we are confident on account of the
results which have already been reported in (L) that the solid

curves in Figs 10 and 11 are accurate, to within the tolerance

set by the draughtsmanship.

Pige 14 shows the result of applying the improvement to
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physical optics (see ) 3) to a square cylinder with rounded
corners. TFor such a cylinder, C, 1s equivalent to C, and C.

is empty. Conseguently, it is convenilent to express f1<@) and
EZ(C) in terms of the same family of basis functions. The
differences between the accurate and approximate computations
are almost negligible for most practical applications, and yet
N was 11 while (N+M) was 18. It was not necessary to compute
any odd wave functions because of the symmetry of the scattering
body. It must be pointed out that the computational economy

of the approximate over the exact method would be more marked

for an asymmetrical body.

6. CONCLUSIONS

A striking aspect of the computed results presented in
§ 5 is that the new physical optics cen make recognisable, and
sometimes accurate, predictions of the surface source densities
in the umbrs and penumbra of scattering bodles. The formulas
(2.14) and (2.16) can always be soplied straightforwardly,
without the tedious precautions which seem to be unavoidable
in general with either Fock theory (c.f. Goodrich 1959) or the
geometrical theory of diffraction - for bodies of complicated

shape the latter can, of course, provide more accurate resulis.

When comparing the new physical optics methods with
planaxr physical optics 1t can be seen that they always predict
forward scattered fields more accurately. They tend to be

superior for all scattering directions except close to the



164,

©
1)

ual back scettering direction. Even for specular scattering

from

©

body with a flat surface, for which planar physical
optics is dideal, the new physical optics is not much inferior

(refer to Fig. 7).

The results suggest that it is important to use the
type of physical optics most appropriate for the body in question.
As has been reported in (I), the efficiency of the null field

method improves as ynull spans more of y_, or Q spans more

null

of (0_. We conjecture that the same criterion should be applied

to the choice of physical optics method.
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in several separable coordinate systems. Note that
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ds)

cylinder coordinate system, and when [ >> kd and

the are valid when [ >> kd for the elliptic

u, >> 1 for the prolate and oblate systems.

1
(1) | (2)
; inate syste K. 7 o
Coordinate system N} KJsl
. 27’% b | anE
Circular cylinder =1 [;1, {;}' j;) i 1
)
Ao L )
Elliptic cylinder -1l 2 (“", (21)2 17 - a
: (\.e—)
e 14
Spherical polars -i{ %g] i 1
J
-1 (2#2*% g1
Prolate spheroidal -if tgj : S a
‘ . ﬂ’{‘% §
Ublate spheroidal -if L {%} - 3L+ ' a

d = semifocal distance of the elliptic cylinder,
prolate spheroidal, or oblate spheroidal coordinate
systems .




Table 2. Quantities gporopriate to cylindrical physical
optics. The relevant wave functions are presented

in Table 4 of (I).

Circular BElliptic
Physical Optics Physical Optics
U, s, Py &1
-
w(uz) 1 (1-n) *
A 1
| 87, (xa,n) win)dn
7, mAO :% om .




Fig. 1

Totally-reflecting scattering

far

body of arbitrary shape,



Fige 2 Directly illuminated and shadowed parts of S, for

planar physical optics. Note that P; is On‘§+g

’ . ’ .
whereas P2 and Pj are on S..
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Fige 3 "Directly illuminated" and "shadowed" pérts of 8, for genéralm

Ve . Ve
ised physical optics. Note that‘P1 is on S,, whereas P2

7/
and. P3 are on S_.,
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Fige 4 Cylindrical scattering bodies.

(2) Rectengular cylinder with rounded corners
(b) Elliptical cylinder

(¢) Cylinder with concavities
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(b)
,Zl; 1.0
2
=
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(C-—(—Z)/a

Fig. 5 Scattered far fields (a) and sﬁrfabe source densities (b) for
a square cylinder with rounded corners (refer to Fig. 4a).
(//:O,a:’I@B?\,b:a,t:Oja

circular null field method
e - circular physical optics

----------------- planar physical optics



1

[F(Cc-C)I

Fiz. 6

4.0

et

172.
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1
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(c-C)/a

Scattered far fields (a) and surface source densities (b) for

a squere cylinder with rounded corners (refer to Fig. Aa),

g =

O, a =157, b =a, t = 0.25a.

circular null field method

circular physical optics

planar physical optics
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Fig. 7 Scattersd far fields (a) and surface source densities (b) for a

square cylinder (refer to Fig. La). =0, a =1.50, b =a, t = 0.

circular null field method
————— e circular physical optics

planar physical optics
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Fige. 8 Scattered far fields (a) and surface source densities (b} for an.
elliptical cylinder (refer to Fig. 4b). g =n/2, a = 15\,
b = 0.83,,

—_— elliptic physical optics
~~~~~ — circular physical optics

planar physical optics
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Fig. 9 Scattered faor fields (a) and surface source densities ()
for an elliptic cylinder (b) (refer to Fig. Lb).
Y =7/2, a = 1.5\, b = 0.5a.

elliptic physical optics
~~~~~~ —~  circular physical optics

planar physical optics
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Fig. 10 Scattered far fields (a) and surface source densities (b)
for & rectangular cylinder with rounded corners (refer to
Fig. ba). ¢ =7/2, 2 =1.5%, b =0.5a, t = 0.5a.

elliptic null field method
——————— elliptic physical optics

planar physical optics
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Fig. 11 Scattered far fields (a) and surface source densities (b)
. . / I
for a rectangular cylinder with rounded cornsrs (refer to

Tig. 42). ¢ =0, a = 1.5\, b = 0.53, t = 0.5a.

—_— elliptic null field method
——————— ~ elliptic physical optics

we—we - planar physical opties
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Fig. 12 Scattered far fields (a) and surface source densities_(b)
for a cylinder with concavities (refer to Fig. 4ec).

® =0, a = 1.5, t/' = 0.5s, 'tz = 0.5a.

circular null field method
—————— circular physical optics

planar physical optics
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Fig. 13 Scattered far fields (a) and surface source densities (b)
for a cylinder with concavities (refer to Fig. Lc).

o =0, a =1.5A, t1 = O.ha, tz = 0.3a.
circular null field method

—————— cilrcular physical optics

................ planar physical optics
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Fig. 14 Scattered far fields (a) and surface source densities (b)
for a square cylinder with rounded corners (refer to Fig.

ha)e ¢ =0, 2 =1.5% b =a, t = 0.5a.

- cireular null field method

il

———————— improved circular physical optics; N =11, M =
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Part 2. IV: INVERSE METHODS

On the basis of the spherical and cylindrical physical
optics approximations presented in(III)an inversion prpcedure
is developed, similar to conventional procedures based on planar
physical optics- and like them needing scatterimg data at (effect-
ively) all frequencies, suitable for totally-reflecting bodies.
Another method is developed, also based on spherical and circular
physical optics, whereby the shapes of certain bodies of revolution
~and cylindrical bodies can be reconstructed from scattered fields
observed for only two closely spaced frequencies. Computational
examples which confirm the potentlal usefulness of the latter

method are presented.

1. INTRODUCTICN

The general inverse scattering problem is posed as§
determine the shape and constitution of a scattering body,
given the incident field and the éoattered far field. De
Goede (1973) shows that the extinction theorem can be inverted
to give an integral equation for the materisl cons
an inhomogeneous medium in terms of the field existing at the
boundary of the medium. Unfortunately, the kernel of the
integral involves a propagator (Green's function) which itself
depends on the material constituents, so that the problem
cannot be said to be reduced to a form whereby the solution

can be computed - nevertheless, this is a comparatively new
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approach which, hopefully, will be developed further. The
established inversion technique with the widest application is
Gel'fand and Levitan's method (c.f. Newton 1966) which has
-been most highly developed by Kay and loses (1961) and Wadati
and Kemijo (1974) - a method of wider potential applicability

has recently been suggested (Bates 1975¢).

In most situations of physical interest a fair amount
of information concerning the general shape and/br size ana/br
material constitution of the scattering body is available
a priori. Because of thils, many specialised inverse scattering

problems have been posed (c.f. Colin 1972).

Only totally—refleotihg bodies are considered here.
The mein intention is +o make clear both the power and the
limitations of the methods. Accordingly, detailed analysis is
restricted to scalar fields and sound-soft bodiés° Yihenever
pertinent the vector case 1is discussed. It seems that thé
analysis associated with sound-hard bodies is only different

in detail, so that it is not examined explicitly.

In §2 the formulasvthat are needed here are gathered
from (I) and (III). Since it is the shape of a body which,
it is hoped, will be discovered from observation of its scattered
field, it seems pointless to employ coordinate systems especially
suitable for bodies of particular aspéot ratios. Consequently,
only the spherioal.nuil field method, for bodies of arbitrary

‘shape, and the circular null field method, for cylindrical
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bodies, are invoked. In §3 the relevance of the null field
method to the exact approach to inverse scattering based on
anelytical continuation (see Weston, in Colin 1972), is out-
lined. -Introduced in 8§ is an alternative to the usual inversion
procedures based on planar physical optics (c.f. Bojarski, in
Colin 1972). As with those whose work precedes this, the

scattered field at effectively a2ll frequencies needs to be

“known; but the technique seems to be rather more widely

applicable. The main contribution of this section is introduced
in 85, where i1t is shown that the shape of certain bodies

can be reconstructed from the scattered fields observed at

only two closely spaced frequencies. The computational examples
presented in 86 confirm that useful results can be obtained

in situations of physical interest.

N

2. PRELIMINARIES

o

Tig. 1 shows the surface S of a totally-reflecting

body of srbitrary shape embeddsd in the three~dimensionsl

. .

space Yy, which is partitioned into y. and vy, the regions

inside and outside S respectively. A point O within v_ is

taken as origin for = svherical polar coordinate system.

[

Arbitrary polnts in y and on 3 are denoted by P, with
/
2

. . . s
coordinates (rae,@), and P, with coordinstes (r,6ﬂ¢79

respectively. The points on S closest to, and furthest from,
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/
O are denoted by P . and p’ s respectively. The radial
min max

. . / / / 7 .
coordinates of P', and P are r'. and r respectively.,
min max min max .

denotes the parts of y. withi icl ‘e
Yoy 2en the p Y.. within which r < T oin Yt

denotes the parts of y, within which r > r’ . The remaining
max

parts of y. and Yy, are Y., and Y. respectively, as is indicated

in ¥Fig. 1. Bxtensions of this notation are defined in § 2 of

Port 1, (I), and 82 of (III).

In conformity with §2b of (III) the spherical physical
optics #illuminated" and "shadowed" parts of 3, called S, and
S.. respectively, are introduced. These are carefully defined
in (III)« Here it is sufficient to remark that P/E S, if and
only if the extension of its radial coordinate from O does

‘

, P ana P
1 2 5

lying on the straight, dashed line shown in Fige 1. It is

not again intersect 5. Refer to the points P

‘e S.. It is also necessary

5

to partition S in another way, when considering the behaviour

/ /
seen that P1 = S+ whereas PZ’P

+
of fields in y_, and ¥,.. S (r) is defined from

- s~ ‘!
S ~ 87 (r) U ST(2), p'e Nk(r)’ r>r (2.1)
SYr), r's<r

Y/

Note that S (r) is empty when r > réax’ and ST(r) is empty

when r < réin”
Reference back to (2'.,5)3 (2.8) and (2.14) 211 of Part 1,
' (1), must now be made and certain Fformulas from 85b ,c of Part
1, (I) are sbstracted. The sources of the monochromatic field
- denoted by WO o Wo(r,esw,k) - incident upon the body are

confined to parts of y for which r » roe So, @O can be written
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as © L

2. D , ex) P)(cos 0) exp(is

v = c. a, k kr) P'(cos 6) e 1
o /. Jag J,Q( ) 31( ) £( ) exp( J@)a

£L=0 J=-2

"0 << r.s O<oe<2r, 0<6<7 (2.2)
where the aj . = aj L(k) are the expansion coefficients which

JL U a

determine the precise form of @O, and k is the wave number.

The time factor exp(iwt) is suppressed. The normalisation

constants cj are listed in Teble 5 of (I):
Jds
RN '
o =i B (0000) (2.3)
Jod (£+3)!

The scattered field ¥ = W(rg6,¢,k) can be written as

w 4
Ve ) o, e g, )
2=0 j:—i
+BY (%) h(z)(kr)] Pj(cos 8) e (i"cp)‘ Pe
Jag s 7 i ZPLLIP) & Y
(204)

where, for L€ {0 » @} and jE€ {~L~ [},

* o , " )
B. (rak) = - EV(T 5T )zw‘(kr) P (oos 6) exp(~ij@) ds (2,5)

Js 172 L

s¥(r)
vhere
’(J)“+ = j‘; ’0)"“ = 11(2) (296)

and €T(T1;T2) is the density of reradiasting sources induced

1

parametric coordinates) of the "sound-soft" body. Conformity

in the surface (in which 7, and T, 8re convenient, orthogonal,

with the notation previously introduced in (I), (11) and (III)
is maintasined by writing

b 4 4 .

o - >

B, r,k) =b, k r 2o
Jaﬁ( P ) ng( ): max < 7)

< r’,
min



The surface source density is found by solving the null field

equations:

bg%(k):maw(k), lefo-w}, jef-L-4}
(2.8)
For the approximate approach developed in §5 it is |
necessary to ha&e the form of the spherical physical optics
sqrface source density when the incident field is characterised
by |

x) = .
ajsl< ) =0, £>0 (2.9)

the physical implications of which are discussed in the.

Appendix .2, The normalisation
ao’o(k) = =hari - (2.10)

is convenient. It follows from §2b of (III) that the spherical

physical Sptics surface source density is

/7

§<ez@> 0, Pes

BT

=

N \ .
= Eﬁ%?ﬁaemﬂﬂﬁ% r'e s, (2.11)
A(G,@)
vhere A(6,¢) = ds/d0’ dp’. Note that use has been made of the

formulas

Pg(cos 6) = 1 and héz)(kf) = (i/kf) exp(~ikd) (2.12)

Recall from 8&2b of (III) that the coordinates ¢ and 0
span S, single-=valuedly and continuously throughout the rangesb
[0,27] and [0,7] respecfivelyo So, if o (+) is replaced in
(2.5) by éf(e), and note is made of (2.1) and (2.7), it is seen

that
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T 217
—k /‘[ v exp (ikr') dﬂﬁkﬁ} Pz(cos é) exp(~13¢) sin(éb do’ a8’

[

00

@ﬁb; L, Le0swl, je [-2-1] (2.13)

on account of (2.6) and (2.11). An "approximately equals"
sign is used in‘(2a13) because the physical optics surface
source density has been invoked rather than the exact surface
source density = but this 1s the only approximation implicit

in (2.13). The definition

oo} L
- £ — - .
B(0,0,k) = 5> (2L+1) 1 > (2-3)! bt (k) PP(cos 68) exp(ijo)
- L . J: L L
=0 j=—A (£+J)! ?
- - (2.14)
whnen combined with (2.13), leads to
T oan
—k ]A])r/exp(ikf[1 + cos(®) 1) Sin(éa do’ 30" & E(0,9,k) o
00 ” (2.15)
because
o0 ' o _
ﬁ;’ (2ﬁ + 1) i Pﬁ(cos 0) 34 kr) = exp(ikr cos ©) (2.16)
£:=0
and
i
e [ 3 : ) 3 / -
Pi( cos ©) = » (£-9)! Py(cos e) Pi(oos 6) exp(ijlo-91)
Lot \
j:_L (-Q+J>'

(2017)

when (c.f. Abramowitz and Stegun 1968, chapters & and 10]
& 3 P

cos(@) = cos(0) cos(é) + 8in(@) sin(63 cos(p—¢) (2.18)

(2) Cylindrical Sound-3oft Body

Wnen neither the fields nor the cross-section of the
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body exhibit any variation in the direction perpendicular to
the plane of Fig. 1 then S can be replaced by C, which is
the cross sectlon in a particular plane denoted by Q.
Cylindrical polar coordinates are used to identify P and P;
i.e. (p,@) and (pﬂ¢) respectively. The previous notatilon is

modified accordingly.

The formulas needed later sre now listed. It is;
however, worth referring to §2¢ of (III). The incident field

is written as

[e0] .
vy = (-i/k) ) e [a() cos(mg) + & (k) sin(me)}d (1),
m=0
O<p<p, O<osn (2.19)

where the sources- of Wo are conf'ined to parts of O for which
p>pye The Neumann factor €m =1 for m = 0, but Em.= 2 for

m > 0. The scattered field is written in the form

[24]
(=3/w) ) € 70k cos(me) + b P(k) sinlng)] H;Z) (kp),

v o=
m=0
PEQ,, (2.20)
where
+& : 7y COS3 3
b (k) = —f r(c) 3 (kp) o (mg) &6, m& [0 o] (2.21)
G
where T(C) is the surface source density.
When the incident field is characterised by
e .
a; =0, m> 0 . (2.22)

and the normalisation
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b
8, = -(871)% (2.23)

is made, the circular physical optics surface source density

becomes
~ ’
F((Pl) = 0, Ped.
. d.(.P/ /‘jé' e 2 / N
x = (kp)? exp(ikp), PEGC, (2.24)

dg
where the "approximately equals™ sign is used because there is
no exact formula of the same kind as the second one in (2.12)
for H(g)(kﬁ3 However, if kp . > 2m, the formula
0 LE > min ?
(2),. . T ot
HO (kp)r= (12/%kp) exp(mlkp) : (2.25)

is less than 2% in error; The formula corresponding to (2.13)
is 1 o 1
i / ()7 exp(ix) a_(f) S2(md) aq’
m sin '
0

e
% b k), ne& {0 w] (2.26)

The definition

o8]
B(o,k) = € 4 [b7 (k) cos(me) + b °(k) sin(ng)] (2.27)
m=0

. s g A .
vhen combined with (2.26) gives

2T
e Jf ()% cxplitglt + cos(d=))] ag & Blo,k) (2.28)
0
because
o
Se 1" coalu(g-e)] I_(5) = oxpiiky cos(f-q)] (2.29)
m=0

Recall that formulas appropriste for scalar fields and

cylindrical sound-soft bodies also apply to E-polarised
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electromagnetic fields and perfectly-conducting bodies.

(b) Inverse Scattering Problem

Because of (2.1) and the sentence following it, and

because of (2.4 through {2.7), it follows that
@® L

TS + n o (2) J . s
¥ o= ZL/ zz: 039£ bjsﬂ(k) hﬂ. (kr) PQ(COS @) GXP(lJ@)a Pe PN
£=0 j=-1 <2°30)

The equivalent formula for‘cylindrical bodies is (2.20). The
available data for the inverse scattering problem are the
scattered far field and the incident field throughout y. U y,-
(it may also be knovm within a large part of Ya4ps DUL this is
strictly unnecessary). The incident field is characterised
by the complete set of the aj’l(k), or the ai(k} for cylindrical
bodies, or as many of them that have magnitudes exceeding a
threshold set by the specified error permitted in the final
solution to the problem. In the far field, the spherical
Eankel functi&ns sppearing in (2.3%0) can, by definition, be
replaced by the leading terms in their asymptotic expansions

(¢:f. Abramowitz and Stegun 1968, chapter 10). It follows that

w { ’ ‘
_cem(mikr) ST I b gy eI ) (g
¥o= - kr . ALJ (1) ngﬁbjﬁ£<k> uﬂﬁcog 6) exp(13<§ﬂ
,Q:O. j:-—i .

PE Yo (2.31)

where Year is the part of vy,, far enough sway from the body to -
be in its scattered far field. Given ¥ in the far field, for a
particular r and for all ¢ and 6 in the ranges {0,217 and

[0,7] respectively, the complete set of BS ZKk) (or as many of

J
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them that have magnitudes exceeding an appropriste threshold)
can be immediately obtained on account of the orthogonality

of the functions [Pg(cos 6) exp(ije)]. So, inspection of (2.30)
indicates that, using the available data, ¥ can be immedlately

computed anywhere within y The problem is to reconstruct S.

e+
Reference to (2.14) confirms that the availsble inform-
ation concerning the scattered field is contained in E(8,¢,k).

For cylindrical bodies the equivalent quantity is E(@,k),

To recapitulate; the inverse scattering problem can be

posed as: TFind 3, gilven the aj Q(k) and the b; l(k)p or
2

J

equivalently, given E(0,9,k). For cylindrical bodies the
e 48
problem i1s: find C, given the ag(k) and the bmo(k), or

equivalently, given E(g,k).

3. EXACT APPROACT

The uniqueness of analytical continuation ensures that

(cof. Bates 1975b)

o L .
el e ) (2 J . L

S 214 ngxbjgl(k> hﬂ )(kr) Pﬁ(ccs 0) exp(ijo), P € v,
2=0 j=—4

(3.1)
vhere ;+ is the part of v throughout Wﬁich the right hand side
(RHS) of (3.1) is uniformly convergent. It follows necessarily
from (2.4) through (2.7) that

;+ 2 Vo (3-2)

¥nen the scattering body and the incident field are such that



;;,D y. then the inverse scattering problem can be solved
exactly, stralghtforwardly. The standard boundary condition

for sound-soft bodies is

I'4

V40 =0, Pesd (3.3)

Since WO and the b;gﬁ(k) are given (refer to ©2b), RS (3.1)
can be computed. It follows that the points P € v where

(¥ + @O) vanishes. can easily be found by:computatiOn.

Ordinary interference can cause the total field to vgnish at
points, along lines and even along surfaces none of which
coincide with S. 8o, the points P must be found for sufficient
wéve mumbers to ensure that the true surface is mapped out

(only those P that reappear for all wave numbers are accepted

as lying on S).

Then the Body is cylindrical, the formula corresponding
to BHS (3.1) has unique singularitiesv(Millar 1973). There
seems to be no good resson for doubting that the singularities
for RHS (3.1) are also unique. These singularities must lie
in‘y,g.,° When they lie in Y11’ RHS (3.1) can replace ¥ in (3.3)
for all PﬁELSo When the Singularities lie in y.,, as 1n many cases

they must, RAS (3.1) is not uniformly convergent throughout Voo

The scattered field must be well-behaved throughout
Yo GConsequently,the addition theorems for spherical wave
functions can be invoked to conbinue RHS (3.1) uniquely
throughout y_., in much the same wsy as these theorems are
employed in 8§ 2b of Psrt 1, (IL), and &3 of (IL), as Weston,

Bovman and Ar (1958), Weston and
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Boerner (1969) and Imﬁriale and Mittra (1970) have’inveﬁtigated
in detail. Ahluwalia and Boernmer (1974) and Yerokhin and
Kocherzhevskiy (1975) have extended the method to those sorts
of penetrable bodies that can be usefully characterised by

surface impedances.

Multiple use of addition theorems is time-consuming
computationally, and care is needed to prevent errors accumulm‘
ating. Also, one is trying %o discover the shape of the body,
.80 that 1t is by no means obvious which is the best position
for the new coordinate origin when one is making a particular
application of an addition theorem. Consequently, there are
severe difficulties associated with analytical continuation
methods, and these difficulties are accentuated by the usual

problems with numerical stability (Cabayan, Murphy snd Pavlasek 1973).

Analytical continuation methods would be easier to use

[N

f & sharp test could be devised for estimating the minimum
value of r for which BHS (3.1) is uniformiy convergent.

Inspection of (2.4) throush (2.7) reveals that
, _

o0
y =Sy B K) 5 (ke) - % (r,k) nt2
v=p0 0 0 [Bjﬂl(zy ) qﬁ(kr) Bjai(f, ) nY (kr)
1=0 j:“—j, V
o R (2) J A Z 10
+ b7 (k) b7 (kr)] Py(cos 0) exp(ijo), PE Y (3.4)
Jal L L ‘

vhere, for £ € {0 -0} and j€ {-L->1],

B 3 ﬂ_l . s J 7 ) _'." . !
Bj,g(r’k) = //7ET(T1,72) ;aﬁkr) Pﬁ(cos 0) exp(-ije) ds (3.5)

Sm(r)

It follows necessarily from (3.1) that
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Foe) 4
5N . B (r,X%) ?J(cos 0) exp(ijo) = 0O, P e 7+‘
Lart Lt ded Jof A R
ﬁ::O J= ,()_
(3.6)
where, for £&€ {0 >0} and j€ {-L L}
8. (o) =87 () 4 () - 3% (2,0) 0¢? () (3.7)
BEY2 Jds L L dsl . L

Tﬁe first value of r which will be found to satisfy
(3.3) is rééx. Consider a pgrticular value of 1, say rp,
less than rgéx. If all the points on S, for which r’> rp,
are found from (3.3) then S—(rp) is known, which means that
ET(T13T2) can be computed for 211 P'e Sm(rp) usiﬁg (2.8) of
pPart 1, (I). Reference to (2.5), (3.5) and (3.7) of this sub-section
confirms that ﬁj’ﬂ(rbgk) can be calculated for £€ {0+ ]
and j € {-£->4}. For each r = T the left hand side (IH3) of
(%3.6) can be computed. If there is found to be a value of r,

which is denoted by 1 12 for which

critica

|LHS (3%.6)] > threshold, r < (3.8)

Teritical
where the threshold is related 4o computational round-off
errors and to the quality of the data, then it can be assumed
that the BHS (3.1) is not uniformly convergent for L
Similer reasoning to that developed in the previous
paragraph has been previously presented for cylindrical bodies
(Bates 1970). In this earlier analysis Bates suggested that
analytical continuation would allow the whole of I to be
reoovefed} without having to use addition theorems. This is
sound theoretically because the nonconverging part of RHI (501)>

is exactly cancelled by the nonconverging part of LHS (3.6),
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for all » <« But a computationally satisfactory way

Foritical”
has not been found of taking advantage of this, which is not
surprising in the light of the results of Cabayen et al (1973).

However, it is felt that the method for testing for » . .
. critical

described in the previous paragraph is computationally viasble,

because LHS (3.6) is necessarily zero for r > This

Feritical”
test could also be applied with equal facility.to vector fields
and perfectly conducting bodies; the surface density would

be computed using (2.10), instead of (2.8), of Part 1, (I).

L, APPROZTMATE APPROACH = ALL TFREQUENCIES

The positions of scattering bodies in space can be
determined with useful accuracy in many sorts of situation
by conventional radar and sonar techniques. The precision of
the position measurement increases as the bandwidth of the
transmissions is increased. Sophisticated systems have been
developed for estimating the shapes, asvwell as the positions
(and the velocities of moving bodies), of the bodies (cofs
Bates 1969b), The estimation procedures involve various Fourier
transformations of the scattered field, which is assumed to be
close to that predicted by planar physical optics (c.f. Bates
1969%b, Lewis 1969)n Theoretically, the scattered field must

be known for all frequencies, or wave numbers.

-

An alternative inversion technigue is presented here,
for which the complete scattered field at all frequencies is

required. The procedurs is based on spherical physical optics,
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which like planar physical optics becomes increasingly
inappropriate as the wave number increases beyond a certain
limit, corresponding roughly to where the largest lineaxr
dimension of the body equals the wavelength. However, as

follows from the analysis developed in § 3 of (II1), we can

claim that, when (2.9) applies, the form of the physical

optics surface source density used here is in general more
accurate than the forms emplbyed in previously reported inversion

methods .

1
Multiplying (2.13) by (2/7rk3)2 and integrating with

respect to k from O to o gives (c.f. Watson 1966, §13.42)

T
/»/=<r)2 P (oos 6) exp(~ijp) sin() d¢’ ae’

00
4 3
n(2/3m)2 (14 é—)] KEpE () @k, L€ lo-ool,
9

0 je f-1-u} (Lo)
Fxoemination of IHS (2.13), in the limit as k = 0, indicates
that BHS (4.1) exists. Since ris a single~valued function

of 0 and Q/over S4s it can be seen that (4o1) leads immediately

to
TE = (o) E S 03 (L)
[£(6,6)17 & (3207)2 5 (24 1) (-2)FF {5y Fileos ©)
0= Jmel
[2¢]
exp(iig) fk & bJ lfk) dk (4e2)
beacause 0
o (ﬂ ) o .
T?T 4N,(2£ 1) 5 P (ﬂuj\' Pg(oos 9) Pi(cos 0) expl[ij(p-¢ )]
£=0 j:‘a,ﬂ,
- lo=d) S(6-0) (4.3)

sin(@)
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where 6{-} denotes the Dirac delta Function.
An estimate of the shape of 5, 1s obtained from (4.2).

It is worth noting that (4.1) and (4.2) emphasise the
necessity of defining physical optics Surface source densities
over parts of 5 which can be described single-valuedly by
convenient coordinate systems. If r were not necessarily a
single-valued function of eland @: RHS (4.2) could not

1
necessarily be identified with a single value of (é)ze

(a) Cylindrical Body

Integrating (2.26) with respect to k from O to  gives

(cof. Abramowitz end Stegun 1968, formula 11.4.12)

21 1 D g

.m [, nF cos, . o RSN
i J (p) Sin(m@ do f‘m/ Xk bm (x) ak, @e {0 » o}
0 0 (lolt)

where

-

P =_,24e:<p(--i7r/8) r(£) T(me3) (34.05)
o r(mel) T(2)

and T(+) denotes the gsmma function. As p/: ﬁ(é) is single

valued over C,, (Lol) leads immediately to

[4s]

1 © 5
/ ’ Z — . — - T y . o
Lelelt = i%; :ijem(l> ’ fm'/ k4{b;e(k) COS(H“@ +—bio<k> 81n(m49} dk
- =0 0 (4@6)
because
@
mgl; Z:Em cos m(<pm (/p) = 5(@,:((')) (LH?)

m=0
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An estimate of the shape of G, is obtained from (L4.6).

5. APPROXTMATE APPROACH = TWO TREQUENCIES

A new dnversion procedure applicable to bodies of
revolution and cylindrical bodies is presented. There are
two significant improvements over the methods discussed in § L.
First, the scattered r'ield need only be observed for two
closely spaced frequenciles. Second, these frequencies can be
high enough that spherical physical optics 1s eppropriate,
provided that the shape of the scattering body is suitable
(i.e. it is such that there is little multiple scattering).
In fact, the higher these frequencies are the more accﬁrately

~can details of body shape be recovered,
It is convenient to introduce the notation

v, = dv/dx C(5.1)

vhere v is any scalar function and x is any variable.

(a) Body of Revolution

Consider a body of revolution whose axis coincides
with the polar axis of the spherical coordinates introduced
in §2. Using these coordinates it can be seen that

7z

™= 0 : . (5.2}

. ""q) -

all sveileble information is contained in E(0,0,k).
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Values of k are chosen High enough that the integrals
in (2.15) can be evaluated usefully by stationary phase.
Because of (5.2), the integrals over @/and 6 can be treated
geparately. It is convenlent to deal with the former first.
When ¢ = O, the phase of the integrand is stationary when
@/: 0 and @/:-wa Proceeding in the usual way (c.f. Jones

19, 8§ 8.5), it is found from (2.15) and (2.18) that
i 1 A
£(6,0,k) m-(-i2km/sin e)ﬁ‘/'(r’sin 6)2 expiizkr’cosz[(e~é)/2]§ e’

0
W

- (i2knr/sin G)jé'/’(r/sin.é)1§ expiiZkr'cosz[(6+é)/2]§ ae’
o - (5.3)
© The phases of the two integrands in BHS (503) are stationary
when v
cos[(656) /2] = 0 | (504)

and

1

tan[ (676) /2] 7 (6,0) /r(8',0) ' (5.5)

wnere the minus and plus signs apply fo the first and second
integrands respectively. Because the body is, by definition,
symnetricel about the polar axis, it is apparent that r% =0
when 6 = 0 or 6 = ¢ (the surface of the body is essumed to
have no singularities at these points). Consequently, when
0 =0 or o =g, both (5.4) and (5.5) give stationary phase
points for both integrands at 6 =0 and 6 = 7. When O ¢ 8 < ¥
the only solution to (5.4) which lies‘within the range [O,7]
of the integrands in (5.3) is

o' =7 ~ 0 (5.6)

which epplies only to the second integrand.



It cannot be expected that useful results will be
obtained from (503) when the surface of the body has sufficiently
deep conoavities that appreciable multiple scattering occurs,
because (5.3) is based on physical optics which is not capable
of predicting multiple scattering effects. Concavities in the
body's surface are related to the occurrence of multiple
stationary phase points in the integrands on RHS (SQB)m It
must be assumed that each integrand possesses only one
stationary phase point. The one for the first integrand is

given by
tan[ (6-6)/2] = r(6,0)/4(4,0) (5.7)

which, it is assumed, has itself only one solution for 0O < 6’< T
The one for the second integrand is given by (5.6). It must
be assumed that‘lfg(egO)I is never large enough that there is
a solution to (5.5) for O <E¥< 7, when the plus sign is takena
A recognisable reconstruction of the shape of the body can be

obtained only when it is such that our sssumptions are valid.

The redo&ery of é(eﬁo) from (5.3) is very similar to
the recovery of ﬁ(é) from the equivalent equation for a
cylindrical body, which is discussed in sub-section (b) below.
Sinoe the illustrative examples which are presented in §6
concern cylindrical bhodies, it seems better to give the

detaliled analysis in the following sub-section.

(b) Uyvlindrical Body

Stationary phese points of the integrand in (2.28)
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cccur when

cos[ (¢=3/2] =0 (5.8)
and
tanl (p~¢) /2] = p%(é)/ﬁ(ﬁ) o (549)
There is one solution to (5.8) for 0 < ¢ < 2r;
o = @‘+ Ty O<coxwm
=@ =~ T, M9 < 2w | (5.10)

Por the same reasons as those previously given in the
penultimate paragraph of sub=-section (a) above, it must be
assumed that there is only one solution to (5.9) for

0 < ¢ < 2r. Ve say that

Q= , (5.11)

represents the solution to (5.9). It is convenient to define
P

o

p'=ple); p = p¢(¢); p = p¢¢<w>. (5.12)

When (5.9) through (5.12) are invoked, the stationary
phase approximation to (2.28) reduces to two integrals whaich
correspond, respectively, to the first and séoond integrals
on RHS (503)e The usuael technique (c.f. Jones 1964, § 8.5)

zives

l\)i-L
ISES

~8% Bo,k) = 2

-

he

+

Y

exliag oos”(y-/21) | / (- 3E)7 - o] eoslua1/2)
| (5013)

Inspection of RHS (5.13) reveals no obvious, direct
way to recover p as a function of ¢, and Y as a function of ¢.

However, the exponential is of modulus unity and, which is
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more important, it is the only factor on RHS (5.13) that depends
on k. This suggests that the modulus of the partial derivsative
of E(@,k) should be investigated with respect to k. After
some algebraic manipulation it is found from (5.9) and (5.11)
through (5.13) that

p ‘ o lEk(@sk)i

L ! (5640
1+ (5/p)%  128(e,k) - 1

Suppose that E(@,k} for two closely spaced wave numbers, (k+€}
and (k«e) 5ay, are observed or are given. If€ is small

enough, it follows that

m (o.k) % [B(p,ked) = Blok-€)l/2 (5.15)

and
E(p,k) & [E(p,k+€) + Z(p,k~€)]/2 (5.16)

t0 within some prescribed tolerance.

The formuls (5.14) can be looked on as a differential
equation for recovering p = p(¢) and ¢ = ¢(p). An initial
condition is required to start the solution. Values of ¢

are locked for sbout which E(@,k) is locally even, in the

following sense. If P, is such a value of ¢ then

[E(@ 4+ ﬁ,k) - E(@ o ﬁpk)]/E(@ogk>

is smaller than some prescribed threshold over a range of o .

my

The width (extent, length, support) of this range is denoted

by R. The value of for which R is greatest has been chosen
Y o &

3

/
- I T * el 11 . T
and called Py It is postulated that for the point P € C

. . A . .
whaose angular coordinate is ®y the centre of curvature lies
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7
on the line 0P, or on its extension. This is eguivalent %o
assuming that p%($o> = 0, which when combined with (5.9),
(5.11) and (5.12) gives
Y = ¢ when ¢ = @Oo (5.17)
This is sufficient to start a numerical solution to {5.1i)
for ¢ = d(e) and p = p(¢). The latter describes the shape

of the body, as the definitions (5.12) show.

6. APPLICATIONS

Bxamples of the reconstruction are presented, by the
inversion procedure descrived in § 5b, of the cross sections
of the cylindrical bodies shown in Fig. 2. The scattered
fields, on which the inversion procedure operates, were computed
using the rigorous null field methods, themselves developed

in (I).

In all examples € is given the value

€ = 0.005 (6.1)
vhere € is introduced in (5.15) and (5.16). For all the
‘bodies shown in Fig. 2

Z\Po =0 (6.2)
ere@ojﬁ<kfhwdintMafhmlpuggmmzof 85. The
symmetries of all the bodiés are such that one qusrter of C
completely defines the rest of it. Accordingly, reconstructed
cross sections ére shovn only for ¢ in the range [0,7/2] -
note that this is equivalent to ¢ being restricted to the

range [0,7m/2), on account of the symmetries of the bodies and



20l

the definition (5.11) of ¢ in terms of @f It 1s more graphic
to relate the results to the wavelength A of the field; rather
than to its wave number k or iis frequency. In terms of k,

A is written as

A = ‘217/‘1‘: (6.3)

Since circular physical optics is exact for circular

cylinders, such cylinders can be reconstructed perfectly.

The greater the departure from circularity of the cross section
of the body, the more difficult it is to reconstruct it
accurately. Fig. 3a shows that elliptical cross sections of
moderate ellipticity can be reconstructed almost perfectly,
even when ﬁhe.wavelength is only a little less than the swmallest
linear dimension of the body. Fig. 3b confirms that the error
in reconstructing the cross section tends to increase with

the ellipticity.

The results presented in Fig. 4 illustrate two features
of this (and any other, for that matter) reconstruétion
procedurs, First, keeping constant the rstio of A to the
smallest linear dimension of the body, the accuracy of
reconstruction improves with the smoothness of the cross
section - note that the differences between the dashed and
full curves tend to decrease in going from Fig. 4c to Iig. Lb
to Fig. 4a. The second feature is that the error in recon-
struction decreases with the ratio of N 4o the smallest

-

linear dimension - note the differences bhetween the dotted,

dashed and full curves in Fig. 4b,c.



- 205.

The major problem with all shape reconstruction
procedures, whether rigorously based or approximate, is‘to
reproduce accurately concavities in scattering bodies. The
reconstruction errors associated with the dashed curve in
Fig. 5 are appreciably greater than those associated with
the dashed curve in Pig. 4c, even though the wavelength
is shorter for the former. Nevertheless, the reconstructions
shown in Pig. 5 are encouraging and seem to be improving
with decreasing wavelength. It was found to be inconvenient
to obtain results for values of a/A of, say, 5 or 10 because
of restrictions within the computer program used for calc-
uleting the scattered field accurately by the null field

method.

The CPU time needed to compute each of the reconstructed

cross sections shown in Figs 3 through 5 was close to 5s.



Fige 1 Totally-reflecting scattering body. of arbitrary shape.



Mg. 2 Cylindrical scattering bodies

(a) Square cylinder with rounded cormers

(b) Elliptical cylinder

(¢) Cylinder with concavities.

(2)

(b)

207,
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0 o x

Fig. 3 Reconstruction of the cross section of an elliptic cylinder

(refer to Fig. 2b)

(a) b

s

0.8a

boundary curve C

it

A reconstructed points when a = 1.5A and a = 2X

(®) b = 0.65a
boundary curve G

———————— reconstruction of C when a = 2
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continued on next page
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Reconstruction of the cross section of a square cylinder

with rounded corners (refer to Fig. 2a)

{(a) t = 0.5a

boundary curve C

n

~~~~~~ reconstruction of C when a = 2\

1

(b) t+ = 0.25a
boundary curve C
reconstruction of C when a = 1.5%

______ reconstruction of C when & = 2\

boundary curve G
e Teconstruction of C when a = 1.5A

______ reconstruction of € when a 2N

1l




Fig. 5 Reconstruction of the cross section of a cylinder
with concavities (refer to Fig. 2c) (t1 = 0.52a,
1‘,2 = 0,58,_)
boundary curve C

i

reconstruction of ¢ when a = 2\

________ reqohéﬁrueﬁion of ¢ when a = 2.5\



PART 3: CONCLUSIONS AND SUGGESTIONS

FOR TFURTHER RESEARCH

Unless obherwise specified all referenced equation, table
and figure numbers refer only to those equations, tables

and figures presented in this part.
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PART 3. I3 CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

1.  CONCLUSTONS

P N

Numerical solutions of the direct and inverse scattering
problems by the use of the general null fisld method have been

considered in this thesis.

The investigation into the numerical solution of the direct
scattering problem by the elliptic and spheroidal null field methods
presented in §6 of Part 2, (I), shows that these methods can handle
bodles of any aspect ratio. The essential thing is to choose the
paramsters of the respective elliptic or spheroidal coordinates such

that O occupies as much of Q. as possible or

null

much of y.. as possible. When this is done the solutions are virtually

Youll occupies as
independent of aspect ratio; and yet the orders of the matrices
vhich need to be inverted are s3 small as those previously reported
in studies, by the circular and spherical null field methods, of
bodies of small aspect ratio (c.f. Ng and Bates 1972, Bates and Wong
1974) . It should be noted that the general null field approach is &
generallised systematic procedure of the sort which Jones (197&@} -
who examines the work of Schenck (1957) and Ursell (1973) - suggests

should be derivable from the extended boundary condition.

Tn (II) of Part 2, the null field approach has permitted the
development of a formslism +to evaluate the source density on, and the
scattered field from, several interacting bodies. The significance

of this method is that 1t has enabled the convenient use of multipole
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expansions for bodies of arbitrary shape ~ while st1ll retaining all
tha advantages of the general null field method. The numerical

investigations carried out confirm the computational convenience and
efficiency of the formulae for two interacting cylindrical bodies of

similay and different shapes.

Tn (TII) of Part 2, the null field approach has been used to
develop a generalisation of planar physical optics. From the numer—
ical investigations of the circular and elliptic physical optics it
has been confirmed that these approximate methods can offen yield
recognisable estimates for the source density and the scattered field
when the wavelengths are short enough compared with the linsar
dimensions of the body. The improvement t§ generalised physical
optics introduced in 83 of Part 2, (III), may be significant com?ut»
ationslly on two counts. First, it is a step towards developing
accurate methods which are much more efficient than the rigorously
posed methods, and vet are stralght-forvardly related to them theoretic-
ally (the geometric theory of diffraction is very powerful but it is
usually extremely difficult, in specific cases, to defermine the
order of the diffefenoes-between it and exaof theory). Second, it
is the kind of approach from which may come useful a prlori assess-—
ments of the orders of the matrices which must be inverted to solve
particular direct soaﬁtering problems to required accuracies - as
Jones (1974b) and Bates (1975b) point out, this is probably the

outstanding computational problem for diffraction theorists.,

Tn (IV) of Part 2, the null field approach has been used to

develop methods for solving the inverse scattering problem. The



method introduced in 84 requires the scattered field to be knowm

at ail frequencies (this is similar to other methods reported in the
literature - see Bates 1959, Lewis 1969). Any attempts to introduce
modifications designed to permit limited scattering data to be used

must overcome numerical instabilities noticed by Perry (1974).

It is evident that the inverslon procedure which is presented
in 85 and illustrated in § 6, both of Part 2,'(IV), is a significant
improvement on previously reported techniques because it requires
only that scattering data be available at two closely spaced frequencies
whioﬁ are high enough that the wavelengths are short compared with the
linear dimensions of the-éoattering body. Even though the inversion
procedure is based on the principle of stationary phase, and might
therefore be expected to work satisfactorily for only very short
wavelengths, the results presented in §6 of Part 2, (IV), indicate
that useful results can be obtained when the.wavelength is comparable

vith the smallest linear dimenslon of the scattering body.

The formulae which are derived in 85 of Part 2, (IV), are
reminiscent of those reported by Keller (1959) - and later examined
computationally by Weiss (1968) - who based his arguments bn classical
geometrical optics. The uSe of physical optics enables the handling
of diffraction effects, wnich 1s not possible with methods based on

geometrical optics.

2. SUGGESTIONS TIOR TPURTHER RESEARCH

Although the spheroidal null field method has only been used
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to treat totally reflecting bodies of cylindrical shape, it can be
~usad to tfeat totally reflecting bodies having large concavities by
using a method devised by Bates and Wong (1974). In this paper they
treat o totally-reflecting body of complicated shape by enclosing it
within a surface S’ - whose interior is y. ~ which has a simple shape
and which is tangent to S but does not cut g In the region contained
bétween S and S the field is expressed 1n such a way that the con-
ventlonal boundary conditions are satisfied on S, and eguivalent
surface sources are conveniently found on 8. The extended optical
 extinction theorem [see 87 of Part 2, (1)] is then satisfied within
y.l. This procedure can be combined satisfactorily with the spherical
null field method, provided that the aspect ratio of 5" is not large
(Bates and Wong 1974), It mey be conjectured that if this procedure
were combined with the spheroidasl null field method, it would be useful

/
whatever the aspect ratio of S,

The spherical null field method applied via the multiple
scattering body formalism of §3(v) of Part 2, (II), could lead to =
convenient and efficient numerical method for studying the mutual

interaction of electrically thick dipole antennas.

It may be possible to increase the efficiency of the improved
physical optics [developed in § 3 of Part 2, (ITI}]. In particular,
asymptotic (for large k) estimates of integrals appearing in each
@j,jgﬁﬁi'term in (3,5) of Part 2, (III), may significantly increase
the efficiency of the method>over the accurate null fie1d>methods

developed in (I} of Part 2 without greatly decreasing the sccursacy

of the method.

T See Fig. 1.
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The improvement to the analytic continuation method of Mittra
and Wilton (1959) proposed in § 2(b) of Part 1, (II), as a means of
providing a rigorously based and yet numerically efficient point-
matching method, should provide incentive for developing numerical
methods for finding the convex hull of the singularities of the

analytic continuation of & into Q_,
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Fig. 1 Scaittering body with concavities enclosed b
g & ,

’ . . . <! , ’
surfece 3; reglon inside 5 denoted by y..



Unless otherwise specified all referenced equation, table and
figure numbers refer only to those equations, tshles and

figures presented in these appendices.
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AFPENDIX  4: DERIVATION OF A CIRCULARLY SYMMETRIC FREE SPACE DYADIC

GREEN'S FUNCTION EXPANSION IN THE SPHEROILDAL

COORDINATE SYSTENS.

In §{§3c and 5d of Part2, (I) the expansion of the free space
dyadic Green's function for circularly symmetric fields is quoted;
this expansion is derived here. The method of derivation is the

Reyleigh-Ohm technique as described by Tai (1971).

The analysis 1s restricted to the prolate spheroidal coordinate
system for which u1 and U, become & and n respectively. The coordinate
Uy becomes the azimuthal angle ¢. It is shown how the enalysis can be

usad to determine the dyadic Green's function expansion in the oblate

spheroidal coordinate system.

waich are suitable

(P)( )

The vector wave functlons Wé?)( ) and N
for the prolate spheroildal coordinate system, when the field is con-
strained to be circularly symmetric, are listed in Table 6 of Part 2,
(I).. It is notéd that these vector wave functions are independent
of ¢. Hence for convenience they will be written as Egp)(g,ngx)

and gé?)(g,ngx) for the wave number k.

Before deriving ihe dyadic Green's function expansion it is

necessary to obtain two preliminary results.

(a> Orthogonality of the Vector Wave Functions

It is convenient to use the shorthand notation
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(p) 2 & ()
Uy (8) = (87 -0 ry (), pEU -4, g€ 1 s el (1.1)

. 2\ \
Vq(n) = (1 -17)% 8§, q(kdm}s g€ {1 » o] (1.2)
4 ?

vhere the spheroidal wave functions R(p)( } and S(P>( } are defined

in Table & of Part 2, (I).

(-)

The ordinary differential equations that R( >( ) and S

159 159
satisfy, csn then be written as (Wait 1969)
2.{p) »
2 da g 2.2 .2 :
(&% ) Y% @ . [n, o = ka7 o (g) =0 (1.3)
. 2] 24 q
‘Z‘;
o a%v_(n) 2202
(1 -7y 122" +[7\1q-kdn]vq(n)=o (1ek)
R .
dng
where x1 q is the angulsr seperstion constant which is chosen so that
2
5 (kd»~1) (kd1), g€ {1+ 00} {1.5)
5

ma

The spheroidal anzle functions can be shown to satisfy the orthogonality

condition

1
f < ' 2\
S kd 3 kd dn =086 , T € it - o 1.6

J “é( »1) 1,q( »n) dn TR {1 > o] (1.6)
-1
vinere I_1 . is given by (Flemmer 1957 chapter 3)

a4

T =1  (kd

159 19‘1( )

q€ {1 » 0] (1:7)

1i

© ,
T (glay2 2(me2)!
Ly m (2m+3)m!”’
m=0

where here, and for the rest of *these Appendices, +the prime over the

summation sign indicates that only even values of m are included if
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. . . . T
g is odd and only odd values of m are included if q is even.

FProm the definitions of the vector wave functions [c.f. Table

6 of Part 2, (1)} it follows that

fff v(1>
JJ] "

Y

@gu@»ﬁ??@mﬂdav=og g€ {0>0{ | (1.8)

To show the orthogonality of thebgé1)(-) wave functions it is

convenient to define

R C) P €
I= j]]iﬁég’(éynsx)~ yé Vgmsw) av (1.9)
b4
In order toiexpress the element of volume dv in terms of the prolate
spheroidal coordinates, 1t 1s mnecessary to emplaoy the appropriate

forms for the metric coefficients hF’ h and h - In terms of an element
Ui ¢ ,

=

of length dl, these are defined by
\ 2 2 2 2 2 2 2 2 2 2 .
(1) = (ax)” + (dy)° + (a2)° = he G574 h_ AT 4 b do (1.10)
- 7

waere

i

| s .
d(ﬁg“”%r n -d{€%'#?2
& - ® o =alEn
L52~1 | 2

8l (=% 1) (1- 722

(1.11)

h
¢

i

and x, v and z are rectangular cartesian coordinates. The element of

volume can then be written as
5,2 2
dv = a”("~ n") & dg do (1.12)

Use of the definitions of the vector wave functions in Table & of

Part 2, (I) enables (109) to be written as

T The coefficients d1q which -are functions of kd can be determined via
the equations m (1.,5) or (1 L) once the angular separation constant
A is knowm.

1,0
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w av(n) oy o av.(a)
ar 1w gy 87 gl gy
T- ]| /’ ! dn q dn
J J L il (E“~ 1)
0 -1 1
o 2 () au{P (e)
n) T AT
! g a4 dg } d ag dn de  (1.13)
kk(1~ n2) '

To simplify (1.13) use is made of the following relationships obtained

by dntegration by parts:

1 1
- , 247
/ qu (77) dvq(n) an = {:v (77) dV (n)} - f v (n) d Vq(ﬁ) (177
J dn dn d an - J * an?
- ‘ -1

1
/TV'(”) v,(n) (x1’q

- 232 2)
(1- n2)

(1.124)

(870 w06 o L o0 O Ty Ve
E  aE Le S 2

g
ag

it

/’ (1><€) U<1)(§) (Kl qf” K d g > ag (1o15)
1 (5% - 1)

To obtain these relationships use has been made of the differential

ecustions (1.3) and (1.4) and the properties of the spheroidsl wave

1‘“3

unctions (c.f. Flammer 1957). Use of (1/4) and (1.15) enables (1.13)

to be reduced to

' ~
I:ji/§$>kﬁmx)’ﬂg)@ﬂuk)dv (1.16)

Y

It therefore is sufficient to consider only the orthogonality of the

M<1)(

o ») functions,
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A

Exemination of the functional form of the M )(,} wave functions

(
q
end use of (1.6) shows that T = O in (1.16) unless q = q, so it will

= . “ . /
be sufficient to consider (1.16) when g = q.

The prolate spheroidal wave functions can be expressed in terms

of the spherical wave functions [these are listed in Table 8 of Part

2, (1)] (Flammer 1957 chapter 5)T.,
(1) -
»h 1 tg, y '
Rﬁ’qKKd,g) Si,q(Kd’n) = Zi: dm (rea) P1+m (cos 6),j1+m(mr),
m:O
r>d, g€ {1 > o} | (1.17)

Use of the definition of the ng)(~) wave functions enables
(1.17) %o be substituted into (1.16). Then on expanding the elemental

yvolume in spherical coordinates (1.16) becomes

2T T o/

I :[f f [Z d:nq(/cd) P11+m(005 6) 51‘{»;;1(/““")]
0ooo =0

.00/ .

< Llq 1 . 243 ,
[Zm, a (xd) P1+m(cos 8) dwm(kr)] rsin 6 d9 dr do
m= (1.18)

The orthogonality of the associated Legendre functions (c.f. Morse and

Peshbach 1953 chapter 10) enables (1.18) to be reduced %o

w0 s :
- S Ko PR 2 (me2)! ' ‘ 2
VAN . \ N e .
T=2r ) & (kd) a (kd) — <,mn(,cl)ﬂwﬂ(kz) r dr
o (2m+3)  m!

0 (1.19)

The integral relationship (c.f. Tyras 1969 chapter 1)

2 S (rn—:f{)

o

g? ] . ! ;-

p- /iaq(xr) OqKKr) K- A = 2 (1.20)
0

T The origin of the r,0,p and the Z,n,¢ coordinate systems coincide..
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vhen combined with (1.7) allows (1.19) to be written as

2 .
o7 8k- k) 1 (g (1.21)
K2 169

It therefore follows from (1.16) and (1.21) that

1

r .
//Yigéj)(é,n;x)° ﬁéj)(ésn;k) dv

iy

rr. (1) Y.
ﬁfﬁ&%imm)@éuﬁymmtw.
%

14 (1.22)
8- 1) 5 o
K2 qq./ 13(1
(b) An Integral Jdentity
The integral
w .
/ glx) (1D, . 2y (1)
I = (_°¥N7 R kd,5) R kd,E) dx 1.23
68) = |- Sl Ty () By () (1.23)
0

is evaluated here. In (1.23), g(K) denotes an even analytic function
of «x, deeo gl-r) = gli)o

The use of (Flammer 1957 chepter Ii)

R151131<Kd’g) = %‘53(331(/\{6!.35,) + Rrgi*zl(;gdsg)g (1 021}_)

m,

in (1.23) allows the RHS of (1.23) to be written as a sum of two

integrals. It is convenient to examine the integral involving

R<5)(~) first; this integral is
My Tl
i (1) (1) (3)
T (£,6) =4 | 8%  p\Wia Yy 23 (ae) s o2
1(«% £) 4/(K2m 2 mgn(K £) mﬁn(" £) S (1.25)

/7 .
vhere 1t is assumed that & > §. With the changs of variable
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dar

k = e i and taking note of the following [Meixner and Schafke (495)

§ 3.65],

Ri?i(gde;ﬂsg) = R;fé(xdogelw)g pe {14
R(3)<Kd,§elﬁ) _ emiWR(A)(Kd,£>;
m,n

myn

(1) I
Rm,n(xd,z—;v )

i

elWRéjg(deg) (1025)

(1h25) can be written as

/ Ps) L) g ) /
.Iq(éyi)z% _ BT rMY (ka,E) RN (ka,E) ak, E > E (1.27)

(sz kéj M, m,Nn
= 00 )

: L
Combining (1.27) with the second integral involving Ré‘i(e) obtained
9

from (1.23) by use of (1.24) yields

[se]
I(g,g’) =% ___g.(Q__R(")(lcd,g) R("*)(xdyg) dk, E >E (4.28)
(Kz“k2) mgn m,n

The integral in (1928) can be evaluated by allowing x to take
on complex values and integrating along the contour C of Fig. 1, in
the k-plane. Then the integrand hes two poles in the complex k-plane
at the points « = + k. If k has a non-zero negative imsglnary part,
then k = ¥ « ik and the poles are found in the second and fourth
quadrants, as shown in Fig. 1. When the imaginary part vanishes,

K = 0. The poles then lie on the real axis, and the contour ¢ must

be dindented sbove ik = k and below ¥ = =k.

It is easy to show that the contribution from the large semi-

/
circle vanishes in the limit as its radius becomes infinite when & > E,
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27ri times its residue at the pole x = k.

nd the integral is equal to 2

o / (1) N . -
When £ » E, Rm n(Kd,g) in (1.23) is replaced by (1.24) and a similar
3= .

procedure to the above is followed to evaluate the resulting integral.

Thus (1025) becomes

1(g,8)

1l

) = - a() Rm(m,@ w(%ca £, £>&

mgﬁ g (%) R(i)(gd,g) R(4)(1d E)g Z > E

il

(¢) Dyadic Green's Function Expansion

The transverse part of the circularly symmetric dyadic Green's

function satisfles an inhomogeneous vector Helwholtz equation of th

form

t 2.t e 7 .
VIVXE -X6 =D (gmnE.m) (1.30)

1

.
The dyadic ring function D (¢}, which is independent of ¢, can be

ned as & dyad which, when operating on any circularly symmetric

o
T
’

ae
vector field, say‘E(gﬂn), yields (on integrating over the £ and 7

coordinates) just the trensverse part of E(g,n) (Mofse and Feshbach

1953 chepter 13).

The completeness of the vector wave functions gé )(») and

Né1>( ) for circularly symmetric vector fields ensures that D () can
be written as

- /v
D" (g:m325m)

/ [1\ (1)(3577:”) éq(é,m’;/f)‘ +

:O O

N( )(g,n,k) (Eaﬂ;K) (1.31)
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where the unknown posterior fﬁnetions éq(») and Eq(a) are to be

determined. By teking the anterior scalar product of (1.31) with
Eg1>(-) (W(j)( \> and integrating the resultant equation over Yy
the éq(=),and Qq(’; are determined as a consequence of (1.8) and

(1.22) to be

11

2 (1) o
(Tr) qu (Em;'f)/]:.],q

éq(%lanlw)
(1.32)

H

’ /o _/{_ 2 (1) v/ /.
Eq(gsnﬂf) (77> _qu (?5377:"7)/11,(1
The free space dyadic Green's function is assumed to be of

the form

q

G:. f() > f”"’ {04 ELI.S)(E;TI;K) 5’;(21)(5/,77/;/«) +

ﬁq Egj>(€pn;x) Eéj)(a,n;K)} aue (1.33)

By swbstitution of -(1.33) and (1.31) into (1.30) and use of {1.8),

(1022) and {1.32) the unknown functions aq and ﬁ can be determined as

o, = ﬁq = 1/(m2~ k2) »(1»3@)

(1 )

1

as Téq)(g 73 K) V§1>(g 73;k) can be written in an operational form

/
The dependence on R (Kd £) R(1) (Kd,g) of a dyad such

D e oy (D el (1) (A
B (B (Eomse) =2 1Ry 7 (kdsE) By o (k08D ],

g€ [0 @] (1.35)
vihere Eq is some linear operator. An operational form of (1.29),

with ge) = Kz, can then be written as
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P 12 [R“) (lf 331:»3 R“/ (dez‘;)} de
K2 k2 =4

i

“"”2”’ M(”(g,n k) gff)(a,n;k)s &> &

-7 (LY +
- J\”( ,73k) M(jf’(g,n';k), E > E

By repeating the same technique an operational integral relationship
involving the Eq(a) functions can be obitained. Bquation (1.33) with
aq and ﬁq given by (1.34) can be simplified by use of the operational
integral relationship (1.36), and the corresponding equation involving
the géj) wave functions, to perform the x integration.. The expansion

for the circularly symmetric free space dyadic Green's function can

then be written as

w0 .

L =ik s " s
a(€,m38,n) = i /T &‘;‘E(”(E,W;k) Txi(‘m(g,‘n;k) +
= <07 o L H (1 ”"‘”q_

q_o 19q+1 "

(1)<

g nsk) N )<‘og77 y))‘) g/> g (1 "37)

s
The superscripts (1) and (L) are interchanged when & > &.

The dyadic Green's function expansion in terms of the oblate
spheroidal wave functions can be obtained in a manner identical to
the gbove. The form of the expansion obtained is the same as (1.37)
but with E replaced by iE and d replaced by -id in the arguments of

the spheroidal functions.
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1

Contour Tor eveslustion of the int

o o
=&

ral in (1.28).
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APPENDIX 2: ZBRO ORDER PARTTAL WAVE EACITATION

It is virtually impossible to arrange physical
sources such that (2.9) of Part 2, (IV) holds. However,
it is possible to arrive at (2.9) of Part 2, (IV)»by

averaging over several incident fields.

A convenlent point within the source distribution
producing the incident field is chosen as a local origin,
denoted by O . 0O 1is placed at a number, N say, of positions

o 0

th o N . N
~ the n  position is denoted by Oon = gll of which are at
the same radilal distance from the point O of Pig. 1 of
Part 2, (IV). The same "aspect" of the incident source
distribution is always maintained, in the sense that the
line OOO can be thought of as a rigid rod glued into the
incident source distribution, which is itself rigid. The .
rod OOO can be taken to possess a universal joint at O,
thereby allowing Oo to be moved to the points O .

on

When O is positioned at each of several of the Oon
O .

we observe the number, N say, of scattered partial waves
n

/
that are of significant amplitude. N is used to denote the

™

largest of the Nno N is then chosen such that

N =N . | (2.1)

‘When Oo is at Oon the incident field is written as

¥ =% (r,0,4 k) where ¢ and are the angular
Yy O( 39 s nﬁﬁpsﬁPns ) n ‘Pn &

coordinates of Oong in the sphericsl polar coordinate system
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(with origin O) introduced in 82 of Part 2, (IV). The
definitions introduced in this Appendix ensure that the

error in the approximate relation

N T 2n

1 o~ [ ) \ . .

N Z ‘I’O (I‘paﬁl}ns‘{)a({)ns k) ~ “ZL“';T"” jfj ‘PO(f'yGa(PaK) Slﬂ(e) dop do
n=1 ’

00 (2.2)

is of the same order as the sum of the scattered partial
waves whose amplitudes are considered too small to be
significant. Inspection of (2.2) of Part 2, (IV) indicates
that

T 2T
A ; - ik A
i ]f ¢ (rs0,9,k) sin(6) dp a0 = 1kaogo(k) g k) (2.3)

00

which is equivalent to (2.9) of Part 2, ().

When OO is at OOn the scattered field can be written
as ¥ = W(r,e,ﬂ%,@5¢n,k). To the same level of approximation

as before, 1t can be seen that

o 4
Z 1.)_—1 Cj‘,_(L bj,z (x) hl_ (ter) Pi<cos 6) e@<1J(P>
1=0 j=-{
o |
R o Ur0,8 0,0 k), PEy,, (2.2,)
n=1

where the b; L(k), of which only N have significant amplitude,

2

characterise the scattered field when the incident field is

characterised by (209) of Part 2, (IV).



APPENDIY 33 NUMERICAL TECINIQUES

4

Some of the numerical technigues used in the numerical

investigations discussed in Part 2 are outlined.

The algorithms used to evaluate the wave functions appearing
in the null field method formulation play an important part in the
efficiency of the method. Choice of algorithms that are accurate,
efficlent and rapid is essential 1f the method is not to be degraded
by excesslve compubation time - this is especilally true for the

elliptic and spheroidal null field methods. Some of the methods of

achieving this are discussed here.

Many of these wave functions depend upon a parameter, called
thelr index, order, or degree, and satisfy a linear difference
equation (or recurrence relation) with respect to this parameter.
Generally hypergeometric or conflusnt hypergeometric functions setisfy
such relationships ~ e.g. the spherical Bessel function of the first

kind sstisfies

jm+1(x) = ”iﬂ;1<x) + Sgggizjn(x) (3.1)

Other functions, such as the elliptic cylinder or spheroidal wave

functions, do not satisfy such recurrence velations. However, they
may be expressed in terms of an ini'inite series of clrcular cylinder
(for elliptic) or spherical (for spheroidal) wave functions, and the

coerficients of these series satisfy recurrence relations.

In computing these functions (coeffioients) the recurrence
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relations provide an important and powerful tool; as, if values of
the function (coefficient) are known for two successive values of the
parameter, say m, then the function (ooeffioient) may be computed
for other values of m by successive applications of the relation.
Since generation is carried out perforce with rounded values, it is
vital to know how errors may be propagated. If the errors relative
4o the function (coefficient) value do or do not grow, the process
is said to be unstable or stable respectively. Stability of the
recurrence relation may depend on
(1) the partioular solution of the relation being computed
(i1) the values of any other parameters ap?earing in the relation

(i11) the direction in which the recurrence is being carried out.

In actual calculations the two successive values of m for
which *the function (coefficient) is generally known (or can easily
be calculated) are the lowest values of m'. It is therefore in the
forward direction - i.e. m increasing - that recurrence is generslly
desired. Functions such as the Bessel functions of the second kind
and Legendre functions cf the first kind are stable in the forward
direction (Abramowitz and Stegun 1964, Introduction). However for
many functions (coefficients) the recurrence relation is unstable in
the forward dirzction. Blanch (1964) has proposed s method based on
a2 continued fraction form of the recurrence relation that allows

forward recurrence to be effectively achieved.

The routines used to evaluate the Bessel functions and elliptic

cylinder wave functions employed in the circular and slliptic null

iyl

field methods are modified versions of the routines written by Clemm
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(1969). Clemm uses the methods discussed by Blanch (196, 1966) in
these routines. The modifications carried out on these routines
viere designed to increase efficiency and decrease computation time

at the expense of some accuracy.

A1l routines used to calculate the spherical and prolate
spheroidal wave functions were written by the author of this thesis.
The routines use the techniques discussed by Blanch (1964) and the
essential features of these methods applied to the functions will

be briefly described here.

Spherical Bessel functions of the first kind satisfy the
recurrence relation (3,1); this relation is unsteble in the forward
direction., It cannot therefore be used in this form for computing
all spherical Bessel functions up to, say, jM(-)g given jo(o) and
51('), There is an efficient continued fraction, however, which can

be used. Using the definition

G = dm(X>__ (3°2)

equation (3.1) may be rewritten as

2m-4 |
c—q:1/(“;: -6 ) : (3.3)

1 M4

Clearly Gm+1 also has the same form, but with (m+1) replacing m. The

process may be continued to obtain

1 — 1 1 1]
Co = T 2m+5, 2] (-4
__K_ % Do e 0000 EECs OB 0O % m+k*['1

vhere the well known notation for continued fractions is employed.



For o particular x it can be shown, from the theory of continued
frections, that for the continued fraction (354) e k (such that

mik+l 2 M) can be found so that the "tail" of (3.4} [i.e. the term

G | can be estimated to any desired accuracy (Blanch 1964). A
stable procedure to uée (3.3) can then be devised +to determine all
the & without loss of significant figures (Blanch 195L). Once these

have besn determined all the dh('> up to dmﬁ') can be evaluated from

thegrmnjoﬁ)émdjﬂp)-

As is mentioned in Appendix 1 with reference to the equations
satisfied by the prolste s?heroidal wave functions, the angular
separation constant 1,9 must be determined before the wave functions
can be evaluated. It is known that there exists a countable set of
vaiues for A s LOr every kdg such that S1’q(kd,n) is periodic in‘n
and of period w. A series expesnsion in terms of the associated

Legendre functions can therefore be written Tor the 81 O(kdﬁn) as

)

[s9]
/
s _— 1q. ")1 b .
8, qdom) = PR ARG (5.5)
m:.O

With reference to this equation, the significance of the prime on

» . . . . 1q '
the summstion is discussed in Appendix 1 and the d ° are the same as
T

those appearing in (1,7) of Apopendix 1.

It is now shown how a numerically efficient and accurate
procedure may be developed using the methods of Blanch (1964) to

) . o S .. .
determine the R1O and qu. Using the coefficient ratios

N

q 1, ,1q
= a (:
Gm m / dm~2 (3.6)

where d_~ = 0, form'« O and defining
il
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{2m.5Y (2ma7)
{ m+))(‘m.zé n s 0

% 7 (map) (me3) (ka

, 2(m+1)(m+2) =% \ 2
3 = (m 2) - < >
P, (m41) (me2) + (201 ) (215) (ka) m 0

(3.7)
¥ - m(m-1) (2n+5) (2m+7) ms 2
m o (2m-1) (2m41) (m+dy) (me-3) ; 5
q _ -

Vm = am[X1’q ﬁm3

it can be shown that the recurrence relation between the expansion

coefficients dlq can be written as (Flammer 1957)

qa _ 4a ‘
Gy =V, (3.8)
\q q 4
(:T = V >
5=V (3.9)
¢4 _y9.¥n ms 2 (3.10)
m-+2 m aQ
m
—q = /Hl {7z 44
G 7. oa mz 2 .\)a1:)
m m-2
and.
g
C' = '70 2
lem oo Tm 0 (J 1 )

Bvery Gi can be computed through (3.8) = (3.10), the "forward"
method, or else through (3.11) = (3.12), the “"backward" process. In
the forward algorithm, let Gi be denoted by Gi e In the beckward

2

scheme, let the corresponding Gg be denoted by et t can then be

m,2"
verified that an eigenvalue h1 q must satisfy the transcendental
5 ‘
equation
T, ) =60_~¢ =0, me 2,0} | (3.13)

S agen m, 2 m, 1

;” . . - A
¥ith regard to using a numerical process to solve (3.13) for qu the

guestion arises: at what m = @, > S8y, shall the "chaining" (sece
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Blanch 195)) required in (3013) be made? Although in theory any m
[subject to (3.13)] can be used, in practical computations when a
finite number.of significant figures is availsble it 1s necessary 1o
use some discrimination. The method described here ensures that mﬂl

is chosen so that a numerically stable method of determining 1,49
3

results.

The method of determining the eigenvalues h1 q is to use some
2

approximation, say A, , to K1 » and then to improve the approximation

[+

1,4 29

N - . ' a

by MNewton's method. A set of Gé ’
o

(3.8) - (3.10). Similarly the tail in (3.11) is computed for an

is computed from m=2 to m1, through

appropriate value of m, say m¥ [this tail can be computed to any
desired accurscy by choice of m% - see theorems in Blanch (1964)];

nd then successive

w

Gg are generated through (3.11) dowm o m = m, .
1y :

The aim 1s to choose mq'so that the Gg 4 can be generated withoutb
. iy

loss of significant figures [for full detsils see Blanch (1964)1.
. , . , . RN e s .
Tewson's method is then used on (3.13) with this value of m1, In

actual computvation it was found that an initial value N,, = 0 and

©
11
o o . PR y g m
1, qu = k1 q ™ & (where & is a small increment) was sufficient initial
5 b R
dats to determine‘Kﬁ q to 15 significant figures in approximately I
s .
iterations. It is important to realise in this chaining process that
he algorithm automatically chooses an m, such that the determination

of A is stable with respect to round-off error.

S . g
Once the x1 q have been determined (remembering that the Gﬁ
5 1

. 1 . ,
have been calculated on the way) the qu can be evaluated to one of
the standard normalisations (Flammer 1957) from (3.6). When the

>

o]

—

!

d ~ have been evaluated for a particular kd the spheroidsl wavs
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functions can be generated rapidly using the appropriate formulae
as listed in Morse and Feshbach (1953 chapter 11), Meixner and Schifie

(1954) and Flammer (1957).
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