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Abstract:  Suppose you are interested in the level of a state variable (e.g. a disease is 

present or absent or of a pre-specified level of severity, or a failure is recorded or 

not, etc.) and have a potentially useful but imperfect diagnostic test method, (e.g. a 

blood test result for this disease, or a quality control check for manufacturing 

defects, is either definitely positive or not). How do you interpret the result of the 

diagnostic test for the level of the state variable when some or all of the 

information underlying the inference is ambiguous (imprecise)? This publication 

for the Wolfram Demonstration project is designed to facilitate the "what-if" 

exploration of the effects of ambiguities (imprecision) in sensitivity, specificity, 

and base rate information, alone or in combination, on posterior inferences through 

a linked tabular natural frequency and graphical probability format representation 

of underlying uncertainties. The textual description explains the underlying theory 

of boundedly rational inference. An appendix contains the full Mathematica code 

used to implement the interactive software that implements and explains the 

underlying theory.  
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WORKING PAPER No. 8/2010  
 

Comparing Ambiguous Inferences When 

Probabilities are Imprecise 

 

Introduction 

Suppose you are interested in the level of a state variable, such as whether a disease is 

present or absent or of a pre-specified level of severity, or goods being manufactured 

have a quality defect, and so on. The case of the disease could be whether a male has 

prostate cancer. The quality defect could be faulty accelerator pedal in an automobile. 

Say also that you have access to a potentially useful but imperfect diagnostic test 

method. For prostate cancer this could be the prostate-specific antigen test and 

whether the test is above a pre-specified limit. For defects in accelerator pedals this 

could be random sampling checks of the working of the accelerator pedals and 

whether they are outside pre-specified tolerance limits. An important question for 

someone making decisions with information from a diagnostic test is how do you 

interpret the result of the diagnostic test for the level of the state variable when the 

some or all of the information underlying the inference is ambiguous (imprecise)?
1
  

 

The Problem 

Let S be the logical truth value (1 or 0) of a proposition about the state variable. In the 

examples previously mentioned this would be whether prostate cancer is present 

(S=1) or absent (S=0), or even of a pre-specified level of severity, or goods being 

manufactured have quality defects (S=1) or not (S=0). Let D be the logical truth value 

of a proposition about the outcome of an imperfect diagnostic test for the state. For 

example, whether the prostate-specific antigen test result is above a pre-specified limit 

(D=1) or not (D=0). Then our question is, in the language of statistics: how do (and 

should) people conceptualize and calculate a posterior inference about S after having 

observed some D, when some or all of the underlying information about D, about S, 

                                                 
1
 See Nau (2007) or Mukerji (2009) for discussions about ambiguity, as well as  its impact on decisions 

made under uncertainty. 
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and about the relationship between D and S is ambiguous (imprecise)?  

 

From a statistical perspective there are three precise numerical inputs that feed into 

coherent posterior inferences about binary valued S after having observed the result of 

the binary valued diagnostic signal D: a sensitivity number, a specificity number, 

and a base rate number. The first two numbers characterize uncertainty about the 

results of the diagnostic D under two different information conditions about the state 

S. The sensitivity number expresses uncertainty about whether the diagnostic test D 

will be positive, that is D=1, assuming that S=1 is true. The specificity number 

expresses an uncertainty about whether the diagnostic test D for S=1 will be negative, 

that is D=0, assuming that S=0 is true. The third number, the base rate number, 

characterizes uncertainty about the binary state variable S in the absence of, or prior 

to knowing, any diagnostic information D.  

 

These numerically precise inputs can be presented in a variety of logically equivalent 

frames or formats to someone who wishes to make posterior inferences about the state 

variable S. Two stylized facts are known: (1) a majority of ordinary yet intelligent 

people, lay and professional alike, do not perform the posterior inference task well 

and (2) these same people typically do worse when information on the three numbers 

is presented in the standard probability formats favoured by statisticians compared to 

natural frequency formats favoured by behavioural psychologists (see for example 

Gigerenzer and Hoffrage (1995) or Edwards and Gigerenzer (2003)). Sometimes tabular 

and graphical means of communicating the relevant numerical information along with 

conventional descriptive textual methods are helpful decision aids in either format, 

although they are by no means panaceas for the problem. Yet virtually all research 

into the problem of statistical innumeracy and the potential solutions of alternative 

formatting aids ignores the problem of ambiguity. Research shows that decision 

makers recognize the inherent incompleteness underlying the numerical information 

presented, no matter what the format, even if they don't know exactly how to 

incorporate these ambiguities into their inferences. This interactive Demonstration is 

designed to facilitate the "what-if" exploration of the effects of ambiguities 

(imprecision) in sensitivity, specificity, and base rate information, alone or in 

combination, on posterior inferences through a linked tabular natural frequency and 

graphical probability format representation of underlying uncertainties. 
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The Mathematica Demonstration Tool 

The table and the graphic in the Demonstration are set up in the following way (see 

Figure 1). The truth table in the Demonstration shows the four logical possibilities for 

the two propositions S and D being true or false together. Frequencies or counts 

(hypothetical, although possibly based on some direct observations)  for each of the 

four logical possibilities in the columns (cells) are specified initially so that for 20 out 

of 100 the proposition S is true, S=1, while for 80 out of 100 the proposition S is 

false, S=0. This, gives a base rate for the truth of the proposition S of 20 out of 100, 

or 20%, shown as a triangle on the x-axis at 0.2 in the figure. 

 

Initially the sensitivity of the diagnostic test is set at 16 out of 20 or 80%, shown as a 

circle on the right hand margin of the graph; that is, of the 20 cases where S is true, 

S=1, 16 also show a positive diagnostic result, D=1. Initially the specificity of the test 

is set at 56 out of 80, or 70%, shown as a circle at a height of 30% , 100%-70%, on 

the left hand margin of the graph: that is, of the 80 cases where S is false, S=0, 56 

don't have a positive diagnostic, but 24 or 30% do. The resulting precise posterior 

probability for S being true given a positive diagnostic, P(S|D), is 40% or 0.4 in a 

probability format or 16 out of 40 (from 16+24 cases where D=1) in a natural 

frequency format, shown as a large square box on the x-axis top margin. A 

corresponding smaller square on the x-axis along the bottom margin finds the level of 

the other posterior probability, P(S|D=0). This is the posterior probability for S being 

true given a diagnostic outcome that is not positive. The graphic deliberately does not 

focus on this posterior inference, as we are concentrating attention on the question: 

how should one interpret a positive diagnostic signal, or D=1? Note that there is a 

third probability, the base rate or the (unconditional probability) for the diagnostic 

signal, here 16+24=40 out of 100, or 40%, which can also be calculated given the 

sensitivity, specificity, and base rate numbers. 

 

There are many interesting probability assessments in this simple model, but only 

three logically independent ones. The dotted and dashed lines in the figure are two 

linear constraints on a coherent inference process. There are two “base rates”, P(S) 

and P(D), one for the state variable S and one for the diagnostic test D. P(S) is the 
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Figure 1: The Interface with the Initial conditions. 
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marginal or unconditional probability of the proposition that S is true, S=1, or 

equivalently that the underlying state variable is at the pre-specified level. P(D) is the 

marginal or unconditional probability for the diagnostic test result being positive, or 

equivalently that D=1 is true. It is important to recognize that these base rates are not 

logically independent of one another. The chances that S is true, S=1, written as 

P(S=1) or in shorthand P(S), is a weighted average of the chances of S being true with 

a positive diagnostic, P(S|D=1), and the chances of S being true with a nonpositive 

diagnostic, or P(S|D=0). The corresponding weights are the chances P(D=1) of a 

positive diagnostic and the chances of a non-positive diagnostic, P(D=0)=1-P(D=1), 

that is: 

  P(S) = P(S|D=1)*P(D=1) + P(S|D=0)*P(D=0). 

The dotted/dashed line between the squares is all combinations of {P(S),P(D)} that 

satisfy this equation for the given endpoints, which are conditional probabilities. At 

the same time, the base rate or marginal probability P(D) for positive diagnostic 

results must be an appropriate weighted average of positive diagnostic results when S 

is true (sensitivity) and the positive diagnostic results when S is false (1 minus 

specificity) : that is, 

 P(D) = P(D|S=1)*P(S=1) + P(D|S=0)*P(S=0). 

The dotted/dashed line between the two circles plots all pairs {P(S),P(D)} 

satisfying this relationship. The intersection of the two lines solves for the unique pair 

of base rates for S and D, {P(S),P(D)}, that satisfies both linear relationships. 

  

Changing any of the three components of one of the linear relationships means the 

components of the other relationships change as well. The Demonstration is set up so 

that the endpoints (capturing the sensitivity and the specificity settings) and base rate 

along the dotted/dashed line between the two circles can be changed by the sliders, 

and the endpoints of the corresponding changes in the dotted/dashed line between 

the two squares trace out the relevant posterior inferences, P(S|D=1) and P(S|D=0), 

with the emphasis on the former. There are two sets of sliders, one for reference 

purposes, the other to examine the impacts of changes in the underlying sensitivity, 
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specificity and base rate information, either separately or jointly. For example, 

starting out with the initial values of sensitivity of 80%, specificity of 70% and base 

rate of 20%, changing one or all of the top set of three sliders alters the posterior 

inferences - but leaves visible the reference specifications.  

 

Figure 2 shows an example of the influence changes in the base rate have  on the 

posterior inference P(S|D=1). Reducing the base rate of S from 20 out of 100 to 

roughly 5 out of 100 decreases the chances of S being true with a positive diagnostic 

by a factor of over 3, from 40% to around 12%. Take the case of a diagnostic test for 

a serious disease, where the diagnostic test is a highly sensitive (80%) test – in this 

case it is capable of correctly detecting 8 out of 10  situations where the disease is 

actually present – and also has good specificity (70%) – in this case it is capable of 

correctly identifying 7 out of 10 cases where the disease is not present. The posterior 

chances of having the  disease after observing a positive diagnostic test result are 

quite small, when the base rate of the disease is small. The “reason” is evident from 

the tabular representation. There are 29+4=33 cases of a positive diagnostic test, but 

of these, 29 out of 33, around 88%, are false positives. The specificity imperfection of 

the test, a 30% false alarm rate, when applied to many healthy cases, here 95, creates 

many more false positive test results than the 4 out of 5 true positive test results. 

 

To drive this point home, comparing Figure 3 below with Figure 1 shows the effect on 

the posterior inference of improving the specificity of the diagnostic test, here from 

70% to 93%. Note we are keeping the base rate level at 20%. The (red) dotted dashed 

lines joining the circles show the before and after linear constraints – the sensitivity 

has not changed so the right hand circle (PD|S=1) is the same for both constraints, but 

the specificity (left hand margin circles) have changed. The effect on the posterior 

inference P(S|D=1) is dramatic – the chances of having the disease as a result of 

observing a positive diagnostic test have almost doubled, from 40% to 75%. The 

tabular natural frequency representations in both Figures 1 and 3 show why: the 

number of false positives drops from 24 out of 80 to 5 out of 80. 
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Figure 2: The Effect on P(S|D=1) of Reducing the Base Rate of the Disease. 
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Figure 3: The Effect on Posterior Inferences P(S|D=1) of Changing the Specificity of 

the Test. 
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Summary 
 

Everyday, people have to make important decisions in risky situations. These can 

include whether to undertake costly medical treatments for potential diseases, or to 

incur the costs of shutting down production lines for maintenance or replacement of 

machinery to avoid product quality defects, or to incur costs from shutting down a 

nuclear reactor to prevent excessive strain on the pressure vessel or in the worst case 

the uncontrolled release of radioactive material. In all these situations, diagnostic tests 

or their equivalent are available about the state variables of interest, however 

imperfect the information from the tests may be. Making decisions based on these 

tests is problematic when information underlying inferences about the value of the 

state variables is ambiguous (or imprecise). This paper presents a software tool that 

can aid in the making of decisions in these types of situations. It does this by allowing 

people at a low cost to incorporate ambiguity they might have about the probabilistic 

information they are using to make inferences about the state variables of interest into 

the decisions they ultimately make. 
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Appendix  

 

The following is a verbatim reproduction of the Mathematica code. The notebook and 

source code are available on request. An interactive user-friendly Mathematica Player 

file can be found at http://uctv.canterbury.ac.nz/post/4/1049 and the freely 

downloadable Mathematica Player to run the interactive demonstration can be 

obtained at: http://www.wolfram.com/products/player/download.cgi 

 

bayes2x2graphictablev2(*create grid with table at top and  two geometric 

specifications of 2x2 prob distributions, one a benchmark for comparison 

purposes*)[sens_,sensbm_(*bm denotes benchmark for a 

variable*),spec_(*this variable "spec" is actually 1-specificty as it is usually 

understood, ie it is P (D|S=0), not 1-P (D|S=0)*),specbm_(*this variable is 

actually 1-specificty, ie it is P (D|S=0), not 1-P 

(D|S=0)*),base_,basebm_,nobs_]:= 

Module[{x,y,m,b,jline,jline3,inverseprob,inverseprobbm,basediagnostic,inverseprobg

ivennotDbm,basediagnosticbm,inverseprobgivennotD,definettiplot,truthtablepl

ot,refinement}, 

   

(*Define two linear functions *) 

jline[y1_,y0_,x_]:=m x +b/.Flatten[Solve[{y1==m 1+b,y0==m 

0+b},{m,b}]](*jline[y1_,y0_,x_]is the equation for line going through (1,y1) 

and (0,y0)*); 

jline3[pt0_,pt1_,x_]:=m x +b/.Flatten[Solve[{pt1[[2]]==m pt1[[1]]+b,pt0[[2]]==m 

pt0[[1]]+b},{m,b}]](*"equation for a line from pt0, a 2 tuple, to pt1, a 2 

tuple*); 

   

(*construct nardinal P (D), for benchmark and selection*) 

basediagnostic=sens*base+(spec(*this variable is actually 1-specificty, ie it is P 

(D|S=0), not 1-P (D|S=0)*))*(1-base); 

basediagnosticbm=sensbm*basebm+(specbm)*(1-basebm); 

(*calculate P (S|D=1) ie calculate the inversep probs and store the values for the 

origial and the benchmark *) 

inverseprob= base*sens/basediagnostic; 

inverseprobbm= basebm*sensbm/basediagnosticbm; 

(*calculate P (S|D=0)*) 

inverseprobgivennotD= base*(1-sens)/(1-basediagnostic); 

http://uctv.canterbury.ac.nz/post/4/1049
http://www.wolfram.com/products/player/download.cgi


 13 

inverseprobgivennotDbm= basebm*(1-sensbm)/(1-basediagnosticbm); 

   

(* construct the basic graphic element*) 

definettiplot= 

Plot[{(*line through (1,sensitivity) and (0,1-specificty)*) jline[sens, spec,x], 

(*inverse prob line*)jline3[{inverseprob,1},{base,jline[sens,spec, base]},x], 

(*ditto for the benchmark specifications*)jline[sensbm,specbm,x], jline3[ 

{inverseprobbm,1},{basebm,jline[sensbm,specbm,basebm]},x](*tooltips 

removed*)},{x,0,1}, 

PlotStyle→{{Red,Thick,Dashing[{0.05,0.02}],Opacity[0.5]},{Blue,Thick,Dashing 

[{0.03,0.03}],Opacity[0.5]},{Red,Thick,Dotted},{Blue,Thick,Dotted}}, 

PlotRange→{{0,1.0},{0,1}},  

AspectRatio→1, 

ImageSize→350, 

PlotRangeClipping→False, 

FrameLabel→{ 

Text[Style["Probabilities for S ",Blue,FontFamily→"Verdana",Italic,10,Bold ]], 

Text[Style["Probabilities for D ",Red,FontFamily→"Verdana",Italic,10,Bold]] }, 

Frame→True, 

FrameStyle→{Directive[Blue,"Label",Bold],Directive[Red,"Label",Bold],Directive

[Blue,"Label",Bold],Directive[Red,"Label",Bold]}, 

GridLines→{{0.25,0.5,0.75},{0.25,0.5,0.75}},GridLinesStyle→Directive[Orange,Da

shed,Thickness[0.001]], 

Epilog→{ 

      (*inverse prob point top - a rectangle*) 

{Blue,Opacity[0.99],Rectangle[Offset[{2,2},{inverseprob,1}],Offset[{-15,-15}, 

{inverseprob,1}]]}, 

(*BM inverse prob point top- a rectangle with some opacity*) 

{Blue,Opacity[0.3],Rectangle[Offset[{2,2},{inverseprobbm,1}],Offset[{-10, 

-10},{inverseprobbm,1}]]}, 

      Text[ 

Style[TraditionalForm@ 

Row[{"P(S|D=1)"," = ",Round[inverseprob, If[nobs>100,0.001,0.01]]}], 

Blue,12], 

(*Sets the offset so that it depends on the value of the inverse probability*) 

If[inverseprob≤0.5,Offset[{35,-22},{inverseprob,1}],Offset[{-55,-22}, 

{inverseprob,1}]]], 

      (*inverse prob point bottom - its a rectangle with moderate opacity*) 
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      {Blue,Opacity[0.4],Rectangle[Offset[{-2,-2},{inverseprobgivennotD,0}], 

Offset[{15,15},{inverseprobgivennotD,0}]]}, 

 (*BM inverse prob point bottom*) 

{Blue,Opacity[0.2],Rectangle[Offset[{-2,-2},{inverseprobgivennotDbm,0}], 

Offset[{10,10},{inverseprobgivennotDbm,0}]]}, 

      Text[ 

Style[TraditionalForm@ 

Row[{" ",Round[inverseprobgivennotD,If[nobs>100,0.001,0.01]] 

}],Blue,12], 

If[inverseprobgivennotD≤0.5,Offset[{20,20},{inverseprobgivennotD,0}],Offs

et[{-15,20},{inverseprobgivennotD,0}]]], 

      (*Offset[{3,20},{inverseprobgivennotD,0}] *) 

(*baserate purple triangle*) 

{Purple,Opacity[0.99], 

Polygon[{Offset[{-7.5,0},{base,0}],Offset[{7.5,0},{base,0}],Offset[{0,15}, 

{base,0}]}]}, 

(*BM baserate opaque purple triangle*) 

{Purple,Opacity[0.3], 

Polygon[{Offset[{-7.5,0},{basebm,0}],Offset[{7.5,0},{basebm,0}],Offset[{0,15}, 

{basebm,0}]}]}, 

(*specificity*) 

{PointSize[0.05],Black,Opacity[0.99],Point[Offset[{0,0},{0,jline[sens,spec,0]}]]}, 

      (*BM specificity*) 

{PointSize[0.05],Gray,Opacity[0.4],Point[Offset[{0,0},{0,jline[sensbm,specbm,0] 

 }]]}, 

      (*intersection*) 

{PointSize[0.03],Black,Opacity[0.3],Point[Offset[{0,0},{base,jline[sens,spec,base 

 ]}]]}, 

(*BM intersection*) 

{PointSize[0.03],Gray,Opacity[0.3],Point[Offset[{0,0},{basebm,jline[sensbm, 

specbm,basebm]}]]}, 

      (*sensitivity*) 

{PointSize[0.05],Red,Point[Offset[{-2,-0},{1,jline[sens,spec,1]}]]}, 

      (*BM sensitivity*) 

{PointSize[0.05],Red,Opacity[0.3],Point[Offset[{-2,-0},{1,jline[sensbm, 

specbm,1]}]]}, 

      Text[ 

Style[TraditionalForm@ 
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Row[{"P(D|S=1)"," = ",Round[sens,If[nobs>100,0.001,0.01]]}],Red,12], 

 (*Sets the offset so that it depends on the value of the inverse probability*) 

If[sens≤0.9,Offset[{-60,-7},{1,sens}],Offset[{-60,-7},{1,sens}]]], 

(*vertical line through BM base rate, greyed out, facilitates P (S) vs P (S|D) 

comparison*) 

{Dotted,Gray,Line[{{base,1},{base,0}}]}, 

(*vertical line through base rate, greyed out, facilitates P (S) vs P (S|D) 

 comparison*) 

{Dashing[0.01],Black,Line[{{basebm,1},{basebm,0}}]}}]; 

 refinement=1;  

(*scale the base rate P (S) and the sensitivity and specificity to integers adding to nobs 

*) 

truthtableplot= 

Grid[ 

Join[ 

{{Text[Style["Truth Table and Natural Frequencies",Gray, 

FontFamily→"Verdana",Bold,Italic,12]],SpanFromLeft,SpanFromLeft}, 

{Text[Style["S",Black,FontFamily→"Verdana",Italic,11,Bold]],1,1,0,0," "}, 

{Text[Style["D",Black,FontFamily→"Verdana",Italic,11,Bold]], 

Item[1,Frame→{True,False,False,False}], 

Item[0,Frame→{True,False,False,False}], 

Item[1,Frame→{True,False,False,False}], 

Item[0,Frame→{True,False,False,False}]," "}}, 

{{Text[Style["Frequency",Black,FontFamily→"Verdana",Italic,11,Bold]], 

Style[Round[nobs*base*sens,refinement],Black,FontFamily→"Verdana",11,Bold]

, 

Style[Round[nobs*base*(1-sens),refinement],Black,FontFamily→"Verdana",11, 

Bold], 

Style[Round[nobs*(1-base)*(spec),refinement],Black,FontFamily→"Verdana",11, 

Bold], 

Style[Round[nobs*(1-base)*(1-spec),refinement],Black,FontFamily→"Verdana", 

 11,Bold], 

"total count" nobs},{" "," "," "," "," "," "}, 

{Text[Style["Graphics of Inverse Probabilities ■",Gray, 

FontFamily→"Verdana",Bold,Italic,12]],SpanFromLeft,SpanFromLeft}, 

{" "," "," "," "," "," "}, 

{definettiplot,SpanFromLeft,SpanFromLeft,SpanFromLeft}}], 

Dividers→{False,{False,False,False,False,False,False,False,False,False,False,True}}, 



 16 

Spacings→{Automatic,0.2}, 

ItemSize→Full]; 

truthtableplot 

] 

 

Manipulate[ 

bayes2x2graphictablev2[sens,sensbm,1-spec,1-specbm,base,basebm,nobs], 

{{nobs,100,Style["Total count •",Bold]},{100,1000,10000}},Delimiter, 

Style["Your selection of Natural Frequencies",Bold,11], 

{{base,0.2,Style["base rate ▲",Bold]},0.001,0.999,Appearance→"Labeled"}, 

{{sens,0.8,Style["sensitivity ●",Bold]},0.001,0.999,Appearance→"Labeled"}, 

{{spec,0.7,Style["specificity ●",Bold]},0.001,0.999,Appearance→"Labeled"}, 

 Delimiter, 

Style["Benchmark (BM) choices - lighter",Bold,11], 

{{basebm,0.2,Style["BM base rate ▲",Bold]},0.001,0.999, 

Appearance→"Labeled"}, 

{{sensbm,0.8,Style["BM sensitivity ●",Bold]},0.001,0.999, 

Appearance→"Labeled"}, 

{{specbm,0.7,Style["BM specificity ●",Bold]},0.001,0.999, 

Appearance→"Labeled"}, 

 ControlPlacement→Top, 

 SaveDefinitions→True] 

 

 

 


