brought to you by CORE

1 Photographic Feature

2

2	
3	Strike-slip ground-surface rupture (Greendale Fault) associated with the 4th
4	September 2010 Darfield Earthquake, Canterbury, New Zealand
5	
6	D.J.A. Barrell ^{1,*} , N.J. Litchfield ² , D.B. Townsend ² , M. Quigley ³ , R.J. Van Dissen ² , R.
7	Cosgrove ⁴ , S.C. Cox ¹ , K. Furlong ⁵ , P. Villamor ² , J.G. Begg ² , S. Hemmings-Sykes ² , R.
8	Jongens ¹ , H. Mackenzie ³ , D. Noble ³ , T. Stahl ³ , E. Bilderback ³ , B. Duffy ³ , H. Henham ³ ,
9	A. Klahn ³ , E.M.W. Lang ¹ , L. Moody ³ , R. Nicol ³ , K. Pedley ³ , A. Smith ³
10	
11	¹ GNS Science, Dunedin, New Zealand; ² GNS Science, Lower Hutt, New Zealand;
12	³ Dept. of Geological Sciences, University of Canterbury, New Zealand; ⁴ The Press,
13	Christchurch, New Zealand; ⁵ Dept. of Geosciences, Penn State University, USA
14	* Corresponding author (d.barrell@gns.cri.nz)
15	
16	Abstract: This paper provides a photographic tour of the ground-surface rupture
17	features of the Greendale Fault, formed during the 4 th September 2010 Darfield
18	Earthquake. The fault, previously unknown, produced at least 29.5 km of strike-slip
19	surface deformation of right-lateral (dextral) sense. Deformation, spread over a zone
20	between 30 and 300 m wide, consisted mostly of horizontal flexure with subsidiary
21	discrete shears, the latter only prominent where overall displacement across the zone
22	exceeded about 1.5 m. A remarkable feature of this event was its location in an
23	intensively farmed landscape, where a multitude of straight markers, such as fences,
24	roads and ditches, allowed precise measurements of offsets, and permitted well-defined
25	limits to be placed on the length and widths of the surface rupture deformation.

26 Introduction

27

28 The M_w7.1 Darfield Earthquake, centred about 40 km west of the city of Christchurch, New Zealand, struck at 4:35 am on 4th September 2010, shattering the pre-dawn 29 30 darkness with a deafening roar and violent shaking. The rising sun illuminated a newly 31 formed fault trace, aligned roughly west-east across farmland of the Canterbury Plains 32 (Fig. 1). The earthquake created very strong, damaging, ground motions in the 33 Canterbury region and was felt through much of New Zealand (Cousins & McVerry 34 2010; Gledhill et al. 2010, 2011). Fortunately, there were no fatal injuries and only two 35 people were reported to have been seriously injured. However, damage to building 36 contents, building structures, roads and utilities, particularly in low-lying coastal areas 37 where liquefaction was severe (Cubrinovski et al. 2010), was assessed as being likely to 38 run to several billion New Zealand dollars. Circumstances changed tragically on 22nd February 2011, when a shallow-focus aftershock of M_w 6.3 struck 10 km southeast of 39 40 the Christchurch city centre (Reyners 2011). The Christchurch Earthquake caused much 41 more severe damage to the city than did the Darfield Earthquake, with the loss of about 42 182 lives, many injuries, and serious social and economic disruption. However, the 43 focus of this paper is confined to the Greendale Fault surface rupture (Fig. 1) formed in the 4th September 2010 Darfield Earthquake. 44

45

46 **Discovery**

47

Within three hours of the earthquake, a fault rupture reconnaissance and response team
had been deployed, led by scientists from University of Canterbury Department of
Geological Sciences (UC) and from GNS Science (GNS), New Zealand's government-

51	owned earth science research institution. Fanning out towards the epicentre, the locally-
52	based UC team had, about 5 hours after the earthquake, located evidence for ground-
53	surface fault rupture and began examining and measuring the rupture zone, and
54	assessing associated hazards to the affected community. Upon arrival in the region,
55	about 8 hours after the earthquake, GNS scientists took a helicopter reconnaissance
56	flight and established that at least 16 km of surface rupture were visible from about 200
57	m altitude. Within 36 hours of the earthquake, ground-based reconnaissance had
58	established a surface rupture length of about 22 km. Over the following two weeks,
59	detailed mapping extended this by a further 7.5 km, to a total of approximately 29.5 km
60	(Fig. 1) (Quigley et al. 2010a, 2010b; Van Dissen et al. 2011).
61	
62	Setting
63	
63 64	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the
63 64 65	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the predominantly strike-slip ground surface rupturing fault, with a right-lateral (dextral)
63 64 65 66	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the predominantly strike-slip ground surface rupturing fault, with a right-lateral (dextral) sense of displacement, traversed gravelly alluvial plains. The surface of this sector of
6364656667	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the predominantly strike-slip ground surface rupturing fault, with a right-lateral (dextral) sense of displacement, traversed gravelly alluvial plains. The surface of this sector of the Canterbury Plains dates from the end of the Last Glaciation, with post-glacial
 63 64 65 66 67 68 	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the predominantly strike-slip ground surface rupturing fault, with a right-lateral (dextral) sense of displacement, traversed gravelly alluvial plains. The surface of this sector of the Canterbury Plains dates from the end of the Last Glaciation, with post-glacial incised degradation terraces adjacent to active river channels (Forsyth <i>et al.</i> 2008).
 63 64 65 66 67 68 69 	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the predominantly strike-slip ground surface rupturing fault, with a right-lateral (dextral) sense of displacement, traversed gravelly alluvial plains. The surface of this sector of the Canterbury Plains dates from the end of the Last Glaciation, with post-glacial incised degradation terraces adjacent to active river channels (Forsyth <i>et al.</i> 2008). Relict, generally subtle, river channel and bar patterns on the plains are thoroughly
 63 64 65 66 67 68 69 70 	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the predominantly strike-slip ground surface rupturing fault, with a right-lateral (dextral) sense of displacement, traversed gravelly alluvial plains. The surface of this sector of the Canterbury Plains dates from the end of the Last Glaciation, with post-glacial incised degradation terraces adjacent to active river channels (Forsyth <i>et al.</i> 2008). Relict, generally subtle, river channel and bar patterns on the plains are thoroughly overwhelmed by the human geomorphological footprint, comprising a matrix of straight
 63 64 65 66 67 68 69 70 71 	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the predominantly strike-slip ground surface rupturing fault, with a right-lateral (dextral) sense of displacement, traversed gravelly alluvial plains. The surface of this sector of the Canterbury Plains dates from the end of the Last Glaciation, with post-glacial incised degradation terraces adjacent to active river channels (Forsyth <i>et al.</i> 2008). Relict, generally subtle, river channel and bar patterns on the plains are thoroughly overwhelmed by the human geomorphological footprint, comprising a matrix of straight linear features such as fences, roads, power lines, crop rows and irrigation ditches.
 63 64 65 66 67 68 69 70 71 72 	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the predominantly strike-slip ground surface rupturing fault, with a right-lateral (dextral) sense of displacement, traversed gravelly alluvial plains. The surface of this sector of the Canterbury Plains dates from the end of the Last Glaciation, with post-glacial incised degradation terraces adjacent to active river channels (Forsyth <i>et al.</i> 2008). Relict, generally subtle, river channel and bar patterns on the plains are thoroughly overwhelmed by the human geomorphological footprint, comprising a matrix of straight linear features such as fences, roads, power lines, crop rows and irrigation ditches. Along the full length of the surface trace, rarely is there a stretch of more than 300 m
 63 64 65 66 67 68 69 70 71 72 73 	Named after the hamlet of Greendale near the western end of the fault (Fig. 1), the predominantly strike-slip ground surface rupturing fault, with a right-lateral (dextral) sense of displacement, traversed gravelly alluvial plains. The surface of this sector of the Canterbury Plains dates from the end of the Last Glaciation, with post-glacial incised degradation terraces adjacent to active river channels (Forsyth <i>et al.</i> 2008). Relict, generally subtle, river channel and bar patterns on the plains are thoroughly overwhelmed by the human geomorphological footprint, comprising a matrix of straight linear features such as fences, roads, power lines, crop rows and irrigation ditches. Along the full length of the surface trace, rarely is there a stretch of more than 300 m without a human-made (formerly) straight line.

75	The boundary between the Australian and Pacific plates bisects New Zealand (Fig. 1a).
76	The Pacific plate is moving west-southwest relative to the Australian plate, at 48 mm/yr
77	in northeastern New Zealand, decreasing to 39 mm/yr in the southwest (Wallace et al.
78	2007). Between the Puysegur and Hikurangi subduction thrusts, the oblique dextral
79	strike-slip/reverse Alpine Fault is the locus of plate boundary movement in the South
80	Island. A small portion of the plate motion is accommodated by a broad zone of active
81	deformation southeast of the Alpine Fault, with many active faults and folds (Fig. 1b).
82	The Greendale Fault lies near the southeast margin of this deformation zone. No prior
83	indication had been found of a fault at this location. Regional geological mapping of
84	this region in the mid-2000s had not found any surface evidence of a fault scarp on this
85	part of the Canterbury Plains (Forsyth et al. 2008), although the field work was
86	generally limited to drive-by reconnaissance.
87	
88	Also adding to the surprise of the emergence of the Greendale Fault was that this part of
89	Canterbury has had only a low level of historical seismicity (Stirling et al. 2008).
90	
91	Description
92	
93	The westernmost ~6 km of the surface trace has a northwest strike and displays oblique
94	dextral and south-side-up vertical displacement (net) of as much as 1.5 m (Figs. 2 and
95	3). Movement was accommodated by ground flexure, with few, if any, surface shears.
96	Net upthrow to the south caused partial avulsion of the Hororata River, although this
97	was rectified within a few days by deepening of the natural channel using excavators.
98	

99 In the central ~ 15 km of the surface trace, displacement exceeds ~ 2.5 m, expressed on 100 left-stepping, en echelon traces (Figs. 5 to 18). Deformation is distributed across a 30 to 101 300 m wide zone, mainly via horizontal flexure but with discrete Riedel shears and 102 conjugate Riedel shears. Along the central 8 km of surface rupture, lateral displacement 103 exceeds 4 m and the fault trace was obvious to even the untrained eye, with roads and 104 fences bent and sheared sideways by as much as 5 m (see Figs. 5 to 14). 105 106 Towards the east, the deformation stepped about 1 km to the north, forming a separate 107 trace, which represents the easternmost ~ 6 km of the fault (see Fig. 1). On this eastern

trace, dextral displacement is no more than about 1.5 m, virtually all accommodated by

109 horizontal flexure (Figs. 19 to 21).

110

111 Vertical displacement is most prominent at the western end of the fault (see above).

112 Elsewhere, the overall vertical component is rarely more than 0.5 m, but with localized

113 push-ups, of as much as 1.5 m, formed at most of the numerous en echelon left-steps.

114 The south side is up everywhere except at the eastern end of the fault, which is north

side up. The scale of vertical deformation is comparable to the natural relief of fluvial

116 landforms on the Canterbury Plains. For most of the length of the fault, without the

117 broken ground (e.g. mole tracks – displaced turf) or linear markers such as fences, the

118 fault would not have been readily discernable, and will become less so over time, as

119 fissures fill and bumps smooth over.

120

In many of the photographs in this paper, red arrows are used to denote the approximateposition and strike of the fault trace.

123

124 Summary

126	Perhaps the most remarkable feature of this strike-slip ground surface rupture is that it
127	occurred within a landscape containing a myriad of straight lines. These provided
128	perfect 'piercing points' for measuring the amounts and styles of fault deformation.
129	Moreover, these straight lines made it easy to see deformation features as subtle as 1 m
130	horizontal flexures of the ground that were several tens of metres wide, which were not
131	even accompanied by discernable cracking of the ground surface. As a result, it was
132	possible to document the character and extent of the Greendale Fault, as revealed during
133	the 4 th September 2010 Darfield Earthquake, to a spectacular level of precision.
134	
135	Acknowledgements. We express our gratitude to landowners in the area of the fault
136	rupture for kindly allowing access to their properties during the stressful period
137	following the earthquake, and its numerous aftershocks.
138	
139	This work was carried out with funding assistance from a variety of sources, including
140	the Earthquake Commission via the Geonet Project, and the Foundation for Research,
141	Science and Technology (now Ministry of Science and Innovation) through the New
142	Zealand Natural Hazards Research Platform and the Geological Map of New Zealand
143	programme. We thank Grant Dellow and Brenda Rosser (both GNS Science), and an
144	anonymous journal reviewer, for their reviews of the manuscript.
145	
146	Photo credits: DB, Figs. 2a, 2b, 11, 14, 19, 21; NL, Figs 4b, 6, 7; DT, Figs. 10a, 16, 17,
147	20; MQ, Fig. 15; RVD, Fig. 3; RC, Figs. 5, 18a; SC, Figs. 4a, 8; KF, Fig. 13; PV, Fig.
148	18b; JB, Fig. 9; SHS/HM, Fig. 10b; TS, Fig. 12.

149

150 **References**

151

- 152 COUSINS, J. & McVERRY, G. 2010. Overview of strong-motion data from the
- 153 Darfield earthquake. Bulletin of the New Zealand Society for Earthquake Engineering,
- **43**, 222-227.

155

- 156 COX, S.C. & BARRELL, D.J.A. (compilers) 2007. Geology of the Aoraki area.
- 157 Institute of Geological and Nuclear Sciences 1:250,000 Geological Map 15. 1 sheet &
- 158 71 p. Lower Hutt, New Zealand. GNS Science.
- 159
- 160 CUBRINOVSKI, M., GREEN, R.A. (editors), ALLEN, J., ASHFORD, S., BOWMAN,
- 161 E., BRADLEY, B., COX, B., CUBRINOVSKI, M., GREEN, R.A., HUTCHINSON, T.,
- 162 KAVAZANJIAN, E., ORENSE, R., PENDER, M., QUIGLEY, M., WOTHERSPOON,
- 163 L. (contributing authors) 2010. Geotechnical reconnaissance of the 2010 Darfield
- 164 (Canterbury) earthquake. Bulletin of the New Zealand Society for Earthquake
- 165 *Engineering*, **43**, 243-320.
- 166
- 167 FORSYTH, P.J., BARRELL, D.J.A. & JONGENS, R. (compilers) 2008. Geology of the
- 168 Christchurch area. Institute of Geological and Nuclear Sciences 1:250,000 Geological
- 169 Map 16. 1 sheet + 67 p. Lower Hutt, New Zealand. GNS Science.

170

- 171 GLEDHILL, K., RISTAU, J., REYNERS, M., FRY, B. & HOLDEN, C. 2010. The
- 172 Darfield (Canterbury) M_w 7.1 earthquake of September 2010: preliminary seismological
- 173 report. Bulletin of the New Zealand Society for Earthquake Engineering, 43, 215-221.

- 175 GLEDHILL, K., RISTAU, J., REYNERS, M., FRY, B. & HOLDEN, C. 2011. The
- 176 Darfield (Canterbury, New Zealand) M_w 7.1 earthquake of September 2010: a
- 177 preliminary seismological report. *Seismological Research Letters*, **82**, 378-386.
- 178
- 179 QUIGLEY, M., VILLAMOR, P., FURLONG, K., BEAVAN, J., VAN DISSEN, R.,
- 180 LITCHFIELD, N., STAHL, T., DUFFY, B., BILDERBACK, E., NOBLE, D.,
- 181 BARRELL, D., JONGENS, R. & COX, S. 2010a. Previously unknown fault shakes
- 182 New Zealand's South Island. *Eos*, **91**, 469-470.
- 183
- 184 QUIGLEY, M., VAN DISSEN, R., VILLAMOR, P., LITCHFIELD, N., BARRELL,
- 185 D., FURLONG, K., STAHL, T., DUFFY, B., BILDERBACK, E., NOBLE, D.,
- 186 TOWNSEND, D., BEGG, J., JONGENS, R., RIES, W., CLARIDGE, J., KLAHN, A.,
- 187 MACKENZIE, H., SMITH, A., HORNBLOW, S., NICOL, R., COX, S.,
- 188 LANGRIDGE, R. & PEDLEY, K. 2010b. Surface rupture of the Greendale Fault during
- 189 the M_w 7.1 Darfield (Canterbury) Earthquake, New Zealand: initial findings. *Bulletin of*
- 190 *the New Zealand Society for Earthquake Engineering*, **43**, 236-242.
- 191
- 192 REYNERS, M. 2011. Lessons from the destructive M_w 6.3 Christchurch, New Zealand,
- 193 Earthquake. Seismological Research Letters, 82, 371-372.
- 194
- 195 STIRLING, M., GERSTENBERGER, M., LITCHFIELD, N., MCVERRY, G., SMITH,
- 196 W., PETTINGA, J. & BARNES, P. 2008. Seismic hazard of the Canterbury region,
- 197 New Zealand: new earthquake source model and methodology. Bulletin of the New
- 198 *Zealand Society for Earthquake Engineering*, **41**, 51-67.

- 200 VAN DISSEN, R., BARRELL, D., LITCHFIELD, N., VILLAMOR, P., QUIGLEY,
- 201 M., KING, A., FURLONG, K., BEGG, J., TOWNSEND, D., MACKENZIE, H.,
- 202 STAHL, T., NOBLE, D., DUFFY, B., BILDERBACK, E., CLARIDGE, J., KLAHN,
- 203 A., JONGENS, R., COX, S., LANGRIDGE, R., RIES, W., DHAKAL, R., SMITH, A.,
- 204 HORNBLOW, S., NICOL, R., PEDLEY, K., HENHAM, H., HUNTER, R., ZAJAC, A.
- 205 & MOTE, T. 2011. Surface rupture displacement on the Greendale Fault during the M_w
- 206 7.1 Darfield (Canterbury) earthquake, New Zealand, and its impact on man-made
- 207 structures. In: Proceedings of the 9th Pacific Conference on Earthquake Engineering,
- 208 Auckland, New Zealand, 14-16 April, 2011, Paper 186, 8 p.
- 209
- 210 WALLACE, L.M., BEAVAN, R.J., MCCAFFREY, R., BERRYMAN, K.R., DENYS,
- 211 P., 2007. Balancing the plate motion budget in the South Island, New Zealand using
- 212 GPS, geological and seismological data. *Geophysical Journal International*, 168, 332-
- 213 352.

216	Fig. 1. Location and neotectonic setting. (a) Bathymetry of the New Zealand region
217	(orange=shallow, blue=deep; image courtesy of GNS Science), annotated with the plate
218	tectonic setting. (b) The Greendale Fault in relation to mapped active faults (red) and
219	folds (orange), from Cox & Barrell (2007) and Forsyth et al. (2008), and the Darfield
220	earthquake epicentre (star). (c) Generalised map of the Greendale Fault ground surface
221	deformation; the numbers denote the locations of photos in Figures 2 to 21. The map
222	images are derived from NZMS 266 (b) and Topo250 (c) topographic maps of New
223	Zealand, copyright Land Information New Zealand.
224	
225	Fig. 2. (a) The sinuous course of the Hororata River, flowing from upper right to upper
226	left, is crossed by the fault in this westward view, taken 4 th September. A significant
227	portion of the river's flow is diverted towards the lower left, along the downthrown side
228	of the fault. (b) In this view southeast from location (b) shown in Fig. 2a, taken 15 th
229	September, the broad rise up to the right is the fault, which here has bent rather than
230	broken the ground. Excavation of the river channel has stemmed the overflow across
231	farmland.
232	
233	Fig. 3. This view south along an originally straight fence in a formerly flat field
234	illustrates the oblique right-lateral (~1 m) and up-to-south (~1 m) ground flexure that
235	characterizes the western end of the Greendale Fault.

Fig. 4. (a) Progressing eastward, where the horizontal flexure exceeds 2 m, groundcracking became increasingly evident, as seen across the farm lane in this view to the

south. (b) Detail of the form and depths of tension cracks seen in Fig. 4a, looking
northeast, on 5th September.

242	Fig. 5. This northward aerial view at Stranges Road highlights Reidel shears, at a low
243	angle to the strike of the fault, each with as much as 1 m lateral offset, as seen across the
244	vehicle ruts. However, most of the ~4.5 m right-lateral displacement is by horizontal
245	flexure, as shown by the hedge row and irrigation ditch. Flow in the ditch was impeded
246	by slight upthrow to the south, but the ditch had been deepened prior to this photograph
247	on 9 th September.
248	
249	Fig. 6. At Courtenay Road, this northward view shows team members carrying out a
250	precise Real-Time Kinematic GPS survey of a right-lateral offset (~4.3 m) of the
251	formerly straight fenceline. The deformation occurred over a ~35 m wide zone, and the
252	ground is broken by discrete shears right of centre.
253	
254	Fig. 7. This view looking south shows the surface fault rupture where most of the lateral
255	displacement (~4.6 m) is concentrated within a narrow zone, with 'mole tracks'
256	(displaced turf) evident along shears that displace the fenceline.
257	
258	Fig. 8. An aerial view looking northeast showing en echelon Reidel shears that narrowly
259	miss a house, but pass through its garage.
260	
261	Fig. 9. In this telephoto view north along Telegraph Road, the busiest road to have been
262	
	crossed by the fault rupture, the Greendale Fault has displaced the road right-laterally by

approximately a lane width. Being a major rural thoroughfare, initial repairs wereundertaken on the day of the earthquake.

265

266	Fig. 10. (a) A shear with about 0.5 to 1 m of right-lateral displacement passed through
267	this modern, timber-framed, brick-clad farm house. Despite suffering severe structural
268	damage, the house remained standing and its occupants were unharmed. (b) A view
269	looking west at the opposite side of the house shown in Fig. 10a.
270	
271	Fig. 11. A view south down Highfield Road, the second of only two tarsealed roads to
272	have been crossed at a high angle by the fault in its high-displacement central section.
273	Being a minor road, several days passed before repairs were made to the spectacular
274	array of shears and cracks across the tarseal. In the meantime, the site became a local
275	tourist attraction because it was one of the few fault rupture locations that was both
276	undisturbed and publicly accessible. Here, localized bulging resulted in an upthrow of
277	more than 1 m, creating a visual phenomenon in concert with the ~4.5 m right-lateral
278	offset of the carriageway, roadside fences and hedge-rows.
279	
280	Fig. 12. Members of the fault rupture reconnaissance team measure offsets (~3.6 m) of
281	a fenceline a few hundred metres east of Highfield Road, view looking south.
282	
283	Fig. 13. This view east along the fault displays a spectacular pattern of conjugate Reidel
284	shears at a high angle to the strike of the fault, which curves off towards the upper left.
285	The fence in the mid-ground is the same one shown in Fig. 12.
286	

Fig. 14. A northward aerial view of a narrow fault zone (left) diffusing into a broad
flexure across the ploughed fields, then narrowing into a shear near the crops to the
right. Total right-lateral displacement of these features is ~4.5 m.

290

291 Fig. 15. (a) Arrays of shears and localized bulges are seen in this aerial view looking 292 north. The irrigation ditch is displaced laterally by ~3.5 m. (b) Following initial science 293 reports to the media, stating that there was no prior knowledge of a fault in this area, a 294 landowner ploughed these words into this field. The words reference a nationwide 295 billboard advertising campaign for a brand of beer, in which a bold statement is made, 296 alongside of which are the words 'yeah, right', indicating that a sensible person would 297 not believe the statement. The view is southwest, and the features shown in Fig. 15a are 298 upper left from centre.

299

Fig. 16. A close-up view of shears within a field. Their expressions are particularly
clear on account of the very short grass. The total right-lateral displacement at this site
is ~3.5 to ~4 m.

303

Fig. 17. Where shears crossed belts of trees, commonly the trees were loosened from
the soil, or uprooted. This was one rare instance where a shear split a tree in two, in this
case a juvenile *Pinus radiata* with trunk diameter of ~0.15 m.

307

308 Fig. 18. (a) An aerial view north showing shears crossing an irrigation ditch (right-

- 309 lateral offset of ~2.6 m) and passing through a farm shed. The left-hand side of this
- building is shown in Fig. 18b. (b) Members of the fault rupture reconnaissance team

311	measure the effects of a shear, its mole track evident in the foreground, on the farm
312	shed.

314	Fig. 19. On the eastern strand of the fault, deformation comprised horizontal flexure,
315	with very little cracking of the ground. For the most part, cracks were evident only
316	where the fault crossed a relatively brittle feature such as a tarsealed road. In this view
317	southward, the fence reveals a right-lateral flexure of about 1.3 m.
318	
319	Fig. 20. In this view northeastward, the painted centreline of Kerrs Road displays a
320	right-lateral flexure of about 1.5 m. An array of minor cracks formed across the road in
321	the flexure zone. Without straight linear features such as roads and fences, this
322	deformation would be indiscernible.
323	
324	Fig. 21. Near the eastern limit of recognised deformation, the fault crossed the South
325	Island Midland Railway. This view southward illustrates a broad right-lateral flexure of
326	\sim 1 m of the line of the rails. As the rail embankment tends to smooth over the minor
327	natural fluvial irregularities of the plains, the rails were an excellent datum for
328	estimating the vertical component of offset. Precise GPS surveying indicated
329	approximately 0.4 m of upthrow to the north at this location. During the earthquake, one
330	section of the rails was kinked sideways to the left (east). This photograph was taken on
331	5 th September, immediately after replacement of the kinked rail section. The new rails
332	are rusty as they have yet to be polished by train movement.

