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Abstract

This paper describes how the SPIN model checker has
been applied to find and correct problems in the software
design of a distributed vessel control system currently under
development at a control systems specialist in New Zealand.
The system under development is a mission critical con-
trol system used on large marine vessels. Hence, the re-
quirement to study the architecture and verify the imple-
mentation of the system. The model checking work reported
here focused on analysing the implementation of the Time-
Triggered Controller-Area-Network (TTCAN) protocol, as
this is used as the backbone for communications between
devices and thus is a crucial part of the control system. The
starting point was to develop a set of general techniques for
model checking TTCAN-like protocols. The techniques de-
veloped include modelling the progression of time efficiently
in SPIN, TTCAN message transmission, TTCAN error han-
dling, and CAN bus arbitration. These techniques form the
basis of a set of models developed to check the implemen-
tation of TTCAN in the control system as well as the fault
tolerance schemes added to the system. Descriptions of the
models and properties developed to check the correctness
of the implementation are given, and verification results are
presented and discussed. This application of model check-
ing to an industrial design problem has uncovered and cor-
rected a number of potentially costly issues in the original
design.

1. Introduction

A New Zealand based control systems specialist is
currently developing a mission critical control system to
be used on large marine vessels. The Time-Triggered
Controller-Area-Network (TTCAN) protocol is used for
communication between modules on the system. In dis-
tributed systems such as this, where there is communication
between concurrently executing processes, the complicated

nature of the systems often leads to design errors difficult to
detect using conventional testing methods. The aim of this
research was to apply model checking techniques to assist
in verifying the correct operation of the implementation of
the TTCAN protocol in the control system.

Section 2 gives an overview of model checking, the
TTCAN protocol, and the implementation of the control
system. Section 3 describes the set of techniques devel-
oped for model checking TTCAN-like protocols. Section
4 describes the model developed to verify the TTCAN im-
plementation. Section 5 describes the correctness properties
developed to check against the model and presents the veri-
fication results. Finally, Section 6 concludes the paper.

2. Background

This section briefly introduces model checking, gives an
overview of the TTCAN protocol, and describes how it is
implemented in the control system.

2.1. Model checking

Model checking is a technique used to automatically ver-
ify correctness properties against a finite state model of a
software or hardware system. A concurrent program can
be visualised as a Finite State Machine (FSM) or automa-
ton. The state of the system is the current expression being
executed in each of the concurrent processes and the cor-
responding set of values of variables. The FSM contains
nodes to represent every possible state the system enters
and edges to represent possible transitions between states
[3]. A model-checker traverses all possible paths through
the concurrent system’s FSM, checking specified safety and
liveness properties at each step. If a property is disproved
a counter-example is generated showing the sequence of
events leading to the violation of the property. The counter-
example is valuable for debugging a system [2].

One model-checker that has become popular in indus-
try is the SPIN model checker. The input specification
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language to SPIN for describing a model is called Process
Meta-Language (PROMELA). Correctness properties to be
checked against the model are described using Linear Tem-
poral Logic (LTL). LTL formulae are logical statements that
describe sequences of a program’s states [1]. A process
is created in PROMELA to represent the control flow of a
program. The individual threads of a multi-threaded appli-
cation, or simultaneously executing nodes on a distributed
network, are modelled in PROMELA by creating multiple
processes. Shared variables and message channels are used
to model interprocess communication.

2.2. TTCAN protocol

Modern vehicles contain complex distributed control
systems. Currently, the CAN protocol is one of the most
popular communications protocols used in these types of
networks [6]. CAN is an asynchronous event-triggered pro-
tocol, meaning that events are sent around the network as
they occur. Due to the event-triggered nature of the pro-
tocol, conflicts can occur on the bus when multiple mes-
sages are sent simultaneously. A priority-based arbitra-
tion scheme determines which message is transmitted on
the bus. This introduces non-deterministic latency to mes-
sage transmissions, complicating the design of systems with
tight timing constraints, such as the closed-loop distributed
control system used in vehicle brake or steer by-wire sys-
tems [8].

The increasing size and complexity of these vehicle con-
trol systems has introduced a need for a variant of the
CAN protocol that provides deterministic timing across the
system. This simplifies system design and enables de-
sign of more complicated systems. Time-Triggered CAN
(TTCAN) is a variant of the CAN protocol that offers more
precise timing.

The TTCAN protocol adds a session layer (layer 5 of
the OSI model), defined by ISO 11898-4, to the existing
data link (OSI layer 2) and physical (OSI layer 1) layers of
the existing CAN protocol [7]. It is a synchronous (time-
triggered) protocol, where the transmission of messages is
based on the progression of a globally synchronised time
base. Each node has a pre-defined schedule of messages
to transmit in pre-allocated time-slots to eliminate bus con-
flicts and guarantee message latencies [8].

Time synchronisation between TTCAN nodes is
achieved by the periodic transmission of a specific mes-
sage known as a ‘reference message’ from a designated
time-master node. On receiving the Start of Frame (SOF)
bit of the reference message, all node transmission cycles
are restarted. Messages are then sent when their sched-
uled time-slot becomes active. The period elapsed between
two consecutive reference messages is known as a ‘basic-
cycle’, and a number of ‘basic-cycles’ with different mes-

sage schedules may be repeated in a ‘matrix-cycle’ [6].
Using a time-triggered protocol allows deterministic tim-

ing of transmissions and a higher portion of the overall
bandwidth of the system to be utilised. However, the la-
tency of transmissions may be greater than when using an
event-triggered protocol.

2.3. A TTCAN implementation

The system to be analysed is a dual redundant distributed
vessel control system based on the TTCAN protocol. The
redundant CAN buses are labelled P and Q in Figure 1. The
vessel is usually wired with a bus running down each side
of the vessel. The system consists of three main types of
modules: Control Input Devices (CID), Master Controllers
(MC), and Hydraulic Controllers (HC). Each module is con-
nected to both of the redundant CAN buses.

CIDs take input actions from the operator such as adjust-
ing the throttle or steering the vessel and translate these to
input commands that are sent to the MC. The CIDs have
redundant microcontrollers, each connected to one of the
redundant CAN buses.

The MC processes control input commands from the
CIDs and feedback messages from the HCs. It translates
these commands and feedback messages into output de-
mands that are sent to the HC. The microcontroller on the
MC has two CAN controller modules, one connected to the
P bus and the other to the Q bus, as shown in Figure 1.
When the currently active time-master MC transmits mes-
sages, they are sent on both CAN buses. The MC is the
time-master of the system; it is responsible for synchronis-
ing the message schedules of the other network nodes. This
is achieved by the active MC periodically sending a TTCAN
sync reference message.

3. Modelling TTCAN protocols

Our approach to modelling TTCAN is influenced by
techniques developed by Weininger and Cofer when mod-
elling the ASCB-D synchronisation algorithm with SPIN.
We use an abstract simulation of message transmission and
time progression to constrain the possible interleavings of
events and reduce the state-space required for verification.
We also combined handling message transmission and time
progression into a single process to further reduce the re-
sources required for verification [5].

As the focus of this work is verification of the TTCAN
protocol, it is not necessary to model the underlying CAN
protocol in detail. Our model includes only the properties
of the CAN protocol that are relevant for verification of the
TTCAN layer, such as arbitration and bus access. Using
this abstracted approach not only reduces the resources re-
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Figure 1. Block diagram of the redundant ves-
sel control system.

quired for verification but also makes the model simpler to
understand and extend.

3.1 Modelling time progression in
TTCAN protocols

The strategy used to model the progression of time is
commonly known as Variable Time Advance (VTA). Us-
ing this strategy, the current time advances by having the
model jump to the instant where the next event causes a
state transition. The advantage of using this technique over
a fixed-time step model is that periods where there is no ac-
tivity are skipped, allowing the state-space of the verifica-
tion to be reduced. An untimed model was considered, but
a timed strategy was used to allow modelling of timing of
an event relative to another [5]. We found that using a timed
approach simplified modelling of the ordering of events at
different nodes.

Both the progression of time and CAN bus arbitration
in the model is handled by the AdvTimeBusArb process.
The interaction between processes, through sync channels,
to model the progression of time is shown in Figure 2. The
sequence of events that advance time to the next scheduled
event that causes a state transition is shown by the flow chart
in Figure 3 and the message sequence chart in Figure 4. The
sequence of events for handling the progression of time and
bus arbitration in AdvTimeBusArb are:

1. The process compares each node’s nextTimeout
value, the time until the node’s next scheduled event,
to find the node with the minimum timeout value.

2. Bus arbitration is handled if time has advanced and
there are any messages triggered for transmission.
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Figure 2. Block diagram showing processes
and sync channel messages for handling tim-
ing and message transmission used in the
control system model.

3. A TIMEOUT sync channel message is sent to the node
that is next to timeout. This timeout indicates an event
is due to be triggered at the node. If multiple nodes
are triggered simultaneously, they are looked at each
in turn with the lowest identifier triggered first. As si-
multaneously transmitted messages are buffered, then
arbitration decided before time is next advanced, this
order is not important.

4. AdvTimeBusArb waits for CHK_BUS,
TX_TRIGGER, or REF_MARK sync channel mes-
sages. On receiving CHK_BUS, the current state of
the bus is returned to the requesting node process.
TX_TRIGGER initialises transmission of a message
on the bus. REF_MARK indicates a reference message
has been received at a node and each node’s next
timeout value is to be updated.

5. AdvTimeBusArb waits for a SET_TIMEOUT sync
channel message from the currently executing node.
An updated timeout value is sent from the node as a
sync channel parameter, and this is used to update the
node’s next timeout value.

6. The time elapsed by the node that timed-out is sub-
tracted from the other node’s next timeout values.

7. AdvTimeBusArb then restarts to find the next node
with the minimum time to next timeout.

3.2. Modelling CAN bus arbitration

Listing 1 shows how bus arbitration of simultane-
ously transmitting nodes is resolved. When a mes-
sage is initially triggered for transmission on the bus



Find node i with earliest 
next scheduled event

Send sync channel 
message TIMEOUT to 

activate node i

Update node i 's next 
timeout value using 

SET_TIMEOUT channel 
parameter

Subtract time advanced 
from all node's next event 

time excluding node i

Update state of node in 
response to timeout

Send SET_TIMEOUT to 
AdvanceTime with the 

updated next event time 

!"#$%$&$"'"()*+,$

-,'!"#$./0-12

Wait for 
SET_TIMEOUT / 

REF_MARK

Wait for updated 
timeout value for 

each node

%3456-%7

83!5!963:;!

Wait for TIMEOUT / 
REF_MARK

!963:;! Update state of 
node in response 

to reference 
message 
received

%3456-%7

Update state of node in 
response to timeout

Send SET_TIMEOUT to 
AdvanceTime with the 

updated next event time 

!"#$6<0=$1*+,$

Trigger send 
reference message

*+ Send 
REF_MARK to 
AdvanceTime 

and to time 
receiving nodes

>$0

Wait for TIMEOUT sync 
message

Figure 3. Sequence of events for advancing
time in the “AdvTimeBusArb”, time-master
node, and time-receiving node processes.

the doArbitration flag within the AdvTimeBusArb
process is set. The AdvTimeBusArb process stores
the identifier of any node transmitting at this instant in
the AdvTimeBusArb processes’ nodeFrameId array.
Once time advances, arbitration is handled with the node
transmitting the highest priority message winning (trans-
mitting the lowest identifier). The identifier of the winning
node’s message is assigned to BusFrameId, which is used
to keep track of the current state of the bus.

3.3. Handling TTCAN reference messages

In this TTCAN protocol model, reference messages are
able to cause state-transitions that affect the next timeout
value in a receiving node. They may be received before the
next scheduled timeout at a node and alter the timeout de-
pending on the current state of the node. This is accounted
in the model by sending the REF_MARK sync channel mes-
sage between the transmitting and receiving processes when
a reference message is transmitted, as shown in Figure 2. A
timeout in the receiving node may be interrupted and up-
dated to a new value on receiving REF_MARK.

Listing 2 gives an example of how handling the refer-
ence message has been implemented in the model. If a
REF_MARK, due to the node receiving a reference mes-
sage, is received from another node during the period after
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Figure 4. Message sequence chart showing
the sequence of sync channel messages sent
when transmitting a reference message.

Listing 1. PROMELA source from “AdvTime-
BusArb” process for bus arbitration.

IF ((busArb[checkBus].doArbitration != false)
&& (minNextTimeout > 0)) ->
busArb[checkBus].doArbitration = false;
busArb[checkBus].tempBusId = BUS_IDLE;

5 /* Find the highest priority message of
currently transmitting nodes. */
FOR(i, 0, TOTAL_NODES)

IF busArb[checkBus].nodeFrameId[i]
< busArb[checkBus].tempBusId ->

10 busArb[checkBus].tempBusId =
busArb[checkBus].nodeFrameId[i];

busArb[checkBus].arbWinnerIndex = i;
FI;

ROF(i);
15 busArb[checkBus].busFrameId.messageID

= busArb[checkBus].tempBusId;
FI;

the initial reference message is transmitted from a potential
time-master node, then the process updates the next time-
out value to REF_TRIGGER + refTriggerOffset.
On transmitting a reference message, a REF_MARK sync
channel message is also sent from the transmitting process
to AdvTimeBusArb. This causes AdvTimeBusArb to
change to a state where it allows nodes that received the ref-
erence message to transmit an updated next timeout value
through SET_TIMEOUT if necessary.

4. Model checking the implementation of
TTCAN

This section describes the models developed for model
checking the vessel control system. The model checking
work here focuses on the implementation of the TTCAN
protocol, as this is a major component of the control system.
The approach taken was to develop multiple models focused
on specific aspects of the system, rather than one monolithic



Listing 2. PROMELA source from “TimeMas-
terNode” for handling received reference
message during a timeout after transmitting
the first reference message.

if
:: TIMEOUT[nodeNum] ? 0 ->

/* Scheduled timeout has elapsed. */
:: REF_MARK[nodeNum] ? 0 ->

5 /* Received reference message. */
CHK_BUS[nodeNum] ! bus;
BUS_STATE[nodeNum] ? _, busFrameIdTemp, _;
/* Check received ref message priority
against the node’s priority. */

10 if
:: busFrameIdTemp < refMsgID ->

SET_TIMEOUT[nodeNum] ! (REF_TRIGGER
+ refTriggerOffset);

goto TIMEOUT_4;
15 :: busFrameIdTemp > refMsgID ->

refTriggerOffset = 0;
SET_TIMEOUT[nodeNum] ! (REF_TRIGGER

+ refTriggerOffset);
goto TIMEOUT_3;

20 fi;
fi;

model. It was found that developing a number of separate
smaller models was essential in checking this system due
to its size and complexity. Using this technique, we were
able to model the system efficiently without encountering
the state space explosion problem. Three PROMELA mod-
els of different parts of the implementation are described,
along with sets of correctness properties for each model.
The properties have been verified against the models using
the SPIN model checker. The models described are:

• A model of the implementation of TTCAN. This is
used to check the basic operation of the system with
the minimum, most common, and maximum number
of modules that can be configured for the system.

• A model of the active time-master election process,
called the “voter” process in the implementation, anal-
yses the election procedure that determines the active
time-master on startup or reintegration.

• A model of the module in the MC that selects which
of the redundant buses the active MC listens to, called
the “signal picker” in the implementation.

After talking with the development engineers and
analysing the code, it appeared that the correct operation of
the redundant MC nodes is crucial to the safety of their sys-
tem, and checking the correctness of the “voter” procedure
is essential to the correct operation of the MC. The periodic

sync reference message sent from the currently active time-
master MC is the heart-beat of the system. The reference
message triggers and synchronises the transmission sched-
ules of all the other nodes in the system. Without the sync
reference message, exclusive window messages, responsi-
ble for control of the vessel, are not transferred from the
helm and throttle to the hydraulic controller. The TTCAN
protocol model also allowed us to verify the correct transfer
of the scheduled exclusive window messages. Also, cru-
cial to the correct operation of the MC is the “signal picker”
module. This is responsible for selecting which of the re-
dundant buses the MC is currently listening to.

4.1. TTCAN protocol model

The TTCAN protocol model is used to check the imple-
mentation of the TTCAN protocol in the control system.
The model focuses on verifying the correct transmission of
the periodic sync reference messages and the scheduled ex-
clusive window messages, due to their importance to the
correct operation of the system.

The TTCAN protocol model is constructed using the
techniques for modelling TTCAN-like protocols described
in Section 3. The TTCAN protocol implementation, and
our model of it, differs from ISO TTCAN in several ways:

• Exclusive window messages can overrun into the next
time-slot causing a delay in the following scheduled
message.

• There are multiple TTCAN transmit buffers.

• There is no ISO TTCAN error handler and startup syn-
chronisation scheme present in the implementation.

In the TTCAN protocol model MC nodes are the po-
tential time-master nodes in the system; each MC is mod-
elled by a TimeMasterNode process. HC and CID
nodes are time-receiving nodes; these are modelled by
TimeReceivingNode processes. CAN bus arbitration
and handling of timing are combined in a process called
AdvTimeBusArb, as shown in Figure 2.

The model can be conditionally compiled to check three
different system configurations: a minimal configuration (2
MC nodes, 1 HC, and 1 CID), the most common setup (2
MCs, 2 HCs, and 2 CIDs), and a configuration with the
maximum number of nodes (2 MCs, 4 HCs, and 5 CIDs).

4.2. “Voter” model

The “voter” model is used to verify the active time-
master election process used in the implementation to select
an active and backup time-master during startup of a MC
node. Figure 6 shows the “voter” state machine that is the
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Figure 5. Timing diagram for 2 MC, CID, and HC model transmitting 480µs messages.

basis for the model of the active time-master election proce-
dure. Scenarios where intermittent faults cause time-master
nodes to periodically toggle on and off are modelled, as well
as the addition of initial startup delays of the MC nodes.

!"#$" !"#$"%&'()*

%&"'()

*+"$,-.-!"#$"/'0)$

*+"$,-.-1#$2-#&"'()
*3'"-.-1#$2-4"#+56,

+",$"%&'()$
-#.

/"0$&'-)12&

31#&$&'-)4-"#&)5$
)6)%&'17

8)#

91

!"#+56,

7+'"'#88,

/9929()$

Figure 6. State machine of time-master elec-
tion process in MC nodes.

The “voter” model consists of two MC nodes, a CID,
and a HC. The MC nodes are represented in the model by
TimeMasterNode processes and each is associated with
a PeriodicTimer process. In this model, the MCs simu-
late the “voter” procedure. The AdvTimeBusArb process
is responsible for handling the progression of time, message
transmissions, and CAN bus arbitration in the model.

4.3. “Signal picker” model

The “signal picker” is a module that exists in the MC and
is responsible for selecting which of the redundant buses
the MC is currently listening to. The “signal picker” model
verifies the module’s interaction with the environment. The

model simulates messages received on either bus, messages
reporting errors from their source, dropped messages, and
the periodic update of the state of the module as occurs
in the implementation. Correctness properties have been
developed based on the developer’s design specifications.
Assertions are used in the model to check the properties
hold. The model checks each of the possible interleavings
of events between the signal picker and the redundant buses.
In this case, an untimed model has been used; it was not
necessary to include the timing of events relative to each
other to check the properties specified.

The model consists of a process that represents
the “signal picker” module, and a process, called
TriggerInputs, that models the interaction of the “sig-
nal picker” module with its environment. The “signal
picker” reacts to events triggered by the TriggerInputs
process.

The TriggerInputs process non-deterministically
triggers events that occur in the environment and in the “sig-
nal picker”, such as: receiving messages, simulating missed
(dropped) messages, and initialising the periodic update of
the state of the “signal picker”. The periodic update is trig-
gered every 1.5 s in the implementation, but is triggered
non-deterministically in the model as the update could oc-
cur at any time relative to the messages being received on
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the bus.
The “signal picker” process model makes decisions

about whether or not to swap buses whenever a new
message is received. Received messages are non-
deterministically determined to be either messages received
without error or messages indicating sensor errors at the
message source. The model also includes a check that the
rules related to swapping to the redundant bus are not bro-
ken after a new message has been received or the state of
the module has been updated.

5. Verification of models

Each model can be conditionally compiled to check a
number of different scenarios that potentially cause failures
in the system. Sets of correctness properties have been de-
veloped, based on the developer’s design specifications, to
check against the models. Verification of the models helps
to gain confidence that the implementation meets the origi-
nal design specifications.

5.1 TTCAN protocol model

The correctness properties chosen to verify the TTCAN
protocol model focus on checking the correct transmission
of the scheduled exclusive window messages. This is due to
their importance to the correct operation of the system, as
exclusive window messages are responsible for transferring
control information from the user inputs to the hydraulic
control units. Also, as they are transmitted in one-shot mode
(without CAN retransmission), it is essential that they are
either transmitted correctly or errors detected and reported
if this is not possible. To check the correctness of the exclu-
sive window messages, safety properties are used to ensure
no scheduled messages fail to be received at a node and no
unexpected messages are received at a node. The correct-
ness properties have been verified against the model under
different potential failure scenarios.

The failure scenarios modelled are as follows:

1. The startup delay of the MC nodes is staggered by non-
deterministically choosing an initial startup delay.

2. Both MCs are initialised as active time-masters.

3. The states of each time-master node are swapped from
active to backup and backup to active after the initial
basic-cycle completes.

4. The first HC message is delayed to simulate an ac-
cumulated overrun when a number of nodes transmit
messages longer than their allocated time-slots.

5. Delay of the first CID node’s exclusive message.

6. Delay of the first MC node’s exclusive message.

7. The backup MC is configured as a “babbling idiot”
node. The node repeats sending of an unexpected mes-
sage through the system’s exclusive time-slots, ignor-
ing the scheduled message trigger times.

8. The backup MC is configured with a simulated config-
uration error. The node sends unexpected messages at
the beginning of each scheduled exclusive time-slot.

9. Reference messages sent by the active time-master are
not received correctly at other nodes, but are received
correctly at the time-master node (meaning there is no
retransmission).

10. Reference messages sent by the active time-master are
not received correctly at all nodes including the time-
master node causing a timeout and retransmission.

The following list of 6 correctness properties have been
verified against the model with the “base” configuration:

1. Absence of violated assertions and deadlock in model.

2. ◻!(n1 rx error || n2 rx error ||
n3 rx error || n4 rx error) — Absence of
scheduled message receive error at nodes 1 – 4.

3. ◻!(n1 schedule err || n2 schedule err
|| n3 schedule err || n4 schedule err
) — Absence of received message that has not been
scheduled at nodes 1 – 4.

4. ◻◇n1 alive — The active time-master node
(Node 1) always eventually starts a new basic-cycle.

5. ◻◇n2 n4 recv sync ref — Nodes 2 – 4 al-
ways eventually receive a reference message triggering
the restart of a new basic-cycle.

6. ◻◇n1 n4 arb window open — The arbitration
window in nodes 1 – 4 is always eventually open.

The correctness properties have been verified against
the three configurations of the TTCAN model described in
Section 4.1. For each property verified against the models,
the models are configured with the failure scenarios
described described above or a default configuration. In the
default configuration, both MC nodes start simultaneously.
One MC is configured as the active time-master; the other
is configured as the backup. The specified LTL formulae,
scenarios modelled, and the verification results of each
property checked against the “base” configured model with
both 480µs and 636µs messages are summarised in Table
1. The first correctness property, checking for an absence
of deadlocks and assertions, passed verification without
error when checked against each of the failure scenarios



modelled. Figure 5 shows a timing diagram for messages
480µs in length transmitted on the CAN bus in a system
setup with the “base” configuration.

Table 1. Verification results for “base” config-
ured model with 480µs and 636µs messages.

Property Failure Correctness Errors Errors
scenario property (480µs) (636µs)

1 Default 2 0 0
2 1 2 0 0
3 2 2 0 0
4 3 2 0 0
5 4 2 0 1
6 5 2 0 1
7 6 2 0 1
8 7 2 0 0
9 8 2 1 1
10 Default 3 0 0
11 1 3 0 0
12 2 3 0 0
13 3 3 0 0
14 7 3 0 0
15 Default 5 0 0
16 Default 6 0 0
17 Default 7 0 0
18 9 7 0 0

In verification of the “base” model using 480µs messages:

• 17 of 18 properties checked passed verification.

• Property 9 fails as a message scheduled to be received
is lost when an unconfigured node is added.

Using 636µs messages:

• 14 of 18 properties checked passed verification.

• Property 9 fails verification.

• Property 5 fails verification. When an extra delay of
450µs is added before transmitting the HC’s sched-
uled message, the first message to be sent from the
MC is lost and a verification error is reported. The de-
lay causes the HC’s message to be transmitted over the
CID’s and MC’s exclusive time-slots. Once the HC’s
message completes, both the pending messages will be
sent simultaneously. CAN arbitration will cause the
lower priority MC message to be lost, causing the ver-
ification error to be reported. The delay has been artifi-
cially added to the model and is of arbitrary length, but

this could occur in a system that has a larger configu-
ration, as the delay due to each exclusive message sent
over-running into the next time-slot will accumulate.
The error occurs when an exclusive window message
transmits over two other exclusive window message
triggers. The exclusive messages from both nodes are
delayed until the currently transmitting node has com-
pleted. When the current message finishes both nodes
will send their messages simultaneously and one of the
pending messages will be lost due to CAN bus arbitra-
tion. As the exclusive messages are sent in one-shot
mode, the lost message will not be retransmitted.

• Properties 6 and 7 fail verification. Delaying the CID
and first MC messages (delayed by 450µs), cause ver-
ification errors. In both cases, the last message sent
by the MC is lost. In the CID case, this is due to
the CID message transmitting over the first and second
scheduled MC message trigger points. When the third
MC message is triggered the node’s backup buffer is
already full and the message is dropped. In the MC
case, the first MC message is transmitting overtop of
the trigger points for the second and third MC mes-
sages. The second message is put into the node’s
backup buffer but the third is dropped as the node is
currently transmitting and the backup buffer is full.

Most importantly, in the process of creating the models,
it was also found that in the implementation it is possible
that exclusive window messages are lost without an error
being passed to the application. Reporting an error is im-
portant in this case as these exclusive window messages are
transmitted in one-shot mode without the usual CAN re-
transmission. An intermittent fault on a bus may cause a
message to be repeatedly lost, causing the MC to switch
to the redundant bus without reporting the fault. A possible
solution to this problem is to add the ISO TTCAN error han-
dling state machine to detect these errors by transitioning to
an error state and signalling this to the application [7].

5.2 “Voter” model

The LTL correctness properties checked against the
model to gain confidence that the implementation of the
“voter” procedure meets the designer’s specifications are:

1. ◇◻(tm1 active && !tm2 active) — The
potential time-master node (Node 1) eventually al-
ways becomes the active time-master and Node 2 be-
comes the backup time-master.

2. ◇◻(tm2 active) — Node 2 eventually always
becomes the active time-master if Node 1 is disabled.



3. ◻◇!(tm1 active && tm2 active) — Al-
ways eventually Node 1 and Node 2 are not both
the active time-master.

4. ◇◻!(tm1 active && tm2 active) —
Eventually always Node 1 and Node 2 are not both
the active time-master.

5. ◻!(tm1 active && tm2 active) — Always
potential time-master nodes Node 1 and Node 2 are
not both the active time-master.

6. ◻◇(tm2 active) — Always eventually time-
master node Node 2 is active when Node 1 is dis-
abled following completion of the first basic-cycle.

7. Absence of violated assertions when the active time-
master node (Node 1) is toggled on/off every 1.5 s.

8. Absence of violated assertions when the active time-
master node (Node 1) is toggled on/off, and an initial
bootup delay of the faulty active MC is added.

9. ◇◻(tm2 active) — Node 2 eventually always
becomes the active time-master if there is a periodic
fault causing the currently active time-master node
(Node 1) to be toggled on and off every 1.5 s.

The results of the verification of the correctness proper-
ties checked against the “voter” model are:

• Properties 1 – 4 pass verification without error.

• Property 5 fails verification. The error trails reveal
two situations where both potential time-masters are
simultaneously configured as the active time-master.
On the initial startup of the system, both time-masters
become the active time-master after an initial timeout,
the “voter” state-machine then determines the winning
time-master. Also, if an active time-master is powered
down the state is stored in non-volatile memory and
when the node is reactivated, if the backup time-master
has become active, both nodes will be in this state.

• Property 6 passes verification with the backup time-
master taking over as expected.

• Property 7 fails when the on/off period is 3 s (1.5 s on
and 1.5 s off) and passes for all other intervals tested.
This kind of fault could potentially be caused by a
faulty alternator sending a voltage spike to the MC’s
power supply, causing it to periodically switch on and
off. The reason this period fails is because with the
3 s period the node is active just long enough so that
the active time-master status message is able to be sent
after startup, as illustrated in Figure 8. From tests of
the MC hardware it was found the time-master status
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Figure 8. Timing diagram showing the se-
quence of events that causes the backup
time-master to fail to takeover as the active
time-master as expected.

message is sent approximately 1.3 s after the node is
powered up. This means, even with the 1.5 s periodic
fault, the backup MC will think there is still an active
MC on the network so will not timeout and takeover.
In this case, 50% of the MC messages are effectively
lost from the active MC due to the fault and the re-
dundant MC will not takeover. An up down counter
is used as a check to see if 1 or more messages have
failed to be received at a node within a basic-cycle pe-
riod. If this count becomes greater than 20 an assertion
is triggered. This is the case in the model when the 3 s
periodic fault is tested.

• Property 8 passes when a delay is added to the MC.

• Property 9 fails verification showing that when there is
1.5 s periodic fault causing the active MC to toggle on
and off the backup time-master MC does not take-over.

5.3 “Signal picker” model

The following properties checked are based on the de-
veloper’s original design specification:

1. The module will only ever swap to the other bus if
the current bus has received a message with an error
value or a message has not been received since the sta-
tus flags have been last reset. At least one message
must be seen and no error messages may be received
on the bus that is swapped to. An assertion is used to
check this property after the model swaps buses.

2. If a message is dropped since the last time the modules
flags are reset a transition is made to the redundant bus.



Property 1 passes verification; however, property 2 fails.
Messages can be dropped on the bus the module is currently
listening to without swapping to the backup bus. The “sig-
nal picker” only swaps to the redundant bus if no message
has been seen (received correctly) on the current bus or a
message is seen with an error flag set. This means if there is
an intermittent fault on the bus it is possible to lose a num-
ber of message since the last periodic reset of the modules
flags. In this case, as long as one message is received the
module will not switch to the redundant bus.

6. Conclusion

We have applied model-checking techniques to a
TTCAN-based vessel control system that is currently un-
der development, and in the process learned several useful
lessons about applying model-checking to industrial design
problems. We found that the process of analysing and devel-
oping the finite state models of the implementation allows a
developer to gain a deeper understanding of how the mod-
ules on a distributed system interact. As a result, a num-
ber of problems were found during the development of the
models, before the verification phase of the model checking
work. As expected, the majority of the problems identi-
fied tended to be in the interaction between modules across
the distributed system. We also found that the creation and
simulation of the models revealed sequences of events that
were not taken into account during the initial software de-
sign. These events did not necessarily cause problems but
this added to the understanding of some areas of the system.
Adding this detail to the model ensures that these sequences
of events are accounted for and will interact correctly with
future additions to the system. Our experience has been
that being on-site during development of the models was
essential for communication between the modellers and the
system developers. Talking with the developers helped to
ensure that the model correctly represented the implemen-
tation, and that the potential problems that we found could
be discussed and resolved.

By developing detailed models and correctness proper-
ties for the system early-on, areas were revealed where the
initial design specifications had to be made more concise
or altered. In this case, the specification of the backup MC
takeover scheme, the length of the exclusive TTCAN mes-
sage windows, and TTCAN error handling were all altered
during the initial development. By identifying the problems
early in development, the specifications could be updated
and code modified with a minimum impact on project dead-
lines.

We found that developing a set of smaller models each
targeted at different areas of the system allowed verification
to be completed using a reasonable amount of resources.
Due to the modular design of the system and low coupling

between modules, developing a number of separate models
was a logical step. We also found that using abstraction was
key in developing models that could be verified using a rea-
sonable amount of resources. During development, a num-
ber of modifications were made to the modelling of CAN
message transmission and bus arbitration. Initially, a de-
tailed layered model of the CAN protocol was developed,
but to reduce the state-space of the verification an abstract
model was used only including properties relevant to verifi-
cation of TTCAN, such as bus access and arbitration. This
freed up resources for verification of more complex network
configurations and more properties relevant to this particu-
lar TTCAN implementation.

We found efficiently modelling the progression of time
to be one of the most important aspects in the design of the
models. Using the VTA technique proved to simplify the
process of developing a model that accurately represents
the protocol, when compared to an untimed model. We
found that using VTA enabled greater control in constrain-
ing the sequences of events generated by the models, and
this was important when modelling timing dependent areas
of TTCAN such as the message schedules and the startup
algorithm.
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