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ABSTRACT

A method to improve time resolution in 3D contrast-enhanced magnetic resonance angiography (CE-MRA) is
proposed. A temporal basis based on prior knowledge of the contrast flow dynamics is applied to a sequence of
image reconstructions.

In CE-MRA a contrast agent (gadolinium) is injected into a peripheral vein and MR data is acquired as
the agent arrives in the arteries and then the veins of the region of clinical interest. The acquisition extends
over several minutes. Information is effectively measured in 3D k-space (spatial frequency space) one line at-a-
time. That line may be along a Cartesian grid line in k-space, a radial line or a spiral trajectory. A complete
acquisition comprises many such lines but in order to improve temporal resolution, reconstructions are made from
only partial sets of k-space data. By imposing a basis for the temporal changes, based on prior expectation of the
smoothness of the changes in contrast concentration with time, it is demonstrated that a significant reduction
in artifacts caused by the under-sampling of k-space can be achieved. The basis is formed from a set of gamma
variate functions. Results are presented for a simulated set of 2D spiral-sampled CE-MRA data.

1. INTRODUCTION

In magnetic resonance imaging (MRI), information is effectively measured in 3D k-space (spatial frequency space)
one line at-a-time. That line may be along a Cartesian grid line in k-space, a radial line or a spiral trajectory.
A complete acquisition comprises many such lines but in order to improve temporal resolution, reconstructions
are often made from partial sets of k-space data. In parallel MRI, multiple receiver coils are used so that
several signals are recorded in parallel; the different sensitivity functions associated with the coils allow images
to be reconstructed from fewer measurements than would otherwise be the case.1–3 However, the significant
time needed to acquire data in MRI remains a significant problem. While techniques such as fast spin echo
(FSE) and/or various non-Cartesian sampling strategies can be used to acquire image data relatively rapidly,
the acquisition time for a full set of data is still normally longer than one minute. Some acquisition sequences
take many minutes to complete. When MRI is employed to assess the state of the circulation with the aid of
injected contrast material, the method is called contrast-enhanced magnetic resonance angiography (CE-MRA).
The contrast material is a compound containing gadolinium (Gd), which alters the T1 property of the blood
with which it mixes and differentiates it from the surrounding tissue. The contrast material is injected as a
‘bolus’, often by means of a powered syringe, usually into a peripheral vein.4 Some seconds later it arrives in the
arteries within the region being imaged, the ‘field-of-view’ (FOV). In CE-MRA it is important to get sufficient
time resolution to be able to observe the arrival and flow of the contrast material through the vessels within the
FOV. A great deal of attention has therefore been directed at developing methods of acquiring and processing
MR data to achieve the higher time resolution. This paper reports our efforts to utilize temporal basis functions
for this purpose.
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MRA has become an accepted standard for evaluation for renovascular and peripheral vascular disease.4

The fact that it is noninvasive, compared to some other angiographic techniques which require use of ionizing
radiation or the insertion of a catheter, is a particularly strong point in its favour. Not all MRA methods require
contrast material: the time-of-flight (TOF) method can be used in cases where injection of Gd is contraindicated
or when repeated studies are required.4 However, it is generally considered to be inferior to CE-MRA in terms
of diagnostic quality.4,5 Only CE-MRA is considered here.

A number of authors have previously attempted to introduce a temporal basis into medical image recon-
struction. The majority of the work to date has been directed at cardiac imaging, where the approximately
periodic nature of the motion and the availability of an independent synchronous signal, the electrocardiogram,
can be exploited.6–8 While the cardiac-related work helps to illustrate the potential for incorporating temporal
constraints into the imaging process, it cannot be directly applied to the CE-MRA case. The effect of k-space
sampling order on CE-MRA has also been studied.5,9 It was found that the best quality images were achieved
when the center of k-space was sampled at the time when the peak concentration of contrast material reached the
region of interest. The difficulty is that it is often desirable to observe the complete vascular system in a region
and during both the arterial and venous phases,5 therefore it is desirable to have repeated rapid re-sampling
of the center of k-space. Prince et al developed methods to automatically detect the arrival of the contrast
material bolus at a particular point before commencing data acquisition.10 While this helped to reduce the need
for careful synchronisation of the contrast injection with the collection of data, it did not in itself assist with
achieving a higher temporal resolution. Korosec et al introduced 3D TRICKS (time-resolved imaging of contrast
kinetics) in which a high sampling density was applied in the central area of k-space and temporal interpolation
was applied within k-space.11 There does not appear to be any report of research into applying a particular
temporal basis for CE-MRA.

In the paper, we review the methods used for parallel MRI and describe an algorithm we have developed for
deriving a small set of temporal basis functions. We present some preliminary results which demonstrate the use
of the temporal basis on a set of simulated data for spiral trajectory CE-MRA data acquisition. We then discuss
how the method could be applied more widely.

2. BACKGROUND

2.1. Parallel MRI

In parallel MRI, an array of receiver coils is used to acquire simultaneous recordings. Since the k-space sampling
trajectory is controlled by the gradient fields and excitation sequence, all coils receive information representing
the same location in k-space. However each coil has a different sensitivity variation within the FOV because
of the coil’s different physical orientation and location. Methods such as SMASH (SiMultaneous Acquisition of
Spatial Harmonics)1 and SENSE (SENSitivity Encoding)2 are designed to exploit the coil sensitivity variation.

SMASH uses linear combinations of the receiver coils signals to synthesize sinusoidal variation across the FOV
and to thus effectively extend the k-space coverage associated with any k-space site measured by the excitation
sequence.1 In this manner, fewer sequences are required to achieve Nyquist sampling in k-space and thus to form
an image. SMASH and its derivatives are referred to as “k-space methods” for parallel MRI.3

In SENSE the signals from each coil are used to form an image, i.e., one image for each coil. In order to
speed up the acquisition, fewer samples are made in k-space than would be adequate to provide an un-aliased
image. The knowledge of the coil sensitivity variation is then used to reduce the aliasing.2 SENSE and similar
methods are referred to as “image space methods” for parallel MRI.3

2.2. Data acquisition

The emphasis in parallel MRI to date has been on k-space sampling strategies which lead to sampling on the
Cartesian grid. This suits SMASH-like methods since the synthesis of spatial harmonics straightforwardly can
be used to recover k-space samples which are positioned at fixed offsets from measured points. It also suits
SENSE-like methods, since block-based sampling of k-space allows the recovery problem to be partitioned into a
large number of smaller problems.12–15 However, for achieving the high temporal resolution required in CE-MRA
or other applications of MRI associated with movement, such as cardiovascular imaging, radial or spiral sampling



trajectories may have advantages.16 Spiral k-space trajectories have been modeled in the simulations presented
below.

Knowledge of the coil sensitivity variation across the FOV is central to the use of parallel MRI methods, so
some form of calibration is required.3 One approach is to place a homogeneous spherical phantom within the
scanner and to record a set of volume data. In many cases, however, in vivo calibration is performed,3 whereby
a data acquisition sequence of the actual volume to be imaged is taken without any contrast being injected. This
may ba separate acquisition, or part of the main acquisition sequence completed before the injection. Since the
signal from each location in the object should be the same, the only differences in signal (both amplitude and
phase) received by the various coils should be due to the differences in their sensitivity (plus a relatively minor
contribution from electronic noise). To save time, a calibration sequence is often recorded at lower resolution
than the main imaging sequence.3

2.3. Modeling temporal variation

In contrast-enhanced MRA a bolus of gadolinium-containing compound is injected into a peripheral vein. The
injected material diffuses within the bloodstream as it is propelled to the right side of the heart, through the
lungs, through the left side of the heart and then finally to the site of interest. The diffusion within the moving
bloodstream is such that the concentration of contrast material, observed at some downstream point, rises from
zero to a peak and then decays somewhat more slowly than it rose. If monitoring continues, it may be possible
to see a later recirculation phase, but attention is normally directed to the first pass of the contrast material. A
number of authors have analysed the shape of the contrast-versus-time curve and concluded that it approximates
to a gamma variate function17,18 (neglecting the recirculation, if present). Ample experimental evidence exists
for the applicability of the gamma variate function to studies involving the use of a marker substance.19–21

In its most common form the gamma variate function can be expressed as

y(t) = A(t− t0)
α exp (−(t− t0)/β) , t ≥ t0, (1)

where t0 is the point at which the function commences and α and β are real parameters. However Madsen18

showed how it can be expressed in a more convenient form:

y(τ) = ymax τα exp (α(1− τ)) , (2)

where τ = (t− t0)/(tmax − t0), tmax is the time at which the function peaks and ymax is the amplitude at that
time. The shape of the gamma variate function in the form of Eq. 2 is controlled by the single parameter, α.

2.4. Forming a temporal basis

Within a sequence of MRA images of a fixed FOV, the expectation is that different pixels (or voxels if the images
are 3D) will have distinctly different temporal variation throughout the sequence. Firstly, those associated with
areas free of significant bloodflow will have little temporal variation other than the inevitable signal noise and
the artifacts likely to be caused if the sampling density in k-space is below the Nyquist limit. Those associated
with arteries will exhibit a relatively early and rapidly rising contrast pulse. Those associated with the venous
drainage will exhibit a relatively later and more slowly rising pulse with lower peak amplitude than for the
arterial pixels (voxels). The time of onset will depend on the relative distance from the FOV entry point for the
bloodflow to the point of observation and the timing of the injection relative to the start of the data acquisition.

While the gamma variate function provides a very useful model for the expected intensity variation in those
parts of the image where blood vessels lie and therefore through which blood and contrast flows, the function has
several parameters controlling the temporal variation, i.e., t0, tmax and α, as presented above in Subsection 2.3.
Our approach to constraining the temporal variation is to form a set of basis functions a linear combination
of which can accurately represent the range of responses expected within the image. We have employed the
Karhunen-Loeve transform (KLT) which is known to provide an optimal basis under certain conditions.22

Our algorithm can be summarized as follows:



1. A set of gamma variate functions, K in number, is formed with different randomly chosen characteristics
in terms of Eq. 2 and the parameters t0, tmax, and α; the set are stored in a matrix G, dimensioned K×N ,
where N is the number of time samples over which the MRA sequence is to be modeled. In practice, N
depends on the characteristics of the data acquisition sequences employed and the time resolution sought.

2. The KLT is applied to the set by computing the eigenvectors of the covariance matrix of G, GGT .

3. The K̂ eigenvectors associated with the largest eigenvalues of GGT are chosen as the temporal basis
functions. Each eigenvector has N elements and represents a temporal basis function.

4. The sequence of intensity values for all pixels (voxels) in the MRA image sequence are projected onto the
temporal basis. In this manner the N independent values associated with the time variation for each pixel
is mapped onto K̂ coefficients, where K̂ < N .

Since the number of temporal basis functions retained in the algorithm, K̂, is chosen to be less than N , there is
clearly compression occurring, which could be advantageous. However, the main benefit of applying the temporal
basis is in the suppression of artifacts, since they are very unlikely to be correlated with the temporal basis
functions. The simulations presented in the next section demonstrate how the algorithm achieves a significant
improvement in image sequence quality.

3. SIMULATIONS

3.1. The “Reconstruction Challenge”

As part of the annual conference of the International Society for Magnetic Resonance Imaging in Medicine
(ISMRM) in 2010, a competition was run to see which group could generate the best reconstructions from
several sets of data. One of the sets of data, given the name “Need for speed” in the competition, was a sequence
of spiral-sampled k-space data for a parallel MRI acquisition. In fact, the data was simulated by re-sampling
an image sequence collected by X-ray digital subtraction angiography, but it closely resembled the sort of data
expected for an MRI study. It provided a useful vehicle for testing our algorithm.

Data were simulated using a frontal projection X-ray sequence of a contrast bolus injection in the left vertebral
artery of a patient with an arteriovenous malformation (AVM) in the brain. X-ray data were collected 3 frames
per second, for a total of 10 seconds (31 collected frames) which span wash-in to wash-out. These were linearly
interpolated in time between frames to create a total of 200 temporal images, each with 512x512 resolution.
Coil sensitivity maps derived from an axial slice through a water phantom using an 8-channel head coil were
superimposed on the image to create 8 “coil” images. Independent noise was added to each channel. After
Fourier transformation, the k-space data were re-sampled over 200 trajectories, one per frame, each with 2000
points.

In Fig. 1(a) is shown the first two consecutive spiral trajectories for sampling in k-space. The center of k-space
represents zero spatial frequency and sampling occurs out to radius 0.5 on the scale shown, corresponding to
an image FOV of 512×512. The series of spiral trajectories repeats every 13 spirals and the 13 are uniformly
angularly spaced over 360deg. Note however that each spiral is rotated by approximately 111deg from its
predecessor in acquisition order. In Fig. 1(b) is shown a reconstructed image which was formed from all of the
k-space NFS data for all 8 coils over the acquisition sequence (RMS over the coils, summed over time).

3.2. Reconstruction of images

Each spiral trajectory comprises 2000 samples, commencing at the center of k-space. In principle an image can
be reconstructed from any number of consecutive spirals: the fewer the number of spirals used, the better the
time resolution. We chose to use 5 consecutive spirals to reconstruct each frame, representing a frame rate of 4
frames / sec. 5 spirals represents a total of 10000 k-space samples, compared to approximately π 2562 = 205890
samples in order to fully sample the cartesian grid within a circular region. There is therefore a high degree
of under-sampling in k-space. A number of methods have been used to re-grid under-sampled k-space data
onto a Cartesian grid. However, the sparsity of the data in this case makes those methods relatively ineffective.
Our approach instead has been to perform a simple nearest-neighbour allocation of samples onto grid points for
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Figure 1. Illustration of the NFS data set. (a) The sampling positions in k-space for the first two spiral trajectories. (b)
A reconstruction averaged over all coils and all time instants.

each consecutive set of 5 spirals, using a complex average in cases where two or more samples have the same
neighbouring grid point. The resulting array is then transformed via the inverse 2D FFT to form an image.
The under-sampling generates significant artifacts on each reconstruction, but the use of the temporal basis
(described below) reduces these to an acceptable level.

3.3. Combining data from coils

The simulated data was supplied in the form of multiple recordings, simulating the use of an 8-coil receiver unit,
as described above in Subsection 3.1. It was therefore possible to form 8 separate reconstructions, one for each
“coil”. It should however be possible to exploit the multiple recordings and knowledge of the individual coil
sensitivities to improve the image reconstruction. In this case neither the SENSE or SMASH approaches seemed
to offer much promise. SENSE requires a regular (patterned) form of under-sampling in order to apply a linear
algebraic approach to lowering the effect of aliasing. SMASH only has the ability to recover regions of k-space
immediately adjacent to the sampling points, which would have the effect of broadening the spiral trajectories,
say to 3 or 5 pixels wide, instead of a single pixel wide. Observations of the corresponding sampling pattern
point spread functions indicated that the effect on image quality would be relatively small. We adopted a simpler
approach, therefore, as described below.

For each pixel in a given frame, a vector of complex amplitudes, d, dimensioned 8× 1, is generated by means
of inverse Fourier transformation from the array of spiral samples. A set of relative coil sensitivities, c, also
dimensioned 8× 1 and also expressed as complex amplitudes, is available a priori. We seek therefore to find the
pixel magnitude |f |, according to the model

d = f c. (3)

The MMSE solution to this is simply to minimise |d− f c|2. In our implementation this has been encoded as

f =

∣∣∣∣∣
∑8

m=1 (R(ci)R(di) + I(ci)I(di)) + j
∑8

m=1 (R(ci)I(di)− I(ci)R(di))∑8
m=1 |ci|2

∣∣∣∣∣ (4)

where R(x), I(x) denote the real, imaginary parts of x, respectively. This form allows the relatively efficient
vector and matrix operations of MATLAB (MathWorks, Natwick, Mass.) to be used.
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Figure 2. Illustration of the formation of a temporal basis set: (a) the first 20 out of a set of 100 unit amplitude gamma
variate functions with randomly assigned parameters, and (b) the first 4 basis functions generated from the training set.

3.4. Computing the temporal basis

As described above in Subsection 2.4, a temporal basis was formed from a set of gamma variate functions G. The
200 spirals generated 40 frames at 5 spirals per frame, so N = 40, representing a total interval of 10 seconds. A
total of 100 functions were generated, so G was 100× 40. The first 20 of these functions are shown in Fig. 2(a).
In each case the peak amplitude was fixed at unity while the three other parameters in Eq. 2 were randomly
chosen with a uniform distribution from within the following ranges: t0 -2 to +5 seconds; tmax +2 to +7 seconds;
and α 0.8 to 3.0. These ranges were chosen so that the 100 gamma variate functions represented a reasonable
approximation to the expected shape of intensity-versus-time responses in the various parts of the FOV where
blood vessels lay.

The algorithm detailed in Subsection 2.4 was then applied. Experimentation indicated that a total of 4
temporal basis functions was sufficient to fit the set of sample functions in G within a small MSE, so the results
presented in the next section are for 4 basis functions if not otherwise stated. Fig. 2(b) shows the four basis
functions generated by the process. While recomputing the basis functions for a different set of gamma variate
exemplars with the same parameter ranges will generate a different basis, experience shows that the functions are
very similar in nature each time. Likewise, making small changes to the ranges of the gamma-variate parameters
was found to have relatively little effect on the basis functions formed by KLT, indicating that the process is
reasonably robust.

4. RESULTS

In Fig. 3 reconstructions of a single frame (the 10th out of a total of 40, with 5 spirals per frame and 4 frames
per second) are shown for various methods. In all cases simple nearest-neighbour assignment of k-space data
onto the Cartesian grid was used, with no attempt to enforce the Hermitian property in k-space or to otherwise
fill in the missing samples. Near the center of k-space, where several spiral samples may fall within a particular
k-space pixel, the complex average of the measurements was assigned.

A direct inverse transformation from single-coil data without any compensation for the coil sensitivity and
without any account taken of temporal variation is shown in Fig. 3(a). Note the spiral-like artifacts; when the
sequence of reconstruction is observed, the artifacts appear to swirl around the image. The effect of combining
the data from all 8 coils, incorporating the sensitivity map information, is shown in Fig. 3(b). The edge of the
circular FOV appears because the coil sensitivity maps were only defined out to that boundary. There is some
slight improvement in the level of sampling artifacts, but the appearance of the blood vessels is still noticeably
affected by the presence of artifacts generated by the severe under-sampling in k-space.
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Figure 3. Reconstructions of frame 10 out of 40 with 4 frames per second and each frame generated from 5 spirals: (a)
direct inverse transformation of k-space data for coil 1 only; (b) direct inverse transformation, but combining all coils with
sensitivity adjustment; (c) applying a temporal basis with 4 basis functions for coil 1 only; and (d) applying a temporal
basis with 4 basis functions, combining all coils with sensitivity adjustment.
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Figure 4. Study of the variation in reconstructed intensity with time within the vascular tree. Three small regions were
segmented from the image: region A is within the prominent artery lower center (solid curves); region B is close to the
center (dotted curves); and region C is within the peripheral venous region upper left (dashed curves). (b) Intensity versus
time curves generated by direct inverse transformation and combining all coils (i.e. without any temporal constraints).
(b) Intensity versus time curves generated by applying the temporal basis (four basis functions only), combining all coils.
(c) As for (b), but with 6 basis functions.

Corresponding reconstructions with a temporal basis applied are shown in Fig. 3(c) and (d). In both cases
only the first 4 temporal basis functions, computed as explained above in Section 3, were used. In Fig. 3(c), the
reconstruction for single-coil data without any compensation for the coil sensitivity is shown, while in Fig. 3(d),
all coil data has been combined. In both cases the use of the temporal basis has had a dramatic effect in
suppressing the background artifacts and, more significantly, improved the clarity of the vessels comprising the
arterial tree greatly. The venous structure is not visible, since the frame is relatively early in the sequence.

Intensity versus time curves for selected regions within the FOV are shown in Fig. 4. Three small regions were
segmented from the image (refer to Fig. 1(b)): region A is within the prominent artery lower center, region B is
close to the center, and region C is within the peripheral venous region on the left of the FOV. The mean intensity
of pixels within each region was calculated frame-by-frame to generate the curves. Fig. 4(a) shows curves for
regions A, B and C generated by direct inverse transformation and combining all coils (i.e. without any temporal
constraints), while Fig. 4(b) shows curves generated by applying the temporal basis (four basis functions only),
combining all coils. The smoothing effect of applying the basis is clearly evident. For comparison Fig. 4(c) shows
the curves generated when an additional 2 basis functions are added; Figs. 4(b) and (c) are sufficiently similar
to suggest that 4 basis functions are sufficient in this case.

Fig. 5 shows 5 frames selected from the sequence of 40 frames. The temporal basis of 4 basis functions has
been used and data from all coils combined. Note that the general quality is reasonable and there is a clear
progression in time throughout the sequence.

5. DISCUSSION

Results are presented above for a set of 4 temporal basis functions formed by KLT. The number was chosen as
the minimum required to achieve a reconstructed sequence consistent with expectations for the set of data. In
general, the basis needs to be tailored to the specific imaging situation. For example, there is a considerable
difference between arterial and venous contrast injection, so the nature and number of basis functions need to
be chosen accordingly. In addition, a different basis, for example one based on wavelets, may produce better
results. Wavelets are well known to be good for representing transient signals and those which are expected to
have similar shape.23

In the paper, results are presented for simulated spiral trajectory data with a relatively unsophisticated
reconstruction method. The application of the temporal basis should be equally applicable to other sampling
strategies and reconstruction methods and actual CE-MRA data. We plan to investigate the usefulness of the
temporal basis with SENSE,2 SMASH1 and our own algorithm for parallel MRI, GUISE.15
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Figure 5. Reconstructions of five frames from a total sequence of 40 at 4 frames per second and each frame generated
from 5 spirals: (a) frame 1; (b) frame 10; (c) frame 20; (d) frame 30; and (e) frame 40.

The key to virtually any imaging process is the SNR achieved in the collection of data and the reconstruction
into an image. Generally in MRA there is a definite trade-off between SNR and time resolution. However, there
is room to improve the SNR in a reconstructed sequence by exploiting more prior knowledge. We conjecture that
the imposition of an appropriate temporal basis has the potential to improve SNR without sacrificing significant
temporal resolution. We plan to extend the work presented here to include the analysis of SNR.

The object being imaged in CE-MRA is real so its Fourier transform is Hermitian.22 In principle this means
that the samples obtained along any spiral trajectory have known conjugate duals reflected through the origin
of k-space. While this suggests that k-space coverage is improved by invoking this prior knowledge, in practice
the property may be of limited use. Experiments have shown that the image space point spread functions
corresponding to the spiral sampling pattern with and without invoking the Hermitian property feature the
same central impulse spanning approximately 7 pixels. The images formed can therefore be expected to have
the same degree of sharpness. The periphery of the PSF is lowered in amplitude in the Hermitian version, which
suggests a lowering of artifacts in the reconstructions. However it is important to note that the SNR is not
improved, since one noisy measurement is being used to generate two k-space values.

6. CONCLUSIONS

The diffuse nature of the mixing of contrast agent and blood, coupled with the transient wash-in and wash-out
during the recording of a CE-MRA sequence, suggest that each frame in a sequence is highly correlated to
the frames next to it in time. A method is proposed which uses the prior knowledge that the gamma variate
curve is a useful model for the image intensity versus time observed in locations where contrast-containing
blood flow is present. The preliminary results presented suggest that considerable improvement in the quality of
reconstructed sequences of images in CE-MRA can be achieved by incorporating an appropriate temporal basis.
A novel approach employing the Karhunen-Loeve transform is described and results are presented for a publicly
available simulated set of CE-MRA data.
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