
Intermediate Checksums for Improving Goodput
over Error-Prone Links

Andreas Willig

Communication Systems Group
Hasso-Plattner-Institute, University of Potsdam

Prof.Dr-Helmert-Strasse 2-3
14482 Potsdam, Germany

Fon: +49 331 5509216, Fax: +49 331 5509229
email: willig@hpi.uni-potsdam.de, awillig@ieee.org

Abstract— When a frame transmitted over an error-prone link
is hit by bit errors, it is retransmitted entirely, despite t he fact
that often only a few bits are erroneous. In this paper we
propose to not use a single checksum covering all data bits, but
multiple checksums covering only parts of a frames data block
(a chunk). In case of a retransmission only the chunks with a
wrong checksum are retransmitted. We show analytically that
for high bit error rates and a time-invariant binary symmetr ic
channel this approach can give significant advantages in terms of
goodput over the traditional scheme using only a single checksum
per frame. In addition, we propose a simple scheme for adapting
the chunk size to the current channel conditions and present
first results for this, indicating that for bad channel conditions
close-to-optimal goodput is achieved.

I. I NTRODUCTION

Almost all Automatic Repeat reQuest (ARQ) protocols [1],
[2] rely on checksumsto let the receiver decide about the
presence of transmission errors. If the checksum is wrong, the
receiver provides the transmitter with appropriate feedback,
which triggers a frame retransmission. This kind of protocols
is also used in wireless LANs (e.g. in the IEEE 802.11 WLAN
standard [3]), which sometimes have to cope with high bit
error rates.

In case of transmission errors often only a few bits are
erroneous, but in a frame retransmissionall bits are transmitted
again, including the correct ones. This paper introduces the so-
called intermediate checksum framing scheme(ICF), which
attempts to rescue most of the correct bits and to restrict
retransmissions only to those parts of a frame where bit errors
actually occured; a similar idea is briefly sketched in [4].
The rough idea is as follows: if there ares bits of user
data, protocols with conventional header/data/trailer framing
(HDTF) schemes put a header ofo bits in front of the user data,
and a trailer ofh bits behind the user data. The header might
carry source and destination address, frame length information
and further control information, while the trailer consists of the
frames checksum. Thus, the overall frame has sizeo + s + h.
In case of a retransmission all of theseo + s + h bits have to
be transmitted again. In contrast, in the ICF scheme thes user
data bits are partitioned intoL chunks, each having a raw size
of c bits, to which a checksum ofh bits is appended (we do

not consider slack chunks for the moment). A frame is formed
by appending all the chunks to a frame header of sizeo′ ≥ o

bits, and the overall frame has sizeo′ +L · (c+h) > o+s+h

bits. The receiver behaves as follows: if it detects an error
in the frame header (which has a separate checksum), the
frame is discarded and the transmitter has to retransmit the
full frame. If the header is correct, the receiver checks each
chunk separately and buffers the correct chunks. If all chunks
are correct, the receiver delivers the frame to its upper layers
and sends afinal acknowledgement. If not all chunks are
correct, the faulty chunks are indicated to the transmitterwith
an incomplete acknowledgement. The transmitter retransmits
only the faulty chunks. For example: if the first frame has
L = 8 chunks and the receiver receives five out of eight,
it requests the missing three chunks. This has the beneficial
effect that the retransmission frame is much smaller, consumes
less energy, produces less interference, is less likely hitby
errors and reaches the receiver with smaller delay. However,
the intermediate checksums impose a higher overhead, which
may eat up any gains in goodput for small bit error rates.

In this paper we describe the ICF scheme in some more
detail and compare it to the HDTF schemes applied in the
IEEE 802.11 wireless LAN (full frames, fragmented frames)
with respect to the maximum achievable goodput under a sim-
ple time-invariant binary symmetric channel. It shows up that
despite its increased overhead ICF can reach a significantly
higher goodput for high bit error rates (which occur frequently
in wireless LAN environments) than what could be achieved
with any of the IEEE 802.11 HDTF schemes. On the other
hand, under good / ideal channel conditions the overhead of
the ICF scheme leads to a smaller goodput than that achievable
with HDTF. Therefore, we introduce a simple scheme for
adapting the chunksizec to the current channel conditions and
show its ability to adapt to different channel conditions. We
note that the notion of goodput refers to the framing overhead
needed to transmit one bit of user data. Other error source
like collisions are not taken into account. Additionally, we
note that maximizing goodput is equivalent to minimizing the
energy expenditure.

The paper is structured as follows: in the following Section

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UC Research Repository

https://core.ac.uk/display/35465152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II we describe the system model used in this paper and provide
a more detailed description of the operation of both the HDTF
and ICF schemes. In Section III we compare the goodput of
both schemes analytically for a channel with independent bit
errors and constant bit error rate. Following this, we present
in Section IV a simple scheme for adapting the chunk size
to the current channel conditions, and show its performance
for simple examples. After briefly reviewing related work in
Section V, the paper is concluded in Section VI.

II. SYSTEM MODEL

For the purposes of this paper we consider a simple system,
consisting of two stations calledtransmitterandreceiver, and
a communications channel in between them. The transmitter
consists of adata source, generating blocks of user data having
s bits size, and a protocol engine, which implements the send-
and-wait protocol [2] along with either the ICF or HDTF
scheme. The receiver generates acknowledgement frames and
delivers the received data in-sequence to its upper layers.1

The precise operation of the HDTF scheme used in this
paper is as follows: a block ofs bits of user data is transformed
into a frame by prepending a header ofo bits and appending
a trailer of h bits. For example, in generic frames of the
IEEE 802.11 wireless LAN [3], [5] the checksum field has
a width of h = 32 bits and a MAC header ofo = 240 bits
(without considering the header of the physical layer). We
consider two different modes for HDTF, similar to what is
supported in IEEE 802.11: HDTF with and without fragmen-
tation. In the mode without fragmentation thes bits of user
data are encapsulated into a single frame and the transmitter
performs retransmissions until the receiver sends an immediate
acknowledgement (which is a positive acknowledgement /
final acknowledgement) or the maximum number of trials has
been exhausted. However, for the purposes of this paper we
assume the maximum number of trials to be unlimited. In the
mode with fragmentation (henceforth referred to as HDTF-
F/R) large frames are fragmented into a number of smaller
frames (according to a predefinedfragmentation threshold), to
improve the probability of successful delivery of a fragment.
Each fragment has a full header ofo bits and is transmitted
until it is successfully received or the maximum number of re-
transmissions is exhausted. After the receiver has successfully
received all fragments, these are reassembled and the resulting
data block is delivered to the upper layers.

Before presenting the ICF scheme in some more detail, we
discuss the frame headers for the HDTF and ICF schemes.
We distinguish between thecommon headerand theextended
header. The common header contains all those fields which
both the HDTF scheme and the ICF scheme have in common,
e.g. source and destination address, control fields etc. Specifi-
cally, we assume that the common header contains asequence
number or seqno field which helps in distinguishing new
frames from retransmitted frames. Furthermore, the common

1We note that nothing in the proposed ICF scheme prevents using more than
two stations, and furthermore ICF is not tied to send-and-wait. Instead, it can
also be integrated with the Goback-N or Selective-Repeat ARQ protocols.

header contains aframe lengthor fl field, which indicates the
overall frame length in bits.2 The extended header contains two
different fields: thechunk sizeor cs field indicates the size
of a full chunk in bits (or larger units like bytes, words, etc.),
excluding the chunk checksum, while theheader checksumor
hcs field contains a checksum covering both the common and
extended headers, but none of the chunks in the frames data
part. The receiver can infer the number of chunks contained
in a frame and the size of slack chunks from both thefl and
cs fields.

The ICF scheme works as follows: after accepting a request
of sizes bits from the upper layers, the transmitter fragments
this into chunks of sizec (stored in thecs field) and an ad-
ditional slack chunk. For each chunk a checksum is computed
and appended to the chunk. The initial frame is constructed
from all chunks. Let us first assume that the receiver receives
a frame with a correct header checksumhcs and a new
sequence number. The receiver can infer the total number of
chunks needed for the user request from the initial frame and
allocates a number ofchunk-buffersaccordingly. The receiver
checks all chunks from the initial frame separately and copies
all those with a correct checksum into the respective chunk-
buffer. If some chunks are missing, the receiver sends an
incomplete ackframe. This contains basically a bitmap where
each bit indicates the state of the respective chunk-buffer: a
zero bit indicates that the corresponding chunk is still missing,
while a one bit indicates that the receiver received the chunk
correctly. If all chunks are received correctly, the receiver
sends afinal ackframe. If the receiver receives a retransmitted
frame (i.e. it receives a frame with an already seen sequence
number), it copies the correct chunks to their respective chunk-
buffer and generates the appropriate acknowledgement. If the
transmitter receives a final ack, it may start to process the
next user request (with a new sequence number). In case of
an incomplete ack, the transmitter prepares a retransmission
frame containing only the missing chunks. If the receiver
fails to acquire bit synchronization or if the header check-
sum hcs is wrong, the receiver keeps quiet. Therefore, the
transmitter needs mechanisms to detect the absence of an
acknowledgement frame, e.g. based on timers. In this case the
last transmitted frame (either initial or retransmitted frame) is
repeated completely.

For the checksums we assume that both the HDTF scheme
and the ICF scheme use the same kind of checksums.3 Typ-
ical checksum algorithms are parity bits, Cyclic Redundancy
Checks (CRC)’s [6], [7] or the Fletcher checksum used in TCP.
In the IEEE 802.11 WLAN standard CRC’s are used. For the
purposes of this paper we do not require any specific kind of
checksum, however, for simplicity we assume the checksum
to be perfect, i.e. the residual error probability is negligible.

Although not necessary for the protocol, we assume hence-

2This information can also be part of the physical layer header, like in
the IEEE 802.11 WLAN with DSSS PHY, or can be inferred from gaps
surrounding a frame.

3An interesting aspect would be to shorten the checksum in theICF scheme
if the chunk size is small.



forth that the channel has zero propagation delay, which
is a reasonable assumption for wireless LAN environments.
Furthermore, in the following analytical and simulation-based
evaluations for simplicity we assume that only bit errors hap-
pen, packet losses due to failure to acquire bit synchronization
is not considered.4

III. A NALYTICAL EVALUATION FOR A

TIME-HOMOGENEOUSBINARY SYMMETRIC CHANNEL

In this section we compare the ICF and the HDTF schemes
with respect to the achievable goodput and the required
number of packets, other performance measures are not con-
sidered. For analytical tractability, we restrict to the simple
case of a time-homogeneous binary symmetric channel (BSC)
with a fixed bit error probabilityp (i.e. all bit errors occur
independently and with the same bit error rate). For the HDTF
scheme withs bits of user data,o bits of header andh bits of
trailer / checksum, the frame error probabilityP is given by:

P = 1 − (1 − p)o+s+h

The numberTHDTF of necessary frame transmissions until
successful reception is a geometric random variable with
parameterP , and:

E [THDTF ] =
1

1 − P
= (1 − p)−(o+s+h)

The goodput for the HDTF scheme can be characterized as
the ratio of the size of the user data and the expected number
of bits needed to successfully deliver them:

G(s) =
s

E [THDTF ] · (o + s + h)
=

s(1 − p)(o+s+h)

o + s + h
(1)

It is straightforward to find the optimal sizes of user data
which maximizes the goodputG(s) for a given bit error rate
p:

sopt(p) =
−(o + h)

2
−

1

2 log(1 − p)
(2)

·
√

(o + h) log(1 − p) ((o + h) log(1 − p) − 4)

It is a little bit more complex to obtain the goodput of the
ICF scheme. The basic tool for this is the development of a
time-homogeneous discrete time Markov chain (TH-DTMC)
describing the evolution of the transmission ofs bits of user
data. We assume an overhead ofo′ > o bits, L ≥ 1 chunks,
furthermore each chunk consists ofc bits user data bits plus
h bits for the chunk checksum. The overall frame size is thus
o′ + L · (c + h) ≥ o + s + h bits (if s = L · c). For a single
user request, we introduce the state variableXn as the number
of unacknowledged chunks after then-th frame transmission,
clearly we haveX0 = L. The receiver discards a frame
completely, if the header checksum is incorrect, which happens
with probability 1 − (1 − p)o′

. The probability that a single
chunk is erroneous is given by1−(1−p)c+h. The probability,

4In [8] it is shown that frame losses due to lack of bit synchronization are
a major source of frame errors.

that the receiver receives the header correctly whilek out of
M chunks are received in error is given by:

r(k, M ; p, c, h, o′)

= (1 − p)o′

·

(
M

k

)
·
(
1 − (1 − p)c+h

)k (
(1 − p)c+h

)M−k

which is due to the independence assumption for the bit errors
and the binomial distribution. We give the state transition
matrix governing the process(Xn)n∈N0

for the special case of
L = 4, the extension to a generalL is quite straightforward:

P =





1 0 0 0 0
r(0, 1) 1− 0 0 0
r(0, 2) r(1, 2) 1− 0 0
r(0, 3) r(1, 3) r(2, 3) 1− 0
r(0, 4) r(1, 4) r(2, 4) r(3, 4) 1−




(3)

where the first row corresponds to state 0, the second row to
state 1, and the last row to state 4, and the constant parameters
have been suppressed fromr(k, M ; p, c, h, o′). Furthermore,
the entries1− are chosen such that the respective row sums
up to one. We will denote the entry in thei-th row andj-
th column ofP as [[P]]i,j = pi,j , and the entry in thei-th
row andj-th column of the matrix powerPn is denoted as
[[Pn]]i,j = p

(n)
i,j . In general,P is an(L+1)×(L+1) stochastic

matrix.
The first interesting performance measure is the expected

number of framesE [TICF ] needed by the ICF scheme to
successfully delivers = c ·L bits of payload. It is convenient
to use the survivor representation of a discrete random variable
N with rangeN0 [9, p.181]:

E [N ] =
∞∑

i=1

Pr [N ≥ i]

In our case we can write:

E [TICF ] =

Pr [one or more steps are needed]

+ Pr [two or more steps are needed]

+ Pr [three or more steps are needed]

+ Pr [four or more steps are needed]

+ . . .

= 1 +
∞∑

i=2

(1 − Pr [Xi = 0 |X0 = L ])

= 1 +

∞∑

i=2

(1 − [[P i]]L+1,1)

As a first showcase, we compareE [TICF ] andE [THDTF ]
for transmission ofs = 1000 bits of user data. We have
usedh = 16 bits for each checksum, the common header
is of o = 100 bits length, while the common and extended
header sum up too′ = 116 bits. For the ICF scheme we have
used fixed values ofc = 250 and L = 4. For the HDTF
scheme we have assumed the variant without segmentation
and reassembly. The results for varying bit error ratep are



1

10

100

1000

10000

100000

1e-05 0.0001 0.001 0.01 0.1 1

HDTF
ICF

p

E
[T

H
D

T
F
],

E
[T

I
C

F
]

Fig. 1. Expected number of frames needed to transmit 1000 bits of payload
vs. the bit error ratep, the HDTF scheme uses a single frame withs = 1000,
the ICF scheme usesc = 250, L = 4

shown in Figure 1 as a log-log-plot. It can be seen that for
increasingp we haveE [THDTF ] � E [TICF ] and the order
of magnitude of the difference increases with increasingp. As
an example, forp = 0.004 we haveE [THDTF ] ≈ 88.6 and
E [TICF ] ≈ 8.7. Therefore, if the transmitter has no chance to
select a good frame size for data transmission and the channel
has high error rates, the intermediate checksum approach can
give dramatic improvements in transmission efficiency.

In the second step, we compare the ICF scheme with the
HDTF scheme with fragmentation and reassembly (see Section
II), termed HDTF-F/R. The best use of HDTF-F/R is made if
the size of a frames data part is chosen according to Equation
2, since this choice maximizes the goodput by minimizing
the frame retransmission probability. Again, both schemesare
faced to the task of transmittings = 1000 bits of user data over
a channel with bit error ratep. The HDTF scheme is allowed
to pick the optimum frame sizes′ = min{sopt(p), 1000} and
for this frame sizeE [THDTF ] is computed and multiplied
with the needed number of framess

s′
(ignoring rounding to

the next integral number). As for the ICF scheme, we have to
decide about the optimal chunk size, which can be shown to
be given by:

copt(p) = −
h

2
+

√
h(h log(1 − p) − 4)

4 log(1 − p)
(4)

This chunk size optimizes the goodput of a single chunk:

H(c) =
c · (1 − p)c+h

c + h
(5)

With this relationship,L is determined as:

L =

⌈
1000

min{copt(p), 1000}

⌉

and c as 1000
L

, again ignoring the need to round to the next
integer. The result is shown in Figure 2. It can be seen that
even if the HDTF-F/R scheme is allowed to pick the optimum

1

10

100

1e-05 0.0001 0.001 0.01 0.1 1

HDTF-F/R
ICF

p

s s
′

·
E

ˆ

T
H

D
T

F
−

F
/
R

˜

,
E

[T
I
C

F
]

Fig. 2. Expected number of frames needed to transmit 1000 bits of payload
vs. the bit error ratep for the ICF and the HDTF-F/R schemes, using optimum
frame / chunk sizes

frame size, the ICF scheme needs significantly fewer frames
for error ratesp ≥ 10−4.

As a third comparison, we present results for the optimum
achievable goodput for the ICF and HDTF schemes for varying
bit error ratep. For the HDTF scheme, the optimal goodput
is directly determined from Equation 1 picking the optimal
frame size determined from Equation 2. The other parameters
are o = 100 bits and h = 16 bits. For the ICF scheme
the optimal goodput is (at least in principle) obtained by
counting for each possible execution the number of bits spent
for it, and summing over all possible executions, weighing
each execution with its probability. An efficient computation
procedure was developed, however, the details are omitted due
to lack of space. The computations were carried out using
o′ = 116 and h = 16 bits, and the chunk size is determined
from Equation 4. In Figure 3 we compare the achievable
goodput for both schemes for bit error rates betweenp = 10−5

andp = 10−2 and for different values ofL, thus making the
initial frames in the ICF scheme larger. The following points
are remarkable:

• The ICF scheme gives significantly better optimal good-
put than the HDTF scheme for error rates≥ 10−4

• The goodput of the intermediate checksum scheme tends
to increase withL, but the advantage becomes smaller as
L becomes larger.

• The ICF scheme has its biggest advantages forp ≈ 2 ·
10−3 . . . 3 · 10−3 (for p = 0.002 we have: goodput of
HDTF ≈ 0.335, goodput of ICF≈ 0.5) while for even
larger p the curves move closer together. Accordingly,
we can observe in Figure 2 that for largerp the curve
for the ICF scheme has a larger slope than the curve
for the HDTF scheme. An explanation for this is that
we have usedo = 100 and o′ = 116, which was done
to account for the extension header needed by the ICF
scheme. Therefore, asp becomes larger, the additional
retransmissions caused by the larger header tend to eat



0

0.2

0.4

0.6

0.8

1

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011

HDTF
ICF, L=4
ICF, L=8

ICF, L=12
ICF, L=16
ICF, L=20
ICF, L=30

p

op
tim

um
ac

hi
ev

ab
le

go
od

pu
t

Fig. 3. Comparison of the optimum achievable goodput for theHDTF scheme
(with s = sopt(p)) and the ICF scheme for differentL andc = copt(p)

up the gains of the ICF scheme.

IV. M AKING THE SCHEME ADAPTIVE

In the previous section we made the unrealistic assumptions
that: a) the channel bit error rate is constant; and b) it is known
to the transmitter, which can choose the optimum chunk or
frame size. In practice, however, neither of these conditions is
true. We could always choose a small chunk size. This may
give close-to-optimal goodput for high bit error rates, butfor
small rates significant bandwidth is wasted. In this section
we propose a simple adaptation scheme, which gives almost
the optimum goodput for high error rates, reasonable goodput
for low error rates and which uses only information readily
available; no additional information from the hardware (like a
received signal strength indicator) is used.

Our starting point are Equations 5 and 4, which allow to find
the optimum chunk size for the instantaneous bit error ratep.
Therefore, the transmitter has to estimatep. To do this, it keeps
for a given chunksizec′ a history of outcomes(ti, L′, ri, wi),
where an outcome belongs to a single user request to transmit
s bits of user data. The history is required to have a certain
depth for performing the adjustment algorithm. This depth is
either specified by a fixed numbern of entries, or by restricting
the entries to belong to a time window. For simplicity, we
choose the first approach. For outcomei, ti denotes the time
instant where the final ack is received,L′ denotes the nominal
number of chunks (L′ = s ÷ c′), ri ≥ L′ denotes the
number of actually transmitted chunks, andwi denotes the
number of actually transmitted slack chunks, which occur if
L′ mod c′ 6= 0. The proposed scheme assumes that channel
errors occur independently with a constant rate during the
time spanned by the history entries. Therefore, the number
of trials needed to transmit a single chunk can be modeled
as a geometric random variableTC with parameterpC . We
haveE [TC ] = 1

pC
. If we haven entries in the history and

if X̂(n) = 1
n

∑n

i=1 ri is the mean number of actual chunks

needed to transmitL chunks of sizec′, then we estimate

E [TC ] ≈
X̂(n)

L′

and accordingly L′

bX(n)
gives the estimated success probability

pC to transmit a chunk correctly. The chunk error probability
is then estimated as1−pC . For a BSC channel the relationship
between the bit error ratep and the chunk error rate1 − pC

is given by:
1 − pC = 1 − (1 − p)c+h

which can be solved forp as:

p = 1 − p
1

c+h

C

However, practical experimentation with known channel con-
ditions showed that a more accurate estimate is given by:

p = 1 − p
1

c+h+o′

C

which can be explained by the fact that all frames for a
request have a header of sizeo′ bits which for the first and
subsequent retransmission is shared between only a small
number of chunks. In addition, errors in the header lead to loss
of all the contained chunks. The actual adjustment algorithm
requires a fixedn ≥ 1 and adjusts the chunksizec′ only within
some boundscmin andcmax, the initial chunk size iscinitial.
Furthermore, ifX̂(n) = L′ then we choosec′ = cmax. After
adjusting the chunk size the history is cleared.5

We discuss some experiments with this adaptation scheme.
The results are obtained using simulations. The simulator
uses the OMNet++ discrete-event simulation package [10]
and is validated by comparison with the analytical results
from Section III. We have chosenh = 16, o′ = 116 ,
cmin = 2 ·h = 32, cmax = 100 ·h = 1600 andcinitial = 300.
We have sets to 3600 bits and new requests are generated
every 10 milliseconds. The channel bandwidthb is 1 MBit/s,
the history depth isn = 10 and we considered two constant
bit error rates ofp = 0.001 andp = 0.00001. For p = 0.001
the optimal chunk size is≈ 118 bits and forp = 0.00001 it is
≈ 1256 bits. The evolution of the chunksize over the first 100
seconds is shown forp = 0.001 in Figure 4 (the corresponding
figure for p = 0.00001 is omitted due to lack of space). The
following points are remarkable:

• Forp = 0.001 the actual chunksizes have only a compara-
bly small variance (coefficient of variation of≈ 0.2) and
a mean value of≈ 126 bits, which is close to the optimal
chunksize of 118 bits. Therefore, it is not surprising that
the achieved goodput of 0.643 is close to the optimal
goodput of 0.646.

5We made the implicit assumption that all history entries have the same
weight. However, one can argue that old entries are useless and that entries
should be weighted according to their age. However, in the evaluations
discussed in this paper we have assumed a periodic traffic source with 100
Hz, and the settingn = 10 means that the history entries are at most 100
milliseconds old when they are considered for adjustingc′. But clearly, for a
practical implementation a more sophisticated scheme is needed.



200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70 80 90 100

time

c
′
(t

)

Fig. 4. Evolution of estimated chunk sizes for a BSC withp = 0.001 for
the first 100 seconds

• For p = 0.00001 the mean value of the actual chunksizes
is 1343 bits, as compared to the optimal value of 1256
bits. The coefficient of variation of the chunk sizes is
≈ 0.3, therefore, for smallerp the chunk sizes are more
variable than for largerp. The actually achieved goodput
is 0.94, which three percent less than the theoretical
optimum of 0.97.

The main advantage of this simple estimator is that it uses
readily available data and that its computation costs are quite
moderate, the computation time of the mean valueX̂(n) is
basicallyO(n).

V. RELATED WORK

The idea to use intermediate checksums seems, to the best
of our knowledge, not be discussed in the literature so far,
except from [4], where the approach is briefly sketched but not
followed anymore. On the other hand, the idea to adapt frame
sizes to the current channel conditions is not new, in [4] it is
shown that adaptation can give significant gains in goodput.
The adaptation is done purely below the IP layer, whichs
frames are fragmented into smaller ones and reassembled at
the receiver. The bit error rate is estimated at the receiver, e.g.
by observing frame/fragment losses or from an FEC decoder.
After a certain time the receiver requests a new frame size
from the transmitter, piggybacked on an acknowledgement.
Another paper dealing with adapting the frame sizes for the
send-and-wait protocol over fading channels is [11]. Again,
the adaptation strategy is based on counting positive and
negative acknowledgements. It is shown by simulation that
the adaptive protocol gives significantly better goodput than
with static packet sizes, even for difficult fading channels.
The combination of adaptive frame length control and FEC
is explored in [12].

VI. CONCLUSIONS

In this paper we have introduced the idea to use intermediate
checksums in large frames to avoid loss of many correct bits

when only a few bits are erroneous. We have shown that in
case of a static binary symmetric channel and comparably high
error rates as they might occur in wireless channels, the ICF
scheme delivers significantly better user data goodput thanthe
traditional HDTF scheme. In addition, the ICF scheme can be
easily incorporated into other ARQ protocols than send-and-
wait.

However, since wireless channels are time-varying and
typically unknown, the right chunk size cannot be statically
configured. Therefore, we have developed a simple scheme
for adapting the chunk size to the current channel conditions.
Despite its simplicity (only readily available information is
taken into account) the adaptation scheme achieves close-to-
optimum goodput for high bit error rates, for small bit error
rates the results are still satisfactory.

There is a lot of room for further research. One important
topic is the behavior of the ICF scheme and the adaptation
scheme for different types of wireless channels, e.g. when
errors occur in bursts. Another important topic is to investigate
other adaptation schemes and to incorporate the effects of
FEC.

REFERENCES

[1] H. Liu, H. Ma, M. E. Zarki, and S. Gupta, “Error control schemes for
networks: An overview,”MONET – Mobile Networks and Applications,
vol. 2, no. 2, pp. 167–182, 1997.

[2] D. Haccoun and S. Pierre, “Automatic repeat request,” inThe Communi-
cations Handbook, J. D. Gibson, Ed. Boca Raton, Florida: CRC Press
/ IEEE Press, 1996, pp. 181–198.

[3] The Editors of IEEE 802.11,IEEE Standard for Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) specifications, Nov.
1997.

[4] P. Lettieri and M. Srivastava, “Adaptive frame length control for im-
proving wireless link throughput, range and energy efficiency,” in Proc.
INFOCOM 1998. San Francisco, CA: IEEE, 1998, pp. 564–571.

[5] M. S. Gast,802.11 Wireless Networks – The Definitive Guide. Se-
bastopol, CA: O’Reilly, 2002.

[6] A. M. Michelson and A. H. Levesque,Error-Control Techniques for
Digital Communication. New York: John Wiley and Sons, 1985.

[7] S. Lin and D. J. Costello,Error Control Coding – Fundamentals and
Applications. Englewood Cliffs, New Jersey: Prentice-Hall, 1983.

[8] A. Willig, M. Kubisch, C. Hoene, and A. Wolisz, “Measurements of
a wireless link in an industrial environment using an IEEE 802.11-
compliant physical layer,”IEEE Transactions on Industrial Electronics,
vol. 49, no. 6, pp. 1265–1282, 2002.

[9] R. Nelson,Probability, Stochastic Processes, and Queueing Theory –
The Mathematics of Computer Performance Modeling. New York:
Springer Verlag, 1995.

[10] OMNet++ V. 2.3 Simulation Package, 2001.
[11] S. Hara, A. Ogino, M. Araki, M. Okada, and N. Morinaga, “Throughput

Performance of SAW-ARQ Protocol with Adaptive Packet Length in
Mobile Packet Data Transmission,”IEEE Transactions on Vehicular
Technology, vol. 45, no. 3, pp. 561–569, Aug. 1996.

[12] P. Lettieri, C. Schurgers, and M. B. Srivastava, “Adaptive link layer
strategies for energy-efficient wireless networking,”Wireless Networks,
vol. 5, no. 5, pp. 339–355, Nov. 1999.


