DEVELOPING A RESILIENCE FRAMEWORK TO ASSESS TOURISMS' RESPONSE TO CLIMATIC EVENTS

Susanne Becken, Lincoln University

University of Surrey : 27 June to 1 July 2011

Stress and Disturbances

ROAD CLOSED

Centre for Land Environment & People

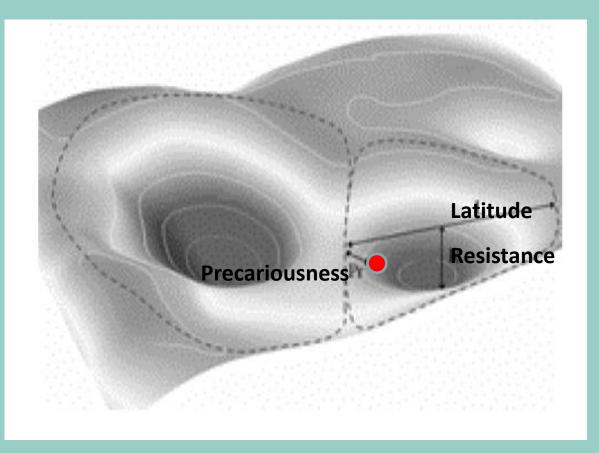
A Lincoln University Research Centre. New Zealand's specialist land-based university.

What is resilience

- "... measure of the persistence of systems and of their ability to absorb change and disturbance and still maintain the same relationships between populations or state variables" (Holling, 1973: 14)
- The essence of resilience thinking is that it explicitly seeks to address change rather than avoid it.

Centre for Land Environment & People A Lincoln University Research Centre.

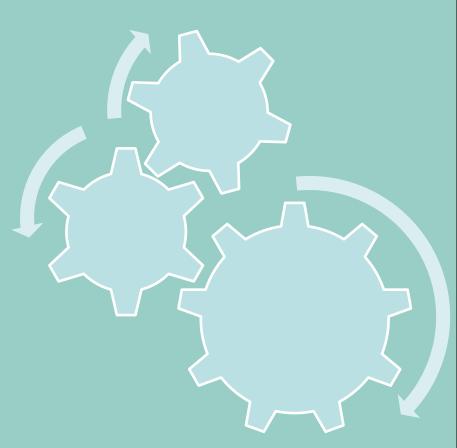
Further definitions


- Related concepts: ecological resilience, social resilience, adaptive capacity, vulnerability.
- Different views but Klein et al. (2003) propose that 'adaptive capacity' is the collective ability to manage resilience.

Centre for Land Environment & People A Lincoln University Research Centre. New Zealand's specialic Land-based university

State space

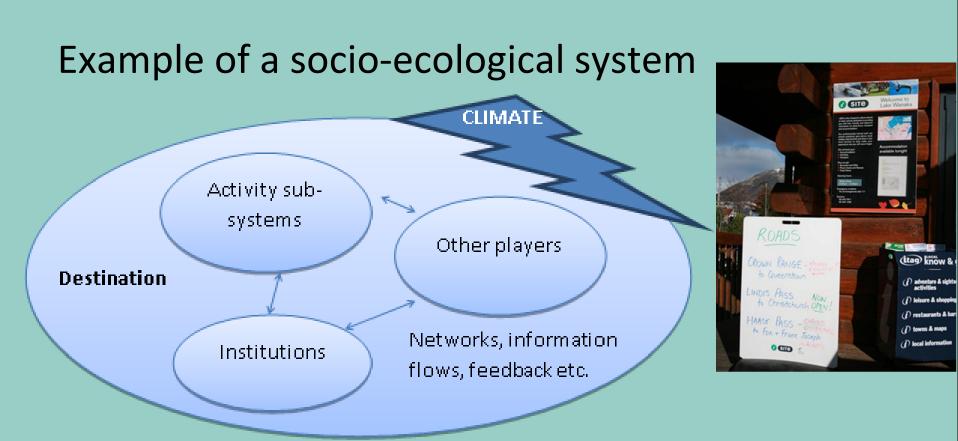
Three dimensional stability landscape with two basins of attraction showing (Walker et al., 2004).



Centre for Land Environment & People A Lincoln University Research Centre. New Zealand's specialist land-based university.

Panarchy

Because of cross-scale interactions, the resilience of a system at a particular focal scale will depend on the influences from states and dynamics at scales above and below.



Centre for Land Environment & People

A tourist destination

Centre for Land Environment & People

A Lincoln University Research Centre. New Zealand's specialist land-based university.

Case study Queenstown-Wanaka (NZ)

Methodology

1. Understand the context:

- subsystems and their functional units
- relationships within subsystems

2. Identify relevant climate/weather disturbances and interactions with subsystems

3. Development of proxies for measuring or assessing L, R, P for each functional unit

For this present paper: 34 interviews with business operators

Centre for Land Environment & People

lew Zealand's specialist land-based university

Tourism activity sub-systems

- Snow based (ski field, helisking)
- River based (fishing, rafting, jet boating)
- Lake based (fishing, kayaking, scenic boat trips)
- Air based (scenic flights, sky diving, air show)
- Land based (events, guided walks, horse riding, wine trails, 4WD)
- Other (bungee, gondola, luge)
- Transport (airport, shuttle services, scenic tours, local bus)
- Indoor attractions (entertainment, museum)
- Accommodation (backpacker hostel, hotel, camping ground, luxury lodge).

Centre for Land Environment & People

Climatic factors

Sub- system	Adverse	Favourable
Snow	Lack of snow and precipitation, wind, rain; heavy snow increases avalanche risk; warm temperatures	Heavy snow early in the season, regular snow, cold temperatures
River	Heavy rain and flooding; frost and ice on river; extremely low river levels	Normal rainfall patterns leading to normal river flows
Lake	Wind and high waves; debris on the lake after flooding	Road closures elsewhere and tourists redirected onto lake activities
Air	Wind, rain and poor visibility	Settled weather periods
Land	Heavy rain and flooding; heavy snow (avalanches); wind	Wind, if other activities have to be cancelled and tourists are diverted
Indoor	Wind can lead to power cuts; ice on carparks; heavy rain increases maintenance costs (e.g. leaks)	Rain and wind that lead to cancellation of other activities
Other	Wind leads to closure of gondola; frost makes luge and bungee hazardous; poor visibility	
Transp ort	Frost and ice; heavy snow	Heavy snow for those providers that have 4WD vehicles
Accom.	Rain for campgrounds	Rain, frost for non-camping accommodation

Determining thresholds

Activity	Sub- system	Thresholds	Notes
Heli skiing	Snow based	If marginal snow conditions more often than the current 1 in 4 years	Affects business viability
Ski field	Snow based	30km wind shuts down T-bar, less wind shuts down chair lift; gusty winds have lower threshold	Have own weather station/ wind sensors on lift towers; Visual appraisal for gustiness
Scenic flights	Air based	Flights need 100% visibility as they are 'scenic' flights	Wind thresholds vary dependent on plane type
Airshow	Air based	15-18 knots limit for WW1 planes, 32 knots other types; Low cloud or fog	Wind thresholds dependent on plane type
Skydive	Air based	CAA rules for daylight hours; Solid cloud base above 15,000 ft; Wind <21 km/hr on ground wind	Direction of wind important; own weather stations and sensors
Fishing	River based	20mm rain in < 2 hours	Flooding of river
Jet boat I	River based	River flow: 9.5-1250 m3 Council restrictions on operating hours	Not just flow – also clarity
Jet boat II	River based	Maybe cancel at 80 m3; Ice in river	Variable water pressure
Rafting	River	Optimum river flow 10-70 m3 >400 m3 stops operation	Depends on specific conditions
Gondola	Other	Gondola < approx 75km/hr wind speed, otherwise	Depends on wind gusts

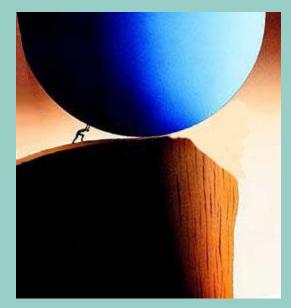
Proxies for Latitude

- PRODUCT: Diversity of tourist activities that allows operation across many weather conditions.
- CUSTOMER BASE: Diversity of markets and segments.
- STAFFING: Degree of operational flexibility, and retention of experienced staff.
- SEASONALITY: Extent of operating window (ideally all year round).
- ACCESS: Dependence of activities in sub-system on a particular location or resource (e.g. cultural ties to one specific river).
- NETWORKS: Connectedness of activity sub-system, within and across other subsystems to allow diversification in the face of adverse conditions.
- COMPETITION: Degree to which profitability and flexibility are compromised by competition.

Centre for Land Environment & People A Lincoln University Research Centre. New Zealand's specialist land-based university

Proxies for Resistance

- WEATHER SENSITIVITY: Degree to which activities in the sub-system are limited by adverse climatic conditions.
- COPING RANGE: Level of critical threshold above which operation is not possible.
- RESPONSE OPTIONS: Range of response options to disturbance/stress in the sub-system (i.e. feedbacks).



Centre for Land Environment & People A Lincoln University Research Centre.

Proxies for Precariousness

- FREQUENCY: Extent to which operations in activity sub-system are disrupted under current climate conditions.
- CLIMATE CHANGE: Extent to which climate change will exacerbate climatic impacts.

Centre for Land Environment & People A Lincoln University Research Centre. New Zealand's specialist land-based university

Challenges

- Fully operationalise framework
- Development of quantifiable indicators and integration of qualitative information (e.g. power relationships)
- Diversity within sub-systems (weighting of keystone activities?)
- Scale (e.g. how to "add up sub-systems" to destination?)
- Other, complex destination issues (e.g. flow of information)
- Multiple stress factors, etc. etc.

Centre for Land Environment & People A Lincoln University Research Centre. New Zealandis sperialist Land-based university

Outlook

- Importance of the concept of Resilience
- Researching destinations as socio-ecological systems represents a holistic approach
- Further extension: Panarchy in tourism systems

Centre for Land Environment & People

