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Abstract: Critically ill patients commonly experience stress-induced hyperglycaemia, and several studies 

have shown tight glycaemic control (TGC) can reduce patient mortality. However, tight control is often 

difficult to achieve due to conflicting drug therapies and evolving patient condition. Thus, a number of 

studies have failed to achieve TGC possibly due to use of fixed insulin dosing protocols over adaptive 

patient-specific methods. Model-based targeted glucose control can adapt insulin and dextrose 

interventions to match identified patient sensitivity. This study explores the impact on control of 

assuming patient response to insulin is constant versus time-varying. Simulated trials of glucose control 

were performed on adult and neonatal virtual patient cohorts. Results indicate assumptions of constant 

insulin sensitivity can lead to significantly increased rates of hypoglycaemia, a commonly cited issue 

preventing increased adoption of tight glycaemic control in critical care. It is clear that adaptive, patient-

specific, approaches are better able to manage inter- and intra- patient variability than typical, fixed 

protocols. 
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1. INTRODUCTION 

Critically ill patients, both adult and infant, often experience 

hyperglycaemia and high levels of resistance to insulin 

(McCowen et al., 2001). Hyperglycaemia worsens outcomes, 

increasing the risk of severe infection (Bistrian, 2001), 

myocardial infarction (Capes et al., 2000) and critical illness 

such as polyneuropathy and multiple organ failure (Van den 

Berghe et al., 2001). The occurrence of hyperglycaemia is 

associated with increased morbidity and mortality in adults. 

Glycaemia variability, and thus poor control, is also 

independently associated with increased mortality (Egi et al., 

2006). 

An increasing body of recent literature links hyperglycaemia 

in preterm neonates to worsened outcomes in a parallel of the 

adult case. Studies have demonstrated an increased risk of 

further complications such as sepsis, increased ventilator 

dependence, retinopathy of prematurity, hospital length of 

stay and mortality associated with high levels of blood 

glucose (Alaedeen et al., 2006, Hays et al., 2006, Ertl et al., 

2006). 

Hyperglycaemia as a response to the stress of critical illness 

is a common origin of this altered metabolic state in both 

adults and neonates. The counter-regulatory response to 

stress increases the level of circulating catecholamines, 

resulting in increased endogenous glucose production and 

reduced sensitivity to insulin. Hyperglycaemia in the neonate 

is unique in that in addition to manifestation as a response to 

stress, several patho-physiologies are directly related to the 

immaturity of the glucose regulatory system, including 

impaired beta-cell secretion of insulin (Mitanchez-Mokhtari 

et al., 2004), limited number of insulin-dependent tissues 

(Raney et al., 2008) and hepatic unresponsiveness to glucose 

infusions (Cowett et al., 1983). 

Tight glycaemic control has been shown to reduce mortality 

by 18 - 45% in adult patients (Chase et al., 2008, Van den 

Berghe et al., 2001). There is also evidence of significant 

reductions in the need for dialysis, bacteraemia testing and 

blood transfusions with TGC using intensive insulin therapy 

(Van den Berghe et al., 2001). All of these results point 

towards the conclusion that the control of blood glucose 

levels in adult critical care has a significant clinical impact. 

Although it is now becoming an unacceptable practice to 

allow hyperglycaemia and its associated effects (Preiser and 

Devos, 2007), moderately elevated blood glucose levels are 

tolerated or recommended (Schultz et al., 2008) because of 

the fear of hypoglycaemia and higher nursing effort 

frequently associated with TGC (Preiser and Devos, 2007). 

Model-based control may offer advantages in glucose 

regulation (Chase et al., 2006). 

In general, any glycemic control protocol must reduce 

elevated blood glucose levels with minimal hypoglycaemia, 

while accounting for inter-patient variability, conflicting drug 
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therapies and dynamically evolving physiological condition. 

Thus, it must titrate glucose control interventions based on 

some estimate of patient metabolic state – either identified 

from data in the case of adaptive model-based control, or 

assumed constant in some form as in the case of fixed insulin 

dosing protocols. 

In this study, the effects of intra- and inter- patient variability 

in sensitivity to insulin is explored in the context of 

simulations of glucose control using a clinically validated 

glucose-insulin system model. Adaptive, model-based control 

is modified in simulation to test the relative importance of 

tracking metabolic state between patients and over time by 

instructing the controller to assume the patient response to 

insulin is constant. 

Cohorts of virtual patients, fitted from clinical retrospective 

data, are used to determine the impact of not adequately 

addressing inter- or intra-patient variability on glycaemic 

control. Clinically validated virtual trial simulations are 

performed on both adult and neonatal patients to highlight the 

potential for model-based control to better adapt to 

significantly different clinical situations. 

Many insulin therapy regimes employ fixed dosing protocols, 

or dosing schemes adjusted by patient weight or other factors 

(Beardsall et al., 2007), and thus ignore inter- and/or intra-

patient variability in metabolic response. Thus, exploring the 

relative importance of model-based control to account for 

inter- vs. intra- patient variabilities and the differences in 

variability between adults and neonates can indicate the 

mechanisms by which model-based control can provide more 

robust and safer control of glucose levels. 

2. METHODS 

2.1 Models 

Blood glucose system models clinically validated in both 

adults and neonates are used in this study (Chase et al., 

2007). The overall form of the models is presented in 

Equations (1)-(3). Major components of the model are 

displayed in Fig 1. 
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Where G(t) [mmol/L] is plasma glucose I(t) [mU/L] is 

plasma insulin, uex(t) [mU/min] is exogenous insulin input, 

basal endogenous insulin secretion is IB [mU/L/min], with kI 

representing suppression of basal insulin secretion by 

exogenous insulin. Interstitial insulin is Q(t) [mU/L], with k 

[1/min] accounting for losses and transport. Body weight and 

brain weight are denoted by mbody [kg] and mbrain [kg]. Patient 

endogenous glucose clearance and insulin sensitivity are pG 

[1/min] and SI [L/(mU.min)]. The parameter VI,frac [L/kg] is 

the insulin distribution volume per kg body weight and n 

[1/min] is the transport rate of insulin from plasma. Total 

plasma glucose input is P(t) [mmol/min], endogenous 

glucose production is PEND [mmol/kg/min] and VG,frac [L/kg] 

represents the glucose distribution volume per kg body 

weight. CNS [mmol/kg/min] captures non-insulin mediated 

glucose uptake by the central nervous system. Michaelis-

Menten functions model saturation, with αI [L/mU] for the 

saturation of plasma insulin disappearance, and αG [L/mU] 

for insulin-dependent glucose clearance saturation.  

The models are similar in structure, with modifications 

generally in parameter values to account for differences in 

adult and neonatal physiology, and to account for the number 

of kinetic studies available in the neonatal literature. Further 

details on model development (Hann et al., 2005), simulation 

(Lonergan et al., 2006) and clinical usage (Wong et al., 2006) 

are available elsewhere. 

2.2 Patient cohorts 

For this study, two cohorts are analysed: 

• Adult ICU (ICU): N = 393 patients from SPRINT with 

over 40,000 hours of data (Chase et al., 2008) 
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Fig 2. Adaptive control methodology. 
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Fig 1. Major components of the glucose-insulin model. 



 

 

     

 

• Neonatal ICU (NICU): N = 25 patients and over 3,500 

hours of data (Le Compte et al., 2009) 

For each cohort, insulin sensitivity, SI, is identified hourly 

from the clinical data. A virtual patient profile is the record of 

fitted insulin sensitivity. The fit and prediction ability of the 

models is similar over both cohorts, with a median blood 

glucose fit error of 1.2% (IQR: 0.5 – 2.0%) and 2.4% (IQR: 

0.9-4.8%) for the adult and neonatal cohorts respectively. 

Blood glucose prediction errors in response to insulin and 

dextrose interventions for the adult and neonatal models are 

also similar with 5 – 10% BG errors for 1 and 2 hour forward 

windows respectively. 

2.3 Simulated trials and control methods 

Adaptive control was performed in simulation across both 

cohorts using the control methodology, as described in Fig 2, 

to mimic typical clinical usage. For adaptive control the 

insulin sensitivity parameter (SI) is fitted over the patient data 

up to the current BG measurement at each BG measurement 

and control intervention cycle. This value of insulin 

sensitivity is held constant over the prediction interval and 

Equations (1) – (3) are solved for 1 to 2 hours into the future. 

The glucose response to a range of insulin values is computed 

to determine which insulin rate would achieve control closest 

to the target BG concentration. Blood glucose targets were a 

reduction of 15% per hour, to a minimum target of 5.0 

mmol/L for adults, and 6.0 mmol/L for neonates. 

To explore the impact of variation in insulin sensitivity on 

model-based control, the real-time fitting of insulin 

sensitivity was replaced by two alternatives and compared to 

the adaptive control method, summarised in Fig 3: 

•  Per-patient constant insulin sensitivity: The median 

fitted value of insulin sensitivity for each patient is used as 

the value of SI employed by the controller in choosing insulin 

rates. This control method accounts for inter- patient, but not 

intra- patient, variability. 

• Whole-cohort constant insulin sensitivity: The median 

value of insulin sensitivity for the entire cohort is used by the 

controller for all patients. This method assumes both that all 

patients exhibit the same level of response to insulin, and that 

insulin response does not exhibit any temporal variation, 

ignoring both inter- and intra- patient effects. 

Finally, model-based control results in adults are compared to 

the simulations using the SPRINT protocol – a paper-based 

protocol designed to mimic model-based control and used 

clinically since August 2005 (Chase et al., 2008). SPRINT 

uses 1-2 hourly BG measurement and intervention intervals 

and modulates both insulin infusion rates and nutritional 

inputs for control to a 4-6 mmol/L target band. 

Retrospective dextrose input profiles and constant two-hourly 

BG measurement and control interval timing was used for the 

neonatal cohort simulations, and SPRINT nutrition and BG 

measurement protocols were used for adult simulations. 

Bolus-based insulin delivery was simulated for adults and 

infusion delivery was used for the neonates. These choices 

reflect typical clinical implementation methods.  

3. RESULTS 

Empirical density functions of fitted insulin sensitivity for 
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Fig 3. Comparison of whole-cohort constant SI, per-patient 

constant SI and adaptive control methods. 

 

Fig 4. Whole-cohort insulin sensitivity distributions for 

adults (44,386 hours) and neonates (3,567 hours). 
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neonates and adult patients are compared in Fig 4. The 

median insulin sensitivity for neonates was 0.68x10
-3

 

L/(mU.min), compared to 0.24x10
-3

 L/(mU.min) for adults, 

and these values were used for the respective whole-cohort 

constant insulin sensitivity control simulation studies. The 

5% - 95% data interval was [0.17 – 1.70]x10
-3

 L/(mU.min) 

for neonates and [0.06 – 0.79]x10
-3

 L/(mU.min) for adults. 

The distributions of hourly insulin sensitivity variation 

between adults and neonates are presented in Fig.5. NICU 

patients show significantly less intra-patient temporal 

variation in insulin sensitivity. This result, coupled with the 

wider overall cohort distribution in insulin sensitivity 

suggests that NICU patients exhibit less intra-patient 

variation and higher inter-patient variation in response to 

insulin compared to adults. This result suggests the relative 

importance of identifying per-patient response to insulin 

inputs may be different between the two cohorts. 

Table 1 presents the glycaemic control performance for 

adults in simulation of model-based control with assumptions 

placed on controller-assumed insulin sensitivity. The median 

BG concentration is similar for all versions of model-based 

control. However increased variability is evident, as shown 

by the wider inter-quartile ranges and larger geometric 

standard deviations. This increased glycaemic variability is 

shown more dramatically by deteriorating time within target 

glycaemic ranges and increases in number of measurements 

below hypoglycaemic threshold and number of patients 

experiencing hypoglycaemia. This result is also evident in 

Fig. 6, which shows similar median BG for all model-based 

controllers, with the tightest spread of BG belonging to the 

adaptive control method. The per-patient constant and cohort-

constant results exhibit flatter distributions, with significant 

hypoglycaemia. The results for SPRINT in Table 1 show 

glycaemic control performance with respect to %BG within 

the target range is superior to the per-patient constant 

controller, but less effective than the adaptive controller, 

where SPRINT achieved 51.5% within the target band 

compared to 46.6% and 60.3% for per-patient constant and 
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Fig. 6. Simulated distribution of BG (top), insulin usage 

(middle) and dextrose administration (bottom) for adults.  
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Fig. 7. Simulated distribution of blood glucose 

concentration and insulin usage for neonatal patients and 

model-based controllers. 

Table 1. Simulated control for adult patients (N=393) with variations in controller-assumed insulin sensitivity 

  Model-based control 
SPRINT 

  Adaptive control Per-patient constant Cohort constant 

Total hours: 48,697 hours 48,721 hours 48,759 hours 48,701 hours 

Num BG measurements: 29,202 32,641 35,036 29,376 

BG median [IQR] (mmol/L): 5.5 [4.9 - 6.6] 5.5 [4.5 - 7.3] 5.3 [4.1 - 7.6] 5.9 [5.1 - 6.9] 

BG mean (geometric) (mmol/L): 5.8 5.8 5.6 6.0 

BG SD (geometric) (mmol/L): 1.3 1.4 1.5 1.3 

%BG within 4.0 - 6.1 mmol/L 60.3 46.6 38.7 51.5 

%BG within 4.0 - 8.0 mmol/L 83.1 65.8 54.1 82.1 

%BG < 4.0 mmol/L 4.8 14.0 23.2 4.8 

%BG < 2.2 mmol/L 0.05 0.33 1.03 0.04 

Num patients < 2.2 mmol/L 11 29 67 12 

Median insulin rate [IQR] (U/hr): 5.6 [2.3 - 6.0] 4.5 [1.9 - 6.0] 4.5 [2.3 - 6.0] 3.0 [2.0 - 3.0] 

Median glucose rate [IQR] (g/hour): 5.2 [3.9 - 6.5] 5.2 [3.3 - 6.5] 5.9 [2.6 - 6.5] 5.2 [3.3 - 5.9] 

 



 

 

     

 

cohort constant control respectively. 

Table 2 and Fig. 7 present the results of control simulations 

on the neonatal cohort. Similar loss of control performance is 

exhibited for controllers that assume constant insulin 

sensitivity. Especially evident in Fig. 7 is that the tightest, 

most vertical BG distribution is associated with adaptive 

control, yet the opposite pattern is present for insulin rates, 

where the tightest spread of values is for the whole-cohort 

constant SI controller. Thus, the constant controllers tend to 

vary insulin rates less, allowing patient variability to flow 

through to glycaemic levels, whereas adaptive control stops 

patient variability flowing through to BG levels by varying 

insulin rates in accordance to sensitivity to insulin. 

4. DISCUSSION 

Reductions in glycaemic control performance were observed 

when using controllers that used constant assumptions for 

insulin sensitivity, and is consistent across both adult and 

neonatal cohorts. Interestingly, median BG values are similar 

for all controllers tested, and the reduction in performance 

was captured in increased glycaemic variability as measured 

by higher standard deviations, lower times in target bands, 

higher hypoglycaemia and flatter cumulative distribution 

curves. This result suggests that designing and analysing 

glycaemic control with respect to a target median level of 

glycaemia may miss important information about variability. 

The effects of low blood glucose levels are considered much 

more serious and immediate than high blood sugar levels. 

Thus, there has been a trend to aim for higher BG levels to 

avoid hypoglycaemia, whereas a more effective alternative 

method may be to use protocols that adequately account for 

variability and provide tighter control, achieving the goals of 

glucose control to within healthy physiological ranges 

without increased risk of hypoglycaemia. Importantly, it may 

be time in a glycaemic control band (eg: 4.4 – 6.1 mmol/L) 

that determines outcome, rather than a target median, as 

physiologically it is consistent, controlled glycaemic values 

that ameliorate the negative effects of hyperglycaemia. 

The adaptive controller generally fed an increased amount of 

glucose compared to non-adaptive controllers, and coupled 

this with more aggressive use of insulin. The amount of 

insulin used is a non-linear function of glucose input and 

glycaemic level, and is influenced by the insulin effect 

saturation parameter ( Gα ). This result is also tied to the 

nutrition heuristics developed for SPRINT, where lower 

glucose levels are more likely to result in increased glucose 

inputs, and may be further modified to meet clinical 

requirements for glucose administration and insulin limits. 

Insulin effect saturation is not apparent in neonates at 

physiologic levels (Farrag et al., 1997), thus increases in 

insulin usage for tighter control are less evident. 

SPRINT was designed to be a low-cost, easily implemented 

paper-based protocol that implemented model-based control. 

The practicalities of clinical use means that insulin rates are 

thus discretised to whole-unit amounts, whereas model-based 

control allows a finer degree of resolution, as well as the 

ability to capture a broader range of patient dynamics. 

However, the SPRINT design goal to emulate adaptive 

model-based control is evidenced by its superior performance 

to the constant SI versions of model-based control. 

The difference in inter- and intra-patient variability between 

critically ill adults and neonates may in part be explained by 

infant growth and development. Endogenous glucose control 

systems are still developing in preterm infants and insulin-

dependent tissues are increasing. Thus, overall resistance to 

insulin tends to decrease over time. 

Insulin sensitivity (SI) has been chosen in this study to 

quantify response to insulin as it is identifiable from 

clinically available measurements. Thus, it represents several 

physiological processes, such as suppression of endogenous 

glucose production and increase in tissue glucose uptake that 

cannot be identified separately. However, the overall 

conclusion of the requirement of accounting for patient 

response over time as a major contributor to tight glycaemic 

control stands as a result independent of the specific model 

chosen. More advanced models, if able to be identified in 

clinical-real time, can provide advantages by improving 

predictive performance, and thus control quality. 

Model-based control derives interventions from an estimate 

of patient metabolic state. This estimate may be influenced 

by errors, such as noise in BG sensors, missing patient data 

and user error, increasing the observed variability in patient 

response. Control methods need to provide a balance between 

aggressiveness in meeting glycaemic targets and robustness 

to noise and errors to maintain patient safety against 

hypoglycaemia. 

Identifying the contributing factors to variation in glycaemia 

response may be useful in optimising several aspects of 

therapy in critical care and beyond. Optimisations may focus 

on the cost of measurement and control interventions in terms 

of pump expense for ambulatory individuals, multiple daily 

injections, time required to devote to maintaining blood sugar 

levels each day for diabetic patients. Also the need to 

conserve blood volumes in neonates, as well as minimise 

Table 2. Simulated control for neonatal patients (N=25) with variations in controller-assumed insulin sensitivity 

Model-based control 

Adaptive control Per-patient constant Cohort constant 

%BG within 4.0 - 7.0 mmol/L 76.9 50.1 45.6 

%BG within 4.0 - 8.0 mmol/L 87.1 60.1 54.5 

%BG < 4.0 mmol/L 2.8 13.4 13.7 

%BG < 2.6 mmol/L 0.3 3.0 1.4 

BG median [IQR] (mmol/L) 6.1 [5.5 - 6.7] 6.2 [4.9 - 8.3] 6.2 [4.7 - 9.2] 

Median insulin rate [IQR] (U/kg/hr) 0.053 [0.031 - 0.083] 0.051 [0.034 - 0.071] 0.049 [0.028 - 0.060] 

 



 

 

     

 

handling to prevent excessive infant stress emphasises the 

importance of optimising the balance between clinical effort 

and safe, robust control. 

4 CONCLUSIONS 

Tight glycaemic control requires adequately addressing inter- 

and intra- patient variability. Tracking patient metabolic 

response over time and titrating interventions to estimates of 

insulin sensitivity provides significant improvements in 

control performance over fixed protocols for both adults and 

neonates. This result clearly defines the differences seen in 

several published trials in outcome glycaemia and variability 

due to these variations in patient behaviour. Hence, it 

highlights the need to better account for these variations to 

maximise the opportunity for successful TGC. 
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