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Abstract: Maintenance of glucose levels in intensive care unit (ICU) patients via control of insulin inputs 
is currently an active research field. Different published models that address this problem are analysed 
from control theory point of view. This paper analyzes the three most used ICU metabolic system models 
in the literature, two of which have been validated in clinical trials or alternate clinical use. Global 
control theoretical characteristics are determined using nonlinear analysis. Quasi affine linear parameter 
varying (qALPV) modeling methodology is then investigated for further robust nonlinear model based 
control. 
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1. INTRODUCTION 

Critically ill patients admitted to the Intensive Care Unit 
(ICU) often display hyperglycaemia and insulin resistance 
associated with adverse outcomes, which are associated with 
increased morbidity and mortality (Capes et al 2000). 
Consequently, tight glycaemic control (TGC) can reduce 
these adverse outcomes (van den Berghe 2001; Chase et al 
2008), as well as reducing economic costs (van den Berghe 
2006). Hence, TGC using model-based methods has become 
an active research field (Chase et al 2006). 

Several studies have reduced mortality using TGC (van den 
Berghe 2001; Chase et al 2008), but several others have 
reported difficulty repeating these results (Griesdale 2009). 
This difficulty, due in large part to the significant metabolic 
variability of ICU patients (Lin et al 2008), thus presents an 
ideal application for model-based automation of insulin 
infusions for TGC. 

Therefore, accurate metabolic system models are a critical 
element. The best known model is the minimal model of 
(Bergman et al 1981), which is used primarily for clinical 
research studies. However, the model’s simplicity is a 
disadvantage, with significant important components of 
glucose-insulin interaction neglected in its formulation, as 
they are not required or are managed in clinical experiments. 
Consequently, different models were derived from the 
minimal model, trying to generalize / extend the validity for 
the ICU case. Wong et al (2006) and Lotz et al (2006) 
presented a third order model that better captured insulin 
losses and saturation dynamics. Van Herpe et al (2007) 
created a fourth order model that accounted for further typical 
features of the ICU patient in their ICU Minimal Model, 

although basic structure was retained. Of these three models 
only those of Wong et al and Lotz et al have been clinically 
applied and validated in TGC for ICU patients, as well as in 
other clinical experiments similar to those for which the 
Minimal Model is used. 

This paper investigates these models’ global control 
characteristics using nonlinear analysis. The transformation 
of the mentioned models in quasi affine linear parameter 
varying (qALPV) form is also examined to assess the ability 
to design a robust, nonlinear model-based controller. Hence, 
it provides a unique control theoretic analysis of these 
models. 

2. ICU MODELS 

2.1  Minimal Model of Bergman et al 

Derived from the two-compartment minimal model created 
by Bergman et al (1979) a three-compartment approach was 
developed for use in clinical research experiments to 
determine insulin sensitivity in man (Bergman et al 1981). 
This extended model contains an additional state variable 
representing the insulin utilization of the “distant” 
compartment. The system is defined:  

( ) ( ) ( ) ( )th)GtG(tXtGp)t(G b ++−= 1
&  (1/a) 

( ) ( ) ( )tYptXptX 32 +−=&  (1/b) 

( ) ( )( ) ( )
L

b V
tiYtYptY +−= 4

&  (1/c) 

where the parameters are defined Table 1, including typical 
values found in experiments or used as constants. 
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Table 1. Variables used in the extended Bergman-model. 

Notation Unit Description Value 
State variables 

G mg/dL Plasma glucose 
concentration - 

Y mU/dL Plasma insulin 
concentration - 

X mU/dL “Distant” compartment 
insulin concentration - 

Model inputs 

h mg/dL Intravenous glucose 
injected - 

i mU/min Intravenous insulin 
injected - 

Parameters 

Gb mg/dL Basal level glucose 
concentration 110 

Yb mU/dL Basal level insulin 
concentration 1.5 

VL dL Volume of insulin 
space 120 

p1 1/min Rate parameter 0.028 
p2 1/min Rate parameter 0.025 
p3 1/min Rate parameter 0.00013
p4 1/min Rate parameter 5/54 

2.2  Canterbury Model 

Chase and colleagues at the University of Canterbury 
developed a series of models based on a fundamental system 
with three compartments (Wong et al 2006; Lin et al 2008; 
Le Compte et al 2009), where the additional state variable 
represents insulin bounded to interstitial sites. Moreover, the 
model captures insulin losses to the liver and kidneys (Lotz et 
al, 2006) and saturation dynamics through the use of 
Michaelis-Menten functions. Its unique insulin sensitivity 
metric (Hann et al, 2005) is highly correlated to the value 
derived from the gold-standard euglycemic clamp (Lotz et al, 
2006). The model is defined: 
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where the parameters are defined in Table 2, including 
typical values assigned to population constants. The insulin 
sensitivity metric is identified in real-time from data (Hann et 
al, 2005). In particular, patient specific profiles for time-
varying SI and pG can be created by fitting retrospective 
glucose, insulin and feed data, where pG accounts for both 
endogenous clearance and the net impact of endogenous 
glucose production on removal. 

Note that Equation (2/c) does not include endogenous insulin 
or glucose production, although later model versions do (e.g. 
Lotz et al 2008; Le Compte et al 2009). Each model version 
manages these differently but with consistent prediction 
errors of less than 7-10%. 

Table 2. Variables used in the Chase-model. 

Notation Unit Description Value 
State variables 

G mmol/L Plasma glucose above 
equilibrium level - 

Q mU/L 
Concentration of 

insulin bounded to 
interstitial sites 

- 

I mU/L 
Plasma insulin 

resulting from external 
input 

- 

Model inputs 

P mmol/L/mi
n 

total plasma glucose 
input - 

uex mU/min External insulin - 
Parameters 

GE mmol/L Plasma equilibrium 
level 10.5 

pG 1/min Endogenous glucose 
clearance 0.01 

SI L/mU/min Insulin sensitivity 0.001 

V L Insulin distribution 
volume 12 

k 1/min Effective life of insulin 
in the compartment 0.0198 

n 1/min First order decay rate 
from plasma 0.16 

αI L/mU Plasma insulin 
disappearance 0.0017 

αG L/mU Insulin effect 0.0154 
 

2.3  Van Herpe - model 

The model of van Herpe et al (2007) uses four state variables 
to take into consideration some typical features of ICU 
patients. In particular, the Minimal Model gives the best 
performance during intravenous glucose tolerance test 
(IVGTT) with a single shot of glucose. However, in the ICU 
case the goal is to handle a series of shots. Hence, the 
endogenous insulin section of the Minimal Model has been 
transformed into a set of two equations, which also contains a 
part representing endogenous insulin secretion. Moreover, 
due to the fact that most of the critically ill patients are 
nondiabetic and as a result, the endogenous insulin section is 
still active, the Minimal Model has to be extended with 
exogenous part as well. Consequently, the model is defined 
as follows, van Herpe et al (2007): 
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where parameter values, units and descriptions are given in 
Table 3. 



 
 

   

 

Table 3. Variables used in the Van Herpe-model. 

Notation Unit Description Used 
value 

State variables 

G mg/dL Glucose concentration 
in plasma - 

X 1/min Effect of insulin on net 
glucose disappearance - 

I1 μU/mL Insulin concentration in 
plasma - 

I2 μU/mL 

Insulin concentration 
delivered from 

endogenous insulin 
secretion 

- 

Model inputs 
FG mg/min Glucose calories flow - 
FI μU/min Exogenous insulin - 

Parameters 
BM kg Body mass 75 

VG dL Glucose distribution 
volume 1.6 BM 

VI mL Insulin distribution 
volume 120BM 

Gb mg/dL Basal value of plasma 
glucose 100 

Ib μU/mL Basal value of plasma 
insulin  

P1 1/min Glucose effectiveness 0.0131 

P2 1/min Rate of net remote 
insulin disappearance 0.0135 

P3 mL/(min2μU) Rate of insulin-
dependent  increase 2.9 10-6 

h mg/dL Glucose threshold 
level 136 

n 1/min Time constant of 
insulin disappearance 0.13 

α 1/min Scaling factor 3.11 
β min Model coefficient 1 

γ 
2min

mg
dl

mL
Uμ

 
Rate of endogenous 

insulin release 
5.36 
10-3 

 

3. NONLINEAR ANALYSIS 

In this section, global characteristics of the models presented 
are examined, including reachability and observability 
according terminology used in (Isidori 1995) for nonlinear 
analysis. The nonlinear systems are considered to be in the 
form: 
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It can be seen that the system is considered to be input affine, 
where x denote that state vectors, ui the inputs and yi the 
outputs of the model. 

3.1  Reachability 

Let CΔ  be a nonsingular involutive distribution of dimension 
d and assume that CΔ  is invariant under the vector fields 

mg,,g,g,f K21 . Moreover, suppose that the distribution 

{ }mg,,gspan K1  is contained in CΔ . Then, for each point 
0x  it is possible to find a neighbourhood 0U  of 0x  and a 

local coordinate transformation ( )xz Ψ=  defined on 0U  
such that, in the new coordinates, the control system (4) is 
represented by equations of the form: 
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where ( )dz,,z,z K211 =ς  and ( )ndd z,,z,z K212 ++=ς . In 
this manner, state vector 1ς  is locally reachable, whereas 2ς  
cannot be controlled (Isidori 1995). 

In order to construct the CΔ  distribution, initialization is: 

{ }m
C g,,gspan K10 =Δ . (6) 

Then, until C
krank Δ  increases: 
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where C
ki Δτ ∈ , q,,,i K21=  ( qdim C

k =Δ ). (8) 

The number of local reachable state variables is the rank of 
CΔ , (Isidori 1995). In other words, determining the degree of 

reachability means that new vectors have to be determined 
using Lie-derivatives, and the dimension that the extended 
vector field spans is the number of local reachable states. 

3.2  Observability 

Let ( ) ( )∗⊂ nO RxdΔ  denote the subspace containing ( )xdα  
row vectors, where O∈α  (observation space). 

Then, for each point 0x  it is possible to find a neighbourhood 
0U  of 0x , where ( ) ndxd O <=Δ  for 0Ux ∈∀  and a local 

coordinate transformation ( )xz Ψ=  defined on 0U  such 
that, in the new coordinates, the control system (4) is 
represented by equations of the form: 
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Table 4.  Control properties of the considered three ICU 
models. 

Name of the 
model Dimension Reachability Observability 

Bergman 
minimal model 3 3 2 

Canterbury-
model 3 3 2 

Van Herpe-
model 4 4 2 

 
where ( )dz,,z,z K211 =ς  and ( )ndd z,,z,z K212 ++=ς , and 
the system is considered to be input affine. Consequently, 
state vector 1ς  is locally observable, whereas 2ς  cannot be 
observed (Isidori 1995). 

In order to construct the dΔO codistribution, O observation 
space has to be extended with Lie-derivatives of ih , until 

Odrank Δ  increases. The number of local observable states is 

the rank of OdΔ , (Isidori 1995). In other words, similar to the 
previous case, determining the degree of observability means 
that new covectors have to be determined using Lie-
derivatives, and the dimension that the extended covector 
field spans is the number of local observable state variables. 

3.3 Results of Nonlinear Analysis 

Applying the nonlinear analysis in accordance with (Isidori 
1995), for the ICU models presented in Section 2, the above 
mentioned nonlinear control characteristics were 
investigated. Results are summarized in Table 4. 

It can be seen that all the models are completely reachable, 
although the Van Herpe - model has to be extended with the 
vector: 

T
2new 4217.000

120
xf ⎥⎦

⎤
⎢⎣
⎡ −= . (10) 

Moreover, all the models are partially observable, namely 
only two states can be reconstructed based on measurements. 
This is in accordance with physiological reasons too, as 
plasma glucose can be easily measured, while plasma insulin 
can be estimated (if it is necessary) by knowing the insulin 
input. 

4. LPV MODELLING AND QALPV DESCRIPTION 

Linear Parameter Varying (LPV) system is a class of 
nonlinear systems, where the parameter could be an arbitrary 
time varying, piecewise-continuous and vector valued 
function denoted by ρ(t), defined on a compact set P. 

Consequently, LPV systems provide a model paradigm that 
goes beyond the classical representation of nonlinear and 
linear systems. Systems with different parameter variations as 
non-stationary, nonlinear behavior, dependence on external 
variables or fast movements between different operating 

regimes can be handled by LPV framework. Basically, LPV 
systems can be seen as an extension of linear time-invariant 
(LTI) systems, where the relations are considered to be linear, 
but model parameters are assumed to be functions of a time-
varying signal. 

In order to evaluate the system, the parameter trajectory is 
required to be known either by measurement or by 
computation. 

4.1  LPV system definition 

Definition. For a compact P ⊂  R
s
, the parameter variation 

set FP denotes the set of all piecewise continuous functions 
mapping R+ (time) into P with a finite number of 

discontinuities in any interval. The compact set P ⊂  R
s
 

along with the continuous functions A: R
s

→ R nn× , B: R
s

 

→  R unn× , C: R
s

→ R nn y × , D: R
s

→ R uy nn ×  represent 
an nth order LPV system whose dynamics evolve as: 
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with ρ(t)∈  FP  named as scheduling variables, (Wu et al. 
2000). 

As a result, it can be seen that in the LPV model by choosing 
parameter variables the system’s nonlinearity can be hidden, 
while the measured parameters assure describing the whole 
working domain of the designed controller. This 
methodology is used on different control solutions, like 
(Balas 2002), which gave also a solution of the problem. 

4.2  qALPV modelling 

There are different descriptions of the LPV systems (Kulcsar 
2005). In the quasi affine description possibility, a part of the 
state vector x(t) is equal with the ρ(t) scheduling parameters. 

The affine dependency of (11) with N))t(dim( =ρ  means: 
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Hence, the affine LPV system can be written as: 
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In (13) the parameters are varying between known minimal 
(

i
ρ ) and maximal ( iρ ) bounds (respectively the limits of 

theirs rates are known). 



 
 

   

 

5.  qALPV APPLICABILITY OF ICU MODELS 

In the followings, the definition of the scheduling parameters 
of the considered models is investigated as key point in LPV 
(qALPV) modeling methodology. 

5.1  qALPV modelling of the Minimal model of Bergman et al 

The remote compartment insulin utilization X(t), which 
cannot be measured, can be considered a slow variable 
(Lehmann and Deutsch 1992). In this way, 0≈)t(X&  and 

)t(Y
p
p

)t(X
2

3= . As a result, X(t) can be eliminated by 

substituting it into the first equation (Kovács and Paláncz 
2007). Hence, qALPV transformation can be realized by the 
appropriate choice of the scheduling parameters: 
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as G(t), the plasma glucose concentration can be measured. 

In this way, qALPV form can be computed: 
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)t(dB)t(uB)t(x))t((A)t(x

=
++= 21ρ&

, (16) 

where x(t) represents the states, u(t) the insulin control input, 
d(t) the glucose disturbance, while y(t) is the measured 
output. The parameter matrices are: 
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As a result, by measuring the G(t) glucose value, the 
parameter matrices can be easily determined. The bounding 
values of the ρ(t) scheduling parameters determine the 
parameter polytope with the minimal and maximal point of 
the vertex. Consequently, if the bounds of the parameter rates 
are known, they can be implemented in the control design 
process. 

5.2  qALPV modelling of the Canterbury Model 

Having the origins in the Bergman-model, the same 
consideration can be done for the Canterbury model 
regarding the slow variation of the Q(t) (concentration of 
insulin bounded to interstitial sites) state. In this way, Q(t) = 
I(t) and the model becomes a second order one. 

However, the time dependent variation of the SI(t) insulin 
sensitivity and the fractional nonlinear form appeared in (2/a) 
and (2/c) gives rise to reformulate the ρ(t) scheduling 
parameters of the qALPV form: 
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Hence, now in (16) the parameter matrices become: 
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 (19) 
Even if the SI(t) can be computed in time and I(t) can be 
estimated (Wong et al 2006), for further LPV controller 
design several questions should be investigated, the most 
important one being the definition of the bounds of the 
scheduling parameters as precise as it is possible. Namely, 
the vertex includes the concrete trajectory of the system and 
by bigger polytope the computation effort also increases. 
However, SI(t) can be computed only for the next step. To 
handle this trade-off several ICU measurements should be 
processed to determine the extreme values of ρ(t). 

5.3  qALPV modelling of the Van Herpe - model 

Being an extension of the Minimal Model, the effect of 
insulin on net glucose disappearance (X(t)) can be also 
considered as a slow variable ( 0≈)t(X& ). Hence, 
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in (3/c) the ρ(t) scheduling parameters can be chosen as: 
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where 
⎩
⎨
⎧

>
<

=
01
00

)t(I   ,  
)t(I   ,  

2

2δ . 

Hence, now in (16) the parameter matrices become: 

)t()t(
h

nI
Gp

)t(
p
p

n
n

pI
p
p

)t(A)t(A)t(AA))t((A

b

b

b

32

1

1
2

3
1

2

3

3322110

000
00

000

00
00
00

000
000

00

0
00

00

ραρ
βγ

ρ
βγ

ρρρρ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

=+++=

 (21/a) 



 
 

   

 

.C ,
V

B ,
V

B
T

I

T

G
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

010
001

010001
21   

 (21/b) 
Note, that in this situation the scheduling parameters are 
again associated only to the G(t) glucose value, which can be 
easily measured, but the max() switching function can be 
hardly handled. However, for the further controller design 
process the aim of the controller can be to keep 02 ≥)t(I . 
Hence, the max() function becomes needless and a linear 
term can be created by subtracting I2(t) from the max() term. 
In this way a conservative solution can be given. 

6. CONCLUSIONS 

The three mostly commonly used ICU metabolic system 
models of the literature were examined in this paper. First 
global control theoretical characteristics were determined 
using nonlinear analysis proving complete reachability and 
observability. The transformation of the models in qALPV 
form was also examined to assess the ability of designing a 
further robust, nonlinear model-based controller. Particular 
problems of LPV technique were highlighted. 

Further research will be done on robust LPV controller 
design, as well as comparison of the obtained results and 
validation on real-data obtained from different patients. 
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