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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree Doctor of Philosophy. 

Abstract 

A Systems Biology Approach to Signalling Pathway and Gene Network 

Regulation Modelling in Mastitis 

 

by 

Nicoline van Loenen-den Breems 

 

Mastitis, an inflammation in the mammary gland, is one of three major diseases in the dairy 

industry. One in three cows will encounter the disease which is also a problem in humans and 

other species. While E. coli bacterial infections lead to acute mastitis, S. aureus lead to 

chronic mastitis. Dynamics of the regulation and identification of differentially expressed 

genes between two bacterial infections are important factors for understanding mastitis and 

assist in the development of pharmaceutical and breeding targets.  

Previous studies have identified differentially expressed genes. However, they have not 

compared expression between two bacterial infections over time. Neither have the dynamics 

of the signalling and gene network regulation that leads to the differential expressions been 

investigated. This thesis aims to provide new insight into immune defence in mastitis by 

analysing dynamics of the signalling and gene regulation in mammary epithelial cells.  

The main focus is to develop a mathematical model of the signalling and gene network 

regulation in mastitis. First, the genes differentially regulated between the two clinical 

presentations of the disease are identified. Time series microarray experiments of E. coli and 

S. aureus challenged mammary epithelial cells are analysed, and confirm that each type of 

mastitis has a significantly different gene expression time profile from healthy cells. The 

differentially expressed gene time profiles are then compared between the bacterial 

challenges. RANTES is identified as the key cytokine which is responsible for two distinctly 

different time profiles between the bacterial challenges.  

In this second part the mathematical model is developed and a systems biology approach 

applied to investigate the complex dynamics of signalling proteins and gene network 

regulation of three different cytokines (RANTES, IL8 and TNFα) in mastitis. A modification 
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to a conversion method allows us to use relative microarray expression data in the model. The 

method opens up a large amount of datasets for use in future modelling. The model explains 

signalling and gene network regulation of three cytokines in acute mastitis. No fit could be 

found for the S. aureus experimental data indicating that there is a difference in the regulatory 

mechanisms between the two types of mastitis.  

In the third part sensitivity analysis is used to investigate the role of parameters on the model 

output. The analysis reveals that each cytokine is sensitive to specific parameter changes. This 

indicates different dynamics in the regulatory mechanism. As a result, pharmaceutical and 

breeding targets need to be evaluated in the context of all cytokines to prevent undesirable 

side effects. The importance of modelling prior to experimental design is also revealed; each 

cytokine has a specific time frame for the most informative experimental measurement.  

In the fourth part robustness analysis is used to investigate the role of the bacterial load on the 

model output. Robustness analyses indicate that robustness does not originate in the nuclear 

NFκB time profile and is specific for each cytokine. Finally, future directions of the model 

and biological experiments are discussed. 

Keywords: systems biology, mathematical modelling, gene network regulation, cell 

signalling, microarray, clustering, mastitis, ODE, E. coli, S. aureus, RANTES, TNFα, IκB, 

NFκB 
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Chapter 1 

Modelling and mastitis: History, challenges and 

motivations 

This chapter introduces the research objective of this study. The reason for applying a 

systems approach to signalling and gene regulation modelling is motivated. The structure of 

the thesis is outlined and the main contributions are stated. At the end of the chapter a 

roadmap of the thesis with an overview of the chapters is given. 

 

1.1 Systems Biology, mastitis and mathematics an unusual 
combination or not? 

  

Mastitis is an inflammation in the mammary gland and one of the three major diseases in the 

dairy industry world wide (de Ketelaere et al., 2006). Mastitis is the most frequent and costly 

disease in dairy cows (Seegers et al., 2003) but is also a problem in humans (Wang et al., 

2007). One in three dairy cows will encounter the disease at least once in a lifetime. Research 

has focused on management strategies, identification of molecular differences between 

pathogens and the identification of the wide variety of proteins (cytokines, signalling 

molecules, chemokines, and receptors) involved in the immune reaction to the pathogen of the 

mammary gland. A range of proteins in parallel signal transduction pathways and their ways 

of communication: phosphorylation, degradation, recruitment, inhibition, translocation and 

binding, have been identified in the immune systems reaction (Rainard & Riollet, 2006). A 

wide variety of pathogens, gram positive and negative bacteria, viruses and fungi, each 

invoking a different reaction in the immune system have also been identified (Wellenberg et 

al., 2002).  

In addition to the immune reaction, a bacterial infection of the mammary gland brings change 

to several other processes such as milk production, involution and apoptosis (Bannerman, 

2009), increasing the complexity of identifying the processes and proteins involved in the 

development of the infection. Several proteins are members of multiple signal transduction 

pathways. As more interactions between these signalling pathways are identified, it became 

clear that signalling does not necessarily occur through parallel, linearly independent 

processes (Hornberg et al., 2006). Interactions can occur at many hierarchical levels and 
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signalling proteins from different pathways can influence each other, which leads to 

unexpected behaviour (Bhalla & Ravi Iyengar, 1999). 

These interactions give rise to an overwhelmingly complex dynamic system with proteins 

involved in signalling pathways and gene network regulation controlled by multiple factors. 

The quantification of the protein concentration or gene expression provides no information on 

the kinetics of the signalling processes. Therefore, we lack the understanding of the dynamics 

of the development of the disease. In signalling pathways,  behaviour involving oscillatory 

patterns can play a role in the establishment of the disease (Nelson et al., 2004). The 

downstream detection of a signalling protein is not always in the amplitude, represented by 

the concentration of the protein, but can be in the frequency of the protein detection (Kell, 

2005).  

Graphical models or a verbal description of the events can be used to visualize the interactions 

in a complex system. However, in order to identify the real strength of the influence of the 

different components on each other, verbal description and graphical representation is no 

longer sufficient. We need mechanistic and quantitative understanding of the functionalities 

of the proteins and their kinetic implications in the disease outcome to be able to answer 

questions such as: are these proteins involved in the initiation, differentiation or attenuation of 

the disease? Does a small change in the concentration of a protein have a measurable or 

negligible effect? Or can we change the concentration of a particular protein to a large extent 

without effects? Is the amplitude or the frequency of a particular protein important? 

Systems biology is a research discipline that uses an integrative approach to address questions 

of the complex biological processes in a rich network of genetic and metabolic pathways  

(Suresh Babu et al., 2006). Systems biology has the potential to address questions about the 

quantitative and qualitative functioning of biological systems, which are not the central focus 

of other areas of biology. Quantitative reasoning based on mathematical modelling has had a 

strong influence on biology in the past (Wingreen & Botstein, 2006). A systems biology 

approach assumes that the majority of genes and proteins function through biological 

networks. In an extraordinarily complex nonlinear network of interacting components, 

proteins and genes work together to ensure an appropriate response is elicited to a particular 

pathogen (Callard & Yates, 2005). Through mathematical modelling and in silico simulations, 

systems biology investigates the functional and dynamic behaviour of all elements in a 

particular network quantitatively and qualitatively (Ideker et al., 2001). Signalling events 

within cells are well-known to be complex and dynamic, often containing oscillatory 

components. This approach is therefore useful in explaining complex dynamics in the innate 
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immune system reaction to mastitis. A systems biology approach allows for systems-level 

understanding of disease to provide potential targets for the development of vaccines and bio 

markers (Friboulet & Thomas, 2005).  

In order to achieve a qualitative and/or quantitative level of understanding of the interactions 

in disease, a systems biology approach, using mathematical modelling, is used in cancer 

research (Hornberg et al., 2006). The approach has led to invaluable progress in those fields. 

A systems biology approach for the development of cancer treatments identified the role of 

proteins in signalling pathways that were not considered earlier from biological experiments. 

The concentrations of these proteins did not differ extensively between the diseased and non 

diseased state, however, modelling identified a significant sensitivity resulting in mechanistic 

differences as a result of minor concentration changes. The identification of these proteins 

resulted in new areas of research not considered previously with the classical biological 

experimentation (Schoeberl et al., 2009). A systems biology approach in diseases related to 

farm animals is only at its beginning (Cassar-Malek et al., 2008). Mastitis is also a complex 

disease dependent on dynamic interactions of proteins in signalling and gene regulation 

pathways. Therefore, a systems biology approach to mastitis is a particularly suitable 

introduction of a systems biology approach in veterinary science and the dairy industry. 

 

1.2 Modelling in the dairy industry, a historical background 

 

The dairy industry is familiar with modelling, and modellers familiar with modelling cows 

and other aspects of the dairy industry. The „spherical cow‟ is a metaphor for highly 

simplified models of reality, is a mathematical joke told in many variants (Harte, 1988). The 

metaphor highlights the fact that modellers reduce a problem to its simplest form in order to 

make calculations feasible. At the moment the combinatorial explosion of interactions in 

modelling the whole cow or even the mammary gland or a cell in detail, force modellers to 

reduce the problem to a small subset of the reactions that take place (Aldridge et al., 2006).  

Several types of modelling are available. Here an overview is given of different types of 

models and illustrate them with their applications in the dairy industry. The most common 

model is a graphical model, cartoon, of the process. Cellular signalling pathways are often 

presented as a graphical model. Although informative, these models do not identify the 

kinetics of the components and are therefore not considered here.  In this thesis I will 



 4 

concentrate on dynamical models that allow simulation of input data to identify scenarios of 

the process modelled.  

Coarse grained, also known as simple models are abstract models investigating the overall 

dynamics of a biological process while ignoring the details of the process. Their components 

and parameters often do not correspond directly to well-defined physical quantities, 

nonetheless they can provide insight into the behaviour of a system and drive experimental 

and detailed modelling research (Goldstein et al., 2004). There are several coarse grained 

models investigating economic aspects of performance in the dairy industry. A well known 

coarse grained model is Molly, a dynamic, mechanistic computer simulation model of a dairy 

cow developed to gain information on ruminant digestion (Baldwin, 1995). This model 

predicts milk production based on the nutritional state and condition of the cow. The model 

does not take all aspects in consideration, e.g. weather conditions, walking distance to the 

dairy shed, all having an influence on the milk production are not considered. Even so, it is 

very informative to gain an understanding of the relation between nutrition and milk 

production.  

 

1.2.1 Previous models of mastitis  

 

Coarse grained, abstract, models of mastitis in dairy cows have been developed from 1976 

onwards (Oltenacu & Natzke, 1976). Several models provide information on different aspects 

of the economic impact of mastitis, and assist in making decisions for the treatment of the 

disease. The cost of clinical mastitis was modelled using dynamic programming by Bar et al. 

(2008). The model provide a decision making tool for development of a treatment plan for 

mastitis and its effect on whole farm profitability. Another dynamic model was developed to 

predict the incidence of mastitis based on the enzyme activity of L-Lactate dehydrogenase 

measured during in-line milk testing (Chagunda et al., 2006).  

Allore et al.  reviewed three different mathematical approaches to modelling intra-mammary 

infections and the relation to udder health to determine if simulations of the three approaches 

yield stable prevalence (1999). There was no agreement between the approaches and they 

concluded that more detail, such as pathogen specific information, was necessary to identify 

the dynamics of mastitis. The study is a good example for the need to identify the appropriate 

method for the hypothesis studied. 
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Finer grained, or detailed, models are less abstract and contain more details of the process 

simulated. A more detailed stochastic model developed by Østergaard et al. (2003) based on 

SIMHERD III, including 9 pathogen-specific mastitis types, both clinical and subclinical, 

identified that the representation of the variation of mastitis severity is important when 

modelling the economic impact mastitis (Østergaard et al., 2005).  A stochastic model to 

determine the economic consequences of blanket dry cow therapy on different types of 

pathogens involved in intra-mammary infections identified the need for even more detail and 

recommended to include farm-specific calculations (Huijps & Hogeveen, 2007).  However, 

stochastic models are very costly with respect to the computing time and become quickly 

intractable. 

Force et al. (2002) combined several mathematical models, using an object oriented analysis 

approach to conceptual modelling, into a simulation tool of livestock farming systems. The 

main goal of the simulator was to study and predict the consequences of mastitis occurrences 

on dairy herds. This model has become a decision-aid for stock breeders and farm advisors. 

The use of object oriented analysis in this model offers a conceptual approach combining the 

expertise of various domains into one view. A conceptual model takes an abstract perspective, 

identifying fundamental relationships. However, this type of modelling does not identify the 

kinetics of the interacting components in the model. 

Mastitis modelling has been a successful aid for economic decisions as shown above. The 

models are fine grained and researched the combination of economic and biological aspects 

with emphasis on the economic outcome of the model. Here the biological aspects of the 

disease are of interest. 

Modelling has been applied to a lesser extent to assist in the quest for biological insight in the 

disease. A predator-prey model was developed to investigate the concentration of S. aureus in 

mastitis milk (Detilleux, 2004). Bacteria were represented as the prey and the neutrophils (the 

most abundant type of white blood cells in mammals) as the predators. This model established 

that the rate of bacterial killing depends on the ratio of neutrophils to bacteria. Several logistic 

and exponential growth models were investigated. The smaller of the models with the least 

parameters gave the best fit of the observed data. For logistic regression, the generalized 

linear model is probably the most well known model. Logistic regression, also known as a 

logistic model, is used for the prediction of the chance of an occurrence of an event by fitting 

the data to a logistic curve. It uses several predictor variables, independent variables (e.g. 

number of bacteria, number of neutrophils), to predict the dependent variable (e.g. mastitis 

occurrence) of the model. However, the model does not account for interaction between 
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predator and prey and would therefore not be suitable for the study of the kinetics of the 

interacting components.  

One of the first models to incorporate interactions between predators and prey was proposed 

independently in 1925 by the American biophysicist Alfred Lotka and the Italian 

mathematician Vito Volterra (Murray, 1989). Unlike the Logistic models used by Detilleux et 

al. (2004) in modelling Staphylococcus aureus concentration in mastitis milk, the Lotka-

Volterra model is based on differential equations. Differential equations allow for the 

observation of the rate of change of the modelled concentrations at every time point, taking 

the interaction between the dependent variables into account. Being able to include in the 

model the interaction between the bacterium and the neutrophils allows for a more realistic 

representation of the process. Detilleux et al. (2006) developed a mathematical model for the 

acute inflammatory response to E. coli in the mammary gland, this time using Ordinary 

Differential Equations (ODE). The choice of ODE was motivated by the intention of the 

research to explore the interactions between the inflammatory cells and the bacteria 

(Detilleux et al., 2006). 

Mathematical aspects of ODEs are explained in more detail in Section 2.3.1, briefly, they are 

differential equations where the unknown function, the dependent variable, is a function of a 

single independent (often time) variable. The ODE describes a deterministic relationship 

involving some continuously changing (average) quantities (modelled by functions) and their 

rates of change (expressed as time-derivatives). ODEs are therefore particularly suited for the 

investigation of the interaction between components in the model. Detilleux et al. (2006) 

earlier research has concluded that the rate of bacterial killing depends on the ratio of 

neutrophils to bacteria. Therefore, investigating the rate of change in concentration of bacteria 

and neutrophils would be the next logical step in modelling. The developed model represented 

the experimental values well and the model sensitivity analysis identified cell-killing abilities 

and the flow rate from the production and storage sites into the blood compartment as the key 

parameters influencing the outcomes.  

Model sensitivity analysis is a process of identifying the influence, both qualitative and 

quantitative, of variation in the input and the parameters on the outputs of the model. It is a 

form of validation of the outcome and often identifies the „weak‟ points in a model. These 

points identify the most informative areas to measure in future research and are an important 

aspect of modelling. Sensitivity analysis can be used in medicine and biotechnology to predict 

the results of intervention (Ingalls, 2008).  An extensive review of the use of sensitivity 
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analysis is beyond the scope of this thesis and refer the reader to a book by Saltelli et al. 

(2004).  

 

1.3 Research focus of this study 

 

The major research focus of this thesis is to elicit the source of the differentiation in disease 

outcome between E. coli and S. aureus bacterial mastitis. The main question is: How is it 

possible that these two bacterial species can give two different disease profiles while using the 

same immune system initiating the disease? 

To address this question the difference in regulation of mRNA expression between E. coli and 

S. aureus induced mastitis is investigated. In a biological experiment, E. coli and S. aureus 

mastitis are simulated with bacterial challenges of mammary epithelial cells in vitro. The 

analysis of the gene expression profiles in the mammary epithelial cells is used for the 

investigation and development of the model.  

First, the proteins with significantly different time profiles in mRNA expression between 

healthy and bacterial challenged cells are identified. In addition, the genes with significantly 

different time profiles in mRNA expression between the two bacterial challenges are 

identified. Secondly, a mathematical model of the signalling and gene network regulation of 

which the identified genes are part of is developed. This allows us to simulate and analyse, in 

silico, the time profiles of the mRNA expression levels identified in the biological 

experiments. None of previous studies have modelled or compared the regulation of mRNA 

expression over time of the identified signalling and gene network in E. coli and S. aureus 

induced mastitis. Thirdly, the mechanistic processes that cause the difference in expression 

levels between healthy and diseased cells are identified and the mechanistic properties of 

model analysed.  The mechanistic intricacies of the processes are currently unclear. 

We thus integrate our knowledge of mathematics and biology and use the result of biological 

experiments to construct an in silico deterministic model of the mRNA expression in the 

bacterial challenges leading to mastitis. The knowledge gained is used to develop hypotheses 

on the mechanistic behaviour of the model and can be used for optimum design of future 

biological experiments. In addition, the model can be used for the development of 

pharmaceutical targets, evaluation of breeding objectives and biomarkers.  
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Research objectives 

1. Identify genes relevant to the innate immune system response to a bacterial infection 

representing significantly different time profiles in mRNA expression between healthy 

and diseased cells and between E. coli and S. aureus induced mastitis in mammary 

epithelial cells.  

2. Develop a predictive in silico deterministic mathematical model to simulate the 

regulation of the mRNA expression of the identified genes over time. This model will 

form the basis for the identification/prediction of the mechanistic difference in mRNA 

regulation between the two different bacteria invoking mastitis studied in this thesis. 

3. Elicit the underlying mechanistics of the gene regulation through sensitivity analysis 

of the model developed with experimental data from the E. coli mastitis. 

4. Identification of the most informative future biological experiments.  

5. Identification of the model parameters with experimental data from S. aureus, mastitis.  

6. Identification of the robustness of the model to elicit the influence of the variation in 

bacterial load on the model output. 

 

1.4 Summary of achievements and contributions 

 

The main contributions of the thesis can be summarized as follows: 

 Microarray time series data analysis (Chapter 3) 

o A cluster of immune system related genes, including the cytokine RANTES, 

with significantly distinct expression time profiles between diseased and 

healthy cells and between E. coli and S. aureus bacterial challenges in time 

series microarray experiments is identified.  

o The signalling pathway, Toll Receptor Signalling pathway, responsible for the 

relocation of the transcription factor, NFκB, from the cell to the nucleus, is 

identified as the main pathway involved in the development of mastitis. The 

relocation of the transcription factor initiates the mRNA expression of the 

cytokines such as RANTES, IL8 and TNFα, which are responsible for the 

different gene expression time profiles between the two bacterial challenges.  
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 Development of a mathematical model representing the E. coli challenge in mammary 

epithelial cells (Chapter 5) 

o A mathematical model is developed, estimating parameters to represent mRNA 

expression of the cytokines RANTES, IL8 and TNFα expressed in E. coli 

bacterial challenge of mammary epithelial cells. The model can be used to 

develop understanding of the reaction of the immune system in mastitis, the 

differentiation in the two types of mastitis and to test pharmaceutical targets. 

o A method to convert microarray relative expression values to mRNA 

concentrations is adjusted. As a result microarray data can be used in 

mathematical modelling.  

 Sensitivity analysis of the E. coli model (Chapter 6) 

o The optimal time for measurement of biological values to fine tune model 

parameters is established.  

o The model identified that the optimal measuring time is different for each 

cytokine. 

o Sensitivity analysis identified that reduction of cytokine expression can only be 

achieved by regulating the levels of the transcription factor NFκB. Due to the 

pleiotropic nature of this transcription factor, reduction has been shown to have 

unfavourable side effects. Therefore, other avenues for the adjustment of 

cytokine expression need to be evaluated. 

o The model is sensitive to changes of different parameters for each of the 

cytokine mRNA expression levels. Indicating that future pharmaceutical 

product testing needs to consider all cytokine expression levels for the 

evaluation of the product and that cytokine levels can be manipulated 

individually.   

 Findings based on the S. aureus model development (Chapter 7) 

o Expression values from the S. aureus biological experiment can not be 

explained with the model developed in this thesis. Additional pathways and 

processes are possibly involved in the process and need to be investigated 

further. This indicates that different pathways in the immune system are 

involved in the two bacterial infections. 
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 Robustness analysis of the E. coli model (Chapter 8) 

o The result of the robustness analysis of the model output for input variation 

show a lack of robustness for variation in the bacterial load:  

 Cytokine expression levels of IL8 and TNFα are not robust to variation 

in bacterial load at 360 minutes of the simulation. Robustness for 

variation in bacterial load at 360 minutes was found in biological 

experiments. We hypothesize that robustness to synthesis and 

degradation parameter variation in TNFα could play a role. 

 Cytokines expression levels of RANTES, IL8 and TNFα are neither 

robust to variation in the time profile of the input, representing the 

variation in bacterial load during the time of simulation. Variation in 

the time profile of the input changes the time profile of the cytokine 

mRNA expressions, with each cytokine showing individual variation.  

 

1.5 Roadmap of the thesis 

 

The thesis is an example of interdisciplinary work, where systems biology combines biology 

and mathematical modelling. I have provided an extended and more detailed introduction into 

the biological and mathematical modelling aspects of the work. In Chapter 2, Section 2.1 will 

give an overview of the biological aspects of mastitis, Section 2.2 will introduce systems 

biology and Section 2.3 will give an overview of the mathematical algorithms used in this 

thesis and Section 2.4 gives an overview of the microarray analysis and clustering methods 

used. Chapter 3 analyses the microarray time series data from the biological experiments and 

identifies the model and the model focus. Chapter 4 explains a mathematical NFκB regulation 

model, which is a key component of the mastitis model developed in Chapter 5.  In this 

chapter, a model for the signalling and gene network regulation of cytokines in mastitis is 

developed.  Chapter 6 discusses the sensitivity analysis of the in silico simulations of the 

developed E. coli mastitis model to elicit the influence of the parameter and initial value 

variation on the model output. With this, the variation in the model output due to the 

biological aspects and mathematical modelling aspects can be separated. Chapter 7 discusses 

the model characteristics in relation to experimental data from the time series microarray S. 

aureus challenge. In Chapter 8 the robustness of the model with respect to the variation in 
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bacterial load is analysed to identify the source of robustness to variation in bacterial load 

identified in biological experiments.  In the last chapter summary and future directions are 

given. 

Figure 1-1 gives a graphical outline of the roadmap of the chapters in this thesis.  



 12 

 
Figure 1-1 Graphical outline of the roadmap of the chapters in this thesis  
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Chapter 2                                                                     

Background and Methods 

“Every object that biology studies is a system of systems.” 

Francois Jacob (1974) 

 

The first Section in this chapter introduces mastitis, gives a literature review of the relevant 

biology of signalling pathways and gene expression identified in mastitis and explains why 

mastitis should be studied with a novel approach; systems biology. The second Section 2.2 

introduces systems biology, a systems science with a holistic approach to biology and 

describes the first dogma in molecular biology. The general framework of systems biology is 

then related to the more specific aspects of this thesis; signalling and gene network regulation 

modelling. Section 2.3 introduces the methods and mathematical concepts used for modelling, 

analysing the sensitivity and robustness of signalling and gene network regulation in this 

thesis.  Since a combination of signalling and gene network regulation modelling is 

introduced we will motivate the demand for a systems biology approach in this work and its 

challenges. Section 2.4 gives a short overview of the methods in microarray analysis and 

clustering techniques used for the analysis of the biological data. The last Section explains 

the conversion of microarray data to a suitable format for modelling. 

 

2.1 Mastitis an infection in the mammary gland 

 

Mastitis is the result of an inflammatory event in the mammary gland, usually caused by a 

variety of bacteria. Bovine mastitis is one of the major diseases in the Dairy industry world 

wide and causes distress for the animal as well as a cost to the dairy farmer (de Ketelaere et 

al., 2006). The economic impact stems from two sources, the cost of control of the disease 

and the cost of reduction in production (Seegers et al., 2003). In the US mastitis is estimated 

to cost the industry US$2 billion annually (Sordillo & Streicher, 2002) while the costs world 

wide are US$25 billion per annum  (Pareek et al., 2005). In humans mastitis is associated 

with increased transmission of bacterial infections (Wang et al., 2007) and Human 

Immunodeficiency Virus (HIV) passing from mother to child (John et al., 2001). A recent 
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study by Scott et al. reported that 18% of women experienced at least one episode of mastitis 

in the 26 weeks following childbirth (2008). This thesis concentrates on bovine mastitis. 

Nevertheless, the increased understanding of the development and cause of the disease is also 

invaluable for humans and other species such as pigs. 

 

2.1.1 Mastitis, cytokines and gene expression 

 

During milking or in between milkings, bacteria can enter the teat into the glandular tissue 

and to the alveoli in the mammary gland. In between milkings the milk is stored in the alveoli 

of the mammary gland (Figure 2-1). Bacteria can reproduce in the milk and move to alveoli. 

Alveoli are small microscopic sacs lined with milk producing epithelial cells. The epithelial 

cells elicit an immune reaction to the bacterial invasion (Dogan et al., 2005). It is the immune 

reaction and the gene expression as a result of this immune reaction that is modelled in this 

thesis. However, not all bacteria elicit the same immune reaction. Some bacteria cause an 

acute infection while others elicit a chronic infection, despite the fact that they encounter the 

same immune system that evokes cell signalling and gene expression.  It is believed that there 

is a difference in the dynamics of the signalling. Comparing the difference in the dynamics of 

the signalling and resulting gene expression profiles between bacterial challenges is the focus 

of this thesis. 

 

 

Figure 2-1 Cross section of the mammary gland showing the teat, gland cisterns, and 

glandular tissue. Glandular tissue is made up of small microscopic sacs, alveoli 

that are lined with milk producing epithelial cells.
1
 

                                                 
1
 http://www.ag.ndsu.edu/pubs/ansci/dairy/as1129w.htm 
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The main mastitis pathogens, bacteria, can be grouped in two types; gram positive bacteria 

and gram negative bacteria. Of the gram positive bacteria S. aureus and S. uberis are the most 

prevalent, cause sub clinical (persistent) mastitis while from the gram negative bacteria, E. 

coli is the most prevalent, causing transient clinical mastitis (Bannerman et al., 2004). Both 

clinical and sub clinical mastitis change the chemical, physical and microbiological 

characteristics of the mammary gland and the milk; however, they do so with different 

severity. Clinical mastitis is characterized by observable physical changes in the udder and 

milk. Clots appear and the colour of the milk changes. The udder is often swollen. These 

effects make it easy to detect clinical mastitis. Acute clinical mastitis is caused by the gram 

negative bacteria E. coli and can have severe consequences with the animal dying or losing 

parts of the mammary gland. The benefits of antibiotic therapy have not been shown in 

clinical trials or experimental studies, while vaccines have only reduced the severity and 

number of incidences of clinical E. coli mastitis (Burvenich et al., 2007).  

Sub clinical mastitis, caused by the gram positive bacteria such as S. aureus, cause a change 

in milk composition and decrease milk yield. As a result, there will be a loss in revenue for 

the farmer. Sub clinical mastitis often causes less severe physical changes, however, the 

disease can turn into a chronic infection (Riollet et al., 2000). Since there are no prevalent 

physical changes, sub clinical mastitis is more difficult to detect and regularly goes 

undetected for a long time. Many different strains of S. aureus exist, and because several 

strains are resistant to antibiotic treatment, successful treatment is difficult (Barkema et al., 

2006).  

Gram positive and gram negative bacteria each produce unique toxins. Each toxin causes a 

specific disease profile because there is a different reaction of the innate immune system 

depending on the type of toxin. The innate immune system represents the first line of defence 

in the host response to infection.  

As a result of the innate immune system‟s reaction of the epithelial cells, cytokines, such as 

RANTES, IL8 and TNFα, are secreted (Pareek et al., 2005). Cytokines are a family of small 

proteins that carry signals between cells and play a pivotal role in the activation and 

regulation of the innate immune response (Zhu et al., 2007). RANTES plays an active role in 

recruiting leukocytes (a type of white blood cells) into inflammatory sites, while IL8 attracts 

neutrophils (the most abundant type of white blood cells) to the site (Wellnitz & Kerr, 2004). 

TNFα induces inflammation and cell death (Pareek et al., 2005). The precise regulation of 

cytokine expression is essential for the regulation of the response to the infection.  Lack of 

regulation can lead to severe diseases and sepsis (Liew et al., 2005). Different cytokine 
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expression profiles are responsible for the various clinical presentations in mastitis 

(Bannerman et al., 2004). Therefore, the detailed knowledge of the mechanistics of the 

dynamics responsible for the initiation of cytokine expression profiles plays an important role 

in the understanding of the development of the disease. A detailed description of the specific 

function of each cytokine is beyond the scope of this thesis and for an extensive review of the 

bovine innate immune response of the mammary gland the reader is referred to Rainard & 

Riollet (2006) and De Schepper et al. (2008).  

 

2.1.2 Toll receptor signalling and differently expressed cytokines in mastitis 

 

The ability of the innate immune system to react to a variety of bacterial pathogens in 

different ways is facilitated by the ability to detect highly conserved molecular patterns on 

bacterial cell walls. Lypopolysaccharide (LPS) is a highly conserved pathogen-associated 

molecular pattern (PAMP) on the cell wall of Gram negative bacteria such as E. coli, while 

Gram positive bacteria, S. aureus, share LipoTeichoic Acid (LTA) on the cell wall.  

On the cell membrane of mammary epithelial cells are Toll like receptors (TLR). The Toll 

like receptors on the cell wall of mammary epithelial cells initiates a signalling cascade that 

results in cytokine expression following a bacterial infection (Figure 2-2).  The cytokines 

form the primary line of defence against invading pathogens (Doyle & O'Neill, 2006).  

Toll like receptors recognize the individual patterns, PAMPs, and play an important role in 

triggering the immune responses such as cytokine expression  (Akira et al., 2006). Toll like 

receptors are members of a large super family of interleukin1-receptors (IL1-R) that signal via 

a partly shared downstream signalling pathway to initiate mRNA expression. This is shown in 

Figure 2-2, which shows the Toll like receptor pathway as presented by the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG). 
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Figure 2-2 Bovine Toll receptor signalling pathway adapted from KEGG
2
 

                                                 
2
 Kyoto Encyclopedia of Genes and Genomes  http://www.genome.jp 
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Multiple members of the Toll like receptor family have been identified in mammals (Doyle & 

O'Neill, 2006) with ten identified in cattle (Menzies & Ingham, 2006). Each individual Toll 

like receptor has a number and identifies a specific type of bacteria or virus (Sabroe et al., 

2008). 

TLR2 and TLR4 receptors, used for LPS and LTA recognition respectively, and the 

downstream signalling pathway are expressed in mammary epithelial cells (Strandberg et al., 

2005). TLR2 and TLR4 activation lead to the activation of several signalling molecules that 

release the transcription factor Nuclear Factor-kappa-B (NFκB) (Strandberg et al., 2005). 

Although the two bacterial infections invoke different signalling pathways, TLR2 and TLR4 

respectively, it is the dynamics of the translocation of NFκB to the nucleus that influences the 

cytokine gene expression profiles. NFκB is a principal transcription factor in mammalian 

inflammatory signalling (Cheong et al., 2008). In mammary epithelial cells the transcription 

factor NFκB binds to the upstream region of large number of genes regulating cytokine 

expression and other immune reactions such as inflammation, cell proliferation and apoptosis 

(Viatour et al., 2005). The transcription factor NFκB regulates a pleiotrope of genes who play 

important roles in inter- and intra-cellular signalling, cellular stress response, cell growth, 

survival and apoptosis (Hoffmann et al., 2006). Several diseases, including diabetics (Bragt et 

al., 2009) cancer, and chronic inflammation (Fraser, 2008) have been related to the 

impairment of the NFκB regulation that results of a signal response.  

 

2.1.3 NFκB regulation 

 

NFκB does not require protein synthesis to activate, allowing for fast reaction, within 

minutes, to inflammation (Hoffmann & Baltimore, 2006). In the cytoplasm NFκB is inactive 

as an IκB-NFκB heterodimer (Figure 2-3).  
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Figure 2-3 Conceptual model of TLR-IKK-NFκB signalling. The TLR receptor on the cell 

membrane recognizes the bacterial challenge. The signalling pathway activates 

the kinase IKK which breaks the IκB-NFκB dimer. As a result, the transcription 

factor NFκB translocates to the nucleus initiating gene expression. Among the 

genes expressed are the IκB isoforms which bind with NFκB in the cytoplasm to 

prevent translocation of NFκB to the nucleus. This process creates a negative 

feedback loop for the translocation of NFκB to the nucleus.  

 

NFκB activity is largely controlled by IκB isoforms, which bind to NFκB preventing transport 

of NFκB to the nucleus (Hoffmann et al., 2002a). TLR signals result in IκB kinase (IKK) 

activity. Kinases are enzymes which covalently attach phosphate groups to substrate 

molecules, such as IκB-NFκB heterodimer, and phosphorylate the substrate.  IKK 

phosphorylate IκB which results in degradation of the IκB-NFκB heterodimer and free NFκB. 

NFκB can then transport to the nucleus and bind to DNA to function as a transcription factor. 

Signalling pathways determine actual cellular IKK activity profiles which originate from 

receptors, such as TLR, that allow for stimulus specific signal processing (Werner, 2005). The 

IKK initiated phosphorylation of the heterodimer IκB-NFκB activates the translocation of 

NFκB to the nucleus. In the nucleus NFκB functions as a transcription factor for cytokine 

gene expression.   

Despite the fact that different bacterial challenges use the same NFκB signalling pathway, the 

dynamics of the translocation of the transcription factor NFκB to the nucleus, as a result of 

IKK activation representing the stimulus as a result of the challenge, are unique for each 

challenge. The patterns and timing of the translocation of NFκB to the nucleus lead to 

different transcriptional outputs in NFκB regulated genes (Sillitoe et al., 2007). Different 

subsets of NFκB target genes are activated by changes in the time-dependent kinetic profile of 
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NFκB signalling (Vanden Berghe et al., 2006). NFκB has been shown to exhibit decaying 

oscillatory behaviour following TNFα stimulus (Hoffmann et al., 2002a), while Covert et al. 

reported a stable and consistent NFκB response to LPS (2005). NFκB signal dynamics 

therefore play an important role in determining cellular response such as cytokine gene 

expression.  

Dynamics play a key role in several cellular molecular processes. The dynamics of biological 

networks are difficult to identify with in vivo or in vitro experiments (Thakar et al., 2007). For 

example, some signalling pathways encode information not just as protein concentrations or 

location, but via changes in the dynamics of those concentrations (Kell, 2005; Nelson et al., 

2004). Dynamic modelling approaches describing and analyzing these processes are essential 

for our understanding of cellular functions. The analysis of these models facilitate more rapid 

testing of biological hypotheses and provide insight in aspects that might otherwise not easily 

be accessible with classical biological experiments (Wolkenhauer et al., 2009). The analysis 

of a model can also assist in the design of novel biological experiments to test hypotheses that 

are formulated from modelling predictions.  

While molecular biology is involved in the characterizing molecular mechanisms 

quantitatively in biology, systems biology is especially suited to investigate the mechanistics 

of signalling pathways and gene network regulation.  

 

2.2 Systems Biology: Modelling signalling and gene network 
regulation 

 

Systems biology is a holistic approach to biology and is aimed at system-level understanding 

of biology, understanding biological systems as a dynamic system of interactions between the 

different components; e.g. receptors, signalling molecules and genes. The key to systems 

biology is the construction and analysis of a model that is based on a number of interacting 

components that are each known from reductionist‟s studies of the subsystems. The 

interaction between the known subsystems can then lead to emergent behaviour of the whole 

system that can not be predicted from the subsystem in isolation. Systems biology is therefore 

an interdisciplinary field of research spanning a large area of science, attracting ideas from 

many different disciplines (Figure 2-4). The discipline addresses the missing links between 

molecules and physiology by investigating how dynamic interactions result in functionality of 

the cell (Bruggeman & Westerhoff, 2007). The contribution of systems sciences and the role 
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of mathematical modelling distinguish systems biology from other areas such as 

bioinformatics (Klauschen et al., 2007; Wolkenhauer & Mesarovic, 2005).  

Systems biology in the context of this work is a combination of life, information and systems 

science. In this thesis mathematical modelling (systems science) is applied to the results of 

biological experiments (life science) and together with available biological knowledge of the 

components (information science) mathematical tools are used from systems sciences to 

analyze the models. From the analysis knowledge is gained of the intricacies of the 

mechanistics of the model components which represent the cell components that determine 

the functionality of the cell (Figure 2-4). Systems biology‟s ultimate objective is, explaining 

how the components within a cell, receptors, signalling molecules and genes, interact 

dynamically and produce the observed organization and function of the cells (Wolkenhauer & 

Mesarovic, 2005).  

 

 

Figure 2-4 Systems biology and the relationship with other science disciplines  
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2.2.1 The principal unit of life 

 

In order to understand a biological system as a dynamic system of interactions between 

components we go back to the principal unit of life; the cell. In the cell thousands of reactions 

and transformations are carried out to allow for survival and reproduction of the physiological 

entity. Cells can be grouped into tissues which form organs and organs make up living 

species. Components in the cell are organized in organelles separated by membranes.  One of 

these is the nucleus where deoxyribonucleic acid (DNA), our genome, is a large component.  

DNA contains genes and encodes for proteins; the basic components of life. Proteins consist 

of amino acids. This flow of information from genes, the genetic code of life, to proteins, is 

often referred to as the central Dogma of molecular biology (Figure 2-5).  

 

Figure 2-5 Central dogma of molecular biology. DNA codes for proteins which are the 

building blocks of life.
3
 

 

The base pairs of DNA contain three letter codes for amino acids. There are twenty different 

amino acids and a string of amino acids form a protein. A string of three letter codes is 

transcribed into a string of messenger ribonucleic acid (mRNA), and translated into protein. 

Proteins have a wide variety of functions and can act as receptors, signalling molecules, 

                                                 
3
 http://genomics.energy.gov 
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enzymes and transcription factors. Signalling molecules receive, integrate and transduce 

signals that regulate cellular functions.  

 

2.2.2 Signalling pathways and gene network regulation 

 

Biological signal pathways transduce external signals and coordinate life processes in the 

organism. The transduction, integration and processing of signals is a complex dynamic 

process that leads to the activation of a gene regulatory network. A gene regulatory network is 

a collection of genes, DNA segments, interacting through their protein expression products 

and molecules in the cell in a coherent network, thereby regulating the rate of gene expression 

into mRNA of these and other genes (Figure 2-6). mRNA is translated into proteins. Proteins 

play a major role in biological processes and therefore the regulation of the network of genes 

as the result of the signalling process influences the phenotype of the organism.  

A gene consists of two parts, a coding and non coding region. The coding region is a group of 

base pairs that code for the string of amino acids that form a single protein. The non coding 

region, containing the cis-regulatory part, plays a role in the rate of expression of the gene 

through a variety of regulatory elements, small molecules known as transcription factors. 

Gene expression is therefore regulated through a network of regulatory systems between 

DNA, mRNA, proteins and transcription factors (de Jong, 2002).  
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Figure 2-6 A signalling pathway and gene regulatory network
4
. An input signal, e.g. bacterial 

challenge is recognised by the receptor protein. The receptor protein starts the 

signalling cascade which results in the translocation of the transcription factor to 

the nucleus. The transcription factor binds to the non-coding region of the gene 

and results in mRNA transcription. mRNA is translated into protein and 

contributes to the cell function.  

 

In order for a DNA sequence to be transcribed into mRNA, transcription factors bind to the 

cis-regulatory DNA, the non coding part of the gene, and influence the rate of gene 

transcription in a positive or negative way. These transcription factors are proteins resulting 

from mRNA transcription and translation regulated by other proteins themselves and can 

initiate or inhibit gene transcription. The transcription factors are activated by the signalling 

pathway, and the signalling pathways initiated by the receptor protein recognising a 

challenge. The signalling cascade together with the gene network in the nucleus creates a 

signalling and gene regulatory network as shown in Figure 2-6  (Styczynski & 

Stephanopoulos, 2005).  

 

 

                                                 
4
 http://genomics.energy.gov 
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2.2.3 Feedback loops in gene network regulation 

 

Initiation and inhibition of gene expression is regulated by feedback loops. Feedback loops 

are common regulatory structures in biological systems, especially in signalling pathways and 

have been observed for more than 130 years (Brandman & Meyer, 2008). Feedback means 

that the information, on which a decision is based, is derived from the result of the output of 

the system. Feedback loops are necessary to introduce a shift in behaviour. The signalling and 

gene network regulation is shaped by positive and negative feedback loops.   

The most common form of the negative feedback loop consists of a transcriptional interaction 

where transcription factors repress gene transcription. Negative feedback loops can stabilize 

signals, limit maximal signalling output, enable adaptive responses or create transient signal 

responses (Brandman & Meyer, 2008). Therefore, negative feedback loops can allow for 

adaptive behaviour to changes in the input, rather than absolute amount of input signal. 

Especially in a biological situation where a change in bacterial load needs to elicit a response 

from the immune system but not lead to sepsis, regulation is important. For instance, a strong 

negative feedback loop that is triggered by another negative feedback loop after a delay, can 

convert a constant input into a transient output signal.  

Contrary to a negative feedback loop that restricts the output, positive feedback increases the 

output of the signal and is therefore often associated with an uncontrolled, runaway process 

(Brandman & Meyer, 2008). Positive feedback loops can amplify the signal, change the 

timing of the signalling response and create bistable switches. In a bistable switch  below a 

certain threshold the signal remains near basal state, above critical threshold the system 

increases to high active state (Brandman & Meyer, 2008). With two negative feedback loops, 

the bistable system can be forced back into inactive state and create a pulse in the output with 

fixed amplitude and duration. Therefore, a combination of negative and positive feedback 

loops determines the dynamics and robustness of the system.  

If the loops are nonlinear and show redundancy, they can add to the robustness of the system 

(Werner, 2005). Robustness is essential for consistent performance under a wide range of  

perturbations (Aldana et al., 2007). It is therefore of vital importance for the understanding of 

a model representing a biological system to investigate the role of the feedback loops and 

robustness in the model.  
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2.2.4 Modelling signalling and gene network regulation  

 

The concept of mathematical modelling of gene network regulation was introduced by 

Kauffman et al. (1995). The ideas of system level understanding are not new to biology and 

dates back to the 1960s (Wolkenhauer, 2001).  With the remarkable progress in molecular 

biology in the 20
th

 century, genome sequencing and high throughput applications such as 

microarrays (See Section 2.4.1) systems biology has been able to apply systems theory and 

mathematical modelling to a molecular-level.  The human genome project therefore marked 

the beginning of the next level of understanding. The letters, genetic code (DNA), and words, 

the proteins (transcribed from the mRNA), of the story of life have been discovered. 

However, details of the dynamics of the words, ascribing a molecular function to the proteins 

and therefore writing the book of life remains elusive. 

Systems biology has made remarkable progress but there are still significant challenges 

(Aderem, 2005; Wolkenhauer & Mesarovic, 2005). Although systems biology is aimed at 

understanding systems as a whole, the complexity intrinsic to biological systems such as cells 

in mammals does not allow a detailed dynamic description of the cellular system as a whole at 

the moment. However, subsystems and simple functional models can be identified and 

isolated (Kitano, 2002).  

Simple models have been shown to be valuable  to give insight in the qualitative behaviour of 

biological systems (van Riel, 2006). The challenges of modelling biological systems lie in the 

decision of the appropriate abstraction level to focus on and the technique to use (Szallasi et 

al., 2006). Qualitative aspects of the system are represented by abstract models identifying 

key components, while quantitative aspects are represented in mathematical models 

identifying mechanism in the regulation of the model (Ideker & Lauffenburger, 2003). In 

“Therefore all models are wrong… some more then others” Wolkenhauer et al. explains that 

it is a means of reducing complexity that motivates modelling  (2007).  Even though a model 

does not reproduce every piece of knowledge of the biological system, the subsystem can be 

open to mathematical modelling and reveal new insights. The analysis of the model of the 

subsystem can explain emergent properties of the biological system not accessible with in 

vivo or in vitro experiments and give insight in the complexity of the complete biological 

system.  

For instance, perturbation studies can simulate the model with different inputs, drug 

combinations or knockouts, by removing or changing specific components of the model. 



 27 

Biological processes are robust against perturbations which is also supported by the analysis 

of a variety of mathematical models (Stelling et al., 2004). The non-linearity of the loops 

complicates the identification and quantification of signalling and gene regulatory network 

models intuitively, and can therefore not be deeply understood by qualitative representations, 

drawing pictures such as shown in Figure 2-6. The level of understanding that allows 

predictions requires quantitative analysis of the mathematical models which represent the 

dynamics of the system.  

Compensation mechanisms complicate the identification of the underlying source of the 

change in physiological behaviour by measuring components with in vivo or in vitro 

experiments. Mathematical models and in silico simulation of these models assist in the 

analysis of the model and allow for the understanding of adaptations with compensation 

mechanisms, biological switches (bi-stable systems) or rhythms (Tyson et al., 2003). 

Modelling intrinsic dynamical systems, investigating kinetics such as amplification (Vera et 

al., 2008) and input-output responses (Schoeberl et al., 2009) have led to new biological 

insights. 

Mathematical models representing the current knowledge of biological networks can be 

validated with experimental data and allow for the expansion of these networks (Aggarwal & 

Lee, 2003). Modelling and computer simulations can therefore contribute to the understanding 

of the dynamics of the regulatory processes and support in the conceptual clarification of the 

networks (Klipp, 2005). Simulation also makes it possible to carry out virtual experiments 

replacing those that might be dismissed for being impossible, unethical, expensive or time 

consuming  (Wolkenhauer et al., 2009). The kinetics insights gained from the analysis of the 

models can also offer guidance in the design of future studies.  

 

2.2.4.1 Dynamic modelling approaches 

 

A large array of mathematical methods is available to study different levels of kinetic aspects 

of signalling and gene network regulation (Styczynski & Stephanopoulos, 2005). An 

overview of the properties of different modelling formalisms and methods is beyond the 

scope of this thesis and the reader is referred to de Jong (2002). Briefly, mathematical 

techniques to describe dynamics in signalling and gene networks, started with Boolean logic 

introduced by Liang et al. (1998) in the algorithm REVEAL (de Jong, 2002). Boolean logic 

represents an abstract model in the form of undirected graphs and is suited for simple on/off 



 28 

switches and therefore not informative for the study of the oscillatory behaviour in the NFκB 

model proposed in this thesis. Boolean models were followed by  Bayesian networks, 

conditionally modelling directed graphs (Hartemink et al., 2002). However, Bayesian 

networks do not allow for the inclusion of negative feedback loops, essential for the 

understanding of the NFκB model (van Someren et al., 2002). Ordinary Differential 

Equations is a mathematical algorithm used in modelling capable of describing the dynamics 

of quantitative and qualitative aspects of signalling pathways and gene network regulation (de 

Jong & Ropers, 2006). Ordinary differential equations will be explained in detail in Section 

2.3.1 and are the classical formalism for modelling the behaviour of natural systems, rest on a 

well-established theoretical framework, mathematically robust and therefore form the most 

prominent approach for the qualitative modelling of signalling and gene network regulations.  

 

2.3 Methods and mathematical concepts in signalling and gene 
network regulation modelling 

 

As described in the previous section, cells transmit external stimuli through signal 

transduction to the nucleus where gene expression takes place. Different stimuli create a wide 

variety of activity in signalling pathways activating transcription factors, which through gene 

regulatory networks induce or repress gene expression patterns. The use of mathematical 

modelling is important for elucidating the time dependent interaction of proteins that result in 

behaviour not seen when looking at the proteins in isolation. The complexity of Toll receptor 

and NFκB signalling that leads to cytokine expression as described in 2.1.3 is a challenging 

and exciting field to apply these methods/ideas which has not been modelled before and can 

lead to new insights.  

Signalling pathways and gene regulatory network models can visually be represented by 

graphs composed of nodes, characterizing proteins, mRNA and genes. Edges symbolise the 

regulatory relationships between the nodes.  
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Figure 2-7 Gene network models are represented as directed graphs describing the influence 

of the levels of one set of transcripts (the inputs) on the level of another transcript 

(the output). The relation between inputs and outputs is specified by an interaction 

function (fi) and can be described with ordinary differential equations. 

 

A directed graph (See Figure 2-7) is the most straight forward way to visualize signalling and  

gene network regulation (de Jong, 2002). However, this will not give information on the 

dynamics of the network.  The time dependent dynamics of the networks can be investigated 

by translating the directed graph into mathematical formalisms which allows the study of the 

time dependent dynamics, a process used in systems biology. 

 

2.3.1 Ordinary differential equations 

 

Time dependent models require the formulation of differential equations (Chou & Voit, 

2009). There are two types of differential equations: ordinary differential equations, 

describing changes over time, and partial differential equations, describing changes over time 

and space (Wolkenhauer et al., 2005). While partial differential equations are more 

appropriate to model intra cellular processes, they require mathematical tools and 

experimental data not available in most practical cases. Therefore, the focus is on Ordinary 

differential equations for the simulation and development of the model. Ordinary differential 

equations arise in many areas of science and technology. The equations are used to describe a 

deterministic relationship involving continuously changing quantities, and their rates of 

change, through variables of the equations on a continuous timescale (Klipp, 2005).  

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B75DC-4FFH210-1&_mathId=&_acct=C000052688&_version=1&_userid=1427158&md5=c795b58cf11a8b3147853ec46fd93029
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If you have a rate of production   that increases the concentration of component X, where [X] 

measures the concentration of the protein, mRNA or gene, then the change in concentration of 

X is influenced by the parameter , also identified as rate coefficient or reaction rate constant, 

which defines the rate of the reaction X . The rate of change of the concentration of X is 

proportional to the product of concentration of X over time and the rate constant . The 

change of X over time can be represented by the ordinary differential 

equation   ( )
d

X X t
dt

 . 

A set of ODEs; one for each of the n components, which maybe the expression level of a gene 

or the concentration of a protein in the model, describes signalling and gene regulation as a 

function of other genes through reaction rate equations expressing the concentration of 

mRNA, proteins and other molecules with time dependent variables.  

 

(2-1) 
1( ,....... , , )i

i n

dx
f x x u

dt
  ,0(0)i ix x     

 

The components ix , represent the vector of concentrations i=1,…n of the mRNAs, proteins 

and molecules (the nodes in Figure 2-7) extracted from microarray and other experiments. 

The initial values for each component are given in (0)ix  i=1,…n and if  a nonlinear function 

representing the relationship between the components, u the external perturbation of the 

system and   is a set of parameters, the rate constants of the reactions, represented as the 

edges on the graph in Figure 2-7, describing the interactions among the components. The rate 

of change, idx

dt
 expresses the change of the component xi due to phosphorylation, association, 

transcription, translation or other individual processes included in the nonlinear function fi  as 

result of the changes of jx for j= 1,….n (Klipp, 2005).  

Some parameter values in the vector   can be measured in biological experiments. Time-

course data is most frequently used in gene network regulation models using discrete, 

continuous or hybrid variables to represent experimental observations (Styczynski & 

Stephanopoulos, 2005). In this study the amount of time series microarray data is best used 

for gene network regulation modelling with the middle out approach first described by Noble 

(Noble, 2002). In the middle out approach modelling is started at the level where there is 

extensive biological knowledge available (Doyle & Stelling, 2006). We do not seek to find 
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new networks in this thesis but explore the influence of the kinetics of known signalling 

pathways with existing models, described in Chapter 4, on the regulation of gene expression 

in mastitis. Modelling with the middle out approach can reduce the cost and time involved in 

modelling and biological experiments. Extensions to the model are made with the additional 

values from the gene expression studies in this thesis. Parameters in a model are a 

combination of values previously published in the literature, experimental data and fitted 

values to measured observations (Appendix A 1.2). 

 

2.3.2 Parameter estimation, fitting models to data 

 

In systems biology parameter estimation is part of an iterative process to develop predictive 

models based on experimental data (Ashyraliyev et al., 2009). Parameters that can not be 

measured directly with biological experiments and are unavailable in the literature, are 

estimated by fitting the model to input-output data, a process known as model identification, 

regression or model fitting (Banga & Balsa-Canto, 2008). In biological signalling and gene 

network models, many kinetic parameters are often unknown, parameter estimation is 

therefore, highly important. 

Parameter estimation techniques use nonlinear optimization to minimize the distance between 

the model predictions and experimental data. Because of the nonlinearity, estimating 

parameters can be a complex and time consuming process. A wide range of literature on 

parameter estimation is available (Banga & Balsa-Canto, 2008; Chou & Voit, 2009; Mendes 

& Kell, 1998; Moles et al., 2003). In addition, there are many tools and algorithms available 

for the estimation of parameters. Briefly, parameter estimation is performed by minimizing 

the cost function, a measure of the distance between the model predictions and the 

experimental values (
~

z y y  ). The cost function is mathematically formulated as a non-

linear optimization problem (Balsa-Canto et al., 2008).  

Due to the nonlinear nature of the models traditional gradient methods like Levenberg-

Marquardt or Gauss-Newton could fail to identify the global solution and converge to a local 

minimum, while a better solution exists. Therefore, the need to use of global optimization 

methods that provide a globally optimum solution has been recognized recently (Moles et al., 

2003).  
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In this thesis a Fast Scatter Search developed by Rodriguez-Fernandez et al. is used (2006b). 

Fast scatter search is a combination of local and global optimization techniques which aims to 

find the unknown parameters of the model that give the best goodness of fit to the 

experimental data. The goodness of fit is optimized by minimising the cost function which is 

based on the maximum likelihood estimator.  

The maximum likelihood estimator, introduced by Fisher in 1912, is an estimator function 

that maximizes the probability of the observed event. Maximum likelihood estimation 

consists of maximizing the likelihood function
mlj (2-2). This is the probability density of a 

model of the occurrence of the experimental values for the given parameters. The likelihood 

function is dependent on the probability of the experimental values. If these are assumed to be 

uncorrelated and normally distributed, then the log-likelihood function is given as  

(2-2) 

~
2

2

2
1

( ( ))1
( ) ln(2 ) ln( )

2 2

N
ii
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The log-likelihood gives the same estimate as the likelihood estimation. The maximum 

likelihood estimates of the parameters are those for which the likelihood function has its 

minimum for the experimental value
~

i
y . If the noise is assumed to be Gaussian with known 

constant variance, minimizing lsj  is equivalent to minimizing the function:  

(2-3) 

2

~

( ) ( )ls i i i
j w y y 

 
  
 
 

      

 

with
2

1
iw


 , which is therefore a weighted least-square estimator. It is assume that all i ‟s 

are equal, unweighted least-squares are used ( iw =1) and the maximum likelihood criterion is 

equivalent to the least squares. The method therefore aims to find 
^

  which minimizes the sum 

of squared residuals of all responses (Rodriguez-Fernandez et al., 2006a).  

Scatter search is a hybrid method using global and local search techniques therefore 

optimizing the parameter search. However, despite the extensive parameter estimation 
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technique not all parameters can be estimated uniquely with the given structure of the model 

and the available experimental data.  

 

2.3.3 A priori identifiability analysis of the parameters 

 

Prior to parameter estimation the structural identifiability of a model must be assessed 

(Jaqaman & Danuser, 2006). The question has to be raised if it is possible to uniquely identify 

parameters given the structure of the model and the available experimental data? Whether the 

parameters for a mathematical model can be estimated is the subject of a priori or 

identifiability analysis (Ashyraliyev et al., 2008). Difficulties during parameter estimation can 

arise as a result of poor identifiability of the model parameters (Banga & Balsa-Canto, 2008). 

Prior to parameter estimation it is therefore necessary to evaluate if it is possible, given the 

structure of the model and the experimental data, assuming error free experimental data, to 

determine the parameter values (Jaqaman & Danuser, 2006). This is also known as the 

identifiability problem.  

In order to verify the feasibility of the estimation of parameters for the differential equations 

with the measured data in our experiment, identifiability analysis is performed in SBtoolbox 

(SBtoolbox is described in more detail in Section 4.3) (Schmidt & Jirstrand, 2006) with the 

method explained by Jacquez & Greif (1985). A priori identifiability of the parameters for a 

given experimental setting identifies the correlation between parameters to be estimated with 

the experimental values of the time series.   

Using the values of the parameter set   as nominal values, the Nx by M (Nx components X 

and M parameters in ) sensitivity matrices Q(ti) are calculated with the measurements of the 

experiment at the different time points in the time series. Partial derivatives are used to 

calculate the ratio of an infinitesimally small change for each x and infinitesimally small 

change for each individual the parameter in set   at each time point. Changes are made for 

one parameter at a time and the correlation between two parameters at a time is calculated.  

(2-4) ,

( )
( ) i l

i j l

j

x t
q t



 
    

  ( , )x x t   1,.....,l n ,  1, xi N ,  1,j M   

Stacking the time dependent sensitivity matrices Q(t) gives matrix G  
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(2-5) 
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The covariance matrix is then calculated C=G
T
IG, with I the identity matrix since all 

experimental values have a similar weight. Normalizing the covariance matrix C with the 

geometric mean of its diagonal elements gives the sensitivity dependent correlation matrix 

with elements  

(2-6) 
,

,

, ,

i j

i j

i i j j

c
r

c c
         

 

Parameters that are identifiable have a correlation between -1 and +1 with the other 

parameters. Parameters that are not identifiable have a correlation of -1 or +1 with another 

parameter. A correlation of -1 or +1 means that the parameters influence the model output in 

exactly the opposite or the same manner respectively.  

With this information parameters can be estimated and the model performance analysed, a 

process known as sensitivity analysis. 

  

2.3.4 Sensitivity analysis of the model  

 

Input factors for mathematical models such as parameters and initial conditions are often not 

known with a sufficient degree of confidence. Natural variation, error in the measurement or 

lack of techniques to measure the parameter or initial value all contribute to uncertainty. 

Estimated parameters are therefore evaluated with sensitivity analysis. Sensitivity analysis is a 

study into the variation of the critical outcomes of the model and the distribution, qualitative 

and quantitative, of the different sources, especially changes in parameter values, of these 

variations in model outputs (Varma et al., 1999). Sensitivity analysis can therefore guide us in 

determining which parameter values have the largest influence on the model output.  
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Two types of sensitivity analysis are generally employed to identify the influence of 

parameter changes on the model output, local and global sensitivity analysis (Ingalls, 2008). 

Global sensitivity analysis addresses model behaviour over a wide range of parameter values, 

simultaneously changing parameter values, while local sensitivity analysis concentrates 

attention near a particular point in the parameter space, changing parameters one at a time.  

The parameter estimation method described in 2.3.2 used a hybrid approach, a combination of 

local and global optimization methods to estimate the parameter values (Rodriguez-Fernandez 

et al., 2006a).  Global optimization methods give a better guarantee to optimal parameter 

values than other methods such as manual tuning or local parameter optimization methods 

(Xie et al., 2009). Without a reasonable guarantee of optimal parameter estimation, sensitivity 

analysis becomes largely ambiguous (Mendes & Kell, 1998). Since a global optimization 

method was used it can be assumed parameter estimation was optimal and therefore local 

sensitivity analysis is used to identify the influence from local changes in the parameter 

values on the model output.  

 

2.3.4.1 Local sensitivity analysis 

 

In local sensitivity analysis one parameter is changed at a time while the other parameter 

values are kept to their nominal values. The derivative vector is computed (2-7) to obtain a set 

of values for the finite parameter changes δ, sij(t), which allows us to compare the sensitive 

regions of the output of interest X for each parameter . The output of interest X can be any 

observable such as the concentration at time t of component X ([X]) or a combination of the 

concentrations of several components ([X1], [X2], ....[Xn]) at time t. δX stands for the 

incremental change in X due to the incremental change in   or x(0). 
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Time dependent sensitivity 

The local normalized sensitivity of ( )ijs t  is calculated for each time step t of the change in the 

i
th

 component Xi(t) with respect to the change in the j
th

 parameter 
j  or initial value xj(0) 

(Ihekwaba et al., 2004). Because of the interested in the fit of the model, the component X 

was chosen as the concentration of the cytokine mRNA at time t in the 360 minutes 

simulation period and evaluated for the synthesis and degradation parameter changes.  

A uniform distribution of parameter values was created by changing the value of each 

parameter with incremental steps of 10% from the model parameter -40% to the model 

parameter +40% and the corresponding change in mRNA cytokine levels recorded. The value 

( )ijs t  will give a sensitivity index for each time step of the model simulation. However, time 

independent sensitivities would allow us to identify parameters with the highest influence on 

the cytokine mRNA levels for the total simulation period. 

 

Time independent sensitivity 

Integration of the sensitivities ( )ijs t  gives a time-independent value that allows ranking of the 

individual sensitivities of each cytokine as a result of parameter changes (2-9). T is the final 

time point and absolute value of the integrand prevents positive and negative values 

cancelling to zero under the integral xj(t) (Chen et al., 2009). The quantity Sij measures the 

change in the concentration of the i
th

 component with respect to the j
th

 parameter normalized 

by T and therefore captures variations in concentration level between parameter changes over 

time. 

(2-9) 
0

1
| ( )|

T

ij dt ij t
T

S s                    
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2.4 Methods for microarray analysis: analysing gene expression 
levels and clustering 

 

It is believed that the difference between individuals is more in the expression of the genes 

than in the difference between the genomes (Bendixen et al., 2005). With the sequence of the 

genome available researchers have changed the emphasis from sequence analysis to 

functional gene analysis. Research into the difference in gene expression in a variety of 

environments is developing rapidly. In addition, it is becoming clear that genes do not work in 

isolation and clusters of genes expressed concurrently elicit information on the controlling 

mechanisms of gene regulation. Therefore, genome wide investigation of gene expression will 

elicit additional information above the investigation of the expression levels of individual 

genes. 

In the mid 1990s Stanford University published a paper introducing a new technology  

allowing the quantitative simultaneous monitoring of the expression of thousands of known 

genes using DNA microarrays (Afshari, 2002). Microarrays are used to compare genome 

wide gene expression levels between diseased and non-diseased tissues and have become an 

essential tool for the simultaneous analysis of several thousand genes. Designed to compare 

difference in gene expression between two treatments or periods in time, microarray data is 

used to classify cancers, identify the underlying genetic cause of diseases and, recently, define 

genetic pathways and their regulation. In addition, the expression data is used by systems 

biologists to develop models of gene network regulation.  

 

2.4.1 Microarray analysis 

 

Several different types of arrays are available and a commonly used array is high density 

oligonucleotide microarray, referred to as Affymetrix arrays. Affymetrix arrays are less noisy 

and more standardized than the earlier developed cDNA microarrays. The arrays are based on 

probe pairs of short oligonucleotides, small single-stranded segments of DNA typically 20-30 

nucleotide bases in size which are synthesized in vitro to the experimental sample. Each probe 

pair has a perfect match (PM) and a mismatch (MM) probe that is different in the middle 

nucleotide from the PM probe. Typically 11-20 of these probe pairs interrogate a different 

part of the sequence of the gene. Together they form a probe set (Bolstad et al., 2003). The 
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mRNA of the experimental sample is converted to biotinylated cRNA and only one target, 

experiment or control, is hybridized to the probes on the array (Figure 2-8). As a result only 

single colour fluorescence is used in Affymetrix arrays (Allison et al., 2006). The intensity of 

the fluorescent image can then be analysed.   

 

 

Figure 2-8 Schematic representation of the Affymetrix GeneChip® mRNA expression 

analysis system. The Probe Array contains ~22,000 Probe Sets on a surface of ~ 

1.2 cm
2 5

 

 

 

Following hybridization, the image is captured and processed for data acquisition. The data is 

normalized and differentially expressed genes identified as show in Figure 2-9. 

                                                 
5
 Adapted from http://www.weizmann.ac.il/home/ligivol/research_interests.html 
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Figure 2-9 Overview of the steps involved in Affymetrix microarray analysis  

 

2.4.1.1 Image analysis 

 

Image analysis remains an active area of research  and many image processing approaches 

have been developed (Allison et al., 2006). The outcome of the image analysis can have a 

potentially large impact on the subsequent analysis such as clustering and the identification of 

differentially expressed genes (Yang et al., 2001). The different processing methods estimate 

the amount of mRNA from the fluorescent array images, while attempting to reduce variation 

that can occur due to technical differences between the arrays. Microarrays are inherently 

noisy technology and replication is used to reduce variability between arrays (Armstrong & 

van de Wiel, 2004; Seo et al., 2004).  

 

Both open and commercial software, such as Genepix or Imagene (Shippy et al., 2004), are 

available for the array image analysis. A large, but not complete, sample of possible image 

software can be found at http://www.dnamicroarrays.info/Image_software.html.  These 

programs use different algorithms to process the scanned images. The analysis involves 

Gene Ontology analysis, 

the use of prior biological 

knowledge 

 

Clustering of genes 

expression patterns 

 

Image capture, data 

acquisition and 

processing  

 

Normalization to remove 

systemic bias 

Identification of 

differentially expressed 

genes between treatments 

http://www.dnamicroarrays.info/Image_software.html
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gridding or addressing to assign the coordinates of each spot, segmentation to define the 

foreground and background areas of each spot and intensity extraction (Yang et al., 2001).  

 

2.4.1.2 Normalization 

 

Normalization is the process that is necessary to allow the comparison of data between and 

within arrays and is based on the assumption that a subset of genes is expressed at constant 

rate (Li & Wong, 2001). Normalization removes systematic bias caused by technical variation 

which does not represent biological variation (Armstrong & van de Wiel, 2004; Yang et al., 

2002). The process adjusts and balances the hybridization intensities so that a meaningful 

biological comparison can be made (Quackenbush, 2002). Following normalization 

differentially expressed genes can be selected.  

Specific packages and modules for the different steps of the microarray analysis allow for the 

use of different algorithms valid for the evaluation of the hypothesis explicit to the research 

question. The list of possible software solutions is overwhelming and it would be beyond the 

scope of this thesis to discuss all packages. Here BRB Array Tools
6
 is used. BRB Array Tools 

is an integrated package for the visualization and statistical analysis of microarray gene 

expression data using Excel as a front end with analysis models based on R statistical 

packages developed by Dr. Richard Simon and Amy Peng Lam (Simon et al., 2007). The 

software allows us to use advanced analysis facilities and intensity dependent non-parametric 

normalization techniques and identify differentially expressed genes.  

Following the identification of the differentially expressed genes, clustering of genes is used 

to identify additional information. 

 

2.4.2 Clustering 

 

Clustering is the assignment of a set of genes into subsets (clusters) so that the genes in the 

same cluster are similar in some way. Mathematical algorithms provide the option to identify 

clusters of genes with similar time expression profiles based on mathematical properties. 

Following normalization, clustering of genes has the potential to reveal meaningful biological 

                                                 
6
 http://linus.nci.nih.gov/BRB-ArrayTools.html 

http://linus.nci.nih.gov/BRB-ArrayTools.html
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patterns  (Bar-Joseph, 2004). Many different clustering methods such as K-means clustering, 

hierarchical clustering and supervised clustering can be used to identify clusters of co-

regulated genes and have been used with gene expression data (Allison et al., 2006).  

The existing literature is rich in papers relating to different clustering methods, algorithms and 

their applications (Draghici, 2003). The two techniques commonly applied to microarray 

analysis are unsupervised learning and classification, also known as supervised learning or 

discriminant analysis. 

 

Unsupervised clustering  

Clustering is unsupervised when the clusters are formed based on mathematical algorithms 

without the use of biological knowledge. Unsupervised clustering is popular despite the fact 

that little is known about the validity of this process to support biological interpretation 

(Allison et al., 2006; Armstrong & van de Wiel, 2004). Neither can these pure mathematical 

methods capture the biological fact that many gene products are part of more than one 

biological process (Fang et al., 2006). Unsupervised clustering relies on genes that have 

discriminatory power, show different expression levels, over the samples or experiments 

(Armstrong & van de Wiel, 2004). The process is highly dependent on the distance metric 

used and the same algorithm applied to the same data may produce different results (Draghici, 

2003).  

In contrast to pattern discovery of unsupervised clustering, supervised learning or 

classification techniques, also known as discriminant analysis, are designed to classify genes 

into known groups such as diseases like cancer or biological processes (Armstrong & van de 

Wiel, 2004). It has been found that supervised learning is more reliable than unsupervised 

learning (Fang et al., 2006). To overcome this problem Fang et al. (2006) combined Gene 

Ontology (GO) with the mathematical methods of clustering making the analysis of the 

clusters stable and biological meaningful.  

 

Gene Ontology 

Gene Ontology provides a formal representation of the knowledge and relationships of the 

gene properties in three domains; the cellular components, the molecular function and the 

biological process. Gene Ontology and existing knowledge of biological pathways can be 

used as prior knowledge in supervised clustering.  
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Supervised clustering of short time series 

The incorporation of multi-source information in the form of prior knowledge, such as Gene 

Ontology, with objective mathematical techniques, can also overcome the problem of 

oversampling and is used to enhance the supervised clustering of genes in time profiles 

(Wang et al., 2008). However, not all approaches are suitable for the analysis of short, also 

known as sparse, between three and eight time points, series (Ernst et al., 2005). In animal 

studies the high cost of acquiring biological samples and microarrays limits the number of 

time-points and samples for which data is collected. Limited sampling and the high 

dimensionality of microarrays can lead to model over fitting (Wang et al., 2008). In addition, 

noise from the experimental data and microarrays increases the difficulty of differentiating 

between real and random patterns. This has a greater influence on the analysis of short time-

series analysis than on long time series (Ernst et al., 2005).  

Ernst et al. (2006) developed a tool specific for the clustering of short time series to overcome 

the restrictions of limited sampling and therefore allow the extraction of meaningful 

information for further investigation (Ernst & Bar-Joseph, 2006). Their algorithm, Short Time 

Expression Miner (STEM), is specifically designed to cluster short time expression series. 

The program selects a set of potential expression profiles representing a unique temporal 

expression pattern. Each gene is assigned to one of these profiles which represent the different 

clusters. Predefining the temporal patterns of gene expression is a simplification method that 

has, as a side benefit, noise reduction in the original data. Therefore, the subsequent clustering 

in STEM is more robust to noise (Wang et al., 2008).  

Ernst et al. developed an algorithm, implemented in STEM, to select a set of potential profiles 

which describe the direction and magnitude of the gene expression with respect to time, 

differentiating between patterns arising from random noise and patterns arising from 

biological response (2005). Following the assignment of the genes to the profiles, depending 

on direction and magnitude of gene expression, STEM identifies the enrichment of genes in 

each profile based on Gene Ontology which is computed to determine profile significance 

(Ernst & Bar-Joseph, 2006).  
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2.5 Methods for data processing prior to parameter estimation 

 

Microarray data is increasingly available, however, not extensively used in conjunction with a 

systems biology modelling approach because microarray analysis results in fold changes. The 

fold changes give a relative change which compares the change in mRNA expression between 

diseased and non-diseased cells and therefore does not measure absolute concentration levels 

in the diseased cell. Ordinary differential equations in the model simulate absolute 

concentration levels of mRNA expression. To be able to fit the model parameters, the 

concentration levels from the microarray experiments need to be extracted.  

To quantify the concentration levels, a method described by Hekstra et al. (2003) was 

adjusted. The concentration of the expression levels are calculated from the intensity of the 

fluorescence levels. Fluorescence levels change with the level of hybridization of 

fluorescently labelled mRNA to the probes on the microarray. The hybridization of the 

labelled mRNA on oligonucleotide microarrays have also been shown to be affected by 

sequence of the probe and the chemical saturation properties (Hekstra et al., 2003). Hekstra et 

al. developed a model, using Langmuir absorption and the sequence composition of the 

microarray probes, which predicts the absolute mRNA concentrations. Additionally, the 

model accounts for chemical saturation, reducing the compressive bias of differential 

expression estimates which normally occur at high concentrations.  

To implement Hekstra‟s model, probe nucleotide sequence for bovine Affymetrix ® 

microarray were extracted from the manufacturer‟s website http://www.affymetrix.com. Each 

cytokine is measured on the microarray by 11 perfect match (PM) probes. For each probe the 

number of A, C and G nucleotides were calculated. With the number of nucleotides in the 

probe the parameters a, b and d in Equation (2-10) can be calculated. The dependence of the 

fluorescence is described by a, while d is the non specific background of the array and b can 

be interpreted as the concentration at which half of the probes are saturated with the 

complementary RNA if there was no non-specific hybridization (Hekstra et al., 2003).  

(2-10) 
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Where 
Ln  is the number of nucleotides in the sequence of a probe with L= A, C or G, 

s  are 

the nucleotide specific susceptibilities, SC  are the intercepts corresponding to the estimates 

for a, b and d when the probe sequence would be composed of Ts only and   is an error term. 

The total number of nucleotides must add up to 25, the probe length; therefore the number of 

T nucleotides does not have to be taken into consideration in (2-10). The coefficients b

C  can 

be interpreted as the change in ln b when a C nucleotide is substituted by a T. The values for 

s  and SC  were calculated with a calibration data set produced by Affymetrix® by  Hekstra 

et al. (2003) and taken from Table 1 in this publication.  

 

Table 2-1 Parameters for the calculation of mRNA concentration (2-10) calculated by  

Hekstra et al. (2003) with calibration data set produced by Affymetrix®. 
SC  (S is 

a, b or d) are the intercepts corresponding to the estimates for a, b and d when the 

probe sequence would be composed of Ts. You can interpret 
b

C  as the change in 
ln b  when a C nucleotide is substituted by a T. 

PM  SC    A    C    G  

ln a   6.617   0.08  0.219  0.195 

ln b   0.768   0.154  0.206  0.377 

ln d   2.533   -0.305  0.035  0.168 

 

When x is a specific target RNA concentration, the fluorescence intensity I is given by  

(2-11) 
x

I a d
x b

 


         

 

The intensities I for the perfect matching probes from the microarray experiment were 

extracted from the .CEL Affymetrix intensity files generated in our experiment which will be 

described in Chapter 3. 

 

From (2-11) the concentration for each probe p can be estimated with the calculated 

parameters a, b and d for each probe.  
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(2-12) 
p

I d
x b

a d I




 
        

  

Probes with I a d   or I d  will be excluded because they have intensity less than the 

background intensity or an intensity higher than the saturation level (Hekstra et al., 2003).  

Eleven probes form a perfect matching probe set representing a specific gene. The probe set 

concentration is then estimated by (2-13) where („) means the probe set with the probes where 

I a d   or I d  have been removed and n‟ the number of the probes included in the new 

set.  

(2-13) 
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Chapter 3                                                                                   

E. coli and S. aureus mastitis microarray gene 

expression analysis 

In this chapter the microarray analysis of the two bacterial challenges on mammary epithelial 

cells is described. The first Section describes the experimental setup and the microarray 

analysis identifying the differentially expressed genes between diseased and non diseased 

state. This is followed by clustering of the genes for each bacterial challenge and a 

comparison of the genes in the clusters between the two bacterial challenges. The comparison 

is necessary to elicit the clusters and the genes in the clusters which identify the difference in 

regulation between the two bacterial challenges. From these genes the most likely candidates 

that will lead to the differentiation in disease presentation between the two challenges are 

chosen. In the last section the genes of interest for the model are identified and the results 

discussed. 

 

3.1 Microarray analysis 

 

Scanned Affymetrix microarray data files were made available to us by Professor H-M 

Seyfert from the Research Institute for the Biology of Farm Animals (FBN) in Dummerstorf, 

Germany. The microarray experiments are part of the EADGENE (European Animal Disease 

Genomics Networks of Excellence for Animal Health and Food Safety) network studies in 

mastitis and the experimental setup is described in full in Petzl et al. (2008). Briefly, 

mammary tissue samples from three healthy cows were taken. First tissue cultures of samples 

of primary bovine Mammary Epithelial Cells (pbMEC) were grown in a medium as described 

by Yang et al. (2006). Secondly the cultures were challenged with E. coli and S. aureus 

bacteria in two different experiments. Samples were collected 0, 1, 3, 6 and 24 hours after the 

challenge for each bacterium. mRNA was then extracted and applied to the Affymetrix 

microarrays according to the manufacturer‟s instruction. The Microarrays were scanned at 

1.56 micron resolution using the GeneChip Scanner 3000 (Affymetrix). 

The analysis was applied to the provided Affymetrix microarray scanned CEL files. CEL files 

contain the fluorescence intensity of the scanned microarrays. The result of the analysis of the 
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time series microarray chips is described below and is then used for the development of the 

proposed model. In addition to the identification of differentially regulated genes, the use of 

standard bovine Affymetrix microarrays facilitates pathway analysis and the conversion of 

fluorescence intensity to concentration levels which is described in Section 2.5. Concentration 

levels of mRNA over time are used in gene network regulation models and are therefore 

important for the development of the mastitis model in our study. 

 

3.1.1 Identifying differentially regulated genes 

 

The first objective was to establish a list of genes that are differentially expressed between 

challenged and non challenged mammary epithelial cells. Scanned microarray data was 

imported in BRB Array tools. BRB Array Tools 3.5.1 is used to normalize the 30 Affymetrix 

bovine microarray chips and identify the differentially regulated genes (Simon et al., 2007). 

The analysis of the microarrays for the three cows in each challenge identified 1960 genes 

with significant different expression (fold change > 1.5, p<0.01) at one or more time points 

for each of the bacterium.  

The large number of genes can be explained by the fact that more than one function changes 

as a result of the bacterial challenge. Apoptosis, involution and the immune reaction all 

induce gene expression in the bacterial challenge (Viatour et al., 2005).  

 

3.1.2 Clustering of the differentially expressed genes 

 

The microarray analysis described in the previous section produced a list of differently 

expressed genes. To identify clusters of significantly different time profiles between the two 

bacterial challenges, the experiments were clustered separately for each bacterium, followed 

by a comparison of the two bacterial challenges. Two pre-processed data-sets of the E. coli 

and S. aureus challenge, with the earlier identified 1960 differentially expressed genes, were 

submitted to STEM (Ernst & Bar-Joseph, 2006). The STEM clustering method (described in 

more detail in Section 2.4.2) with a maximum number of 50 profiles was used. The maximum 

unit change in the model profile between the change of the maximum and minimum of the 

two time points with a significance of p <= 0.05 and Bonferroni correction was applied. 
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Clustering identified eight statistically significant time profiles representing 566 genes in the 

E. coli microarrays (Figure 3-1). The remaining genes could not be assigned to a profile with 

statistical significance.  

 

Figure 3-1 The clustering results of the STEM (Short time expression mining) algorithm for 

the time profiles in the E. coli challenge. In the top left corner of each profile is 

the profile number, and on the bottom the p-value for the significance of the 

number of genes assigned. Colored blocks represent (arbitrarily numbered) 

profiles with a significant number of genes assigned to the profile, while white 

blocks contain profiles without a significant number of genes. The colors 

represent the trend of the time profile.The x-axis represents the time while the y-

axis represents the expression level. 

 

Clustering the genes in time profile narrowed the possible genes of interest down to 64 genes 

in three time profiles in the S. aureus experiment (Figure 3-2).  
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Figure 3-2 The results of STEM(Short time expression mining) clustering of the time profiles 

in the S. aureus challenge. In the top left corner of each profile is the (arbitrary 

assigned) profile number, and on the bottom the p-value for the significance of the 

number of genes assigned. Colored blocks represent profiles with a significant 

number of genes assigned to the profile, while white blocks contain profiles 

without a significant number of genes. The colors represent the trend of the time 

profile. The x-axis represents the time while the y-axis represents the expression 

level. 

 

The clustering results from STEM left us with more than 500 genes in six different time 

profiles (profile 41 and 43 are represented in both bacteria) to investigate. The lack of 

differential regulation in S. aureus could mean a difference in regulation responsible for the 

differentiation in the disease profile and can therefore not automatically be excluded from the 

analysis.  

 

3.1.3 Comparative clustering  

 

Unlike other available methods, STEM supports the comparison of  multiple data sets (Ernst 

& Bar-Joseph, 2006). Mathematical comparison without the use of prior biological 

information for the two experiments identified three sets of time profiles Figure 3-3.  
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Figure 3-3 In order to identify genes with significantly different time profiles between the 

two bacterial challenges, comparisons of the allocation of genes to the clusters 

between the bacterial challenges are performed in STEM. Clusters with 

significantly different allocation of genes are presented in this figure. In the two 

blocks on the far left: genes allocated to profile 43 for the E. coli experiment are 

identified since the same genes are allocated to cluster 33 in the S. aureus 

challenge. In the two blocks on the far right: genes significantly differently 

expressed in the S. aureus  challenge are allocated to profile 33, while the same 

genes are allocated to profile 41 in the E. coli challenge. The x-axis represents the 

time while the y-axis represents the expression level. 

 

The identified difference in clusters of gene expression included 75 genes for the E. coli 

challenge, cluster 43, and 6 genes for the S. aureus challenge, cluster 33. Of these, 6 genes 

appear in the intersection of the genes in the clusters, indicating a difference in time profile 

between the two bacterial challenges for the expression for these genes. This is a notable 

reduction in potential candidates. This leaves still a large number of genes to investigate. Prior 

biological knowledge of the scientists involved in a study is always used to narrow down the 

focus of an experiment or results. There is a danger of focussing only on the area established 

in earlier research. In this study, prior biological knowledge represents the use of large 

datasets (Gene Ontology) containing an amalgamation of biological knowledge from different 

research as explained in Section 2.4.2.  
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The result for the STEM analysis of profile 43 are shown in Table 3-1 with the most 

significant group of genes (p<0.001) differentially expressed from the expected value is a 

group of five genes in the immune response (GO:0006955) category. The genes represented 

in this category are listed in Table 3-2.  

 

Table 3-1 GO Results for STEM Profile 43 in the E. coli challenge based on the actual 

number of genes assigned to the profile (GO Gene Ontology). 

Category ID Category #Genes #Genes #Genes  #Genes Corrected 

 Name Category Assigned Expected Enriched p-value 

GO:0006955 immune  48 13 2.9 10.1 <0.001 

 response 

GO:0006915 apoptosis 17 6 1 5 0.022 

GO:0012501 programmed 17 6 1 5 0.022 

 cell death 

GO:0008219 cell death 18 6 1.1 4.9 0.028 

GO:0016265 death 18 6 1.1 4.9 0.028 

GO:0004872 receptor activity 41 9 2.5 6.5 0.032 

GO:0048869 cellular 27 7 1.7 5.3 0.036 

 developmental process 

GO:0030154 cell 27 7 1.7 5.3 0.036 

 differentiation 

GO:0048468 cell 20 6 1.2 4.8 0.038 

 development 
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Table 3-2 Five identified genes in the intersection between STEM profile 43 (E. coli 

challenge) and 33 (S. aureus challenge) of the GO category GO:0006955 with 

distinctly different time profiles between the E. coli and S. aureus challenge 

(Bt.60918 previously Bt9296). (UG Uni Gene, GB accession Gene Bank 

accession)  

UG  Name       GB accession   

Bt.20891 OAS1       CK960499   

Bt.24855 tumor necrosis factor     BE753440    

  (ligand) superfamily, member 13b  

Bt.4675 interferon-induced GTP-binding protein Mx1 NM_173940.2   

Bt.552  chemokine (C-C motif) ligand 5 (RANTES)  NM_175827.2    

Bt.60918 similar to Interferon- induced    CK957199   

  guanylate-binding protein 1 (GTP-binding protein 1)    

  (Guanine nucleotide-binding protein 1) (HuGBP-1) 

 

Comparing the time profiles of the five genes between the two bacterial challenges in Figure 

3-4 shows that both were elevated at 24 hours. Gene expression in the E. coli challenge had 

increased in the first 6 hours, returning to lower values 24 hours after the challenge. In 

contrast, the gene expression in the S. aureus challenge did not show an increase in the first 6 

hours and increased in expression between 6 and 24 hours.  
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Figure 3-4 Time profile of the 5 genes in the E. coli and S. aureus challenge in the 

intersection of STEM profile 43(E. coli) and 33 (S. aureus). These genes are 

identified as having significantly different time expression profiles between the 

two bacterial challenges in mammary epithelial cells. 

 

All differentially expressed genes identified in our initial microarray analysis in Section 3.1.1 

from the E. coli challenge were submitted to the Toll receptor signalling pathway (See Figure 

3-5) and compared with the differentially expressed genes in the S. aureus challenge (See 

Figure 3-6). A markedly different level of mRNA expression in the Toll Receptor signalling 

pathway between the two bacterial challenges can be seen.  
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Figure 3-5 Bovine Toll-like receptor signalling pathway adapted from KEGG with in red the genes identified as differentially regulated (fold change > 

1.5, p <0.01) from healthy cells in the E. coli challenge at any time point in the BRB Array Tools analysis.
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Figure 3-6 Bovine Toll-like receptor signalling pathway adapted from KEGG with in red the genes identified as differentially regulated (fold change > 

1.5, p <0.01) from healthy cells in the S. aureus challenge at any time point in the BRB Array Tools analysis. 
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The cytokines RANTES, IL8 and TNFα are differentially expressed between the two bacterial 

challenges. Differential cytokine induction between E. coli and S. aureus mastitis in milk is 

believed to be responsible for the differentiation in the disease profile (Bannerman et al., 

2004; Riollet et al., 2000). 

 

3.1.4 Cytokine expression levels 

 

RANTES, IL8 and TNFα have a common transcription factor, NFκB, which initiates the gene 

expression of these cytokines (See Figure 3-5). The transcription factor NFκB is the most 

important cis-regulatory element controlling
 
TNF-induced RANTES expression  (Casola et 

al., 2002). IκBα expression is also regulated by NFκB and forms a feedback loop on the 

NFκB translocation to the nucleus. Therefore the expression level of IκBα mRNA was also 

investigated.  
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Figure 3-7 Relative fold changes(log2) of microarray mRNA expression levels between no 

infection and infection for three different cows as result of E. coli challenge. 
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Figure 3-8 Relative fold changes(log2) between no infection and infection of microarray 

mRNA expression analysis for three different cows as the result of S. aureus 

challenge 

 

The cytokines RANTES, IL8 and TNFα were expressed in E. coli challenge  

Figure 3-7), while the S. aureus challenge only identified differentially expressed IL8 mRNA 

levels (Figure 3-8). There was also a clear difference in expression level and pattern of IκBα 

between the two bacterial challenges. While the E. coli challenge elicit a sharp increase in 

IκBα in the first hour followed by a reduction in the IκBα expression levels, the S. aureus 

bacterial challenge showed a rise in fold change from the first to the third hour in the 

mammary epithelial cells.  
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3.2 Discussion 

 

In this chapter the genes differentially expressed in the epithelial cells between the healthy 

and diseased cells and the genes differentially expressed between the two bacterial challenges 

were identified. Identifying the genes differentially expressed in the epithelial cells between 

the two bacterial challenges leads us to the identification of the signalling pathway and gene 

network that contributes to the gene expression in the disease differentiation. This signalling 

pathway and gene network regulation can be modelled and interrogated with a systems 

biology approach to identify the underlying mechanistics of the differentiation.  

Investigating gene expression time-series analysis of cDNA microarray  in E. coli mammary 

infection has been performed in a previous study on an existing set of cDNA microarrays by 

van Loenen-den Breems et al. (2008).  In this study a pipe line of bioinformatics tools was 

applied, using Gene Ontology and clustering to a set of differentially expressed genes in the 

mammary gland to cluster gene expression time profiles and identify biological pathways 

involved in the disease. The study identified four pathways to be involved in E. coli mastitis. 

Modelling the interaction of the four pathways would lead to a very complex model and 

requires extensive biological experiments which are not feasible in this thesis. In addition, the 

experiments were performed on the mammary tissue, and as identified in Section 2.1.1 not 

only an inflammatory response, but apoptosis, milk production and other functions are 

performed in the mammary gland. The experimental setup therefore did not facilitate the 

separation of pathway involvement between the different functions of the mammary gland. 

To separate the pathway involvement and identify the most important pathway and genes in 

the inflammatory response we therefore set out to identify the difference in regulation 

between two types of mastitis, gram positive and gram negative, E. coli and S. aureus, 

mastitis in mammary epithelial cells. In our knowledge, comparative studies with genome 

wide gene expression profiles resulting from gram negative and gram positive bacterial 

challenges of mammary epithelial cells, over several time steps have not been performed 

before.  

Rather than looking at lists of genes, clusters of genes with specific functionality defined in 

Gene Ontology groups that differed in expression time profile between the two bacterial 

challenges were identified. This resulted in the identification of five genes of the immune 

response category (GO:0006955). These genes are believed to be regulated by the IFNα/β 

(Noppert et al., 2007). The IFNα/β receptor is also involved in STAT5 signalling which is 
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suggested to play a role in mastitis in neutrophils in milk (Boutet et al., 2004). However, the 

work in this thesis involves mammary epithelial cells with the focus to identify one signalling 

pathway in the differentiation between two bacterial challenges.  

RANTES, one of the five identified genes in the cluster, had been identified earlier as up 

regulated with LPS challenged mammary epithelial cells (Pareek et al., 2005). LPS, as 

explained in Section 2.1.2, is found on the cell wall of E. coli bacteria and used to simulate 

bacterial infection in cell cultures. Pareek et al. indicated that the mammary epithelial cells 

are the source of RANTES expression in a LPS challenge (2005), which was confirmed in our 

experiment.  

RANTES is expressed as the result of the signalling process of the Toll receptor signalling 

pathway and the transcription factor NFκB (See also Section 2.1.2). The Toll receptor 

signalling pathway was identified as one of the four signalling pathways in mastitis by us (van 

Loenen-den Breems et al., 2008). The involvement of Toll like receptors in the innate 

immune defence in the udder against E. coli and S. aureus mastitis was later confirmed in 

other biological experiments after our microarray studies by Petzl et al. (2008). These studies 

confirmed the findings of Rainard & Riollet (2006) and De Schepper et al. (2008) of the 

involvement of pro-inflammatory cytokines, such as TNFα, IL-1, IL-6, the chemokines IL8 

and RANTES and Toll receptor signalling in mastitis. In more recent studies, also performed 

after our experiments, RANTES has been reported as differentially expressed between E. coli 

and S. aureus challenges of mammary epithelial cells (Griesbeck-Zilch et al., 2008). The role 

of cytokines and mammary epithelial cells in the immune defence of the mammary gland was 

emphasized in studies by Lahoussa et al. (2007).  

Variance in cytokine expression is believed to be responsible for the different clinical profiles 

in mastitis (Bannerman et al., 2004). However, it had not been shown what caused the 

difference in the expression time profile of RANTES between E. coli and S. aureus epithelial 

challenges. LPS on the E. coli cell membrane initiates TLR4 signalling (Figure 3-5). S. 

aureus, as explained in Section 2.1.2, has LTA on the bacterial cell wall and initiates TLR2 

signalling (Figure 3-6). TLR signalling, TLR2 and TLR4, regulates NFκB transcription factor 

translocation to the nucleus. NFκB is a transcription factor which initiates cytokine gene 

expression. NFκB has been recognized as the „master switch‟ in regulating the expression of 

various cytokines in the immune defence response (Hayden et al., 2006). The activation of 

NFκB has been linked with mastitis (Connelly et al., 2010).  
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The NFκB activation of cytokine expression in mastitis is sustained with LPS but not with 

LTA and the role of NFκB in this regulation is unclear. The cause of the difference in 

expression of RANTES, IL8 and TNFα between E. coli and S. aureus challenged mammary 

epithelial cells has not been identified at this stage. Therefore, the results of our analysis 

indicate the need for further investigation into the effect of NFκB regulation on cytokine 

expression as result of the Toll receptor signalling in mastitis. Differentiation in cytokine 

expression causes differentiation in disease profile.  

Describing the regulation of NFκB on the cytokines gene expression levels can not be 

achieved with gene expression or protein concentration lists at different time points alone. 

Feedback loops, such as the negative feedback loop initiated by IκBα expression, and 

compensation mechanisms are involved in NFκB activation. Therefore, the effect of the 

NFκB regulation on the gene network regulation in mastitis should be modelled with a 

systems biology approach. In Section 2.2 the use of mathematical modelling was introduced. 

In the following chapters a model is developed to represent and analyse the cytokine mRNA 

expression dynamics in mammary epithelial cells as a result of the bacterial challenges.  
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Chapter 4 

NFκB signalling model 

In this thesis the mechanistics responsible for cytokine expression in mammary epithelial cells 

are under investigation. Cytokine expression is initiated by the NFκB transcription factor in 

the nucleus of the cell. Understanding the regulation of the translocation of the NFκB 

transcription factor from the cytoplasm to the nucleus and its influence on cytokine 

expression is therefore of particular interest to us. While Section 2.1.3 described the biology 

of NFκB regulation, this chapter introduces a mathematical model previously developed to 

investigate the regulation of the translocation of the NFκB transcription factor between the 

cytoplasm and nucleus. NFκB models have been developed in the past and using an existing 

model reduces time and cost. The described model will become a part of our model for 

cytokine expression in mastitis, which will be developed in Chapter 5.  

In Section 4.1 the conceptual model is explained. Section 4.2 describes the special features of 

the model; the input function used to represent the different bacterial challenges, the model 

output, feedback loops and highlights assumptions of the model. Our implementation of the 

model is described in Section 4.3. This implementation performed identically to the published 

model. 

 

4.1 Mathematical modelling of NFκB regulation 

 

The transcription factor NFκB is a central mediator in inflammatory response and involved in 

several diseases such as mastitis (Boulanger et al., 2003; Boutet et al., 2007; Connelly et al., 

2010; Notebaert et al., 2008a; Notebaert et al., 2008b), cancer, diabetics and arthritis (Bragt et 

al., 2009; Cheong & Levchenko, 2008; Kumar et al., 2004). As a result and the nonlinearity 

of the interactions responsible for NFκB regulation, information gained from biological 

experiments is often limited and therefore there has been a high interest in mathematical 

modelling of NFκB regulation (Cheong et al., 2008).  

The conceptual model for NFκB regulation described in Section 2.1.3 is shown in Figure 4-1. 

The model was first implemented by Hoffmann et al. in (2002a). A mathematical model was 

implemented to investigate the dynamical control of NFκB regulation and the role of the IκB 
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on the signalling process. Since then several other researchers have used and extended this 

model in a wide variety of studies (Cheong et al., 2008; Cheong et al., 2006; Kearns & 

Hoffmann, 2008; Lipniacki et al., 2004; Werner et al., 2005).  

In this thesis the work is based on the model extensions and parameter values developed by 

Werner et al. (2005). The model included feedback loops and was calibrated against LPS 

challenge. In this thesis cytokine mRNA expression as a result of the LPS challenge in 

mammary epithelial cells is investigated. The model developed by Werner et al. (2005) is 

based on experimental values in similar experiments and therefore the model was most suited 

for our investigations.  

 

4.2 Model description 

 

Based on the conceptual model in Figure 4-1 the scope of the model in terms of the reaction 

components and reactions are described. First the model components are described (Section 

4.2.1). In addition to the components the model reactions are defined and together form the 

model. The reactions were formulated as uni-, bi- and tri-molecular processes according to the 

law of mass action based on the biochemical reactions that are linked together. An equation 

for the rate of change is written for each component. The equation can have many terms, 

depending on the number of reactions in which the component participates. The law of mass 

action is based on diffusion of components (in the cytoplasm and nucleus), collisional 

interaction, and binding and unbinding, such that effective rates of production or degradation 

are proportional to the concentration of each component that contributes to the reaction.  

The reactions of the IκB isoforms and all complexes with IκB (Section 4.2.2) are presented. In 

Section 4.2.3 we will present the IKK reactions which play an important role in the model 

input, in Section 4.2.4 nuclear NFκB, the model output and in Section 4.2.5 the reactions 

involved in the feedback loops in the model are discussed. The complete list of mass action 

equations can be found in the supplementary material (Table A- 1), and is compiled from 

previously published work (Hoffmann et al., 2002a; Werner et al., 2005). 

The nomenclature of reaction rates use the same format of those proposed in (Werner et al., 

2005). They are of the form X_Y_Z, with X the action; pd is protein degradation, ps protein 

synthesis, a association, d degradation, Y the location of the reaction; c cytoplasm, n nucleus, 
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and Z the component involved; i for IKK, n for NFκB and a, e, b the three IκB isoforms; 

IκBα, IκBβ and IκBε. 

 

 

 

Figure 4-1 Conceptual model of NFκB signalling implemented by Hoffmann et al. 

(2002a).The activated kinase IKK breaks the IκB-NFκB dimer. As a result the 

transcription factor NFκB translocates to the nucleus. Gene expression is initiated. 

Among the genes expressed are the IκB isoforms which bind with NFκB in the 

cytoplasm to prevent translocation of NFκB to the nucleus. This process creates a 

negative feedback loop for the translocation of NFκB to the nucleus. 

 

4.2.1 Model components 

 

The model includes 24 proteins which are changing dynamically and their concentrations are 

the modelled components (Table 4-1). The model is divided in two compartments, 

representing cytoplasm and nucleus (Figure 4-1). Compartmentalization was achieved by 

representing a single protein as multiple components, one for each compartment. Each 

component is represented by their molecular name in the cytoplasm, e.g. IκBα, and their 

molecular name followed by an n, IκBαn, representing the protein form in the nucleus or 

followed by a t, representing the mRNA of this molecule in the nucleus (Table 4-1). Protein 
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transport was modelled as movement of components between the compartments with first 

order kinetics making the process computationally tractable. 

  

Table 4-1 Reaction components and their location in the NFκB model implemented by 

Werner et al. in 2005. 

component location   

IκBα cytoplasm   

IκBαIKK cytoplasm   

IκBαIKKNFκB cytoplasm 

IκBαNFκB cytoplasm 

IκBαNFκBn nucleus  

IκBαn nucleus 

IκBαt nucleus  

IκBβ cytoplasm   

IκBβIKK cytoplasm   

IκBβIKKNFκB cytoplasm 

IκBβNFκB cytoplasm 

IκBβNFκBn nucleus 

IκBβn nucleus  

IκBβt nucleus 

IκBε cytoplasm 

IκBεIKK cytoplasm 

IκBεIKKNFκB cytoplasm 

IκBεNFκB cytoplasm 

IκBεNFκBn nucleus 

IκBεn nucleus 

IκBεt nucleus 

IKK cytoplasm 

NFκB cytoplasm 

NFκBn nucleus 

 

4.2.2 Model reactions of IκB isoforms 

 

Reactions which are represented with the component IκB, or a complex with IκB, are a 

representation of the reactions of all three isoforms of IκB (IκBα, IκBβ and IκBε) (Figure 

4-2). In the model the reactions are implemented in triplicate, one for each isoform. Here we 

show one form for clarity. 
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Figure 4-2 Conceptual model of NFκB signalling. The model reactions of the IκB isoforms 

are circled in this figure. The IκB isoforms influence the rate of translocation of 

NFκB to nucleus with a negative feedback loop and the reactions involved are 

discussed in this section.   

 

The rate of change in the concentration of free IκB isoforms in the cytoplasm is modelled as:  
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The rate of change in the concentration of the IκBIKK complex in the cytoplasm is modelled 

as:  

[ ]
_ _ [ ][ ]

_ _ [ ]

_ _ 2 [ ][ ]

_ _ 2 [ ]

_ _ 2 [ ]* ( )

d I BIKK
a c ai I B IKK

dt

d c ai I BIKK

a c ain I BIKK NF B

d c ain I BIKKNF B

pd c ai I BIKK ikkm t






 

 



 









 

The rate of change in the concentration of nuclear IκB is modelled as: 
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The rate of change in the concentration of IκB mRNA in the nucleus is modelled as: 

_ _

[ ]
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_ [ ( )]

_ [ ]

h an n

d I Bt
rsu a

dt

rsr an NF B t

rd a I Bt



 



 

 



 

 

The equations above of the transcription of IκBα, IκBβ and IκBε ([IκBt]) are the only 

mathematical equations which differ between the three isoforms. IκBα and IκBε mRNA 

transcript level, IκBαt and IκBεt, are dependent on NFκB initiated transcription, degradation 

and residual transcription of IκBt. IκBβ mRNA is not initiated by NFκB and therefore 

described by residual transcription and degradation rates of IκBβt and h_an_n set to zero. 

IκBα is translated without a delay in the model, τ = 0, while there is a delay of τ =45 minutes 

for IκBε.  
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4.2.3 Model input: IKK  

 

NFκB is a pleiotropic transcription factor that responds to numerous intra and intercellular 

signalling events. Experimentally measurable input and output activities were selected as the 

model boundary. The majority of the upstream signalling events lead to the activation of IκB 

kinase complex IKK (See also Figure 2-2 for the location of IKK in the TLR signalling 

process), therefore IKK activity is used as the model input, while the concentration of nuclear 

NFκB is defined as model output. 

In order to facilitate modelling of arbitrary or observed IKK profiles, active IKK is 

represented in the input signal. The IKK input is solved numerically, by a piecewise linear 

input function, ikkm(t) (See Figure A-1), rather than analytically and based on experimental 

values of the LPS challenge (Werner et al., 2005).  

 

 

Figure 4-3 Conceptual model of NFκB signalling. The model reactions of the IKK, the model 

input, are circled in this figure. The signalling pathway activates the kinase IKK 

which breaks the IκB-NFκB dimer. IKK is seen as the input of the model 

representing the bacterial challenge and the reactions involved are discussed in 

this section. 

 

There are 15 mass action kinetic reactions (Table A- 1 in A.1.1) that remove or add active 

IKK from free and complex proteins in the system. The rates modify degradation rates 

proportionally for each complex of IκBIKK and IκBIKKNFκB proteins. Complex proteins 
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IκBIKK and IκBIKKNFκB are modelled to represent the phosphorylation of NFκB bound 

proteins, targeting them for proteolysis through the ubiquintin-proteasome pathway (Ghosh et 

al., 1998).  

The rate of change in the concentration of free IKK in the cytoplasm is modelled as:  

[ ]
_ [ ][ ]

_ _ [ ]

_ _ 2 [ ][ ]

_ _ 2 [ ]

_ _ 2 [ ]* ( )

_ _ 3 [ ]* ( )

d IKK
a c ai I B IKK
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d c ai I BIKK

a c ani I BNF B IKK

d c ani I BIKKNF B

pd c ai I BIKK ikkm t

pd c ain I BIKKNF B ikkm t





 

 



 

  











 

 

 

 

4.2.4 Model output: NFκB 

 

The model output is defined as the nuclear NFκB ([NFκBn]) concentration in response to the 

LPS challenge over time. The output is therefore not defined as the concentration of nuclear 

NFκB with the model in steady state, but as the change in concentration as a function of time.    

 



 69 

 

Figure 4-4 Conceptual model of NFκB signalling. The model reactions of the cytoplasmic 

and nuclear NFκB are circled in this figure. NFκB is a key transcription factor and 

the mechanistics of the translocation to the nucleus as result of the IKK activation 

play an important role in the immune reaction. Nuclear NFκB concentration is the 

output of the model and the reactions are discussed in this section. 

 

The rate of change in the concentration of nuclear NFκB is modelled as: 

[ ]
_ _ [ ][ ]

_ _ [ ]

_ [ ]

_ [ ]

_ _ 2 [ ]

d NF Bn
a n an I Bn NF Bn

dt

d n an I BNF Bn

in n NF B

ex n NF Bn

pd n an I BNF Bn


 

 





 

 









 

Nuclear NFκB, NFκBn, is depleted as the result of the association with IκB and export of 

NFκB into the cytoplasm. An increase of nuclear NFκB is the result of disassociation and 

protein degradation of NFκBIκB complex and import of NFκB from the cytoplasm. The 

nuclear NFκB and the NFκB in the cytoplasm form the total free NFκB in the model.  
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The rate of change in the concentration of NFκB in the cytoplasm is modelled as: 

[ ]
_ _ [ ][ ]

_ _ [ ]

_ _ 2 [ ][ ]

_ _ 2 [ ]

_ [ ]

_ [ ]

_ _ 2 [ ]

_ _ 3 [ ]* ( )

d NF B
a c an I B NF B

dt

d c an I BNF B

a c ain I BIKK NF B

d c ain I BIKKNF B

in n NF B

ex n NF Bn

pd c an I BNF B

pd c ain I BIKKNF B ikkm t


 

 

 

 





 

 

 















 

Cytoplasmic NFκB is depleted due to the formation of IκBNFκB and IKKIκBNFκB 

complexes and transport of free NFκB to the nucleus. Degradation of these complexes and 

disassociation due to phosphorylation by IKK and transport of nuclear NFκB into the 

cytoplasm increases the concentration of cytoplasmic NFκB.  

 

4.2.5 Feedback  

 

A feedback loop is a closed cycle of components each affecting the concentration or activity 

of the next component with activation or inhibition (Mengel et al., 2010). Feedback 

mechanisms prevent the translocation of NFκB to the nucleus influencing the temporal 

dynamics of NFκB and the response to the bacterial challenge. There are two parts to the 

feedback loop. Firstly, NFκB activates the IκBα mRNA expression and secondly IκBα forms 

a dimer with NFκB in the cytoplasm sequestering it in the cytoplasm. In the second feedback 

loop is similar: the dimer of IκBε with NFκB in the cytoplasm prohibits the translocation of 

NFκB to the nucleus but IκBε mRNA expression is activated by NFκB with a delay (See 

Section 4.2.2). The third IκB isoform IκBβ forms a dimer with NFκB in the cytoplasm and 

prevents the translocation to the nucleus but mRNA expression of IκBβ is not initiated by 

NFκB. IκBβ is therefore not part of a feedback loop but influences the outcome of the 

immune reaction. 
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Figure 4-5 Conceptual model of NFκB signalling. The kinase IKK breaks the IκB-NFκB 

dimer. The model reaction of the IκBNFκB components are circled in this figure. 

They are the heart of the feedback mechanism for the translocation of NFκB and 

discussed in this section. 

 

The rate of change in the concentration of IκBNFκB complex is modelled as: 

[ ]
_ _ [ ][ ]

_ _ [ ]

_ _ 2 [ ][ ]

_ _ 2 [ ]

_ 2 [ ]

_ 2 [ ]

_ _ 2 [ ]

d I BNF B
a c an I B NF B

dt

d c an I BNF B

a c ani I BNF B IKK

d c ani IKKI BNF B

in an I BNF B

ex an I BNF Bn

pd c an I BNF B

 
 

 

 

 

 

 

 

 













 

The rate of change in the concentration of nuclear IκBNFκB complex is modelled as: 

[ ]
_ _ [ ][ ]

_ _ [ ]

_ 2 [ ]

_ 2 [ ]

_ _ 2 [ ]

d I BNF Bn
a n an I Bn NF Bn

dt

d n an I BNF Bn

in an I BNF B

ex an I BNF Bn

pd n an I BNF Bn
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The rate of change in the concentration of the IκBIKKNFκB complex is modelled as:  

[ ]
_ _ 2 [ ][ ]

_ _ 2 [ ]

_ _ 2 [ ][ ]

_ _ 2 [ ]

_ _ 3 [ ]* ( )

d I BIKKNF B
a c ani I BNF B IKK

dt

d c ani I BIKKNF B

a c ain I BIKK NF B

d c ain I BIKKNF B

pd c ain I BaIKKNF B ikkm t

 
 

 

 

 

 

 









 

 

4.2.6 Assumptions of the model 

 

Each model has several assumptions. Detail of the model needs to be limited in line with the 

experimental data and a more elaborate model would make parameter estimation and model 

analysis intractable.  

 

Parameters 

Ideally all parameters would be measured however, this is not always possible. Due to the rich 

literature of biochemical rate constants derived from in vitro measurements and quantitative 

cell biology, one third of the parameters were known with high degree of confidence, one 

third was significantly constrained by the literature and the remaining third was estimated in 

parameter fitting with experimental data (Kearns & Hoffmann, 2008).   

 

Equal distribution of molecules 

The signalling process can be described with ODE if the diffusion process is fast and the 

molecules equally distributed. Diffusion coefficients of proteins are variable and differ from 

0.05µm
2
/s for trans membrane receptors, up to 0.5 µm

2
/s for membrane bound proteins and 

more than 10 µm
2
/s for proteins in the cytoplasm (Arrio-Dupont et al., 2000; Niv et al., 

1999). The average distance s for a protein to travel can be calculated from the diffusion 

coefficient D and the time t (4-1).  

 

(4-1) 4* * /s D t   
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A protein in the cytoplasm with diffusion coefficient of 10 µm
2
/s diffuses on average 3.5µm/s 

(Teruel & Meyer, 2000). Trans-membrane proteins can be regionally localized but 

cytoplasmic proteins diffuse rapidly. The rapid diffusion permits us to consider the proteins in 

the cytoplasm as proteins in a well stirred medium. Therefore, the use of ODE is sufficient to 

describe the dynamics of intracellular reactions. This facilitates the systems to be analysed 

with nonlinear systems theory. Differential equations have been used with great effect in the 

NFκB pathway models (Cheong & Levchenko, 2008).  

 

Stochasticity 

Many organisms are phenotypically variable as a result of stochastic gene expression. 

Differential equations model the system deterministically and continuously assuming a well 

stirred environment with unlimited availability of the components of the system (Materi & 

Wishart, 2007). Gene expression is stochastic or noisy. Noise plays an important role in 

biological networks, increasing sensitivity (Paulsson et al., 2000), driving oscillations (Vilar 

et al., 2002) and timing gene activities (Amir et al., 2007). The stochasticity stems from two 

sources: intrinsic and extrinsic noise (Cheong et al., 2010). Intrinsic noise is confined in the 

system, availability of the components, while extrinsic noise is caused by changes in the 

surrounding environment (Swain et al., 2002).This variation, “noise” in protein expression is 

thought to play a key role in the differentiation of  transcriptional activation (Mettetal & van 

Oudenaarden, 2007). The stochastic approach is much more computationally expensive and 

the analysis of the underlying dynamics of the system difficult (Doyle & Stelling, 2006). 

Stochastic simulation techniques are therefore often used because they are closer to reality 

than deterministic models for single cell measurements. 

Observations on population levels present the average response of the cells to external 

perturbations. For the given model with fixed parameters and initial conditions the time 

evolution of the components is fixed, i.e. deterministic and can therefore be approximated by 

a deterministic process adequately representing the stochastic influences of the individual 

cells on the cell population. Therefore, the Ordinary Differential Equations represent the time 

evolution of the mean concentration values of the population of cells.  

In addition, it has been shown that extrinsic noise dominates the intrinsic noise (Raser & 

O'Shea, 2005). A model with Ordinary Differential Equations and parameter estimations 
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based on average cell population measurements will still be informative and able to indicate 

further biological experiments. 

 

 

NFκB heterodimer 

NFκB is a protein complex and the complicated kinetics of its formation is not modelled. 

NFκB is a heterodimer composed of RelA(p65) and NFκB1 (p50). RelA is synthesized as a 

mature product. The second product has a large precursor p105 and requires post translational 

modification dependent on NFκB. However, the synthesis of the crucial NFκB component, 

RelA, appears to be constant and signal independent. Therefore, it is expected that the 

production of NFκB heterodimers is constant can be balanced by degradation in the model  

(Lipniacki et al., 2004). In addition, no specific data is available to justify increasing the detail 

of the model.  

 

Multiple transcription factors  

Limited data prevents modelling multiple transcription factors, however, transcriptional 

nonlinearity, such as cooperative binding and multiple transcription factors have been 

represented with the coefficient of 3 (h_an_n) in NFκB induced transcription of IκBα and 

IκBε (IκBt in Section 4.2.2).  

 

IKK  

IKK phosphorylates each IκB isoform. Due to the lack of biochemical data it was assumed 

that ubiquitination and proteolysis of IκB isoforms follows the specific phosphorylation event 

of IκB by IKK immediately. Therefore, the interaction of IKK and IκB isoforms proceed as a 

single enzyme degradation scheme and can be represented by the following reactions: 

degassociation protein

disassociation
IKK I B IKKI B IKK    

degassociation protein

disassociation
IKK I BNF B IKKI BNF B IKK NF B        

If IKK represents the enzyme, IκB the substrate and IKKIκB or IKKIκBNFκB the enzyme-

substrate complex, the reaction scheme can be represented by differential equations. The 

differential equations describe the rate of change of the concentrations of IKK, IKKIκB, 

IκBNFκB, IKKIκBNFκB and IκB. Where the association of IKK with IκB represents the start 
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of the signalling event, the disassociation represents the stability of the complex. The rate of 

protein degradation is dependent on the input function, unique for each bacterial challenge, 

and changes over time in the model.   

Free cytoplasmic IKK can then be represented by the reactions  

 _ _a c aiI B IKK IKKI B           

 _ _d c aiIKKI B IKK I B          

 _ _ 2pd c aiIKKI B IKK    

 _ _2a c aniI BNF B IKK IKKI BNF B      

 _ _2d c aniIKKI BNFkB IKK I BNF B        

 _ _3pd c ainIKKIkBNFkB IKK NF B   

 

For each IκB represented in the equations above there are three mass action equations, one for 

each isoform IκBα, IκBβ and IκBε. 

In order to allow the model to be applied to a variety of signalling cascades as a result of 

different stresses, IKK is represented as a single entity. Therefore, the model does not separate 

between IKK1/IKK2 (IKKα/IKKβ) heterodimer scaffolded by NEMO (IKKγ). The single 

entity IKK represents active IKK. Different receptors on the cell membrane, such as TLR4 or 

TNFα lead to different IKK heterodimer activation. The use of the input function ikkm 

(Section 4.2.3) facilitates the different activation rates depending on the bacterial challenge.  

 

4.3 Implementation of the model  

 

The model described by Werner et al. (2005) was implemented in SBtoolbox (Schmidt & 

Jirstrand, 2006) (See Appendix B). SBtoolbox is a systems biology toolbox in MATLAB 

("MATLAB® ", R2007a ). The toolbox is an open and extendible environment with a large 

number of analysis tools such as deterministic simulation. The toolbox uses the MATLAB 

numerical differential equation solver, ode15s, to solve the equations. The solution to the 

equations, the time course for each component, can then be compared with the experimental 

values  

The simulations were performed with the system of ODE describing the biochemical 

reactions involving in signal transduction between IKK and nuclear NFκB activity described 
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in Section 4.1.  Initial values were calculated by running the model with a basal input level 

(0.1µM) until no more changes in concentration could be detected. Our implementation of the 

model created the same model behaviour as the implementation from Werner et al. (2005). 

 

4.4 Summary 

 

In this chapter we explained the concepts and highlighted the features of the model for the 

translocation of the NFκB transcription factor from the cytoplasm to the nucleus. The model 

was developed by Hoffmann et al. (2002a) and extended by Werner et al. (2005) and used in 

several applications. Our implementation of the model in MATLAB performed identically to 

the published model. The model will become part of the model which represents cytokine 

mRNA expression in mammary epithelial cells described in Chapter 5. The model is chosen 

to reduce time and cost in the development of the mastitis model. 
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Chapter 5 

 Mastitis model development 

Models should be as simple as possible, but not simpler  

Albert Einstein 

 

This study aims to evaluate the effect of the dynamics of the translocation of the transcription 

factor NFκB to the nucleus on the mechanistics of the cytokine mRNA expression in mastitis. 

The signalling and gene network regulation as a result of the bacterial challenges are 

investigated to see if this explains the mechanistics of the cytokine expression profiles. As 

described in the last chapter, several studies have developed mathematical models to explain 

the translocation of the transcription factor NFκB from the cytoplasm to the nucleus. The 

transcription factor NFκB plays and important role in the cytokine expression.  In this 

chapter, a mathematical model representing signalling and gene network regulation of 

cytokine mRNA expression in mammary epithelial cells is developed. The model consists of 

two modules; the first module is described in detail in the previous chapter representing the 

signalling and NFκB translocation, while the second module, the gene network regulation of 

cytokines as a result of the NFκB translocation, is described in detail in this chapter. 

In the first section of this chapter the selection of a conceptual model based on the microarray 

analysis results described in Chapter 2 is discussed. In the second section the parameter 

estimation for the module, representing cytokine mRNA expression in mammary epithelial 

cells, is described. In the third section sensitivity analysis of the module for cytokine mRNA 

expression is performed to evaluate the influence of the parameter values, estimated in this 

chapter, on the model output.  

 

5.1 Model selection 

 

The biological complexity and limited quantitative measurements impose major challenges 

for model selection from experimental time-series data (Cho et al., 2003; Kutalik et al., 2004). 

Due to the high cost of microarray experiments, especially time series microarray 

experiments, data points are often limited. The available experimental data in this thesis does 
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not allow for the identification of the structure of the model and prior biological knowledge as 

described in Section 3.1.3 is used to identify the model structure. Based on the prior 

biological knowledge and molecular basis of cytokine mRNA expression described in 

Chapter 2 and Chapter 3 the topological model with system components and schematic 

regulatory connections between components is derived and presented in Figure 5-1.  

 

 

Figure 5-1 Stimulus specific conceptual model of TLR-IKK-NFκB signalling in mastitis. The 

TLR receptor on the cell membrane recognizes the bacterial challenge. The 

signalling pathway activates the kinase IKK which breaks the IκB-NFκB dimer. 

As a result, the transcription factor NFκB translocates to the nucleus initiating 

gene expression. The transcription factor NFκB initiates the expression of three 

cytokines, RANTES, IL8 and TNFα in mastitis. In addition, the IκB isoforms 

which bind with NFκB in the cytoplasm to prevent translocation of NFκB to the 

nucleus are expressed. This process creates a negative feedback loop for the 

translocation of NFκB to the nucleus.  

 

Model development can be time consuming and biological experiments costly. Therefore, we 

choose a modular approach where an existing model constitutes a part of the new model. This 

reduces the time and cost of additional biological experiments and model development. We 

chose the model, developed by Werner et al. (2005) described in Chapter 4, to represent the 

TLR-NFκB signalling and translocation of NFκB to the nucleus.  
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In our model the nuclear NFκB activity, the output of the model developed by Werner et al. 

(2005), is incorporated in a system of ODE‟s representing the cytokine mRNA expression 

levels in mastitis.  

 

5.1.1 Module reactions for cytokine mRNA expression 

 

The conceptual diagram in Figure 5-2 describes the reactions of the cytokine mRNA 

expression levels of RANTES, IL8 and TNFα initiated by the transcription factor NFκB as 

result of bacterial challenge to mammary epithelial cells.  

 

 

 

Figure 5-2 Conceptual diagram for cytokine mRNA expression in the nucleus in mammary 

epithelial cells. The transcription factor NFκB initiates the expression of the 

cytokine RANTES, IL8 and TNFα in the nucleus. 

 

The schematic diagram in Figure 5-2 allows us to set up the reactions for cytokine mRNA 

expression in mastitis. The same nomenclature as described in Section 4.1 is used to describe 

the rate constants and components. The reactions for synthesis and degradation of the 

cytokines are described in (5-1)-(5-6) with the rate constants for synthesis, rsr_xn and 

degradation, d_n_x (x depends on the cytokine, 8 for IL8, TNFα for TNFα, r for RANTES) 

are shown below. The suffix _xn in the synthesis parameter indicates the association of NFκB 

with the gene x during the synthesis followed by the release of NFκB when the synthesis of 

mRNA is completed. In RANTESt, IL8t and TNFαt the t at the end represent the 

concentration of the mRNA of the cytokines RANTES, IL8 and TNFα respectively in line 
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with the nomenclature of the first model. While in NFκBn the additional n following NFκB 

indicates the nuclear form of NFκB as described in Section 4.1. 

 

(5-1) _3 3rsr rnNF Bn RANTESt NF Bn                  

(5-2) _ _ sinkd n rRANTESt                       

                  

(5-3) _83 8 3rsr nNF Bn IL t NF Bn                     

(5-4) _ _88 sinkd nIL t                                                     

 

(5-5) _3 3rsr TNF nNF Bn TNF t NF Bn             

(5-6) _ _ sinkd n TNFTNF t                                              

 

Based on the molecular details of cytokine mRNA expression described in Section 2.1.2 and 

the law of mass action we can derive the molecular balance for each cytokine, which results in 

three ODEs representing the mRNA expression levels of RANTES, IL8 and TNFα  (5-7)-

(5-9). The mRNA concentration for each cytokine is represented as the name of the cytokine 

followed by a t, [RANTESt] and is then the component representing the concentration of 

RANTES mRNA, [IL8t] is the component representing the concentration of IL8 mRNA while 

[TNFαt] is the component representing the concentration of TNFα mRNA. 

 

(5-7) 

_ _[ ]
_ [ ( )]

_ [ ]

h an rd RANTESt
rsr rn NF Bn t

dt

rd r RANTESt

 



                                             

(5-8) 
_ _8[ 8 ]

_ 8 [ ( )]

_ 8[ 8 ]

h and IL t
rsr n NF Bn t

dt

rd IL t

 



                                                     

(5-9) 

_ _[ ]
_ [ ( )]

_ [ ]

h an TNFd TNF t
rsr TNF n NF Bn t

dt

rd TNF TNF t


 

 

 



                                  

 

Table 5-1 Parameter description for synthesis, degradation and the Hill coefficient with x 

replaced by r (RANTES), 8 (IL8) or TNFα (TNFα). 

Parameter description 

rsr_ xn  nuclear NFκB induced mRNA synthesis 

d_n_x  degradation of m RNA 

h_an_x  Hill coefficient  
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The ODEs for cytokine mRNA expressions are incorporated with the model described in 

Chapter 4. Together the two modules form the model representing cytokine mRNA 

expression in mammary epithelial cells. The total model consists of 27 ODEs and 89 reaction 

rates and a full description of the ODE, initial values and parameters can be found in 

Appendix A.  

 

5.2 Parameter estimation 

 

Parameters for degradation and synthesis for the equations in (5-7) - (5-9) were estimated to 

fit experimental values from Chapter 3. Synthesis and degradation rates for cytokine mRNA 

expression are not available, however, we are able to quantify mRNA concentrations from 

microarray experiments described in Chapter 3 and estimate synthesis and degradation rates 

to fit experimental values. In addition, initial values are estimated.  

 

5.2.1 Prior identifiability analysis for parameter estimation 

 

To estimate n parameters at least n data points need to be available. Over fitting of the model 

needs to be carefully considered; if too many, more than n, parameters are estimated with a 

limited number of experimental values, n, several combinations of parameters could fit the 

experimental data. To prevent over fitting we limited parameter estimation to the degradation 

and synthesis parameters for the mRNA cytokine expression levels.  Using prior 

identifiability analysis, described in Section 2.3.3, we will show that the experimental data for 

the chosen model structure limits unique parameter identification for synthesis and 

degradation for each individual cytokine. However, the experimental data allows for the 

unique identification of the parameters between cytokines and qualitative analysis of the 

model behaviour.  

 

The priori identifiability analysis as described in Section 2.3.3 was used to identify possible 

correlations between the parameters that we need to estimate with the available experimental 

values over the different time points (0, 60 , 180 and 360 minutes). The method is 

implemented in the SBtoolbox (Schmidt & Jirstrand, 2006) in Matlab ("MATLAB® ", 

R2007a ). The correlation between the parameters to be estimated for the model is shown in 
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Figure 5-3. The correlation ranges between 0, black boxes with no correlation between the 

parameters, to 1, white boxes, with total correlation between the parameters. Elements on the 

diagonal represent the correlations of the parameters on it self and have an expected 

correlation of 1.  
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Figure 5-3 In order to establish identifiability of the parameters prior to parameter estimation 

the correlation between degradation, synthesis and Hill coefficients parameters 

estimated with the experimental values is calculated. The lighter the colour, the 

higher the correlation between the parameters is. A high correlation between the 

parameters indicates non-identifiability of the parameters with these experimental 

values, while low correlation indicates that the parameters can be estimated with 

the experimental values.  

 

The parameters for degradation (d_n_r, d_n_8 and d_n_TNFα) and NFκB induced synthesis 

(rsr_rn, rsr_8n and rsr_TNFαn) between cytokines do not correlate. The low correlation 

indicates that the parameters responsible for the NFκB induced mRNA expression and the 

degradation of the mRNA can be identified independently for each cytokine. However, the 

parameters for the synthesis of the mRNA and the Hill coefficient for each individual 

cytokine correlate positively with a value of 1 and unique determination of the individual 

parameters may not be possible with the experimental values. One way to reduce the 

correlation between parameters is to set a parameter to the nominal value. We therefore set 

the Hill coefficient to 3, the value used for similar reactions in the first model by Werner et  

al. (2005). 
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The identifiability is recalculated with the reduced parameter set where the Hill coefficient is 

set to the nominal value of 3. Figure 5-4 shows the correlation between the synthesis and 

degradation coefficients.  
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Figure 5-4 Parameter correlation matrix of the parameters estimated in the model with the 

Hill coefficient set to nominal value. The lighter the colour, the higher the 

correlation between the parameters is. A high correlation between the parameters 

indicates non-identifiability of the parameters with these experimental values, 

while low correlation indicates that the parameters can be estimated with the 

experimental values. The correlations between parameters are less than 1 and 

therefore these experimental values are sufficient to identify the synthesis and 

degradation parameters. 

 

The correlations between the synthesis and degradation parameters are less than 1 and 

therefore these experimental values are sufficient to identify the synthesis and degradation 

parameters. 

 

5.2.2 Initial value estimation 

 

In a model of ODE, initial values need to be estimated or measured to allow numerical 

analysis. Werner et al. (2005) established initial values for the first module by running the 

model with a basal input of 0.1 μM IKK until equilibrium was achieved. Initial values are 

established before the bacterial challenge is applied. Equilibrium is defined as the state in the 
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model when changes of concentrations are less than 1% over a period of time for the 

component. To estimate the initial values of the combined model initial values were set to 0.1 

μM for IKK and nuclear NFκB and 0 for the other components. The model was run in Matlab 

("MATLAB® ", R2007a ) using the ode15s routine for numerical solutions of the equations.  

Initial values for the components in the model described by Werner et al. (2005) were not 

affected by the addition of the ODE for cytokine mRNA expression levels and were kept the 

same as published previously (See A.1.3). Initial values for components representing cytokine 

mRNA concentration were estimated at 0 μM. Cytokine expression does not eventuate in 

healthy cells. The values at equilibrium reflect therefore the levels of each cytokine over 

baseline levels prior to the pathway activation by the E. coli challenge and were used as initial 

values for the model.  

 

5.2.3 Data processing prior to parameter estimation 

 

Prior to parameter estimation we converted the fold changes calculated in Chapter 3 with the 

microarray analysis to concentration levels of mRNA expression over time. 

The method from Hekstra et al. (2003) was implemented in ("MATLAB® ", R2007a ) as 

described in Section 2.5. The concentration levels for the expressed mRNA for each cytokine 

from the microarray experiments for each time point were extracted with this implementation.  
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Figure 5-5 Experimental mRNA fold change expression levels converted to concentration 

levels for use in the model. Comparison of the cytokine concentration (µM) on the 

left of E. coli challenged mammary epithelial cells, and mRNA fold changes, on 

the right hand side show same time profile. 

 

Relative fold changes, calculated in Chapter 3, for each component were normalised between 

0 and 1 and multiplied with the max concentration level for each component calculated with 

the method described above. Converted mRNA cytokine and IκBα concentration levels 

showed the same trend, same relative pattern of rising and falling of concentration levels, as 

the calculated fold changes (Figure 5-5).  

Converted mRNA expression levels of IκBα mRNA (IκBαt) from the Bovine Affymetrix® 

microarray experiments used in our study show the same trend, relative rising and falling of 

concentration levels, at the times of the measurements in the experiment as the expression 

levels of IκBαt in the model and experimental values challenged with LPS by Werner et al. 

(2005) (Figure 5-6). 
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Figure 5-6 Converted mRNA expression levels (cow1) and model predictions of IκBα 

mRNA in our model implementation of the model developed by Werner et al. 

(2005). The x-axis represent the time (min) and the y-axis the concentration (µM). 

 

The concentration levels of IκBα mRNA expression in the model by Werner et al. (2005) are 

arbitrary concentrations. Therefore, relative but no absolute information can be extracted from 

the model as will be shown in Section 5.3.  

Although it has not been validated experimentally that the parameters in Table 2-1 can be 

transferred across different microarray platforms (Hekstra et al., 2003), we proceeded with the 

use of the converted concentrations in our model. This implicates that we can only infer 

qualitative and not quantitative conclusions from the model. 

 

5.2.4 Cytokine synthesis and degradation parameter estimation 

  

The parameters representing the rate constants for the degradation and synthesis of mRNA for 

the ODE representing cytokine mRNA expression needed to be fitted against the mRNA 

concentrations calculated in the previous Section. Parameter estimations for models that 

include delay functions require extensive computer time. To minimize the computer time we 

therefore took the following steps: 
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(i) Parameters for each cytokine were estimated in individual estimation runs with the fast 

scatter search implemented in the SBtoolbox (Rodriguez-Fernandez et al., 2006a) and 

described in Section 2.3.2. Equations (5-1) to (5-6) were fit one at a time. Synthesis and 

degradation parameters for each specific cytokine would be estimated while the synthesis and 

degradation parameters for the other cytokines were set to default values or the outcome of 

the previous estimation runs. Since the ODE for the cytokine concentrations are not coupled, 

the transcription factor NFκB is the only protein modelled in the ODE, separating parameter 

estimation for each cytokine reduces the parameter search area without compromising the 

accuracy. Biological knowledge was used to identify the boundary of the parameters to set 

limitations to the search area.  

(ii) Following the estimation for each individual cytokine, the model was simulated with the 

estimated parameters and the model output compared with the experimental measurements for 

goodness of fit.  

(iii) After the reduction of the parameter search areas, iteratively the parameters were 

estimated, using the fast scatter search, with the values of the simulations of the model that 

incorporated the estimated parameter values until no further optimisation of the parameter 

values could be achieved.  

Parameter estimation and simulations for this model were performed using SBToolbox2 

(Schmidt & Jirstrand, 2006) in MATLAB 7.4.0 (R2007a). In this study we tested a number of 

local and global estimation algorithms. Several algorithms converged to a similar solution as 

the fast scatter search method described in Section 2.3.2. Scatter search is an evolutionary 

global optimization method. The method incorporates strategic responses that take into 

account evaluations and history to generate the estimates of the parameters (Egea et al., 2007; 

Rodriguez-Fernandez et al., 2006b). The fast scatter search used the lowest computational 

time. Therefore the fast scatter method was used to estimate the parameters as described 

above to fit the converted microarray experimental values calculated in Section 5.2.3, 

followed by manual tuning.   

 

5.2.4.1 Results of parameter estimation with fast scatter search 

 

 

The estimated parameters used for the model simulations are listed in Table 5-2. Calculations 

are performed in μM per min with the experimental values of cow1 (arbitrarily chosen). 
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Table 5-2 Parameter values fitted in this study for the differential equations of cytokine 

mRNA expression.  

Parameter value  units  description                                                      

 
d_n_r 0.00039365  min

-1
  degradation RANTES 

 
rsr_rn 5.28555  μM

-2
 min

-1
 NFκB induced RANTES mRNA synthesis 

 
h_a_r 3    Hill coefficient 
 
d_n_8 0.00175918  min

-1
  degradation IL8 

 
rsr_8n 5.28555  μM

-2
 min

-1
 NFκB induced IL8 mRNA synthesis 

 
h_a_8 3    Hill coefficient 
  
d_n_TNFα 0.020602  min

-1
  degradation TNFα 

 
rsr_TNFαn 1.67  μM

-2
 min

-1
 NFκB induced TNFα mRNA synthesis 

 
h_a_TNFα 3    Hill coefficient 

 

5.2.5 Qualitative comparison of the model with experimental data  

 

It is important to evaluate the model and to check the model with experimental data not used 

in the parameter estimation process. In this section, therefore, an evaluation and a qualitative 

comparison of the model predictions with the additional experimental observations, which 

had not been included in the parameter estimation, was carried out (See Figure 5-7). We 

simulated the model for a time frame of 360 minutes, beginning from 0.  
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Figure 5-7 Comparison of the experimental values with the model values. The outcome of 

the model predictions and the experimental values are shown for the three cows 

(+,∆, □). Estimation was performed with data from cow 1; the model was 

simulated for 360 minutes and the model predictions qualitatively compared with 

experimental data from cow 2(∆) and 3(□). Solid lines represent the model outputs 

and (+) represent cow 1. The x-axis represent the time (min) and the y-axis the 

concentration (µM). 

 

In Chapter 3 we described the replication of our microarray experiments with epithelial cells 

for three different cows. Data from the first cow, arbitrarily chosen, was used for parameter 

estimation, leaving the option to use data from the second and third cow to evaluate the 

model. The general behaviour of the mRNA expression for TNFα and IκBα mRNA are 

similar for all three cows (Figure 5-7 C and D). The general of behaviour of the mRNA 

expression for RANTES and IL8 is reproduced for the values of cow 2 (Figure 5-7 A and B). 

The third data set (cow 3) indicates a lower expression level for RANTES and IL8 than 

predicted by the model. However, the levels of mRNA expression follow the same trend in all 

three cows. 
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5.3 Sensitivity analysis of cytokine synthesis and degradation 
parameter changes on the model output 

 

Sensitivity analysis is performed to identify the influence of parameter and initial value 

variation on the model output, understand the rate determining steps in the model and separate 

the biological and mathematical influence on the model output. In this Section the focus is on 

the synthesis and degradation parameters for the cytokine mRNA expression. Because global 

parameter estimation methods were used, local sensitivity analysis, described in Section 2.3.4, 

is used to identify the model sensitivities. Both time dependent and time independent 

sensitivities are investigated.  

 

5.3.1 Time independent sensitivities of cytokine synthesis and degradation 
parameter changes on cytokine mRNA expression 

 

The time independent local sensitivities of cytokine mRNA expression levels for changes in 

the parameters for synthesis and degradation of the cytokines mRNA expression levels are 

presented in Figure 5-8.  Parameter changes showed a linear increase in sensitivity, therefore 

sensitivity of parameter increases and decreases with 40% were considered for further 

evaluation. Sensitivity towards changes in the degradation parameter was higher than 

sensitivity towards NFκB induced synthesis parameter for each cytokine mRNA expression 

level, with TNFα showing the highest sensitivity for changes in the degradation and synthesis 

parameter (Figure 5-8 (A)).  
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Figure 5-8 Time independent sensitivities of the model parameters for degradation and 

synthesis of the cytokine mRNA expression levels with parameter increase or 

decrease of 40%. Model predictions with the estimated parameters were compared 

with model predictions of parameters increased or decreased by 40% and time 

independent sensitivity calculated. (A) TNFα shows the highest sensitivity of the 

three cytokines. TNFα is more sensitive to changes in parameters for degradation 

than NFκB induced synthesis. (B) The expression of IL8 shows a higher 

sensitivity to degradation than to NFκB induced synthesis of mRNA, while in 

RANTES changes in either parameter have a similar influence on the expression 

levels. 

 

The rate of change in the concentration for cytokine expression is described in Section 5.1.1. 

Looking at the general form (5-10) we can see that the influence of nuclear NFκB on the rate 

of change of the cytokine mRNA expression levels is cubed as a result of the Hill coefficient 

h_an_ set to 3.  

(5-10) 3

syn deg

[ ]
[ ] [ ]

d cytokine
k NF B k cytokine

dt
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NFκB values ranges from 0 to 0.05 µM (Figure 5-10) while cytokine levels range 

approximately from 0-0.04 µM for RANTES and IL8 mRNA and 0-0.02 µM TNFα (Figure 

5-5).The degradation rate is influencing the changes in the cytokine expression in linear 

relation with the cytokine levels.  

TNFα and IL8 are more sensitive to changes in degradation rate than synthesis rate, while 

RANTES show similar sensitivity to both rates.  

 

5.3.2 Time dependent sensitivities of cytokine synthesis and degradation 
parameter changes on cytokine mRNA expression 

 

Time dependent sensitivities calculate the sensitivity of the model for parameter changes in 

each time step (Section 2.3.4.1). This will allow us to identify variation in the sensitivity over 

time. In addition, this section investigates the time dependent sensitivities of synthesis and 

degradation parameter changes on the variation in concentration of cytokine mRNA 

expression to evaluate the influence of the variation in sensitivities on the concentrations. 
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Figure 5-9 Time dependent sensitivities of model parameters for degradation and synthesis of 

mRNA cytokine expression levels. Time dependent parameter sensitivities for 

degradation (d_n) (A, C, E) and synthesis (rsr_) (B, D, F) of mRNA cytokine 

expression levels were calculated for parameter changes from -40% to +40% and 

the gradual change over the range is shown in the shaded areas. Sensitivity as 

result of changes in degradation parameters increases over model simulation time 

(A, C, E), while sensitivity as result of change in synthesis parameters stays 

constant(B, D, F). TNFα shows the largest variation in model sensitivity for the 

degradation parameter changes and the highest sensitivity values for the model 

(E). The x-axis represent the time (min) and the y-axis the concentration (µM). 

 

Sensitivities for changes in parameters for synthesis are constant in time dependent sensitivity 

analysis (See Figure 5-9 B, D and F). Sensitivities for changes in the parameters for 

degradation rate vary over time (See Figure 5-9 A, C and E). Especially for TNFα, the range 

in sensitivity for the degradation rate changes from -40% to +40% increases towards the end 

of the simulation, while early in the simulation, less than 100 minutes, the sensitivity is the 

same for the complete range of changes in the parameter. Variations in nuclear NFκB 

concentration level reduce towards the end of the model simulation (Figure 5-10) and 

therefore the influence of the nuclear NFκB concentration becomes more stable towards the 

end of the simulation.  
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Figure 5-10 Predicted values for the nuclear NFκB during the 360 minutes simulation period 

of the model. The nuclear NFκB is not affected by the parameter changes of the 

degradation and synthesis of cytokine mRNA. The x-axis represent the time (min) 

and the y-axis the concentration (µM). 

 

Parameter changes for TNFα degradation show the largest variation in sensitivity over time, 

which is reflected in the time independent sensitivity. Each degradation parameter change 

increases the influence of the parameter on the mRNA cytokine levels over time and has the 

highest influence at 360 minutes of model simulation.  

 

5.3.3 Effect of cytokine synthesis and degradation parameter changes on 
mRNA cytokine concentration  

 

Time dependent sensitivity analysis indicated an increasing influence on the mRNA cytokine 

concentration levels of the changes in degradation parameter values towards 360 minutes of 

model simulation, while synthesis parameters show a consistent influence during model 

simulation. While this evaluation gives an indication on the relative sensitivity, it does not 

give information on the absolute changes in concentration as a result of the parameter 
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changes. The absolute changes can assist in the identification of the optimum time for a 

biological experiment.  

A plot of the change in concentration over 360 minutes of simulation time for the changes of 

the synthesis and degradation parameters clearly shows a changing influence on the cytokine 

mRNA concentration levels as result of the parameter changes, especially in TNFα 

concentration (Figure 5-11).  
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Figure 5-11 Predicted values (μM) for cytokine mRNA expression levels with degradation (A, 

C and E) and synthesis (B, D and F) parameter changes from -40% to +40%. The 

gradual change over the range is shown in the shaded areas. The x-axis represent 

the time (min) and the y-axis the concentration (µM). 

 

TNFα synthesis and degradation parameters have a large influence at 90 minutes while the 

parameter changes have less influence on the change in concentration levels at 360 minutes. 

RANTES degradation parameters have a small influence over this range on the concentration. 

The influence increases towards 360 minutes simulation predictions, while synthesis rates 

have larger but stable influence from 100 minutes onwards. For the IL8 mRNA cytokine, 
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changes in degradation rate increases their influence towards 360 minutes, while changes in 

synthesis parameters show a stable influence from 75 minutes onward.  

The model did not show sensitivity towards the initial values of the cytokines if changed with 

an increase of 40%. Initial values are established before the model is exposed to the bacterial 

challenge and therefore the lack of sensitivity is in line with biological knowledge.  

 

5.3.4 Influence of variation in parameter values for cytokine synthesis and 
degradation on the model fit 

 

To identify the ranges of the parameters for which the model output predicts the experimental 

values we simulated the model repeatedly with different parameter values, one at a time. We 

identified the parameter value ranges that would perform similar to the chosen model with 

less than 1% change in the cost function, the sum of squares. A 1% range was chosen because 

parameter estimation had shown to be the best fit for the combined parameter values.  

 

d_n_r rsr_rn d_n_8 rsr_8n d_n_TNFa rsr_TNFan

-40

-30

-20

-10

0

10

20

30

40

P
e
rc

e
n

ta
g

e

Parameter variation

 

Figure 5-12 Percentage of change in parameter value that creates less than 1% change in Sum 

of Squares between the model prediction and the experimental values 
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We simulated the model 1800 times changing each parameter i from 1/100 of the model value 

to twice the model value with incremental steps of 1% Table 5-3.  

 

Table 5-3 Simulation values for parameter range analysis. Parameters were varied from 

1/100 of the model value to twice the model value with incremental steps of 1%.  

Parameter  Min value Model value Max value 

d_n_r   3.94E-06 0.000394 0.000787 

rsr_rn   0.052856 5.28555 10.5711 

d_n_8   1.76E-05 0.001759 0.003518 

rsr_8n   0.052856 5.28555 10.5711 

d_n_TNFα  0.000206 0.020602 0.041204 

rsr_TNFαn  0.0167  1.67  3.34 

 

With the predicted outcomes of the model simulations we calculated the objective 

function ( )f k , the sum of the sum of squares for each time point, 60, 180 and 360 minutes 

(N=3) of the difference between the simulated model output and the experimental values 

(5-11). The objective function describes how much the model prediction deviates from the 

observed data as a result of the variation in parameters.  

(5-11) 2

exp

1

( ) ( ( ) ( , ))
N

i per

i

f k f i f i k


     

 

We set a threshold value of 1% change in the objective function and then identified the i
th

 

change of the k
th 

parameter value ,i k  (5-12), the minimum, and j
th

 change of the k
th 

parameter 

,j k   (5-13), the maximum, for which the model would predict the concentration levels at 60, 

180 and 360 minutes with less than 1% change in the objective function of the model.  
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As predicted by the sensitivity analysis in Section 5.3.1, change in the degradation parameter 

for TNFα causes the largest variation in the concentration levels and therefore have the 

highest restriction on parameter change.  

 

Table 5-4 Minimum and Maximum parameter values that will fit the model predictions with 

the experimental data with less the 1% difference between the sum of squares of 

the model predictions and the experimental data.  

Parameter min  model value max  parameter function 

d_n_r  0.000244 0.000394 0.000563 degradation RANTES 

rsr_rn  5.179839 5.28555 5.496972 synthesis RANTES 

d_n_8  0.001566 0.001759 0.002005 degradation IL8 

rsr_8n  5.126984 5.28555 5.549828 synthesis IL8 

d_n_TNFα 0.020396 0.020602 0.02122 degradation TNFα 

rsr_TNFαn 1.6533  1.67  1.7201  synthesis TNFα 

 

5.4 Summary and discussion 

 

In this chapter we developed the module for the cytokine mRNA expression levels in mastitis 

and integrated the module in our model. A mathematical model is necessary because the 

nonlinear behaviour of some of the components in the pathway that leads to cytokine 

expression. The developed model can be used to investigate the mechanistics of the cytokine 

expression levels in mastitis and the differentiation of the cytokine expression levels between 

the two bacterial challenges which are believed to cause differentiation in the disease profile. 

We have thus developed a model which links the extra cellular stimulus representing the 

bacterial challenge to the signalling pathway response in the cytoplasm, which initiates the 

translocation of the NFκB transcription factor to the nucleus which then initiates the cytokine 

mRNA expression in the nucleus.  
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Synthesis and degradation parameters 

We have chosen to include separate descriptions of synthesis and degradation representing 

mRNA concentration levels. Although specific data for synthesis and degradation rates are 

not available in this study, they are increasingly available with the evolvement of molecular 

techniques. In addition, in diseases, such as multiple sclerosis, degradation rates for cytokines 

such as RANTES have been changed from non disease levels (Li & Bever, 2001). Therefore, 

the influence of the synthesis and degradation rates is of interest in disease modelling. 

Separating synthesis and degradation rates allows us to study the influence of both parameters 

on the model dynamics. The concentration of mRNA expression measured in our experiments 

for the cytokines RANTES, IL8 and TNFα can be described by the difference between the 

mRNA synthesis and degradation of each individual cytokine. 

Constitutive mRNA synthesis is not modelled since cytokines are expressed as result of the 

innate immune reaction but not expressed in healthy cells.  

 

Motivation for using Hill coefficient of 3 

Hill coefficients are exponents which traditionally quantify the cooperative binding of 

multiple proteins (Aldridge et al., 2006). In this model the coefficient is modelled without the 

representation of saturation and can increase exponentially without upper bound. No new 

NFκB is generated in the model, we therefore restrict the exponential increase by keeping the 

total concentration, in the cytoplasm and nucleus, of NFκB constant.  

The model is very sensitive to changes in the Hill coefficient. However, if we included the 

Hill coefficient in the parameter estimation, allowing the synthesis and degradation 

parameters to be fit in combination with the Hill coefficient, the fit did not improve (data not 

shown). This is expected from the prior identifiability analysis because of the correlation of 1 

between the Hill coefficient and synthesis parameter. In addition, we do have experimental 

data for the concentration of the cytokines but no experimental data relating to the 

concentration of NFκB or other transcription factors. Therefore, based on our biological 

insight and the prior identifiability analysis, we chose to use the same Hill coefficient as the 

Hill coefficient in the module for reactions describing mRNA synthesis of the other 

components induced by NFκB.  

With the Hill coefficient set to 3 the remaining estimated parameters for the model are 

identifiable and will capture experimental values of the combined synthesis and degradation. 

Ideally one would aspire to know all parameters with high accuracy, however, in practise this 
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is usually not possible and therefore we have to deal with uncertainty in parameter values. 

Highly correlated parameters, identify nearly linearly dependent results of the sensitivity 

functions (partial derivatives of the measured components with respect to the parameters), but 

do not indicate that the model is not identifiable (Banga & Balsa-Canto, 2008). The high 

correlation is not a serious problem if the main purpose of a model is to predict the dynamical 

behaviour of the system, and little significance is attributed to parameter values. Since our 

main interest in this study is the dynamical properties of the model we proceeded to estimate 

the synthesis and degradation parameters. Further experimental values to uniquely identify 

degradation and synthesis parameters for the individual cytokines are informative because 

they can lead to unique parameter values. Unique parameter values would allow for 

quantitative studies.  

 

Model assumptions 

The model uses the model assumptions from Werner et al. (2005) as described in Section 

4.2.6 . In addition, we used the same value for the kinetic rate constants for mammary 

epithelial cells as the values published in the earlier model which was based on experimental 

values of mouse embryonic fibroblasts. Mouse embryonic fibroblast are healthy cells and 

express the cytokines investigated in this work (Hoffmann et al., 2006). However, we did not 

include parameters from HEK cells, a cancer cell line, in the model. In cancer cells disruption 

of the NFκB regulation is believed to be one of the reasons for the development of cancer and 

the NFκB regulation is different from healthy cells. Mammary epithelial cell lines are healthy 

cell lines and therefore the NFκB regulation is not comparable with NFκB regulation in 

cancer cell lines. Additional experiments to confirm the assumptions of comparability 

between the mouse embryonic fibroblast and mammary epithelial cells were beyond the scope 

of this thesis but need to be performed to validate our assumptions. 

Experimental microarray data from cell cultures allow us to study the expression levels 

specific to the mammary epithelial cells as opposed to the expressions in the mammary gland 

which contains several different types of cells. Epithelial cells initiate cytokine expressions, 

which are signalling molecules that evoke reactions in the blood, milk and lymph system, 

assisting in the development of diseases such as mastitis in the mammary gland. Cell cultures 

do not include interactions of processes in the body from additional sources, such as blood 

and lymph systems, of the innate immune reaction. Therefore, the model represents the 

actions of the epithelial cells but not the interactions between the other innate immune 
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components, such as blood, lymph system, with the epithelial cells. A time frame of six hours 

was chosen because other mechanisms, such as blood and lymph systems, not included in the 

model, would influence the experimental data at time periods longer than six hours 

(Rangamani & Sirovich, 2007). Model predictions for longer periods are not of interest in this 

study where we identify the mechanistic properties of cytokine expression in the epithelial 

cells.   

We were able to estimate the parameters from microarray experiments because we modified 

an algorithm for the estimation of concentration levels of mRNA from microarray 

experiments. We also showed how these values can be used to estimate parameters in 

signalling- gene network regulation models. Microarray values are relative but the conversion 

allowed us to estimate absolute concentration levels. The estimated parameters represented 

the experimental values well. The method has not been evaluated with biological experiments 

validating our results. Therefore, the conversion model needs to be validated in the future. It 

is of great importance to validate this method since it would allow the use of the vast array of 

microarray experiments currently available. 

We can not speculate on the value of the experimental values between the measured points of 

our experiment. Since the time points are relatively wide apart compared with the time frame 

of molecular interactions we can only predict the model performance based on the assumption 

that the model behaviour of IκBαt in the module from Werner et al. (2005) is representative 

for the results of the microarray trend in this study. 

 

Multiple transcription factors 

It is known that multiple transcription factors in addition to NFκB are involved in the 

expression of the cytokines (Ghosh & Hayden, 2008). To our knowledge, experimental data 

for the multiple transcription factors in bovine mammary epithelial cells challenged with LPS 

is currently not available. Promoter deletion and
 
mutagenesis experiments indicate that the 

nuclear factor NFκB
 
site is the most important cis-regulatory element controlling

 
TNFα 

induced RANTES transcription in alveolar epithelial cells (Casola et al., 2002). In our model 

we therefore modelled mRNA synthesis to be initiated by NFκB dimerisation as the result of 

LPS challenge (Ghosh & Hayden, 2008). The NFκB transcription factor in the model is 

therefore the biological representation of several transcription factors. We represent the 

involvement of other transcription factors in the transcription of the cytokines with a Hill 
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coefficient of 3 for nuclear NFκB, similar to the coefficient for mRNA synthesis in the first 

module by Werner et al. (2005) in an elementary chemical reaction.  

 

Model behaviour 

The model predictions shown in Figure 5-7(A) show a build up of RANTES mRNA, which 

quickly rises when the nuclear NFκB concentration levels have reached a peak level (Figure 

5-10). Although RANTES mRNA expression has been reported as a late gene in TNFα 

challenges of mouse embryonic fibroblasts, our experimental data indicates that mammary 

epithelial cells increase expression levels of RANTES mRNA as early as 60 minutes after 

LPS challenge.  

For the first 40 minutes the model does not show an increase in mRNA concentration of the 

cytokines. This delay in the change of concentration represents the biological aspects of 

cytokine mRNA expression, where the model simulates the time necessary to build up nuclear 

NFκB levels to sufficient concentrations. In addition, transcription of a gene takes 

approximately 30 minutes in mammalians (Alon, 2007). Allocating transcription factors to the 

gene is part of this process and the delay is therefore acceptable. 

For IL8 the rapid build up of mRNA concentration levels also starts after the initial lag 

representing the build up of nuclear NFκB and the time to transcribe a gene (Figure 5-7 (B)). 

However, following the peak, levels of IL8 mRNA expression slowly decrease in line with 

the experimental data. Similar expression levels  of IL8 in mammary epithelial cells have 

been seen in other experimental studies (Strandberg et al., 2005).   

The model predicts a quick surge of TNFα mRNA concentration peaking at 100 minutes 

followed by a reduction in expression levels. Although no expression levels are measured in 

this experiment at 100 minutes, similar surges in raised TNFα mRNA concentration have 

been shown in other experimental studies (Strandberg et al., 2005) and therefore the model 

predictions do not conflict with prior biological knowledge. The experimental data gives us 

no information on the peak in TNFα mRNA concentration. The experimental data predicts a 

higher concentration of TNFα at 1 hour than at 3 hours, which is confirmed in other 

experiments and depended on the bacterial load (Günther et al., 2010). However, to our 

knowledge there is no experimental information on the concentration values in between the 

time points and the values need to be confirmed in biological experiments.   
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Model predictions of IκBα mRNA expression levels and the experimental values show a good 

fit at 60, 180 and 360 minutes (Figure 5-7 D). In our microarray experiment we measured 

expression levels at 60, 180 and 360 minutes, therefore no model predictions outside the data 

points can be compared with experimental data from the microarray experiments. Werner et 

al. (2005) measured IκBα degradation profiles at 0, 5, 10, 15, 30, 45, 60, 90 and 120 minutes 

and incorporated these values in the parameter estimation. The IκBα mRNA expression levels 

in our model are similar to the model predictions in Werner et al. (2005) for the time points 

that were measured. Therefore, the model is reliable to predict experimental values accurately 

during the simulation time.   

 

Comparison with additional experimental values 

While the general behaviour of the mRNA expression for TNFα and IκBα is similar for all 

three cows, the general of behaviour of the mRNA expression for RANTES and IL8 is 

different for the third data set (cow 3). Individual differences between cows can result in 

individual differences of cytokine mRNA expression levels and, as a result, mastitis resistance 

(Burvenich et al., 2003; Paape et al., 2002). Genetically determined differential expression 

levels of RANTES to pathogens between mastitis resistant and non resistant cows have been 

indicated earlier (Griesbeck-Zilch et al., 2009). The difference between cows in RANTES 

expression levels has been indicated as possible selection indication for mastitis resistant 

animals. It is therefore valid to use the data of individual cows, rather than the average of a 

small dataset. In addition, the trend of the expression levels is the same and therefore the 

model can supply qualitative information on the underlying kinetics of the mRNA expression 

levels. 

 

Model fit for ranges of parameter values 

The analysis of the model fit (5.3.4) based on the three experimental values for the estimated 

parameters clearly indicate that the accuracy of model fit is highly dependent on the accuracy 

of the synthesis and degradation rates of TNFα. The accuracy of the degradation rates for 

RANTES and IL8 do not influence the model fit to the same degree. The model fit is not 

dependent on high accuracy of these parameters and the predictions for RANTES are 

informative. However, since the model fit for IL8 and especially TNFα are dependent on 

higher accuracy of the synthesis and degradation parameters for these cytokines and model 
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predictions should take the sensitivity of the model for changes in these parameters in 

consideration.  

 

Sensitivity and concentration 

The change in relative sensitivity values over time for RANTES and IL8 are reflected in the 

change in concentration levels over the simulation time (Figure 5-9 (A-D) and Figure 5-11 

(A-D)). Increasing variation in sensitivity over time for degradation shows increasing 

variation for the concentration levels. A stable sensitivity for synthesis parameter changes 

shows a stable variation for concentration for RANTES and IL8.  

For TNFα this is not the case. While the sensitivity of degradation parameter changes over 

time the variation in the concentration decreases (Figure 5-9 (E) and Figure 5-11 (E)). The 

sensitivity for synthesis is constant but the variation in concentration decreases over time 

(Figure 5-9 (F) and Figure 5-11 (F)). The findings for the lack of variation in the 

concentration of TNFα mRNA at 360 minutes are in line with findings in biological 

experiments testing the influence of variation in the bacterial load on the TNFα mRNA 

expression (Günther et al., 2010) and will be further discussed in Chapter 8.  

 

Optimum time for experimental measurements 

The lack of influence of the parameter changes in the first 50 minutes is directly related to the 

changes in nuclear NFκB. Nuclear NFκB peaks at 70 minutes and has a second lower peak at 

230 minutes (Figure 5-10). While the second peak of nuclear NFκB attenuate the increase in 

RANTES and IL8 it decreases the influence on the expression levels of TNFα to the value 

predicted with the model parameters.  

The sensitivity analysis of parameter variation on cytokine mRNA concentration indicated the 

optimum time for experimental measurements (Figure 5-11). While TNFα mRNA 

concentration levels are most informative between 100 and 150 minutes, RANTES and IL8 

mRNA concentration levels are more informative between 250 and 360 minutes.  

There also is difference in the optimum time for measuring the mRNA concentration rate of 

the cytokines for the estimation of synthesis and degradation rates. The optimum time to 

measure cytokine concentration for the estimation of the degradation rates for RANTES and 

IL8, mRNA concentration is between 250 and 360 minutes in future biological experiments, 
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while TNFα concentration values are more informative between 100 and 200 minutes. To 

estimate synthesis rates measurements for concentration levels of mRNA should be done 

between 100 and 360 minutes for RANTES and IL8, while TNFα concentration is most 

informative between 75 and 150 minutes. The model simulations and sensitivity analysis have 

therefore shown that the timing of experimental values is of high importance and need to be 

carefully planned to insure the accuracy of the model development and the conclusions that 

can be drawn from the model simulations.  
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Chapter 6 

Sensitivity analysis of parameter changes other than the 

synthesis and degradation parameters of the cytokines 

on the model output 

This chapter investigates the effects variation in all model parameters and initial values on 

the model output. The results of the analysis can be used for the design of future biological 

experiments and analysis of pharmaceutical targets.  

The sensitivity analysis applied in Section 5.3 to the synthesis and degradation parameters of 

the cytokines in the model is thus extended to variation in all parameters and initial values of 

the model on cytokine mRNA expression levels. The sensitivity analysis will give an insight 

into the variation of the influence of different components in the TLR-IKK-NFκB signalling on 

the model output. The model parameters, other than the parameters estimated in the previous 

chapter, are a mix of parameters that are estimated, measured or retrieved from the literature 

with biological experiments on fibroblasts. In this work mammary epithelial cells are used for 

the biological experiments. It is important to evaluate the sensitivity of the model output to 

initial value and parameter changes when parameters are estimated from biological 

experiments with other cell types.  

In the first Section we identify the time independent sensitivity of the initial values and 

parameters. Time independent sensitivity analysis assists in the identification of the 

parameters and initial values for which the model output has the highest sensitivity. This is 

followed by a time dependent sensitivity analysis of the parameters and initial values for 

which the model is highly sensitive. Time dependent sensitivity identifies the change in 

sensitivity over the model simulation time. The result of the time dependent sensitivity leads us 

to an investigation into the change in nuclear and cytoplasmic ratio of NFκB over the 

simulation time. We identify the difference of this regulation for each individual cytokine. 

In the last Section in silico knockout simulations identify the importance of the negative 

feedback regulation of the IκB on NFκB regulation in the cytokine mRNA expression. We also 

highlight the value of modelling prior to the design of experiments and identify the 

significance of the difference in most informative time point in experimental measurements for 

each individual cytokine. 
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6.1 Motivation for sensitivity analysis of all model parameters and 
initial values 

 

Sensitivity analysis allows us to quantify the dependence of the system‟s behaviour on the 

parameters and initial values that affect the process dynamics (Rodriguez-Fernandez & 

Banga, 2009). In the previous chapter we extended a model to simulate cytokine mRNA 

concentrations and investigated sensitivity of the model output for the variation in synthesis 

and degradation cytokine parameters and initial values. The model captures qualitative and 

semi-quantitative data generated as result of E. coli challenged mammary epithelial cells.  

As identified in Section 4.2.6, in the part of the model simulating the NFκB regulation to the 

nucleus, one third of the parameters are estimated, while others are bound by literature and 

experimental values. The parameters were estimated or measured for mouse embryonic 

fibroblasts as opposed to mammary epithelial cells used in our experiments. We have 

assumed that the same parameter values can be applied to mammary epithelial cells. Since we 

lack experimental data to verify this, it becomes necessary to investigate the qualitative 

behaviour of the model; to analyse the effect on the model output to changes in initial 

conditions and parameters and evaluate the effect of the changes on the model output. With 

the analysis we can thus establish the need for verification with biological experiments. The 

higher the sensitivity of the model for the parameter value changes, the higher the need for 

experimental verification of the parameter values. Parameters identified in the sensitivity 

analysis which are estimated and are not based on experimental values also need re-

evaluating. The sensitivity analysis will thus assist us in the experimental design of future 

experiments and identify the components whose experimental values lead to maximum 

amount of information for parameter estimation and optimal model identification. 

Parameter and initial value changes in the model influence the nuclear NFκB concentration 

and therefore the cytokine mRNA levels. In a linear system one would expect that parameters 

which change the concentration of nuclear NFκB are of particular interest. Since this is a 

nonlinear system dependencies are not always obvious. Therefore, we use sensitivity analysis 

on all parameters to show that parameters with an indirect influence on the nuclear NFκB 

concentration influence the model output to a larger extent than parameters with a direct 

influence on the NFκB concentration.  
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6.2 Sensitivity analysis  

 

The sensitivity analysis applied in this work is outlined in Section 2.3.4. The analysis is used 

to study the variation in the model output as a result of variation in remaining initial values 

and parameters of the model implemented in Chapter 5.  

The time independent sensitivity analysis is described in Section 2.3.4.1 is first applied. 

Briefly, initial values and kinetic parameters for the model are changed with incremental steps 

of 10% from -40% to +40% and the model simulated. For each component and parameter and 

the time independent values are calculated and ranked. The time independent sensitivity 

analysis identifies the parameters for which the model is highly sensitive. This is followed by 

the time dependent sensitivity analysis of the parameters and initial values for which the 

model output has shown high sensitivity.  

 

6.2.1 Sensitivity of the model output for initial value changes of components 
other than the cytokines 

 

Changes in initial values can change the model output. We determined the initial values by 

setting the values of NFκB and IKK to 0.1 and the remaining components to 0 and run the 

model with a basal input function, no bacterial challenge, until the model is in steady state as 

described in Section 5.2.2. To identify the highest sensitivity of the model output for the 

initial values of the components we rank the time independent and time dependent model 

sensitivities for the initial values. 

 

6.2.1.1 Time independent sensitivity of model output for initial value changes 
of components other than the cytokines 

 

The magnitude of the change in initial value showed a linear relationship between the change 

in the initial value and the sensitivity (results not shown), therefore an increase of 40% of the 

initial value is chosen for further evaluation. Exceptionally high sensitivity of the model 

output is recorded for changes in IKKIκBαNFκB initial values. TNFα, IL8 and RANTES 

mRNA expression all showed substantially higher sensitivity for the change in initial value of 

IKKIκBαNFκB than any of the other components (Table 6-1).  
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Table 6-1 Time averaged normalized sensitivities for change of initial value with a 40% 

increase are calculated and ranked. RANTES, TNFα and IL8 are highly sensitive 

to change in initial value of IκBαIKKNFκB.  

Components RANTES IL8 TNFα Rank  RANTES IL8 TNFα 

 Sensitivities   Sensitivity ranks 

IκBαIKKNFκB 2.1537 2.1372 2.3405  1  1 1 

IκBαNFκB 0.2645 0.2611 0.2548  2  2 2 

IKK 0.148 0.1483 0.1929  4  4 3 

IκBεIKKNFκB 0.1115 0.1115 0.143  5  5 4 

IκBαt 0.2169 0.2111 0.1226  3  3 5 

IκBβIKKNFκB 0.0733 0.0736 0.1033  7  7 6 

IκBαNFκBn 0.0899 0.0887 0.0862  6  6 7 

IκBεNFκB 0.0624 0.0623 0.0774  8  8 8 

IκBβNFκB 0.0519 0.0523 0.0762  10  10 9 

IκBαIKK 0.0322 0.0325 0.0467  12  12 10 

NFκBn 0.0608 0.0606 0.0427  9  9 11 

IκBεNFκBn 0.0211 0.0211 0.0259  16  16 12 

IκBεt 0.0376 0.0369 0.0247  11  11 13 

IκBβt 0.0302 0.0297 0.0225  13  13 14 

IκBα 0.0239 0.0237 0.0217  14  15 15 

IκBαn 0.0239 0.0239 0.0202  15  14 16 

TNFαt 0 0 0.019  27  27 17 

IκBβNFκBn 0.0036 0.0036 0.0051  18  18 18 

IκBβIKK 0.0015 0.0015 0.0022  23  23 19 

IκBεIKK 0.0013 0.0013 0.002  24  24 20 

IκBε 0.0023 0.0022 0.0018  19  19 21 

IκBβ 0.0018 0.0018 0.0014  20  20 22 

NFκB 0.0018 0.0018 0.0014  21  21 23 

IκBεn 0.0017 0.0017 0.0013  22  22 24 

IκBβn 0.0006 0.0006 0.0005  25  25 25 

RANTESt 0.012 0 0  17  26 26 

IL8t 0 0.0119 0  26  17 27 

 

 

6.2.1.2 Time dependent sensitivity of the model output for initial value 
changes of components other than the cytokines 

 

While time independent sensitivity analysis gives us a tool to investigate the influence of 

changes in initial values on the model output over the total simulation time, investigation into 

time dependent sensitivities indicated a change of the influence over time (See Figure 6-1). 
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All three cytokine mRNA expression levels have indicated high sensitivity for the initial 

value of the component IκBIKKNFκB. The sensitivity of the model output is increasing for 

the first 45 minutes of the simulation and then decreases to a stable influence from 75 minutes 

onward for RANTES and IL8, however, sensitivity for TNFα mRNA expression increase 

again after 200 minutes (Figure 6-1).  

 

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

10

time

s
e
n
s
it
iv

it
y
 t

o
 I

k
B

a
IK

K
N

F
k
B

 

 

RANTES

IL8

TNFa

 

Figure 6-1 Sensitivity over time for the 40% increase in the  initial value of IκBαIKKNFκB. 

This sensitivity is increasingly prevalent in the first 75 minutes of the model. 

Sensitivity of TNFα but not RANTES or IL8 to IκBαIKKNFκB increases again 

after 200 minutes. The x-axis represent the time (min) and the y-axis the 

concentration (µM). 

 

6.2.2 Sensitivity of the model output for parameter changes of parameters 
other than synthesis and degradation parameters for cytokine 
expression 

 

The model output is sensitive to the changes in parameters, but not equally sensitive to all 

parameters in the model. In order to rank the parameters for sensitivity on the model output 

we first investigate time independent sensitivities of the model output as described in 2.3.4. 

This facilitates ranking of the parameters in order of sensitivity for the model output. This is 
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followed by time dependent sensitivity on the parameters ranked for highest sensitivity on the 

model output (described in 2.3.4).  

 

6.2.2.1 Time independent sensitivity analysis of model output for parameter 
changes 

 

Time independent sensitivity analysis allows us to rank the parameters in order of sensitivity 

to the model output independent of time (Chen et al., 2009). Ranking identifies the top 20 

parameters, whose changes have the largest influence on the mRNA concentration of the 

cytokines over the 360 minutes simulation period (Figure 6-2).   
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Figure 6-2 Time independent sensitivities for the 40% variation in the top 20 parameters with 

the highest influence on the RANTES, IL8 and TNFα mRNA expression levels.  

 

Since the cytokine expression is dependent on the nuclear NFκB concentration, we also 

considered the sensitivity for the model output of nuclear NFκB to evaluate if factors 

influencing nuclear NFκB would explain sensitivity for mRNA cytokine expression levels. It 

might be expected that all three cytokines show similar sensitivity to the changes in nuclear 

NFκB levels, however this is not the case.  
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Table 6-2 Ranking of time independent parameter sensitivity for the model output of RANTES, IL8, TNFα mRNA cytokine expression levels and 

nuclear NFκB. Each parameter is ranked for all three cytokines and nuclear NFκB (RR rank RANTES, RI rank IL8, RT rank TNFα, RNn 

rank nuclear NFκB). 

Parameter RANTESt IL8t TNFαt NFκBn  RR RI RT RNn Reaction       

pd_c_3ain 0.514921 0.772747 1.348037 1.925736 2 2 1 2 IκBαIKKNFκB => IKK + NFκB protein degradation 

ps_c_a 0.065551 0.731161 1.016088 1.229843 7 3 2 3   => IκBα protein synthesis 

rd_a 0.084081 0.97667 0.765133 2.248255 6 1 3 1 IκBαt =>   RNA degradation 

pd_c_a 0.05229 0.51537 0.687101 1.141565 11 5 4 4 IκBα =>   protein degradation 

in_a 0.141784 0.294533 0.481989 0.611404 3 6 5 6 IκBα => IκBαn import Cytoplasm->Nucleus 

rsu_a 0.030366 0.592339 0.443582 0.784223 24 4 6 5   => IκBαt constitutive RNA synthesis 

rsr_an 0.029787 0.167645 0.397572 0.40115 26 9 7 8   => IκBαt NFκB induced RNA synthesis 

pd_n_a 0.038653 0.244195 0.269018 0.440502 17 7 8 7 IκBαn  =>   protein degradation 

a_c_2ani 0.100004 0.137585 0.217971 0.283192 4 12 9 10 IκBαNFκB+IKK => IκBαIKKNFκB association 

a_n_an 0.035567 0.233075 0.211935 0.338122 20 8 10 9 IκBαn+NFκBn => IκBαNFκBn association 

d_c_2ani 0.084734 0.135727 0.159476 0.229501 5 13 11 13 IκBαIKKNFκB => IKK + IκBαNFκB dissasociation 

in_n 0.633307 0.098388 0.157964 0.215763 1 18 12 14 NFκB => NFκBn import Cytoplasm->Nucleus 

pd_c_3ein 0.063983 0.100374 0.146605 0.192289 8 17 13 16 IκBεIKKNFκB => IKK + NFκB protein degradation 

ps_c_e 0.048143 0.161559 0.12461 0.257851 12 10 14 11   => IκBε protein synthesis 

pd_c_3bin 0.046429 0.061163 0.115105 0.129704 14 24 15 21 IκBβIKKNFκB => IKK + NFκB protein degradation 

ps_c_b 0.044232 0.085209 0.088157 0.152894 15 21 16 19   => IκBβ protein synthesis 

ex_2an 0.033019 0.035038 0.078989 0.087337 21 36 17 28 IκBαNFκBn => IκBαNFκB export Nucleus->Cytoplasm 

pd_c_e 0.029514 0.101408 0.077794 0.18142 27 15 18 17 IκBε  =>   protein degradation 

a_c_an 0.06216 0.041896 0.076054 0.088746 10 29 19 27 IκBα+NFκB => IκBαNFκB association 

in_2an 0.031638 0.044048 0.067095 0.085575 23 28 20 29 IκBαNFκB => IκBαNFκBn import Cytoplasm->Nucleus 
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TNFα mRNA expression shows the highest sensitivity to protein degradation of 

IKKIκBαNFκB (Table 6-2). In addition, TNFα mRNA expression showed sensitivity to initial 

concentration of this component (Table 6-1). IL8 mRNA expression is sensitive to protein 

degradation of IκBα mRNA. RANTES mRNA expression showed high sensitivity to changes 

in parameters influencing NFκB import into the nucleus, followed by the sensitivity to protein 

degradation of IκBα in the cytoplasm and transport of IκBα into the nucleus. 

 

6.2.2.2 Time dependent sensitivity analysis of model output for parameter 
changes 

 

To investigate if the sensitivity of parameter changes on the model output is time dependent 

we calculated the sensitivity for each time step as described in Section. The sensitivity was 

calculated for each cytokine with changes in the parameter values with the highest rank 

identified in Section 6.2.2.1.  
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Figure 6-3 Time dependent sensitivity. The model was simulated with parameter values 

decreasing and increasing from -40% to +40% from the model values and 

sensitivity for each time step is calculated for parameters that indicated highest 

model sensitivity in the time independent analysis.  (A) RANTES mRNA shows 

sustained sensitivity for in_n, NFκB nuclear import, over 360 minutes of 

simulation (B) IL8 mRNA sensitivity for degradation of IκBα increases toward 

the end of the simulation time (C) TNFα mRNA sensitivity for protein 

degradation of IKKIκBαNFκB indicates changing sensitivity overtime with 

increased sensitivity at 45 minutes. TNFα shows the highest sensitivity values and 

RANTES the lowest. 

 

As can be seen in Figure 6-3, the range of the sensitivity coefficient for the parameters varies 

over time for IL8 and TNFα, while the coefficient is stable for RANTES during the time of 

simulation. This indicates that RANTES concentration over 360 minutes of simulation is 

sensitive to changes in NFκB nuclear import over the total simulation time. In contrast, 

sensitivity for the parameters influencing the IL8 concentration during the 360 minutes 

simulation increased after 180 minutes of simulation, indicating a change in sensitivity after 

180 minutes. Sensitivity for TNFα concentration for parameter changes has a peak at 45 
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minutes and then is increasing after 200 minutes of simulation with the TNFα concentration 

less sensitive between 60 and 200 minutes.  
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Figure 6-4 Variation in cytokine mRNA concentration(μM) as the result of 360 minutes of 

simulation with varying parameter values from -40% to +40% from the nominal 

value. The model output was indicated as highly sensitive for the parameters in 

the sensitivity analysis. (A) RANTES mRNA concentration show sustained 

change in concentration for parameter change influencing the transport of NFκB 

into the nucleus (in_n). (B) IL8 mRNA concentration changes with the change in 

parameter influencing the mRNA degradation of IκBα, specifically after 200 

minutes (rd_a). (C) TNFα mRNA concentration changes as a result of the 

parameter changes influencing the IKK mediated protein degradation in the first 

60 minutes of the model (pd_c_3ain). The x-axis represent the time (min) and the 

y-axis the concentration (µM). 

 

When the effect on the concentration of the cytokine for variations in the parameters on the 

individual cytokines is studied over time, a distinct difference in the effect at varying times on 

each cytokine concentration is noticed (Figure 6-4). RANTES mRNA expression is sensitive 

during the entire simulation time for the translocation of NFκB into the nucleus, however, the 

change in concentration levels is only prevalent after 75 minutes of simulation (Figure 6-4).  
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TNFα is sensitive early in the simulation and towards the end of the simulation and the largest 

change in concentration can be found in the peak around 100 minutes. Sensitivity of IL8 

increased after 200 minutes of simulation, changes in concentration level as an effect of the 

parameter changes can already be seen after 100 minutes and are the largest at 240 minutes. 

This indicates that biological experiments need to be carefully planned to optimize the 

information from the experimental values. 

 

6.2.2.3 Time dependent sensitivities for parameter changes on nuclear NFκB  

 

Although our interest is in the mRNA concentrations of the cytokines, the highest ranked 

parameters all have an influence on the nuclear NFκB concentration. In addition, it has been 

suggested that pharmaceutical products modulate NFκB concentration to treat the infection 

and modulate cytokine expression levels. It would therefore be of great value to evaluate the 

influence of variation in NFκB concentration on cytokine expression levels with the model. 

The effect of variation in highest ranked parameters on nuclear NFκB concentration is 

investigated. With this, the relationship between nuclear NFκB concentration and the cytokine 

concentrations and possible use of nuclear NFκB concentration for cytokine synthesis and 

degradation parameter estimation is evaluated.  
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Figure 6-5 Nuclear NFκB concentration changes for simulation of parameter changes from -

40% to +40% in: NFκB import (in_n), IκBα mRNA degradation (rd_a) and 

IKKIκBαNFκB protein degradation (pd_c_3ain). The x-axis represent the time 

(min) and the y-axis the concentration (µM). 

 

Changes in protein degradation parameters for IκBα (rd_a) show an increasing change in 

nuclear NFκB after 100 minutes, peaking at 200 minutes (Figure 6-5 (B)). This change is 

related to the change in the IL8 concentration level (Figure 6-4 (B)). Experimental 

measurements of nuclear NFκB levels would assist in the identification of the correct 

parameter values for IL8 concentration. Nuclear NFκB levels with parameter changes for IKK 

mediated protein degradation (pd_c_3ain) do not follow the pattern of TNFα concentration 

levels (Figure 6-4(C) and Figure 6-5 (C)) and therefore would not be informative for 

parameter estimation of TNFα. Changes in nuclear import parameters (in_n) (Figure 6-5 (A)) 

do not influence the concentration of nuclear NFκB. Nuclear NFκB concentration is therefore 

not indicative for parameter estimation of RANTES concentration values. 

The findings indicate that nuclear NFκB levels could be further explored with biological 

experiments as an indicator for synthesis and degradation parameter estimation in IL8 

expression levels. Nuclear NFκB concentration level variation is insufficiently related to 

RANTES or TNFα mRNA concentration.  
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We also investigated the change in cytoplasmic NFκB concentration as a result of the change 

in the highest ranked parameters (Figure 6-6).  

 

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1
x 10

-3

N
F

k
B

A                 in n

 

 

-40 +40

model

0 100 200 300 400
0

2

4

6

8
x 10

-4

time

N
F

k
B

B                rd a

 

 

0 100 200 300 400
0

2

4

6

8
x 10

-4

time

N
F

k
B

C         pd c 3ain

 

 

 

Figure 6-6 Cytoplasmic NFκB concentration changes for the model simulation of parameter 

variation from -40% to +40% in: NFκB import (in_n), IκBα mRNA degradation 

(rd_a) and IKKIκBαNFκB protein degradation (pd_c_3ain). While parameter 

changes in NFκB import (in_n) and IKKIκBαNFκB protein degradation 

(pd_c_3ain) change the concentration, variation in IκBα mRNA degradation 

parameter (rd_a) does not influence the cytoplasmic NFκB concentration. The x-

axis represent the time (min) and the y-axis the concentration (µM). 

 

While parameter changes in NFκB import (in_n) and IKKIκBαNFκB protein degradation 

(pd_c_3ain) change the concentration, variation in IκBα mRNA degradation parameter (rd_a) 

does not influence the cytoplasmic NFκB concentration. The relationship between 

cytoplasmic NFκB, RANTES and TNFα is clearer than the relationship between nuclear 

NFκB and the cytokines RANTES and TNFα. There is no relationship between cytoplasmic 

NFκB and IL8. 
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6.2.2.4 Changes in the ratio of cytoplasm to nucleus NFκB as a result of 
parameter changes 

 

Experimentally it is not always possible to separate the nuclear and cytoplasmic 

concentrations of NFκB due to the fast reaction of the translocation of NFκB from the 

cytoplasm to the nucleus in an infection. It would be more informative and cost effective to be 

able to identify the model output against one measurement of NFκB. Neither did we see a 

clear relationship between nuclear or cytoplasmic NFκB concentrations and the cytokine 

expression. Therefore, the ratio between the NFκB in the cytoplasm and nucleus ([NFκB]: 

[NFκBn]) is investigated for the highest ranked parameters in this section. 

The change in the ratio of NFκB in the cytoplasm and nucleus was plotted over time for the 

range of -40% to +40% for the highest ranked parameters identified in Section 6.2.2.1 (Figure 

6-7).  

 

 

 

 



 120 

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

N
F

k
B

:N
F

k
B

n

A                 in n

0 100 200 300 400
0

0.01

0.02

0.03

0.04

0.05

0.06

time

N
F

k
B

:N
F

k
B

n

B                 rd a

0 100 200 300 400
0

0.02

0.04

0.06

0.08

time

N
F

k
B

:N
F

k
B

n

C         pd c 3ain

 

 

-40 +40

model

 

Figure 6-7 Changes in the ratio of cytoplasmic and nuclear NFκB concentration (µM) over 

the 360 minutes simulation period for highest ranked parameters in model 

sensitivity analysis. (A) NFκB ratio changes as result of parameter changes in 

transport of NFκB from the cytoplasm to the nucleus (in_n) are consistent over 

the simulation time, which is similar to the changes in the RANTES mRNA 

concentration. (B) The NFκB ratio shows a change from 120 minutes onward, 

while after 180 minutes IL8 mRNA shows a change in concentration with 

variation in mRNA degradation (rd_a) of IκBα. (C) A relatively small change in 

the ratio is shown for parameter changes in IKK mediated protein degradation of 

IκBα (pd_c_3ain) indicated as the parameter with the highest rank in sensitivity 

analysis for TNFα mRNA concentration.  

 

Change in the ratio is very prevalent with the change in parameters with a high ranking for 

RANTES and IL8 mRNA, indicating a possible relationship between the NFκB ratio, the 

parameter values and the concentration of the mRNA expression. The change in ratio of 

NFκB for the parameter variation influencing TNFα is less prevalent. However, both nuclear 

and cytoplasmic NFκB change as result of the variation in the parameter with the highest rank 

for TNFα mRNA (Figure 6-5(C) and Figure 6-6(C)). Change in NFκB ratio for parameters 

ranked high with RANTES mRNA is attributed to a change in cytoplasmic NFκB (Figure 6-6 

(A)). For IL8 mRNA the change in ratio is attributed to a change in nuclear NFκB (Figure 6-5 
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(B)). In addition, parameters differ in the time period where they have an influence on the 

change in the [NFκB]:[NFκBn] ratio for each cytokine.  

RANTES shows the highest sensitivity to change in the parameter influencing the 

translocation of NFκB from cytoplasm to the nucleus, especially in the first 45 minutes and 

after 120 minutes of simulation (Figure 6-7 (A)). During these times there is a significant 

change in [NFκB]:[NFκBn] ratio as a result of parameter changes.  

IL8 shows sensitivity to the change in the [NFκB]:[NFκBn] ratio after 120 minutes as a result 

of change in the parameter for RNA degradation of IκBα (Figure 6-7 (B)). During this period 

the ratio of [NFκB]:[NFκBn] between cytoplasm and nucleus changes significant with the 

parameter changes.  

TNFα mRNA expression is most sensitive in the early stages of the model simulation where 

there is a sharp decline in the [NFκB]:[NFκBn] ratio (See Figure 6-7 (C)) as a result of the 

change in the parameter for IKK mediated IκBα protein degradation in the cytoplasm. TNFα 

mRNA expression shows a pulse like behaviour while IL8 mRNA expression is sustained 

over a longer period. This difference comes back in the [NFκB]:[NFκBn] ratio plots with 

TNFα showing sensitivity towards the change in the peak while IL8 shows sensitivity towards 

the parameter that influences the change in sustained change of the ratio indicating that the 

[NFκB]:[NFκBn] ratio influences the expression levels.  

Further analysis did not indicate a specific relationship between the [NFκB]:[NFκBn] ratio 

and cytokine expression levels. The ratio is therefore not indicative of the cytokines mRNA 

expression or informative in parameter estimation. However, nuclear and cytoplasmic NFκB 

have been shown to influence mRNA expression in a unique way for each cytokine, therefore, 

the regulation of NFκB need to be investigated further.  

 

6.3 Simulation of knockout models 

 

The influence of a specific component on the model output can be investigated with knockout 

simulations. NFκB is controlled by IκB isoforms (2.1.3) with negative feedback loops. To 

separate the influence of NFκB and the role of the IκB isoforms on the cytokine expression 

levels we perform in silico knockout simulations. Biological experiments can not always 

simulate a total knockout, total removal of the expression of the protein, due to lethality and 
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redundancy. In addition, prior in silico simulations can reduce the number of biological 

experiments needed that will optimize the model output. 

Investigations into the sensitivity of the model output revealed that the variation of parameters 

influencing the concentration of IκB isoforms and NFκB affect the mRNA expression of the 

cytokines. Since IκBα forms a negative feedback loop for NFκB, it is important to separate 

the influence of both components to identify the individual contribution to the model output.  

Sensitivity analysis also identified parameters that influence IκBε and IκBβ levels have an 

influence on TNFα and IL8 cytokine expression, even though they are less than the influence 

of parameters which affect IκBα levels. Changes in IκBε and IκBβ levels showed higher 

sensitivity in RANTES mRNA expression. IκBε is highly NFκB inducible in TNFα 

challenges and mediates a functional negative feedback on NFκB activity in anti phase to 

IκBα (Kearns et al., 2006). Interaction between IκBα and IκBε has been found to be 

responsible for the translocation of NFκB from the cytoplasm to the nucleus. We therefore 

perform in silico simulations of knockout models of IκBα, IκBε and NFκB to investigate the 

influence of each of these components on the cytokine concentrations.  

 

6.3.1 Simulation of IκBα knockout model 

 

The in silico IκBα, NFκB, IκBε and IκBβ knockout models were generated from the wild type 

model by setting the initial value and the concentration of IκBα, IκBα mRNA, NFκB, and 

IκBε respectively during the simulation to zero. 

In silico simulation of the protein IκBα or the IκBα mRNA knockout model show a 

substantial increase of mRNA levels of RANTES, IL8 and TNFα (Figure 6-8).  The NFκB in 

the cytoplasm is reduced as a result of the knockout of IκBα, while the nuclear NFκB 

increases (Figure 6-8 (D, E)). This is expected since IκBα is a negative feedback loop for the 

translocation of NFκB to the Nucleus (Hoffmann et al., 2002a). IκBα associates with NFκB in 

the cytoplasm preventing the movement of NFκB from the cytoplasm to the nucleus. 

Reduction of IκBα therefore increases the concentration of free NFκB in the cytoplasm which 

results in increased movement of NFκB to the nucleus where cytokine expression is initiated.  
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Figure 6-8 Simulations of IκBα knockout and the effect on the different components. Fig A 

and B, RANTES and IL8 do not return to the model values, while TNFα (Fig C) 

does return to the model values. While Nuclear NFκB (Fig D) is higher than the 

model value, cellular NFκB (Fig E) is lower than the model value. IKK (Fig F) is 

increased and stays at increased level. The x-axis represent the time (min) and the 

y-axis the concentration (µM). 

 

RANTES expression shows a prolonged increase in mRNA expression level before the 

concentration stabilizes (Figure 6-8 (A)). IL8 also shows a prolonged increase but decreases 

toward the wild type level (Figure 6-8 (B)) while the TNFα increases with a higher peak but 

reduces quickly to the wild type value when the nuclear NFκB reduces (Figure 6-8 (C)). 

 

Looking at the NFκB ratio between cytoplasm and nucleus in Figure 6-9 (C), the IκBα 

knockout reduces the ratio, stabilizing after 70 minutes with increased concentration of NFκB 

in the nucleus and reduced concentration of NFκB in the cytoplasm. 
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Figure 6-9 Knockout simulations of the model with IκBα, IκBα mRNA, NFκB, IκBε, and the 

double knockout IκBα/IκBε. (A) Cytoplasmic levels of NFκB are reduced with 

the knockout models after the initial peak, while IκBε knockouts do not have an 

effect on the cytoplasmic NFκB levels. (B) Nuclear NFκB levels increase. This 

highlights the function of the second feedback loop of IκBε in (C) NFκB 

cytoplasmic to nucleus ratio is reduced with the double knockout, all the NFκB is 

in the nucleus inducing increased expression levels. The x-axis represent the time 

(min) and the y-axis the concentration (µM). 

 

 

6.3.2 NFκB knockout simulations  

 

In silico simulation of the NFκB knockout shows a sustained sharp decrease of RANTES and 

IL8 mRNA (Figure 6-10 (C and D)Figure 6-11). TNFα mRNA decreases to 0 after 200 

minutes (Figure 6-10 (E)). Werner et al. (2005) did not detect TNFα mRNA expression in 

biological experiments with NFκB deficient cells after LPS stimulation. However, levels in 

the model are so small that they could be undetectable with experimental methods using a 

population average.  IκBα is maintained at initial value levels (Figure 6-10 (F)) 
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Figure 6-10 In silico knockout simulation of NFκB. (For clarity model values of RANTES, 

IL8 and TNFα expression are omitted, they are substantially higher that the 

knockout values). (A) NFκB wild type and knockouts values (B) Nuclear NFκB is 

quickly reduced to zero (C-D) RANTES, IL8 is reduced over time (D) TNFα 

shows a different pattern indicating different regulation of the expression levels 

between the cytokines (F) IκBα concentration is does not show a rise as seen in 

wild type and is reduced to significantly low levels. The x-axis represent the time 

(min) and the y-axis the concentration (µM). 

 

In silico simulation of the knockout of NFκB reduced the concentration of IκBα and IκBε, 

while it increased the concentration of IκBβ (Figure 6-11 (D-F)). 

 

6.3.3 IκBε and multiple knockout simulations 

 

As with the IκBα knockout model, the NFκB knockout indicates a different regulation for 

each cytokine. While IκBα knockout increases expression levels, NFκB knockout decrease 

expression levels. However, the complete picture is unclear and we need to look at IκBβ and 

IκBε and the interaction between the IκBs and their influence on the expression levels. 
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IκBε plays an important role in terminating inflammatory response (Kearns et al., 2006) and 

is part of a negative feedback loop reducing NFκB translocation to the nucleus in sustained 

infections (Cheong et al., 2008). Therefore, we investigate influence of IκBε on the cytokine 

mRNA expression levels with IκBε knockout models. The In silico simulation of the IκBε 

knockout models show almost no change of mRNA levels of RANTES, IL8 and TNFα 

(Figure 6-11 (A-C)).  The knockouts increase the IκBα concentration raising the peak 

minimally, returning back to the wild type model values (Figure 6-11 (E)). NFκB in the 

cytoplasm and nucleus are marginally affected by the knockouts.  
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Figure 6-11 Simulations of the model with IκBα, IκBα mRNA, NFκB, IκBε, and the double 

knockout IκBα/IκBε. Knockout models were generated from the wild type model 

by setting the initial value and the rate of expression to zero (A-B) RANTES and 

IL8 expression levels for the knockout models showed attenuation of the 

IκBα/IκBε double knockout and raised levels for IκBα knockouts, while NFκB 

knockouts reduced the levels. (C) TNFα expression is raised with IκBα/IκBε 

knockouts but returns to a stable level, while IκBα knockouts are raised but return 

to wild type level at 360 minutes and NFκB knockouts reduces the expression 

levels. (D) IκBε levels are raised by IκBα and IκBαt knockouts but return to wild 

type level at 360 minutes of simulation (F) IκBβ levels were raised by the 

knockouts apart from the IκBε knockout. IκBε does not influence the level of 

IκBβ. The x-axis represent the time (min) and the y-axis the concentration (µM). 

 



 127 

All three cytokines have increased expression levels as result of the IκBα/IκBε knockout. 

RANTES and IL8 (Figure 6-11(A-B)) continue to increase expression levels during the 

simulation time while TNFα reaches saturation (Figure 6-11 (C)).  

The knockout of both negative feedback loops, IκBα/IκBε, lead to a decrease in cytoplasmic 

NFκB during the simulation period (Figure 6-12 (A)) and an increase and attenuation in the 

concentration of nuclear NFκB (Figure 6-12 (B)). The knockout of IκBε does not change the 

NFκB concentrations (Figure 6-12).  
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Figure 6-12 Simulations of the model with IκBα, IκBα mRNA, NFκB, IκBε, and the double 

knockout IκBα/IκBε. Knockout models were generated from the wild type model 

by setting the initial value and the rate of expression to zero. (A) NFκB in the 

cytoplasm does not change with the IκBε but decreseases with IκBα and 

IκBα/IκBε knockout. (B) Nuclear NFκB increases with IκBα/IκBε knockout and 

does not change with IκBε knockout. (C) The nuclear to cytoplasmic ratio of 

NFκB decreases with IκBα/IκBε and IκBε knockout. The x-axis represent the time 

(min) and the y-axis the concentration (µM). 

 

6.4 Summary and Discussion 

 

In summary, analysing the dependence of the systems behaviour for a wide range of 

parameter and initial value variations indicated that different parameters influence the model 

output for each cytokine in a distinct manner. Less than 20 parameters and one initial 

component value significantly influence the model output. While time independent sensitivity 

analysis identified that the most sensitive parameters differ between cytokines, time 

dependent analysis identified the importance of different measurement times between 

cytokines in biological experiments. Therefore, the possible pharmaceutical targets need to be 
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carefully evaluated for all cytokines involved and at different time steps for each parameter. 

Knockout models rather than sensitivity analysis highlighted the importance of interactions 

between IκB isoforms and the effect on the model output.  

 

Sensitivity analysis for the change in initial values 

Time independent sensitivity analysis of the initial values showed high sensitivity of the 

model output for the initial value of IKKIκBαNFκB. IKKIκBαNFκB is the component in the 

model that represent the process of phosphorylation followed by ubiquitination and 

proteolysis of IκBαNFκB which degrades IκBα and increases free NFκB in the cytoplasm 

(Hoffmann et al., 2002a). The rate of protein degradation is changed over time with the input 

function as described in Section 4.2.3. It is therefore indicated by this model that cytokine 

mRNA expression is highly sensitive to the input function of the model. Therefore, the model 

reproduces the relationship between the input function, a representation of the bacterial 

challenge, and cytokine expression. This would indicate that the signalling pathway modelled 

in this work represents a mechanism that is able to differentiate the reaction to the bacterial 

challenges depending on the input. The influence of the input function and the robustness of 

the model and the model output values for the variation in the input function are further 

investigated in Chapter 8.  

Time dependent sensitivity analysis indicated a difference in sensitivity for the initial values 

of IKKIκBαNFκB between the cytokines (Figure 6-1). TNFα has a different biological 

function from RANTES and IL8 therefore the difference in sensitivity is to be expected from 

a biological perspective. TNFα elicit a quick increase in expression levels which has been 

confirmed with biological experiments (Lahouassa et al., 2007). This highly proinflammatory 

cytokine has both beneficial and harmful properties (Bannerman, 2009). TNFα promotes 

endothelial activation and the recruitment of leukocytes to the site of infection as well as the 

induction of fever. Although the effects are beneficial to the host, systemic TNFα is also 

associated with heightened inflammatory responses which can be life threatening for the host. 

Shock, tissue damage, vascular leakage and multi organ failure have been shown to be a result 

of systemic TNFα (Bannerman, 2009). Therefore, increased sensitivity after 200 minutes 

could be a mechanism to protect the cells from TNFα exposure over a longer period of time. 

One might expect sensitivity of the model output to changes in the initial values of nuclear 

and cytoplasmic NFκB, but the model indicates higher sensitivity to the IκBα bound NFκB 

and IKK. Therefore, cytokine mRNA expression is more dependent on the result of the 
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stimulus, IKK, and on the available bound NFκB in cytoplasm, than on the actual NFκB in 

the nucleus or cytoplasm. This is in line with biological expectations; cytokine expression is 

only initiated after TLR signalling which increases IKK levels. In rest, the status represented 

in the initial value of the components, without pathway signalling, NFκB in the nucleus 

should not initiate cytokine mRNA expression. Free NFκB in the nucleus builds up over the 

first 60 minutes following the bacterial challenge (See Figure 5-10) and the increase initiates 

the cytokine expression levels. This free NFκB does not come from newly synthesized NFκB 

but from the release of bound NFκB in the cytoplasm. The mechanism supports the function 

of NFκB, allowing for a quick initiation of the immune system rather than a delay due to the 

need for protein synthesis of NFκB.  

 

Sensitivity analysis for changes in highest ranked parameters 

With a large number of parameters, time dependent sensitivity analysis can quickly become 

intractable. Using time independent sensitivity analysis to narrow down the search space for 

time dependent sensitivity analysis has been proven to be very efficient in the sensitivity 

analysis. Time independent analysis of the parameters showed a difference in ranking for the 

parameters between cytokines.  

RANTES mRNA expression showed high sensitivity to changes in parameters influencing 

NFκB import into the nucleus, followed by the sensitivity to protein degradation of IκBα in 

the cytoplasm and transport of IκBα into the nucleus. RANTES is described as a late gene that 

is activated only after prolonged exposure (8 hours) to NFκB in TNFα challenges (Ting & 

Endy, 2002). LPS simulation of mouse embryonic fibroblast also showed an increase after 8 

hours (Werner et al., 2005).  In our experiments we identified a small increase in fold changes 

1.6 (p<0.05) at 60 minutes after LPS stimulus rising to 4.3 at 180 minutes and 4.8 at 360 

minutes (Figure 3-4). RANTES is expressed in fibroblast and epithelial cells but it is 

suggested that the kinetics of RANTES differ between cell types leading to tissue specific 

inflammatory responses (Arima et al., 2000). It can be speculated that the dissimilarity points 

to a difference in RANTES expression levels between mouse embryonic fibroblast and 

mammary epithelial cells. 

TNFα shows the highest sensitivity to protein degradation of IKKIκBαNFκB (Table 6-2). In 

addition TNFα showed sensitivity to initial concentration of this component (Table 6-1). 

Earlier sensitivity studies of NFκB signalling in the first model developed by Hoffmann et al. 

as a result of TNFα challenge have identified model output, nuclear NFκB concentration, 
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sensitive as result of changes in the initial value and kinetic parameters for protein 

degradation of the component IKKIκBαNFκB (Hoffmann et al., 2002a; Ihekwaba et al., 

2007; Yue et al., 2008). NFκB is a transcription factor for TNFα and therefore similar 

sensitivities of the model output for NFκB and TNFα are to be expected. The sensitivity for 

this parameter also indicates a strong link between the model input and the TNFα mRNA 

expression levels.  

IL8 showed the highest sensitivity to protein degradation of IκBα mRNA. Newly synthesized 

IκBα binds to NFκB and attenuates the pathway response, thereby functioning as a negative 

feedback loop in the model, preventing NFκB in the nucleus and cytoplasm to activate the 

cytokine expression. As shown in Section 5.2.5 IL8 expression level increases quickly. 

Sensitivity of IL8 expression to a change in IκBα mRNA levels can be explained as the result 

of a change in the negative feedback loop which modifies the nuclear NFκB level. Similar to 

TNFα, IL8 shows comparable ranking to nuclear NFκB and sensitivity for the initial values of 

IKKIκBαNFκB therefore a strong dependence between model input and IL8 levels is 

indicated. The parameter influencing RANTES was fitted, while the parameters influencing 

IL8 and TNFα are fitted with restrictions taken from the literature (Hoffmann et al., 2002a). 

Measurements in biological experiments of these parameters can therefore optimise the model 

accuracy.   

None of the cytokines show a similar ranking pattern for parameter sensitivity as nuclear 

NFκB, although IL8 and TNFα share the top three sensitive parameters with nuclear NFκB in 

a different order and with different magnitude. The ranking difference of the parameters 

influencing the nuclear NFκB concentration in the sensitivity analysis for different cytokines 

between the cytokines is also not expected in the first instance, since they are all dependent on 

nuclear NFκB input.  

Although it was initially unclear why the individual cytokines were sensitive to changes in 

different parameters influencing the NFκB concentration (See ranking in Table 6-1) in the 

nucleus while they all are dependent on the nuclear concentration of NFκB (See Section 

5.1.1), time dependent sensitivity analysis indicated that each cytokine was sensitive to 

changes in the concentration at a different time step. Different parameters influence the 

concentration of NFκB at different time steps; therefore each cytokine is sensitive to specific 

parameters influencing the NFκB concentration in the nucleus at a specific time in the 

simulation. Thereby indicating the importance and additional information time dependent 

sensitivity analysis can provide over time independent sensitivity analysis.  
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Optimum experimental measurement time 

Despite the sensitivity of RANTES early in the simulation, measuring the concentration levels 

early, before 100 minutes, would not give us data to refine the parameter values. TNFα is 

sensitive early in the simulation and towards the end of the simulation. The largest change in 

concentration can be found in the peak around 100 minutes. Despite a substantial change in 

sensitivity at 50 minutes, concentration changes can only be expected at 100 minutes. 

Therefore, biological experiments should be designed to capture concentration levels at 100 

minutes (Figure 6-4) for RANTES and TNFα.  

Although the sensitivity of IL8 increased after 200 minutes of simulation, changes in 

concentration level as an effect of the parameter changes can already be seen after 100 

minutes and are the largest at 240 minutes, indicating that any experimental measurement 

before 100 minutes will not give us additional information to fine tune the parameter values in 

the model. Measurements for this work have been taken at 60, 180 and 360 minutes. 

However, biological experimental values at 100 and 240 minutes would be more informative. 

These results clearly indicate the value of sensitivity analysis and simulation before 

experimental design. 

 

Knockout simulations 

Biological experiments can not always simulate knockout due to lethality, cost and ethical 

considerations. In silico simulations are therefore a good way to investigate the influence of 

specific components. IκBα knockout models showed a prolonged increase in RANTES 

mRNA expression before the concentration stabilizes (Figure 6-8 (A)). IL8 also shows a 

prolonged increase but decreases toward the wild type level (Figure 6-8 (B)) while the TNFα 

increases with a higher peak but reduces quickly to the wild type value when the nuclear 

NFκB reduces (Figure 6-8 (C)). The model therefore indicates a difference in kinetic response 

to the IκBα knockout between RANTES, IL8 and TNFα mRNA. TNFα resumes wild type 

levels during the simulation period while RANTES and IL8 do not return to wild type levels. 

From a biological perspective the robustness of TNFα is necessary and prevents prolonged 

expression of TNFα. Prolonged exposure to TNFα is linked to heightened inflammatory 

response which could threaten life (Bannerman, 2009).   
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In the IκBα knockout simulations the NFκB ratio between cytoplasm and nucleus in Figure 

6-9 stabilizes after 70 minutes with increased concentration of NFκB in the nucleus and 

reduced concentration of NFκB in the cytoplasm. This effect can be contributed to the 

negative feedback function of IκBα. IκBα holds NFκB in the cytoplasm and prevents 

translocation to the nucleus. Reduced levels of IκBα eventually will lead to the translocation 

of all NFκB to the nucleus.  

The difference in NFκB levels and cytoplasm and nucleus ratios between the wild type and 

IκBα knock out would explain the increased transcription of the cytokines as a result of the 

IκBα knockout but not the difference in the increase between the individual cytokines. This is 

similar to the earlier findings in Section 6.2.2.3 where we identified that the cytokine 

expression levels showed sensitivity to different parameters which represented changes in 

NFκB levels at different simulation times. A different effect on each cytokine is therefore to 

be expected. However, the mechanism is more complex and not influenced by IκBα alone. In 

addition to change in IκBα levels in the knockout simulation, an IKK concentration increases. 

Increased concentration of IKK results in increased degradation of IκBα. The increased 

degradation then increases concentration of NFκB in the cytoplasm free to trans-locate to the 

nucleus. The effect of changing the IKK profile will be further investigated in Chapter 8. 

The ratio of NFκB between cytoplasm and nucleus is more stable with the IκBα knockout 

explaining sustained gene expression of RANTES and IL8 but not TNFα, neither does it 

explain the difference in the return to the wild type for IL8 and TNFα.  

 

The NFκB knockout model indicates a different time profile for each of the mRNA cytokine 

expression levels as result of NFκB knockouts (Figure 6-10). Blocking NFκB with 

pharmaceutical product can therefore expected to have a different effect on each expression 

level and the effect of highly reduced, as opposed to no expression levels need to be taken 

into consideration and verified with biological experiments. NFκB is available in the 

cytoplasm for fast reaction and does not depend on protein synthesis. Experimental studies of 

S. aureus mastitis failed to identify NFκB or TNFα mRNA levels in mammary epithelial cells 

(Yang et al., 2008). However, the pathogen causes chronic inflammation in the mammary 

gland and activates TLR2 and TLR4 signalling. TLR signalling leads to NFκB activation. 

NFκB levels as result of chronic mastitis were raised in milk (Boulanger et al., 2003). 

Therefore, other cells in the mammary gland could be responsible for the raised NFκB levels 

in milk. Targeted inhibition of NFκB signalling reduced milk loss and apoptotic signalling, 
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which are of great concern during mastitis (Connelly et al., 2010). Reducing NFκB levels in 

mammary epithelial cells with pharmaceuticals might not have the desired effect on the 

inflammation. For instance, it could still lead to chronic mastitis as seen in S. aureus mastitis 

and therefore needs further biological experimentation to verify the model prediction of NFκB 

knockout. 

 

There is no difference between IκBα knockout and IκBαIκBε knockout with respect to NFκB 

in the cytoplasm, both reduce NFκB. The inhibitory role of IκBα and IκBε in the form of 

negative feedback loops for the DNA-binding activity of NFκB of the canonical (TLR 

activated) IκBs as result of TNFα simulation has been described earlier (Hoffmann et al., 

2006). IκBα provides a negative feedback loop and is responsible for down regulation 

following the initial induction of NFκB activation. The delayed IκBε function is in an anti-

phase to IκBα. It is proposed that the anti-phase regulation stabilizes the NFκB activity 

without reducing the ability to terminate NFκB activation after the removal of the stimulus  

(Hoffmann et al., 2006). The two kinases, IκBα and IκBε, work in tandem to rapidly repress 

NFκB translocation after TNFα stimulation. A similar effect as result of E. coli stimulation is 

seen in this study, providing evidence for the importance of IκBε in terminating the 

inflammatory response. IκBα and IκBε work together to ensure rapid post induction 

repression of NFκB, suppressing sustained oscillations. Sustained oscillations can be a 

shortcoming in simple linear control systems (Cheong et al., 2008). In an inflammatory 

response these could for instance lead to an over-reaction of the immune system. 

 

Conclusion 

The model captures the experimental values of the cytokine expression levels for mammary 

epithelial cells indicating that the same model components are capable of capturing the 

experimental values with different kinetics in different cell types. Therefore, we could explore 

the kinetics of the expression and the change in sensitivity during the simulation time. This is 

very valuable for the future design of biological experiments.  

 

 



 134 

Chapter 7                                                                                      

S. aureus model 

In the previous Chapters a model for the E. coli bacterial challenge was developed and 

analysis of the sensitivity of the model output for parameter changes performed. From the 

biological review in Section 2.1 we identified a shared signalling gene network regulation 

pathway used in E. coli and S. aureus bacterial infections. The signalling gene network 

initiates cytokine mRNA expression with a different time profile between the two bacterial 

challenges. The difference in time profile is the result of a variation in the input function of 

the model. While the input function was available from biological experiments with the E. coli 

challenge, no data for the input function with the S. aureus challenge is available. We 

therefore set out to estimate the parameters representing the input function of S. aureus 

challenge for the model developed in Chapter 5 and will show that this is not feasible with the 

available experimental data. An insight is given in the possible causes for the lack of fit. In 

addition, future experiments that could elicit insight in the regulation as the result of an S. 

aureus infection in mammary epithelial cells are discussed.   

 

7.1 Fitting the S. aureus experimental values to the model 

 

The conceptual model for the S. aureus challenge is given in Figure 7-1. As described in 

Section 2.1.2 the S. aureus challenge invokes the same TLR-IKK-NFκB signalling pathway 

which results in the cytokine mRNA expression as the E. coli challenge. Although it invokes 

the same signalling pathway, the time profiles of the input representing the two bacterial 

challenges are different. Therefore the model developed in Chapter 5 can be used for both 

challenges using two different input functions. While estimating parameters for cytokine 

mRNA expression in the E. coli challenge the input function for the model (ikkm(t) described 

in Section 4.2.3 and Figure A-1) was based on experimental values from Werner et al. (2005). 

In contrast to the E. coli experiment, no input profile is available for a S. aureus challenge in 

the literature.  



 135 

 

Figure 7-1 Parameters to be estimated for the S. aureus mastitis model are related to the input 

function circled in the conceptual diagram of TLR-IKK-NFκB signalling in 

mastitis. The TLR receptor on the cell membrane recognizes the bacterial 

challenge. The signalling pathway activates the kinase IKK which breaks the IκB-

NFκB dimer. As a result, the transcription factor NFκB translocates to the nucleus 

initiating gene expression. The transcription factor NFκB initiates the expression 

of three cytokines, RANTES, IL8 and TNFα in mastitis. In addition, the IκB 

isoforms which bind with NFκB in the cytoplasm to prevent translocation of 

NFκB to the nucleus are expressed. This process creates a negative feedback loop 

for the translocation of NFκB to the nucleus. 

 

Estimating both, parameters for the input function and parameters for the synthesis and 

degradation of the cytokines in the S. aureus challenge, would be an exercise of input-output 

fitting and lead to over fitting. Many parameter estimations could fit the data and insufficient 

experimental data is available to verify if the estimated parameters would be correct.  

Thus it is assumed that the estimated parameters for cytokine mRNA synthesis and 

degradation in Section 5.2 for the E. coli challenge are correct and the same for the S. aureus 

challenge. This leaves the parameters for the input function ikkm; 8 time points and 8 levels 

of concentration, to be estimated with the experimental values of the S. aureus challenge.  

As shown in Section 3.1.4 expression levels for IκBα and IL8 mRNA are significantly 

different in the S. aureus challenge, while TNFα and RANTES expression level do not differ 

from unchallenged cells in the experiment.  
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Despite the use of a variety of parameter estimation method no suitable parameter values 

could be identified for the input function to fit the experimental values of IκBα and IL8 

mRNA concentration at the same time. In the following sections prior identifiability analysis 

and biological insight are used to evaluate the possible cause for the lack of suitable parameter 

values.  

 

7.2 Prior identifiability analysis for fitting the model input 
parameters to S. aureus experimental data 

 

Prior identifiability analysis as described in Section 2.3.3 is used to identify correlations 

between the parameters with the available experimental values. Parameters for the input 

function of the S. aureus challenge are estimated to fit the experimental values of IκBα and 

IL8 mRNA expression. The input function is a piecewise linear function with 8 time points 

(t1-t8) and 8 concentration levels (ikk1-ikk8) that is solved numerically (Figure A-1 and 

Section 4.2.3).  
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 Figure 7-2 Prior identifiability analysis shows the correlation between the parameters that 

will be estimated using the experimental data for the S. aureus challenge. The 

input function is a piecewise linear function with 8 time points (t1-t8) and 8 

concentration levels (ikk1-ikk8). The correlation between the time point and 

concentration is high for each pair (time, concentration). A high correlation 

between parameters indicates non-identifiability of the parameters with the 

available experimental values. 
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As can be seen in  Figure 7-2, the correlation between each pair of parameters (time, 

concentration) is high and indicates no unique parameters can be estimated with the available 

experimental values. Nominal values can be used to reduce the correlation between 

parameters. However, using nominal values for the time does not reduce the correlation 

sufficiently as can be seen in Figure 7-3.  
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Figure 7-3 Prior identifiability analysis shows the correlation between the parameters that 

will be estimated using the experimental data for the S. aureus challenge. In this 

case nominal values have been used for time. High correlation between the 

remaining parameters indicate non identifiability of those parameters with the 

available experimental values. 

 

Further reduction of the number of time points and the number of concentration levels did not 

reduce the correlation. Several different parameter estimation algorithms did not manage to 

get a solution, which was expected with the high correlation between the parameters 

indicating non-identifiability.  

 

7.3 Discussion 

In this chapter an attempt is made to estimate the input parameters of the model to fit the 

experimental values of the S. aureus bacterial challenge. Identification of the parameter 

values failed with the available experimental values. Close examination of the model 

equations (A.1.1) identifies an important aspect of the input function ikkm. In the ODEs for 
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IκBxIKK, IκBxIKKNFκB (x = α, β or ε) and IKK the ikkm(t) function influences the free 

floating concentration of IκB, IKK and NFκB. The influence results in an intrinsic link 

between the protein degradation parameters (pd_c_xi*, x=a, b or e, *=n or blank) and the 

input function. In the previous chapter it has been shown that the model is highly sensitive to 

changes in protein degradation parameters for the E. coli challenge (Section 6.2.2).  

Protein degradation values for IκBα were taken from Hoffmann et al. (2002a) who based the 

values on research by Pando et al. (2000). The NFκB signalling component of the model 

consists of a combination of parameters which are estimated or based on literature and 

experimental data with fibroblasts. Since we use mammary epithelial cells as opposed to 

fibroblasts there could be a difference in the parameters due to the difference in cell type. 

Tissue specific regulation of cytokine expression could be a way to facilitate tissue specific 

immune regulation (Arima et al., 2000).  

To investigate a possible difference in protein degradation parameter as a result of the use of 

mammary epithelial cells as opposed to fibroblasts used in Hoffmann et al. (2002a) we 

investigated the protein degradation parameter values. Estimating the protein degradation 

parameters for IκBα in conjunction with the protein degradation parameters for the IKKIκB or 

IKKIκBNFκB complex (pd_c_yxi*, x=a, b or e, *=n (y=3) or blank (y=2)) to fit IκBα and IL8 

mRNA expression did not lead to a fit with the experimental data for both IκBα and IL8 

mRNA. While a fit for experimental values for IκBα or IL8 mRNA could be found, no fit 

suitable for both values with a single set of parameters using a variety of parameter estimation 

methods was found. Neither were parameters found that would fit both the E. coli and the S. 

aureus experimental values. The S. aureus bacterium is known to evade the immune system. 

Rather than a difference in parameter values due to a difference in cell type it is therefore 

likely that there could be other signalling and/or gene networks involved in the cytokine 

expression in the S. aureus challenge.  

In the E. coli model the role of NFκB in the differentiation of the cytokines was investigated.  

This model was chosen since the transcription factor NFκB is the most important cis-

regulatory element controlling
 
TNFα-induced RANTES expression (Casola et al., 2002). 

Cytokines have been identified to be responsible for the variation in clinical profiles of 

mastitis (Bannerman et al., 2004). The cytokine RANTES is one of the five genes in the 

cluster identified as regulated with a significantly different time profile between the two 

bacterial challenges (Section 3.1.3). The dynamic behaviour of the translocation of NFκB 

from the cytoplasm to the nucleus is different between several challenges and the difference 

in temporal dynamics is believed to be the source of the variation in gene regulation (Cheong 
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& Levchenko, 2008). Therefore the influence of NFκB on RANTES expression in an E. coli 

challenge was modelled. While the model is able to reproduce the experimental values in the 

E. coli challenge indicating that RANTES and IL8 expression can be explained by the role of 

the dynamics in NFκB translocation in the model, this does not apply to the IL8 expression in 

the S. aureus challenge.  

Looking at the cluster with differentially regulated genes between the two bacterial challenges 

in Table 3-2, five genes are seen which are regulated by IFNα/β (Noppert et al., 2007). The 

IFNα/β receptor is also involved in STAT5. The STAT5 signalling pathway has been 

suggested to play in role in sub clinical mastitis  (Boutet et al., 2004#372)  and milk 

production (Khatib et al., 2008). The STAT5 transcription factors have been linked to LPS 

(Kimura et al., 2008) and reduction of casein protein in E. coli infected quarters but not in 

subclinical S. aureus (Vanselow et al., 2006). This indicates a different role of STAT5 in E. 

coli and S. aureus mastitis. However, the relation with cytokine expression is unclear. 

In this study IFNα/β is up-regulated in the E. coli but not in the S. aureus challenge. S. aureus 

does not invoke the MyD88 independent pathway (See Figure 3-6). The cytokine IFN-β has 

been identified as the signature molecule for MyD88-independent TLR4 signalling as a result 

of E. coli stimulation in macrophages (Thomas et al., 2006). IFN-β is recognized by IFNα/β 

and activates STAT1 containing DNA binding complexes that participate in the induction of 

genes not expressed in response to TLR2 (Toshchakov et al., 2003). Jones et al. proposed that 

IFNα/β might provide the missing signal that underlies the differential patterns of cytokine 

production induced by TLR2 and TLR4 in macrophages (Jones et al., 2001). Therefore, the 

cytokine expression could be differentiated by IFNα/β rather than, or in addition to, a 

difference in NFκB regulation.  

It can be speculated that NFκB might not be the most important transcription factor in the S. 

aureus challenge of mammary epithelial cells for IL8. In conjunctival cells loss of function of 

the NFκB site does not influence the expression of IL8 (Venza et al., 2007). Other 

transcription factors such as JNK, P38 and AP-1 also contribute to IL8 gene expression 

(Hoffmann et al., 2002b). P38 is very well studied MAPK kinase in terms of anti-

inflammatory drug target (Han & Ulevitch, 2005). AP-1 is a MAPK induced transcription 

factor (Sun et al., 2008). The cis-elements for NFκB and AP-1 are located in close proximity 

of the IL8 promoter, which suggest the formation of a higher-order nucleo-protein, a 

transcriptional enhanceosome. The transcriptional enhanceosome provides a multi-protein 

surface that facilitates maximal gene transcription. A closer look at the expressed mRNA in E. 

coli (Figure 3-5) and S. aureus (Figure 3-6) in our experiments indicated the expression of 
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NFκB, p38 and AP-1 in E. coli but not in S. aureus. Our experimental data therefore supports 

the activation of MAPK signalling pathways in both S. aureus and E. coli challenges, while 

the NFκB signalling pathways is only activated in E. coli. Crosstalk between the MAPK and 

NFκB signalling pathways exists and the experimental data indicates a difference in 

regulation in the crosstalk between the two bacterial challenges.  

NFκB regulation is influenced by IκBα. IκBα regulation is different between the two bacterial 

challenges as can be seen in Figure 3-7 and Figure 3-8. However, IκBα does not influence the 

MAPK signalling pathway responsible for JNK, p38 and AP-1 activation (See Figure 3-5). A 

combination of the activation of the NFκB and MAPK signalling pathways are essential for 

the IL8 activation. 

In the E. coli challenge both pathways have increased mRNA expression levels, indicating 

that both pathways are activated. Our method of using the Hill factor of three for NFκB (See 

Section 5.1.1) was sufficient to represent both pathways in the E. coli model. In contrast, in 

the S. aureus challenge the NFκB does not show a change in expression indicating a lack of 

activation of the NFκB pathway while the MAPK pathway is activated since the precursors 

AP-1 shows increased expression in the S. aureus challenge.  

The importance of AP-1 in mastitis has been identified by us earlier (van Loenen-den Breems 

et al., 2008). In this study AP-1 was identified as a component of a unique expression profile 

in E. coli mastitis in the udder. In conjunctival cells, Venza et al. concluded that the AP-1 

binding site alone was required for optimal IL8 S. aureus induced promoter activity while the 

loss of function in the NFκB site did not affect IL8 promoter activation (2007). The fact that 

the IL8 mRNA expression in the S. aureus challenge could not be explained by the NFκB 

regulation alone could be attributed to a similar mechanism in mammary epithelial cells.  

In order to verify the conclusions we propose to perform biological experiments identifying 

the AP-1 and p38 transcription factor activity. With these experimental values the model can 

be extended, including the cross signalling of the NFκB and MAPK signalling pathways and 

exploring the S. aureus expression profile in the mammary epithelial cells. The model 

interrogation of the interaction between the MAPK and NFκB signalling pathways could well 

shed light on the difference in regulation between E. coli and S. aureus mastitis. 
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Chapter 8 

Robustness of the cytokine expression to input 

variations 

This Chapter investigates the robustness of the model for the variation in the model input. The 

model input represents the bacterial load causing the infection in mastitis. Robustness is an 

important property of biological systems regulating over and under reaction to external 

perturbations of the biological process. In the first Section the definition of robustness 

relevant to cytokine expression in mastitis used in this thesis is described. The Section 8.2 the 

input variation representing the bacterial load is described and in Section 8.3 the results of 

the simulations with the different input profiles are given. The last section discusses the effect 

of the input variation on the cytokine expression levels, the output of the model. We speculate 

that the robustness for TNFα mRNA expression observed in biological experiments at 360 

minutes is not caused by robustness to the variation in nuclear NFκB time profile but by 

robustness to variation in synthesis and/or degradation parameter values. 

 

8.1 Robustness in biological systems 

 

Robustness is a key property of biological systems and refers to the ability of a biological 

system to maintain its functionality while exposed to perturbations in operating conditions 

(Stelling et al., 2004). In this thesis robustness is defined as the ability of a system to maintain 

its functions despite input perturbations. The input perturbations represent a change in 

bacterial load on the mammary epithelial cell, while the functionality is the time profile of the 

cytokine mRNA expression levels, representing the immune system reaction to the bacterial 

infection.  

While total robustness to the input variation would make a biological system insensitive to the 

environment and imply a lack of communication with the environment, lack of robustness 

could cause an over reaction of the system to the perturbation such as a bacterial infection. 

However, robustness to common perturbations such as temperature or light changes is 

necessary to maintain functionality and performance. Extraordinary robustness to uncommon 

perturbations can be catastrophic; for an infection such as mastitis total robustness to the 
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bacterial infection could lead to sepsis and death due to the lack of the immune reaction, while 

extreme sensitivity would influence the performance such as milk production. From an 

evolutionary point, milk production is essential for the survival of the species and reduction of 

milk production can not be sustained for a longer period. Therefore, biological networks often 

exhibit extraordinary robustness to common perturbations in their environment such as 

temperature change and less robustness to uncommon perturbations such as a bacterial 

infection. Subsequently a biological trade-off can be expected between robustness and 

sensitivity to input variations that maintain the performance. Elucidating this trade-off 

between robustness and sensitivity is often the key to understanding the complexity of the 

biological network (Csete & Doyle, 2002; El-Samad et al., 2005; Stelling et al., 2004). 

Robustness plays a role in the design of pharmaceutical targets, influencing the efficiency of 

the product. 

 

8.1.1 Robustness to the variation in bacterial infections for cytokine 
expression in mastitis 

 

Cytokine mRNA expression levels are an indicator of the effect of the bacterial infection on 

the immune system reaction in mastitis. Cytokine expression levels in milk varied due to a 

change in severity of E. coli mastitis (Vangroenweghe et al., 2004; Werner-Misof, 2007). 

Increase of the bacterial load changed the time profile of the cytokine expression levels and 

therefore the reaction of the immune system to the infection. Vangroenweghe et al. concluded 

that a higher bacterial load in E. coli mastitis resulted in an earlier increase in IL8 in milk 

samples (2004). However, neither the mechanism nor the component in the network which is 

responsible for the increase in IL8 is known.  

A biological study of mammary epithelial cells challenged with different concentrations of E. 

coli indicated that the concentration of the pathogens is recognised by the cells and as a result 

cytokine expression levels are changed (Günther et al., 2010). Relative mRNA copy number 

varied 180 minutes after stimulation of the mammary epithelial cells with E. coli for IL8 but 

not for TNFα with a positive correlation to the bacterial load, while there was no correlation 

with the bacterial load after 360 minutes, indicating robustness for the variation in bacterial 

load at 360 minutes. However, it is unclear which changes in the network cause these 

variations in expression levels. 
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As discussed in more detail in Section 2.1.2, E. coli bacteria are recognised by Toll Receptors 

on the cell membrane. Toll Receptor signalling then results in the translocation of NFκB to 

the nucleus, which then regulates cytokine mRNA expression levels. Earlier studies 

concluded that RANTES mRNA expression as result of TNFα challenge is primarily 

controlled by the transcription factor NFκB (Casola et al., 2002). NFκB has also been shown 

to play an indispensable role in IL8 mRNA expression in mastitis (Boulanger et al., 2003). It 

has been proposed that IL8 could play a key role in the modulation of E. coli mastitis 

(Alluwaimi, 2004). Therefore, the transcription factor NFκB plays an important role in the 

cytokine mRNA expression in mastitis. In Section 6.3.2 NFκB knockout simulations 

identified a different effect for each cytokine when NFκB is blocked. Blocking NFκB is often 

suggested as a treatment in infections but has been shown to lead to sepsis (Liew et al., 2005).  

A bacterial infection load changes over time, due to the effects of milking and the immune 

system reactions. The input is thus not an on/off signal but represented by a variety of time 

profiles indicating the severity of the bacterial load. Therefore, investigating the effect of the 

variation in the nuclear NFκB time profile, on the cytokine mRNA expression with in Silico 

simulation can identify the effect of nuclear NFκB variation on cytokine mRNA expression 

and identify the level of robustness to the nuclear NFκB variation.   

   

8.2 Input variation to represent variation in the bacterial infection 

 

In order to vary the nuclear NFκB time profile, the input profile of the model, described in 

Section 4.2.3, need to be varied. With the variation in the input of the model the variation of 

the bacterial load in mastitis is simulated. To create a set of diverse input profiles a computer 

program was developed to generate experiment files described in Section 4.3. The experiment 

files contain the input (ikkm, Section 4.2.3) profiles for the simulation of the model. Each 

profile contains a rising phase (a in Figure 8-1), a first plateau (b in Figure 8-1) and a second 

plateau (c in Figure 8-1) with varying time levels (x and y in Figure 8-1).  During a total 

simulation time of 360 minutes the duration of the rising phase was simulated for 0, 60, 120 

and 240 minutes. The rise of the first plateau (x) was simulated with 0.04, 0.12, 0.34 and 1.01 

µM. The duration of the first plateau (b) was 0, 5, 15, 30, 60 or 120 minutes. The falling 

phase (c) had duration of 0, 60, 120 or 240 minutes. The second plateau was equal or lower 

than the first plateau and varied between 0.01, 0.04, 0.12, 0.34 and 1.01 µM. This algorithm 

has also been used by Werner et al. (2005) who ran the simulation for 240 minutes and 
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identified 36 different nuclear NFκB time profiles. The simulation ran for 360 minutes. 

However, increasing the range of values for the times (a, b and c in Figure 8-1) or 

concentration levels (x and y in Figure 8-1) creating more than 2500 different ikkm profiles 

did not increase the coverage of the input space or the number of different nuclear NFκB time 

profiles.  

 

 

Figure 8-1 A set of input profiles was generated varying the time of the rising, first plateau 

and falling phase (a, b and c with a b c  ) and the concentration in the first and 

second plateau (x and y with x y ).  

 

Clustering the IKK time profiles with the κ- means clustering algorithm implemented in the 

Matlab Statistics Toolbox with standard squared Euclidian distance measure identified 36 

clusters of IKK time profiles (Table 8-1) that produce distinct nuclear NFκB time profiles.  

Using the representations of the clustered IKK profiles distinctly different nuclear NFκB 

profiles can be generated. These clusters cover the input space for the identification of the 

robustness of the cytokine expression with respect to nuclear NFκB time profiles.  
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Table 8-1 IKK input profiles generating 36 different nuclear NFκB time profiles. For the 

original value (See A.1.4). (a = rising phase, b = first plateau, c = falling phase, x 

= concentration first plateau, y = concentration second plateau in Figure 8-1)  

 a b c x y   a b c x y 

 
1 60 5 120 0.34 0.01  19 60 5 5 0.34 0.12 
2 60 5 5 0.34 0.01  20 0 5 120 0.12 0.04 
3 0 5 60 0.12 0.04  21 60 5 5 1.01 0.34 
4 60 120 5 0.34 0.01  22 120 5 60 0.34 0.12 
5 0 5 240 0.34 0.01  23 0 5 60 0.12 0.01 
6 120 5 5 0.34 0.34  24 60 5 5 1.01 1.01 
7 120 5 5 1.01 1.01  25 0 5 60 0.34 0.01 
8 0 5 5 0.12 0.12  26 60 30 60 1.01 0.01 
9 0 5 5 1.01 1.01  27 60 5 5 1.01 0.12 
10 60 5 120 1.01 0.34  28 60 5 5 1.01 0.01 
11 0 5 240 0.04 0.01  29 60 5 5 0.12 0.12 
12 60 5 120 1.01 0.01  30 120 15 5 0.34 0.12 
13 60 5 60 0.12 0.01  31 120 5 5 0.12 0.01 
14 60 30 60 1.01 0.34  32 60 60 60 1.01 0.01 
15 0 5 5 0.34 0.34  33 0 5 60 0.34 0.12 
16 0 5 5 0.04 0.04  34 60 5 120 0.34 0.12 
17 60 5 5 0.34 0.34  35 120 5 5 0.12 0.12 
18 120 5 60 1.01 0.34  36 0 60 120 0.34 0.01 

 

The 36 input profiles are used for the in Silico simulations. The model ran with the input 

profiles for 360 minutes described in Section 4.3. 

 

8.3 Cytokine expression levels as a result of variation in bacterial 
infection 

 

Because biological experiments indicated robustness to variation in bacterial load at 360 

minutes, the simulations are clustered for the nuclear NFκB concentration at 360 minutes with 

the κ- means clustering algorithm implemented in the Matlab Statistics Toolbox is used. The 

clustering identified 6 clusters with different NFκB concentration at 360 minutes (Figure 8-2 

to Figure 8-7).   
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Figure 8-2 First cluster. Simulations with input profile 6, 10, 14, 15, 17, 18 and 21 (Table 

8-1) for (A) RANTES mRNA, (B) IL8 mRNA, (C) TNFα mRNA, (D) IκBα 

mRNA, (E) IKK and (F) nuclear NFκB are shown. The x-axis represent the time 

(min) and the y-axis the concentration (µM). 

 

 



 147 

0 100 200 300 400
0

0.05

0.1

0.15

0.2

R
A

N
T

E
S

t

A

0 100 200 300 400
0

0.05

0.1

0.15

0.2

IL
8
t

B

0 100 200 300 400
0

0.005

0.01

0.015

T
N

F
a
t

C

0 100 200 300 400
0

0.02

0.04

0.06

0.08

Ik
B

a
t

D

+ data

-.- model

0 100 200 300 400
0.02

0.04

0.06

0.08

time

IK
K

E

0 100 200 300 400
0

0.02

0.04

0.06

0.08

time

N
F

k
B

n

F

 

Figure 8-3 Second cluster. Simulations with input profiles 7, 9 and 24 (Table 8-1) for (A) 

RANTES mRNA, (B) IL8 mRNA, (C) TNFα mRNA, (D) IκBα mRNA, (E) IKK 

and (F) nuclear NFκB are shown. The x-axis represent the time (min) and the y-

axis the concentration (µM). 
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Figure 8-4 Third cluster. Simulations with input profiles 8, 22, 29, 32, 33 and 35 (Table 8-1) 

for (A) RANTES mRNA, (B) IL8 mRNA, (C) TNFα mRNA, (D) IκBα mRNA, 

(E) IKK and (F) nuclear NFκB are shown.The x-axis represent the time (min) and 

the y-axis the concentration (µM). 
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Figure 8-5 Fourth cluster. Simulations with input profiles 3, 16, 20, 38 (Table 8-1) for (A) 

RANTES mRNA, (B) IL8 mRNA, (C) TNFα mRNA, (D) IκBα mRNA, (E) IKK 

and (F) nuclear NFκB are shown. The x-axis represent the time (min) and the y-

axis the concentration (µM).  
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Figure 8-6 Fifth cluster. Simulations with input profiles 19, 27, 30 and 34 (Table 8-1) for (A) 

RANTES mRNA, (B) IL8 mRNA, (C) TNFα mRNA, (D) IκBα mRNA, (E) IKK 

and (F) nuclear NFκB are shown. The x-axis represent the time (min) and the y-

axis the concentration (µM). 
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Figure 8-7 Sixth cluster. Simulations with the input profiles 1, 2, 4, 5, 11, 12, 13, 23, 25, 26, 

28, 31 and 36 (Table 8-1) for (A) RANTES mRNA, (B) IL8 mRNA, (C) TNFα 

mRNA, (D) IκBα mRNA, (E) IKK and (F) nuclear NFκB are shown. This cluster 

included the model simulations with the original input functions (--).The x-axis 

represent the time (min) and the y-axis the concentration (µM). 

 

The clusters show a clear relationship between the concentration of nuclear NFκB, IκBαt, 

IKK and TNFα mRNA at 360 minutes. If the concentration of the nuclear NFκB at 360 

minutes increases with respect to the model, the concentration of the IκBαt, IKK and TNFα 

mRNA at 360 minutes increases. If the concentration of the nuclear NFκB at 360 minutes 

decreases with respect to the model, the concentration of the IκBαt, IKK and TNFα mRNA at 

360 minutes decreases. The in- and de-creases are the same for the simulations in the clusters; 

therefore the concentration of the nuclear NFκB at 360 minutes can be used as a predictor for 

the concentration of IκBαt, IKK and TNFα mRNA at 360 minutes. However, the model does 

not show robustness to the variation in nuclear NFκB at 360 minutes for TNFα mRNA 

expression. 

The concentrations of RANTES and IL8 mRNA at 360 minutes are also related to the 

concentration of the nuclear NFκB at 360 minutes but not as clear as the concentration of 
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TNFα mRNA is related to nuclear NFκB at 360 minutes. While TNFα mRNA at 360 minutes 

merges to a specific value for each cluster similar as nuclear NFκB at 360 minutes merges to 

a specific value in each cluster, IL8 and RANTES mRNA do not merge to a specific value. 

However, if the nuclear NFκB concentration at 360 minutes is equal or less than the model 

value, IL8 and RANTES mRNA time profiles show a decrease in concentration after the peak 

(Figure 8-8). If the nuclear NFκB concentration at 360 minutes is higher than the model 

value, IL8 and RANTES mRNA values continue to increase (Figure 8-9). Therefore the 

model does not show robustness for nuclear NFκB concentration changes in IL8 and 

RANTES mRNA expression either. 
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Figure 8-8 Simulations of (A) RANTES mRNA, (B) IL8 mRNA,(C) TNFα mRNA,(D) IκBα 

mRNA,(E) IKK and (F) nuclear NFκB with the input profiles (1 2 3 4 5 11 12 13 

20 23 25 26 28 31 36 38) are shown. Simulations show IκBα mRNA and nuclear 

NFκB values lower or equal than the model value. IL8 and RANTES mRNA 

show a decrease after the peak value. The x-axis represent the time (min) and the 

y-axis the concentration (µM). 
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Figure 8-9 Simulations of (A) RANTES mRNA, (B) IL8 mRNA,(C) TNFα mRNA,(D) IκBα 

mRNA,(E) IKK and (F) nuclear NFκB with the input profiles (6 7 8 9 10 14 15 16 

17 18 19 21 22 24 27 29 30 32 33 34 35 37) are shown. Simulations show IκBα 

mRNA and nuclear NFκB values higher than the model value. IL8 and RANTES 

mRNA show a continued increase of concentration during the simulation period. 

The x-axis represent the time (min) and the y-axis the concentration (µM). 

 

The difference between Figure 8-8 and Figure 8-9 is not only in the difference of the 

simulation value with the model value but also in the oscillation of nuclear NFκB. For the 

simulations in Figure 8-8 nuclear NFκB shows none or minimal oscillations, while in the 

simulations in Figure 8-9 nuclear NFκB show clear oscillations. As a result of the nuclear 

NFκB oscillations, IL8 and RANTES mRNA continue to increase and are therefore not robust 

to the change in nuclear NFκB oscillations.   

No relationship between the time of the IL8 mRNA expression peak and nuclear NFκB could 

be found.  
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Figure 8-10 Increase in the maximum concentration (µM) of nuclear NFκB (NFκBn) shows an 

increase in the maximum concentration (µM) of TNFα mRNA expression at 360 

min of the simulation.  

 

With an increase in the maximum concentration of nuclear NFκB the maximum concentration 

of TNFα increased (Figure 8-10). This indicates a direct relationship between the maximum 

concentration of nuclear NFκB and the maximum concentration of TNFα. It also indicates 

that TNFα mRNA expression is not robust for an increase in the maximum concentration of 

nuclear NFκB. 

 

8.4 Summary and discussion 

 

In this chapter the robustness of the model output with several different nuclear NFκB time 

profiles was evaluated. The different nuclear NFκB time profiles represent different bacterial 

loads which develop mastitis. In milk samples, a higher bacterial load increased the IL8 

concentration and the time of the peak was earlier (Vangroenweghe, 2004). With the 

developed model no relationship between the maximum concentration of nuclear NFκB or the 

steepness of the increase in nuclear NFκB and the time of the maximum IL8 mRNA 
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expression could be identified. From this, it can not be concluded that there is a lack of a 

relationship between nuclear NFκB expression in mammary epithelial cells and IL8 

concentration in the milk. The relationship between mRNA expression levels in mammary 

epithelial cells and milk concentrations levels of the protein IL8 have not been established. 

The relationship is not necessarily a linear relationship. Several processes follow mRNA 

expression in mammary epithelial cells to produce the protein IL8 in the milk and therefore 

the concentration of IL8 in the milk can not be predicted from the mRNA expression levels in 

the mammary epithelial cells alone. As a result of these processes it is still possible that there 

is a nonlinear relationship between nuclear NFκB and IL8 concentration in the milk. In order 

to identify this relationship, further biological experiments investigating the relationship 

between mRNA expression in mammary epithelial cells and IL8 concentration in milk need to 

be performed. With those results the relationship between nuclear NFκB in mammary 

epithelial cells and IL8 concentration in milk can be investigated. However, we can conclude 

that the model is not robust for the time of the IL8 mRNA expression peak in relation to 

changes in the nuclear NFκB time profile. 

IL8 and RANTES mRNA expression levels are influenced by nuclear NFκB. Oscillations of 

nuclear NFκB cause a continuation in the increase in IL8 and RANTES mRNA expression 

levels while lack of oscillations reduce the IL8 and RANTES mRNA levels. Therefore, it can 

be concluded that the model supports the theory that nuclear NFκB has a defining role in the 

expression levels of IL8 and RANTES mRNA in the LPS challenge. A similar conclusion can 

be drawn for the importance of nuclear NFκB in the LPS challenge on TNFα mRNA 

expression levels. TNFα mRNA appears to have a closer relationship with nuclear NFκB than 

IL8 and RANTES. However, the cytokine expression levels are not robust at 360 minutes of 

the simulation in relation to changes in the nuclear NFκB time profile.  

In Section 5.3.3 we compared the relative sensitivity of synthesis and degradation parameter 

changes (Figure 5-9 (E and F)) with the change in concentration values for TNFα mRNA 

expression (Figure 5-11 (E and F)). The results were discussed in and Section 5.4 and 

although the sensitivity for parameter values increased, the concentration returned to the 

model levels, especially for variation in synthesis parameters at 360 minutes.  It can be 

speculated that the robustness for variation in the synthesis and degradation rates for TNFα 

mRNA in the mammary epithelial cells influences the robustness to variation in bacterial load 

at 360 minutes. It is thus possible that the robustness for synthesis and/or degradation 

parameter changes, rather that the robustness for change in NFκB regulation is the cause for 

robustness at 360 minutes observed in biological experiments. Changes in cytokine 
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degradation rates as a result of disease have been seen earlier in other cells (Li & Bever, 

2001). Robustness to variation in synthesis and degradation parameter variation does not 

apply to IL8 mRNA expression (See Section 5.4 and Figure 5-11 C and D) and other 

mechanisms must be involved in regulating IL8 mRNA expression robustness at 360 minutes. 

Other commonalities of the nuclear NFκB time profile such as peak height, time of the first 

peak, concentration at 60 minutes or 180 minutes did not reveal a relationship with the 

cytokine expression level or robustness to changes in these values for cytokine expression 

levels. It can be concluded that robustness at 360 minutes and the lack of positive correlation 

between bacterial load and cytokine expression as found in the biological experiment is not 

originated in the nuclear NFκB concentration. Additional processes, such as cross pathway 

signalling, need to be investigated to identify the mechanism of this robustness.  

Since the effect of a change in the nuclear NFκB time profile differs between the cytokines, 

changing the time profile with pharmaceutical applications need to be carefully considered for 

the effect on all cytokines.  
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Chapter 9 

Conclusions and Future work 

In the last chapter of this work an overview of the work, the contributions and an insight in 

future research areas are given. Section 9.1 summarizes the findings presented is this thesis 

and discusses selected aspects. Section 9.2 outlines the possible future areas of research and 

extensions of the model. 

 

9.1 Summary 

 

The overall theme of the study conducted in this thesis is about the application of systems 

biology, specifically mathematical modelling, to mastitis. The main goal of this work was to 

obtain a deeper understanding of the origin and mechanistics of the difference in gene 

regulation in two disease presentations; acute and chronic mastitis as introduced in Chapter 1. 

Chapter 2 gives a background into mastitis and discusses the methods used in the thesis. 

The first focus of the work, discussed in Chapter 3, was to identify a gene network of genes 

significantly differentially expressed in the two clinical representations of mastitis that are 

caused by two different types of bacteria. To fulfil this goal a large number of microarrays 

from two bacterial challenges in mammary epithelial cells at different time points were 

analysed. From the analysis genes differentially expressed from healthy cells for each 

bacterium were identified. The genes were clustered into groups with similar mRNA 

expression time profiles for each bacterium. The genes in the clusters were compared between 

the two bacterial challenges and those with a difference in time profiles between the two 

bacterial challenges identified as our focus for further study. 

Our approach proved successful in the identification of a cluster of immune system related 

genes with significantly distinct gene expression time profiles between the two bacterial 

challenges. The cluster included a cytokine not previously identified as a gene with different 

expression time profiles in epithelial cells between two bacterial challenges. Using biological 

knowledge from the literature and pathway databases we identified a specific signalling 

pathway and gene network responsible for the expression of the identified cytokine. We thus 

exposed the most likely signalling pathway and gene network regulation involved in the 
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clinical differentiation of the disease. Chapter 4 outlines a mathematical model for part of the 

identified signalling pathway. 

The second focus was the development of a mathematical model for the signalling and gene 

network regulation, which is described in Chapter 5. We have successfully modelled 

mathematically, simulated computationally, and analysed analytically, in Chapter 5 and 

Chapter 6, the dynamical behaviours of cytokine expression in acute mastitis caused by the E. 

coli bacterium. The model was extended with additional cytokines to the cytokine identified 

in Chapter 3. These cytokines are regulated by the same signalling pathway and are reported 

in the literature to be influential in mastitis. The cytokines were included to be able to analyse 

the regulation of the cytokines and compare the regulatory mechanism between the cytokines. 

The use of a modular approach to set up the model resulted in a reduction of time and cost for 

the model development.  

We modified a method for the conversion of relative expression levels from microarray 

experiments to mRNA concentration levels. This facilitated the use of microarray data in our 

modelling approach (Section 5.2.3). With this method the large number of microarray data 

currently available in public databases and the literature could be used for modelling in the 

future with greater accuracy.  

Our results show that the model fit the experimental data well for the E. coli experiment. 

However, no fit could be found for the S. aureus experimental values as described in Chapter 

7. This work has therefore identified that other signalling pathways and or gene network 

regulations are involved in the immune reaction of the S. aureus infection in mammary 

epithelial cells and that the differentiation of the clinical profile is not solely caused by the 

Toll Receptor Signalling pathway and the NFκB transcription factor. 

The third focus was the analysis of the model and the identification of the mechanistics 

responsible for the differentiation in expression between healthy and diseased cells. In 

addition, we analysed the regulation of additional cytokines reported in the literature as 

involved in mastitis to evaluate the difference in regulation between cytokines. In Chapter 6, 

extensive sensitivity analysis identified that there is no single regulatory mechanism 

responsible for the differentiation in cytokine expression but that each cytokine playing a role 

in the immune reaction is sensitive to different parameters in the model. Not only are the 

cytokines sensitive to different parameters, they also show a difference in robustness for 

variation in the input, the bacterial load. In Chapter 8 robustness analysis identified that the 

robustness of IL8 and TNFα mRNA expression to a variation of the bacterial load at 360 
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minutes in biological experiments could not be explained with a variation in the input profile. 

The input profile represents the bacterial load. This indicates that the robustness, seen in 

biological experiments, can not be contributed to the variation in the time profile and 

concentration of nuclear NFκB. Other influences, such as the interaction of multiple 

signalling pathways and/or variation in synthesis and degradation need to be investigated to 

explain the robustness observed in biological experiments. 

In addition, the study highlighted the importance of modelling prior to the design of 

biological experiments. The analysis identified specific time frames, different for each 

cytokine in the model to be most informative for the model optimization. The model can be 

used for future evaluations of pharmaceutical targets, biomarkers and experimental design. 

The study highlighted that while the regulation of the cytokines appear to be uniformly 

originating from one source, either the input or the transcription factor, the effect of changing 

the input or the regulation of this transcription factor is not uniform among the cytokines 

regulated by these functions. Pharmaceutical targets therefore need to be evaluated for all 

aspects of the immune reaction to prevent undesirable side effects. 

 

9.2 Future Directions 

 

The described work in this thesis can not be considered complete and suggests several 

directions of future work. Necessary for modelling analysis, assumptions had to be made 

based on critical evaluation of the current literature. Some important predictions and 

assumptions need to be validated with experimental data. But the model also suggests areas of 

extension that will increase our understanding of cytokine expression in mastitis and the 

differentiation between the two clinical presentations.  

 

9.2.1 Biological experiments 

 

Experimental verification  

The work described above is based on the conversion of the relative expression levels in 

microarray experiments into concentration levels of mRNA. Further experimental validation 

with bovine microarray and mammary epithelial cells are necessary. 
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Relationship between bacterial load, robustness and synthesis and degradation 

parameters 

In Chapter 8 it is speculated that the robustness of TNFα to variation in bacterial load at 360 

minutes could be explained with the robustness to variation in synthesis and degradation 

parameters. This would be based on the assumption that the variation in bacterial load 

changes the synthesis and/or degradation parameters. Variation in cytokine degradation 

parameter values have been seen in other diseases (Li & Bever, 2001). To confirm the 

hypothesis, biological experiments need to measure the relationship between synthesis and 

degradation parameters and the bacterial load. 

 

9.2.2 Extension of the model 

 

Model extensions can be diverse and extensive but extensions should be guided by the 

research questions and available experimental data. Following the model developed in this 

work some insights in future extensions are given.  

 

Separation between active and inactive IKK 

As described in Section 4.2.6 the model in this work represents only active IKK.  No 

equations are included to model the transformation of inactive IKK to active IKK. Lipniacki 

et al. constructed a model with two regulatory feedback loops, IκBα and the zinc-finger 

protein A20 (2004). IKK inactivation is controlled by A20 and the bovine forebrain zinc 

finger protein A20 has been indicated to be related to mastitis resistance (Sugimoto et al., 

2006). Therefore, it would be of interest to investigate the influence of activation of inactive 

IKK to active IKK due to the activity of A20 in the model. The zinc-finger protein A20 is a 

NFκB induced protein that uses the inactivation of active IKK into inactive IKK as a negative 

feedback loop for NFκB induced gene expression. Although Lipniacki et al. developed a 

model that represented the negative feedback regulation of A20 (2004) the exact mechanism 

of A20 has not been resolved and this model does not take the IκBε and IκBβ regulatory 

effects on IKK into account. Neither could the precise regulation of A20 be validated in 

experimental settings (Cheong et al., 2006). Since we do not have data for A20 regulation or 

activity of A20 as a transcription factor, inclusion of this feedback loop would result in further 

speculation and over fitting with our limited experimental dataset. However, since the bovine 



 161 

forebrain zinc finger protein A20 has been indicated as playing a role in mastitis resistance, 

modelling the mechanistic properties of this protein and the influence on cytokine expression 

levels with future biological data would be informative and could lead to further biological 

questions.  

 

Multiple signalling pathways 

In Chapter 7 we showed that the cytokine expression of the S. aureus challenge could not be 

modelled with the current model of one signalling pathway. IκBα and IL8 expressions are 

different between the two bacterial challenges (Figure 3-7 and Figure 3-8). A combination of 

the activation of the NFκB and MAPK signalling pathways are essential for the IL8 

activation. MAPK signalling causes AP-1 activation. In conjunctival cells, Venza et al. 

concluded that the AP-1 binding site alone was required for optimal IL8 S. aureus induced 

promoter activity while the loss of function in the NFκB site did not affect IL8 promoter 

activation (2007). In the E. coli challenge both pathways, MAPK and NFκB have increased 

mRNA expression levels, indicating that both pathways are activated (Figure 3-5). In contrast, 

in the S. aureus challenge NFκB does not show a change in expression indicating a lack of 

activation of the NFκB pathway while the MAPK pathway is activated (Figure 3-6). Adding 

the MAPK pathway to the model and the interrogation of the MAPK and NFκB signalling 

pathways could well shed light on the difference in regulation between E. coli and S. aureus 

mastitis. 

In Chapter 8 the robustness for the variation in the bacterial load reported in biological 

experiments at 360 minutes (Günther et al., 2010) could not be reproduced by the model. This 

is also an indication that multiple signalling pathways are involved in the immune reaction for 

the E. coli infection at 360 minutes and needs to be verified with experimental values and a 

model extension including multiple signalling pathways.  

 

Modelling multiple transcription factors 

In the current model the transcription factors are modelled as acting one transcription factor 

activated by one signalling pathway. Above we indicated the need for an extension of the 

model with multiple signalling pathways. The multiple signalling pathways initiate different 

transcription factors. It is known that multiple transcription factors in addition to NFκB are 

involved in the expression of the cytokines (Ghosh & Hayden, 2008). Separating the 
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mechanistics of the transcription factors could lead to a further insight in the mechanistics of 

cytokine expression levels. Activator protein-1 was identified by us in earlier studies to be 

differentially regulated in E. coli mastitis (van Loenen-den Breems et al., 2008). AP-1 is 

activated by the MAPK signalling pathway. The role of AP-1 as a transcription factor has 

been identified in LPS challenged cells (Vora et al., 2004) and is involved in cytokine mRNA 

expression. As described above the AP-1 transcription factor alone was required for optimal 

IL8 S. aureus induced promoter activity while the loss of function in the NFκB site did not 

affect IL8 promoter activation in conjunctival cells (Venza et al., 2007). Therefore, separating 

the transcription factors could lead to an insight in the difference in cytokine expression 

between the two bacterial challenges. In addition, p38 and ERK expressed in the E. coli but 

not in the S. aureus challenges are factors involved in cytokine expression. Separating the 

mechanistics of the transcription factors can lead to a further insight in the mechanistics of 

cytokine expression levels.  
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Appendix A 

 

A.1 NFκB signalling model 

A.1.1 Reactions 

Table A- 1 ODE reactions: ikkm is the input functions representing the bacterial challenge 

that degrades the IκBs as described in (Werner et al., 2005). The nomenclature of 

reaction rates use the same format of those proposed in (Werner et al., 2005). 

They are of the form X_Y_Z, with X the action; pd is protein degradation, a 

association, d degradation, Y the location of the reaction; c cytoplasm, n nucleus, 

and Z the components involved; i for IKK, n for NFκB and a,e,b the three IκB 

isoforms. 

 ODE             

[ ]d I B

dt

 
  

+ ps_c_a * IκBαt      

  - a_c_an * IκBα * NFκB 

  + d_c_an * IκBαNFκB     

  - a_c_ai * IκBα * IKK 

  + d_c_ai * IκBαIKK     

  - in_a * IκBα     

  + ex_a * IκBαn      

  - pd_c_a * IκBα     

[ ]d I B IKK

dt

 
  

+ a_c_ai * IκBα * IKK 

  - d_c_ai * IκBαIKK     

  - a_c_2ain * IκBαIKK * NFκB 

  + d_c_2ain * IκBαIKKNFκB     

  - pd_c_2ai * IκBαIKK * ikkm 

[ ]d I B IKKNF B

dt

  
  

+ a_c_2ani * IκBαNFκB * IKK 

  - d_c_2ani * IκBαIKKNFκB     

  + a_c_2ain * IκBαIKK * NFκB 

  - d_c_2ain * IκBαIKKNFκB     

  - pd_c_3ain * IκBαIKKNFκB * ikkm 

[ ]d I B n

dt

 
  

- a_n_an * IκBαn * NFκBn  

  + d_n_an * IκBαNFκBn      

  + in_a * IκBα     

  - ex_a * IκBαn      
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  - pd_n_a * IκBαn      

[ ]d I B NF B

dt

  
  

+ a_c_an * IκBα * NFκB 

  - d_c_an * IκBαNFκB     

  - a_c_2ani * IκBαNFκB * IKK 

  + d_c_2ani * IκBαIKKNFκB     

  - in_2an * IκBαNFκB     

  + ex_2an * IκBαNFκBn      

  - pd_c_2an * IκBαNFκB     

[ ]d I B NF Bn

dt

  
  

+ a_n_an * IκBαn * NFκBn  

  - d_n_an * IκBαNFκBn      

  + in_2an * IκBαNFκB     

  - ex_2an * IκBαNFκBn      

  - pd_n_2an * IκBαNFκBn      

[ ]d I B t

dt

 
  

+ rsu_a         

  + rsr_an * (NFκBn_delay_a^h_an_a)     

  - rd_a * IκBαt      

  - ps_c_a * IκBαt      

  + ps_c_a * IκBαt      

[ ]d I B

dt

 
  

+ ps_c_b * IκBβt      

  - a_c_bn * IκBβ * NFκB 

  + d_c_bn * IκBβNFκB     

  - a_c_bi * IκBβ * IKK 

  + d_c_bi * IκBβIKK     

  - in_b * IκBβ     

  + ex_b * IκBβn      

  - pd_c_b * IκBβ     

[ ]d I B IKK

dt

 
  

+ a_c_bi * IκBβ * IKK 

  - d_c_bi * IκBβIKK     

  - a_c_2bin * IκBβIKK * NFκB 

  + d_c_2bin * IκBβIKKNFκB     

  - pd_c_2bi * IκBβIKK * ikkm 

[ ]d I B IKKNF B

dt

  
  

+ a_c_2bni * IκBβNFκB * IKK 

  - d_c_2bni * IκBβIKKNFκB     

  + a_c_2bin * IκBβIKK   NFκB 
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  - d_c_2bin * IκBβIKKNFκB     

  - pd_c_3bin * IκBβIKKNFκB * ikkm 

[ ]d I B n

dt

 
  

- a_n_bn * IκBβn * NFκBn  

  + d_n_bn * IκBβNFκBn      

  + in_b * IκBβ     

  - ex_b * IκBβn      

  - pd_n_b * IκBβn      

[ ]d I B NF B

dt

  
  

+ a_c_bn * IκBβ * NFκB 

  - d_c_bn * IκBβNFκB     

  - a_c_2bni * IκBβNFκB * IKK 

  + d_c_2bni * IκBβIKKNFκB     

  - in_2bn * IκBβNFκB     

  + ex_2bn * IκBβNFκBn      

  - pd_c_2bn * IκBβNFκB     

[ ]d I B NF Bn

dt

  
  

+ a_n_bn * IκBβn * NFκBn  

  - d_n_bn * IκBβNFκBn      

  + in_2bn * IκBβNFκB     

  - ex_2bn * IκBβNFκBn      

  - pd_n_2bn * IκBβNFκBn      

[ ]d I B t

dt

 
  

+ rsu_b         

  + rsr_bn * (NFκBn_delay_b^h_an_b)     

  - rd_b * IκBβt      

  - ps_c_b * IκBβt      

  + ps_c_b * IκBβt      

[ ]d I B

dt

 
  

+ ps_c_e * IκBεt      

  - a_c_en * IκBε * NFκB 

  + d_c_en * IκBεNFκB     

  - a_c_ei * IκBε * IKK 

  + d_c_ei * IκBεIKK     

  - in_e * IκBε     

  + ex_e * IκBεn      

  - pd_c_e * IκBε     

[ ]d I B IKK

dt

 
  

+ a_c_ei * IκBε * IKK 

  - d_c_ei * IκBεIKK     
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  - a_c_2ein * IκBεIKK * NFκB 

  + d_c_2ein * IκBεIKKNFκB     

  - pd_c_2ei * IκBεIKK * ikkm 

[ ]d I B IKKNF B

dt

  
  

+ a_c_2eni * IκBεNFκB * IKK 

  - d_c_2eni * IκBεIKKNFκB     

  + a_c_2ein * IκBεIKK * NFκB 

  - d_c_2ein * IκBεIKKNFκB     

  - pd_c_3ein * IκBεIKKNFκB * ikkm 

[ ]d I B n

dt

 
  

- a_n_en * IκBεn * NFκBn  

  + d_n_en * IκBεNFκBn      

  + in_e * IκBε     

  - ex_e * IκBεn      

  - pd_n_e * IκBεn      

[ ]d I B NF B

dt

  
  

+ a_c_en * IκBε * NFκB 

  - d_c_en * IκBεNFκB     

  - a_c_2eni * IκBεNFκB * IKK 

  + d_c_2eni * IκBεIKKNFκB     

  - in_2en * IκBεNFκB     

  + ex_2en * IκBεNFκBn      

  - pd_c_2en * IκBεNFκB     

[ ]d I B NF Bn

dt

  
  

+ a_n_en * IκBεn * NFκBn  

  - d_n_en * IκBεNFκBn      

  + in_2en * IκBεNFκB     

  - ex_2en * IκBεNFκBn      

  - pd_n_2en * IκBεNFκBn      

[ ]d I B t

dt

 
  

+ rsu_e         

  + rsr_en * (NFκBn_delay_e^h_an_e)     

  - rd_e * IκBεt      

  - ps_c_e * IκBεt      

  + ps_c_e * IκBεt      

[ ]d IKK

dt
  

- a_c_ai * IκBα * IKK 

  - a_c_bi * IκBβ * IKK 

  - a_c_ei * IκBε * IKK 

  + d_c_ai * IκBαIKK     
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  + d_c_bi * IκBβIKK     

  + d_c_ei * IκBεIKK     

  - a_c_2ani * IκBαNFκB * IKK 

  - a_c_2bni * IκBβNFκB * IKK 

  - a_c_2eni * IκBεNFκB * IKK 

  + d_c_2ani * IκBαIKKNFκB     

  + d_c_2bni * IκBβIKKNFκB     

  + d_c_2eni * IκBεIKKNFκB     

  + pd_c_2ai * IκBαIKK * ikkm 

  + pd_c_2bi * IκBβIKK * ikkm 

  + pd_c_2ei * IκBεIKK * ikkm 

  + pd_c_3ain * IκBαIKKNFκB * ikkm 

  + pd_c_3bin * IκBβIKKNFκB * ikkm 

  + pd_c_3ein * IκBεIKKNFκB * ikkm 

[ ]d NF B

dt


  

- a_c_an * IκBα * NFκB 

  - a_c_bn * IκBβ * NFκB 

  - a_c_en * IκBε * NFκB 

  + d_c_an * IκBαNFκB     

  + d_c_bn * IκBβNFκB     

  + d_c_en * IκBεNFκB     

  - a_c_2ain * IκBαIKK * NFκB 

  - a_c_2bin * IκBβIKK * NFκB 

  - a_c_2ein * IκBεIKK * NFκB 

  + d_c_2ain * IκBαIKKNFκB     

  + d_c_2bin * IκBβIKKNFκB     

  + d_c_2ein * IκBεIKKNFκB     

  - in_n * NFκB     

  + ex_n * NFκBn      

  + pd_c_2an * IκBαNFκB     

  + pd_c_2bn * IκBβNFκB     

  + pd_c_2en * IκBεNFκB     

  + pd_c_3ain * IκBαIKKNFκB * ikkm 

  + pd_c_3bin * IκBβIKKNFκB * ikkm 

  + pd_c_3ein * IκBεIKKNFκB * ikkm 

[ ]d NF Bn

dt


  

- a_n_an * IκBαn * NFκBn  

  - a_n_bn * IκBβn * NFκBn  

  - a_n_en * IκBεn * NFκBn  

  + d_n_an * IκBαNFκBn      
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  + d_n_bn * IκBβNFκBn      

  + d_n_en * IκBεNFκBn      

  + in_n * NFκB     

  - ex_n * NFκBn      

  + pd_n_2an * IκBαNFκBn      

  + pd_n_2bn * IκBβNFκBn      

  + pd_n_2en * IκBεNFκBn      

[ ]d RANTESt

dt
   

- d_n_r * RANTESt                                                                                                                                                                                                                                                             

  + rsr_rn * (NFκBn^h_an_r)                                                                                                                                                                                                                                                      

[ 8 ]d IL t

dt
   

- d_n_8 * IL-8t     

  + rsr_8n * (NFκBn^h_an_8)                                                                                                                                                                                                                                                      

[ ]d TNF t

dt


   

- d_n_TNFα * TNFαt     

  + 

 

rsr_TNFαn * (NFκBn^h_an_TNFα)                                                                                                                                                                                                                                                   

 

 

 

A.1.2 Parameter values 
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Table A- 2 Parameter values of the equations in Table 2-1 

Parameter Reaction    Category Location Value Units  source  

1 a_c_2ain IKKIκBα+NFκB=>IKKIκBαNFκB Association Cytoplasm 30 μM
-1

min
-1

 (Werner et al., 2005) 

2 a_c_2ani IκBαNFκB+IKK=>IKKIκBαNFκB Association Cytoplasm 11.1 μM
-1

min
-1

 (Werner et al., 2005) 

3 a_c_2bin IKKIκBβ+NFκB=>IKKIκBβNFκB Association Cytoplasm 30 μM
-1

min
-1

 (Werner et al., 2005) 

4 a_c_2bni IκBβNFκB+IKK=>IKKIκBβNFκB Association Cytoplasm 2.88 μM
-1

min
-1

 (Werner et al., 2005) 

5 a_c_2ein IKKIκBε+NFκB=>IKKIκBεNFκB Association Cytoplasm 30 μM
-1

min
-1

 (Werner et al., 2005) 

6 a_c_2eni IκBεNFκB+IKK=>IKKIκBεNFκB Association Cytoplasm 4.2 μM
-1

min
-1

 (Werner et al., 2005) 

7 a_c_ai  IκBα+IKK=>IKKIκBα  Association Cytoplasm 1.35 μM
-1

min
-1

 (Werner et al., 2005) 

8 a_c_an  IκBα+NFκB=>IκBαNFκB  Association Cytoplasm 30 μM
-1

min
-1

 (Hoffmann et al., 2002a) 

9 a_c_bi  IκBβ+IKK=>IKKIκBβ  Association Cytoplasm 0.36 μM
-1

min
-1

 (Werner et al., 2005) 

10 a_c_bn  IκBβ+NFκB=>IκBβNFκB  Association Cytoplasm 30 μM
-1

min
-1

 (Hoffmann et al., 2002a) 

11 a_c_ei  IκBε+IKK=>IKKIκBε  Association Cytoplasm 0.54 μM
-1

min
-1

 (Werner et al., 2005) 

12 a_c_en  IκBε+NFκB=>IκBεNFκB  Association Cytoplasm 30 μM
-1

min
-1

 (Hoffmann et al., 2002a) 

13 a_n_an  IκBαn+NFκBn=>IκBαNFκBn Association Nucleus 30 μM
-1

min
-1

 (Hoffmann et al., 2002a) 
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14 a_n_bn  IκBβn+NFκBn=>IκBβNFκBn Association Nucleus 30 μM
-1

min
-1

 (Hoffmann et al., 2002a) 

15 a_n_en  IκBεn+NFκBn=>IκBεNFκBn  Association Nucleus 30 μM
-1

min
-1

 (Hoffmann et al., 2002a) 

16 d_c_2ain IKKIκBαNFκB=>IKKIκBα+NFκB Dissociation Cytoplasm 0.00006 min
-1

 (Werner et al., 2005) 

17 d_c_2ani IKKIκBαNFκB=>Ikk+IκBαNFκB Dissociation Cytoplasm 0.075 min
-1

 (Werner et al., 2005) 

18 d_c_2bin IKKIκBβNFκB=>IKKIκBβ+NFκB Dissociation Cytoplasm 0.00006 min
-1

 (Werner et al., 2005) 

19 d_c_2bni IKKIκBβNFκB=>IKK+IκBβNFκB Dissociation Cytoplasm 0.105 min
-1

 (Werner et al., 2005) 

20 d_c_2ein IKKIκBεNFκB=>IKKIκBε+NFκB Dissociation Cytoplasm 0.00006 min
-1

 (Werner et al., 2005) 

21 d_c_2eni IKKIκBεNFκB=>IKK+IκBεNFκB Dissociation Cytoplasm 0.105 min
-1

 (Werner et al., 2005) 

22 d_c_ai  IKKIκBα=>IKK+IκBα  Dissociation Cytoplasm 0.075 min
-1

 (Werner et al., 2005) 

23 d_c_an  IκBαNFκB=>IκBα+NFκB  Dissociation Cytoplasm 0.00006 min
-1

 (Hoffmann et al., 2002a) 

24 d_c_bi  IKKIκBβ=>IKK+IκBβ  Dissociation Cytoplasm 0.105 min
-1

 (Werner et al., 2005) 

25 d_c_bn  IκBβNFκB=>IκBβ+NFκB  Dissociation Cytoplasm 0.00006 min
-1

 (Hoffmann et al., 2002a) 

26 d_c_ei  IKKIκBε=>IKK+IκBε  Dissociation Cytoplasm 0.105 min
-1

 (Werner et al., 2005) 

27 d_c_en  IκBεNFκB=>IκBε+NFκB  Dissociation Cytoplasm 0.00006 min
-1

 (Hoffmann et al., 2002a) 

28 d_n_an  IκBαNFκBn=>IκBαn+NFκBn Dissociation Nucleus 0.00006 min
-1

 (Hoffmann et al., 2002a) 
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29 d_n_bn IκBβNFκBn=>IκBβn+NFκBn Dissociation Nucleus 0.00006 min
-1

 (Hoffmann et al., 2002a) 

30 d_n_en  IκBεNFκBn=>IκBεn+NFκBn  Dissociation Nucleus 0.00006 min
-1

 (Hoffmann et al., 2002a) 

31 ex_2an  IκBαNFκBn=>IκBαNFκB  Export Nuc-> Cyt  0.828 min
-1

 (Werner et al.,2005) 

32 ex_2bn  IκBβNFκBn=>IκBβNFκB  Export Nuc-> Cyt  0.424 min
-1

 (Werner et al.,2005) 

33 ex_2en  IκBεNFκBn=>IκBεNFκB  Export Nuc-> Cyt  0.424 min
-1

 (Werner et al.,2005) 

34 ex_a  IκBαn=>IκBα    Export Nuc-> Cyt  0.012 min
-1

 (Werner et al.,2005) 

35 ex_b  IκBβn=>IκBβ    Export Nuc-> Cyt  0.012 min
-1

 (Werner et al.,2005) 

36 ex_e  IκBεn=>IκBε    Export Nuc-> Cyt  0.012 min
-1

 (Werner et al.,2005) 

37 ex_n  NFκBn=>NFκB   Export Nuc-> Cyt  0.0048 min
-1

 (Werner et al.,2005) 

38 in_a  IκBα=>IκBαn    Import Cyt-> Nuc  0.018 min
-1

 (Werner et al.,2005) 

39 in_b  IκBβ=>IκBβn    Import Cyt-> Nuc  0.018 min
-1

 (Werner et al.,2005) 

40 in_e  IκBε=>IκBεn    Import Cyt-> Nuc  0.018 min
-1

 (Werner et al.,2005) 

41 in_n  NFκB=>NFκBn   Import Cyt-> Nuc  5.4 min
-1

 (Werner et al.,2005) 

42 pd_c_2ai IKKIκBα=>IKK   Prot.deg Cytoplasm 0.0018 min
-1

 (Werner et al.,2005) 

43 pd_c_2an IκBαNFκB=>NFκB   Prot.deg Cytoplasm 0.00006 min
-1

 (O'Dea et al., 2007) 
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44 pd_c_2bi IKKIκBβ=>IKK   Prot.deg Cytoplasm 0.0006 min
-1

 (Werner et al.,2005) 

45 pd_c_2bn IκBβNFκB=>NFκB   Prot.deg Cytoplasm 0.00006 min
-1

 (O'Dea et al., 2007) 

46 pd_c_2ei IKKIκBε=>IKK   Prot.deg Cytoplasm 0.0012 min
-1

 (Werner et al.,2005) 

47 pd_c_2en IκBεNFκB=>NFκB   Prot.deg Cytoplasm 0.00006 min
-1

 (O'Dea et al., 2007) 

48 pd_c_3ain IKKIκBαNFκB=>IKK+NFκB Prot.deg Cytoplasm 0.36 min
-1

 (Hoffmann et al., 2002a) 

49 pd_c_3bin IKKIκBβNFκB=>IKK+NFκB Prot.deg Cytoplasm 0.12 min
-1

 (Hoffmann et al., 2002a) 

50 pd_c_3ein IKKIκBεNFκB=>IKK+NFκB Prot.deg Cytoplasm 0.18 min
-1

 (Hoffmann et al., 2002a) 

51 pd_c_a  IκBα=>    Prot. deg. Cytoplasm 0.12 min
-1

 (O'Dea et al., 2007) 

52 pd_c_b  IκBβ=>    Prot. deg. Cytoplasm 0.18 min
-1

 (O'Dea et al., 2007) 

53 pd_c_e  IκBε=>    Prot. deg. Cytoplasm 0.18 min
-1

 (O'Dea et al., 2007) 

54 pd_n_2an IκBαNFκBn=>NFκBn  Prot.deg Nucleus 0.0000 min
-1

 (O'Dea et al., 2007) 

55 pd_n_2bn IκBβNFκBn=>NFκBn  Prot.deg Nucleus 0.00006 min
-1

 (O'Dea et al., 2007) 

56 pd_n_2en IκBεNFκBn=>NFκBn   Prot.deg Nucleus 0.00006 min
-1

 (O'Dea et al., 2007) 

57 pd_n_a  IκBαn=>    Prot.deg Nucleus 0.12 min
-1

 (O'Dea et al., 2007) 

58 pd_n_b IκBβn=>    Prot.deg Nucleus 0.18 min
-1

 (O'Dea et al., 2007) 
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59 pd_n_e  IκBεn=>    Prot.deg Nucleus 0.18 min
-1

 (O'Dea et al., 2007) 

60 ps_c_a  =>IκBα    Prot.synth. Cytoplasm 0.2448 min
-1

 (Hoffmann et al., 2002a) 

61 ps_c_b  =>IκBβ    Prot.synth. Cytoplasm 0.2448 min
-1

 (Hoffmann et al., 2002a) 

62 ps_c_e  =>IκBε    Prot.synth. Cytoplasm 0.2448 min
-1

 (Hoffmann et al., 2002a) 

63 rd_a  IκBαt=>    RNA deg. Cytoplasm 0.0168 min
-1

 (Werner et al., 2005) (Kearns et al., 2005) 

64 rd_b  IκBβt=>    RNA deg. Cytoplasm 0.0168 min
-1

 (Werner et al., 2005) (Kearns et al., 2005) 

65 rd_e  IκBεt=>    RNA deg. Cytoplasm 0.0168 min
-1

 (Werner et al., 2005) (Kearns et al., 2005) 

66 rs_a  =>IκBαt  (constitutive) RNA synth. Nuc->Cyt 0.000185 μM
-1

min
-1

 fit 

67 rs_an  =>IκBαt   (inducedbyNF-κB) RNA synth. Nuc->Cyt 7.92 μM
-2

min
-1 

(Werner et al., 2005) (Kearns et al., 2005) 

68 rs_b  =>IκBβt(constitutive)   RNA synth. Nuc->Cyt 4.27E-05 μM
-1

min
-1

 (Werner et al., 2005)  

69 rs_e  =>IκBεt(constitutive)   RNA synth. Nuc->Cyt 3.05E-05 μM
-1

min
-1

 (Werner et al., 2005)  

70 rs_en  =>IκBεt(inducedbyNF-κB)  RNA synth. Nuc->Cyt 0.8 μM
-1

min
-1

 (Werner et al., 2005)  

71 in_2an  IκBαNFκB=>IκBαNFκBn  Import  Cyt->Nuc 0.276 min
-1

  (Werner et al., 2008) 

72 in_2bn  IκBβNFκB=>IκBβNFκBn  Import  Cyt->Nuc 0.0276  min
-1

  (Werner et al., 2008) 

73 in_2en  IκBεNFκB=>IκBεNFκBn  Import  Cyt->Nuc 0.138 min
-1

  (Werner et al., 2008) 
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74 h_an_a  Hill coefficient IκBα   Association Nucleus 3   (Werner et al., 2005)  

75 h_an_b  Hill coefficient IκBβ   Association Nucleus 3    (Werner et al., 2005)  

76 h_an_e  Hill coefficient IκBε   Association Nucleus 3    (Werner et al., 2005)  

77 h_an_r  Hill coefficient RANTES  Association Nucleus 3      

78 d_n_r  RANTESt=> RNA deg.    Nucleus * min
-1

  fitted 

79 rsr_rn  =>RANTESt (inducedbyNF-κB) Association Nucleus *  μM
-2

min
-1

 fitted 

80 h_an_8  Hill coefficient IL8      Nucleus 3      

81 d_n_8  IL8t=>     RNA deg. Nucleus *  min
-1

  fitted 

82 rsr_8n  =>IL8t  (inducedbyNF-κB) Association Nucleus *  μM
-2

min
-1

 fitted 

83 h_an_TNFα Hill coefficient TNFαt     Nucleus 3    

84 d_n_TNFα TNFαt=>    RNA deg. Nucleus  * min
-1

  fitted 

85 rsr_TNFαn =>TNFαt (inducedbyNF-κB) Association Nucleus  * μM
-2

min
-1

 fitted 
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A.1.3 Initial values 

 

Table A- 3 Initial values  

Component   initial value (μM) 

IκBα   0.013175886 

IκBαIKK  0.006456278 

IκBαIKKNFκB 0.054404075 

IκBαn   0.007622051 

IκBαNFκB  0.01402656 

IκBαNFκBn  0.004892218 

IκBαt   0.01100023 

IκBβ   0.003285322 

IκBβIKK  0.000308727 

IκBβIKKNFκB 0.004993256 

IκBβn   0.000137258 

IκBβNFκB  0.006709498 

IκBβNFκBn  0.000454998 

IκBβt   0.002542857 

IκBε   0.001988273 

IκBεIKK  0.000281141 

IκBεIKKNFκB 0.006115701 

IκBεn   0.000415491 

IκBεNFκB  0.005667757 

IκBεNFκBn  0.001912401 
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IκBεt   0.001814309 

IKK   0.027440822 

NFκB   3.62916E-05 

NFκBn   0.000787244 

RANTESt  0.00000001 

IL8t   0.00000001 

TNFαt   0.00000001 

 

A.1.4 Input function ikkm 
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Figure A- 1 The input function ikkm for the model simulating the E. coli challenge.  
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Appendix B  

B.1 SBtoolbox model implementation 

 

********** MODEL NAME 

NFkB_werner_2_c_e_4_6 

********** MODEL NOTES 

 

********** MODEL STATES 

d/dt(IκBa)          = +flux_ps_c_a      -flux_a_c_an    +flux_d_c_an    -flux_a_c_ai    

+flux_d_c_ai    -flux_in_a      +flux_ex_a      -flux_pd_c_a                                                                                                                                                                             

d/dt(IκBaIKK)       = +flux_a_c_ai      -flux_d_c_ai    -flux_a_c_2ain  +flux_d_c_2ain  -

flux_pd_c_2ai                                                                                                                                                                                                    

d/dt(IκBaIKKNFkB)   = +flux_a_c_2ani    -flux_d_c_2ani  +flux_a_c_2ain  -flux_d_c_2ain  -

flux_pd_c_3ain                                                                                                                                                                                           

d/dt(IκBan)         = -flux_a_n_an      +flux_d_n_an    +flux_in_a      -flux_ex_a      -

flux_pd_n_a                                                                                                                                                                                                                

d/dt(IκBaNFkB)      = +flux_a_c_an      -flux_d_c_an                    -flux_a_c_2ani  

+flux_d_c_2ani  -flux_in_2an    +flux_ex_2an    -flux_pd_c_2an                                                                                                                                                                           

d/dt(IκBaNFkBn)     = +flux_a_n_an      -flux_d_n_an                    +flux_in_2an    -

flux_ex_2an    -flux_pd_n_2an                                                                                                                                                                                                      

d/dt(IκBat)         = +flux_rsu_a       +flux_rsr_an    -flux_rd_a                                                                                                                                                                                                                                       

d/dt(IκBb)          = +flux_ps_c_b      -flux_a_c_bn    +flux_d_c_bn    -flux_a_c_bi    

+flux_d_c_bi    -flux_in_b      +flux_ex_b      -flux_pd_c_b                                                                                                                                                                             

d/dt(IκBbIKK)       = +flux_a_c_bi      -flux_d_c_bi    -flux_a_c_2bin  +flux_d_c_2bin  -

flux_pd_c_2bi                                                                                                                                                                                                    

d/dt(IκBbIKKNFkB)   = +flux_a_c_2bni    -flux_d_c_2bni  +flux_a_c_2bin  -flux_d_c_2bin  

-flux_pd_c_3bin                                                                                                                                                                                           
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d/dt(IκBbn)         = -flux_a_n_bn      +flux_d_n_bn    +flux_in_b      -flux_ex_b      -

flux_pd_n_b                                                                                                                                                                                                                

d/dt(IκBbNFkB)      = +flux_a_c_bn      -flux_d_c_bn    -flux_a_c_2bni  +flux_d_c_2bni  -

flux_in_2bn    +flux_ex_2bn    -flux_pd_c_2bn                                                                                                                                                                           

d/dt(IκBbNFkBn)     = +flux_a_n_bn      -flux_d_n_bn    +flux_in_2bn    -flux_ex_2bn    -

flux_pd_n_2bn                                                                                                                                                                                                      

d/dt(IκBbt)         = +flux_rsu_b       +flux_rsr_bn    -flux_rd_b                                                                                                                                                                                                                                       

d/dt(IκBe)          = +flux_ps_c_e      -flux_a_c_en    +flux_d_c_en    -flux_a_c_ei    

+flux_d_c_ei    -flux_in_e      +flux_ex_e      -flux_pd_c_e                                                                                                                                                                             

d/dt(IκBeIKK)       = +flux_a_c_ei      -flux_d_c_ei    -flux_a_c_2ein  +flux_d_c_2ein  -

flux_pd_c_2ei                                                                                                                                                                                                    

d/dt(IκBeIKKNFkB)   = +flux_a_c_2eni    -flux_d_c_2eni  +flux_a_c_2ein  -flux_d_c_2ein  -

flux_pd_c_3ein                                                                                                                                                                                           

d/dt(IκBen)         = -flux_a_n_en      +flux_d_n_en    +flux_in_e      -flux_ex_e      -

flux_pd_n_e                                                                                                                                                                                                                

d/dt(IκBeNFkB)      = +flux_a_c_en      -flux_d_c_en    -flux_a_c_2eni  +flux_d_c_2eni  -

flux_in_2en    +flux_ex_2en    -flux_pd_c_2en                                                                                                                                                                           

d/dt(IκBeNFkBn)     = +flux_a_n_en      -flux_d_n_en    +flux_in_2en    -flux_ex_2en    -

flux_pd_n_2en                                                                                                                                                                                                      

d/dt(IκBet)         = +flux_rsu_e       +flux_rsr_en    -flux_rd_e                                                                                                                                                                                                                                       

d/dt(IKK)           = -flux_a_c_ai      -flux_a_c_bi    -flux_a_c_ei    +flux_d_c_ai    

+flux_d_c_bi    +flux_d_c_ei    -flux_a_c_2ani  -flux_a_c_2bni  -flux_a_c_2eni  

+flux_d_c_2ani  +flux_d_c_2bni  +flux_d_c_2eni  +flux_pd_c_2ai  +flux_pd_c_2bi  

+flux_pd_c_2ei  +flux_pd_c_3ain +flux_pd_c_3bin +flux_pd_c_3ein  

d/dt(NFkB)          = -flux_a_c_an      -flux_a_c_bn    -flux_a_c_en    +flux_d_c_an    

+flux_d_c_bn    +flux_d_c_en    -flux_a_c_2ain  -flux_a_c_2bin  -flux_a_c_2ein  

+flux_d_c_2ain  +flux_d_c_2bin  +flux_d_c_2ein  -flux_in_n      +flux_ex_n      

+flux_pd_c_2an  +flux_pd_c_2bn  +flux_pd_c_2en  +flux_pd_c_3ain +flux_pd_c_3bin 

+flux_pd_c_3ein  
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d/dt(NFkBn)         = -flux_a_n_an      -flux_a_n_bn    -flux_a_n_en    +flux_d_n_an    

+flux_d_n_bn    +flux_d_n_en    +flux_in_n      -flux_ex_n      +flux_pd_n_2an  

+flux_pd_n_2bn  +flux_pd_n_2en                                                                                                                                  

d/dt(RANTESt)       = +flux_rsu_r       -flux_d_n_r     +flux_rsr_rn                                                                                                                                                                                                                                    

d/dt(IL8t)          = +flux_rsu_8       -flux_d_n_8     +flux_rsr_8n 

d/dt(TNFat)       = +flux_rsu_TNFa    -flux_d_n_TNFa  +flux_rsr_TNFan 

 

IκBa(0) =0.013175886 

IκBaIKK(0) =0.006456278 

IκBaIKKNFkB(0)=0.054404075 

IκBan(0) =0.007622051 

IκBaNFkB(0) =0.01402656 

IκBaNFkBn(0)=0.004892218 

IκBat(0) =0.01100023 

IκBb(0) =0.003285322 

IκBbIKK(0) =0.000308727 

IκBbIKKNFkB(0)=0.004993256 

IκBbn(0) =0.000137258 

IκBbNFkB(0) =0.006709498 

IκBbNFkBn(0)=0.000454998 

IκBbt(0) =0.002542857 

IκBe(0) =0.001988273 

IκBeIKK(0) =0.000281141 

IκBeIKKNFkB(0)=0.006115701 

IκBen(0) =0.000415491 
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IκBeNFkB(0) =0.005667757 

IκBeNFkBn(0)=0.001912401 

IκBet(0) =0.001814309 

IKK(0)  =0.027440822 

NFkB(0) =0.0000362916 

NFkBn(0) =0.000787244 

 

RANTESt(0) =0.00000001    

IL8t(0)  =0.00000001    

TNFat(0) =0.00000001    

********** MODEL PARAMETERS 

d_n_r    =  0.00039365    

rsr_rn    =  5.28555      

rsu_r    =  0      

delayd_nfkbn_r  =  0   

 d_n_8   = 0.00175918  

rsr_8n    =  5.28555   

rsu_8    =  0       

delayd_nfkbn_8  =  0   

d_n_TNFa  =  0.02060201    

rsr_TNFan   =  1.67    

rsu_TNFa   =  0    

delayd_nfkbn_TNFa  =  0  

h_an_r   =  3 

h_an_8   =  3 
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h_an_TNFa   =  3 

ikkmyd88_in   =  0 

ikkmyd88  =  0.01                                                                                                                                                                                                                                                  

rsu_a            = 0.0001848 

rsu_b            = 0.00004272 

rsu_e            = 0.00003048 

rsr_an           = 7.92 

rsr_bn          = 0 

rsr_en           = 0.8 

delayd_nfkbn_a = 0 

delayd_nfkbn_b = 45 

delayd_nfkbn_e = 45 

h_an_a   = 3 

h_an_b   = 3 

h_an_e   = 3 

rd_a             = 0.0168 

rd_b             = 0.0168 

rd_e             = 0.0168 

ps_c_a           = 0.2448 

ps_c_b           = 0.2448 

ps_c_e           = 0.2448 

a_c_an            = 30 

a_c_bn           = 30 

a_c_en           = 30 

a_n_an           = 30 
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a_n_bn           = 30 

a_n_en           = 30 

d_c_an           = 0.00006 

d_c_bn           = 0.00006 

d_c_en           = 0.00006 

d_n_an           = 0.00006 

d_n_bn           = 0.00006 

d_n_en           = 0.00006 

a_c_ai           = 1.35 

a_c_bi           = 0.36 

a_c_ei           = 0.54 

d_c_ai           = 0.075 

d_c_bi           = 0.105 

d_c_ei           = 0.105 

a_c_2ani         = 11.1 

a_c_2bni        = 2.88 

a_c_2eni         = 4.2 

d_c_2ani         = 0.075 

d_c_2bni         = 0.105 

d_c_2eni         = 0.105 

a_c_2ain         = 30 

a_c_2bin         = 30 

a_c_2ein         = 30 

d_c_2ain         = 0.00006 

d_c_2bin         = 0.00006 
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d_c_2ein         = 0.00006 

in_a             = 0.09 

in_b             = 0.009 

in_e             = 0.045 

ex_a             = 0.012 

ex_b             = 0.012 

ex_e             = 0.012 

in_2an           = 0.276 

in_2bn           = 0.0276 

in_2en           = 0.138 

ex_2an           = 0.828 

ex_2bn           = 0.414 

ex_2en           = 0.414 

in_n             = 5.4 

ex_n             = 0.0048 

pd_c_a           = 0.12 

pd_c_b           = 0.18 

pd_c_e           = 0.18 

pd_n_a          = 0.12 

pd_n_b           = 0.18 

pd_n_e           = 0.18 

pd_c_2an         = 0.00006 

pd_c_2bn        = 0.00006 

pd_c_2en         = 0.00006 

pd_n_2an         = 0.00006 
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pd_n_2bn         = 0.00006 

pd_n_2en         = 0.00006 

pd_c_2ai         = 0.0018 

pd_c_2bi         = 0.0006 

pd_c_2ei         = 0.0012 

pd_c_3ain        = 0.36 

pd_c_3bin        = 0.12 

pd_c_3ein        = 0.18 

  

********** MODEL VARIABLES 

nfkbn_delay_e = delaySB(NFkBn,delayd_nfkbn_e)                                                                                                                                                                                                                                         

nfkbn_delay_a = NFkBn                                                                                                                                                                                                                                                                 

nfkbn_delay_b = nfkbn_delay_e      

nfkbn_delay_r = NFkBn 

nfkbn_delay_8 = NFkBn 

nfkbn_delay_TNFa = NFkBn 

 

********** MODEL REACTIONS 

flux_ikkm = ikkmyd88_in + ikkmyd88                                                                                                                                                                                                                         

flux_rsu_a = rsu_a                                                                                                                                                                                                                                                                    

flux_rsu_b = rsu_b                                                                                                                                                                                                                                                                    

flux_rsu_e = rsu_e                                                                                                                                                                                                                                                                    

flux_rsr_an = rsr_an*(nfkbn_delay_a^h_an_a)                                                                                                                                                                                                                                           

flux_rsr_bn = rsr_bn*(nfkbn_delay_b^h_an_b)                                                                                                                                                                                                                                           

flux_rsr_en = rsr_en*(nfkbn_delay_e^h_an_e)                                                                                                                                                                                                                                           
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flux_rd_a = rd_a*IκBat                                                                                                                                                                                                                                                                

flux_rd_b = rd_b*IκBbt                                                                                                                                                                                                                                                                

flux_rd_e = rd_e*IκBet                                                                                                                                                                                                                                                                

flux_ps_c_a = ps_c_a*IκBat                                                                                                                                                                                                                                                            

flux_ps_c_b = ps_c_b*IκBbt                                                                                                                                                                                                                                                            

flux_ps_c_e = ps_c_e*IκBet                                                                                                                                                                                                                                                            

flux_a_c_an = a_c_an*IκBa*NFkB                                                                                                                                                                                                                                                        

flux_a_c_bn = a_c_bn*IκBb*NFkB                                                                                                                                                                                                                                                        

flux_a_c_en = a_c_en*IκBe*NFkB                                                                                                                                                                                                                                                        

flux_a_n_an = a_n_an*IκBan*NFkBn                                                                                                                                                                                                                                                      

flux_a_n_bn = a_n_bn*IκBbn*NFkBn                                                                                                                                                                                                                                                      

flux_a_n_en = a_n_en*IκBen*NFkBn                                                                                                                                                                                                                                                      

flux_d_c_an = d_c_an*IκBaNFkB                                                                                                                                                                                                                                                         

flux_d_c_bn = d_c_bn*IκBbNFkB                                                                                                                                                                                                                                                         

flux_d_c_en = d_c_en*IκBeNFkB                                                                                                                                                                                                                                                         

flux_d_n_an = d_n_an*IκBaNFkBn                                                                                                                                                                                                                                                        

flux_d_n_bn = d_n_bn*IκBbNFkBn                                                                                                                                                                                                                                                        

flux_d_n_en = d_n_en*IκBeNFkBn                                                                                                                                                                                                                                                        

flux_a_c_ai = a_c_ai*IκBa*IKK                                                                                                                                                                                                                                                         

flux_a_c_bi = a_c_bi*IκBb*IKK                                                                                                                                                                                                                                                         

flux_a_c_ei = a_c_ei*IκBe*IKK                                                                                                                                                                                                                                                         

flux_d_c_ai = d_c_ai*IκBaIKK                                                                                                                                                                                                                                                          

flux_d_c_bi = d_c_bi*IκBbIKK                                                                                                                                                                                                                                                          

flux_d_c_ei = d_c_ei*IκBeIKK                                                                                                                                                                                                                                                          

flux_a_c_2ani = a_c_2ani*IκBaNFkB*IKK                                                                                                                                                                                                                                                 
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flux_a_c_2bni = a_c_2bni*IκBbNFkB*IKK                                                                                                                                                                                                                                                 

flux_a_c_2eni = a_c_2eni*IκBeNFkB*IKK                                                                                                                                                                                                                                                 

flux_d_c_2ani = d_c_2ani*IκBaIKKNFkB                                                                                                                                                                                                                                                  

flux_d_c_2bni = d_c_2bni*IκBbIKKNFkB                                                                                                                                                                                                                                                  

flux_d_c_2eni = d_c_2eni*IκBeIKKNFkB                                                                                                                                                                                                                                                  

flux_a_c_2ain = a_c_2ain*IκBaIKK*NFkB                                                                                                                                                                                                                                                 

flux_a_c_2bin = a_c_2bin*IκBbIKK*NFkB                                                                                                                                                                                                                                                 

flux_a_c_2ein = a_c_2ein*IκBeIKK*NFkB                                                                                                                                                                                                                                                 

flux_d_c_2ain = d_c_2ain*IκBaIKKNFkB                                                                                                                                                                                                                                                  

flux_d_c_2bin = d_c_2bin*IκBbIKKNFkB                                                                                                                                                                                                                                                  

flux_d_c_2ein = d_c_2ein*IκBeIKKNFkB                                                                                                                                                                                                                                                  

flux_in_a = in_a*IκBa                                                                                                                                                                                                                                                                 

flux_in_b = in_b*IκBb                                                                                                                                                                                                                                                                 

flux_in_e = in_e*IκBe                                                                                                                                                                                                                                                                 

flux_ex_a = ex_a*IκBan                                                                                                                                                                                                                                                                

flux_ex_b = ex_b*IκBbn                                                                                                                                                                                                                                                                

flux_ex_e = ex_e*IκBen                                                                                                                                                                                                                                                                

flux_in_2an = in_2an*IκBaNFkB                                                                                                                                                                                                                                                         

flux_in_2bn = in_2bn*IκBbNFkB                                                                                                                                                                                                                                                         

flux_in_2en = in_2en*IκBeNFkB                                                                                                                                                                                                                                                         

flux_ex_2an = ex_2an*IκBaNFkBn                                                                                                                                                                                                                                                        

flux_ex_2bn = ex_2bn*IκBbNFkBn                                                                                                                                                                                                                                                        

flux_ex_2en = ex_2en*IκBeNFkBn                                                                                                                                                                                                                                                        

flux_in_n = in_n*NFkB                                                                                                                                                                                                                                                                 

flux_ex_n = ex_n*NFkBn                                                                                                                                                                                                                                                                
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flux_pd_c_a = pd_c_a*IκBa                                                                                                                                                                                                                                                             

flux_pd_c_b = pd_c_b*IκBb                                                                                                                                                                                                                                                             

flux_pd_c_e = pd_c_e*IκBe                                                                                                                                                                                                                                                             

flux_pd_n_a = pd_n_a*IκBan                                                                                                                                                                                                                                                            

flux_pd_n_b = pd_n_b*IκBbn                                                                                                                                                                                                                                                            

flux_pd_n_e = pd_n_e*IκBen                                                                                                                                                                                                                                                            

flux_pd_c_2an = pd_c_2an*IκBaNFkB                                                                                                                                                                                                                                                     

flux_pd_c_2bn = pd_c_2bn*IκBbNFkB                                                                                                                                                                                                                                                     

flux_pd_c_2en = pd_c_2en*IκBeNFkB                                                                                                                                                                                                                                                     

flux_pd_n_2an = pd_n_2an*IκBaNFkBn                                                                                                                                                                                                                                                    

flux_pd_n_2bn = pd_n_2bn*IκBbNFkBn                                                                                                                                                                                                                                                    

flux_pd_n_2en = pd_n_2en*IκBeNFkBn      

                                                                                                                                                                                                                                      

flux_pd_c_2ai = pd_c_2ai*IκBaIKK*flux_ikkm                                                                                                                                                                                                                                                 

flux_pd_c_2bi = pd_c_2bi*IκBbIKK*flux_ikkm                                                                                                                                                                                                                                                 

flux_pd_c_2ei = pd_c_2ei*IκBeIKK*flux_ikkm                                                                                                                                                                                                                                                 

flux_pd_c_3ain = pd_c_3ain*IκBaIKKNFkB*flux_ikkm                                                                                                                                                                                                                                      

flux_pd_c_3bin = pd_c_3bin*IκBbIKKNFkB*flux_ikkm                                                                                                                                                                                                                                      

flux_pd_c_3ein = pd_c_3ein*IκBeIKKNFkB*flux_ikkm        

                                                                                                                                                                                                                               

flux_d_n_r = d_n_r*RANTESt                                                                                                                                                                                                                                                            

flux_rsr_rn = rsr_rn*(nfkbn_delay_r^h_an_r)                                                                                                                                                                                                                                           

flux_rsu_r = rsu_r         

                                                                                                                                                                                                                                                            

flux_d_n_8 = d_n_8*IL8t                                                                                                                                                                                                                                                            
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flux_rsr_8n = rsr_8n*(nfkbn_delay_r^h_an_8)                                                                                                                                                                                                                                           

flux_rsu_8 = rsu_8   

 

flux_d_n_TNFa = d_n_TNFa*TNFat                                                                                                                                                                                                                                                            

flux_rsr_TNFan = rsr_TNFan*(nfkbn_delay_r^h_an_TNFa)                                                                                                                                                                                                                                           

flux_rsu_TNFa = rsu_TNFa   

 

********** MODEL FUNCTIONS 

 

 

********** MODEL EVENTS 

 

 

********** MODEL MATLAB FUNCTIONS 

 

B.2 Experimental file 

 

********** EXPERIMENT NAME 
ecoli 
********** EXPERIMENT NOTES 

  
********** EXPERIMENT INITIAL PARAMETER AND STATE SETTINGS 
% The expression in this limiter will be evaluated when merging the  
% experiment with the model.  

  
********** EXPERIMENT PARAMETER CHANGES 
% In this section parameter changes can be defined that are evaluated 

during 
% the merged models evaluation 
ikkmyd88 = 

interpcsSB([0,15,30,45,60,120,240,360],[0.01,0.03,0.08,0.24,0.25,0.15,0.08,

0.05],time) 
********** EXPERIMENT STATE CHANGES 
% State changes in the experiment description  
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B.3 Matlab implementation 

 

%% Matlab m file to run the model for 360 minutes 

% define the model and experimental file  

model_e_e = SBmodel('model.txt'); 
exp_e = SBexperiment('ecoli.exp'); 

 

% merge the model with the experimental conditions 

 

model_e = SBmergemodexp(model_e_e,exp_e); 

 

% define the experimental simulation time 

 

time = [0:360]; 

 

% simulate the model 

 
Simulation_output = SBPDsimulate(model_e,time); 

 

 

 

 

 


