
 

 

  
Abstract—Gene expression profiling is rapidly evolving into a 

powerful technique for investigating tumor malignancies. The 
researchers are overwhelmed with the microarray-based platforms 
and methods that confer them the freedom to conduct large-scale 
gene expression profiling measurements. Simultaneously, 
investigations into cross-platform integration methods have started 
gaining momentum due to their underlying potential to help 
comprehend a myriad of broad biological issues in tumor diagnosis, 
prognosis, and therapy. However, comparing results from different 
platforms remains to be a challenging task as various inherent 
technical differences exist between the microarray platforms. In this 
paper, we explain a simple ratio-transformation method, which can 
provide some common ground for cDNA and Affymetrix platform 
towards cross-platform integration. The method is based on the 
characteristic data attributes of Affymetrix- and cDNA- platform. In 
the work, we considered seven childhood leukemia patients and their 
gene expression levels in either platform. With a dataset of 822 
differentially expressed genes from both these platforms, we carried 
out a specific ratio-treatment to Affymetrix data, which subsequently 
showed an improvement in the relationship with the cDNA data.  
 

Keywords—Gene expression profiling, microarray, cDNA, 
Affymetrix, childhood leukaemia.  
 

I. INTRODUCTION 
N 1995, two seminal publications, [1] and [2], by the lead 
investigator, Patric O. Brown of the Howard Hughes 

Medical Institute and his collaborators launched the era of 
gene-expression microarray analysis, and revolutionized the 
field of molecular biology. The technique of microarrays, 
which started off with simultaneous gene expression analysis 
of 45 genes within one experiment, provides high throughput 
capability of simultaneously interrogating the RNA expression 
of the whole genomes. Microarray technology has gradually 
become an indispensable tool for monitoring genome wide 
expression levels of gene. From the Patric Brown’s lab, the 
technology has evolved representing both a technological and 
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conceptual advancement of the field, and has gone worldwide, 
where many laboratories are now making their own arrays, in 
addition to the availability of commercial vendors like 
Affymetrix (Santa Clara, CA), Agilent (Palo Alto, CA), 
Rosetta1. With the increasing number as well as the 
availability of gene expression studies of various organisms, 
there has been a pressing need to develop approaches for 
integrating results across multiple studies. There are different 
practical advantages in such studies.  

In a cross-study analysis, the data, relevant results and 
statistics of several studies are combined. Cross-study analysis 
has the potential to strengthen and extend the results gathered 
from the individual studies. This can turn an investigation to 
have higher accuracy and consistency, and thereby, helping in 
robust information mining. Besides, output of such a study can 
provide a broader picture of gene-expression as the final 
‘integrated’-result emerges based on a set of individual 
studies. Cross study analysis can also compensate for the 
possible data-errors of the individual study. The cost of such a 
study is possible to keep low by using the existing studies, as 
otherwise the set up of each microarray investigation is not 
inexpensive. It can also amplify the sample-size.  

Despite having various advantages, while attempting to 
actualize integration of microarray studies, there are much 
higher challenges and difficulties as genetic expressions of 
different studies are neither readily comparable nor can 
directly be combined. There are several published works on 
cross-study analysis, where the observation on accuracy, 
reliability and reproducibility of microarray platforms clearly 
ranges from relatively discouraging [3]-[4]  through cautious 
optimism [5]-[6] to impressive [7]-[8].  

 In this paper, we explain a ratio-transformation method for 
Affymetrix data which may potentially lead in the direction of 
integration of Affymetrix and cDNA (also called, spotted 
microarrays) microarray studies. Here, we have examined 
closely the data structures of the two diverse platforms, cDNA 
and Affymetrix, towards combing their gene expression data 
based on the commonalities within the basic data-attributes. 
Our example involves determining differentially expressed 
genes, and a simple ratio-based approach while considering 
seven childhood leukemia patients from either platform.  

 
 
 

 
1  http://www.rii.com/ 
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II. METHOD AND RESULTS 

A. Data Collection 
Affymetrix GeneChip® and GenePix® cDNA data were 

obtained from Tumour Bank, The Children’s Hospital at 
Westmead, Australia. The data belonged to childhood 
leukemia patients; and seven of these were analyzed both in 
Affymetrix (HGU-133A chip) and in cDNA platforms.  

 

B. Quality check of the raw data  
Microarray experiments measuring genetic expression 

levels are conducted through an elaborated procedure, and are 
subject to many potential variations. This makes it critical to 
carry out adequate assessment to make sure that the data is of 
good quality, and is consistent and comparable for further 
analysis. Accordingly, we carried out an extensive quality 
assessment using open-source statistical software, R [9] and 
Bioconductor [10] towards confirming it.  

 

C. Data Normalization 
The purpose of normalization is to minimize systematic 

variations in the measured gene expression levels.  
Following several available literature including, [11] and 

[12], web-information# from National Cancer Institute (a 
component of the U.S. National Institute of Health) and a 
detailed review on comparison of normalization methods [13], 
quantile normalization is said to provide the best overall 
performance. For more about this method, readers may refer to 
[13]-[14]. Quantile normalization method is a robust, one of 
the most widely as well as routinely used methods in the 
analysis of microarray experiments. Therefore, we picked 
quantile normalization to use in our Affymetrix (HGU-133A) 
chips. The Robust Multichip Average (RMA) algorithm [15] 
for Affymetrix arrays use quantile normalization; and, as it is 
apparently the best method available at present#, this method 
was used for processing our Affymetrix chips. RMA is largely 
the work of Terry Speed’s group at University of California at 
Berkeley, and is an expression measure consisting of three 
particular preprocessing steps : convolution background 
correction, quantile normalization, and a summarization 
method based on a multi-array model fit robustly using the 
median polish algorithm [16].  

In case of cDNA data, prior to normalization process, an 
adaptive background correction, Normexp+offset was used, as 
recommended by [17]. It is an usual assumption in 
background correction of cDNA arrays that given the 
observed foreground intensities, Rf and Gf, background 
correction for two-colour microarray data allows the true 
signal to be estimated by subtracting the foreground and 
background values, such that R = Rf - Rb and G = Gf – Gb, and 
the corrected intensities are then used to form the log-ratio, M 
= log2 (R/G), and average log intensity, A = ½ log2 (RG), for 
each spot. The normexp+offset method of background 

 
#  http://discover.nci.nih.gov/index.jsp 

 

correction is based on the normal and exponential convolution 
model previously used to background correct Affymetrix data 
as a part of the RMA algorithm, as given in [15] and [18]. In 
this method, a convolution of normal and exponential 
distributions is fitted to the foreground intensities using the 
background intensities as a covariate, and the expected signal 
given the observed foreground becomes the corrected 
intensity. The corrected intensities, thus obtained, are positive, 
but may be close to zero. Therefore, a small positive offset is 
added to effectively move the corrected intensities away from 
zero. This should also reduce the variation of the low intensity 
M-values since log2 [(R+offset)/(G+offset)] will be close to 0 
for R and G, both small relative to the offset. Based on the 
findings of [17], an offset value of 50 was used here for 
background correction. 

As illustrated by [19], there is a range of normalization 
methods for spotted microarrays, and these methods may be 
broadly classified into within-array normalization and 
between-array normalization methods. The former group 
includes those methods that normalize the M-values for each 
array separately, while the latter normalizes the intensities or 
log-ratios to be comparable across arrays.  

Several of within-array normalization methods were 
independently applied to the spotted arrays after background-
correction to assess which normalization method would work 
relatively well. The method, printtiploess [20]-[21] was found 
to give better results while comparing to a few other 
commonly used methods, namely median, loess, robustspline. 
Printtiploess is also regarded as an effective method because 
of its ability to adjust for systematic differences between 
different print-tips [22]-[23] and it assumes that the ratios 
from each print-tip to have the same distributions.  

The next question we addressed was whether between-array 
normalization would be required. We observed that the within-
array normalized arrays were showing different spreads of M-
values rather than having similar spread and found that from 
the list of between-array normalization methods including 
scale, quantile and vsn, the scale normalization method, 
proposed by [24] and [20] and further explained by [19], 
rendered the best result producing similar spread of the M-
values across the cDNA arrays. The basic idea of this 
normalization is to simply scale the log-ratios to have the 
same median-abolute-deviation (MAD) across arrays. 

Finally, we carried out a post-normalization quality 
assessment for both Affymetrix and cDNA data to make sure 
that the normalized data would be devoid of any systematic 
bias and other anomalies.  

 
D. Finding Differentially Expressed Genes 
Besides the leukemic data, we also obtained Affymetrix 

data of 10-healthy children. We used these two sets of data, to 
find out DE genes. 

For finding the DE genes, we first removed the control 
probes and then, filtered out the low quality data based on the 
fact that the Affymetrix probe sets scoring absent or marginal 
can be considered suspect, whereas present scores are good 
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indicators of a signal reliably above background noise. To get 
rid of data with low content of information, we used the 
relative standard deviation, also known as the coefficient of 
variability, CV that would filter out the least variable genes, 
defined by the 90th percentile of the distribution of CV-values. 
Fig. 1 shows the chosen cut-off that picked the highest ranked 
10% of CV-values.  

 
 
 

 
Fig. 1 CV as a function of average gene expression across all arrays 
(in logarithmic scale)     

 
With a shortened list of genes, including only the most 

reliable and highly variable Affymetrix data, we specified the 
analysis design such that the samples belonging to the two 
experimental conditions (healthy and leukemic) were assigned 
to their respective group. A simple linear model was then fit to 
the data, as explained in [25]. To increase statistical power, 
and simultaneously reduce the risk of false positives, an 
empirical Bayes method [26] was used. This would improve 
on the accuracy of estimating variability for individual genes 
through shrinking of the standard deviation by including genes 
expressed at similar levels.  

Finally, we adjusted the obtained p-values to account for the 
multiple testing (or, multiple comparisons) problem. As 
described by [27], multiple testing problems bring in error in 
inferences when one considers a set of statistical inferences 
simultaneously; and, such loss of statistical power in inference 
imposed by the multiple testing is common during 
simultaneous analysis of thousands of genes. Out of the 
methods on offer, including [28], [29], [30], [31] and [32], to 
prevent this from happening, we used the method of 
Benjamini and Hochberg [29] for adjusting p-values for 
multiple comparisons. The method controls the false discovery 
rate, the expected proportion of false discoveries (i.e., the 
false positives, or, type I errors) amongst the rejected 
hypotheses in multiple comparisons. The false discovery rate 
is a relaxed condition; and the method, [29] is a better 
compromise between sensitivity and specificity. We arbitrarily 
set the FDR control to a conservative value of 0.05. 

Fig. 2 gives a histogram of the raw, unadjusted p-values and 
compares the distribution to that observed after adjustment to 
account for multiple testing correction. Information is also 
overlaid in that figure about how the distribution would be 
expected if there were no experiment effect (i.e., a uniform 

distribution), as well as a line indicating the cut-off for 
statistical significance, i.e., FDR control=0.05. Further, in Fig. 
3, an MA-plot displays the log fold change between leukemic 
and normal samples as a function of the average expression 
level across all samples, where the two-fold limits are 
indicated by horizontal lines and statistically significant genes 
are the sharp dots outside the area covered by the horizontal 
lines.  

 
 

 
Fig. 2 p-value with theoretical uniform distribution (horizontal line), 
FDR cutoff arbitrarily set at 0.05 (vertical line) 

 
 

 
Fig. 3 MA plot comparing healthy and leukaemic samples. 
Significant genes are the sharp dots, and the horizontal lines are the 
2-fold limits.  

 
We used UniGene database [33] to annotate the genes. The 

overall statistical procedure on Affymetrix chips finally 
recognized a total of 822 genes as differentially expressed. 
Further, considering the fact that Affymetrix data contain 
relatively less noise than cDNA, we selected the same set of 
822 genes from cDNA platform as well for our downstream 
analysis. We assumed here that as the arrays in both the 
platforms belonged to the same 7-childhood leukemia patients, 
therefore, the same set of genes would ideally be expressed 
differentially in either platform. 

 

E. Ratio-transformation 
 Our Affymetrix and cDNA data had no correlation between 

them as such. Using the DE genes, the correlation between the 
normalized data from either platform became 0.13, referring 
that there was absolutely no relation between them.  

Fundamentally, Affymetrix and cDNA data have difference 
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in their data structure. The measurement used for relative 
expression level for a gene in cDNA platform is expressed in 
terms of Expression Ratio, which is denoted by: 

 
k

k

G
R = T k

                                  (1) 

where for each gene, k on the array, Rk and Gk represents 
intensity metric for the tumor sample and the healthy sample, 
respectively. However, as a measure of expression of a gene in 
Affymetrix platform, the average difference between all the 
PM and MM probes of a gene is considered proportional to the 
actual expression level of the gene, as shown in Equation 2: 
 

)(1
iiipairprobe MMPM

n
differenceAverage −≅ ∑           (2) 

 
where, n represents the total number of probe pairs for the 
gene. PMi and MMi indicates the corresponding PM and MM 
probe intensities for the ith probe pair for the gene. It is, 
therefore, apparent that one of the basic differences between 
Affymetrix and cDNA lies in the nature of the retrieved data – 
while cDNA provides expression ratio, Affymetrix gives 
actual expression level of a gene. We acknowledged this 
difference, and considered the possibility that addressing this 
difference might lead towards giving an improved relationship 
between the two platforms. 

Using the healthy Affymetrix arrays, and their average 
expression levels across all the chips for the 822 DE genes, we 
converted the Affymetrix data to Affymetrix-ratio. In this 
regard, if expression level of a gene, x from one of the 

expression from the set of 10 healthy Affymetrix chips is H, 
then Affymetrix-ratio (Affyratio) can be denoted as in equation 
[3].  

          

                                                       (3) 

 
 
 
Similar to cDNA where the expression level of a gene 

remains in the form of a tumor to healthy ratio, the 
transformation through equation [3] converts the Affymetrix 
expression data into the form of a tumor to healthy ratio.  

Finally, it was found that this transformation improved the 
correlation between cDNA and Affyratio for the 822 DE genes 
from 0.13 to 0.6. Fig. 4 shows the change in the Affymetrix 
data due to the ratio-transformation. Here, Affyratio data can be 
seen to have roughly aligned at the same level as the cDNA 
data. It is possible to further align the Affyratio data by 
converting them to their respective standard normal 
distributions, as shown in Fig. 5.        

 
 

 
Fig. 4  Boxplots of the arrays (before and after ratio transformation) 

 
 

 
Fig. 5  Boxplots of AffyRatio, cDNA and their respective standard 
normal distribution          

 

F. Validation 
Towards verifying whether the changes to the Affymetrix 

dataset after their ratio-transformation has brought in any 
unwanted change to the overall dataset, we carried out 
hierarchical clustering of both original as well as of the  
Affyratio data separately using Euclidean distance and Ward 
agglomeration method. As observed in Fig. 6 and 7, both the 
clustering showed that the overall relationship was 
successfully preserved. 

 

 
Fig. 6  Hierarchical Clustering of original Affymetrix data (with 
Euclidean distance and Ward Agglomeration method) 
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Fig. 7  Hierarchical Clustering of Affyratio (with Euclidean distance 
and Ward Agglomeration method) 

III. CONCLUSION 
The increasing number and publicly available microarray 

studies have provided the opportunity for cross platform 
studies. However, the cDNA and Affymetrix platform has 
considerably large disagreement which makes them difficult 
for their direct comparison. We have introduced here a simple 
and direct comparison of the data from the two platforms that 
brings the cDNA and Affymetrix data to a common and 
comparable level. It appears that further implementation of 
integrative bioinformatics applications and robust statistical 
techniques may render substantial improvement towards 
extrapolation of this idea in the direction of integrating data 
from cDNA and Affymetrix platform.          
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