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Abstract 

This thesis describes the research on developing an authoring tool for 

mobile phone Augmented Reality (AR) applications. This work is based on 

earlier work at the HIT Lab NZ on ComposAR, a tool for authoring PC 

based AR applications. We describe modifications to ComposAR that 

allows end-users to prototype mobile AR applications on a PC, and player 

software that allows prototype AR applications to be delivered on a mobile 

phone. In this way, end-users with little programming experience can 

develop simple mobile AR applications. To prove the applicability of this 

authoring tool, a user evaluation was conducted with some users and 

performance compared between programmers and non-programmers and 

across different authoring tools.  
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1 Chapter 1 Introduction 

Augmented Reality (AR) (Azuma et al., 2001) is a field of computer 

science research which studies systems that allow virtual images to be 

mixed with the real world. In recent years, the first AR applications have 

been deployed on PDAs (Pasman and Woodward, 2003) and mobile 

phones (Henrysson et al., 2005) . However, developing these applications 

requires a lot of low level coding and specialized skills. Unlike PC-based 

AR systems, there are no high-level authoring tools that allow developers 

to rapidly build mobile AR applications, especially for non-programmers. 

The focus of this thesis will be to develop an authoring tool for building 

mobile AR applications. 

The HIT Lab NZ has developed a tool for the PC for authoring AR 

applications called ComposAR. ComposAR provides a Python-based 

scripting tool for specifying the virtual objects in an AR scene and the 

interactions between the objects. It creates an XML file as the output that 

specifies the AR scene content and interaction in the application. The main 

goal of this thesis is to modify the ComposAR tool to allow people to 

prototype mobile AR applications on a PC, and develop AR player 

software that allows AR experiences to be delivered on a mobile phone. 
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In this chapter, we will provide an introduction to the research topic, 

explain the fundamentals of Augmented Reality (AR) and authoring, and 

discuss why a mobile AR authoring tool is important. 

 

1.1 An Introduction to Augmented Reality (AR) 

What is Augmented Reality? 

Ronald Azuma's definition of AR is one of the more focused descriptions. 

Augmented reality (AR) (Azuma et al., 2001) is an environment that 

includes both virtual reality and real-world elements, and has three key 

characteristics (Azuma, 1997): 

• It combines real and virtual images. 

• It is interactive in real time. 

• The virtual imagery is registered in 3D. 

Augmented Reality is one part of the broader interface taxonomy called 

‘mixed reality’ (Milgram et al., 1994) (see Figure 1.1) that includes any 

display in which images of real and virtual objects are combined.  
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Figure 1.1:  Milgram’s Mixed Reality Continuum 

Watching a TV or playing a football which does not need mediation by 

technology is called a real experience, while the opposite is called a virtual 

experience where reality is replaced by an immersive computer-generated 

world. Experiences lying between these two extremes are known as Mixed 

Reality, including Augmented Reality and Augmented Virtuality. 

Augmented Reality presents the predominantly real environment 

augmented by the virtual objects, while Augmented Virtuality presents the 

predominantly real world objects merge into virtual environment. 
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A brief history of AR 

The origins of AR can be traced to Ivan Sutherland’s “Ultimate Display” 

(Sutherland, 1965) idea in 1965. Three years later, Sutherland implemented 

a real-time 3D HMD system. It is the first computer system that merged 

real and virtual images. It used a virtual reality headset with one CRT 

element for each eye, connected to a tracking rig (see Figure 1.2) 

(Sutherland, 1968). 

  

(a) Optical see-through HMD (b) Head tracking 
  

Figure 1.2:  Sutherland’s System (Image from Ivan Sutherland) 

 
Around the same time, Furness developed the “Super Cockpit” as a flight 

simulator, which could generate the visual scene projected directly to the 

pilot headgear. The pilot could interact with this virtual scene and give 

verbal commands. This was used by the US Air Force (Furness, 1986).  
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This technology began to be knows as “augmented reality” after Tom 

Caudell, a researcher at  Boeing, developed a head-mounted display system 

which was used to help workers to install wire harnesses in aircraft in the 

early 1990s (Caudell and Mizell, 1992).  

(a) Ice hockey puck with virtual comet trail 
(Image from Rick Cavallaro) 

(b) The virtual first down line in 
American football (Image from Shel 
Brannan) 
 

(c) The virtual car info in RACEf/x (Image 
from Sportvision) 
 

 

Figure 1.3: Examples of Augmented Reality in Broadcasting 

Augmented reality became widely used in sport broadcasting from 1997. 

One example is “FoxTrax” ice hockey puck, shown in Figure 1.3(a). The 

glowing puck with a virtual comet tail on the ice rink was tracked by the 

television cameras and indicated the path can be seen on TV (Cavallaro, 

1997). Since 1998, the first and ten system has been used on football 
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broadcasts. An example is the “first down” line in American Football 

broadcasts (Brannan, 2001), shown in Figure 1.3(b). A virtual yellow line 

is projected on the field to show how far the team has to go for a first 

down. Another example is RACEf/x shown in Figure 1.3(c), which is a 

motor sport. This system uses GPS track and display statistical information 

of the car's performance on the screen in real-time (Sportvision, 2006). 

In 1998, the ARToolKit (Kato and Billinghurst, 1999) computer vision 

tracking library was released.  It solved two of the main problems in 

Augmented Reality: one is the viewpoint tracking and another is virtual 

object interaction. ARToolKit has been widely used to build AR 

applications since 2004. 

 
(a) Fully equipped iPAQ with the test 

model  (Image from Pasman and 
Woodward) 

 

 
(b) AR application on the mobile phone 

(Image from Henrysson et al) 
 

Figure 1.4: First AR Application on PDA and Mobile 

In the 2000s, the first AR application was deployed on PDAs (Pasman and 

Woodward, 2003) and mobile phone (Henrysson et al., 2005). Figure 1.4 
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(a) shows an outdoors AR demonstration on a PDA device which presents 

a client/server implementation. The camera in the client captures the 

image, and sends it to the server for processing. Once the virtual objects 

have been rendered on the server, the image is sent back to the client and 

overlaid on top of the original one to produce an AR view. 

Figure 1.4 (b) shows an AR tennis application. It uses augmented reality 

running on Nokia mobile phones with a set of small fiducial markers for 

tracking. The phones can determine their own locations by tracking the 

markers, and can be used as ‘tennis rackets’ with a virtual ball. The 

direction and position vectors of the ball are sent over to the other phone 

using Bluetooth.  

In 2007, Sony released a turn-based card battle video named “The Eye of 

Judgment” (see Figure 1.5), which was the first end user applications 

featuring Augmented Reality for Sony PlayStation 3 game console.  

Just as shown in Figure 1.5(a) in this game, the following are needed: a 

playing mat which is a 3 × 3 grid of rectangles to place your cards upon, a 

camera which is called EyeToy and used to capture the image of the cards 

on the grid, a special stand which holds the camera to place the right angle 

and gets view of the playing mat, and 30 special cards used as game pieces 

each of which has AR fiducial marks on them to assist with tracking and 

AR overlay(shown in Figure 1.5 (a)). 
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(a)Equipment setting (b)Camera viewing  
  

(C)Card use (d)Battle mode in action 
  

Figure 1.5: Screenshot of the Eye of Judgment  

When the cards are put down on a table, PlayStation 3 is able to recognize 

the card, via the EyeToy camera (see Figure 1.5 (b)). Each card is 

associated with a different monster. As shown in Figure 1.5(c), the virtual 

monsters erupt out of the cards on the television screen. As long as the 

cards can be moved around on the table, the monsters move around on the 

screen, allowing the player to interact with them just by moving them. 

Move them toward another card, and the monsters onscreen will interact 

and battle (see Figure 1.5(d)) 

The numbers of AR applications have since grown rapidly and widely with 

the first dedicated conferences (The international Symposium on Mixed 
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and Augmented Reality - ISMAR1). For example, FLARToolkit (Koyama, 

2008) — Flash-based Augmented Reality Toolkit, brings AR environment 

to the web browses.  

 

1.2 Authoring Tool 

An authoring tool2  is a software package which developers use to create 

and package content deliverables to end users. Typically, authoring tools 

enable users to create a final application merely by linking together objects, 

allowing those who use the tool to produce attractive and useful 

application. Authoring tools require less technical knowledge to master and 

are often used for applications that present a mixture of textual, graphical, 

and audio data. 

Since the term is rather general, authoring tools have been used widely. 

Some programs such as web editors, Flash, and PowerPoint are also 

considered as authoring tools. The most commonly used is to create 

e-learning modules. However, there is no group of programs specifically to 

support for mobile AR content. 

                                                 
1 http://www.ismar-society.org/, online as of September 2009. 
2 Authoring tool, http://en.wikipedia.org/wiki/Authoring_systems, online as of September 
2009. 
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1.3 Thesis Structure 

This section provides a road-map of the chapters in this thesis. 

Chapter 2 Background Research presents related work in the aresa of 

AR authoring tools, software libraire for mobile AR applications, and some 

advertising systems using mobile AR technology. 

Chapter 3 AR Authoring System describes the overview of the whole 

system, and then introduces AR authoring tool in detail.  

Chapter 4 AR Viewing Tools presents the AR viewing applications that 

we have developed for desktop and mobile AR applications. 

Chapter 5 AR Pattern Generator describes why we need it and how it 

works for the AR application. 

Chapter 6 Evaluation and Result describes the experiments to test the 

development of the authoring tool and performance compared between 

programmers and non-programmers and across different authoring tools.  

Chapter 7 Performance Measurements presents the performance of 

mobile AR applications made by the authoring tools. The measurements 

compare tracking performance with different numbers of visible markers 

and different models. 
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Chapter 8 Conclusion and Future Work provides a concise summary of 

this contributions of this thesis and proposes directions for the furture 

work.  

 

1.4 Research Questions 

The main research questions of this thesis are: 

• Are there any AR authoring tools for a mobile phone available 

today? 

• How easy does the system make it for the non-programmers to 

develop applications? 

• How fast does it perform on a mobile phone? 

• What is the difference in quality of the image compared with that 

on a PC? 

• What are the other issues to consider? 
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1.5 Research Contributions 

The main contributions of this thesis are: 

• Integrating one existing game engine library for viewing AR 

content  

• Extending existing HIT Lab NZ PC based AR authoring tools to 

support mobile phones 

• A formal evaluation of AR authoring tool for different end users 
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2 Chapter 2 Background Research 

The research in this Masters thesis is mainly focused on developing and 

evaluating an authoring tool for mobile AR applications, particularly for 

use by developers with little programming experience. One target area for 

an application tools like this is for prototyping mobile AR advertising 

campaigns. 

Although there is no existing work on mobile AR authoring tools for non-

programmers, there are several previous AR authoring tools for PC 

applications that the research can be built on.  

In this chapter, we first review AR authoring tools in general, and then 

software libraries for mobile AR applications.  Finally, we present some 

advertising systems using mobile AR technology.  

 

2.1 AR Authoring Tools 

There are several existing authoring tools for building desktop AR 

applications. These can be organized into two types: 

1) AR authoring tools for programmers 

2) AR authoring tools for non programmers 
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Authoring tools for programmers are typically code libraries that require 

programming knowledge, while tools for non-programmers are those that 

require no programming knowledge, such as visual tools that include drag 

and drop interfaces for building applications without writing any lines of 

code. These categories can be further organized into low level tools which 

require coding/scripting skills, and higher level application builder tools 

which use high level libraries or visual authoring techniques. Example 

authoring tools are shown in Table 2.1 and described later in this section. 

Table 2.1: Types of Authoring Tools 

 Programmers Non-programmers 

Low level 
ARToolKit 

arTag 

DART 

AR-Blender 

ComposAR 

High level 
Studierstube 

osgART 

AMIRE 

MARS 

ULTRA 
  

2.1.1 AR Authoring Tools for Programmers 

A number of programming libraries enable developers to author AR 

applications. For example, ARToolKit (Kato and Billinghurst, 1999) is a 

free and open-source C software library which can be used to develop AR 

interfaces by providing computer vision based tracking of black square 

markers.  
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Figure 2.1 shows ARToolKit being used to show a three-dimensional 

virtual character appearing standing on a real card. The user can see the 

AR scene by wearing the head set display. When the card is moved by the 

user, the virtual character moves with it and appears attached to the real 

card (ARToolKit, 2001).  

 
Figure 2.1: ARToolKit (Image from ARToolkit) 

However, to develop an AR application with ARToolKit requires 

significant C programming skills. The additional code has to be developed 

for 3D model loading, interaction techniques, and other utility functions. 

This need for integration with additional libraries is typical of low level 

programming tools.   
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Another low level AR library is ARTag (Fiala, 2005), which is a computer 

vision based marker tracking system that uses digital coding theory to get a 

very low false positive and inter-marker confusion rate. It is a bi-tonal 

system which contains 2002 planar markers.  Each marker consists of a 

square border and an interior region which are black or white cells filled 

with a 6 × 6 grid. Figure 2.2 shows some example ARTag markers.  Like 

ARToolKit, to develop a complete AR application with ARTag requires 

considerable additional C/C++ programming experience. 

 
Figure 2.2: ARTag Markers Detected in An Image (Image from Mark Fiala) 

 

The osgART library (Grasset et al., 2005) is a high level C++ Open Scene 

Graph library based on top of the ARToolKit tracking library. Unlike 

ARToolKit, osgART includes a code for loading 2D or 3D models and 

animation.  A collection of classes is provided in it so that it is easy to 

make AR applications. Some of the main functionalities that the library 

supports are: high level integration of video input (which is how the video 

object deals with the mapping of the video texture on itself), spatial 
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registration (which is the transformation mapping from the ARToolKit 

tracking to the OSG framework), and photometric registration (which is 

disparity between the real content and the virtual content).  

 There are some examples of AR applications (OSGART, 2006) built with 

osgART shown in Figure 2.3.  

 
Figure 2.3: Examples for Using OsgART Library (Image from osgART) 

 

Another high level library is the Studierstube library (Schmalstieg et al., 

2002) which provides a complete distributed system for developing 

applications in virtual and augmented reality. The distributed nature of 

Studierstube makes it particularly good for developing collaborative 

augmented reality applications. Studierstube is a cross platform and is also 

a leading framework for the development of mobile, collaborative and 

ubiquitous AR applications. 

A common feature of these libraries is that although they are of high level, 

they typically require C or C++ programming ability, users also require 
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other content development tools to produce the AR content and it takes a 

relatively long time using them to produce an AR application. 

 

2.1.2 AR Authoring Tools for Non-programmers 

There is another set of AR authoring tools that have been developed for 

non-programmers such as artists or designers.  

One of the first is DART (MacIntyre et al., 2005), the Designer’s AR 

Toolkit (see Figure 2.4), which is a plug-in for the popular Macromedia 

Director software. The main aim of DART is to allow multimedia 

application designers to develop AR applicatioins. DART is designed to 

allow non-programmers to create AR experiences by using the low level 

AR services provided by the Director Xtras, and to integrate these with 

existing Director behaviours and concepts. DART supports both visual 

programming and a scripting interface. Unlike ARToolKit and osgART, 

DART is specifically developed for multimedia designers and non-

programmers. 
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Figure 2.4: An Example Work Session in DART (while debugging the 
Four Angry Men (FAM) experience). The entire score for FAM is visible, 
including the nine scenes and most of the actors. The stage (containing the 
running experience) is visible, as is part of the content for one video actor, 
and some of Director’s editing windows. (Image from MacIntyre et al.) 

 

AMIRE (Grimm et al., 2002) is an authoring tool for the efficient creation 

and modification of augmented reality applications. The interface is shown 

in Figure 2.5 (AMIRE, 2002).  
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Figure 2.5: AMIRE Authoring Interface. (Image from Grimm et al.) 

The AMIRE framework provides an interface to load and replace a library 

at runtime and uses visual programming techniques to interactively 

develop AR applications. AMIRE is designed to allow content experts to 

easily build applications without detailed knowledge about the underlying 

base technologies. Two completely different AR applications have been 

developed based on using AMIRE, an oil refinery (see Figure 2.6) and a 

museum, showing the flexibility and efficiency of the AMIRE approach. 
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(a) Indoor solution (Tracking system, 
iGlasses) (image from AMIRE website) 

(b) Outdoor solution (Handheld/Tablet 
PC) (Image from R. DORNER et al.) 

Figure 2.6: Oil Refinery Application 

Some of these PC based authoring tools were also designed for building 

mobile AR applications. For example, the MARS (Mobile Augmented 

Reality Systems) authoring tool (Guven and Feiner, 2003) uses a 3D 

graphical user interface to allow users to create mobile outdoor AR 

applications. It is designed for non-programmers, and allows them to 

preview their results on a desktop workstation, as well as with an 

augmented or virtual reality system.  

Using the MARS authoring tool, several situated documentaries were 

authored which told the stories of events that occurred on Columbia 

University campus (see Figure 2.7). 
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Figure 2.7: The MARS Authoring Tool (Image from Guven and Feiner) 

 

Fisher has developed an authoring tool for creating outdoor AR 

experiences. In this case, authoring is done on a desktop computer with a 

web based 2D map or in the field with a mobile phone (Fisher, 2001) 

(Fisher, 2002). It can be used to author a variety of virtual tours through a 

specific location, depending on the viewpoint and expertise of the user. 

Figure 2.9 illustrates the Wearable Environmental Media (WEM) Project 

prototype mobile system (Fisher, 2001). The user wears a wireless 

backpack as shown in Figure 2.8, which is containing a number of different 

technologies for capturing the video imagery, transmitting the video and 

data, and determining the user location. The large disk is used to locate the 
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user’s location. It is a GPS antenna, which is locating about 2-centimeter 

accuracy. 

 
Figure 2.8: WEM System (Image from Fisher) 

 
Figure 2.9: The ULTRA Interface (Image from Fisher) 

Another example is the European project ULTRA (Alexandra Makri et al., 

2005) – (“Ultra portable augmented reality for industrial maintenance 

applications”) which has the goal to implement a new mobile AR-system 

that works on minimal hardware. ULTRA features a set of content 

generation/authoring tools. The authoring tool has two parts: a 3D 
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authoring tool (see Figure 2.10), and a visual process authoring tool (see 

Figure 2.11). The 3D authoring tool creates 3D animations, based on the 

concept of templates. The process authoring tool uses the visual 

programming to create an interactive application. This tool is designed for 

PDAs and handheld PCs and not for mobile phones.  

 
Figure 2.10: 3D Authoring Tool (Image from Alexandra Makri et al.) 

 
Figure 2.11: Process Authoring Tool (Image from Alexandra Makri et al.) 
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Some authoring tools are designed to extend other content development 

tools. For example, AR-Blender (Grimm, 2006) is an extended version of 

the Blender 3D modeling program that integrates ARToolKit into the 

Blender application. However, it is very complicated and time consuming 

to combine a virtual world with a real one, because similar problems 

remain in building 3D geometries and MR applications. Developers can 

use the Blender scripting interface to develop simple PC-based AR 

applications that include their 3D models.   

A common feature of these tools is that they use visual programming 

techniques or simple scripting to support quick prototyping, they are 

interpretive rather than compiled allowing for fast redesign of ideas, and 

they are integrated into other design tools. However none of these tools can 

be used for authoring mobile phone AR applications. 

2.2 AR Authoring Tools for Mobile Phones 

Although there are several tools for building desktop AR applications, 

there is less support for the mobile phone AR. At the low level, the 

ARToolKit tracking library has been ported over to the Symbian operating 

system (Henrysson et al., 2005) but this requires the use of other code such 

as the OpenGL ES graphics library in order to complete a mobile AR 

application. The Studierstube Tracker library (Schmalstieg et al., 2002) is 
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another low level AR tracking library that is available for multiple 

platforms such as Symbian, iPhone and Windows Mobile.  

One of the only higher level programming libraries for mobile AR 

applications is the Studierstube ES (Dieter and Daniel, 2008) (StbES) 

library. This is a C++ based application framework for developing AR 

applications for mobile devices. It is a cross-platform, running on 

Windows, Windows Mobile, or the Symbian operating systems. 

Studierstube ES provides support for 2D and 3D graphics, video capture, 

tracking, multimedia output, persistent storage, multi-user synchronisation, 

and application authoring. It requires a high level of programming skill to 

use and so is not suitable for non-programmers.  

Apart from Studierstube ES there are other tools for developing non-AR 

2D and 3D graphics applications for mobile phones. One of the most 

powerful and low-level game engines for mobile devices is the Edgelib 

library (Edgelib, 2007), which is designed for developing quality 

applications and high-performance games. Its key features are: multi-

platform development, high-performance graphics, Network connectivity 

and support for RGBA surfaces.  

The M3GE (Mobile 3D Game Engine) library3 is a Java game engine 

based on the Mobile 3D Graphics API for JME spec (M3G - JSR 184). It 

                                                 
3 M3GE, http://m3ge.dev.java.net, online as of September 2008. 
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has a development library that allows graphical rendering to be handled by 

the application; image loading, input, output, and general functions like AI, 

collision detection and other rendering facilities are also managed. M3GE 

aims to perform all global functions in the application in a single core 

block, separating graphical routines and application logic. The engine was 

tested in a Siemens CX 65 phone and it operated at 8 to 16 frames per 

second.  

For non-programmers, Python 4  is available for rapid development of 

mobile applications. The Symbian version of Python allows a user to 

develop python scripts on their desktop and then run them on their phone 

using a native interpreter. It has support for 2D and 3D graphics, camera 

input, file handling and networking, and many other functions for rapidly 

prototyping mobile applications. However it does not support a visual 

development tool and so requires the developer to learn scripting.  

Other high level visual design tools are available to author mobile graphics 

applications. Among them, the most popular is FlashLite5, a version of 

Adobe Flash that has been specifically designed for use on mobile phones.  

With FlashLite, a developer can use a combination of visual authoring and 

ActionScript scripting to easily build interactive phone applications such as 

games, information tools, screensavers, and e-learning applications. 

                                                 
4 Python, http://www.python.org/, online as of September 2008. 
5  Adobe Systems Incorporated, http://www.adobe.com/products/flashlite/, online as of 
September 2008. 
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However, there is no support for 3D graphics or camera input. It has long 

been used on a pretty wide variety of devices like Sony Ericsson p900, 

Nokia 3650 and Nokia NGage to name a few.  

Table 2.2 shows the tools available for developing mobile AR applications.  

Authoring tools are currently available for mobile AR applications (such as 

Studierstube ES) requiring C++ programming experience. There are some 

high level tools for making mobile graphics applications for non-

programmers (such as FlashLite), but none of them has been adapted for 

mobile AR yet. So there is a need to develop a high level mobile AR 

authoring tool for non-programmers. 

Table 2.2: Authoring Tools for Mobile Phones 

 Programmers Non-programmers 

Low level 

Studierstube Tracker  

M3GE  

ARToolkit for Symbian  

 

High level 
Edgelib 

Studierstube ES  

Python 

FlashLite 
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2.3 Advertising Using Mobile AR  

Mobile phones can do more and more in our lives, not only sending 

messages or making voices call, but also listening to music, watching 

videos or gaming. They also have other features such as GPS navigation, 

build-in cameras, WiFi connectivity, Bluetooth, Internet browsing and  

e-mail, and so on. One of the most interesting applications areas for mobile 

phones is advertising using Augmented Reality. 

For example, early in 2009, Nike ran a mobile AR advertising campaign to 

target teens in Hong Kong to promote the launch of the T90 soccer shoe. 

There were a series of hidden mobile codes all throughout Hong Kong in 

Nike flagship stores and at MTR subway stations (see Figure 2.12(a) and 

(b)). Once the consumers found the markers and pointed their camera 

phone at them, they received an image of a Nike soccer shoe and ball on 

their phone screen and revealed a special code unique to that location. 

After getting the next location, consumers can find out the next secret 

destination by texting in these special codes. Texts, taken as a sweepstakes 

entry, could also win Nike merchandise. Users could use these codes to 

download a mobile application to view the T90 shoe from different angles 

in 3D through their mobile screens (see Figure 2.12(d)). Consumers had 

more chances to win Nike gear if they collected more codes.  
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Consumers could view the virtual product from a variety of different 

viewpoints because of the augmented reality technology, which enables the 

product to be revealed in a dynamic way.  

  
(a) NikeT90 marker (b) Nike flagship & MTR subway 

stations 

 
(c) The real Nike shoe 

 
(d) Viewing through the phone 

Figure 2.12: Nike 3D Mobile Soccer Shoe 
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In 2009, Coca-Cola Europe created a new mobile augmented reality 

advertising application in order to push its Fanta soft drink. This was the 

“Virtual Tennis” mobile game, the world's first 3D augmented reality 

tennis game. It offers two modes: a two-player mode which connects two 

phones so players can compete via Bluetooth; and a single-player practice 

mode where the player hits the ball off a wall. 

 
(a) Single Player 

  
(b) Two Players (c) Court Image 

Figure 2.13: Fanta Virtual Tennis Display 

Players take their positions on either side of a printed “court” (see Figure 

2.13). Once in position, players can see a virtual tennis court through their 

camera phones and hit the virtual tennis ball by using the phones as 

rackets. This ball movement is determined by the angle and position of the 

players’ phone. 
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A mobile AR campaign was also developed for the Ford ‘Ka’ aimed at 

targeting youth. In this case stickers were placed on the streets and the 

sides of buildings. Whenever the consumer used a camera phone to look at 

the sticker, a 3D virtual model of a Ka would appear on the phone screen 

(see Figure 2.14), appearing to float on top of the background video visuals 

in real time.  A URL - GoFindIt.net - is displayed with the movement of 

the phone at particular angle. 

  

Figure 2.14: Ford ‘ka’ 3D Mobile Car Display 

The first commercial AR application for advertising was developed in 

2007. Mobile phone users were invited to download the software, and then 

pointed their phone to the marker image on the newspaper. A 3D model of 

a bear, cheetah, and giraffe will appear on the screen (see Figure 2.15). The 

benefit of advertisment, placed in a major newspaper, reached 750,000 

people, leading to a 32% growth in visitors at Wellington Zoo6. 

                                                 
6 http://theinspirationroom.com/daily/2007/augmented-reality-at-wellington-zoo/ 
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Figure 2.15: Augmented Reality at Wellington Zoo (Image from HITLab) 

Each of these advertising examples required a significant amount of 

programming effort to implement. The goal of our work is to make a tool 

that non-programmers, such as advertising content people, could use to 

rapidly prototype mobile AR applications. 

 

Figure 2.16: Mobile AR Market (Image from Mark Walsh) 

As shown in Figure 2.16, “AR is still a long way from being a widespread 

reality on mobile devices” (Walsh, 2009). However, the authoring tool will 

be needed in the mobile AR market. 
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3 Chapter 3 AR Authoring System  

The AR authoring tool presented in this thesis is designed to help people 

who have no experience in programming to create their own AR scene.  

For example, this tool may help people in the marketing or adverting 

industries to make simple demonstrations to show their clients. 

There are two main components of the AR authoring system: the AR 

authoring tool and the AR viewing tool. In this chapter, we first overview 

the whole system, and then introduce the AR authoring tool. Chapter 4 will 

describe the AR viewing tool in more detail.7 

3.1 Overview of the System  

Figure 3.1 shows the components of the system that we have developed. In 

the rest of the chapter we will describe these system components in more 

detail. 

 
Figure 3.1: The Structure of the AR Authoring System 

                                                 
7 An early version work has been published. WANG, Y., LANGLOTZ, T., BELL, T. & 
BILLINGHURST, M. (2009) An Authoring Tool for Mobile Phone AR Environments. Proc 
NZCSRSC 09, New Zealand Computer Science Research Student Conference. Auckland, New Zealand. 
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The authoring system we have developed is based on a modified version of 

the ComposAR tool. ComposAR is a PC application that allows users to 

easily create AR scenes. It is based on the osgART, ARToolKit and 

wxWidgets libraries.  

The Python language is used to develop the overall ComposAR system. 

The user interface and runtime behavior are not only easy to customize, but 

also easy to test the 3D modules in the authoring environment. This is 

because ComposAR provides a Python based scripting tool for specifying 

the virtual objects in an AR scene. Python can also be used to modify the 

ComposAR interface to create a tool for mobile AR scene authoring. 

In addition to creating a PC based authoring tool, there will also need to be 

a mobile AR viewing tool so that the applications developed can be run on 

a mobile phone. For this we will use a multi-platform game engine that can 

run on both PCs and mobile phones.  The users will quickly prototype AR 

applications on both type devices. 

ComposAR creates an XML file output which specifies the AR scene 

content and interaction in the application. In our work, we create an AR 

viewing application based on the viewing tool library that will read the 

XML file and render the AR scene on a mobile platform. Thus the user 

will be able to author the application on a PC and run it on a mobile phone. 
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3.2 AR Authoring Tool 

The AR authoring tool is an authoring tool that allows the user to create an 

AR scene which associates virtual content with real objects and defines 

interactions for those objects. The HIT Lab NZ has developed a tool for the 

PC for authoring AR applications called ComposAR. Firstly, we describe 

the ComposAR tool in general, and then discuss how we customized 

ComposAR for mobile AR authoring. 

3.2.1 ComposAR 

ComposAR (Seichter et al., 2008) is written in Python by using various 

extension libraries. The overall goal of the design is to keep ComposAR a 

pragmatic tool revealing its advanced features only on demand. In order to 

hide technical aspects such as the projection matrix or the scene-graph 

branch for the video background, the AR component of the application is 

emphasized. It focuses the user’s authoring attempts on the marker content 

and their transformations.  

These are accessed through a tree layout. A node in the tree structure can 

be activated with a single click, highlighting the respective 3D scene object 

and showing manipulation handles. Activating a node facilitates editing it, 

which includes virtual object file loading, or manual entry of 

transformation data, such as the translation, rotation and scale.   
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ComposAR provides a graphical user interface (GUI) divided into three 

panels (see Figure 3.2). This GUI was implemented in wxPython which is 

a wrapper for the cross-platform GUI and system development toolkit 

wxWidgets. In a similar way to wxPython, osgPython8, a comprehensive 

wrapper for the OpenSceneGraph, was developed. The plugins for 

ARToolKit, the GPL version of osgART (Looser et al., 2006) with the 

respective bindings, and various video input sources, is within this 

package. However, the wide variety of plugins is not only available for 

OpenSceneGraph, but also for database loading and writing. 

 
Figure 3.2: ComposAR Interface Components (Image from Seichter et al.) 

 

                                                 
8 OsgPython, http://code.google.com/p/osgswig, online as  of September 2008 
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Seichter et al. described ComposAR as providing “some basic interaction 

approaches based on a standard repertoire common in AR applications, 

including interaction based on fiducially proximity, occlusion, tilting and 

shaking.” (Seichter et al., 2008) 

3.2.2 ComposAR Customization 

In order for ComposAR to be used for developing mobile AR applications, 

it needed to be modified to emulate the small screen size and limited input 

options of mobile phones. The Python language is used to develop the 

overall ComposAR system, so the ComposAR interface can be changed 

using Python code.  

A simplified graphical user interface (GUI) for ComposAR was developed 

to match the form factor of the target mobile phone (see Figure 3.3). It is 

composed of a live video view of the scene with the same resolution as the 

typical mobile phone camera (320 × 240 pixel or 640 × 480 pixels), and a 

virtual keypad that emulates a mobile phone keypad. Camera input is taken 

from a webcam on the PC. With this GUI, the end-users can associate 3D 

virtual models with real AR tracking markers. In addition, it allows users 

to add simple keypad based interactions to the virtual scene.  
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Figure 3.3: The ComposAR-Mobile Interface 

 
As shown in Figure 3.3, there are four panes in the new ComposAR 

interface:  

(a) Scene pane  

(b) Augmented Reality Scene pane  

(c) Keypad pane 

(d) Script pane 
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The Scene pane enables the designer to select markers and 3D models 

stored on the local system and to create links between markers and 3D 

models. Once the marker and corresponding 3D models are linked it is 

possible to change the position, rotation and scale of the assigned 3D 

models in the AR scene. An interaction script in Python can be written in 

the Script pane for specifying the virtual object interactions in the AR 

scene. Keypad based interaction within the AR scene can be simulated 

using the virtual keypad in the Keypad pane.  

The keypad panel has several functions, such as scaling and rotating the 3D 

models, and browsing all 3D models within the file folder. An example 

code for integrating the keypad pane in the python code is shown in Figure 

3.4.  

 

Figure 3.4: The Python Code for Keypad Functionality 
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In example 3.4, when Buttons “1”, “2”, “3”, “4” are clicked in turn, the 

corresponding 3D model will appear on the marker (as seen in Figure 3.5 ):  

• Button One: A plane  (Figure 3.5a) 

• Button Two: A spaceship (Figure 3.5b) 

• Button Three: A camel (Figure 3.5c) 

• Button Four: A truck (Figure 3.5d) 

 
(a) Plane (b) Spaceship 

 
(c) Camel (d) Truck 

Figure 3.5: Different 3D Model on the Marker When the Button is Clicked 

Another scripts example (see Appendix A) is for the rotation function. 

When Buttons “*” or “#” is clicked in turn, the corresponding 3D model 

will rotate on the marker. 
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In order to make this tool easy to use, the interface has been changed a 

little. Two icons and one tool have been added in a toolbar below the menu 

panel.  As shown in Figure 3.6, users can add a marker more easily than 

before by clicking on a button in the toolbar. The pattern generator allows 

the users to create their own markers. This will be described in detail in 

Chapter 5. 

 
(a) ComposAR 

 

 

(b) Modified ComposAR 
 

Figure 3.6: Different Interface of ComposAR 

One of the advantages of using ComposAR is that scripts are interpreted, 

so that immediate feedback on the fly can be seen from the Augmented 

Reality Scene panel if any of the content is updated. 

 

       QuitAdd a Marker 

Pattern Generator
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4 Chapter 4 AR Viewing Tools 

In addition to replaying the created AR scene from the PC based authoring 

tool, a mobile AR viewing tool was needed. The loaded XML file was 

produced by the ComposAR tool and rendered it onto a live video stream 

to create AR viewing on the mobile phone. This will provide a mobile 

authoring tool that a person can use to author an AR application on a PC 

and run on a mobile phone.  

In this chapter, we will describe the AR viewing applications that we have 

developed for desktop and mobile AR applications.  

There are two different desktop AR viewing tools that we have developed 

during this research. These are used to load the AR scenes created in the 

ComposAR application and test them before running them on a mobile 

phone. The first prototype is based on the Edgelib library, and a second 

later prototype is based on the Studierstube ES library. Each of these 

software libraries has its own advantages and disadvantages. In the 

following sections we will describe the Edgelib and Studierstube 

applications respectively in more detail. 

4.1 Edgelib 

Edgelib (Edgelib, 2008) is a powerful C++ multi-platform game engine for 

mobile devices. It enables users to develop high-quality applications and 

high-performance games through different platforms, such as Windows 
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Mobile phone, Symbian phone, Linux/Windows desktop, Apple iPhone or 

iPod Touch, and so on.   

Edgelib has two key features: One is a device independent API for Multi-

platform development, and the second is a device independent API for 

high-performance graphics. 

4.1.1 Multi-platform Deve1opment 

Edgelib features a true multi-platform independent API. It operates as a 

generic interface and makes use of all of its key features for all supported 

platforms.  Edgelib currently supports the platforms shown in Table 4.1.   

Table 4.1: Platforms Supported by Edgelib 

Mobile Phone 

Windows Mobile Symbian Series Apple 

Pocket PC Smartphone Series 60 Series 80 Series 90 iPhone iPod Touch 

  

N-Gage™
 6680 
 E60 
 N95 

92xx 
9300 
9500 7710   

Desktop Game Console 

Windows Linux GPH9 Gizmondo 

2000/XP/Vista X11 F-100/F-200 Windows CE 

 

                                                 
9 GPH: GamePark Holding 
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For Windows Mobile all kinds of screen resolutions are supported, 

including 176×220, VGA, WVGA, QVGA, and QWVGA. The new screen 

resolutions for Symbian (such as 320×240 and 352×416) are also fully 

supported.  

4.1.2 High-performance Graphics 

The Edgelib library can draw 2D and 3D graphics on each device in full 

screen mode. 3D models contain a vertex list that is linked into polygons. 

Models can be created manually or loaded from 3D Studio Max (.3ds), 

MilkShape 3D (.ms3d) or Edgelib 3D (.e3d) files. Even animated 3D 

models can be loaded. Models can be drawn by using either OpenGL ES or 

Edgelib's fast internal 3D renderer. The Edgelib animation functions 

support translation (movement) and rotation animations. This internal 

platform uses an independent 3D engine if OpenGL ES is not available. 

Figure 4.1 shows screen shots of sample Edgelib applications. 

 
(a) Simple 3D objects (b) 3D objects with texture mapping 

Figure 4.1: Screen Snapshots of 3D Objects from Edgelib 
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In Figure 4.1(a), the objects are drawn with no shading, while an animated 

turtle MilkShape 3D model is shown in Figure 4.1(b). The turtle can move 

and rotate on the texture mapping block. The different views (front, side, 

top and whole model) of this turtle 3D model are shown in Figure 4.2. 

 
 

Figure 4.2: Turtle 3D Model in MilkShape 3D. Model by psionic3d.co.uk 

There are total 150 frames of this animated turtle 3D model. Figure 4.3 

displays four frames of it. This turtle 3D model can be rendered very fast in 

the Edgelib application.  The frame rate on the screen is 59-60 fps. 

 
    

Figure 4.3: Four Frames of an Animated Turtle Model in MilkShape 3D 
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The pictures (Figure 4.4) below demonstrate each rendering method: 

wireframe, no shading, flat shading, gouraud shading, and texture 

mapping. They are the key features in the internal 3D engine. 

 
Wireframe No shading Flat shading 

 

Gouraud shading Texture mapping  
   

Figure 4.4: Rendering Methods in Edgelib (Image from Edgelib website) 

 

4.1.3 Edgelib Integration with ARToolKit on a  Desktop PC 

Since both the ARToolKit and the Edgelib libraries run on Symbian and 

Windows Mobile phones, and on the desktop, any desktop AR applications 

built by using these libraries should be able to be ported to a mobile phone.  

However, video capture from a camera is currently not supported by the 

Edgelib libary, so in order to develop an AR viewer application we need to 

integrate the Edgelib library with the ARToolKit tracking library for AR 

tracking.  
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The image frames of the video source captured from an attached camera 

need to be made available to the tracking component and scene graph. The 

image frames are needed not only by the tracker in order to locate markers 

and calculate transformations, but also by the scene graph to display the 

real world behind the virtual objects. Once the tracker locates a marker and 

calculates its transformation, that information is transferred within the 

scene graph. 

The tracker provides a projection matrix which determines a perspective 

projection used to display the 3D graphics. The intrinsic camera parameters 

which the tracker uses are necessary to accurately track markers, and the 

correct projection matrix is needed for the resulting transformations to 

align the virtual objects with the live video. The video frames captured 

from the camera can be made to be continuously uploaded into a texture as 

the background. Figure 4.5 shows the sample code to copy background 

data to the Edgelib surface. 
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/* A pointer to the memory data of the locked surface.*/ 
unsigned char *memptr = background.Lock(&info); 

/* If this is not NULL, it will be filled with detailed surface information. */ 
if (memptr) { 

  unsigned long yctr; 
/*The cparam variables need to be replaced by your own variables to 

determine the properties of the captured image. */  
  for (yctr = 0; yctr < (unsigned long)cparam.ysize; yctr++) { 

ClassEMemory::Copy( &memptr[yctr * info.realpitch],  
&dataPtr[yctr * cparam.xsize * info.bitwidth / 8],  
cparam.xsize * 32 / 8 ); 

  } 
/* This unlocks a previously locked surface */ 

  background.Unlock(); 
 } 
/* Draw the background picture*/ 
DrawBackground(display);    

Figure 4.5: Sample Code for Edgelib Surface Setting 

The settings for the attached camera settings can be seen in Figure 4.6. In 

this case the frame rate is automatically set to 15 FPS (frames per second) 

and the output screen size is 640 × 480 pixels with the setup.  

 

Figure 4.6: Camera Setting Pop-up Window 
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Once the camera captures the images, we can lock the back buffer and 

manually copy the pixel data to the surface. It is very important to set the 

camera field of view in Edgelib to the same as the real camera connected to 

the desktop, otherwise we will get an incorrect display as shown in Figure 

4.7(a). This resulted from a setting of 640 × 480 pixels in Edgelib whereas 

the real camera view was 320 × 240 pixels. Since they are not the same 

view size, the display is incorrect. However, as shown in Figure 4.7(b), the 

correct results are produced when both Edgelib and the real camera view 

are set to 640 × 480 pixels. 

 

(a) Wrong setting (b) Correct setting 
  

Figure 4.7: Camera View Setting for the Edgelib 
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Edgelib used the following command: 

ERESULT OnDisplayConfig(EDISPLAYCONFIG *config) 
 
to configure the display properties. The default width and height setting for 

the desired resolution or size of the window for Windows desktop 

applications is 240 × 320 pixels.  

There are many view sizes for the camera, for example: 160 × 120 pixels, 

320 × 180 pixels, 320 × 240 pixels, 640 × 480 pixels. In order to make the 

application flexible, we want to use the real camera to set up Edgelib view 

rather than set up the default value which is 640 × 480 pixels.  Figure 4.8 

shows the code we wrote for setting up the virtual camera in Edglib.  
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//Configure display 
ERESULT ClassMain::OnDisplayConfig(EDISPLAYCONFIG *config) 
{ 
 ARParam  wparam; 
 ClassEStd::StrCpy(config->caption, "Hello World!"); 
 config->icon = IDI_MAIN; 
 
     /* open the video path */ 
   if( arVideoOpen( vconf ) < 0 ) exit(0); 
   /* find the size of the window */ 
  if( arVideoInqSize(&xsize, &ysize) < 0 ) exit(0); 
  printf("Image size (x,y) = (%d,%d)\n", xsize, ysize); 
 
  /* set the initial camera parameters */ 
  if( arParamLoad(cparam_name, 1, &wparam) < 0 ) { 
         printf("Camera parameter load error !!\n"); 
         exit(0); 

} 
arParamChangeSize( &wparam, xsize, ysize, &cparam ); 
arInitCparam( &cparam ); 

     printf("*** Camera Parameter ***\n"); 
     arParamDisp( &cparam ); 
 
   if( (patt_id=arLoadPatt(patt_name)) < 0 ) { 
         printf("pattern load error !!\n"); 
         exit(0); 
  } 
 
   /* open the graphics window */ 

argInit( &cparam, 1.0, 0, 0, 0, 0 ); 
 arVideoCapStart(); 
 
 /*Desktop resolution (we an change the background size to mobile 
phone 320*240 or 260*220)*/ 
 config->width =cparam.xsize; 
 config->height =cparam.ysize; 
 
 /*Other options*/ 
 config->orientation = DOR_AUTO; 
 config->engineconsole = false; 
  
 return(E_OK); 
}     

 
    

Figure 4.8: An Example Code to Set Up the Virtual Camera 
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Figure 4.9(b) shows a virtual cube with six different colours, which has 

been programmed to appear on a single marker. It is a snapshot of the AR 

viewer using Edgelib which integrates with ARToolKit. 

(a)Video test screenshot (b)Simple AR application created with 
Edgelib 

Figure 4.9: Prototype AR Viewer Using Edgelib 

 

 

4.1.4 Input XML File 

The AR viewer should load the XML file produced by the ComposAR tool 

and render it onto a live video stream to create an AR view. The XML file 

contains all the information about the AR scene including the virtual 

objects and their transformation. Unfortunately, Edgelib only uses an 

XML-RPC node10 which is a single element in the data tree to store data. 

The node can be used to access the parent, children and siblings easily, but 

it has only limited flexibility because of the simplicity of its architecture, 

                                                 
10  Edgelib SDK 3.60 released on March 25, 2008 
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leading to potential complexity as the number of different requests 

increases.   

To represent the values, XML-RPC defines several basic data types, such 

as integers, floating-point numbers, Boolean values, strings, date-times and 

Binary, and for compound data structures, such as arrays and structs. 

In this research, we use the data type XML-RPC arrays, which are best 

thought of as untyped lists because the data items within an array may be 

of any type, simple or compound. However, the data items we use are not 

the same types; they can be represented as multidimensional arrays by 

embedding an array within an array.  

In general, elements in a normal XML document may contain mixed 

contents which can be both text and other elements. For example,  

<animal name="dog" legs="4"/> 

However, XML-RPC does not use this feature. To keep things simple, it 

uses only elements. Elements in XML-RPC contain either text-only text or 

other elements only. The example above should be: 

<animal><name>dog</name><legs>4</legs></animal> 

XML-RPC also defines the XML payload, which contains information 

about the method to invoke.  The very important part is the parameter list 

enclosed by the <params> element which may contain zero or more 



 

55 

<param> elements. Even if the method requires no parameters, the 

<params> element must still be present. The following example in Figure 

4.11 shows how the different platforms can be used in Edgelib. Its 

structure is shown in Figure 4.10. 

 

Figure 4.10: An Example of XML-RPC Structure 

As we known, Windows Mobile has Pocket PC and smartphone. But in the 

example, we have to use two child nodes instead of one category by using 

XML-PRC structure. The same situation is for the Symbian phone. We use 

three nodes for the Symbian phone category. 
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   <?xml version="1.0" encoding="iso-8859-1" ?>  
    -<methodResponse> 
     -<params> 
      -<param> 
       -<value> 
        -<struct> 
         -<member> 
                 <name>Platform</name>  
          -<value> 
           -<array> 
            -<data> 
             -<value> 
                           <string>Windows Mobile Pocket PC</string>  

                  </value> 
             -<value> 
                            <string>Windows Mobile Smartphone</string>  

                   </value> 
             -<value> 
                           <string>iPhone</string>  

                   </value> 
-<value> 
    <string>Symbian Series 60/S60</string>  
 </value> 
-<value> 
    <string>Symbian Series 80</string>  

       </value> 
-<value> 
    <string>Symbian Series 90</string>  

       </value> 
-<value> 
    <string>GP2X</string>  

       </value> 
-<value> 
    <string>Gizmondo</string>  

       </value> 
-<value> 
    <string>Windows desktop</string>  

       </value> 
</data> 

            </array> 
           </value> 
          </member> 
        </struct> 
      </value> 
    </param> 
   </params> 
  </methodResponse> 

 

 
   

Figure 4.11: An Example Code for the XML-RPC Structure 
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In order to use Edgelib, we have to let ComposAR export the XML-RPC 

format. Figure 4.13 shows an example for an output XML file which has 

many tags in it created by the ComposAR tool.  It contains the truck model 

(see Figure 4.12) information and the marker information, which specifies 

the file of the virtual object and its location, which marker associate with, 

and the virtual object translation, rotation, and scale. 

 

Figure 4.12: A Truck Model in the AR Viewer 
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  <?xml version="1.0" ?>  
       - <composar os="nt" utc="Thu, 21 May 2009 16:30:34 +0000" version="0.1"> 
          - <scene> 
         <videos />  
              <trackers />  
            - <markers> 
               - <params> 
                 - <param> 
                   - <member> 
                        <name> marker</name>  
                         - <marker> 
                            - <value> 
                               - <array> 
                                 - <model> 
                                    - <value> 
                                        <string>C:\MastersProjects\Demo\ComposAR\Data\model\truck.

3ds</string>  
                                  </value> 
                     </model> 

                                   - <name> 
                                      - <value> 
                                         <string>C:\MastersProjects\Demo\ComposAR\Data\patt.hiro</st

ring>  
                                    </value> 
                                 </name> 

                                   - <position> 
                                      - <value> 
                            <string>[0.0, 0.0, 20.0]</string>  

                     </value> 
                                 </position> 

                                   - <rotation> 
                                      - <value> 
                                           <string>[0.0, 0.0, 0.0]</string>  

                                    </value> 
                                </rotation> 

                                  - <scale> 
                                    - <value> 
                                         <string>[5.0, 5.0, 5.0]</string>  

                    </value> 
                               </scale> 

                                 - <script> 
                                   - <value> 
                                        <string>None</string>  

                    </value> 
                   </script> 
                              </array> 
                           </value> 
                        </marker> 
                     </member> 
             </param> 
               </params> 
            </markers> 
         </scene> 
      </composar>                           

 

 

Figure 4.13: XML File for the Truck Model from ComposAR Tool 
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4.2 Studierstube ES 

Studierstube ES (StudierstubeES, 2008) is a general handheld AR 

platform. It enables handheld devices to run AR applications. It has cross-

platform support for a variety of platforms, such as Windows XP/Vista, 

Windows CE/Mobile, Gizmondo, Mac OS/iphone, Linux and Symbian 

series 60. 

Studierstube ES has components for addressing graphics, handling video, 

tracking, rendering, and so on. In order to make an application that can be 

run independently of any infrastructure and scale to an arbitrary number of 

simultaneous users, processing is done natively on the handheld device. 

Typical frame rates on smartphones are in the order of 5-30 fps, depending 

on the content and device (Dieter and Daniel, 2008). 

The structure of Studierstube ES is shown in Figure 4.14. There are two 

general levels in the software stack of the Studierstube handheld AR 

framework. The lower levels such as Core, Math, IO, Tracker, and 

Muddleware provide the basic functionality that an AR system requires. 

Studierstube ES (Embedded System) and SG (Scene-Graph) combine these 

services in a high-level layer for the applications running on top of it. 
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The core components essential for AR are the Studierstube Tracker which 

is a real-time fiducial tracking component, and Studierstube Scene Graph 

which is a rendering engine running on top of OpenGL ES or Direct3D 

Mobile. 

 

Figure 4.14: Structure of  Studierstube ES ( from Studierstube ES Website) 
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Studierstube Tracker supports a wide variety of markers (see Figure 4.15): 

Template marker, ID marker, DataMatrix marker, Frame marker, Split 

marker, and Grid marker. In our research, we use the Template marker 

which recognizes an image either colour or not placed inside a black 

rectangle.  

 

Figure 4.15: Different Markers Types Supported by StbTracker (a) 
Template Marker (b) ID Marker (c) DataMatrix Marker (d) Frame Marker 
(e) Split Marker (f) Grid Marker 

 
One of the components of StbES can work with XML files. It uses a 

modified version of the TinyXML11 library for parsing, loading and saving 

XML files (Yeoh, 2005). 

The four main tasks that this research is focused on are:  

• how to make the configuration,  

• how to set up the video,  

• how to configure the tracking subsystem, 

• how to set up scene graph. 

                                                 
11 TinyXML is a simple, small, C++ XML parser that can be easily integrated into other 
programs. 
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4.2.1 Configuring StbES 

 
StbES can be configured by using XML configuration files. However, the 

main configuration of StbES for Windows XP and Windows Mobile is 

almost the same. Both of them must set StbES as the root node, and they 

can have other nodes such as Tracker, Logging, Window, RenderTarget, 

Background, Video, Audio, Scene, WidgetManager, Application, and GUI. 

The screen rendering size is different between Windows XP and Windows 

Mobile, so the main differences between Windows XP and Windows 

Mobile are the RenderTarget and Video as in Table 4.2. 

The most important node parameters are listed as follows: 

 
 Logging is a tool for debugging the crashes.  It lets the system create a 

log file which saves a lot of debug time since it provides information 

about errors and relevant events in the system at runtime. 

 RenderTarget can create both software and hardware renderings.  It 

not only makes off-screen render targets allowing direct video 

memory access, but also makes on-screen render targets for 

acceleration. “PixMap” is used when the target device does not feature 

dedicated video memory. 
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Table 4.2: The Important Node for the Windows XP and Mobile Platform 

                    Platform

Important Node  
Windows XP Windows Mobile 

StbES must be the root node 

level = [OFF | ERROR | WARNING | INFO] 

draw-fps = [true | false] Logging 

file = FILENAME 

width 

height 

rotation 
Window 

fullscreen= [true | false] 

RenderTarget 
type = [PIXMAP | 
WINDOW] 

type = [PIXMAP | 
VIDMEM] 

pixels = [OFF | IMAGE | COLOR] 

Background colorValue = “1 0 0 1” (RGBA) 

type = [IMAGE | 
DSVL] 

type=[IMAGE | 
DSVideoCE] Video 

file =FILENAME 

Audio enabled = [true | false] 

Scene file = FILENAME 

WidgetManager font, char-width, char-height 

Tracker displayInfos= [true | false] 

Application name =NAME 

GUI exitkey = CODE_OF_KEY 
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 Video is a major importance node. It contains many types of the video 

source such as Gizmondo device.  Alternatively developers can 

manually select a specific video mode and configure cropping, format 

conversion, and zooming. 

 

4.2.2 Video Configuration 

 
The video input can come from either a camera video or an .avi file. The 

video configuration file is different from Windows and Windows CE 

devices. However, they both use the “xml” tag in the first line which is just 

an information header. 

The file dsvl.xml is used to configure the DirectShow Video Library for 

Windows. Figure 4.16 shows a sample video configuration file for 

Windows.  

 

Figure 4.16: An Example of Windows Video Configuration File 
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In the sample code as shown in Figure 4.16, the camera setting is: 

 The video frame size is 320 × 240 

 The video frame rate is 30 

 There is no dialog box shown there 

 The color format of the camera is RGB56512. 

The file dsvideoce.xml is used to configure the DirectShow Video for the 

Windows CE library. It is only needed if a user wants to configure the 

video settings. Figure 4.17 shows a sample video configuration file for a 

Windows CE device. 

 

Figure 4.17: An Example of WindowsCE Device Video Configuration File 

In this example code as shown in Figure 4.17, we use DirectShow to  filter 

the standard DSVideoCE library. The “width” and “height” fields take the 

size of the camera image, which is 320 × 240 in our test configuration.  

The “width” and “height” fields define the output image size which is 240 

× 240.  

                                                 
12 The mode is used in many devices with color screens. 
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4.2.3 The Tracking Subsystem 

StbTracker tracking is based on finding key features. The tracker 

automatically connects them in a pipeline: Once a tracker is created, then 

the features can register one by one, it passes the frame to the tracker, 

finally, the tracking results will gain. Figure 4.18 shows a sample 

configuration for the tracking subsystem. 

 

Figure 4.18: An Example for Configuring the Tracking Subsystem 

The “StbTracker” tag states the StbTracker tracking system. The system 

calculates the position of the camera relative to the position of a special 

marker. For the tracking, a calibration file which compensates for the lens 

distortion of the particular camera should be loaded. In the example as 

shown in Figure 4.18, we use the default calibration file on desktop for this 

research.  The size of the video frames captured by the camera is 320 × 

240. 

“TrackingTargets” are here the fiducial markers, the ID of which has been 

registered with the tracking system, and which hold relevant application 
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functionality. These targets are needed to calculate the relative camera pose 

to the marker. In this example, a single template marker is used. 

As we mentioned in Section 4.2, the template marker allows placing an 

image inside the rectangle (see Figure 4.15).  This marker layout image is 

the same as the marker we use in ComposAR authoring tool, although the 

file formats of the markers are quite different. In order to convince the end 

user, the pattern generator also can create different marker formats for each 

tool. This will be described in detail in Chapter 5. 

4.2.4 Scene Graph File: scene.xml 

The scene file contains the field connections to the tracking system and 

traverses the scene graph for rendering. Figure 4.19 shows a sample scene 

graph file. 

 

<?xml version="1.0" encoding="UTF-8"?> 
<Scene name="MyScene"> 

<MatrixCamera projMatrix="REF StbTracker.projMatrix" /> 
<TransformSeparator active="REF TestTarget.visible"> 

<MatrixTransform matrix="REF TestTarget.matrix" /> 
<LightSeparator> 

<DirectionalLight direction="-1 -0.5 0.3" /> 
<Transform name="PlayerTransform" 
translation="0 0 40" /> 
<Cube width="80" height="80" depth="80" /> 

</LightSeparator> 
</TransformSeparator> 

</Scene> 

 

 

Figure 4.19: An Example of Scene Graph File 
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In the example code, the projection matrix of a real camera was used, and 

loaded the projection matrix which is needed to project the 3D objects into 

2D image space. The value of the “projMatrix” field is part of the 

“Tracker” node. The node and its fields are defined in the “config.xml” 

file. The transformation separator is currently in use in this example. It is 

only affects the objects inside the enclosure.  “MatrixTransform” loaded the 

transformation matrix of the marker called “TrackingTarget”, so that the 

position and orientation of 3D objects defined below depend on the 

marker’s transformation.  

In the example, a simple cube with an edge length of 80 is displayed on the 

marker, see Figure 4.20.   

 
Figure 4.20: Screenshot of the Example 
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5 Chapter 5 AR Pattern Generator 

The AR Pattern Generator is a tool for producing the marker for this AR 

application. This is a modified vision from BuildAR (Looser, 2008). It not 

only can output the pattern file, but also can print out the image file as a 

marker. This is very convenient for the user who wants to create their own 

markers for the AR application.  

In this research, there are two types of markers used: ComposAR uses the 

ARToolKit marker with the file format is .patt file, and the StbES uses the 

template marker with the file format is .pgm file.  However, both of them 

have one common feature: the image is inside the black square.  The 

important thing is that the markers’ pattern file must use the same name, 

but different file type for the two applications.  

5.1 User Interface 

 
The background is an 800 width by 800 height black rectangle with 400 

width by 400 height white rectangle centered in the middle, as shown 

below in Figure 5.1. 
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Figure 5.1: AR Pattern Generator Interface 

The user can insert a colorful or non color image inside the white place, 

and the program can scale the input image to 16 × 16 pixels. The format of 

the insert image can be BMP, PNG or GIF. There are two save icons for 

saving the two types of pattern files. This generator also can print preview 

and print out the marker.  

5.2 Pattern Files  

Pattern files are files that contain data that represents the image in the 

center of a marker. Although one or more pattern files can be loaded at the 

same time, the program still knows what markers we are looking for in the 
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video stream. Pattern files also can be tracked from other squares objects in 

the scene, and enable to distinguish one marker from another. 

5.2.1 ARToolkit Marker Pattern File 

The format of the pattern file for the ARToolKit marker is the .patt file, 

which is a low resolution data file used by the tracking library to identify 

the marker. It uses red, green and blue which are 8 bit unsigned integers in 

the range of [0,255] to present the inserted image values. 

5.2.2 StbES Marker Pattern File 

 
The output pattern file for the StbES marker is a .pgm file, which is the 

lowest common denominator grayscale file format. PGM means Portable 

Gray Map. It uses the luminance component of the inserted image to 

convert to greyscale image. The luma value is calculated by using  

Luma = 30% Red + 59% Green + 11% Blue 

In the formal, the weightings 30%, 59%, and 11% are chosen to closely 

match the sensitivity of the eye to red, green, and blue. 

 
5.3 Marker Preview and Printing 

Users also can print out the marker.  This is the preview for the created 

marker. Figure 5.2 shows the example that is created by this tool. (a) is the 

original image, (b) is the marker view and (c)is the print preview. 
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(a) The original image 

(b) The marker view (c) The print preview 

Figure 5.2: An Example of a Marker 
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6 Chapter 6 Evaluation and Result 

This chapter describes an experiment to test the ComposAR authoring tool 

when used by the programmers and the non-programmers and its 

performance compared to different authoring tools.  

6.1 Experimental Task and Design 

In order to evaluate our AR authoring tool, we compared it to other two 

applications:  

(1) BuildAR which is a PC based AR authoring tool that enables users to 

create a simple augmented reality scene on the desktop. 

(2) Notepad ++ which is an XML editor and not an AR authoring tool 

called. It is a free source code editor. One of its main features is XML 

syntax highlighting and folding. 

The experiment follows a 3 × 3 × 2 repeated measures design. The two 

user groups were programmers and non-programmers. The programmer 

means someone who can write or debug any computer programs, while the 

non-programmer means someone who seldom or never writes any codes 

for programming. There were three tasks, and the three authoring tools 

used were ComposAR, BuildAR, and an XML editor. 

In the experiment participants had to finish a set of three standard 

authoring tasks using each tool.  The task descriptions are as follows: 
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Task One: Model Loading 

• Add the first marker to the AR scene 

• Load the first model on the marker 

• Add the second marker to the AR scene 

• Load the second model on the marker 

Task Two: Model Manipulation 

Subjects were given a sample AR scene (see Figure 6.1(a)) that already had 

one model on an AR marker. Using an empty marker, subjects had to load 

the same model on it and then make it the same size and position of the 

first model (see Figure 6.1(b)) by using the translate, rotate and scale 

functions. 

 

(a) The Sample AR Scene  (b) The Target AR Scene 

Figure 6.1: A Target Authoring Scene 



 

75 

Task Three: Model Viewing 

There were several model files within one folder on the computer. Subjects 

were told to load and view them one by one using the AR authoring tool. 

For the ComposAR authoring tool subjects also completed an additional 

task where they loaded a “jeep” model, created an XML file of the scene, 

and then loaded that file on a mobile phone AR viewer to see the AR view 

of the jeep on the phone. 

The participants completed the tasks using all three authoring tools in a 

counterbalanced order to reduce learning effects. The first tool was 

randomly chosen when a participant started the experiment.  

6.2 Experimental Measures 

After the participants finished each task, they filled out a questionnaire 

about the tool they just used and the tasks they just finished, and how they 

felt about the tool interface. Then the participants moved on to another 

authoring tool. After the participants used all the three different tools, they 

filled out another questionnaire asking them to rank the conditions in 

several categories.   

In addition, the Task Completion Time and Number of Errors made were 

also captured. The Task Completion Time was measured as the time it took 

each person to complete the task. Errors were measured as how many 



 

76 

errors were present after the user thought they had completed the task 

correctly. There could be two types of errors: the wrong result, and clicking 

in the wrong place but eventually figuring out correct place. 

The introductory instructions to the participants emphasized the focus on 

introducing the tool interface and the need to learn how to use the tool. 

Users were asked to complete the tasks with as fewer errors as possible.  

There were 30 participants (12 female and 18 male), aged from 21 to 35 

years old. 12 people stated that they had never or seldom written any 

computer programs before, these were the non-programmers group, the 

remaining participants were programmers. The experiment lasted about 

one hour for each user using the three tools, including the introduction and 

a short concluding discussion. Data analysis was performed by using SPSS 

version 17 and the main effect was tested using a repeated ANOVA 

analysis. If a main effect was found, pair-wise post-hoc comparisons were 

performed by using the Bonferroni adjustment for multiple comparisons.  

The questions the participants had to answer after each tool can be grouped 

into four main categories: performance of the task, ease of completing the 

task, feeling of control and liking using. Subjects were asked to mark on a 

scale of 1 to 7 how much they agreed or disagreed with the statements (1 = 

Strongly Disagree and 7 = Strongly Agree). Appendix B includes the 

original questionnaires that were handed out to the participants. 
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6.3 Results 

In this section the results from the experiment are presented. Two groups 

(programmers and non-programmers) performed the same three tasks by 

using the three different tools; Table 6.1 shows the average amount of time 

it took to complete task one (Model Loading) using each tool. 

Table 6.1: Average Time (Std. Error) to Perform Task One 

Tool Non-Programmer Programmer 
ComposAR    95.31s (12.17) 102.38s (10.97) 

BuildAR 108.54s (12.86)   99.19s (11.59) 
XML 319.62s (25.45) 218.94s (22.94) 

 

An ANOVA analysis found a significant difference (F (1, 27) = 4.972, P < 

0.05) in the time the non-programmers and programmers took when they 

performed this task. Mauchly’s test indicates that the assumption of 

sphericity had been violated; therefore the degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity. Doing this we 

found a significant difference between the three different tools (F (1.58, 

42.669) = 72.958, P < 0.05) in the time it took to perform the task, and also 

a significant interaction between two groups and the different tools (F 

(1.58, 42.669) = 6.535, P < 0.05).  

A post-hoc analysis with Bonferroni correction showed a pair-wise 

difference between the ComposAR and the XML editor, and the difference 

between the BuildAR and the XML editor, but no difference between the 
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ComposAR and the BuildAR. So using the ComposAR and the BuildAR 

tools was both faster than using the XML editor. 

The numbers of times users make a mistake were counted while they 

performed task one (Model Loading). Table 6.2 shows the average number 

of user errors in completing task one. The errors were including: users 

clicked in the wrong place, users forgot to save file, and users loaded the 

wrong marker files or AR scene files. 

Table 6.2: Error Taken (Std. Error) to Perform Task One 

Tool Non-Programmer Programmer 
ComposAR 0.54 (0.29) 0.88 (0.26) 

BuildAR 1.15 (0.28) 0.63 (0.25) 
XML 2.77 (0.52) 0.88 (0.47) 

 

An ANOVA analysis found a significant (F (2, 54) = 4.796, P < 0.05) 

interaction between the two groups and the different tools, a significant 

difference (F (1, 27) = 5.815, P < 0.05) in the errors non-programmers and 

programmers made, and a significant difference (F (2, 54) = 5.428, P < 

0.05) in errors made with the three different tools.  

A post-hoc analysis with Bonferroni correction showed a pair-wise 

difference between the ComposAR and the XML editor, and a difference 

between the BuildAR and the XML editor, but no difference in the errors 

made with the ComposAR and the BuildAR tools. Using the ComposAR 
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and the BuildAR, users made fewer errors than using the XML editor, and 

programmers made fewer errors than non-programmers. 

Table 6.3 shows the average time it took to complete task two (Model 

Manipulation) using each tool. 

Table 6.3: Average Time (Std. Error) to Perform Task Two 

Tool Non-Programmer Programmer 
ComposAR   98.92s (27.76)   75.07s (25.70) 

BuildAR 236.17s (22.14) 132.43s (20.50) 
XML    63.75s  ( 6.93 )   48.07s  ( 6.42) 

 

An ANOVA analysis found no significant (F (1.282, 30.771) = 2.821) 

interaction between the two groups and the different tools. However, a 

significant difference was found (F (1, 24) = 9.101, P < 0.05) between the 

non-programmers and the programmes in the time to do task two. 

Mauchly’s test indicated that the assumption of sphericity had been 

violated; therefore the degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity. When this was done, a 

significant difference was found (F (1.282, 30.771) = 21.381, P < 0.05) in 

the time to do the task between the three different tools. 

A post-hoc analysis with Bonferroni correction showed a pair-wise 

difference between the ComposAR and the BuildAR tools, and a 

difference between the BuildAR and the XML editor, but no difference 

between ComposAR and the XML editor. It took longer time using the 



 

80 

BuildAR application to complete task two than using ComposAR, and it 

also took longer time with the BuildAR than the XML editor. 

The numbers of times users made a mistake were counted while they 

performed task two (Model Manipulation). Table 6.4 shows the average 

number of user errors in completing task two. The errors were including: 

users clicked in the wrong place, users forgot to save file, users loaded the 

wrong marker files or AR scene files, and users gained the wrong results. 

Table 6.4: Error Taken (Std. Error) to Perform Task Two 

Tool Non-Programmer Programmer 
ComposAR 1.80 (0.33) 0.54 (0.32) 

BuildAR 9.17 (1.33) 4.38 (1.28) 
XML  0.50 (0.21) 0.46 (0.20) 

 

An ANOVA analysis found a significant difference in the number of errors 

between the programmers and the non-programmers (F (1, 23) = 8.656, P 

< 0.05). Mauchly’s test indicated that the assumption of sphericity had 

been violated; therefore the degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity. Doing this we found a 

significant difference between the three different tools (F (1.075, 24.721) 

= 38.740, P < 0.05), and a significant interaction between the two groups 

using the three different tools (F (1.075, 24.721) = 5.235, P < 0.05).  

A post-hoc analysis with Bonferroni correction showed a pair-wise 

difference between the ComposAR and the BuildAR tools, and a 
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difference between the BuildAR and the XML editor, but no difference 

between the ComposAR and the XML editor. Users using the BuildAR 

made more errors than using ComposAR, and the BuildAR users also 

made more errors than the XML editor users in performing task two. 

Table 6.5 shows the average performance time for each tool for task three 

(Model Viewing).  

Table 6.5: Average Time (Std. Error) to Perform Task Three 

Tool Non-Programmer Programmer 
ComposAR   33.67s (  8.69)   38.93s (  7.77) 

BuildAR   56.08s (  9.73)   63.13s (  8.71) 
XML 173.67s (21.60) 150.53s (19.32) 

 

An ANOVA analysis found no significant difference (F (1, 25) = 0.073) in 

the task time between the non-programmers and the programmers. But, 

Mauchly’s test indicated that the assumption of sphericity had been 

violated; therefore the degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity. Doing this we found a 

significant difference (F (1.548, 38.699) = 58.851, P < 0.05) between the 

three authoring tools, and a significant interaction (F (1.548, 38.699) = 

0.942, P < 0.05) between the two groups of users and the three tools.  

A post-hoc analysis with Bonferroni correction showed pair-wise 

differences between all the three tools. It took people more time to 

complete the task with the XML editor than with the BuildAR, the 
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BuildAR user also took more time than with the ComposAR, and XML 

editor required more time than with the ComposAR. Therefore, the 

ComposAR application is the fastest tool for completing task three. 

The numbers of times users made a mistake were counted while they 

performed task three (Model Viewing). Table 6.6 shows the average 

number of user errors in completing task three.  The errors were including: 

users clicked in the wrong place, users forgot to save file, users loaded the 

wrong marker files or AR scene files, and users gained the wrong results. 

Table 6.6: Error Taken (Std. Error) to Perform Task Three 

Tool Non-Programmer Programmer 
ComposAR 0.00 (0.12) 0.20 (0.11) 

BuildAR 0.33 (0.38) 0.53 (0.28) 
XML 0.83 (0.27) 1.07 (0.25) 

 

An ANOVA analysis found no significant difference (F (1, 25) = 1.151) 

between the non-programmers and the programmers in the number of 

errors. But, Mauchly’s test indicated that the assumption of sphericity had 

been violated; therefore the degrees of freedom were corrected using 

Greenhouse-Geisser estimates of sphericity. Doing this we found a 

significant difference (F (1.576, 39.391) = 6.785, P < 0.05) between the 

three different tools, and no significant interaction (F (1.576, 39.391) = 

0.003) between the two groups of users and the three tools.  
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A post-hoc analysis with Bonferroni correction showed a pair-wise 

difference in the errors made with the ComposAR and the XML editor, but 

no difference between the BuildAR and the XML editor, and no difference 

between the BuildAR and the ComposAR. Users of ComposAR produced 

fewer errors than users of the XML editor when doing task three. 

To evaluate the users’ subjective feelings about the user interface, we 

asked questions in a number of different categories. In the task 

performance category we asked the following nine questions: 

 Q1: I can easily add a marker 

 Q2: I can easily load a 3D model 

 Q3: I can easily translate the 3D model 

 Q4: I can easily rotate the 3D model 

 Q5: I can easily scale the 3D model 

 Q6: I can easily browse the entire set of 3D models by using 

this tool 

 Q7: I can easily control this tool 

 Q8: I can easily tell what was going on 

 Q9: I feel very comfortable while using this tool 
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Figure 6.2 and Table 6.7 show the subjective survey scores for the 

questions one to nine.  

Table 6.7: Average Result (Std. Error) for Performance of the Task 

Non Programmer Programmer  ComposAR BuildAR XML ComposAR BuildAR XML 

Q1 5.69 
 (0.38) 

5.92  
(0.38) 

4.08  
(0.57) 

6.53 
(0.33) 

6.47 
(0.33) 

5.12 
(0.50) 

Q2 5.62 
(0.42)  

6.00 
(0.42) 

4.23 
(0.56) 

6.18 
(0.37) 

6.18 
(0.37) 

5.18 
(0.49) 

Q3 5.46 
(0.42) 

5.69 
(0.50) 

4.62 
(0.51) 

6.29 
(0.36) 

5.00 
(0.44) 

5.29 
(0.45) 

Q4 5.15 
(0.37) 

4.00 
(0.59) 

4.85 
(0.53) 

6.29 
(0.32) 

4.88 
(0.52) 

5.06 
(0.46) 

Q5 5.39 
(0.35) 

4.92 
(0.61) 

5.00 
(0.55) 

6.53 
(0.30) 

4.94 
(0.53) 

5.24 
(0.48) 

Q6 5.85 
(0.31) 

5.01 
(0.54) 

4.39 
(0.56) 

6.29 
(0.27) 

5.71 
(0.47) 

4.18 
(0.49) 

Q7 5.77 
(0.40) 

5.77 
(0.35) 

3.92 
(0.51) 

5.77 
(0.35) 

5.41 
(0.36) 

4.88 
(0.45) 

Q8 5.15 
(0.52) 

5.01 
(0.38) 

3.54 
(0.45) 

5.77 
(0.45) 

5.77 
(0.33) 

5.71 
(0.39) 

Q9 5.54 
(0.37) 

5.00 
(0.46) 

4.15 
(0.52) 

5.88 
(0.32) 

5.35 
(0.40) 

4.82 
(0.45) 

 

Performing an ANOVA analysis on Q3 did not find any significant 

difference.  

On Q1: I can easily add a marker, an ANOVA analysis found a significant 

difference (F (2, 56) = 9.679, P < 0.05) between the three tools, a 

significant difference (F (1, 28) = 4.882, P < 0.05) between the 

programmers and the non-programmers. A post-hoc analysis with 

Bonferroni correction showed a pair-wise difference between the 

ComposAR and the XML editor, and a difference between BuildAR and 

the XML editor, and no difference between ComposAR and the BuildAR 
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applications.  Participants can easily add a marker using ComposAR and 

the BuildAR tools than using the XML editor. 

On Q2: I can easily load a 3D model, an ANOVA analysis found a 

significant difference (F (1.666, 46.643) = 7.770, P < 0.05) between the 

three tools. A post-hoc analysis with Bonferroni correction showed a pair-

wise difference between the BuildAR and the XML editor, and a difference 

between ComposAR and the XML editor, and no difference between 

ComposAR and the BuildAR applications.  Participants can easily load a 

3D model using the ComposAR and the BuildAR tools than using the 

XML editor. 

On Q4: I can easily rotate the 3D model, an ANOVA analysis found a 

significant difference (F (2, 56) = 4.215, P < 0.05) between the three tools. 

A post-hoc analysis with Bonferroni correction showed a pair-wise 

difference between the ComposAR and the BuildAR, there were no 

difference between ComposAR and the XML editor, and no difference 

between the XML editor and the BuildAR applications.  Participants can 

easily rotate the 3D model using the ComposAR than using the BuildAR. 

On Q5: I can easily scale the 3D model, an ANOVA analysis found a 

significant difference (F (1.923, 53.846) = 3.322, P < 0.05) between the 

three tools. A post-hoc analysis with Bonferroni correction showed a pair-

wise difference between the ComposAR and the BuildAR, there were no 
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difference between ComposAR and the XML editor, and no difference 

between the XML editor and the BuildAR applications.  Participants can 

easily scale a 3D model using the ComposAR than using the BuildAR. 

On Q6: I can easily browse the entire set of 3D models by using this tool, 

an ANOVA analysis found a significant difference (F (1.923, 54.687) = 

8.892, P < 0.05) between the three tools. A post-hoc analysis with 

Bonferroni correction showed a pair-wise difference between the BuildAR 

and the XML editor, and a difference between ComposAR and the XML 

editor, and no difference between ComposAR and the BuildAR 

applications.  Participants can easily browse the entire set of 3D models by 

using the ComposAR and the BuildAR tools than using the XML editor. 

On Q7: I can easily control this tool, an ANOVA analysis found a 

significant difference (F (1.952, 54.655) = 5.659, P < 0.05) between the 

three tools. A post-hoc analysis with Bonferroni correction showed a pair-

wise difference between the ComposAR and the XML editor, and no 

difference between BuildAR and the XML editor, and no difference 

between ComposAR and the BuildAR applications.  Participants can easily 

control the ComposAR than control the XML editor. 

On Q8: I can easily tell what was going on, an ANOVA analysis found a 

significant difference (F (1, 28) = 9.554, P < 0.05) between the 

programmers and the non-programmers. 
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On Q9: I feel very comfortable while using this tool, an ANOVA analysis 

found a significant difference (F (2, 56) = 4.061, P < 0.05) between the 

three tools. between the three tools. A post-hoc analysis with Bonferroni 

correction showed a pair-wise difference between the ComposAR and the 

XML editor, and no difference between BuildAR and the XML editor, and 

no difference between ComposAR and the BuildAR applications.  

Participants felt more comfortable using the ComposAR than using the 

XML editor. 
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Figure 6.2: Subjective Survey Scores for Questions 1 - 9. 
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A second set of questions related to the ease of the task: 

• Q10: I always understand clearly what I was supposed to do 

• Q11: I had sometimes problems with the user interface 

• Q12: The tool was sometimes confusing 

• Q13: The tasks were easy to solve 

Table 6.8: Average Result (Std. Error) for Ease of the Task 

Non Programmer Programmer  ComposAR BuildAR XML ComposAR BuildAR XML 

Q10 4.77 
 (0.43) 

5.46  
(0.45) 

4.54  
(0.45) 

5.77 
(0.38) 

5.47 
(0.39) 

5.59 
(0.42) 

Q11 4.23 
(0.53) 

4.62 
(0.53) 

3.85 
(0.55) 

3.65 
(0.46) 

4.53 
(0.47) 

2.88 
(0.48) 

Q12 3.62 
(0.58) 

4.62 
(0.47) 

3.86 
(0.45) 

3.24 
(0.51) 

4.06 
(0.41) 

3.12 
(0.39) 

Q13 5.92 
(0.34) 

5.39 
(0.43) 

4.23 
(0.41) 

6.18 
(0.30) 

5.71 
(0.38) 

5.71 
(0.36) 
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Figure 6.3: Subjective Survey Scores for Questions 10 - 13 
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Table 6.8 and Figure 6.3 show the average user scores from these 

questions. Performing an ANOVA analysis on Q10 and Q12 did not find 

any significant difference.  

On Q11: I had sometimes problems with the user interface, an ANOVA 

analysis found a significant difference (F (2, 56) = 4.061, P < 0.05) 

between the three tools. A post-hoc analysis with Bonferroni correction 

showed a pair-wise difference between the BuildAR and the XML editor, 

but a difference between ComposAR and the XML editor, and no 

difference between ComposAR and the BuildAR applications.  Participants 

had sometimes more problems with the user interface using the XML 

editor than using the ComposAR and the BuildAR tools.  

For Q13: The tasks were easy to solve, an ANOVA analysis found a 

significant difference (F (1, 28) = 4.436, P < 0.05) between the 

programmers and the non-programmers. There is also a significant 

difference (F (2, 56) = 4.614, P < 0.05) between the three tools. Post-hoc 

analysis with Bonferroni correction showed a pair wise difference between 

the ComposAR and the XML editor, but no difference between the 

BuildAR and the XML editor, and no difference between the ComposAR 

and the BuildAR applications. Participants felt that the task was easier to 

solve using the ComposAR tool than using the XML editor. 
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To measure how people felt in control was the questions we asked: 

• Q14: The user interface made me feel in control  

• Q15: The user interface was easy to use 

Table 6.9: Average Result (Std. Error) for Felt in Control 

Non Programmer Programmer  ComposAR BuildAR XML ComposAR BuildAR XML 

Q14 5.15 
(0.46) 

5.31 
(0.44) 

3.92 
(0.48)

5.29 
(0.40) 

5.41 
(0.39) 

5.77 
(0.42) 

Q15 5.08 
(0.41) 

5.08 
(0.45) 

3.77 
(0.50)

5.53 
(0.36) 

5.35 
(0.40) 

4.35 
(0.44) 
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Figure 6.4: Subjective Survey Scores for Questions 14 and 15 

Table 6.9 and Figure 6.3 show the average result. Performing an ANOVA 

analysis on Q14 did not find any significant difference.  

However, an ANOVA analysis found significant difference for  

Q15: The user interface was easy to use (F (2, 56) = 6.453, P < 0.05).  

A post-hoc comparison showed that users felt that using ComposAR and 
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BuildAR was easier than using the XML editor, and there was no 

difference between the ComposAR and the BuildAR for ease. 

The last group of questions we asked were about how much people liked 

using the tool: 

• Q16: I enjoyed using the tool 

• Q17: Using the tool was a great experience 

Table 6.10: Average Result (Std. Error) for People Liked Using the Tool 

Non Programmer Programmer  ComposAR BuildAR XML ComposAR BuildAR XML 

Q16 6.00 
(0.34) 

5.01 
(0.40) 

3.85 
(0.54)

5.71 
(0.30) 

5.12 
(0.35) 

4.41 
(0.48) 

Q17 5.62 
(0.38) 

4.77 
(0.53) 

4.39 
(0.54)

5.47 
(0.38) 

4.88 
(0.46) 

4.18 
(0.48) 
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Figure 6.5: Subjective Survey Scores for Questions 16 and 17 

Table 6.10 and Figure 6.4 show the average results. An ANOVA analysis 

found a significant difference in responses to Q16: I enjoyed using the tool 

(F (2, 56) = 13.294, P< 0.05). A post-hoc analysis found that the 
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participants enjoyed using the ComposAR and the BuildAR more than 

using the XML editor, but there was no difference as for how much they 

liked ComposAR and BuildAR.   

An ANOVA analysis was found a significant difference in response to 

Q17: Using the tool was a great experience F (2, 56) = 11.813, P<0.05.  A 

post-hoc analysis showed that participants preferred using the ComposAR 

than the XML editor, but there was no difference between the BuildAR 

and the XML editor, and no difference between ComposAR and BuildAR. 

For the ComposAR tool, two additional questions were asked: 

• Q18: This tool would fit well into a mobile phone AR application 

• Q19: I would like to use this tool for mobile phone AR applications 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Non Programmer 5.71 5.76

Programmer 5.54 5.85

Q18 Q19

 

Figure 6.6: Subjective Survey Scores for the Questions 18 and 19 
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Figure 6.6 shows the average result for the two questions. Performing an 

ANOVA analysis on Q18 and Q19 did not find any significant difference 

between the programmers and the non-programmers. They had the same 

opinions for these two questions. 

In addition, subjects were also asked to rate each of the conditions on a 

scale of one to seven according to a set of criteria shown in Table 6.11.  

For each criteria the score 1 = lowest, 7 = highest.  Table 6.11 shows the 

average results. 

Users felt that ComposAR is the easiest to use (Friedman test ,712.182 =rχ  

001.0,30,2 <== pNdf ); ComposAR is the most interesting. (Friedman 

test ,962.222 =rχ  001.0,30,2 <== pNdf ); ComposAR is not boring 

(Friedman test ,169.222 =rχ  001.0,30,2 <== pNdf ); The XML editor 

is the most precise (Friedman test ,553.112 =rχ  05.0,30,2 <== pNdf ); 

ComposAR is efficient (Friedman test ,857.142 =rχ  

05.0,30,2 <== pNdf ); ComposAR is funny (Friedman test 

,244.272 =rχ  001.0,30,2 <== pNdf ); The XML editor is very skilled 

(Friedman test ,473.132 =rχ  05.0,30,2 <== pNdf ); ComposAR is more 

satisfying. (Friedman test ,265.202 =rχ  001.0,30,2 <== pNdf ); 

ComposAR is more engaging. (Friedman test ,146.232 =rχ  
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001.0,30,2 <== pNdf ); Overall, ComposAR is rated better than the 

others. (Friedman test ,529.92 =rχ  05.0,30,2 <== pNdf ).  
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Table 6.11: Results (Std. Error) of the User Experience 
ComposAR BuildAR XML 

 Measure 
Non Programmer Programmer Non Programmer Programmer Non Programmer Programmer 

  Mean Std. Error Mean Std. Error Mean Std. Error Mean Std. Error Mean Std. Error Mean Std. Error 
1 Easy 6.00 0.267 6.00 0.23 4.15 0.48 5.35 0.42 2.77 0.54 4.29 0.48 
2 Interesting 5.62 0.35 5.82 0.31 4.46 0.47 5.29 0.41 3.08 0.57 3.41 0.50 
3 Boring 2.69 0.48 2.35 0.42 3.15 0.49 3.00 0.42 4.46 0.55 4.29 0.48 
4 Precise 5.85 0.31 5.35 0.27 4.00 0.47 5.00 0.41 5.39 0.34 6.00 0.29 
5 Obvious 5.00 0.48 5.53 0.42 4.08 0.55 4.94 0.48 3.15 0.52 4.94 0.48 
6 Efficient 5.46 0.42 5.82 0.37 4.15 0.43 5.18 0.37 2.85 0.50 4.18 0.44 
7 Funny 5.39 0.38 5.53 0.33 5.00 0.42 5.06 0.37 3.15 0.55 3.35 0.48 
8 Skilled 3.54 0.53 3.65 0.47 3.15 0.40 3.29 0.35 4.54 0.48 4.88 0.42 
9 Satisfying 5.54 0.40 5.82 0.35 4.62 0.39 5.24 0.34 3.23 0.51 4.59 0.45 

10 Engaging 5.39 0.31 6.06 0.27 4.69 0.34 5.24 0.30 3.23 0.51 4.47 0.45 
11 Overall  5.39 0.40 5.65 0.35 4.54 0.45 5.06 0.40 4.54 0.45 5.06 0.40 
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6.4 Interviews  

The participants were interviewed after they finished the experimental 

tasks. After using the XML editor, most non-programmers felt it was hard 

to finish the tasks, although there were some comments on the editor. Two 

participants only finished task one, and gave up the rest of two tasks, 

because they did not understand and felt very boring. But some 

programmers found it easy to play with this XML editor. The same code 

was quickly copied and pasted to manipulate the model.  

Most participants pointed out that it was a bit difficult to figure out how to 

save the translation, rotation and scale factors by using the BuildAR tool 

to complete task two.  Three participants gave up finishing task two 

because the controls in BuildAR are not obvious. They felt confused and 

did not know how to confirm the entered data. 

Most participants felt the ComposAR tool was much easier to use than the 

other two tools. However, some of them complained that the icons needed 

to be clarified and tips for the buttons should appear on the screen. 

Otherwise, they would complete the tasks faster and with fewer errors.  

Using the ComposAR tool, some participants said that it was so interesting 

that they were able to view the 3D object using their mobile phone. 
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6.5 Discussion  

There were significantly different user subjective results between the three 

different tools, and the difference between the programmers and the non-

programmers using the different tools. 

One of the most obvious differences was seen in the model viewing task. 

When using the XML editor, the users opened the file folder, browsed all 

the files and remembered one of the file names, then typed into the editor 

and saved it, and finally, they ran the application to view the model. The 

BuildAR users entered the files folder and opened the model file to view 

the model. What the ComposAR users did was only click the button, which 

only took several seconds. Thus it was the fastest tool for model viewing. 

Another key difference was between the programmers and the non-

programmers using the three different tools to do the model loading. The 

main difference occurred between the programmers and the non-

programmers using XML editor, while there was no difference between 

them using ComposAR and BuildAR. Most programmers understood the 

pre-existing code, so they could easily and quickly load the model.  In 

contrast, most non-programmers could not understand what was written on 

the editor, and did not know what the code meant, and did not even know 

how to control them. So it took the non-programmers several minutes to 

figure out what was going on.  Both the ComposAR users and the BuildAR 
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users loaded the model in a similarly way, which was to open the file 

folder and choose one model. 

Users rated the ComposAR as the tool they most liked using. This was 

because of how easy it was to manipulate the model, and support for direct 

viewing the model with any changes. In contrast, after modifying the code 

by using the XML editor, users must restart the application to view the 

model. Although the BuildAR tool could view changes of the model 

directly, users felt it was hard to manipulate the model by using the 

translation, rotation, and scale values.  

The programmers made more mistakes and required more time in 

completing task one, because some programmers presumably more 

experiments, while the non-programmers felt more curious though the test. 

In the performance of the task category, most non-programmers felt it is 

very easy to add a marker, loaded a 3D model even felt easily control the 

ComposAR tool than control the XML editor. 
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7 Chapter 7 Performance Measurements 

To test the performance of mobile AR applications made by the authoring 

tool, benchmarks were performed on a mobile phone device (HP iPAQ 

612c). These tests compare tracking performance with different numbers of 

visible markers and different models. All tests were done with the mobile 

AR viewer application developed in this Masters thesis. 

The tests were run on an HP mobile phone device which is currently 

available on the market, running Windows CE. Additionally the 

benchmarks were run on a PC as a comparison of the processing power on 

the mobile phone to a typical PC-based set up. 

The specific devices used were: 

• HP iPAQ 612c, an enterprise-level PDA phone with a Marvell 520MHz 

processor with 128MB of RAM.  

• Intel 2.40 GHz Core Duo, a standard PC-based setup.  

Three different scenarios were evaluated: using single marker tracking, 

separate multi-marker tracking, and combined multi-marker tracking. 

An initial experiment was run to check on whether or not the marker size 

should be a factor. Table 7.1 shows the tracking speed result on the 

different size of the markers. Contrary to expectation, the size of the 
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marker does not influence the tracking speed. The reason for this is that the 

edge following step generally adds only very little to the overall calculation 

time 

Table 7.1: Tracking Speed on Different Size of the Markers 

Size (cm) 20 × 20 15 × 15 10 ×10 8 × 8 4 × 4 2 ×2 1 ×1 
FPS 26.7 26.8 26.5 26.7 26.3 26.3 26.5 

 

The systems were then run with 1, 4, 6 and 10 markers being tracked 

simultaneously, on both the phone and desktop system. 

Separate/Combined. The separate marker means every single marker; 

whereas the combined marker means two or more marker appear on the 

same paper. The speeds (measured in frames per second, fps) are shown in 

Table 7.2. A higher fps value is better; rates below 10 fps will look jerky to 

the viewer, and commercial video uses rates of around 24 fps and higher.  

Table 7.2: Benchmarks Performed with Single and Multi Marker, 

Speed Shown in Frames Per Second 
Device Single 

Marker 
Multi Marker 
(4 markers) 

Multi Marker 
(6 markers) 

Multi Marker 
(10 markers) 

  Separate Combined Separate Combined Separate Combined 

HP 
iPAQ 
612c 

18.3 16.3 15.9 15.7 13.4 14.4 10.7 

Desktop  26.9 25.7 24.8 21.8 20.9 13.1 12.2 
 

The single marker tracking represents the fastest fame rate.  Tracking a 

multi-marker set with N visible markers is slower than tracking N 
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independent markers. However, tracking a multi-marker set with six visible 

markers still performs faster on this mobile phone device, while tracking a 

multi-marker set with ten visible markers will cause a bottleneck. 

The portable device is not significantly slower than the desktop machine, 

and both produce rendering speeds that are acceptable for video viewing. 

Benchmarks 

 
In addition to tracking, the AR system needs to render images in the view, 

and the rendering speed will depend on the image being displayed. To 

compare the mobile phone and the desktop applications, several tests 

images were used as benchmarks: 

• Cube: This test renders a cube on top of the marker (see Figure 7.1(a)).  

• Jeep: This test renders a detailed and textured model of a jeep13 on top of 

a marker (see Figure 7.1(b)). The 3D model consists of 2032 polygons with 

different pixel texture: 512 × 512, 256 × 256, and 128 × 128. 

• Truck: This test renders a highly detailed and lit model of a truck14 on 

top of a marker (see Figure 7.1(c)). The model consists of one mesh and 12 

materials. In total, the model contains 16387 vertices and 31716 polygons. 

                                                 
13 Jeep model was free downloaded from website: http://www.psionic3d.co.uk/. 
14 Truck model was free downloaded from website: http://www.turbosquid.com/. 
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(a) Cube (b) Jeep (c) Truck 

Figure 7.1: Test Models Rendered for Benchmarking 

Five tests were performed on the mobile phone and desktop. Table 7.3 

shows the results of the tests. The table lists only frames per second (fps) 

values.  The higher values are better. 

Table 7.3: Result for the Test Model (Frames Per Second) 

Device Cube Jeep  
(128×128) 

Jeep 
(256×256) 

Jeep  
(512×512) Truck 

HP iPAQ 
612c 20.6 14.5 12.0 10.1 5.4 

Desktop 31.2 29.4 28.5 27.6 19.5 
 
The performance on the desktop machine is higher than on the mobile 

phone, although all results are acceptable for live viewing. We note the 

following effects: 

• A smaller image size (number of pixels) produces better 

performance on both platforms 

• A small number of polygons in the 3D model produce better 

performance 

• Speed deteriorating by no room on display on this phone at once 
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However, if we concern the affects list above, we can create mobile AR 

applications by the authoring tool. 
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8 Chapter 8 Conclusion and Future Work 

In this research, we have focused on the design, development and 

evaluation of an authoring tool for building mobile phone AR applications. 

We did some background researches that found there is no such authoring 

tool for mobile AR applications. The AR authoring system has been 

described in detail in the thesis. Finally, a user evaluation was conducted 

between the programmers and non-programmers using different authoring 

tools, and some tests performance measurements were taken on a mobile 

phone. 

The experiment evaluations showed that the participants prefer the 

ComposAR tool to the other two tools, and there was no significant 

difference between the programmers and the non programmers using this 

tool. 

The performance measurements evaluate the speed performance of the 

system on a mobile phone and desktop PC. Even quite complex images 

(with less visiable markers and detailed 3D models) performed at video 

rates that are acceptable to users. Not surprisingly, better performance on 

the mobile phone was obtained with smaller images size, a small number 

of polygons in the 3D model and fewer markers produce. 
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In the future, we would like to adapt the authoring tool for different 

operating systems and mobile platforms.  It can be used widely. Another 

possible direction for further research is to improve the interface design, 

such as:  

 Supporting a touch screen with the labeled buttons; and 

 Providing an easy way to drag the marker and content files rather than 

go through the folders or subfolders; and 

 Adding animation and sound.  
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Appendix A: Python Script Examples 
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Appendix B: Experiment Questionnaire 
Survey Questions 
 
Date: 
 
User ID: __________ Gender: __________Age: __________ 
 
 
 
 
How familiar are you with programming (circle one)? 
1 2 3 4 5 6 7 
Not very 
Familiar 

     Very 
Familiar 

 
How familiar are you with Augmented Reality (circle one)? 
1 2 3 4 5 6 7 
Not very 
Familiar 

     Very 
Familiar 

 
 
You are going to do some tasks by using the three different tools. In these 
tasks, you will see virtual items shown on the desktop PC screen and the 
mobile phone screen overlaid on markers in the real world.  
 
You will finish several tasks by using each tool. After each section, you 
will have to answer some questions about the control and how you felt 
about the tool application.   
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ComposAR 
 
Thank you for trying AR authoring tool! Please answer a few questions 
about your experience. See blow for how your answers will be used. 
 
On a scale of 1 to 7, please circle the number according to how much you 
feel strongly agree or strongly disagree with the following statements: 
 
 

I can easily add a marker 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree  

I can easily load a 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily translate the 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily rotate the 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily scale the 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily browse the entire set of 3D models by using this tool 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily control this tool 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily tell what was going on 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I feel very comfortable while using this tool 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 
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Please rate your agreement with the following statements about your 
experience using this authoring tool. 
 
 
I always understand clearly what I was supposed to do 
Disagree 1 2 3 4 5 6 7 Agree 
I had sometimes problems with the user interface 
Disagree 1 2 3 4 5 6 7 Agree 
The tool was sometimes confusing 
Disagree 1 2 3 4 5 6 7 Agree  
The tasks were easy to solve 
Disagree 1 2 3 4 5 6 7 Agree 
 
 
User Interface  
 
The user interface made me feel in control 
Disagree 1 2 3 4 5 6 7 Agree 
The user interface was easy to use 
Disagree 1 2 3 4 5 6 7 Agree 
 
 
Overall 
 
I enjoyed using the tool 
Disagree 1 2 3 4 5 6 7 Agree 
Using the tool was a great experience 
Disagree 1 2 3 4 5 6 7 Agree 
This tool would fit well into a mobile phone AR application 
Disagree 1 2 3 4 5 6 7 Agree 
I would like to use this tool for mobile phone AR application 
Disagree 1 2 3 4 5 6 7 Agree 
 
How much did you like using this authoring tool? 
 
Not very 
much 

1 2 3 4 5 6 7 Very much 

 
 
Further comments: 
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BuildAR 
 
Thank you for trying AR authoring tool! Please answer a few questions 
about your experience. See blow for how your answers will be used. 
 
On a scale of 1 to 7, please circle the number according to how much you 
feel strongly agree or strongly disagree with the following statements: 
 

I can easily add a marker 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree  

I can easily load a 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily translate the 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily rotate the 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily scale the 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily browse the entire set of 3D models by using this tool 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily control this tool 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily tell what was going on 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I feel very comfortable while using this tool 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 
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Please rate your agreement with the following statements about your 
experience using this authoring tool. 
 
 
I always understand clearly what I was supposed to do 
Disagree 1 2 3 4 5 6 7 Agree 
I had sometimes problems with the user interface 
Disagree 1 2 3 4 5 6 7 Agree 
The tool was sometimes confusing 
Disagree 1 2 3 4 5 6 7 Agree  
The tasks were easy to solve 
Disagree 1 2 3 4 5 6 7 Agree 
 
 
User Interface  
 
The user interface made me feel in control 
Disagree 1 2 3 4 5 6 7 Agree 
The user interface was easy to use 
Disagree 1 2 3 4 5 6 7 Agree 
 
 
Overall 
 
I enjoyed using the tool 
Disagree 1 2 3 4 5 6 7 Agree 
Using the tool was a great experience 
Disagree 1 2 3 4 5 6 7 Agree 
 
 
How much did you like using this authoring tool? 
 
Not very 
much 

1 2 3 4 5 6 7 Very much 

 
Further comments: 
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XML Editor 
 
Thank you for trying XML Editor! Please answer a few questions about 
your experience. See blow for how your answers will be used. 
 
On a scale of 1 to 7, please circle the number according to how much you 
feel strongly agree or strongly disagree with the following statements: 
 

I can easily add a marker 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree  

I can easily load a 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily translate the 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily rotate the 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily scale the 3D model 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily browse the entire set of 3D models by using this tool 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily control this tool 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I can easily tell what was going on 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 

I feel very comfortable while using this tool 

Strongly 
Disagree 

1 2 3 4 5 6 7 Strongly 
Agree 
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Please rate your agreement with the following statements about your 
experience using this authoring tool. 
 
 
I always understand clearly what I was supposed to do 
Disagree 1 2 3 4 5 6 7 Agree 
I had sometimes problems with the user interface 
Disagree 1 2 3 4 5 6 7 Agree 
The tool was sometimes confusing 
Disagree 1 2 3 4 5 6 7 Agree  
The tasks were easy to solve 
Disagree 1 2 3 4 5 6 7 Agree 
 
 
 
User Interface  
 
The user interface made me feel in control 
Disagree 1 2 3 4 5 6 7 Agree 
The user interface was easy to use 
Disagree 1 2 3 4 5 6 7 Agree 
 
 
Overall 
 
I enjoyed using the tool 
Disagree 1 2 3 4 5 6 7 Agree 
Using the tool was a great experience 
Disagree 1 2 3 4 5 6 7 Agree 
 
How much did you like using this authoring tool? 
 
Not very 
much 

1 2 3 4 5 6 7 Very much 

 
 
Further comments: 
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Ranking 
 
You have just experienced three applications which you just use to 
complete the task. Please rank the tools in order for the following 
questions.  
 
 
1 2 3 4 5 6 7 
 XML Editor BuildAR ComposAR  
Not very easily    Very easily  
Not very interesting    Very interesting 
Not very boring    Very boring  
Not very precise    Very precise 
Not very obvious    Very obvious 
Not very efficient    Very efficient 
Not very fun    Very fun 
Not very skilled    Very skilled 
Not very satisfying    Very satisfying 
Not very engaging    Very engaging 
 
 
Further comments: 
 
 


