
An Authoring Tool for Building

Mobile Phone AR Applications

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Science

in the

University of Canterbury

by

Yuan Wang

Examining Committee

Associate Professor Tim Bell Supervisor

Professor Mark Billinghurst Co-Supervisor

University of Canterbury

2010

Table of Contents

Acknowledgments ..6
Abstract ...7

Chapter 1 Introduction..1

1.1 An Introduction to Augmented Reality (AR)2
1.2 Authoring Tool ..9
1.3 Thesis Structure ...10
1.4 Research Questions ...11
1.5 Research Contributions ...12

Chapter 2 Background Research ...13

2.1 AR Authoring Tools ..13
2.1.1 AR Authoring Tools for Programmers.....................................14
2.1.2 AR Authoring Tools for Non-programmers.............................18

2.2 AR Authoring Tools for Mobile Phones...25
2.3 Advertising Using Mobile AR ..29

Chapter 3 AR Authoring System ...34

3.1 Overview of the System ..34
3.2 AR Authoring Tool..36

3.2.1 ComposAR ..36
3.2.2 ComposAR Customization ...38

Chapter 4 AR Viewing Tools ..43

4.1 Edgelib ...43
4.1.1 Multi-platform Deve1opment ...44
4.1.2 High-performance Graphics..45
4.1.3 Edgelib Integration with ARToolKit on a Desktop PC47
4.1.4 Input XML File ...53

4.2 Studierstube ES..59
4.2.1 Configuring StbES ..62
4.2.2 Video Configuration..64
4.2.3 The Tracking Subsystem...66
4.2.4 Scene Graph File: scene.xml...67

Chapter 5 AR Pattern Generator...69

5.1 User Interface...69
5.2 Pattern Files ...70

5.2.1 ARToolkit Marker Pattern File...71
5.2.2 StbES Marker Pattern File ..71

5.3 Marker Preview and Printing ..71

Chapter 6 Evaluation and Result ...73

6.1 Experimental Task and Design ...73
6.2 Experimental Measures ...75
6.3 Results..77
6.4 Interviews...97
6.5 Discussion..98

Chapter 7 Performance Measurements ..100

Chapter 8 Conclusion and Future Work ..105

References ...107

Appendix A: Python Script Examples...112

Appendix B: Experiment Questionnaire...113

List of Figures

Figure 1.1: Milgram’s Mixed Reality Continuum ...3
Figure 1.2: Sutherland’s System ..4
Figure 1.3: Examples of Augmented Reality in Broadcasting5
Figure 1.4: First AR Application on PDA and Mobile6
Figure 1.5: Screenshot of the Eye of Judgment...8
Figure 2.1: ARToolKit ..15
Figure 2.2: ARTag Markers Detected in An Image ...16
Figure 2.3: Examples for Using OsgART Library ...17
Figure 2.4: An Example Work Session in DART ..19
Figure 2.5: AMIRE Authoring Interface ...20
Figure 2.6: Oil Refinery Application...21
Figure 2.7: The MARS Authoring Tool ...22
Figure 2.8: WEM System ...23
Figure 2.9: The ULTRA Interface ..23
Figure 2.10: 3D Authoring Tool ...24
Figure 2.11: Process Authoring Tool ...24
Figure 2.12: Nike 3D Mobile Soccer Shoe ...30
Figure 2.13: Fanta Virtual Tennis Display ..31
Figure 2.14: Ford ‘ka’ 3D Mobile Car Display...32
Figure 2.15: Augmented Reality at Wellington Zoo ..33
Figure 2.16: Mobile AR Market ...33
Figure 3.1: The Structure of the AR Authoring System34
Figure 3.2: ComposAR Interface Components ..37
Figure 3.3: The ComposAR-Mobile Interface ..39
Figure 3.4: The Python Code for Keypad Functionality...................................40
Figure 3.5: Different 3D Model on the Marker When the Button is Clicked ..41
Figure 3.6: Different Interface of ComposAR ..42
Figure 4.1: Screen Snapshots of 3D Objects from Edgelib45
Figure 4.2: Turtle 3D Model in MilkShape 3D. Model by psionic3d.co.uk....46
Figure 4.3: Four Frames of an Animated Turtle Model in MilkShape 3D46
Figure 4.4: Rendering Methods in Edgelib ..47
Figure 4.5: Sample Code for Edgelib Surface Setting49
Figure 4.6: Camera Setting Pop-up Window ..49
Figure 4.7: Camera View Setting for the Edgelib...50
Figure 4.8: An Example Code to Set Up the Virtual Camera...........................52
Figure 4.9: Prototype AR Viewer Using Edgelib ...53
Figure 4.10: An Example of XML-RPC Structure ...55
Figure 4.11: An Example Code for the XML-RPC Structure56
Figure 4.12: A Truck Model in the AR Viewer ..57
Figure 4.13: XML File for the Truck Model from ComposAR Tool...............58
Figure 4.14: Structure of Studierstube ES ...60
Figure 4.15: Different Markers Types Supported by StbTracker61

Figure 4.16: An Example of Windows Video Configuration File....................64
Figure 4.17: An Example of WindowsCE Device Video Configuration File..65
Figure 4.18: An Example for Configuring the Tracking Subsystem................66
Figure 4.19: An Example of Scene Graph File ...67
Figure 4.20: Screenshot of the Example..68
Figure 5.1: AR Pattern Generator Interface ..70
Figure 5.2: An Example of a Marker...72
Figure 6.1: A Target Authoring Scene ..74
Figure 6.2: Subjective Survey Scores for Questions 1 - 9.88
Figure 6.3: Subjective Survey Scores for Questions 10 - 1389
Figure 6.4: Subjective Survey Scores for Questions 14 and 15........................91
Figure 6.5: Subjective Survey Scores for Questions 16 and 17........................92
Figure 6.6: Subjective Survey Scores for Questions 18 and 19........................93
Figure 7.1: Test Models Rendered for Benchmarking....................................103

List of Tables

Table 2.1: Types of Authoring Tools ..14
Table 2.2: Authoring Tools for Mobile Phones ..28
Table 4.1: Platforms Supported by Edgelib ..44
Table 4.2: The Important Node for the Windows XP and Mobile Platform....63
Table 6.1: Average Time to Perform Task One ...77
Table 6.2: Error Taken to Perform Task One...78
Table 6.3: Average Time to Perform Task Two ...79
Table 6.4: Error Taken to Perform Task Two...80
Table 6.5: Average Time to Perform Task Three ...81
Table 6.6: Error Taken to Perform Task Three ..82
Table 6.7: Average Result for Ease of the Task..89
Table 6.8: Average Result for Felt in Control...91
Table 6.9: Average Result for People Liked Using the Tool............................92
Table 6.10: Results of the User Experience ...96
Table 7.1: Tracking Speed on Different Size of the Markers101
Table 7.2: Benchmarks Performed with Single and Multi Marker101
Table 7.3: Result for the Test Model ..103

Acknowledgments

I’d like to thank everybody without whom this dissertation would not have

been possible:

First and foremost, I would like to thank my supervisor and co-supervisor

Dr Tim Bell and Prof. Mark Billinghurst for having given me the

opportunity to study in the area of Augmented Reality. During my time in

the HIT Lab NZ which has a wonderful research environment, I learned a

lot about the research and gained some experiences. I want to thank them

especially for all invariable support and guidance to me.

Special acknowledgements go to Julian Looser and Harmut Seichter, who

provided me with invaluable advice and assistance. I’d also like to thank

all the other staff and students of this lab for their help.

I am grateful to my parents who always support and encourage me in my

studies.

Abstract

This thesis describes the research on developing an authoring tool for

mobile phone Augmented Reality (AR) applications. This work is based on

earlier work at the HIT Lab NZ on ComposAR, a tool for authoring PC

based AR applications. We describe modifications to ComposAR that

allows end-users to prototype mobile AR applications on a PC, and player

software that allows prototype AR applications to be delivered on a mobile

phone. In this way, end-users with little programming experience can

develop simple mobile AR applications. To prove the applicability of this

authoring tool, a user evaluation was conducted with some users and

performance compared between programmers and non-programmers and

across different authoring tools.

1

1 Chapter 1 Introduction

Augmented Reality (AR) (Azuma et al., 2001) is a field of computer

science research which studies systems that allow virtual images to be

mixed with the real world. In recent years, the first AR applications have

been deployed on PDAs (Pasman and Woodward, 2003) and mobile

phones (Henrysson et al., 2005) . However, developing these applications

requires a lot of low level coding and specialized skills. Unlike PC-based

AR systems, there are no high-level authoring tools that allow developers

to rapidly build mobile AR applications, especially for non-programmers.

The focus of this thesis will be to develop an authoring tool for building

mobile AR applications.

The HIT Lab NZ has developed a tool for the PC for authoring AR

applications called ComposAR. ComposAR provides a Python-based

scripting tool for specifying the virtual objects in an AR scene and the

interactions between the objects. It creates an XML file as the output that

specifies the AR scene content and interaction in the application. The main

goal of this thesis is to modify the ComposAR tool to allow people to

prototype mobile AR applications on a PC, and develop AR player

software that allows AR experiences to be delivered on a mobile phone.

2

In this chapter, we will provide an introduction to the research topic,

explain the fundamentals of Augmented Reality (AR) and authoring, and

discuss why a mobile AR authoring tool is important.

1.1 An Introduction to Augmented Reality (AR)

What is Augmented Reality?

Ronald Azuma's definition of AR is one of the more focused descriptions.

Augmented reality (AR) (Azuma et al., 2001) is an environment that

includes both virtual reality and real-world elements, and has three key

characteristics (Azuma, 1997):

• It combines real and virtual images.

• It is interactive in real time.

• The virtual imagery is registered in 3D.

Augmented Reality is one part of the broader interface taxonomy called

‘mixed reality’ (Milgram et al., 1994) (see Figure 1.1) that includes any

display in which images of real and virtual objects are combined.

3

Figure 1.1: Milgram’s Mixed Reality Continuum

Watching a TV or playing a football which does not need mediation by

technology is called a real experience, while the opposite is called a virtual

experience where reality is replaced by an immersive computer-generated

world. Experiences lying between these two extremes are known as Mixed

Reality, including Augmented Reality and Augmented Virtuality.

Augmented Reality presents the predominantly real environment

augmented by the virtual objects, while Augmented Virtuality presents the

predominantly real world objects merge into virtual environment.

4

A brief history of AR

The origins of AR can be traced to Ivan Sutherland’s “Ultimate Display”

(Sutherland, 1965) idea in 1965. Three years later, Sutherland implemented

a real-time 3D HMD system. It is the first computer system that merged

real and virtual images. It used a virtual reality headset with one CRT

element for each eye, connected to a tracking rig (see Figure 1.2)

(Sutherland, 1968).

(a) Optical see-through HMD (b) Head tracking

Figure 1.2: Sutherland’s System (Image from Ivan Sutherland)

Around the same time, Furness developed the “Super Cockpit” as a flight

simulator, which could generate the visual scene projected directly to the

pilot headgear. The pilot could interact with this virtual scene and give

verbal commands. This was used by the US Air Force (Furness, 1986).

5

This technology began to be knows as “augmented reality” after Tom

Caudell, a researcher at Boeing, developed a head-mounted display system

which was used to help workers to install wire harnesses in aircraft in the

early 1990s (Caudell and Mizell, 1992).

(a) Ice hockey puck with virtual comet trail
(Image from Rick Cavallaro)

(b) The virtual first down line in
American football (Image from Shel
Brannan)

(c) The virtual car info in RACEf/x (Image
from Sportvision)

Figure 1.3: Examples of Augmented Reality in Broadcasting

Augmented reality became widely used in sport broadcasting from 1997.

One example is “FoxTrax” ice hockey puck, shown in Figure 1.3(a). The

glowing puck with a virtual comet tail on the ice rink was tracked by the

television cameras and indicated the path can be seen on TV (Cavallaro,

1997). Since 1998, the first and ten system has been used on football

6

broadcasts. An example is the “first down” line in American Football

broadcasts (Brannan, 2001), shown in Figure 1.3(b). A virtual yellow line

is projected on the field to show how far the team has to go for a first

down. Another example is RACEf/x shown in Figure 1.3(c), which is a

motor sport. This system uses GPS track and display statistical information

of the car's performance on the screen in real-time (Sportvision, 2006).

In 1998, the ARToolKit (Kato and Billinghurst, 1999) computer vision

tracking library was released. It solved two of the main problems in

Augmented Reality: one is the viewpoint tracking and another is virtual

object interaction. ARToolKit has been widely used to build AR

applications since 2004.

(a) Fully equipped iPAQ with the test

model (Image from Pasman and
Woodward)

(b) AR application on the mobile phone

(Image from Henrysson et al)

Figure 1.4: First AR Application on PDA and Mobile

In the 2000s, the first AR application was deployed on PDAs (Pasman and

Woodward, 2003) and mobile phone (Henrysson et al., 2005). Figure 1.4

7

(a) shows an outdoors AR demonstration on a PDA device which presents

a client/server implementation. The camera in the client captures the

image, and sends it to the server for processing. Once the virtual objects

have been rendered on the server, the image is sent back to the client and

overlaid on top of the original one to produce an AR view.

Figure 1.4 (b) shows an AR tennis application. It uses augmented reality

running on Nokia mobile phones with a set of small fiducial markers for

tracking. The phones can determine their own locations by tracking the

markers, and can be used as ‘tennis rackets’ with a virtual ball. The

direction and position vectors of the ball are sent over to the other phone

using Bluetooth.

In 2007, Sony released a turn-based card battle video named “The Eye of

Judgment” (see Figure 1.5), which was the first end user applications

featuring Augmented Reality for Sony PlayStation 3 game console.

Just as shown in Figure 1.5(a) in this game, the following are needed: a

playing mat which is a 3 × 3 grid of rectangles to place your cards upon, a

camera which is called EyeToy and used to capture the image of the cards

on the grid, a special stand which holds the camera to place the right angle

and gets view of the playing mat, and 30 special cards used as game pieces

each of which has AR fiducial marks on them to assist with tracking and

AR overlay(shown in Figure 1.5 (a)).

8

(a)Equipment setting (b)Camera viewing

(C)Card use (d)Battle mode in action

Figure 1.5: Screenshot of the Eye of Judgment

When the cards are put down on a table, PlayStation 3 is able to recognize

the card, via the EyeToy camera (see Figure 1.5 (b)). Each card is

associated with a different monster. As shown in Figure 1.5(c), the virtual

monsters erupt out of the cards on the television screen. As long as the

cards can be moved around on the table, the monsters move around on the

screen, allowing the player to interact with them just by moving them.

Move them toward another card, and the monsters onscreen will interact

and battle (see Figure 1.5(d))

The numbers of AR applications have since grown rapidly and widely with

the first dedicated conferences (The international Symposium on Mixed

9

and Augmented Reality - ISMAR1). For example, FLARToolkit (Koyama,

2008) — Flash-based Augmented Reality Toolkit, brings AR environment

to the web browses.

1.2 Authoring Tool

An authoring tool2 is a software package which developers use to create

and package content deliverables to end users. Typically, authoring tools

enable users to create a final application merely by linking together objects,

allowing those who use the tool to produce attractive and useful

application. Authoring tools require less technical knowledge to master and

are often used for applications that present a mixture of textual, graphical,

and audio data.

Since the term is rather general, authoring tools have been used widely.

Some programs such as web editors, Flash, and PowerPoint are also

considered as authoring tools. The most commonly used is to create

e-learning modules. However, there is no group of programs specifically to

support for mobile AR content.

1 http://www.ismar-society.org/, online as of September 2009.
2 Authoring tool, http://en.wikipedia.org/wiki/Authoring_systems, online as of September
2009.

10

1.3 Thesis Structure

This section provides a road-map of the chapters in this thesis.

Chapter 2 Background Research presents related work in the aresa of

AR authoring tools, software libraire for mobile AR applications, and some

advertising systems using mobile AR technology.

Chapter 3 AR Authoring System describes the overview of the whole

system, and then introduces AR authoring tool in detail.

Chapter 4 AR Viewing Tools presents the AR viewing applications that

we have developed for desktop and mobile AR applications.

Chapter 5 AR Pattern Generator describes why we need it and how it

works for the AR application.

Chapter 6 Evaluation and Result describes the experiments to test the

development of the authoring tool and performance compared between

programmers and non-programmers and across different authoring tools.

Chapter 7 Performance Measurements presents the performance of

mobile AR applications made by the authoring tools. The measurements

compare tracking performance with different numbers of visible markers

and different models.

11

Chapter 8 Conclusion and Future Work provides a concise summary of

this contributions of this thesis and proposes directions for the furture

work.

1.4 Research Questions

The main research questions of this thesis are:

• Are there any AR authoring tools for a mobile phone available

today?

• How easy does the system make it for the non-programmers to

develop applications?

• How fast does it perform on a mobile phone?

• What is the difference in quality of the image compared with that

on a PC?

• What are the other issues to consider?

12

1.5 Research Contributions

The main contributions of this thesis are:

• Integrating one existing game engine library for viewing AR

content

• Extending existing HIT Lab NZ PC based AR authoring tools to

support mobile phones

• A formal evaluation of AR authoring tool for different end users

13

2 Chapter 2 Background Research

The research in this Masters thesis is mainly focused on developing and

evaluating an authoring tool for mobile AR applications, particularly for

use by developers with little programming experience. One target area for

an application tools like this is for prototyping mobile AR advertising

campaigns.

Although there is no existing work on mobile AR authoring tools for non-

programmers, there are several previous AR authoring tools for PC

applications that the research can be built on.

In this chapter, we first review AR authoring tools in general, and then

software libraries for mobile AR applications. Finally, we present some

advertising systems using mobile AR technology.

2.1 AR Authoring Tools

There are several existing authoring tools for building desktop AR

applications. These can be organized into two types:

1) AR authoring tools for programmers

2) AR authoring tools for non programmers

14

Authoring tools for programmers are typically code libraries that require

programming knowledge, while tools for non-programmers are those that

require no programming knowledge, such as visual tools that include drag

and drop interfaces for building applications without writing any lines of

code. These categories can be further organized into low level tools which

require coding/scripting skills, and higher level application builder tools

which use high level libraries or visual authoring techniques. Example

authoring tools are shown in Table 2.1 and described later in this section.

Table 2.1: Types of Authoring Tools

 Programmers Non-programmers

Low level
ARToolKit

arTag

DART

AR-Blender

ComposAR

High level
Studierstube

osgART

AMIRE

MARS

ULTRA

2.1.1 AR Authoring Tools for Programmers

A number of programming libraries enable developers to author AR

applications. For example, ARToolKit (Kato and Billinghurst, 1999) is a

free and open-source C software library which can be used to develop AR

interfaces by providing computer vision based tracking of black square

markers.

15

Figure 2.1 shows ARToolKit being used to show a three-dimensional

virtual character appearing standing on a real card. The user can see the

AR scene by wearing the head set display. When the card is moved by the

user, the virtual character moves with it and appears attached to the real

card (ARToolKit, 2001).

Figure 2.1: ARToolKit (Image from ARToolkit)

However, to develop an AR application with ARToolKit requires

significant C programming skills. The additional code has to be developed

for 3D model loading, interaction techniques, and other utility functions.

This need for integration with additional libraries is typical of low level

programming tools.

16

Another low level AR library is ARTag (Fiala, 2005), which is a computer

vision based marker tracking system that uses digital coding theory to get a

very low false positive and inter-marker confusion rate. It is a bi-tonal

system which contains 2002 planar markers. Each marker consists of a

square border and an interior region which are black or white cells filled

with a 6 × 6 grid. Figure 2.2 shows some example ARTag markers. Like

ARToolKit, to develop a complete AR application with ARTag requires

considerable additional C/C++ programming experience.

Figure 2.2: ARTag Markers Detected in An Image (Image from Mark Fiala)

The osgART library (Grasset et al., 2005) is a high level C++ Open Scene

Graph library based on top of the ARToolKit tracking library. Unlike

ARToolKit, osgART includes a code for loading 2D or 3D models and

animation. A collection of classes is provided in it so that it is easy to

make AR applications. Some of the main functionalities that the library

supports are: high level integration of video input (which is how the video

object deals with the mapping of the video texture on itself), spatial

17

registration (which is the transformation mapping from the ARToolKit

tracking to the OSG framework), and photometric registration (which is

disparity between the real content and the virtual content).

 There are some examples of AR applications (OSGART, 2006) built with

osgART shown in Figure 2.3.

Figure 2.3: Examples for Using OsgART Library (Image from osgART)

Another high level library is the Studierstube library (Schmalstieg et al.,

2002) which provides a complete distributed system for developing

applications in virtual and augmented reality. The distributed nature of

Studierstube makes it particularly good for developing collaborative

augmented reality applications. Studierstube is a cross platform and is also

a leading framework for the development of mobile, collaborative and

ubiquitous AR applications.

A common feature of these libraries is that although they are of high level,

they typically require C or C++ programming ability, users also require

18

other content development tools to produce the AR content and it takes a

relatively long time using them to produce an AR application.

2.1.2 AR Authoring Tools for Non-programmers

There is another set of AR authoring tools that have been developed for

non-programmers such as artists or designers.

One of the first is DART (MacIntyre et al., 2005), the Designer’s AR

Toolkit (see Figure 2.4), which is a plug-in for the popular Macromedia

Director software. The main aim of DART is to allow multimedia

application designers to develop AR applicatioins. DART is designed to

allow non-programmers to create AR experiences by using the low level

AR services provided by the Director Xtras, and to integrate these with

existing Director behaviours and concepts. DART supports both visual

programming and a scripting interface. Unlike ARToolKit and osgART,

DART is specifically developed for multimedia designers and non-

programmers.

19

Figure 2.4: An Example Work Session in DART (while debugging the
Four Angry Men (FAM) experience). The entire score for FAM is visible,
including the nine scenes and most of the actors. The stage (containing the
running experience) is visible, as is part of the content for one video actor,
and some of Director’s editing windows. (Image from MacIntyre et al.)

AMIRE (Grimm et al., 2002) is an authoring tool for the efficient creation

and modification of augmented reality applications. The interface is shown

in Figure 2.5 (AMIRE, 2002).

20

Figure 2.5: AMIRE Authoring Interface. (Image from Grimm et al.)

The AMIRE framework provides an interface to load and replace a library

at runtime and uses visual programming techniques to interactively

develop AR applications. AMIRE is designed to allow content experts to

easily build applications without detailed knowledge about the underlying

base technologies. Two completely different AR applications have been

developed based on using AMIRE, an oil refinery (see Figure 2.6) and a

museum, showing the flexibility and efficiency of the AMIRE approach.

21

(a) Indoor solution (Tracking system,
iGlasses) (image from AMIRE website)

(b) Outdoor solution (Handheld/Tablet
PC) (Image from R. DORNER et al.)

Figure 2.6: Oil Refinery Application

Some of these PC based authoring tools were also designed for building

mobile AR applications. For example, the MARS (Mobile Augmented

Reality Systems) authoring tool (Guven and Feiner, 2003) uses a 3D

graphical user interface to allow users to create mobile outdoor AR

applications. It is designed for non-programmers, and allows them to

preview their results on a desktop workstation, as well as with an

augmented or virtual reality system.

Using the MARS authoring tool, several situated documentaries were

authored which told the stories of events that occurred on Columbia

University campus (see Figure 2.7).

22

Figure 2.7: The MARS Authoring Tool (Image from Guven and Feiner)

Fisher has developed an authoring tool for creating outdoor AR

experiences. In this case, authoring is done on a desktop computer with a

web based 2D map or in the field with a mobile phone (Fisher, 2001)

(Fisher, 2002). It can be used to author a variety of virtual tours through a

specific location, depending on the viewpoint and expertise of the user.

Figure 2.9 illustrates the Wearable Environmental Media (WEM) Project

prototype mobile system (Fisher, 2001). The user wears a wireless

backpack as shown in Figure 2.8, which is containing a number of different

technologies for capturing the video imagery, transmitting the video and

data, and determining the user location. The large disk is used to locate the

23

user’s location. It is a GPS antenna, which is locating about 2-centimeter

accuracy.

Figure 2.8: WEM System (Image from Fisher)

Figure 2.9: The ULTRA Interface (Image from Fisher)

Another example is the European project ULTRA (Alexandra Makri et al.,

2005) – (“Ultra portable augmented reality for industrial maintenance

applications”) which has the goal to implement a new mobile AR-system

that works on minimal hardware. ULTRA features a set of content

generation/authoring tools. The authoring tool has two parts: a 3D

24

authoring tool (see Figure 2.10), and a visual process authoring tool (see

Figure 2.11). The 3D authoring tool creates 3D animations, based on the

concept of templates. The process authoring tool uses the visual

programming to create an interactive application. This tool is designed for

PDAs and handheld PCs and not for mobile phones.

Figure 2.10: 3D Authoring Tool (Image from Alexandra Makri et al.)

Figure 2.11: Process Authoring Tool (Image from Alexandra Makri et al.)

25

Some authoring tools are designed to extend other content development

tools. For example, AR-Blender (Grimm, 2006) is an extended version of

the Blender 3D modeling program that integrates ARToolKit into the

Blender application. However, it is very complicated and time consuming

to combine a virtual world with a real one, because similar problems

remain in building 3D geometries and MR applications. Developers can

use the Blender scripting interface to develop simple PC-based AR

applications that include their 3D models.

A common feature of these tools is that they use visual programming

techniques or simple scripting to support quick prototyping, they are

interpretive rather than compiled allowing for fast redesign of ideas, and

they are integrated into other design tools. However none of these tools can

be used for authoring mobile phone AR applications.

2.2 AR Authoring Tools for Mobile Phones

Although there are several tools for building desktop AR applications,

there is less support for the mobile phone AR. At the low level, the

ARToolKit tracking library has been ported over to the Symbian operating

system (Henrysson et al., 2005) but this requires the use of other code such

as the OpenGL ES graphics library in order to complete a mobile AR

application. The Studierstube Tracker library (Schmalstieg et al., 2002) is

26

another low level AR tracking library that is available for multiple

platforms such as Symbian, iPhone and Windows Mobile.

One of the only higher level programming libraries for mobile AR

applications is the Studierstube ES (Dieter and Daniel, 2008) (StbES)

library. This is a C++ based application framework for developing AR

applications for mobile devices. It is a cross-platform, running on

Windows, Windows Mobile, or the Symbian operating systems.

Studierstube ES provides support for 2D and 3D graphics, video capture,

tracking, multimedia output, persistent storage, multi-user synchronisation,

and application authoring. It requires a high level of programming skill to

use and so is not suitable for non-programmers.

Apart from Studierstube ES there are other tools for developing non-AR

2D and 3D graphics applications for mobile phones. One of the most

powerful and low-level game engines for mobile devices is the Edgelib

library (Edgelib, 2007), which is designed for developing quality

applications and high-performance games. Its key features are: multi-

platform development, high-performance graphics, Network connectivity

and support for RGBA surfaces.

The M3GE (Mobile 3D Game Engine) library3 is a Java game engine

based on the Mobile 3D Graphics API for JME spec (M3G - JSR 184). It

3 M3GE, http://m3ge.dev.java.net, online as of September 2008.

27

has a development library that allows graphical rendering to be handled by

the application; image loading, input, output, and general functions like AI,

collision detection and other rendering facilities are also managed. M3GE

aims to perform all global functions in the application in a single core

block, separating graphical routines and application logic. The engine was

tested in a Siemens CX 65 phone and it operated at 8 to 16 frames per

second.

For non-programmers, Python 4 is available for rapid development of

mobile applications. The Symbian version of Python allows a user to

develop python scripts on their desktop and then run them on their phone

using a native interpreter. It has support for 2D and 3D graphics, camera

input, file handling and networking, and many other functions for rapidly

prototyping mobile applications. However it does not support a visual

development tool and so requires the developer to learn scripting.

Other high level visual design tools are available to author mobile graphics

applications. Among them, the most popular is FlashLite5, a version of

Adobe Flash that has been specifically designed for use on mobile phones.

With FlashLite, a developer can use a combination of visual authoring and

ActionScript scripting to easily build interactive phone applications such as

games, information tools, screensavers, and e-learning applications.

4 Python, http://www.python.org/, online as of September 2008.
5 Adobe Systems Incorporated, http://www.adobe.com/products/flashlite/, online as of
September 2008.

28

However, there is no support for 3D graphics or camera input. It has long

been used on a pretty wide variety of devices like Sony Ericsson p900,

Nokia 3650 and Nokia NGage to name a few.

Table 2.2 shows the tools available for developing mobile AR applications.

Authoring tools are currently available for mobile AR applications (such as

Studierstube ES) requiring C++ programming experience. There are some

high level tools for making mobile graphics applications for non-

programmers (such as FlashLite), but none of them has been adapted for

mobile AR yet. So there is a need to develop a high level mobile AR

authoring tool for non-programmers.

Table 2.2: Authoring Tools for Mobile Phones

 Programmers Non-programmers

Low level

Studierstube Tracker

M3GE

ARToolkit for Symbian

High level
Edgelib

Studierstube ES

Python

FlashLite

29

2.3 Advertising Using Mobile AR

Mobile phones can do more and more in our lives, not only sending

messages or making voices call, but also listening to music, watching

videos or gaming. They also have other features such as GPS navigation,

build-in cameras, WiFi connectivity, Bluetooth, Internet browsing and

e-mail, and so on. One of the most interesting applications areas for mobile

phones is advertising using Augmented Reality.

For example, early in 2009, Nike ran a mobile AR advertising campaign to

target teens in Hong Kong to promote the launch of the T90 soccer shoe.

There were a series of hidden mobile codes all throughout Hong Kong in

Nike flagship stores and at MTR subway stations (see Figure 2.12(a) and

(b)). Once the consumers found the markers and pointed their camera

phone at them, they received an image of a Nike soccer shoe and ball on

their phone screen and revealed a special code unique to that location.

After getting the next location, consumers can find out the next secret

destination by texting in these special codes. Texts, taken as a sweepstakes

entry, could also win Nike merchandise. Users could use these codes to

download a mobile application to view the T90 shoe from different angles

in 3D through their mobile screens (see Figure 2.12(d)). Consumers had

more chances to win Nike gear if they collected more codes.

30

Consumers could view the virtual product from a variety of different

viewpoints because of the augmented reality technology, which enables the

product to be revealed in a dynamic way.

(a) NikeT90 marker (b) Nike flagship & MTR subway

stations

(c) The real Nike shoe

(d) Viewing through the phone

Figure 2.12: Nike 3D Mobile Soccer Shoe

31

In 2009, Coca-Cola Europe created a new mobile augmented reality

advertising application in order to push its Fanta soft drink. This was the

“Virtual Tennis” mobile game, the world's first 3D augmented reality

tennis game. It offers two modes: a two-player mode which connects two

phones so players can compete via Bluetooth; and a single-player practice

mode where the player hits the ball off a wall.

(a) Single Player

(b) Two Players (c) Court Image

Figure 2.13: Fanta Virtual Tennis Display

Players take their positions on either side of a printed “court” (see Figure

2.13). Once in position, players can see a virtual tennis court through their

camera phones and hit the virtual tennis ball by using the phones as

rackets. This ball movement is determined by the angle and position of the

players’ phone.

32

A mobile AR campaign was also developed for the Ford ‘Ka’ aimed at

targeting youth. In this case stickers were placed on the streets and the

sides of buildings. Whenever the consumer used a camera phone to look at

the sticker, a 3D virtual model of a Ka would appear on the phone screen

(see Figure 2.14), appearing to float on top of the background video visuals

in real time. A URL - GoFindIt.net - is displayed with the movement of

the phone at particular angle.

Figure 2.14: Ford ‘ka’ 3D Mobile Car Display

The first commercial AR application for advertising was developed in

2007. Mobile phone users were invited to download the software, and then

pointed their phone to the marker image on the newspaper. A 3D model of

a bear, cheetah, and giraffe will appear on the screen (see Figure 2.15). The

benefit of advertisment, placed in a major newspaper, reached 750,000

people, leading to a 32% growth in visitors at Wellington Zoo6.

6 http://theinspirationroom.com/daily/2007/augmented-reality-at-wellington-zoo/

33

Figure 2.15: Augmented Reality at Wellington Zoo (Image from HITLab)

Each of these advertising examples required a significant amount of

programming effort to implement. The goal of our work is to make a tool

that non-programmers, such as advertising content people, could use to

rapidly prototype mobile AR applications.

Figure 2.16: Mobile AR Market (Image from Mark Walsh)

As shown in Figure 2.16, “AR is still a long way from being a widespread

reality on mobile devices” (Walsh, 2009). However, the authoring tool will

be needed in the mobile AR market.

34

3 Chapter 3 AR Authoring System

The AR authoring tool presented in this thesis is designed to help people

who have no experience in programming to create their own AR scene.

For example, this tool may help people in the marketing or adverting

industries to make simple demonstrations to show their clients.

There are two main components of the AR authoring system: the AR

authoring tool and the AR viewing tool. In this chapter, we first overview

the whole system, and then introduce the AR authoring tool. Chapter 4 will

describe the AR viewing tool in more detail.7

3.1 Overview of the System

Figure 3.1 shows the components of the system that we have developed. In

the rest of the chapter we will describe these system components in more

detail.

Figure 3.1: The Structure of the AR Authoring System

7 An early version work has been published. WANG, Y., LANGLOTZ, T., BELL, T. &
BILLINGHURST, M. (2009) An Authoring Tool for Mobile Phone AR Environments. Proc
NZCSRSC 09, New Zealand Computer Science Research Student Conference. Auckland, New Zealand.

35

The authoring system we have developed is based on a modified version of

the ComposAR tool. ComposAR is a PC application that allows users to

easily create AR scenes. It is based on the osgART, ARToolKit and

wxWidgets libraries.

The Python language is used to develop the overall ComposAR system.

The user interface and runtime behavior are not only easy to customize, but

also easy to test the 3D modules in the authoring environment. This is

because ComposAR provides a Python based scripting tool for specifying

the virtual objects in an AR scene. Python can also be used to modify the

ComposAR interface to create a tool for mobile AR scene authoring.

In addition to creating a PC based authoring tool, there will also need to be

a mobile AR viewing tool so that the applications developed can be run on

a mobile phone. For this we will use a multi-platform game engine that can

run on both PCs and mobile phones. The users will quickly prototype AR

applications on both type devices.

ComposAR creates an XML file output which specifies the AR scene

content and interaction in the application. In our work, we create an AR

viewing application based on the viewing tool library that will read the

XML file and render the AR scene on a mobile platform. Thus the user

will be able to author the application on a PC and run it on a mobile phone.

36

3.2 AR Authoring Tool

The AR authoring tool is an authoring tool that allows the user to create an

AR scene which associates virtual content with real objects and defines

interactions for those objects. The HIT Lab NZ has developed a tool for the

PC for authoring AR applications called ComposAR. Firstly, we describe

the ComposAR tool in general, and then discuss how we customized

ComposAR for mobile AR authoring.

3.2.1 ComposAR

ComposAR (Seichter et al., 2008) is written in Python by using various

extension libraries. The overall goal of the design is to keep ComposAR a

pragmatic tool revealing its advanced features only on demand. In order to

hide technical aspects such as the projection matrix or the scene-graph

branch for the video background, the AR component of the application is

emphasized. It focuses the user’s authoring attempts on the marker content

and their transformations.

These are accessed through a tree layout. A node in the tree structure can

be activated with a single click, highlighting the respective 3D scene object

and showing manipulation handles. Activating a node facilitates editing it,

which includes virtual object file loading, or manual entry of

transformation data, such as the translation, rotation and scale.

37

ComposAR provides a graphical user interface (GUI) divided into three

panels (see Figure 3.2). This GUI was implemented in wxPython which is

a wrapper for the cross-platform GUI and system development toolkit

wxWidgets. In a similar way to wxPython, osgPython8, a comprehensive

wrapper for the OpenSceneGraph, was developed. The plugins for

ARToolKit, the GPL version of osgART (Looser et al., 2006) with the

respective bindings, and various video input sources, is within this

package. However, the wide variety of plugins is not only available for

OpenSceneGraph, but also for database loading and writing.

Figure 3.2: ComposAR Interface Components (Image from Seichter et al.)

8 OsgPython, http://code.google.com/p/osgswig, online as of September 2008

38

Seichter et al. described ComposAR as providing “some basic interaction

approaches based on a standard repertoire common in AR applications,

including interaction based on fiducially proximity, occlusion, tilting and

shaking.” (Seichter et al., 2008)

3.2.2 ComposAR Customization

In order for ComposAR to be used for developing mobile AR applications,

it needed to be modified to emulate the small screen size and limited input

options of mobile phones. The Python language is used to develop the

overall ComposAR system, so the ComposAR interface can be changed

using Python code.

A simplified graphical user interface (GUI) for ComposAR was developed

to match the form factor of the target mobile phone (see Figure 3.3). It is

composed of a live video view of the scene with the same resolution as the

typical mobile phone camera (320 × 240 pixel or 640 × 480 pixels), and a

virtual keypad that emulates a mobile phone keypad. Camera input is taken

from a webcam on the PC. With this GUI, the end-users can associate 3D

virtual models with real AR tracking markers. In addition, it allows users

to add simple keypad based interactions to the virtual scene.

39

Figure 3.3: The ComposAR-Mobile Interface

As shown in Figure 3.3, there are four panes in the new ComposAR

interface:

(a) Scene pane

(b) Augmented Reality Scene pane

(c) Keypad pane

(d) Script pane

40

The Scene pane enables the designer to select markers and 3D models

stored on the local system and to create links between markers and 3D

models. Once the marker and corresponding 3D models are linked it is

possible to change the position, rotation and scale of the assigned 3D

models in the AR scene. An interaction script in Python can be written in

the Script pane for specifying the virtual object interactions in the AR

scene. Keypad based interaction within the AR scene can be simulated

using the virtual keypad in the Keypad pane.

The keypad panel has several functions, such as scaling and rotating the 3D

models, and browsing all 3D models within the file folder. An example

code for integrating the keypad pane in the python code is shown in Figure

3.4.

Figure 3.4: The Python Code for Keypad Functionality

41

In example 3.4, when Buttons “1”, “2”, “3”, “4” are clicked in turn, the

corresponding 3D model will appear on the marker (as seen in Figure 3.5):

• Button One: A plane (Figure 3.5a)

• Button Two: A spaceship (Figure 3.5b)

• Button Three: A camel (Figure 3.5c)

• Button Four: A truck (Figure 3.5d)

(a) Plane (b) Spaceship

(c) Camel (d) Truck

Figure 3.5: Different 3D Model on the Marker When the Button is Clicked

Another scripts example (see Appendix A) is for the rotation function.

When Buttons “*” or “#” is clicked in turn, the corresponding 3D model

will rotate on the marker.

42

In order to make this tool easy to use, the interface has been changed a

little. Two icons and one tool have been added in a toolbar below the menu

panel. As shown in Figure 3.6, users can add a marker more easily than

before by clicking on a button in the toolbar. The pattern generator allows

the users to create their own markers. This will be described in detail in

Chapter 5.

(a) ComposAR

(b) Modified ComposAR

Figure 3.6: Different Interface of ComposAR

One of the advantages of using ComposAR is that scripts are interpreted,

so that immediate feedback on the fly can be seen from the Augmented

Reality Scene panel if any of the content is updated.

 QuitAdd a Marker

Pattern Generator

43

4 Chapter 4 AR Viewing Tools

In addition to replaying the created AR scene from the PC based authoring

tool, a mobile AR viewing tool was needed. The loaded XML file was

produced by the ComposAR tool and rendered it onto a live video stream

to create AR viewing on the mobile phone. This will provide a mobile

authoring tool that a person can use to author an AR application on a PC

and run on a mobile phone.

In this chapter, we will describe the AR viewing applications that we have

developed for desktop and mobile AR applications.

There are two different desktop AR viewing tools that we have developed

during this research. These are used to load the AR scenes created in the

ComposAR application and test them before running them on a mobile

phone. The first prototype is based on the Edgelib library, and a second

later prototype is based on the Studierstube ES library. Each of these

software libraries has its own advantages and disadvantages. In the

following sections we will describe the Edgelib and Studierstube

applications respectively in more detail.

4.1 Edgelib

Edgelib (Edgelib, 2008) is a powerful C++ multi-platform game engine for

mobile devices. It enables users to develop high-quality applications and

high-performance games through different platforms, such as Windows

44

Mobile phone, Symbian phone, Linux/Windows desktop, Apple iPhone or

iPod Touch, and so on.

Edgelib has two key features: One is a device independent API for Multi-

platform development, and the second is a device independent API for

high-performance graphics.

4.1.1 Multi-platform Deve1opment

Edgelib features a true multi-platform independent API. It operates as a

generic interface and makes use of all of its key features for all supported

platforms. Edgelib currently supports the platforms shown in Table 4.1.

Table 4.1: Platforms Supported by Edgelib

Mobile Phone

Windows Mobile Symbian Series Apple

Pocket PC Smartphone Series 60 Series 80 Series 90 iPhone iPod Touch

N-Gage™
 6680
 E60
 N95

92xx
9300
9500 7710

Desktop Game Console

Windows Linux GPH9 Gizmondo

2000/XP/Vista X11 F-100/F-200 Windows CE

9 GPH: GamePark Holding

45

For Windows Mobile all kinds of screen resolutions are supported,

including 176×220, VGA, WVGA, QVGA, and QWVGA. The new screen

resolutions for Symbian (such as 320×240 and 352×416) are also fully

supported.

4.1.2 High-performance Graphics

The Edgelib library can draw 2D and 3D graphics on each device in full

screen mode. 3D models contain a vertex list that is linked into polygons.

Models can be created manually or loaded from 3D Studio Max (.3ds),

MilkShape 3D (.ms3d) or Edgelib 3D (.e3d) files. Even animated 3D

models can be loaded. Models can be drawn by using either OpenGL ES or

Edgelib's fast internal 3D renderer. The Edgelib animation functions

support translation (movement) and rotation animations. This internal

platform uses an independent 3D engine if OpenGL ES is not available.

Figure 4.1 shows screen shots of sample Edgelib applications.

(a) Simple 3D objects (b) 3D objects with texture mapping

Figure 4.1: Screen Snapshots of 3D Objects from Edgelib

46

In Figure 4.1(a), the objects are drawn with no shading, while an animated

turtle MilkShape 3D model is shown in Figure 4.1(b). The turtle can move

and rotate on the texture mapping block. The different views (front, side,

top and whole model) of this turtle 3D model are shown in Figure 4.2.

Figure 4.2: Turtle 3D Model in MilkShape 3D. Model by psionic3d.co.uk

There are total 150 frames of this animated turtle 3D model. Figure 4.3

displays four frames of it. This turtle 3D model can be rendered very fast in

the Edgelib application. The frame rate on the screen is 59-60 fps.

Figure 4.3: Four Frames of an Animated Turtle Model in MilkShape 3D

47

The pictures (Figure 4.4) below demonstrate each rendering method:

wireframe, no shading, flat shading, gouraud shading, and texture

mapping. They are the key features in the internal 3D engine.

Wireframe No shading Flat shading

Gouraud shading Texture mapping

Figure 4.4: Rendering Methods in Edgelib (Image from Edgelib website)

4.1.3 Edgelib Integration with ARToolKit on a Desktop PC

Since both the ARToolKit and the Edgelib libraries run on Symbian and

Windows Mobile phones, and on the desktop, any desktop AR applications

built by using these libraries should be able to be ported to a mobile phone.

However, video capture from a camera is currently not supported by the

Edgelib libary, so in order to develop an AR viewer application we need to

integrate the Edgelib library with the ARToolKit tracking library for AR

tracking.

48

The image frames of the video source captured from an attached camera

need to be made available to the tracking component and scene graph. The

image frames are needed not only by the tracker in order to locate markers

and calculate transformations, but also by the scene graph to display the

real world behind the virtual objects. Once the tracker locates a marker and

calculates its transformation, that information is transferred within the

scene graph.

The tracker provides a projection matrix which determines a perspective

projection used to display the 3D graphics. The intrinsic camera parameters

which the tracker uses are necessary to accurately track markers, and the

correct projection matrix is needed for the resulting transformations to

align the virtual objects with the live video. The video frames captured

from the camera can be made to be continuously uploaded into a texture as

the background. Figure 4.5 shows the sample code to copy background

data to the Edgelib surface.

49

/* A pointer to the memory data of the locked surface.*/
unsigned char *memptr = background.Lock(&info);

/* If this is not NULL, it will be filled with detailed surface information. */
if (memptr) {

 unsigned long yctr;
/*The cparam variables need to be replaced by your own variables to

determine the properties of the captured image. */
 for (yctr = 0; yctr < (unsigned long)cparam.ysize; yctr++) {

ClassEMemory::Copy(&memptr[yctr * info.realpitch],
&dataPtr[yctr * cparam.xsize * info.bitwidth / 8],
cparam.xsize * 32 / 8);

 }
/* This unlocks a previously locked surface */

 background.Unlock();
 }
/* Draw the background picture*/
DrawBackground(display);

Figure 4.5: Sample Code for Edgelib Surface Setting

The settings for the attached camera settings can be seen in Figure 4.6. In

this case the frame rate is automatically set to 15 FPS (frames per second)

and the output screen size is 640 × 480 pixels with the setup.

Figure 4.6: Camera Setting Pop-up Window

50

Once the camera captures the images, we can lock the back buffer and

manually copy the pixel data to the surface. It is very important to set the

camera field of view in Edgelib to the same as the real camera connected to

the desktop, otherwise we will get an incorrect display as shown in Figure

4.7(a). This resulted from a setting of 640 × 480 pixels in Edgelib whereas

the real camera view was 320 × 240 pixels. Since they are not the same

view size, the display is incorrect. However, as shown in Figure 4.7(b), the

correct results are produced when both Edgelib and the real camera view

are set to 640 × 480 pixels.

(a) Wrong setting (b) Correct setting

Figure 4.7: Camera View Setting for the Edgelib

51

Edgelib used the following command:

ERESULT OnDisplayConfig(EDISPLAYCONFIG *config)

to configure the display properties. The default width and height setting for

the desired resolution or size of the window for Windows desktop

applications is 240 × 320 pixels.

There are many view sizes for the camera, for example: 160 × 120 pixels,

320 × 180 pixels, 320 × 240 pixels, 640 × 480 pixels. In order to make the

application flexible, we want to use the real camera to set up Edgelib view

rather than set up the default value which is 640 × 480 pixels. Figure 4.8

shows the code we wrote for setting up the virtual camera in Edglib.

52

//Configure display
ERESULT ClassMain::OnDisplayConfig(EDISPLAYCONFIG *config)
{
 ARParam wparam;
 ClassEStd::StrCpy(config->caption, "Hello World!");
 config->icon = IDI_MAIN;

 /* open the video path */
 if(arVideoOpen(vconf) < 0) exit(0);
 /* find the size of the window */
 if(arVideoInqSize(&xsize, &ysize) < 0) exit(0);
 printf("Image size (x,y) = (%d,%d)\n", xsize, ysize);

 /* set the initial camera parameters */
 if(arParamLoad(cparam_name, 1, &wparam) < 0) {
 printf("Camera parameter load error !!\n");
 exit(0);

}
arParamChangeSize(&wparam, xsize, ysize, &cparam);
arInitCparam(&cparam);

 printf("*** Camera Parameter ***\n");
 arParamDisp(&cparam);

 if((patt_id=arLoadPatt(patt_name)) < 0) {
 printf("pattern load error !!\n");
 exit(0);
 }

 /* open the graphics window */

argInit(&cparam, 1.0, 0, 0, 0, 0);
 arVideoCapStart();

 /*Desktop resolution (we an change the background size to mobile
phone 320*240 or 260*220)*/
 config->width =cparam.xsize;
 config->height =cparam.ysize;

 /*Other options*/
 config->orientation = DOR_AUTO;
 config->engineconsole = false;

 return(E_OK);
}

Figure 4.8: An Example Code to Set Up the Virtual Camera

53

Figure 4.9(b) shows a virtual cube with six different colours, which has

been programmed to appear on a single marker. It is a snapshot of the AR

viewer using Edgelib which integrates with ARToolKit.

(a)Video test screenshot (b)Simple AR application created with
Edgelib

Figure 4.9: Prototype AR Viewer Using Edgelib

4.1.4 Input XML File

The AR viewer should load the XML file produced by the ComposAR tool

and render it onto a live video stream to create an AR view. The XML file

contains all the information about the AR scene including the virtual

objects and their transformation. Unfortunately, Edgelib only uses an

XML-RPC node10 which is a single element in the data tree to store data.

The node can be used to access the parent, children and siblings easily, but

it has only limited flexibility because of the simplicity of its architecture,

10 Edgelib SDK 3.60 released on March 25, 2008

54

leading to potential complexity as the number of different requests

increases.

To represent the values, XML-RPC defines several basic data types, such

as integers, floating-point numbers, Boolean values, strings, date-times and

Binary, and for compound data structures, such as arrays and structs.

In this research, we use the data type XML-RPC arrays, which are best

thought of as untyped lists because the data items within an array may be

of any type, simple or compound. However, the data items we use are not

the same types; they can be represented as multidimensional arrays by

embedding an array within an array.

In general, elements in a normal XML document may contain mixed

contents which can be both text and other elements. For example,

<animal name="dog" legs="4"/>

However, XML-RPC does not use this feature. To keep things simple, it

uses only elements. Elements in XML-RPC contain either text-only text or

other elements only. The example above should be:

<animal><name>dog</name><legs>4</legs></animal>

XML-RPC also defines the XML payload, which contains information

about the method to invoke. The very important part is the parameter list

enclosed by the <params> element which may contain zero or more

55

<param> elements. Even if the method requires no parameters, the

<params> element must still be present. The following example in Figure

4.11 shows how the different platforms can be used in Edgelib. Its

structure is shown in Figure 4.10.

Figure 4.10: An Example of XML-RPC Structure

As we known, Windows Mobile has Pocket PC and smartphone. But in the

example, we have to use two child nodes instead of one category by using

XML-PRC structure. The same situation is for the Symbian phone. We use

three nodes for the Symbian phone category.

56

 <?xml version="1.0" encoding="iso-8859-1" ?>
 -<methodResponse>
 -<params>
 -<param>
 -<value>
 -<struct>
 -<member>
 <name>Platform</name>
 -<value>
 -<array>
 -<data>
 -<value>
 <string>Windows Mobile Pocket PC</string>

 </value>
 -<value>
 <string>Windows Mobile Smartphone</string>

 </value>
 -<value>
 <string>iPhone</string>

 </value>
-<value>
 <string>Symbian Series 60/S60</string>
 </value>
-<value>
 <string>Symbian Series 80</string>

 </value>
-<value>
 <string>Symbian Series 90</string>

 </value>
-<value>
 <string>GP2X</string>

 </value>
-<value>
 <string>Gizmondo</string>

 </value>
-<value>
 <string>Windows desktop</string>

 </value>
</data>

 </array>
 </value>
 </member>
 </struct>
 </value>
 </param>
 </params>
 </methodResponse>

Figure 4.11: An Example Code for the XML-RPC Structure

57

In order to use Edgelib, we have to let ComposAR export the XML-RPC

format. Figure 4.13 shows an example for an output XML file which has

many tags in it created by the ComposAR tool. It contains the truck model

(see Figure 4.12) information and the marker information, which specifies

the file of the virtual object and its location, which marker associate with,

and the virtual object translation, rotation, and scale.

Figure 4.12: A Truck Model in the AR Viewer

58

 <?xml version="1.0" ?>
 - <composar os="nt" utc="Thu, 21 May 2009 16:30:34 +0000" version="0.1">
 - <scene>
 <videos />
 <trackers />
 - <markers>
 - <params>
 - <param>
 - <member>
 <name> marker</name>
 - <marker>
 - <value>
 - <array>
 - <model>
 - <value>
 <string>C:\MastersProjects\Demo\ComposAR\Data\model\truck.

3ds</string>
 </value>
 </model>

 - <name>
 - <value>
 <string>C:\MastersProjects\Demo\ComposAR\Data\patt.hiro</st

ring>
 </value>
 </name>

 - <position>
 - <value>
 <string>[0.0, 0.0, 20.0]</string>

 </value>
 </position>

 - <rotation>
 - <value>
 <string>[0.0, 0.0, 0.0]</string>

 </value>
 </rotation>

 - <scale>
 - <value>
 <string>[5.0, 5.0, 5.0]</string>

 </value>
 </scale>

 - <script>
 - <value>
 <string>None</string>

 </value>
 </script>
 </array>
 </value>
 </marker>
 </member>
 </param>
 </params>
 </markers>
 </scene>
 </composar>

Figure 4.13: XML File for the Truck Model from ComposAR Tool

59

4.2 Studierstube ES

Studierstube ES (StudierstubeES, 2008) is a general handheld AR

platform. It enables handheld devices to run AR applications. It has cross-

platform support for a variety of platforms, such as Windows XP/Vista,

Windows CE/Mobile, Gizmondo, Mac OS/iphone, Linux and Symbian

series 60.

Studierstube ES has components for addressing graphics, handling video,

tracking, rendering, and so on. In order to make an application that can be

run independently of any infrastructure and scale to an arbitrary number of

simultaneous users, processing is done natively on the handheld device.

Typical frame rates on smartphones are in the order of 5-30 fps, depending

on the content and device (Dieter and Daniel, 2008).

The structure of Studierstube ES is shown in Figure 4.14. There are two

general levels in the software stack of the Studierstube handheld AR

framework. The lower levels such as Core, Math, IO, Tracker, and

Muddleware provide the basic functionality that an AR system requires.

Studierstube ES (Embedded System) and SG (Scene-Graph) combine these

services in a high-level layer for the applications running on top of it.

60

The core components essential for AR are the Studierstube Tracker which

is a real-time fiducial tracking component, and Studierstube Scene Graph

which is a rendering engine running on top of OpenGL ES or Direct3D

Mobile.

Figure 4.14: Structure of Studierstube ES (from Studierstube ES Website)

61

Studierstube Tracker supports a wide variety of markers (see Figure 4.15):

Template marker, ID marker, DataMatrix marker, Frame marker, Split

marker, and Grid marker. In our research, we use the Template marker

which recognizes an image either colour or not placed inside a black

rectangle.

Figure 4.15: Different Markers Types Supported by StbTracker (a)
Template Marker (b) ID Marker (c) DataMatrix Marker (d) Frame Marker
(e) Split Marker (f) Grid Marker

One of the components of StbES can work with XML files. It uses a

modified version of the TinyXML11 library for parsing, loading and saving

XML files (Yeoh, 2005).

The four main tasks that this research is focused on are:

• how to make the configuration,

• how to set up the video,

• how to configure the tracking subsystem,

• how to set up scene graph.

11 TinyXML is a simple, small, C++ XML parser that can be easily integrated into other
programs.

62

4.2.1 Configuring StbES

StbES can be configured by using XML configuration files. However, the

main configuration of StbES for Windows XP and Windows Mobile is

almost the same. Both of them must set StbES as the root node, and they

can have other nodes such as Tracker, Logging, Window, RenderTarget,

Background, Video, Audio, Scene, WidgetManager, Application, and GUI.

The screen rendering size is different between Windows XP and Windows

Mobile, so the main differences between Windows XP and Windows

Mobile are the RenderTarget and Video as in Table 4.2.

The most important node parameters are listed as follows:

 Logging is a tool for debugging the crashes. It lets the system create a

log file which saves a lot of debug time since it provides information

about errors and relevant events in the system at runtime.

 RenderTarget can create both software and hardware renderings. It

not only makes off-screen render targets allowing direct video

memory access, but also makes on-screen render targets for

acceleration. “PixMap” is used when the target device does not feature

dedicated video memory.

63

Table 4.2: The Important Node for the Windows XP and Mobile Platform

 Platform

Important Node
Windows XP Windows Mobile

StbES must be the root node

level = [OFF | ERROR | WARNING | INFO]

draw-fps = [true | false] Logging

file = FILENAME

width

height

rotation
Window

fullscreen= [true | false]

RenderTarget
type = [PIXMAP |
WINDOW]

type = [PIXMAP |
VIDMEM]

pixels = [OFF | IMAGE | COLOR]

Background colorValue = “1 0 0 1” (RGBA)

type = [IMAGE |
DSVL]

type=[IMAGE |
DSVideoCE] Video

file =FILENAME

Audio enabled = [true | false]

Scene file = FILENAME

WidgetManager font, char-width, char-height

Tracker displayInfos= [true | false]

Application name =NAME

GUI exitkey = CODE_OF_KEY

64

 Video is a major importance node. It contains many types of the video

source such as Gizmondo device. Alternatively developers can

manually select a specific video mode and configure cropping, format

conversion, and zooming.

4.2.2 Video Configuration

The video input can come from either a camera video or an .avi file. The

video configuration file is different from Windows and Windows CE

devices. However, they both use the “xml” tag in the first line which is just

an information header.

The file dsvl.xml is used to configure the DirectShow Video Library for

Windows. Figure 4.16 shows a sample video configuration file for

Windows.

Figure 4.16: An Example of Windows Video Configuration File

65

In the sample code as shown in Figure 4.16, the camera setting is:

 The video frame size is 320 × 240

 The video frame rate is 30

 There is no dialog box shown there

 The color format of the camera is RGB56512.

The file dsvideoce.xml is used to configure the DirectShow Video for the

Windows CE library. It is only needed if a user wants to configure the

video settings. Figure 4.17 shows a sample video configuration file for a

Windows CE device.

Figure 4.17: An Example of WindowsCE Device Video Configuration File

In this example code as shown in Figure 4.17, we use DirectShow to filter

the standard DSVideoCE library. The “width” and “height” fields take the

size of the camera image, which is 320 × 240 in our test configuration.

The “width” and “height” fields define the output image size which is 240

× 240.

12 The mode is used in many devices with color screens.

66

4.2.3 The Tracking Subsystem

StbTracker tracking is based on finding key features. The tracker

automatically connects them in a pipeline: Once a tracker is created, then

the features can register one by one, it passes the frame to the tracker,

finally, the tracking results will gain. Figure 4.18 shows a sample

configuration for the tracking subsystem.

Figure 4.18: An Example for Configuring the Tracking Subsystem

The “StbTracker” tag states the StbTracker tracking system. The system

calculates the position of the camera relative to the position of a special

marker. For the tracking, a calibration file which compensates for the lens

distortion of the particular camera should be loaded. In the example as

shown in Figure 4.18, we use the default calibration file on desktop for this

research. The size of the video frames captured by the camera is 320 ×

240.

“TrackingTargets” are here the fiducial markers, the ID of which has been

registered with the tracking system, and which hold relevant application

67

functionality. These targets are needed to calculate the relative camera pose

to the marker. In this example, a single template marker is used.

As we mentioned in Section 4.2, the template marker allows placing an

image inside the rectangle (see Figure 4.15). This marker layout image is

the same as the marker we use in ComposAR authoring tool, although the

file formats of the markers are quite different. In order to convince the end

user, the pattern generator also can create different marker formats for each

tool. This will be described in detail in Chapter 5.

4.2.4 Scene Graph File: scene.xml

The scene file contains the field connections to the tracking system and

traverses the scene graph for rendering. Figure 4.19 shows a sample scene

graph file.

<?xml version="1.0" encoding="UTF-8"?>
<Scene name="MyScene">

<MatrixCamera projMatrix="REF StbTracker.projMatrix" />
<TransformSeparator active="REF TestTarget.visible">

<MatrixTransform matrix="REF TestTarget.matrix" />
<LightSeparator>

<DirectionalLight direction="-1 -0.5 0.3" />
<Transform name="PlayerTransform"
translation="0 0 40" />
<Cube width="80" height="80" depth="80" />

</LightSeparator>
</TransformSeparator>

</Scene>

Figure 4.19: An Example of Scene Graph File

68

In the example code, the projection matrix of a real camera was used, and

loaded the projection matrix which is needed to project the 3D objects into

2D image space. The value of the “projMatrix” field is part of the

“Tracker” node. The node and its fields are defined in the “config.xml”

file. The transformation separator is currently in use in this example. It is

only affects the objects inside the enclosure. “MatrixTransform” loaded the

transformation matrix of the marker called “TrackingTarget”, so that the

position and orientation of 3D objects defined below depend on the

marker’s transformation.

In the example, a simple cube with an edge length of 80 is displayed on the

marker, see Figure 4.20.

Figure 4.20: Screenshot of the Example

69

5 Chapter 5 AR Pattern Generator

The AR Pattern Generator is a tool for producing the marker for this AR

application. This is a modified vision from BuildAR (Looser, 2008). It not

only can output the pattern file, but also can print out the image file as a

marker. This is very convenient for the user who wants to create their own

markers for the AR application.

In this research, there are two types of markers used: ComposAR uses the

ARToolKit marker with the file format is .patt file, and the StbES uses the

template marker with the file format is .pgm file. However, both of them

have one common feature: the image is inside the black square. The

important thing is that the markers’ pattern file must use the same name,

but different file type for the two applications.

5.1 User Interface

The background is an 800 width by 800 height black rectangle with 400

width by 400 height white rectangle centered in the middle, as shown

below in Figure 5.1.

70

Figure 5.1: AR Pattern Generator Interface

The user can insert a colorful or non color image inside the white place,

and the program can scale the input image to 16 × 16 pixels. The format of

the insert image can be BMP, PNG or GIF. There are two save icons for

saving the two types of pattern files. This generator also can print preview

and print out the marker.

5.2 Pattern Files

Pattern files are files that contain data that represents the image in the

center of a marker. Although one or more pattern files can be loaded at the

same time, the program still knows what markers we are looking for in the

71

video stream. Pattern files also can be tracked from other squares objects in

the scene, and enable to distinguish one marker from another.

5.2.1 ARToolkit Marker Pattern File

The format of the pattern file for the ARToolKit marker is the .patt file,

which is a low resolution data file used by the tracking library to identify

the marker. It uses red, green and blue which are 8 bit unsigned integers in

the range of [0,255] to present the inserted image values.

5.2.2 StbES Marker Pattern File

The output pattern file for the StbES marker is a .pgm file, which is the

lowest common denominator grayscale file format. PGM means Portable

Gray Map. It uses the luminance component of the inserted image to

convert to greyscale image. The luma value is calculated by using

Luma = 30% Red + 59% Green + 11% Blue

In the formal, the weightings 30%, 59%, and 11% are chosen to closely

match the sensitivity of the eye to red, green, and blue.

5.3 Marker Preview and Printing

Users also can print out the marker. This is the preview for the created

marker. Figure 5.2 shows the example that is created by this tool. (a) is the

original image, (b) is the marker view and (c)is the print preview.

72

(a) The original image

(b) The marker view (c) The print preview

Figure 5.2: An Example of a Marker

73

6 Chapter 6 Evaluation and Result

This chapter describes an experiment to test the ComposAR authoring tool

when used by the programmers and the non-programmers and its

performance compared to different authoring tools.

6.1 Experimental Task and Design

In order to evaluate our AR authoring tool, we compared it to other two

applications:

(1) BuildAR which is a PC based AR authoring tool that enables users to

create a simple augmented reality scene on the desktop.

(2) Notepad ++ which is an XML editor and not an AR authoring tool

called. It is a free source code editor. One of its main features is XML

syntax highlighting and folding.

The experiment follows a 3 × 3 × 2 repeated measures design. The two

user groups were programmers and non-programmers. The programmer

means someone who can write or debug any computer programs, while the

non-programmer means someone who seldom or never writes any codes

for programming. There were three tasks, and the three authoring tools

used were ComposAR, BuildAR, and an XML editor.

In the experiment participants had to finish a set of three standard

authoring tasks using each tool. The task descriptions are as follows:

74

Task One: Model Loading

• Add the first marker to the AR scene

• Load the first model on the marker

• Add the second marker to the AR scene

• Load the second model on the marker

Task Two: Model Manipulation

Subjects were given a sample AR scene (see Figure 6.1(a)) that already had

one model on an AR marker. Using an empty marker, subjects had to load

the same model on it and then make it the same size and position of the

first model (see Figure 6.1(b)) by using the translate, rotate and scale

functions.

(a) The Sample AR Scene (b) The Target AR Scene

Figure 6.1: A Target Authoring Scene

75

Task Three: Model Viewing

There were several model files within one folder on the computer. Subjects

were told to load and view them one by one using the AR authoring tool.

For the ComposAR authoring tool subjects also completed an additional

task where they loaded a “jeep” model, created an XML file of the scene,

and then loaded that file on a mobile phone AR viewer to see the AR view

of the jeep on the phone.

The participants completed the tasks using all three authoring tools in a

counterbalanced order to reduce learning effects. The first tool was

randomly chosen when a participant started the experiment.

6.2 Experimental Measures

After the participants finished each task, they filled out a questionnaire

about the tool they just used and the tasks they just finished, and how they

felt about the tool interface. Then the participants moved on to another

authoring tool. After the participants used all the three different tools, they

filled out another questionnaire asking them to rank the conditions in

several categories.

In addition, the Task Completion Time and Number of Errors made were

also captured. The Task Completion Time was measured as the time it took

each person to complete the task. Errors were measured as how many

76

errors were present after the user thought they had completed the task

correctly. There could be two types of errors: the wrong result, and clicking

in the wrong place but eventually figuring out correct place.

The introductory instructions to the participants emphasized the focus on

introducing the tool interface and the need to learn how to use the tool.

Users were asked to complete the tasks with as fewer errors as possible.

There were 30 participants (12 female and 18 male), aged from 21 to 35

years old. 12 people stated that they had never or seldom written any

computer programs before, these were the non-programmers group, the

remaining participants were programmers. The experiment lasted about

one hour for each user using the three tools, including the introduction and

a short concluding discussion. Data analysis was performed by using SPSS

version 17 and the main effect was tested using a repeated ANOVA

analysis. If a main effect was found, pair-wise post-hoc comparisons were

performed by using the Bonferroni adjustment for multiple comparisons.

The questions the participants had to answer after each tool can be grouped

into four main categories: performance of the task, ease of completing the

task, feeling of control and liking using. Subjects were asked to mark on a

scale of 1 to 7 how much they agreed or disagreed with the statements (1 =

Strongly Disagree and 7 = Strongly Agree). Appendix B includes the

original questionnaires that were handed out to the participants.

77

6.3 Results

In this section the results from the experiment are presented. Two groups

(programmers and non-programmers) performed the same three tasks by

using the three different tools; Table 6.1 shows the average amount of time

it took to complete task one (Model Loading) using each tool.

Table 6.1: Average Time (Std. Error) to Perform Task One

Tool Non-Programmer Programmer
ComposAR 95.31s (12.17) 102.38s (10.97)

BuildAR 108.54s (12.86) 99.19s (11.59)
XML 319.62s (25.45) 218.94s (22.94)

An ANOVA analysis found a significant difference (F (1, 27) = 4.972, P <

0.05) in the time the non-programmers and programmers took when they

performed this task. Mauchly’s test indicates that the assumption of

sphericity had been violated; therefore the degrees of freedom were

corrected using Greenhouse-Geisser estimates of sphericity. Doing this we

found a significant difference between the three different tools (F (1.58,

42.669) = 72.958, P < 0.05) in the time it took to perform the task, and also

a significant interaction between two groups and the different tools (F

(1.58, 42.669) = 6.535, P < 0.05).

A post-hoc analysis with Bonferroni correction showed a pair-wise

difference between the ComposAR and the XML editor, and the difference

between the BuildAR and the XML editor, but no difference between the

78

ComposAR and the BuildAR. So using the ComposAR and the BuildAR

tools was both faster than using the XML editor.

The numbers of times users make a mistake were counted while they

performed task one (Model Loading). Table 6.2 shows the average number

of user errors in completing task one. The errors were including: users

clicked in the wrong place, users forgot to save file, and users loaded the

wrong marker files or AR scene files.

Table 6.2: Error Taken (Std. Error) to Perform Task One

Tool Non-Programmer Programmer
ComposAR 0.54 (0.29) 0.88 (0.26)

BuildAR 1.15 (0.28) 0.63 (0.25)
XML 2.77 (0.52) 0.88 (0.47)

An ANOVA analysis found a significant (F (2, 54) = 4.796, P < 0.05)

interaction between the two groups and the different tools, a significant

difference (F (1, 27) = 5.815, P < 0.05) in the errors non-programmers and

programmers made, and a significant difference (F (2, 54) = 5.428, P <

0.05) in errors made with the three different tools.

A post-hoc analysis with Bonferroni correction showed a pair-wise

difference between the ComposAR and the XML editor, and a difference

between the BuildAR and the XML editor, but no difference in the errors

made with the ComposAR and the BuildAR tools. Using the ComposAR

79

and the BuildAR, users made fewer errors than using the XML editor, and

programmers made fewer errors than non-programmers.

Table 6.3 shows the average time it took to complete task two (Model

Manipulation) using each tool.

Table 6.3: Average Time (Std. Error) to Perform Task Two

Tool Non-Programmer Programmer
ComposAR 98.92s (27.76) 75.07s (25.70)

BuildAR 236.17s (22.14) 132.43s (20.50)
XML 63.75s (6.93) 48.07s (6.42)

An ANOVA analysis found no significant (F (1.282, 30.771) = 2.821)

interaction between the two groups and the different tools. However, a

significant difference was found (F (1, 24) = 9.101, P < 0.05) between the

non-programmers and the programmes in the time to do task two.

Mauchly’s test indicated that the assumption of sphericity had been

violated; therefore the degrees of freedom were corrected using

Greenhouse-Geisser estimates of sphericity. When this was done, a

significant difference was found (F (1.282, 30.771) = 21.381, P < 0.05) in

the time to do the task between the three different tools.

A post-hoc analysis with Bonferroni correction showed a pair-wise

difference between the ComposAR and the BuildAR tools, and a

difference between the BuildAR and the XML editor, but no difference

between ComposAR and the XML editor. It took longer time using the

80

BuildAR application to complete task two than using ComposAR, and it

also took longer time with the BuildAR than the XML editor.

The numbers of times users made a mistake were counted while they

performed task two (Model Manipulation). Table 6.4 shows the average

number of user errors in completing task two. The errors were including:

users clicked in the wrong place, users forgot to save file, users loaded the

wrong marker files or AR scene files, and users gained the wrong results.

Table 6.4: Error Taken (Std. Error) to Perform Task Two

Tool Non-Programmer Programmer
ComposAR 1.80 (0.33) 0.54 (0.32)

BuildAR 9.17 (1.33) 4.38 (1.28)
XML 0.50 (0.21) 0.46 (0.20)

An ANOVA analysis found a significant difference in the number of errors

between the programmers and the non-programmers (F (1, 23) = 8.656, P

< 0.05). Mauchly’s test indicated that the assumption of sphericity had

been violated; therefore the degrees of freedom were corrected using

Greenhouse-Geisser estimates of sphericity. Doing this we found a

significant difference between the three different tools (F (1.075, 24.721)

= 38.740, P < 0.05), and a significant interaction between the two groups

using the three different tools (F (1.075, 24.721) = 5.235, P < 0.05).

A post-hoc analysis with Bonferroni correction showed a pair-wise

difference between the ComposAR and the BuildAR tools, and a

81

difference between the BuildAR and the XML editor, but no difference

between the ComposAR and the XML editor. Users using the BuildAR

made more errors than using ComposAR, and the BuildAR users also

made more errors than the XML editor users in performing task two.

Table 6.5 shows the average performance time for each tool for task three

(Model Viewing).

Table 6.5: Average Time (Std. Error) to Perform Task Three

Tool Non-Programmer Programmer
ComposAR 33.67s (8.69) 38.93s (7.77)

BuildAR 56.08s (9.73) 63.13s (8.71)
XML 173.67s (21.60) 150.53s (19.32)

An ANOVA analysis found no significant difference (F (1, 25) = 0.073) in

the task time between the non-programmers and the programmers. But,

Mauchly’s test indicated that the assumption of sphericity had been

violated; therefore the degrees of freedom were corrected using

Greenhouse-Geisser estimates of sphericity. Doing this we found a

significant difference (F (1.548, 38.699) = 58.851, P < 0.05) between the

three authoring tools, and a significant interaction (F (1.548, 38.699) =

0.942, P < 0.05) between the two groups of users and the three tools.

A post-hoc analysis with Bonferroni correction showed pair-wise

differences between all the three tools. It took people more time to

complete the task with the XML editor than with the BuildAR, the

82

BuildAR user also took more time than with the ComposAR, and XML

editor required more time than with the ComposAR. Therefore, the

ComposAR application is the fastest tool for completing task three.

The numbers of times users made a mistake were counted while they

performed task three (Model Viewing). Table 6.6 shows the average

number of user errors in completing task three. The errors were including:

users clicked in the wrong place, users forgot to save file, users loaded the

wrong marker files or AR scene files, and users gained the wrong results.

Table 6.6: Error Taken (Std. Error) to Perform Task Three

Tool Non-Programmer Programmer
ComposAR 0.00 (0.12) 0.20 (0.11)

BuildAR 0.33 (0.38) 0.53 (0.28)
XML 0.83 (0.27) 1.07 (0.25)

An ANOVA analysis found no significant difference (F (1, 25) = 1.151)

between the non-programmers and the programmers in the number of

errors. But, Mauchly’s test indicated that the assumption of sphericity had

been violated; therefore the degrees of freedom were corrected using

Greenhouse-Geisser estimates of sphericity. Doing this we found a

significant difference (F (1.576, 39.391) = 6.785, P < 0.05) between the

three different tools, and no significant interaction (F (1.576, 39.391) =

0.003) between the two groups of users and the three tools.

83

A post-hoc analysis with Bonferroni correction showed a pair-wise

difference in the errors made with the ComposAR and the XML editor, but

no difference between the BuildAR and the XML editor, and no difference

between the BuildAR and the ComposAR. Users of ComposAR produced

fewer errors than users of the XML editor when doing task three.

To evaluate the users’ subjective feelings about the user interface, we

asked questions in a number of different categories. In the task

performance category we asked the following nine questions:

 Q1: I can easily add a marker

 Q2: I can easily load a 3D model

 Q3: I can easily translate the 3D model

 Q4: I can easily rotate the 3D model

 Q5: I can easily scale the 3D model

 Q6: I can easily browse the entire set of 3D models by using

this tool

 Q7: I can easily control this tool

 Q8: I can easily tell what was going on

 Q9: I feel very comfortable while using this tool

84

Figure 6.2 and Table 6.7 show the subjective survey scores for the

questions one to nine.

Table 6.7: Average Result (Std. Error) for Performance of the Task

Non Programmer Programmer ComposAR BuildAR XML ComposAR BuildAR XML

Q1 5.69
 (0.38)

5.92
(0.38)

4.08
(0.57)

6.53
(0.33)

6.47
(0.33)

5.12
(0.50)

Q2 5.62
(0.42)

6.00
(0.42)

4.23
(0.56)

6.18
(0.37)

6.18
(0.37)

5.18
(0.49)

Q3 5.46
(0.42)

5.69
(0.50)

4.62
(0.51)

6.29
(0.36)

5.00
(0.44)

5.29
(0.45)

Q4 5.15
(0.37)

4.00
(0.59)

4.85
(0.53)

6.29
(0.32)

4.88
(0.52)

5.06
(0.46)

Q5 5.39
(0.35)

4.92
(0.61)

5.00
(0.55)

6.53
(0.30)

4.94
(0.53)

5.24
(0.48)

Q6 5.85
(0.31)

5.01
(0.54)

4.39
(0.56)

6.29
(0.27)

5.71
(0.47)

4.18
(0.49)

Q7 5.77
(0.40)

5.77
(0.35)

3.92
(0.51)

5.77
(0.35)

5.41
(0.36)

4.88
(0.45)

Q8 5.15
(0.52)

5.01
(0.38)

3.54
(0.45)

5.77
(0.45)

5.77
(0.33)

5.71
(0.39)

Q9 5.54
(0.37)

5.00
(0.46)

4.15
(0.52)

5.88
(0.32)

5.35
(0.40)

4.82
(0.45)

Performing an ANOVA analysis on Q3 did not find any significant

difference.

On Q1: I can easily add a marker, an ANOVA analysis found a significant

difference (F (2, 56) = 9.679, P < 0.05) between the three tools, a

significant difference (F (1, 28) = 4.882, P < 0.05) between the

programmers and the non-programmers. A post-hoc analysis with

Bonferroni correction showed a pair-wise difference between the

ComposAR and the XML editor, and a difference between BuildAR and

the XML editor, and no difference between ComposAR and the BuildAR

85

applications. Participants can easily add a marker using ComposAR and

the BuildAR tools than using the XML editor.

On Q2: I can easily load a 3D model, an ANOVA analysis found a

significant difference (F (1.666, 46.643) = 7.770, P < 0.05) between the

three tools. A post-hoc analysis with Bonferroni correction showed a pair-

wise difference between the BuildAR and the XML editor, and a difference

between ComposAR and the XML editor, and no difference between

ComposAR and the BuildAR applications. Participants can easily load a

3D model using the ComposAR and the BuildAR tools than using the

XML editor.

On Q4: I can easily rotate the 3D model, an ANOVA analysis found a

significant difference (F (2, 56) = 4.215, P < 0.05) between the three tools.

A post-hoc analysis with Bonferroni correction showed a pair-wise

difference between the ComposAR and the BuildAR, there were no

difference between ComposAR and the XML editor, and no difference

between the XML editor and the BuildAR applications. Participants can

easily rotate the 3D model using the ComposAR than using the BuildAR.

On Q5: I can easily scale the 3D model, an ANOVA analysis found a

significant difference (F (1.923, 53.846) = 3.322, P < 0.05) between the

three tools. A post-hoc analysis with Bonferroni correction showed a pair-

wise difference between the ComposAR and the BuildAR, there were no

86

difference between ComposAR and the XML editor, and no difference

between the XML editor and the BuildAR applications. Participants can

easily scale a 3D model using the ComposAR than using the BuildAR.

On Q6: I can easily browse the entire set of 3D models by using this tool,

an ANOVA analysis found a significant difference (F (1.923, 54.687) =

8.892, P < 0.05) between the three tools. A post-hoc analysis with

Bonferroni correction showed a pair-wise difference between the BuildAR

and the XML editor, and a difference between ComposAR and the XML

editor, and no difference between ComposAR and the BuildAR

applications. Participants can easily browse the entire set of 3D models by

using the ComposAR and the BuildAR tools than using the XML editor.

On Q7: I can easily control this tool, an ANOVA analysis found a

significant difference (F (1.952, 54.655) = 5.659, P < 0.05) between the

three tools. A post-hoc analysis with Bonferroni correction showed a pair-

wise difference between the ComposAR and the XML editor, and no

difference between BuildAR and the XML editor, and no difference

between ComposAR and the BuildAR applications. Participants can easily

control the ComposAR than control the XML editor.

On Q8: I can easily tell what was going on, an ANOVA analysis found a

significant difference (F (1, 28) = 9.554, P < 0.05) between the

programmers and the non-programmers.

87

On Q9: I feel very comfortable while using this tool, an ANOVA analysis

found a significant difference (F (2, 56) = 4.061, P < 0.05) between the

three tools. between the three tools. A post-hoc analysis with Bonferroni

correction showed a pair-wise difference between the ComposAR and the

XML editor, and no difference between BuildAR and the XML editor, and

no difference between ComposAR and the BuildAR applications.

Participants felt more comfortable using the ComposAR than using the

XML editor.

88

 Q1: I can easily add a marker

0
1
2
3
4
5
6
7

ComposAR BuildAR XML

Q2: I can easily load a 3D model

0
1

2
3

4
5

6
7

ComposAR BuildAR XML

Q3: I can easily translate the 3D model

0
1

2
3
4
5

6
7

ComposAR BuildAR XML

Q4: I can easily rotate the 3D model

0
1

2
3
4
5

6
7

ComposAR BuildAR XML

Q5: I can easily scale the 3D model

0
1
2
3
4
5
6
7

ComposAR BuildAR XML

Q6: I can easily browse the entire set of 3D
models by using this tool

0
1
2
3
4
5
6
7

ComposAR BuildAR XML

Q7: I can easily control this tool

0
1
2
3

4
5
6
7

ComposAR BuildAR XML

Q8: I can easily tell what was going on

0
1

2
3
4
5

6
7

ComposAR BuildAR XML

Q9: I feel very comfortable while using this
tool

0
1
2
3
4
5
6
7

ComposAR BuildAR XML

Figure 6.2: Subjective Survey Scores for Questions 1 - 9.

89

A second set of questions related to the ease of the task:

• Q10: I always understand clearly what I was supposed to do

• Q11: I had sometimes problems with the user interface

• Q12: The tool was sometimes confusing

• Q13: The tasks were easy to solve

Table 6.8: Average Result (Std. Error) for Ease of the Task

Non Programmer Programmer ComposAR BuildAR XML ComposAR BuildAR XML

Q10 4.77
 (0.43)

5.46
(0.45)

4.54
(0.45)

5.77
(0.38)

5.47
(0.39)

5.59
(0.42)

Q11 4.23
(0.53)

4.62
(0.53)

3.85
(0.55)

3.65
(0.46)

4.53
(0.47)

2.88
(0.48)

Q12 3.62
(0.58)

4.62
(0.47)

3.86
(0.45)

3.24
(0.51)

4.06
(0.41)

3.12
(0.39)

Q13 5.92
(0.34)

5.39
(0.43)

4.23
(0.41)

6.18
(0.30)

5.71
(0.38)

5.71
(0.36)

Q10: I always understand clearly what I was
supposed to do

0

1
2

3

4

5
6

7

ComposAR BuildAR XML

Q11: I had sometimes problems with the user
interface

0
1

2
3
4
5

6
7

ComposAR BuildAR XML

Q12: The tool was sometimes confusing

0

1

2

3

4

5

6

7

ComposAR BuildAR XML

Q13: The tasks were easy to solve

0

1

2

3

4

5

6

7

ComposAR BuildAR XML

Figure 6.3: Subjective Survey Scores for Questions 10 - 13

90

Table 6.8 and Figure 6.3 show the average user scores from these

questions. Performing an ANOVA analysis on Q10 and Q12 did not find

any significant difference.

On Q11: I had sometimes problems with the user interface, an ANOVA

analysis found a significant difference (F (2, 56) = 4.061, P < 0.05)

between the three tools. A post-hoc analysis with Bonferroni correction

showed a pair-wise difference between the BuildAR and the XML editor,

but a difference between ComposAR and the XML editor, and no

difference between ComposAR and the BuildAR applications. Participants

had sometimes more problems with the user interface using the XML

editor than using the ComposAR and the BuildAR tools.

For Q13: The tasks were easy to solve, an ANOVA analysis found a

significant difference (F (1, 28) = 4.436, P < 0.05) between the

programmers and the non-programmers. There is also a significant

difference (F (2, 56) = 4.614, P < 0.05) between the three tools. Post-hoc

analysis with Bonferroni correction showed a pair wise difference between

the ComposAR and the XML editor, but no difference between the

BuildAR and the XML editor, and no difference between the ComposAR

and the BuildAR applications. Participants felt that the task was easier to

solve using the ComposAR tool than using the XML editor.

91

To measure how people felt in control was the questions we asked:

• Q14: The user interface made me feel in control

• Q15: The user interface was easy to use

Table 6.9: Average Result (Std. Error) for Felt in Control

Non Programmer Programmer ComposAR BuildAR XML ComposAR BuildAR XML

Q14 5.15
(0.46)

5.31
(0.44)

3.92
(0.48)

5.29
(0.40)

5.41
(0.39)

5.77
(0.42)

Q15 5.08
(0.41)

5.08
(0.45)

3.77
(0.50)

5.53
(0.36)

5.35
(0.40)

4.35
(0.44)

Q14: The user interface made me feel in
control

0
1
2
3

4
5
6
7

ComposAR BuildAR XML

Q15: The user interface was easy to use

0
1
2
3
4
5
6
7

ComposAR BuildAR XML

Figure 6.4: Subjective Survey Scores for Questions 14 and 15

Table 6.9 and Figure 6.3 show the average result. Performing an ANOVA

analysis on Q14 did not find any significant difference.

However, an ANOVA analysis found significant difference for

Q15: The user interface was easy to use (F (2, 56) = 6.453, P < 0.05).

A post-hoc comparison showed that users felt that using ComposAR and

92

BuildAR was easier than using the XML editor, and there was no

difference between the ComposAR and the BuildAR for ease.

The last group of questions we asked were about how much people liked

using the tool:

• Q16: I enjoyed using the tool

• Q17: Using the tool was a great experience

Table 6.10: Average Result (Std. Error) for People Liked Using the Tool

Non Programmer Programmer ComposAR BuildAR XML ComposAR BuildAR XML

Q16 6.00
(0.34)

5.01
(0.40)

3.85
(0.54)

5.71
(0.30)

5.12
(0.35)

4.41
(0.48)

Q17 5.62
(0.38)

4.77
(0.53)

4.39
(0.54)

5.47
(0.38)

4.88
(0.46)

4.18
(0.48)

Q16: I enjoyed using the tool

0

1

2

3

4

5

6

7

ComposAR BuildAR XML

Q17: Using the tool was a great experience

0

1

2

3

4

5

6

7

ComposAR BuildAR XML

Figure 6.5: Subjective Survey Scores for Questions 16 and 17

Table 6.10 and Figure 6.4 show the average results. An ANOVA analysis

found a significant difference in responses to Q16: I enjoyed using the tool

(F (2, 56) = 13.294, P< 0.05). A post-hoc analysis found that the

93

participants enjoyed using the ComposAR and the BuildAR more than

using the XML editor, but there was no difference as for how much they

liked ComposAR and BuildAR.

An ANOVA analysis was found a significant difference in response to

Q17: Using the tool was a great experience F (2, 56) = 11.813, P<0.05. A

post-hoc analysis showed that participants preferred using the ComposAR

than the XML editor, but there was no difference between the BuildAR

and the XML editor, and no difference between ComposAR and BuildAR.

For the ComposAR tool, two additional questions were asked:

• Q18: This tool would fit well into a mobile phone AR application

• Q19: I would like to use this tool for mobile phone AR applications

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Non Programmer 5.71 5.76

Programmer 5.54 5.85

Q18 Q19

Figure 6.6: Subjective Survey Scores for the Questions 18 and 19

94

Figure 6.6 shows the average result for the two questions. Performing an

ANOVA analysis on Q18 and Q19 did not find any significant difference

between the programmers and the non-programmers. They had the same

opinions for these two questions.

In addition, subjects were also asked to rate each of the conditions on a

scale of one to seven according to a set of criteria shown in Table 6.11.

For each criteria the score 1 = lowest, 7 = highest. Table 6.11 shows the

average results.

Users felt that ComposAR is the easiest to use (Friedman test ,712.182 =rχ

001.0,30,2 <== pNdf); ComposAR is the most interesting. (Friedman

test ,962.222 =rχ 001.0,30,2 <== pNdf); ComposAR is not boring

(Friedman test ,169.222 =rχ 001.0,30,2 <== pNdf); The XML editor

is the most precise (Friedman test ,553.112 =rχ 05.0,30,2 <== pNdf);

ComposAR is efficient (Friedman test ,857.142 =rχ

05.0,30,2 <== pNdf); ComposAR is funny (Friedman test

,244.272 =rχ 001.0,30,2 <== pNdf); The XML editor is very skilled

(Friedman test ,473.132 =rχ 05.0,30,2 <== pNdf); ComposAR is more

satisfying. (Friedman test ,265.202 =rχ 001.0,30,2 <== pNdf);

ComposAR is more engaging. (Friedman test ,146.232 =rχ

95

001.0,30,2 <== pNdf); Overall, ComposAR is rated better than the

others. (Friedman test ,529.92 =rχ 05.0,30,2 <== pNdf).

96

Table 6.11: Results (Std. Error) of the User Experience
ComposAR BuildAR XML

 Measure
Non Programmer Programmer Non Programmer Programmer Non Programmer Programmer

 Mean Std. Error Mean Std. Error Mean Std. Error Mean Std. Error Mean Std. Error Mean Std. Error
1 Easy 6.00 0.267 6.00 0.23 4.15 0.48 5.35 0.42 2.77 0.54 4.29 0.48
2 Interesting 5.62 0.35 5.82 0.31 4.46 0.47 5.29 0.41 3.08 0.57 3.41 0.50
3 Boring 2.69 0.48 2.35 0.42 3.15 0.49 3.00 0.42 4.46 0.55 4.29 0.48
4 Precise 5.85 0.31 5.35 0.27 4.00 0.47 5.00 0.41 5.39 0.34 6.00 0.29
5 Obvious 5.00 0.48 5.53 0.42 4.08 0.55 4.94 0.48 3.15 0.52 4.94 0.48
6 Efficient 5.46 0.42 5.82 0.37 4.15 0.43 5.18 0.37 2.85 0.50 4.18 0.44
7 Funny 5.39 0.38 5.53 0.33 5.00 0.42 5.06 0.37 3.15 0.55 3.35 0.48
8 Skilled 3.54 0.53 3.65 0.47 3.15 0.40 3.29 0.35 4.54 0.48 4.88 0.42
9 Satisfying 5.54 0.40 5.82 0.35 4.62 0.39 5.24 0.34 3.23 0.51 4.59 0.45

10 Engaging 5.39 0.31 6.06 0.27 4.69 0.34 5.24 0.30 3.23 0.51 4.47 0.45
11 Overall 5.39 0.40 5.65 0.35 4.54 0.45 5.06 0.40 4.54 0.45 5.06 0.40

97

6.4 Interviews

The participants were interviewed after they finished the experimental

tasks. After using the XML editor, most non-programmers felt it was hard

to finish the tasks, although there were some comments on the editor. Two

participants only finished task one, and gave up the rest of two tasks,

because they did not understand and felt very boring. But some

programmers found it easy to play with this XML editor. The same code

was quickly copied and pasted to manipulate the model.

Most participants pointed out that it was a bit difficult to figure out how to

save the translation, rotation and scale factors by using the BuildAR tool

to complete task two. Three participants gave up finishing task two

because the controls in BuildAR are not obvious. They felt confused and

did not know how to confirm the entered data.

Most participants felt the ComposAR tool was much easier to use than the

other two tools. However, some of them complained that the icons needed

to be clarified and tips for the buttons should appear on the screen.

Otherwise, they would complete the tasks faster and with fewer errors.

Using the ComposAR tool, some participants said that it was so interesting

that they were able to view the 3D object using their mobile phone.

98

6.5 Discussion

There were significantly different user subjective results between the three

different tools, and the difference between the programmers and the non-

programmers using the different tools.

One of the most obvious differences was seen in the model viewing task.

When using the XML editor, the users opened the file folder, browsed all

the files and remembered one of the file names, then typed into the editor

and saved it, and finally, they ran the application to view the model. The

BuildAR users entered the files folder and opened the model file to view

the model. What the ComposAR users did was only click the button, which

only took several seconds. Thus it was the fastest tool for model viewing.

Another key difference was between the programmers and the non-

programmers using the three different tools to do the model loading. The

main difference occurred between the programmers and the non-

programmers using XML editor, while there was no difference between

them using ComposAR and BuildAR. Most programmers understood the

pre-existing code, so they could easily and quickly load the model. In

contrast, most non-programmers could not understand what was written on

the editor, and did not know what the code meant, and did not even know

how to control them. So it took the non-programmers several minutes to

figure out what was going on. Both the ComposAR users and the BuildAR

99

users loaded the model in a similarly way, which was to open the file

folder and choose one model.

Users rated the ComposAR as the tool they most liked using. This was

because of how easy it was to manipulate the model, and support for direct

viewing the model with any changes. In contrast, after modifying the code

by using the XML editor, users must restart the application to view the

model. Although the BuildAR tool could view changes of the model

directly, users felt it was hard to manipulate the model by using the

translation, rotation, and scale values.

The programmers made more mistakes and required more time in

completing task one, because some programmers presumably more

experiments, while the non-programmers felt more curious though the test.

In the performance of the task category, most non-programmers felt it is

very easy to add a marker, loaded a 3D model even felt easily control the

ComposAR tool than control the XML editor.

100

7 Chapter 7 Performance Measurements

To test the performance of mobile AR applications made by the authoring

tool, benchmarks were performed on a mobile phone device (HP iPAQ

612c). These tests compare tracking performance with different numbers of

visible markers and different models. All tests were done with the mobile

AR viewer application developed in this Masters thesis.

The tests were run on an HP mobile phone device which is currently

available on the market, running Windows CE. Additionally the

benchmarks were run on a PC as a comparison of the processing power on

the mobile phone to a typical PC-based set up.

The specific devices used were:

• HP iPAQ 612c, an enterprise-level PDA phone with a Marvell 520MHz

processor with 128MB of RAM.

• Intel 2.40 GHz Core Duo, a standard PC-based setup.

Three different scenarios were evaluated: using single marker tracking,

separate multi-marker tracking, and combined multi-marker tracking.

An initial experiment was run to check on whether or not the marker size

should be a factor. Table 7.1 shows the tracking speed result on the

different size of the markers. Contrary to expectation, the size of the

101

marker does not influence the tracking speed. The reason for this is that the

edge following step generally adds only very little to the overall calculation

time

Table 7.1: Tracking Speed on Different Size of the Markers

Size (cm) 20 × 20 15 × 15 10 ×10 8 × 8 4 × 4 2 ×2 1 ×1
FPS 26.7 26.8 26.5 26.7 26.3 26.3 26.5

The systems were then run with 1, 4, 6 and 10 markers being tracked

simultaneously, on both the phone and desktop system.

Separate/Combined. The separate marker means every single marker;

whereas the combined marker means two or more marker appear on the

same paper. The speeds (measured in frames per second, fps) are shown in

Table 7.2. A higher fps value is better; rates below 10 fps will look jerky to

the viewer, and commercial video uses rates of around 24 fps and higher.

Table 7.2: Benchmarks Performed with Single and Multi Marker,

Speed Shown in Frames Per Second
Device Single

Marker
Multi Marker
(4 markers)

Multi Marker
(6 markers)

Multi Marker
(10 markers)

 Separate Combined Separate Combined Separate Combined

HP
iPAQ
612c

18.3 16.3 15.9 15.7 13.4 14.4 10.7

Desktop 26.9 25.7 24.8 21.8 20.9 13.1 12.2

The single marker tracking represents the fastest fame rate. Tracking a

multi-marker set with N visible markers is slower than tracking N

102

independent markers. However, tracking a multi-marker set with six visible

markers still performs faster on this mobile phone device, while tracking a

multi-marker set with ten visible markers will cause a bottleneck.

The portable device is not significantly slower than the desktop machine,

and both produce rendering speeds that are acceptable for video viewing.

Benchmarks

In addition to tracking, the AR system needs to render images in the view,

and the rendering speed will depend on the image being displayed. To

compare the mobile phone and the desktop applications, several tests

images were used as benchmarks:

• Cube: This test renders a cube on top of the marker (see Figure 7.1(a)).

• Jeep: This test renders a detailed and textured model of a jeep13 on top of

a marker (see Figure 7.1(b)). The 3D model consists of 2032 polygons with

different pixel texture: 512 × 512, 256 × 256, and 128 × 128.

• Truck: This test renders a highly detailed and lit model of a truck14 on

top of a marker (see Figure 7.1(c)). The model consists of one mesh and 12

materials. In total, the model contains 16387 vertices and 31716 polygons.

13 Jeep model was free downloaded from website: http://www.psionic3d.co.uk/.
14 Truck model was free downloaded from website: http://www.turbosquid.com/.

103

(a) Cube (b) Jeep (c) Truck

Figure 7.1: Test Models Rendered for Benchmarking

Five tests were performed on the mobile phone and desktop. Table 7.3

shows the results of the tests. The table lists only frames per second (fps)

values. The higher values are better.

Table 7.3: Result for the Test Model (Frames Per Second)

Device Cube Jeep
(128×128)

Jeep
(256×256)

Jeep
(512×512) Truck

HP iPAQ
612c 20.6 14.5 12.0 10.1 5.4

Desktop 31.2 29.4 28.5 27.6 19.5

The performance on the desktop machine is higher than on the mobile

phone, although all results are acceptable for live viewing. We note the

following effects:

• A smaller image size (number of pixels) produces better

performance on both platforms

• A small number of polygons in the 3D model produce better

performance

• Speed deteriorating by no room on display on this phone at once

104

However, if we concern the affects list above, we can create mobile AR

applications by the authoring tool.

105

8 Chapter 8 Conclusion and Future Work

In this research, we have focused on the design, development and

evaluation of an authoring tool for building mobile phone AR applications.

We did some background researches that found there is no such authoring

tool for mobile AR applications. The AR authoring system has been

described in detail in the thesis. Finally, a user evaluation was conducted

between the programmers and non-programmers using different authoring

tools, and some tests performance measurements were taken on a mobile

phone.

The experiment evaluations showed that the participants prefer the

ComposAR tool to the other two tools, and there was no significant

difference between the programmers and the non programmers using this

tool.

The performance measurements evaluate the speed performance of the

system on a mobile phone and desktop PC. Even quite complex images

(with less visiable markers and detailed 3D models) performed at video

rates that are acceptable to users. Not surprisingly, better performance on

the mobile phone was obtained with smaller images size, a small number

of polygons in the 3D model and fewer markers produce.

106

In the future, we would like to adapt the authoring tool for different

operating systems and mobile platforms. It can be used widely. Another

possible direction for further research is to improve the interface design,

such as:

 Supporting a touch screen with the labeled buttons; and

 Providing an easy way to drag the marker and content files rather than

go through the folders or subfolders; and

 Adding animation and sound.

107

References

ALEXANDRA MAKRI, JENS WEIDENHAUSEN, PETER ESCHLER,

DIDIER STRICKER, OLIVER MACHUI, CARLOS

FERNANDES, SERGIO MARIA, GERRIT VOSS &

IOANNIDIS, N. (2005) ULTRA Light Augmented Reality Mobile

System. Proceedings of the ISMAR.

AMIRE (2002) AMIRE: authoring mixed reality Main Page:

http://amire.sourceforge.net/.

ARTOOLKIT (2001) ARToolKit website:

http://www.hitl.washington.edu/artoolkit/.

AZUMA, R., BAILLOT, Y., BEHRINGER, R., FEINER, S., JULIER, S. &

MACINTYRE, B. (2001) Recent advances in augmented reality.

Computer Graphics and Applications, IEEE, 21, 34-47.

AZUMA, R. T. (1997) A Survey of Augmented Reality. In Presence: Teleoperators

and Virtual Environments, 6, 355-385.

BRANNAN, S. (2001) How the First-Down Line Works.

HowStuffWorks.com.

CAUDELL, T. P. & MIZELL, D. W. (1992) Augmented reality: an

application of heads-up display technology to manual manufacturing

processes. System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii

International Conference on.

108

CAVALLARO, R. (1997) The FoxTrax Hockey Puck Tracking System.

IEEE Comput. Graph. Appl., 17, 6-12.

DIETER, S. & DANIEL, W. (2008) Mobile Phones as a Platform for

Augmented Reality. Proceedings of the IEEE VR 2008 Workshop on

Software Engineering and Architectures for Realtime Interactive Systems. Reno,

NV, USA, Shaker Publishing.

EDGELIB (2008) Edgelib website:http://www.edgelib.com/.

FIALA, M. (2005) ARTag, a fiducial marker system using digital techniques.

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on.

FISHER, S. (2001) Environmental Media: Accessing Virtual Representations

of Real-Time Sensor Data and Site-specific Annotations Embedded

in Physical Environments. Proc. WSMM ’01 (Seventh Int. Conf. on

Virtual Systems and Multimedia). Berkeley, CA.

FISHER, S. (2002) An Authoring Toolkit for Mixed Reality Experiences. Proc.

IWEC ’02 (Int. Workshop on Entertainment Computing). Makuhari, Japan.

FURNESS, T. A. (1986) The Super Cockpit and Human Factors Challenges.

Proceedings of Human Factors Society 30th Annual Meeting.

GRASSET, R., LOOSER, J. & BILLINGHURST, M. (2005)

OSGARToolKit: tangible + transitional 3D collaborative mixed

reality framework. Proceedings of the 2005 international conference on

Augmented tele-existence. Christchurch, New Zealand, ACM.

109

GRIMM, P. (2006) AR-Blender

GRIMM, P., HALLER, M., PAELKE, V., REINHOLD, S., REIMANN, C.

& ZAUNER, R. (2002) AMIRE - authoring mixed reality. Augmented

Reality Toolkit, The First IEEE International Workshop.

GUVEN, S. & FEINER, S. (2003) Authoring 3D hypermedia for wearable

augmented and virtual reality. IN FEINER, S. (Ed.) Wearable

Computers, 2003. Proceedings. Seventh IEEE International Symposium on.

HENRYSSON, A., BILLINGHURST, M. & OLLILA, M. (2005) Face to

face collaborative AR on mobile phones. Mixed and Augmented Reality,

2005. Proceedings. Fourth IEEE and ACM International Symposium on.

KATO, H. & BILLINGHURST, M. (1999) Marker Tracking and HMD

Calibration for a Video-Based Augmented Reality Conferencing

System. Proceedings of the 2nd IEEE and ACM International Workshop on

Augmented Reality. IEEE Computer Society.

KOYAMA, T. (2008) FLARTookit http://saqoosha.net/en/flartoolkit/start-

up-guide/.

LOOSER, J. (2008) BuildAR http://www.hitlabnz.org/wiki/BuildAR.

LOOSER, J., GRASSET, R., SEICHTER, H. & BILLINGHURST, M.

(2006) OSGART - A Pragmatic Approach to MR. Proceedings of

International Symposium of Mixed and Augmented Reality.

110

MACINTYRE, B., GANDY, M., DOW, S. & BOLTER, J. D. (2005) DART:

a toolkit for rapid design exploration of augmented reality

experiences. ACM SIGGRAPH 2005 Papers. Los Angeles, California,

ACM.

MILGRAM, P., KISHINO, F., TAKEMURA, H. & UTSUMI, A. (1994)

Augmented Reality: A Class of Displays on the Reality-Virtuality

Continuum. Proceedings of the SPIE Telemanipulator and Telepresence

Technologies, 2351, 282-292.

OSGART (2006) OSGART website:

http://www.artoolworks.com/community/osgart/.

PASMAN, W. & WOODWARD, C. (2003) Implementation of an

augmented reality system on a PDA. Proceedings of the Second IEEE and

ACM International Symposium on Mixed and Augmented Reality.

SCHMALSTIEG, D., FUHRMANN, A., HESINA, G., SZALAVÁRI, Z.,

ENCARNAÇÃO, L. M., GERVAUTZ, M. & PURGATHOFER, W.

(2002) The Studierstube Augmented Reality Project. Presence:

Teleoperators & Virtual Environments, 11, 33-54.

SEICHTER, H., LOOSER, J. & BILLINGHURST, M. (2008) ComposAR:

An intuitive tool for authoring AR applications. Proceedings of the 7th

IEEE/ACM International Symposium on Mixed and Augmented Reality.

IEEE Computer Society.

SPORTVISION (2006) Sportvision website http://www.sportvision.com/.

111

STUDIERSTUBEES (2008) StudierstubeES website

http://studierstube.icg.tu-graz.ac.at/handheld_ar/stbes.php.

SUTHERLAND, I. E. (1965) The Ultimate Display. Proceedings of IFIPS

Congress New York.

SUTHERLAND, I. E. (1968) A head-mounted three dimensional display.

Proceedings of the December 9-11, 1968, fall joint computer conference, part I.

San Francisco, California, ACM.

WALSH, M. (2009) Augmented Reality To Ramp on Mobile

http://www.mediapost.com/publications/?fa=Articles.showArticle&

art_aid=118173.

WANG, Y., LANGLOTZ, T., BELL, T. & BILLINGHURST, M. (2009) An

Authoring Tool for Mobile Phone AR Environments. Proc NZCSRSC

09, New Zealand Computer Science Research Student Conference. Auckland,

New Zealand.

YEOH, H. (2005) Using TinyXML with Visual C++.

112

Appendix A: Python Script Examples

113

Appendix B: Experiment Questionnaire
Survey Questions

Date:

User ID: __________ Gender: __________Age: __________

How familiar are you with programming (circle one)?
1 2 3 4 5 6 7
Not very
Familiar

 Very
Familiar

How familiar are you with Augmented Reality (circle one)?
1 2 3 4 5 6 7
Not very
Familiar

 Very
Familiar

You are going to do some tasks by using the three different tools. In these
tasks, you will see virtual items shown on the desktop PC screen and the
mobile phone screen overlaid on markers in the real world.

You will finish several tasks by using each tool. After each section, you
will have to answer some questions about the control and how you felt
about the tool application.

114

ComposAR

Thank you for trying AR authoring tool! Please answer a few questions
about your experience. See blow for how your answers will be used.

On a scale of 1 to 7, please circle the number according to how much you
feel strongly agree or strongly disagree with the following statements:

I can easily add a marker

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily load a 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily translate the 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily rotate the 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily scale the 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily browse the entire set of 3D models by using this tool

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily control this tool

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily tell what was going on

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I feel very comfortable while using this tool

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

115

Please rate your agreement with the following statements about your
experience using this authoring tool.

I always understand clearly what I was supposed to do
Disagree 1 2 3 4 5 6 7 Agree
I had sometimes problems with the user interface
Disagree 1 2 3 4 5 6 7 Agree
The tool was sometimes confusing
Disagree 1 2 3 4 5 6 7 Agree
The tasks were easy to solve
Disagree 1 2 3 4 5 6 7 Agree

User Interface

The user interface made me feel in control
Disagree 1 2 3 4 5 6 7 Agree
The user interface was easy to use
Disagree 1 2 3 4 5 6 7 Agree

Overall

I enjoyed using the tool
Disagree 1 2 3 4 5 6 7 Agree
Using the tool was a great experience
Disagree 1 2 3 4 5 6 7 Agree
This tool would fit well into a mobile phone AR application
Disagree 1 2 3 4 5 6 7 Agree
I would like to use this tool for mobile phone AR application
Disagree 1 2 3 4 5 6 7 Agree

How much did you like using this authoring tool?

Not very
much

1 2 3 4 5 6 7 Very much

Further comments:

116

BuildAR

Thank you for trying AR authoring tool! Please answer a few questions
about your experience. See blow for how your answers will be used.

On a scale of 1 to 7, please circle the number according to how much you
feel strongly agree or strongly disagree with the following statements:

I can easily add a marker

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily load a 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily translate the 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily rotate the 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily scale the 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily browse the entire set of 3D models by using this tool

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily control this tool

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily tell what was going on

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I feel very comfortable while using this tool

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

117

Please rate your agreement with the following statements about your
experience using this authoring tool.

I always understand clearly what I was supposed to do
Disagree 1 2 3 4 5 6 7 Agree
I had sometimes problems with the user interface
Disagree 1 2 3 4 5 6 7 Agree
The tool was sometimes confusing
Disagree 1 2 3 4 5 6 7 Agree
The tasks were easy to solve
Disagree 1 2 3 4 5 6 7 Agree

User Interface

The user interface made me feel in control
Disagree 1 2 3 4 5 6 7 Agree
The user interface was easy to use
Disagree 1 2 3 4 5 6 7 Agree

Overall

I enjoyed using the tool
Disagree 1 2 3 4 5 6 7 Agree
Using the tool was a great experience
Disagree 1 2 3 4 5 6 7 Agree

How much did you like using this authoring tool?

Not very
much

1 2 3 4 5 6 7 Very much

Further comments:

118

XML Editor

Thank you for trying XML Editor! Please answer a few questions about
your experience. See blow for how your answers will be used.

On a scale of 1 to 7, please circle the number according to how much you
feel strongly agree or strongly disagree with the following statements:

I can easily add a marker

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily load a 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily translate the 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily rotate the 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily scale the 3D model

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily browse the entire set of 3D models by using this tool

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily control this tool

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I can easily tell what was going on

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

I feel very comfortable while using this tool

Strongly
Disagree

1 2 3 4 5 6 7 Strongly
Agree

119

Please rate your agreement with the following statements about your
experience using this authoring tool.

I always understand clearly what I was supposed to do
Disagree 1 2 3 4 5 6 7 Agree
I had sometimes problems with the user interface
Disagree 1 2 3 4 5 6 7 Agree
The tool was sometimes confusing
Disagree 1 2 3 4 5 6 7 Agree
The tasks were easy to solve
Disagree 1 2 3 4 5 6 7 Agree

User Interface

The user interface made me feel in control
Disagree 1 2 3 4 5 6 7 Agree
The user interface was easy to use
Disagree 1 2 3 4 5 6 7 Agree

Overall

I enjoyed using the tool
Disagree 1 2 3 4 5 6 7 Agree
Using the tool was a great experience
Disagree 1 2 3 4 5 6 7 Agree

How much did you like using this authoring tool?

Not very
much

1 2 3 4 5 6 7 Very much

Further comments:

120

Ranking

You have just experienced three applications which you just use to
complete the task. Please rank the tools in order for the following
questions.

1 2 3 4 5 6 7
 XML Editor BuildAR ComposAR
Not very easily Very easily
Not very interesting Very interesting
Not very boring Very boring
Not very precise Very precise
Not very obvious Very obvious
Not very efficient Very efficient
Not very fun Very fun
Not very skilled Very skilled
Not very satisfying Very satisfying
Not very engaging Very engaging

Further comments:

