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Abstract

Recent survey campaigns have shown a tremendous under utilization of the band-

width allocated to various wireless services. Motivated by this and the ever increas-

ing demand for wireless applications, the concept of cognitive radio (CR) systems

has rendered hope to end the so called spectrum scarcity. This thesis presents var-

ious different facets related to the design and analysis of CR systems in a unified

way. We begin the thesis by presenting an information theoretic study of cognitive

systems working in the so called low interference regime of the overlay mode. We

show that as long as the coverage area of a CR is less than that of a primary user

(PU) device, the probability of the cognitive terminal inflicting small interference at

the PU is overwhelmingly high. We have also analyzed the effect of a key parameter

governing the amount of power allocated to relaying the PU message in the overlay

mode of operation in realistic environments by presenting a simple and accurate

approximation. Then, we explore the possibilities of statistical modeling of the cu-

mulative interference due to multiple interfering CRs. We show that although it is

possible to obtain a closed form expression for such an interference due a single CR,

the problem is particularly difficult when it comes to the total CR interference in

lognormally faded environments. In particular, we have demonstrated that fitting a

two or three parameter lognormal is not a feasible option for all scenarios. We also

explore the second-order characteristics of the cumulative interference by evaluating

its level crossing rate (LCR) and average exceedance duration (AED) in Rayleigh

and Rician channel conditions. We show that the LCRs in both these cases can

be evaluated by modeling the interference process with gamma and noncentral χ2

processes, respectively. By exploiting radio environment map (REM) information,
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we have presented two CR scheduling schemes and compared their performance

with the naive primary exclusion zone (PEZ) technique. The results demonstrate

the significance of using an intelligent allocation method to reap the benefits of the

tremendous information available to exploit in the REM based methods. At this

juncture, we divert our attention to multiple-input multiple-output (MIMO) CR

systems operating in the underlay mode. Using an antenna selection philosophy, we

solve a convex optimization problem accomplishing the task and show via analysis

and simulations that antenna selection can be a viable option for CRs operating

in relatively sparse PU environments. Finally, we study the impact of imperfect

channel state information (CSI) on the downlink of an underlay multiple antenna

CR network designed to achieve signal-to-interference-plus-noise ratio (SINR) fair-

ness among the CR terminals. By employing a newly developed convex iteration

technique, we solve the relevant optimization problem exactly without performing

any relaxation on the variables involved.

iv



Acknowledgements

Well, let me begin with the bottom line. In plain words, this thesis would not

have been possible without the superb supervision, brilliant patience and intelligent

tolerance of Prof. Peter J. Smith, my principal supervisor. In addition to learning

‘tricks of the trade’, I have tremendously benefitted from him in terms of acquiring

essential skills for my professional life. No doubt, the years I spent as a PhD student

will go a long way in my life and the memories of this tenure, both pleasant and

bitter ones, will remain ever green in my mind.

I will also like to take this opportunity to extend my thanks to my co-supervisors,

Prof. Desmond P. Taylor and Dr. Philippa A. Martin. Lively discussions with both

of them have been a great source of enthusiasm and learning. Especially, Friday

afternoon tea/coffee meetings with Prof. Taylor have both been fun and a source of

scholarship.

My gratitude also goes to the generous financial support provided by Telecom

New Zealand and National ICT Innovation Institute (NZi3) for my graduate studies.

I am thankful to them for putting their faith in my capabilities and I hope I have

delivered.

I should also express my gratitude to all those who have remained with me in

E338b during these years. Certainly, Abdulla, Tim, Vijay and Krishna top this

list of people. The technical and computer staff, the cleaning staff and all those

who have helped make my stay a pleasant experience deserve both appreciation and

thanks on my part.

Last but by no means least, I would like to dedicate this thesis to the astronomical

patience and forbearance of my family towards me during all these years.

v



vi



Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Overview of Cognitive Radio Systems . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Fundamentals of Wireless Communications and Convex Optimiza-

tion Theory 11

2.1 Fading in Wireless Channels . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Correlation Properties of the Received Signal . . . . . . . . . 14

2.1.2 Statistical Models For Fading Channel/Received Envelope . . 16

2.1.3 Path Loss and Shadow Fading . . . . . . . . . . . . . . . . . . 17

2.2 MIMO Communications . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 MIMO Capacity with Deterministic and Perfect Channel State

Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 MIMO Capacity Under Fading Channel Conditions . . . . . . 23

2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Ergodic Capacity . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Outage Capacity . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



2.3.3 Level Crossing Rate . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 An Overview of Convex Optimization . . . . . . . . . . . . . . . . . . 31

2.5 Broad Classification of Convex Optimization Problems . . . . . . . . 34

2.5.1 Linear Programs . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Conic Programming . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 Geometric Programs . . . . . . . . . . . . . . . . . . . . . . . 37

3 Fundamental Capacity Limits of Cognitive Radio Systems 39

3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The Low Interference Regime . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Rayleigh/Rayleigh Scenario . . . . . . . . . . . . . . . . . . . 46

3.2.2 Rayleigh/Rician Scenario . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Rician/Rayleigh Scenario . . . . . . . . . . . . . . . . . . . . . 50

3.2.4 Rician/Rician Scenario . . . . . . . . . . . . . . . . . . . . . . 50

3.3 An Approximation For The Power Loss Parameter . . . . . . . . . . . 51

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Low interference regime . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Statistics of the power loss parameter, α . . . . . . . . . . . . 56

3.4.3 CR rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Interference and Level Crossing Statistics 63

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Statistical Characterization of Interference at the Primary Receiver . 66

4.2.1 Interference Due to a Single Cognitive User . . . . . . . . . . 66

4.2.2 Interference Due to Multiple Cognitive Radios . . . . . . . . . 67

4.3 Level Crossing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Instantaneous CR performance . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 LCRs for Rayleigh Fading . . . . . . . . . . . . . . . . . . . . 74

4.4.2 LCRs for Rician Fading . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Average Exceedance Duration . . . . . . . . . . . . . . . . . . 78

viii



4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Cognitive Radio Allocation Schemes 85

5.1 PEZ Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 REM Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Exclusion Zone Results . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Comparison of Numbers of CRs . . . . . . . . . . . . . . . . . 93

5.3.3 Imperfections in the REM . . . . . . . . . . . . . . . . . . . . 96

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 MIMO Cognitive Radios with Antenna Selection 103

6.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Analytical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.2 Convex Approximation . . . . . . . . . . . . . . . . . . . . . . 110

6.2.3 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 A Note on Complexity . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 CDF of CR-CR Link with Single Antenna Selection in the

Presence of Multiple Single Antenna PUs . . . . . . . . . . . . 115

6.3.2 Ergodic Capacities . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.3 Extension to More Realistic Scenarios . . . . . . . . . . . . . . 120

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.1 MIMO Selection . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.2 SISO Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Optimal SINR Balancing in the Downlink of Cognitive Radio Net-

works with Imperfect Channel State Information 131

ix



7.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Analytical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.2 Approximate Solution of P1 . . . . . . . . . . . . . . . . . . . 135

7.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3.1 Incorporation of “Convex Iteration” in P2 . . . . . . . . . . . 139

7.3.2 Computational Issues With the “Convex Iteration” Approach 141

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Conclusions and Future Work 149

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 151

Appendices 153

A Distribution of the Ratio rcc/rcp 155

B Evaluation of (3.25) for Rayleigh Fading 157

C Evaluation of Moments of Cumulative Interference Under Rician

Conditions 159

D Equivalence of the LCR of a Noncentral-χ2 Random Variable with

Non-Integer Degrees of Freedom 161

Bibliography 163

x



List of Figures

2.1 A schematic diagram of a generic MIMO system. . . . . . . . . . . . 20

3.1 System model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Information theoretic model (taken from [53]). . . . . . . . . . . . . . 44

3.3 Probability of occurrence of the low interference regime as a function

of shadow fading standard deviation, σ (dB) for Ray/Ray scenario. . 49

3.4 Probability of occurrence of the low interference regime as a function

of the ratio Rc/Rp for different fading scenarios. Simulation values

are shown by markers on the analytical curves. . . . . . . . . . . . . . 54

3.5 PDFs of log10(α) and its approximation log10(α̂). We have repre-

sented α and α̂ by a dummy variable x. We use the default parame-

ters for the Ray/Ray curve, whereas, for Ric/Ric we have taken σ = 4

dB, γ = 2.5 and Kr = 5 dB. α represents the exact expression given

in (3.6), while α̂ refers to its conditional approximation discussed in

Sec. 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Mean value of the power loss parameter, α, as a function of the ratio

Rc

Rp
for different fading scenarios. . . . . . . . . . . . . . . . . . . . . . 56

3.7 Comparison of the exact and analytical CDFs of the power loss fac-

tor on a logarithmic scale for fixed link gains. α represents the exact

expression given in (3.6), while α̂ refers to its conditional approxima-

tion discussed in Sec. 3.3. Results are shown for 5 drops for the case

of Ray/Ray fading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xi



3.8 CDF of the CR rates with the exact α (3.6) and the approximate α̂

(Sec. 3.3) for Ray/Ray fading. . . . . . . . . . . . . . . . . . . . . . . 58

3.9 Mean value of the CR rate loss as a function of γ for different fading

conditions. With slight abuse of notation, we take Kr = K in the

legend of above figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Variation of the mean CR rate with the power inflation factor, β for

Ray/Ray fading case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 System model (R0 not shown) . . . . . . . . . . . . . . . . . . . . . . 65

4.2 A comparison of analytical and simulated complementary CDFs of

interference over a range of propagation parameters. Solid lines rep-

resent analytical results while dotted-dashed curves show simulated

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 LCR results for different fading conditions with dominant interferers.

The solid lines represent analytical results. Simulation values are

shown by the circle, star and triangle symbols. . . . . . . . . . . . . . 79

4.4 LCR results for the dominant and no dominant interferer cases in a

Rayleigh fading scenario. The solid lines represent analytical results.

Simulation values are shown by the circle and star symbols. The

interference threshold values and their LCRs are shown by dotted lines. 80

4.5 LCR results for the dominant and no dominant interferer cases in

a Rician (K = 10 dB) fading scenario. The solid lines represent

analytical results. Simulation values are shown by the circle and star

symbols. The interference threshold values and their LCRs are shown

by dotted lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 AED results for the dominant and no dominant interferer cases in

a Rician (K = 10 dB) fading scenario. The solid lines represent

analytical results. Simulation values are shown by the circle and star

symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xii



5.1 The effect of σ and the target SINR on the PEZ radius for a medium

density of CRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 PEZ radius vs target SINR for different values of the ratio of primary

to secondary device coverage areas (σ = 8 dB, γ = 3.5). . . . . . . . . 93

5.3 CDF of the number of CRs obtained using REM based approaches

for various γ values. D and C denote decentralized and centralized

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 CDF of the number of CRs obtained using REM based approaches

for various σ values. D and C denote decentralized and centralized

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Percentage of CRs given access for a high CR density (σ = 8 dB,

γ = 3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Percentage of CRs given access for a medium CR density (σ = 8 dB,

γ = 3.5). VR denotes a variable CR radius uniformly distributed

between 50 m and 150 m. . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Interference CDF for an REM enabled CR network for several values

of ∆ and decorrelation distance, Dd = 100 m. . . . . . . . . . . . . . 98

5.8 REM grid size, ∆, vs decorrelation distance, Dd, for different thresh-

old buffer sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 Variation of actual buffer with REM grid size, ∆, for different values

of the decorrelation distance, Dd. . . . . . . . . . . . . . . . . . . . . 100

5.10 Variation of the probability of underestimating the interference versus

grid size. Solid lines are for suburban and dotted lines are for urban

environments. The lines (solid and dotted) represent 4 point while

the points (circles and squares) depict 16 point interpolation. . . . . . 101

6.1 System model. The vertical dotted line indicates that the multiple

antenna and single antenna PU systems are considered separately.

PU TXs are not shown for the sake of clarity. . . . . . . . . . . . . . 105

xiii



6.2 Ergodic rates vs SNR for different system sizes. These curves are

based on the CA approach for the SU case. For all curves (except the

one indicated in the figure) we take ᾱ = 0.5 and β = 0.1. . . . . . . . 122
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Chapter 1

Introduction

1.1 Overview of Cognitive Radio Systems

It is no exaggeration that wireless communication has completely revolutionized

our lives. The ever increasing efforts to introduce new wireless devices capable

of delivering high data rates over the unfriendly wireless channel seem insatiable.

The existence of mobile communication, being one of the most successful wireless

services, is totally reliant on certain small usable chunks (normally below 3.5 GHz)

of very expensive radio-frequency (RF) spectrum. With the immense proliferation

of mobile telephony services (applications) that has already taken place, it appears

natural to consider the possibility that we will eventually run out of the bandwidth

required to accommodate emerging wireless products.

Motivated by this spectrum shortage perception, recent spectrum occupancy

measurement campaigns [1, 2], conducted under the authorization of various gov-

ernment bodies, reported a startling fact. The spectrum is poorly utilized. In fact,

it has been clearly stated in [1], that “. . . spectrum access is a more significant

problem than physical scarcity of spectrum, in large part due to legacy command-

and-control regulation that limits the ability of potential spectrum users to obtain

such access”. This inflexible frequency allocation procedure adopted worldwide by

government agencies has resulted in vacant bands of frequencies at a particular time

1



or geographic location, also described as spectrum holes or white spaces. Cognitive

radios (CRs) have been suggested as a solution to this so-called spectrum scarcity.

CRs are being considered to work in spectrum agile mode where they adapt their

transmission parameters (center frequency, bandwidth etc.) according to their envi-

ronment [3]. Fully cognitive devices completely following the full extent of Mitola’s

ideas [4] are still a distant reality. In addition to this, a hierarchical spectrum access

model is being envisaged for successful operation of CRs [3]. In such a spectrum

access model the primary (licensed) users (PUs) are given priority. CRs are allowed

to co-exist with the primary devices subject to the condition that, ideally, they do

not interfere with their operation. There is a wide choice of RF bands that are

potential candidates for CR deployment. For example, all bands below 3.5 GHz

are candidates for such installations, especially on account of their low propagation

losses [3]. UHF bands used by broadcast television are being considered by the

Federal Communications Commission (FCC) in the United States to allow dynamic

spectrum access to CR devices [5]. Similarly, cellular bands (800/900 MHz, 1.8/1.9

GHz, 2.1 GHz, 2.3 GHz, and 2.5 GHz) and fixed wireless access bands (centered near

2.5 and 3.5 GHz) provide a plausible option for the deployment of spectrum agile

cognitive devices. We note that the term “secondary user” is typically used when

the primary users are termed “licensed devices”. In a similar way, cognitive models

can be extended to include the more general notions of “public park” (for exam-

ple, devices capable of unlicensed spectrum usage) and dynamic spectrum leasing

discussed below.

Successful deployment of CR devices for dynamic spectrum access purposes will

rely on the type, quantity and quality of the side information available at their dis-

posal. In the words of [6], a CR device can be defined as: “a wireless communication

system that intelligently utilizes any available side information about the a) activ-

ity, b) channel conditions, c) codebooks, or d) messages of other nodes with which

it shares the spectrum.” Based on the categorization provided in this definition,

cognitive wireless communications can be broadly classified into underlay, overlay

and interweave paradigms [3, 6, 7]. We briefly describe these cognitive spectrum

2



access techniques below.

In underlay CR networks, the cognitive devices maintain their interference to

the licensed PU system below an acceptable threshold. By doing so they are able

to simultaneously transmit with the legacy licensed users, thereby minimizing the

tedious task of finding white spaces. However, in order to satisfy this interference

constraint, the CR(s) need to know the channel gains to the licensed system(s) as

side information. Based on this knowledge, the CRs can use smart power alloca-

tion algorithms or use multiple antenna techniques to steer their signals in such a

way that the licensed users remain as oblivious as possible of their presence. Be-

cause of the simplicity of the approach, underlaying CR signals appears the most

promising technique from the point of view of the inception of cognitive devices in

the near future. For example, spreading a CR signal below the noise floor, a tech-

nique commonly used in ultra wide band (UWB) systems, and then nullifying the

spreading effect at the cognitive receiver can form one such option [6]. However, the

underlay access technique comes with its own unique challenges. For example, ac-

quiring perfect channel state information from CR transmitters to primary receivers

is a daunting task that involves substantial, complex and tedious signal processing.

Similarly, the constraint of maintaining an interference level at the licensed users

below an acceptable threshold may only leave the cognitive device(s) with enough

power to communicate over short range distances [6].

In overlay CR approaches, the CR devices can also transmit, together with

the PUs, in the same time/frequency/space slot. However, in this technique the

CRs, in addition to knowing the exact channel strengths to all nodes, also need

to be equipped with the message sets of the licensed users [6]. Clearly this is a

big requirement. Using sophisticated encoding techniques like dirty paper coding

(DPC), the CR can nullify the effect of interference at its own receiver (RX) due to

PU transmission. Similarly, by relaying the noncognitive user’s message to its RX,

the CR device is able to mitigate the effect of its own interference. For details on

how these methods work, please see [6, 7, 3] and the references therein. It is clear

that, unlike the underlay paradigm, the CRs can transmit at any power as long
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as they are able to dedicate some portion of their energy resources to relaying the

licensed user’s message.

The last technique, commonly referred to as the interweave model, relies on

the CR knowing the exact location of white spaces in time frequency and space

coordinates. This capability of the cognitive user depends on its spectrum sensing

signal processing module. Spectrum sensing has been an area of rigorous research

over the last decade. For an overview of the myriad techniques proposed, the reader

is referred to [8]. Clearly, in this case the accuracy of detecting white spaces will

determine the performance of a CR device in terms of protecting the legacy users

from harmful interference. From this overview, it is relatively easy to categorize

the interweave model as an example of a spectrum agile or opportunistic spectrum

access philosophy. In contrast, the remaining two techniques can be considered as

examples of a spectrum sharing model.

1.2 Thesis Contributions

From the overview presented in the previous section, it is clear that at present

all CR spectrum access paradigms are accompanied by their associated advantages

and disadvantages. In addition to this, there are still many unknown questions and

gaps in our knowledge concerning the performance of CR systems in the vicinity of

noncognitive users. Furthermore, multiple-input multiple-output (MIMO) wireless

technology is a very promising candidate for integration with CR networks. Reli-

ability and higher throughput are known benefits of MIMO techniques. The extra

degrees of freedom provided by the multiple antennas on both sides of the com-

munication link can also be used for interference protection purposes in the spatial

domain. Thus, MIMO can serve the cause of CR networks.

Whenever a new communication technology (like CRs in our case) is introduced,

the question of determining the fundamental limits of data rates forms the backbone

of the rest of the remaining research activity. Likewise, this question has been tack-

led from several different perspectives in the CR domain. In particular, the question
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of determining the maximum data rates of a CR network operating in overlay mode

has been answered in the so called “low interference regime”1. However, the known

results only account for additive white Gaussian noise (AWGN) channels. Moti-

vated by this, we have analytically characterized this capacity in the presence of

more realistic environments involving the phenomenon of path loss, fast fading and

shadowing. In addition, we also determine the probability of occurrence of such a

regime in real world scenarios.

The statistical characteristics of interfering signals from the CR devices will

play an important role in the design of CR networks. However, once the cumulative

effect of interfering signal strengths is considered, the problem of evaluating an

exact expression for the distribution of such a sum can become a tedious task.

This is especially true in the case of lognormal fading environments. In particular,

the distribution of aggregate lognormal interference is a long standing problem.

In the thesis, we show that, although the distribution of interference due a single

CR device can be analytically characterized, the cumulative CR interference in

lognormal environments does not admit any closed form solution. We also show that

the traditional methods of approximating this interference with another lognormal

are not applicable any more.

One of the important performance parameters that has been largely ignored

in the current literature is that of the level crossing rate (LCR) of interference

in CR networks. In traditional radio designs this metric has been used to gauge

the fluctuations of the received signal strength for radio design purposes. In the

context of cognitive devices operating in the presence of licensed users, this rate can

be employed to design, for example, CR access techniques, resource allocation at

cognitive devices etc. We have evaluated the LCR of cumulative CR interference

in Rayleigh and Rician environments by judiciously approximating the distribution

functions with a gamma distribution and a scaled non-central χ2 distribution with

fractional degrees of freedom, respectively. Then, by appropriately adapting the

1When the strength of the channel between the CR and licensed user RX is small relative to
that of the direct channel between the CR transmitter (TX) and its RX.
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known results related to the LCR of these cases, we analytically characterize the

LCR of CR devices in these two environments.

The future of CRs is critically dependent on the techniques they will employ to

access the RF spectrum. As discussed previously, all known techniques in this regard

are limited in some way or other. Motivated by this and the fact that successful CR

operation will heavily rely on the type and amount of side information available at

its disposal, we have proposed and evaluated CR access schemes using the so called

radio environment map (REM) information. Just as an ordinary map on a GPS

device can be helpful to a person aiming to find the least congested and quickest

way to his destination, a REM is suppose to drive CR operation by helping it

communicate in a less crowded spectrum while simultaneously enabling it to achieve

higher throughput. We have also assessed the performance of CR allocation schemes

in the presence of imperfect or coarse REM information. Overall, our explorations

suggest an appreciable improvement of our schemes over the straightforward method

of allowing CRs to only operate in certain geographical zones.

As mentioned previously, MIMO systems show great promise as a method to

help CRs use spectrum even more efficiently. However, it is well known that reaping

the traditional benefit of higher spectral efficiency comes with a greater hardware

cost. Antenna selection provides an elegant solution to this problem. Motivated

by this, we study the design and analysis of MIMO CR systems employing antenna

selection and working in the underlay mode of operation. In addition to formulating

this as a convex optimization problem, we also propose a low complexity norm based

solution to this problem. Furthermore, we provide some preliminary investigations

of the performance analysis of such a system fulfilling interference constraints at the

PU RXs.

Finally, it is well known that the traditional way of scheduling multiple users

being served by a single base station is to dedicate more resources to those with bet-

ter channel conditions than the ones with inferior signal-to-interference-plus-noise

ratio (SINR) values at their RXs. Clearly, this approach can be harmful to those

users that are supposed to deliver performance under strict delay constraints. This
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motivates the need for the so called fairness based scheduling schemes. Max-min

fairness method form one such possibility. Motivated by this, we study the design

of beamforming in the downlink of such systems working in CR underlay mode.

Plagued by imperfect channel knowledge, our algorithm caters for such deficiencies

by solving convex optimization problems thereby yielding robust beamformers under

such hostile conditions.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 2 we discuss the fundamentals of wireless communications theory

while simultaneously providing a bird’s eye view of significant concepts relevant to

convex optimization modeling. Starting with a discussion of wireless propagation,

we provide an overview of MIMO systems. Afterwards we describe common metrics

used to gauge the performance of wireless systems. The remaining half of the chapter

deals with the basics and the classification of convex optimization problems.

Chapter 3 studies the fundamental capacity limits of CR systems operating in

overlay mode. The chapter begins with determining the occurrence of the probability

of the low interference regime in different combinations of fading channels. In the

later half of the chapter, we provide an approximation to a key factor determining

the power allocation at the CR node. Finally, simulation results are conducted

validating the accuracy of the analyses.

Chapter 4 focuses on the study of statistical interference characterization and

the LCR of aggregate interference at the PU RXs. Beginning with an analytical

expression for the interference due to a single CR, we prove that approximating the

cumulative interference with a lognormal (either with two or three parameters) is

not a viable option and that more complex models are needed. The second half

of the chapter explores LCRs of the total CR interference in Rayleigh and Rician

fading conditions. By appropriately approximating the distribution of such random

variables, we analytically characterize interference fluctuation rates and exceedance
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durations in such environments.

Chapter 5 is the study of different CR allocation techniques. Due to the dif-

ficulty of analysis based on novel REM allocation methods, the chapter provides

a simulation study conducting a comparison between the geographical separation

and REM based methods. It has been shown in the results section that exploiting

REM information is in general superior to relying solely on position information.

However, the CRs need to be allocated judiciously.

Chapter 6 presents the novel idea of incorporating antenna selection to fulfill the

task of interference management while simultaneously maximizing the rates of such

a MIMO CR system. After an analytical formulation of the problem, we present

three methods in order of decreasing complexity. The second half of the chapter

deals with the performance evaluation of antenna selection systems in simple fading

environments. In the last section, we show that antenna selection based CR systems

can be a feasible option especially in sparse PU environments.

In Chapter 7 we deal with the issue of max-min SINR balancing in the downlink

of a CR channel with imperfect channel information available at the base-station.

After formulating the problem, we present a novel algorithm that accomplishes this

task. The results presented show that the proposed technique outperforms the

known solution to the current problem.

Finally in Chapter 8 we conclude the thesis while also pointing to some future

research directions.
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Chapter 2

Fundamentals of Wireless

Communications and Convex

Optimization Theory

In this chapter we will provide a review of the concepts and techniques used through-

out the thesis. Beginning with a brief overview of propagation through a wireless

medium, we will explore the statistical characterization of various parameters of fad-

ing signals in such environments. After this brief introduction to the point to point

wireless propagation phenomenon, we will shift our focus to the recently introduced

MIMO systems. We will provide a brief review of the gains and the conditions under

which such gains can be achieved for MIMO systems. In addition to this, we will also

describe various performance metrics used for the purpose of analysis and design

of wireless communications systems. Finally, we will introduce the fundamentals

of convex optimization theory. Without going into great depth, we emphasize the

significance of these techniques from an algorithmic point of view.

2.1 Fading in Wireless Channels

Wireless propagation of electromagnetic (EM) waves is a complex phenomenon.

Unlike wired media, wireless propagation is a complex phenomenon. In this thesis we
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will only focus on the special case of narrowband channel models. In particular, our

channel is assumed to follow a time varying, frequency flat (non frequency selective)

narrowband model. We will clarify these terms as we proceed forward. Such a

channel model for a SISO scenario leads to the input-output relationship

y(t) = h(t)x(t) + n(t), (2.1)

where y(t), h(t), x(t) and n(t) represent the received signal, channel impulse re-

sponse, transmitted signal and receiver side additive (Gaussian) noise, respectively.

The index t represents the time, t. If we assume x(t) is a bandpass signal with

carrier frequency fc, then with x̃(t) as its complex lowpass equivalent signal (also

known as the complex envelope), we can write

x(t) = R[x̃(t)ej2πfct], (2.2)

where R[.] gives the real part of a complex number. Before we consider the scenario

of multiple waves arriving at the receiver (RX), let us assume that the RX is in

relative motion with respect to the transmitter (TX) with a constant velocity v.

Further, if the arriving EM signal makes an angle of θ relative to the direction of

motion, then due to the Doppler effect, the frequency of the received signal shifts

(Doppler shift) by an amount fD, given by

fD = fc
v

c
cos(θ) =

v

λ
cos(θ), (2.3)

where λ = c/fc and c ≈ 3× 108 m/s, the speed of light. Note that fD can be either

positive or negative depending on whether the TX is moving towards or away from

the RX.

Now we assume that there are N paths of arrival available to the transmitted

signal. If Ai, θi (corresponding to the Doppler frequency fD,i), τi represent the

amplitude, angle of arrival and time delay of the ith multipath component, the

received bandpass signal without noise is given by

y(t) = R
[ N∑

i=1

Aie
j2π[fc+fD,i](t−τi)x̃(t− τi)

]
. (2.4)
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As in (2.2), the received bandpass signal can be written as

y(t) = R[ỹ(t)ej2πfct], (2.5)

where ỹ(t) is the complex envelope and with the substitution φi(t) = 2π[(fc +

fD,i)τi − fD,it] as the phase of the ith multipath component, it can be rewritten as

[9, 10]

ỹ(t) =

N∑

i=1

Aie
−jφi(t)x̃(t− τi). (2.6)

It is clear from (2.6) that the time varying channel impulse response is

h(t, τ) =

N∑

i=1

Aie
−jφi(t)δ(t− τi), (2.7)

where δ(.) is the Dirac delta function.

Before proceeding further we consider the physical scenario in a bit more depth.

Assuming that for the ith multipath component θi = 0, it is easy to observe that

the rate at which phase changes in different multiple paths is much higher than

the corresponding change in the attenuations of those paths. Following [11], we

note that when the delay of ith path, τi, changes by 1/fc the corresponding phase,

2πfc(t − τi), changes by 2π. Now if the relative motion between this path and the

RX occurs with constant velocity vi, the time rate of change of the phase of this EM

ray is c/fcvi i.e., the inverse of Doppler shift. Hence, proportional to the inverse

of the maximum Doppler shift (called Doppler spread), BD, among the various

paths, there is a coherence time, Tc, beyond which changes in the channel become

significant. For example, if Tx denotes the symbol period of a transmitted signal

with Tx >> Tc, the signal will be received in a distorted form. Thus the coherence

time of a fading channel corresponds to its time rate of change. It is convenient to

define the coherence time as

Tc ≈
1

BD
. (2.8)

The dual of the above quantity in the frequency domain, called the coherence band-

width, can be similarly articulated [11]. If we denote the time delay associated

with the ith and the jth multipath components as τi and τj, respectively, then the

13



phase difference between these components (2πf(τi − τj)) is most significant when

f changes by an amount proportional to the inverse of the difference τi − τj . Now

for TD = max |τi − τj |, ∀i, j, called the delay spread (or multipath spread), if the

bandwidth Bx of a signal is greater than the inverse of TD, the frequency distortion

of the transmitted signal becomes significant. The quantity representing this inverse

is termed as the coherence bandwidth, Bc, i.e.,

Bc ≈
1

TD
. (2.9)

Coherence bandwidth is related to the phenomenon of the multipath components

being resolvable or not. Any two multipath components become resolvable if the

inverse of their maximum delay difference is greater than the coherence bandwidth.

This can also be viewed as the frequency separation beyond which the two fre-

quency components are highly uncorrelated and suffer from independent attenua-

tions. Hence, the term, frequency selective channel. If Bx << Bc, the channel is

described as narrowband and flat in frequency, i.e., all frequency components in the

transmitted signal undergo the same random attenuation and phase shift. It is easy

to observe that under flat fading conditions, we have

h(t, τ) =
N∑

i=1

Aie
−jφi(t)δ(t− τ̄ ) , h(t)δ(t− τ̄), (2.10)

where τ̄ shows that under narrowband conditions all path delays are small compared

to the symbol duration and can be considered as having the same value of τ̄ .

2.1.1 Correlation Properties of the Received Signal

Under narrowband channel conditions, the received signal can be characterized by

assuming transmission of an unmodulated carrier, i.e., x̃(t) = 1. With this suppo-

sition we note from (2.6) and (2.10) that h(t) = ỹ(t). We also note that under this

condition (2.5) reduces to

y(t) = hI(t) cos 2πfct− hQ(t) sin 2πfct, (2.11)
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where

hI(t) =

N∑

i=1

Ai cos φi(t), (2.12)

hQ(t) =

N∑

i=1

Ai sin φi(t). (2.13)

In order to evaluate the autocorrelation and cross correlations of the inphase and

quadrature components given above, we briefly describe the well known uniform

scattering environment based on Clarke’s model [12] (later upgraded by Jakes [13]).

This isotropic scattering model assumes densely packed reflecting entities which

are uniformly distributed in azimuth angle. With N different multipaths assumed

above, the angle of arrival of the ith component is θi = i2π/N . Furthermore, each

multipath beam is assumed to possess the same received power. In addition to this,

we also assume that the phases, delays and amplitudes of the various multipath

components do not change in the relevant time interval. With these assumptions,

the following properties can be derived

E[hI(t)] = E[hQ(t)] = E[y(t)] = E[hI(t)hQ(t)] = 0, (2.14)

AhI
(t, τ) , E[hI(t)hI(t + τ)] =

Py

2
J0(2πfDτ), (2.15)

AhQ
(t, τ) , E[hQ(t)hQ(t + τ)] =

Py

2
J0(2πfDτ), (2.16)

AhI ,hQ
(t, τ) , E[hI(t)hQ(t + τ)] = 0, (2.17)

E[y(t)y(t + τ)] = AhI
(t, τ) cos(2πfcτ)− AhI ,hQ

(t, τ) sin(2πfcτ) =
Py

2
J0(2πfDτ),

(2.18)

where E[.] denotes the statistical expectation operator. The derivation details of

these equations can be found in [13, 10, 9]. Equation (2.14) states that the re-

ceived signal is a zero mean Gaussian process. Equations (2.15) and (2.16) give

the autocorrelation of the in phase and quadrature components of the received

signal as the product of the received bandpass signal power Py/2 = (E[hI(t)
2] +

E[hQ(t)2])/2 = (
∑N

i=1 A2
i )/2 and the zeroth-order Bessel function of the first kind

J0(x) = 1
π

∫ π

0
e−jx cos θdθ. With the cross correlation between the inphase and quadra-

ture components as 0 in (2.17), (2.18) shows that the autocorrelation of the total
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received signal is equal to that in (2.15) and (2.16). We stress that the formulas

given in the analysis above do not incorporate a line-of-sight (LOS) component. Fur-

ther analytical developments pertaining to this and other issues (like power spectral

density etc.) are available in [9, 10].

2.1.2 Statistical Models For Fading Channel/Received En-

velope

To overcome the issue of the large number of random parameters involved in char-

acterizing the received signal, using the central limit theorem it is reasonable to

assume that for sufficiently large N , under narrowband conditions the received sig-

nal envelope ỹ(t) = h(t)1 follows a Gaussian distribution. Since (2.14) shows the

inphase and quadrature components of the channel as zero mean processes, with a

variance of σ2
p = Py/2 in each of these components, the envelope amplitude

r(t) , |h(t)| =
√

hI(t)2 + hQ(t)2, (2.19)

follows a Rayleigh distribution using standard transformation theory [14]. That is,

the probability density function (PDF) of R = r(t), fR(r), is

fR(r) =
r

σ2
p

e−r2/2σ2
p , r ≥ 0. (2.20)

The average power of the received signal envelope is given by

E[R2] = 2σ2
p. (2.21)

Normally, the PDF of the Rayleigh faded channel is normalized to have unit average

received power, i.e., E[R2] = 2σ2
p = 1 is enforced. With this substitution, fR(r) =

2re−r2
. The distribution of the channel gain is characterized by an exponential

distribution with a PDF

fR2(z) =
1

2σ2
p

e−z/2σ2
p = e−z, (2.22)

1On the basis of this relation between the complex envelope and the channel impulse response,
we will use these terms alternatively in Sec. 2.1.2.

16



where the second equality follows from the normalized channel assumption.

On the other hand, if the channel possesses a LOS (specular) component, its in-

phase and quadrature components do not remain zero mean any more. In such

cases the distribution of envelope amplitude follows the well known Rician PDF

given by [10]

fR(r) =
r

σ2
p

exp

(
− r2 + v2

2σ2
p

)
I0

(
rv

σ2

)
, (2.23)

where 2σ2
p is the power in the scattered components, v2 the power of the LOS

(specular) ray and I0(.) denotes the zeroth-order modified Bessel function of the

first kind. The average channel gain in this case is E[R2] = v2 + 2σ2
p. Furthermore,

it is common to introduce the so-called Rice factor, K, given as the ratio of the LOS

to the scattered power, i.e.,

K =
v2

2σ2
p

. (2.24)

The normalized Rician fading channel PDF is obtained by assuming v2 + 2σ2
p = 1.

Combining this with (2.24), we have

fR(r) = 2r(1 + K) exp(−(1 + K)r2 −K)I0(2r
√

K(1 + K)), r ≥ 0. (2.25)

It is easy to observe that for K = 0, the channel behaves as a Rayleigh channel and

for K → ∞, the channel tends to act as a LOS channel only. For a detailed and

in depth exploration of various statistical characterizations of the phenomenon of

channel fading, the reader is referred to [15].

2.1.3 Path Loss and Shadow Fading

In addition to the fast multipath fading taking place on a very small distance scale,

the transmitted signal also undergoes distance dependent attenuation. Various tech-

niques like ray tracing methods, empirical path loss modeling of the channel etc.

are used to characterize this phenomenon. Details can be seen in [10] and the ref-

erences therein. However, in order to analyze many practical systems, the following

generic path loss model is sufficient. In this model the ratio of the received to the
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transmitted power, PyPL
, is given by

PyPL
= A

(
d0

d

)γ

, (2.26)

where d is the distance between the TX and the RX, d0 is the reference distance

(usually taken as 100 m), A is a dimensionless constant depending upon the physical

characteristics of the antenna and the channel attenuation (we will fully characterize

A below when we define the complete channel model) and γ is the path loss exponent

(usually in the range 2 to 4).

The features of the received signal are also critically dependent upon the terrain

where the communication between two entities is taking place. However, physical

structures like mountains, buildings etc. may vary from one place to another. Nat-

urally, owing to these random obstructions between the TX and the RX, the signal

is shadowed (attenuated). It is conventional to model this random large scale atten-

uation in the transmitted signal as a lognormal random variable. Hence, the name

lognormal shadow fading. When the received signal undergoes lognormal fading,

the natural logarithm of its channel gain, Y , i.e., X = ln Y is a Gaussian random

variable. Hence, the PDF of Y is given as

fY (y) =






1√
2πσsf y

exp

(
−(ln y−mX )2

2σ2
sf

)
, y > 0,

0 y ≤ 0,

(2.27)

where σsf and mX denote the mean and standard deviation of X. However, in

wireless communications, it is common to represent the signal power in dB units.

With this requirement, we wish to relate a random variable V = 10 log10 Y with X.

To do so, we observe that

eX = 10(V/10) ⇒ X = λV, (2.28)

where λ = ln 10/10. If σ and mV represent the shadow fading standard devia-

tion (normally from 6 to 12 dB) and the mean of V in dB units, we have mX =

λmV , σsf = λσV . Furthermore, in this case the PDF of Y is

fY (y) =






1√
2πλσy

exp

(
−(10 log10 y−mV )2

2σ2

)
, y > 0,

0 y ≤ 0.

(2.29)
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The above transformations are helpful when the lognormal random variable is ex-

pressed using the natural logarithm definition. This is because the use of the natural

logarithm is much simpler for mathematical analysis than, say, log10(.).

After extensive field measurements, [16] arrived at a widely accepted lognormal

correlation model. Assuming two points separated by a distance dsep, the correlation

between the signal strengths received at these two points, R(dsep), is given by

R(dsep) = σ2ρdsep/Ω, (2.30)

where ρ gives the correlation at some fixed distance Ω. This quantity depends upon

the carrier frequency fc and the type of environment. For example, in suburban

macrocells with fc = 900 MHz, ρ = 0.82 for Ω = 100 m and with fc = 1700 MHz,

ρ = 0.3 for Ω = 10 m in urban cellular environments [10, 16]. To remove this

empirical dependence, it is common to assume ρ = e−1 at a distance Xc (called the

decorrelation distance) where the autocorrelation of the received signal becomes e−1

of its maximum value. Thus, we have

R(dsep) = σ2e−dsep/Xc . (2.31)

It is worth emphasizing here that Gudmundson’s model is valid only if the pair of

links being investigated have a common end point [17].

With this description, we are now in a position to completely describe the in-

stantaneous path gain between a SISO TX-RX pair. We have

h =
√

ALr−γhm ,

√

AL

(
d0

d

)γ

hm, (2.32)

where L represents large scale shadow fading with its dB value giving a zero mean

Gaussian random variable with a standard deviation of σ. The variable hm ∼
CN (0, 1) represents small scale fading due to the multipath phenomenon with CN (0, 1)

depicting a complex normal random variable with zero mean and unit variance. The

term r−γ corresponds to the path loss between a TX and a RX separated by a dis-

tance r. It is noteworthy that we use the normalized distance r , d0

d
in (2.32). In

the thesis, unless otherwise mentioned, we determine A to ensure that the signal-

to-noise ratio (SNR) remains greater than a specific threshold at least 95% of the
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Figure 2.1: A schematic diagram of a generic MIMO system.

time. This corresponds to ensuring that a threshold SNR is being met throughout

the coverage area at least 95% of the time.

2.2 MIMO Communications

With a brief overview of SISO fading point-to-point wireless channels, we provide an

introduction to MIMO communication systems, a recent breakthrough in wireless

communications. It is largely due to the seminal works of [18, 19], that a proper

utilization of the extra dimension of space culminated in the so called MIMO tech-

niques. In our discussion, we will mainly limit ourselves to the fundamentals of

these techniques. For an excellent elaboration, the reader is referred to [20].

Let us focus on the narrowband, frequency flat, point-to-point MIMO channel.

Assume that the TX is equipped with t and the RX with r antennas as shown in

Fig. 2.1. The output at the RX is given by

y = Hx + n, (2.33)

where y ∈ Ct, x ∈ Cr, H lies in the space of r × t matrices having complex and

possibly random entries i.e., H ∈ Cr×t with hij denoting the channel between jth

TX and ith RX and n is a zero mean circularly symmetric complex Gaussian (ZMC-

SCG) noise vector with independent and identically distributed (i.i.d.) entries. We

mention that for notational clarity we exclude the time index t from (2.33). If we

assume a noise variance of σ2
n at each receive antenna, we have

E[nn†] = σ2
nIr, (2.34)
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where (.)† denotes Hermitian transpose and Ir represents an r × r identity matrix,

i.e., n ∼ CN (0, σ2
nIr). In addition to this, we also suppose that E[|hij |2] = 1, ∀i, j.

With these assumptions we impose a constraint that the total transmit power is

E[x†x] = P . This can be equivalently rewritten as Tr(E[xx†]) , Tr(Q) = P where

Tr(.) denotes the trace operation. The SNR at the ith RX branch is

EH,x[|H(i,:)x|2]
σ2

n

=
EH,x[x

†H†(i,:)H(i,:)x]

σ2
n

=
Ex[x†Itx]

σ2
n

=
P

σ2
n

, (2.35)

where EH,x performs the joint expectation operation over the channel and the trans-

mitted symbols, H(i,:) denotes the ith row of H and in the second to last inequality

we use the fact that H(i,:) and x are statistically independent and that we have an

uncorrelated channel, i.e., EH[H†(i,:)H(i,:)] = It.

2.2.1 MIMO Capacity with Deterministic and Perfect Chan-

nel State Information

Before providing an explicit expression for the capacity of MIMO systems, let us

first perform a singular value decomposition (SVD) of the MIMO channel. It is

assumed that channel state information (CSI) H is perfectly available at both the

TX and the RX. With this information, H can be decomposed using its SVD as

H = U


ΣRH

0

0 0


V, (2.36)

where RH denotes the rank of H and RH ≤ min(r, t) , ΣRH
is an RH ×RH diagonal

matrix with ith diagonal entry (singular value) σi and U and V are unitary matrices,

i.e., UU† = Ir,VV† = It. V and U are also known as transmit precoding and

receiver shaping matrices, respectively [10]. This means that for an input stream of

data, x̃, x = V†x̃ is the precoded signal which is transmitted and ỹ , U†y is the

received signal, y, shaped by the matrix U. With this symbolic notation, it is easy

to verify that,

ỹ = U†(Hx + n) = ΣRH
x̃ + ñ = diag(ΣRH

)⊙ x̃ + ñ, (2.37)

21



where ñ = U†n, i.e., the statistical properties of ñ are same as those of n, diag(.)

produces the diagonal entries of a matrix as a column vector and ⊙ denotes the

Schur product of two matrices. It is easy to infer from this development that an

appropriate decomposition of the MIMO channel can result in a non-interfering set

of parallel channels. The number of such channels depends on RH , which in turn

relies on the nature of the scattering environment. Thus, the greater the number

of independent multipath channels, the greater the rank of H and the greater the

total number of orthogonal parallel channels. We note that σi =
√

λi, where λi is

the ith eigenvalue of the matrix HH†.

Equipped with this information, we present formulae for the capacity of MIMO

static channels. We start of with [21],

max
p(x)

I(x;y) , max
p(x)

[H(y)−H(y|x)], (2.38)

where p(x) denotes the distribution of the input symbols, I(x;y) represents mutual

information between the output and the input, H(y) , Ey[ln 1
fy(y)

] and H(y|x) ,

Ey|x[ln
1

fy|x(y|x)
] are the entropies of the random variables y and y|x with PDFs

fx(x) and fy|x(y|x), respectively. It is easy to verify that H(y|x) = H(n) [21].

Furthermore, for a random variable in Cn such that g ∼ CN (0,Rg), we have

H(g) = Eg[ln det(πRg) + g†(Rg)
−1g ln e]

= ln det(πRg) + Eg[g
†R−1

g g] ln e

= ln det(πRg) + Tr(R−1
g Eg[gg†]) ln e

= ln det(πRg) + Tr(I) ln e

= ln det(πRg) + ln en

= ln det(πRg)e
n

= ln det(πeRg), (2.39)

where in the last step above we have used the property that for a constant c,

det(cA) = cn det(A). From (2.39) we observe that H(y|x) is independent of p(x)

so that in order to maximize (2.38), we need to find the distribution that maximizes

22



H(y). It is also well known that H(y) ≤ ln det(πeRy) with equality iff (if and only

if) y ∼ CN (0,Ry), where Ry = HQH†+ Ir. Similarly, we can calculate the entropy

of n using (2.39). Thus the final expression of the maximum mutual information

becomes,

max
p(x)

I(x;y) = log2 det(Ir + HQH†). (2.40)

Hence, the capacity (in bps/Hz) can be obtained by maximizing this mutual in-

formation expression over the transmit covariance matrix subject to a total power

constraint, i.e.,

C , max
Q:Tr(Q)≤P,Q�0

log2 det(Ir + HQH†), (2.41)

where Q � 0 shows that Q is a positive semidefinite (PSD) matrix. This capacity

expression can be easily evaluated. With perfect CSI available at the TX, the SVD

can be used to decompose the MIMO channel into a set of independent parallel

channels. Hence, (2.40) amounts to evaluating the capacity of such channels with a

total power constraint. The solution is the well known water filling [21] algorithm,

i.e.,

C =

RH∑

i=1

log2(λiµ)+, (2.42)

where
∑

i(µ − 1
λi

)+ = P
σ2

n
and (.)+ , max(0, .) maps its input to the non-negative

reals. The water filling algorithm can be interpreted as an approach which gives

more resources (i.e., power) to the stronger eigenmodes (i.e., the members of the set

of independent and orthogonal channels obtained by applying the SVD) and gives

fewer resources to the weaker ones while simultaneously maintaining the total power

constraint.

2.2.2 MIMO Capacity Under Fading Channel Conditions

With Perfect CSI

When the channel is known at both the TX and the RX, then for each channel

realization the optimum input covariance matrix follows the water filling allocation

policy. The total capacity is just the average of capacities obtained in each of these
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realizations, also known as ergodic capacity (more on this in Sec. 2.3). For more

details, please refer to [10, Sec. 10.3.2].

With Perfect CSI at the RX Only

Once the CSI is available at the RX only, it was shown in [19] that the optimal

strategy for a Gaussian codebook and i.i.d. Gaussian channel conditions involves

distributing the power uniformly across all TX antennas, i.e.,

Q =
P

t
It. (2.43)

An important measure of interest in such a regime is that of ergodic (mean) capacity

when the channel is changing at a sufficiently high speed (we explain this more later).

Hence, the ergodic capacity can be calculated as,

C = E

[
log2 det

(
Ir +

P

t
HH†

)]

= E log2

m∏

i=1

(
1 +

P

t
λi

)

= E

m∑

i=1

log2

(
1 +

P

t
λi

)

=

m∑

i=1

E log2

(
1 +

P

t
λi

)

= mE log2

(
1 +

P

t
λ1

)
, (2.44)

where the expectation is over the channel, m , min(r, t) and we have used the

facts that the determinant of a matrix is equal to the product of its eigenvalues and

that all unordered eigenvalues of HH† are i.i.d. The exact expression for (2.44) is

involved, well known and available in [19]. However, to provide an insight, we will

concentrate on asymptotic cases. First, consider the situation where the number of

RX antennas r > 1 and t→∞. Using the strong law of large numbers, we have

1

t
HH† → Ir as t→∞. (2.45)

Hence the ergodic capacity becomes

C = log2 det(Ir + P Ir) = log2(1 + P )r = r log2(1 + P ). (2.46)
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Thus we see an r-fold increase in the capacity as t → ∞. This shows the benefit

of MIMO systems in rich scattering environments. However, this approximation to

the ergodic capacity is very crude. Thus we resort to an approximation [11], when

both t and r grow to infinity while their ratio remains constant. In this case the

ergodic capacity in (2.44) is shown to be

C

m
= E

[
log

(
1 + P

m

t
ν

)]
, (2.47)

where ν , λ1/m. Using the representation in (2.47), the mean value has been

reported as obeying the following limit [11]

C

m
→ (log2(w + P ) + (1− ζ) log2(1− ω−)− (ω−ζ) log2 e). max(1, 1/ζ) (2.48)

where ω± , (ω ±
√

ω2 − 4/ζ) ω , 1 + 1/ζ + 1/P and ζ = t/r. Remarkably,

this asymptotic mean calculation provides an excellent agreement with the ergodic

capacity values obtained for small r and t. A similar asymptotic analysis was carried

out in [22].

The final case of no CSI available at both the TX and the RX is heavily dependent

on the type of channel model being utilized. The straightforward interpretation of

linear growth of capacity with TX and RX antennas does not remain valid anymore.

For a comprehensive note on this scenario, please refer to [10, Chapter 10] and the

references therein.

Effect of Channel Correlation on Capacity and Beamforming Techniques

As is evident from the previous discussion, the ergodic capacity tends to be max-

imum when the MIMO system operates in a rich scattering environment and in-

creases linearly with the number of antennas being used. In our discussion we

concentrate on Rayleigh channel conditions only. However, on account of the finite

space available to pack antennas on either side of the link, the signals tend to be-

come correlated. One of the popular analytical channel models used to characterize

this is the Kronecker model. When there is no LOS path, the entries of the channel

matrix are complex normal with zero mean under the Rayleigh fading assumption.
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The channel covariance matrix is given by

RH = E[vec(H)vec(H)†] = Rt ⊗Rr, (2.49)

where vec(.) denotes the vector operation, ⊗ denotes the Kronecker product and

Rt = E[H†(i,:)H(i,:)], i = 1, 2, . . . , r, (2.50)

Rr = E[H(:,j)H
†
(:,j)], j = 1, 2, . . . , t, (2.51)

where H(i,:) and H(:,j) represent the ith row and the jth column of H. Now if

h = vec(H), then h ∼ CN (0,RH) can be expressed as

h = R
1/2
H hw, (2.52)

where hw is a rt× 1 vector with zero mean unit variance complex Gaussian entries.

Substituting (2.49) in (2.52) we get,

h = (Rt ⊗Rr)
1/2hw ⇐⇒ H = R1/2

r HwR
1/2
t (2.53)

where we have used the property that vec(ABC) = (CT ⊗A)vec(B), Hw ∈ Cr×t is

a matrix with i.i.d. zero mean unit variance complex Gaussian variable entries and

(.)T denotes transpose operation. For a detailed review of MIMO channel models,

the reader is referred to [23, 24, 25].

With this information, the ergodic capacity under the assumption that the TX

correlation is unknown can be written as

C = E

[
log2 det

(
Ir +

P

t
HwRtH

†
wRr

)]
. (2.54)

The exact expression for this mean is complex and for the special case of semicorre-

lated (when correlation exists either at the TX or the RX) channels is available in

[26, 27]. Intuitively, such a correlation model will result in a decrease in the mean ca-

pacity under ergodic channel assumptions. To provide a more concrete perspective,

asymptotic results have been presented in [11, Sec. 10.5].

As a final point, we will end our discussion on MIMO techniques by briefly ex-

plaining the concept of beamforming in MIMO systems. Multiple antenna systems

26



have long been used to perform unidirectional transmission of data [28]. The eigen-

values and eigenvectors of the input covariance matrix of such a system determines

the power and the direction of transmission, respectively. The case of a unit rank

transmit covariance matrix is commonly referred to as beamforming. In particular,

for a serial to parallel data conversion rate of k, beamforming involves weighting a

transmit data vector d ∈ Ck, whose covariance matrix is the identity matrix, with
√

p = [
√

p1, . . . ,
√

pk] and then multiplying by the beamforming vectors w1, . . . ,wk

with each being Ct. Thus the signal to be transmitted becomes,

x =

k∑

i=1

√
pidiwi = Ws, (2.55)

where W ∈ Ct×k has wi as its ith column and s , [
√

p1d1, . . . ,
√

pkdk]
T . The

signal x is then launched into space. In the case of multiple-input single-output

(MISO) systems, beamforming has been shown to be capacity optimal under perfect

channel conditions, see [29, 30] and references therein. Specifically, for the MISO

case, beamforming refers to finding the only non-zero eigenmode (since the channel

is of rank-1) of the channel and transmitting along that mode. On the other hand, if

the CSI is not perfectly known at the TX, then with only its statistical information,

it is not possible to find the nonzero eigen channel. Thus as shown by [19, 18], the

best strategy is to uniformly allocate powers across all eigenmodes. In the case of

MIMO systems, the story is not that different. [29] was the first to prove that for

the Kronecker product channel model, the eigenvectors of the TX covariance matrix

should be matched with those of the TX correlation matrix, thus, determining the

optimal direction of launch for the signal. The exact conditions of optimality of

beamforming and the powers allocated to different eigenmodes are complex and can

be obtained from [29].

For a detailed discussion about information theoretic limits of multiuser MIMO

systems, the interested reader is referred to [31]. In addition to this, various other

concepts like topics concerned with space-time codes, MIMO transceiver design,

diversity multiplexing trade off, the effect of channel uncertainties on various metrics

etc. can be seen in [11, 20, 32] and the references therein.
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2.3 Performance Metrics

With a brief overview of modern wireless communication systems, we present an

introduction to various metrics commonly used to gauge the performance of com-

munication systems. Our discussion will include brief details of performance met-

rics such as ergodic capacity, outage capacity, signal-to-interference-plus-noise ratio

(SINR) outage and level crossing rates.

2.3.1 Ergodic Capacity

We have seen that propagation through a wireless medium is a random process. This

gives rise to two important aspects of capacity depending on whether the channel

is ergodic. In particular, if the symbol transmitted is long enough to experience all

states of the channel, the capacity can be considered as an ensemble average if the

channel is ergodic. In symbols, if Tx is the symbol time and Tx >> Tc, the coherence

time, then the channel is ergodic and the capacity of a SISO system is given by

Cerg = Eh

[
log2

(
1 +

Ps|h|2
σ2

n

)]
, (2.56)

where h is the channel between the TX and the RX, Ps is the transmitted power

and σ2
n is the noise variance at the RX. Under similar conditions we have already

seen expressions for the ergodic capacity of MIMO channels in (2.44) and (2.54).

2.3.2 Outage Capacity

If the channel is not ergodic, then the above definition of capacity in (2.56) does

not remain valid anymore. This can be clarified by considering that the transmitted

symbol does not undergo all states of the channel i.e., the equivalence of time average

with ensemble average does not remain valid anymore. In this situation, clearly,

capacity would be limited by the maximum bit carrying capability of the worst

channel realization. From the perspective of capacity being a random variable, its

instantaneous value is C(h) , log2(1 + |h|2SNR). Now if the transmission rate
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r exceeds this variable we say that outage has occurred. Thus the probability of

outage is

Pout = P [C(h) ≤ r] = 1− exp

(
− 2r − 1

SNR

)
, (2.57)

where the second equality follows since |h| is Rayleigh distributed. Hence, we define

an ε outage capacity as the maximum rate r that can ensure an outage probability

of Pout ≤ ε [11, 20].

With this definition, we are now in a position to characterize outage capacity

of a MIMO channel in nonergodic Rayleigh fading environment. Assuming CSI

availability at the RX only, the instantaneous capacity is given by

C(H) = log2 det

(
Ir +

P

t
HQH†

)
. (2.58)

Thus the outage capacity becomes,

Pout = P (C(H) < r). (2.59)

Astonishingly, this probability has been shown to be well approximated by a Gaus-

sian random variable even for small numbers of TX and RX antennas [33, 11]. An

explicit and simplified expression is available in [11, Sec. 10.6]. Thus we conclude

that the mean of the variable in (2.58) is the actual capacity of the MIMO system

if the channel fulfills the conditions of ergodicity, else we deal with the notion of

outage capacity.

Before closing this section, we mention that from a system design point of view

it is common to consider a probability, known as outage probability, which describes

the probability of the signal SNR (or SINR) being less than a certain threshold. This

probability arises due to various impairments (such as multipath fading, lognormal

shadowing, path loss effects etc.) to propagation in the wireless medium. Such

probabilities can help calculate system design parameters such as cell coverage areas,

outage probability of the cell etc. For details, please refer to [10] and the references

therein.
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2.3.3 Level Crossing Rate

From our previous discussion it is evident that the amplitude of the received signal

cannot be characterized deterministically. Thus, in addition to the significance of a

statistical characterization of various parameters, it is also necessary to study the

temporal behavior of a received signal. This can be done using the notion of level

crossing rate (LCR) and average fade duration (AFD) of the faded signal.

Since the received signal can be undergo huge fluctuations in its amplitude, it

becomes necessary to characterize its rate of crossing a particular threshold, T . LCR

determines how often the signal crosses T in the downward (or upward) direction per

unit time. The LCR of a random process Θ(t) across T is known to be [13, 34, 9, 10],

LCRΘ(T ) =

∫ ∞

0

ẋfΘΘ̇(T, ẋ)dẋ, (2.60)

where ẋ denotes the time derivative of x and fΘΘ̇(T, ẋ) is the joint PDF of the

process Θ(t) and its time derivative at the same instant. For the simplest case of

a Rayleigh faded signal, the LCR can be expressed in closed form and is given by

[34],

LCRRay(T ) =

√
β

2π

T

σ2
p

e−
T2

2σ2 , (2.61)

where σ2
p = ρRay(0) denotes the value of the autocorrelation function of a Rayleigh

process at time t = 0 i.e., the mean power of the underlying Gaussian process. The

parameter β represents the negative curvature of the autocorrelation function, i.e.,

β = −ρ̈Ray(0). (2.62)

A similar expression for the LCR of a Rician process is available in [34].

Related to the concept of LCR is that of the AFD. The AFD describes the

duration for which the received faded signal remains below a threshold. For a

random process, Θ(t), it is defined as

AFDΘ(T ) =
P (Θ(t) ≤ T )

LCRΘ(T )
. (2.63)
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For the case of a Rayleigh fading process, the AFD admits the following expression

[34]

AFDRay =

√
2π

β

σ2
p

T

(
e
− T2

2σ2
p − 1

)
. (2.64)

The AFD expression for a Rician process can be seen from [34].

2.4 An Overview of Convex Optimization

After presenting a bird’s eye view of wireless communications theory, we move to-

wards the next part of the chapter that deals with the basics of convex optimiza-

tion. Convex optimization is the only class of optimization theory that permeates all

branches of optimization, namely, discrete, continuous, dynamic, integer, etc. Most

importantly, it forms the only class of optimization problems that possesses globally

converging and polynomial time algorithms. In addition to this, a large number of

problems can either be directly written or approximated (relaxed) to some type of

convex optimization problem. However, the process of exposing the hidden convex-

ity of a problem is not at all trivial. Our discussion will include a brief overview of

the fundamentals of convex optimization theory that will introduce various types of

convex optimization problems. We will not resort to an in depth study of convex

analysis and duality theory. The reader is referred to the excellent texts [35, 36, 37]

and the references therein.

Generally speaking a convex optimization problem can be written as

minimize
x

f0(x)

subject to x ∈ S,
(2.65)

where f0 : R
n → R is the convex cost or objective function and the variable of

optimization x is assumed be constrained to lie in a convex set S ⊆ Rn. Unless

otherwise specified, for the purpose of exposition we will limit our variables to lie

in a space of n-tuples, i.e., Rn. For a description of vector (general) and multiple

objective optimization problems, the reader is referred to [36, Sec. 4.6-4.7].

Let us first define the notion of a convex set. A set C is said to be convex if, for

x,y ∈ C, all convex combinations, λx + (1 − λ)y ∈ C, where λ ∈ R, the set of real
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numbers, and 0 ≤ λ ≤ 1. In words, a set is said to be convex if for any two elements

inside the set, the line segment joining them is also included in the set. Roughly

speaking, in two dimensions, this would correspond to sets without indentations.

Non empty polyhedral sets of the form {x|aT
j x ≤ bj , j = 1 . . . r} and convex cones

{x1,x2|ζ1, ζ2 ≥ 0, ζ1x1 ∈ C, ζ2x2 ∈ C ⇒ ζ1x1+ζ2x2 ∈ C} are a couple of examples of

convex sets. It is relatively easy to observe that the intersection of convex sets is also

convex. To understand this suppose we take a convex combination of two elements

that belongs to one of the sets of the intersecting convex sets. The same convex

combination will also belong to the intersection of all those sets, thus proving the

property. For a detailed account of convex sets, the reader is referred to [35, 36, 37].

Now we define the notion of a convex function. A function f : C → R where

C ⊆ Rn is said to be convex if for all α ∈ [0, 1]

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x,y ∈ C. (2.66)

Thus, a convex function can be visualized as a bowl shaped function with a chord

joining two of its points lying above it. If the above inequality holds strictly, we call

f strictly convex over C. Furthermore, the level set L = {x ∈ C|f(x) ≤ t} where t

is a scalar, of a convex function is always convex. To see this let us suppose that x

and y are any two points in L. Then their convex combination z = λx + (1− λ)y

for λ ∈ [0, 1] also belongs to L i.e.,

f(z) = f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

≤ λt + (1− λ)t ≤ t. (2.67)

However, we note that the converse does not hold [36]. A function f is said to be

concave iff −f is convex. The maximization of a concave function subject to convex

constraints can be solved by performing the minimization of the negative of the

concave function subject to the same convex constraints. Thus it is conventional to

consider convex minimization problems as shown in (2.65).

An important fact related to convex optimization problems is that a local op-

timizer is also a global optimizer. Before proving this fact, we proceed to define a
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few standard definitions. A point x that satisfies the constraints in (2.65) is said to

be feasible. The set of all such points that satisfy the constraints is called a feasible

set or region. A member of this feasible set, x⋆, is said to be the global optimizer

(minimizer) of (2.65) if

f(x⋆) ≤ f(x), ∀x ∈ S. (2.68)

If the above inequality is satisfied strictly, x⋆ is also described as a strict global

optimizer. Similarly, if the point x⋆ is the best amongst all feasible points in an

ǫ-neighborhood of f , we call it a local minimizer, i.e.,

f(x⋆) ≤ f(x), ∀x ∈ S such that ‖ x− x⋆ ‖≤ ǫ, (2.69)

where ǫ > 0. Now we proceed with the proof of global optimality of a local minimizer

of a convex optimization problem. Assume that x⋆ is a local optimum with respect to

the ǫ-neighborhood inside the convex set S ⊆ Rn for any ǫ > 0. Let y be any feasible

point, not necessarily inside the ǫ-neighborhood. Assume z = λx⋆ + (1 − λ)y, λ ∈
[0, 1], is the convex combination of these two points. Now let us assume λ to be

sufficiently small so that the point z lies within the ǫ-neighborhood of x⋆. Owing to

the convexity of f we have

f(z) = f(λx⋆ + (1− λ)y) ≤ λf(x⋆) + (1− λ)f(y). (2.70)

Rearranging, we obtain

f(y) ≥ f(z)− λf(x⋆)

1− λ
. (2.71)

Since we have assumed that z lies inside the ǫ-neighborhood, we have f(z) ≥ f(x⋆).

Thus we have

f(y) ≥ f(x⋆)− λf(x⋆)

1− λ
= f(x⋆), (2.72)

Hence for any feasible point, y, f(y) ≥ f(x⋆) and so x⋆ which was a local optimum

must also be the global optimum. Note that while deriving this result we have have

not constrained f to be differentiable.

We should also mention another consequence of convexity in an optimization

problem. If the objective function, f , of a convex optimization problem is strictly
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convex, then the global optimizer is unique. To prove this fact we follow a similar

path as above. Suppose, for the sake of argument, that x⋆ and x⋆⋆ are both global

optimizers of a convex problem, i.e., f(x⋆) = f(x⋆⋆) ≤ f(x), ∀x ∈ S, such that

x⋆ 6= x⋆⋆. Let z = λx⋆ + (1 − λ)x⋆⋆ be a convex combination of these two points.

Thus, from the strict convexity of f , we have,

f(x⋆⋆) >
f(z)− λf(x⋆)

(1− λ)
. (2.73)

Using the fact that f(z) ≥ f(x⋆⋆) we end up obtaining

f(x⋆⋆) < f(x⋆), (2.74)

which is a contradiction to the fact that x⋆ and x⋆⋆ are globally optimal. Again

observe that (2.73) can be rewritten as

f(x⋆) >
f(z)− (1− λ)f(x⋆⋆)

λ
. (2.75)

Since f(z) ≥ f(x⋆), we end up obtaining f(x⋆) < f(x⋆⋆), which is again a con-

tradiction to the optimality of x⋆ and x⋆⋆. Thus we arrive at the conclusion that

x⋆ 6= x⋆⋆ is not possible. After having discussed an introduction to convex optimiza-

tion problems, we provide a brief overview of different classes of convex optimization

problems.

2.5 Broad Classification of Convex Optimization

Problems

Surprisingly, many optimization problems are, either directly or after some manipu-

lations (approximations or relaxations), transformable to one or other type of convex

problem. In this section we provide a brief overview of these different classes.
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2.5.1 Linear Programs

Probably one of the most widely used class of convex optimization problems has

been that of linear programs (LPs). Generally, an LP can be written as

minimize
x

cTx + d

subject to Ax = b

Gx � h,

(2.76)

where A,G, c,d,b,h are known matrices and vectors of appropriate dimensions

and � denotes componentwise inequality. It is easy to see that the above LP can

be equivalently rewritten as

minimize
x

cTx + d

subject to Ax = b

Gx + s = h

s � 0,

(2.77)

where s is a vector of slack variables. Huge interest was spurred in the use of LPs to

solve various optimization problems after the discovery of the simplex method [38].

For a detailed account of LPs the reader is referred to [38, 39, 36].

2.5.2 Conic Programming

We will provide a glimpse of optimization problems in which the set over which

optimization is performed is either a second order cone (Lorentz cone) or a cone of

semidefinite matrices. Such problems can be generally written as,

minimize
x

cTx

subject to Fx + g �K 0

Ax = b,

(2.78)

where K is a convex cone and �K represents a generalized inequality constraint (for

precise properties of the cone and the generalized inequalities, the reader is referred

to [37]).
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Second Order Cone Programs

A second order cone program (SOCP) can be written as

minimize
x

cTx

subject to (Aix + bi, c
T
i x + di) ∈ Lmi , i = 1, . . . , m

Fx = b,

(2.79)

where Lmi = {(y, t) ∈ Rn+1| ‖ y ‖2≤ t} is an m-dimensional second-order (ice cream

or Lorentz) cone. Thus, in this case, the cone K in (2.78) corresponds to Lmi . It

is easy to observe that if ci = 0, squaring both sides of the inequality constraints

reduces (2.79) to a quadratically constrained linear program (we can also obtain a

convex quadratically constrained quadratic program (QCQP) provided the objective

is a convex quadratic function). Similarly, if Ai = 0, (2.79) boils down to an LP.

Thus SOCPs form a more general class than both convex QCQPs and LPs. A large

variety of optimization problems can be written as SOCPs. For a comprehensive

description of these categories, please see [40].

Semidefinite Programs

If we optimize (2.78) over a cone of PSD matrices i.e., K = S
k
+, we end up solving

a semidefinite program (SDP). A general SDP can be written as [36]

minimize
x

cTx

subject to F(x) =
∑n

i=1 xiFi + G � 0

Ax = b,

(2.80)

where G,Fi, ∀i are PSD matrices and A is the data matrix of appropriate dimension.

The inequality constraint of (2.80) is described as a linear matrix inequality (LMI).

For an excellent exposition on LMIs, the reader is referred to [41]. The case of

multiple LMIs can easily be handled by using a block-diagonal LMI from individual

LMIs [36, 41]. We note that when G,Fi, ∀i are diagonal, the SDP in (2.80) becomes

an LP [36]. Similarly an SOCP can be cast as an SDP. To see this, we first state
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the Schur complement lemma [42]. Consider a block diagonal matrix X given by,

X =


A B

BT C


 . (2.81)

The Schur complement of A in X (provided det(A) 6= 0) is S = C−BTA−1B. Now

if A ≻ 0 (positive definite), then X � 0 iff S � 0. Using this property, we see that

the second-order cone constraint of (2.79) can be written as the following LMI:

(cTx + d)I Ax + b

(Ax + b)T cTx + d


 � 0. (2.82)

Thus we notice that SDPs form the most general class of optimization problems in

terms of its modeling capabilities. However, an SDP is also the most computation-

ally burdensome among all classes of convex problems [40]. For a comprehensive

overview of SDPs, the reader is referred to [43].

2.5.3 Geometric Programs

An optimization problem with the structure

minimize
x

f0(x)

subject to fi(x) ≤ 1, i = 1, . . . , m

hi(x) = 1, i = 1, 2, . . . , p,

(2.83)

where f0(x) . . . fm(x) are of the form
∑K

k=1 ckx
a1k

1 xa2k

2 . . . xank
n and hi(x) are of the

form c0x
a1
1 xa2

2 . . . xan
n is known as a geometric program (GP). The functions fi(x), i =

1, 2, . . . , m are known as posynomials and the functions hi(x) are called monomials

[36]. These functions are constrained to have ck > 0 and aik ∈ R, ∀i, k. However,

(2.83) is a nonconvex optimization problem.

To convert (2.83) into a convex program, if we substitute yi = ln xi, bk = ln ck and

notice the fact that a log-sum-exponential is a convex function, a few manipulations

lead to the following program [36]

minimize
y

ln
(∑K0

k=1 eaT
0k

y+b0k
)

subject to ln
(∑Ki

k=1 eaT
ik

y+bik
)
≤ 0, i = 1, . . . , m

gT
i y + hi = 0, i = 1, 2, . . . , p,

(2.84)
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where gi ∈ Rn contains exponents i.e., the ai terms and hi = ln c0 represents loga-

rithm of the constant term in the monomial constraints of (2.83). Now (2.84) is a

convex optimization problem.

GPs have been extensively used for designing power control algorithms in mobile

communication systems. See for example, [44]. Similarly, a broad perspective on

GPs can be seen in the tutorial [45].

Before concluding this chapter, we mention that convex programs can be solved

using polynomial time interior-point algorithms. Various software packages are

available, either in the freeware or payware category, that contain efficient and robust

implementations of these algorithms. See for example, [46]. Based on interior-point

methods, the worst case complexity (i.e., the number of iterations) of a generic con-

vex optimization problem to reach a φ accurate solution 2 is roughly O(
√

η ln φ−1),

where η represents a measure of the problem size depending on the number of vari-

ables and constraints and O(.) represents the worst case order of growth of the

complexity of the problem with respect to its size [47]. The worst case complexity

for specific classes such as SOCPs and SDPs can be seen in [40]. Finally, we mention

that detailed accounts of duality theory, convex analysis and applications of convex

programming are available in excellent texts, such as [37, 35, 36].

2When we solve an optimization problem, the algorithm used to accomplish this task produces
a sequence of variables to be optimized. If the difference between the optimum variable and the
kth member of the sequence is less than, say, φ according to some metric (that could be absolute
difference, relative difference between them etc.), we say we have obtained a φ accurate solution.
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Chapter 3

Fundamental Capacity Limits of

Cognitive Radio Systems

Until recently, the frequency bands below 3.5 GHz were thought to be severely

congested. Due to the superior propagation conditions in the lower frequencies there

is a desire for all services to find a place in this sought after “real estate”. However,

spectrum occupancy measurements performed in the United States [2] show that

spectrum scarcity cannot be confirmed by the measurements. Instead, the apparent

congestion is due to the way in which spectrum is allocated into specific bands

for specific services (i.e., fixed, mobile and broadcasting) and then by the national

regulatory authorities who license the band/service combinations to private owners.

Therefore even when the licensed owner is not using their spectrum, there is no

access to other users, hence the apparent congestion. In order to improve spectrum

occupancy and utilization, various regulatory bodies worldwide are considering the

benefits offered by CR [1]. The key idea behind the deployment of CR is that

greater utilization of spectrum can be achieved if they are allowed to co-exist with

the incumbent licensed PUs provided that they cause minimal interference. The

CRs must therefore learn from the radio environment and adapt their parameters

so that they can co-exist with the primary systems. The CR field has proven to

be a rich source of challenging problems. A large number of papers have appeared
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on various aspects of CR, namely spectrum sensing (see [48, 49] and the references

therein), fundamental limits of spectrum sharing [50], information theoretic capacity

limits [51, 52, 53, 54, 55] etc.

The 2 user cognitive channel [51, 52, 53, 54, 55] consists of a primary and a

secondary user. It is very closely related to the classic 2 user interference channel, see

[56] and references therein. The formulation of the CR channel is due to Devroye et

al. [51]. In this channel, the CR has a non-causal knowledge of the intended message

of the primary and by employing dirty paper coding [57] at the CR transmitter it is

able to circumvent the PU’s interference to its receiver. However, the interference

from the CR to the primary receiver remains and has the potential to cause a rate

loss to the primary.

In recent work, Jovicic and Viswanath [53] have studied the fundamental limits

of the capacity of the CR channel. They show that if the CR is able to devote a

part of its power to relaying the primary message, it is possible to compensate for

the rate loss to the primary via this additional relay. They have provided exact

expressions for the PU and CR capacity of a 2 user CR channel when the CR

transmitter sustains a power loss by devoting a fraction, α, of its transmit power to

relay the PU message. Furthermore, they have provided an exact expression for α

such that the PU rate remains the same as if there was no CR interference. It should

be stressed here that their system model is such that at the expense of CR transmit

power, the PU device is always able to maintain a constant data rate. Hence, we

focus on CR rate, α and their statistics. They also assume that the PU receiver uses

a single user decoder. Their result holds for the so called low interference regime

when the interference-to-noise ratio (INR) at the PU receiver is less than the SNR

at the CR receiver. The authors in [55] also arrived at the same results in their

parallel but independent work. Note that the capacity of the 2 user CR channel

has only recently been studied. Multi-user extensions are not currently available

although some related work is now appearing [6]. Hence, in this chapter we restrict

our attention to the 2 user scenario.

The Jovicic and Viswanath study is for a static channel, i.e., the direct and cross
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link gains are constants. In a system study, these gains will be random and subject

to distance dependent path loss and shadow fading. Furthermore, the channel gains

also experience fast fading. As the channel gains are random variables, the power

loss parameter, α, is also random.

In this chapter we focus on the power loss, α, the capacity of the CR channel

and the probability that the “low interference regime” holds. The motivation for

this work arises from the fact that maximum rate schemes for the CR in the low

interference regime [53, 55] and the achievable rate schemes for the high interference

regime [52, 54] are very different. Hence, it is of interest to identify which scenario

is the most important. To attack this question we propose a simple, physically

based geometric model for the CR, PU layout and compute the probability of the

low interference regime. Results are obviously limited to this particular model but

provide some insight into reasonable deployment scenarios. Since the results show

the low interference regime can be dominant, it is also of interest to characterize CR

performance via the α parameter. In this area we make the following contributions:

• Assuming lognormal shadowing, Rayleigh fading and path loss effects we derive

the probability that the “low interference regime” holds. We also extend the

results to Rician fading channels.

• In both Rayleigh and Rician fading environments we derive an approximation

for α and its statistics. This extremely accurate approximation leads to simple

interpretations of the effect of system parameters on the capacity.

• Using the statistics of α we investigate the mean rate loss of the CR and the

CDF of the CR rates. For both the above we show their dependence on the

propagation parameters.

• We also show how the mean value of α varies with the CR transmit power and

therefore the CR coverage area.
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Figure 3.1: System model.

3.1 System Model

Consider a PU receiver in the center of a circular region of radius Rp. The PU

transmitter is located uniformly in an annulus of outer radius Rp and inner radius

R0 centered on the PU receiver. It is to be noted that we place the PU receiver at

the center only for the sake of mathematical convenience (see Fig. 3.1). The use

of the annulus restricts the length of the PU link from becoming too small. This

matches physical reality and also avoids problems with the classical inverse power

law relationship between signal strength and distance [58]. In particular, having a

minimum distance, R0, prevents the signal strength from becoming infinite as the

transmitter approaches the receiver. Similarly, we assume that a CR transmitter is

uniformly located in the same annulus. Finally, a CR receiver is uniformly located

in an annulus centered on the CR transmitter. The dimensions of this annulus are
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defined by an inner radius, R0, and an outer radius, Rc. This choice of system

layout is asymmetric in the sense that the PU receiver is at the center of its circular

region whereas the CR transmitter is at the center of its smaller region. This layout

is chosen for mathematical simplicity since the lengths of the CR-PU and CR-CR

links have a common simple distribution which leads to the closed form analysis in

Sec. 3.2. Following the work of Jovicic and Viswanath [53], the four channel gains

which define the system are denoted p, g, f, c. In this paper, these complex channel

gains include shadow fading, path-loss and Rayleigh and Rician fast fading effects.

To introduce the required notation we consider the link from the CR transmitter to

the PU receiver, the CP link. For this link we have

|f |2 = Γcp|f̃ |2, (3.1)

where |f̃ |2 is an exponential random variable with unit mean for Rayleigh channels

or a noncentral χ2 variable for Rician fading and Γcp is the link gain1. The link gain

comprises shadow fading and distance dependent path loss effects so that,

Γcp = AcLcpr
−γ
cp , (3.2)

where Ac is a constant that depends on physical deployment parameters such as

antenna height, antenna gain, cable loss etc. Following our discussion in Chapter 2,

in (3.2) the variable Lcp = 10X̃cp/10 is lognormal, X̃cp is zero mean Gaussian and rcp

is the link distance. The standard deviation which defines the lognormal is σ (dB)

and γ is the path loss exponent. For convenience, we also write Lcp = eXcp so that

Xcp = βX̃cp, β = ln(10)/10 and σ2
sf is the variance of Xcp. Hence, for the CP link

we have

|f |2 = Ace
Xcpr−γ

cp |f̃ |2. (3.3)

The other three links are defined similarly where p̃, g̃, c̃ are standard exponentials

for Rayleigh fading and represent noncentral χ2 random variables for Rician fading,

Xpp, Xpc, Xcc, are Gaussians with the same parameters as Xcp and rpp, rpc, rcc are link

1Link gains Γcc, Γpc and Γpp are defined similarly. However, the parameters of Γpc and Γpp are
modified appropriately.
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Figure 3.2: Information theoretic model (taken from [53]).

distances. However, for the links involving the PU transmitter we assume a different

constant Ap in the model of link gains. The parameters Ap and Ac are constants

and all links are assumed independent. The remaining parameters required are the

transmit powers of the PU and CR devices, given by Pp and Pc respectively, and

the noise powers at the PU and CR receivers, given by Np and Nc respectively.

The physical model described above corresponds to the information theoretic

model shown in Fig. 3.2. For fixed channel coefficients, p, g, f and c, Jovicic and

Viswanath [53] compute the highest rate that the CR can achieve subject to certain

constraints using the model in Fig. 3.2. In this figure the arrow on the transmitter

side indicates the noncausal availability of the PU’s message to the cognitive device

for dirty paper coding (DPC) purposes [57]. A key constraint is that the PU must

not suffer any rate degradation due to the CR and this is achieved by the CR

dedicating a portion, α, of its transmit power to relaying the PU message. The

parameter, α, is therefore central to determining the CR rate. Furthermore, the

results in [53] are valid in the “low interference regime” defined by a < 1 where

a =

√
Nc

√
Γcp|f̃ |√

Np

√
Γcc|c̃|

=

√
Nce

Xcp/2r
−γ/2
cp |f̃ |

√
NpeXcc/2r

−γ/2
cc |c̃|

. (3.4)

We note that a can be considered as the ratio of link strengths of the CR-PU to
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CR-CR channels. In this regime, the highest CR rate is given by

RCR = log2

(
1 +
|c|2(1− α)Pc

Nc

)
, (3.5)

with the power loss parameter, α, defined by

α =
|s|2
|t|2

[√
1 + |t|2(1 + |s|2)− 1

1 + |s|2

]2

, (3.6)

where |s| =
√

Pp

√
Γpp|p̃|N−1/2

p and |t| = √Pc

√
Γcp|f̃ |N−1/2

p . We call α the power

loss parameter since it accounts for the portion of CR’s power dedicated towards

relaying PU’s message. Note that the definitions of α and Rc are conditional on

a < 1. Since a is a function of f̃ and c̃ we see that both f̃ and c̃ are conditional

random variables.

Note that all results are built on the assumptions that the CR has access to

the PU message and has perfect knowledge of all 4 channels in Figs. 3.1 and 3.2,

namely p, f , g and c. These assumptions are built into the fundamental work on the

2 user CR channel model in [53]. This approach is typical of research in this area

where the initial results are developed for the ideal case and later work attempts to

relax these assumptions. Hence, the resulting capacity is an upper bound on any

realistic system where the key practical concerns include CSI availability at the CR

transmitter and access of the CR transmitter to the PU message.

3.2 The Low Interference Regime

Note that the 4 paths which characterize the channels in Figs. 3.1 and 3.2 can all

be Rayleigh or Rician. This leads to 16 possible combinations of Rayleigh or Rician

channels. To make the study more concise we assume that the PP and PC paths are

Rayleigh and vary the CC and CP paths. Hence, we consider the 4 combinations

where c̃ (CC) and f̃ (CP) can be Rician or Rayleigh. This is sensible since c̃, f̃

affect both the low interference regime (3.4) and the cognitive rate (RCR in (3.5)),

whereas the PP, PC links only affect RCR. The notation Ray/Rice etc. denotes the

nature of the f̃/c̃ variables or the CP/CC paths.

45



3.2.1 Rayleigh/Rayleigh Scenario

The low interference regime is defined by a < 1, where a is defined in (3.4). The

probability, P (a < 1), depends on the distribution of rcc/rcp. Using standard trans-

formation theory [14], some simple but lengthy calculations show that the CDF of

rcc/rcp is given by (3.7). A sketch proof is given in Appendix A.

P

(
rcc

rcp

< x

)
=





0 x ≤ R0

Rp

0.5x2(R4
p−R4

0x−4)−R2
0(R2

p−R2
0x−2)

(R2
c−R2

0)(R2
p−R2

0)
R0

Rp
< x ≤ Rc

Rp

0.5(R4
c−R4

0)−R2
0(R2

c−R2
0)+(x2R2

p−R2
c)(R2

c−R2
0)

x2(R2
c−R2

0)(R2
p−R2

0)
Rc

Rp
< x ≤ 1

1− 0.5R4
cx−2+0.5R4

0x2−R2
0R2

c

(R2
c−R2

0)(R2
p−R2

0)
1 < x ≤ Rc

R0

1 x > Rc

R0

(3.7)

The CDF in (3.7) can be written as

P

(
rcc

rcp
< x

)
= ci0x

−2 + ci1 + ci2x
2, x ∈ Si, i = 1, 2, 3, 4, 5, (3.8)

where i = 1, 2, 3, 4, 5 refers to the 5 equations in (3.7) running from the top (i = 1)

to the bottom (i = 5) and S1, S2, S3, S4, S5 refers to the five sets of x values in (3.7)

so that S1 = {x|x ≤ R0/Rp} etc. Using the notation ∆ = (R2
c − R2

0)(R
2
p − R2

0),

the constants in (3.8) are defined by c10 = 0, c11 = 0, c12 = 0, c20 = 0.5R4
0/∆,

c21 = −R2
0R

2
p/∆, c22 = 0.5R4

p/∆, c30 = 0.5(R4
0 − R4

c)/∆, c31 = R2
p(R

2
c − R2

0)/∆,

c32 = 0, c40 = −0.5R4
c/∆, c41 = 1 + R2

0R
2
c/∆, c42 = −0.5R4

0/∆, c50 = 0, c51 = 1 and

c52 = 0. Note that the result in (3.7) assumes Rp > Rc but the corresponding result

for Rc > Rp is also given in Appendix A.

Now P (a < 1) = P (a2 < 1) can be written as P (Y < KeXZ−γ) where Y =

|f̃ |2/|c̃|2, K = Np/Nc, X = Xcc−Xcp and Z = rcc/rcp. Thus the required probability
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is

P (Y < KeXZ−γ) = P (Z < K1/γeX/γY −1/γ)

= E[P (Z < W |W )]

=

∫ ∞

0

P (Z < w)fW (w)dw, (3.9)

where W = K1/γeX/γY −1/γ , fW (.) is the PDF of W and we use the independence

of Z and W to arrive at the last line. Note that P (Z < w), given in (3.8), only

contains constants and terms involving w±2. Hence, we need
∫ κ

θ

w2mfW (w)dw =

∫ ∫
(Kexy−1)2m/γfX,Y (x, y)dxdy, (3.10)

where m = −1, 0, 1 and fX,Y (.) is the joint PDF of X, Y . Now, since W =

K1/γeX/γY −1/γ , the limits θ ≤ w ≤ κ in (3.10) imply the following limits for x:

ln(θγK−1y) ≤ x ≤ ln(κγK−1y).

Let ln(θγK−1y) = A and ln(κγK−1y) = B, then noting that fX,Y (x, y) = fX(x)fY (y),

the integral in (3.10) becomes
∫ κ

θ

w2mfW (w)dw =

∫ ∞

0

K2m/γy−2m/γfY (y)

∫ B

A

e2mx/γfX(x)dxdy. (3.11)

Since X ∼ N (0, 2σ2
sf), the inner integral in (3.11) becomes

∫ B

A

e2mx/γfX(x)dx = exp

(
4m2σ2

sf

γ2

)[
Φ

(
B − 4mσ2

sf

γ√
2σsf

)
− Φ

(
A− 4mσ2

sf

γ√
2σsf

)]
,

(3.12)

where Φ is the CDF of a standard Gaussian. Since fY (y) is the density function of

the ratio of two standard exponentials, it is given by [50]

fY (y) =
1

(1 + y)2
, y ≥ 0. (3.13)

Using (3.12) and (3.13), the total general integral in (3.10) reduces to
∫ κ

θ

w2mfW (w)dw =

∫ ∞

0

K2m/γy−2m/γ(1 + y)−2 exp

(
4m2σ2

sf

γ2

)

×
[
Φ

(
B − 4mσ2

sf

γ√
2σsf

)
− Φ

(
A− 4mσ2

sf

γ√
2σsf

)]
dy

, I(m, θ, κ). (3.14)
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Substituting (3.8) and (3.14) in (3.9) gives P (a < 1) as

P (a < 1) = P (Y < KeXZ−γ)

=

5∑

i=2

ci0I(−1, θi, κi) + ci1I(0, θi, κi) + ci2I(1, θi, κi)

=

5∑

i=2

2∑

j=0

cijI(j − 1, θi, κi). (3.15)

Finally, it can be seen from the limits given in (3.7) that κi = θi+1. Hence, the final

expression for the probability of occurrence of the low interference regime is

P (a < 1) =

5∑

i=2

2∑

j=0

cijI(j − 1, θi, θi+1), (3.16)

where the cij were defined after (3.8), I(j−1, θi, θi+1) is given in (3.14), θ2 = R0/Rp,

θ3 = Rc/Rp, θ4 = 1, θ5 = Rc/R0 and θ6 =∞. Therefore, P (a < 1) can be derived in

terms of a single numerical integral. For numerical convenience, (3.14) is rewritten

using the substitution v = y(y + 1)−1 so that a finite range integral over 0 < v < 1

is used for numerical results, i.e.,

∫ κ

θ

w2mfW (w)dw =

∫ 1

0

K2m/γ
( v

1− v

)−2m/γ

exp

(
4m2σ2

sf

γ2

)

×
[
Φ

(
B − 4mσ2

sf

γ√
2σsf

)
− Φ

(
A− 4mσ2

sf

γ√
2σsf

)]
dv

, I(m, θ, κ), (3.17)

where ln(θγK−1 v
1−v

) = A and ln(κγK−1 v
1−v

) = B. Further simplification of (3.14)

appears difficult but the result in (3.17) is stable and rapid to compute.

It can be easily inferred from the above discussion that the probability of the

low interference regime in (3.16) depends on the ratio (3.13) of random variables

representing fast fading in the interfering and direct links from the point of view of

the cognitive device. Hence, we focus on the following three cases of interest as well.
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Figure 3.3: Probability of occurrence of the low interference regime as a function of
shadow fading standard deviation, σ (dB) for Ray/Ray scenario.

3.2.2 Rayleigh/Rician Scenario

In this case the probability density function (PDF) of the ratio Y = |f̃ |2/|c̃|2 is

given by [59]

fY (y) = (Kr + 1)
y + (Kr + 1)2

(y + Kr + 1)3
e−Kr+

K2
r+Kr

y+Kr+1 , (3.18)

where Kr is the Rician Kr factor defined as the ratio of signal power in the dominant

component to the scattered power and fY (y) represents the PDF of the ratio of a

standard exponential to a noncentral χ2 random variable. Now P (a < 1) can

easily be calculated by substituting (3.18) in (3.11) and evaluating (3.16). However,

as mentioned above the substitution v = y(y + 1)−1 is again used to obtain the

numerical results.
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3.2.3 Rician/Rayleigh Scenario

When the interfering signal is a Rician variable and the direct signal follows Rayleigh

distribution, the PDF of Y , after correcting the expression in [59], is

fY (y) =
Kr(1 + Kr)

(y + Kry + 1)2
e−

Kr
y+Kry+1 +

1−K2
r + y(1 + 2Kr + K2

r )

(y + Kry + 1)3
e−Kr+

Kry+K2
ry

y+Kry+1 ,

(3.19)

where Kr is the Rician K factor defined as above.

3.2.4 Rician/Rician Scenario

In this final case, the PDF fY (y) represents the ratio of two noncentral χ2 variables.

It is known that [60] this ratio characterizes the doubly noncentral F-distribution.

Assuming that the noncentral χ2 random variable in the numerator of Y has ν1

degrees of freedom, λ1 non-centrality parameter and the noncentral χ2 variable in

the denominator has ν2 degrees of freedom and λ2 non-centrality parameter, the

PDF of Y is given by [60]

fY (y) =

∞∑

j=0

∞∑

k=0

[
e−λ1/2(0.5λ1)

j

j!

][
e−λ2/2(0.5λ2)

k

k!

][
B
(
0.5ν1 + j, 0.5ν2 + k

)]−1

× y0.5ν1+j−1(1 + y)−0.5(ν1+ν2)−j−k, (3.20)

where B(., .) is the beta function. It is worth mentioning that we use ν1 = ν2 = 2

and λ1 = λ2 = 2Kr while employing the above PDF to evaluate the probabilities.

Although the doubly infinite sum in (3.20) is undesirable, satisfactory convergence

was found with only 18 terms. Hence, the approach is rapid and stable computa-

tionally. A comparison of simulated and analytical results is presented in Figs. 3.3

and 3.4. It can the seen that the analytical formulae for all the cases shown agree

closely with the simulation results for different parameter values. A discussion of

these results is presented in Sec. 3.4.
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3.3 An Approximation For The Power Loss Pa-

rameter

In this section we focus on the power loss parameter, α, which governs how much

of the transmit power the CR dedicates to relaying the primary message. The ex-

act distribution of α appears to be rather complicated, even for fixed link gains

(fixed values of Γcp, Γpc, Γpp and Γcc). Hence, we consider an extremely simple ap-

proximation based on the idea that |s||t| is usually small and |s||t| >> |t|. This

approximation is motivated by the fact that the CP link is usually very weak com-

pared to the PP link. This stems from the common scenario where the CRs will

employ much lower transmit powers than the PU as the CC paths are usually much

shorter. With this assumption it follows that |t|2(1 + |s|2) is small and we have

√
α =

|s|
|t|

[(
1 + |t|2(1 + |s|2)

)1/2 − 1

1 + |s|2

]
≈ |s||t|

[
1/2|t|2(1 + |s|2)

1 + |s|2

]

=
|s||t|

2
=
√

αapprox. (3.21)

Expanding αapprox we obtain

αapprox =
ApAcPpPc

4N2
p

e(Xpp+Xcp)r−γ
pp r−γ

cp |p̃|2|f̃ |2. (3.22)

This approximation is very effective for low values of αapprox, but is poor for

larger values since αapprox is unbounded whereas 0 < α < 1. To improve the

approximation, we use the conditional distribution of αapprox given that αapprox < 1.

This conditional variable is denoted, α̂. The exact distribution of α̂ is difficult

for variable link gains. However, the approximation has a simple representation

which leads to considerable insight into the power loss and how it relates to system

parameters. For example, αapprox is proportional to |s|2|t|2 so that high power loss

may be caused by high values of |s| or |t| or moderate values of both. Now |s| and

|t| relate to the PP and CP links respectively. Hence, the CR is forced to use high

power relaying the PU message when the CP link is strong. This is obvious as the

relay action needs to make up for the strong interference caused by the CR. The
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second scenario is that the CR has high α when the PP link is strong. This is less

obvious, but here the PU rate is high and a substantial relaying effort is required to

counteract the efforts of interference on a high rate link. This is discussed further

in Section 3.4. It is worth noting that the condition |s||t| >> |t| holds good only for

some specific values of channel parameters which support the assumption that the

CP link is usually much weaker than the PP link. Hence, although it is motivated

by a sensible physical scenario, it requires verification. Results in Figs. 3.5, 3.7 and

3.8 show that it works very well. For fixed link gains, the distribution of α̂ is:

P (αapprox < x|αapprox < 1)

= P (α̂ < x)

=
P (αapprox < x)

P (αapprox < 1)
. (3.23)

Thus, to compute the distribution function of α̂ we need to determine P (αapprox <

x) which can be written as

P (αapprox < x) = P (|s|2|t|2 < 4x). (3.24)

Let E[|s|2] = µs, E[|t|2] = µt with µs = PpΓpp/Np and µt = PcΓcp/Np. Further,

suppose that U , V and W are defined by U = |f̃ |2, V = |c̃|2 and W = |p̃|2. We wish

to derive P
(
WU < 4x

µsµt

)
, i.e., (3.24), subject to the condition a < 1, which implies

that U < V/d, where d = (Nc/Np)(Γcp/Γcc). Defining ζ = 4/µsµt the required

conditional CDF is given by

P

(
UW < ζx|U <

V

d

)

=

P

(
U ≤ ζx

W
, U < V

d

)

P
(
U < V

d

)

=

∫
w

∫
v
P (U < min( ζx

w
, v

d
))fW (w)fV (v)dvdw∫∞

0
P (U < v

d
)fV (v)dv

=

∫∞
w=0

∫ ζxd/w

v=0
P (U < v

d
)fW (w)fV (v)dvdw +

∫∞
w=0

∫∞
v=ζxd/w

P (U < ζx
w

)fW (w)fV (v)dvdw
∫∞
0

P (U < v
d
)fV (v)dv
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=

∫∞
v=0

∫ ζxd/v

w=0
P (U < v

d
)fV (v)fW (w)dwdv +

∫∞
w=0

∫∞
v=ζxd/w

P (U < ζx
w

)fW (w)fV (v)dvdw
∫∞

0
P (U < v

d
)fV (v)dv

=

∫∞
v=0

FW (ζxd/v)FU(v/d)fV (v)dv +
∫∞

w=0
FU(ζx/w)(1− FV (ζxd/w))fW (w)dw∫∞

0
FU(v/d)fV (v)dv

.(3.25)

In the above derivation fU(u) and FU(u) represent the PDF and CDF of U respec-

tively with similar definitions for the PDFs and CDFs of V and W . With the general

result in (3.25), the CDF of αapprox can be determined for any fading combinations

across the links of the CR interference channel. In most cases where Rician fading

occurs (3.25) has to be computed via infinite series expansions or numerical integra-

tion. In the Rayleigh fading scenario a closed form solution is possible. Since for this

case all the distribution and density functions given in (3.25) are those of a standard

unit mean exponential random variable, after a few algebraic manipulations (details

given in Appendix B) and expanding ζ = 4/µsµt we get

P (αapprox < x) = 1−
√

16(1 + d)x

µsµt
K1

(√
16(1 + d)x

µsµt

)
, (3.26)

where K1(.) represents the modified Bessel function of the second kind. Using the

expression given in (3.26), the CDF of α̂ follows from (3.23). Note that the CDF

of RCR in (3.5) can easily be obtained in the form of a single numerical integral for

fixed link gains as

P (RCR < x) = P

(
|c|2(1− α) < (2x − 1)

Nc

Pc

)

= E

[
P

(
α > 1− (2x − 1)Nc

|c|2Pc

)]

=

∫ ∞

0

(
1− Fα

(
1− (2x − 1)Nc

|c|2Pc

))
fc(c)dc, (3.27)

where in the second line the expectation is with respect to the conditioned variable

c, Fα(.) is the CDF of α in (3.26) and fc(c) is the PDF of c.
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3.4 Results

In this section, the default parameters are σ = 8 dB, γ = 3.5, R0 = 1 m, Rc = 100

m, Rp = 1000 m and Np = Nc = Pp = Pc = 1. The parameter Ap is determined by

ensuring that the PP link has an SNR ≥ 5 dB 95% of the time in the absence of any

interference. Similarly, assuming that both PU and CR devices have same threshold

power at their cell edges, the constant Ac = Ap(Rp/Rc)
−γ. Unless otherwise stated

these parameters are used in the following.

3.4.1 Low interference regime

In many cases where CRs are being considered, the focus is on link lengths which are

usually short compared to the PU links. This situation coupled with typical values

of γ and σ can be thought of as one type of practical deployment option. Results in

Figs. 3.3 and 3.4 show that for this scenario the low interference regime, a < 1, is
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α represents the exact expression given in (3.6), while α̂ refers to its conditional
approximation discussed in Sec. 3.3.

dominant. For typical values of γ ∈ [3, 4] and σ ∈ [6, 12] dB we find that P (a < 1)

is usually well over 90% when Rc is less than 20% of Rp. As expected, when Rc

approaches Rp the probability drops and reaches P (a < 1) = 0.5 when Rc = Rp.

Note that this is only the case when all the channel parameters are the same for

the CC and CP links. From Fig. 3.4 we observe that the results are reasonably

insensitive to the type of fast fading. This is due to the lesser importance of the

fast fading compared to the large effects of shadowing and path loss. Figure 3.3 also

verifies the analytical result in (3.15).

The relationship between P (a < 1) and the system parameters is easily seen from

(3.4) which contains the term
(
rcc/rcp

)γ/2
exp

(
(Xcp − Xcc)/2

)
. When Rc << Rp,

this term decreases dramatically as γ increases (i.e., P (a < 1) increases) and as

σ increases the term increases (hence P (a < 1) decreases). Also, as Rc increases

rcc/rcp tends to increase which in turn decreases P (a < 1). When Rc ≈ Rp the

low and high interference scenarios occur with similar frequency (Fig. 3.4). This
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may be a relevant system consideration if CRs were to be introduced in cellular

bands where the cellular hot spots, indoor micro-cells and CRs will have roughly

the same coverage radius. Note that a is independent of the transmit power, Pc.

These conclusions are all verified in Figs. 3.3 and 3.4.

3.4.2 Statistics of the power loss parameter, α

Figures 3.5-3.7 all focus on the properties of α. Figure 3.5 shows that the probability

density function (PDF) of α is extremely well approximated by the PDF of α̂ in

both Rayleigh and Rician fading channels. In Fig. 3.6 we see that E[α] increases

with increasing values of Rc/Rp and decreasing values of γ. This can be seen from

(3.22) where αapprox contains a (rpprcp)
−γ term which increases as γ decreases, thus

increasing the mean value of α. The increase of E[α] with Rc follows from the

corresponding increase in Pc to cater for larger Rc values. Increasing the line of

sight (LOS) factor tends to increase E[α] although the effect is minor compared to
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changes in γ, σ or Rc/Rp. In Fig. 3.6 we have limited Rc/Rp to a maximum of 30%

as beyond this value the high interference regime is also present with a non-negligible

probability. In Fig. 3.7 we see the analytical CDF in (3.26) verified by simulations

for five different scenarios of fixed link gains (simply the first five simulated values

of Γpp and Γcp). Note that in the different curves each correspond to a random drop

of the PU and CR transmitters. This fixes the distance and shadow fading terms

in the link gains in (3.2), thereby the remaining variation in (3.1) is only Rayleigh.

By computing a large number of such CDFs and averaging them over the link gains

a single CDF can be constructed. This approach can be used to find the PDF of α̂

as shown in Fig. 3.5. Note that the curves in Fig. 3.7 do not match exactly since

the analysis is for α̂ and the simulation is for α.
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3.4.3 CR rates

Figures 3.8-3.10 focus on the CR rate RCR. Figure 3.8 demonstrates that the use of

α̂ is not only accurate for α but also leads to excellent agreement for the CR rate,

RCR. This agreement holds over the whole range and for all typical parameter values.

Figure 3.9 shows the % loss given by [RCR(α = 0)− RCR(α)]/[RCR(α = 0)]%. We

call it mean loss in the figure since we average over several realizations of channels

involved. We note that we term this quantity as loss in the CR rates since α = 0

corresponds to the CR devoting no power for PU purposes and any non zero value

of this parameter incurs are loss in the rates of the CR. The loss decreases as γ

increases, as discussed above, and increases with σ. From (3.22) it is clear that

increasing σ lends to larger values of exp(Xpp + Xcp) which in turn increases α and

the rate loss. Note that the rate loss is minor for σ ∈ [8−10] dB with Rc = Rp/10. In

chapter 5, we show that the interference to the PU increases with σ and decreases
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figure.

with γ. These results reinforce this observation, i.e., when the PU suffers more

interference (σ is larger) the CR has to devote a higher part of its power to the PU.

Consequently the percentage rate loss is higher. Again the effect of Kr, the LOS

factor, is minor compared to that of γ and σ.

Finally, in Fig. 3.10 we investigate the gains available to the CR through in-

creasing transmit power. The original transmit power, Pc, is scaled by the power

inflation factor, β, and the mean CR rate is simulated over a range of β values. Due

to the relaying performed by the CR, the PU rate is unaffected by the CR for any

values of β and so the CR is able to boost its own rate with higher transmit power.

Clearly the increased value of α for higher values of β is outweighed by the larger

Pc value and so the CR does achieve an overall rate gain. In a very coarse way these

results suggest that multiple CRs may be able to co-exist with the PU since the

increased interference power might be due to several CRs and the rate gain might

be spread over several CRs. Of course, this conclusion is speculative as the analysis
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is only valid for a single CR.

3.5 Summary

In this chapter we derive the probability that the “low interference regime” holds

and demonstrate the conditions under which this is the dominant scenario. We

show that the probability of the low interference regime is significantly influenced

by the system geometry. When the CR coverage radius is small relative to the PU

radius, the low interference regime is dominant. On the other hand, when the CR

coverage radius approaches a value similar to the PU coverage radius, the low and

high interference regimes both occur with roughly equal probability. In addition, we

have derived a simple, accurate approximation to α which gives considerable insight

into the system capacity. The α approximation shows that the mean value of α is

increased by small values of γ, large CR coverage zones and higher σ values. This

in turn decreases CR rates due to small values of γ, large CR coverage zones and
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σ. The effect of the LOS strength is shown to be minor and all results appear to

be insensitive to the type of fast fading. Finally, we have shown that the CR can

increase its own rate with higher transmit powers, although the relationship is only

slowly increasing as expected.
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Chapter 4

Interference and Level Crossing

Statistics

We know from the discussion in earlier chapters that the CRs should try their best

to protect the PUs from adverse interference. However, such efforts may jeopardize

the quality of service (QoS) expected from the cognitive devices. Accurate spectrum

sensing capabilities are being developed [8] for CRs and it is envisaged that either

individually, or via collaboration, the cognitive devices will be able to detect the

licensed users with an acceptably low probability of failure. It is evident that the

statistics of the interfering signals will play an important role in the design of CR

systems. Thus, modeling the total CR interference is an important issue and it is

necessary to characterize the nature of the interfering signals along with their impact

on the performance of the incumbent licensed users. Various results [61, 62] have

appeared in this regard. [62] models the combined interference with heavy-tailed

α1-stable distributions in an infinite field of interferers. [61] proposes a 3-parameter

lognormal to accomplish this task. Later in the chapter we show that this approach

is applicable only in certain scenarios.

While devising various CR scheduling strategies it is normal to consider an av-

erage interference constraint [63]. For example, the approaches in [64, 65, 63] allow

1This α should not be confused with the α used in Chapter 3 to represent the power loss
parameter in the CR channel.
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CRs to operate on the basis of average interference powers or SINR values and do

not consider the instantaneous temporal variation of the interference. It is quite

possible that an apparently plausible allocation strategy may result in the CR inter-

ference crossing a particular threshold on too many occasions when the interference

process is considered over time. Thus the motivation to study the LCR of cumulative

interference in conjunction with a particular CR allocation policy.

In this regard our contributions include the following. We derive the CDF of

the interference due to a cognitive device assuming lognormal shadowing and path

loss effects and investigate the nature of the distribution of the total interference

due to multiple CRs. We derive a simplified expression for the cumulants of the

total interference, which are in turn used in approximating the interference with a

shifted lognormal distribution and determining the scenarios of applicability of this

approach. Then, we compute the LCRs of the cumulative interference created by

the CRs. We derive analytical formulae for the LCRs in Rayleigh and Rician fast

fading conditions. We approximate Rayleigh and Rician LCRs using fluctuation

rates of gamma and scaled noncentral χ2 processes, respectively. The analytical

results and the approximations used in their derivations are verified by Monte Carlo

simulations and the analysis is applied to a particular CR allocation strategy.

4.1 System Model

In the system model we consider a PU receiver in the center of a circular region of

radius R. The PU transmitter is located uniformly in an annulus of outer radius R

and inner radius R0 centered on the PU receiver. It is to be noted that we place the

PU receiver at the center only for the sake of mathematical convenience (see Fig.

4.1). The use of the annulus restricts devices from being too close to the receiver.

As seen in Chapter 3, this matches physical reality and also avoids problems with

the classical inverse power law relationship between signal strength and distance

[10]. In particular, having a minimum distance, R0, prevents the signal strength

from becoming infinite as the transmitter approaches the receiver. Similarly, we
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assume that multiple CR transmitters are uniformly located in the annulus. At any

given time, each CR has a probability of seeking a connection, given by the activity

factor, p. The number of CRs wishing to operate is denoted NCR. Of these CRs, a

certain number will be accepted depending on the allocation mechanism. Hence, a

random number of CRs denoted N ≤ NCR will transmit during the PU transmission

and create interference at the PU receiver. The received signal strength for both

the PU transmitter to PU receiver and CR transmitter to PU receiver is assumed to

follow the classical distance dependent, lognormal shadowing model. For a generic

interferer, this is given by

I = BLr−γ = B10X̃/10r−γ = BeXr−γ, (4.1)

where r is the random distance from the transmitter to the receiver, γ is the path

loss exponent (normally in the range of 2 to 4) and L is a shadow fading variable.

The lognormal variable, L, is given in terms of the zero mean Gaussian, X̃, which

has standard deviation σ (dB) and X = βX̃ where β = ln(10)/10. The standard

deviation of X is denoted by σsf . The constant B is determined by the methods

discussed in Chapters 2 and 3. The desired primary signal strength, S, has the same
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form, with a different transmit power, so that S = ALpr
−γ
p . Note that all the links

are assumed to be i.i.d. and spatial correlation is ignored.

4.2 Statistical Characterization of Interference at

the Primary Receiver

4.2.1 Interference Due to a Single Cognitive User

In this section we investigate the interference at the PU receiver due to one or more

CRs. Firstly we characterize the interfering signal, given in (4.1), by computing the

CDF, FI(x) = P (I < x). This can be done as follows

FI(x) = P
(
BeXr−γ < x

)
= P

(
e−Xrγ >

B

x

)

= P (eUrγ > y) = EU

[
P
(
r > y

1
γ e

−U
γ

)]

= EU

[
1− FR

(
y

1
γ e

−U
γ

)]
. (4.2)

In (4.2), U = −X, EU [.] represents expectation over the random variable U and

y = B/x. To evaluate the expectation in (4.2) we note that the CDF of r is given

by

FR(r) =
r2 − R2

0

R2 − R2
0

, R0 ≤ r ≤ R. (4.3)

Using this CDF, (4.2) can be rewritten as

FI(x) = EU [GR(U, y)], (4.4)

where

GR(U, y) =





0 U < w0(
R2−y

2
γ e

−2u
γ

R2−R2
0

)
w0 < U < w1

1 U > w1,

(4.5)

and w0 = ln(yR−γ), w1 = ln(yR−γ
0 ). Since U = −X is Gaussian, U ∼ N (0, σ2

sf),

with probability density function (PDF) f(u), the CDF, FI(x) = EU [GR(U, y)],
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becomes

FI(x) =

∫ w1

w0

R2 − y
2
γ e

−2u
γ

R2 − R2
0

f(u)du +

∫ ∞

w1

f(u)du =
R2

(R2 − R2
0)
√

2πσ2
sf

∫ w1

w0

e
−u2

2σ2
sf du

− (B
x
)2/γ

(R2 − R2
0)
√

2πσ2
sf

∫ w1

w0

e
−2u

γ
− −u2

2σ2
sf du +

1√
2πσ2

sf

∫ ∞

w1

e
−u2

2σ2
sf du. (4.6)

All the integrals in (4.6) can be written in terms of integrals of Gaussian PDFs.

Hence, (4.6) reduces to

FI(x) = 1− FZ

(
w1

σsf

)
+

1

R2 − R2
0

[{
R2FZ

( w1

σsf

)
− R2FZ

( w0

σsf

)}

−
(B

x

) 2
γ

e

(
2σ2

sf

γ2

){
FZ

(
w1 + 2σ2

sf/γ

σsf

)
− FZ

(
w0 + 2σ2

sf/γ

σsf

)}]
, (4.7)

where FZ(.) is the CDF of a standard Gaussian. In order to validate the CDF

given in (4.7), we compare the results of this expression with the complementary

CDF obtained using Monte Carlo simulation as shown in Fig. 4.2. We note that

although these results are expected to match exactly (since we are not approxi-

mating), the tails represent a simulation mismatch on account of fewer simulation

samples. However, if there were any approximating techniques used then it would be

more plausible to include confidence intervals on the graph. It can be seen that the

analytical and simulated interference complementary CDFs agree over a wide range

of propagation parameters. Hence, a complete characterization of the interference

due to a single CR is possible. Next, we consider multiple CRs.

4.2.2 Interference Due to Multiple Cognitive Radios

In cognitive wireless networks the PU device under consideration may be affected

by the interference due to many CRs. In this case, the total interference, denoted

IT , is given by

IT =
N∑

i=1

BeXir−γ
i =

N∑

i=1

BLir
−γ
i , (4.8)

where the parameters are as defined in (4.1). Equation (4.8) is a random sum

of a finite number of lognormals with each lognormal being multiplied by a ran-
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Figure 4.2: A comparison of analytical and simulated complementary CDFs of in-
terference over a range of propagation parameters. Solid lines represent analytical
results while dotted-dashed curves show simulated values.

dom distance factor. Problems similar to this, but involving a non random sum

without incorporating the random distance factor, have been tackled in the past

[66, 67, 68, 69, 70, 71, 72]. Historically, lognormal approximations to this summation

have been envisaged. Approximations are definitely required since although (4.7)

gives an analytical result for a single interferer, it is too complex to allow an exact

approach for sums of interferers. Hence, one is tempted to use the same lognormal

approximation for (4.8). However, as described below, we show that lognormal ap-

proximations are not accurate. We note that instead of showing discrepancy of the

traditional approaches by displaying mismatch between the simulation and analyti-

cal results, we rely on mathematical analysis based on the shape determining factor

of skewness. For convenience, consider a lognormal approximation to a single inter-

ferer, I, of the form given in (4.1). Let the moments of I be denoted by E[Ij ] = mj .

We seek to approximate I with the lognormal Y = eZ where Z ∼ N (µz, σ
2
z). The

simplest approach to fitting Y is via the Fenton-Wilkinson approach [66, 68] which
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computes the first two moments, so that

E[Y k] = E[Ik] = mk, k = 1, 2. (4.9)

Hence, the lognormal approximation has perfect moments up to order 2. To demon-

strate the lack of fit we consider the skewness of Y and I which also involves the

third moment. For any lognormal, say Y , the third moment is related to the first

two by

E[Y 3] =

(
E[Y 2]

E[Y ]

)3

. (4.10)

Now, consider the skewness of I,

SK(I) =
E[(I −m1)

3]

(m2 −m2
1)

3/2

=
m3 + 2m3

1 − 3m1m2

(m2 −m2
1)

3/2
. (4.11)

Similarly, the skewness of Y can be written as

SK(Y ) =
E[Y 3] + 2E[Y ]3 − 3E[Y ]E[Y 2]

(E[Y 2]− E[Y ]2)3/2

=
E[Y 3] + 2m3

1 − 3m1m2

(m2 −m2
1)

3/2
. (4.12)

Hence, the lognormal approximation is more skewed than the real interference if

E[Y 3] > m3. Now, consider

E[Y 3]

m3

=
(m2/m1)

3

m3

=

(
B2

E[e2X ]E[r−2γ ]
BE[eX ]E[r−γ ]

)3

B3E[e3X ]E[r−3γ ]

=

(
E[e2X ]
E[eX ]

)3

E[e3X ]

(
E[r−2γ ]
E[r−γ ]

)3

E[r−3γ]
=

(
E[r−2γ ]
E[r−γ ]

)3

E[r−3γ ]
. (4.13)

The above results follow since (4.10) also holds for the lognormal eX . The moments

of r in (4.13) can be found as

E[r−kγ] =
2(R2−kγ −R2−kγ

0 )

(R2 − R2
0)(2− kγ)

. (4.14)
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Equation (4.14) is obtained using (4.3) as the CDF of r to compute the PDF and

hence the moments. For large R (1000 m in our case), small R0 (we use 1 m) and

with γ ≥ 3, (4.14) gives

E[r−kγ] ≈ −1

R2

(
2

2− kγ

)
=

2

R2(kγ − 2)
. (4.15)

Thus, the ratio of the moments in (4.13) becomes:

E[Y 3]

m3
≈
(

γ − 2

2γ − 2

)3
R2(3γ − 2)

2
. (4.16)

It can be observed from the above expression that for typical values of the pa-

rameters, E[Y 3] >> m3, and the ratio is of the order of R2. Thus the equivalent

lognormal will be massively more skewed than the real interference. As skewness

is a key shape determining factor (especially in the tails), the simple lognormal ap-

proximation will not be accurate. Note that this large discrepancy in skewness is

due to the random distance factors. Exactly the same conclusions are reached when

attempting to fit sums of interferers. Hence, it appears that a simple lognormal ap-

proximation will not suffice and further research is required. An alternate approach,

one considered by [61], is to approximate interference of the form given in (4.8) with

a three parameter lognormal random variable using cumulant matching. Such an

approximation was shown to be highly accurate under typical operating conditions

of the system considered in [61]. The parameters of the distribution can be expressed

in terms of the cumulants of the interference which is now denoted IT,N to represent

the dependence on the random number of interferers, N . For the sake of analytical

tractability, instead of using a binomial random variable to model the interfering

CRs, we use a Poisson random variable noting that the Poisson distribution is a

limiting case of the binomial. These cumulants can be calculated by modeling the

interferers by a marked Poisson process and invoking Campbell’s theorem [73]. In

what follows we provide a significantly simplified and more intuitive method of cal-

culating the cumulants of IT,N than the one presented in [61]. We begin by noting

that the moment generating function (MGF) of IT,N can be expressed as a function
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of the MGF of I by means of conditioning on N . Hence,

ΦIT,N
(s) = E[esIT,N ]

=
∞∑

n=0

E[esIT,N |N = n]P (N = n)

=

∞∑

n=0

E[esIT,n ]P (N = n)

=

∞∑

n=0

(ΦI(s))
n P (N = n), (4.17)

where the last equality assumes i.i.d. interferers. We recognize that (4.17) is in the

form of the probability generating function (PGF) of N , and thus

ΦIT,N
(s) = GN (ΦI(s)) , (4.18)

where the PGF, GN , for a Poisson distributed N with mean λ is given by

GN(s) = eλ(s−1). (4.19)

Before proceeding forward, we make an important remark. Using (4.19) one may be

tempted to obtain the exact distribution of the cumulative interference. For exam-

ple, it is plain to see that the characteristic function2 of this variable is ΦIT,N
(jt) =

exp

(
λ(ΦI(jt)− 1)

)
, where j =

√
−1. Further, the characteristic function of the

individual interferer is given by

ΦI(jt) = E[ejtBeXr−γ

] =

∫ R

R0

∫ ∞

−∞
ejtBexr−γ

f(x)fR(r)dxdr, (4.20)

where f(x) is the PDF of a N (0, σ2
sf) variable and fR(r) can be obtained by differ-

entiating (4.3). With the CDF given in (4.7), it is easy to see that (4.20) may not

be representable in terms of elementary functions or may not even allow a closed

form solution. On top of this, evaluating the inverse Fourier transform of ΦIT,N
(jt)

may be a very difficult, if not an impossible, task. Thus the motivation behind

fitting a simple distribution. We note that some progress is possible using stable

2We use characteristics function since this function always exists even when it is not possible
to evaluate the MGF.
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distributions [62] but this requires the assumptions that R0 → 0 and R→∞ giving

rise to an infinite field of interferers.

Coming back to (4.19), we see that using (4.18) and (4.19) we can obtain the

kth cumulant κk of IT,N as

κk =

[
∂k

∂sk
ln ΦIT,N

(s)

]

s=0

= λ

[
∂k

∂sk
ΦI(s)

]

s=0

= λE[Ik]. (4.21)

Thus, the cumulants of the aggregate interference can be easily obtained from the

moments of the individual interferers.3 Using (4.1), (4.14) and the moments of a

lognormal the cumulants in (4.21) can be given as

κk = λBkek2σ2
sf

/2

(
2

2− kγ

)(
R2−kγ − R2−kγ

0

R2 − R2
0

)
. (4.22)

Following [61] a shifted lognormal was fitted to the interference, IT,N , by selecting

the three parameters of the shifted lognormal to match the first 3 cumulants in

(4.22). Although the fitting procedure was successful, the resulting shift parameter

was found to be negative. Hence, in order to match the first 3 moments of IT,N

the shifted lognormal yields negative interference values for some portion of the

time. Investigation of this behavior showed that the negative shift is fundamentally

a function of R0. For one set of parameter settings, R = 1000 m, σ = 8 dB,

γ = 3.5 and λ = 1000 CRs per square kilometer with an activity factor of 0.1, the

percentage of the shifted lognormal distribution which is negative is given in Table

6.1. From Table 6.1 it is clear that for small R0 values the shifted lognormal is

completely inappropriate as a model for interference. However, for R0 ≥ 20 m the

distribution is always positive and in this region it may be useful. Note that in [61]

a high detection probability near the PU receiver’s beacon means that CRs are very

unlikely to be close to the PU. This is roughly equivalent to a larger R0 value and

3The same result can be obtained via Campbell’s theorem [73], as considered by [61], by ap-
propriately modifying the expression for finite cell radius and disregarding the sensing-related
component.
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Table 4.1: The percentage of the shifted lognormal distribution which is negative
for various R0 values.

R0 (m) %

1.0 88%

10 72%

16 50%

20 0%

hence in the presence of a beacon the shifted lognormal may be useful as shown in

[61]. However, in this work we are not necessarily assuming a beacon is present and

so the shifted lognormal is not used.

4.3 Level Crossing Analysis

We observed in Chapter 2 that instantaneous variations in signal level are impor-

tant from the perspective of designing and analyzing the performance of wireless

communication systems. In the same way, small scale variations in the composite

CR interference can degrade the PU performance even though the CR levels may be

acceptable on average. Thus, the determination of the rate at which the instanta-

neous interference crosses a particular threshold and the duration for which it stays

above or below it, is an issue of core importance. For example, the PU system may

set an average interference constraint but if the interference exceeds this threshold

for too long or crosses it too often for satisfactory QoS then the threshold may need

to be reduced. From the perspective of CR system design, such an analysis can

provide insight into issues such as CR allocation and power control. For example,

how should the powers of CR devices be controlled keeping in mind the instanta-

neous fluctuations of the interfering signals at the PU receiver? Thus throughout

the remaining part of this chapter SNR or SINR values represent long term average

values while the interference is considered on an instantaneous scale.
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4.4 Instantaneous CR performance

In any CR allocation policy, for example chapter 5, even if the target interfer-

ence/SINR of the PU is exactly met, the fast fading will result in fluctuations of the

instantaneous interference/SINR both above and below the target. As a first look at

this problem we fix the PU signal power and consider the instantaneous variation of

the interference only. Hence, in this section we focus on the instantaneous temporal

behavior of the aggregate interference via the LCR.

4.4.1 LCRs for Rayleigh Fading

For a given set of CR interferers, the instantaneous aggregate interference, IRay(t),

is given by

IRay(t) =

N∑

i=1

Ii|hi(t)|2, (4.23)

where Ii represents the long term interference power of the ith CR, hi(t) is the cor-

responding normalized channel gain so that in Rayleigh fading |hi(t)|2 is a standard

exponential random variable with unit mean and N is the number of interfering

CRs. Note that we fix the long term interference values, I1, . . . , IN and consider

the variation of the fast fading terms, hi. From (4.23), the aggregate interference is

represented as a weighted sum of exponential variables. Such weighted sums can be

approximated by a gamma variable [60]. The corresponding LCR results are shown

to be accurate in Figs. 4.3-4.5, hence, justifying the approximation of cumulative

interference in (4.23) by a gamma variable. Note that the exact LCR computation

for such sums was given in [74] for the case of three and four branch maximal ratio

combining (MRC) by providing special function integrals. Recently, more general

expressions for arbitrary number of branches have been derived in [75]. However, the

approach of [75] may result in numerical difficulties, especially for large values of N ,

which can be the case for CR systems. In particular, the hypergeometric functions

in [75] are difficult to compute accurately for large negative arguments which is the

case with weak CR interferers. Hence, an approximation is useful to overcome these
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problems and to provide a much simpler solution. Thus, approximate LCRs for

(4.23) can be found by approximating using a fitted gamma process. It is important

to note that the following approximation is valid only for 2-D isotropic scattering,

when the time autocorrelation function follows the classic Jakes’ model [9]. The

LCR for a gamma process has been calculated in [76]. Therefore, the LCR of (4.23)

across a threshold, T , is

LCRIRay
(T ) =

1

2Γ(r)

√
2|R̈(0)|

π
(θT )r−0.5 exp(−θT ), (4.24)

where r = E[IRay(t)]
2/V ar(IRay(t)), θ = E[IRay(t)]/V ar(IRay(t)) and R̈(0) = ρ̈Ray(0)

is the second derivative of the autocorrelation function (ACF) of IRay(t) at time lag,

τ = 0. Computation of (4.24) only requires the mean, variance and ACF of the

random process in (4.23). The first two moments of (4.23) are E[IRay(t)] =
∑N

i=1 Ii

and V ar(IRay(t)) =
∑N

i=1 I2
i . To calculate the ACF, note that

hi(t + τ) = ρi(τ)hi(t) +
√

(1− ρ2
i (τ))ei(t), (4.25)

where ei(t) is independent of hi(t) and statistically identical to hi(t). Assuming

a Jakes’ fading process, ρi(τ) is the zeroth order Bessel function of the first kind,

J0(2πfDi
τ) and fDi

is the Doppler frequency of interferer i. Using (4.25) we have

E[IRay(t)IRay(t + τ)]

=

N∑

i,j=1

IiIjE[|hi(t)|2|hj(t + τ)|2]

=

N∑

i6=j

IiIj +

( N∑

i=1

I2
i E[|hi(t)|2(ρ2

i (τ)×|hi(t)|2 + (1− ρ2
i (τ))|ei(t)|2)]

)

=
N∑

i6=j

IiIj +
N∑

i=1

I2
i +

N∑

i=1

I2
i ρ2

i (τ)

=

( N∑

i=1

Ii

)2

+

N∑

i=1

I2
i ρ2

i (τ), (4.26)

where in the second to last step above, we have used the fact that cross products

have zero mean and that E[|hi(t)|4] = 2. The ACF of (4.23) is given by

ρRay(τ)=
E[IRay(t)IRay(t + τ)]−E[IRay(t)]E[IRay(t + τ)]√

V ar(IRay(t))V ar(IRay(t + τ))
, (4.27)
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and with the relevant substitutions, the ACF becomes

ρRay(τ) =

∑N
i=1 I2

i J2
0 (2πfDi

τ)
∑N

i=1 I2
i

. (4.28)

Finally, using the expansion J0(2πfDτ) = 1− π2f 2
Dτ 2 + . . ., the second derivative of

the ACF needed to compute the LCR in (4.24) is evaluated as

ρ̈Ray(0) = −4π2

∑N
i=1 I2

i f 2
Di∑N

i=1 I2
i

. (4.29)

To the best of our knowledge the results in (4.28) and (4.29) are new. Hence, the

three parameters, r, θ and R̈(0), are available and (4.24) gives the approximate

LCR.

4.4.2 LCRs for Rician Fading

The instantaneous aggregate interference, IRic(t), for Ricean fading is given as

IRic(t) =
N∑

i=1

Ii|hi(t)|2, (4.30)

where |hi(t)| is Rician, with Rician K-factor denoted by K, and N, I1, I2, . . . , IN

are as defined in (4.23). Hence, IRic(t) is a weighted sum of noncentral chi-square

(χ2) random variables. Note that standard LCR results for Ricians [9, 77] and non-

central χ2 variables [77] cannot be applied directly here. The work in [78] is for a

single Rician and in [77] the LCR applies to the case where I1 = I2 = . . . = IN and

an exact noncentral χ2 arises with integer degrees of freedom (dof). Instead, using

the same approximation philosophy as that used in the Rayleigh case, we propose

approximating (4.30) by a single noncentral χ2. This approach is less well docu-

mented but has appeared in the literature (see [79]). Also note that a scaled, rather

than a standard, noncentral χ2 distribution is required for fitting and the resulting

best-fitting distribution will almost certainly not have integer dof. A noncentral χ2

variable with v > 0 dof, non-centrality parameter λ ≥ 0 and scale parameter α̃ > 0

has the following PDF

p(x) =
α̃

2
exp

(−(λ + α̃x)

2

)(
α̃x

λ

) v−2
4

I v−2
2

(√
λα̃x

)
, x > 0 (4.31)
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where I(v−2)/2 is a modified Bessel function of the first kind with order (v−2)/2. Fit-

ting the PDF in (4.31) to the variable in (4.30) is performed using the method of mo-

ments technique so that the approximate noncentral χ2 has the same first three mo-

ments as IRic(t). The derivation details are outlined in Appendix C. Note that there

can be numerical difficulties with the approach for certain values of I1, I2, . . . , IN .

These difficulties arise when the parameter values obtained from (C.5) and (C.6) do

not satisfy the constraints v > 0, λ ≥ 0, α̃ > 0. However, when this approach does

not work it is straightforward to perform a numerical minimization of the difference

between the true moments of the CR interference and the moments of the α̃−scaled

noncentral χ2 variable. Values of λ, v and α̃ which minimize this difference can then

be used. Finally, we note that this approach can easily be extended to the mixed

interferer scenario where some channels are Rayleigh and the Rician channels have

possibly different K factors. To handle this situation the 3 moments m1, m2, and

m3 derived in the Appendix C need to be recalculated for the case of unequal K

values. This calculation is straightforward due to the independence of the channels.

The LCR of a noncentral χ2 process with integer dof can be readily obtained

from [77]. In particular, if we substitute R = T , σ2 = 1, M = v/2, s2 = λ and

fm = fD in [77, Eq. (15)] we get the following expression for the LCR of the

α̃−scaled noncentral χ2 variable

LCRIRic
=
√

πfD(α̃T )
v
4 λ

−(v−2)
4 e

(
−λ−α̃T

2

)
I v−2

2

(√
λα̃T

)
. (4.32)

The result in (4.32) holds good for a noncentral χ2 process with integer dof. As

elaborated in [77, 9], the above approximation holds under a set of conditions con-

cerning Doppler frequencies and angles of arrival. For example, the result is valid

under isotropic scattering when the LOS component has an angle of arrival of π/2

relative to the direction of the motion of mobile. In Appendix D we show that this

formula is also valid for non-integer dof. Note that a similar extension for a central

χ2 with integer order [80] to a central χ2 with fractional order [76] has also been

shown to be correct. We observe that if Ii = I, ∀i (the condition for which (4.24)

holds exactly), then using K = 0 in (C.3) and (C.4) gives λ = 0, α̃ = 2/I and
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v = 2N as a solution to (C.5) and (C.6). Using these values and the approximation,

Iv(z) ∼ (z/2)v/Γ(v+1) when z → 0, in (4.32), some manipulations show that (4.32)

reduces to the expression in (4.24).

4.4.3 Average Exceedance Duration

We define the AED for both Rayleigh and Rician environments as the average time

that the aggregate interference stays above a given threshold T [9]. Mathematically,

AED =
1− F (T )

LCR
, (4.33)

where F (T ) gives the distribution function of the aggregate interference. Note that

the exact CDFs of both IRay(t) and IRic(t) can be found in [81]. We note that the

models in (4.23) and (4.30) and the analysis in (4.24), (4.32), (4.33) are valid for

any scenario where interference caused by multiple Rayleigh or Rician interferers is

of interest. Hence, the scope of the contribution is much wider than CR systems.

4.5 Results

In order to evaluate the accuracy of (4.24) and (4.32) it is important to use realistic

values of I1, I2, . . . , IN . Hence, we use a particular CR access scheme chapter 5 to

provide these values. The decentralized selection algorithm in chapter 5 employs a

controller that considers CRs in their order of arrival. Each interferer is considered in

turn and is accepted if the combined interference from previously accepted CRs and

the current CR is less than some interference threshold. If a CR is not accepted,

the next CR in the list is investigated. The Ii values are generated in chapter 5

from randomly located CRs in a circular region and include path loss and shadowing

effects. In chapter 5 a threshold value is used which corresponds to the PU accepting

a 2 dB loss in its SNR due to the presence of CRs.

From 1000 simulations, using the above selection procedure two sets of interfer-

ers were selected. The first set selected had the highest variance. Only 3 CRs were
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Figure 4.3: LCR results for different fading conditions with dominant interferers.
The solid lines represent analytical results. Simulation values are shown by the
circle, star and triangle symbols.

accepted and there was a dominant interferer which accounted for 95% of the inter-

ference power. The second set had the lowest variance, representing the no dominant

interferer scenario. Here, 18 CRs were accepted with the largest interferer only ac-

counting for 16%. Note that with equal values of I1, I2, . . . , IN the results in (4.24),

(4.32) are exact. Hence, the worst cases for fitting are when the interferers have a

large variance. This is the first scenario. Thus, in addition to giving examples of en-

gineering importance (presence or absence of a dominant interferer) these two cases

also test the general applicability of (4.24) and (4.32) over a wide range of interferer

profiles. These sets were obtained using the following parameter values: shadow

fading standard deviation, σ = 8.0 dB, path loss exponent, γ = 3.5, radius of PU

coverage area, R = 1000 m, radius of CR coverage area, Rc = 100 m, CR density

of 1000 CRs per square kilometer, an activity factor of 0.1 and a common Doppler

frequency of fD = 25 Hz. Coverage areas are defined to be the areas in which the
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Figure 4.4: LCR results for the dominant and no dominant interferer cases in a
Rayleigh fading scenario. The solid lines represent analytical results. Simulation
values are shown by the circle and star symbols. The interference threshold values
and their LCRs are shown by dotted lines.

received SINR is greater than a certain threshold at least 95% of time. We simulate

LCRs by generating 105 independent channel pairs for each interferer, where each

pair consists of (hi(t), hi(t+τ)) where hi(t) and hi(t+τ) are correlated according to

the channel ACF which depends on the Doppler frequency. This approach enables

an exact generation of the pairs and a rapid evaluation of LCR. Approaches that

generate a single, long process over time are slower and require approximate models.

LCR and AED of CR-PU Interference

Figures 4.3, 4.4 and 4.5 show the LCR (normalized by Doppler frequency) of the

interference for different types of fading and interference profiles. The x-axis is

also normalized by the rms value of the process so that κ = T/
√

m2 is plotted,
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Figure 4.5: LCR results for the dominant and no dominant interferer cases in a
Rician (K = 10 dB) fading scenario. The solid lines represent analytical results.
Simulation values are shown by the circle and star symbols. The interference thresh-
old values and their LCRs are shown by dotted lines.

where T is the interference power level and m2 is the mean-square interference

(see Appendix C). Figure 4.3 shows the effect on LCR of increasing the Rician

K-factor, with the strong LOS case being considerably narrower than the non-LOS

case. Figures 4.4 and 4.5 also show the value of the normalized interference threshold

that restricts the long term average interference value in the CR system (as shown by

the dotted lines). Note that there are multiple thresholds since the normalization

is different for different channels. For all types of fading, the maximum LCR is

observed close to this threshold value. This is because the CR allocation method

gives a mean interference level close to the threshold. Even in strong LOS conditions

(K = 10 dB), the interference shows a significant number of level crossings across the

buffer due to the scattered component. Figure 4.4 shows the case of Rayleigh fading

where the interference budget is dominated by a single large interferer with a number
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Figure 4.6: AED results for the dominant and no dominant interferer cases in a
Rician (K = 10 dB) fading scenario. The solid lines represent analytical results.
Simulation values are shown by the circle and star symbols.

of smaller additional interferers. Also shown is the no dominant interferer case.

Figure 4.5 shows the same results for a Rician channel with K = 10 dB. Figures 4.4

and 4.5 show that when there are many small interferers, the interference is more

stable compared to the dominant interferer case. The results in Fig. 4.5 are quite

promising. In near LOS conditions, the interference has a much lower level crossing

rate across the interference buffer for the no dominant interferer case. Hence, it

may be a desirable part of the CR allocation policy to avoid any single user which

takes up a significant part of the buffer. Finally, for completeness, we show the AED

results corresponding to Fig. 4.5 in Fig. 4.6. As expected, the time spent by the

interference above a threshold decreases as the threshold value increases. Therefore,

for the no dominant interferer case, the interference seldom crosses the threshold

(see Fig. 4.5), and when it does, it only exceeds the threshold for a small period of

time. Since the LCR curve for the no dominant case is much sharper in Fig. 4.5,
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the corresponding AED is much steeper. For example, −2 dB is rarely crossed in

Fig. 4.5 and this corresponds to a very high AED value at the same threshold. All

figures show an excellent agreement between the analytical approximations and the

simulations.

4.6 Summary

In this chapter we have shown that the interference due to a single CR can be char-

acterized in closed form for the scenario considered. However, the total interference

due to multiple CRs is more difficult. Simple lognormal approximations are shown

to be inaccurate and more complex models are required. Then we determine the

LCR and AED for the CR-PU interference for Rayleigh and Rician channels. We

have shown that LCRs in Rayleigh environment can be accurately approximated by

LCRs of a gamma process. Similarly, while deriving LCR approximations in Rician

conditions we have shown that the LCR of a noncentral χ2 process with non-integer

dof has the same form as that of a noncentral χ2 process with integer dof. The

LCR results show that in near LOS conditions, it is desirable for any CR allocation

method to give priority to several small interfering CRs rather than a dominant

interfering CR. The LCR of the former shows a greatly reduced crossing rate at

and above the interference threshold. The AED results also show that the for the

no dominant interferer case, the interference only exceeds the threshold for small

period of time.
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Chapter 5

Cognitive Radio Allocation

Schemes

In addition to sensing techniques, a number of schemes aimed at avoiding harm-

ful interference due to CRs at PUs have recently been developed, either based on a

primary exclusion zone (PEZ) approach [58] or on the exploitation of radio environ-

ment map (REM) [82] information. The former utilizes the knowledge of interference

statistics to define an exclusion zone inside which CRs are not permitted to oper-

ate, while the latter, which assumes a more complete knowledge of the interferers

including their geographical position, permits only selected CRs to operate in order

to maintain a specific SINR.

From our discussion in Chapter 4, it is clear that we cannot approximate the

cumulative CR interference with a simple distribution. The availability of such a

result would have helped in calculating, for example, an exact expression for the

exclusion zone radius in PEZ schemes or the number of allowable CRs in the REM

based techniques. This would have further shed light on the dependence of system

performance on various different parameters. Hence, as a first look at this problem

we study various CR scheduling schemes based on results obtained by computer

simulations. We also stress here that we do not deal with the issue of how the

CRs would communicate with each other and pass on the information about their
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activity as this is beyond the scope of the current work. This, for example, can

involve the CRs communicating with a controller upon obtaining permission for

using the spectrum. Hence, in this chapter our contributions include analyzing a

PEZ approach that allows access to CRs when the primary device is willing to pay a

price in the form of a reduction in its threshold SNR. We determine the permissible

number of CRs when the REM is a priori known to the CRs and establish how

these numbers vary in different fading environments. In the presence of coarse

REM information we show that when the REM for a given area is discretized then

the total CR interference is significantly underestimated when realistic grid sizes are

considered. We also determine the interaction between shadow fading correlation

and REM grid size and evaluate their impact on interference estimation. Finally, we

determine the scenarios (CR density, fading parameters) under which REM equipped

CR systems outperform PEZ based cognitive wireless systems. To the best of our

knowledge, we present the first comparative study of the PEZ and the proposed REM

schemes with and without perfect REM information in shadowing environments.

In the simulations and results to follow, we assume that CRs are located uni-

formly in the primary coverage area. The number of active CRs, NCR, is binomially

distributed1 with a maximum number of CRs given by πR2DCR, where DCR is the

density of the CRs (number of CRs per m2) and we ignore the negligible hole in

the circle of radius R0. The binomial probability that a CR wishes to transmit is

given by the activity factor, p = 0.1. The primary receiver is at the center of the

coverage area and the primary transmitter is also uniformly located in the primary

coverage area. We consider two fundamentally different schemes for managing the

interference at the PU receiver. The REM approach utilizes complete knowledge of

all the interference values whereas the PEZ approach only uses average information

of all interferers within a certain distance of the PU receiver. There are NCR CR

transmitters which desire a connection. Each of the NCR CRs has an interference

1We mention that to arrive at (4.19) we used a Poisson variable to model the interfering CRs (in
the limiting case when the number of CRs tends to infinity and the probability of each interfering
CR is small enough) for the sake of mathematical tractability. Here, without loss of generality, we
assume a binomial random variable modeling the finite number of such CRs.
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power at the primary receiver given by (4.1) and denoted I1, I2, . . . , INCR
. Based on

these interference values, the PEZ and REM approaches are described below.

5.1 PEZ Approach

The PEZ approach [58] only uses location information to control the access of CRs.

A simple exclusion zone is created with radius Re around the primary receiver. No

CR is allowed to transmit inside the PEZ and all CRs outside the PEZ are permitted.

The radius, Re, is set so that the cell-edge SINR is degraded by a certain amount.

Specifically, the primary coverage area is defined to give an SNR greater than 5 dB,

95% of the time. By allowing CRs to operate we accept a new SINR target, less

than 5 dB, which is achieved at least 95% of the time.

5.2 REM Approach

The REM approach [82] assumes that I1, I2, . . . , INCR
(defined to be same as in the

previous chapter) are known and selects those CRs for transmission which satisfy

an SINR constraint. The constraint chosen is that the added interference must not

decrease the SNR by more than Υ dB. For example, if SNR = 10 dB in the absence

of CRs, then those CRs chosen must give SINR ≥ (10− Υ) dB. Two methods are

chosen for selection, a centralized approach and a decentralized approach.

• Centralized Selection: Here we assume that a centralized controller knows

I1, I2, . . . , INCR
instantaneously and creates a list of the ordered interferers as

I(1) ≤ I(2) ≤ . . . ≤ I(NCR). The first n CRs are selected such that
∑n

i=1 I(i) ≤ Υ

dB and
∑n+1

i=1 I(i) > Υ dB.

• Decentralized Selection: Here we assume that the CRs are considered in their

original order which can be interpreted as their order of arrival. Each interferer

is considered in turn and is accepted if the combined interference from previously

accepted CRs and the current CR is less than Υ dB. If a CR is not accepted,
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the next CR in the list is investigated.

The usefulness of REM based techniques hinges around the quality of the informa-

tion available. Thus we discriminate between perfect and imperfect REM informa-

tion in the following.

A Perfect REM

A REM can hold a wide variety of information [83] and it is not clearly understood at

present what constitutes a practical and effective REM. In this work we assume that

the REM contains signal strength data. In a perfect REM the signal strength from

all source coordinates to all destination coordinates is known. With this perfect

REM a CR controller can select those CRs for operation which satisfy a given

interference constraint. The CR controller requires positional information for the

PU and the CRs, and can then use the REM to compute the overall SINR of the

PU where

SINR =
S

∑N
i=1 Ii + σ2

. (5.1)

In (5.1), S is the signal strength of the PU, σ2 is the noise power and
∑N

i=1 Ii is

the aggregate interference of the N selected CRs. The interference constraint used

is that the CR interference must not reduce the PU SNR by more than Υ = 2 dB.

All results shown in the paper are for a 2 dB buffer. The value of 2 dB was chosen

arbitrarily.

Modeling of REM Imperfections

In practice, it is unrealistic to assume a perfect REM and the REM information

is discretized in the form of a grid of points with grid size, ∆. Hence, the central

controller allocating CRs will formulate its decisions on the basis of REM informa-

tion obtained from the grid points, rather than from exact signal strength data.

Therefore, an interfering signal strength, I, will be estimated as Î from the REM.

The estimate is obtained from the grid-to-grid path in the REM which is closest to

the actual signal path.
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We consider the CR signal strength to be of the form given in (4.1). The REM

predicted signal strength is given by

Î = BeX̂ r̂−γ, (5.2)

where r̂ is the distance between the transmitter and the receiver in the REM grid

and X̂ is correlated with X by

X̂ = ρX +
√

1− ρ2E. (5.3)

In (5.3) E is i.i.d. with X. Assuming a distance, di, between the actual and REM

based position of the CR and a distance, dp, between the actual and REM based

location of the PU receiver, the correlation coefficient ρ can be obtained using an

extension of Gudmundson’s model [16] as

ρ = 0.5di/Dd × 0.5dp/Dd. (5.4)

In (5.4) Dd is the so called decorrelation distance i.e., the distance at which the

correlation between X and X̂ drops to 0.5. The effect of flawed REM information

on the signal strength between the primary transmitter and its receiver can be

modeled using (5.2), (5.3) and (5.4). Simulation results of this model based on

parameter values of a suburban macrocellular environment are given in Section 5.3.

Optimal Interpolation: The above models for REM imperfections allow the ef-

fects of errors in the REM to be simulated. However, REM accuracy is of key

importance as shown in Sec. 5.3 and hence it is useful to take a closer look at this

issue. In what follows we derive the distribution of the errors resulting from the

imperfect REM under certain idealized conditions.

Consider a REM with grid size, ∆, where the receiver is exactly located at one

grid point and the transmitter location, P , is arbitrary, falling in one square of the

grid pattern. We further assume that the signal strength model in (4.1) is exact

and that, B, r, γ are exactly known. Hence, only the shadow fading is unknown

and this information is exactly known at the grid points. We further assume that

Gudmundson’s model (5.4) holds with dp = 0. Clearly this situation is extremely
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optimistic and leads to a lower bound on realistic REM errors. Now consider the

signal strength from P to the PU receiver where P falls inside one of the grid boxes.

Since all the five points (the four corners of the box and P ) experience correlated

shadow fading, we model the correlation between the normal random variables, Xi,

associated with the lognormal shadowing at the five points using Gudmundson’s

model [16]. Thus,

ρ(Xi, Xj) = adij , i, j = 1, . . . , 5, (5.5)

where ρ(Xi, Xj) represents the corrrelation between Xi and Xj , and dij is the dis-

tance between Xi and Xj. Using Gudmundson’s results we choose a = 0.998 for

suburban environments and a = 0.886 for urban environments. Furthermore, we

assume that X1 to X4 form the corner points of the square with the principal di-

agonal between X1 and X3 and the other diagonal between X2 and X4. Hence, we

have the following correlation matrix for (X1, . . . , X5)
T :

R =




1 r r
√

2 r rd1

r 1 r r
√

2 rd2

r
√

2 r 1 r rd3

r r
√

2 r 1 rd4

rd1 rd2 rd3 rd4 1




, (5.6)

where r = a∆, ρ(X5, Xi) = adi∆ = rdi, ∀i and di is the distance from the point P

to the ith corner of the square. Performing the Cholesky decomposition we have

R = AA†, where A is a lower triangular matrix. Clearly, A can be factored as,

A =



 A11 0

aT b



 , (5.7)

where A11, 0 and aT represent a sub-matrix, a column vector of zeros and a row

vector of appropriate sizes, respectively. Further, b represents a scalar lying between
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0 and 1. With this notation, it can be shown that,

X5 = aT A−1
11




X1

X2

X3

X4




+ bu5, (5.8)

where u5 is N (0, σ2
sf). The first term in (5.8) represents the optimal estimator of X5

using the REM and the second term gives the estimation error which is N (0, b2σ2
sf).

Note that this is standard theory [84]. Further it is worth emphasizing that this

analysis can easily be extended to interpolation using more than 4 REM grid values.

It is evident that the performance of the above scheme heavily depends on the

behavior of the error term which in turn relies on ∆ and σsf . One way to evaluate

this is to compute the probability of underestimating signal strength (interference)

from the CR devices. Based on (5.5)-(5.8) the probability of underestimating the

interfering signal strength by an amount, E, is given by

PE = Probability of underestimating the signal strength by more than E dB

= P (estimation error < −E dB) = Q

(
E

bσ

)
, (5.9)

where Q(.) gives the tail probability of a standard Gaussian. Hence, the Cholesky

decomposition of R gives b which directly leads to (5.9), a simple closed form result

for the effects of imperfect REM.

5.3 Simulation Results

Unless otherwise stated, we assume a PU coverage radius of R = 1000 m, and the

transmit power is adjusted such that the SNR at the cell edge is 5 dB (i.e., in

the coverage area the SNR exceeds 5 dB with probability 0.95). The CR transmit

power is also chosen to meet a cell edge SNR of 5 dB for a given CR coverage radius,

Rc = 100 m. Two kinds of CR penetration densities were chosen, a high density

of 10, 000 CRs per sq. km and a corresponding moderate density of 1000 CRs per
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Figure 5.1: The effect of σ and the target SINR on the PEZ radius for a medium
density of CRs.

sq. km. Additionally, it was assumed that only 10% of the CRs wish to be active

at any one time. The values of the propagation constants, γ and σ are given on

the relevant figures. The shadow fading variance and path loss exponent should be

taken as 8 dB and 3.5, respectively, when they are not explicitly mentioned.

5.3.1 Exclusion Zone Results

Given a variety of target SINRs, Fig. 5.1 shows the PEZ radius for different values

of σ. For example, if the interference degrades the target SNR from 5 dB to an SINR

of 4 dB, then the PEZ radius is approximately 700 m, for σ = 6 dB and γ = 3.5. It

is interesting to note that the PEZ radius excludes virtually the entire PU coverage

area for all target SINRs in [0, 5] dB when σ = 12 dB, corresponding to dense urban

areas. This result implies that for a given target SINR, environments with larger σ

will result in higher interference and an increased Re. This observation is consistent

with previous observations reported in [85].
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Figure 5.2: PEZ radius vs target SINR for different values of the ratio of primary
to secondary device coverage areas (σ = 8 dB, γ = 3.5).

Increasing the CR transmit power or increasing Rc will correspondingly increase

the interference and hence the PEZ radius. Figure 5.2 shows the PEZ radius vs

target SINR for three different values of R/Rc. Reducing the CR transmit power

will obviously result in a lower PEZ radius.

5.3.2 Comparison of Numbers of CRs

Figures 5.3 and 5.4 show CDFs of the number of CRs for the two different types

of REM approach and the impact of varying the fading parameters. In both these

figures, the centralized approach is superior, since it is designed to pick up the

maximum number of CRs that aggregate to make up the acceptable interference

degradation. We also note from Fig. 5.3 that increasing γ increases the number

of permissible CRs. This is because environments where γ = 4 will experience less

interference compared to environments where γ = 3 due to increased path loss.

Looking at Fig. 5.4, increasing σ decreases the permissible number of CRs. This
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Figure 5.3: CDF of the number of CRs obtained using REM based approaches for
various γ values. D and C denote decentralized and centralized approaches.

result reinforces the conclusion of Fig. 5.1 where increasing σ increased the PEZ

radius - effectively reducing the area in which CRs operate and also reducing the

permissible number of CRs. Note that dense urban environments are characterized

by γ values of 4 and above and σ values of 8 dB and above. These two parameters

have opposing effects on the permissible number of CRs.

Figure 5.5 compares the PEZ and REM approaches in terms of the percentage of

CRs that gain access in a high density environment. The centralized approach is far

superior, showing the potential advantage gained if the CR knows the radio envi-

ronment. This advantage is dissipated by the decentralized approach as effectively a

few CRs consume the permissible interference budget (2 dB in this case). The PEZ

approach is worse than the decentralized strategy. It is an important result that the

decentralized REM approach, which can be thought of as a first-come-first-served

mechanism, results in better access for the CRs than the PEZ approach. Hence, the

overhead of obtaining the REM can result in improved access. However, it is critical

that the REM information be used in an intelligent allocation process if real gains
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Figure 5.4: CDF of the number of CRs obtained using REM based approaches for
various σ values. D and C denote decentralized and centralized approaches.

over PEZ are to be achieved. Figure 5.6 revisits the results in Fig. 5.5 for a lower

CR density. Here too the centralized approach is better, but now the decentralized

approach shows an even bigger advantage over the PEZ approach for higher values

of the CDF. In addition to this, we also investigate the case of CRs with different

coverage areas. In particular, we consider a coverage circle with radius uniformly

distributed in [50 m, 150 m]. Such scenarios may correspond to heterogenous CR

systems with application specific coverage zones. Clearly, in this case the mean

value of the number of CRs given access remains nearly the same as before in the

two REM based schemes. However, as expected, the variation in the percentage of

CRs given access tends to increase. We note that the PEZ scheme outperforms the

REM based strategies in Fig. 5.5 by a bigger margin than an Fig. 5.6 on account of

the higher CR density employed in Fig. 5.5.

The results in Figs. 5.3-5.6 taken collectively are the important contributions of

this chapter. They clearly show the advantage in terms of permissible CR numbers
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Figure 5.5: Percentage of CRs given access for a high CR density (σ = 8 dB,
γ = 3.5).

if a knowledge of the radio environment is made available to the CRs. Furthermore,

they show that the full REM gains are only obtained if a smart access control

algorithm is used which chooses many CRs with low interference instead of a few

stronger interferers which might subsume the interference budget.

5.3.3 Imperfections in the REM

In practice, the radio environment is often modeled by dividing an area into a regular

grid (typically composed of 100 m × 100 m grid boxes) and assuming that the fading

conditions in any grid box can be approximated by a single point at the center of the

box. For example, drive testing of cellular networks to validate path loss models and

predicted signal coverage follows this approach. Clearly, larger grid sizes result in

errors between measurement and prediction. On the other hand, reducing the grid

size results in a large data overhead. Figure 5.7 shows the CDF of the magnitude of

the actual CR-PU interference when the REM is estimated via a grid size ranging
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Figure 5.6: Percentage of CRs given access for a medium CR density (σ = 8 dB,
γ = 3.5). VR denotes a variable CR radius uniformly distributed between 50 m and
150 m.

from 1 m × 1 m to 100 m × 100 m. The REM approach aims to maintain a 2 dB

SINR buffer for the primary, but this is only possible with a perfect REM. When

∆ = 1 m the 2 dB buffer is nearly achieved (exceeded only 13% of time) but for a

grid size of 50 m × 50 m, the interference exceeds 2 dB for approximately 70% of

the time. For a grid size of 100 m × 100 m, 2 dB is exceeded 85% of the time and

5 dB is exceeded 10% of the time. In effect this means that if REM information is

derived from a coarse grid, the buffer size must be increased or the CRs must back

off from the buffer.

The effects of increasing the buffer or backing off the CRs are shown in Figs. 5.8

and 5.9, respectively. In Fig. 5.8 the PU has a target 2 dB buffer but due to the

imperfect REM it will not always be achieved. Hence, an extra buffer is permitted

beyond which the CRs are only allowed, 5% of the time. In Fig. 5.8 this scenario is
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Figure 5.7: Interference CDF for an REM enabled CR network for several values of
∆ and decorrelation distance, Dd = 100 m.

denoted by the legend, Threshold = (original + extra) dB. The effects of spatially

correlated shadow fading are also considered in Fig. 5.8. Shadow fading is correlated

over any given area and the level of this correlation has a simple effect on the REM

grid size. For highly correlated areas a coarse grid (large ∆) will be acceptable

whereas in areas of low correlation, a fine grid (small ∆) will be required. Figure 5.8

shows the REM grid size vs the decorrelation distance of the shadow fading. For

a given interference degradation (say the buffer value plus an additional 2 dB) a

large decorrelation distance (say 500 m) enables a coarser grid size 130 m × 130 m

relative to a decorrelation distance of 100 m (typical for dense urban areas) when

the grid size is 38 m × 38 m.

In Fig. 5.9 we consider a back off in the CR allocation policy. In order to meet

the nominal 2 dB SINR buffer at least 99% of the time, the CRs have to target a

reduced buffer which is less than 2 dB. Figure 5.9 shows this buffer vs ∆ for various

values of Dd. For a grid size of 25 m × 25 m and a decorrelation distance of 100 m,

the interference buffer is 0.88 dB. Figures 5.8 and 5.9 are instructive in determining

98



100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Decorrelation Distance, D
d
 (m)

R
E

M
 G

ri
d

 S
iz

e
, 

∆
 (

m
)

 

 

Threshold = (buffer + 0.5) dB

Threshold = (buffer + 1.0) dB

Threshold = (buffer + 2.0) dB
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the grid sizes for different radio environments.

To study the effect of linearly interpolating signal strength from the position of a

source point in a REM grid, we simulate the estimation error introduced in Sec. 5.2

for different environments. In particular, we plot the probability of this error being

less than a threshold of −3 dB (i.e., when we underestimate the interference by more

than 3 dB) for urban and suburban environments based on meshes of 4 and 16 points

for shadow fading variances of 6 dB and 12 dB as shown in Fig. 5.10. It is clear from

the figure that linearly interpolating the signal strength using the nearest 16 points

in the REM grid is no better than using the closest 4 grid points. Furthermore, it is

seen that owing to smaller decorrelation distances, finer grid sizes would be needed

in urban environments (a = 0.886). In addition to this, shadowing has a negative

impact on the performance of such REM systems in terms of underestimating the

true interference produced by the CRs. The scale of the underestimation problem
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can be seen from a few examples in Fig. 5.10. In urban environments with 6 dB

shadowing, 30% of time the interference is underestimated by more than 3 dB for

a grid size of 31.6 m. Even with a much smaller 10 m grid this probability is still

greater than 20%. Hence, despite underestimating the real REM errors, it can be

seen that extremely small grid sizes may be needed to avoid harmful interference.

5.4 Summary

In this chapter two interference management approaches have been considered based

on REM and PEZ ideas. The REM approach requires considerable higher overheads

but can perform substantially better than the PEZ one. To achieve these gains an

intelligent allocation method is essential since providing access to CRs on a first-

come-first-served basis can be worse than the PEZ method. However, the PEZ

approach results in large exclusion zones especially for high σ and large Rc values.

We have shown that interference degradation to the PU can be significantly un-
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derestimated if the channel state information needed to estimate interference levels

is derived from a coarse REM. In particular, the probability of interference under-

estimation has been shown to be very high for urban environments. For practical

deployments, this may mean that the PU has to accept a much larger interference

from the CRs or the CRs may need to set a more conservative interference target.

This will reduce the number of CRs allowed.
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Chapter 6

MIMO Cognitive Radios with

Antenna Selection

The concept of MIMO CR systems has triggered significant interest in the research

community [86, 87, 88, 89]. In CR systems, multiple antennas in addition to provid-

ing rate benefits, can also help in enabling interference control at the PU RX [87].

However, along with the gains, comes hardware complexity at the radio front end

owing to the requirement to have costly RF chains (consisting of low noise ampli-

fiers, downconverters and analog-to-digital converters) that scale with the number

of antennas being used. Even more costly is the provision of power amplifiers and

up converters at the transmit end.

It is well known that antenna selection techniques present an elegant solution

to such problems, see, for example, [90, 91, 92] and the references therein. Recent

work in this area includes [93] where transmit antenna selection was considered for

a MISO CR operating in the presence of a SISO PU. In this chapter, we consider

the problem of joint selection of transmit/receive antennas in a MIMO CR system.

The selection procedure aims to maximize the achievable rate of the CR while sat-

isfying any interference constraints due to the PU RX(s) (either equipped with a

single antenna or multiple antennas) operating in the vicinity. The work in [93]

has similarities in that the SINR results in [93] can be transformed to rates, and
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they also impose interference constraints and consider a range of selection strategies

including norm based approaches. We note, however, that the approach in [93] is

analytically based whereas our techniques are more focused on optimization and

potential implementation. Furthermore, in this chapter we also include the effects

of interference from the PU to the CR and power control at the CR TX. After for-

mulating the antenna selection problem in the context of CR networks, we propose

two solutions in addition to the brute force, optimal full search method. A compar-

ison of the proposed algorithms, based on their performance, is also presented. In

certain situations, the optimal exhaustive search method can be analyzed and these

results in addition to simulations incorporating shadow fading and path loss effects

are also provided. Our key contributions are following:

• An approximate solution to the original non-convex optimization problem based

on iteratively solving a series of convex problems. The results are found to be

stable and in close agreement with those obtained from the optimal search.

• A norm-based heuristic that performs transmit and receive antenna selection,

to increase the rate while satisfying the interference constraints. The heuristic

has massively reduced computational complexity and gives very accurate results

when compared with the optimal search.

• A demonstration that even under interference constraints, the CR system is

still able to achieve substantial rate gains due to selection (especially when the

strength of the CR-PU interference channel is lower than that of the CR-CR

channel) and thus retain the traditional spatial multiplexing benefit of MIMO

systems.

• An analytical characterization of the optimal selection process for the special

case where a single SISO link is selected. These analytical results are supported

by simulations of a more complete channel model including shadowing, path loss

and random numbers of PU RXs.

In this chapter we use ||.||2 to denote the norm operator, M(i, :) and M(:, j) to
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Figure 6.1: System model. The vertical dotted line indicates that the multiple
antenna and single antenna PU systems are considered separately. PU TXs are not
shown for the sake of clarity.

represent the ith row and jth column of a matrix, M, respectively. (x, y) and

(X, Y ) are used to denote y and x antennas chosen out of Y and X receive and

transmit antennas, respectively. Diag(.) gives the diagonal elements of a matrix.

diag([x], 0) represents a diagonal matrix with vector x along the diagonal. Finally,

f(n) ∈ O(g(n)) is used to characterize the order of f(n) such that for sufficiently

large n, f(n) is upper bounded by a constant times g(n).

6.1 System Model

The proposed system model is shown in Fig. 6.1. We assume that the CR TX and

RX are equipped with NCR and MCR antennas, respectively. The incumbent PU

has NPU transmit (not shown in Fig. 6.1) and MPU receive antennas in the case

of a single MIMO PU. We also consider the case of multiple single receive antenna
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PUs operating in the vicinity of the CR system. In this case MPU is the number

of PUs. These scenarios are referred to as single user (SU) and multi-user (MU),

respectively. The channels between all nodes are assumed to experience frequency

flat Rayleigh fading. The signal at the CR RX is given by

yCR(n) = HCRx(n) + i(n) + z(n), (6.1)

where HCR ∈ CMCR×NCR is the channel gain matrix with (zero mean circularly sym-

metric complex Gaussian) ZMCSCG entries, yCR(n) and x(n) are the received and

the transmitted signal vectors respectively, z(n) ∼ CN (0, IMCR
) is the additive white

Gaussian noise (AWGN), i(n) is the interference (assumed to be independent of z(n))

received from the PU TX(s) and the index n represents the nth time sample. Fur-

ther, the transmit covariance matrix of the CR user is denoted QCR = E[x(n)x(n)†].

We assume that the total average CR transmit power is limited to its long term SNR,

PCR i.e., Tr(QCR) ≤ PCR. Since a normalized CR-CR channel is considered, we have

E[|(HCR)ij|2] = 1 and the receive SNR across a receive antenna (in the absence of

any interference) at the CR RX is given by SNR = PCR. The PU system has an

SNR at the receiver end denoted SNRPU. SNRPU could either represent one value

in the SU case or a set of values in the MU case all of which could be assumed to

be the same without loss of generality. The covariance matrix of the interference-

plus-noise is defined by K = E[i(n)i(n)† + z(n)z(n)†] = IMCR
+ HPCH†PC where

we have assumed the PU TX(s) have channel HPC to the CR RX and transmit

unit power uncorrelated signals. For the CR to PU interference channel, HINT (see

Fig. 6.1), we assume E[|(HINT)ij|2] = 1/λi where 1/λi = ᾱ for the SU case and

1/λi = ᾱi, i = 1, . . . , MPU for the MU case. The constant ᾱ ≥ 0 represents the

strength of the dominant interference channel relative to the CR-CR channel and

in the MU case it is assumed that the CR interference power decays exponentially

across the PU receivers [94]. This simple model allows the signal strength of the

MPU interfering channels to be modeled with a single parameter, ᾱ. Perfect channel

state information (CSI) (HCR, HINT and HPC) is assumed to be available at both

the CR TX and CR RX for antenna selection purposes. We also assume that the
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antennas are spatially uncorrelated. For satisfactory operation of the incumbent PU

in the presence of the CR TX, the interference seen at the PU RX should not exceed

a predefined threshold. This gives rise to two types of interference constraints de-

pending on whether the PU is SU or MU. In the SU case, the interference constraint

can be written as

MPU∑

i=1

HINT(i, :)QCRHINT(i, :)† ≤ Ω ⇒Tr(HINTQCRH†INT) ≤ Ω, (6.2)

where HINT(i, :) ∈ C1×NCR represents the channel from the CR TX to the ith receive

antenna of the PU RX and Ω is the maximum tolerable total interference power at

the PU RX. For the MU case the interference constraint is given by

HINT(i, :)QCRHINT(i, :)† ≤ ωi i = 1, 2, . . . , MPU , (6.3)

where ωi is the interference constraint for the ith user. For notational convenience

(6.3) is rewritten as Diag(HINTQCRH†INT) ≤ (ω1, . . . , ωMPU
), where the inequality is

to be interpreted elementwise.

6.2 Analytical Framework

With an aim to performing constrained joint transmit-receive antenna selection at

the CR, we start with the well known fact that the achievable rates of the CR system

using all antennas are [19]

R(HCR,QCR) = log2 det
(
IMCR

+ HCRQCRH†CRK−1
)
. (6.4)

Similar to the approach of [95], we define diagonal selection matrices S1,S2 of di-

mension MCR × MCR and NCR × NCR respectively with binary diagonal entries.

Specifically, we define their elements as

(Si)kk =





1 if the kth antenna element is selected

0 otherwise,
(6.5)

where i = 1, 2. The diagonal entries of S1,S2 specify the indices of the antennas

selected at the CR RX and CR TX respectively. Hence, if mcr ≤ MCR receive
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antennas and ncr ≤ NCR transmit antennas are selected we obtain a new CR channel

matrix H̄CR with MCR −mcr rows and NCR − ncr columns in HCR replaced with

zeros. The rate expression of (6.4) then reduces to

R(H̄CR, Q̄CR) = log2 det
(
IMCR

+ H̄CRQ̄CRH̄†CR

)
(6.6)

where H̄CR = K̄−1/2S1HCRS2 and we define K̄ and Q̄CR as follows. The selection

of receive antennas reduces interference and noise vector dimensions to mcr ≤MCR

resulting in interference and noise covariance matrix, Kred, of dimension mcr×mcr.

This matrix is inflated to form K̄, an MCR × MCR matrix, by adding rows and

columns of zeros corresponding to the non-selected receive antennas. Similarly, a

reduced Qred matrix (ncr × ncr) is formed corresponding to the selected transmit

antennas which is inflated to form Q̄ (NCR ×NCR) by inserting rows and columns

of zeros corresponding to the unselected transmit antennas. Thus, the problem of

joint transmit-receive antenna selection together with CR power allocation can be

mathematically cast in the SU case as the constrained optimization problem P1, in

the form

P1: maximize
S1,S2,QCR

log2 det
(
IMCR

+ K̄−1/2S1HCRS2QCRS†2H
†
CRS†1K̄

−1/2
)

subject to (Si)jj ∈ {1, 0}, j = 1, . . . , MCR if i = 1

and j = 1, . . . , NCR if i = 2

Tr(QCR) ≤ PCR,Tr(S1) = mcr,Tr(S2) = ncr

Tr(HINTS2QCRS†2H
†
INT) ≤ Ω, QCR � 0

Note that in P1 we have slightly modified the interference constraint of (6.2) to

represent the effective interference seen at the PU RX due to only the selected CR

transmit antennas. We also note that Q̄CR in (6.6) has been replaced by QCR in

P1. This can be done since the maximization in P1 will not allocate any power

to antennas that are not selected by S2. The problem can be written for the MU

case by simply replacing the interference constraint with (6.3) and incorporating

the column selection matrix S2. Furthermore, it is straightforward to extend P1 to

the case of multiple multi-antenna PU RXs. Assuming that the ith PU RX has the
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interfering channel HINT,i and constraint Ωi, then the final constraint in P1 can be

written as Tr(HINT,iS2QCRS†2H
†
INT,i) ≤ Ωi. With this alteration, P1 will handle the

multiple multi-antenna PU case. Of course, as the number of PU RXs grows, the CR

rates will usually fall. As a result, the CR will need to explore a range of time and

frequency options in order to find channels in which coexistence at reasonable rates

is achievable. In the log-determinant of P1 it is important to note that the effect of

the interference and noise covariance matrix is separated from the channel, HCR, by

the selection matrix, S1. In systems with a fixed number of antennas it is common

to construct an equivalent channel which, in (6.4), would correspond to K−1/2HCR.

Then, the analysis proceeds simply by considering K−1/2HCR rather than HCR. In

our situation the interference and noise covariance matrix changes for every S1 and

so we cannot select rows or columns of the equivalent channel. Instead, selection

from HCR is performed first, followed by the use of the corresponding K̄−1/2 and

then we maximize the resultant expression subject to the constraints shown. This

makes the problem more difficult as discussed in Sec. 6.2.2. To further clarify this

subtle but important point, we illustrate with a toy example.

Suppose, we have a 2×1 single-input multiple-output (SIMO) system from which

we wish to obtain the best SISO link. We assume the link gains to the first and

second RX antennas are 1 and 2, respectively. Furthermore, we arbitrarily take

the channel coefficients at the first and the second RX antennas to be 0.55 and −2,

respectively. With this data, SINR at the first antenna (assuming unit variance noise

at both RXs) is 0.7678 and at the second antenna it is found be 0.8 (both in absolute

scale). Clearly, we should choose the second antenna. If instead we consider the

equivalent channel method, then we need K which is found to be


1.3025 −1.1

−1.1 5


.

This results in equivalent channel K−1/2



1

2



 =



1.2495

1.0927



, which indicates the first

antenna should be selected. It is evident from the direct and interfering link gains

used in the setup that this will be the incorrect choice. Therefore, selecting antennas

on the basis of the equivalent channel rather than assessing the effect of interference
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on the selected antennas, can lead to different results and a lower achievable rate.

6.2.1 Exhaustive Search

A straightforward way to solve P1 is to perform an exhaustive search (ES) over all

possible combinations of antenna elements and to only optimize over QCR. Hence,

ES amounts to optimizing QCR,
(

NCR

ncr

)
×
(

MCR

mcr

)
times subject to interference and

total transmit power constraints. Each optimization over QCR is a convex problem

that can be efficiently solved in polynomial time using interior-point methods [36].

However, the need to iterate over all possible combinations gives a complexity which

explodes for higher dimensional systems. Throughout the paper we obtain numerical

solutions to the optimization problems using the cvx software package [46].

6.2.2 Convex Approximation

Overall, problem P1 is highly non-convex and can be classified as an example of an

integer programming problem, since two of the variables S1 and S2 are binary [37].

The non-convexity of the problem arises due to the nature of the objective function,

interference and the binary constraints. Furthermore, the binary variables in S1 and

S2 render the problem NP-hard [95]. In order to produce a more computationally

efficient approach we modify the problem in the following ways. Firstly, the binary

structure of S1 and S2 can be relaxed so that the antenna selection variables take

on values in the interval 0 to 1. This makes the problem far easier to solve than

the original integer program [36]. In addition to this, we transform the interference

constraint in P1 from being applicable only over the selected transmit antennas to

apply to all CR transmit antennas. This yields a simpler constraint for optimization

and also corresponds to the relaxation approach where the selection matrices are

fractional rather than binary. Finally, we note that in this approach the effect of

the K matrix cannot be included as it makes the objective non-concave (explained

below) and QCR is restricted to being a diagonal power allocation matrix. These

limitations are discussed below. With these changes, P1 can be rewritten as the
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new problem P2:

P2: maximize
S1,S2,QCR(diagonal)

log2 det
(
IMCR

+ S1HCRS2QCRS†2H
†
CRS†1

)

subject to 0 ≤ (Si)jj ≤ 1, j = 1, . . . , MCR if i = 1

and j = 1, . . . , NCR if i = 2

Tr(QCR) ≤ PCR,Tr(S1) = mcr,Tr(S2) = ncr

Tr(HINTQCRH†INT) ≤ Ω, QCR � 0

We note that the optimization problem P2 is still not convex (as the objective func-

tion is not concave). We now seek a convex approximation (CA) to enable a solution

to this problem. It can be shown that with two of the three variables known, the cost

function is concave in the third one and this renders the problem convex in this vari-

able. For example, with S1 and QCR known the cost function is concave in S2 where

we rely on a diagonal QCR so that S2QCRS†2 = UCRS2UCR, where UCR = (QCR)1/2

and the objective function becomes log2 det
(
IMCR

+S1HCRUCRS2UCRH†CRS†1
)
. Sim-

ilarly, with S2 and QCR known, the determinant in the objective function can be

written as a concave function in S1, det(INCR
+ S†2H

†
CRS1HCRS2), which yields a

convex problem in S1. Note that the problem cannot be made convex in S1 if K is

also included in the argument of the cost function. Furthermore, the physical geom-

etry of the system can prevent the PUs’ signals from interfering with the CR RX.

Finally, the log-determinant in P1 already provides a convex problem in QCR. Thus

to solve P2, we initialize S1 and QCR and optimize over S2. After obtaining S2, we

optimize over S1 and then, with S2 and S1 known, we obtain the optimized value of

QCR. This procedure is repeated until the achieved rate stabilizes. The indices of

the receive and transmit antennas to be selected are then obtained by choosing the

largest mcr and ncr diagonal entries of S1 and S2, respectively. After rounding the

possibly fractional diagonal entries of S1 and S2 to binary (0 or 1) values, we again

optimize over QCR. This optimization involves the original interference constraint

of P1 over the selected CR transmit antennas.

A comment on the convergence of the proposed iterative algorithm is in or-

der. Using a similar approach to [96], we argue that during the (k + 1)st iteration
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we calculate Sk+1
2 = argmaxS2

P2(Sk
1,Q

k
CR,S2) and obtain data rate a. Then we

calculate Sk+1
1 = argmaxS1

P2(S1,Q
k
CR,Sk+1

2 ) giving rate b. Finally, we evaluate

Qk+1
CR = argmaxQCR

P2(Sk+1
1 ,QCR,Sk+1

2 ) and the corresponding data rate c. Since

a ≤ b ≤ c forms a monotonically increasing sequence which is bounded above (due

to input power constraints) we conclude that the sequence of data rates converges

to a limit. Our simulations indicate that iterating 6 times for the SU case (and

8 − 10 times for the MU case) is almost always sufficient to attain a value of P2

that is almost identical to the brute force optimum solution. Since the problem is

not convex in nature, the maximum CR rates obtained from P2 may not be globally

optimum. However, our results suggest that the values obtained are robust and are

globally optimal (arbitrarily close) most of the time for the parameters and scenarios

discussed in Sec. 6.4.

6.2.3 Heuristic

From the above discussion it is evident that apart from being cumbersome, the CA

approach suffers from various drawbacks. For example, complexity depends on the

efficiency of the convex optimizer and the number of iterations needed to reach the

optimal point. Also, the approach cannot be used with a full QCR matrix or in

the presence of interference. To overcome these problems, we propose a heuristic

involving norm-based transmit and receive antenna selection [90, 91, 92]. Norm

based selection for i.i.d. channels with no interference constraints is straightforward

and involves selecting the rows and columns of the channel matrix with the largest

norms. In our situation the interference constraint prescribes different allowable

powers for each transmit antenna and the interference plus noise covariance matrix

results in different correlation values for different receive antenna selections. Hence,

selection at both TX and RX is more complex and any approach must handle these

difficulties. At the RX end we proceed by selecting the rows of K−1/2HCR with

the highest norm. This approximates the effect of K̄ without the need to cycle

through the possible RX antenna selections. At the TX end the total transmit

112



power is limited to PCR with no constraints on each antenna. In the heuristic it is

simpler to assume that the maximum available transmit power from any CR TX

antenna is bounded by PCR. The idea behind the per-antenna power constraint

is that antenna A is likely to be more effective than antenna B if, when they are

both allocated maximum power, antenna A has a higher norm under interference

constraints. The power inflation intrinsic to this approach is not a problem since we

are only ranking antennas at this stage. After selection the correct power allocation

is performed via the QCR matrix. The algorithm described below deals with the

MU case, and assumes that ω1 = . . . = ωMPU
= ω for all MPU single antenna PUs.

The heuristic is given by:

1. Calculate Pj = min

{
PCR, min

i

{
ω

|(HINT)ij |2

}}
, where j = 1, 2, . . . , NCR, i =

1, 2, . . . , MPU .

2. Evaluate H̃ = K−1/2HCRdiag([
√

P1, . . . ,
√

PNCR
], 0).

3. Find the column norms of H̃, i.e., ||H̃(:, j)||22, j = 1, 2, . . . , NCR.

4. Obtain the matrix H̃COL by keeping the ncr columns with the highest norms and

setting the remaining NCR − ncr columns of H̃ equal to zero. This gives S2.

5. Determine the top mcr rows of H̃COL on the basis of the row norms,

||H̃COL(k, :)||22, k = 1, 2, . . . , MCR. This gives S1.

6. With the final selection, S1 and S2, optimize the achievable rate over QCR sub-

ject to Diag(HINTS2QCRS†2H
†
INT) ≤ (ω, . . . , ω) and the total transmit power

constraint.

It is worth noting that the above heuristic can be optimized with a full QCR matrix

and is not restricted to a diagonal form as in the CA approach. To extend the

heuristic to the SU case or the multiple multi-antenna PU case, only steps 1) and 6)

need to be altered. To arrive at the most general scenario of multiple multi-antenna
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PUs, we see that Pj in 1) should be changed to

Pj = min

{
PCR, min

i

{
Ωi

||(HINT,i(:, j))||22

}}
, j = 1, 2, . . . , NCR, i = 1, 2, . . . , MPU ,

(6.7)

where HINT,i(:, j) represents the jth column of the channel matrix to the ith PU

RX. Similarly, as indicated in Sec. III, the interference constraints in step 6) should

be modified to Tr(HINT,iS2QCRS†2H
†
INT,i) ≤ Ωi. The heuristic is an extension of

the simple norm-based criteria [90, 91, 92] with interference constraints added. We

stress that the per antenna power-constraint is not real but is used to avoid iteration

over the antenna power allocation. This makes the heuristic able to select antennas

based solely on row and column norms which is much faster to compute and the

excellent results shown in Sec. 6.4 justify the use of this ad hoc approach.

6.2.4 A Note on Complexity

In order to compare the computational benefits of the CA and the heuristic ap-

proaches, we will investigate the worst case complexity of the three techniques.

Roughly speaking, the worst case complexity (i.e., the number of iterations) of a

generic convex optimization problem to obtain an ǫ accurate solution using inte-

rior point methods is O(
√

η ln ǫ−1), where η represents a measure of the problem

size [47]. Since the brute force ES requires
(

NCR

ncr

)
×
(

MCR

mcr

)
∈ O(Nncr

CRMmcr

CR ) , κ1

optimizations over QCR, we can characterize its complexity as O(κ1 × √η ln ǫ−1).

We mention that
(

n
r

)
= n!

(n−r)!k!
. It must be emphasized here that κ1 determines η

(either in the form of greater dimensions of the MIMO CR system or the subset of

antennas to be chosen), thereby, resulting in a drastic increase in the computational

complexity of the ES approach. Compared with this, if we assume that in the worst

case the CA approach needs n iterations to achieve stable CR rates, we can conclude

that its worst case complexity is O(n × √ηmax ln ǫ−1), where ηmax corresponds to

the greatest size measure in the alternating sequence of optimization problems of

the CA approach. It is clear that, unlike the ES case, n does not affect the problem

size and hence, there is a big improvement in the worst case complexity. Finally,
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in the heuristic, if we assume that all operations in step-1 to step-5 take constant

time (this assumption is reasonable as these operations do not involve any iterative

calculation), the worst case complexity is only O(
√

η0 ln ǫ−1), where η0 is approxi-

mately the same as η of the ES method. Clearly, this suggests a huge improvement

over previous cases. To give an idea of the number of iterations required, selecting

the best (4, 4) system from an (8, 8) system requires 4900 optimizations over QCR

for the ES method, whereas the heuristic only requires 1.

6.3 Performance Analysis

A general performance analysis of the MIMO CR system with antenna selection

is highly complex, and thus, we concentrate on specific cases for which analytical

results are possible. In particular, we first derive the CDF of the SNR with single

link (or SISO) selection via an exhaustive search in the presence of MPU PUs. In

this section we neglect the interference which may be caused by the PU TXs at the

CR RX. Later, we explore the possibilities of extending the analysis to include the

effect of multiple PUs that follow a spatial Poisson distribution.

6.3.1 CDF of CR-CR Link with Single Antenna Selection

in the Presence of Multiple Single Antenna PUs

Throughout this section for notational ease, we use hij and h̃ij to denote the en-

tries of HCR and HINT, respectively. Using the system model in Sec. 6.1 it follows

that all |hij|2 are exponentially distributed with unit mean and the |h̃ij |2 are also

exponentially distributed having means 1/λi, i = 1, . . . , MPU . In addition to this,

we suppose that the SNR from each of the CR TX antennas to the PU RXs is given

by SNRPUi
= 1/λi = ᾱi, i = 1 . . .MPU . This assumption is not necessary and any

model can be used for the SNRPUi
values. However, this assumption requires no

additional parameters and is reasonable in the sense that it models similar strengths

for the channels between CR TX and PU RX and PU TX and CR RX, a type of
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symmetry. With this setup, the power of the individual transmitting antennas is

given by:

Pj = min

{
PCR,

ω

max
i
{|h̃ij|2}

}

= min

{
PCR, min

i

{
ω

|h̃ij|2
}}

, j = 1 . . .NCR, i = 1 . . .MPU , (6.8)

where, as before, PCR represents the total power limit (now allocated to an indi-

vidual antenna) and we have assumed that ω1 = ω2 = . . . = ω. By performing an

exhaustive search for the best SISO link in the presence of MPU single antenna PUs

and with the power of the TX given in (6.8), we have Y = maxi,j Pj |hij|2 as the

SNR of this link. Performance analysis of this optimum SISO selection follows from

the CDF of Y defined by:

FY (y) = P (max
i,j

Pj|hij|2 ≤ y)

= E[P (|hij|2 ≤
y

Pj

∀i, j|P1, P2, . . . , PNCR
)]

= E

[∏

i,j

(1− e−y/Pj )

]

=

NCR∏

j=1

E
[
(1− e−y/Pj )MCR

]

=
[
E
[
(1− e−y/Pj )MCR

]]NCR

=

[MCR∑

n=0

(
MCR

n

)
(−1)n

E
[
e−ny/Pj

]]NCR

, (6.9)

where
(

MCR

n

)
= MCR!

(MCR−n)!n!
. Before evaluating the inner expectation in the last

equality above, let us determine the CDF and probability density function (PDF)

of Z = maxi(|h̃ij|2). The CDF is given by:

FZ(z) = P (Z ≤ z) = P (|h̃ij|2 ≤ z, ∀i) =

MPU∏

i=1

(1− e−λiz). (6.10)

Thus, the PDF of Z is obtained as

fZ(z) = dFZ(z)/dz =

MPU∑

i=1

λie
−λiz

∏

k 6=i

(1− e−λkz). (6.11)
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We note from (6.8) that Pj = PCR when Z < ω/PCR and Pj = ω/Z otherwise.

Now consider the expectation in (6.9) as,

E[e−ny/Pj ] =

∫ ω/PCR

0

e
−ny
PCR fZ(z)dz +

∫ ∞

ω/PCR

e−nyz/ωfZ(z)dz

= e
−ny
PCR FZ

(
ω

PCR

)
+

MPU∑

i=1

λi

∫ ∞

ω/PCR

e−(λi+
ny
ω

)z
∏

k 6=i

(1− e−λkz)dz,

(6.12)

where FZ(z) is given in (6.10). It is easy to see that the product term in (6.12) can

be rewritten as,

∏

k 6=i

(
1− e−λkz

)
=

MPU−1∑

r=0

(−1)r
∑

s(r)

exp

{
−
( r∑

q=1

λsq

)
z

}
. (6.13)

where the summation over s(r) is over all
(

MPU−1
r

)
ways of selecting r integers from

1, 2, . . .MPU with each of the integers not equal to i. By defining Γs(r) ,
∑r

q=1 λsq
,

the integral in (6.12) is simplified to

E[e−ny/Pj ] = e
−ny
PCR FZ

(
ω

PCR

)
+

MPU∑

i=1

λi

MPU−1∑

r=0

(−1)r
∑

Γs(r)

∫ ∞

ω/PCR

e−
(

λi+
ny
ω

+Γs(r)

)
zdz

= e
−ny
PCR FZ

(
ω

PCR

)
+

MPU∑

i=1

λi

MPU−1∑

r=0

(−1)r
∑

Γs(r)

e−
(

λi+
ny
ω

+Γs(r)

)
ω/PCR

λi + ny
ω

+ Γs(r)

. (6.14)

Substituting (6.14) in (6.9), the final expression for FY (y) is given by:

FY (y) =

[{MCR∑

n=0

(
MCR

n

)
(−1)n

{
e

−ny
PCR FZ

(
ω

PCR

)

+

MPU∑

i=1

λi

MPU−1∑

r=0

(−1)r
∑

Γs(r)

e−
(

λi+
ny
ω

+Γs(r)

)
ω/PCR

λi + ny
ω

+ Γs(r)

}]NCR

. (6.15)

Hence, (6.15) provides a closed form SNR CDF for the optimal SISO link selected

from the MIMO CR with PU power constraints. This also gives the exact CDF for

the optimal SISO capacity. Ergodic capacities are more difficult to compute and are

discussed below.
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6.3.2 Ergodic Capacities

The evaluation of ergodic capacity even for the case of single antenna selection with

PU power constraints is very cumbersome involving products of several numerical

integrals. Thus, we leave this and the general case as open problems. However,

some insights and useful benchmarks can be obtained from various special cases of

interest obtained from (6.15).

SISO System with No PU

Since there is no PU, the single CR antenna uses maximum power, PCR, and the

ergodic capacity is

E(C) = E[log2(1 + PCR|h11|2)], (6.16)

where h11 is the channel coefficient of the link assuming CN (0, 1). Hence, from [97],

we have

E(C) =
1

ln 2
exp(1/PCR)E1(1/PCR), (6.17)

where E1(x) =
∫∞
1

t−1e−xtdt represents the standard exponential integral.

SISO System with a Single PU

The CDF of the SNR of a SISO system in the presence of a single PU can be deduced

from (6.15) by substituting MCR = NCR = MPU = 1. This gives:

FY (y) = 1− exp

( −y

PCR

)
+

y

y + ωλ1
exp

(
− y + ωλ1

PCR

)
, y ≥ 0 (6.18)

where λ1 is the reciprocal of the mean of the channel response to the sole PU RX.

As expected, the presence of a PU incurs a net loss in the CDF of SNR given by

the third term in (6.18). Note that the third term disappears as λ1 → ∞ which

is the case of no PU. Hence, the outage probability, P(Y ≤ y) is increased by

y(y + ωλ1)
−1 exp(−(y + ωλ1)/PCR) in the presence of a PU. The ergodic capacity
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in this case is given by,

E(C)
(a)
=

1

ln 2

{∫ ∞

0

(
e

(
− y

PCR

)

1 + y
− ye

(
−y+ωλ1

PCR

)

(y + ωλ1)(1 + y)

)
dy

}

=
1

ln 2

{
e

(
1

PCR

)
E1

(
1

PCR

)
− Ae

(
−ωλ1+1

PCR
)
E1

(
1

PCR

)
− BE1

(
ωλ1

PCR

)}
, (6.19)

where A and B are coefficients obtained by performing a partial fraction expansion

of y/(y+ωλ1)(1+y) in (a) with A = 1/(1−ωλ1) and B = −ωλ1/(1−ωλ1). Compar-

ing (6.19) and (6.17) we observe that capacity is reduced by 1
ln 2

{
Ae

(
−ωλ1+1

PCR
)
E1

(
1

PCR

)
+

BE1

(
ωλ1

PCR

)}
in the presence of a PU. The rate and the capacity losses depend on

PCR and ωλ1 and for fixed transmit power the losses are decreasing functions of

ωλ1.

MIMO Single Link Selection with No PU

As a special case of (6.15), using MPU = 0, it is easy to verify that for a MIMO link

with no PU RXs to protect, the CDF of the direct link SNR is given by,

FY (y) = (1− exp(−y/PCR))MCRNCR . (6.20)

Differentiating (6.20) gives the corresponding PDF as:

fY (y) =
MCRNCR

PCR

(1− e
( −y

PCR
)
)MCRNCR−1e

( −y
PCR

)

=
MCRNCR

PCR

MCRNCR−1∑

q=0

(
MCRNCR − 1

q

)
(−1)qe

(
−y(q+1)

PCR

)
. (6.21)

With the PDF given in (6.21), the computation of ergodic capacity requires the

integral,

∫ ∞

0

ln(1 + y)e
(
−(q+1)y

PCR
)
dy =

PCR

(1 + q)

∫ ∞

0

e
−(q+1)y

PCR

1 + y
dy =

PCR

(1 + q)
E1

(
(q + 1)

PCR

)
e

(q+1)
PCR .

(6.22)

Thus, the final expression for ergodic capacity in this case is,

E(C) =
MCRNCR

PCR ln 2

MCRNCR−1∑

q=0

(
MCRNCR − 1

q

)
(−1)q e((q+1)/PCR)

(q + 1)/PCR
E1

(
(q + 1)

PCR

)
,

(6.23)
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which provides an upper bound on system performance in the presence of PUs.

We note that throughout E1(.) represents the exponential integral defined after

(6.17). Following a similar approach for the ergodic capacity in the MIMO single

link selection case even in the presence of a single PU is very involved. Thus, we

leave this and the general scenario as an open problem for future research.

6.3.3 Extension to More Realistic Scenarios

In Secs. 6.3.1 and 6.3.2 we analyzed single link selection in the context of a CR link

of unit power and multiple interference paths of strength ᾱi, i = 1, 2, . . . , MPU . In

this section we consider more realistic models for both the CR link and the CR-

PU interference links. In particular, we consider shadowing, path loss effects and

a random number of PUs. This allows us to investigate whether the broad trends

and conclusions generated from the simple models remain valid for more realistic

system models. Due to the extra complexity, we resort to a simulation study.

Using similar models to those utilized in Chapters 3 and 5, we consider a CR TX

located at the origin. The corresponding CR RX is uniformly located in an annulus

centered on the origin with inner radius, R0, and outer radius rcr. The inner radius

is created to avoid the CR link becoming too short which creates problems with the

inverse power relationship between link strength and distance [10]. The received

power of the CR-CR link is modeled in the classical way as

P = A10X/10r−γ, (6.24)

where A is a constant whose value can be determined using the methods discussed

in Chapters 3 and 5, X ∼ N (0, σ2) provides the lognormal shadowing with standard

deviation σ (dB), r is the link distance and γ is the path loss exponent. The link

also experiences i.i.d. Rayleigh fading so that the channel gain between transmit an-

tenna, j, and receive antenna, i, is given by
√

Phij where hij ∼ CN (0, 1). Assuming

the noise power at the receive antennas as unity, P becomes the link SNR.

For the PUs, we assume a Poisson field of receivers [98] with intensity, θ, located

in an annulus centered on the origin of inner radius, R0, and outer radius, R > rcr.
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Hence, the number of PU RXs, N , is a Poisson variable with E(N) = θπ(R2 − R2
0)

and the RXs are uniformly located in the annulus. For the interference created by

the CR at the PU RXs we use the same model as (6.24) so that the instantaneous

interference-to-noise ratio (INR) at RX i due to transmit antenna antenna j is

P |h̃ij|2 = A10Xi/10r−γ
i |h̃ij |2, (6.25)

where we have assumed unit noise power at the PU RXs. With models (6.24) and

(6.25) defined, the scaling parameter A is proportional to the maximum transmit

power. Hence, any power back off by the CR TX to satisfy interference constraints

can be achieved by multiplying A by a factor fj ∈ [0, 1] for antenna j. With this

notation, the single link selection problem becomes

Pj = fjP, (6.26)

where fj = mini{1, ω/P |h̃ij|2} and the resulting link selection has SNR given by

Y = maxi,j Pj |hij|2. Simulation results based on this approach are given in Sec. 6.4.

6.4 Results

6.4.1 MIMO Selection

In this section we explain the simulation results based on the ES, CA and the

heuristic proposed in Sec. 6.2. However, before we describe the results, we introduce

the parameter β which controls the interference threshold (Ω for the SU case and

ωj, j = 1, . . . , MPU for the MU case) at the PU RX. β is chosen so that the allowable

interference at the PU is a fraction of the PU SNR, i.e., Ω or ωj = βSNRPU at the

PU RX(s). To compare the different approaches we use the measures of ergodic

rates and the CDF of the achievable rates. The CDF curves and each point on

the ergodic rate graphs are determined by averaging over the results obtained from

500 i.i.d. channel realizations. For the SU case we consider a single MIMO PU RX

equipped with 3 antennas and for the MU case we take three PUs each having a single
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Figure 6.2: Ergodic rates vs SNR for different system sizes. These curves are based
on the CA approach for the SU case. For all curves (except the one indicated in the
figure) we take ᾱ = 0.5 and β = 0.1.

antenna (Fig. 6.1). The results shown focus on the rate gains offered by selection,

the effects of diagonal QCR (important in the CA approach) and a comparison of

the techniques.

In Fig. 6.2 we demonstrate that (ncr, mcr) antenna selection from larger (NCR, MCR)

systems can enhance the ergodic rates to reach and go beyond the benchmark per-

formance of an (ncr, mcr) system without any PU interference constraints. These

graphs are based on the SU case and are obtained using the CA approach for diag-

onal QCR. In particular, we see that if we select the best (2, 2) antenna subsystem

(according to P2) from (3, 3) and then from (4, 4) MIMO channel matrices, we are

able to close the gap between the ergodic curves for these systems and the results for

the benchmark (2, 2) MIMO system without any PU. These results are for ᾱ = 0.5

and β = 0.1. Further, if the strength of the CR-PU interference channel is lowered

122



2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

SNR (dB)

E
rg

o
d
ic

 r
a
te

s
 (

b
p
s
/H

z
)

 

 

With diagonal Q

With full Q

With diagonal Q

With full Q

2 × 2 from 5 × 5

2 × 2 from 3 × 3

Figure 6.3: Ergodic rates vs SNR for different (with 3 single antenna PU RXs)
system sizes and in the presence of a PU TX with 3 antennas. ᾱ = 0.5 for both
from CR TX to PU RXs and PU TX to CR RX. We take β = 0.35. Antenna
selection is performed using the heuristic and both diagonal and full QCR (for the
sake of brevity we have represented it as Q in the legend of the figure) matrices are
considered.

with respect to the CR-CR channel by decreasing ᾱ from 0.5 to 0.1 (which is plau-

sible for environments with shorter range CRs), the ergodic rate curve for a (2, 2)

system obtained from a (4, 4) system goes beyond that of a (2, 2) system without

any PU operating in its vicinity. This clearly indicates that even after performing

antenna selection subject to the interference constraints, there are still enough de-

grees of freedom left for the CR to attain a substantial gain in terms of its maximum

achievable rates.

In Fig. 6.3 we consider the effects of a diagonal input covariance matrix and

incorporate interference from the PU TX. We plot the ergodic rate curves based on

the heuristic for two different systems and make a comparison between a diagonal
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Figure 6.4: Ergodic rates vs SNR for different systems. The top two curves compare
the performance of diagonal and full QCR matrices with exhaustive search for a 2×2
system from a 3× 3 system. The bottom 2 plots present ergodic rate performance
of the best 1 × 2 system from a 1 × 5 system for diagonal and full QCR matrices.
For the sake of brevity we have represented QCR as Q in the legend of the figure.

and a full QCR matrix in the presence of an interfering PU TX. For reasons of

symmetry and to avoid any further parameters we assume that the signal strength

from the PU TX to the CR RX is also given by the parameter ᾱ. Hence, each

element of HPC has power equal to ᾱ. For these results we consider a CR device

with three single antenna PU RXs in its vicinity and a PU TX equipped with 3

antennas interfering at the CR RX. As expected there is a small loss of rate for

both systems when QCR is restricted to diagonal form. However, the rate loss for

the larger system is slightly less than that of the smaller one.

In order to perform a comparison of the heuristic with the ES approach, in

Fig. 6.4 we plot ergodic rates versus SNR with full and diagonal QCR matrices. We

take the same parameters as in Fig. 6.3 and assume CR operation in the presence of

3 PU RXs and a PU TX with 3 antennas interfering with the CR RX. It is observed
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Figure 6.5: CDFs of rates achieved for various selection methods for two different
systems at SNR = 8 dB for the MU case with 3 single antenna PUs.

that the difference between the two approaches is minimal. However, as we move

towards higher SNR values the gap between the ES and the heuristics ergodic rates

becomes more noticeable. In addition to this, we also compare ergodic rates of the

best 1× 2 multiple-input single-output (MISO) system chosen from a bigger 1× 5

MISO system with full and diagonal QCR matrices. It is important to note here

that the difference between ergodic rates tends to become larger than that observed

in Fig. 6.3. This can be attributed to the fact that in order to perform beamforming

task, the QCR matrices are not full rank and hence owing to the inter-dependence

of columns of QCR the difference is magnified.

In the absence of PU-CR interference all 3 techniques can be used and their

performance is compared in Fig. 6.5 via CDFs of the achievable rates. The three

techniques follow a hierarchy of complexity from the full solution in the ES through

the relaxed iterative optimization in CA to the simple heuristic. Hence, it is notable

that all 3 methods are remarkably similar and that even with its massively reduced
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Figure 6.6: CDFs of SISO link obtained from a MIMO system. ᾱ = 0.2, β = 0.03
and CR system SNR is 10 dB. Analytical results are shown using solid lines while
simulations use dotted lines. In addition to verifying analysis the curves show the
gains harnessed by choosing the best SISO link from a given MIMO system.

complexity the heuristic is very similar to the CA approach and only a little behind

the ES. Although the relative performance needs to be investigated in more detail

over a wider range of parameters and scenarios, this is an excellent indication that

near optimal results may be achieved with a very simple selection heuristic.

6.4.2 SISO Selection

Figure 6.6 presents SNR CDFs due to selection with varying numbers of CR anten-

nas in the presence of 3 PUs. The other system parameters are ᾱ = 0.2, β = 0.03

and SNR = 10 dB. The performance of a SISO CR link in the absence of a PU is

also shown as a benchmark. As the CR system grows from (1, 1) to (3, 3) to (12, 12)

we see corresponding increases of 8 dB and 5 dB in the median SNR. Hence, the

first 2 antennas added provide an 8 dB increase while the subsequent 9 antennas
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PU.

provide only 5 dB. Clearly, these are rapidly diminishing returns due to the addition

of extra antennas. Note that the baseline performance of the SISO CR with no PU

can be achieved via SISO selection from a (3, 3) system. Hence, selection can be

used to recover the losses due to PU presence. In this simulation, however, there

are only 3 PUs with relatively weak CR-PU paths (ᾱ = 0.2). Hence, it is not too

difficult to counter their effects.

Figure 6.7 shows the ergodic capacity results of Sec. 6.3.2. The loss due to a

single PU is shown (see (6.19)) and the diminishing returns due to the CR dimension

grows are also seen. Note that even a single PU inflicts a heavy loss on capacity,

especially at low SNR.

Before describing the results of more realistic scenarios in detail, we mention

that unless otherwise stated, the default parameters taken are σ = 8 dB, γ = 3.5,
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Figure 6.8: CDF plots of best SISO link from a given MIMO system in the presence
of PUs following homogenous Poisson point process. The parameters taken are
σ = 8 dB, γ = 3.5, θ = 35 PU nodes per sq. km., ω = 0.3 dB and rcr = 20 m.

r = 1000 m and rcr = 20 m. Figures 6.8 and 6.9 explore the impact of the more

complex channel models of Sec. 6.3.3. Note that the broad trends and conclusions

drawn from Fig. 6.8 are the same as those observed in the analysis given in Fig. 6.6.

In particular, selection gains decrease as the CR dimension grows and the SISO

baseline can be outperformed with a moderate number of antennas (4 in Fig. 6.8

and 3 in Fig. 6.6). However, as in Fig. 6.6, such results are found in a sparse PU

environment. In Fig. 6.8, 35 PUs per km2 are used and the CR link is short at 20 m.

Figure 6.9 explores the effect of different system parameters. A comparison of the

curves in Fig. 6.9 shows that performance is increased as γ increases, θ decreases and

σ decreases. Decreasing θ results in fewer power constraints and so a performance

increase is obvious. Increasing γ (and as high as 6.5) and decreasing σ tends to

reduce the occurrence of large interference values at the PU RXs. Hence, this also

increases performance.
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Figure 6.9: Effect of various parameters on the CDF plots of best SISO link from
a given MIMO system in the presence of PUs following homogenous Poisson point
process. Best SISO link is chosen from a 4× 4 system with ω = 0.3 and rcr = 20 m.

Lastly, we consider Table-6.1. In this table we consider the dimension required for

a square CR MIMO link so that optimal SISO selection outperforms the equivalent

SISO link in the absence of any PUs. By outperforming, we mean that the median

SNR is exceeded. Hence, Table-6.1 gives the size of the array required so that

selection completely removes the losses due to the presence of the PUs. Clearly,

the required dimension grows with θ and reduces with ω. The scale of the system

dimensions is of interest. Selection by itself can only remove the losses due to the

PUs in sparse PU environments or when weak interference constraints are present.

This is to be expected as the selection process is being worked very hard. Hence,

in sparse PU environments selection may be possible as a stand-alone technique.

In denser environments, selection may be a potential solution in conjunction with

other techniques such as scheduling or the use of other bands.
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Table 6.1: MIMO system dimensions for different θ and ω under default parameters

θ (nodes km−2) ω MIMO system needed

35 0.25 4× 4

35 0.5 3× 3

35 1.0 2× 2

50 0.25 6× 6

50 0.5 4× 4

50 1.0 2× 2

80 0.25 15× 15

80 0.5 7× 7

80 1.0 4× 4

6.5 Summary

In this chapter we have used the idea of antenna selection to jointly satisfy in-

terference constraints at the PU RXs while improving the achievable rates of the

CR device. We have presented three schemes in order of decreasing complexity to

solve this problem. The optimal search approach is the most computationally in-

tensive while the CA approach solves the problem by iteratively optimizing a series

of small convex programs. We then present a norm-based separate transmit receive

antenna selection technique. This approach results in huge complexity reductions

and produces very accurate results. It is notable that this simple technique per-

forms almost indistinguishably from the CA approach which is a well established

optimization approach to approximating the full solution. In addition, we have in-

cluded a performance analysis based on the SNR of the best link of the MIMO CR

device. Furthermore, results have also been extended to more realistic scenarios

based on Monte Carlo simulations. Broadly speaking, our results suggest that an-

tenna selection for CR systems is a powerful technique in sparse PU environments

with the potential for obtaining greater gains if we employ MIMO rather than SISO

link selection. For denser PU environments, antenna selection can provide a partial

solution for CR operation.
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Chapter 7

Optimal SINR Balancing in the

Downlink of Cognitive Radio

Networks with Imperfect Channel

State Information

The downlink of CR networks has received much attention from the research com-

munity [86, 99, 100]. The problem of balancing the SINR, i.e., maximizing the worst

SINR of a CR device in the downlink of a CR network operating in the vicinity of

multiple PUs, was solved in [99] using the uplink-downlink duality concept. The

work of [99], based on perfect channel knowledge, was recently extended in [100]

to the case of imperfect channel estimates at the CR BS. This extension assumed

that errors in the channel state information (CSI) are bounded by ellipsoids. Based

on this channel matrix uncertainty model, the problem was formulated as a quasi-

convex optimization program using the S-procedure [101]. To be precise, in the case

of channel uncertainty, the authors first derived an equivalent problem that involved

rank-1 constraints on the cone of PSD matrices modeling the beamforming vectors.

These constraints rendered the problem non-convex. Later, the problem was solved

by relaxing the rank-1 constraints and using the bisection search [36] algorithm. The
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approach is based on the original classical work of [102]. By assuming an ellipsoidal

CSI uncertainty model, [100] formulated a quasi-convex optimization problem after

dropping rank-1 constraints.

Relaxing such rank constraints results in an upper bound to the optimal solution.

However, under certain conditions (e.g., by showing that the optimum cost of the

original problem is equal to that of the Lagrange dual of its relaxed version [102]) we

can obtain the optimal solution, one with rank-1 constraints satisfied. In addition

to this, there are many optimization problems in communications, for example [103,

104, 105] to name just a few, that can be formulated as semidefinite programs

(SDPs) [36] with rank constraints. As a result of these nonconvex rank constraints,

various relaxations and approximations are usually adopted. Different techniques

have also been developed to obtain approximate rank-1 solutions [105, 104] from the

optimized, but relaxed, variables. In [86], the problem of constraining the rank of

separable SDPs was studied in the context of power optimization in the downlink of

CR networks with perfect channel estimates available at the BS. By elegantly fine

tuning the results of [106], SDP relaxation of three classes of optimal beamforming

problem was shown to always possess rank-1 solutions in [86].

In this chapter, we study the problem of SINR balancing in the downlink of CR

networks with imperfect CSI at the CR BS without relaxing rank constraints. Our

main contributions include: a) showing a successful incorporation of the recently

developed convex iteration [107] technique in the problem’s solution; b) developing

a low complexity algorithm to solve the problem; and c) extending previous results

to include PU interference and to maximizing minimum data rates.

In this chapter we use [i : l] to represent the i-th to l-th elements of a row vector

and diag(N) returns the principal diagonal of a square matrix N.

7.1 System Model

Let us consider a CR BS having NCR antennas serving C single antenna cognitive

devices. It is assumed that the cognitive broadcast channel is operating in the
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vicinity of K single antenna PU RXs. Suppose s ∈ CC represents the column vector

of data symbols meant for the C different CR RXs such that the symbol for the

ith RX is si ∼ CN (0, 1)1, i = 1, . . . , C. The CR BS transmits a vector, x ∈ CNCR ,

obtained by a linear precoding of s, i.e.,

x =

C∑

j=1

pjsj = Ps, (7.1)

where P ∈ CNCR×C is the precoding matrix and pj represents its jth column. With

the above model we have E[ss†] = I. Thus, assuming that the total available power

is Ptotal, the constraint on the transmit power becomes E[‖x‖2] =
∑C

j=1 ‖pj‖2 =

Tr(P†P) ≤ Ptotal. The BS then transmits the vector x over a quasi-static flat-fading

channel. The received signal, yi, at the ith CR user is given by:

yi = hix + ni = hipisi +
C∑

j=1
j 6=i

hipjsj + ni, (7.2)

where hi ∈ C
1×NCR is the downlink channel vector for the ith user and ni ∼

CN (0, σ2
i ). The effect of PU interference on the CR RXs will be later incorporated

in Sec. 7.2.2. In a similar way

zm = hintm
x + vm =

C∑

n=1

hintm
pnsn + vm, (7.3)

is the signal received at the mth PU RX where hintm
∈ C1×NCR and vm ∼ CN (0, σ2

m)

are the channel and noise at the mth PU RX, respectively.

Channel Uncertainty: In practice the CR BS is not able to obtain perfect CSI for

both the CR-CR and CR-PU channels. This is partly due to the centralized nature

of the proposed scheme detailed below, which makes it very difficult for the CR BS

to acquire near perfect instantaneous CSI. For example, the centralized processor

would require CSI from all terminals simultaneously. Since all mobile stations suffer

from different conditions including those of the channel, terrain etc., it is highly

1Note that for our purposes the elements of s could follow any distribution as long as they are
i.i.d. with zero mean and unit variance. However, we have used a complex normal distribution for
this purpose since it is the entropy maximizing distribution.

133



difficult to acquire perfect CSI from all users at the BS. Thus, we model the CSI

error for the CR-CR channel hi as:

hi = ĥi + ei, (7.4)

where ĥi is the estimated channel for user i at the CR BS and ei ∈ Hi(δi) where

Hi(δi) = {ai : ‖ai‖ ≤ δi}. (7.5)

The process of determining CSI from the CR BS to the PU RXs is unclear and de-

pends on the particular system considered. Ideally, there is no cooperation between

the PUs and the CR BS, however, various levels of cooperation and CSI transfer are

considered in the literature [6]. Here, we do not consider any particular procedures

to acquire CSI (as it is beyond the scope of the current work), and model it in a

standard way as an imperfectly acquired CSI estimate. Thus, the channels for the

CR-PU links are modeled as

hintm
= ĥintm

+ eintm
, (7.6)

where ĥintm
is the estimated channel for the mth PU at the CR BS and eintm

∈
Hintm

(δintm
) where

Hintm
(δintm

) = {bm : ‖bm‖ ≤ δintm
}. (7.7)

The ball uncertainty models described above are common models used to charac-

terize errors caused by processes such as quantization and estimation [108].

7.2 Analytical Framework

With the system model elaborated in Sec. 7.1, it is easy to see that the total signal

power received at the ith CR RX, Pi , E[|yi|2], is given by:

Pi = hipip
†
ih
†
i +

C∑

j=1
j 6=i

hipjp
†
jh
†
i + σ2

i , (7.8)
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where the first term on the right hand side of (7.8) is the power of the desired signal

while the second term represents the inter-user interference. Thus, for user i, the

SINR is defined by:

SINRi =
(ĥi + ei)pip

†
i (ĥi + ei)

†
∑C

j=1
j 6=i

(ĥi + ei)pjp
†
j(ĥi + ei)† + σ2

i

, i = 1, . . . , C. (7.9)

Similarly, the interference power received at the mth PU, IPm, is:

IPm =
C∑

n=1

(ĥintm
+ eintm

)pnp
†
n(ĥintm

+ eintm
)†, m = 1, . . .K. (7.10)

7.2.1 Problem Formulation

We aim to balance the SINR of the users in the CR system subject to transmit power

constraints while simultaneously maintaining interference power at the PU RXs

below a certain acceptable threshold. These problems, in the context of ordinary

broadcast channels, are generally categorized as max-min fair SINR problems [108,

109]. Thus, the main problem is:

P1 : maximize
t,P

t

subject to SINRi ≥ t, i = 1, . . . , C, ∀ei ∈ Hi(δi)

IPm ≤ ζm, ∀eintm
∈ Hintm

(δintm
),

C∑

n=1

Tr(pip
†
i) ≤ Ptotal

where ζm is the maximum tolerable interference level for the mth PU RX. Later we

normalize this with respect to noise spectral density.

7.2.2 Approximate Solution of P1

Recently, P1 has been solved in [100] by using the powerful S-procedure [101]. Their

result for the case of spherical channel uncertainty can be written as:

Lemma 1 ([100]). With the substitution, Wi = pip
†
i , problem P1 can be equivalently
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rewritten as:

P2 : maximize
τi,λm,t,Wi

t

subject to


ĥiQiĥ

†
i − tσ2 − τiδ

2
i ĥiQi

(ĥiQi)
† Qi + τiI


 � 0, τi ≥ 0 , i = 1, 2, . . . , C



−ĥintm
Sĥ†

intm
+ ζm − λmδ2

intm
−ĥintm

S

(−ĥintm
S)† −S + λmI



 � 0, λm ≥ 0 , m = 1, 2, . . . , K

Tr(S) ≤ Ptotal,Wi � 0, rank(Wi) = 1, ∀i.

where Qi = Wi − t
∑C

j=1
j 6=i

Wj and S =
∑C

i=1 Wi.

While it is not always possible to extend results such as those presented above to

the more complex model of ellipsoids representing channel uncertainty, it is relatively

easy to accomplish this task in the particular scenario of P2 [100]. P2 can be

efficiently solved using a bisection search [108, 36, 110] after formulating it as a quasi-

convex optimization problem by dropping rank constraints. In [100], the authors

modify the basic bisection search by storing those iterations that returned rank-1

solutions and later, if the final beamforming solution is not optimal, they use that

rank-1 solution with the largest SINR.

Now we extend Lemma 1 to incorporate the effect of interference due to PU

signals at the CR RXs. For this we assume that there are I single antenna PU TXs

each interfering with the single antenna CR RXs. Note that it is not necessary to

take I = K, since the I interfering PU TXs need not correspond to the K receivers.

Let hpi ∈ C1×I be the channel vector containing the interfering signals due to I PU

TXs at the ith CR RX.

Corollary 1. Assuming that hpi = ĥpi + epi, where ĥpi is the available estimate of

the composite PU interference channel and epi lies in the same region as specified

in (7.5), P2 remains the same except its ith SINR constraint is changed to:


ĥiQiĥ
†
i − t(ĥpiĥ

†
pi + σ2)− τiδ

2
i ĥiQi − tĥpi

(ĥiQi − tĥpi)
† Qi − (t− τi)I



 � 0

(7.11)
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Proof. With interfering PU devices, SINRi is given by:

SINRi =
hipip

†
ih
†
i∑C

j=1
j 6=i

hipjp
†
jh
†
i + hpih

†
pi + σ2

i

, i = 1, . . . , C. (7.12)

Using (7.12) it is easy to see that the constraint, SINRi ≥ t, can be rewritten as:

SINRi = (ĥi + epi)Qi(ĥi + epi)
† − t{σ2

i + (ĥpi + epi)(ĥpi + epi)
†} ≥ 0, ∀epi ∈ Hi(δi)

(7.13)

Now invoking the S-procedure [101] on (7.13) results in (7.11).

Remark 1. Balanced rates in the network can easily be solved by transforming the

SINR obtained from P2 to the corresponding spectral efficiency using log2(1+SINR)

bps/Hz. Further, individual powers of antennas can be constrained by introducing

diag(S) ≤ pind in P2. Elements of pind represent individual transmit power con-

straints for the individual antennas and the inequality is to be interpreted element

wise.

7.3 Proposed Solution

As is evident from the above discussion, the known solution to the problem at

hand is approximate due to the rank-1 constraints. There are many problems in

communications, for example [103, 105, 104], that involve rank constraints on the

unknown matrix variables and these are often solved based on some approximating

technique like the one presented in [105]. We stress here that, in our case, we cannot

apply the randomization techniques in [105] owing to the complex robust constraints

[100]. For an overview of issues involved in extracting rank-1 solutions from the

approximate answers, the reader is referred to [111]. Before describing the details

of our solution, let us first explore the structural aspects of the proposed technique.

Rank is a quasiconcave function on the cone of PSD matrices. It has been proposed

in [112, 113] to approximate the rank function by its best convex lower bound (also

known as the convex envelope) in the context of rank minimization problems. Such a
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bound is conveniently represented by the scaled trace of PSD matrices. We note this

bound represents an approximation. The original problem can then be judiciously

replaced with an iterative method in which the rank constraints are incorporated

as trace constraints. Motivated by this, [107] devised a technique to solve rank-

constrained optimization problems. Since problem P2 also falls in the category of

rank constrained SDPs with the rank of each precoding matrix constrained to be

1, it is natural to consider the application of this technique in solving this problem.

Hence, our solution utilizes the convex iteration algorithm [107] approach to solve

rank constrained SDPs. Suppose we have an SDP in the variable F and we are to

solve the corresponding semidefinite feasibility problem

FP : find F

subject to F ∈ C,F � 0, rank(F) ≤ n,

where F ∈ SN , SN is the set of N × N Hermitian matrices and C is a convex set

assumed to contain PSD matrices with rank-n or less. Then, F can be determined

by iteratively solving the following two convex problems:

FP1 : minimize
F

Tr(FD)

subject to F ∈ C,F � 0

where D ∈ SN is the direction vector (we call it a vector since it is conveniently

represented in a RN(N+1)/2 space) obtained by solving the following SDP,

FP2 : minimize
D

Tr(F⋆D)

subject to 0 � D � I, Tr(D) = N − n

where F⋆ is an optimal solution to FP1 for some given iterate D. It is stated in [107]

that we cannot interpret direction as a projection method. Instead, it represents a

hyperplane-normal moving opposite to the direction describing the minimization of

an affine trace function [107]. We continue iterating between FP1 and FP2 until

Tr(F⋆D⋆) attains a vanishingly small value or we have determined F⋆ with required

rank constraint, where D⋆ is the optimal direction vector. After convergence is
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achieved, the final pair (D⋆,F⋆) provides an F⋆ with rank(F⋆) ≤ n, if it existed in

C. We stress that iteratively solving FP1 and FP2 gives an equivalent representation

[36] of the original problem FP instead of a relaxation. Hence, a solution of rank-n

or less will be obtained if it exists in C.
Both FP1 and FP2 are SDPs that require numerical solution. In fact, by

replacing a single SDP given in F by two SDPs, we have increased the complexity

of the problem. However, the optimization matrices are Hermitian (and thus possess

real eigenvalues that can be arranged in, say, nonincreasing order) and problem FP2

can be solved analytically. Therefore, we present the following proposition.

Proposition 1. The problem FP2 admits an analytical solution. Define the singular

value decomposition (SVD) F⋆ = UΣO†, where U, O are unitary matrices and Σ is

a diagonal matrix with singular values on its diagonal. Then, the value of D⋆ which

gives the optimum solution of FP2 is D⋆ = V⋆V⋆†, where V⋆ = U(:, [n + 1 : N ])

and [n + 1 : N ] indicates the indices of the columns of U. Suppose θ(F⋆) ∈ RN are

the eigenvalues of F⋆ arranged in nonincreasing order, then for 0 ≤ n ≤ N − 1, the

optimum value of FP2 is
∑N

j=n+1 θ(F⋆)j.

Proof. See [114, Sec. 4.1] and [42, Sec. 4.3.18].

7.3.1 Incorporation of “Convex Iteration” in P2

As mentioned above, the relaxed version of P2 can be efficiently solved by performing

a bisection search. Such a search involves solving a convex semidefinite feasibility

program for a particular value of t and then, depending on whether or not the pro-

gram is feasible for that t, the search interval for the next step is updated accordingly

[36]. In contrast, we execute the convex iteration described above, together with the

bisection search. This avoids the need for any relaxation. This modified procedure

is detailed in Algorithm 1. Comments are indicated by the symbol ‘⊲’, while the

symbol ‘⋆’ represents the optimum value. The Boolean condition true for the inner

while loop indicates that the loop keeps on executing until we break out of it. k
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Algorithm 1 SINR balancing with rank-1 precoders

1: Input: SINRmax, SINRmin, ĥi, ĥintm
, ĥpi, δi, δintm

, σ, Ptotal

2: Output: t0(max-min SINR),p⋆
i

3: HW ← ∅,Ht ← ∅, k ← 0 ⊲ Initialization
4: while (SINRmax− SINRmin) > thresh.1 do
5: k ← k + 1
6: t← (SINRmax + SINRmin)/2
7: Di ← 0 ⊲ Initialize direction vectors
8: while true do
9: minimize

∑
i Tr(WiDi) ⊲ 1st cvx

10: subject to SINRi constraints
11: IPm constraints
12: Tr(

∑
i Wi) ≤ Ptotal

13: if above program infeasible then
14: break the second while (line 8)
15: end if
16: Di ← argmin0�Di�I

Tr(Di)←NCR−1
Tr(W⋆

i Di) ⊲ 2nd cvx

17: if
∑

i rank(W⋆
i ) equals C then

18: break the second while (line 8) ⊲ Rank-1 obtained with some
tolerance

19: end if
20: if Tr(W⋆

i D
⋆
i ) ≤ thresh.2 then

21: break the second while (line 8) ⊲ No rank-1 precoder available
22: end if
23: end while
24: if program solved then ⊲ Bisection is performed
25: SINRmin← t
26: else
27: SINRmax← t ⊲ The program is infeasible
28: end if
29: HW ←HW ∪ {W(k)

i },Ht ← Ht ∪ {t(k)}
30: end while
31: We obtain t0 and W⋆

i having unit rank.
32: To recover pi obtain eigenvalue decompositions (EVDs) W⋆

i = TiEiT
†
i , where

Ti are unitary and Ei contains the eigenvalues of Wi on its diagonal. Then,
p⋆

i = TiE
1/2
i .
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denotes the iteration index and W(k), t(k) represent the values of W and t in the kth

iteration, respectively. The sets HW and Ht are used to collect the values of W and

t, respectively, for each iteration. For implementation purposes, the set HW can

be updated with special matrices (for example, zero matrices) when the problem

is found to be infeasible. Furthermore, in Algorithm 1, SINRmax and SINRmin

represent the upper and lower limits on the SINR of the system and we iterate the

bisection search until the difference between these limits is less than or equal to some

threshold, ‘thresh.1’. To solve the rank constrained problem exactly, we replace the

convex feasibility problem for some iterate, t, with the equivalent convex iteration.

This is shown in lines 9-12 of Algorithm 1. Similarly, the second convex program

giving the optimal direction vectors is included in line 16 of the algorithm. Note

that we terminate the convex iteration when either we have obtained all precoders

of desired rank (line 17) or once we have determined that the value of the objective

has become sufficiently small i.e., smaller than some threshold, ‘thresh.2’ (line 20)

to deduce that no such rank matrices are available. We remark that the precoding

matrices and the corresponding t0 can be obtained from HW and Ht respectively,

by observing the last entries of these sets for which the problem was found to be

feasible. Algorithm 1 does not contain any procedure for handling stalls as these

were not observed in the simulations.

7.3.2 Computational Issues With the “Convex Iteration”

Approach

The first issue is related to the convergence of the convex iteration approach. The

process of iteratively solving cvx-1 and cvx-2 (see comments in lines 9 and 16 of

Algorithm 1), or for that matter FP1 and FP2, always converges [107]. This

occurs because iterating between cvx-1 and cvx-2 results in a nonincreasing sequence

of objective values that is bounded below in R and is thus convergent. However,

such a convergence is local and the issue of global convergence remains open [107].

The second possible problem is concerned with the stalling of the algorithm at a
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Figure 7.1: A comparison of the interference seen at the first PU RX. Solid lines show
the CDF obtained using Algorithm 1, dotted-dashed curves show the interference
CDF obtained using [99, Algorithm 1] and the bold dotted-dashed curve shows
non-robust case.

local minimum of the multimodal objective function. Such problems were seen while

solving cardinality constrained problems in [107]. A possible remedy to stalling could

be maneuvering the direction vectors on the occurrence of such stalls. However, no

such problems were observed in our implementation of Algorithm 1.

Finally, initializing Di to 0 usually produces the minimum number of iterations

while using Proposition 1.

7.4 Results

In order to validate the proposed scheme, numerical simulations are performed. To

conduct these simulations it is assumed that the CR BS is equipped with a uniform

linear array having NCR = 5 elements spaced half a wavelength apart. Further, the

BS serves 3 CR devices located at angles θ1 = 20◦, θ2 = 45◦ and θ3 = 60◦ with
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Figure 7.2: CDF of the interference due to the CR BS at the first PU for different
values of ǫ, δ.

respect to antenna broadside, respectively. Similarly, 2 PU devices are assumed to

be located along the directions of φ1 = 40◦ and φ2 = 75◦ respectively. At the CR

receivers the noise is taken as CN (0, 1). Unless otherwise stated, it is assumed that

ζm = ζ = −10 dB. With these assumptions, the channels from the BS to the CR

and PU RXs, for k = 1 . . . NCR, are respectively given by the following simple model

[115]:

(ĥi)k = e
j2πd

λ
(k−1) cos(θi), i = 1, 2, 3, (ĥintm

)k = e
j2πd

λ
(k−1) cos(φm), m = 1, 2. (7.14)

where d and λ represent antenna separation and wavelength (we have taken d/λ =

0.5) respectively and j =
√
−1. For each true channel realization (estimated channel

with error), the corresponding CSI error vector is normally distributed, truncated

to lie within a sphere of radius δi = δ, ∀i and δintm
= ǫ, ∀m for the CR and PU

channels, respectively. Furthermore, to demonstrate the effect of interference from

the PU TXs on the CR RXs, we assume there are 5 single antenna PU TXs and

each entry of ĥp is CN (0, 1). The entries of the corresponding error vector are again

normally distributed, truncated to a sphere of radius δ. While implementing Al-
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Figure 7.3: CDF of SINR at the first CR RX for different values of ǫ, δ without
interference from the PU TXs. Bold dotted curves represent the SINR CDF using
[99, Algorithm 1].

gorithm 1 ‘thresh.1’ and ‘thresh.2’ are taken as 0.05 and 1e-10, respectively. In

addition to this, it is assumed that SINRmin = 0 dB, SINRmax = 13.01 dB and the

average total transmit signal-to-noise ratio (SNR) is Ptotal/N0 = 13.97 dB. We note

that these values are arbitrary. To make a comparison, results for the non-robust

case have also been plotted. In the non-robust case, the beamformers are obtained

based on the estimated channels by ignoring the uncertainty regions. The optimiza-

tion problems (SDPs) are solved using cvx [46]. First of all we compare the ranks

of the beamforming matrices obtained using the proposed method and the ranks

of the beamforming matrices obtained using the algorithm presented in [100]. To

do so, we implement [100, Eqs. (16a) and (16b)] in [100, Algorithm 1] and note

that the solution in the final iteration is usually the closest to rank-1 as shown in

Table-I of [100]. To evaluate the rank we use the [u,s,v] = svd(.) function of

MATLAB. The rank is calculated using sum(diag(s)>max(diag(s))*tolerance),
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Figure 7.4: Effect of licensed user (PU) interference on the rates of the first CR
device for ǫ = 0.11 and δ = 0.11. The interfering PU signals are Rayleigh faded.
Bold dotted curves represent the CDF of rates using [99, Algorithm 1].

where tolerance is taken as 1e-08. The precision of the software cvx [46] is kept

at its default value. With these settings, it is observed that Algorithm 1 in [100]

returns full rank matrices with a probability that is extremely close to 1 in the final

iteration for all values of ǫ and δ considered. In contrast, unit rank beamforming

matrices are obtained using the proposed method. As another comparison of the

beamformers obtained using Algorithm 1 and [100, Algorithm 1], we plot the

CDF curves for the interference observed at the first PU RX (see Fig. 7.1). The

beamformers, in both cases, are obtained using eigenvectors corresponding to the

largest eigenvalues of the Wi matrices. Since non-unit rank precoding matrices pre-

vent exact extraction of beamformers, the approach in [100, Algorithm 1] results

in larger interference at the PU RX. Figure 7.1 also shows that this problem can

cause the interference to cross the threshold in the case of [100, Algorithm 1].

Hence, the rank of the matrices obtained during the last iteration of [100, Algo-
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rithm 1] is not exactly 1 and the solution may not be robust enough for all error

vector realizations inside the spherical ball. It is worth mentioning that in these

simulations the inner while loop in Algorithm 1 took only 1-3 iterations in each

of the bisection procedure runs
(
which are⌈log2((

SINRmax−SINRmin
thresh.1

))⌉in number
)

to

determine the desired precoding matrices. In addition to this, the complexity of

each convex iteration run is dominated by the complexity of the SDP (which is well

known to be polynomial time [36]) involved in determining the precoding matrices.

Hence, we can observe that the complexity of the proposed approach is roughly the

same as that of [100].

In a second experiment, the CDF of interference at the first PU RX is obtained

for different values of ǫ and δ (see Fig. 7.2). The CDF is taken over the distribution

of possible channels which lie in the ball uncertainty regions for the given channel

estimates. Results for the case of a non-robust design are also plotted. It is clear

from Fig. 7.2 that, as expected, the non-robust design performs the worst. In fact, it

exceeds the interference threshold (−10 dB) around 64% of the time. Furthermore,

the interference in Fig. 7.2 shows an interesting trend. For small values of ǫ, δ the

CR TX is able to direct a sharp null in its beam pattern towards each PU RX as

the channel is precisely known. As ǫ, δ are increased, at first the CDFs spread out

since the range of possible channels in the uncertainty ball increases and most of

these channels lie in a deep null. As ǫ, δ are increased further the channel knowledge

decreases and the TX has to use a broad null which is less deep to cater for a wide

range of possible channels. Hence, the beam pattern flattens out in the direction

of the uncertainty region and the interference values become less variable. This is

shown in Fig. 7.2 where the spread of the CDF increases from ǫ = δ = 0.01 to

ǫ = δ = 0.06 but then decreases for ǫ = δ = 0.11. This observation has another

implication. For small ǫ, δ the sharp nulls mean that the interference constraint can

be attained by beamforming and then full transmit power can be used to boost the

CR-CR SINR. However, for larger ǫ, δ values the beam pattern does not have sharp

nulls and power back-off may be required. For example, in Fig. 7.2 full transmit

power was used for ǫ = δ ∈ {0.01, 0.03, 0.06} but a 20% back off was required for
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ǫ = δ = 0.11.

In Fig. 7.3 the CDF for the SINR at CR RX 1 for different values of ǫ, δ is

plotted. As in Fig. 7.2, the CDF is over the possible channels in the uncertainty

region. It is seen that, as expected, higher ǫ, δ result in a decrease in the mean

SINR as decreased channel knowledge limits the ability of the TX to direct strong

beams towards the CR RXs while simultaneously directing nulls towards the PU

RXs. The non-robust design provides higher SINR, however, as seen in Fig. 7.2,

such non-robust beamformers perform poorly in terms of maintaining interference

below the threshold at the PU RXs. For example, in this case the interference at

PU RX 1 exceeded its threshold 64% of time. We also provide a comparison with

the results obtained using [100, Algorithm 1]. With our thresh.1 = 0.05, the SINR

of the proposed approach tends to be higher. This difference is magnified especially

for larger radii of spherical balls representing the channel uncertainty. A comparison

with [100, Algorithm 1] also was performed using thresh.1 = .00001 and it was

observed that the two SINRs can be approximately the same, albeit at the cost of

greater leakage interference to the PU RXs in [100, Algorithm 1]. The greater

interference at PU RXs in [100, Algorithm 1] is again due to the unavailability of

exact rank-1 matrices, thus, prohibiting accurate extraction of beamformers from

the matrix precoders. This clearly shows the superiority of the proposed approach.

Finally, in Fig. 7.4 we explore the effect of interference due to the presence

of PU TXs. We assume there are 5 single antenna TXs and that the interfering

channels experience Rayleigh fading. In the “Std. Ray. Int.” case the interfering

signals are unit power and the powers are halved in the “Half power Int.” case.

Hence, the values of Ptotal/(I + N0) are 6.2 dB, 8.5 dB and 13.97 dB for the 3

curves in Fig. 7.4 where I represents the total interference power. We have taken

ǫ = 0.11, δ = 0.11 in Fig. 7.4. It is seen that standard Rayleigh interference results

in the worst performance. If the power of each of the interfering signals is halved,

the mean rate of CR 1 increases from 1.46 bps/Hz to 1.87 bps/Hz. However, as is

evident from Fig. 7.4, the best performance (mean rate of 2.5 bps/Hz) is obtained

in the absence of any such interference. With the proposed algorithm performing
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slightly better than [100, Algorithm 1] in the standard Rayleigh interference case

(leftmost curve), it is seen that the performance of both algorithms is almost the

same in terms of rate in the remaining two scenarios. Thus, in addition to validating

the analysis in (7.11), this clearly shows that ignoring interference from the licensed

users can drastically over estimate the quality-of-service expected to be provided by

CR devices. [100, Algorithm 1].

7.5 Summary

We have studied the the problem of balancing SINR in the downlink of a multiple

input single output CR network. The beamformers obtained also satisfy interference

constraints at the PU RXs and total transmit power constraints at the CR BS. The

optimal beamforming problem is tackled by exactly solving a SDP, to within a cer-

tain acceptable tolerance, without relaxing the rank-1 constraints. A low complexity

algorithm implementing the proposed approach has been presented. Furthermore,

the results are extended to include the effect of interference from PU TXs and nu-

merical simulations have been presented that show the effectiveness of the proposed

procedure.
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Chapter 8

Conclusions and Future Work

We conclude the thesis by providing the main conclusions that can be drawn from

the earlier chapters. We also point out some open problems and research directions

for future work.

8.1 Conclusions

CRs are being considered as a remedy to the perceived RF-spectrum scarcity. The

inefficient usage of spectrum and the ever increasing demand of wireless devices has

been the main reason for the tremendous research interest in CR technology.

After presenting an overview of some fundamentals of wireless communications

and convex optimization techniques, Chapter 3 explores the information theoretic

limits of a CR system operating in overlay mode. With a realistic interference

channel incorporating both shadowing and fast fading, we show that the so called

low interference regime constitutes the dominant mode of operation. This conclusion

is especially true in the case when the CR coverage radius is small in comparison to

that of the PU coverage area. However, as these coverage radii become comparable,

the low and high interference regimes may occur with roughly equal probability.

In addition to this, we have presented a simplified expression for a key parameter,

α, that dictates the amount of power the CR dedicates to relaying PU message.

Furthermore, we have concluded this chapter by presenting the effect of various
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system parameters on the statistics of α.

The statistics of the strength of interfering signals in CR networks will play a

very significant role in the design of future CR networks. Similarly, the fluctuation

rates of signals from interfering CR devices and their impact on PU performance

will decide the fate of CR networks. In Chapter 4, we have studied the interference

statistics from various different perspectives. In particular, we model the inter-

ference due to a single CR in a closed form. Then we have shown that the sum

interference due to multiple CRs does not admit an approximation with a two and

three parameter lognormal density. In the second half of the chapter, we study

second order statistics of interference in CR networks. In particular, we have shown

that the LCR of cumulative interference in Rayleigh and Rician environments can be

well approximated by equating the random processes representing total interference

with a gamma and a noncentral χ2 variables. Based on the LCR and AED results

we conclude that a CR allocation process should give priority to several small CR

interferers rather than one dominant one.

The CRs should access the spectrum in such a way that, in addition to satisfy-

ing interference constraints, they should also maintain QoS operation. Exploiting

REM forms one such feasible option which is likely to deliver the desired goals. In

Chapter 5 we study and compare various CR allocation schemes. To begin with,

we compare the PEZ technique with a REM approach that requires signal strength

data at all points in space. By performing a comparison on the basis of the admis-

sible number of CRs or the percentage of CRs allowed to operate, we observe that

the REM method is beneficial compared to PEZ only if the CRs are allocated in an

intelligent manner. For example, a first-come-first-served basis can perform worse

than the PEZ approach, thus failing to exploit the benefits of the huge amount of

REM information available at its disposal. We also compare the two schemes in

different environmental conditions. Later, we explore the effect of discretizing the

REM information. We have shown using a coarse REM can have a huge negative

impact in terms of the CRs significantly underestimating the interference at the PU

device.
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Up to this point in the thesis, we concentrate on single antenna CR devices.

Multiple antennas on communicating terminals are well known to ensure high date

rates and reliability. In the case of CR networks, they can provide an additional

benefit in helping maintain the PU interference constraints. Chapter 6 aims to

exploit this potential while simultaneously ensuring reduced complexity hardware

by employing antenna selection at the CR TX and RX. We aim at choosing the best

subset of transmit and receive antennas that can maximize the achievable data rates

and satisfy the interference tolerance limits at the PU RXs as well. We present three

schemes in order of decreasing complexity to accomplish this goal. Surprisingly, it

is observed that the least complex of these schemes, namely, the one that involves

choosing separate TX and RX antennas on the basis of norms of signal strengths,

performs nearly the same as the exhaustive search approach. In addition to this,

we have also presented some preliminary performance analysis of the exhaustive

search method used to find the best SISO link in the system. We also extend

these investigations to real world environments via simulation. We conclude that

antenna selection based underlay CR systems can be a plausible option in sparse PU

environments. Serving mobile terminals on the basis of SINR without consideration

of fairness can effect the QoS expected from delay constrained users. In the case of

CR networks, this effect can become increasingly pronounced keeping in view the

stringent interference constraints to be met at the PU RXs. In Chapter 7 we devise

an algorithm aimed at balancing SINR among CR users with various PU RXs in the

proximity and imperfect CSI available at the base-station. The initial non-convex

problem is relaxed to a quasi-convex problem by dropping rank constraints. It is

then solved exactly by using a newly developed convex iteration technique. The

benefits of the proposed technique are asserted via simulations.

8.2 Future Research Directions

The thesis has presented a broad range of research in different areas of CR networks.

Although the bulk of CR research is still being carried out in the academic research
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environment, there is, in general, a great interest in realizing CR networks in the

future. At present, TV bands have proved to be the most attractive option in terms

of exploiting cognitive capabilities [5], but very recent results show that researchers

are exploring the potential of CRs implementation over a wide range of spectrum

[116]. In what follows, we present a brief outline of future research options in the

field of CR networks in general and in the context of topics considered in the thesis

in particular. We emphasize that the suggestions given below do not, in any case,

form an exhaustive list.

With reference to the information theoretic study of CR networks, the thesis

presented the idealistic situation where all nodes perfectly know the CSI in the

overlay model. Of course, this is not going to happen in reality. Hence, investigating

the results under different models expressing imperfect CSI needs to be carried out.

If a dedicated bandwidth limited feedback channel is used, then this study could

further be extended to the case of exploring limited feedback consequences on the

system performance. On top of this, the considered overlay model is very basic and

only consists of a pair of CR and PU transceivers. It would be useful to expand

this simple network to the multiple user case. Such a model can then be used for

different research developments.

Statistical modeling of the interference at a PU due to all interfering CRs is still

a wide open area to conduct research in. We think that, instead of trying to exactly

obtain an expression for, say, the CDF of the random variable representing such

interference, it will be much better to try and fit a simple distribution. Such a fit

can be very fruitful in terms of designing CR networks. On top of this, there does

not seem to be literature available where the problem of finding the distribution of

SINR in lognormally faded CR environment is considered. It may very well turn

out that a distribution showing a poor fit in the case of cumulative interference

only may result in a better fit over a wide range of system parameter values when

the SINR is considered. Similarly, the case of LCR evaluation need to be extended

to the SINR metric. Furthermore, various different combinations of fading may be

considered while developing expressions for the LCR performance measure.
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CR scheduling schemes exploiting REM information need to be explored in more

depth. In addition to the critical issue of what information should constitute a REM,

the issue of imperfect/coarse REM should be investigated in more depth. The results

presented in the thesis rely on various idealistic assumptions and thus correspond to

upper bounds on exact values. Similarly, comparisons need to be obtained between

the REM based techniques and the conventional overlay and underlay methodolo-

gies.

As mentioned previously, MIMO CRs form a very hot area of research. With

only few investigations available, the MIMO techniques need more development

for CR purposes. For example, the formulation of antenna selection based CRs

assumes perfect CSI at all nodes. This assumption should be relaxed to imperfect

CSI modeled using various different strategies. It may very well turn out that the

proposed techniques are no longer as efficient as they are in the case of imperfect

CSI. Similarly, the analysis presented should also be extended to the case of a

MIMO link selected out of the given system. With regard to the SINR balancing,

the approach presented is highly centralized and the scenarios needed to transform

it to a distributed implementation should be investigated.
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Appendix A

Distribution of the Ratio rcc/rcp

The variable rcc represents the distance of the CR link where the receiver is uniformly

located in an annulus of dimension [R0, Rc] around the transmitter. Similarly, rcp

describes the the distance of the CR transmitter to the PU receiver where the CR

transmitter is uniformly located in an annulus of dimension [R0, Rp] around the PU

receiver. To evaluate the distribution of rcc/rcp in the case where Rp > Rc, we

proceed with

P (rcc < xrcp) = Ercp
[P (rcc < xrcp|rcp)]

=

∫ β

α

2rcp(x
2r2

cp − R2
0)

(R2
c − R2

0)(R
2
p −R2

0)
drcp

=
0.5x2(β4 − α4)− R2

0(β
2 − α2)

(R2
c −R2

0)(R
2
p − R2

0)
, (A.1)

where we have used the facts that the PDF of the variable rcp is given by 2rcp/(R2
p−

R2
0) and that P (rcc < xrcp) = (x2r2

cp − R2
0)/(R2

c − R2
0). A little inspection reveals

that the random variable rcp takes on the values α < x ≤ β corresponding to the

three different ranges of x as below:

• for R0/Rp < x < Rc/Rp, rcp ranges from α = R0/x to β = Rp,

• for Rc/Rp < x < 1, rcp has a range from α = R0/x to β = Rc/x, and

• for 1 < x < Rc/R0, rcp spans a range from α = R0 to β = Rc/x.
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Hence, using the above ranges of x and rcp in (C.1), some mathematical manipula-

tions lead to (3.7). For the opposite case where Rp < Rc the same approach leads

to the result

P

(
rcc

rcp
< x

)
= di0x

−2 + di1 + di2x
2, x ∈ Ti (A.2)

for i = 1, 2, 3, 4, 5. The regions in (A.2) are defined by T1 = {x|x ≤ R0/Rp}, T2 =

{x|R0/Rp < x ≤ 1}, T3 = {x|1 < x ≤ Rc/Rp}, T4 = {x|Rc/Rp < x ≤ Rc/R0} and

T5 = {x|x > Rc/R0}. With ∆ = (R2
c−R2

0)(R
2
p−R2

0), the constants in (A.2) are given

by d10 = d11 = d12 = 0, d21 = 0.5R4
0/∆, d22 = −R2

0R
2
p/∆, d23 = 0.5R4

p/∆, d31 = 0,

d32 = (R4
0−R2

0R
2
p)/∆, d33 = 0.5(R4

p−R4
0)/∆, d41 = (0.5R4

c−R2
0R

2
c)/∆−R2

c/(R2
p−R2

0),

d42 = R4
0/∆ + R2

p/(R2
p − R2

0), d43 = −0.5R4
0/∆, d51 = 0, d52 = 1 and d53 = 0.
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Appendix B

Evaluation of (3.25) for Rayleigh

Fading

When there is Rayleigh fading in all links of the CR interference channel, the dis-

tribution and density functions given in (3.25) are those of a standard unit mean

exponential random variable. Thus, with this substitution in (3.25) we get

P

(
UW < ζx|U <

V

d

)

=

∫∞
0

(1− e−ζxd/v)(1− e−v/d)e−vdv +
∫∞
0

(1− e−ζx/w)e−we−ζxd/wdw∫∞
0

(1− e−v/d)e−vdv

= 1 +

∫∞
0

e−ζxd/v−v(1+1/d)dv −
∫∞
0

e−w−ζ/w(x+xd)dw

1− d/(1 + d)

= 1 + (d + 1)

[ ∫ ∞

0

e−ζxd/v−v(1+d)/ddv −
∫ ∞

0

e−w−ζx(1+d)/wdw

]

(a)
= 1 + (d + 1)

[ ∫ ∞

0

e−ζxd/v−v(1+d)/ddv − (1 + d)/d

∫ ∞

0

e−v(1+d)/d−ζxd/vdv

]

= 1− (d + 1)/d

∫ ∞

0

e−ζxd/v−v(1+d)/ddv

(b)
= 1−

∫ ∞

0

e−ζx(1+d)/t−tdt. (B.1)

where in both (a) and (b) above we have used the substitutions w = v(1 + d)/d and

t = v(1 + d)/d respectively. Now using ζ = 4/µsµt and evaluating the integral in

the last equality using a standard result in [117] we arrive at (3.26).
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Appendix C

Evaluation of Moments of

Cumulative Interference Under

Rician Conditions

Let Y denote the random variable defined by (4.31). The first three moments of Y

are [60]

E[Y ] =
(λ + v)

α̃
, E[Y 2] =

((λ + v)2 + 2(λ + v) + 2λ)

α̃2
(C.1)

E[Y 3] =
(λ + v)3+6(λ + v)2+6λ(λ + v)+8(λ + v)+16λ

α̃3
. (C.2)

Similarly, suppose m1, m2 and m3 denote the moments of IRic(t) in (4.30) about

the origin. Expanding IRic(t), I2
Ric(t) and I3

Ric(t) into multiple sums and taking

expectation using standard results in [60] leads to

m1 =
N∑

i=1

Ii, m2 =

( N∑

i=1

Ii

)2

+
N∑

i=1

I2
i

(
1−

(
K

K + 1

)2)
(C.3)

m3 =

( N∑

i=1

Ii

)3

+ 3

N∑

i=1

N∑

k 6=i,k=1

I2
i Ik

(
1−

(
K

K + 1

)2)

+

N∑

i=1

I3
i

(
5− 9

(
K

K + 1

)2

+ 4

(
K

K + 1

)3)
. (C.4)
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Now applying the method of moments, we solve mk = E[Y k] for k = 1, 2, 3 and

obtain the following:

λ = 0.5α̃(α̃m2 − α̃m2
1 − 2m1), v = α̃m1 − λ, (C.5)

where α̃ is the solution to the following quadratic equation

−2α̃2m3
1 − α̃2m3 + 3α̃2m1m2 + 8α̃m2 − 8α̃m2

1 − 8m1 = 0. (C.6)
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Appendix D

Equivalence of the LCR of a

Noncentral-χ2 Random Variable

with Non-Integer Degrees of

Freedom

In [77] a noncentral χ2 process, denoted r, is considered. The only part of the

derivation in [77] that requires integer dof is the proof that the conditional distribu-

tion of ṙ given r is Gaussian with variance V ar(ṙ|r) = 4σ̃2r where σ̃2 is a variance

parameter. In this Appendix we show that this is true for a general noncentral χ2

process. The LCR of a stationary gamma process was first derived by Barakat [76]

in an optics context building on previous results in [118]. This analysis is based on

the representation [76]

Ω =

∫

Ar

|E(x)|2dx (D.1)

where Ar is the region of integration (an aperture in [76]), E(x) is a circular

complex zero-mean Gaussian process and Ω is the resulting gamma variable. If

E(x) is allowed to have a constant non-zero mean then for certain Ar, the resulting

Ω has a scaled noncentral χ2 distribution with arbitrary degrees of freedom (not
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necessarily integer). For this noncentral case let E(x) = E1(x) + jE2(x) and

Ω =

∫

Ar

E2
1(x) + E2

2(x)dx, (D.2)

where E1(x) and E2(x) are both non-zero mean Gaussian processes. The derivative

of Ω is therefore

Ω̇ =

∫

Ar

[2E1(x)Ė1(x) + 2E2(x)Ė2(x)]dx. (D.3)

Now it is well known [119, 77, 75, 74, 78] that Ė1(x), Ė2(x) are zero-mean Gaussian

variables which are independent of E1(x), E2(x) and each other. Let the distribution

of both derivatives be denoted by N (0, σ2). Hence, conditioned on E1(x) and E2(x)

over x ∈ Ar, the derivative, Ω̇, is also zero mean Gaussian. The variance of Ω̇

conditioned on {E1(x), E2(x)|x ∈ Ar} is given by

E

[ ∫

Ar

∫

Ar

(2E1(x)Ė1(x) + 2E2(x)Ė2(x))(2E1(y)Ė1(y) + 2E2(y)Ė2(y))dxdy

]

= E

[ ∫

Ar

(
4E2

1(x)Ė2
1(x) + 4E2

2(x)Ė2
2(x)

)
dx

]
(D.4)

since Ėi(x) is independent of Ėi(y) for x 6= y. Also, since E[Ė2
i (x)] = σ2, the

conditional variance is

4σ2

∫

Ar

[E2
1(x) + E2

2(x)]dx = 4σ2Ω (D.5)

Hence, Ω̇ has the representation Ω̇ = 2σΩ1/2Z where Z ∼ N (0, 1) and Ω̇ has the

conditional density

fΩ̇|Ω =
exp( −x2

8σ2Ω
)√

8πσ2Ω
. (D.6)

Since Ω̇ ∼ N (0, 4σ2Ω), conditional on Ω, the proof is complete.
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