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                                                    Preface 

“……...Whenever we do something that fills us with enthusiasm, we are following our 

legend. …. I ask myself: are defeats necessary? Well, necessary or not, they happen. 

When we first begin fighting for our dream, we have no experience and make many 

mistakes. The secret of life, though, is to fall seven times and to get up eight times. So, 

why is it so important to live our personal calling if we are only going to suffer more 

than other people? Because, once we have overcome the defeats – and we always do – 

we are filled by a greater sense of euphoria and confidence. In the silence of our hearts, 

we know that we are proving ourselves worthy of the miracle of life. Each day, each 

hour, is part of the good fight. We start to live with enthusiasm and pleasure. …….”. 

                                                                                             Paulo Coelho, “The Alchemist”  
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List of Symbols 

Subscript i, j, k, l, are general counting variables.  

 

 

Roman Symbols: 
 

A:   Forward FEM matrix or a symmetric, positive definite matrix in the linear CG 

algorithm. 

A: Bilinear operator. 

ijklC : The elasticity tensor. 

FDx : 
Another notation for the first derivation

x

F

∂

∂
. 

2-D: Two dimensions. 

3-D: Three dimensions. 

E: Young’s modulus. 

F: An arbitrary function. 

Hz: The frequency unit. 

J:   Jacobian matrix. 

K: 
Bulk Modulus (

)21(3 υ−
=

E
K ) or condition number (Eq. 2.16).        

KPa: The shear modulus unit (Kilo Pascal). 

L: Characteristic length. 

Lx: The length of the zone in the x direction. 

Ly: The length of the zone in the y direction. 

1L : An expression for TV, which is the norm of the first spatial derivation of the 

solution. 

M:   Number of iterations. 

N: Number of nodes. 

R : Regularization term. 

eR : Real component of the complex displacements. 

fwdR : RHS vector containing boundary conditions in the forward problem. 

invR : RHS vector containing boundary conditions in the inverse problem. 

ijklS : Compliance tensor.  

T: Transpose. 
*2T : MR magnitude image. 

U : Strain energy function. 

V: Total Volume. 

V0 : Original volume. 

V∆  : Change in volume for a particular state of strain. 

X: Global coordinate direction or excitation direction. 
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Y: Global coordinate direction or excitation direction. 

Z:   Global coordinate direction or direct inversion matrix or excitation direction. 

a:                            Matrix row (Eq. 2.15). 

b:                             RHS for the linear system Ax=b where x is an exact solution. 

cb : RHS for a linear system cc bAx = where cx  is a calculated solution. 

c:   Velocity of shear waves. 

e: Volumetric strain. 

ke : Current error vector in the linear CG. 

f:    Frequency (Hz). 

i:                              The current node number. 

j:                         General counting variables or 1− . 
k:                              The current sequence of iteration.     

ijl : Transformation tensor.                                                                                                                                                                                                                         

kp :                      The current search direction in an iterative optimization procedure. 

ip : Conjugate vector. 

jp : Conjugate vector. 

r:                        The error due to substituting the approximate solution into the weak form of the 

general forward problem. 

kr : Current residual in the linear CG. 

t:                           Time. 

u:                            Displacement field. 
c

u : Displacements calculated using the current η estimate. 
m

u : Measured displacements. 

apu : An approximation of the displacement. 

cu : Complex displacement amplitude. 

iu : Imaginary component of the complex displacement. 

ru : Real component of the complex displacement. 

u
(

: Real-valued amplitude of displacement from MR-detected motions. 
X

u  Displacement component in the X direction. 
Y

u  Displacement component in the Y direction. 
Z

u  Displacement component in the Z direction. 

jw : A weighted function. 

x:                          An exact solution to a linear system as Ax=b: 

cx : Calculated solution for a linear system
cc bAx = . 

kx : The value of the function in the current iteration or actual solution. 

1+kx : The value of the function in the new iteration.             

0x : The starting point in minimization algorithm known as initial guess. 
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Greek Symbols: 

 
 

kα : The step length in an iterative process selected by line search. 

tvα :   The TV regularization parameter. 

TKα : Tikhonov regularization weight. 

kβ : Conjugate gradient scalar.                      

FRβ : The β obtained from the Fletcher-Reeves formula (2.42). 

PRβ : The β obtained from the Polak-Ribiere formula (2.43). 

sλ : Shear wavelengths per side. 

λ : First Lam´e parameter. 

θ : Argument in the Euler’s formula or the function gives the angle the positive real 

axis and the vector position of the complex plane. 

µ : Shear modulus, or second Lam´e parameter. 

magµ : The orthotropic magnitude shear modulus vector at each node. 

XYµ : The orthotropic real shear moduli component in the X-Y plane. 

ZXµ : The orthotropic real shear moduli component in the Z-X plane. 

ZYµ : The orthotropic real shear moduli component in the Z-Y plane. 

ijσ : Second order isotropic stress tensor. 

iσ : Axial stresses. 

klε  : Second order isotropic strain tensor. 

iε  : Axial strains. 

iτ : Shear stresses.  

iγ : Shear strains. 

τ : Time domain. 

υ : Poisson’s ratio. 

ρ : Density. 

ϕ : Phase of MR-detected motions. 

ω : Angular frequency of time-harmonic motion (rad 1−
s ). 

η : A general reconstructed variable. 

φ : Nodal basis function (shape function). 

Ψ : Displacement error function. 

Ψ′ : First derivative of the displacement error function. 

Ψ ′′ : Second derivative of the displacement error function. 

Φ :   Objective function. 

tvΦ : Objective function applied in the TV regularization technique. 

TKΦ : Objective function applied in the TK regularization technique. 

Ω :   Whole problem domain. 

δ : The step size used for the FD approximation in the secant method. 
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Acronyms: 

 
 

CG:              Conjugate gradient. 

COR. CO: Correlation Coefficient. 

DOF:           Degree of freedom. 

FD:       Finite difference. 

FE:              Finite element. 

FEM:           Finite element method. 

GB: Giga bytes. 

HPC:           High performance super computer. 

Hz:              Frequency unit (Hertz). 

I.G.:            Initial guess. 

MR:             Magnetic resonance. 

MRE:          Magnetic resonance elastography. 

MRI:           Magnetic resonance imaging. 

PDE:           Partial differential equation. 

RHS:           Right hand side. 

STD:           Standard deviation.  

TK :             Tikhonov regularization methods. 

TV:              Total variation regularization methods. 

.. ErrRl : Relative Error. 

 

 

Mathematical Symbols: 

 
 

∆ : Changes i.e. V∆ is the change in total volume. 

∇ : Gradient. 

⋅∇  : Divergence. 

∂ : Directional derivative. 

δ : Variation or an arbitrary small non-zero number. 

ε : Small non-zero number. 

: Absolute value. 

: Norm. 

∫ : Integration on the surface. 

∫
Ω

: Integration on the whole domainΩ . 

 

A(.,.): A bilinear operator which shows the inner product between two tensors. 
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Abstract 

To date, elastographic imaging techniques such as magnetic resonance elastography (MRE) 

have primarily been considered isotropic material properties, despite the fact that most 

biological tissues tend to have some anisotropic qualities.   

 

In this thesis, a finite-element based orthotropic, incompressible material model is used as 

the basis for the in vitro MRE gelatin phantom. This study includes the use of biologically 

based orthotropic gelatin phantoms, with MRI data acquisition and boundary conditions 

suitable to describe the orthotropic material behavior.  

 

Fabricating a biological gelatin phantom using pineapple for MRE in vitro testing is a novel 

technique which was developed specially for this study. Multiple motion measurements from 

the pineapple gelatin phantom were made by applying directionally independent boundary 

conditions within the 85-125 Hz frequency range. Such multiple, orthogonal excitation data 

is needed to provide a complete description of the mechanical properties of this anisotropic 

phantom, given the potential for non-uniqueness of the reconstructed property estimates.  

 

Orthotropic image reconstructions were then carried out to map orthotropic elasticity 

properties in 3-D based on MR detected motion datasets captured from the pineapple gelatin 

phantom. The subzone based orthotropic incompressible reconstruction algorithm was based 

on the Conjugate Gradient optimization method, to gain computational efficiency, and used 

total volitional (TV) regularization techniques to constraint the solution process.  

 

The adjoint-residual method was utilized to improve the efficiency of the gradient descent 

based algorithm. The elasticity image reconstruction results presented for the orthotropic 

incompressible phantom are also correlated with isotropic property reconstructions for the 

same phantom.  
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“Believe, when you are most unhappy, that there is something for you to do in the world. So 

long as you can sweeten another's pain, life is not in vain”.            Helen Keller 

 

Chapter1 

 

1.1 Breast Cancer 

Breast cancer is a disease in which abnormal cells (cancerous) grow in an uncontrolled 

way inside the normal breast tissue.  A malignant tumour is a group of cancer cells that 

attack surrounding tissues [1].  Breast cancer is the second leading cause of cancer deaths 

in women today and is the most common cancer among women, excluding non-melanoma 

skin cancers. According to the World Health Organization (WHO), more than 1.2 million 

people diagnosed with breast cancer in 2007 worldwide [3].  

The American Cancer Society estimates that about 213,000 women in the United States 

will be diagnosed with invasive breast cancer each year. The chance of developing 

invasive breast cancer during a woman's lifetime is approximately 1 in 8 (about 13%). 

Though much less common, breast cancer also occurs in men. An estimated 1,720 cases 

were diagnosed in men in 2005.  

According to the American Cancer Society, the chance that breast cancer will be 

responsible for a woman's death is about 1 in 33 (3%). The incidence rate of breast cancer 

(number of new breast cancers per 100,000 women) increased by approximately 4% during 

the 1980s but levelled off to 100.6 cases per 100,000 women in the 1990s. The death rates 

from breast cancer also declined significantly between 1992 and 1996, with the largest 

decreases among younger women [4, 5]. 
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Figure 1- 1 MRI scan of the breast clearly shows two areas of abnormality, which proved to be cancer [2]. 

 

 

Medical experts attribute the decline in breast cancer deaths to earlier detection and more 

effective treatments [6, 7]. Table 1.1 shows estimated breast cancer rates in various regions 

of the world, with a focus on New Zealand and Australia for purpose of comparison [8]. 

Per 100,000 females, New Zealand has the fifth highest breast cancer incidence in the 

world. In this country, cancer registration figures show that 2,345 women were diagnosed 

with breast cancer in 2002. Each year, more than 2000 New Zealand women are diagnosed 

with breast cancer. A statistics report given by New Zealand Health Information Service 

about breast cancer illustrates that the death rate due to breast cancer is notably high 

among women [9, 10].   

 

1.2 Diagnosis of Breast Cancer 

Here the current diagnostic methods for breast cancer screening are classified. This 

classification includes two main categories; clinical breast exams and imaging studies that 

are explained in the next section. 
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1.2.1 Clinical Breast Exam 

Manual palpation performed by self-examination or a physician is a traditional method for 

detecting abnormal lesions within the breast. The ability to detect anomalies using this 

method is a result of the increased stiffness of the lesion [11]. However, breast cancer 

symptoms can also include swelling and skin changes. Many breast cancers have no obvious 

symptoms [12], so manual palpation will not be able to detect the cancer accurately and thus 

is not reliable. 

 

Region New Cases 

(2000) 

Deaths 

(2000) 

Eastern Africa 

Middle Africa 

Northern Africa 

Southern Africa 

Western Africa 

Caribbean 

Central America 

South America 

Northern America 

Eastern Asia 

South-Eastern Asia 

South Central Asia 

Western Asia 

Eastern Europe 

Northern Europe 

Southern Europe 

Western Europe 

Australia/New Zealand 

Melanesia 

Micronesia 

 

13,615 

3,902 

18,724 

5,537 

17,389 

6,210 

18,663 

69,924 

202,044 

142,656 

55,907 

129,620 

20,155 

110,975 

54,551 

65,284 

115,308 

12,748 

470 

62 

 

6,119 

1,775 

8,388 

2,504 

7,830 

2,310 

5,888 

22,735 

51,184 

38,826 

24,961 

62,212 

8,459 

43,058 

20,992 

25,205 

40,443 

3,427 

209 

28 

 

 

 
                                       Table 1-1 Estimated Breast Cancer Cases/Deaths Worldwide 
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1.2.2 Imaging Studies 

For breast cancer diagnosis, several novel methods in the field of soft tissue imaging are 

currently under development, as outlined below. 

 

1.2.2.1 Mammography 

Mammography is a specific type of imaging that uses a low-dose X-ray system to examine 

breasts. A mammography exam, known a mammogram, is used to help in the early detection 

and diagnosis of breast diseases in women. There are a number of disadvantages to this 

method. Initial mammography images are not usually enough to determine the existence of a 

normal or cancer disease with certainty. Sometimes interpretations of mammograms are 

difficult because a normal breast can appear differently for each woman [13, 14]. While 

mammography is commonly used as a screening tool for breast cancer, this method is not 

able to detect all breast cancers. Experience show that a cancer could be indicated when there 

is no cancer, which is called a false-positive result. These results occur mostly in women 

younger than forty as the tissue of the breast is not enough dense. This method is also painful 

for women [15, 16].  

 

1.2.2.2 Breast Ultrasound  

In ultrasound imaging, organs are exposed by high-frequency sound waves to produce 

images. In this technique, sound waves will be sent through a part of body and then the 

reflection will be received off of soft tissues and an image is constructed based upon the 

interpretation of the waves’ reflections.  Usually a single probe both sends and receives the 

sound waves. The structure and movement of the internal organs can be shown in 

ultrasound images as the pictures are taken in real-time known as Doppler. Ultrasound 

imaging is a non-invasive imaging modality that it used to diagnose breast cancer [17].  

Recently, three-dimensional (3D) ultrasound has been used to translate sound wave data 

into 3D images. An advanced ultrasound technology is four-dimensional (4D) ultrasound, 

which is a 3D ultrasound in motion [18]. 
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1.2.2.3 Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging (MRI) is a high quality non-invasive medical imaging 

modality that helps to diagnose cancer and tumours. The technique uses radiofrequency 

waves rather than x-rays. A strong magnetic field helps to produce high resolution images 

of internal organs and tissues. These detailed pictures can then be seen on a computer 

monitor. MRI imaging is an accurate method in comparison with other medical image 

modalities such as mammography and valuable to detect a wide range of disease in all 

tissues and organs [19, 20, 21, 22]. 

 

Figure 1- 2 A superconducting magnet from a magnetic resonance imager (MRI) 

 

 

 

 

1.2.2.4 Elastographic Methods 

Elastographic techniques for breast cancer screening concentrate on the elevated elastic 

property contrast between carcinoma and breast tissue. Separate studies completed by 

Krouskop et al. [23] and Samani et al. [24] measuring the elastic modules of human tissue 

have shown invasive ductal carcinoma to be approximately an order of magnitude stiffer 

than fibro glandular tissue from a healthy breast. This contrast allows carcinoma to be 

identified within the breast based on a tissue stiffness map. 
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The relatively new field of elastography has developed [25] around efforts to image the 

mechanical properties of soft tissue. The desire for such images has come from clinical based 

findings that a variety of diseases, such as breast cancer, exhibit significant changes in the 

stiffness of the tissue they affect [26]. The field of elastography thus involves developing 

image reconstruction methods for relating measured tissue motion to underlying tissue 

stiffness patterns [27, 28, 29, 30, 31].  

 

As it turns out, this relation between stiffness and motion is most commonly calculated in the 

form of computational models of the motion behavior of materials with complex stiffness 

distributions. In theory, the more sophisticated these models are, the more accurate the 

resulting elasticity image predictions they generate will be. There several types of 

elastographic image modalities that are presented in below.  

 

1.2.2.4.1 Digital–Image-Elasto-Tomography (DIET) 

 

Digital-Image- Elasto-Tomography (DIET) is a proposed new imaging technique which uses 

only surface motion supplied by a set of digital cameras to describe the elastic properties 

within the breast volume. This novel method determines the distribution of elastic properties 

within the breast by utilizing surface displacements. Several calibrated digital cameras detect 

and picture the motion and then an inverse reconstruction algorithm allows mapping the 

internal elastic stiffness distribution of the breast.  As the breast cancer cells are much stiffer 

than normal tissue, this reconstructed elastic property distribution can clarify carcinoma even 

with the addition of random noise based on expected calibration accuracy [32, 33]. 

 

1.2.2.4.2 Ultrasound Elastography 

Ultrasound elastography is a soft tissue imaging modality based on high-frequency sound 

waves which is able to produce an elastogram using displacements generated by external 

loads [34]. This technique calculates the local elastic properties of tissue in vitro and in 

vivo through an estimation of strain within tissue under external load condition [35].  



    

7 

 

The procedures involved with ultrasound elastography are categorized as: ultrasound 

image data acquisition, image registration and elastic modulus reconstruction.  In the 

image acquisition technique, the image dataset is obtained while the object (phantom or 

tissue) is deformed under compression which this load condition is usually applied by an 

ultrasound probe.  

Then the displacement field is captured and displays as an image by processing the strain 

values recorded in the image dataset. In the final step, these displacements are utilized to 

elasticity modulus reconstruction through an inverse problem process [36, 37]. 

 

Figure 1- 3 This image shows a gelatine phantom and an ultrasound probe. The role of probe is important in 

an ultrasound imaging as it both sends and receives the sound’s wave. 

 

 

1.2.2.4.3 Magnetic Resonance Elastography (MRE) 

 

Magnetic Resonance Elastography (MRE) is a novel imaging technique for visualization of 

elastic property distributions in tissue. This medical imaging modality uses harmonic 

mechanical displacements measured in a MRI unit to calculate mechanical properties [38, 

39]. The technique has shown potential to diagnose suspicious breast lesions and it uses low-

frequency mechanical waves that are sent into the tissue and visualized via an MR sequence 

using the phase contrast method synchronized with mechanical excitation [40, 41].  
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One of the advantages of the breast
 
MRE technique is that this method can quantitatively 

show the elastic properties
 
of breast tissues in vivo and clarifies high shear elasticity modulus 

of breast tumours. Further research is needed to evaluate
 
the potential applications of MRE, 

such as detecting
 
breast carcinoma and characterizing suspicious breast lesions [42, 43]. 

 

This research will mainly be conducted in the field of preventative breast cancer screening 

using MRE, which is expected to be a promising technique [44, 45, 46, 47], offering a 

potential alternative to the traditional methods of palpation and mammography [48, 49, 50, 

51]. Fig 1.4 shows a general protocol of a MRE imaging technique that comprises three main 

steps.  

 

First, an object that can be a phantom or a part of the body such as a breast is shaken by 

mechanical waves created by an actuator in a desired frequency. These mechanical waves 

create motion through the object (Fig. 1.4-A).  

 

Second, a motion (displacements) map is generated through the phase contrast MRI 

methods. To obtain such a motion image, it is necessary that the motion encoding gradient be 

synchronized with actuation at the same frequency (Fig 1.4-B).  

 

Third, the motion information is used to map the mechanical properties of the object by 

applying an inverse problem algorithm that reconstructs the elasticity image, known as an 

elastogram (Fig. 1.4-C).  

 

 

1.3 Motivation and Contribution 

The work specific to this research concerns the development of orthotropic phantoms, 

multiple displacement measurements from an orthotropic phantom and validating of the 

orthotropic incompressible algorithm to reconstruct a distributed orthotropic elasticity 

estimate from MRE detected motion data.  
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A 

 

 B 

                       C 

 

Figure 1- 4 This figure depicts the three main steps of an MRE imaging technique for a gelatine-pineapple 

phantom at frequency of 100 HZ.  Phantom actuating (A), displacements map generated through phase 

contrast MRI (B), and reconstructed elastogram (C) are shown. 
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This project seeks to evaluate the capability of an existing orthotropic incompressible 

algorithm to differentiate three shear moduli in three different directions as well as 

comparing the orthotropic results with a linear elasticity isotropic. Orthotropic models have 

already been well developed within the mechanical and biomedical engineering literature, so 

the investigation will focus mostly on the performance and capabilities of imaging 

algorithms based on these more advanced models. Typically these imaging algorithms are 

formulated based on “inverse problems” which are involved optimization methods and 

regularization techniques.  

 

Current models will therefore be improved in terms of anisotropy (orthotropic) that will also 

supply the basis for further implementations of various orthotropic nonlinearities. The 

correlation between the type of motion imaged by existing modalities (MRE) and the type of 

motion generated by forward and inverse simulations of these computational models must be 

accurate in order for quality images to be generated.  

 

While MRE techniques have proven to be powerful biomedical imaging tools, most 

approaches assume isotropic material properties and there is little quantitative information 

available regarding orthotropic material behaviour. The anisotropic models available in the 

literature evaluate elasticity modules mostly in 2-D [41, 42, and 43]. Therefore, to study a 

more realistic behaviour of tissue and cancerous tumours it is necessary to develop a 3-D 

model with actual geometry and elasticity modules to include sufficient details regarding the 

orthotropic behaviour. 

 

The analysis of the elasticity moduli for a biological orthotropic gelatine phantom 

(pineapple) fabricated for this study is expected to support the hypothesis that breast 

carcinoma might exhibit an anisotropic elasticity distribution.  

 

In this study a 3-D model of the pineapple phantom will be developed for MRE based 

anisotropic elastography, and a non-linear analysis using a finite element method (FEM) will 

be performed. The technique is extended to three dimensions to provide sufficient 

information about the anisotropy of the elasticity tensor. 
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 In terms of the finite element method (in particular for MRE algorithms), the reconstruction 

algorithm will be an iterative procedure, making an initial estimate of the elasticity parameter 

distribution.  

 

The technique used in this research will provide an approach to further understand the 

orthotropic behaviour of non-linear materials such as breast tissue and hard tumour and 

suggests a realistic design guideline for advanced MRE.  

 

1.4 Thesis Overview 

Chapter 1 presents the necessity of the breast cancer studying as well as classifying the 

current diagnostic methods for breast cancer screening. While the main focus of the MRE as 

a powerful imaging tools is to distinguish the cancer within a benign tissue, this research was 

mostly concentrated working on tissue-mimicking phantoms fabricated during this project to 

make a fundamental basis for a modern MRE technique based on orthotropic elastography 

by using a novel algorithm. 

 

Chapter 2 in general introduces theories of the MRE technique, inverse problem process 

based on iterative approaches, FEM implementations, Conjugate Gradient (CG) optimization 

method, total variation (TV) regularization technique and also adjoint gradient calculation 

regarding their application in this project.  

 

 

Chapter 3 covers the theory behind the anisotropic and orthotropic materials, isotropic and 

orthotropic incompressibility and also the orthotropic elastography regarding its applications 

in MRE.  

 

Chapter 4 introduces the MRE actuation systems utilized for this research and its remarks 

along with phantom-coil set up arrangements.  
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This chapter also presents the isotropic phantom manufacturing through a development of 

one wedge shaped inclusion phantom using silicone gel to generate a framework for the 

future isotropic phantom fabrication applied to MRE. Outside of the scope of this project, the 

role of one artifact due to actuation system and boundary conditions is evaluated by 

investigating several isotropic elasticity image reconstruction results obtained from two 

different actuation systems.  

 

 

Chapter 5 presents developments of several orthotropic incompressible phantoms using 

different novel approaches and materials (biological and non-biological) to propose a guide 

line for future MRE orthotropic phantom manufacturing. This chapter also discusses 

boundary condition and data acquisition improvements towards multiple displacement 

measurements collected in one MRE set. In addition, orthotropic phantom fabrication 

protocols and data acquisition analysis are also evaluated regarding their remarks applied to 

MRE.  

 

Chapter 6 represents orthotropic elasticity image reconstructions from a biological 

orthotropic phantom (pineapple) through the initial guess study to test the reliability of the 

new orthotropic algorithm. A range of different orthotropic reconstructions was computed 

and the results compared to the existing isotropic algorithm in linear elasticity. The main 

focus was to validate the ability of the algorithm to differentiate three shear moduli in three 

directions and the capability of the orthotropic phantom to mimic the orthotropic behaviour 

of tissue. The full MRE dataset developed for this thesis is also evaluated by Raleigh 

damping algorithm to obtain an optimum measurement condition regarding the frequency 

and directions for an advanced MRE in the future.    

 

Chapter 7 discuses the goals achieved throughout this thesis and the future work for all 

three phases; orthotropic phantom developments and modifications, multiple measurements 

developments and modifications for orthotropic boundary conditions and orthotropic 

algorithm validation and suggestions in elastograpgy image analysis.  
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 “Take the first step in faith. You don’t have to see the whole staircase, just take the first 

step”.        Dr. Martin Luther King 

 

 

 

Chapter 2 

 

2.1 Magnetic Resonance Elastography (MRE)  

As mentioned in 1.3.4.3, elasticity imaging comprises three basic steps: applying a known 

static or cyclic mechanical load through an object, measuring the deformation of the medium 

as the displacement pattern, and then calculating the elasticity modulus, or any related 

parameters that are worth being reconstructed. MRE has been developed to measure the 

elastic properties of tissue in-vivo [44, 45, 46, 47]. There are two different MRE styles: 

quasi-static and dynamic.  

 

The dynamic method uses shear wave propagation to actuate the tissue. This method was 

developed as a phase-contrast technique by using harmonic shear vibrations and 

synchronized cyclic motion gradients to map the motion as a displacement field. These 

recorded data are utilized to reconstruct the image. The quasi-static technique uses the phase-

contrast technique as well but the data acquisition in this method is often slow [48].  

 

MRI applies a sequence of radiofrequency (RF) excitation pulses and a series of magnetic 

field gradients to produce an image by locating and encoding the spatial position of hydrogen 

nuclei (spins) in volume elements (voxels) within a tissue [49, 50, 51]. Furthermore, the 

MRE method combines a motion encoding gradient (MEG) to other magnetic field gradients 

at the same frequency and direction as the actuator [48].  
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2.2 Motion Measuring 

In dynamic MRE, a piezoelectric or a voice actuator is used to actuate the sample being 

imaged with a sinusoidal driving signal. The MRI technique can scan the resulting harmonic 

motions within the volume of the sample using a phase contrast motion encoding gradients 

(MEGs) [49] which record the accumulated phase shift of the spins at different points along 

the sinusoidal signal [52].  

 

These motions can be mapped in 3D to describe the motion at every point in space within the 

medium. This method generates a complex displacement value at a grid of internal points 

within the sample volume at each point [53]. The wavelength of shear waves produced by an 

actuator can be defined as:  

 

                                                          
ρ

µ
λ

f
s

1
≈                                                    (2.1) 

 

where sλ  is the shear wavelength, f  is the actuation frequency in Hz, µ  is the shear  

modulus of the material, ρ is the density and 
ρ

µ
=c is the velocity of the shear waves [54]. 

 

2.3 Reconstructive Elastodynamic Imaging 

MRE is a means of visualizing and quantitatively measuring the elastic property distribution 

in tissues or phantoms using harmonic mechanical excitation at low frequencies (10 to 1000 

Hz) [49]. In this research, a phase-contrast MRI technique was used between 85-125 Hz in 

frequency to spatially map and measure the complete three-dimensional displacement 

patterns. From this data, local quantitative values of shear modulus distribution can be 

calculated.  
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2.3.1 Forward Problem 

By definition, a forward problem is finding the mechanical response which is usually 

displacements,u  in the MRE, given the material property distribution,η  and boundary 

conditions. The general formulation of the forward problem is presented as: 

 

                                                         }{})]{([ fwdRuA =η                                                 (2.2) 

 

where )(ηA is the forward matrix including terms related to material properties, η  and u are 

unknown displacements. The term of fwdR  is the RHS vector containing boundary 

conditions in the forward problem [44, 58]. 

 

The usual forward problem in linear elasto-dynamics involves finding the domain behaviour 

generated by the PDE description as well as considering boundary conditions under a known 

(or assumed) property distribution. The solution of the forward problem provides the 

displacement field, ),( txu , everywhere within the domain, which depends on position 

Ω∈x  and time τ∈t . In the case of elastography, the governing equation for a deformable 

medium is the linear elasto-dynamic equation. In the PDE form, also known as Navier’s 

equation (see Appendix A), these relations can be presented as: 

 

         
2

2
2 )()()(

t

u
uuuuu

∂

∂
=∇⋅∇+∇⋅∇+⋅∇∇+∇+⋅∇∇+ ρµµλµµλ          in Ω         (2.3) 

 

where u  is the displacement vector within the medium, µ and λ are material stiffness 

parameter, known as Lame’s constants which depend on position, and ρ is the density of the 

material [211, 27].  Young’s modulus of elasticity, E is related to Lame’s constants through 

the expressions involving Poisson’s ratio, υ ,  

 

                                                            
)1(2 υ

µ
+

=
E

                                                        (2.4) 
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υ
λ

−+
=

E
                                            (2.5) 

 

It should be noted that for nearly incompressible materials such as soft tissue, as υ  is very 

close to 0.5, according to equation (2.5) the Lame parameter, )()( xx µλ >> . In nearly 

incompressible materials, )(xλ  is too high to allow a visualization of its associated wave 

pattern. This makes reconstruction of the )(xλ parameter poorly conditioned based on 

measured data [55, 56, 57]. 

 

For imaging reconstruction, it is necessary to develop a parameter based on the model 

behavior which provides both a measurable response to excitation and a parameter that is 

worthy of being imaged. In MRE, this parameter is the shear modulus, µ . Also this PDE 

equation provides a measurable response pattern which is the displacement of the medium 

being imaged. 

 

The most common excitation used in the elastography field is a time harmonic excitation that 

creates a standing wave displacement pattern. In the MRE procedure, the complex 

displacement from MRI scans includes amplitude and phase information which are used in 

the inversion code. 

                                      

 

Figure 2- 1 The displacement pattern obtained from a simulation forward problem of a cubic gelatin phantom 

with fine mesh and shear waves. 
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The time harmonic displacement field takes on the form 

 

                                                   { }θj
ce exuRtxu )(),( =                                              (2.6) 

                                                             

 where                                                       ϕωθ += t                                                    (2.7) 

 

and ),( txu  is the real-value displacement occurring at position x  and time t , and 
cu  is 

complex displacement amplitude at phase ϕ  and angular frequencyω  of excitation. The real 

)(xu r
and imaginary )(xu i

components of 
cu  are defined as 

 

                                                  )()()( xjuxuxu irc +=                                                 (2.7) 

 

where 1−=j  so the equation (2.6) can be expanded using Euler’s formula, 

θθθ sincos je j +=  to give  

 

                    { } ( ) ( ){ })sin()cos()()()( θθθ
jxjuxuRexuR ire

j

ce ++=                     (2.9)  

 

which leads to    

 

                                      
)sin()()cos()(),( θθ xuxutxu ir −=                                      (2.10) 

 

This equation gives the form of the computed harmonic motions, so it is important that the 

measured motions are recorded as the same form.  

 

The MR-detected motions are given as real-valued amplitude )(xu
(

 and phase )(xϕ  for each 

point in the medium, so that the displacement field at a point x  and at time t  are given by  

                                                                                            

                                                )](cos[)(),( xtxutxu ϕω +=
(

                                      (2.11) 
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The displacements obtained from the harmonic motion discussed in equation (2.11) are 

substituted into equation (2.3), which yields 

 

 uuuuuu
(((((( 22 )()()( ρωµµλµµλ −=∇⋅∇+∇⋅∇+⋅∇∇+∇+⋅∇∇+

     
in Ω        (2.12) 

 

This equation, with the given boundary conditions, governs the general dynamic response of 

a homogenous, isotropic, linearly elastic material to harmonic excitation [58, 59].  

 

2.3.2 Inverse Problem in General View  

At the heart of each elasticity imaging, there is the formulation and solution of an inverse 

elasticity problem. The inverse problem is essentially given one or more measured 

displacement fields, u  inside an elastic body and boundary conditions, to determine the 

distribution of unknown parameters of interest, η . Inverse problem systems, arising from 

image reconstruction methods, are usually large and ill-conditioned.  

 

The inverse problem formula is given as: 

                                                       { } }{)( invRuZ =η                                                 (2.13)          

 where )(uZ is the inverse matrix containing terms related to known measured 

displacements obtained from the MRE imaging procedure, unknown material properties, η  

and invR  the direct inversion RHS vector [104, 105, 106]. 

This can be a conversion of the displacement solution obtained from equation (2.12) as a 

set of measurements into an estimate of elasticity parameters throughout the domain. The 

inverse problem in MRE cases mostly involves finding the shear modulus, )(xµ  which can 

eventually satisfy the equation (2.12) by giving some measurements of the displacement 

field amplitude obtained from MRI at discrete locations and boundary condition data [60, 

61, 62, 63].  
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One of the problems that arise in the solution of an inverse problem is that a very small 

amount of noise in data can cause large errors in the estimates. This instability 

phenomenon is known as ill-posedness.  

By definition a problem is well posed when its solution exists and it is unique, which 

means, if
2121 xxAxAx =⇒= . In a real image reconstruction the computed solution 

uniqueness suffers, as in a physical sense the solution is not exact but an approximation of 

the real data. The noisy experimental data increases the error which does not allow the 

original data to be reproduced completely. This problem is ill posed even for a small 

perturbation, which produces a large oscillation for a small change in the data [64].  

Another factor which can be highlighted about the inverse problem is the condition number 

K(A) of a matrix A which is defined as: 

                                                       
∞

−

∞
= 1)( AAAK                                                (2.14)              

where 
∞

A is the size of matrix A given by maximum absolute row summation as:  

                                                   







∑=
==∞ ij

n

jni
aA

1,...,1
max                                          (2.15)           

Suppose, Ax=b, where x is the exact solution to the linear system defined by A and b 

and cc bAx = , where cx  is the calculated solution and cb is the corresponding RHS. By 

definition, the relationship between relative error xxx c− and relative residual 

bbb c−  can be shown as: 

                                               
b

bb
AK

x

xx cc −
≤

−
)(                                             (2.16) 

The condition number determines the value of error. If 1)( ≈AK , the system is well-

conditioned and it means the small inaccuracies in the residual give small errors, but 
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if 1)( ≥AK , the system is ill-conditioned and with a small perturbation in the residual causes 

a large error [65]. In the section 2.4, the inverse problem approaches will be discussed. 

 

2.3.3 Finite Element (FE) Approximation  

One of the most efficient numerical approaches for computing the displacements in a 

forward solution, or the material properties in an inverse problem, is the finite element 

method. In the forward problem approach, this method approximates the governing 

equations (2.12) over a continuous medium as a mesh of elements.  

 

Ultimately, for an N-node mesh system, the problem will reach the solution of a matrix 

equation of the form }{})]{([ fwdRuA =η , where ][A  is an n× n matrix, sparse as it is 

involved with basis functions which are nonzero only on each node over the domain. Usually 

a basis function, or a shape function, ),,( zyxiφ  is centered on each node and the magnitude 

of the parameter of interest is measured at every point in the meshed area as a weighted sum 

of these basis functions given as: 

 

                                               ),,(),,(
1

zyxuzyxu i

N

i

iap φ∑
=

=                                    (2.17) 

 

where the index “ap” here represents the approximate functions in the finite dimensional 

space and ),,( zyxuap  is the approximate displacement value at a point (x, y, z), ),,( zyxiφ  

are known FE basis functions correspond with i’th node and iu  is the displacement value at 

node i.   

 

In the inverse problem approach, the FE approximation of the matrix equation 

{ } }{)( invRuZ =η  takes the form as implementation of nodal material property distribution 

using basis functions for the element as:  
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                                               ),,(),,(
1

zyxzyx
N

i

iiap ∑
=

= φηη                                    (2.18) 

 

where ),,( zyxapη  is the approximate material property value at a point (x, y, z) that can be 

calculated as the sum of N basis functions that are valued by N constants, 
iη . ),,( zyxiφ  is 

FE basis function correspond with i’th node and it is known. iη  is material parameter at 

node i  which is unknown. The expansion of this equation for the approximation of elasticity 

parameters ),,( zyxapµ , ),,( zyxapλ , and ),,( zyxapρ  on the nodes will take the form  
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=

=

=

=

                             (2.19) 

 

where the index “ap” again represents the approximate functions in the finite dimensional 

space and iµ , iλ , iρ , iu  are the discrete parameter values at node i  of the N total nodes 

within the FE mesh, known as shear modulus, bulk modulus, and density respectively.  

 

The weighted residual method is a useful approach, which is widely applied in MRE finite 

element approximation. This method takes the weak form of the general forward problem, 

multiplies the error, ‘r’ due to substituting the approximate solution, ),,( zyxapη , in a 

weighted function ),,( zyxw j , then the product is integrated over the domain, Ω , and 

ultimately  the result is set to equal zero which  can be written as 0),,( =∫
Ω

rdVzyxw j .  

One simple way to solve a FE weak form is using Galerkin method which chooses a linear 

basis function, ),,( zyxiφ  as the weighting function, apφ which leads to 

),,(),,(),,(
1

zyxwzyxwzyx
N

i

iiapap ∑
=

== φφ . 
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In the MRE time harmonic cases, the solution is naturally oscillatory, and applying fine and 

suitable meshes regarding the physical geometry of the problem plays an important role in 

accurately capturing the convergence of the solution with respect to the mesh size (Fig. 2.2), 

[66, 67, 68, 71].   

 

 

A                                                                       B 

 

Figure 2- 2 FE meshes size comparison between two cubic gelatin phantoms. The displacement results 

obtained from a simulation forward problem with shear waves in case B show a very smooth pattern with 

fine mesh in contrast to case A. 

 

 

2.4 Optimization Algorithms 

Optimization is the minimizing of an undesired, or maximizing of a desired, quantity or 

function that is constrained by its variables. In MRE, the goal is to minimize the objective 

function which depends on the variable of interest such as elasticity parameters.  

 

The unknown parameter is usually bounded by values or constraint scalar functions related 

to the parameter. This constrained area known as a “feasible region”, which is the bounded 

area between two sets of points satisfying all the constraints boundaries, and the actual 

solution, which is the solution of the optimization problem [72, 73, 74]. 
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In solving the inverse problem using an optimization method, two approaches are utilized: 

direct and iterative. As in this research the iterative optimization method was used, the 

strength and weakness points of this solution approach are described next.  

 

2.4.1 Iterative Optimization Approach 

The iterative approach refers to a wide range of techniques that solve a problem by finding 

successive approximation to an accurate solution starting from an initial guess. This method 

is used to solve nonlinear functions as well as linear problems with numerous variables [75, 

76].  

 

The strategy is that the iterative optimization algorithm begins with an “initial guess” of the 

parameter to be reconstructed and builds up a sequence of updated estimates until they meet 

the solution. In this improving sequence, the technique is to move from one iterate to the 

next. There are several methods to optimize an inverse problem iteratively.  

 

Some algorithms store information obtained at previous iterations, while others utilize only 

local information from the current point [77, 78, 79]. Regardless of the algorithm’s 

differences, an acceptable algorithm should have the following properties:  

 

• Flexibility: it should be able to solve the problem for all reasonable choices of the initial 

guess.  

 

• Efficiency: it should require the minimum computer run time or storage.  

 

• Accuracy: it should be able to find a solution with precision, without being sensitive to 

errors in the data.  

 

 While these goals represent an ideal, in reality they may conflict. For example, a fast 

convergent technique for nonlinear programming may require too much computer memory 

on large problems.  
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Also, a robust optimization strategy may be very slow in practice. Therefore, in most 

optimization methods, the approach is a tradeoff between an advantage and a disadvantage, 

for example between convergence rate and memory storage, robustness and speed, and so on 

[80, 81, 82, 83].  

 

In the MRE approach, the iterative approach solves the optimization problem that finds the 

nodal values of the shear modulus using given nodal displacements obtained from the real 

MRE data acquisition or a forward solution in a simulation study.  

 

The method used in the reconstruction code involves an optimization approach that is more 

robust to measurement noise. This involves finding a material property distribution, such as 

shear modulus, which minimizes a displacement error function, Ψ , 

 

                                            Ω−−=Ψ ∫
Ω

duuuu
mcTmc )()(                                          (2.20) 

 

where 
cu  is the set of the calculated displacement using an estimate of the material property 

distribution, and mu  is the measured displacement input data.  

 

The advantage of an iterative approach is that it does not require filtering or differentiation of 

the data as it uses the data directly. The disadvantages are that the procedure is slow because 

the iterative nature of optimization techniques results in extremely computationally intensive 

problems. Also, this technique usually requires multiple full forward solutions at each 

iteration [84, 85, 86, 87, 88, 89]. 

 

2.4.2 Overview of Algorithms  

All minimization algorithms need a starting point to be determined, 0x , known as an initial 

guess. This initial guess is the initial assumed value of the quantity which needs to be 

determined.  
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Knowledge about the data set and material properties in MRE reconstruction helps to 

estimate a reasonable value for 0x . Otherwise, the initial guess must be chosen in some 

arbitrary manner. In MRE, the role of the initial guess is very important in order to solve a 

reconstruction problem with fewer artifacts.  

The technique starts at 0x , from which the optimization algorithm builds up a sequence of 

iterates 
M

kkx 0}{ =  where M is the total number of iterations and k is the current sequence of 

iteration. The minimization procedure is finished when there is no progress on 

convergence to the solution point, or when the solution has met an acceptable level of 

accuracy. The algorithms use information about the function at kx , and  also information 

from earlier iterates 110 ....,,, −kxxx  to move from kx  to 1+kx  with a lower function value 

than kx .  

There are two basic strategies for moving from the current point kx  to a new iterate, 1+kx ; 

“line search” and “trust region”. As the trust region is not in the scope of this research, 

only line search strategy will be discussed in the next sections. Readers can find more 

information about the trust region strategy in [90, 91]. 

 

2.4.3 Line Search Methods 

In general, in the line search strategy, the algorithm selects a ‘search direction’ kp , from 

the current iterate kx , and travel along this direction to a new iterate 1+kx  with a lower 

function value as:  

                                                )()( 1 kk xFxF <+                                                       (2.21) 

where the function, F is an arbitrary function which is expected to be minimized. The line 

search technique has two steps; the first step is choosing the kp , for each iteration, which is 

used to update the value of the parameter that is being optimized at each iteration.  
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The distance to move along 
kp  or the update value for the k’th iteration can be found by 

approximately solving the following one-dimensional minimization equation in general:  

                                               
kkkk pxx α+=+1

                                        (2.22) 

where kα is the step size to be found. The effective choices of two parameters; direction kp  

and the step length kα  are the key factors for success in a line search method. In most 

minimization cases, kp  is the descent direction such that 0<∇ k

T

k Fp . This property 

guarantees that the function F  can be reduced along this direction [74, 76, 78]. By 

considering the material property, η as the parameter which needs to be updated, the 

equation (2.22) can be specialized for an MRE optimization case using line search strategy: 

                                                            kkkk pαηη +=+1                                               (2.23) 

Assume the displacement error function Ψ  from equation (2.20) is the function which is 

supposed to be minimized. At first, the kp , should be determined in such a way that 

ensures that some reduction in error is happening with each iteration. This can be achieved 

by calculating the directional derivative of the error along kp , at small kα  and making sure 

it is negative, as shown in below: 

                                                              0<
∂

Ψ∂

η
T

kp                                                   (2.24) 

where 
η∂

Ψ∂
 is the current error gradient . As the search direction is one dimension the error 

domain, this directions was the form of method a line, therefore this is called a line search. 

Next, a value for kα  must be chosen. A line search is exact or perfect when it can choose 

kα  to minimize )( kkk pαη +Ψ by finding an actual minima in the direction given by kp .  

An exact line search gives the best possible reduction in Ψ  along the search direction but 

it can be computationally intensive to do an accurate minimization of the function on each 

iterate.  
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Weak or inexact line searches are usually preferred as this makes the method simple and 

reliable to use to find a value for kα  which satisfies the descent property [79, 80, 92], such 

as:  

                                                  )()( kkkk p ηαη Ψ<+Ψ                                            (2.25)  

Although the kα  chosen in this way may not be the optimal value generating the best 

reduction in error, however, the low computational cost allows more optimization 

iterations in a given time. This increases the speed and efficiency of the algorithm while 

the perfect line search is noticeably slow [93].  

 

2.4.4 Search Directions for Line Search Methods  

The steepest descent direction is the simplest approach of the gradient methods and also a 

good assumption for the search direction of a line search optimization method in n  

variables. Among all the possible directions to move from current point kη  to minimize a 

function )(ηΨ , there is only one along which )(ηΨ  decreases most rapidly and this 

direction of steepest descent is obtained by the negative gradient kΨ∇− . The general 

steepest descent algorithm steps with an exact line search can be performed as below: 

1) Selecting an initial guess, 0η for the minimum of )(ηΨ . 

2) Repeat for ,....2,1,0=k  

3) Set )( kkp ηΨ−∇=  

4) Calculate kα to minimize )( kkk pαη +Ψ  

5) Set kkkk pαηη +=+1  

6) Until )( 1+Ψ∇ kη  is sufficiently small. 

The steepest descent advantage is that the method can be very simple as it requires 

calculation of the gradient kΨ∇−  but not the second derivatives, known as the Hessian. 
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However, this algorithm may not be efficient enough to minimize the function and 

proceeding along the line search can be extremely slow on difficult nonlinear problems. 

The fact that an algorithm can converge does not necessarily mean that it is an efficient 

technique. In comparison with other methods such as the Conjugate Gradient Method, 

shown in the next section, the steepest descent is usually inefficient [94, 91]. 

 

2.4.5 Conjugate Gradient (CG) Method 

The conjugate gradient (CG) method is an efficient approach, which at its base is a 

modification of the simple steepest descent method. The CG method improves on the 

steepest descent by making a set of search directions from the gradient at each iterate, which 

eventually form a conjugate basis set. This technique is one of the most useful tools for 

solving large scale linear and nonlinear systems of equations. The advantages of CG are that 

it requires no matrix storage and is faster than the steepest descent method [95]. 

 

2.4.5.1 Linear Conjugate Gradient Method 

  

In the minimization problem the gradient of the error function 
kΨ∇−  can take the general 

form as:  

      kkk Axbr −==Ψ∇−                                            (2.26) 

where A is an n× n matrix that is symmetric and positive definite. By introducing error 

vector kkke ηη −= +1 , which shows the distance from the actual solution, and residual kr  in 

equation (2.26) that represents the distance from the correct value of b , the equation (2.26) 

is transformed to:  

                                                              kk Aer −=                                                       (2.27) 

This shows the residual is the error transformed by A  into the same space as b . As the 

error is unknown, it can be transformed to the known residual space.  
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An interesting property of the CG method is its ability to produce a set of linearly 

independent conjugate vectors }....{ ,1,0 lppp  with respect to the symmetric positive 

definite matrix A. The conjugacy property is shown as: 

                                                         jiApp j

T

i ≠= ,0                                       (2.28)      

As will be shown, linear CG is an iterative method for solving linear systems with positive 

definite matrices and the conjugacy property guarantees successively minimization of the 

function along the individual directions after n steps by setting the iterative sequence 

as kkkk pαηη +=+1 , where  kα  is the step length along the search direction kp . The value 

of 
kα  can be obtained using the fact that the error )1( +ke  should be orthogonal to the 

previous search direction
kp  because  this not only avoids the skipping in the direction of 

kp  again, but also corresponds to the minimum point along the kp . This leads to: 

                                                           01 =+k

T

k ep                                                       (2.29)           

 

                                                      0)( =+ kkk

T

k pep α                                               (2.30)           

 

                                                       
k

T

k

k

T

k

k
pp

ep
−=α                                                         (2.31)           

 

As the ke  is unknown so by using (2.27) the ke can be transformed to the kr , space which is 

known as:  

                                                           
k

T

k

k

T

k

k
App

rp
−=α                                                   (2.32) 

 

If the search direction kp  will be set up in the direction of gradient or kr the value of kα can 

take the form of the same value in the steepest descent, given by: 



    

30 

 

                                                       
k

T

k

k

T

k

k
App

rr
=α                                                        (2.33)        

This iterative minimization is updated along both error and residual space. This leads to: 

                                          )(11 kkkkk peAAer α+−=−= ++                                        (2.34) 

 

                                                     kkkk Aprr α−=+1                                                   (2.35) 

                                                       
kkkk pee α+=+1
                                                 (2.36) 

CG is based on conjugate direction but with a very special property that means it is able to 

generate the next search direction 
1+kp  using a linear combination of the current gradient, 

kΨ∇−  known as residual, kr  and the previous search direction, kp .  This advantage of the 

CG method is remarkable because it does not need to know all the previous elements, thus 

it requires little storage and computation. This conception is expressed as: 

                                                         kkkk prp 111 +++ += β                                                (2.37) 

The constant 
kβ  is being chosen so that 

kp  and 
1+kp  will form as they must be conjugate 

with respect to A. By pre-multiplying (2.37) by ApT

k  and applying the condition of 

conjugacy 01 =+K

T

K App ,  it is found that: 

                                                            
k

T

k

k

T

k
k

App

Apr 1
1

+
+ =β                                                     (2.38)  

As the matrix A is difficult to calculate, to remove it from the equation (2.38) the term kAp  

is replaced by kkk rr α−+1  from equation (2.35).  Now by using (2.37) and substituting the 

equation (2.38) and applying the two facts that each residual is orthogonal to the previous 

search direction, and also orthogonal to the previous residuals as they are shown in (2.39) 

and (2.40), leads to kβ  as a ratio of a new and previous gradient norm as it is shown in 

(2.41). 
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                                                                 01 =+k

T

k rr                                                      (2.39)      

 

                                                               01 =+k

T

k rp                                                        (2.40) 

                                                            

                                                             
k

T

k

k

T

k

k
rr

rr 11

1

++
+ =β                                                     (2.41) 

 

The algorithm proceeds by producing vector sequences iteratively to approximate and 

update the solution, residuals, and search directions, successively. CG generates three 

vectors at each step, the approximate solution x, its residual r=Ax-b, and a search direction, 

which is based on the CG. At each step x is improved by searching for a better solution in 

the direction [96, 97, 98, 99].  

The CG algorithm can be summarized as below: 

1) Choose 0η                                                  % initial estimate of the solution 

2) Calculate 00 ηAbr −=                            % initial gradient 

3) Set 00 pr →  , 0→k                              % initial search direction 

4) Find 
k

T

k

k

T

k

k
App

rr
=α                                  % line search parameter 

5) Set kkkk pαηη +=+1                                 % update approximate solution 

6) Set  kkkk Aprr α−=+1                             % update gradient 

7) Find 
k

T

k

k

T

k

k
rr

rr 11

1

++
+ =β                                % ratio of new and previous gradient norm  

8) Determine 
kkkk prp 111 +++ += β              % update search direction 

9) Put  1+→ kk  

10) Until 1+kr  is sufficiently small. 
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2.4.5.2 Nonlinear Conjugate Gradient Method 

 

In the nonlinear CG method, there are several possible expressions for the value of kβ such 

as Fletcher-Reeves (2.42), but the most commonly used is the Polak-Ribiere formula, given 

by (2.43). 

                                                        
k

T

k

k

T

kFR

k
rr

rr 11

1

++
+ =β                                                       (2.42) 

                                                  { }0,
)(

max 11

1

k

T

k

kk

T

kPR

k
rr

rrr −
= ++

+β                                  (2.43)                

 

where the scalar kβ  is used to enforce local conjugacy between 1+kp  and kp  with respect to 

A. Also there are several choices for kβ  and they are no longer equivalent. For example the 

Fletcher-Reeves method works well when the initial guess is very close to the actual result 

while Polak-Ribiere usually converges much more quickly. Another advantage of Polak-

Ribiere is that its convergence can be guaranteed by choosing { }0,max PR

k ββ = .  

 

The CG algorithm in the nonlinear case becomes more complicated.  These are difficulties in 

calculating the step length, kα , as the line search is not linear anymore and also in 

computing the gradient )( kkk pαη +Ψ∇− . The Secant line search technique is a useful 

method to calculate kα  in nonlinear CG.  

As the elastographic inverse problem is non-linear, the search directions will lose 

conjugacy as the iterations progress, therefore CG reconstructions often perform better 

with periodic ‘restarts’, where building up the set of conjugate search directions is started 

from scratch. This is achieved by simply setting 0=kβ . This restarting will happen 

when 0<PR

kβ  , as well.  Restarting the CG means ignoring all past search directions, and 

beginning the CG in a new direction of the steepest descent.  
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Therefore, the CG is very memory efficient as the only information with significant storage 

required for a CG algorithm are four vectors of length number of parameters (NP), kr , 

1+kr , kp and 1+kp .  

Another problem in nonlinear CG is that a general function may have many local minima 

and in this case CG cannot guarantee to converge to the global minimum [74, 100, 101]. 

In MRE, the displacement error function, Ψ , is minimized by computing the gradient of the 

Ψ  with respect to the material property η  and then setting this derivative to zero as:  

 

                                                          )(ηFu c =                                                          (2.44) 
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where 
η

η

∂

∂ )(F
 is called the Jacobian matrix given by: 
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2.4.6 Secant line search method 

The Secant method is a fast exact line search technique which is used for zero-finding of a 

function in nonlinear CG and iteratively solves for a stationary point of the error domain. 

The approximation of the function )( kkk pαη +Ψ using a truncated Taylor series is given 

by: 
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The objective of the line search is to minimize this function by setting its derivative to 

zero, so that  

                         [ ] 0)()()( =Ψ ′′+Ψ′≈+Ψ
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∂
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                    (2.49)   

where [ ] k

T

k p)(ηΨ′  is the directional derivative along kp . As the calculation of the second 

derivative of the function )( kηΨ ′′  (also known as the Hessian matrix) is computationally 

expensive, a finite difference approximation of the second derivative can be used.  

This can be computed by the Secant method which approximates the second derivative of 

)( kkk pαη +Ψ by calculating the first derivative of the function at two different points 

0=kα and δα =k , where δ is an arbitrary small nonzero number. This leads to: 
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which calculates the second derivative of the function when α  and δ approach zero. By 

substituting (2.46) for the third term of the Taylor series (2.44), performed as:   
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then the kα can be found for the line search setting this  derivative to zero, which leads to:  
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For nonlinear problems this process is applied iteratively until a suitable stopping point is 

reached. The Secant method approximates the function )( kkk pαη +Ψ with a parabola by 

finding the first derivative at two different points. It should be pointed out that this method 

should be ended when kx is in the neighborhood of the actual solution, otherwise the 

convergence may fail and will not progress any longer, as the search direction for highly 

nonlinear problems will lose conjugacy quickly. 

While the Secant method is simple as it only needs to calculate the first derivative of the 

function, this technique has some disadvantages. This method is not able to recognize 

minima from maxima and also it is sensitive to “initial guess” and parameterδ .  Good 

choices of δ and the “initial guess” close to the actual solution will help this algorithm 

converge to the minima point successfully.  Although the secant method is an exact line 

search, a better policy is often to use an inexact line search technique by applying a limited 

number of secant iterations [101, 102].   
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2.5 Regularization Techniques 

In a general, the error function, Ψ , does not put any restrictions on the material property 

values or their distribution. This implies that any material property distribution which 

decreases this function can be acceptable as a solution, but this may not always lead to 

physically realistic values.  

Techniques which involve modifying a function in an attempt to make the reconstruction 

algorithm prefer solutions which fit a-priori information are known as regularization 

techniques. This can be carried out by adding a regularization term, )(ηR , known as a 

penalty function to the objective function, so that  )(ηR+Ψ=Φ . The typical strategy is 

minimizing an objective function, Φ  that comprises two terms: an error function Ψ , and a 

regularization term )(ηR . Ψ  is the integration of the differences between measured, m
u , 

and calculated, c
u , displacements over the domain and )(ηR is normally a  function of the 

material property distribution, η .  

Several regularization methods are available such as Tikhonov (TK), Total variation (TV) 

minimization and spatial filtering [103, 104]. The regularization of the objective function is 

explained in the next section regarding TK and TV. As in this research, TV was used; the 

focus is on this method.  

 

2.5.1 Tikhonov (TK) Regularization Techniques 

Tikhonov (TK) regularization is a technique to stabilize the inverse problem’s solution. 

The equation to describe this method can be written as: 

                               
2

0

2

22

1
ηη

α
−+−=Φ TKmc

TK uu                                      (2.49) 
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where η  is the current material property estimate, 
0η  is the initial material property and 

TKα  is called the regularization parameter which is the weighting applied to TK [58, 105]. 

 

2.5.2 Total Variation (TV) Minimization  

Total variation is a regularization technique that penalizes special variation of the 

reconstructed image, which leads to smoother images.  Most of the regularization methods 

assume the data set to be smooth and continuous, but TV is sufficiently robust to deal with 

blocky image and discontinuities as well as being able to preserve the edge information in 

the reconstructed image. 

If η  is piecewise constant with a finite number of jump discontinuities, then TV(η ) is a 

robust approach to penalize un-physically large variations in the modulus distribution 

while allowing a piecewise discontinuous solution. Overall the objective function tvΦ  is 

terms: 

                                                       )(ηRtv +Ψ=Φ                                                   (2.50) 

where                                        Ω−−=Ψ ∫
Ω

duuuu mcmc ))((                                     (2.51)     

and                                           Ω+∇∇= ∫
Ω

dR T )()( 2δηηαη                                   (2.52)                             

so  that                   Ω+∇∇+Ω−−=Φ ∫∫
ΩΩ

dduuuu tv

T

tv

mcTmc

tv )()()(
2δηηα .         (2.53)          

TV can also be expressed as 1L  norm of the first spatial derivation of the solution when 2

tvδ  

is sufficiently small. This can be shown as: 
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                                      ∫
Ω

+∇+−=Φ 222

2

1
tvtv

mc

tv uu δηα                                 (2.54) 

where η∇  is the spatial variation of the material property, η , and tvα  is called the 

regularization parameter which is the weighting applied to TV. It controls the relative level 

of the regularization effect on the minimization process.  

Typically, the greater the noise level in the data, the more regularization is required to 

obtain a good approximate solution for the equation.  This parameter can play an important 

role in a good regularized output. The integral means that the level of total variation is the 

area under the 22

tvδη +∇ curve. The quantity 22

tvδη +∇  is known as gradient 

magnitude. This provides us with the information about the discontinuities in the image.  

Here, tvδ  is a numerically small constant introduced to smooth the singularity that would 

otherwise exist at 0=∇η as TV is not differentiable at zero. So to avoid this problem a 

small positive constant value is added to the equation [105, 106, 107, 108, 109]. 

 

2.6 Adjoint Gradient Calculation  

Although the CG technique requires calculating the gradient to obtain the search direction 

in each iteration, calculating the Jacobian to build the residual is computationally intensive. 

The adjoint gradient method has been recently developed to provide a very efficient 

method to compute the gradient without “agonizing pain”. In gradient based optimization, 

the adjoint technique is widely utilized for the gradient computation when there is a 

problem dealing with a large number of parameters.  

While other methods, such the Jacobian matrix or a finite difference approximation use as 

many forward solutions as there are parameters, the adjoint approach requires only two 

forward solutions to obtain the gradient for any number of reconstructed parameters.  
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Here the discrete adjoint gradient calculation for MRE is expressed. By definition the 

variation of a function )(xF  in the direction xδ  is denoted by Fδ and it is given by 

                                          )(| 0 xxF
d

d
x

x

F
F εδ

ε
δδ ε +=⋅

∂

∂
= →                                     (2.55)        

where 
x

F

∂

∂
 which also is shown by this notation FDx  is a directional derivative of the 

function )(xF  and represents the perturbation rate of the function by the presence of small 

changes in the variable.  

The general weak form of the forward problem can be defined as 

                                           dswuwA apap

c

apap ∫ ⋅= ση );,(                                         (2.56) 

where );,( η⋅⋅A  is a bilinear operator which represents an equivalent weak form of the 

elasticity equation which represents the inner product between two tensors w and u 

respectively and depends on the elasticity parameter vector η . The discretized weighting 

function w is expressed as ),,(),,(
1

zyxwzyxw
N

i

iiap ∑
=

= φ  and the approximation of the 

calculated displacement field can be shown as ),,()],,(,,,[
1

zyxuzyxzyxu i

N

i

i

c

ap φη ∑
=

= . 

The RHS shows the traction on the boundaries obtained from Green’s theorem. The 

inverse adjoint elasticity formulation for the TK discretized function is introduced as 

follows:                

            dswuwAuu apap

c

apap
TKmc

apTK ∫ ⋅−+−+−=Φ σηηη
α

);,(
22

1 2

0

2

             (2.57) 

The variation of the equation (2.57) is computed by using the functional derivative defined 

in equation (2.55) and can be written as: 

                                   0=
∂

Φ∂
+

∂

Φ∂
+

∂

Φ∂
=Φ ap

ap
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c

cTK w
w

u
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δη
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δδδ                           (2.58)  
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Assuming the presence of TK regularization, the variation of the equation (2.53) due to w 

is:                                                                                                      

                                      dswuwAw
w

apap

c

apapap

ap

σδηδδ .);,( ∫−=
∂

Φ∂
                         (2.59)  

Setting this variation to be equal to zero (i.e. 0=
∂

Φ∂
ap

ap

w
w

δ ) leads to c

apu  satisfying the 

weak form of the elasticity equation. On the constraint boundaries of the equation (2.59), 

the equation (2.57) reduces to the original objective function (2.49).  Equation (2.58) can 

be further simplified if the weighting function is chosen so that 0=
∂

Φ∂ c

c
u

u
δ . This leads to:  

                                       ( )mc

apap

c

apap uuuwA −−=);,( ηδ                                           (2.60) 

As the elasticity operator A is self-adjoint and symmetric, thus it is equal to its 

transposed TA which can be illustrated as );,( ap

c

apap uwA ηδ = );,( apap

c

ap

T wuA ηδ . 

Therefore, the equation (2.60) can be rewritten as 

                                            ( )mc

apapap

c

ap

T uuwuA −−=);,( ηδ                                   (2.61) 

With c

apu  and apw  given by (2.56) and (2.61) respectively, from (2.58) and (2.49) it is seen 

that: 
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                            0);,( ηηαδηδη
η
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∂
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Now this gradient will be minimized by setting the equal to zero so that 0=
∂

Φ∂
ap

ap

δη
η

and 

this follows as: 

                                         0);,( ηηαδη −= TKap

c

apap uwA                                     (2.64) 

The steps required for implementing the adjoint method are given as below: 

1. Solve the forward problem (2.59) for
c

apu , the current displacement solution, using the 

current material property estimate.  

2. Calculate the ‘adjoint forcing’; which is given by )( mc

ap uu − , whereas m
u  is the vector 

of measured displacements.  

3. Solve the forward problem again for (2.60) with the adjoint forcing as the RHS vector, 

to evaluate the apw .  

4. Apply c

apu  and apw  in (2.64) to calculate the gradient with respect to the th
i material 

property value [110, 111, 112, 113].  

 

2.7 Subzone Implementation  

A new and powerful method to solve an inverse problem is by using the subzone technique, 

which reduces the global inversion process to multiple local inversion problems. This 

technique works efficiently to solve an iterative inverse reconstruction across a large 

parameter set with reasonable computational load.   

 

The 3D subzone procedure for the sub-domain inverse problem uses the known internal 

displacements to solve an iterative inversion process on small partitions of the total problem 

domain. This approach generates a high degree of spatial discretization and, utilizes the data-

rich environment obtained from MRI.  
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The image reconstructions show that the zoned inversion strategy is capable of producing 

accurate elasticity modulus distribution images from displacement data obtained from MR 

even in the presence of high noise.  

An advantage of the subzone reconstruction is that this method is able to use the very large 

MRI data for material property reconstructions. While MRI scans generate a large data set 

which leads to a large number of nodes in the resulting FE models, current computer 

systems may not be able to solve and analyze these large problems because of memory 

limitations. The subzone method reduces this time as it breaks the entire FE domain to 

small sub-regions.  

In the subzone process the entire data obtained from MRI is divided into a grid of subzones 

where the size of these smaller subsets depends on the geometry of the original data set, 

based on the measured motion information, Dirichlet boundary conditions are then applied 

on the boundary of these subsets.  

Another advantage of the subzone reconstruction method is its ability for parallel solution 

by sending these subsets to the different processors of a distributed computing system. The 

results obtained from the individual subsets can then be assembled in the whole geometry. 

This method has been proven successful in reconstructing stiffness distributions using MR-

detected motion datasets from both gelatin phantoms and real patient data sets [114, 114, 

115].  

User flexibility to choose the size of the minimization problems without reducing the 

resolution of the reconstructed image is another positive point of the subzone approach. As 

each subzone inversion works independently, so the total procedure involves so many 

different minimizations that a failure on one of the subzones due to local error minima in 

the error minimization process does not mean the entire reconstruction will fail.  

This advantage of the subzone technique increases the reliability of the reconstructions, 

because if a solution from a subzone fails, another set of subzones can be made to cover 

the region of the failed subzone and this subzone solution can simply be ignored.  
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The parallel subzone technique is built using the Message Passing Interface (MPI). One of 

the processors is defined by the user and manages the tasks such as dividing the problem 

into small regions, passing this set of subzones to the other processors for reconstruction, 

and receiving the completed material property solutions from them. It then assembles these 

reconstructions and saves them in a resulting file which can be visualized as an image of 

the full-volume problem.  

At each global iterate, the centre point (the seed location) for the grid of overlapping 

subzones is determined randomly. In each round of dividing the geometry into the subzone 

grid, a different set of subzones will be implemented. This will reduce the boundary related 

artifacts in the final material property image. When the manager processor receives the 

solution obtained from each zone it will be located into the correct place in the global 

solution arrays.  

There are several subzone geometry parameters which may affect the improvement of the 

subzone reconstruction such as zone size (subzone edge length factor), zone shape and the 

subzone grid overlapping (Fig. 2.4).  

 

Experience has shown there is an optimum size for building the subzone grid for better 

reconstruction results. For example, by increasing the number of subzones in one domain 

and reducing the size of the each subzone, the time to run a reconstruction in one subzone 

will be decreased as the problem is being solved in a smaller area.  

 

However, this may cause loss of accuracy of the results as most of the internal nodes inside 

each subzone have sufficient data to accurately determine the underlying parameter 

distribution. Technically, the nodes on the boundaries are less useful in the minimization 

process. Thus, raising the number of subzones in one grid will lead to a higher overall ratio 

of boundary nodes, and this means the information from internal nodes possibly lead to 

reduced accuracy.  In fact, the sensitivity of the boundary nodes is lower than internal nodes 

as they receive relatively less information. The internal nodes are surrounded on all sides by 

motion data while the boundary nodes only have motion data on one side. This may be 

shown by calculating the ratio between the internal and external nodes in one grid.  
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Figure 2- 3 A schematic of a zone grid in 2-D. The location of the zone center point (seed), the length of the 

zone in x and y coordinate system (Lx and Ly), the zone overlapping and the size of the zone (edge length) 

are shown. 

 

Another factor is the geometry of the grid, especially in a 3-D case, which should be 

compatible with the physical geometry of the problem. The geometric size should be 

defined so that each subzone comprises at least a half wave length of the mechanical shear 

wave.  

 

2.8 An Example Problem 

Figure (2.5) shows the relationship between the number of iterations and the quality of the 

material property distribution image regarding the image contrast and the number of 

artifacts. The result illustrates that, as the number of iterations increases the image appears 

clearer and with fewer artifacts. The result demonstrates the real magnitude image and the 

shear modulus distribution of a cubic gelatin phantom which includes a stiffer cone shaped 

inclusion. For the inverse reconstruction, the subzone technique was used. The CG method 

along with TV regularization with 6.1 −= dtvα  was utilized to regularize the problem.  
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The results below demonstrate the real magnitude image (Fig 2.4) and the shear modulus 

distribution (Fig. 2.5) for the CG technique after 20 iterations (Fig. 2.5, A), 30 iterations (Fig. 

2.5, B), 40 iterations (Fig. 2.5, C) and 60 iterations (Fig. 2.5, D), respectively. The images 

show, as the number of iterations is increased from 20 to 40; the shear modulus 

reconstruction image demonstrates an obvious difference in the higher resolution of the 

images regarding the recovery of the material property and the physical shape of the 

inclusion with fewer artifacts in the background.  

 

Although by raising the number of iterations from 40 to 60, the reconstruction images still 

illustrate a cleaner and better reconstruction result; however, this difference is small. This 

implies that there is an optimum number for the iteration sequences and as iterations reach 

this number, the image reconstruction quality increases dramatically, but after passing this 

number the quality remains constant.  This fact helps to reduce the time and computational 

cost due to the number of iterations. 

 

 

 

 

Figure 2- 4 The MR magnitude image obtained from MRE imaging is presented here. This picture shows a 

cubic gelatin phantom which includes one stiffer cone shaped inclusion.  
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 A                                                                                 B                                                                         

 

 

 

C                                                                         D 

 

Figure 2- 5  These pictures show the shear modulus reconstructed image for a subsection of the two cone 

phantom. Images A, B, C and D demonstrate reconstructions for the CG method with the number of 

iterations 20, 30, 40 and 60, respectively. The images illustrate that, as the number of iterations increases 

from 20 to 40 the shear modulus reconstruction image demonstrates an obvious difference in the higher 

resolution of the images with low levels of artifacts in the background. Although by raising the number of 

iteration from 40 to 60, this reconstruction image still illustrates a cleaner and better reconstruction result; 

however, this difference is small.  
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 “Never walk on the traveled path, because it only leads you where the others have been”.  

Graham Bell 

 

 

Chapter 3 

 

3.1 Anisotropic and Orthotropic Materials 

Although elastographic imaging techniques have been introduced as powerful medical 

imaging modalities, most approaches consider isotropic material properties [116, 117, 118]. 

There is little quantitative information available in the MRE literature regarding the behavior 

of orthotropic materials and most anisotropic MRE reconstructions are in 2-D [119].  

 

To study a more realistic behavior of tissue and cancerous tumors it is necessary to develop a 

3-D model with actual geometry which includes sufficient details about orthotropic elasticity 

parameters. This chapter introduces the existing formulations for anisotropic and orthotropic 

material models.  

 

In solid mechanics, there are some conditions related to equations of equilibrium which must 

be satisfied to solve a problem. These conditions are strain-displacement relations and 

material constitutive laws. The first condition does not require the material property 

parameters while the second one, which relates the stress to strain components at any point in 

the solid, is a function of elasticity modulus. Since the behavior of the real material is 

complex and difficult to comprehend, it is necessary to make assumptions and perform 

simplifications to make a mathematical model of the material’s behavior by applying suitable 

theories and adequate experimental tests. This mathematical model can calculate a particular 

property to express the material behavior in a certain condition [123, 124].    
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In the most generalized anisotropic model, material symmetry does not exist and mechanical 

properties are different in all directions [125, 126]. In the condition that there are different 

degrees of material symmetries, the material can be categorized as, for example, orthotropic 

or isotropic and so on. In this chapter, certain elastic models based on the existence of elastic 

symmetry axes are considered. In these axes, known as elastic principal axes, the constitutive 

relations remain invariant. 

 

3.2 Introduction to Anisotropic Materials 

Anisotropy means the mechanical property of a material is directionally dependent. This can 

be expressed as a difference in a physical or mechanical property such as elasticity modulus, 

density, etc. In the chemical aspect, anisotropy is defined as phenomena of chemical bond 

strengths which are directionally dependent [127].  Fig 3.1 shows an example of two 

different molecular bonds which describe the difference in the mechanical behavior of a 

material in three directions [128]. 

 

 

 

Figure 3- 1 This figure depicts the effect of applying a stress in two different directions in graphite. The 

elasticity properties will be anisotropic as the deformation depends on the direction of a particular stress [128]. 

 

 

Many biological materials, such as tissue, are anisotropic materials that display directionally 

variations in material properties. Inhomogeneous material property distributions can also be 

a pathological sign, as in the case of breast carcinomas. The discussion on tissue structures 

provides many micro-scale examples of mechanical behavior [120, 121].  
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Since most tissues are highly anisotropic and also incompressible it would be appropriate to 

learn more about how anisotropy influences the mechanical behavior of the tissue and tissue 

mimicking phantoms [122, 129]. 

 

3.3 Linear Anisotropic Elastic Solid 

3.3.1 Theoretical Analysis of Anisotropic Materials 

 

To study anisotropy it is essential to know the constitutive equation that describes the elastic 

behavior of the material and also determines the elasticity tensor, ijklC  and its components. In 

the linear elasticity, the relationship between current stress and current strain remains linear. 

The constitutive equation which is the generalized form of Hooke's law can be written as: 

 

                                                      klijklij C εσ =                                                        (3.1) 

 

where ijσ  and klε  are second order stress and strain tensors respectively, and ijklC is the 

fourth order elasticity or stiffness tensor. As stress is measured in units of pressure and strain 

is dimensionless, the entries of ijklC  are also in units of pressure. The symmetric stress and 

strain tensors can be written as six-dimensional vectors in an orthonormal coordinate system 

(3.2). The anisotropic form of Hooke's law in matrix expression is shown in (3.3) in which 

ijklC  is expressed as 66 × symmetric matrix. 

 

                      { } { }































=































=































=































=

6

5

4

3

2

1

12

31

23

33

22

11

6

5

4

3

2

1

12

31

23

33

22

11

2

2

2
&

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ                        (3.2)    

 



    

50 

 

                                

























































=































6

5

4

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

6

5

4

3

2

1

ε

ε

ε

ε

ε

ε

σ

σ

σ

σ

σ

σ

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

                        (3.3) 

 

The generalized Hooke's law can be inverted to obtain a relation for the strain in terms of 

stress as: 

                                                                 klijklij S σε =                                                 (3.4) 

 

The tensor ijklS  is called the compliance tensor. This relation is given by: 
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where iε  and iσ  are axial strains and stresses, respectively  [130, 131]. 

 

3 .3.2 Elastic symmetry 

A material has symmetry if its elastic properties are the same in certain directions. If 

symmetry exists in all directions, the material is called isotropic otherwise, it is anisotropic. 

In general, ijklC  contains 81 constants, but since both stress and strain tensors are 

symmetrical ( ijσ = jiσ  and klε = lkε ), and with the assumption that there exists a strain 

energy function U given by:  
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                                                        klijijklCU εε2/1=                                                    (3.6) 

 

where,                                 ijkl

klijij

klijklij C
UU

C =
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∂
⇒

∂

∂
==
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2

                               (3.7) 

 

It is seen that the stiffness tensor must be symmetrical so that klijijkl CC =  because of the 

arbitrary order of differentiation ijε  and
klε . As a result, the number of elastic constants can 

be reduced to 21 coefficients [130, 131].  

 

According to Love
 
[132], Chen and Saleeb

 
[133], the equations that govern engineering 

problems are related to the stored energy in a solid. Therefore, the energy developed by the 

external work is stored in an elastic solid and may be developed as potential elastic energy 

that is known as strain energy.  

 

During this process the body is deformed, but may recover its original shape and size. An 

interesting point is that the presence of certain types of symmetry in an elastic body, simplify 

the constitutive relations. These simplifications are represented in different ways, for 

example those applied by Love, where the strain energy function remains unchangeable by 

all symmetrical coordinate system substitutions.  

 

For instance, a corresponding substitution given by three axes of elastic symmetry, ii xx −=′  

with i = 1, 2, 3, does not change Uo. In this thesis, the reduced indices form of constitutive 

and compliance equations are used, for example ijklC  is expressed as ijC .  

The linear transformation of a material with elastic symmetry can be expressed as jiji xx l=′ , 

where ijl is the transformation tensor. This requires that the constitutive tensor, either rspqC  

or rspqS , can be transformed in the following condition as (3.8), see [130, 132, 133, 134, 135].    

 

                                                 ijklqlpksjrirspq CC llll=′                                             (3.8) 
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3.2.1 Material Classifications by Their Elastic Symmetrical Planes 

While an anisotropic or triclinic material has no plane of symmetry, there are four cases of 

elastic symmetry that are considered most important. These materials are categorized as: 

 

- Monoclinic with one plane of elastic symmetry  

 

- Orthotropic with three planes of elastic symmetry 

  

-Transversely isotropic with a plane of isotropy such that every plane perpendicular to it is a 

plane of symmetry and  

 

- Isotropic every plane is a plane of symmetry [130]. 

 

As the biological materials such as tissue and also tissue mimicking phantoms with their 

internal structures reveal an orthotropic pattern, so the goal of this thesis is to introduce an 

orthotropic model and then obtain the elastic constitutive tensor parameters.  

 

 

3.4 Orthotropic Elastic Theory 

Orthotropic elastic theory is defined as the behavior of elastic materials which locally exhibit 

three orthogonal planes of material symmetry and three corresponding orthogonal axes 

known as orthotropic axes.   

 

Mechanical properties of the material are identical within these three planes. Material 

properties in an orthotropic material are independent in three orthogonal directions at every 

point and the elastic coefficients ijC remain invariant at a point under rotation of 
o180 about 

any of the orthotropic axes. For example, assume ),,( zyx  are the orthotropic axes for an 

orthotropic material and ),( yx  is a plane of material symmetry.  
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By coordinate transformation xx → , yy →  and zz −→ , known as a reflection with 

respect to the ),( yx plane, the elastic parameters ijC remain constant. See direction cosines 

for this transformation [130, 138].  As an orthotropic material has three mutually orthogonal 

planes of material symmetry, the 21 unknown elasticity constants of an anisotropic model 

can therefore be decreased to 12 elasticity coefficients in compliance equations given by:  
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where iε  and iσ  are normal strains and stresses respectively, iτ  shear stresses and iγ  shear 

strains. The compliance equation expansion for an orthotropic material model is also 

expressed as: 

                                 

                                               3132121111 σσσε SSS ++=                                              (3.10)      

 

                                               
3232221122 σσσε SSS ++=                                             (3.11)      

                                               3332231133 σσσε SSS ++=                                             (3.12)            

                                                      124412 τγ S=                                                             (3.13)                 

 

                                                      235523 τγ S=                                                              (3.14)                   

 

                                                      
316631 τγ S=                                                              (3.15)            
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The equation (3.9) can be rewritten in matrix form in terms of standard engineering 

constants, Young’s modulus iE , Poisson’s ratio ijυ , and shear modulus iµ  as:  
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The equation (3.16) can be expanded as:  
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                                                      31

6

31

1
τ

µ
γ =                                                            (3.22)            

 

These equations describe an orthotropic material model which deals with 12 unknown elastic 

parameters, iE , ijυ , and iµ  in three dimensions [139, 140]. These equations also show shear 

strains are generated by three independent shear moduli corresponding to these independent 

shear stresses. These direct and independent relationships between shear strains and stresses 

in the three directions provide a simple way to calculate the shear modulus within the 

orthotropic material, as compared to an anisotropic model which is more complicated and 

requires more coefficients to describe shear behavior [136, 137]. 

 

Another important comment from the above equations is that the Poisson's ratio of an 

orthotropic material is different in each direction. At this point, there are six equations with 

12 unknowns, six ijυ , three iE  and three iµ . However, by considering the symmetry of the 

stress and strain tensors implies
2112 SS = , 3113 SS = and 3223 SS =  which all the six Poisson's 

ratios in the equation are not independent. Therefore, the equation (3.16) can be further 

simplified and the number of elasticity parameters is reduced to 9 independent constants, 

three iE , three ijυ , and three iµ . By introducing three new equations the remaining three 

Poisson's ratios can be found from the relations  
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=                                                      (3.24) 
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The score is now nine equations (from Eq. 3-17 to Eq. 3-25) and nine unknowns (three iE , 

three ijυ , and three iµ ).  
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3.5 Incompressible Orthotropic Materials 

3.5.1 Isotropic Incompressibility 

Strain components of the equilibrium equations relating axial stress and strain, for a 

compressible, linear elastic, isotropic material are expressed as: 

                                                    )((
1

3211 σσυσε +−=
E

                                         (3.26) 

                                                    )((
1

3122 σσυσε +−=
E

                                         (3.27) 

                                                   )((
1

2133 σσυσε +−=
E

                                          (3.28)          

By assuming small strains, the volumetric strain, e, of an elastic solid is given by:  

                                                        321

0

εεε ++=
∆

=
V

V
e                                           (3.29) 

where V∆  is the change in total volume, V0 the original volume, and iε  are the axial 

strains in the i direction.  

In an isotropic material by applying the stress in only one direction, three strain 

components iε can be easily found. For example, if an axial stress in the x direction, xσ  

applies, the equation (3.29) becomes the following: 

                                                         )21(1 υ
σ

−=
E

e                                                 (3.30)  

By definition, incompressible materials are known as materials without any change in 

volume subjected to tensile or compressive strains [141, 142, 143, 144, 145].  
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This implies that in an incompressible material 0→e as, 5.0→υ . This can also be shown 

by setting equation (3.30) equal to zero and solving for υ  which gives 5.0=υ  [146, 147].  

 

3.5.2 Orthotropic Incompressibility 

One necessary point for an elastographic study of soft tissue and tissue mimicking phantoms 

is obtaining a suitable formulation for the incompressible or nearly incompressible 

orthotropic models. In an incompressible orthotropic material, however the relation between 

stress and strain is more complicated and this is discussed below [148].      

 

 

Recall (3.29) 
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=++++++++=++=
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V
e  

(3.31) 

 

This implies: 

 

                  0)()()( 332313232212131211 =++=++=++ SSSSSSSSS                         (3.32) 

 

which leads to: 

                          1)( 1312

)93(Re

131211 =+ →+−= − υυcall
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                          1)( 2321

)93(Re

231222 =+ →+−= − υυcall
SSS                                     (3.34) 

                    1)( 3231

)93(Re

313233 =+ →+−= − υυcall
SSS                                      (3.35) 
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For instance, applying 
1σ  gives the following equations for each of the strain components: 
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By substituting equations (3.36), (3.37) and (3.38) into (3.31) and setting the resulting 

equation equal to zero gives: 
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By considering equation (3.39), for other two stress components, 2σ and 3σ  the resulting 

equations give the following relations: 
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Adding equations (3.39), (3.40) and (3.41) together leads again to equations (3.33), (3.34) 

and (3.35). By using the equations mentioned above, the following Poisson’s ratio 

relationships can be obtained as: 
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This implies that with only six independent coefficients, the incompressible or nearly 

incompressible orthotropic elastic behavior of materials can be described. These parameters 

are: iE  (E1, E2 and E3), in the three directions; and jµ (µ4, µ5 and µ6), within each of the 

three coordinate planes [149, 150]. 

 

 

3.6 Orthotropic Elastography 

To date, most elastographic imaging techniques considered isotropic material properties in 

their elasticity image reconstructions [151]. The fact that most biological tissues tend to have 

some anisotropic qualities [120, 121, 122], there is a need to improve elastographic imaging 

techniques towards anisotropic image reconstructions.  

 

Sinkus et al. [129] developed equations for MRE reconstruction in 2005, considering 

transverse isotropy for tissues. In this section, a general framework is proposed for 3-D 

orthotropic incompressible elastography. By orthotropic incompressible elastography, the 

structure properties and fiber orientations within the tissue or tissue mimicking phantoms can 

be detected by only six independent elasticity parameters in three dimensions.  

 

This research uses the computational algorithm implemented for the complex orthotropic 

behavior which is based on MRE image modality. This approach also investigates the 

capability and performance of this imaging technique based on these advanced material 

models.  
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3.7 Remarks of the Orthotropic Incompressibility Applied to MRE 

3.7.1 Geometry and Phantoms 

In this research, several tissue mimicking gelatin phantoms were used to show the 

orthotropic incompressibility behavior. Experience obtained from phantom studies has 

shown that the average magnitude of motion gradient for the Young’s modulus terms, E1, E2 

and E3, is several orders smaller than the corresponding sensitivities for the shear modulus 

terms, µ4, µ5 and µ6.  Therefore, in this research, the initial study was the reconstruction of 

the orthotropic shear properties of a tissue mimicking phantom made with a pineapple 

inclusion. The reason to use pineapple was that the pineapple’s different fiber orientations 

can be a good example of an orthotropic incompressible material.   The phantom making 

protocol, shear modulus reconstruction results and analysis will be explained in the 

following chapters.     

 

3.7.2 Algorithms 

 

The reconstruction of the orthotropic incompressible properties performed for this study was 

optimization based, minimizing a displacement error function quantifying difference 

between the calculated and observed displacements by evaluating the sensitivities of this 

function with respect to the six independent elastic properties being imaged.  

 

Recall 2.4.2.9 
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Here 654321 ,,,,, µµµη EEE=  are the six independent elastic properties for 

incompressible orthotropic material. The adjoint method was used to calculate the gradient 

of the displacement error function with respect to the six elastic moduli. This technique 

increases the numerical efficiency significantly. In this investigation, the finite difference 

(FD) technique was used to numerically estimate the motion sensitivity with respect to the 

elastic properties for orthotropic incompressible elastography reconstruction, so that: 
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These FD calculations should be checked for correctness by verifying (3.50) for a reasonable 

numerical accuracy. This implies: 
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The method used in the reconstruction of the orthotropic shear properties optimization 

approach was based on the CG method and TV regularization technique.  

 

3.7. 3 Multiple Sets of Measurements 

As explained in the chapter 2, in MRE, material properties are reconstructed by using 

measured displacements. Research has shown that the material property in an isotropic case 

can be uniquely obtained in 2-D [152]. However, in anisotropic case, the situation is different 

and the elastic parameters cannot be uniquely determined in 2-D by one set of Drichilet 

boundary conditions [153].   
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The anisotropic inverse problem is non-unique in nature and one set of displacement 

measurement (Drichilet boundary condition) may not provide sufficient information for 

uniquely identify material properties in 3-D [154, 155].   

 

To obtain a unique ijC  in the orthotropic case, it is important to make sure that the 

measurements carry enough information. Therefore, to avoid non-uniqueness problem, 

multiple sets of displacement measurements are essential. Investigations have shown the 

feasibility of using multiple displacement fields for transversely isotropic analysis [156].  

 

In this thesis, multiple displacement measurement sets were taken in 3-D, based on the 

available experimental techniques. This provides sufficient information for the boundary 

conditions to avoid the ambiguity due to non-uniqueness problems, which can be found in 

any orthotropic inverse problem.  
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  “Discovery is the ability to be puzzled by simple things”.     Noam Chomsky 

  

 

 

Chapter 4 

 

 

4.1 Phantom Studies  

Before each new medical technique can be used in vivo, it is necessary to check it in vitro. 

As orthotropic elastography is a novel approach to quantitatively measure the soft tissue 

elasticity properties, the capability of this method needs to be verified by phantom studies to 

avoid any uncertainty about the factors which may affect the quantitative measurements. 

 

For this reason, several orthotropic and isotropic phantoms were developed for the 

acquisition of orthotropic and isotropic datasets to map the material properties in 3-D.  

 

Experiments in orthotropic phantom manufacturing with tissue-mimicking gelatin and 

muscle along with orthotropic reconstructions will be explained in the next chapters. 

 

In this chapter, the focus is on isotropic phantoms which were designed for isotropic 

elasticity reconstructive imaging. This chapter presents the experiments with tissue-like 

silicone and gelatin phantoms and comprises: 

 

• MRE actuation systems and remarks 

• Isotropic phantoms manufacturing protocol and remarks 

• Isotropic image reconstructions  

• MRE artifacts 
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4.2 MRE Actuation Systems  

In dynamic MRE, the mechanical excitation is an external mechanical load applied to the 

tissue or the phantom under investigation to generate time- harmonic shear waves which 

propagate through the sample. This excitation is usually produced by actuators coupled to the 

phantom or tissue. As actuating systems are used for each MRE dataset acquisition, it is 

essential to explain the mechanisms and phantom set up sufficiently.  

 

Different coils are utilized to receive the displacement pattern signals of the actuation 

systems. Choosing these coils relates to the condition of the tests and in this investigation, 

the head, breast, and the surface coil were used. There are two types of actuators to induce 

harmonic motion in a specimen: electromechanical actuators known as pneumatic actuators 

and piezoelectric actuators. The research presented in this thesis involves data acquisition 

using both actuators as explained below. 

 

4.2.1 Pneumatic Actuator  

Fig. 4.1 shows a schematic of the pneumatic actuator setup for MRE testing. As shown the 

speaker drives air propagated in the coupled tube attached to the actuator. This air 

propagation vibrates the membrane of the actuator that provides the mechanical excitation to 

create shear waves within the phantom.  

 

The phantom is located on the membrane which has covered the actuator top. The speaker 

can generate the cyclic force at a frequency between 50 and 1000 Hz. Displacements 

obtained from this system are in the order of hundreds of microns.  

 

Figure 4.1 depicts a pneumatic actuator system with the phantom excitation due to the 

actuator oscillating as being in the X direction of the MRI scan coordinate system. To obtain 

a complete description of the material behavior in all three dimensions for orthotropic 

materials, multiple actuations in three directions is desired.  
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However, the system shown in Fig. 4.1 is unable to produce harmonic motion in multiple 

directions and to generate multiple excitation directions, the sample needs to be flipped 090 .  

Figure 4.2 represents the voice actuator set up which has been supported by pads and sand 

bags to prevent the undesirable movement during the vibration. The position of the phantom 

and the surface coils are also shown. 

 

 

Figure 4- 1 The configuration of the Pneumatic (voice) actuating system setup. The actuation direction for 

this actuation system is shown along the X direction of the Cartesian coordinate system. 

 

 

          

A                                                                          B 

 

Figure 4- 2 The experimental setup of the pneumatic actuating system. The geometry configuration 

regarding the actuation direction with respect to the MRI scan coordinate system (A) and the assembled 

apparatus with the location of the surface coils, phantom and sand bags (B) are illustrated. 
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4.2.2 Piezoelectric Actuators  

The piezoelectric effect means that an electric charge is generated when the material is 

pressed or stretched. Also an applied electric field will cause a change in the dimensions of 

the piece of piezoelectric material [157].  

 

Recently, piezoelectric actuation systems have been commonly used in MRE imaging to 

actuate the tissue or different kinds of phantom. One of the advantages of these actuators is 

the freedom to orient the system in any direction within the MRI scanner. In piezoelectric 

actuators, the axis of the piezoelectric stack represents the motion direction [158].  

 

Different types of piezoelectric actuation systems can be classified based on their geometry 

and method of contact with the phantom or tissue. Three piezoelectric actuation mechanisms 

have been used to provide the MRE datasets described in this approach which are referred as 

“Type-A”, “Type-B”, and “Type-C”. These are introduced in the following section. 

 

4.2.2.1 Type -A 

 

In the Type-A actuator, the gelatin phantom is built in a cubic Perspex box which is coupled 

to a piezoelectric actuator (P-842K022, Physic Instrument, GmbH Co. KG). The actuator has 

been built almost entirely from Perspex. The actuator geometry setup included three 

cylindrical inclusions phantom and a heavy Perspex base to prevent the actuator movement 

during the MRI scanning and is presented in (Fig. 4.3).  

 

As Fig. 4.3 shows the excitation direction in this type of actuator is in the Z direction of the 

MRI scan coordinate system. The potential for MR artifacts was minimized by applying a 

distance between the actuator and the phantom being imaged. Teflon pads were also used 

between the phantom box and the base. For image acquisition, the actuator device was 

located in the head coil of the scanner. This type of actuator has been detailed by Flewellen 

et al. [159].  
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Figure 4- 3 This image depicts the assembled apparatus of a Type-A piezoelectric actuation system.  The gel 

phantom which included three cylindrical inclusions inside the Perspex box is shown. (Images courtesy of 

James Flewellen)  

 

4.2.2.2 Type-B (Lever Shaker)  

 

The Type-B actuator is also another excitation mechanism which is applied for phantom tests 

and clinical tissue imaging. The geometry of the Type-B actuator, which is also known as a 

lever shaker, comprises a piezoelectric actuator, a motion amplifying lever arm, and a 

shaker-plate. The motion amplifier increases the maximum displacement achieved by the 

shaker plate. The piezoelectric stack is used as the actuation source.  

 

The rectangular shaker-plate is designed to hold the samples. The excitation direction is 

aligned in the Y direction of the MRI coordinate system. This actuator was explained in 

detail by Perrinez et al. [158]. The phantom-actuator apparatus is performed in (Fig. 4.4). 

 

4.2.2.3 Type-C Actuator 

 

The Type-C actuator is an advanced generation of the piezoelectric actuators  with two 

vertical piezoelectric bars which are located at the bottom, in front of the contact surface.  A 

large pad is applied to stablize the other side of the plate. The driven force supplied by two 

actuators provides more strength to excite the phantom.  
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The piezoelectric bars are located inside two rectangular Perspex legs.  Two thin rubber mats 

(red) are used underneath the legs to prevent the movement of the actuation system during 

the scanning.  Fig. 4.5 represents the geometry of this piezoelectric prototype with a phantom 

on the contact plate top. As this picture shows the direction of the actuation system is in the 

X direction of the MRI scan coordinate system.    

 

 

A 

            

        

B                                                                       C 

 
Figure 4- 4 This image shows three views of the Type-B piezoelectric actuation system with a gel phantom 

on the plate surface which includes two cone shaped inclusions. The actuator geometry (A), the phantom-

actuation system inside the breast coil (B), and the coordinate system alignment with a small arrow in the 

bottom of the picture which shows the actuation direction (C) as illustrated. (Images courtesy of MRE group, 

Dartmouth College).  
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4.2.3 MRE Actuation System Remarks 

 

1. Although piezoelectric actuators provide relatively large displacements with respect 

to the thickness of the phantom, the absolute displacement achieved is small (tens of 

microns) compared to the pneumatic actuator (hundreds of microns). Experience has 

shown the datasets obtained from the pneumatic actuator involve stronger amplitudes 

motion signals in comparison to piezoelectric actuators. 

 

2. In the MR scan, the actuation system should be supported by some sand bags to 

prevent undesirable movements which cause artifacts in the final image. 

 

3. The receiver coil should be very close to the actuation system and even attached to 

the phantom to obtain a stronger motion signal throughout the phantom. 

 

4. The phantom movement while it is being excited by an actuation mechanism should 

not be highly constrained as this reduces the level of motion magnitude within the 

phantom which may causes artifacts. 

 

         

       

     A                                                                           B 

 

Figure 4- 5 This picture depicts two views of the Type-C actuator. The actuator geometry setup, the 

coordinate system of the MRI scan, along with the actuation direction (A), and the actuation-phantom setup 

with a closer view (B) are presented. 
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5. Another artifact that can happen during the data acquisition is the motion artifact. 

This artifact comes from the movement of the actuation system on the MRI table 

while the phantom is being imaged which causes the blurring of the image. The 

motion artifact can come from the MRI table vibration as well. To reduce this 

artifact, the coil and actuation-phantom set up on the MRI table should be 

immobilized by using some sand bags. Applying some pads between the actuation 

mechanism and the MRI table is another way to prevent the MRI table vibration 

transferring to the system. Actuation system stabilization is a very important point to 

reduce the MRE artifacts. 

 

6. Phantom location should also be considered during MRE data acquisition. Usually 

the best place to locate the phantom actuation set up is in the iso-centre of the 

magnetic bore. Experience has shown that placing the phantom-actuation system far 

from this point causes image distortion.  

 

4.3 Isotropic Phantoms 

Isotropic phantoms are usually developed for the acquisition of datasets to examine the 

efficiency of developed codes in order to map the mechanical properties of the imaged 

phantoms. Additionally, to validate the elasticity reconstruction results obtained from an 

orthotropic phantom, the isotropic phantom can be considered as a reference for comparison. 

  

In this investigation one isotropic silicone phantom with a wedge inclusion was made and 

also the obtained datasets of another isotropic silicone phantom, which comprised three 

cylindrical inclusions, were used for the mechanical properties image reconstructions.  

 

The procedure of the wedge inclusion phantom fabrication and the image reconstruction 

results obtained from the three cylindrical silicone phantom, are explained in this section.  

The geometry of the isotropic phantoms was 10cm × 10cm × 10cm in volume.  
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These phantoms were designed for the Type-A actuator, thus they followed the geometry of 

the phantom cuboids Perspex box. As a result the phantom was restricted on five sides 

because of the phantom box walls.  

 

 

4.4.1 Isotropic Phantom Manufacturing 

 

4.4.1.1 Silicone Gel Phantom in General 

 

Silicone gel is a rubber-like hydrophobic polymer which is being widely used in many 

industries such as medical research, cosmetics, breast implants, and so on [160, 161]. 

Research has shown that silicone can be a suitable material for elastography testing as it can 

mimic the mechanical properties of soft tissues [162]. This material has several advantages 

which make this material desirable for MRE testing. These are: 

 

1. It can be easily molded and set into a wide variety of geometries.   

2. The material is not poisonous. 

3. Its physical and mechanical properties remain unchanged over the time. 

4. It does not require heat for the fabrication procedure. 

 

4.4.1.2 Wedge Shaped Inclusion Silicone Phantom 

 

An isotropic wedge shaped inclusion silicone phantom was made during this project. This 

phantom was initially manufactured for MRE testing and comprised a soft background and a 

hard inclusion. This phantom was required to test the resolution limitations of the MRE 

setup. 
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4.4.1.3 Material and Methods 

 

The silicone gel phantom was made in several stages. Two types of silicone gel were used to 

fabricate the soft base and the wedge shaped inclusion of the silicone phantom: ‘soft gel’ 

which is called  ‘A-341’ and ‘hard gel’ known as ‘LSR-05’ made by ‘Factor II, Inc., 

Lakeside, AZ’. The silicone gel, whether ‘soft’ or ‘hard’, has a ‘hardner’ which is applied to 

catalyze the gel. The ‘soft’ and ‘hard’ gels are called part A and their ‘hardners’ are known 

as part B. The ratio of the gel to its ‘hardner’ is 10 to one.  

 

The silicone mass was found by calculating the volume of the phantom box and considering 

the density of the water as an estimation for the silicone gel density. This mass was weighed 

by an electronic scale. Before pouring the silicone liquid, all of the internal surfaces of the 

phantom box were lubricated by silicone spray (Silicone Star’, Sta-Lube, East Tamaki, NZ). 

This lubricating helps to remove the phantom from its box after setting.  

 

To make this phantom, first 270g soft silicone gel was added to the 27g of hardner and then 

it was prepared as the background. After the de-gassing of this mixture, it was used to fill 

one third of the phantom box to make the base of the phantom. The sample was then allowed 

to set for six hours in the room temperature. In this test, a Venturi vacuum was used to de-

gas the phantom after each step of pouring the mixture.  

 

To obtain the MRI datasets from the phantom precisely, a coordinate system should be 

considered for the phantom. This helps to identify the phantom orientation while it is being 

imaged.  For this purpose four liver oil capsules were chosen as markers and then placed on 

the corners of the phantom box. Two of these markers were stuck on each other to represent 

direction Z. One marker was located in one corner of the phantom box to illustrate the X 

direction and the other one was arranged in the middle of one side to show direction Y.  

These markers can be seen as three bright spots during the MRI scanning.     

 

The next step was creating a rectangular hole on top of the base. This hole was made by 

placing lubricated cubic plastic block on the base and surrounding it with more soft silicone 

gel. After the silicone was set the cube was removed. 
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 In the next phase of this test, 10g hard silicone gel added to 1g of hardner and after mixing 

and de-gassing, it was poured inside the rectangular hole. In order to make the ‘hard’ silicone 

gel more visible some drops of colorant (‘FI-200, white’, Factor II, Inc., Lakeside, AZ) were 

used. One half of this rectangular hole was filled with this material.  

 

To make the ramp shape for the inclusion, one side of the phantom box was located at an 

angle with respect to the floor (Fig. 4.6). After setting the hard silicone gel (ramp shaped 

inclusion), the phantom was filled with the same soft silicone gel which was made for the 

base and then the phantom was left to set overnight. 

 

 

 

Figure 4- 6 An angle was applied to the phantom box to create the wedge shaped inclusion. 

 

 

Unfortunately, after setting the phantom some air bubbles noticeably appeared as shown in 

(Fig. 4.7). Reducing air bubbles in MRE phantoms is a very important issue as no MR signal 

can be generated from air bubbles. In the resulting image they are seen as null spots which 

create the artifacts and significantly affect the image reconstruction results. A reason for this 

undesirable air bubble formation can be the silicone liquid pouring procedure inside the 

phantom box.  
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Some of the suggestions for better phantom fabrication are mentioned in the next section. 

These were considered for the manufacturing of the next phantoms.  

 

 

 

Figure 4- 7 In this picture the stiff wedge inclusion (white color), and directional markers which represent 

the phantom box coordinate system, and air bubbles in the background of the soft gel part are shown.  

 

4.5 Phantom Fabrication Remarks Applied to MRE 

1. Although working with silicone is easy, there are some important points that should 

be considered. These, as well as other gel phantom materials can create air bubbles 

during manufacture which cause artifacts in the obtained image. These can be solved 

by:  

 

- Pouring the liquid into the mold should be carried out carefully and slowly. 

 

- It is better that the liquid be in contact with the mold while it is being poured. 

 

- Shaking the mold by a vibrator while the liquid is being poured can release 

the air bubbles to the surface of the phantom, which makes the removal of air 

bubbles from the phantom easier. 
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- A de-gassing procedure by Venturi vacuum should be carried out in each step 

of phantom making. 

 

2. Phantom mass is another important factor. By increasing the mass of the phantom, 

the motion amplitude of the actuation system is reduced. To work more realistically 

regarding future clinical demands, it is suggested to fabricate the phantom in the 

same mass as that of a human breast. 

 

3. While phantom markers (oil capsules) were helpful to accurately determine a 

coordinate system for the phantom, data acquisition experiences have shown they 

may cause artifacts. In order to remove this undesirable effect, fiducial markers 
1
 are 

highly recommended.  

 

4. Phantom lubricating is another important issue which must be considered. Although 

silicone lubrication spray was helpful, it was still difficult to remove the phantom 

from the phantom box. To solve this problem, petroleum jelly was used to lubricate 

the internal surface of the phantom box for the next phantom manufacture. In one 

phantom manufacturing experience, a phantom box was used where each face could 

be separated and attached to another by some screws. The benefit of this method is to 

facilitate the removal of the set phantom from the separated phantom box. However, 

the disadvantage of this technique is liquid leaking from the phantom box’s margins 

especially if the margins have not been sealed properly. 

 

5. For successful data acquisition it is better that the actuator and the coil are located 

very close or even attached to the surface of the phantom under investigation.  

 

4.6 MRE Artifacts Due to Actuation systems 

An artifact is a visible distortion of an actual structure present in the image subject that can 

be due to a limitation or malfunction of the imaging system [49].  
                                                
1 A fiducial marker is non magnetic materials which can be appearing in the image during the MRI scan.  
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Knowledge of MRI, MRE artifacts, and noise producing factors is important for an image 

with high quality. The elimination of artifacts in cancer imaging systems is essential to 

limiting chances of the misrepresentation of cancerous cells or normal tissue. Artifacts may 

give confusing erroneous results that may be misdiagnosed as pathology. There is little 

quantitative information available on MRE regarding the causes of artifacts and the 

solutions. While MRE is expected to be a high-quality imaging modality targeted at 

differentiation between benign and cancerous lesions, artifacts can make this differentiating 

between the cancerous cells and the normal tissue difficult. Therefore, to achieve a high 

quality image, a more realistic behavior of tissue and cancerous tumors is necessary to 

evaluate the cause of artifacts in MRE.  

 

One possible artifact in MRE imaging is due to constraints applied by the actuation system to 

the phantoms. Two example experiments carried out in the next sections with two different 

real MRI datasets obtain from the actuator Type A and Type B and then results were 

compared.  This attempt may demonstrate a possibility of creating artifact and data 

interpretation due to actuator geometry and its applied boundary conditions in MRE phantom 

imaging.  

 

4.7 Isotropic Elasticity Reconstructive Imaging 

While it has been shown that MRE is capable of quantitatively measuring in vivo soft tissue 

elasticity, there is still some uncertainty about the factors which affect the quantitative MRE 

measurements. For this reason, it is necessary to determine in vitro how MRE measurements 

correspond with other quantitative parameters of measuring characteristic elasticity values.  

 

This section presents the results of experiments with tissue-like gelatin phantoms in which 

the motion was measured by MRE shear waves and the resultant shear modulus distribution 

was compared in different phantoms vibrated by two different actuators. The shear modulus 

and displacement pattern of two different phantoms with different stiffer inclusions were 

investigated.  
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In this research, one artifact due to the geometry of the actuation mechanism for tissue 

mimicking phantoms is presented. The reconstruction results obtained from real MR data 

sets for these two types of actuators are compared. Periodic shear mechanical excitation 

coupled with phase-contrast MR-imaging was used to actuate the phantoms and image the 

resulting motion patterns. Two different types of piezoelectric actuators that are being 

utilized for the phantoms in MRE imaging are evaluated. The goal of this experiment was to 

compare the reconstruction results from two different real MR data sets obtained from in 

vitro tissue mimicking phantoms for these two types of actuators. As the MRE fundamental 

techniques for the in vivo and in vitro cases are very similar, the results from this experiment 

may be considered for future in vivo MRE testing. 

 

Two different isotropic phantoms have been used to reconstruct the elasticity modulus 

image: a three cylindrical inclusions silicone phantom and the two cone inclusions phantom. 

The three cylindrical inclusions silicone phantom was imaged by the Type-A actuation 

mechanism (Fig. 4.3), while the two cone inclusions phantom was tested by the Type-B 

actuation system (Fig. 4.4).  The measured displacements from MRE are used to compute the 

calculated displacement fields and the shear modulus distribution. The measured boundary 

displacements from the given data were then applied. In the Type-A actuator, the phantom is 

contained inside a box container with five sides and was constrained on those surfaces, while 

the Type-B actuator applied constraints only on the bottom surface of the phantom. These 

are explained in the following sections. 

 

4.7.1 Three Cylindrical Inclusions of a Silicone Gel Phantom  

 

4.7.1.1 Isotropic Reconstruction Using Real MRI Datasets  

  

Full 3-D MRI dataset of an isotropic silicone phantom comprised three stiff cylindrical 

inclusions with diameters of 8, 12, and 16 mm, surrounded by a soft background which was 

used for isotropic elasticity modulus reconstructions. The soft silicone background can 

represent the benign tissue of a human breast and the inclusions simulate harder tumors.  
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This silicone phantom was initially used for material property reconstructions in this 

research.  Two shear modulus image reconstructions were carried out by considering two 

different initial guesses, 10 KPa and 15 KPa.  

 

The CG optimization technique along with the TV regularization method was used to 

minimize the objective function. Also, the subzone implementation approach was applied to 

reduce the global inversion process by dividing the problem into multiple local inversion 

problems. Figure 4.3 shows the performance of this phantom resting inside the phantom box 

and excited by actuation Type-A. The actuation frequency applied to this phantom by this 

actuator was 100 Hz.  

 

 

4.7.1.2 Reconstruction Results  

 

The results below represent the *2T MRI magnitude images (Fig. 4.8-A and Fig.4.8-B), the 

shear modulus distribution (Fig. 4.9 and 4.10), and the displacement pattern (Fig.4.11) 

obtained from the real MRI datasets of the three cylindrical inclusions phantom. 

 

                     

                         

A                                                                      B 

 

Figure 4- 8 Two views of 
*2T MR magnitude images obtained from the silicone gel phantom which 

includes three stiffer cylinder shaped inclusions. The resulting 
*2T MR magnitude image (A) and  eleven 

slices of 
*2T MR magnitude image obtained from MRI imaging (B) are presented. Three cylindrical 

inclusions are shown in both pictures. 
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Figure 4- 9 Resulting reconstruction of the isotropic real shear modulus distribution obtained from the three 

cylinder silicone gel phantom with initial guess 10KPa. Unfortunately, the picture shows a high level of 

artifact in the background of the images and the three cylinders are barely visible.  

 

 

 

 

Figure 4- 10 Shear modulus reconstruction result obtained from the three cylinders isotropic silicone gel 

phantom with initial guess 15KPa. By increasing the initial guess the inclusions are slightly visible but the 

image still shows a high level of artifact in the background. The expected locations of the inclusions are 

shown. 

 

 

 

Figure 4- 11 The motion pattern for the isotropic phantom with three cylindrical inclusions which was 

excited by the Type-A actuator. The regularity of the displacement field without any perturbation around the 

inclusions is evident.  
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4.7.1.3 Reconstruction Results Analysis  

 

Table 4.1 represents the mean values of the shear modulus reconstructions with two different 

initial guesses, 10 and15 KPa, for the three cylindrical inclusions phantom.  

 

 

The Mean Values for Shear Modulus Reconstructions (KPa) 

Initial guess=10  Initial guess=15  Difference  

7.1895e+003 9.8511e+003 2.6616 e+003 

 

 

Table 4- 1The mean values of the shear modulus reconstruction with two different initial guesses 10 and15 

KPa for the three cylindrical inclusions phantom are presented.  

 

 

As Table 4.1 shows, the mean value of the shear modulus reconstruction is raised by 

increasing the initial guess from 10 to 15 KPa. Also the color bars in Fig. 4.9 and Fig. 4.10 

represent that the shear modulus reconstruction result with initial guess 10 KPa shows a low 

contrast between the stiffness of the inclusions and the image background, while this contrast 

in the shear modulus reconstruction result with initial guess 15 KPa is slightly raised.   

 

The above results illustrate that although by increasing the initial guess, the shear modulus 

reconstruction mean value and the image contrast has slightly improved, but still the image 

resolution between the inclusions and the background is low, which makes the invisibility of 

the inclusions more sensible. 

 

 The displacement field represents a regular pattern with the mean value of 8.007e-004 µ m, 

as it is presented in (Fig. 4.11). This regularity of the displacement field can mean that the 

motion magnitude level received by inclusions was unable to create a strong perturbation 

around the inclusions within the phantom.  
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Poor elasticity modulus reconstruction with a high level of artifacts (Fig. 4.9 and 4.10), 

which made the three inclusions barely visible, reveal that this problem cannot only be due to 

some air bubbles as they have been shown in Fig. 4.8-A.  

 

One hypothesis leads to the actuation system and boundary conditions applied to the 

phantom by the phantom box in the Type-A actuation mechanism.  Figure 4.3 implies that 

the phantom has been constrained on five sides and the motion pattern is heavily governed 

by boundary conditions. Perhaps this can describe the reason of the poor shear modulus 

reconstruction which may be the cause of artifacts.  

 

4.7.2 Two Cone Shaped Inclusions Gel Phantom 

 

4.7.2.1 Isotropic Reconstruction Using Real MRI Datasets  

 

The second isotropic gel phantom reconstruction belonged to two stiffer conical inclusions 

embedded in the soft gel as a base. Figure 4.4 depicts three views of this phantom sitting on 

the tray of the Type-B actuation mechanism.   

 

Figure 4.4-C also represents the position of these two cone shaped inclusions. As has been 

shown, one conical inclusion is located in the top left and another in the bottom right of the 

cubic phantom. The full volume MRI datasets obtained from this phantom were used for the 

isotropic elasticity modulus reconstructions. The initial guesses of 10 and 15 KPa were also 

chosen for the shear modulus image reconstructions of this phantom.  

 

 

4.7.2.2 Reconstruction Results  

 

Results below demonstrate the MRI and the reconstructed magnitude images (Fig. 4.15), the 

shear modulus distribution (Fig. 4.16), and the displacement pattern (Fig.4.17) obtained from 

the real MRI datasets of the two conical inclusions gel phantom. 
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 A                      

 

 

 

 

B 

 

Figure 4- 12 Two views of magnitude images obtained from the two cone shaped inclusions gel phantom. 

The magnitude image from MRE reconstructions shown in one slice (A) and  twenty one slices of MR 

magnitude image obtained from MRI imaging of phantom volume (B). 
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    A 

      B 

            C 

 

Figure 4- 13 These pictures show three views of the shear modulus reconstruction results for the two cone 

shaped inclusions isotropic phantom. A satisfactory shear modulus distribution recovery of two cone 

inclusions with low levels of artifacts in the background with initial guess 10 KPa (A) along with a 3-D view 

of two cone shaped inclusions (B), and also the shear modulus reconstruction result with initial guess 15 KPa 

(C) are shown.  
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Figure 4- 14 The displacement pattern for the two cone shaped inclusions phantom excited by the Type-B 

actuation system. An irregular motion pattern around the inclusions illustrates the existence of stiffer 

inclusions in the medium.  The small arrow shows the displacement pattern disturbance around the conical 

inclusion located at the bottom of the phantom. 

 

 

4.7.2.3 Reconstruction Results Analysis  

 

A successful shear modulus distribution reconstruction with low levels of artifact in the 

background of the image is illustrated in Fig. 4.16 for the two conical inclusions phantom 

excited by the Type-B actuation system. Table 4.2 shows the mean values of the shear 

modulus reconstructions with two different initial guesses, 10 and15 KPa. Table 4.2 

illustrates that the mean value of the shear modulus reconstruction is raised by increasing the 

initial guess from 10 to 15 KPa. 

 

The Mean Values for Shear Modulus Reconstructions (KPa) 

Initial guess=10  Initial guess=15  Difference  

8.0956e+003 10.1700e+003 2.0744e+003 

 

 

Table 4- 2 The mean values of the shear modulus reconstructions with two different initial guesses, 10 and15 

KPa, for the two conical inclusions phantom are represented.  
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Figures 4.16-A and 4.16-C exhibit that the stiffness contrast between background and the 

inclusions using initial guess 15 KPa is more improved in comparison with the initial guess 

10 KPa. The displacement field image shown in Fig.4.17 with the mean value of 8.3909e-

004 µ m represents an irregular motion pattern around the inclusions which implies the 

existence of stiffer inclusions in the medium. This also can mean that the Type-B actuation 

system allows the phantom to move freely on all sides while is being excited and this might 

be a reason for the strong perturbation around the conical inclusions. From one glance at the 

phantom situation in Fig. 4.4 it can be seen that the two conical inclusions phantom is 

restricted on the actuation tray on only one side (the bottom), and the other five sides are 

free. This may explain the high motion magnitude level within the phantom and fewer 

artifacts as the inclusions could be detected in the reconstruction procedure.  

 

 

4.7.3 Discussion and Conclusion 

High-quality elastic property images have always been the objective of MRE, to facilitate 

differentiation between benign and cancerous lesions. The approach presented here 

investigates the role of boundary condition as a possible key factor in better property 

reconstructions with fewer artifacts. The goal was to compare two different actuation 

systems in order to suggest a realistic design guideline for advanced MRE actuation systems. 

Phantom experiments with different piezoelectric actuators have been previously performed 

to demonstrate the artifact caused by constraints applied by the actuation system.  

 

In general, when a shear wave travels through a medium, a part of this wave will be 

deflected away from any surfaces or boundaries and another part will be scattered especially 

from the corners of the object. This deflection and scattering of the wave can also occur 

within the interface of two materials with different stiffness, such as a stiffer inclusion inside 

a softer background, as well as creating a perturbation around the inclusion. In 2005 Parker 

and et al. [163] showed that the presence of inhomogeneity, such as the existence of stiffer 

inclusions in the tissue or phantom, can be indicated by the perturbation in displacement 

fields [164, 165, 166, 167].  
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In the MRE image implementation, this wave perturbation and irregularity in the motion 

pattern will translate as a material properties contrast which happens when the wave faces a 

different medium or an inclusion inside a phantom in this case. A highly constrained 

actuation system does not allow sufficient perturbations in the displacement field around the 

inclusions to facilitate the reconstruction.  

 

This can lead to the existence of artifacts in the boundaries and corners as well, because of 

the existence of the wave disturbance in those areas. Also, by considering wave energy 

dissipating on the rigid boundaries [168, 169], a strong motion which is the source of the 

perturbation in the displacement field cannot be generated. This fact can be seen in the 

displacement field in the Type-A actuator case which was overly constrained. 

 

In the comparison of two piezoelectric actuators, Type-A and Type-B, with two different 

boundary conditions, a satisfactory shear modulus reconstruction with fewer artifacts 

demonstrated with the Type-B actuation system. This investigation has shown that by raising 

the initial guess in the shear modulus reconstruction, the elasticity contrast between the 

inclusion and the background is increased. Table 4.3 evaluates the difference between MRI 

real data reconstruction mean values of two cylindrical and conical inclusion phantoms 

obtained from the Type-A and the Type-B actuation systems respectively. This evaluation 

reveals that the conical inclusion phantom excited by Type-B actuator illustrates a higher 

mean value in the both image reconstruction, shear modulus with two different initial guess 

and displacement.  

 

The displacement field observed in the Type-B actuation also shows an irregular pattern 

(Fig. 4.17) while this displacement pattern in the Type-A actuation are regular without any 

disturbance around the inclusions (Fig. 4.11). While the displacement magnitude level in 

actuator Type-B is slightly higher than that of actuator Type-A, this cannot be the only 

reason for the successful image reconstruction in the conical inclusion phantom. The 

important point is the disturbance level around the inclusions. This can be seen in the Type-B 

actuation which was able to create enough perturbation around the inclusions and as a result, 

better elasticity image reconstructions were obtained. 
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Reconstruction Results Mean Value Differences 

Using Real MRI Data for Two Conical and Cylindrical Phantoms 

                 Phantom    

Recon.  

Conical  Inclusion 

Type-B 

Cylindrical Inclusion 

Type-A 

Difference 

Shear Modulus with 

Initial Guess=10 KPa 

8.0956e+003 7.1895e+003 0.9061e+003 

Shear Modulus with 

Initial Guess=15 KPa 

10.17e+003 9.8511e+003 0.3189 e+003 

Displacement 8.3909e-004 8.007e-004 0.3839e-004 

 

 

Table 4- 3 The difference between MRI real data reconstruction mean values of two cylindrical and conical 

inclusion phantoms obtained from the Type-A and the Type-B actuation systems are evaluated. 

 

 

While the results obtained from the real MRI datasets verify that the boundary condition in 

MRE reconstruction may play an important role in the quality of reconstructed MRE images, 

more accurate tests are still required to determine the exact cause of the artifacts. This 

hypothesis can be better clarified by simulation studies in the future. 

 

The discussion is open for more evaluation about other factors which may create the artifacts 

in MRE actuation systems (i.e. the frequency of the actuation). Questions still remain over 

parameters which may affect this problem such as reconstruction procedures (i.e. zone size), 

elasticity properties (i.e. initial guess), data acquisition conditions, and the phantom 

fabrication process which is being used to manufacture the phantoms.  

 

As shown, regardless of the type of actuator, by increasing the initial guess the elasticity 

image reconstructions obtained from real MRI and simulated datasets are improved. This 

indicates that initial guess can be another factor which might play an important role in MRE 

image reconstructions.  The discussion about the initial guess and its influence in elasticity 

reconstruction results and artifacts will be continued in the following chapters. 
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“A person, who never made a mistake, never tried anything new”.    Albert Einstein 

                                                                                          

                                                   

                                                    

Chapter 5 

 

5.1 Orthotropic Incompressible Phantoms 

To evaluate a realistic orthotropic incompressible model, several biological phantoms (with 

and without gelatin embedding) and a series of non-biological tissue-like gelatin phantoms 

were developed and tested for this thesis. Choosing the best phantom that mimics an 

orthotropic material can be very challenging, as there is little quantitative information 

available in MRE experiments regarding orthotropic phantom fabrication. 

 

This research project is mainly based on the orthotropic incompressible phantom 

development along with data acquisition and image reconstruction, to describe the 

orthotropic behavior. Several orthotropic phantoms were designed and manufactured for 

MRE data acquisition. Orthotropic image reconstruction was then carried out to map 

orthotropic elasticity properties in 3D using a few MRI datasets which are presented in this 

chapter, and their results will be discussed in the following chapters. This chapter presents 

some experiments with tissue-like gelatin phantoms and muscle phantoms which include: 

 

• Orthotropic phantom manufacturing protocols 

• Boundary conditions regarding orthotropic materials 

• Orthotropic data acquisition  

• Protocol analysis and manufacturing remarks 
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5.2 Biological Orthotropic Phantoms 

Recently, ex vivo phantom elastography such as muscle phantoms, have been developed 

for non-invasively measuring the stiffness of biological tissues [159]. As real cancerous 

tissue is not always available for MRE testing, one focus on this investigation was to 

design and manufacture a series of muscle phantoms and tissue-like gelatin phantoms that 

could mimic the tissue and tumors with orthotropic properties.  

In this approach, two kinds of biological orthotropic phantoms were developed and made 

for the orthotropic dataset acquisition. These were muscle phantoms and a pineapple 

phantom.  

 

5.2.1 Muscle Phantom Experiments 

Due to the structural properties and myofibril protein orientations within the muscle, this 

material can be a good example of orthotropic incompressible behavior. As muscle is known 

to be highly orthotropic [170], to develop clinically realistic orthotropic phantoms, bovine 

muscle was chosen and tested. To examine the muscle phantom, two different kinds of 

phantoms were designed, and then tested with two different types of actuators. These 

actuators were piezoelectric actuation systems (Type-A and Type-C), and a pneumatic 

actuator. Phantoms which were fabricated and tested in this category were: a gelatin-muscle 

phantom and multiple free standing muscle phantoms. 

  

5.2.1 .1 Gelatin-muscle phantom  

 

• Manufacturing Protocol  

 

The purpose of making this phantom was to simulate an orthotropic tumor (cubic beef 

muscle in this test) inside a soft tissue (gelatin). This phantom was fabricated for the Type-A 

actuation system.  
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The gelatin-muscle phantom was made from a cubic piece of bovine muscle embedded in 

unflavored homogenous gelatin (Davis Gelatin, NZ, Ltd). Gelatin is a suitable material for 

tissue-mimicking phantom manufacturing as it is safe, relatively easy material to work with, 

and can also be set quickly. Early experiences have shown that an acceptable concentration 

of gelatin is around 9.9g/100mL [171]. 

 

To make this phantom, 25g gelatin was weighed and added to 250 ml hot water and then 

mixed. A magnetic stirrer was used to help dissolve the gelatin in the water while the 

mixture was heated on a hotplate to around 70
o
 C.  

 

The temperature of the mixture was measured by a thermometer which was placed inside the 

hot water. The mixture was then cooled in a water bath to around 32
o
 C. The reason that the 

mixture was cooled to around 32
o
 C was to prevent over heating the bovine muscle while it 

was being surrounded by gelatin, as the heat may change the material property of the tissue. 

Before pouring this liquid inside the phantom box all screw holes of the phantom box were 

sealed to avoid liquid leaking out.  

 

In the next step, one third of the phantom box was filled by this solution and then the 

phantom was set overnight in the refrigerator. After the gelatin was set, a cubic bovine 

muscle was prepared (7× 7× 5cm) and located on the top of the gelatin base inside the 

phantom box. The geometry of the cubic bovine muscle was designed in such a way that was 

suspended in the gelatin without touching the phantom box faces (Fig. 5.1). 

 

At this stage, the markers (oil capsules) were applied on top of the gelatin base between the 

cubic muscle and internal phantom faces (Fig. 5.2) in the manner that was explained before 

in 4.3.1. The phantom and the cubic bovine muscle were then surrounded by Co25 gelatin 

and then kept in the refrigerator to facilitate setting. 
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Figure 5- 1 A configuration of the gelatin-muscle phantom. The position of the cubic bovine muscle on top 

of the gelatin base is shown.    

 

 

 

Figure 5- 2 This image depicts the completed gelatin-muscle phantom. The small arrow shows the position 

of the markers regarding the coordinate system. The cubic bovine is shown suspended inside the gelatin.  

 

 

 

Figure 5- 3 The Type-A actuation system set up is depicted while the phantom box included the gelatin-

muscle phantom is coupled with the piezoelectric actuator. The coordinate system shows the phantom 

alignment inside the phantom box.  
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• Orthotropic Data Acquisition  

 

The gelatin-muscle phantom was tested by the Type-A actuator at a frequency of 100 Hz. 

The experimental set up arranged for this test included the gelatin muscle phantom located 

inside the phantom box which was coupled to the piezoelectric actuator. The actuator was 

then placed into a head coil which was used to receive the MRI motion data. Finally, this 

system was inserted inside the MR bore (Fig. 5.4).  

 

 

 

Figure 5- 4 This picture shows the experimental arrangement for the gelatin muscle phantom. The phantom 

located inside the actuator Type-A was place inside a head coil. The head coil is shown while it is being 

inserted inside the MRI bore. 

 

Before phantom scanning, a pre-scan was carried out to check the correct orientation of the 

scan plane in the magnitude image. The phantom was then scanned in three dimensions to 

measure the real and imaginary parts of the motion data in the magnitude and phase images 

format. The slice thickness for this MRE test was 2 cm while considering a cubic voxel 

(1× 1× 1 mm).  

 

• Orthotropic Boundary Conditions 

 

The phantom was scanned in three dimensions by rotating the phantom box 
o90 in 3-D.  
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As mentioned in chapter 3, to obtain enough motion data from an orthotropic material, 

multiple measurements in 3-D are required. By rotating the phantom box o90 in 3-D, the 

phantom could be efficiently actuated in three directions. The schematic of boundary 

conditions assigned to the phantom box including the muscle gelatin phantom, is depicted in 

figure 5.5. The phantom was scanned in three stages with one specific excitation frequency 

of 100 Hz. In each stage, this load condition was assigned to the side of the phantom box 

which was coupled to the piezoelectric actuator in the excitation direction (Z). 

 

 

 

 

Figure 5- 5 This schematic depicts three stages of the boundary conditions applied to the muscle gelatin 

phantom located inside the phantom box. This picture illustrates that only one specific frequency of 100Hz 

was assigned to the phantom in 3D while the phantom is being excited in the Z direction.  The phantom box 

has been flipped 
o90  in each stage to capture multiple measurements in 3-D from this orthotropic sample. 

 
 

• Protocol Analysis and Manufacturing Remarks 

 

A view of the *2T weighted MR magnitude image captured from the gelatin muscle phantom 

is shown in Fig. 5.6. Unfortunately, the MRI dataset from this phantom did not exhibit 

sufficient transmission of shear waves to the muscle, thus this phantom was not used for the 

reconstruction procedure.  



    

94 

 

To explain this deficiency, a reason could be again that the boundary conditions applied from 

the five rigid faces of the phantom box to the gelatin-muscle phantom using the Type-A 

actuation set up which overly constrained the phantom. This reduced the motion magnitude 

level and the perturbation within the phantom, as discussed in chapter 4.  

 

As initial elasticity image reconstructions obtained from phantoms (silicone gel and gelatin 

muscle phantoms) tested by the Type-A actuator has not revealed  satisfactory results, this 

actuator is no longer used for the MRE data acquisition owing to its constraints on the 

phantoms.  

 

 

 

Figure 5- 6 A view of the MR magnitude image (
*2T weighted) obtained from the gelatin muscle phantom. 

The cubic bovine muscle embeded inside the gelatin is visible.     

 

 

5.2.1.2 Free Standing Muscle phantoms 

 

Research has shown that motion signals obtained from free standing muscle are significantly 

stronger than gelatin-muscle phantoms [159]. A reason can be that the motion magnitude 

level may be higher in the free standing muscle phantoms than the muscle embedded in the 

gelatin.  As explained before, the higher the mass in the gelatin-muscle phantom with a 

constant load condition causes a reduction in the system’s acceleration. This does not allow 

strong waves to be made within the phantom. For this reason, free standing muscle phantom 

was fabricated, with the muscle actuated directly without any gelatin embedding for the data 

acquisition. 
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As experiences have shown, material properties of the tissue (i.e. the stiffness) can be 

changed by heating. This idea was applied to create an inclusion inside the muscle 

phantom to simulate an orthotropic tumor inside the tissue.  

In this approach, several methods were developed to create an inclusion within the muscle 

phantom using heating and chemical processes. These techniques took advantage of a laser 

system and electricity to produce heat in a small area inside the muscle phantom. Using a 

chemical material such as acetone to change the elastic property of the tissue to simulate an 

inclusion within the muscle phantom was another approach that was also investigated. 

These protocols are explained in this section. 

 

5.2.1.2.1 Laser 

 

Laser stands for “Light Amplification by Stimulated Emission of Radiation” [172]. It is a 

device which uses atoms or molecules of a substance and excites them to produce an excited 

energy during a procedure known as stimulated emission to release coherent light 

(electromagnetic radiation) of a precise wavelength as a narrow beam (low divergence beam) 

[172, 173]. The laser emission is transferred by glass or plastic fibers which are used to carry 

the light along its length. There are two kinds of fiber; single-mode and multi-mode. Multi-

mode fibers have a significantly large core diameter (50-1000 µ m) in comparison to single-

mode (4-10 µ m) (Fig. 5.7) [174, 175]. 

 

 

 

Figure 5- 7 A schematic of the single-mode fiber (right) and the multi-mode fiber (left). The difference 

between their cores and their claddings are shown. 
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• Manufacturing Protocol  

 

In this research, the laser (Ultrafast Mai Tai® Lasers, Spectra-Physics ®, Mountain View, 

CA) was used to carry the laser energy to heat a spot inside the tissue (Fig. 5.8). This device 

can produce a wavelength range between 690-1020 nm. The actual wavelength associated 

for this test was around 802 nm powered by 1.5 W.  

 

 

 
Figure 5- 8 The protocol configuration of making an inclusion by heating a spot within the muscle phantom 

using the laser is shown. 

 

For the first trial, the single-mode fiber was used. The test was carried out by applying a 

metal needle (Fig. 5.9) to conduct the single-mode fiber (about 10 µ m) to the inclusion 

location within the phantom. The laser transmission along the fiber (Fig. 5.10) was then 

carried out for twenty minutes to heat a small area within the muscle phantom and create a 

stiff inclusion (Fig. 5.11).   

 

 

 

Figure 5- 9 The metal needle shown in this picture was used to facilitate locating the single-mode fiber 

through the muscle phantom. 
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Figure 5- 10 The laser transmission along the single-mode fiber applied to the muscle phantom is shown. 

This test was carried out for twenty minutes. 

 

 

 

Figure 5- 11 This picture depicts a view of the muscle phantom which was cut to observe the quality of the 

inclusion after the laser transmission. The small and overheated inclusion is due to a high laser transmission 

in a small area using the single-mode fiber. 

 

 

Figure 5.11 shows a view of the muscle phantom which was cut to observe the quality of the 

inclusion. As the single-mode fiber has a very small light carrying core with a high 

transmission rate, the inclusion generated by this fiber was small (about 5mm diameter) and 

overly heated. This muscle phantom was not used for data acquisition as it was assumed that 

this small inclusion may not be visible in the MRI scan and elasticity reconstructions.  

 

The next laser transmission trial was carried out for twenty minutes in order to make another 

inclusion inside the muscle phantom using the multi-mode fiber (1mm diameter) (Fig. 5.12).  
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The same technique which was used to locate the single-mode fiber inside the muscle 

phantom was utilized for placing the multi-mode fiber within the tissue. As mentioned in 

Fig. 5.7 the multi-mode fiber has a larger light carrying core and as a result a larger area can 

be heated by the laser (Fig. 5.13). Figure 5.13 shows a view of the bovine muscle phantom 

which has been cut to observe the heated area. The material property within the tissue was 

changed successfully by this technique with a larger inclusion diameter. The changed color 

area represents the generated inclusion (over 20 mm diameter).  

 

 

 

Figure 5- 12 This picture depicts a demonstration of the multi-mode fiber with 1 mm diameter located inside 

the muscle phantom for twenty minutes in order to heat and create an inclusion using the laser transmission. 

 

      

 

Figure 5- 13 This picture shows a view of the bovine muscle phantom tested with the multi-mode fiber with 

a larger laser carrying core. The phantom has been cut for better observation of the heated area. The circled 

spot exhibits the material property changing within the tissue. The changed color area represents the 

generated inclusion of about 20 mm diameter.  
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As the previous phantom was cut for the observation, another muscle phantom was 

fabricated in the same manner as the previous phantom using the multi-mode fiber for the 

MRI scan. A coordinate system was defined for the phantom using three fiducial markers 

(MR-SPOTS, Beekley Corporation, USA) as shown in Fig. 5.14. 

 

 

 

Figure 5- 14 The performance of the final muscle phantom which was used for the MRI scan. A coordinate 

system was defined for the phantom using three fiducial markers as shown in this picture. 

 

 

• Orthotropic Data Acquisition  

 

Figure 5.15 shows an experimental set up for the muscle phantom which was located on the 

contact plate of the Type-C actuation system while a pair of surface coils is coupled from 

both sides.  A large pad is applied to stablize the other side of the plate.  

 

The driven force supplied by two piezoelectric actuators excited the phantom. Two thin 

rubber mats were used underneath the actuator’s legs to prevent shaking the actuation system 

during the scanning.  

 

As this picture shows the direction of the actuation system is in the X direction of the MRI 

scan coordinate system. The MRE dataset was collected with fifteen slices and the voxel size 

was 2× 2× 1.8 mm including a 0.9 mm slice gap. 
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Figure 5- 15 A demonstration of the experimental set up for the muscle phantom which was excited by the 

Type-C actuation system while a pair of surface coils is attached to both sides. The situation of the large pad, 

two thin rubber mats, and the actuation direction, are also illustrated. 

 

 

• Boundary Conditions 

 

The muscle phantom was scanned with an excitation frequency of 100 Hz in three directions 

by rotating the phantom box o90 in 3-D to capture enough MRI motion data from this 

orthotropic phantom (Fig. 5.16). By rotating the phantom faces 
o90 in 3-D, the phantom 

could effectively be actuated in three directions. Boundary conditions applied to the muscle 

phantom show that only one face of the phantom which is located on the contact plate is 

restricted and the phantom is free on its other five sides.   

 

 

• Protocol Analysis and Manufacturing Remarks 

 

The successful material property transformation using the laser transmission has shown that 

this method is capable of creating an ex vivo inclusion within the muscle phantom (Fig. 5.17) 

where the real case was not available for the MRE experimental tests. 
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Figure 5- 16 This schematic shows the applied boundary conditions for the muscle phantom with a 

frequency of 100 Hz in three dimensions along the actuation direction (X). Note that the actuation direction is 

constant but the phantom faces are rotating 
o90 in 3-D.    

 

 

While the goal of elastic property modification using the laser protocol has been achieved in 

this experiment, a satisfactory MRI dataset was not captured from this muscle phantom. The 

muscle phantom set up shown in Fig. 5.15 may express one reason for this inadequacy. The 

improper adjustment of the surface coils with respect to the phantom can cause the 

insufficient MRI data collection. As explained in 4.2.3, the best position of the phantom-coil 

set up is when the coil is near the phantom. This form of the phantom-coil set up would help 

to detect stronger motion signals by the coil.  

 

On the other hand, the inclusion spot is fairly small in comparison to the muscle phantom 

size. For these reasons, the recorded MRI datasets from this phantom were not used for the 

orthotropic reconstruction procedure.  

 

The stiff inclusion construction for tissue-equivalent phantoms using the laser is still an open 

approach needing more investigation. For future trials, adjusting the procedure of heating for 

a longer time and using several multi-mode fibers to create the larger spot are suggested. 
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Figure 5- 17 The MRI magnitude image (proton density weighted) obtained from the laser protocol to 

change the elasticity property of an internal spot within the muscle phantom. The circled area shows the 

inclusion location.      

 

 

5.2.1.2.2 Electricity 

Direct current (DC) is the constant flow of electrons which is generated by power supply 

units such as batteries etc. This continuous movement of electrons will flow through a 

conductor such as a wire from a negative terminal of a power source to a positive end. A 

DC electricity system in a circuit comprises voltage, current, and resistance. A DC voltage 

is provided by an electricity generator such as battery [176, 177, 178]. 

 

• Manufacturing Protocol  

 

An approach to making an ex vivo inclusion using DC electricity to produce the heat in order 

to transform the material property within the muscle phantom is shown in Fig. 5.18. For this 

purpose, a resistor (5W 3 Ω  9J YAGEO DGK, Oxygen Electronics LLC USA) was coupled 

between two plastic protected wires using a soldering iron. The end of each wire was 

stripped of plastic and joined to the resistor’s wires which had also been stripped (Fig. 5.19).  
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Figure 5- 18 This picture shows a configuration of the DC electricity system which was designed for an ex 

vivo inclusion fabrication within a muscle phantom. This circuit includes a resistor to generate heat inside the 

muscle phantom, a power supply unit to produce the voltage, and a multimeter for measuring and adjusting 

the current.  

 

                   

A                                                                            B 

 

 Figure 5- 19 In these pictures, the procedure of joining the resistor to a wire using a soldering iron (A) and 

the resistor coupled between two plastic protected wires (B) are depicted.  

 

The resistor was then placed inside the muscle phantom (Fig. 5.20). Two wires were then 

attached to the positive and negative terminals of a DC power supply unit (6114 A Precision 

Power Supply, Test Path Inc, USA) while a digital multimeter (Fluke 77 Multimeter, 

Optimum Energy Products Ltd, USA) was connected to the power supply unit to complete 

this system by adjusting the DC current, which was passing through the muscle phantom 

(Fig. 5.21). The power supply unit could generate voltage in the range between 0-50 V. 
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Several experiments with the voltage range between 24-35 V and the current range between 

0.5-1 A were carried out to fabricate this muscle phantom successfully. For the ultimate test, 

a voltage of 35V and current of 1 A were applied to heat the muscle phantom sufficiently. 

The final designed system is shown in Fig. 5.22. 

 

 

       

 

Figure 5- 20  These pictures show two views of the muscle phantom and the locating scenario of the coupled 

resistor between two wires within the phantom.   

 

         

A                                                                                  B 

 

Figure 5- 21 The power supply unit used for this test to provide the voltage (A) and a digital multimeter to 

measure and adjust the DC current which was passing through the muscle phantom (B), are displayed.     
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Figure 5- 22 The final designed system to set up the DC circuit to fabricate the muscle phantom included a 

stiffer inclusion which was created by heat. The resistor located within the muscle phantom is able to convert 

the electric energy to heat. This heat changes the material property inside the phantom. The DC electricity 

flow was generated by a power supply unit which was connected to a multimere to adjust the current. 

 

 

• Protocol Analysis and Manufacturing Remarks 

 

Transforming the material properties within the muscle phantom in order to make a stiffer 

inclusion using the electricity energy to produce heat was successful as well as the laser 

transmission procedure. This technique has been shown to be a safe and fairly easy method 

to fabricate ex vivo phantoms with stiffer inclusions.  However, this approach still needs to 

be modified. Fig. 5.20 shows that the muscle phantom had to be damaged to locate the large 

resistor. As a result a large hole was observed after removing the resistor from the muscle 

phantom (Fig. 5.23) which may affect the quality of the obtained MRI datasets. 

 

Using thin resistors can be helpful for future muscle phantom manufacturing. Also, more 

investigations are needed to adjust the voltage and the current of the DC electricity for the 

optimum temperature to make a larger and stiffer inclusion.  



    

106 

 

   

A                                                                       B 

 

Figure 5- 23 These images display two views of the stiffer inclusion within the muscle phantom. The 

location of the inclusion is circled. The phantom was slightly cut for observation (A). The transformed color 

inside the muscle phantom means the material property of this area is changed. The closer view (B) shows a 

fairly large hole within the phantom which was where the resistor was located.  

 

 

A suggested option to provide the electric energy could be the alternating current (AC), 

considering the safety issues. This phantom was not taken to the MRI scan as it was assumed 

that useful MRI datasets would not be captured from the damaged muscle phantom. 

 

5.2.1.2.3   Electrosurgical Device  

An electrosurgical device is a surgical instrument which uses high frequency current, 

usually upwards of 100 KHz, on a particular area of the body for surgical purposes. This 

device is typically applied to seal off blood vessels and remove unwanted tissue. Some 

surgical techniques use the electrosurgical device to create a surgical incision on different 

tissues. The advantage of the electrosurgical device is that it is clean, safe, and more 

efficient than other similar surgical techniques [179, 180, 181, 182].  

• Manufacturing Protocol  

In this muscle phantom fabricating protocol, the electrosurgical device (Force 2, Valleylab, 

USA) was used to create the heat inside the phantom in order to make a stiffer inclusion 

(Fig. 5.24).  
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The electrosurgical generator produces the voltage for electricity flow as well as 

converting the AC electricity to high frequency waveforms. For example, an AC with 60 

Hz can be transformed to 100,000 Hz which is known as radio frequency (RF). Two 

different techniques exist for electrical circuit set up: monopolar (monoterminal) and 

bipolar (biterminal) [183]. 

 In the monopolar method, the electrical flow is sent through the tissue by only one single 

active electrode (Fig 5.25–A), and it is then received from a return electrode pad (Fig 5.25–

B). In the bipolar approach, the active and the return electrodes are placed in one 

handpiece pencil (forceps), and the return pad is no longer needed as is shown in Fig 5.25–

C. A monopolar configuration of an electrosurgery circuit comprises: an electrosurgical 

generator which supplies the power, a hand-piece known as ‘pencil’ or active electrode, 

including one or several electrodes, a return electrode pad, and the tissue as a resistor.  

A schematic of this technique is displayed in Fig. 5.26. In electrosurgery, the principle is 

that the tissue plays the role of a resistor between two electrodes. Since the resistance of 

the tissue is high, it converts the electric energy to thermal energy and this heat can be used 

to transform the material property within the muscle phantom.  

In this procedure, the RF current produced by the electrosurgical generator was sent 

through the muscle phantom by an active electrode known as a ‘pencil’ or ‘RF knife’ and it 

was then received from the return electrode pad. The electric current received from the 

return electrode pad is then sent back to the AC source (electrosurgical generator). On the 

tip of all electrosurgical pencils there is a removable small contact plate known as a probe 

which is made from stainless steel and acts as an electrode. 

Usually, when the high frequency flow passes through the pencil’s electrode, it spreads in a 

localized region only near the probe tip, inside the tissue. Once this electricity flow faces 

the tissue’s resistance, the heating procedure occurs which raises the tissue temperature. 

The pencil’s functions can be controlled by pushing the yellow and blue buttons which are 

located on the pencil’s hand piece (Fig. 5.25-A).   
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Figure 5- 24 The electrosurgical generator used for the MRE test to create the heat inside the muscle 

phantom in order to make a stiffer inclusion is shown. This power supply produces the voltage for electricity 

flow as well as converting the AC electricity to high frequency waveforms.  

          

A                                                                         B 

             C            

 Figure 5- 25 Three electrosurgical accessories are displayed in this picture. The active electrode known as 

the electrosurgical pencil (A) and the return electrode pad (B) which are both used in the monopolar 

technique are shown. The forceps with two active/return electrodes in one handpiece pencil which is applied 

in the bipolar method also illustrated (C).  
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Figure 5- 26 A schematic of electrosurgical accessories. This circuit comprises an electrosurgical generator 

(power supply), a pencil (active electrode), and a return electrode pad and tissue (muscle phantom) as a 

resistor. 

 

In this test, the return electrode pad acted as a pathway for the current to be taken back to 

the electrosurgical generator again. This pad is flexible and usually made from a 

viscoelastic polymer. This pad also plays an isolator role to prevent the current flowing to 

the ground (Fig. 5.25-B).    

The muscle phantom was placed on the return electrode pad which was connected to the 

electrosurgical generator. The pencil-like active electrode was then gently inserted through 

the muscle phantom. The test was carried out for five minutes with 35W of power.  

Figure 5.27 illustrates the configuration of the set up which was designed for this 

experiment. As this picture shows, the pencil’s yellow button was held during the test to 

transfer the RF through the muscle phantom. 

 

• Protocol Analysis and Manufacturing Remarks 

The muscle phantom was then excised after testing with electrosurgical device to observe 

the resultant inclusion (Fig. 5.28). The demonstration of the stiffer inclusion represents that 

this method was capable of changing the material property within the muscle phantom.  
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The transformed colour of the tissue shows that this technique was successful, safe, and 

fast to produce enough heat inside the phantom which is necessary for converting the tissue 

to an inclusion. However, this approach has a disadvantage.  

Fig. 5.28 reveals that the monopolar technique with a thin probe is not able to create an 

inclusion with sufficient thickness. This test was carried out for a longer time on the 

assumption that maybe by increasing the time more heat can be generated and as a result it 

could make a larger inclusion. Unfortunately this idea was not helpful as the inclusion 

became longer but no thicker. A reason could be the small pencil’s probe which spreads 

the RF flow in a localized region only near the electrode’s tip.   

 

 

Figure 5- 27 The configuration of the designed set up for the muscle phantom to create a stiffer inclusion 

using electrosurgical device is depicted in this picture. The muscle phantom was placed on the return 

electrode pad which was connected to the electrosurgical generator. The pencil was then inserted through the 

muscle phantom gently. The pencil’s yellow button was held continuously during the test to transfer the 

electrical current through the muscle phantom.  

 

 

Although this method was sufficiently fast and efficient to transform the material property of 

the muscle phantom, more modifications are still needed to create a qualified inclusion for 

future MRE investigations. A suggestion for future MRE muscle phantom tests using the 

electrosurgical method could be to apply the bipolar pencil rather than a single active 

electrode pencil (monopolar).  
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In this technique, a piece of the tissue in the muscle phantom can be trapped between two 

electrodes of the forceps which may be helpful to create a thicker inclusion as shown in Fig. 

5.29. This muscle phantom was not taken for the MRI scan again as it was assumed that the 

thin inclusion may not be obvious in the MRI scan and the orthotropic reconstructions. 

 

 

Figure 5- 28 This picture depicts a view of the muscle phantom which was cut for observation after the 

electrosurgical test. The circled area shows the location of the stiffer inclusion with the small thickness. The 

transformed color of the tissue reveals that the material property within the muscle phantom has been 

changed.  

 

 

Figure 5- 29 A proposed set up using the bipolar electrosurgical technique is depicted in this schematic. The 

bipolar forceps is inserted through the muscle phantom while a piece of tissue can be trapped between two 

active and return electrodes. This may increase the chance of creating a thicker inclusion. 



    

112 

 

5.2.1.2.3   A Chemical Process for Inclusion Generation 

 

Fixation is a chemical procedure used to stabilize a tissue from degeneration. This method is 

widely used in histology, pathology and so on to terminate biochemical functions in tissue. 

Experiences have shown that the fixation process increases the mechanical stiffness and the 

stability of the tissue. In this technique the tissue can be preserved by different chemical 

agents known as fixatives such as acetone and formalin (formaldehyde) [184, 185].  

 

In this experiment, acetone was used to make a stiff inclusion inside a muscle phantom by 

taking advantage of the effects of this chemical agent the mechanical property of the tissue.  

 

• Manufacturing Protocol  

Acetone is an alcoholic precipitating fixative with the formula OC (CH3)2, which, by 

diminishing the solubility of protein molecules and destroying the hydrophobic functions, 

changes the nature of the material structure within the tissue. Acetone is a colorless, 

flammable and mobile liquid which is known to cause considerable shrinkage and 

hardening of the tissue during fixation [186, 187, 188].  In this test, 2 ml acetone (A18-4, 

Fisher Scientific, Inc, USA) (Fig. 5.30-A) was injected inside the muscle phantom with a 

small syringe (2 ml) (Fig. 5.30-B). From a central point of penetration, several injections 

were made at different angles to spread the acetone evenly throughout the muscle phantom.  

This technique of injection was carried out to fabricate a three dimensional inclusion with 

sufficient thickness within the phantom. A schematic of the injection technique with 

different angles to make a 3D inclusion within the muscle phantom is illustrated in Fig. 5.31. 

After acetone injection, the muscle phantom was cut for observation (Fig. 5.32). The color 

conversion of the injected area can be interpreted to mean that material properties of this 

region have changed. In fact, a stiffer inclusion was created because of the tissue hardening 

effect of the acetone fixation process. Another muscle phantom with a stiffer inclusion was 

fabricated using the acetone injection technique, in the same manner as the previous muscle 

phantom for the MRI scan.  
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A                                                                            B 

Figure 5- 30 Acetone was used as an alcoholic fixative to fabricate the muscle phantom with a stiffer 

inclusion as this chemical agent can cause shrinkage and hardening of the tissue during fixation (A). A 2 ml 

syringe was applied to inject the Acetone inside the muscle phantom as shown in B. 

 

 

 

Figure 5- 31 This schematic shows the technique of injection with different angles which was carried out to 

create the stiffer inclusion in 3D within the muscle phantom. From a central point of penetration, several 

injections were made at different angles to spread the acetone evenly throughout the phantom.  

 

 

 

 

Figure 5- 32 The circled area displays the transformed color of the inclusion after the injection process 

which indicates that the material property of this volume has been changed by acetone.    
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• Orthotropic Data Acquisition  

 

Figure 5.33 demonstrates an experimental set up for the muscle phantom which was located 

on the membrane of the pneumatic actuation system while a pair of surface coils is coupled 

from both sides.  The system was supported by two sand bags to prevent undesirable 

movement of the system during the excitation. The actuation system had to be covered by a 

cloth because the phantom was leaking blood during the test.  

 

As this picture shows the direction of the actuation system is in the X direction of the MRI 

scan coordinate system. The MRE dataset was recorded with fifteen slices and the voxel size 

was 2× 2× 1.8 mm including a 0.9 mm slice gap.  

 

 

 

 

Figure 5- 33 The set up for the free stand muscle phantom with an inclusion made by acetone.  The 

pneumatic actuation system was used for exciting the phantom in the X direction with a frequency of 100 Hz. 

The actuator had to be covered because of the phantom blood leakage.  The phantom was located on the top 

of the actuator membrane. The position of the surface coils and the sand bags are also shown. Note that the 

actuation direction is constant but the phantom faces are rotated 
o90 in 3-D. 
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• Boundary Conditions 

 

The free standing muscle phantom was scanned with a specific excitation frequency of 100 

Hz in three dimensions by rotating the phantom box o90 in 3-D in three phases to collect 

sufficient motion data from this orthotropic phantom similar to the previous MRI data 

collection which is illustrated in Fig. 5.16. By rotating the phantom faces o90 in 3-D, the 

phantom could be actuated in three dimensions. Boundary conditions applied to the muscle 

phantom allowed that only one face of the phantom which is located on the membrane of the 

pneumatic actuator is constrained. As a result, the phantom was free to move on its other five 

sides.   

 

 

• Protocol Analysis and Manufacturing Remarks 

 

Although the acetone injection method was successful in changing the tissue hardening and 

creating a stiffer inclusion, the inclusion was not detected in the MRI datasets (Fig. 5.34). 

More investigations about this technique and alcoholic fixatives revealed that the tissue 

hardening influence due to acetone is temporary and after a short time (about 20 minutes), 

acetone evaporates or dissolves in the water medium of the tissue. This causes the tissue to 

lose its hardness and return to its original form. This technique can be modified in future 

trials by paraffin embedding as the paraffin stabilized the acetone and prevents its 

evaporation and its solubility in the tissue water.  

 

Another alternative for future MRE testing to manufacture a muscle phantom with a stiffer 

inclusion using chemical materials is applying other fixatives such as formaldehyde 

(formalin). Formaldehyde exists as a gas form while formalin, with the formula CH2O, is 

formaldehyde dissolved in water which is often used as 10% Neutral Buffered Formalin 

(NBF) [189, 190]. This material is a cross-linking fixative which generates the covalent 

bonds between proteins within the tissue.  Although formalin is able to make a stiffer 

inclusion by creating long term tissue rigidity, this material is reasonably carcinogenic and 

considering safety issues during the test is strongly recommended. 
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Figure 5- 34 Two views of the MRI 
*2T weighted magnitude image, captured from the muscle phantom 

after injecting the acetone. The stiffer inclusion was not seen in this MRI data collection as the tissue lost its 

hardness owing to acetone’s solubility in the water. 

 

Wearing clothing made with special materials such as cotton, nylon, and so on, along with a 

mask and gloves, is important to prevent exposure to this chemical compound.  As formalin 

evaporates quickly, working under a hood with ventilation, opening doors and windows are 

other important precautions that should be pointed out [191, 192]. 

 

Freezing the tissue with some special fixatives or chemical material such as liquid nitrogen 

could also be another suggestion to fabricate a muscle phantom with a degenerated inclusion.  

 

5.3 Orthotropic Gelatin Phantom Experiments 

 

Following muscle phantom fabrication, tissue-equivalent gelatin phantoms were developed 

to evaluate the orthotropic incompressible model in vitro. Several orthotropic gelatin 

phantoms were designed and manufactured for the MRE data acquisition, to reconstruct 

orthotropic elastic properties in three dimensions.  

 

These tissue-like gelatin phantoms are classified into two categories: biological and non-

biological.  
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 For the biological gelatin phantom, a piece of pineapple was chosen as an orthotropic 

inclusion to simulate a tumor with a gelatin background as the benign tissue. For the non-

biological gelatin phantoms, some bristles were applied inside a gelatin base. These 

phantoms were excited by a pneumatic actuation system. In this section, fabricating of these 

orthotropic gelatin phantoms along with the MRE data acquisition procedures, and applied 

boundary conditions are discussed.  

 

5.3.1 Biological Tissue-like Gelatin Phantom 

 

Fabricating a biological gelatin phantom using fruit for MRE in vitro testing is a novel 

technique which was developed for this research. This method is simple and inexpensive, 

and can be used when there is no cancerous tissue available for in vivo MRE testing. For 

this purpose, a piece of pineapple was chosen to fabricate an orthotropic gelatin phantom. 

In this experiment, the ability of the pineapple to mimic tissue with orthotropic properties 

is investigated.  

 

5.3.1.1 Pineapple Phantom 

 

While there is little information available in literature regarding the mechanical properties of 

the pineapple, this natural fibril reinforced bio-composite material can be considered to be a 

highly orthotropic material owing to its structural properties and different fibril orientations, 

which incorporate a variety of fibril lengths and thicknesses within the pineapple’s matrix 

[193, 194].  

 

• Manufacturing Protocol  

The protocol utilized to fabricate the gelatin phantoms’ background in this section is 

different from the method described in 5.2.1.1. The background of all orthotropic gelatin 

phantoms manufactured in this section followed a similar fashion which is explained.  
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The porcine skin gelatin (Type A, Sigma, Life Science Inc, USA) was used to make the 

phantom base (Fig. 5.35).  A large glass beaker (1000 ml) was used to combine 100 g 

scaled gelatin with 900 ml distilled water. To improve the solution of the gelatin into the 

water, the mixture was heated by placing it in a microwave oven for 20 seconds (Fig. 

5.36).  The beaker was then removed from the microwave and placed on the hotplate to 

cool down gradually to around 30
o
 C, while a magnetic stirrer was agitating the mixture. 

This helped to remove air bubbles and obtain a homogenous gelatin solution (Fig. 5.37). 

The temperature was monitored by a digital thermometer.  

 

 

Figure 5- 35 The material (the gelatin from porcine skin) and the scale used to make the background of the 

pineapple gelatin phantom are shown. 

 

 

 

Figure 5- 36 The mixture of gelatin and water was placed inside a microwave oven and heated up for 20 

seconds to help dissolve the gelatin into the water. 
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The first layer of gelatin was poured into a small plastic container (13× 13× 7 cm) filling 

one third of the container, which was greased by petroleum jelly beforehand to facilitate 

removing the phantom from the plastic container. The mixture was kept in the refrigerator 

to let the gelatin solidify for one hour.  

 

 
Figure 5- 37 The beaker was placed on the hot plate after removing from the microwave oven to cool down 

gradually to around 30
o
 C, while a magnetic stirrer was agitating the mixture. This was helpful to remove air 

bubbles from the gelatin background and obtain a homogenous mixture. 

 

 

After the first layer of the gelatin was set, a circular slice of pineapple (Dole Food Company, 

Inc, USA) (Fig. 5.38) was placed on top of the bottom layer of background and the rest of 

the background gelatin was poured very slowly to prevent air bubble forming.  

 

The gelatin phantom was again refrigerated overnight to facilitate setting and also to provide 

the phantom an optimum condition before MRI scan. Usually the sample should be kept at 

room temperature two hours before MRE imaging.  

 

The coordinate system was defined for the sample by locating three fiducial markers on the 

phantom (Fig. 5.39). 
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Figure 5- 38 A circular slice of pineapple provided from a cane was used to fabricate the pineapple gelatine 

phantom for the orthotropic MRE testing. Different fibre orientation with different length in the pineapple can 

be observed.  

 

 

Figure 5- 39 The completed pineapple tissue-like gelatin phantom with a coordinate system defined three 

fiducial markers.  

 

 

• Orthotropic Data Acquisition  

 

Two views of the experimental set up for the orthotropic MRE imaging are demonstrated in 

figures 5.40 and 5.41. The pineapple gelatin phantom was located on the membrane of the 

pneumatic actuation system while two surface coils are attached to the pineapple sample. To 

avoid undesirable shaking of the actuation mechanism during the excitation, the system was 

supported by two sand bags.  
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The excitation direction of the actuation system was in the X direction of the MRI scan 

coordinate system. The MRE dataset was captured with twelve slices while the voxel size 

was 2× 2× 1.8 mm. The slice gap of 0.9 mm was chosen along with the slice thickness of 18 

mm. 

 

 

 

Figure 5- 40 The apparatus of the experimental set up for the pineapple gelatin phantom with three fiducial 

markers to indicate the phantom’s coordinate system while it is being imaged. The position of the phantom 

standing on the membrane of the pneumatic actuator with the excitation in X direction is shown. Note that 

the surface coils are attached to the phantom to receive the motion data. The system was also stabilized with 

three sand bags and secured by wrapping adhesive strapping around the coils and sand bags. 

 

 

 

Figure 5- 41 Another view of the same experimental set up for the pineapple gelatin phantom while it has 

been flipped 
o90  to capture multiple measurements in 3-D from this orthotropic sample. 
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• Orthotropic Boundary Conditions 

 

To obtain enough motion data from this orthotropic sample, the pineapple gelatin phantom 

was scanned in three stages with three different excitation frequencies; 85 Hz, 100 Hz and 

125 Hz. In each stage, all these three frequencies were applied on the side of the phantom 

which was resting on the actuator membrane and in the excitation direction (X). As a result, 

boundary conditions were applied only on one face of the phantom which was located on the 

membrane and the phantom was free on its other five sides (Fig. 5.42).  

 

As for an orthotropic material, multiple independent measurements in 3-D are required. By 

rotating the phantom o90 in 3-D and repeating this procedure, the phantom could be actuated 

in three independent dimensions to record sufficient MRE datasets. These imaging datasets 

measured the real and imaginary components of the motion in the magnitude and phase 

images which are presented in Table 5.1. 

 

 

 

 

 

Figure 5- 42 This schematic illustrates boundary conditions applied to the pineapple gelatin phantom in three 

stages. By rotating the phantom
o90  it could be excited in 3D with three different excitation frequencies: 85 

Hz, 100 Hz and 125 Hz are shown. In each stage, all these three frequencies were applied only on the side of 

the phantom which was located on the actuator membrane with excitation at X direction. 
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• Protocol Analysis and Manufacturing Remarks 

 

This phantom was more successful than previous phantom experiments, not only in the 

phantom fabricating protocol but also in the procedure of the correct phantom set up and 

MRE scanning process to capture better images with fewer artifacts. 

 

Successful pineapple gelatin phantom fabrication with no significant air bubbles in the 

background has indicated that the protocol of phantom manufacturing described in 5.2.2 is 

suitable as a guide line for making tissue-like gelatin phantoms with a homogenous base. 

The recorded orthotropic MRE datasets within the frequency range (85-125 Hz) were 

satisfactory for the pineapple gelatin phantom. The position of phantom-coil with a proper 

adjustment shown in Fig. 5.40 allowed the collection of sufficient and strong MRI motion 

data. On the other hand, several independent boundary conditions can be derived from the 

complete boundary conditions applied to the pineapple gelatin phantom shown in Fig. 5.42. 

These different boundary conditions can be used individually in the MRE image 

reconstruction process depending on the problem’s circumstances and reconstruction’s 

requirements which are displayed in figures 5.43, 5.44 and 5.45.  

 

According to these schematics the boundary conditions can be assigned as one specific 

frequency in 3D (i.e. 100Hz), three different frequencies (i.e. 85 Hz, 100 Hz and 125 Hz) in 

1D and three different frequencies in 3D with respect to the phantom such that each 

frequency is assigned to one side of the phantom. Applying boundary load conditions to this 

phantom as three independent frequencies in three independent dimensions (Fig. 5.42) could 

provide more information which is needed to capture all mechanical properties of this 

orthotropic phantom in 3D during the image reconstruction procedure. 

 

Selecting a suitable inclusion regarding the material type and its geometry for the orthotropic 

tissue-equivalent phantoms is still an open question which needs more investigation. 

Experience has shown that using an inclusion with symmetrical geometry such as circular 

pineapple can cause ambiguity in the shear modulus reconstructions as for example by 

assuming an circle as X-Y plane, the shear modulus obtain from X direction image 

reconstruction may be very similar to the shear modulus in Y direction because of symmetry. 
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Table 5- 1 The orthotropic MR imaging recorded within the frequency range (85-125 Hz) for the pineapple 

gelatin phantom is depicted in this Table. From left to right, the 
*2T weighted magnitude image, the real part 

of the image with smooth waves and the phase pattern with a low level of artifact and high perturbation in the 

motion pattern are shown. Small arrows illustrate the position of one fiducial marker.  
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One suggestion to solve this problem can be using an asymmetrical inclusion such as a 

quadratic pineapple.  In this research, the three dimensional MRE dataset captured from this 

developed pineapple gelatin phantom was used for the image reconstructions.  Results 

obtained from shear modulus and displacement reconstructions are presented in the next 

chapter. 

 

 

Figure 5- 43 This schematic depicts three stages of the boundary conditions derived from Fig. 5.40. This 

picture illustrates one specific frequency (i.e. 100Hz) assigned on the pineapple gelatin phantom in 3D while 

the phantom is being excited in the X direction.  This specific frequency can also be changed to 85 Hz and 

125 Hz. 

 

 

 

Figure 5- 44  This schematic displays another three stages of the boundary conditions derived from Fig. 5.40. 

This picture shows three frequencies (85 Hz, 100Hz and 125 Hz) applied on the pineapple gelatin phantom in 

1D while the phantom is being excited in the X direction.   
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Figure 5- 45 This schematic shows the last three stages demonstration of the boundary conditions obtained 

from Fig. 5.40. This picture indicates three different frequencies (85 Hz, 100Hz and 125 Hz) assigned on the 

pineapple gelatin phantom in 3D while the phantom is being excited in the X direction.   

 

5.4 Non-Biological Tissue-like Gelatin Phantoms 

Fabricating non-biological composite-like gelatin phantoms using some bristles for in vitro 

MRE testing were other approaches which were developed for this research. These 

phantoms were designed and manufactured to simulate tissue as a bio-composite material 

and validate other biological phantoms which were made during this investigation. This 

attempt was also taken to evaluate the ability of non-biological tissue-equivalent gelatin 

phantoms to mimic the orthotropic behavior.  

 

5.4.1 Bristles Phantoms 

By definition, a composite material is a matrix reinforced by fibers where the mechanical 

properties of these two materials are significantly different. These fibers can be aligned 

within the matrix with different orientations. Composites demonstrate significant directional 

elasticity properties, when they are reinforced with continuous fibers [195, 196, 197, 198, 

199]. 
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By considering the tissue as a bio-orthotropic composite, two non-biological tissue-like 

gelatin phantoms were developed with bristle fiber inclusions to investigate the orthotropic 

behavior of a non-biological composite in vitro. In this study, these two non-biological 

tissue-like gelatin phantoms are described as vertical and circular bristle gelatin phantoms. 

Both phantoms were made from natural fiber Palmyra bristles (Carlisle Sanitary 

Maintenance Products, USA) and the gelatin from porcine skin (Type A, Sigma, Life 

Science Inc, USA).   

 

5.4.1.1 Vertical Bristle Gelatin Phantom 

The vertical bristle gelatin phantom in this study includes bristle fibers which are 

suspended in the vertical position inside the gelatin phantoms and a bunch of them are 

considered as a stiffer inclusion. The vertical bristles gelatin phantom simulates the tissue 

as an orthotropic bio-composite material that is reinforced by micro fibers and filaments 

and causes the difference in mechanical properties. The fiber orientation in the vertical 

bristle gelatin phantom shown in Fig. 5.50 displays the path of each fiber which is straight 

and fairly well aligned in parallel with other fibers.   

  

• Manufacturing Protocol  

The fabrication protocol to make the background of the vertical bristle gelatin phantom 

followed the same fashion as pineapple gelatin phantom base. The homogenous gelatin 

solution was prepared in the same manner as explained above and was then poured in the 

large greased plastic container (14× 21× 8 cm) to make a gelatin base for the phantom 

(Fig. 5.47-A). Four fish oil capsules (Ultra Omega DHA/EPA, Country Life, USA) were 

chosen as markers (Fig. 5.46-A) and then placed inside of the plastic phantom box corners 

on the gelatin base top (Fig. 5.46-B).  This coordinate system and the location of fish oil 

capsules are shown in Fig. 5.46-B. Two of these markers were stuck on each other to 

represent direction Z. One marker was located in one corner of the phantom box to 

illustrate the X direction and the other one was arranged in the middle of one side to show 

direction Y. 
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A                                                                             B  

Figure 5- 46 The coordinate system was determined for the vertical gelatin phantom by using four fish oil 

capsules which were chosen as phantom coordinate system markers (A). The demonstration of this 

coordinate system before locating the fish oil capsules inside the plastic container is depicted (B). Two of 

these markers were stuck on each other to represent direction Z. One marker was located in one corner of the 

phantom box to illustrate the X direction and the other one was placed in the middle of one side to show 

direction Y. 

 

          

A                                                                             B  

Figure 5- 47 The first layer of gelatin phantom base (around 2 cm) which is partially set (A) and the bristles 

being cut by a wire-cutter (around 3 cm in height) (B) are displayed. 

 

 

This was to identify the phantom orientation while it is being imaged as these markers can be 

seen as three bright spots during the MRI scanning. After the first layer of gelatin was 

partially set, bristles were cut by a wire-cutter with a height around 3 cm (Fig. 5.47-B) and 

planted on the gelatin base top (Fig5.48-A).  
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The coordinate system was determined for the vertical gelatin phantom in the same manner 

as discussed in the 4.3.1. To avoid air bubbles forming, the gelatin mixture was poured from 

a corner of the plastic container gently (Fig. 5.49). Vertical bristles were surrounded by the 

gelatin solution which was poured very slowly again from a corner of the container to 

prevent air bubble forming. This phantom was again refrigerated overnight to facilitate 

setting and to provide a suitable environment for the phantom before MRI scan. The vertical 

bristle gelatin sample was kept in room temperature two hours before imaging (Fig. 5.50). 

 

          

A                                                                             B  

Figure 5- 48 These images depict planting the bristles on the gelatin phantom base top vertically (A) and also 

inserting the fish oil capsules inside the gelatin base to determine a coordinate system for the phantom (B). 

 

 

 

Figure 5- 49 This image shows the correct method of pouring the gelatin inside the phantom box to prevent 

air bubbles forming. As this picture depicts, the gelatin solution should be poured from a corner of the plastic 

container gently so that the solution would be in contact with the box’s wall. 
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• Orthotropic Data Acquisition  

 

Figures 5.51 and 5.52 are displayed two views of the experimental set up for the composite-

like vertical gelatin phantom. The orthotropic vertical bristle gelatin phantom was placed on 

the membrane top of the pneumatic actuation system in the presence of two surface coils for 

MRE imaging.  The phantom-coil system was secured by sand bags to prevent undesirable 

movement of the actuation system during the excitation.  

 

 

 
Figure 5- 50 This image illustrates the completed vertical bristles gelatin phantom with suspended bristle 

fibers as a stiffer inclusion aligned in one vertical direction. 

 

 

 

Figure 5- 51 The experimental set up for the vertical bristle gelatin phantom while sitting on the membrane 

of the pneumatic actuator with the excitation in X direction. The position of the surface coils and sand bags 

while they are supported by wrapping adhesive strapping around the coils and sand bags is shown. 
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Figure 5- 52 Another view of the same experimental set up for the vertical bristle gelatin phantom while it 

has been flipped 
o90  to obtain multiple measurements in 3-D from this orthotropic composite-like sample. 

 

 

As figure 5.51 shows the phantom was excited in the X direction. The MRE dataset was 

collected with fifteen slices while the voxel size was 2× 2× 1.8 mm including a 0.9 mm slice 

gap and with the slice thickness of 18 mm. Figure 5.52 illustrates another view of the vertical 

gelatin phantom set up while the phantom has been flipped o90 . 

 

 

• Orthotropic Boundary Conditions 

 

Figure 5.53 depicts a schematic of boundary conditions applied to the vertical bristle gelatin 

phantom to record sufficient motion data from this orthotropic composite-like sample in 3D. 

The phantom was scanned in three stages with one excitation frequency of 100 Hz. In each 

stage, this load condition was assigned on the side of the phantom which resting on the 

actuator membrane and in the excitation direction (X). This boundary condition allows the 

phantom move free on its other five sides. By rotating the phantom o90 in 3-D and applying 

the frequency for this orthotropic composite phantom, multiple independent measurements in 

3-D could be obtained.  
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Figure 5- 53 This schematic shows three stages of the boundary conditions applied to the vertical bristle 

gelatin phantom. This picture depicts that only one specific frequency of 100Hz was assigned on the phantom 

in 3D while the phantom is being excited in the X direction.  The phantom has been flipped 
o90  in each 

stage to capture multiple measurements in 3-D from this orthotropic composite-like sample. 

 

• Protocol Analysis and Manufacturing Remarks 

 

Figure 5.54 demonstrates the MR magnitude image recorded from the vertical bristle gelatin 

phantom in 3D. While the stiffer bristles inclusion could be captured in the MR image, 

bristle fibers are not significantly visible especially in the X-Y plane because of their very 

small thickness and one directional orientation. Early shear modulus image reconstructions 

of the vertical bristle phantom have not also shown the bristles inclusion significantly within 

the gelatin phantom. This idea may be modified by using thicker fibers in different fiber 

orientations.  

 

5.4.1.2 Circular Bristle Gelatin Phantom 

The laminated circular bristles inclusion was constructed from three stiffer fiber layers 

embedded in the soft gelatin base.  Short straight fibers were aligned radially in a circular 

shape in the centre of the phantom. The circular fiber layer with different orientation 

around of a circle determines an orthotropic plane with respect to the rectangular axes.  
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A 

B 

C        D 

 

Figure 5- 54  This picture depicts four views of the MR magnitude image (
*2T weighted) recorded from the 

vertical bristle gelatin phantom. Fish oil capsules positions which indicate the phantom coordinate system in 

the MR image and the bristle fibers cross sectional inside the circle shown by some arrays (A) another view 

of the bristle fibers cross section in the x-y plane (B) the x-z plane view of fibers illustrated by some arrays 

(C) bristle fibers in the y-z plane are displayed. 
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The non-biological circular gelatin phantom was made to simulate and validate the 

biological pineapple gelatin phantom for the in vitro MRE testing. This phantom included 

three circular bristle layers which were suspended inside the homogenous gelatin 

background. 

• Manufacturing Protocol  

The same fabrication method with the same materials (bristles and gelatin) as vertical 

bristle gelatin phantom was used to manufacture the gelatin base of the circular gelatin 

phantom. Bristles were again cut by a wire-cutter with a height around 3 cm and arranged 

in the middle size greased plastic container (9.5× 15.5× 6.5 cm) on the gelatin base top 

which was already set to make the first circular bristles layer.  

The coordinate system was determined for the circular gelatin phantom by fish oil capsules 

as well as vertical gelatin phantom with the same fashion but with one difference. To 

determine the Y direction of the coordinate system, the fish oil capsule was located in 

another corner of the plastic phantom box instead of the middle container side as was used 

for the vertical bristle phantom (Fig. 5.55). 

The second layer of homogenous gelatin solution was gently poured from the corner of the 

plastic container on the arranged circular bristles to cover them completely by gelatin. 

After the second gelatin layer was set, the third circular bristles layer was made with same 

manner as above and was surrounded by gelatin solution again. The phantom was then 

kept in the refrigerator overnight to facilitate the final setting.  

 

• Orthotropic Data Acquisition  

 

The circular bristle gelatin phantom was scanned by the MRI system in the same fashion as 

vertical bristle phantom. The sample was brought to room temperature two hours before 

MR imaging. Figure 5.57 illustrates the experimental set up for the composite-like circular 

gelatin phantom. 
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     A                                                                  B     

 

Figure 5- 55 This image depicts the arrangement of the first bristle layer of the circular bristle phantom (A) 

along with fish oil capsules in three corners of the greased plastic phantom box which determine the phantom 

coordinate system (B).  These fish oil capsules can be illuminated in the MR image as three bright spots. The 

completed first bristle layer of the circular bristle phantom is also shown in B. 

 

             

A                                                                       B 

 

Figure 5- 56 These images display two views of the completed circular bristle gelatin phantom with a 

circular stiff laminated inclusion made from three bristle layers (A). Three circular bristle layers of stiffer 

inclusion are shown in B. 

 

 

The orthotropic circular bristle gelatin phantom was placed on the membrane top of the 

pneumatic actuation system while two surface coils were located on the both sides of the 

phantom for MR imaging.  The phantom-coil system was again secured by sand bags to 

avoid undesirable shaking of the actuation system during the excitation. The phantom was 

excited with the frequency of 100 Hz in the X direction.  
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The MRE dataset was captured with fifteen slices while the voxel size was 2× 2× 1.8 mm 

including a 0.9 mm slice gap and with the slice thickness 1.8 cm.  

 

 

 

Figure 5- 57 This image depicts the test condition for the circular bristle gelatin phantom.  This picture 

displays the phantom-coil experimental set up before the system is inserted inside the MR bore. The phantom 

is resting on the membrane of the pneumatic actuator with the excitation frequency of 100 Hz in the X 

direction. The position of the surface coils and sand bags while they are supported by wrapping adhesive 

strapping around the coils and sand bags is also shown. 

 

 

• Orthotropic Boundary Conditions 

 

The schematic of boundary conditions assigned to the circular bristle gelatin phantom is 

depicted in figure 5.58. The phantom was scanned in three stages with one excitation 

frequency of 100 Hz. In each stage, this load condition was assigned on the side of the 

phantom which was resting on the actuator membrane and in the excitation direction (X). By 

this method of boundary load condition, the motion data can be collected sufficiently from 

this orthotropic composite-like sample in 3D. This boundary condition allows the phantom to 

move freely on its other five sides while it is only constrained on one side. By rotating the 

phantom o90 in 3-D and applying the frequency for this phantom, multiple independent 

measurements in 3-D could be obtained.  

 



    

137 

 

 

 

 

Figure 5- 58 This schematic depicts three stages of the boundary conditions applied to the circular bristle 

gelatin phantom. This picture illustrates that only one specific frequency of 100Hz was assigned on the 

phantom in 3D while the phantom is being excited in the X direction.  The phantom has been flipped 
o90  in 

each stage to capture multiple measurements in 3-D from this orthotropic composite-like sample. 

 

 

• Protocol Analysis and Manufacturing Remarks 

 

The orthotropic circular bristle gelatin phantom with stiffer laminated inclusion was 

fabricated for this MRE testing with no significant air bubbles in the gelatin background. The 

satisfactory orthotropic MRI dataset was captured with the frequency of 100 Hz from 

circular bristles gelatin with a visible stiffer inclusion with circular fiber orientations (Table 

5.2). Three independent boundary conditions stages with one specific frequency in 3D could 

provide more information which is needed to capture all the mechanical properties of this 

orthotropic phantom in 3D during the image reconstruction procedure.  

 

While the laminated inclusion with three circular bristle layers spread in X-Y plane of the 

phantom was more visible in the MRI imaging in comparison with the one directional 

vertical bristle phantom, there is still an issue regarding the fairly symmetrical geometry of 

the circular bristles inclusion. 
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Table 5- 2 This table depicts the orthotropic MR imaging (
*2T weighted) of the circular bristle gelatin 

phantom with the excitation frequency of 100 Hz. From left to right, the magnitude image, the real part of the 

image with smooth waves and the phase pattern with a low level of artifact and high perturbation in the 

motion pattern are displayed. Different circular fiber orientations of the stiffer inclusion are shown in the 

magnitude image (left). Fish oil capsules are visible which also indicate the phantom’s orthogonal coordinate 

system.  

 

The problem with a symmetrical inclusion (i.e. in the X-Y plane) is that in the orthotropic 

elasticity image reconstruction, different shear modulus may not be distinguished from two 

different directions and the shear modulus obtained from the X direction would be the same 

as the Y direction.   

 

One potential major issue is that the rectangular phantom box is not proportional with the 

circular inclusion and this caused a reduction in the gelatin matrix around the inclusion on 

the longer side. This point is important as artifacts are often generated around the phantom 

boundaries. As a result, when the distance between inclusion and the phantom boundaries is 

small, this artifact may overlap with the inclusion in the elasticity image reconstruction.  
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In the phantom fabrication, the ratio between phantom matrix and the inclusion should be 

considered so that sufficient gelatin matrix surrounds the inclusion to keep the inclusion far 

from the phantom boundaries.     

Initial orthotropic shear modulus image reconstructions of the circular bristles phantom 

have shown a poor visibility of the bristles inclusion within the background. This indicates 

that the bristle fibers’ thickness was rather thin for this inclusion. One approach to improve 

bristle inclusion would be using thicker fibers by attaching a large number of bristles 

together. 

 

5.2 Orthotropic Incompressible Phantom Developments Applied to MRE 

   

The heart of each MRE testing beats with a high quality MRI dataset with a low level of 

artifacts.  It is important to consider the factors which affect reaching this point, as they can 

cause the failing of the whole elastography procedure.  

 

In MRE phantom studies, the elimination of artifacts from each step, such as phantom 

fabrication and data acquisition procedures, is essential as each of these stages plays a key 

role in obtaining high image quality, and limiting chances of the misrepresentation of 

artifacts which may give confusing or erroneous results.  

 

In this research, the main focus was on developing a variety of orthotropic phantoms and 

fabricating them for MRE testing using a robust manufacturing protocol to evaluate a 

realistic orthotropic, incompressible model.  

 

Along with phantom fabrication, several modifications were made to the phantom-coil set up 

by considering three dimensional boundary conditions to improve the MRE data acquisition 

procedure suitable for orthotropic incompressible materials that can be a guide line for future 

MRE clinical applications.  
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Three orthotropic incompressible MRE datasets were successfully developed from biological 

and non-biological gelatin phantoms using the manufacturing protocols, mentioned in this 

chapter for the next MRE procedure; the orthotropic elasticity image reconstruction. 

Fabricating biological gelatin phantoms using fruit for MRE orthotropic in vitro testing is a 

novel technique which was developed for this research. The pineapple was chosen to 

manufacture the biological gelatin phantom as this natural fibril reinforced bio-composite 

material can be considered to be a highly orthotropic material owing to its structural 

properties and different fibril orientations. This method was a simple, inexpensive, and 

efficient way to generate the orthotropic MRE datasets of a biological material in vitro. 

The successful fabrication of a pineapple a gelatin phantom has indicated that the 

manufacturing protocol for this phantom is capable of producing tissue-like gelatin phantoms 

with no significant air bubbles in the background. Reducing air bubbles in MRE phantoms is 

a major issue as no MR signal can be generated from air bubbles, and in the resulting image 

they are seen as null spots, which can lead to artifacts and significantly affect the image 

reconstruction results.  

 

The satisfactory improvement of the orthotropic data acquisition from one specific frequency 

to three different frequencies collected in one set of data and in three different actuation 

directions relative to the phantom, where all of these frequencies were applied to one side in 

each actuation procedure, was another approach which was developed for this research.  

 

Multiple measurements from the pineapple gelatin phantom were made by applying several 

independent boundary conditions within the frequency range (85-125 Hz) in three orthogonal 

dimensions, could provide a complete record of MRE information which is needed to 

capture all mechanical properties of this orthotropic phantom in 3D during the image 

reconstruction procedure. This completed MRE dataset can cover three individual load 

conditions: one specific frequency (i.e. 100Hz) in 3D relative to the phantom, three different 

frequencies (i.e. 85 Hz, 100 Hz and 125 Hz) in 1D, and three different frequencies in 3D 

with respect to the phantom in that each frequency is assigned to one side of the phantom. 
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Experience from initial elasticity image reconstruction has shown that using an inclusion 

with symmetrical geometry such as circular pineapple can cause ambiguity in the shear 

modulus reconstructions, as for example by considering circle in the X-Y plane, the 

reconstructed shear modulus obtain from the X direction may be very similar to the shear 

modulus in the Y direction due to symmetry. For future phantom fabrication, using an 

asymmetrical inclusion shape is suggested.  

The ability of the pineapple gelatin phantom to mimic tissue with orthotropic properties is 

more validated by evaluating the results obtained from elasticity image reconstructions, 

which will be discussed in the following chapters. 

Bristle gelatin phantoms with vertical and circular inclusions were also successfully 

developed to manufacture non-biological composite-like phantoms in vitro, with one specific 

frequency applied in three stages for recording the orthotropic MRE datasets in 3D. While 

the stiffer bristles inclusion could be captured in the MR image, early shear modulus image 

reconstructions of the vertical bristle phantom have not shown the bristle inclusion 

significantly within the gelatin phantom.  

 

While the laminated inclusion of the circular bristle gelatin phantom with three circular 

bristle layers was more visible in the MRI imaging in comparison to the one directional 

vertical bristle phantom, there is still an issue regarding the fairly symmetrical geometry of 

the circular bristles inclusion, as mentioned above.  

 

One potential major issue of the circular bristle gelatin phantom was that the size and 

geometry of the circular inclusion were not proportional with the rectangular phantom box. 

This reduced the distance between the inclusion and the phantom boundaries, which 

potentially can cause the artifacts around the phantom boundaries in the image reconstruction 

procedure. This leads to an important point in the phantom fabrication process. The ratio 

between the phantom matrix and the inclusion should be considered given that sufficient 

gelatin matrix is surrounding the inclusion, to keep the inclusion far away from the phantom 

boundaries.     
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Initial orthotropic shear modulus image reconstructions of the circular bristles phantom have 

shown fairly poor visibility of the bristles within the background. This indicates that the 

bristle fibers’ thickness was rather thin for this inclusion. One approach to improve bristle 

inclusion would be using thicker fibers by attaching a large number of bristles together.  

 

In the developing of muscle phantoms, the satisfactory material property transformation 

using several techniques such as the laser transmission, electricity, electrosurgery device, and 

chemical components, has shown that these methods are capable of creating a stiffer ex vivo 

inclusion within the muscle phantom.  

 

However, muscle phantoms and tissue-like gelatin phantoms have a limited lifetime and they 

need to be discarded after use.  Preferably, they should make one day before MRI scan as the 

accuracy of the test will be reduced by repeating the experiment on the same phantom.  

 

While the goal of elasticity property transformation using these techniques has been 

achieved, more modifications are still needed to create a well formed inclusion within the 

muscle phantom, and to capture a high quality MRI dataset. Questions still remain over the 

development of the inclusion fabrication techniques for the ex vivo muscle phantoms which 

will require more complete testing to prepare a suitable ex vivo muscle phantom with a stiffer 

inclusion for orthotropic elastography experiments. 

 

For future MRE muscle phantom tests, replacing the bovine muscle phantom with other 

animal muscle such as chicken muscle can be another alternative used to make a harder 

inclusion using heat, as it may have a better thermal conductivity to create a suitable 

inclusion within the phantom. 

 

Selecting a suitable inclusion regarding the material type and its geometry for the in vitro 

orthotropic gelatin phantoms, whether biological or non-biological, which can mimic the real 

tissue behavior is still an open question needing more investigation.  
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“All that we are is the result of what we have thought”. 

                                                                                                    Buddha  

                                                   

                                                    

Chapter 6 

 

6.1 Orthotropic Incompressible Reconstructive Imaging 

The elasticity property results obtained from three dimensional reconstructive imaging 

presented in this chapter used a robust algorithm which was specifically developed for non-

linear 3-D orthotropic incompressible materials. This investigation into the distributed 

orthotropic incompressible parameter reconstruction was performed to indicate how well this 

novel material property reconstruction algorithm will be able to detect differences in 

orthotropic incompressible shear stiffness parameters in three dimensions. 

The ability of the pineapple gelatin phantom to mimic the tissue with orthotropic properties 

is validated by evaluating the results obtained from orthotropic and isotropic elasticity 

image reconstructions which will be discussed in the followings sections. As early 

reconstruction tests set orthotropic phantoms fabricated for this research, the pineapple 

gelatin phantom indicated better results, therefore, the MRE information recorded from 

this phantom was chosen for orthotropic incompressible image reconstructions.  

In this investigation, the results of orthotropic elasticity reconstructions from real MRI 

datasets captured from the pineapple gelatin phantom are evaluated. The resultant orthotropic 

shear moduli distributions in 3-D obtained from different initial guesses, along with 

displacement patterns are discussed.  

 

For the orthotropic pineapple gelatin phantom, several isotropic image reconstructions with 

the same initial guesses as orthotropic reconstructions were attempted.  
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Isotropic image reconstructions used the incompressible linear elasticity algorithm to 

evaluate the correlation between two orthotropic and isotropic reconstructions in three 

directions.  

 

 

6.2 Pineapple Phantom Image Reconstructions  

As mentioned in 5.2.2, the problem with the symmetric pineapple inclusion was that in the 

orthotropic elasticity image reconstruction, different shear moduli may not be distinguished 

from two different directions (the symmetrical plane) and this can cause ambiguity in the 

reconstructed shear modulus analysis. To remove this problem, an arc shaped quarter section 

of the circular inclusion pineapple phantom was considered for the orthotropic finite element 

implementation to reduce this problem as much as possible. The elasticity image 

reconstruction analysis with orthotropic incompressible algorithm has shown that the 

procedure of the orthotropic inverse reconstruction is prohibitively slow. For example, only a 

few iterations were taking weeks to generate reconstructed image results.  

 

Considering a quarter of the full MRE dataset collected from the pineapple gelatin phantom 

was also a way to reduce the number of nodes and elements in the FE model and 

consequently increased the calculation speed.   

 

 

6.3 Orthotropic Reconstructions Using Real MRI Datasets  

Orthotropic elasticity image reconstructions were carried out to map orthotropic elasticity 

properties (shear moduli) in 3-D based on MR detected motion datasets captured from the 

pineapple gelatin phantom.  

 

The capability of the orthotropic reconstruction program to generate accurate results using 

the real MRE data is demonstrated through these reconstructions of a tissue-mimicking 

pineapple gelatin phantom.  
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The full MRE datasets collected from the pineapple gelatin phantom comprised three 

different actuation directions with respect to the phantom in which each direction included 

three different frequencies, 85 Hz, 100, Hz and 125 Hz. From the three actuation directions 

in the frequency range 85-125 Hz, the MRE motion datasets actuated with the frequency of 

85 Hz in the global dimension X was chosen for this specific study to produce the 

orthotropic FE model, and then for image reconstructions.  

 

The FE model used the 27 node quadratic hexahedral element to implement the geometry of 

the model with 523 elements and 5285 nodes from the real MRE datasets with an arc shaped 

pineapple inclusion. The cubic subzone geometry with a zone overlap of 15% and a zone 

size ratio of 3, 2 and 1 in X, Y and Z, respectively was considered. The subzone based 

orthotropic incompressible reconstruction algorithm was based on the nonlinear CG 

optimization method to gain computational efficiency, and also used TV regularization 

techniques with a weighting regularization parameter of 1.d-5 to constrain the solution 

process by controlling the relative abnormal irregularities of the parameter solution in the 

optimization problem.  

 

The adjoint-residual approach was also utilized to improve the efficiency of the gradient 

descent based algorithm. The global iteration limit was 100 for CG and 1 per zone to 

facilitate the material property solution approaching convergence. As this was the first time 

that the algorithm was tested for orthotropic incompressible reconstructions, a variety of 

settings for the various options in the program were arranged to find the optimal 

configuration.  The initial guess for the material property is one of these parameters, which 

seems to affect the reconstruction results. This initial guess can be an initial value of a 

quantity which needs to be minimized (i.e. shear modulus). A good choice of initial guess 

can help the algorithm converge to the actual solution.  

 

The strategy is that the iterative optimization algorithm begins with an initial guess of the 

parameter to be reconstructed and builds up in a sequence of updated estimates until they 

meet the solution. In this improving sequence, the technique is to move from one iterate to 

the next.  
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In this investigation, one goal is to show the sensitivity of the algorithm to the initial guess as 

well as finding an optimum initial guess for our orthotropic elasticity image reconstructions, 

which directs the procedure to the actual solution as much as possible.  

 

For this iterative approach, different initial guesses for the real shear modulus within the 

value range of 1-20 KPa were taken to reach a successive approximation for a correct 

solution for each set of reconstruction procedures. Initial guesses used for this study were, 1 

KPa, 2 KPa, 3 KPa, 4 KPa, 5 KPa, 10 KPa, and 20 KPa. Usually sufficient information 

cannot be detected from the first and last slice of a full dataset, thus in this study, from the 

twelve slices that were obtained from MRE data acquisition, only nine slices were chosen for 

image reconstructions, the first two, and the last slice were discarded. 

 

 

6.3.1 Orthotropic Reconstruction Analysis in Three Dimension 

In this section, the orthotropic image reconstruction results from the pineapple gelatin 

phantom, with an arc shaped inclusion captured from orthotropic real MRI datasets are 

presented. A global coordinate system shown in upper case ‘X’, ‘Y’, and ‘Z’ was used as a 

reference to display the orthotropic results in three global directions. The displacement 

components in three directions were illustrated as X
u , 

Y
u , and 

Z
u . The orthotropic shear 

moduli results at each node were also shown as ,,, ZXZYXY µµµ .  

 

The results in this section comprise the *2T MRI magnitude images distributed within nine 

slices (Fig. 6.1), presented individually in one single slice (slice 7) (Fig. 6.2), the orthotropic 

measured displacement patterns in three directions (Fig. 6.3), and the distribution of the 

orthotropic shear moduli in 3-D (Fig. 6.4). These results also represent the correlation 

between the *2T MR magnitude image of the arc shaped pineapple inclusion in three 

different positions with respect to a global 3-D reference frame.  The *2T  MR magnitude 

image, orthotropic magnitude shear modulus, and calculated orthotropic shear moduli, are 

correlated by default in the geometry and orientation in which they were either measured or 

calculated, as they are in the same orientation and geometry.  
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The orthotropic magnitude real shear modulus presented here is calculated by the equation 

(6.1). The orthotropic magnitude shear modulus at each node, magµ , is a scalar considered as 

a summation of squared orthotropic real shear moduli components ,,, ZXZYXY µµµ , 

reconstructed in three dimensions given as: 

 

                             { }222 )()()(Re ZXZYXYmag µµµµ ++=                                        (6.1)       

 

This equation shows that each calculated orthotropic shear modulus component has an 

allocation to build the orthotropic magnitude shear modulus. It should be pointed out that 

magµ  is only a scalar without physical meaning and it is calculated only for comparison 

purposes in this research. 

 

 

 

 

Figure 6- 1 This picture shows the 
*2T MRI magnitude images distributed within nine slices captured from 

the pineapple gelatin phantom with an arc shaped inclusion. The number labeled on the slices shows that only 

nine slices from slice number 3 to 11 were chosen and slices 1, 2, and 12 have been ignored as sufficient 

information could not be detected from these slices.  
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Figure 6- 2 The 
*2T MR magnitude images obtained from slice 7 of the pineapple gelatin phantom with an 

arc shaped inclusion. The inclusion’s internal and external boundaries along with the fibril orientation in 

different directions are shown. The A, B, and C images show three views of the inclusion in three positions in 

a global coordinate system, X-Y frame (A and D), Z-Y frame (B), and Z-X frame (C).  Upper, lower, and 

middle portions of the inclusion are also illustrated in (D). 
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Figure 6- 3 The measured orthotropic displacement components in three orthogonal directions for slice 7 of 

the pineapple gelatin phantom with an arc shaped inclusion. Three different irregular motion patterns in the 

measured displacement field are displayed. 
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Figure 6- 4 The correlation between the 
*2T MR magnitude image and the reconstructed orthotropic real 

shear moduli distribution results from early iterations. These results obtained from slice 7 of the pineapple 

gelatin phantom with an arc shaped inclusion after three iterations when the initial guess was 10 KPa. The 

reconstructed orthotropic shear moduli components are shown with respect to the 3-D global coordinate 

system (X, Y, and Z).  In each global coordinate system frame, the distributions of the shear moduli 

components at each node ,,, ZXZYXY µµµ  are depicted. The elevated shear stiffness obtained from the 

calculated shear moduli results is also displayed.  



    

151 

 

6.3.2 Orthotropic Correlation Reconstruction Results  

 

The correlation results between the collected motion data known as “measured 

displacements” and displacements obtained from elastographic image reconstructions which 

are called “calculated displacements”, are presented in this section. The correlation between 

the *2T MR magnitude image and the calculated orthotropic shear moduli results in three 

dimensions from slice 7 of the pineapple gelatin phantom with an arc shaped quarter 

inclusion also investigated.  

 

Although in this research, all orthotropic image reconstructions were set for 100 iterations, 

this aim could not be reached in practice as the iterative sequence improvement of the 

orthotropic inverse optimization procedure was prohibitively slow.   

 

The maximum iteration for these tests was 17 iterations which belonged to the orthotropic 

image reconstruction with an initial guess of 10 KPa using a runtime of nearly two months 

on the high performance super computer (HPC), accessed by 32 processors and 64 GB of 

memory for 400 hours. All orthotropic image reconstruction results presented in this section 

are from the highest available iteration for all of their higher iteration counts.  

 

In this investigation, it was more convenient to choose the X-Y frame as a correlation 

reference to plot the correlation of the *2T  MR magnitude image and the calculated 

orthotropic shear moduli solutions in three directions, as this frame corresponded to the 

original slice direction of the data. In fact, the resulting images were produced in the "slice 

plane", which is the plane that the slices were taken from using the original data.  

 

Although the images are plotted only for one frame (X-Y), the correlation calculation takes 

into account all three dimensions of the data as correlation values are calculated for the full 

image volume (every voxel) in the reconstructed volume, and the plotted correlation image 

in one plane is only for reference purposes.  
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Figure 6- 5 The association between the measured and the calculated orthotropic displacement patterns in 

three different dimensions are displayed for slice 7 of the pineapple gelatin phantom with an arc shaped 

inclusion. The calculated orthotropic displacements in 3-D were obtained from the image reconstructions 

with an initial guess of 1 KPa. The irregular motion pattern is visible in the measured displacement field 

while a high level of artifact with a poor correlation can be seen in all calculated displacement images. 
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Figure 6- 6 Resulting reconstruction with an initial guess of 1KPa of the orthotropic real shear moduli 

distribution obtained from the nine slices of the pineapple gelatin phantom with an arc shaped inclusion are 

displayed. The reconstructed orthotropic shear moduli components XYµ , ZXµ , ZYµ are depicted. A few 

spots of the inclusion have been recovered mostly in the (A) and (B), which show a poor elasticity 

reconstruction.  
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Figure 6- 7 Reconstruction results after six iterations with an initial guess of 1KPa are displayed for the 

orthotropic real shear moduli distribution obtained from slice 7 of the pineapple gelatin phantom with an arc 

shaped quarter inclusion. The correlation between the 
*2T MR magnitude image with the magnitude shear 

modulus and reconstructed orthotropic shear moduli components are depicted. A few spots of the inclusion 

have been recovered for all shear moduli components which overall show a poor elasticity reconstruction. 

Pictures also show a fairly high level of artifacts in the background while the whole inclusion is barely 

visible. 
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Figure 6- 8  These elastographic images show the correlation between the orthotropic measured and the 

calculated displacements field obtained from slice 7 of the pineapple gelatin phantom with an arc shaped 

inclusion with an initial guess of 2 KPa in three different dimensions. The orthotropic displacement 

reconstructions in 3-D show a poor motion pattern with a high level of artifact which can be observed in 

almost all calculated displacement images. 
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Figure 6- 9 These pictures show nine slices of reconstruction results with an initial guess of 2 KPa from the 

orthotropic real shear moduli distribution obtained from the pineapple gelatin phantom with an arc shaped 

inclusion. The orthotropic reconstructed shear moduli components ,,, ZXZYXY µµµ are also depicted. Parts 

of inclusion from the lower portion of the pineapple are illustrated in all pictures. Artifacts can be seen in the 

background along with a few spots of the inclusion which reveal a poor elasticity reconstruction. 
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Figure 6- 10 These pictures show reconstruction results from slice 7 after one iteration with an initial guess 

of 2 KPa from the orthotropic real shear moduli distribution obtained from the pineapple gelatin phantom 

with an arc shaped inclusion. The orthotropic magnitude shear modulus and the reconstructed shear moduli 

components are depicted in correlation with the 
*2T MR magnitude image. Parts of the inclusion from the 

lower and upper portions of pineapple are illustrated mostly in (C) and also the lower portion in (A). A few 

artifacts are visible in the background and one significant artifact can be seen towards the centre.  
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Figure 6- 11 The orthotropic real measured and calculated displacement patterns in three different 

dimensions for slice 7 of the pineapple gelatin phantom with an arc shaped inclusion are demonstrated. The 

orthotropic calculated displacements in 3-D were captured from the image reconstructions with an initial 

guess of 3 KPa. The motion direction, irregular pattern, a high level of artifacts, and a low level of 

correlation, are visible in all calculated displacements in three dimensions.   
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Figure 6- 12 The results from the pineapple gelatin phantom with an arc shaped inclusion reconstructed with 

an initial guess of 3 KPa. The orthotropic real shear moduli distribution are illustrated as ,,, ZXZYXY µµµ . 

Parts of the inclusion in the lower and middle portions are observable as shown. A few artifacts can be seen 

in the background around the outer boundary which may be an edge effect in (B). 
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Figure 6- 13 The correlation results for the 
*2T MR image and the magnitude shear modulus with its 

components in 3-D after three iterations are illustrated. These results are from the pineapple gelatin phantom 

with an arc shaped inclusion reconstructed with an initial guess of 3 KPa. Parts of the inclusion in the lower 

and middle portion of the pineapple are reconstructed in (A) and (B) as shown. A few artifacts can be seen 

around the outer boundary which might be an edge effect in that region. 
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Figure 6- 14 The orthotropic correlation between measured and the calculated displacement components  in 

three directions obtained from slice 7 of the arc shaped inclusion in the pineapple gelatin phantom, and with 

an initial guess of 4 KPa are illustrated. Poor correlation is shown in all directions along with an irregular 

displacement pattern and a few artifacts. 
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Figure 6- 15 These pictures show nine slices of the orthotropic real shear moduli reconstruction results with 

an initial guess of 4 KPa captured from the pineapple gelatin phantom with an arc shaped inclusion. The 

orthotropic reconstructed shear moduli distributions in 3-D are depicted. Small parts of the inclusion (upper 

portion) have been recovered along with some artifacts in the background. 
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Figure 6- 16 These pictures show the orthotropic correlation results between the 
*2T MR image and the 

magnitude shear modulus image with its reconstructed components in 3-D recorded from the pineapple 

gelatin phantom with an arc shaped inclusion. These reconstructions were carried out with an initial guess of 

4 KPa and the results are presented after three iterations. Small regions of the inclusion (upper portion) have 

been recovered along with some artifacts in the background. 
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Figure 6- 17 The orthotropic measured and the calculated displacement patterns in three different dimensions 

are displayed for slice 7 of the pineapple gelatin phantom with an arc shaped inclusion. The orthotropic 

calculated displacements in 3-D were obtained from the image reconstructions with an initial guess of 5 KPa. 

The direction of the irregular motion pattern is visible. A poor correlation between measured and calculated 

displacement fields with a high level of artifacts can still be seen.  
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Figure 6- 18 Resulting orthotropic shear moduli componenets with an initial guess of 5 KPa distributed in 

nine slices obtained from the pineapple phantom with an arc shaped inclusion. A few parts of the inclusion 

were recovered which are shown in (A) and (B) along with some artifact spots in the background which 

shows a poor elasticity reconstruction.  
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Figure 6- 19 Resulting reconstructions after one iteration with an initial guess of 5 KPa of the orthotropic 

real shear moduli distribution captured from slice 7 of the pineapple gelatin phantom with an arc shaped 

inclusion are displayed. The correlation between the 
*2T MR magnitude image with the magnitude shear 

modulus and reconstructed orthotropic shear moduli components in 3-D are depicted. A few spots of the 

inclusion have been recovered (mostly in the upper portion) which shows a poor elasticity reconstruction. 

Pictures show some significant artifacts in the background.  
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Figure 6- 20 Here the correlation between orthotropic measured and calculated displacement patterns in 

three directions, obtained from slice 7 of the arc shaped pineapple inclusion, with an initial guess of 10 KPa 

is illustrated. The irregular pattern of displacement with a high level of correlation and low level of artifact 

are shown. 
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Figure 6- 21 The reconstruction results with an initial guess of 10 KPa from the orthotropic real shear moduli 

distribution are captured from the pineapple gelatin phantom with an arc shaped inclusion. Resulting 

orthotropic shear moduli componenets within nine slices are demonstrated. Almost three parts of the 

inclusion (upper, middle and lower) were recovered which are shown in (A) and (B) along with some artifact 

spots in the background.  
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Figure 6- 22 The correlation results between the 
*2T MR image and the magnitude shear modulus with its 

components reconstructed with an initial guess of 10 KPa and after 17 iterations are illustrated. Almost three 

portions of the inclusion were reconstructed as shown. Artifacts can be seen in the center and the background 

around the outer and the inner boundaries which may be edge effects.  
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Figure 6- 23 These pictures show the successive improvement in results after 3 iterations (A), and after 17 

iterations (B) of the orthotropic elastography image reconstructions with an initial guess of 10 KPa from the 

pineapple gelatin phantom with an arc shaped inclusion.  The correlations between the magnitude shear 

modulus and its shear moduli components after three iterations (A), the 
*2T MR image and one calculated 

shear modulus component (B), and the magnitude shear modulus and its shear moduli components after 17 

iterations (C)  are demonstrated.  Almost three portions of the inclusion were successfully reconstructed. 

Some artifacts are visible (C) in the centre and the background, around the outer and inner boundaries which 

may be edge effects.  
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Figure 6- 24 The correlation between the 
*2T MR image and the magnitude shear modulus (A), and each 

calculated orthotropic shear moduli components with the magnitude orthotropic shear modulus after 17 

iterations, are shown (B, C, D). These results obtained from the pineapple gelatin phantom with an arc 

shaped inclusion were reconstructed with an initial guess of 10 KPa. In the shear moduli reconstruction, some 

parts of the inclusion in three portions are reconstructed with high contrast. The increased and decreased 

shear stiffness regions with different contrasts reveal the orthotropic elasticity response of the pineapple 

fibrils to the shear motion in different orientations. 
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Figure 6- 25 The orthotropic measured and the calculated displacement patterns in three different dimensions 

are displayed for slice 7 of the pineapple gelatin phantom with an arc shaped inclusion. The orthotropic 

calculated displacements in 3-D were obtained from the image reconstructions with an initial guess of 20 KPa. 

The irregular motion pattern and the direction of the shear waves with a high level of correlation and a low level 

of artifact are visible.  
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Figure 6- 26 Reconstruction results with an initial guess of 20 KPa of the orthotropic real shear moduli 

distribution captured from the pineapple gelatin phantom with an arc shaped inclusion shown within nine 

slices are shown. The orthotropic reconstructed shear moduli components ,,, ZXZYXY µµµ are demonstrated. 

The lower portion of the inclusion with a low level of artifacts in the background can be seen.  Other parts of 

the inclusion (middle and upper portions) cannot be seen. 
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Figure 6- 27 Reconstruction results with an initial guess of 20 KPa of the orthotropic real shear moduli 

distribution obtained from slice 7 of the pineapple gelatin phantom with an arc shaped quarter inclusion, and 

after two iterations, are displayed. The correlation between the 
*2T MR magnitude image with magnitude 

shear modulus and reconstructed orthotropic shear moduli components are depicted. The lower portion of the 

inclusion has been recovered as shown whilethe middle and lower portions of the inclusion are not visible. 
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6.4 Isotropic Reconstructions Using Real MRI Datasets  

Along with orthotropic elastography reconstructions, isotropic elasticity image 

reconstructions were also carried out to map isotropic shear modulus distribution. These 

were based on MRE motion datasets captured from the tissue-equivalent pineapple gelatin 

phantom. In this investigation, the results obtained from orthotropic elastography were 

compared to isotropic cases in equal conditions to evaluate the capability of these methods to 

produce more accurate results.  

 

The same FE mesh model which was made for the orthotropic elastographic reconstruction 

from the pineapple gelatin phantom with an arc shaped quarter inclusion was used for 

isotropic image reconstructions using the exact same conditions, such as the element type, 

number of elements, nodes etc. Again, the MRE motion datasets excited with the frequency 

of 85 Hz in the global dimension X were chosen to generate this isotropic FE model.  

 

The nonlinear CG optimization technique along with the TV regularization method with the 

weighting regularization parameter of 1.d-5, were used to minimize the objective function.  

Also, the subzone implementation approach with a zone overlap of 15% and the zone size 

ratio of 3, 2, and 1 in X, Y, and Z respectively, were applied to reduce the global inversion 

process by dividing the problem into multiple local inversion problems.  

 

The adjoint-residual approach was also utilized to improve the efficiency of the gradient 

descent based algorithm. The global iteration limit was 100 for CG and 1 per zone to 

facilitate the material property solution approaching convergence.  

 

As this isotropic iterative approach was carried out for comparison with the orthotropic case, 

the conditions were kept the same as much as possible. Different initial guesses for the real 

shear modulus in the value range of 1-20 KPa were also taken to reach a successive 

approximation for the actual solution at each set of reconstruction procedures. Initial guesses 

taken for this isotropic study were the same as the orthotropic cases, 1 KPa, 2 KPa, 3 KPa, 4 

KPa, 5 KPa, 10 KPa, and 20 KPa. 
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6.4.1 Isotropic Reconstruction Results  

 

The isotropic elasticity image reconstruction results from the pineapple gelatin phantom with 

an arc shaped inclusion are presented in this section.  

 

These results comprise the isotropic correlation between measured and calculated 

displacement patterns from slice 7 in three directions (Fig. 6.28), the correlation between the 

*2T MR image and the isotropic shear modulus from slice 7 for all initial guesses (Fig. 6.29) 

and (Fig. 6.30), and the isotropic shear modulus distributed in nine slices (Fig. 6.31).  

 

As the correlation images between measured displacements and calculated displacements 

obtained from isotropic elastographic image reconstructions for all initial guesses were 

similar, only the correlations between measured displacements and calculated displacements 

captured from isotropic reconstruction with the initial guess of 10 KPa are displayed here.  

 

It should be pointed out that the correlation between the *2T MR image and the isotropic 

shear modulus from the initial guesses 1-5 KPa are presented after 100 iterations, while the 

results for the initial guesses of 10 KPa and 20 KPa are shown after 16 and 5 iterations 

respectively, to make a comparison with the orthotropic results.   

 

The displacement components in three directions were also illustrated as X
u ,

Y
u  and

Z
u . 
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Figure 6- 28 The isotropic correlation between measured and calculated displacement fields in three 

directions, obtained from slice 7 of the pineapple gelatin phantom with an arc shaped inclusion, are 

displayed. The irregular pattern of displacement with a fairly low level of artifact is demonstrated. 
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Figure 6- 29 Isotropic real shear modulus reconstruction results with initial guesses of 1KPa, 2KPa, 3KPa, 

and 4KPa obtained from slice 7 of the pineapple gelatin phantom with an arc shaped inclusion. The 

correlation between the 
*2T MR magnitude image and the reconstructed isotropic shear modulus after 100 

iterations are depicted. A fairly homogenous region of the inclusion has been recovered in nearly all images. 

A high level of artifacts can be seen in the background around the inner boundary towards the centre, and 

also the outer boundary.  
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Figure 6- 30  The isotropic correlation results from the pineapple gelatin phantom with an arc shaped 

inclusion reconstructed with initial guesses of 5 KPa, 10 KPa, 20 KPa, and after 100, 16, and 5 iterations. 

The 
*2T MR image and reconstructed shear modulus are illustrated. Large area of the inclusion in all 

reconstructions, along with some artifacts can be seen in the outer and inner boundaries, the centre and the 

background.  
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Figure 6- 31 These pictures show nine slices of isotropic reconstruction results with initial guesses of 2 KPa, 

3 KPa, 5 KPa, and 10 KPa of the isotropic real shear modulus distribution, obtained from the pineapple 

gelatin phantom with an arc shaped inclusion. Large increased shear stiffness areas can be seen mostly in the 

middle portion of the inclusion, along with high levels of artifacts which are visible in the background, the 

inner and outer boundaries.  
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6.5 Comparison Analysis between Orthotropic and Isotropic 

Reconstructions  

Tables 6.1 and 6.2 represent mean values and standard deviations (STD) of the orthotropic 

magnitude shear modulus and its shear moduli components, at each node in 3-D in 

comparison with each other, and also in comparison with isotropic shear modulus 

distribution with seven different initial guesses (I.G.), from 1-5 KPa, 10 KPa, and 20 KPa, 

for the pineapple gelatin phantom with an arc shaped inclusion.  In these two tables the mean 

values and STDs of the highest available iteration with higher iteration counts for all tests are 

presented. As Table 6.1 shows, the mean value of the shear modulus reconstruction is raised 

by increasing the initial guess from 1 KPa to 20 KPa for all tests in both orthotropic and 

isotropic cases. 

 

Orthotropic Shear Moduli (KPa)  

(Highest Available Iteration) 

      Mean              

         Values 

I.G.           

(KPa) 

 

XY
µ  

 

ZY
µ  

 

ZX
µ  

 

Magnitude 

 

Isotropic  

Shear Modulus 

 (KPa) 

1 1.0158 1.0386 1.0318 1.0287 1.6951 

2 2.0014 2.0023 2.0011 2.0016 2.8347 

3 3.0009 3.0037 3.0074 3.0040 3.4598 

4 4.0017 3.9965 3.9973 3.9985 4.1250 

5 5.0024 5.0056 5.0096 5.0059 4.7654 

10 10.086 10.161 10.140 10.129 9.9088 

20 20.024 20.282 20.086 20.131 20.020 

 
Table 6- 1 The mean values of the orthotropic magnitude shear modulus and its shear moduli components at 

each node in comparison with each other, and also in comparison with isotropic shear modulus 

reconstructions of the pineapple gelatin phantom with an arc shaped inclusion are presented. These results 

obtained from different initial guesses (I.G.) from 1-5 KPa, 10 KPa, and 20 KPa.  In this table, the highest 

available iteration for all tests with higher iteration counts is considered. 
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From the initial guess of 1KPa to 4 KPa, a higher mean value can be detected from the 

isotropic shear modulus reconstruction, while increasing the value of the initial guess from 4 

KPa to 20 KPa, the orthotropic magnitude shear modulus reconstruction illustrates a higher 

mean value in comparison with an isotropic case with the same initial guess.  

 

One result from Table 6.1 shows that by changing the initial guess, the direction of the shear 

modulus plane with maximum mean value is varied. For example, ZYµ  demonstrates the 

highest mean value in initial guesses of 1 KPa, 2 KPa, 10 KPa, and 20 KPa, while ZXµ  

shows its maximum mean values in initial guesses of 3 KPa and 5 KPa, and finally XYµ  

shows its highest mean value in the initial guess of 4 KPa.  Table 6.1 also indicates that 

regardless of the value of the initial guess, in each orthotropic shear moduli reconstruction, 

different values could be detected from different shear moduli components ,,, ZXZYXY µµµ in 

three dimensions, which is in agreement with the orthotropic behavior of the material.  

 

Orthotropic Shear Moduli % 

(Highest Available Iteration) 

                STD 

I.G. 

(KPa) 
XY

µ  
ZY

µ  
ZX

µ  Magnitude 

    Isotropic 

Shear Modulus 

1 2.1111 6.2014 6.1544 3.6670 1.0998 

2 0.4059 0.7545 0.8570 0.5230 1.4515 

3 0.4825 1.1039 0.9752 0.6168 1.6136 

4 0.3208 0.7188 0.6666 0.3947 1.7387 

5 0.2616 0.3893 0.5118 0.2785 2.1133 

10 1.1435 2.5572 2.6693 1.4703 2.2371 

20 0.6254 7.3698 1.9983 2.6678 3.6021 

 

 

Table 6- 2 This table shows standard deviations (STD) of the orthotropic magnitude shear modulus and its 

shear moduli components at each node in comparison with each other, and also in comparison to isotropic 

shear modulus reconstructions when different initial guesses (I.G.) from 1-5 KPa, 10 KPa, and 20 KPa were 

applied. These results were obtained from the highest achieved iteration for all tests of the pineapple gelatin 

phantom with an arc shaped inclusion.  
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Table 6.2 indicates that the orthotropic magnitude shear modulus reconstructions show lower 

STD values in comparison with isotropic elasticity reconstruction for all initial guesses 

except the initial guess of 1 KPa.  In general, Table 6.2 illustrates the low value of STDs, 

which implies that the variation from the mean values (average) is small.  

 

Tables 6.3 and 6.4 show the mean values and STDs of the orthotropic magnitude shear 

modulus and its shear moduli components at each node in three dimensions in comparison 

with each other, and also in comparison with isotropic shear modulus distribution. 

 

These results were obtained from seven different initial guesses (I.G.), from 1-5 KPa, 10 

KPa, and 20 KPa, for the pineapple gelatin phantom with an arc shaped inclusion.  These 

tables represent mean values and STDs of the same iteration for all tests with the same 

iteration counts. 

 

Orthotropic Shear Moduli (KPa) 

(The Same Iteration) 

       Mean 

 

 

I.G. (KPa) 

 

XY
µ  

 

ZY
µ  

 

ZX
µ  

 

Magnitude 

Isotropic  

Shear Modulus 

 (KPa) 

1 1.0032 1.0047 1.0041 1.0040 1.0082 

2 2.0014 2.0023 2.0011 2.0016 2.0707 

3 3.0005 3.0037 3.0041 3.0027 3.0668 

4 4.0020 4.0012 4.0018 4.0017 4.0569 

5 5.0024 5.0056 5.0096 5.0059 5.0190 

10 10.005 10.019 10.023 10.015 9.9946 

20 20.024 20.282 20.086 20.130 20.028 

 

 

Table 6- 3 The comparisons of mean values between the orthotropic magnitude shear modulus and its shear 

moduli components at each node in 3-D are shown. Also the comparisons between the orthotropic magnitude 

shear modulus and the isotropic shear modulus in each initial guess reconstruction from 1 KPa to 5 KPa, 10 

KPa, and 20 KPa, for the pineapple gelatin phantom with an arc shaped inclusion, are presented.  All 

presented results are from the same iteration (iteration 1) for all tests.  
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Table 6.3 indicates that by raising the initial guess from 1 KPa to 20 KPa, the mean value of 

the shear modulus reconstruction whether orthotropic or isotropic is increased. From the 

initial guess of 1KPa to 5 KPa, higher mean values can be found for the isotropic shear 

modulus reconstruction, while increasing the value of the initial guess from 5 KPa to 20 

KPa, the orthotropic magnitude shear modulus illustrates a higher mean value in comparison 

with an isotropic case with the same initial guess.  

 

Results from Table 6.3 also demonstrate that the direction of the shear modulus plane with a 

maximum mean value varies by changing the initial guess. ZYµ , illustrates its highest mean 

value for initial guesses of 1 KPa, 2 KPa, and 20 KPa while ZXµ  indicates its maximum 

mean value for initial guesses of 3 KPa, 5 KPa and 10 KPa, and finally XYµ  shows its 

highest mean value for the initial guess of 4 KPa.   

 

 

Orthotropic Shear Moduli % 

 (The Same Iteration) 

    STD    

 

 

I.G. (KPa) 

 

XY
µ  

 

ZY
µ  

 

ZX
µ  

 

Magnitude 

Isotropic  

Shear Modulus 

1 0.6805 1.1249 1.0763 0.6928 0.0277 

2 0.4059 0.7545 0.8570 0.5230 0.1448 

3 0.4691 1.1312 1.0023 0.6472 0.3650 

4 0.2630 0.4902 0.4207 0.2667 0.5591 

5 0.2616 0.3893 0.5118 0.2785 0.6409 

10 0.1105 0.4579 0.5466 0.2699 1.5208 

20 0.6716 7.6003 2.0743 2.7535 3.3193 

 

Table 6- 4 This table represents standard deviations (STD) of the orthotropic magnitude shear modulus and 

its shear moduli components at each node in comparison with each other, and also in comparison with the 

isotropic shear modulus reconstructions with different initial guesses (I.G.) from 1-5 KPa, 10 KPa and 20 

KPa, for the pineapple gelatin phantom with an arc shaped inclusion.  Results presented in this table were 

obtained from the same iteration (iteration 1) for all tests.  
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Table 6.3 also reveals that in each orthotropic shear moduli reconstruction, different mean 

values could be detected, but this fact is not relevant to the value of the initial guess. This 

clarifies that Tables 6.1 and 6.3 reveal the exact same conclusions to highlight the property 

of the pineapple as an orthotropic material.  

 

Table 6.4 in general represents low values of STDs for all tests which indicate a small 

variation from the mean values. This table also shows that the orthotropic reconstructions 

still show lower STD values in comparison with the isotropic elasticity reconstruction for all 

initial guesses except the initial guess of 1 KPa.   

 

Table 6.5 compares the shear moduli correlation coefficients (COR. CO.) between the 

orthotropic and the isotropic image elastography reconstructions obtained from slice 7 of the 

pineapple gelatin phantom with an arc shaped inclusion.  

 

The correlation coefficient (COR. CO.) is defined as a relationship between two or more 

variables in which these parameters are relevant or associated together, and it is usually 

found between zero and one. Two variables are perfectly associated when the correlation 

coefficient is one and they are not relevant when the correlation coefficient is zero. In this 

study, all correlation coefficients are obtained in association with the *2T MR magnitude 

image as a basic reference.  

 

These comparisons are made between orthotropic shear modului components in 3-D, and 

also between the orthotropic magnitude shear modulus and the isotropic shear modulus 

distribution for different initial guesses (I.G.), from 1-5 KPa, 10 KPa, and 20 KPa.  

 

As Table 6.5 shows, the orthotropic magnitude shear modulus indicates a higher COR. CO. 

in comparison with the isotropic shear modulus for all initial guess tests. For XYµ , the initial 

guess of 10 KPa illustrates the highest COR. CO. among all other initial guesses, while the 

initial guesses of 2 KPa and 20 KPa demonstrate their maximum COR. CO. for ZYµ and 

ZXµ , respectively.  
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Orthotropic Shear Moduli        COR. CO. 

 

I.G. (KPa) 

 

XY
µ  

 

ZY
µ  

 

ZX
µ  

 

Magnitude 

Isotropic  

Shear Modulus 

1 0.89929 0.89100 0.89336 0.89732 0.51405 

2 0.9002 0.90055 0.90024 0.90038 0.60749 

3 0.89955 0.89941 0.89939 0.89955 0.63446 

4 0.89983 0.89999 0.89978 0.89991 0.65906 

5 0.89965 0.89969 0.89965 0.89968 0.63974 

10 0.90015 0.89976 0.89981 0.89962 0.8018 

20 0.89996 0.89250 0.90027 0.90011 0.83429 

 

 

Table 6- 5 In this table the shear moduli correlation coefficient (COR. CO.) comparisons between the 

orthotropic and isotropic image elastography reconstructions obtained from slice 7 of the pineapple gelatin 

phantom with an arc shaped inclusion, are presented. These comparisons are made for orthotropic shear 

modului components in three dimensions, and also between the orthotropic magnitude shear modulus and the 

isotropic shear modulus for different initial guesses (I.G.) from 1-5 KPa, 10 KPa, and 20 KPa.  

 

 

The initial guess of 2 KPa also indicates the highest orthotropic magnitude shear modulus 

COR. CO. among other initial guesses, while the initial guess of 1 KPa illustrates the lowest 

shear modulus COR. CO. in all orthotropic directions.  In the isotropic reconstructions the 

maximum and the minimum shear modulus COR. CO are indicated for the initial guesses of 

20 KPa and 1 KPa respectively. 

 

Table 6.6 compares the displacement COR. CO. between orthotropic and isotropic cases in 

three dimensions obtained from image elastography reconstructions. Results are presented 

for slice 7 of the pineapple gelatin phantom with an arc shaped inclusion.  This COR. CO. 

evaluation has also been carried out for different initial guesses (I.G.) from 1-5 KPa, 10 KPa 

and 20 KPa. Results obtained from Table 6.6 show that the highest orthotropic displacement 

COR. CO. in all directions belongs to the initial guess of 10 KPa. 

 



    

187 

 

Orthotropic Displacements Isotropic Displacements        COR. CO. 

 

I.G. (KPa) 

 

Xu  

 

Yu  

 

Zu  

 

Xu  

 

Yu  

 

Zu  

1 0.45121 0.34661 0.36818 0.97790 0.96082 0.97105 

2 0.26279 0.31052 0.16772 0.97814 0.95963 0.97177 

3 0.43523 0.43302 0.44636 0.97788 0.95923 0.97242 

4 0.63795 0.55454 0.39498 0.97689 0.95835 0.97262 

5 0.44093 0.26062 0.28084 0.97658 0.95717 0.97300 

10 0.9808 0.97930 0.93771 0.96976 0.93556 0.96826 

20 0.96960 0.97524 0.89211 0.97806 0.96337 0.96246 

 

Table 6- 6 Correlation coefficient (COR. CO.) comparison results between orthotropic and isotropic 

displacements in 3-D captured from elastography image reconstructions are presented. These comparisons 

are between orthotropic and isotropic displacements in three dimensions from slice 7 of the pineapple gelatin 

phantom with an arc shaped inclusion, and for different initial guesses (I.G.) from 1-5 KPa, 10 KPa and 20 

KPa.  

 

This means that the calculated displacements in 3-D captured from the initial guess of 10 

KPa are more correlated with measured displacements. The evaluation of these results also 

reveals that the initial guesses of 1 KPa, 4 KPa, 5 KPa, and 10 KPa indicate their highest 

displacement COR. CO. in the X direction, while this direction is turned to the Y direction 

by changing the initial guesses to 2 KPa and 20 KPa, and finally it turns to the Z direction by 

applying the initial guess of 3 KPa. By evaluating isotropic reconstruction results it was 

found that the maximum and the minimum COR. CO. displacement results are in the X and 

Y directions respectively, for all initial guesses.  

 

In the X and Y directions, from initial guesses of 1 KPa to 5 KPa, isotropic reconstructions 

illustrate a higher displacement COR. CO in comparison with orthotropic reconstructions.  

While this trend is reversed from the initial guesses of 5 KPa to 20 KPa in the Z direction, 

isotropic reconstructions indicate a higher displacement COR. CO in comparison with 

orthotropic reconstructions for all initial guesses. 
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Table 6.7 illustrates the relative error between measured and calculated displacements in 

both orthotropic and isotropic image reconstructions. As Table 6.7 shows, regardless of the 

value of the initial guess, in general orthotropic reconstructions illustrate the greater relative 

error with a high level of variation in comparison with isotropic cases. From all initial 

guesses in orthotropic reconstructions, the initial guess of 10 KPa revealed the lowest 

relative error while the initial guess of 2 KPa displayed the highest displacement mismatch 

error.  In isotropic cases, the initial guess of 3 KPa had the lowest error among other initial 

guesses. 

 

       Rel. Error 

 

I.G. (KPa) 

Orthotropic Displacements  

Mismatch % 

Isotropic Displacements 

Mismatch % 

1 86.7845 11.5124 

2 243.5108 11.0576 

3 80.4247 11.0113 

4 84.6689 11.0743 

5 136.1876 11.1212 

10 20.3031 11.9551 

20 22.2715 11.8692 

 

Table 6- 7 This table demonstrates the relative error between measured and calculated displacements in both 

orthotropic and isotropic cases. In comparison of orthotropic and isotropic cases, the greater relative error 

with a high level of variation can be seen in orthotropic reconstructions.  

 

 

The value of the relative error percentage can be calculated through the equation 6.2 as: 

 

                                            100
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ErrRl                                          (6.2) 

 

where the .. ErrRl is the relative mismatch error between measured displacement, m
u , and 

calculated displacement, c
u . 
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6.7 Discussion  

The results investigated in this study are classified into two categories; significant points of 

the orthotropic elastography in a general view, and the orthotropic initial guess study. These 

are discussed in the following sections.   

 

6.7.1 Orthotropic Elastography Significant Comments 

 

In this research, orthotropic elasticity reconstruction results from real MRI datasets obtained 

from the pineapple gelatin phantom are evaluated. As mentioned, the shear moduli 

distribution results obtained from the three dimensional orthotropic reconstructive imaging 

presented in this chapter used an algorithm which was specifically developed for non-linear 

3-D orthotropic incompressible materials.  

 

One goal of this investigation was to indicate the ability of this novel material property 

reconstruction algorithm to differentiate orthotropic incompressible shear moduli 

components in three dimensions with reasonable accuracy, and to compare them with 

isotropic results. 

 

Figures 6.4, 6.22, 6.23, and 6.24 show some evidence that the orthotropic reconstruction 

algorithm could detect parts of the structure of the pineapple inclusion in three dimensions.  

The inner, and parts of the outer boundaries, could be captured in the magnitude shear 

modulus and the calculated shear moduli images, although two significant artifacts are 

visible in both internal and external boundaries in all pictures.  

 

Figures mentioned above illustrate the different orthotropic elasticity response of pineapple 

fibrils to the shear motion in different orientations. For example, Figure 6.4 depicts that in 

the X-Y frame, the shear wave components correspond to different material properties where 

effected.  
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For the shear strain in the  X direction, the pineapple fibrils, which were in the upper and 

middle portions of the inclusion, demonstrated higher shear stiffness and for the shear strain 

in the Y direction, the shear stiffness was incresed in the lower portion of the inclusion which 

shows the pineapple fibrils had more resisttance against the shear strain in this region.   

 

By focusing on slices 3-9 in Figure 6.21-B, the regions of the elevated shear stiffness 

roughly correspond to the upper and middle portions of the pineapple inclusion, while on 

slice 9 in Figure 6.26-A, the area of the raised shear stiffness is mostly related to the lower 

section of the inclusion.    

 

Also, Tables 6.1 and 6.3 indicate different orthotropic mean values in three different 

orthogonal directions for all shear moduli components regardless of the value of the initial 

guess.  

 

This can also be seen in Table 6.5, where the different correlation coefficients are found from 

orthotropic shear moduli reconstructions in 3-D. This clarifies that the pineapple displays 

orthotropic behavior as the shear moduli calculated from elastographic image reconstructions 

are directionally dependent.  

 

Overall, the low value of STDs obtained from Tables 6.2 and 6.4 reveal that the variation 

from the mean values (average) is small. This fact increases the level of confidence in 

support of the pineapple as: an orthotropic material, the reliability of the MRE dataset and 

the capability of the orthotropic algorithm to distinguish three different shear moduli in three 

directions.   

 

In general, by viewing Table 6.5, it is found that orthotropic reconstructions exhibit a higher 

shear modulus COR. CO. in comparison with isotropic cases. The evaluation of this table 

implies that in an optimum initial guess, the orthotropic algorithm was more successful in 

detecting the inclusion location with respect to a reference compared to the isotropic case. 

This leads to the higher accuracy of the orthotropic incompressible algorithm to distinguish 

the orthotropic elasticity parameter within an orthotropic phantom in comparison with the  

linear elasticity isotropic algorithm.   
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6.7.2 Orthotropic Initial Guess Study  

 

6.7.2.1 Orthotropic Results Analysis 

 

It is hard to make a judjment regarding the orthotropic results which are mostly from early 

iterations. Image results from almost all initial guesses appeared that the shear moduli 

reconstructions could not converge to the actual solution and as a result a good 

approximation has not achieved from the elasticity property distribution. Although this could 

be the reason for overall poor reconstructions with high levels of artifacts in most 

elastographic image reconstructions, there is still some evidence which is promising, and this 

is disscussed in this section.  

 

In the orthotropic initial guess study, by evaluating the result improvements from initial 

guesses of 1-20 KPa, the initial guess of 10 KPa has shown successful elasticity image 

reconstructions with better results compared to other initial guesses in most cases. It seems 

that the orthotropic shear moduli reconstruction from the initial guess of 10 KPa, could 

detect three portions of the pineapple inclusion structure in three directions, after three 

iterations, as shown in Figure 6.4.  

 

Meanwhile results obtained from the initial guess of 1 KPa shown in Figures 6.5, 6.6, and 

6.7, demonstrate inconclusive elasticity reconstruction, even after six iterations. Results from 

other initial guesses illustrate fairly poor elasticity reconstruction to recover the whole 

structure, and most of them displayed incomplete portions (Fig. 6.10) and (Fig. 6.27), or only 

a few spots of the inclusion (Fig. 6.13), (Fig. 6.16), and (Fig. 6.19).   

 

Orthotropic elastography reconstructions also exhibited poor calculated displacement results 

with high levels of artifacts found from initial guesses of 1-5 KPa (Figures 6.5, 6.8, 6.11, 

6.14, and 6.17), while this trend was improved from initial guesses of 10-20 KPa (Figures 

6.20 and 6.25), as the correlation between measured and calculated displacements was raised 

to a higher level. 
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Both Table 6.6 and Figure 6.20 represent that calculated displacements captured from the 

initial guess of 10 KPa has shown higher COR. CO. compared to other initial guesses in the 

three directional orthotropic image reconstructions. 

 

In addition, focusing on the COR. CO. between the magnitude shear modulus and its 

calculated shear moduli components XYµ , ZYµ  , and ZXµ captured from the initial guess of 

10 KPa after 17 iterations, the values of 0.99939, 0.99922, and 0.99916 were found, 

respectively, which shows a reasonable association between the magnitude shear modulus 

image and each calculated shear modulus component.  

 

A consequence of the orthotropic initial guess study was that by changing the initial guess, 

the maximum mean value is varied for the shear moduli components. For example, 

ZYµ demonstrates the highest mean values for initial guesses of 1 KPa, 2 KPa, 10 KPa and 

20 KPa, while ZXµ  shows its maximum mean values for initial guesses of 3 KPa and 5 KPa, 

and finally XYµ illustrates its highest mean value for the initial guess of 4 KPa.  

 

This trend was also observed in the orthotropic displacements in three dimensions. For 

instance, initial guesses of 1 KPa, 4 KPa, 5 KPa, and 10 KPa displayed the highest COR. 

CO. in the X direction while the initial guesses of 2 KPa and 20 KPa have indicated their 

maximum COR. CO. in the Y direction, and finally the initial guess of 3 KPa has shown its 

highest COR. CO. in the Z direction. 

 

These result controversies in orthotropic shear moduli and displacements show the 

orthotropic algorithm sensitivity to the initial guess. This problem could have been caused by 

the use of only one subset of MRE displacement data which included only one single 

frequency (85 Hz) where the excitation was in the X direction with respect to the phantom. 

 

Results obtained from this research in both orthotropic and isotropic cases could be that the 

initial guess can play an important role in elastographic image reconstructions, and a good 

choice of initial guess can be a key factor to improve the optimization procedure resulting in 

a better outcome. 
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6.7.2.2 Orthotropic Image Reconstructions in Comparison with Isotropic Cases 

 

Imaging results shown in Figures 6.29 and 6.30, display that the isotropic elasticity 

reconstruction could distinguish almost the whole structure of the arc shaped inclusion in 

most cases. The inner boundary of the pineapple inclusion could be detected along with 

fairly homogeneous results obtained from initial guesses of 2-5 KPa. However, significant 

artifacts can be seen in the outer boundary and also in the inner boundary, towards the center. 

Another artifact is also visible in the center, which appears slightly stiffer.   

 

Table 6.5 indicates that for all initial guesses the orthotropic tests demonstrate a higher shear 

modulus COR. CO. with a significant difference in comparison to isotropic cases. This 

clarifies that the orthotropic reconstruction algorithm was able to generate more accurate 

image results from a material with an anisotropic nature, as well as distinguishing the 

inclusion location better related to the reality of the pineapple phantom. 

 

Tables 6.1 and 6.3 indicate that from initial guesses of 1KPa to 5 KPa, higher mean values 

can be detected for the isotropic shear modulus reconstruction, while increasing the value of 

the initial guess from 5 KPa to 20 KPa, the orthotropic magnitude shear modulus 

reconstruction illustrates higher mean values in comparison to isotropic cases with the same 

initial guess. This implies that in the same conditions the optimum initial guess for an 

isotropic reconstruction can be different from an orthotropic case.  

 

In the evaluation between isotropic and orthotropic reconstructions with almost equal 

conditions such as similar global iteration, (i.e. 16 for the isotropic and 17 for the orthotropic 

in this research), and with the same initial guess (i.e. 10 KPa), the orthotropic reconstruction 

shows better results.  

 

From a glance at the results obtained in Table 6.1 and 6.5, the orthotropic reconstruction with 

the initial guess of 10 KPa exhibits a higher mean value, a higher shear modulus COR. CO., 

and a lower STD, in comparison to the isotropic reconstructions. 
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In a three dimensional assessment of the isotropic reconstructions, the maximum COR. CO. 

between measured and calculated displacements was always in the X direction, and the 

minimum COR. CO. was found in the Y direction for all initial guesses. By evaluating Table 

6.1 it can be found that the final isotropic solution varies based on the initial guess. This 

implies that the isotropic process is dependent on the initial guess.  

 

Table 6.6 indicates that with the initial guess of 10 KPa, the higher displacement COR. CO. 

could be detected in the X and Y directions for the orthotropic reconstruction, while in the Z 

direction the isotropic case shows the maximum displacement COR. CO.  

 

In comparing the orthotropic and isotropic elastographic results, the orthotropic image 

reconstruction with a suitable choice of initial guess, was more successful in determining the 

structure of the pineapple inclusion, and recognizing the inner and outer boundaries 

correlated with the *2T MR magnitude image.  

 

 

6.8 Conclusion and Remarks Applied to the MRE 

In this research, orthotropic and isotropic elasticity reconstructions results from real MRI 

datasets obtained from the pineapple gelatin phantom were evaluated. An aim of this 

experiment was to investigate the proficiency of a novel orthotropic algorithm which was 

developed for the non-linear 3-D orthotropic incompressible material, to differentiate three 

real orthotropic shear moduli distribution in three dimensions.  

 

The ability of this program to produce accurate results using the orthotropic real MRE 

dataset was also demonstrated throughout the initial guess study and in comparison with a 

linear elasticity isotropic algorithm.  

 

Although mean value results captured from three dimensional orthotropic reconstructive 

imaging presented in this chapter have quantitatively shown that regardless of the value of 

the initial guess, the orthotropic algorithm was able to detect three different shear moduli 

(Tables 6.1 and 6.3),  unfortunately most orthotropic elasticity image results are poor.   
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The consequence of detecting three shear stiffnesses in 3-D along with low STD values 

(Tables 6.2 and 6.4) can provide enough evidence to validate the pineapple as an orthotropic 

material. This qualifies the eligibility of the pineapple phantom: to mimic the tissue behavior 

in the tissue-equivalent gelatin phantoms for future MRE tests, the reliability of the MRE 

dataset captured from this phantom, and the capability of the orthotropic algorithm to 

distinguish the orthotropic behavior. 

 

Orthotropic reconstruction results also demonstrated a higher shear modulus COR. CO. in 

comparison with isotropic cases (Table 6.5). This clarifies the precision of the orthotropic 

incompressible algorithm in comparison with the isotropic program to detect the orthotropic 

elasticity parameter, and the inclusion location within an orthotropic phantom correlated with 

an image reference ( *2T  MR magnitude image).  

 

Although the algorithm was successful in recovering the shear moduli of the pineapple 

phantom as it could regain almost three portions of the pineapple inclusion in the initial 

guess of 10 KPa, as well as recognizing parts of the inner and outer boundary, high quality 

images could not be achieved from this algorithm. These resulting images illustrated a poor 

elasticity reconstruction with a high level of artifacts. There are several reasons which may 

explain the orthotropic elasticity image reconstruction deficiency in this experiment. These 

are:  

   

� Using one set of MRE displacement data; for this orthotropic investigation, only one 

displacement dataset that was applied to excite the phantom used one single 

frequency (85 Hz) in the X direction. As mentioned, in an orthotropic case, it is hard 

to determine the elastic parameters uniquely in 3-D by using only one set of Drichilet 

boundary conditions, and this may cause the non-uniqueness problems. This can also 

be a reason for the algorithm sensitivity to the initial guess as shown in the initial 

guess study.  

 

� Although in this study a high relative error for orthotropic displacement mismatches 

were found in comparison to isotropic cases shown in Table 6.7, it is still difficult to 

make an assessment.   
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Table 6.9 will clarify that this particular dataset (frequency of 85 Hz in one excitation 

dimension X) which was randomly selected for this investigation shows the highest 

relative error in comparison with other frequencies in other dimensions. Maybe choosing 

another displacement dataset from the full MRE dataset will yield more successful 

results with a lower error.  

 

� In this research, the orthotropic incompressible program applied for elastography 

image reconstruction used the nonlinear CG as the optimization technique.  As 

mentioned in 2.4.2.6, the CG algorithm in the nonlinear case became more 

complicated in terms of calculating kα  and the gradient of the objective function. As 

the orthotropic elastography inverse problem is a non-linear procedure, the search 

directions may lose their conjugacy as the iterations progress. Another problem in 

nonlinear CG is that a general function may have many local minima and in this case 

CG cannot guarantee to converge to the global minimum.  

 

� The Secant line search technique was a useful method which was applied to calculate 

kα  in nonlinear CG, however this approach is not usually able to recognize minima 

from maxima, and it is also sensitive to the initial guess. This may also explain 

another reason for the algorithm sensitivity to the initial guess as this method needs a 

good choice of initial guess close to the actual solution to converge to the minima 

point successfully. 

 

� Another problem which could be highlighted more is the ratio between the phantom 

matrix and the inclusion. As can be seen from images, the inclusion was very close or 

even attached to the boundaries. As explained in the previous chapters, this might 

elevate the artifacts, especially around the boundaries and edges.  

 

� And the last important point was that these orthotropic reconstruction results have not 

had enough chances to improve the higher iteration to converge towards the actual 

solution, and most of them were from early iterations.  
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This perhaps was a reason for increasing the level of artifacts and reducing the accuracy 

of the orthotropic image reconstructions.   

 

The initial guess study revealed that there is a correlation between a good choice of initial 

guess and the outcome of an elasticity image reconstruction with fewer artifacts. For this 

investigation, seven initial guesses were tested for both orthotropic and isotropic cases. 

In the orthotropic initial guess study, by evaluating the result improvements from the initial 

guesses of 1-20 KPa, the initial guess of 10 KPa has shown fairly satisfactory elasticity 

image reconstruction results, even after three iterations. These image outputs are in terms of 

qualitative recovery such as the geometry of the inclusion (three portions) with the inner and 

some parts of outer boundaries, and also most quantitative parameters such as higher 

displacement COR. CO.   

 

In comparing orthotropic with isotropic cases, orthotropic reconstruction results revealed a 

higher shear modulus COR. CO. This means that the orthotropic incompressible algorithm 

has shown more accuracy in comparison with the isotropic program, to distinguish the shear 

stiffness associated with the inclusion location in three dimensions.  

 

As shown, changing the initial guess directly affects the elasticity image reconstruction 

improvement. While these results verify that the initial guess in MRE reconstruction may 

play an important role in the quality of reconstructed MRE images, more accurate tests are 

still required to determine the exact cause of the artifacts.  

 

To make a fair judgment on the functionality of the orthotropic algorithm and to validate the 

orthotropic elastographic results obtained from the real MRE dataset, simulation studies with 

equal conditions should be undertaken in the future.   

 

This discussion is open for more evaluation regarding other factors which may create the 

artifacts in MRE actuation systems (i.e. frequency, zone size etc).  
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Questions still remain concerning an optimum initial guess and other parameters which may 

affect the orthotropic image reconstructions such as: the type of optimization procedure, the 

regularization parameter, orthotropic data acquisition conditions, and the phantom 

fabrication process which was used to manufacture the orthotropic phantoms.  

 

The results presented in this research can be used for orthotropic algorithm modification in 

the future to improve this exsisting robust program, to recover other orthotropic parameters 

for advanced MRE images.  

 

  

6.9 Evaluating of Orthotropic MRE Multiple Measurement Using 

Rayleigh Damping Algorithm    

 

In order to find a perspective for the optimum frequency and dimension from the current full 

MRE dataset, and also for future MRE data recording, an investigation was attempted using 

the incompressible Rayleigh damping algorithm [58]. This study was carried out outside the 

scope of this project using an isotropic shear modulus reconstruction program, to determine 

the accuracy of these sub-datasets to recover the reconstructed shear stiffness from the 

orthotropic pineapple phantom with the donut shaped inclusion.  

  

This incompressible viscoelastic algorithm was specifically developed in our MRE group 

and its capability to recover the elasticity parameters was successfully tested with different 

phantoms. The Rayleigh damping algorithm is related to both elastic and inertial forces, and 

under time-harmonic conditions, the model is associated with complex shear modulus and 

density [204,205]. This model comprises a viscoelastic material implemented through a 

complex shear modulus, where the level of damping is related only to the elastic forces in the 

material [206,207]. The initial guess of 15 KPa was chosen for the subzone based CG 

optimization procedure, with a TV regularization parameter of 1.d-5 to reconstruct the shear 

modulus. The global iteration was set for 100 while other parameters such as zone size and 

density were equal to other previous reconstructions in this thesis. 
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6.9.1 Rayleigh Damping Results for the Full Real MRE Dataset 

 

In this section, the Rayleigh damping image reconstruction results from the pineapple gelatin 

phantom with a donut shaped inclusion, captured from the full real MRI datasets, are 

presented. The excitation directions are presented in the global coordinate system as X, Y 

and Z. The displacement components in three directions are shown as X
u , 

Y
u and Z

u . 

 

The results in this section comprise the *2T MRI magnitude image distributed within nine 

slices (Fig. 6.32), the shear modulus distribution from three frequencies in three dimensions 

(Figures 6.33-6.35), and the correlations between measured and calculated displacement 

patterns in three directions, obtained from three frequencies and three global dimensions 

(Figures 6.36-6.44).  

 

 

 

 

 

Figure 6- 32 This picture shows the 
*2T MRI magnitude images distributed within nine slices (3-11) 

captured from the pineapple gelatin phantom with a donut shaped inclusion. This picture has obtained from 

the X-Y plane of the global coordinate system.  
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Figure 6- 33 The shear modulus reconstruction results obtained from the Rayleigh damping algorithm with a 

frequency of 85 Hz from the full MRE dataset. These results captured from the pineapple gelatin phantom 

with a circular shaped inclusion in three excitation directions (X, Y and Z) with respect to the phantom, 

distributed in nine slices. Almost all of the inclusion was recovered when the excitation operated in the X 

direction. While a high level of artifact can be seen when the actuation was in the Z direction.  
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Figure 6- 34 Resulting isotropic shear modulus reconstructions in three dimensions obtained from the 

Rayleigh damping algorithm with a frequency of 100 Hz distributed in nine slices. The excitation directions 

in 3-D are shown. Almost all of the full circular pineapple inclusion with a fairly low level of artifact is 

visible when the excitation was in the Z direction. A high level of artifact can be seen in the X direction.  
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Figure 6- 35 These pictures show nine slices of the isotropic real shear modulus reconstructed by the 

Rayleigh damping algorithm with a frequency of 125 Hz captured from the full pineapple gelatin phantom 

MRE dataset with a circular shaped inclusion. The reconstructed shear modulus distribution with excitation 

directions (X, Y and Z) is depicted. The inclusion is fairly visible but with a high level of artifact in the 

background, which has almost covered the inclusion. 
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Xu :  

 

Yu :  

      

Zu :     

 

 

Figure 6- 36 Slice 7 of the correlation between the measured and the calculated displacement patterns in 3-D 

obtained from the pineapple gelatin phantom with a donut shaped inclusion. These pictures captured from a 

frequency of 85 Hz where the excitation was in the X direction. The irregular motion pattern is visible in the 

displacement field, while a few wrapped artifacts can be seen in the 
Z

u . (Note: a wrap artifact is a mis-

mapping of signals which are outside the field of view (FOV) to the reverse side of the image. This causes 

some problems in recognizing the object which is inside the FOV and it happens in both frequency and phase 

encoding directions when the FOV is smaller than the object that is being imaged [209, 210]).  
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Xu : 1 

 

 

Yu :  

 

 

Zu :  

 

 

Figure 6- 37 The elastographic images show the correlation between the measured and the calculated 

displacements field obtained from slice 7 of the pineapple gelatin phantom with a donut shaped inclusion. 

These pictures were captured from the frequency of 100 Hz where the excitation was in the X direction. The 

displacement reconstructions in 3-D show a good perturbation motion pattern with a few wrapped artifacts in 

the Z direction, in both calculated and measured displacement images. 
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Yu :  
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Figure 6- 38 The correlation between the real measured and calculated displacement patterns in three 

different directions for slice 7 of the pineapple gelatin phantom with a donut shaped inclusion is 

demonstrated. The displacements were captured from frequency of 125 Hz where excitation was in the X 

direction.. The images illustrate an irregular motion pattern. A high level of correlation is visible in all 

displacement directions.  
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Figure 6- 39The correlation between real measured and calculated displacement patterns in three different 

directions for slice 7 of the pineapple gelatin phantom with an arc shaped inclusion. The displacement dataset 

in 3-D were collected from the frequency of 85 Hz where the phantom was actuated in the Y direction. The 

motion directions, irregular pattern, and a high level of correlation, are visible in all images.  
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Figure 6- 40 The correlation between the measured and the calculated displacement field in three directions 

obtained from slice 7 of the donut shaped inclusion pineapple gelatin phantom is shown. These images were 

recorded from a frequency of 100 Hz where the excitation was in the Y direction.. A high level of correlation 

is observable in all directions, along with a good perturbation in the displacement pattern. 
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Figure 6- 41The relationship between the measured and the calculated displacement patterns in three 

different directions are displayed for slice 7 of the pineapple gelatin phantom with a donut shaped inclusion. 

The MRE displacements were obtained from the frequency of 125 Hz where the actuation was in the Y 

direction. The directions of the irregular motion pattern with a good level of correlation are visible.  
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Figure 6- 42 Here the correlation between the isotropic measured and calculated displacement patterns in 

three directions, from slice 7 of the donut shaped pineapple inclusion are depicted. These images were 

obtained from the frequency of 85 Hz where excitation of the phantom was in the Z direction. The irregular 

pattern shows a good motion perturbation around the inclusion. The displacement images with a high level of 

correlation and a low level of artifact are illustrated. 
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Figure 6- 43 These pictures depict the correlation between the measured and the calculated displacement 

patterns in three local directions for slice 7 of the pineapple gelatin phantom with a donut shaped inclusion. 

The MRE dataset for these reconstructions was captured from the frequency of 100 Hz where actuation was 

in the Z direction. The irregular motion pattern and the direction of the shear waves with a high level of 

correlation and a low level of artifact, indicate that the calculated displacements are in good symmetry with 

the measured displacements.  
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Figure 6- 44 The correlation between the measured and the calculated displacement patterns in three local 

directions for slice 7 of the pineapple gelatin phantom with a donut shaped inclusion is shown. These images 

come from the MRE motion dataset collected with a frequency of 125 Hz where the actuation was in the Z 

direction.   The motion pattern shows the irregularity in the displacement field, while high motion signal 

strength cannot be seen. The direction of the waves with a high level of correlation and a low level of artifact 

are shown.  
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6.9.2 Rayleigh Damping Analysis for the Full Real MRE Dataset 

 

In this study, the Rayleigh damping reconstruction results from the full real MRE dataset 

obtained from the pineapple gelatin phantom are evaluated.  

 

Figures (6.33, 6.34 and 6.35) show enough evidence that the isotropic reconstruction 

algorithm could detect the whole (Fig. 6.34-Z direction and Fig. 6.33-X direction), or parts of 

the structure (Fig. 6.33 and 6.34, both in the Y direction) of the pineapple inclusion in three 

dimensions, with three different frequencies.   

 

The inner and outer boundaries could be captured in the calculated shear modulus images 

(Fig. 6.33-X direction and Fig. 6.34-Z direction), along with significant artifacts (Figures 

6.33-Z direction, 6.34-X direction, and 6.35- all dimensions). By focusing on slices 5 and 6 

of Figure 6.34 the regions of the elevated shear stiffness in the Z direction fairly correspond 

to the pineapple’s donut shaped inclusion.  

 

Table 6.8 compares the displacement COR. CO. obtained from the Rayleigh damping image 

reconstruction for the frequency range between 85-125 Hz in three dimensions. Results are 

presented for slice 7 of the pineapple gelatin phantom with a donut shaped inclusion. In a 

general view on Table 6.8, it is found that the frequency of 100 Hz exhibits a higher 

displacement COR. CO. in both excitation directions of Y and Z for all displacement 

components in 3-D, while the frequency of 125 Hz illustrates a higher displacement COR. 

CO. where excitation was in the X direction, in comparison to other frequencies.   

 

The evaluation of this table implies that there is an optimum frequency for each dimension. 

Taking the orthotropic datasets from these dimensions and considering the optimum 

frequency, leads to a more successful image reconstruction outcome. 

 

Table 6.9 represents the percentage of the relative error ratio between measured and 

calculated displacements obtained from three dimensions of the orthotropic pineapple MRE 

dataset with three different frequencies (85, 100, and 125 Hz).  
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                         COR. CO. 

Dimension  

Frequency 

Excitation 

Direction 

Displacement 

Components 

85 Hz 100 Hz 125 Hz 

Xu  
0.9704 0.98237 0.99255 

Yu  
0.96993 0.96643 0.98805 

 

X 

Zu  
0.97078 0.98074 0.99801 

Xu  
0.98488 0.99541 0.99347 

Yu  
0.97885 0.99476 0.98632 

 

Y 

Zu  
0.98616 0.99896 0.99614 

Xu  
0.99228 0.99594 0.97996 

Yu  
0.99257 0.99549 0.96991 

 

Z 

Zu  
0.99491 0.99834 0.99419 

 

 

Table 6- 8 The displacement correlation coefficient (COR. CO.) results captured from the Rayleigh damping 

image reconstruction for the frequency range (85-125 Hz). These results obtained from three orthogonal 

excitation directions, with respect to the pineapple gelatin phantom with a donut shaped inclusion.  

 

 

 

As this table shows, the frequency of 85 Hz shows the highest error in the dimension X as 

highlighted, while the frequency of 100 Hz demonstrates the lowest error in the dimension 

Y.  

 

The minimum relative error rate in the excitation direction of X was found from the 

frequency of 125 Hz, while the minimum relative error in the Y and Z dimensions was 

captured from the frequency of 100 Hz. The frequency of 85 Hz shows the maximum 

relative errors in both X and Y dimensions.   
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Frequency           Rel. Error % 

 

Excitation        

85 Hz 

 

100 Hz 

 

125 Hz 

X 14.5312 13.1072 7.0562 

Y 9.2984  5.3947 8.7248 

Z 8.6593 7.7073 13.3106 

 

 

Table 6- 9 This table illustrates the percentage of the relative error (Rel. Error %) ratio between measured 

and calculated displacements obtained from the pineapple phantom with three excitation directions and 

including three different frequencies (85, 100, and 125 Hz). The frequency of 85 Hz shows the highest error 

where the excitation was in the X direction as highlighted, while the frequency of 100 Hz demonstrates the 

lowest error rate in the direction Y.  

 

 

Unfortunately, the MRE dataset from the frequency of 85 Hz in the excitation direction of X 

which was randomly selected in the first place, was used for the orthotropic image 

reconstructions in this research (highlighted in the Table 6.9) . This may explain one of the 

reasons for the fairly poor results obtained from the orthotropic reconstruction described 

before throughout this chapter.  

 

Successful initial elasticity image results obtained from the isotropic Rayleigh damping 

algorithm clarified that changing the frequency or excitation direction may lead to better 

results for the orthotropic reconstructions of the pineapple phantom. The pineapple inclusion 

could be captured in most cases, especially in the frequency of 100 Hz where the excitation 

was in the Z direction (Fig. 6.34). It is promising that by using a multiple displacement 

dataset with different frequencies, this may solve the non-uniqueness problem in the 

anisotropic reconstructions.  
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“The true philosophy is to learn again to see the world” 

 

                                                                                                 Morlean Ponty 

                                                   

                                                    

Chapter 7 

 

7.1 Conclusions  

The orthotropic MRE was a novel technique which was launched for the first time 

throughout this project. The goals of this research were focused on establishing the 

methodology of orthotropic elastography imaging. These aims were categorized as: 

 

� Developing an orthotropic phantom which would be able to mimic tissue by 

exhibiting a realistic orthotropic behavior. 

 

�  The collection of orthotropic data acquisition with multiple displacement 

measurements in one completed MRE dataset. The goal was to provide sufficient 

information for the boundary conditions to avoid the non-uniqueness problems, 

which can be highlighted in nonlinear orthotropic inverse problem.  

 

�  Validating the orthotropic incompressible algorithm which was developed for 3-D 

orthotropic materials and for the first time used as a robust algorithm through this 

project. This investigation into distributed orthotropic incompressible parameter 

reconstruction was performed to indicate how well this novel material property 

reconstruction algorithm will be able to differentiate the orthotropic incompressible 

shear stiffness parameters in three dimensions, as well as testing the capability of this 

orthotropic reconstruction program to generate accurate reconstruction results using 

real MRE data. 
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Also two different piezoelectric actuation systems were compared, introduced in this thesis 

as Type A and Type B in order to suggest a realistic design guideline for advanced MRE 

actuation systems.  

 

Phantom experiments with these piezoelectric actuators have shown a potential source of 

artifact produced by constraints applied to the actuation system. In the comparison of the two 

piezoelectric actuators, Type-A and Type-B, with two different boundary conditions, a 

satisfactory shear modulus reconstruction with fewer artifacts was demonstrated with the 

Type-B actuation system.  

 

Along with phantom fabrication, several modifications were made to the phantom-coil set up 

by considering three dimensional boundary conditions to improve the MRE data acquisition 

procedure suitable for orthotropic incompressible materials that can be a framework for 

future MRE clinical applications.  

In addition, several investigations were attempted to reveal some artifact roots in 

elastographic image reconstructions. The approaches presented in this thesis investigated 

the role of the boundary condition and initial guess as two key factors for improved 

material property reconstructions, with fewer artifacts.  

The initial guess study using orthotropic and isotropic image reconstructions along with the 

boundary condition examination applying isotropic reconstructions, were carried out to 

demonstrate the influence of these parameters in the improvement of the elastographic 

image reconstruction outcomes.  

While results presented in this thesis have shown some evidence that the boundary condition 

and initial guess in MRE reconstruction may play important roles in the quality of 

reconstructed MRE images, more accurate tests are still required to determine the exact 

cause of the artifacts.  

 

Results obtained from this research suggest that a good choice of initial guess and boundary 

condition can improve the elastic property imaging process. 
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The majority of this research was allocated to isotropic and orthotropic phantom 

development. The achieved fabricating protocols throughout this thesis can be used as a 

guideline for future MRE testing. 

 

Recently, another study has been undertaken mentioned in 6.9 to investigate the full MRE 

dataset from the pineapple phantom with a toroid shaped inclusion, which was collected 

from three different frequencies and in three dimensions, with respect to the phantom. This 

investigation was carried out to find a perspective for the optimum frequency and dimension 

for the current, and for future MRE data recording.  

 

Successful initial elasticity image results obtained from the isotropic Rayleigh damping 

algorithm clarified that changing the frequency or excitation direction may lead to better 

results for the orthotropic reconstructions of the pineapple phantom. It is also promising that 

by using a multiple displacement dataset with different frequencies, the non-uniqueness 

problem in the anisotropic reconstructions may be solved.  

 

 

7.1.1 Orthotropic Phantom Developments 

In this research, a technique based on the subzone error minimization through an 

optimization method has been presented to clarify the orthotropic elasticity behavior within 

biological and non-biological samples. For this purpose, several orthotropic and isotropic 

phantom manufacturing protocols were proposed, which can be used in advanced phantom 

fabrications.  

The in vitro orthotropic gelatin phantom outputs included one biological (pineapple) and 

two non-biological (circular and vertical) bristle gelatin phantoms, which were 

successfully developed and tested for the MRE orthotropic data acquisition, although only 

the pineapple dataset was used for orthotropic image reconstructions in this research. 
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Fabricating biological gelatin phantoms using fruit (pineapple in this study) for orthotropic 

MRE in vitro testing was a novel technique which was specifically developed for this 

investigation. This method was easy regarding the phantom manufacturing, an inexpensive 

but efficient way to non-invasively measure the orthotropic elasticity parameters of a 

biological material in vitro.  

In the developing of muscle phantoms, the satisfactory material property transformation 

using several techniques such as: laser transmission, electricity, electrosurgery devices, and 

chemical components, has shown that these methods are capable of creating a stiffer ex 

vivo inclusion within the bovine muscle phantom. 

Questions still remain regarding the development of the optimum inclusion fabrication 

technique, improvement of the MRE data acquisition, and orthotropic image reconstructions 

for the ex vivo muscle phantoms, which will require more accurate testing to prepare a 

suitable orthotropic phantom with a stiffer inclusion, as well as its MRE dataset for 

orthotropic elastography experiments. 

 

7.1.2 Multiple Measurement Developments for Orthotropic Boundary 

Conditions  

For the first time, a complete MRE data set was successfully collected by developing 

phantom data recordings from one frequency to three different frequencies, in three 

dimensions, while in each dimension a set of these three different frequencies was applied.  

This satisfactory improvement in the three dimensional orthotropic data acquisition from 

one specific frequency to three different frequencies collected in one set of MRE data was 

a novel approach which was developed for this project.  

Multiple measurements from the pineapple gelatin phantom with several independent 

boundary conditions within the frequency range (85-125 Hz) in three orthogonal 

dimensions could provide a complete record of MRE motion information.  
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This is needed to capture all mechanical properties of this orthotropic phantom in 3-D 

during the orthotropic image reconstruction procedure. This full MRE dataset could cover 

three individual load conditions for different MRE problems with different boundary 

conditions.  

These were categorized as: one specific frequency (i.e. 100Hz) in 3-D relative to the 

phantom, three different frequencies (i.e. 85 Hz, 100 Hz and 125 Hz) in 1-D, and three 

different frequencies in 3-D with respect to the phantom in which each frequency was 

assigned to one side of the phantom. 

Although this effort was carried out to use a multiple displacement measurement set to 

provide sufficient information for the unique identification of material properties in 3-D, 

only one subset of the full MRE dataset with a single frequency (85 Hz) in the excitation 

direction X was used for orthotropic reconstructions in this research. The reason for this 

limitation was the long run time issue due to the slowness of the algorithm process.  

 

 

7.1.3 Orthotropic Algorithm Validation 

The ability of the non-linear 3-D orthotropic incompressible algorithm to detect differences 

in orthotropic incompressible shear stiffness parameters in three dimensions was 

investigated.  

 

As this was the first time that the algorithm was tested for orthotropic incompressible 

reconstructions, a variety of settings for the various options was arranged to find the optimal 

configuration for an orthotropic image reconstruction.   

 

Orthotropic image reconstructions were carried out to map orthotropic elasticity properties 

(shear moduli) in 3-D based on MR detected motion datasets captured from the pineapple 

gelatin phantom. The capability of the orthotropic reconstruction program to generate 

accurate results using the real MRE data is demonstrated through these reconstructions of the 

tissue-mimicking pineapple gelatin phantom. 
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The capability of the pineapple gelatin phantom to mimic the tissue with orthotropic 

properties was validated by evaluating the results obtained from orthotropic elasticity 

image reconstructions, which were discussed in the previous chapter. 

The first generation of orthotropic image reconstruction results obtained from the initial 

guess of 10 KPa were promising, as areas of the pineapple inclusion were found to have 

higher real shear moduli than the surrounding gelatin background.  

 

The recovered shear moduli and the displacement locations were also correlated with the real 

inclusion structure, although there were a few artifacts in the background and boundary 

regions. 

 

Focusing on the initial guess of 10 KPa, the shear modulus and displacement COR. CO. 

obtained from Tables 6.5 and 6.6 indicated that orthotropic reconstructions were more 

successful in detecting the inclusion location with respect to a reference compared to the 

isotropic reconstructions.  

 

Higher mean values found in Tables 6.1 and 6.3, and lower STDs obtained from Tables 6.2 

and 6.4 have also led to the higher accuracy of the orthotropic incompressible algorithm, to 

distinguish the orthotropic elasticity parameter within an orthotropic phantom in comparison 

with the  linear elasticity isotropic program.   

 

These initial results are promising, and suggest that shear modulus obtained from common 

isotropic linear elasticity-based parameter reconstructions of displacement fields measured 

from the pineapple phantom may not be representative of the true orthotropic material 

parameter distributions.  

 

While the elasticity image reconstruction analysis presented in this research enjoyed the 

advantage of the fastest optimization method (the CG combined with an adjoint residual 

technique), the orthotropic incompressible algorithm has shown that the procedure of the 

orthotropic inverse reconstruction is prohibitively slow.  

 



    

221 

 

For example, it took weeks for only a few iterations of the reconstructed image results. This 

was a serious issue which created numerous limitations for this research. Perhaps by 

applying more modifications in the algorithm, this problem can be solved in the future.  

 

Although the orthotropic algorithm used in this research has not been given a chance to test a 

real patient dataset, this technique provided a promising approach to understanding the 

orthotropic behavior of non-linear incompressible materials such as breast tissue and hard 

tumors, and suggests a realistic design guideline for advanced MR elastography in the future.  

 

 

7.2 Future Work 

7.2.1 Orthotropic Phantom Modifications 

 

There are several modification points which will lead to phantom improvement in the 

fabrication process. These can be listed as: 

 

� Considering an inclusion with asymmetrical geometry during phantom 

manufacturing to prevent ambiguity in recognizing the shear moduli in the 

symmetrical plane. 

 

� The geometry and the size of the inclusion should be proportional with the phantom 

box. 

 

� The ratio between the phantom matrix and the inclusion should be considered so that 

sufficient gelatin matrix is surrounding the inclusion, to keep the inclusion far away 

from the phantom boundaries. Ignoring this issue will reduce the distance between 

the inclusion and the phantom boundaries, which can potentially cause the artifacts 

around the phantom boundaries in the image reconstruction procedure.    
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� Replacing the bovine muscle phantom with other animal muscle such as chicken 

muscle or fish, can be other alternatives used to make a harder inclusion using heat, 

as these may have better thermal conductivity to create a suitable inclusion within the 

phantom. 

 

While the goal of elasticity property changing in order to generate a stiffer inclusion within 

the phantom using different techniques mentioned in 7.1.1 has been achieved, more 

modifications are still needed to create a qualified inclusion within the muscle phantom, and 

to capture a high quality orthotropic MRI dataset.  

 

Selecting a suitable inclusion regarding the material type and its geometry for the in vitro 

orthotropic gelatin phantoms, whether biological or non-biological, which can mimic real 

tissue behavior, still needs more investigation.  

 

Future work can be focused on generating more accurate ex vivo muscle phantoms, in vitro 

orthotropic gelatin phantoms, and MRE motion dataset acquisitions. These can be used as 

inputs to increase the accuracy of the orthotropic algorithm to create more sophisticated 

elastographic image results from orthotropic datasets. 

 

 

 

7.2.2 Orthotropic Boundary Condition Modifications 

 

As mentioned, the orthotropic reconstruction procedure requires the MRE datasets from 

multiple actuation directions along with multiple load conditions in 3-D, to generate a well 

conditioned formulation to avoid ambiguities due to non-unique inverse problem processes.  

 

Owing to the orthotropic algorithm’s slow optimization improvement, which in practice 

caused a serious time limitation issue for this project, only one sub displacement dataset was 

randomly chosen from the full MRE dataset, which comprised one single frequency (85 Hz) 

in the global actuation dimension X, to reconstruct the orthotropic behavior of the pineapple 

phantom.  
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However, Table 6.9 revealed that this specific frequency (85 Hz) demonstrated the highest 

relative error among other frequencies (100 Hz and 125 Hz).  

 

For the future, the results can be improved by using the full MRE datasets obtained from the 

pineapple gelatin phantom, which includes multiple excitation directions with multiple 

frequencies in 3-D to produce a well-posed formulation for the inverse problem.  

 

The results obtained from Tables 6.8 and 6.9 can be applied as a guide line to achieve 

satisfactory shear moduli reconstruction results. Using the frequency of 125 Hz in the X 

dimension and the frequency of 100 Hz in the Y and Z dimensions, may yield more success 

in producing accurate results with fewer artifacts.  

 

While the pineapple model has been successful in generating the orthotropic MRE dataset 

using a frequency range between 85-125 Hz, little is known about the response of these 

materials to the dynamic loading.  

 

This can be experienced during steady-state MRE to indicate the dynamic response of the 

pineapple in other available frequency ranges regarding the MRE equipment limitations to 

well characterize the orthotropic response of the pineapple to mechanical load conditions.   

 

7.2.2 Orthotropic Algorithm Modifications  

As mentioned in Chapter 3, to describe the incompressible orthotropic elastic behavior of the 

tissue-like materials such as the pineapple phantom, reconstructing all six independent 

coefficients 
iE  (E1, E2, and E3), and jµ (µ4, µ5, and µ6), in the three directions is necessary.  

 

As the procedure of the orthotropic reconstruction was slow, only three real shear moduli 

( ZXZYXY µµµ ,, ) in three dimensions were applied in this research. This limitation of 

conclusive evidence in the presented results reduced the certainty of proof needed to describe 

the nature of the orthotropic material.  
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One approach to improving the reliability of the orthotropic incompressible elasticity 

reconstruction parameters would be to set the problem for different optimization procedures, 

such as Gauss-Newton [200], Quasi-Newton [201, 202], and BFGS [203], as well as the CG 

method to be given different values for the regularization weight parameter in the TV 

regularization technique. 

 

Although the orthotropic algorithm was able to distinguish three shear moduli in three 

directions successfully, more analysis is still needed to fully quantify the orthotropic 

behavior of a material.  

 

The observed orthotropic effect presented in this research was related to the one single 

frequency in a specific direction. More anisotropic tests can be undertaken using the multiple 

displacement dataset from the full MRE dataset, developed for the orthotropic pineapple 

phantom.  

 

The orthotropic algorithm used for this research is now capable of setting multiple 

displacement dataset input files in one inverse solution. In this process, the output generated 

from the orthotropic inverse problem solution will be the best approximation to the material 

properties given all of the provided input displacement data. This will help to improve the 

accuracy of the orthotropic results.  

 

In parallel with other studies to find the artifact roots in the elastographic image 

reconstructions, an attempt was made to evaluate the role of the zone size to improve the 

orthotropic elasticity property outcomes.  

 

Work is still underway to obtain the best ratio between internal and external nodes of a zone 

regarding the size of the zone. Setting a problem with a revised zone size may yield more 

success in producing desirable orthotropic results. 

 

One avenue to verify the accuracy of the shear modulus value in all elasticity image 

reconstructions can be by using Dynamic Mechanical Analysis (DMA). This instrument is 

capable of determining a range of mechanical properties externally [204].  
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There are two important points in using DMA; first the sample should be prepared carefully 

and be less than 10mm square and be about 2mm in thickness, secondly the instrument must 

be calibrated precisely to determine the shear modulus values accurately.  

 

The initial guess estimation can be established on the shear modulus value output collected 

from the DMA system. This method will provide a more accurate reconstruction, by 

directing the estimation of the correct initial guess, and will save time regarding the selection 

of the right value for the starting point in reconstructions. 

 

 

 

 

 

 
Figure 7- 1 A configuration of the Dynamic Mechanical Analysis (DMA) system 

 

 

While an ideal robust algorithm should be insensitive to a range of initial guess values 

estimation and in the presence of the noise, image elastographic results in this study revealed 

a dramatic variation to the initial shear modulus distribution for the orthotropic 

reconstruction algorithm. In the reconstruction evaluation, it is found that none of the 

orthotropic solution process could meet the global iteration (100) set for the optimization 

convergence.  
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This can explain the reason for a greater error achieved from the early iterations in the error 

minimization of the objective function. This also clarifies the evidence for the larger relative 

error in the orthotropic reconstructions in comparison with isotropic cases (Table 6.7) as all 

isotropic reconstructions could converge to their highest global iteration (100). 

 

However, it is still unknown how the orthotropic algorithm can be modified to reduce its 

sensitivity to the initial guess. At this stage, no certain judgment can be made regarding the 

orthotropic results obtained from the initial guess study presented in this research.  

 

The ambiguities over some controversial results between orthotropic and isotropic tests 

remain that need more investigations to modify the orthotropic algorithm towards generating 

favorable images.  

 

Simulations should also be carried out to implement a finite element model using an 

orthotropic incompressible algorithm for the pineapple gelatin phantom. This simulation 

study should involve tests on the pineapple gelatin’s sample geometry to verify the 

functionality of the algorithms as well as validating the orthotropic results presented in this 

thesis. 

 

 

 

7.3 Final Words 

 

A meaningful mapping of the orthotropic shear moduli distributions in three directions has 

demonstrated enough evidence that the orthotropic MRE can be a feasible technique to 

determine orthotropic elasticity parameters of a biological tissue, noninvasively.  

 

The orthotropic achievements throughout this project can be useful for future clinical cancer 

diagnostics by augmenting the information obtained from the orthotropic MRE 

reconstructions between normal tissue and tumors. To reach this aim, full examinations with 

real tissue are still required. 
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Although the orthotropic behavior for in vivo and ex vivo tests remains an unknown 

challenge for future trials, the MRE orthotropic-based fundamentals offered in this research 

opened a new horizon in the current medical image modalities, to approximate variations in 

the shear moduli distribution within an orthotropic media non-invasively, which may be 

helpful in monitoring the tissue pathology directed in cancerous tumors. 

 

In this thesis, the main effort was to produce a strong foundation for all three orthotropic 

MRE basics: orthotropic phantom developing, orthotropic MRE dataset developing and 

validation of the orthotropic incompressible algorithm to generate meaningful orthotropic 

elastographic results.  

 

This project was successful in developing the pineapple phantom as an orthotropic phantom, 

and in completing multiple measurements to produce an orthotropic MRE dataset including 

three different frequencies in three dimensions, with respect to the phantom. The validation 

of the orthotropic algorithm has demonstrated great potential to differentiate three shear 

moduli components in 3-D.  

 

Results from the orthotropic elastographic reconstruction using real MRE datasets were 

promising, and they indicate that the algorithm is capable of detecting regions of stiffness 

elevation associated with the pineapple inclusion, as well as differentiating three shear 

muduli components in three orthogonal planes.  

 

However, the orthotropic MRE as a novel technique has been surrounded by so many 

obstacles and more optimizations should be approached towards obtaining a satisfactory 

elastography image. This method needs more development of its fundamental bases 

established throughout this research, to improve its ability to perform as a reliable diagnostic 

image tool for future clinical MRE breast cancer examinations. 

 

While little comprehensive reference regarding the error range in the MRE is available in 

literature, a series of different studies was performed to better understand the root cause of 

artifacts.  
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Several potential key factors were introduced throughout this thesis. Some of these image 

artifacts are relevant to the algorithm and can be called internal sources such as the initial 

guess, zone size etc.   

 

In addition, other external error sources due to experimental works such as phantom 

fabrication processes, phantom-coil setups, boundary conditions (frequency of the actuation), 

and MRE data acquisition procedures, should also be considered. Modifying the MRE 

system in order to remove the source of errors will be another target in the future to improve 

the accuracy of elastographic results in this advanced medical image modality.  

 

In conclusion, the results obtained from the experiments outlined in the previous chapters 

have not only illustrated that the main goals involved in this thesis have been achieved, but 

also the experimental work presented in this thesis provided a basic framework for future 

research in the orthotropic MRE field.  
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Appendix A  

The Equations of Linear Elasticity 
 

Summary of Equations 

 
Strain-displacement relations: 
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Constitutive Equations: 
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Equilibrium equations/equation of motions when the body forces are ignored:    
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Or in vector notation 
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Navier Equations: 
 

Solve the equilibrium equations for the displacement gives: 
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[211, 212] 
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Appendix B 

Caculating one of the orthotropic Poisson’s ratios: 

Recall (3.39) and rearrange that as:  
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Recall (3.34) and rewritten as: 2321 1 υυ −=
 and then replacing it in the (B.1) gives: 
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Recall (3.25) and rewriting as 32
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and then replacing in the (B.2) yields: 
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By replacing 
32υ  with

311 υ− , the equation (B.5) can be simplified as: 
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This ultimately yields as:  
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This has been mentioned in (3.44). Other Poisson’s ratio coefficients can be found with the 

same manner [213]. 

 

 

 

 


