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ABSTRACT 

Festuca novae-zelandiae (Hack.) Cockayne is a long-lived, caesptiose grass indigneous to New 

Zealand. It has expanded dramatically in range in 1000 years of human settlement. This study was 

conducted to determine how generalist life-history attributes and 'adaptive' variation have enabled 

this species to adjust to environmental change. 

A range of aspects of the biolo!:,'Y of F. novae-zelalldiae were investigated. Reproduction in 155 

individuals over four seasons was monitored. Only 17.4% of individuals flowered every year and 

36.1 % did not flower at all. However, the reproductive output of the population was still relatively 

consistent between years. 

Reproduction of individuals and the pre-dispersal fate of seeds was compared among eight sites. 

Differences existed among sites for most attributes measured. Site factors appeared to mask any 

effects of tussock density on culm production. Total seed predation was positively related to density 

and negatively to altitude. A flightless fly, Diplotoxa l7loorei (Diptera, Chloropidae) was found to be 

the most common identifiable seed predator, accounting for up to 8% of seeds produced in some 

populations. 

Seed germination was compared for eight populations in laboratory trials and most seeds 

germinated easily. Mean final % germination across all popUlations was 86%. Seedlings were 

monitored in the field for 30 months. They commonly established on mat-vegetation, were very slow­

growing (mean of 0.6 leaves yr-1) and had a half-life of 12 months. 

Tillers in 26 tussocks were tagged and monitored for 30 months. Tillering was concentrated in 

spring, tillers lived on average 15.2 months and the majority (64%) did not produce daughter tillers. 

Tillering rate was not affected by either position within a tussock or size of the tussock. 

A stage-based approach was used to investigate population structure. Stages were defined using 

discriminant analysis. The discriminant function was then used to assign stages to 255 tussocks which 

had been measured at the begining and end of a two year period. Transition probabilities were 

calculated between stages. Transitions were distinctly non-linear and tussock size and condition could 

vary widely in the space of two years in response to environmental fluctuations. 

The genetic identity of mapped tussocks was investigated using isozyme electrophoresis and it was 

found that clonal fragmentation did not contribute significantly to the maintenance of popUlation 

densities. 

Patterns of variation at different taxonomic levels were compared using three taxa: F. novae­

zelandiae 5.5., a distinct high altitude form of F. Ilovae-zelandiae and a closely related species, F. 

matthewsii. Vegetation composition was investigated using ordination and classification techiques. 

Environmental gradients in altitude, temperature and rainfall were important in explaining observed 

patterns. The vegetation composition at "high altitude" F. Ilovae-zelalldiae sites was more distinct 

from that of F. Ilovae-zelalldiae 5.5. sites than the latter was from F. matthew5ii sites. 

Morphological variation in the same taxa was investigated using Principal Components Analysis. 

The same environmental factors were important to observed patterns of variation. Populations within 
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F. novae-zelandiae possessed some genetically-determined differentiation that related to habitat. A 

narrow zone of intermediacy was found between F. Ilovae-zelalldiae s.s. and F. l7latthewsii. 

Plants from populations of the three taxa were grown in cultivation. Culms of F. matthewsii 

emerged four weeks prior to F. llovae-zelandiae S.S. "High altitude" F. novae-zelandiae was more 

similar to F. mattlzewsii in flowering phenology. 

Levels of biochemical variation in populations of all three taxa were investigated using isozyme 

electrophoresis. All populations were characterised by high within-population variation and relatively 

low between-population variation. The differences between the three taxa were small. Variation 

among populations related to environmental factors but not to the proximity of populations. 

The adaptiveness of populations to their own environment was tested using reciprocal transplants. 

No 'home-site' advantage was found. All populations proved to be highly plastic in growth responses. 

The findings of this study are discussed in terms of generalist versus specialist strategies in long­

lived, polyploid, perennial grasses. I conclude that in environments characterised by unpredictable, 

short-term fluctuations, long-lived species will show adaptation to large-scale, long-term 

environmental trends only, and adopt a generalist strategy in the face of short-term fluctuations. 
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CHAPTER 1: INTRODUCTION 

1.1 The Ecology of Populations and Evolution in Response to Environmental Change 

Evolution occurs within the context of the demography and ecology of populations 

(Harper, 1977; Sewall, 1977; Solbrig, 1980; Bradshaw, 1984; Levin, 1988). This is 

because natural selection is a demographic process; the demographic characteristics of 

survival and reproduction are the fitness components of population genetics (Schaal, 

1985). Evolution by natural selection is the product of individual genetically-based 

variation in these demographic attributes (Levin & Wilson, 1978; Solbrig, 1980; 

Stebbins, 1983). 

Ecology in the broad sense is concerned with the interaction between plants and 

the biotic and edaphic environment. As plants are sessile organisms the local ecological 

environment, that is the environment as it affects an individual's reproductive value or 

contribution to population growth (Antonovics et aI., 1988) is a major selective force. 

Independent of how organisms experience it, the environment is characterised 

by dynamic periodic and aperiodic behaviour at all spatial and temporal scales. The 

nature of an organism's response to its ecological environment, or the ability of 

selective forces to bring about adaptation to the environment, is governed by a number 

of factors. The most important of these are the temporal and spatial scale of 

environmental heterogeneity with reference to the generation time and dispersal ability 

of the organism (Bradshaw, 1965; Wiens, 1976; Lloyd, 1984; Antonovics et aI., 1988) 

and the constraints imposed by genetic and life-history attributes (Grant, 1971; Levin, 

1978; Levin & Wilson, 1978; Lloyd, 1980a; Levin, 1988). 

The temporal scale of environmental heterogeneity with reference to the 

generation time of the organism determines the ability of the organism to track changes 

in the environment through genetic adjustment (Bradshaw, 1965; Antonovics et aI., 

1988; Levin, 1988). The rate of response of a population to directional selection is 

inversely related to generation time (Levin, 1978). 

When the direction of selection changes in a random or cyclic manner, 

populations with longer generation times are less able to track the changes. Long-lived 

species are more likely to be tuned to long-term environmental trends and retain a 

relatively high level of genetic polymorphism among individuals (Levin, 1978). Even if 

change is directional and sustained, long-lived species will still experience a lag in 

genetic adjustment to the changing selective environment (Levin & Wilson, 1984). 

Longevity, as an attribute of 'K'-selected species (MaCArthur, 1962) is 

associated with other characteristics such as delayed maturity and low or irregular seed 

output (Harper, 1977) that further limit the ability of the spec:ies to genetically track 

short-term variation in the environment (Levin & Wilson, 1978). In many cases 

phenotypic plasticity is more important in the response of long-lived species to changes 

in their ecological environment (Bradshaw, 1965; Harper, 1977; Lloyd, 1984; 



Schlichting, 1986). Phenotypic plasticity and generalist strategies rather than genetic 

specialisation will also be favoured if spatial variation in the environment is coarse 

grained and unpredictable (MacArthur & Levins, 1964; Wiens, 1976; Lloyd, 1984; 

Levin, 1988). 
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Genetic constraints on the ability of organisms to adapt to environment change 

include the organisation of the genome, the distribution and abundance of genetic 

variation and the manner in which genetic variation is passed to the next generation. 

Genome duplication through polyploidy can function to store genetic variation. 

However it can also act to dilute the affects of gene mutations and increase the 

resistance of populations to both random and directional changes. (Lewis, 1980). 

A relationship has been shown between extent of geographical distribution and 

breadth of ecological amplitude and the amount and organisation of genetic variation 

within and between populations. Widespread species tend to have higher total genetic 

variation and generalist species tend to have high within-population variation. In 

addition levels of genetic variation have often been associated with the ability of a 

species to invade new habitats and adapt to both spatial and temporal environmental 

variation (Babbel & Selander, 1973; Bradshaw, 1984; Levin, 1986; Karron, 1987). 

Change is an on-going and integral component of the ecological environment 

experienced by plants however the human-induced environmental changes in the last 

thousand years in New Zealand have radically altered the selective environment faced 

by plant species. 

Human-induced vegetation changes do not simply repeat natural processes but 

create new ones. Plants that have increased in abundance after human-induced 

disturbance are therefore worthy of special attention (Grubb, 1985). In light of the 

short-term adaptive limitations experienced by long-lived species it is of particular 

interest when a relatively long-lived, apparently 'K'-selected species has increased as a 

result of human activity. This is the case with Festuca novae-zelandiae, a common New 

Zealand grass which is widespread particularly in eastern South Island. 

Human-induced environmental changes in New Zealand have allowed F. novae­

zelandiae to dramatically expand its range. In less than 1000 years F. novae-zelandiae 

has expanded from scattered populations in a forested landscape to widespread cover 

throughout the drier eastern montane areas of South Island. Short tussock grassland, of 

which F. llovae-zelandiae is a physiognomic dominant now occupies approximately 11% 

of the New Zealand land area (Newsome, 1986). 

In the remainder of this chapter I will outline that which is already known 

about the ecology of F. novae-zelandiae and summarise the changes that have occurred 

in New Zealand over the last 20,000 years with particular reference to grassland 

vegetation. 
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1.2. Festuca novae-zelandiae (Hack.) Cockayne 

Festuca novae-zelandiae is a perennial grass with rigid, tightly rolled leaves to 60 cm in height and 

culms to 80 cm. It tillers intra-vaginally to produce a tightly-packed erect tussock. The taxonomic 

history of F. novae-zelandiae is detailed in Appendix 1. Like many grasses F. novae-zelandiae is wind­

pollinated and possesses no obvious seed dispersal mechanisms. Experimental work has shown it to 

be out-crossing and virtually self-incompatible (Connor & Cook, 1955). One chromosome count has 

been made for a plant from Tara Hills in Otago and it was hexaploid (2n = 6x = 42) (Beuzenberg & 

Hair, 1983). 

Moore (1976), in a study of the vegetation on a South Island high country station, found that 

the same tussocks could be identified in photographs spanning twenty years. She estimated that the 

life-span of individual tussocks could exceed 50 years. However as is usually the case with clonal 

herbs, genets are potentially immortal and the concept of 'lifespan' and the question of what 

constitutes an individual are problematic. These issues will be addressed in Chapter 4. 

F. novae-zelandiae appears to produce culms every year (Sewell, 1947; Moore, 1976; Espie, 

1987). Seed viability appears to be high and seeds germinate easily (Dunbar, 1970; D. Scott,pers. 

comm.). However seedlings have been reported as rare particularly in grazed areas and clonal spread 

by fragmentation has been suggested as being more important for popUlation maintenance (Sewell, 

1947,1952; Moore, 1976; Espie, 1987). 

F. novae-zelandiae is relatively unpalatable to stock and has a low relative growth in 

comparison to pasture grasses (Scott, 1970; O'Connor, 1977). F. novae-zelandiae is tolerant of 

nutrient-deficient conditions however it shows a rapid growth response with the addition of nutrients, 

particularly phosphorus and nitrogen (Morrison, 1958; O'Connor, 1977; Espie, 1987). F. novae­

zelandiae would appear to have the ability to respond to periodic disturbance as it occurs on young 

terraces formed in braided riverbeds (Calder, 1958, 1961; Espie, 1987). 

Aspects of the ecology of F. novae-zelandiae to do with its role as a component of high country 

pasture and the effect of range management practices have been the most studied. The two most 

detailed studies to date have been those of Sewell (1947, 1952) who investigated the effects of burning 

and grazing, and Espie (1987) who investigated the edaphic ecology of F. novae-zelandiae with 

glasshouse fertiliser trials and field experiments. 

F. novae-zelandiae presents an interesting case history. It appears to possess attributes such as 

slow growth rates and low recruitment that tend to limit the ability of species to invade new habitats 

and adapt to changing conditions. Its expansion in range as a result of human interference with the 

landscape is therefore remarkable. 
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13 Recent vegetation change in the central South Island 

13.1 Pre-human New Zealand 

Most of the existing information about New Zealand Quaternary vegetation history begins with 

events during the latter part of the Otiran Glaciation from 22,000 yrs BP onward (BP = before 1950 

AD). In the latter part of the Otiran Glaciation either shrubland or grassland taxa were dominant at 

most sites and grasses were ubiquitous (Moar & Suggate, 1979; Moar, 1980; McGlone, 1988). Pollen 

diagrams show that inland and eastern South Island in particular had the highest values for grassland 

taxa of anywhere in New Zealand, with almost negligible amounts of tree pollen. 

The late glacial, 14,000 to 10,000 yrs BP, began with a rapid retreat of ice from the Poulter 

advance (Suggate, 1965; Suggate & Moar, 1970). Between 13,000 and 12,000 yrs BP a wave of 

reafforestation took place in central areas on the west coast of the South Island. Over the rest of the 

South Island, grassland gave way to denser shrubland after about 12,000 yrs BP (Moar, 1971; Moar, 

1973; Moar & Suggate, 1979; McGlone & Bathgate, 1983) and a slow increase in temperatures finally 

enabled forest to spread. 

The late-glacial afforestation of South Island was complete by 9500 yrs BP at the latest and 

from then until the arrival of humans in New Zealand most pollen spectra from lowland and montane 

sites show only a trace of grass pollen. However there is evidence for the role of natural fire in 

creating open areas in the pre-human landscape particularly in drought-prone regions such as 

lowland Canterbury (Cox & Mead, 1963; Molloy et al., 1963; Molloy, 1977). 

A considerable area of Central Otago and adjacent parts of Canterbury and Southland 

experienced repeated fire 2500 to 1600 yrs BP, which progressively reduced the forest cover to shrub 

and grassland (Molloy, 1969; McGlone, 1973; McGlone, 1983). On the Canterbury Plains, natural fire 

appears to have contributed to the maintenance of a kanuka - podocarp forest mosaic with kanuka 

also dominating on shallow, droughty soils (Cox & Mead, 1963; Molloy et al, 1963; Molloy, 1969). 

However apart from central Otago, there is no evidence for large areas of lowland grassland prior to 

Polynesian settlement (Molloy, 1969). 

During this last period of forest domination, grassland species would have been confined to 

either alpine areas or scattered habitats within a forested landscape. These latter areas would have 

included rocky bluffs, river flood-plains, stream beds and other stony, well-drained sites, valley-floor 

frost flats, edges of active avalanche tracks, debris fans and other areas of young soils (Cockayne, 

1928; Connor, 1964; Connor & MacCrae, 1969; Molloy, 1969). Some grasses and herbs characteristic 

of lowland grassland today may have colonised forest and shrubland clearings brought about by 

natural disturbances (Molloy, 1969; Molloy & Ives, 1972) and occurred as understorey plants in areas 

of low, open vegetation. 
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1.3.2 Maori settlement: 1200 BP to 1840 AD. 

There is no firm date for the settlement of New Zealand by Polynesians, but it is 

. generally agreed to have occurred sometime between 1200 and 1000 yrs BP (Davidson, 

1981). Between then and the time of extensive European settlement, in the 1840's and 

1850's, close to one half of the original forest cover of New Zealand was removed 

(McGlone, 1983). 

Molloy et a1 (1963) summarized the available charcoal and wood radiocarbon 

dates from the eastern South Island and established that extensive forest throughout the 

region had been destroyed by fire during the Polynesian era. There is also evidence of 

large-scale soil instability (Molloy, 1969; Molloy, 1977; McGlone, 1983) indicating that 

the charcoal did not come from the burning of a few trees but that fire affected entire 

catchments and coastlines. Pollen spectra covering that period show the dramatic 

decline in forest species such as Nothofagus and Dacrydium cupressinum with a 

corresponding increase in bracken, shrubland and grassland pollen and spores 

(McGlone, 1983). 

The main period of deforestation appears to have been around 600 to 500 years 

BP; by 400 years BP a balance had been achieved between cleared and forested land 

(McGlone, 1983). Repeated burning of podocarp forest and kanuka on the Canterbury 

Plains during the Polynesian era (Molloy et aI, 1963; Molloy & Ives, 1972) in 

combination with periodic flood events (Cox & Mead, 1963), allowed for the expansion 

of grasses on the Plains. By 300 yrs BP the podocarps that had dominated younger, 

deeper soils during most of the interglacial were absent or rare. Kanuka was much 

reduced and kowhai (Sophora microphylla) was common, indicating perhaps the 

existence of an open shrubland-grassland community (Cox & Mead, 1963). 

Most of montane and lowland Canterbury remained in grassland and 

regenerating shrub land or low forest until the arrival of European settlers (Connor & 

MacRae, 1969; Molloy, 1977). 

In montane regions of Canterbury, the grassland that formed following forest 

fires was most probably dominated by Chionochloa species with smaller light­

demanding species such as Dichelachlle crinita. Elymus rectisetus. Festuca novae­

zelandiae and Poa colensoi occurring as understorey plants or confined to exposed or 

drought-prone situations (Cockayne, 1928; Zotov, 1938; Connor & MacRae, 1969). 

Other components of these induced grasslands would have colonised relatively rapidly 

from adjacent river-beds and rock outcrops or descended from alpine habitats once the 

intervening forest had been removed (Cockayne, 1928; Burrows, 1960; Connor, 1964; 

Connor & MacRae, 1969). F. novae-zelandiae was undoubtedly of less importance than 

in present-day montane Canterbury grassland (Zotov, 1938). Although in drier parts of 

eastern South Island such as the Canterbury Plains and the MacKenzie Basin there may 

have been more F. novae-zelalldiae in the pre-European grassland than there is today 

(Connor, 1964). However grasslands in pre-European New Zealand may not have borne 
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any great resemblance to present-day short tussock grassland. Even if F. novae­

zelandiae had been a relatively dominant species, individual tussocks would have been 

less obvious in an un grazed grassland with an abundance of other large clump-forming 

grasses, shrubs, inter-tussock herbaceous species and fine, sward-forming grasses 

(Zotov, 1938; O'Connor, 1986). 

1.3.3 Early European settlement 

Once settlement of New Zealand by people of European origin had begun the pastoral 

occupation of open country in both islands proceeded rapidly. Organised settlement of 

Canterbury began in 1850 with the arrival of the first four ships; however pastoral 

farming began as early as the 1830's. By the late 1850's most of the eastern South 

Island was taken up as large sheep or cattle runs (Johnson, 1969; O'Connor, 1986). 

The arrival of European pastoralists with grazing mammals, exotic plants and 

the deliberate policy of burning, marked a dramatic new era in the history of New 

Zealand grassland. The initial eruption of domestic stock numbers (10.7 million by 

1874) and a plague of rabbits, must have had an enormous impact on grassland species 

because these animals were being maintained primarily by the exploitation of 

indigenous grassland (O'Connor, 1986). In addition, extensive areas of lowland 

Canterbury were ploughed and used for cropping (Johnson, 1969). It is therefore very 

likely that by the time the Armstrongs described the vegetation of Canterbury 

(J.F.Armstrong, 1870; J.F. & J.B.Armstrong, 1872; J.B.Armstrong, 1880), many 

palatable indigenous species had already been severely reduced or banished from many 

areas. The density and diversity of shrubs would also have been reduced by fire, 

altering the whole physiognomy of lowland vegetation. 

Detailed descriptions of grassland and shrubland at the time of European 

settlement are scarce. However comments on the vegetation of the Canterbury Plains 

and foothills give the impression of a dense tussock grassland / shrubland mosaic. For 

example, Torlesse described the Plains in 1851 as being covered mainly with manuka 

(this name was apparently applied to both Leptospermum scoparium and Kunzea 

ericoides), Cassinia species, Discaria toumatou, fern (Pteridium esculentum), scattered 

Cordyline australis, Phormium tenax, Cortadel'ia species and 'tussock' (Maling, 1958). 

Charlotte Godley, in a letter dated 5th February 1851, spoke of the grass growing in 

"large tufts, perhaps two feet high" and growing densely enough to obscure the ground 

between them (Godley, 1957). Judging from the present-day distribution of remnant 

tussocks on the Canterbury Plains these tussocks were probably Poa Gita and, to a lesser 

extent, F. novae-zelandiae (pel's. obs.). 

Although it was noted as early as 1857 that fire was eliminating them from 

some areas (Paul, 1857), the tussocks appeared fairly resilient to the initial pastoral 

onslaught. This was not the case with the shrubby component of lowland grassland. It 

was apparently sufficiently reduced after twenty years of pastoral occupation that in 
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1860, Sam.uel Butler could describe the Plains as being dominated by "brown tussocks 

of grass" with occasional individuals of Cordyline australis and Phormium ten ax (Jones 

& Bartholomew, 1968). By 1880, pastoralisation on the Canterbury Plains had resulted 

in a vegetation "remarkably poor in plants" and "very uniform in character" with 

grasses predominant (Armstrong, 1880). 

1.4 Aims 

F. novae-zelalldiae presents an opportunity to examine the importance of generalist 

strategies versus specialisations or 'adaptations' in a species response to environmental 

change over both recent and geological time-scales. 

The aims of this dissertation are: (1) to investigate in detail a range of aspects 

of the biology of F. llovae-zelandiae; (2) examine patterns of variation in different 

attributes within F. novae-zelalldiae s.l. with reference to a sibling species and (3) 

using F. llovae-zelandiae as an example, combine evolutionary and ecological thinking 

to address the issue of adaptation in long-lived, polyploid, perennial grasses occupying 

complex, heterogeneous environments. 

1.5 Dissertation Structure 

The body of the dissertation will be divided into three sections, each of which has a 

separate discussion. The first section deals with aspects of the regeneration of F. novae­

zelandiae from seed. The second section deals with vegetative growth and regeneration 

and the structure of populations and the third section deals with patterns of variation 

in a range of characters at different taxonomic scales within New Zealand tussock­

forming Festuca. Each section contains chapters dealing with different experiments. 

Each chapter is divided into methods and results sections with a discussion of the 

relevance of the specific findings of the chapter. A final section summarises and brings 

together the themes from the discussions at the end of each section and draws overall 

conclusions. 
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CHAPTER 2: STUDY AREA 

2.1 Location of Study Area and Study Sites 

This study was carried out mainly in the catchment of the Waimakariri River, South 

Island, New Zealand, with additional study sites on the lower Canterbury Plains 

(Bankside Scientific Reserve) and in the catchment of the Rakaia River. A total of 42 

study sites was utilised in the course of the study; experiments were conducted using a 

hierarchy of subsamples of these sites. 

Manipulative and monitoring work for sections 3.2, 3.3, 3.5, 4.2, 4.3 and 4.5 

was carried out on Sugarloaf Fan in the University of Canterbury experimental area at 

the Cass Biological Field Station (Fig. 2.1). A core of eight sites in the Cass Basin and 

on the Plains was used for comparative work in sections 3.2, 3.4, 4.4 and 5.5 with the 

addition of other sites in the Waimakariri catchment relevant to the comparison in 

question. All 42 sites were used for the work described in sections 5.2 and 5.3. 

In this chapter I will outline the geomorphology, climate and broad vegetation 

types that characterise the study areas. In doing so I will draw largely from volumes 

edited by Knox (1969) on the natural history of Canterbury and by Burrows (l977a) on 

history and science in the Cass district. 

2.2 Geomorphology 

Interaction and uplift at the margins of the Pacific and Indian-Australian plates has 

created the backbone of South Island in the form of the Southern Alps, which run 

roughly north-east to south-west down the western side of the Island (Stevens, 1980). 

The study areas lie mainly among the ranges east of the Main Divide; some study sites 

are on or just west of the Main Divide (Fig. 2.1, Table 2.1). Grid references to all sites 

are given in Appendix 2. 

The topography of the study area is characterised by ranges extending from the 

Main Divide, large inland basins and high foothill ranges separating the montane zone 

from the Plains. The landscape was formed mainly from the poorly structured, easily 

fractured, hard sandstones and mudstones of the Torlesse terrain (Bradshaw, 1977). A 

history of faulting and differential uplift, combined with the ease with which the 

Torlesse rocks fracture to produce vast amounts of rock debris, has created the broad 

outlines of the landscape in the study area (Soons, 1977). The detailed landforms 

originate from the activity of glaciers during the Pleistocene (especially the last, Otiran 

glaciation) and from post-glacial fluvial and colluvial processes. 

The montane portion of the Waimakariri valley was well filled with ice during 

all the early advances of the Otiran glaciation and later advances filled the upper valley 

regions. A large part of the gravel apron that forms 
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Figure 2.1: Location map of study area and study sites. See Table 2.1 for site 

details. 
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Table 2.1: Details of study sites. Type refers to landform: 1 = terrace, 2 = fan, 3 = 

debris slope, 4 = hill slope, 5 = stream channel. Tussock density is m-2 . Alt is 

altitude from topographic maps. Aspect is degrees from north. Slope was read using 

an Abney level. Rain is mean annual rainfall from isohyet map (Greenland, 1977) or 

climate station (New Zealand Met. Service, 1982). Min and max temp are mean 

annual minimum and maximum temperatures (aC ) estimated using equations in 

Norton (1985). 

Site Type Tussock Alt Aspect Slope Rain Min Max 
Density (m) (deg.) (mm) Temp Temp 

ANT 2 1.19 680 42.5 1.0 2500 3.88 8.56 

APS 5 1.50 880 92.5 3.7 5000 3.27 7.60 

BNK 5 5.81 65 0 0 690 6.55 11.4 

BRO 5 1.31 1400 110 4.2 2000 0.73 4.87 

BRV 1.69 760 65 3.7 4000 3.64 8.19 

CAH 4 1.25 870 130 7.7 1000 2.41 7.44 

CAR 3.12 800 40 0.5 4500 3.59 7.98 

CBC 2.19 830 0 0 1250 2.66 7.69 

CFL 1.19 600 0 0 1250 3.71 8.09 

CRY 1 0.75 640 0 0 1500 3.57 8.70 

CSA 3 2.81 1340 57.5 4.0 2500 1.00 5.18 

CSS 5 2.94 1240 22.5 2.5 2500 1.36 5.68 

CVS 3 4.31 820 67.5 7.5 2000 2.90 7.79 

DEC 9.25 940 55 0.7 6000 3.00 7.31 

DIS 4.00 760 0 0 4500 3.43 8.18 

GPS 3 0.44 1140 110 20 6000 2.25 6.30 

GRE 2.81 740 0 0 3000 3.72 8.26 

HLF 4.69 750 0 0 2250 3.27 8.20 

KLO 0.62 635 0 0 2000 3.89 8.76 

KRV 2.37 635 30 3 1000 3.42 8.60 

LBR 0.31 720 0 0 2750 3.64 8.37 

LHR 2.37 590 0 0 2500 3.90 8.99 

LMR 3.62 720 0 0 2500 3.64 8.37 

LYN 2 3.87 865 117 1.5 1000 2.47 7.46 

MBV 10.2 880 0 0 3750 3.14 7.59 

MTH 4 4.00 1120 60 4.0 1500 1.94 6.32 

MTL 4 1.87 1390 10 1.2 1250 0.61 4.84 

MTS 4 6.19 920 175 15.7 1250 2.55 7.31 
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Table 2.1: continued. 

Site Type Tussock AIt Aspect Slope Rain Min Max 
Density (m) (deg.) (mm) Temp Temp 

OTR 3 3.75 1120 140 12.5 6500 2.44 6.41 

PEG 1 1.50 860 90 1.7 6000 3.35 7.71 

PPS 4 1.06 1000 170 5.7 1000 2.06 6.78 

RED 1 8.62 660 0 0 850 3.24 8.46 

RIV 1 0.94 540 0 0 1500 4.01 9.22 

SLF 2 8.56 670 129 5.7 1250 3.45 8.55 

SVH 3 4.19 1240 80 12 3500 1.73 5.78 

SVY 1 5.25 930 0 0 2500 2.77 7.31 

TOR 4 7.31 880 157 2.5 1250 2.51 7.39 

UBR 1 4.37 1000 25 8.2 6000 2.83 7.00 

UHR 1 3.62 690 0 0 4000 3.62 8.52 

WRY 3 2.62 1050 105 23 6000 2.71 6.74 

WSH 4 8.56 1140 72.5 5.0 2500 1.88 6.25 

WSS 4 0.62 1420 12.5 5.7 2500 0.87 4.85 
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the Canterbury Plains is constructed of glacial outwash gravel (Gage, 1969; 1977). 

Glaciation has been a great influence on the landscape of the study area, but post­

glacial modification of landforms, taking the form of valley-floor fill by alluvium on 

the river floodplains, large alluvial fans and deep-cut valleys of tributary streams, has 

also strongly influenced the topography of the study area (Soons, 1977). 

Streams and rivers in the area are typical of those throughout the Southern 

Alps. They are braided in character with many channels winding across extensive 

gravel beds. Channels differ in size and 'permanency' and the floodplains are only fully 

occupied by water during periods of high flood. They are turbulent and fast-flowing 

and prone to marked fluctuations in water levels. During heavy flooding episodes they 

can transport and deposit large quantities of gravel and sediment. As the current 

channels of most rivers and streams of this type are not greatly separated in height 

from vegetated portions of their fans, major changes in course occur periodically 

causing catastrophic damage to adjacent vegetation (Calder, 1957, 1961; Burrows, 

1977d; Soons, 1977). 

On the slopes are deep colluvial deposits that originate from a variety of 

processes, beginning with shattering of the bedrock by freeze-thaw cycles. Deposition 

of the shattered material occurs after falling, sliding, slow mass movement (sometimes 

water mobilized) or rapid mass movement in the form of landslides and debris flows. 

Some of these deposits are stable, capped by soils and vegetation; otherwise there are 

large amounts of active scree. Some screes date from a period of deforestation 500 -

800 years BP but other screes are ancient. Due to the nature of the rocks in the study 

area and existence of a specialised scree flora (Burrows, 1977b), screes must have 

always been a feature of these mountains (Soons, 1977). 'Freeze-thaw cycles and the 

formation of needle-ice in the soil at higher altitudes also facilitate the erosion and 

downslope transportation of material and hinder revegetation at higher altitudes or an 

exposed areas (Soons, 1977). Debris flows occur at times during heavy westerly rainfall. 

Soils in the study area are derived almost exclusively from Torlesse rocks. The 

fine components (silt-sized) are mainly loessic in origin or (sand) alluvial. There is 

almost always a prominent stony component and this shows little sign of weathering. 

The most common soil types are upland and high-country yellow-brown earths on 

hillslopes in eastern parts of the study area with podzolised yellow-brown earths and 

podzo1s towards the Main Divide. Recent soils formed from alluvium characterize the 

valleys floors and riverbeds (Vucetich, 1969; Cutler, 1977). 

Overall, the main mountainous portion of the study area is a highly dynamic 

landscape in which constant change and adjustment is a fact of life. 

2.3 Climate 

The climate of the study area is also characterised by changeability and variety. Due to 

their latitudinal location the Southern Alps are under the influence of westerlies in the 
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winter and high pressure zones in the summer. However in reality the climate takes the 

form of an almost regular procession of eastward-moving anti-cyclones with low 

pressure zones and often cold fronts between them (de Lisle, 1969; Greenland, 1977). 

Mountainous regions always display specific climatic characteristics. There is a 

large variation in temperature with altitude, wind speeds are usually higher than in 

adjacent lowland areas and high altitude areas usually receive higher solar radiation in 

the absence of cloud cover. The Southern Alps strongly affect the pattern of rainfall in 

the central South Island (de Lisle, 1969). Air movement is dominantly east-wards and 

air flowing over the mountains is cooled quickly leading to orographic precipitation on 

the western side of the Main Divide. Dry air travelling down the leeward eastern side 

is warmed to form the 'nor-westers' typical of the Canterbury Plains (de Lisle, 1969; 

Greenland, 1977). 

As a result the area is characterised by a steep rainfall gradient from high in 

the west to low in the east, which is much modified at the local scale by the effects of 

the eastern ranges. The average annual rainfall at Cass is approximately 1300 mm per 

year. Arthurs Pass, less than 20 km to the north-west, receives more than three times 

this rainfall in a year (Greenland, 1977; New Zealand Meteorological Service, 1982). 

Typically snow falls at low levels only on a few days each winter and seldom persists. 

However the mountain summits are coated with snow for several months in winter and 

periodically in autumn and spring. 

The study area is a windy environment with average annual windspeeds at Cass 

of approximately 5 m per second (Greenland, 1977). North-west winds are the most 

frequent and usually the strongest winds of the Canterbury mountains and upper 

Canterbury Plains (de Lisle, 1969). 

The study area is characterised by wet springs and dry summers and tends to 

have high summer temperatures and relatively mild winter temperatures (Fig. 2.2). This 

is because the air moving on to the country from the Tasman Sea to the west is 

relatively warm. The absolute maximum temperature recorded at Cass is 40 oC 

(although most summers the maxima are around 30 oc) and the minimum on record is 

-16 oC (Greenland, 1977). 

Monthly rainfall and mean monthly minimum and maximum temperatures over 

the period of this study are presented in Figs. 2.2 & 2.3. The data were recorded by 

the Department of Geography at the Chilton Valley climate station at Casso 

2.4 Vegetation 

Prior to human settlement in New Zealand the majority of the study area below 

timber-line would have been forested (Molloy et al., 1963; Molloy 1969; Molloy, 1977). 

The present-day vegetation of the study area reflects changes wrought by 1000 years of 

human disturbance superimposed on pre-existing vegetation patterns. Scrub, dominated 

by Leptospermum scoparium and Discaria toumatou, tussock grassland, dominated by 
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Figure 2.3: Monthly rainfall at Chilton Valley, Cass Experimental Area (data from Department of 

Geography, University of Canterbury). 
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Chionochloa species above timberline and Festuca novae-zelandiae at lower altitudes, 

and beech forest dominated by Notho/agus species are the main vegetation types within 

the study area. 

Western portions of the study area, within Arthurs Pass National Park, are still 

relatively unmodified. East of the Main Divide, the forest is dominated by Notho/agus 

species and above timberline species of Chionochloa form extensive alpine meadows. In 

this part of the study area F. novae-zelandiae and other associated species of short­

tussock grassland are restricted to recent or droughty river terraces and valley floor 

frost flats and also occur as colonists on the edges of slips and screes (Burrows, 1977a, 

1986). Some other parts of the study area such as the upper Cass Valley are also 

relatively unmodified (sites CVS, CSS and CSA). 

The Plains and the large intermontane basins within the study area have had a 

long history of land-clearance and grazing (Burrows, 1960; Johnson, 1969; McLeod & 

Burrows, 1977). Indigenous vegetation has been virtually eliminated from highly 

modified areas such as the Canterbury Plains and all that remain are remnants of 

vegetation in reserves and scattered individual plants along roadsides (Molloy, 1970; 

Molloy, 1971; Molloy & Ives, 1972). 

In modified inland areas such as the Cass basin, induced grassland composed of 

both indigenous and adventive species is the dominant vegetation cover from the valley 

floor to 1200 m. F. novae-zelandiae is a characteristic plant of this grassland. Other 

common indigenous species include Coprosma petl'iei, Cyathodes /I'asel'i, Elymus 

rectisetus, Poa colensoi and Raoulia subsericia. At lower altitudes adventive species such 

as Agrostis capillaris, Anthoxanthum odol'atum, Festuca rubra and Hypochoeris radicata 

are common and in places a dense turf of adventive grasses dominates the inter-tussock 

spaces. The grassland around Cass is used for sheep grazing and hares are common in 

the area (Burrows, 1977c). 
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CHAPTER 3: REGENERATION BY SEED 

3.1 Introduction 

Reproduction is an essential component of plant fitness. However reproductive success 

is not determined by parental effort but rather by the number of progeny that survive 

to reproductive maturity. An assessment of a species' reproductive biology should 

therefore ideally include aspects of the establishment and survival of progeny. 

The reproductive biology of a species is defined here as including all aspects of 

regeneration by seed from flower production through to seedling establishment and 

survival. This corresponds to the 'regeneration niche' of Grubb (1977). 

Various types of reproductive strategies have been identified and described in 

the past, for example as part of 'r' - versus 'K' -strategies (MacArthur, 1962) or the 

stress-tolerator / competitor / ruderal triad of Grime (1979). However in all cases the 

reproductive biology of a species represents a compromise between the benefits and 

costs of all aspects of its life-history (Harper, 1977). Life-span, mortality with relation 

to age, environmental heterogeneity and availability of safe seedling sites, resource 

availability and patterns of predation are all factors affecting individual reproductive 

success and the reproductive biology of the species. 

A large proportion of perennial plants possess several different forms of 

reproduction. Regeneration via both sexual and vegetative propagules (Grime, 1979; 

Harper, 1977) is common among perennial grasses. The two methods can play 

complementary roles; an individual can replicate vegetatively to take advantage of local 

conditions and reproduce sexually to ensure that at least some progeny survive in 

fluctuating conditions or new habitats (Tripathi & Harper, 1973; Sarukhan & Harper, 

1974). 

Species which replicate vegetatively are also potentially immortal and in a 

relatively constant habitat have little need to regenerate from seed, especially as 

somatic mutation can introduce additional genetic variation into a long-lived clone 

(Gill, 1986). However in the face of disturbance or environmental change, sexual 

reproduction can be more important to long-term population survival than vegetative 

proliferation because it provides novel genetic combinations (Williams, 1975). 

Sections in this chapter provide detailed information on the reproductive output 

of F. novae-zelandiae and variation in effort and output between years and between 

populations in different sites. The pre-dispersal fate of seeds and seed rain and 

dispersal distances were investigated and quantitative estimates of seedling abundance 

and survival were obtained. The reproductive biology of F. novae-zelandiae will be 

compared with published information on other common perennial grasses and sedges. 
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3.2 Reproductive output and pre-dispersal seed fate 

3.2.1 Introduction 

Detailed studies involving F. novae-zelandiae, such as Malcolm (1925), Sewell (1947, 

1952), Moore (1977) and Espie (1987) have contributed to the understanding of 

reproduction this species. However, no detailed quantitative study has been made of 

the reproductive output of individuals over time and in different environments. 

Neither has seed production been investigated in the same detail as for the dominant 

grasses of tall-tussock grassland, Chionochloa species (e.g. Mark, 1965b; White, 1979; 

Kelly et al., 1992). The aim of this section is to provide detailed quantitative data on 

(a) variation in the reproductive output of F. novae-zelandiae individuals at one site 

between years, (b) variation in reproduction between sites and (c) variation in pre­

dispersal fate of seeds between sites. 

3.2.1 Methods 

a) Reproductive output at Sugarloaf Fan over four years. 

F. novae-zelandiae culms first emerge between October and December. Flowering 

occurs ftom November to January and fruiting in February and March (Scott, 1960; 

Connor, 1963). Previous years culms persist on the plant for at least a year and are 

easily distinguished from even older culms by the degree of blackening and damage 

that has occurred. 

In October 1989, fourteen 1 x 1 m plots were randomly located along a 20 m 

transect in short-tussock grassland at Sugarloaf Fan (Plate 1) (see Fig 2.1 in Chapter 2 

for location of all study sites mentioned). 

All 155 F. novae-zelandiae tussocks within these plots were permanently tagged 

and examined to ascertain the proportion of individuals in the population that had 

flowered in the 1988/89 season and the relative contribution of individuals to the total 

output of culms. This was based on the presence of the previous years culms on the 

plants (later observations of nearby plants indicated that few culms were lost during 

the course of the first winter and could usually still be identified from the broken 

stalks). The same plants were re-examined in March 1990, March 1991 and January 

1992 to assess reproductive consistency over four years. 

b) Reproductive output in 1989/90 at eight sites 

In March 1990, 20 x 0.5 m transects were randomly located at each of eight sites: 

Bankside (BNK), Cass River (CRY), Cass Saddle A (CSA), Cass Saddle B (CSS), Cass 
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Valley (CVS), Hallelujah Flat (HLF), Mount Sugarloaf (MTS) and Sugarloaf Fan (SLF). 

Site details are tabulated in Table 2.1 and locations shown in Figure 2.1 of Chapter 2. 

At each site the first twenty reproductive plants encountered along the transect 

were selected, with the exception of Cass River, Mt. Sugarloaf and Sugarloaf Fan. At 

Cass River and Mt. Sugarloaf there were low numbers of reproductive plants generally 

and less than twenty reproductive plants (19 and 18 respectively) occurred within the 

transect. At Sugarloaf Fan, 29 reproductive individuals from nine randomly selected 

plots previously established to record reproductive consistency were used. This gave a 

total of 166 individuals over eight sites. 

For each individual, four parameters were measured in the field: 

1) maximum extended green leaf length excluding culm leaves, 

2) mean basal diameter measured at 1 cm above ground level using a diameter tape, 

3) percentage of basal area occupied by dead material estimated by eye within 5% 

classes, (hereafter referred to as % dead material) 

4) number of current season's culms. 

All culms were then collected for each individual and three parameters recorded 

for each culm and averaged for each individual: 

1) culm height from first internode, 

2) number of spikelets in each panicle, 

3) number of florets in intact spikelets. Only full-sized florets were counted as the 

terminal floret usually had only a rudimentary palea. 

Culms were collected by being plucked from the tussock, leaving the culm 

leaves behind. It was not discovered until January 1992 that culms plucked in this 

manner invariably broke cleanly at the first culm node. As a result measurements of 

stalk length do not represent total length as the lowermost internode was lost. However 

in F. novae-zelandiae, the lowermost internode tends to be short (2.3 cm on average, 

see section 5.3) so the difference between measured stalk length and actual stalk length 

would not be large. 

c) Pre-dispersal fate of seeds 

A grass 'seed' consists of the grain enclosed by two chaffy glumes - the palea and 

lemma - and is technically a caryopsis. However the term 'seed' will be used here for 

simplicity. Of the original sample of 166 individuals, 112 had produced at least 20 

seeds. Randomly selected seeds from these individuals were opened and examined 

under a stereo microscope to assess the condition of the seed (Plate 2). All seeds 

produced by each individual were examined up to a maximum of 100 seeds. 

Scoring categories were: 

1) "healthy", meaning that the seed was full-sized, hard and pale orange to gold in 

colour, 
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2) "shrivelled", which included only partially developed but shrivelled seeds with no 

signs of predation, as well as full-length seeds which were brown-orange and wizened, 

3) "undeveloped" where the ovary had not developed in size and the stigma and often 

indehiscent anthers were still present, 

4) "fungus infected" where the seed was infected with either an ergot-type fungus or a 

mildew-type fungus, 

5) and "predated" - eaten by invertebrates. 

This last category was subdivided on the basis of the type of predator present within 

the seed. If no predator was present but the seed contained frass or a damaged ovary or 

seed, seeds were classified as either internally or externally predated depending on 

whether the palea and lemma were damaged or intact. 

Analysis 

a) Reproduction over four years at Sugarloaf Fan 

All raw data were tested for normality used the Wilk-Shapiro rankit procedure of 

Statistix 3.5. If the rankit value was less than 0.95, simple transformations were 

performed and the transformation giving the highest rankit value above 0.95 was used 

for analysis. Variables which did not approach normality even after transformation 

were analysed using non-parametric methods. 

One-way analysis of variance was performed on the number of culms per 

reproductive individual and per square metre at Sugarloaf Fan to test for significant 

differences between years. 

Individual tussocks were grouped into flowering frequency classes dependent on the 

number of years they had flowered over the four years of the study. One-way analysis 

of variance was used to test for relationships between flowering frequency, mean 

annual culm production and morphological factors. 

Linear regression was used to test for a relationship between reproductive output in 

a given year, previous reproductive effort and morphological factors. 

b) Reproductive output and pre-dispersal seed fate in 1989/90 at eight sites 

The data on reproductive output and pre-dispersal seed fate were analysed for 

between-population differences using one-way analysis of variance. Prior to analysis, 

measures of basal diameter and counts of numbers of culms were log-transformed to 

normalise the data. For the remaining variables the raw data approximated a normal 

distribution. A least significant difference pairwise comparison of means was 

performed for each variable. 

The percentage values for pre-dispersal seed fates showed non-normal distributions. 
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Various transformations were tested but none sufficiently normalised the data. All 

variables associated with seed fate were therefore analysed using Kruskal-Wallis non­

parametric tests. 

Explanatory models were developed from morphological parameters and site factors 

for both total seed predation and culm production using linear regression. 
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3.2.2 Results: 

a) Reproduction over four years at Sugarloaf Fan 

Within the Sugarloaf Fan population the percentage of individual tussocks that 

flowered in a given year varied from 29% in the 1989/90 season to 50% in the 1991/92 

season. In addition culm production varied between years from a minimum of 17.1 m-2 

in the 1989/90 season to a maximum of 51.3 m-2 in the 1990/91 season. However the 

differences between years in the latter were not significant due to the large variance 

between individuals in any given year (Table 3.1). 

There was a significant difference between years in culms produced per tussock. A 

test of least significance difference showed that culm production in 1990/91 was 

significantly higher than in the previous two seasons but not significantly different to 

culm production in the 1991/92 season (Table 3.1). Culm production was lowest in the 

1989/90 season with not only the lowest mean number of culms per tussock but the 

lowest maximum and fewer individuals producing more than one culm (Fig. 3.1). 

Bartlett's test for equality of variance showed that variability in culm production 

among individuals also differed significantly among years (X2 = 107.46, df = 3, P < 

0.001). 

Over a third (36%) of individuals surveyed in all four years failed to flower in any 

year. Only 17% of individuals flowered in all four years (Table 3.2). One-way analysis 

of variance showed that individuals that flowered more frequently also produced more 

culms on average per year and were significantly taller and wider (Table 3.2). However 

there was no such relationship between flowering frequency and estimated percent 

dead volume. 

Regression models for culm production indicated that culm production in any year 

was usually positively related to production in previous years (Table 3.3). Tussock 

height (maximum extended leaf length) did not contribute significantly to any of the 

models. However percent dead volume was negatively related and basal diameter 

positively related to culm production in 1990/91. In the model for culms produced in 

1991/92 there was a negative relationship between reproductive effort in 1989/1990 

and 1991/1992. 

b) Reproductive output in 1989/90 at eight sites 

Mean values for all morphological parameters measured and one-way Analysis of 

Variance F and P values are given in Table 3.4. Despite a large amount of overlap in 

the groups defined by pairwise comparison of means, the differences between sites 

were significant for all parameters except diameter. The greatest range was shown by 

number of culms (2.6-fold) and the least by culm height (1.46-fold). 
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Table 3.1: Flowering intensity among 155 F. novae-zelandiae tussocks at Sugarloaf 

Fan over four years. Results from analysis of variance are also given. Different 

superscripts indicate a significant difference between means according to LSD tests. 

Season 1988/89 1989/90 1990/91 1991/92 F p< 

% reproductive 37.4 29.0 42.6 50.3 

mean culms m- 2 30.1 17.1 51.3 45.8 2.35 NS 

mean culms tussock-l 2.72 ab 1.54 a 4.64 e 4.13 be 5.53 0.01 
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Figure 3.1: Culm production over four years at Sugarloaf Fan. Reproductive 

individuals were ranked by number of culms for each of the four years. 
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Table 3.2: Flowering frequency (years flowering out of four) among 155 F. novae-zelandiae 

tussocks at Sugarloaf Fan over four years. Results from analysis of variance are also given. 

Different superscripts indicate a significant difference between means according to LSD tests. 

Flowering frequency 0/4 1/4 2/4 3/4 4/4 F p< 

% individuals 36.1 17.4 14.8 14.2 17.4 

mean culms yr-l ()a 0.35a 1.9()a 7.13b 10.73c 34.97 0.001 

mean height 31.9a 36.5b 41.2c 46.4d 50.7e 38.99 0.001 

mean diameter 1.443 2.51a 4.71b 7.85c 10.6d 56.77 0.001 

mean % dead 27 28 36 32 30 1.29 NS 

Table 3.3: Regression coefficients for models explaining culm production in 149 F. novae-

zelandiae tussocks at Sugarloaf Fan in each of four years. Models were constructed stepwise using 

morphological variables and previous years reproduction. E indicates that the variable was not 

included in the model. '-' indicates not applicable. 

Previous culm I!roduction 

Season Constant Diam. % Dead 88/89 89/90 90/91 R2 p< 

88/89 -1.63 0.94 E 0.44 0.001 

p< 0.001 

89/90 0.41 E E 0.41 0.40 0.001 

p< 0.001 

90/91 1.90 0.92 -0.11 0.32 0.44 0.65 0.001 

p< 0.001 0.001 0.01 0.01 

91/92 0.51 E E E -0.42 0.93 0.62 0.01 

p< 0.01 0.001 
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Individual variation in height (maximum extended leaf length, in cm), log diameter 

(cm) and %. dead material (% of basal area) jointly explained 41 % of the variation in 

log number of culms (log culms = -0.26 + 0.01 [height] + 0.80 [log diameter] - 0.01 [% 

dead material], N = 165, R2 = 0.41, P < 0.001). 

The variation between sites in percent reproductive individuals was not significantly 

explained by variation in site attributes of altitude, aspect, tussock density, and mean, 

minimum and maximum temperature (the latter estimated using the regression 

equations of Norton (1985». Neither did these factors significantly account for 

variation among sites in mean culms per individual. 

c) Pre-dispersal seed fate in 1989/90 at eight sites. 

Mean values for the broad classes of seed fate are given in Table 3.5a. Analysis of 

variance showed the sites to be significantly different for all variables. 

The proportion of florets containing healthy seeds varied from 5% at Bankside to 

49% on Mt. Sugarloaf. The most common fate of florets varied between populations. At 

Bankside, predation was by far the most common category, affecting 79% of the total 

number of florets examined. It was also the most common category at Hallelujah Flat, 

affecting 45% of florets. Healthy seeds were the most common category at Cass River, 

Cass Valley and Mt. Sugarloaf. Undeveloped seeds were most common in the Cass 

Saddle 'B' and Sugarloaf Fan populations and shrivelled seeds at Cass Saddle' A'. 

However in most populations no one category dominated. 

In a number of predated florets, the predator was still present and in most cases was 

an unidentified orange fly larva (Diptera, Chloropidae) 1 to 1.5 mm long. The only 

other larvae encountered were two greenish-white Lepidoptera larvae; these were 

included in the 'larva' category with the Chloropidae larvae. Unidentified black pupae 

or clear pupal cases approximately 1.5 mm long were also encountered. Mature adults 

of a black flightless fly, 1.5 to 2 mm long and identified (by P. M. Johns) as Diplotoxa 

moorei (Diptera, Chloropidae), were occasionally found and two were discovered within 

pupae very similar to those described above. Orange larvae, pupae and flies were 

seldom found together and even then usually only one would be abundant (Table 3.5b; 

CR V was an exception). 

The only other seed predator commonly found inside florets was a shiny black 

juvenile Hemipterid less than 1 mm long. Small green grasshoppers were frequently 

observed on panicles in the field and may be responsible for at least a portion of the 

externally predated seeds found. 

Kruskal- Wallis tests were performed on the components of total predation and it 

was found that the sites were significantly different in the percentage of seeds 

containing Diplotoxamoorei, larvae and pupa and in percent predation by unspecified 

external and internal predators. 
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Table 3.4: Means for measurements of F. novae-zelandiae tussocks in 1989/1990 

season. Results from one-way ANOYA tests are given. Different superscripts 

indicate a significant difference between means using LSD tests. Diameter and no. 

culms were log-transformed before analysis but means are for untransformed data. 

N = number of plants/culms sampled. Total = 166 plants, 1264 culms. 

Pop N Height Diam. %Dead No. Culm Spikelets Florets 
(em) (em) mat. Culms Hgt (em) eulm- 1 spklt- 1 

BNK 20/196 47.2e 6.72 17a 9.80e 29.9a 12.8e 4A9d 

CRY 19/199 41.3d lOA 32be 10.5abe 38.5ed 12.1 e 3.10a 

CSA 20/83 30.6a 8.80 30be 4.15a 31.3ab 8.61a 3.81be 

CSS 20/219 33.3ab 8.82 25ab 10.9be 43.8e 12.4e 3.75be 

CYS 20/118 39.8ed 9.22 36e 5.90abe 38.8ed 11.6be 3.93e 

HLF 20/169 32Aab 5.80 35e 8.45abe 35.2be 11.5be 3A2ab 

MTS 18/87 35.4be 7.13 21a 4.83a 36.1 be 9.67ab 3.61abe 

SLF 29/193 46.3e 8.09 31b 6.65ab 41.5de 14.6d 4.59 d 

Ratio max/min 1.51 1.79 2.14 2.62 1.46 1.70 1.48 

AnovaF 17.2 0.74 4.31 2.23 8.87 7.98 12.5 

p< 0.001 NS 0.001 0.05 0.001 0.001 0.001 
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Table 3.5: Population means for percent frequency of (a) broad classes of seed fate and (b) 

components of total predation of F. novae-zelandiae seeds. Values are means of results from 

individual plants which summed to 100%. Statistics of Kruskal-Wallis tests between populations 

are given. N = number of florets sampled. 

(a) 

Pop N Healthy Shrivelled Undeveloped Infected Predated 

BNK 1086 5.49 7.31 7.56 0.89 78.8 

CRY 287 33.8 16.7 30.5 1.54 17.5 

CSA 853 16.2 28.3 30.1 5.85 19.9 

CSS 1608 26.2 20.2 42.7 3.67 7.42 

CVS 1416 40.4 31.4 15.5 0.43 11.1 

HLF 956 9.82 20.9 21.0 2.91 45.4 

MTS 523 49.1 12.7 30.5 1.87 7.75 

SLF 1475 17.5 12.3 43.6 1.02 26.5 

Total 8204 

K-W H 62.3 41.0 72.6 22.0 86.1 

p< 0.001 0.001 0.001 0.01 0.001 

(b) 

POP N D. moorei Larva Pupa Hemipterid Internal External 
adults Predation Predation 

BNK 1086 0 0.08 0 0.34 28.6 49.8 

CRY 287 4.48 3.83 0 0 9.19 0 

CSA 853 0 0.08 0 0 9.54 10.3 

CSS 1608 0 3.78 0 0.38 2.48 0.78 

CVS 1416 0 0.44 0 0.33 6.74 3.63 

HLF 956 0 0.49 4.06 0 40.7 0.14 

MTS 523 0.10 1.59 0.16 0 2.33 3.57 

SLF 1475 0 6.81 0.15 0.15 5.18 14.2 

Total 8204 

K-W H 71.5 50.6 85.8 11.4 80.8 78.6 

p< 0.001 0.001 0.001 NS 0.001 0.001 
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However there was no significant difference between sites for the percentage of seeds 

containing the Hemipterid seed predator (Table 3.5b). 

Variation among individuals for log total percent seeds predated was best eXplained 

by variation in individual height (cm), log basal area (cm2) and mean culm length (cm) 

(log predation = 1.91 + 0.02 [height] - 0.17 [log basal area] - 0.03 [mean culm height], 

N = 84, R2 = 0.49, P < 0.001). 

Variation among sites in log mean total percent seeds predated was best explained 

by variation in altitude (m) and tussock density (tussocks m-2) (mean log predation = 

1.43 - 0.001 [altitude] + 0.025 [density], N = 8, R2 = 0.72, P < 0.05). 
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3.2.3 Discussion 

(a) Reproductive consistency over four years at Sugarloaf Fan 

Moore (1976) noted that mature plants of F. novae-zelandiae reproduced in most years on 

Molesworth Station in Marlborough, North Canterbury and it would appear that there are 

reproductive plants within the Sugarloaf Fan population every year. However regular reproducers are 

a minority within the population and most plants appear to reproduce either only occasionally or not 

at all. 

The total reproductive output of the Sugarloaf Fan population varied significantly from year to 

year, not only in the proportion of individuals flowering, but also in the number of culms they 

produced and the evenness of contribution to total reproductive output. The same few very fecund 

individuals dominated the reproductive output of the population every year. The positive correlation 

between years in the reproductive effort of individuals distinguishes F. novae-zelandiae from roasting 

species such as Chionochloa pallens and C. rigida in which there is a negative relationship between 

years in reproductive effort (Mark, 1965b). 

Variation between years was also generally low in F. novae-zelandiae compared to other 

species. The ratio of maximum to minimum values for mean culms per tussock in F. lIovae-zelandiae 

from 1988 - 1991 was 3.01 whereas the ratio over the same four years for Chionochloa pallens in mid­

Canterbury was 16.2 (Kelly et aZ., 1992). 

The standard deviation of log ([culms tussock-I] + 1) inFo novae-zeZandiae over the four years 

of the present study was 0.13, which is low compared with other long-lived monocotyledons. The 

same statistic calculated for Phonnium species, ranged from 0.38 to 0.71 depending on site and 

species (Brockie, 1986) and was 0.49 for Chionochloa pallens in mid-Canterbury over the same four 

years as the present study (Kelly et al., 1992). 

Although reproductive output in F. novae-zelandiae is relatively constant, there is still 

significant variation among years. The availability of resources exerts a powerful influence on 

flowering (Harper, 1977). Factors such as variation in the availability of soil nutrients or temperature 

during the previous growing season may be involved in the observed variation in flowering intensity in 

F. novae-zelandiae. Fertiliser has been shown to increase flowering in F. novae-zeZandiae (O'Connor, 

1977). Temperature has been linked to variation between years in flowering of Chiollochloa species 

(O'Connor & Powell, 1963; Mark, 1965b; Rowley, 1970; Payton & Mark, 1979). The relative 

constancy in reproductive output between years in F. novae-zelandiae may simply reflect the lack of 

marked climatic differences over the period this study was conducted (Figs. 2.2 & 2.3, Chapter 2). 
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(b) Variation in reproductive output between sites 

The lack of relationship between both the proportion of a population reproducing and 

mean culm production, and tussock density, indicates that the eight populations studied 

did not occur at sufficiently high densities for negative density-dependent effects to 

come into operation. Alternatively site factors could be of sufficient importance so as 

to override or mask density effects (Fowler, 1988). A negative density effect on 

fecundity is a well-established phenomenon among populations of annuals and short­

lived perennials and has been shown to contribute to the regulation of population size 

in both natural and experimentally manipulated populations (Harper, 1977; Watkinson 

& Harper, 1978; Symonides, 1979; Silvertown, 1982). However if populations of F. 

novae-zelandiae were sufficiently sparse to avoid competition between individual 

tussocks, culm production would relate simply to individual attributes. 

Variation in culm production among the 165 individuals studied was significantly 

related to the size and vigour of the individuals; bigger, healthier plants produced more 

culms. However not all large, apparently healthy, plants at the sites studied were 

reproductive. This may be a result of single season, small-scale environmental variation 

in other aspects such as soil type and nutrient status affecting the reproductive output 

of individuals. 

Differences between sites in percent reproductive individuals would also be due to 

differences in the size and vigour of the tussock populations. However the lack of a 

relationship between the fecundity of populations and environmental factors indicates 

that variation among sites in the size. vigour and reproductive output of individuals, is 

not so much related to large-scale environmental factors such as altitude and average 

temperatures, as perhaps to short-term, small-scale variation in climatic conditions and 

resource availability among sites. 

(c) Pre-dispersal seed fate 

Seed set in F. novae-zelandiae was highly variable between populations but overall was 

still relatively low. Even in the "best" sites less than half of all florets produced healthy 

seed. These values are similar to those obtained for various Chionochloa species (Kelly 

et ai, 1992) but higher than values for seed set in Chionochloa rigida (Mark, 1965b). 

Reasons for low seed set that are a result of the reproductive biology of the species 

include pollination failure, the action of deleterious alleles within the embryo and 

resource limitation on the part of the maternal parent (Lloyd, 1980b; Ayre & Whelan, 

1989). Alternatively some individuals within the population may be achieving greater 

fitness through acting as pollen donors rather than by producing seed (Lloyd, 1979). 

Other factors extrinsic to the plant can also result in low seed set. These include 

predation by animals and infection by fungi and other micro-organisms. The 
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importance of these and other factors in accounting for ovaries produced varied 

between the populations of F. novae-zelandiae studied. In some cases, for example Cass 

Saddle 'B' and Sugarloaf Fan, factors to do with the reproductive biology of the species 

were most important in reducing the production of seeds. A large proportion of the 

florets from both populations failed to develop seeds, possibly due to pollination failure 

or even an untimely frost. In other cases (e.g. Bankside and Hallelujah Flat) external 

factors such as predation accounted for most of the reduction in seed set. 

This does not necessarily mean that pollination failure or resource limitation are not 

important factors at Bankside and Hallelujah Flat. These two sites represented the 

highest density stands of tussocks studied and while Bankside is the lowest altitude site 

at 65 m above sea-level (Table 2.1, Chapter 2), Hallelujah Flat, at 770 m, is close to 

the average altitude of the eight sites. These two sites probably suffered more seed 

predation because with higher tussock densities they could support larger populations 

of seed predators. The harsher environment of higher altitude sites with lower tussock 

densities may limit the abundance of seed predators so that other factors appear more 

important in reducing seed set. 

Predation can often account for a large proportion of the seed crop in a range of 

species (Collins & Uno, 1985). Predation by invertebrates may be any important factor 

in the low seed set observed in some species of Chionochloa (White, 1975; Kelly et al., 

1992). However in long-lived perennials high losses to seed predators does not 

necessarily have an important impact on recruitment (Andersen, 1989). This is because 

recruitment is more limited by the number of 'safe' seedling sites (sensu Grubb, 1977) 

and is also buffered by the presence of a seed bank in some species. 

Diplotoxa moorei appears to be an important predator of F. novae-zelandiae seeds 

and this study represents the first record of a food-plant for Diplotoxa moorei (P. M. 

Johns, pers. com.). While the identity of the orange larvae was not experimentally 

proved, the phenological separation of larvae, pupae and adult flies as well as the 

similarities in size strongly suggest that these all represent the same species. Another 

species in the genus, D. simi/is. has been found to be an important seed predator of 

Chionochloa species (White, 1975; Kelly et al., 1992). 
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3.3 SEED DISPERSAL 

3.3.1 Methods 

In order to estimate seed rain density and distribution, 10 metal trays, each measuring 30 x 60 cm and 

greased with standard mechanical grease were placed using random number tables in dense tussock 

grassland on Sugarloaf Fan. These were left in position for four weeks during the peak of seed fall in 

February 1990 then retrieved and the number of F. novae-zelandiae seeds 10 cm-2 area of each tray 

recorded. 

At the same time two greased trays were placed on either side of each of five tussocks along 

the axis of the prevailing wind in order to investigate seed rain in the immediate vicinity of fruiting 

tussocks. The trays were positioned so that the longest axis of each tray was parallel to the prevailing 

wind direction; together the trays covered an area of 30 x 120 cm each side of each plant. The plants 

were selected on the basis of having at least 10 flowering shoots and being relatively isolated from 

other reproductive tussocks. All culms were removed from any other tussocks within 5 metres of the 

five study plants. The trays were retrieved after four weeks and seed densities on the trays ascertained 

at 10 cm intervals upwind and downwind from the target tussocks. 

To investigate maximum distances a seed could travel, a line of eight greased trays, 4.8 m long 

in total, was set up in the direction of the prevailing wind. Loose seeds were released from a height of 

70 cm (representing approximate maximum culm height of tussocks at Sugarloaf Fan) at the upwind 

end of the trays on a windy day. The distance to the farthest seed was measured. Observations were 

also made of aerially borne plant material during periods of very strong winds. 

A small study was also conducted to ascertain if F. novae-zelandiae possessed a soil seed bank. 

In January 1990, six 50 cm3 soil samples were taken from the area where the trays used to assess seed 

rain were later laid out. A point in the inter-tussock vegetation was selected at random and the 

surface vegetation removed. The sample was taken from the top 10cm of the profile. The cores were 

spread out on trays in a glasshouse and kept moist. All seedlings were removed and identified as they 

emerged. The timing of sampling meant that any F. novae-zelandiae seeds found would have to be at 

least one year old. 
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3.3.2 Results 

Spikelets of F. novae-zelandiae shatter easily when ripe, so seeds fall over a relatively 

short period of time. Only very rarely were intact spikelets found on plants in autumn 

and winter and usually these florets had failed to set seed. Occasional plants were 

found with filled seeds still present out of season and these plants were always growing 

in very sheltered micro-habitats, indicating the role of wind in shattering spikelets. 

Seed densities on the 10 randomly located trays in short-tussock grassland varied 

from 0 to 17 10 cm-2 with a mean of 2.17 ± 0.47. This equates to 217 ± 47.5 seeds m-2 

however the highly patchy distribution means that seeds would also occur locally at 

much higher densities than this. The frequency distribution of seeds 10 cm-2 showed a 

significant departure from random when tested against a Poisson distribution based on 

mean seed density 10 cm-2 (X2 = 48.62, P < 0.001) (Fig. 3.2) indicating that seed rain 

was spatially patchy. 

The distribution and total number of seeds shed by the five individually-studied 

tussocks varied greatly (Fig. 3.3) and was related to tussock size and number of culms 

(Table 3.6). However seed densities were consistently greater on the downwind side of 

all tussocks regardless of size. Seed rain upwind from these individuals varied from 

27.8 ± 23.6 to 603 ± 269 seeds m-2 and downwind from 386 ± 266 to 4114 ± 914 seeds 

m-2 (Table 3.6). 

Apart from plant 3, maximum seed rain occurred immediately adjacent to the 

parent plant. However, especially for the larger tussocks, a significant proportion of 

seeds appeared to be dispersing further than 120 em from the parent plant. 

The maximum distance seeds traveled was 3.69 metres. Mean distance travelled was 

not ascertained. The daily average wind speed in Chilton Valley, near Sugarloaf Fan, 

on the day maximum dispersal distances were investigated was 4.1 m sec- 1 (data from 

Department of Geography, University of Canterbury). During strong north-west winds 

at speeds of up to 8 m sec- 1 (pers. obs.), grass leaves and panicles were observed to 

travel more than one hundred metres at a height of 10 - 15 metres above the ground. 

One F. novae-zelandiae seedling germinated out of the six soil samples taken to 

investigate the seed bank. This equates to 3330 seeds per cubic metre of soil or 

assuming that seeds are within the top 2 em of the soil profile, 66 F. novae-zelandiae 

seeds m-2. 
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Table 3.6: Upwind and downwind seed rain within 120 cm of source and individual 

characteristics of five F. novae-zelandiae tussocks at Sugarloaf Fan over a four week 

period during maximum seed fall. 

Plant 1 2 3 4 5 

Max leaf length (cm) 71 60 67 60 54 

Max culm height (cm) 88 75 85 79 61 

diameter (cm) 32 11.5 7 13 5 

no. of culms 90 62 100 25 10 

total seeds upwind 176 96 217 13 10 

total seeds downwind 1481 160 1169 279 139 

seeds m-2 upwind 489 ± 264 267 ± 172 603 ± 269 36.1 ± 21.1 27.8 ± 23.6 

seeds m-2 downwind 4114 ± 914 444 ± 127 3247 ± 1117775 ± 201 386 ± 266 
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3.3.3 Discussion 

The dispersal phase in the life-cycle of plants is the phase of greatest mobility and 

strongly influences the distribution of plants. Dispersal can enable seedlings to escape 

competition with the maternal parent and if the parental habitat changes to become 

unsuitable for seedling establishment dispersal enables new generations to 'find' suitable 

habitats (Harper, 1977; Silvertown, 1979; Howe & Smallwood, 1982). In many cases 

however dispersal is not directed and closely reflects adult distribution (Howe & 

Smallwood, 1982). 

Like many grasses, F. novae-zelandiae has no special adaptations to facilitate seed 

dispersal. However the occurrence of F. l1ovae-zelandiae on previously forested sites 

several kilometres from the nearest 'natural' grassland indicates that the species has 

managed to disperse. As many of these sites have been forested for thousands of years, 

regeneration from a persistent seed bank is unlikely even though low numbers of seeds 

may survive from year to year in the soil. The colonisation of spatial isolated habitats 

such as young river terraces further indicates that dispersal over several kilometres does 

occur. 

In spite of having no specific mechanisms for wind-dispersal, seeds are regularly 

blown several metres in moderate winds and considerably further in very strong winds. 

Strong winds have most likely played a important role in the dispersal of F. novae­

zelandiae in a situation analogous to Notho/agus (Haase, 1989) where seeds have no 

special adaptations to dispersal but isolated young individuals and stands occur 

kilometres from the nearest seed source. The colonisation of areas made vacant by 

deforestation would therefore not necessarily have occurred centimetre by centimetre 

over consecutive generations but could have occurred relatively quickly. Dick (1956), 

describing a site near Cass deforested by fire 60 years previously, recorded that in 

some areas F. novae-zelandiae contributed 22% of total live vegetation cover and was 

the dominant species. 

Janzen (1984) suggested that large herbivores may be important in the dispersal of 

small-seeded grassland species. During this study it was not unusual to find plants on 

which all or some of the culms had been removed immediately below the panicle, 

presumably by hares or sheep. However I have seen no F. l1ovae-zelandaie seeds 

germinating from sheep or hare pellets. There is no way of knowing if any member of 

New Zealand's extinct avifauna played a role in the dispersal of grasses, however if 

ripe panicles are favoured by introduced mammals they might also have been browsed 

by native animals. Takahe (Notol'1lis mantelli) have been observed to eat seed heads of 

F. novae-zelandiae (C. J. Burrows, pel's. comm.) and seeds might also have lodged in 

the plumage of ground birds. However, grinding in the gizzard may have destroyed any 

seeds consumed by indigenous birds. Even if not, transportation in this manner would 

not have played nearly as important a role as periods of strong winds. 
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The estimate of 217 ± 46.5 F. novae-zelandiae seeds m-2 in the seed rain over four 

weeks is probably not far below total seed rain for this species, as the spikelets shatter 

easily once seeds are mature and dispersal would therefore occur over a relatively short 

space of time. This estimate of seed rain is comparable to annual values for other long­

lived perennial grasses in perennial grasslands. Rabinowitz & Rapp (1980) obtained 

values of 27 - 515 seeds m-2 for perennial grasses in tallgrass prairie. Spence (1990) 

obtained similar values for perennial species such as Chiollochloa macra (35 - 2716 

seeds m-2) C. pallens (317 - 423 seeds m- 2) and Poa colensoi (353 - 1658 seeds m-2). 

Peart (1989) observed higher seed rain values for perennial grasses, e.g. 5100 - 63000 

and 5800 - 82300 seeds m-2 for Anthoxanthum odoratum and Holcus lanatus 

respectively, but these were from a coastal annual grassland. 

F. novae-zelandiae seed rain is very patchy as a result of the patchy distribution of 

reproductive tussocks, the large variation in reproductive effort among individuals and 

the concentration of seeds near parent plants. Peart (I989) observed significant spatial 

heterogeneity in seed rain at all spatial scales examined from centimetres to kilometres. 

Likewise Spence (I990) observed significant clumping of dispersing seeds but found for 

most species that seed rain was less patchy than vegetation cover. This would probably 

be due to environmental heterogeneity acting to create additional patchiness at the 

seedling establishment and survival stages. 

Rabinowitz & Rapp (1980) found that the spatial heterogeneity of the seed rain was 

determined by the spatial distribution of dispersing infructescences. However even if 

adults were evenly distributed in space and contributed evenly to reproductive effort, 

seed rain could still be patchy due to the leptokurtic pattern of dispersal in relation to 

the maternal parent typical of all plants (Harper,. 1977; Silvertown, 1979). 

Limited dispersal can strongly influence subsequent seedling interactions 

(Rabinowitz & Rapp, 1980) and in the long-term can result in local genetic structuring 

within an apparently continuous population. Close neighbours are likely to be related 

and are also more likely to exchange pollen than distant neighbours (Levin, 1981, 

1988). However this effect is much less pronounced in long-lived wind-pollinated 

species and the virtual self-incompatibility of F. nOl'ae-zelandiae would further negate 

any deleterious effects of limited dispersal. 
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3.4 SEED GERMINATION 

3.4.1 Methods 

Healthy seeds from collections from individual tussocks made in 1990 to investigate 

reproductive effort among eight populations and pre-dispersal seed fate (Chapter 3.2) 

were pooled by population. Seeds produced in 1990 from a population of a "high 

altitude" form of F. novae-zelandiae (see section 5.1) at Porters Pass were also included 

in the experiment, giving a total of nine populations. 

Randomly selected seeds from each population were placed on Whatman No.1 filter 

paper in petri dishes and kept moist with distiled water. For all populations the 

germination experiments commenced within 10 days of seed collection. Treatments 

were three temperature/light combinations - 25 oC light/IS oC dark ("warm" 

treatment), 15 oC light/SoC dark ("cool" treatment) and 25 oC dark/IS oC dark ("dark" 

treatment) with twelve hour alternations. Petri dishes were enclosed in black polythene 

photographic bags for the "dark" treatment. Each dish contained fifty seeds with four 

replicates per population for each of "warm" and "cool" and two replicates per 

population for the "dark" treatment. 

Germination was defined as the emergence of either radicle or plumule. Where 

possible dishes were examined daily during the first flush of germination then every 

three to four days until the trial was terminated. Dishes in the "dark" treatment were 

examined every four to six days in order to minimise the risk of accidental exposure to 

light. Due to field work commitments, dishes in the final trial of 12 month old seeds 

were examined less frequently once initial germination had occurred. However, once 

germination had commenced no dish was left unexamined for more than nine days at 

any stage during the trials. 

At each examination, germinating seeds were counted and removed from each dish 

until all seeds had germinated or the remaining seeds were soft and black, a condition 

taken to indicate that the seeds were no longer germinable. Seeds in the "dark" 

treatment were examined under a safe light in a darkened room. 

Further seeds from the original collections were stored outside in a paper bag in a 

Stevensons screen and after six months seeds were randomly selected from each 

population and germination tested under all three treatments in the same manner as for 

fresh seeds. After twelve months storage, germination was again tested for each 

population under the "warm" treatment only. 

Throughout all trials a record was also kept of the frequency of chlorophyll­

deficient seedlings in each population. 
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Analysis 

Within-population comparisons of germination response curves under different 

treatments were made using Pro bit and parallel line analysis on MLP (Ross, 1980). Five 

between-treatment comparisons were made for each popUlation: 

(1) The three temperature/light combinations were compared for fresh seed ("fresh" in 

Table 3.9) 

(2) The three temperature/light combinations were also compared for 6 month old seed 

("6 month"); 

(3) Germination under the "warm" treatment was compared for fresh, 6 month old and 

12 month old seeds; 

(4) Germination under the "dark" treatment was compared for fresh and 6 month old 

seeds; 

(5) Germination under the "cool" treatment was compared for fresh and 6 month old 

seeds. 

Time taken to 50% germination (50% of initial number of seeds tested) and final 

percent germination were separately tested for significant differences between 

populations and treatments using two-way analysis of variance. In three cases, 50% 

germination was not reached so values were extrapolated from the probit line. 

The unbalanced design of the experiment did not permit separation of storage, 

temperature and light effects. Instead the various combinations were treated as 

categories of a single variable. Replicates were pooled to balance the design. Least 

significant difference pairwise comparisons of means were also performed. 

One-way analysis of variance was used to test for significant differences in the 

percent frequency of chlorophyll-deficient seedlings among different aged batches of 

seeds. 
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3.4.2 Results 

Seeds germinated readily in all treatments and for all populations. Germination was 

generally slower in the "dark" and "cool" treatments than in the "warm" treatment and 

in addition fewer seeds germinated in the "dark" treatment. The minimum time 

observed from wetting to the first germination of seed was six days and the maximum 

was 200 days. Longer delays before germination tended to be a feature of seeds in the 

"cool" and "dark" treatments rather than the "warm" treatment. 

After six months storage the seeds germinated more rapidly on average in both the 

"warm" and the "dark" treatments. There was no further enhancement of mean 

germination response after 12 months storage (Fig. 3.4). The mean final percent of 

seeds germinating also increased in the "dark" treatment after 6 months storage but 

dropped off in the "warm" treatment after 12 months storage (Fig. 3.5). 

The final percent of fresh seeds germinating was consistently lower for the "dark" 

treatment in all populations than for the other two treatments, with the exception of 

Porters Pass and Sugarloaf Fan collections (Figs. 3.13a & 3.l4a). In these two 

populations germination in the dark did not differ from germination at the same 

temperature with 12 hour days. 

Six month old seeds from Bankside and Cass River also showed a similarly lower 

final percent germination in the "dark" treatment compared with the other treatments 

(Figs. 3.6b & 3.7b). However for the remaining five populations the apparent slower 

response rate and lower germination of fresh seed in the dark was lost after six months 

storage (e.g., Fig. 3.9b). 

The frequency of chlorophyll-deficient seedlings increased across all populations 

with increasing age of the seeds. Among fresh seeds an average of 0.13% of seeds were 

chlorophyll-deficient. This increased to 0.68% after 6 months storage and to 2.05% 

after 12 months. One-way analysis of variance showed these differences to be 

significant. However, pair-wise LSD comparisons of means indicated that the 

difference lay between 12 month old seeds and seeds that were fresh or 6 months old. 

The frequency of chlorophyll-deficient seeds in the latter two batches was not 

significantly different (Table 3.7). 

No relationship was found between germination response under the "cool" treatment 

and the altitude of the seed source. There was also no relationship between estimated 

population size and percent viability as might be expected if inbreeding was affecting 

seed set and seed vigour. 

When pro bit-transformed, all within-population comparisons except Cass River 

"cool" and Mt Sugarloaf "dark" showed highly significant differences in both slope and 

intercept (Table 3.8). This indicates that both the rate and the timing of germination 

response differed among groups of treatments within populations. 

Two-way analysis of variance on mean number of days to 50% germination 
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Figure 3.6: Bankside germination response curves for (a) fresh seeds and (b) 6 month old and 12 

month old seeds. 



a 
100 

90 

80 
'#. 
w 70 
> 

~ 60 
:J 50 ~ 
:J 
0 40 
z « 30 w 
~ 

20 

10 

0 
1 8 43 50 57 64 71 78 99 

DAY 

--- warm -E3- dark -lIk- cool 

b 
100 

90 

80 
'#. 
w 70 > 

~ 60 
:J 50 ~ 
:J 
0 40 
z « 30 w 
~ 

20 

10 

0 
1 8 15 22 29 36 50 57 64 85 99 

DAY 

--- 6mths warm -E3- 6mths dark -lIk- 6mths cool --- 12mths warm 

Figure 3.7: Cass River germination response curves for (a) fresh seeds and (b) 6 

month old and 12 month old seeds. 

45 



46 

a 
100 

90 

80 
'#-
w 70 
> 

~ 60 
:J 50 ~ 
:J 
0 40 
z « 30 w 
~ 

20 

10 

0 
1 16 31 46 61 76 91 106 121 136 151 166 181 196 

DAY 

-- warm -Er- dark -"k- cool 

b 
100 

90 

80 
'#-
w 
> 

70 

~ 60 
:J 50 ~ 
:J 
0 40 
z « 30 w 
~ 

20 

10 

0 
1 31 46 61 76 91 106 121 136 151 166 181 196 

DAY 

__ 6mths warm -Er- 6mths dark -"k- 6mths cool -*-" 12mths warm 
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Figure 3.11: Hallelujah Flat germination response curves for (a) fresh seeds and (b) 

6 month old and 12 month old seeds. 
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Figure 3.12: Mt Sugarloaf germination response curves for (a) fresh seeds and (b) 6 

month old and 12 month old seeds. 
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Figure 3.13: Porters Pass germination response curves for (a) fresh seeds and (b) 6 

month old and 12 month old seeds. 
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Figure 3.14: Sugarloaf Fan germination response curves for (a) fresh seeds and (b) 6 

month old and 12 month old seeds. 



53 

Table 3.7: Percent frequency of chlorophyll-deficient seedlings of F. novae­

zelandiae in nine populations during germination trials. Result of a one-way analysis 

of variance test is given. Different superscripts indicate means differed significantly 

in an LSD test. 

Population Fresh seeds 

Bankside 0 

Cass River 0 

Cass Saddle 'A' 0:20 

Cass Saddle 'B' 0.20 

Cass Valley 0.40 

Hallelujah Flat 0 

Mt Sugarloaf 0 

Porters Pass 0:20 

Sugarloaf Fan 0:20 

ANOVA: 

Mean % frequency: O.13a 

6 months old 

1.50 

1.20 

0.40 

0.80 

0.60 

0.60 

0.40 

0.40 

0.20 

0.68a 

12 months old 

2.00 

3.00 

0.50 

1.50 

1.00 

1.50 

0.50 

2.50 

6.00 

2.05h 

F p< 

8.54 0.01 
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Table 3.8: Chi-squared values for tests on intercept and slope of probit lines fitted 

to germination response curves. Intercept represents response timing and slope the 

response rate. * indicates P < 0.05, ** P < 0.001, *** P < 0.001 and NS not 

significant. See text for explanation of comparisons. 

Comparison: fresh 6 month warm cool dark 

Bankside 

intercept 676.58*** 216.45*** 523.97*** 76.65*** 30.80*** 

slope 24.73*** 66.49*** 68.76*** 7.23** 77.07*** 

Cass River 

intercept 98.20*** 872.03*** 381.27*** 327.57*** 75.12*** 

slope 7.64* 207.11 *** 59.81*** 3.35ns 72.18*** 

Cass Saddle 'A' 

intercept 364.36*** 532.38*** 415.19*** 108.09*** 313.24*** 

slope 365.57*** 35.95*** 221.61 *** 9.56** 63.04*** 

Cass Saddle 'B' 

intercept 965.95*** 590.86*** 420.16*** 391.14*** 227.52*** 

slope 112.14*** 7.44* 67.62*** 14.269*** 24.55*** 

Cass Valley 

intercept 763.99*** 296.47*** 740.77*** 29.42*** 157.49*** 

slope 243.07*** 42.66*** 0.35ns 88.11*** 83.44*** 

Hallelujah Flat 

intercept 565.97*** 529.37*** 235.72*** 435.24*** 229.56*** 

slope 119.51 *** 10.09** 119.76*** 25.06*** 2.55ns 

Mt Sugarloaf 

intercept 456.04*** 210.99*** 336.73*** 211.06*** 344.01*** 

slope 23.52*** 58.00*** 28.21 *** 5.49* 0.14ns 

Porters Pass 

intercept 166.44*** 340.62*** 966.87*** 11.09*** 335.38*** 

slope 129.52*** 30.59*** 55.66*** 11.45*** 33.86*** 

Sugarloaf Fan 

intercept 279.19*** 719.63*** 774.61 *** 69.69*** 32.13*** 

slope 107.38*** 29.93*** 58.23*** 80.66*** 29.73*** 
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indicated significant differences between populations and between treatments across 

populations as well as a significant interaction between the two (Table 3.9). Differences 

in days to 50% germination due to treatment differences made the largest contribution 

to overall variation (38.6%). 

Pairwise comparison among population means for days to 50% germination resulted 

in four groups in which means did not differ significantly (Table 3.9a). The largest 

group contained six populations all with mean times to 50% germination of around 20 

days. Cass Saddle 'B' had the highest mean time to 50% germination at 56.1 days and 

was the only population that differed significantly from all others. 

Pairwise comparisons of mean time to 50% germination among treatments resulted in 

three groups in which means did not differ significantly from each other (Table 3.9b). 

The group of treatments with the fastest germination response consisted of "6 months 

old warm", "6 months old dark" and "12 months old warm". The "fresh dark" treatment 

was the only treatment to differ significantly from all others. 

Analysis of variance on final percent germination likewise indicated significant 

population and treatment effects and a significant interaction (Table 3.9). Differences 

due to population contributed 23.3% to overall variation with between treatment 

differences accounting for 17.8%. 

The Porters Pass population had the highest mean percent germination at 94.6% and 

Cass Saddle 'B' was the lowest at 66.7%. Pairwise comparison among population means 

indicated substantial differentiation with five out of the nine populations differing 

significantly from all others (Table 3.9a). 

Pairwise comparisons among treatment means resulted in four groups in which 

. means did not differ significantly (Table 3.9b). Final percent germination was lowest 

for the "fresh dark" treatment and highest in the group containing "fresh warm", "fresh 

cool", "6 months old warm" and "6 months old cool". 
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Table 3.9: (a) Population and (b) treatment means for days to 50% germination and 

final % germination for F. novae-zelandiae seeds. Treatment categories are 

combinations of storage and temperature/light treatments. Results of two-way 

analysis of variance tests are also given. Different superscipts indicate a significant 

difference between means using LSD tests. 

(a) 

Population 

Bankside 

Cass River 

Cass Saddle 'A' 

Cass Saddle 'B' 

Cass Valley 

Hallelujah Flat 

Mt Sugarloaf 

Porters Pass 

Sugarloaf Fan 

(b) 

Treatment 

Fresh Warm 

Fresh Cool 

Fresh Dark 

6 months old Warm 

6 months old Cool 

6 months old Dark 

12 months old Warm 

ANOV A: source 

Population 

Treatment 

Pop x Treatment 

Days to 50% Final % 

45.6 cd 74.1 b 

35.7 be 82.4 c 

27.6 ab 88.6 de 

56.1 d 66.7 a 

23.9 ab 90.8 def 

21.0 a 94.2 ef 

21.4 a 92.8 def 

17.2 a 94.6 f 

18.6 a 88.1 d 

Days to 50% Final % 

25.4 b 91.8 d 

23.9 b 91.5 d 

84.9 c 72.3 a 

10.6 a 91.0 d 

26.6 b 89.1 cd 

15.2 ab 85.9 c 

21.1 ab 79.0 b 

F P < F P < 

8.67 0.001 23.3 0.001 

38.6 0.001 17.8 0.001 

4.72 0.001 2.81 0.001 
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3.4.3 Discussion 

Most F. llovae-zelalldiae seeds germinate readily however some seeds exhibited delayed 

germination. Delayed germination was more a feature of seeds in the "cool" and "dark" 

treatments indicating that F. llovae-zelalldiae was polymorphic for germination 

response in less than ideal conditions. 

An overall slower germination response of fresh seed at lower temperatures was 

observed in four populations: Bankside, Cass Saddle' A', Hallelujah Flat and Sugarloaf 

Fan (Figs. 3.6a, 3.8a, 3.11a and 3.14a). This would be a direct result of the effect of 

temperature on metabolic rates. However the remaining populations showed little 

reduction in the germination rate of fresh seeds with lower temperature. 

The slightly faster germination response observed in six month old seed could be 

due to fresh seeds not being fully mature when they were collected, as seeds for this 

experiment were collected while they were still on the panicle. A similarly enhanced 

germination rate with storage has also been observed for Deschampsia caespitosa 

(Davy, 1980). 

Darkness appeared to have an inhibitory effect on the germination of fresh seeds. In 

Deschampsia caespitosa germination was also depressed by darkness and complete 

inhibition was produced by a combinations of darkness and constant temperature 

(Thompson et al .. 1977; Davy, 1980). Temporary dark inhibition could be advantageous 

if the reduction in parental fitness of seeds germinating in an unsuitable site (e.g. 

under dense vegetation) was with time outweighed by cost of seeds not germinating at 

all. Alternatively dark inhibition which lessened with increasing temperature 

fluctuations could provide a mechanism by which seeds in the soil could respond to the 

creation of a vegetation gap (Thompson et al.. 1977) although for this mechanism to 

operate seeds need to be able to remain viable in the soil. 

The high values for percent viability found in this study conform with Dunbar's 

(1970) report of 95% germination during laboratory trials. However Dunbar gave no 

indication of the conditions under which the germination trial was conducted. Scott 

(pel's. comm.) found that 17% and 57% of healthy F. llovae-zelandiae seeds germinated 

after 14 and 40 days respectively under an 18/25 oC temperature regime. This is lower 

than the result from this study which found an average across the 9 populations of 27.4 

± 8.93% germination after 14 days and 73.7 ± 8.94% after 40 days at 15/25 oC. 

After 12 months storage in a Stevensons screen, seeds still showed high percent 

germination. They can probably then maintain viability for longer periods under 

artificial conditions, despite a gradual accumulation of mutations as evidenced by the 

increase in chlorophyll-deficient seeds. However this result cannot be taken to indicate 

that seeds survive for long periods in the field. 

The significant interaction between populations and treatments in the analysis of 

variance tests indicates that the populations tested responded differently to germination 
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conditions. However there seem to be no clear trends in response patterns with 

reference to site factors such as temperature, altitude or rainfall. It would appear then 

that clearly differentiated adaptation to different environments by means of 

germination response has not occurred among the populations tested. 

However the apparent polymorphism in populations for germination response under 

less favourable conditions may represent a bet-hedging strategy. It could be that a cool 

autumn triggers dormancy in some seeds which then germinate in spring. In chapter 3.5 

a few seedlings were observed to emerge in spring. The majority of seeds which 

germinate immediately would presumably have the advantage of a wet season in which 

to become established but also risk being damaged or dislodged by early frost and 

needle ice. 
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3.5 SEEDLING EMERGENCE AND SURVIVAL 

3.5.1 Methods 

Two sites on Sugarloaf Fan, differing in altitude and vegetation cover, were selected 

for a seedling monitoring experiment. The lower site, 650 m in altitude, was an area of 

sparse open vegetation with abundant mats of Coprosma petriei and Raoulia subsericia. 

The upper site, 850 m in altitude, was more densely vegetated with abundant Poa 

colensoi. Twenty 50 em x 50 em plots were located at random intervals along a transect 

laid out at each site. Mean tussock density at each site was obtained by averaging 

tussock density in 20 contiguous 1 m x 1 m quadrats laid out along either side of the 

transect on which the seedling plots were located. 

Each plot was searched thoroughly in May 1989 and all seedlings of F. novae­

zelandiae were mapped and tagged with coloured plastic-coated paper-clips, and the 

number of leaves on each seedling recorded. Although these first seedlings will 

subsequently be referred to as the 1989 cohort they most likely represent several 

cohorts and only a minimum age can be assigned to them. 

Seedlings were identified by leaf, sheath and ligule characters and confirmed by 

caryopsis characters for seedlings where the caryopsis was still attached and visible. 

The seedlings were censused for both growth and survival every three months from 

May 1989 to November 1991. Census months - February, May, August and November 

- were selected to coincide with transitions between seasons. At each census the plots 

were again searched and new seedlings tagged and mapped as they were encountered. 

The substrate of each seedling was recorded when the seedlings were first tagged. 

The frequency of substrates within the vegetation was measured by systematic point­

sampling along the transect on which the seedling plots were located. A needle was 

lowered into the vegetation at 25 em and 50 cm distances from the transect on each 

side at 1 m intervals and the type of substrate encountered was recorded (see Table 

3.10 for substrate types). 

The frequency of seedling establishment on substrates was compared with the 

abundance of those substrates at the two sites using a Chi-squared test. One-way 

analysis of variance was used to test for significant differences in tussock density, 

seedling density, growth and survival between sites and differences in survival between 

substrate types. 
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3.5.2 Results 

Mean tussock density was 1.80 ± 0.92 m-2 at the lower site and 8.10 ± 1.16 at the upper 

site. This difference between the two sites in tussock density was significant when 

tested with one-way analysis of variance (F = 79.0, P < 0.001). 

In total of 226 seedlings were located and monitored over the study period. Seedling 

density per 50 x 50 cm plot was 4.10 ± 1.84 at the lower site and 7.25 ± 2.72 per plot 

at the upper site. Seedling density did not differ significantly between the two sites 

when tested with one-way analysis of variance. Average seedling density over both 

sites was 22.7 ± 6.58 m-2 • 

Most new seedlings were located at the May census of each year meaning that 

seedling emergence was predominantly an autumn phenomenon (Fig 3.15). For the 1990 

and 1991 cohorts 75.8% and 92.8% of recruits were located at the May census. Further 

recruits were tagged at the August and November censuses; however their contribution 

to overall recruitment was minor. 

The majority of seedlings found occurred on mats of Coprosma petriei, around flat­

weeds such as Senecio bellidioides and Hypochoeris radicata or at the base of tussocks. 

A chi-squared test revealed that seedling establishment was non-random with reference 

to substrate type (Table 3.10). The frequency of establishment on different substrates 

also differed significantly between sites (X2 = 31.9, dj ~ 10, P < 0.001). At the lower 

site, more seedlings than expected established around flatweeds and tussocks and fewer 

than expected established in areas of moss (usually Racomitrium lanuginosum). At the 

upper site seedlings established preferentially on Coprosma mats and were far less 

frequent than expected in areas of dense grass. No significant difference was found in 

seedling survival among the different substrate types when tested with one-way 

analysis of variance. 

Seedlings were commonly very slow growing with an average net increase of 0.61 ± 

0.07 leaves per year. Only three seedlings grew to the two-tiller stage and the largest of 

these had 10 leaves and was 7 cm high after at least 33 months growth. 

Mortality was high and continued to occur even in the oldest cohort throughout the 

study period (Fig. 3.16). Seedlings were most at risk during the first few months of 

life; 47.8% of all seedlings died within nine months of first being located (Fig. 3.17). 

At the lower site seedlings survived on average 12.3 ± 1.77 months and at the upper 

site mean survival was 11.6 ± 1.28 months. There was no significant difference between 

survival at the two sites. The half-life of the group of seedlings tagged 1989, averaged 

across both sites, was 11 months, however these seedlings probably represented cohorts 

from more than one year. The cohort that germinated in 1990 had a half-life of 12 

months. 

Burrowing or feeding activity by ground invertebrates was the most common 

identifiable cause of death, accounting for 11 % of total mortality. Other identified 
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Table 3.10: Observed seedling substrate frequencies (%) and expected frequencies 

based on point-sampling. Values from Chi-squared tests for goodness-of -fit are also 

given. 

Substrate Freq. at lower site Freq. at upper site 
Observed Expected Observed Expected 

Coprosma 23.0 24.4 48.5 8.88 

Coprosma/ grass 23.0 17.7 16.1 17.7 

Coprosma/moss 3.84 17.7 8.82 0 

Coprosma/Raoulia 1.92 4.44 0 2.22 

Raoulia 0.96 0 2.94 2.22 

Raoulia/ grass 0.96 0 0 0 

Raoulia/moss 0 6.66 1.47 0 

moss 3.84 0 0 0 

grass 4.80 4.44 7.35 33.3 

moss/grass 2.88 8.88 2.94 6.66 

flatweeds 21.1 6.66 7.35 4.44 

tussock base 13.4 0 4.41 24.4 

shrub base 0 6.66 0 0 

rock base 0 2.22 0 0 

X2 54.5 73.6 

p< 0.001 0.001 
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Figure 3.15: Cumulative seedling recruitment at Sugarloaf Fan over 30 months. 
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Figure 3.16: Survival of seedling cohorts at Sugarloaf Fan over 30 months. 
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causes of death were browsing (probably by grasshoppers) (3.2%), failure to root due to the seed 

germinating while suspended in moist vegetation (1.1%) and frost heave (0.9%). However for the 

vast majority (84%) of deaths, cause of death was not identified. 

Mortality due to unknown causes showed no significant seasonal pattern when all seedling 

cohorts were considered (Xl = 3.83, df = 3, P > 0.05). However the rate of cumulative percent 

increase in deaths was higher over the period August 1990 to February 1991 among seedlings that 

emerged in 1990 than among seedlings from the 1989 cohort (Fig. 3.16). 

3.5.3 Discussion 
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The seedling densities recorded in this study are in keeping with results from other long-lived grasses 

and sedges in relatively unmodified grassland. Erioph01um vaginatum, a caespitose sedge of tundra 

vegetation was found to have 55.1 ±. 6.4 (S.E.) seedlings m-2 in 'closed' vegetation (McGraw & 

Shaver, 1982). Rose & Platt (1990) found that seedling densities of Chionochloa pallens ranged from 

0.6 to 96 m-2 depending on the availability of suitable microsites. In a study of Californian coastal 

grassland, Peart (1989) found that seedling densities for three perennial bunchgrasses,Anthoxanthum 

odoratum, Deschampsia holciformis and Holcus lanatlls, ranged from 1.8 ±.1.8 (S.E.) to 40.9 .±.19.9 

(S.E.) depending on species and patch type. 

Williams (1970) found considerably lower seedling densities of 0.19 seedlings m-2 for Chloris 

acicularis, a tussock grass in semi-arid Australian grassland. However the community under study was 

severely degraded as a result of heavy grazing. However, a short-lived opportunist grass in the same 

community, Danthonia caespitosa, had seedling densities of 2.66 - 205 m-2. 

Autumn seedling emergence is a common feature of grasses in areas where rainfall occurs 

mainly during the cool season (Grime, 1979) as is the case in this study area. Lack of innate 

dormancy allows for germination at the beginning of the moistest part of the year. As a result, 

seedlings have a greater chance of becoming established before the onset of water limitations the 

following summer. 

Sewell (1947, 1952) recorded that F. novae-zelandiae seedlings only established in litter around 

tussock bases and Scott & Archie (1976) found that seedlings germinating close to a tussock suffered 

relatively lower mortality during dry summer months. The present study has shown that F. novae­

zelandiae seedlings also commonly establish on mats of Coprosma petrei and around flatweeds. Rose 

& Platt (1990) found similar trends in seedling establishment for Chionochloa rigida. In their study 

seedlings were three times more frequent on litter or mat vegetation than in rocky areas or taller 

vegetation. 

The differences between the two sites in seedling substrate affmity can be related to 
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factors affecting seedling establishment at each site. At the lower site the vegetation 

was quite open and lack of moisture could be a major factor in germination failure and 

early seedling mortality. The apparent affinity of seedlings at the lower site for tussock 

bases and flatweeds could be because seeds falling on these substrates had a more 

sheltered, slightly moister microclimate and were therefore successful in germinating. 

At the upper site seedlings were noticeably more common on mats of Coprosma 

petriei than expected and much less common in areas of dense grass. The upper site 

was more densely vegetated than the lower site and casual observation suggested that 

soil moisture tended to be higher. The observed pattern of substrate affinity at the 

upper site could indicate that, rather than moisture stress, other factors such as light 

availability were affecting the establishment of seedlings. The close dependence of 

seedling establishment and survival on substrate and vegetation type means that 

previously published statements about F. novae-zelandiae seedling establishment must 

be referred back to the local environment in which the studies were conducted. 

Site attributes probably affect recruitment in different ways at different stages from 

germination to maturation. Dunbar (1970) found that the emergence and density of F. 

novae-zelandiae seedlings was inversely related to vegetation density but the survival of 

established seedlings was positively related. In the present study the different mortality 

rates of the 1989 and 1990 cohorts during spring and early summer 1990, indicated by 

the differing slopes of the two survival curves over that time period (Fig. 3.16) would 

certainly suggest this. 

Seedlings of F. novae-zelandiae have previously been reported as uncommon or 

entirely absent in short-tussock grassland (Boyce, 1939; Sewell, 1947; Moore, 1976; 

Espie, 1987). However as F. novae-zelandiae seedlings seldom survive beyond the one­

tiller stage they are readily overlooked. The results of this study indicate that F. novae­

zelandiae seedlings can be relatively abundant on certain substrate types. 

Although the two sites studied differed significantly in tussock density and 

therefore probably also in seed rain, there was no difference between them in seedling 

density. This would indicate that seedling densities are limited not by lack of seeds but 

by lack of suitable substrate. This appears to be a feature of stable populations of 

long-lived perennials, where in most years recruitment is limited by the number of 

safe sites rather than by seed production or losses to seed predators (Andersen, 1989). 

Spatial heterogeneity and the availability of suitable microsites has been shown 

repeatedly to be a major factor in seedling survival (Harper et al., 1965; Harper, 1977). 

For example, McGraw & Shaver (1982) found that seedling densities of species in 

Alaskan tundra varied greatly depending on substrate availability and Reader (1991) 

found that emergence of seedlings in an abandoned pasture was greatly influenced by 

microtopography and its effect on ground cover. 

The low growth rates measured for seedlings in the present study confirm 

observations made by Moore (1976) on a South Island high country station. She found 



66 

that seedlings could remain only a few centimetres tall with one or two tillers for at least seven years. 

However she also observed that seedlings in sheltered, moist microsites could reach half the height of 

mature plants in three years and form thick tussocks in five years. 

Due to the limited time available for this study, the data are inadequate to ascertain the 

proportion of seedlings that survive to become juvenile tussocks on Sugarloaf Fan (see chapter 4.4 for 

definition of a juvenile). Survival to maturity rather than seedling establishment would appear to be 

the crucial stage for the maintenance of F. novae-zelandiae populations by regeneration from seed. 

Recruitment rates are only valid when viewed in the context of the adult life-span (McGraw & 

Shaver, 1982). In a long-lived plant, even high levels of mortality among seedlings do not necessarily 

signify regeneration failure (Mark, 1965b). In fact high seedling mortality is common among long­

lived iteroparous herbs (Harper, 1977; Davy, 1980; Symonides, 1985). Even very low levels of seedling 

recruitment to the adult population can adequately maintain population density of a very long-lived 

species (Mark, 1965b). 

The rates of F. novae-zelandiae seedling mortality observed in the present study are higher 

than those observed for Chionochloa rigida by Mark (1965b). In the present study 18% of the 

seedlings initially tagged in 1989 were still alive after 30 months, whereas in Mark (1965b) seedling 

numbers were reduced by approximately half after 36 months. Mortality due to seedlings being 

dislodged by frost heave was not as important in this study as in Mark (1965b), presumably due to the 

lower altitude and higher vegetation cover at the present study site. Mark's seedling study was 

conducted at 1220 m in grassland that had been burnt eight months previously. 

With low recruitment and replacement, many adult populations particularly on disturbed sites 

could well be dominated by one or two pioneering cohorts. The substrates apparently favoured by F. 

novae-zelandiae seedlings in closed grassland, such as mats of vegetation, are a feature of the early 

colonisation of river terraces or slips in the montane and alpine zones (Calder, 1958, 1961). In a 

situation analogous to Eriophornm vaginatum (McGraw & Shaver, 1982) seedling recruitment in F. 

novae-zelandiae may assume special importance in relation to the invasion of new habitats and the 

peripheral spread of populations after disturbance rather than being important in population 

turnover in "closed" grassland. 
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3.6 SUMMARY AND DISCUSSION OF CHAPTER 3. 

F. novae-zelandiae is not a mast-seeder in the sense of Silvertown (1980) which distinguishes it from 

the physiognomic dominants of tall-tussock grassland, Chionochloa species (Mark, 1965b; Kelly et al., 

1992). However individuals that flowered every year were in the minority (17.4%) in the population 

studied from 1988 to 1992 at Casso The most fecund individuals were generally large tussocks. Over 

one third (36.1%) of plants monitored over that time period produced no culms at all and the 

remainder reproduced intermittently. Nonreproductive individuals were usually small. 

Reproductive output in a given year was usually positively related to output in the previous two 

years. Plants were showing short-term consistency in their contribution to total reproduction which 

reflected their overall size and vigour. The Sugarloaf Fan population showed a typical L-shaped 

distribution of fecundity (Levin & Wilson, 1978) (Fig. 3.1) that results in a few individuals dominating 

the reproductive output of a population. Due to the correlation in reproduction between years, these 

same individuals would be contributing a proportionally large number of seeds to the seed rain over 

several years. 

This uneven contribution to the next generation has important genetic implications. If the few 

very fecund individuals are successful due to the possession of favoured heritable traits then the 

response of the population to selection will be accelerated relative to a situation where reproductive 

contribution was more evenly spread among individuals (Levin & Wilson, 1978). However if uneven 

reproduction output among individuals was largely due to spatial environmental heterogeneity than 

the genetic effects with regard to the population's genepool would be less significant. 

When reproduction in several populations of F. novae-zelandiae was compared, a significant 

amount of between-population variation in reproductive effort at all levels from the number of culms 

per tussock to florets per spikelet and total seed set was found. However, overall the reproductive 

output of F. novae-zelandiae is characterised by relatively constancy perhaps due to conservative 

responses to yearly changes in resource availability. The lack of a density effect on culm production 

does not rule out the importance of density-dependant processes. However it does perhaps indicate 

that tussocks usually occur at densities low enough to avoid inter-plant interference and that sites 

factors may commonly be more important to reproduction. 

Pre-dispersal fates of seeds varied between populations with invertebrate predation affecting 

nearly 80% of florets at the lowest altitude site but only 7.4% at one of the higher altitude sites. In 

other populations, factors such as failure of seeds to develop or embryo abortion accounted for the 

majority of lost ovaries. The most common identifiable predator was a flightless Chloropid fly 

Diplotoxa moorei. 

Although F. novae-zelandiae has no specialised mechanisms for seed dispersal, seeds were 

found to be dispersed over several metres in normal strong winds and 
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considerably further in gale-force winds. However seed rain was significantly patchy with most seeds 

falling adjacent to the parent plant. The estimate of 217 ± 46.5 seeds per m2 for F. novae-zelandiae is 

comparable to other long-lived perennial grasses. 

The majority of F. novae-zelandiae seeds germinated regardless of temperature and light 

conditions however some seeds in the "cool" and "dark" treatments exhibited a delay in germination of 

up to 200 days. A slight inhibitory effect on the overall germination rate of seeds at the cooler 

temperature treatment were observed for most populations. Also a overall lower germination rate 

and final percent germination was observed for some populations when seeds were germinated in the 

dark. Seeds showed an enhanced germination response in all treatments after six months storage. 

There seemed to be no clear trends in the pattern of germination with respect to treatment and the 

environment of the sites from which the seeds originated. 

Mean seedling density at Cass was found to be 22.7 ± 6.6 per m2 which is comparable with 

values from other long-lived grasses and sedges. When compared with the values recorded for seed­

rain this represents an 83% to 94% mortality among seeds in the soil. 

Seedling emergence was concentrated in autumn and seedling densities were non-randomly 

associated with vegetation types; around flatweeds, the bases of large tussocks and mats of Coprosma 

petriei being 'preferred' substrates. The observed differences between the two areas studied in 

seedling substrate affinity were possibly due to differences between the areas in microclimate. 

Seedlings grew by an average of 0.61 ± 0.07 leaves per year and the half-life of the longest studied 

single-year cohort was 12 months. 

The reproductive strategy of F. novae-zelandiae conforms with that of many of the commonest 

perennial grasses of temperate grassland, e.g. Bromus erectus, Dactylis glomerata, Festllca pratensis 

andF. rubra, in regions where rainfall is restricted mainly to the cool season (Grime, 1979). Species 

of this type are characterised by relatively large seeds with no innate dormancy and the absence of a 

sizeable seed bank (Grime, 1979; Thompson & Grime, 1979). Germination and seedling emergence 

is concentrated in the autumn when the surrounding vegetation is at its sparsest after the typically dry 

summer. In contrast, autumn germination was rare in a moist tall grassland that lacked the same 

seasonal fluctuations in moisture availability (Masuda & Washitani, 1990). 



CHAPTER 4: STRUCTURE AND DYNAMICS WITHIN INDIVIDUALS AND 

POPULATIONS 

4.1 INTRODUCTION 
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Tussock-forming grasses are very simple in construction, essentially being composed of 

many functionally equivalent tiller modules. Each plant can be regarded as a population 

of modules derived, originally from one parent plant (White, 1979), which interact 

within the clone in both a positive and a negative manner. Because of this architecture, 

the population structure and dynamics of tussocks must be studied at both the within­

clone and within-population levels. 

A study of within-clone population dynamics is the key to understanding individual 

growth and regeneration. This is because in a tillering grass the tiller is the 

fundamental ecological unit (White, 1979). For the genet as a whole to grow, the 

individual tillers must reproduce vegetatively and for the genet to die, the whole 

population of tillers must die. 

In the study of structure and dynamics at the level of the population, herbaceous 

perennials with a modular architecture present the researcher with two important 

problems. One is the definition of an individual; does the genet or the functionally 

independent ramet constitute the individual to be studied? The other is the difficulty 

involved in aging individuals. 

In species of modular construction where the modules are equivalent, potentially 

independent units it is largely impossible to count the number of genetic individuals in 

a population (Harper, 1978). In F. novae-zelandiae, individual tussocks may be only 

portions of a larger fragmented genetic individual (genet) or may be composed of more 

than one genet. A more precise approach to the population biology of such plants is to 

study modules rather than genets (Harper, 1978; White, 1979). However it is difficult 

to extrapolate from this type of data to the dynamics of genets and populations and 

ultimately the explanation of evolutionary phenomena must lie in studies at the level of 

genets (Harper, 1978). 

The approach taken in the definition of individuals throughout the present study is 

much less rigid than that taken by Espie (I987). Espie defined elongated groups of 

tillers as representing two genetic individuals unless an external factor such as the 

proximity of a rock or shrub could have influenced the growth pattern. He regarded 

quasi-circular groups of small tillers as individual small tussocks unless connections of 

dead material between them indicated that they represented the remnants of a 

senescent tussock. 

In the present study structurally continuous tussocks, regardless of shape, were 

treated as individuals. However groups of small tussocks were treated in a manner 

similar to that described above. The margin of error between this method of defining 



individuals and the true number of genetic individuals present depends on the 

frequency of clonal fragmentation in populations of F. novae-zelandiae. This is 

investigated in Chapter 4.5. 
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The other difficulty involved in demographic studies of long-lived clonal herbs is 

that of the age of individual plants. Assessing population structure directly by aging 

individuals is impossible for clonal plants that are composed of continually replaced 

modules as, except in very young plants, the age of the oldest module is unlikely to at 

all resemble the age of the genet (Harper, 1977). Many long-lived species display 

considerable demographic and morphological plasticity and as a result size, fecundity 

and mortality are not necessarily associated with strict chronological age. The inability 

to age these types of plants is therefore not necessarily a problem as age would not be 

particularly useful in the examination of population structure. An approach based on 

the functional stage of individuals, defined by morphological, physiological or 

demographic characters would provide more meaningful information on population 

structure (Rabotnov, 1965; Harper, 1977; Gatsuk et al., 1980). 

The aim of this section is to examine the structure and dynamics of both 

populations of tillers within clones and populations of tussocks. Tussock population 

structure will be examined using a stage-based approach and at the same time the 

validity of this type of approach will be assessed. The effect of competition from 

invasive adventive species on within-clone growth and overall population structure will 

also be examined and the question of the genetic distinctiveness of spatially separate 

tussocks will be addressed. 
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4.2 TILLER DYNAMICS 

4.2.1 Methods 

Seventy-five tillers on 26 tussocks of varying sizes on Sugarloaf Fan (see Fig. 2.1, 

Chapter 2 for location) were tagged in November 1989. The tillers were selected at 2 

cm intervals along a transect through the middle of each tussock in order to test for 

the effect of position on growth and tillering. Ten tillers in a further five tussocks 

were tagged in May 1990 in order to increase representation among tillers from small 

tussocks. 

The tillers were censused in February, May, August and November of 1990 and 

1991 and all new tillers arising from tagged tillers were also marked and monitored. 

The condition of each tiller (vegetative, flowering, dead) and the number of leaves per 

tiller were recorded at each census. 

One-way analysis of variance was used to investigate the effect of tiller position and 

tussock size on growth and tillering rates of individual tillers. 

4.2.2 Results 

F. novae-zelandiae tillers are produced intra-vaginally and emerge between the sheath 

of the parent tiller and the prophyll of the new tiller. The prophyll is a modified leaf 

that precedes the emergence of the first true leaf. New tillers are first externally visible 

when they have elongated beyond the sheath of the parent tiller. At this stage they 

usually consist of one or two green leaves. Flowering is determinate so once flowering 

and fruiting has finished the tiller dies. 

By the end of the study period, a total of 225 tillers had been tagged and monitored. 

Of these, 128 were still alive at the end of the study and 24 of these tillers were 

members of the original sample. This represented an increase of 150.6% in two years. 

During this time 134 new tillers were produced, 85 tillers died without flowering and 6 

flowered and died. 

Tillering showed very marked seasonal trends with a spring flush of new tillers 

becoming visible between November and February of each year (Fig. 4.1). This 

seasonal production of tillers is also reflected in the rate of tillering among established 

tillers. Parent tillers produced one daughter tiller every 15.2 ± 1.63 months on average; 

0.07 ± 0.01 tillers month-l. However tillers were most commonly produced at 

approximately yearly or two-yearly intervals (Fig. 4.2). 

Mortality also showed seasonal trends, being concentrated mainly in late winter and 

spring (Fig. 4.1). Mortality was substantially higher between August and November 

1991 than in the previous two years possibly due to the relatively cold winter (Fig. 2.2, 

Chapter 2). The life-span of single tillers averaged 15.2 ± 1.05 months, however life-



spans of three months, one year or two years were most common (Fig. 4.3). 

Daughter tillers were produced by 36.2% of all tillers tagged. Of these, over half 

produced only one daughter tiller. However one tiller produced five daughter tillers 

during its lifetime (Fig. 4.4). The number of daughter tillers produced per tiller and 
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the rate at which they were produced did not differ significantly between tillers 

occupying different positions in a tussock or between individual tussocks or diameter 

size classes. The location of a tiller in relation to the tussock edge had no significant 

effect on tiller longevity when tested with one-way analysis of variance (F 4,219 = 0.53, 

NS). There was also no significant difference among individual tussocks or diameter 

size classes in tiller longevity (F 30 193 = 0.76, NS). , 
Tillers produced an average of 0.16 ± 0.01 leaves per month, which is approximately 

one leaf every 6 months. There was no significant difference in growth rate between 

tillers occupying different positions within a tussock (F 4,219 = 0.26, NS). However 

there was a significant difference in tiller growth rates between individual tussocks 

(F 30 193 = 1.54, P < 0.05). This difference was not, however, related to differences in , 
tussock diameter. 
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Figure 4.1: Tiller recruitment and mortality of 225 tillers in 25 F. novae-zelandiae 

tussocks on Sugarloaf Fan monitored over 30 months. 
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Figure 4.2: Frequency of tillering interval for 225 tillers in 25 F. novae-zelandiae 

tussocks on Sugarloaf Fan monitored over 30 months. 
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Figure 4.3: Life-span of 97 F. novae-zelandiae tillers dying during the 30 month 

study period at Sugarloaf Fan. 
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Figure 4.4: Daughter tiller production among 225 tillers in 25 F. novae-zelandiae 

tussocks on Sugarloaf Fan monitored over 30 months. 
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4.2.3 Discussion 

As tillers were not recorded until they were externally visible, tillering would have 

been initiated some time before new tillers were observed. New F. novae-zelandiae 

tillers recorded as early as November were already about 15 cm in height, so tiller 

induction most probably occurred in autumn with some growth taking place before 

winter. Tiller elongation is most probably triggered by increased temperatures in 

spring. F. novae-zelandiae tillers appear to be able to survive for more than two years. 

However most tillers in this study were replaced within two years. 

Connections between tillers appear to remain intact for at least two years. However 

observations of tussock structure made while transplanting and dividing tussocks 

indicate that connections between tiller clumps eventually break down so that the 

tussock comes to be comprised of one to many independent families of tillers. 

Fetcher & Shaver (1982) found that the ratio of daughter tillers to adult tillers 

decreased with increasing tussock diameter in the long-lived caespitose sedge 

Eriophorum vaginatum. In Bellis perennis, a dicotyledonous herb with a tightly-packed, 

'phalanx' clonal structure, Schmid & Harper (1985) found that module density within 

clones was under precise control due mainly to the regulation of the birth rate of 

modules. A similar regulation of tiller density has been found in Carex bigelowii, a 

rhizomatous sedge (Carlsson & Callaghan, 1990). In Schizachyrium scoparium, a 

perennial bunchgrass, both intra- and inter-clonal density-dependent interference 

controlled ramet densities (Briske & Butler, 1989). 

However other studies among phalanx clonal species have indicated that density­

dependent ramet mortality is uncommon when inter-ramet connections are maintained 

for a season or more (Hutchings, 1979; Hutchings & Slade, 1988). An efficiently 

foraging phalanx species, that is making maximum use of available area and resources, 

should be maintaining ramet size and density at just below the level where density­

dependent mortality occurs (Hutchings & Slade, 1988). 

No reduction in tillering rate with increasing clone size was found in F. novae­

zelandiae indicating that crowding within a large tussock was not reaching sufficient 

levels to bring density-dependent effects into operation. Tillering rate in F. novae­

zelandiae was probably more a product of the genotype and immediate environment of 

each plant. 

Brisk & Butler (1989) found much higher rates of tiller recruitment on the 

periphery of tussocks of Schizachyrium scoparium as opposed to the interior of the 

tussocks. Surprisingly no effect of position on tillering vigour or survival was found 

within F. Ilovae-zelalldiae tussock. Numerous authors (e.g., Zotov, 1938; Moore, 1976; 

Gatsuk et aI, 1980; Espie, 1987) have commented on the tendency of F. novae­

zelandiae and other tussock-forming grasses to decay in the centre and fragment into a 

peripheral ring of tillers. This does not appear to be due to innate differences in tiller 
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vigour with position and may be more a result of fungal or insect attack encouraged by 

the damp, sheltered environment in the tussock interior (Kelsey, 1957). 
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4.3 THE EFFECT OF COMPETITION 

4.3.1 Introduction 

Over the last century short-tussock grassland has been undergoing a process of radical change from a 

community dominated by indigenous grasses, forbs and shrubs to one dominated by adventive 

species. Early accounts of short tussock grassland (e.g. Wall, 1922; Cockayne, 1928; Zotov, 1938) list 

species that are now rare or absent in many areas and much of the present-day short tussock 

grassland has been fragmented into patches of indigenous species in an alien matrix (Lord & Norton, 

1990). 

Some of the common adventive species in short tussock grassland such as Agrostis capillaris L., 

Anthoxanthum odoratum L. and Festuca ntbra L. were deliberately introduced in order to improve 

the value of the vegetation for grazing (O'Connor, 1982, 1986). However many others such as 

Hypochoeris radicata L., Hieracium species, Linum catharticum and Rumex acetosella have spread by 

accidental introductions. 

In the Cass area, where the present study was conducted, the main influx of adventive 

presumably occurred in the early 1860's with the advent of pastoral farming (Dobson, 1977). In 1915 

a number of species includingAnthoxanthum odoratum, Holcus lanatus, Rumex acetosella and 

Trifolium repens, which are common in the area today, were already present (Cockayne & Foweraker, 

1916). Interestingly Agrostis capillaris, which is one of the most dominant inter-tussock species on 

Sugarloaf Fan today, was not recorded from Cass even as late as the 1920's (Malcolm, 1925). 

However by 1944 it was common on the valley flats (Cumberland, 1944) and possibly was deliberately 

sown (Dobson, 1977). 

It is difficult to empirically determine the impact of biological invasion on the resident 

community as effects are often subtle and slow to be manifest. However recent long-term studies 

have linked the decline in indigenous species diversity in New Zealand grassland to the increasing 

dominance of adventive species (Scott et al., 1988; Lord, 1990; White, 1991; Treskonova, 1991). 

Invasive species often affect the resident community directly by interference competition. The 

simplest way to test for a competitive effect is, as Tansley (1914) stated 'by clearing a patch of ground 

of some or all of the species present and seeing what happens.' It was the aim of this experiment to 

investigate the influence of adventive species on the growth and reproduction of F. novae-zelalldiae by 

removing adventive species from areas containingF. novae-zelandiae. 
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4.3.2 Methods 

A 20 m transect was randomly located in short tussock grassland at Sugarloaf Fan and 

14 pairs of 1 m x 1 m plots randomly located along the transect. All adventive species 

were removed by hand from one randomly selected plot in each pair in January 1990. 

Rhizomes of Agrostis capillaris and Hieracium species were carefully dug out with a 

knife. All tussocks in the control plots were tagged and all plants in the weeded plots 

were mapped. 

Every tussock was measured for maximum extended leaf length and mean basal 

diameter (using a diameter tape). In addition the percentage of tussock basal area 

occupied by dead material (% dead) was estimated and the number of culms counted 

for each plant. The plots were weeded again in May and November 1990 and finally in 

February 1991. In January 1992 the same plants were reassessed for maximum extended 

leaf length, mean basal diameter, % dead and number of culms. 

The initial measurements made in 1990 for each variable were subject to one-way 

analysis of variance to test that plants in weeded and control plots were statistically 

comparable samples; i.e., that there was no initial bias between the treatments that 

could effect the final analysis. 

As the data consisted of identical measurements on the same individuals over a 

period a time, a repeated measures analysis of variance model was used for analysis. 

Each of the four variables measured was tested for differences between plants in 

different treatments, differences within plants between years and for an interaction 

between the two terms. Relative reproductive effort,calculated as the number of culms 

cm-2 of live basal area, was also tested for significant differences due to treatment and 

time. 



4.3.2 Results 

A total of 255 tussocks were measured in January 1990 and 246 of these were still alive in January 

1992. All nine deaths occurred in weeded plots. 
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One-way analysis of variance found no significant difference between control versus weeded 

plots for initial values of any of the four measured variables indicating that the tussocks within the 

two different kinds of plots were initially comparable prior to experimental manipulation. 

Repeated measures analysis of variance using initial and final measurements showed that in all 

treatments, plants decreased significantly in height through time (Table 4.1). There was also a 

significant interaction between treatment and time indicating that the change in height over time was 

affected by whether they occurred in weeded or control plots. However between-plant differences in 

height corresponding to the effect of weeding alone were not significant. 

Plants in all treatments also increased significantly in diameter over the two years. Between­

plant differences in diameter due to treatment alone were significant, as was the interaction between 

time and treatment (Table 4.1). 

There was no treatment effect on the percentage of tussock area occupied by dead material. 

However % dead decreased significantly in all plants over the two years of the study. The magnitude 

of change within individual plants over time did not vary significantly between weeded and control 

plots (Table 4.1). 

The number of culms per tussock increased significantly over all tussocks between 1990 and 

1992 and the effort put into culm production in relationship to tussock size also increased significantly 

(Table 4.1). Weeding alone had a significant positive effect on culm production, however there was 

no similarly positive effect on relative reproductive effort. The significant increase in culm production 

among plants in weeded plots is therefore undoubtedly due to the overall larger diameter of these 

plants. Neither of these variables showed a significant interaction between treatment and time. 

The most common adventive species removed from the weeded plots wereAgrostis capillaris 

andAnthoxanthum odoratum. Both of these grasses formed dense to open patches that interdigitated 

with other patch-forming species such as Poa colensoi, Coprosma petriei and Cyathodes fraseri. The 

act of removing the adventives unavoidably disturbed these and other patch-forming species and 

therefore no results could be obtained on the effect of the experiment on species other than F. novae­

zelandiae. However shrubs of Cassinia leptophylla sensu lato growing within the weeded plots 

responded to the removal of adventive species by sprouting vigorously from the base. Also two 

seedlings ofAciphylla subflabellata were observed to establish in weeded plots. None were observed 

in control plots. 
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Table 4.1: Mean values for 1990 and 1992 measurements of F. novae-zelandiae 

tussocks in weeded and control plots at Casso Height and Diameter are in cm. 'ReI. 

eff.' is relative effort calculated as culms m-2 of live basal area. Results from 

repeated measures analysis of variance tests are also given. NS = not significant. 

Dead plants were excluded from the analysis. 

Height Diam. % Dead No. culms ReI. eff. 

1990: Control 39.4 4.64 29.6 1.54 5.33 

Weeded 41.2 5.60 32.9 2.60 5.36 

1992: Control 38.2 5.44 16.6 4.13 11.0 

Weeded 36.0 8.09 15.5 7.05 8.68 

Source of Variation 

Treatment: F 0.11 10.3 0.01 5.87 0.47 

p< NS 0.01 NS 0.05 NS 

Time: F 72.0 103 50.8 34.9 10.05 

p< 0.001 0.001 0.001 0.001 0.01 

Trmt x Time: F 32.3 19.5 1.57 1.95 0.66 

p< 0.001 0.001 NS NS NS 
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4.3.3 Discussion 

The increased growth among plants in weeded plots indicates that adventive species are 

affecting F. novae-zelandiae tussocks. The lack of difference between weeded and 

control groups in percent dead tillers indicates that the greater increase in the size of 

plants in weeded plots was a result of an increase in tiller births rather than a decrease 

in the death and decay of tillers. The difference in culm production between plants in 

weeded and control plots was simply a function of the higher tillering rate among 

plants in weeded plots; reproduction relative to size was not significantly different 

between the treatments. 

The removal of adventive species also had a negative effect. Whole plant mortality, 

particularly among smaller plants, increased in weeded plots presumably due to the 

increased exposure of plants and risk of wind damage and desiccation. Also 

unavoidable disturbance of the soH and root zone of tussocks during weeding may have 

increased the likelihood of death. 

In a species removal experiment in a mown field in North Carolina, Fowler (1981) 

found that species generally increased in abundance on the removal of other species 

but that competitive interactions were diffuse rather than specific. It is possible that 

the findings of my study relate to competition generally rather than the specific effect 

of adventive species. F. novae-zelandiae might have shown a similarly positive response 

had I removed all other indigenous species instead of the adventives. However no other 

indigenous species was as abundant in the grassland I studied as the most abundant 

adventive species. The adventive species therefore represent the primary source of 

competition with F. novae-zelandiae tussocks at the study site. 

The tillering response shown by plants in the weeded plots could have been due to 

higher light levels or temperatures at the tussock base. Kays & Harper (1974) found 

that mutual shading among populations of Lolium perenne affected tillering rates. Gold 

& Caldwell (1989) found that removing dead foliage from the base of Agropyron 

desertorum tussocks stimulated greater regrowth than removing upper portions. The 

effect of adventive grasses on adult F. novae-zelandiae tussocks may be to depress 

tillering rates and hence flowering by competing for light. 

The trend among all plants regardless of treatment of increasing diameter and culm 

production and decreasing height and percent dead tillers could be a response to the 

climatic fluctuations of the last five years. The drought of 1987 - 1988 was observed to 

affect F. novae-zelandiae tussocks (C. J. Burrows pel's. com.) as well as adventive 

grasses. Rainfall has been higher in recent years and the observed growth of tussocks 

could represent an ongoing recovery from the effects of the drought. If this were the 

case then the effect of competition from adventives is to slow the rate of population 

recovery rather than reverse it. 

The sward of adventive grasses on Sugarloaf Fan may not be dense enough to have 
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the direct negative impact on tussock growth and survival observed in more fertile 

grassland (Lord, 1990). However adventive grasses such as Agrostis capillaris are still 

increasing in the area (White, 1991) and have formed a dense sward on some areas of 

Sugarloaf Fan. 

If the abundance of adventive species remained at present-day levels, they would 

probably have little direct impact on the adult F. novae-zelandiae population. However 

observations during the course of this study indicate that the spread of adventive 

grasses may be negatively affecting species such as Coprosma petriei that are important 

substrates for the regeneration of F. Ilovae-zelalldiae by seed (see chapter 3.5). Even in 

the absence of a negative effect on adult plants this would ultimately reduce the 

abundance of F. novae-zelandiae at the site. 



83 

4.4 STAGE-CLASS ANALYSIS OF POPULATION STRUCTURE 

4.4.1 Introduction 

The demographic literature contains two broad types of stage-based population studies. 

One follows the Russian "age-state" style of analysis which aims to describe the life­

history of species of different growth forms by the construction of a detailed 

classification of recognisable biological stages. Each stage is defined by the appearance 

of new characteristics or structures and the absence of others (Gatsuk et al., 1980). 

Stage-classes are taken to represent successive stages in the ontogeny of genetic 

individuals and are usually presented as a linear developmental sequence from seedling 

to senescent individual (e.g. Gatsuk et al., 1980; Kurchenko, 1985; Vorontzova & 

Zaugolnova, 1985; Zhukova & Ermakova, 1985). Population structure is represented by 

the complement of stage-classes present within the population (Rabotnov, 1969). 

However the strength of this approach is in its summation of the life-history of the 

species. 

Two major problems arise with the use of this age-state approach. One is how to 

construct a classification that reflects real groupings within the data. The other is that 

as soon as a sequence of classes has been constructed the implicit or explicit assumption 

is made that normal individuals will progress in a linear manner through the classes. 

Because of their modular structure through tillering, individuals of perennial grass 

species are capable of both expansion and contraction and therefore do not necessarily 

progress in a linear sequence through ontogenic stages. 

The other commonly published type of stage-based study involves the use of stage­

or size-classes as a data-base with which to construct a model of population dynamics 

(e.g. Werner & Caswell, 1977; Bierzychudek, 1982; Moloney, 1988; Babcock, 1991). 

These models are usually matrix-orientated and based on the methods of Leslie (1945), 

Leftovitch (1965), Vandermeer (1975) and Caswell (1986) (see Manly (1989) for a 

discussion of theory and application). Transition probabilities between stages are used 

to accurately describe and predict population dynamics. 

These two approaches to stage-based population studies differ both in emphasis and 

in information content of classes. The Russian approach aims to produce classes of 

sufficient information content so that by simply examining the stages an uninformed 

reader will gain insight into the biology and ecology of the species being studied. 

The information content of classes in the matrix approach is essentially irrelevant as 

the approach is concerned with movement between classes. The emphasis in this 

approach is on population dynamics rather than individual ontogeny or population 

structure. 

The aim of this section is to firstly evaluate the naturalness of stage-classes and the 

linearity of stage-class transitions using data from F. novae-zelandiae and secondly to 



examine population structure in nine different populations of F. novae-zelandiae as 

defined by stage-class frequency distributions. 
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4.4.2 Methods 

(a) The naturalness of stage-classes 

Four 2 m x 2 m plots were randomly located at each of the nine populations used in 

Section 3.4. All adult tussocks in the plots were measured for maximum extended leaf 

length, basal diameter (measured for two perpendicular axes so as to give a mean value 

and a measure of shape) and the percentage of dead tillers within the tussock was 

estimated. In addition the numbers of 1989 and 1990 culms were counted. Seedlings, 

consisting of a primary shoot only and retaining their connection with the caryopsis, 

were excluded from the data-base. 

Individual tussocks were subjectively allocated to six stage-classes based on the 

methods and classification used in Russian studies of long-lived caespitose grasses 

(Gatsuk et ai, 1980). The six classes were defined as follows: 

(1) Juvenile: non-reproductive plants < 1 cm diameter, with no or few dead tillers 

(usually 0 - 5%). In these plants the connection with the caryopsis had been lost, 

tillering had begun, adventitious roots were few and the plants were still shorter than 

adult tussocks. 

All reproductive plants were assigned to one of the following three classes 

depending on size and vigour. 

(2) Young Reproductive: a few culms had been produced, tillering and adventitious 

rooting was well underway but dead tillers were still few (usually 0 - 15%) and 

scattered throughout the tussock. Plants were usually 1 < x < 5 cm diameter with a 

firm round tussock habit and produced one or a few culms in intermittent years. 

(3) Mature Reproductive: plants produced several to many culms in most years, were 

large and had moderate numbers of dead tillers (10 - 30%) scattered throughout the 

tussock with some small areas consisting only of dead tillers. 

(4) Old Reproductive: culm production low and often irregular and plants had moderate 

to high numbers of dead tillers ( > 30%) with areas within the tussock consisting 

entirely of dead tillers. Tussocks tended to be irregular in shape and some were 

becoming fragmented into two or more parts. 

The final two classes consisted of non-reproductive plants in various states of decay. 

(5) Senescent: tussock diameter and the amount of dead material within the tussock 

reached a maximum and the genet had became fragmented. 
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(6) Remnant: the clone had become reduced to a remnant similar in size to juvenile 

tussocks but containing or adjacent to old dead material and growing on a mound built 

up by the original genet. 

Non-reproductive plants that were too big to qualify as "juvenile" or "remnant" but 

insufficiently decrepit to qualify as "senescent" were allocated to one of the three 

reproductive classes according to size and vigour. This was justified in light of the 

results of section 3.2 which indicated that not all plants reproduced every year. The 

"immature" or "virginal" stage of Gatsuk et al. (1980) was not used as the sometimes 

irregular flowering of individuals meant that mature virginal plants could not be 

distinguished from plants that had reproduced in previous years but were not 

reproductive in the year of the study. 

The data from all nine populations was combined and subject to canonical 

discriminant analysis, as implemented by SAS, using stage-class as the classification 

variable. The aim of the analysis was to test whether the six stage-classes could be 

distinguished in multivariate space using the data obtained from measurements of size, 

vigour and reproductive effort of the individual tussocks. In addition, differences 

among the stage-classes for single characters were tested using one-way analysis of 

variance. 

(b) Linearity of stage-class transitions 

Data from 255 individuals used in the competition experiment of section 4.3 was 

classified into stage-classes using the discriminant function developed in (a) above. As 

initial measurements and final measurements were separated by a space of two years 

(January 1990 - January 1992) in this dataset, estimates could be made of the change 

in the stage-class of an individual over time. The probability of individual plants 

moving between classes was calculated for both weeded and unweeded plants in the 

form of a transition matrix (Leftovich, 1965). The probability of death for individuals 

in each class was also calculated. 

(c) Stage-class comparisons among nine populations 

For each of the nine populations used in (a), the frequency of stage-classes as assigned 

by the discriminant function was tabulated. Pairwise Chi-squared tests of independence 

were used to test for significant heterogeneity among the populations for stage-class 

frequency distribution. 
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4.4.3 Results 

(a) The naturalness of stage-classes 

A total of 392 live tussocks was measured and allocated to the six stage-classes. The 

"young reproductive" and "mature reproductive" classes contained the most individuals; 

108 and 114 respectively. A total of 78 individuals across the nine populations were 

allocated to the "juvenile" class and 58 to the "old reproductive" class. The "senescent" 

and "remnant" classes emerged as the smallest with 17 and 23 individuals respectively. 

The first four axes of the canonical discriminant analysis showed significant 

discrimination (P < 0.001) between the six stage-classes, using measurements of 

maximum extended leaf length, mean basal diameter, percent dead tillers, degree of 

fragmentation, mean number of culms over two years and flowering consistency over 

two years. When classification to stage-class was re-evaluated using the discriminant 

function developed, 66.3% of individuals were found to have been classified to the 

same stage-class in the original subjective allocation. 

The number of individuals reclassified by the discriminant function varied 

considerably between stage-classes. The subjective "juvenile" class was the most 

consistent with 79.2% of individuals being objectively classified as "juvenile" and the 

remainder assigned to the "young reproductive" or "remnant" classes by the discriminant 

function (Table 4.2). The "mature reproductive", "senescent" and "remnant" classes were 

also well-defined with over 70% of individuals classified identically in the original 

subjective classification. The "young reproductive" and "old reproductive" stage-classes 

were the least consistent with 52.8% and 58.6% of individuals being classified as such 

. by the objective classification. 

Of the 132 reclassifications made by the discriminant function, 106 involved a move 

out of one of the three reproductive classes into either a non-reproductive class or 

another reproductive class. Only 26 reclassifications involved a move out of a non­

reproductive class. However the three reproductive classes jointly contained over twice 

as many individuals as the non-reproductive class (278 as compared with 114). When 

the frequency of the four types of reclassification (R - N (reproductive to non­

reproductive), R - R, N - R, N - N) was tested for heterogeneity with a chi-squared 

test there was no significant departure from expected frequency (X2 = 4.84, dj = 3, P 

> 0.05). 

However there was significant heterogeneity among stage-classes in the percentage 

of individuals originally within the class being reclassified to other classes by the 

discriminant function (X2 = 17.4, dj = 5, P < 0.01). There were more misclassified 

individuals in the "young reproductive" class than expected and less in the "juvenile" 

class. 

These two classes were involved in the single most common type of reclassification, 
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Table 4.2: Stage-class classification summary of 392 F. novae-zelandiae individuals 

based on measured morphological variables. Values represent percent reclassified by 

a linear discriminant function into each stage-class from each stage-class. 

Percent reclassified by discriminant function into objective class 

Juvenile Young Mature Old SenescentRemnant Plants in 

From subjective class 

subjective class No. % 

Juvenile 79.2 16.7 0 0 0 4.17 72 18.9 

Young 32.4 52.8 13.9 0 0 0.93 108 27.0 

Mature 0 19.3 72.8 7.89 0 0 114 29.1 

Old 0 8.62 6.90 58.6 12.1 13.8 58 14.8 

Senescent 0 0 0 5.88 70.6 23.5 17 4.34 

Remnant 8.70 13.0 0 0 4.35 73.9 23 5.87 

Plants in objective class: Total Total 

No. 94 99 102 44 20 33 392 

% 24.0 25.3 26.0 11.2 5.10 8.42 100% 

Table 4.3: Objective stage-class means for measured morphological variables. 

Results from one-way ANOV A tests among classes are given. Different superscripts 

indicate a significant difference between means using LSD tests. For number of 

culms, standard errors and critical values of differences varied due to unequal 

sample sizes so LSD test could not be applied. 

Stage-Class N Height (cm) Diam. (cm) % Dead No. culms 

Juvenile 94 20.4a 1.38a 7.23a 0.01 

Young 99 29.4c 2.85b 13.1b 0.23 

Mature 102 36.8e 6.83c 16.1 c 3.40 

Old 44 34.1d 8.42d 35.ld 1.81 

Senescent 20 33.3d 10.5e 49.0e 0.07 

Remnant 33 24.6a 1.97ab 48.3e 0.07 

ANOVA: F 83.6 105 259 37.7 

p< 0.001 0.001 0.001 0.001 
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from "young reproductive" to "juvenile" which involved 31.5% of individuals originally 

classified as "young reproductive" and accounted for 25.7% of total reclassifications. All 

except two of the individuals reclassified in this manner were non-reproductive 

individuals greater than 1 cm in diameter that had been originally allocated to the 

"young reproductive" class on the basis of size in spite of their lack of culms. The other 

two individuals reclassified from "young reproductive" to "juvenile" were juvenile in 

size but had both produced a single culm in the two years encompassed by the study. 

The most common reclassification types after "young" to "juvenile" were "senescent" 

to "remnant" involving 23.5% of "senescent" individuals and "mature" to "young" 

involving 19.3% of "mature" individuals. 

There was also significant heterogeneity among the nine populations in the number 

of individuals reclassified (X2 = 21.59, dj = 8, P < 0.01). The Cass Saddle 'B' 

population had the most individuals reclassified (44.1 %) while only l7 .6% of 

individuals in the Porters Pass population were reclassified. 

In case this heterogeneity was due to differences in mean tussock size between 

populations the discriminant analysis was repeated on data standardised by population. 

This resulted in the proportion of observations reclassified by the discriminant function 

increasing from 33.7% to 34.9% and heterogeneity among populations also increased 

rather than decreased (X2 = 51.84, dj = 8, P < 0.001). 

In addition to being distinct in multi-variate space, the six objectively defined 

stage-classes also differed significantly in their univariate distributions for each of the 

variables measured (Table 4.3). Each variable also showed a distinct trend of a low 

mean value in the "juvenile" class increasing to a peak in the "mature reproductive" to 

"senescent" classes then decreasing again to the "remnant" class. Mean height and culm 

production reach their maximum in the "mature reproductive" class. Mean diameter and 

percent dead tillers reach a maximum among "senescent" individuals. 

(b) Linearity of stage-class transitions 

If the developmental sequence of stages in a species was linear, such that movement 

between stages consisted of growth into the next stage-class, a matrix of transition 

probabilities would be comprised of a non-zero leading diagonal representing static 

individuals and a non-zero sub-diagonal representing movement into the next stage­

class. This was not the case for the two transition matrices compiled for the 155 control 

and 100 weeded individuals used in the competition experiment at Sugarloaf Fan (Table 

4.4). 

Among these plants there was considerable movement between stage-classes within 

the space of two years. However little of this movement represented a shift into the 

next largest or "older" stage-class. Transitions occurred in 27 of the possible 36 

combinations and transitions to "younger" classes above the diagonal were more 
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Table 4.4: Stage-class transition probability matrices for (a) unweeded and (b) 

weeded groups of F. novae-zelandiae at Sugarloaf Fan. Individuals were allocated to 

stage-classes using a discriminant function developed using 392 classified F. novae-

zelandiae individuals from nine populations. 

(a) Unweeded Plots N = 155 

Ob jective stage-class in Jan 1990 

Juvenile Young Mature Old Senescent Remnant 

Jan 1992 

Juvenile 0.50 0.09 0 0 0 0.33 

Young 0.50 0.71 0.07 0.27 0.33 0.55 

Mature 0 0.l1 0.78 0.38 0.33 0.05 

Old 0 0.02 0.15 0.27 0 0 

Senescent 0 0 0 0.01t- 0 0 

Remnant 0 0.07 0 0.04 0.33 0.05 

Dead 0 0 0 0 0 0 

(b) Weeded Plots N = 100 

Ob jective stage-class in Jan 1990 

Juvenile Young Mature Old Senescent Remnant 

Jan 1992 

Juvenile 1.00 0.20 0 0 0 0.08 

Young 0 0.56 0.l3 0.09 0 0.25 

Mature 0 0.12 0.76 0.68 0 0 

Old 0 0 0.08 0.14 0.50 0 

Senescent 0 0 0 0 0 0 

Remnant 0 0 0.03 0.04 0 0.33 

Dead 0 0.12 0 0.04 0.50 0.33 
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common (29.8% of individuals) than transitions to "older" classes below the diagonal 

(16.5%). However the majority of plants (53.7%) remained in the same stage-class over 

the two year period. Transitions between adjacent classes were more common, 

involving 30.2% of individuals, than transitions between non-adjacent classes (16.1%). 

When a chi-squared test was applied, no significant difference was found between 

weeded and unweeded plants in the frequency of no change and transitions above and 

below the diagonal (X2 = 0.515, dj = 2, NS). 

(c) Among-population comparisons of stage-class frequency 

Pair-wise chi-squared tests for 392 plants in nine populations using the objective 

classes from (a) above found significant differences between pairs of populations for 

32 of the 36 comparisons of stage-class frequency distributions (Table 4.5). Four 

populations, Bankside, Cass River, Mt Sugarloaf and Porters Pass differed significantly 

from all other populations in their stage-class frequency distribution. 

Bankside was characterised by a predominance of plants in the "older" classes and a 

lack of small healthy reproductive individuals (Fig. 4.5). The stage-class frequency 

distribution of Cass River was dominated by "mature reproductive" plants with fewer 

small plants and no "senescent" or "remnant" plants (Fig. 4.6). At Porters Pass the 

population was dominated by small plants with few large reproductive or senescent 

individuals (Fig. 4.7). The stage-class profile of Mt Sugarloaf was similar to that of 

Cass River except individuals of the "young reproductive" class dominated (Fig. 4.8). 

Sugarloaf Fan, Hallelujah Flat and Cass Saddle 'B' formed a group in which stage­

class frequency distribution did not differ significantly. Their stage-class frequency 

distributions were characterised by higher frequencies of reproductive plants (Fig. 4.9). 

Cass Saddle 'A' and Cass Valley also did not differ significantly in stage-class 

frequency distribution. These populations were both characterised by high numbers of 

"juveniles" but few small reproductive plants (Fig. 4.10). 
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Table 4.5: Pair-wise X2 tests of stage-class frequency distribution among nine 

populations using objective classes defined by a discriminant function. * indicates P 

< 0.05, ** P < 0.01, *** P < 0.001 and NS indicates not significant. 

BNK CRY CSA 

CRY 92.9 

*** 

CSA 83.8 31.4 

*** *** 

CSS 68.6 11.3 23.8 

*** * *** 

CVS 58.1 27.8 8.13 

*** *** NS 

HLF 42.3 23.1 36.9 

*** *** *** 

MTS 93.2 34.1 36.7 

*** *** *** 

PPS 83.2 43.0 21.0 

*** *** *** 

SLF 49.7 17.3 29.2 

*** *** *** 

CSS 

16.9 

** 

9.91 

NS 

20.6 

** 

20.9 

*** 

5.23 

NS 

CVS 

16.6 

** 

32.5 

*** 

23.1 

*** 

13.4 

* 

HLF 

27.2 

*** 

34.0 

*** 

1.96 

NS 

MTS PPS 

16.9 

** 

22.8 24.8 

*** *** 
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Figure 4.5: Stage-class frequency distribution of F.novae-zelandiae tussocks at 

Bankside. 
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Figure 4.6: Stage-class frequency distribution of F.novae-zelandiae tussocks at Cass 

River. 
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Figure 4.7: Stage-class frequency distribution of F.novae-zelandiae tussocks at Porters Pass. 
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Senescent Remnant 

Figure 4.8: Stage-class frequency distribution of F.novae-zelandiae tussocks at Mt Sugarloaf. 
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~ Sugarloaf Fan _ Hallelujah Flat ~ Cass Saddle B 

Figure 4.9: Stage-class frequency distribution of F. novae-zelandiae tussocks at 

Sugarloaf Fan, Hallelujah Flat and Cass Saddle 'B'. 
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Ii\\1 Cass Valley _ Cass Saddle A 

Figure 4.10: Stage-class frequency distribution of F. novae-zelandiae tussocks at 

Cass Valley and Cass Saddle 'A'. 
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4.4.4 Discussion 

(a) The validity of a stage-class approach 

The discriminant analysis and analysis of variance tests indicate that the stage-class 

classification reflects real groupings within the data. An examination of the 

reclassifications made by the discriminant function provides much information on the 

manner in which the subjective classification was performed and on the life-history of 

F. novae-zelandiae individuals. 

The main factor influencing reclassifications appeared to be the differential 

weighting of characters in the subjective definition of classes. For example, all 

reproductive individuals were allocated to one of the three reproductive classes 

regardless of size, in effect weighting culm production ahead of other variables. Basal 

diameter was much more important in distinguishing "senescent" from "remnant" 

individuals than other characters whereas percent dead tillers was important in 

distinguishing "remnant" from "juvenile" individuals. Differing importances among 

characters in defining different groups is implicit in Russian-type stage-based studies 

(e.g. Gatsuk et al .. 1980) but is never commented on by the respective authors. 

The varying importance of different characters in the definition of different groups 

cannot be replicated by a multivariate technique such as discriminant analysis in which 

any character weightings must be applied consistently across all groups. Therefore 

subjective and multivariate classifications would automatically differ regardless of any 

other complicating factors. 

It was initially thought that the emphasis placed on reproduction would prove to be 

a complicating factor in classification. However, in spite of the differential treatment 

of reproductive versus nonreproductive individuals the allocation of individuals to 

reproductive versus nonreproductive classes was not a source of misclassification any 

more than would have been expected. This was probably due to the "young", "mature" 

and "old reproductive" classes also containing nonreproductive individuals. It is 

generally recognised in the age-state literature, although not always specifically stated, 

that individuals in the "reproductive" phase can be generative or vegetative during that 

period of their ontogeny (Rabotnov, 1969, 1978, 1985; Vorontzova & Zaugolnova, 

1985). This was also found for F. Ilovae-zelandiae at Sugarloaf Fan in the present study 

(section 3.2). 

If classes were defined strictly according to reproductive status intermittent 

reproduction would create problems for stage-class frequency comparisons either 

between populations or between years. 

One approach would be to ignore reproductive status and classify individuals on the 

basis of size and vigour alone as was done for Chiollochloa pallens by Rose & Platt 

(1990). However this approach results, essentially, in size classes rather than ontogenic 
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stages and the classes themselves have very low information content. 

However by assigning currently nonreproductive individuals that appear large 

enough and healthy enough to be reproductive to reproductive classes, the problem of 

intermittent reproduction is circumvented. The method of allocating these 

nonreproductive individuals is therefore more a multi-variate approach based on 

overall similarity. 

Variation among individuals in size at first reproduction and intermittent 

reproduction among small individuals would result in a lack of close correlation 

between reproduction and size in the "juvenile" and "young reproductive" classes. This 

would explain why so many reclassifications involved individuals from the "young 

reproductive" class and why this class was generally poorly defined. Intermittent 

reproduction also tends to be a feature of "old reproductive" individuals (Rabotnov, 

1985) and this class was also poorly defined with a large proportion of "old 

reproductive" individuals being reclassified. 

The low incidence of misclassification among juveniles was to be expected as this is 

the only class that can be associated at all accurately with age. However little can be 

said either about the age at which juveniles become reproductive or the age of plants 

in other classes. As is the case with most long-lived species, suppressed individuals can 

persist as small non-reproductive members of the population for considerable lengths 

of time as observed in North Canterbury short tussock grassland by Moore (1977) and 

in the present study (section 3.5). These plants can function as a store of recruits for 

when conditions become favourable (Silvertown, 1982; Chesson, 1984). 

Death of adult tussocks was infrequent in the F. novae-zelandiae population studied; 

however the deaths that were observed were concentrated in the 'older' stage-classes. 

Canfield (1957) monitored individuals of perennial grass species in Arizona over 17 

years. Four of the species he studied showed survivorship patterns of low death risk in 

middle age followed by a high risk of death as plants aged. This pattern of increasing 

mortality with age was also found in Corynephros canescens, a tussock-forming 

perennial grass of northern European sand -dunes (Symonides, 1979). In this species 

tillers often failed to form roots in old plants. Harper suggested that this lack of 

rooting was a result of the tussock habit (Harper, 1977, p591). Increasing tiller density 

and litter accumulation within an old large tussock may hinder the rooting of new 

tillers and significantly increase the death risk of the whole plant. 

The sequence of stage-classes from "juvenile" through "mature" to "remnant" can be 

interpreted as representing a series of ontogenic stages in the development of an 

individual tussock from a seedling through reproductive maturity to senescence. During 

this development tussock height increases rapidly from the juvenile stage to the mature 

stage and reaches its maximum among individuals in the mature stage-class (Fig. 4.5). 

Diameter increases more slowly and is parallelled by the accumulation of dead tillers 

within the circumference of the tussock. 
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However the presentation of a sequence of stage-classes as an ontogenic series belies the 

diversity of developmental pathways that individual plants can follow. The series of stage-classes 

represents an idealised life-history that is probably followed in full by few individuals. Under 

unfavourable conditions individual plants may stay in the "juvenile" class for long periods of time 

without increasing appreciably in size or reproducing. These individuals may appear to pass directly 

into the "remnant" class due to the gradual accumulation of dead tillers. Similarly plants that begin 

reproducing and enter the "young reproductive" class may never reach the size or fecundity levels that 

characterise "mature reproductive" individuals and instead pass directly into the "old reproductive" or 

"senescent" classes. Studies of Deschampsia caespitosa, a long-lived perennial tussock, have shown 

that remnants of larger clones can regenerate and take on the characteristics of a juvenile (Gatsuk et 

al., 1980). Given favourable conditions this no doubt occurs within populations ofF. novae-zelandiae. 

Transitions of this type as well as many others occurred within two years in the Sugarloaf Fan 

population. It is quite clear from the transition matrices constructed that developmental pathways 

among F. novae-zelandiae individuals are not only non-linear but also change dramatically over 

relatively short spaces of time. This contrast with previous descriptions of F. novae-zelandiae as slow­

growing (Sewell, 1947, 1952). 

As F. novae-zelandiae is modular in structure it is able to respond rapidly to changes in 

environmental conditions. Given the differences in transition probabilities between weeded and 

unweeded groups of plants it is obvious that year-to-year variation in environmental factors such as 

rainfall and biotic factors such as competition can have a dramatic impact on the size, vigour and 

reproductive status of individual plants. 

(b) Among-population comparisons of stage-class frequency 

In light of the above conclusions concerning the complexity of stage-class structure, between­

population differences can only be discussed with reference to short-term conditions that may have 

influenced stage-class frequencies. The stage-class profile of a population cannot be assumed to bear 

any relationship to the older establishment and disturbance history of that population except with 

reference to the numbers of individuals present. Furthermore, differences between sites in factors 

such as soil fertility would result in differences in the mean size of plants and in plant vigour so that 

the age and establishment history of the population would be of even less importance. 

Sugarloaf Fan, Hallelujah Flat and Cass Saddle 'B' all have stage-class frequency distributions 

typical of a normal population in which all stages are present and frequencies are distributed evenly 

around the mature stage (Rabotnov, 1969). These three populations also all occur within relatively 

dense montane to subalpine shrub land 
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/ grassland under moderate to high rainfall. The distribution of frequencies around the 

mature stage may therefore not be a product of the age of the population but rather of 

resource availability. The "young" and "mature" stages are the most expensive in terms 

of resources because in addition to relatively vigorous tillering, energy is also being 

allocated to culm production. The distribution of stages in these three populations may 

therefore reflect recent favourable conditions combined with recruitment to the 

juvenile stage. 

The pattern of stage-class distribution in the Cass Valley and Cass Saddle' A' 

populations can also be interpreted as reflecting environmental conditions and resource 

allocation strategies. Both sites are open, stony, exposed with poorly developed soils. 

Although rainfall is relatively high, a moisture deficiency probably occurs during 

summer. The predominance of "juveniles" may be due to an accumulation of plants 

with insufficient resources to enter larger classes by growing or producing culms. Large 

healthy "mature" plants are the most common among the three reproductive classes 

indicating that smaller or less vigorous plants lack sufficient resources to produce 

culms. 

Similar factors may have shaped the stage-class distribution of the Porters Pass 

population where rainfall is lower (1000 mm yr-1 versus 2500 mm yr-1 on Cass Saddle 

(Greenland, 1977». Here "juveniles" and smaller vigorous plants with few culms are 

more common than large plants with many culms. The difference in reproductive 

classes between Porters Pass and Cass Saddle 'A' may be due to differences in relative 

allocation to tillering versus culm production. Plants at Cass Saddle 'A' and Cass Valley 

may put more effort into culm production when they do reproduce whereas Porters 

Pass may only allocate a small portion of reserves to reproduction in anyone year 

thereby being able to reproduce while still relatively small. Such a difference in 

allocation of resources to culm production between these two populations is also 

indicated in Section 5.6. 

The stage-class frequency distributions of Bankside and Mt Sugarloaf are also 

interpretable in terms of environmental conditions combined with the presence or 

absence of recruitment. The Bankside site is the driest of the nine sites (average annual 

rainfall of 690 mm) and has the most decrepit population. The Mt Sugarloaf population 

occurs on an exposed face in subalpine grassland / shrubland and appears to be lacking 

in recruits and large plants. 

The Cass River population, on a sparsely vegetated low river terrace, may be the 

only population more affected by its establishment history than by its immediate 

environment. The stage-class profile of this population resembles a wave of 

establishment and growth with a subsequent reduction in recruitment with changing 

conditions. This scenario is perfectly reasonable in the context of riverbed successional 

dynamics and past studies have indicated that riverbed populations of F. novae­

zelandiae may each represent only a single establishment episode (Calder, 1958, 1961). 
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In summary, natural stage-based divisions do exist within populations of F. novae­

zelandiae tussocks. However life-histories are complex and individuals can change 

rapidly either "backwards" or "forwards" between classes in response to annual changes 

in biotic and climatic conditions. As a result the stage-class structure of a population is 

a product of its history and environment and recent environmental conditions in 

particular. 
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4.5 CLONAL FRAGMENTATION 

4.5.1 Introduction 

In the literature concerning F. l1ovae-zelandiae references have been made to the 

possible role of clonal spread and fragmentation in maintaining individual tussock 

numbers. The hypothesis is that as tussocks age and increase in diameter, central 

portions die and the vigorous growth around the circumference gradually breaks up 

into independent plants (Zotov, 1938; Moore, 1976; Espie, 1987). Fragmentation of this 

nature can also be facilitated by factors such as burning and grazing (Sewell, 1947) or 

insect attack (Kelsey, 1957). 

This process has already been recognised as an integral part of the life history of 

some Northern Hemisphere caespitose grasses (Chadwick, 1960; Davy, 1980; Gatsuk et 

ai, 1980; Kurchenko, 1985; Vorontzova & Zaugolnova, 1985; Zhukova & Ermakova, 

1985) and the age of some fragmented clones has been estimated as more than 1000 

years (Harberd, 1961, 1962, 1967). 

The aim of this experiment was to determine if clonal fragmentation was a factor in 

maintaining population density in F. novae-zelandiae. 

4.5.2. Methods 

A 3 m x 3 m plot was located in dense Festuca tussock grassland on the upper portion 

of Sugarloaf Fan and the position of all F. novae-zelandiae tussocks was mapped. 

Tiller clumps were collected from every individual and grown on under uniform 

condition in the University glasshouse. Isozyme electrophoresis was used to obtain a 

genetic profile of each individual based on allele presence and absence at seven reliable 

loci: PGI 1 and 2, APH 1 and 2, 6PG, MR and PGM. A full description of isozyme 

methodology and enzyme names is contained in Chapter 5.5. Isozyme analysis has 

previously been used to determine genotype identity in sward-forming grasses 

(McNeilly & Roose, 1984) and bunchgrasses (Belsky, 1986). 

The frequency of phenotypes at each locus was used to calculate the probability of 

two unrelated plants having identical isozyme profiles, because plants possessing all of 

the most common phenotypes would be more likely to appear identical even if they 

were unrelated. P < 0.01 was used as the criterion for accepting pairs or groups. 
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4.5.3. Results 

The 3 m x 3 m plot contained 121 individual tussocks of F. Ilovae-zelandiae possessing 

a total of 69 allelic combinations. Of these 69 combinations, 21 were possessed by two 

or more individuals and 14 such groups satisfied the P < 0.01 criterion. 

Four groups represented close pairs of plants ('g', 'j', 'k', 'n', Fig. 4.11). All four 

groups consisted of one large tussock and one smaller tussock and all occurred in the 

lower right-hand corner of the plot where tussock density was higher and litter more 

prevalent. In one case ('g') the plants were connected by an area of accumulated 

tussock litter. However, groups of tussocks connected by litter generally had different 

isozyme profiles and there were no rings or close groups of identical plants as would be 

expected if a clone had spread at the periphery and fragmented into separate tussocks. 

Some identical pairs and groups were relatively distant; the maximum distance observed 

between apparently identical plants was 2.9 metres. 
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Figure 4.11: Genetic identity, assessed using isozyme electrophoresis, of 121 mapped F. novae­

zelandiae tussocks in a 3 x 3 m plot on Sugarloaf Fan. Letters indicate pairs or groups of tussocks 

possessing identical isozyme phenotypes with a probability P < 0.01 that the similarity is due to 

the chance sharing of common alleles. 
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4.5.4 Discussion 

Given that forest has been absent from this site for 500 years (Molloy, 1977) and 

assuming that Festuca has been present on the site ever since, an annual spread of 6 

mm consistently in a single direction is required to account for the observed maximum 

separation of apparently identical plants. Over two years at Sugarloaf Fan tussocks in 

control plots used for a competition experiment (section 4.3) increased, on average, 8 

mm in diameter. This is clearly not a sufficient rate of expansion. However plants in 

the weeded plots increased, on average, 34.9 mm in diameter in two years, which 

equates to an average annual radial spread of 8.7 mm. This rate of expansion may be 

much more typical of the behaviour of F. novae-zelandiae when it first invaded the 

area subsequent to the removal of forest. However it is unlikely that sufficient rates of 

expansion have been maintained since the establishment of F. Ilovae-zelandiae on the 

site to account for the more distant pairs of apparently identical plants. 

Chadwick (1960) investigated clonal spread in Nardus stricta subsequent to changes 

in pasture management and found that an annual spread of 2 cm was consistent with 

the growth rate of the species and could account for the observed sizes of patches. 

However he was dealing with spread over just 40 years and the original genets were 

still intact. Given the longer time frame under consideration for the spread of F. 

novae-zelandiae at Sugarloaf Fan, a much faster rate of spread than 6 mm per year 

would have to be envisaged due to the probability that, once the original genet had 

fragmented, the individual ramets would spread and themselves fragment in random 

directions. 

It is more likely that most groups of apparently identical plants represent family 

groups resulting from crosses between similar parents and the isozyme information used 

was not sufficiently detailed to distinguish between the individuals. 

Some of the closer pairs of plants, particularly the pair connected by tussock litter 

('g'), probably represent recently separated parts of a single clone, so clonal 

fragmentation may still be occurring. However overall it would appear that clonal 

fragmentation does not contribute significantly to the maintenance of tussock density. 

While tussocks do appear to die in the centre and possibly fragment, the inequality of 

size observed among close pair of isozymically identical tussocks suggests that there are 

large differences in the vigour of fragments. On most occasions probably only one part 

of the original plant persists in the long term. 

Belsky (1986) suggested that the clonal spread of Andropogon greenwayi, a non­

stoloniferous, non-rhizomatous grass was facilitated by grazing and trampling by large 

herbivores. During the course of the present study spreading, fragmented patches of F. 

novae-zelandiae and Poa Gila were observed in areas subject to grazing and trampling. 

While mammalian grazing and trampling would not have occurred in pre-human New 

Zealand, extinct indigenous ground birds may have pulled tussock tillers in a manner 
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similar to taka he (Notornis malltelli) (Mills et al.. 1989) which can do major damage to 

tussocks (c. J. Burrows, pers. comm.). This may have facilitated the fragmentation of 

tussocks in pre-human grassland. However proliferation by clonal fragmentation is 

unlikely to have been important in the maintenance of populations of F. llovae­

zelalldiae. 
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4.6 SUMMARY AND DISCUSSION OF CHAPTER 4. 

Most of the tillers within an individual tussock of F. novae-zelandiae are replaced within two years, 

with a distinct spring / summer flush in tiller births and a spring peak in deaths. Births exceeded 

deaths among the tillers being monitored and total tillers tagged had increased 150.6% over the two 

years of the study. While the majority (63.8%) of tillers failed to produce daughter tillers some tillers 

produced as many as five daughter tillers within two years. 

As a result of vegetative regeneration, a single genet can be virtually immortal and yet consist 

of modules each only a few years old. The phalanx clonal structure of species such as F. novae­

zelandiae allows for an optimal use of resources in the immediate environment while keeping the risk 

of being supplanted by another species very low (Hutchings, 1979). 

However the competitive ability of F. novae-zelandiae, like that of Deschampsia caespitosa, is 

restricted by its growth form (Davy, 1980). The compact habit of both species restricts their area of 

interference and the density of established tussocks results in self-shading and litter accumulation that 

could affect tiller growth and survival. The competitive ability of long-lived tussock grasses is more a 

product of their ability to persist at a site and resist invasion. 

Although aggressive stoloniferous species such as Hieracium pilosella appear able to establish 

within mature tussocks, the structure of F. novae-zelandiae tussocks makes them moderately resistant 

to invasion by most adventive species. However adventive species such asAgrostis capillaris still 

appear to have a negative effect on tussock growth. Tussocks in areas where adventive species had 

been removed showed increased tillering resulting in larger size and more culms relative to plants in 

control plots. This is possibly due to increased light levels at the tussock base. If tillering is a response 

to light then the dense growth of adventive grasses around the plants being monitored could have 

acted to lessen the differences in light levels reaching tillers in small tussocks and large tussocks. 

However, no effect of self-shading in large tussocks on tillering rate was found in the tiller monitoring 

experiment. 

There was a general increase in diameter and culm production and decrease in height and 

percent dead tillers in all plants monitored from 1990 to 1992 regardless of treatment, indicating that 

the size and vigour of populations changes continually in response to the climatic and biotic 

environment. The ability of F. novae-zelandiae to change in size, vigour and reproductive status from 

year to year has important implications for the use of a stage-based approach to analysing population 

structure. While natural stage-classes differing in morphological attributes and reproductive status 

can be defined within a population of tussocks, transitions among classes are non-linear and can 

occur over relatively short periods of time in response to changes in growing conditions. 

Recruitment to the smaller stage-classes by means of clonal fragmentation and the subsequent 

survival of several parts of the original clone appears to occur within populations of F. novae­

zelandiae. However, in the grassland studied, this form of vegetative reproduction does not appear to 

be sufficiently common to constitute an important alternative to seedling recruitment as a mechanism 

of population growth. 
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The modular, high-turnover architecture of tussocks is an ideal vehicle for the expression of 

phenotypic plasticity. This is particularly the case with dense intra-vaginally tillering grasses such as F. 

novae-zelandiae which expand vegetatively in a tightly-packed phalanx form. Studies with 

dicotyledonous herbs (Schmid, 1985) have shown that phalanx species where the genet remains in a 

ftxed position rely much more on phenotypic plasticity than do guerrilla species. In the later, genetic 

specialization is not disadvantageous because the genet can 'travel' by clonal growth to ftnd 

favourable patches. 

Plastic responses, although most important at the level of the genet in terms of population 

processes, are a product of the individual responses of the independent modules (tillers or groups of 

tillers) that comprise the clone. At the level of the individual plant, genets would appear to be varying 

the number of vegetative and floral tillers in response to their environment, however this is a product 

of between-tiller variation in the initiation of vegetative and floral apices. A population of tussocks is 

essentially a meta-population of clonal populations (White, 1979) and while genetic variation is stored 

among clones, the short-term response to environment fluctuations occurs at the level of independent 

modules within clones. 

The modules that comprise a tussock clone are of course not completely independent even if 

connections between them have broken down. For example, tillers can negatively affect each other 

through intra-clonal competition (Briske & Butler, 1989) and the death of large groups of tillers can 

affect the remaining live tillers by smothering them or encouraging fungal growth. However, there are 

also positive effects associated with a closely packed arrangement and one of the most important is 

site occupancy. A ftrm, large tussock is unlikely to be invaded by other species. By assuming a tight 

phalanx habit the plant preempts biological space and is resistant to invasion unless damage or 

module death creates an opening within the clone. 

In a healthy population of tussocks in a spatially heterogeneous environment, not all plants will 

have the resources in a given year to contribute to total reproduction and many will exist as small 

suppressed individuals. The modular architecture and high plasticity in growth of F. novae-zelandiae 

means that such individuals could still contribute to the reproductive output of the population at a 

later date, under more favourable conditions. In the meantime, these individuals act as a store of 

genetic variation and source of adult recruits that can be accessed more readily than a store of seeds 

(Chesson, 1984). 

The modular architecture of perennial tussocks such as F. novae-zelandiae and the short life­

span of modules means that these plants theoretically live in a state of perpetual somatic youth 

(Harper, 1977). As a result of this the overall size, condition and reproductive output of a 
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plant is more a product of its environment over the previous few years than a result of 

its age or establishment history. Examining the stage-class profile of populations of 

modular plants such as F. novae-zelandiae is useful for predicting the future of the 

population and giving some insight into recent environmental conditions but is of 

limited use in tracing the past. One still needs to know the real age of plants before 

any study of selection, genetic change or micro-evolution can be conducted (Harper, 

1977). 



CHAPTER 5: PATTERNS OF VARIATION 

5.1 INTRODUCTION 

5.1.1 Recent evolution in F. novae-zelandiae 

Although the history of New Zealand vegetation over geological time has been 

characterised by sometimes quite rapid change, the changes that have occurred in the 

New Zealand landscape probably rival or surpass any previous event in terms of both 

magnitude and speed. There is ample evidence for the reduction and elimination of 

palatable species from certain areas during the explosive phase of pastoral development 

in the South Island (O'Connor, 1986). Even where species were not severely reduced, a 

shift in genetic constitution and range of morphologies could have occurred in any 

species of reasonable abundance in the most actively settled areas due to selection 

pressures operating on populations. 

It has been suggested by O'Connor (1986) that the tussock form of F. novae­

zelandiae is a recent phenomenon resulting from the intense selection pressure of 

mammalian herbivory and frequent fire. His arguments are based on the early 

taxonomy of Festllca species, including the usage of the term 'tussock' in species 

description and on pre-1880 assessments of indigenous grass palatability. He 

hypothesized that in the space of 50 to 60 years of European settlement the lowland 

and montane species of Festllca had gone from being a fine, highly palatable 

subdominant species with a slender, densely tufted habit to the coarse, unpalatable 

dominant tussock known today as Festuca novae-zelandiae. Tussocks are clearly visible 

in photographs of montane Canterbury dating from 1868 and 1880 (by D. L. Mundy 

and Burton Bros respectively, reproduced in Burrows, 1977a) and are also visible in 

photographs of Christchurch taken by A. C. Barker in 1860 and 1864 (held in the 

Canterbury Museum). 

O'Connor's hypothesis has important implications for this study as any 

discussion of patterns of variation within a taxon, with reference to its perceived 

history, would be invalid if that taxon in its present form was of very recent origin. 

As described in Appendix 1, early Festllca taxonomy was confused and 

characterised by 'lumping' of taxa. Therefore early assessments of grass palatability 

cannot be taken as necessarily referring to particular present-day species. Arguments 

that recent evolution has occurred within Festllca based on taxonomy and palatability 

alone are therefore invalid. 

However as pointed out by O'Connor, the term 'tussock' was never applied to 

New Zealand species of Festllca initially grouped under F. dllrillsclila. This does not 

mean that there were no tussock Festllca species in New Zealand prior to 1880. It 

simply may not have been used in formal taxonomic description. The EuropeanF. 

109 



duriuscula on which the New Zealand taxon was based would never have been 

described as a 'tussock' as this was a term peculiar to New Zealand. Secondly as New 

Zealand F. dllriuscula contained a range of entities (see Appendix 1) the tussock 

growth-form would not have been a diagnostic character of the whole group. 

Poa cita (known then as Poa caespitosa or Poa australis var laevis) was the 

grass most often referred to as 'tussock' (e.g. Buchanan, 1868; J. F. & J. B. Armstrong, 

1872; J. B. Armstrong 1880; Buchanan, 1880), however Festllca species occurred with 

Poa Gita on the Canterbury Plains and Banks Peninsula (J. F. Armstrong, 1870; J. B. 

Armstrong, 1880). That the two species were of similar abundance is indicated by J. B. 

Armstrong's (1880) description of the vegetation of the Canterbury Plains and foothills 

to 2000 feet: "Grasses form here the principal part of the vegetation ... The most 

abundant grasses are the tussockgrass, Poa caespitosa etc., an undescribed species of 

fescue usually referred to Festllca durillscllia Linn., by most New Zealand collectors .. 

. The vegetation of the downs does not differ materially from that of the plain." 

In the species list appended to his report, Armstrong lists both P. caespitosa 

and F. sp (F. duriuscula Hook. f. non Linn.) as abundant in the lowland and montane 

zones. A later report by Laing in 1918 identifies the abundant species of Festllca on 

Banks Peninsula, referred to F. dwillscliia by the Armstrongs, as F. novae-zelandiae. 

Despite the lack of specific reference to a tussock Festllca in the early botanical 

literature, there is no reason why F. novae-zelandiae as it is today was not already 

present in the flora prior to European settlement. Petrie noted in 1895 that the common 

Festllca, then still referred to F. dlllillscllla, was being confounded by some botanical 

workers and most settlers with Poa Gita. This would suggest that the common Festllca 

was also a tussock. In a situation analogous to manuka and kanuka, Festuca novae­

zelandiae appears to have been regularly lumped with P. cita during the early decades 

of New Zealand botany. 
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5.1.2 Variation in present-day New Zealand tussock Festuca. 

Over half of New Zealand's grass genera, including Festuca, are cosmopolitan or 

tropical, however the majority of species are endemic. This pattern of generic 

relationship to world floras and specific endemism is apparent in many other New 

Zealand genera (e.g. Epilobiu11l and Ramlllcllllls) and is usually taken to indicate recent, 

rapid evolution (Raven, 1973). 

Some New Zealand grass genera also show a high degree of interspecific 

fertility and there are uniform chromosome numbers in some large genera such as 

Chionochloa (Connor, 1991) and Poa (Edgar, 1986). This may indicate not only recent 

radiation but also the potential importance of interspecific recombination of genetic 

material (Raven, 1973). 

The frequent changes in habitat conditions and consequent vegetation migration 

that has characterised the recent geological history of New Zealand may have been a 

factor in the evolution of only partly genetically isolated ecologically-differentiated 

biotypes within certain genera. Limited gene-flow between such entities may have been 

important in the adjustment to glacial cycles, as recombinants might be able to respond 

to altered conditions more rapidly than genetically isolated taxa (Anderson & Stebbins, 

1954). Ogden (1989) has suggested that limited gene-flow between ecologically distinct 

taxa contributed to the survival of certain tree species during Pleistocene oscillations. 

Such groups of taxa where the number and characteristics of differentiated entities 

have varied through time are often best regarded as 'coenospecies' sensu Clausen et al., 

(1939, 1940) and Fisher (1965) . 

. Festuca is a large genus; world-wide it contains about 500 species. However the 

genus is represented in New Zealand by relatively few species; Cheeseman (1925) 

described seven and Druce (1989) listed five formally described species and four 

informal ta.'{a. Despite being a cosmopolitan genus, Festllca holds to the pattern 

described above, of endemism at the species level. All of the New Zealand species of 

Fesmca, except F. contracta which has a southern circumpolar distribution, are endemic 

to the New Zealand Botanical Region. 

In northern hemisphere Festllca, specific delineation is often indistinct and 

considerable subspecific variation has been described in some taxa (Stace, 1989; 

Wilkinson & Stace, 1991). Likewise New Zealand Festzlca appears to contain variable 

species with indistinct boundaries. F. novae-zelandiae is the most widespread 

indigenous Festllca and exhibits both of these features. 

F. novae-zelandiae is closely related to and often difficult to distinguish from 

Festzlca matthewsii Chees.; as detailed in Appendix 1 these two species were initially 

both described as varieties of F. ovina. F. Ilovae-zelandiae and F. matthewsii 

undoubtedly arose from a common genetic stock during the climatic fluctuations of the 
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Pleistocene. Due to ecological specialisation it is likely that they evolved allopatrically (Connor, 

1968). 
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In present-day New Zealand F. matthewsii is a tussock of higher rainfall areas of South Island, 

occurring in the sUbalpine to alpine zone east of the Southern Alps (Plate 3) (Connor, 1961,1964, 

1965). 

Both F. novae-zelandiae and F. matthewsii are hexaploid (2n = 6x = 42) and represent the 

lowest ploidy level found so far in the New Zealand species of Festuca (Beuzenberg & Hair, 1983). 

The two species can be easily crossed to produce fertile hybrids (Connor, 1968) and are 

morphologically very similar in habit and leaf anatomy (Connor, 1960). Both species are out-crossing 

andF. novae-zelandiae has been shown to be virtually self-incompatible (Connor & Cook, 1955; 

Connor, 1960). The distributional boundary between F. novae-zelandiae and F. matthewsii is often 

indistinct, particularly in the mountains of central South Island. 

It has often been suggested that the ecological amplitude of widespread species is, at least in 

part, due to their variability and ability to form races adapted to local conditions (Van Valen, 1965; 

McMillan, 1967). F. novae-zelandiae is widespread today and Cockayne and Allan (1934) made the 

comment that the name F. novae-zelandiae was applied to a "very complex group of jordanons 

(variants) and hybrids that had not been satisfactorily analyzed". 

The contraction and expansion in range of F. novae-zelandiae over the last 100,000 years - i.e. a 

glacial-interglacial cycle - is not dissimilar to range changes that must have occurred with the climatic 

fluctuations that have characterised the last 2 million years. This type of process, occurring with 

repeated climatic changes and over thousands of years, is fertile ground for rapid evolutionary change 

and speciation (Grant, 1971). Similarly the range expansion and invasion of newly-formed sites by 

previously small populations, as has happened with F. novae-zelandiae in the last 1000 years, is also an 

evolutionary opportunity. 

There is evidence that differentiation within F. Ilovae-zelandiae has occurred both in pre­

human and recent time-frames. A distinct high altitude form of F. novae-zelandiae has been 

recognised that is most probably of pre-human origin and occurs above timberline on the drier 

eastern mountains (Plate 4). It is fully compatible with 10wlandF. novae-zelandiae but differs 

morphologically (Connor, 1960, 1968; Connor & Edgar, 1986) and physiologically (Scott, 1970). 

Espie (1987) found differences in nutrient uptake among populations of F. novae-zelandiae in 

a controlled fertilizer experiment. The populations originated from induced grasslands in the Cass 

area on soils of different ages. The differences that Espie found could represent adaptation to local 

nutrient availability that has evolved within the 500 years those sites have been without forest. 
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The aim of this section is to investigate the degree of differentiation that has 

occurred within F. llovae-zelalldiae with reference to its pre-human and recent 

distribution and examine the relationship between F. Ilovae-zelalldiae and F. matthewsii 

.to see what it reveals about the evolutionary history of this group. 

In the following section I will be comparing the vegetation association, 

morphology, biochemistry and phenology of three taxa, treating "high altitude" F. 

llovae-zelandiae as a separate taxon alongside F. novae-zelandiae s.s. and F. matthewsii. 

This does not imply that I consider it to be a distinct species or subspecies but rather 

that it represents variation on a lower taxonomic scale than that between F. novae­

zelalldiae and F. matthewsii. 
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5.2 VEGETATION COMPOSITION AT SITES CONTAINING TUSSOCK FESTUCA. 

5.2.1 Methods 

Forty-two sites containing tussock Festllca were selected in mid-Canterbury to cover a 

range of environments from the Main Divide of the Southern Alps to the Canterbury 

Plains (see Fig. 2.1, Chapter 2 for site locations). All sites were at least two kilometres 

apart. 

Slope (measured with an Abney level), aspect (compass reading), altitude (read 

from a topographic map) and tussock density were recorded at each site. At each site 

four 2 m x 2 m plots were randomly located. Within each plot the abundance of all 

vascular species present was recorded in the following cover classes: 1 = < 1 % total 

cover within a plot; 2 = 1 - 5% cover; 3 = 6 - 10% cover; 4 = 11 - 25% cover; 5 = 26-

50% cover; 6 = 51- 75% cover and 7 = 76 - 100% cover. For analysis, species were 

assigned the median value of the cover class (i.e. 1 = 0.5%, 2 = 3%, 3 = 8%, 4 = 18%, 5 

= 38%, 6 = 63%, and 7 = 88%) and values from the four plots averaged for each site. 

The total percent cover of vascular vegetation, cryptogams, litter and rocks or stones 

was estimated to the nearest 5%. 

The mean annual rainfall of each site was obtained either from a nearby 

climate station (New Zealand Meteorological Service, 1982) or estimated from a rainfall 

isohyet map of the area (Greenland, 1977). Mean annual minimum, maximum and 

mean temperatures were estimated for each site using the regression equations of 

Norton (1985). 

One-way analysis of variance was used to test for significant differences 

between sites containing F. Ilovae-zelandiae s.s., "high altitude" F. novae-zelandiae and 

F. matthewsii in environmental factors and attributes of the vegetation. 

Detrended Correspondance Analysis as implemented by CANOCO (Ter Braak, 

1990) was used to investigate trends in the vegetation of the 42 sites. Measured 

environmental factors were correlated with the first two axes from the ordination of 

sites by species. 

Simultaneous classification of the 42 sites was performed using TWINS PAN 

(two-way indicator species analysis), a polythetic divisive technique (Hill, 1979) that 

classifies sites into broadly similar vegetation types based on the presence and 

abundance of species. Default options were used in both analyses. 
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5.2.2 Results 

Relatively unmodified sites containing tussock Festllca were typically stream and river 

terraces, fans, open exposed areas and stabilised margins of debris slopes regardless of 

rainfall, altitude or taxon. Tussock Festllca, usually F. llovae-zelalldiae S.S. also 

occurred on hill slopes and older surfaces where the forest cover had been removed. 

The 42 selected sites ranged in altitude from 65 m asl to 1420 m and in rainfall 

from 690 mm to 6000 mm per annum. Sixteen sites contained popUlations of F. 

matthewsii, six contained plants referable to "high altitude" F. llovae-zelalldiae and the 

remaining 20 sites contained F. llovae-zelalldiae S.S. Seven populations (DIS, GRE, 

HLF, LMR, SVY, UHR and WSH), while being assigned to either F. llovae-zelalldiae 

S.S. or F. matthewsii, possessed morphological attributes of both species. 

Sites at which the three taxa occurred differed significantly in altitude, annual 

rainfall and temperature (Table 5.1). Sites containing F. llovae-zelalldiae S.S. had the 

lowest mean altitude and rainfall. Sites containing "high altitude" F. llovae-zelalldiae 

had the highest mean altitude but were also dry and sites containing F. matthewsii were 

intermediate in altitude but had the highest mean rainfall. 

Mean vegetation cover per site ranged from 42% to 96.5% and was significantly 

lower at sites containing F. matthewsii and the "high altitude" form of F. novae­

zelalldiae than for sites containing F. llovae-zelalldiae s.s. (Table 5.1). 

Total cover abundance of adventive species per site ranged from 0 to 112% 

(values in excess of 100% are due to multiple layers within the vegetation) and differed 

significantly between taxonomic groups with F. novae-zelandiae sites having the 

highest mean adventive cover abundance and sites containing the "high altitude" form 

of F. Ilovae-zelandiae the lowest. 

Mean tussock density varied from 0.31 to 10.2 m-1 and did not differ 

significantly between the three taxonomic groups. There was also no significant 

difference between the three taxa in the site attributes of slope, aspect, and percent of 

ground covered by cryptogams or litter. 

A total of 214 species was recorded from the 42 sites; however, 66 of these 

represented single plot occurrences or were of very low cover value (typically < 1 % in 

two or three plots) at single sites. Ordination was performed on the remaining 148 

species with the exclusion of F. matthewsii and F. novae-zelalldiae s.l. so as not to 

force differentiation between sites. 

There was a wide range of vegetation types between the 42 sites and as a result 

the first two axes of the DCA ordination accounted for only 16% of the variation in 

the species data. However, the spread of sites against axes 1 and 2 (Fig. 5.1) 

corresponded reasonably well to taxonomic groups. The first axis separated sites 

containing popUlations of "high altitude" F. llovae-zelalldiae were separated from sites 

containing F. novae-zelandiae s.s. The second axis separated F. novae-zelandiae 
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Table 5.1: Attribute means of 42 sites containing populations of F. novae-zelandiae S.s., "high 

altitude" F. novae-zelandiae and F. matthewsii and results from one-way analyses of variances. 

Different superscripts indicate a significant difference between means in a row. NS = not 

significant. 

Attribute F.novae-zel. high alt. F. matthewsii F P< 

No. of sites sampled 20 6 16 

% Adventive cover 38.7b 1.23a 15.9a 6.26 0.01 

Altitude (m) 738a 1278e 907b 16.1 0.001 

Annual Rainfall (mm) 163Qa 1790a 4750b 42.0 0.001 

Aspect (degs. from N) 47.2 70.0 50.2 0.38 NS 

% Bare Ground 1.6ab 3.5b 0.2a 4.08 0.05 

% Cryptogamic cover 9.3 4.6 9.2 0.66 NS 

% Litter ground cover 3.0 3.2 3.8 0.22 NS 

Mean maximum temp. 13. Ie 9.71a 11.8b 18.5 0.001 

Mean temperature 8.18e 5.47a 7.45b 16.5 0.001 

Mean minimum temp. 3.26b 1.20a 3.07b 13.9 0.001 

Slope (degrees) 2.61 4.17 5.39 1.13 NS 

% Stony/rocky ground 4.9a 24b 21b 7.77 0.01 

Vegetation cover (%) 81b 65a 66a 6.99 0.01 

Tussock density (m-2) 3.87 1.95 3.67 1.27 NS 

Table 5.2: Pearson coefficients for correlations between site attributes and the first two ordination 

axes from a Detrended Correspondance Analysis of 42 sites containing tussock Festuca using the 

cover abundances of 146 species. 

Variable AXIS 1 p< AXIS 2 p< 

% Adventive cover -0.80 0.001 0.22 NS 

Altitude 0.79 0.001 -0.06 NS 

Annual rainfall 0.24 NS -0.71 0.001 

Aspect 0.30 NS 0.10 NS 

Mean max. temperature -0.80 0.001 0.11 NS 

Mean min. temperature -0.72 0.001 -0.12 NS 

Mean temperature -0.79 0.001 0.02 NS 

Slope 0.43 0.01 -0.13 NS 

Total vegetation cover -0.44 0.01 0.37 0.05 



s.l. sites from F. matthewsii sites. Populations of tussocks referred to one of the two 

species but possessing some morphological characters of the other, occurred in the area 

of overlap in vegetation type between the two species. 

The spread of sites along the first ordination axis was most highly correlated 

with variation in mean maximum temperature and the cover abundance of adventive 

species at each site (Table 5.2, Fig. 5.1). Variation in the altitude of sites was also 

highly correlated with this axis as were mean and minimum temperatures. The second 

ordination axis was most highly correlated with variation in annual rainfall. 

TWINSP AN was performed using all 210 species in the dataset. After inspection 

of the results the first three levels of divisions were accepted giving a total of eight 

groups (Fig. 5.2). The first division appeared to be primarily related to the abundance 

of adventive species; Trifolium l'epens and high values for Anthoxanthul7l odoratul1l 

characterised one side of the division and two indigenous species (Celmisia spectabilis 

and Lycopodium fastigatlllll) characterised the other. 

All of the 6 sites containing "high altitude" F. novae-zelandiae occurred on the 

side of the primary division associated with indigenous species (Fig. 5.2). Sixteen of the 

20 F. novae-zelandiae s.s. sites occurred on the side of the primary division associated 

with adventive species. The 16 F. matthewsii sites were distributed on either side of the 

primary division. 

Groups 1 and 2 were distinguished from groups 3 and 4 by the presence of 

Muehlenbechia axillmis, a common species of drier, stony sites such as river terraces 

and floodplains. High values ofAgrostis capillal'is, an abundant adventive grass, were 

associated with groups 3 and 4. 

The seven sites in group 1 (Fig. 5.2) were all F. novae-zelandiae sites on river 

terraces, fans and hill slopes and five of the seven were sites that had probably 

supported forest prior to the arrival of humans in New Zealand. Group 2 sites occurred 

mainly on fans and river terraces. All of the sites in group 1 and group 2 were 

characterised by abundant adventive grasses and included the lowest rainfall sites in the 

dataset. The F. novae-zelandiae sites in these groups represented typical short tussock 

grassland in montane mid-Canterbury. 

Sites classified into group 3 were typically stony river terraces in mainly higher 

rainfall environments which contained relatively high amounts of adventive species. 

Group 4 consisted entirely of F. matthewsii sites at medium altitudes that possessed 

some adventive species. 

Groups 5 and 6 were distinguished from groups 7 and 8 by the presence of 

Deyelcda avenoides, an indigenous grass of eastern, montane, short-tussock grassland 

and stony sites, and the absence of Chionochloa pal/ens, an indigenous alpine grass 

more common in higher rainfall portions of the study area. 

Groups 5 and 6 contained the four remaining F. novae-zelandiae sites and all 

of the "high altitude" F. Ilovae-zelalldiae sites. The F. Ilovae-zelandiae sites on this side 
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Figure 5,1: Axes 1 and 2 from an ordination of 42 sites containing tussock Festllca 

using cover abundance values for 146 species, 
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Figure 5.2 : TWINSPAN classification of sites containing tussock F estuca. 

Numbers after indicator species are abundance: 1=<27., 2=2-<57., 3=5-<107.. 



of the primary division represent the highest altitude F. Ilovae-zelalldiae sites in the 

dataset. Group 6 contained the highest altitude sites of all sites surveyed. 

Groups 7 and 8 consisted of the remainder of the F. l7latthewsii sites. These 

sites represent open alpine grassland / shrub land communities on stony slopes in a high 

rainfall environment on or close to the Main Divide. 
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5.2.3 Discussion 

Trends in the vegetation composition of the sites sampled reflected environmental 

gradients in altitude, rainfall and temperature associated with the large-scale 

topography of the study area. However the effect of human-induced modification and 

the invasion of adventive species was also important in determining the vegetation of 

sites. 

The recent changes that have occurred in grassland communities, particularly at 

lower altitudes, limit the amount of information that can be extracted from an analysis 

of the vegetation. The invasion of adventive species has decreased vegetation diversity 

among sites at lower altitudes and in settled parts of the study area. The longevity of 

genetic individuals of F. novae-zelalldiae and their ability to adjust plastically to 

environmental change through time (section 4.4) means that the present vegetation 

composition of a site does not necessarily indicate the conditions that favoured F. 

novae-zelandiae establishment. When the plants at a site established, the vegetation of 

that site may have been different and their subsequent survival may be due to 

plasticity in growth responses rather than adaptation to that particular vegetation type. 

However despite the strong influence of adventive species on the separation of 

sites by ordination, the observed ecological separation of F. l1latthewsii and F. novae­

zelandiae is supported by differences in the environment and the vegetation in which 

they occur. The association between apparently intermediate populations and shared 

vegetation types strongly suggests that the boundary between F. l1latthewsii and F. 

novae-zelandiae is not clear cut but is affected by environmental factors. 

Populations referred to "high altitude" F. novae-zelalldiae were also relatively 

distinct in terms of vegetation from the remaining F. novae-zelalldiae populations 

sampled. There appears to be more overlap in vegetation composition between F. 

l1latthewsii and F. novae-zelandiae sites than there is between sites containing "high 

altitude" F. novae-zelandiae and F. Ilovae-zelalldiae S.S. This would support the 

hypothesis that this "high altitude" form represents an ecologically distinct entity within 

F. llovae-zelandiae. 
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5.3 MORPHOLOGICAL VARIATION 

5.3.1 Methods 

(a) Variation among 42 populations in 40 characters. 

In the summer of 1990/91 tussock populations at each of the 42 sites in section 5.2 were sampled. At 

each site, ten reproductive tussocks were randomly selected and a clump of at least five tillers with at 

least one culm was collected from each individual. The sites covered all three of the taxonomic 

groups discussed in section 5.1. Sixteen contained populations of F. mattlzewsii, six contained plants 

resembling the "high altitude" form of F. novae-zelandiae and the remaining 20 sites were F. novae­

zelandiae sensu stricto. Seven populations (DIS, GRE, HLF, LMR, SVY, UHR and WSH), while 

being assigned to either F. novae-zelandiae s.s. or F. matthewsii, possessed morphological attributes 

of both species. Representative material of all populations was deposited in the University of 

Canterbury herbarium. Accession numbers are tabulated in Appendix 2. 

The material from each of the 420 individuals was examined for 40 quantitative 

morphological characters covering both vegetative and floral characters (Table 5.3). Individual values 

for each character were then averaged to give a mean value for the population. The material was 

initially examined fresh, then pressed and dried for detailed morphological examination. 

Characters of the sheath and lamina were measured on the oldest intact green leaf on a 

randomly selected tiller. Lamina adaxial hair length was measured immediately above the ligule. The 

structures referred to as 'hairs' ranged from stiffly strigose hairs and acute 'prickle teeth' to rounded 

'dewy' structures. Lamina width and abaxial hair length and density were measured at the mid-point 

between ligule and lamina apex. 

All remaining characters were measured on the longest culm present. Width, hair length and 

hair density on the upper (3rd) culm internode were measured 1 cm below the first inflorescence 

node. Hair length and density on the inflorescence rachis, branch and pedicel were measured on the 

faces as opposed to the edges (these structure are variously biplanar, plano-convex or trigonous). 

Characters of the pedicel and spikelet were measured on the penultimate spikelet of the second 

inflorescence branch, the first branch being the basal branch. All floret characters were measured on 

the second floret on this spikelet. 

All measures of hair density were 0.06 mm-2. Hair length and density were measured under 

40x magnification using a gradicule. Lamina, culm and rachis width and the length of glumes, palea, 

lemma and awn were measured under lOx magnification using a gradicule. 

One-way analysis of variance was used to test each character for significant differences 

between the three taxa. Principal Components Analysis as implemented by CANOCO and using 

default options, was used to investigate the relationships between populations and between 

morphology and environmental gradients. In addition, the 40 morphological characters were used as 

pseudo-environmental variables in order to discern which characters were most strongly correlated 

with the ordination axes. Likewise the first two ordination axes of a Detrended Correspondance 

Analysis of the same 42 sites by vegetation composition (section 5.2) were included in the principal 
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Table 5.3: Character means for F. novae-zelandiae s.s., "high altitude" F. novae-zelandiae and F. 

matthewsii with results from one-way ANOVA tests. Superscripts indicate significant differences 

using LSD tests. NS = not significant. 

CHARACTER F. novae-zel. "high altitude" F. matthewsii F p< 

Pops./plants sampled 20/200 6/60 16/160 

Sheath length (cm) 8.95 7.90 7.90 2.67 NS 

Lamina: 

length (cm) 21.8b 17.9a 19.4a 5.79 0.01 

width (mm) 0.54a 0.58ab 0.62b 12.6 0.001 

adaxial hair length (mm) 0.09 0.09 0.09 0.14 NS 

abaxial hair length (mm) 0.04b 0.04b O.OOa 81.5 0.001 

" hair density (0.06mm-2) 2.27b 1.37b 0.14a 29.4 0.001 

Auricle length (mm) 0.57 0.65 0.67 2.29 NS 

Ligule length (mm) 0.39a 0.50b 0.54b 10.3 0.001 

Culm: 

lower sheath length (cm) 9.22b 8.09a 8.24a 4.75 0.05 

upper sheath length (cm) 12.1c 9.54a 11.3b 7.31 0.01 

1st internode length (cm) 2.18a 1.79a 3.30b 11.7 0.001 

2nd internode length (cm) 5.11a 4.25a 6.71b 6.32 0.01 

3rd internode length (cm) 30.5b 21.5a 27.2ab 4.92 0.05 

3rd internode width (mm) 0.69 0.65 0.68 0.28 NS 

3rd int. hair length (mm) 0.04b 0.04b O.OOa 63.8 0.001 

" hair density (0.06mm-2) 5.67b 4.58b 0.53a 46.2 0.001 

Inflorescence: 

length (cm) 12.8b 8.98a 12.6b 12.7 0.001 

number of nodes 7.36b 6.48a 6.89a 6.47 0.01 

number of spikelets 14.3b 10.1a 13.1b 6.25 0.01 

1st internode length (cm) 4.37b 2.98a 4.04b 14.8 0.001 

Rachis: 

width (mm) 0.58 0.58 0.62 1.33 NS 

hair length (mm) 0.04b 0.05b O.01a 38.4 0.001 

hair density 6.58b 5.33b 1.09a 42.4 0.001 

1st inflorescence branch: 

length (cm) 5.46b 3.60a 6.52c 22.0 0.001 

angle (degrees) 15.5a 10.3a 50.6b 21.2 0.001 

hair length (mm) 0.05b 0.05b 0.02a 34.2 0.001 

hair density (0.06mm-2) 5.70b 4.94b 1.79a 28.1 0.001 

number of spike lets 3.93b 2.71a 4.10b 8.82 0.001 

dist. 1st spikelet (cm) 2.09b 1.35a 3.07c 29.4 0.001 
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Table 5.3: continued. 

CHARACTER F. novae-zel. "high altitude" F. matthewsii F p< 

Pedicel : 

length (mm) 2.10a 2.14a 3.37b 22.6 0.001 

hair length (mm) 0.04b 0.04b 0.02a 18.3 0.001 

hair density (0.06mm-2) 4.42b 3.97b 1.16a 13.3 0.001 

Spikelet: 

length (mm) 10.la 10.7ab 1l.lb 8.58 0.001 

number of florets 4.77 4.62 4.71 0.19 NS 

1st glume length (mm) 5.06a 5.14a 5.40b 11.1 0.001 

2nd glume length (mm) 3.65a 3.79a 4.06b 13.3 0.001 

Floret: 

awn length (mm) 0.85a 0.96ab 1.23b 5.04 0.05 

palea length (mm) 5.54a 5.88b 6.12b 15.4 0.001 

lemma length (mm) 5.55a 5.75a 6.12b 18.3 0.001 

lodicule length (mm) 0.84a 0.95b 0.95b 7.71 0.01 

Table 5.4: Attributes of eight sites in the upper Waimakariri River. Map references are for NZMS 

260 series. Rain = annual rainfall estimated from isohyets. 

Site Dist up Location Alt. Rain Other important species 
valley. (m) (mm) 

Riversdale Okm K34076100 540 1500 Discaria toumatou. Coprosma 

petriei, adventive grasses 

Klondike 2km K34947985 635 2000 Discaria toumatou. Hieracium 

pilosella adventive grasses 

Anticrow 4km K34900991 680 2500 adventive grasses, Trifolium spp 

Muehlenbeckia axillaris 

Greenlaw 5km K33852007 740 3750 Raoulia spp, Pernettya 

macrostigma, adventive grasses 

Waimakariri 6km K33841028 770 4000 adventive grasses, Poa colensoi, 

Muehlenbeckia axillaris 

Carrington 7km K33835042 800 4500 Raoulia spp, Pernettya 

macrostigma, Coriaria plumosa 

Kilmarnock 8km K33818042 880 5000 Raoulia spp, adventive grasses, 

Muehlenbeckia axillaris 

White River 9km K33810030 1050 5500 Poa colensoi, Blechnum penna-

marina, Muehlenbeckia axillaris 
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components analysis as pseudo-environmental variables in order to test the degree of concurrence 

between the two ordinations. 

The role of environmental gradients in altitude, rainfall and temperature in the observed 

patterns for particular characters was examined using stepwise linear regression. The methods used 

to obtain rainfall and temperature data are detailed in section 5.2. 

(b) Variation at the boundary between F. novae-zelandiae and F. matthewsii. 

The nature of the boundary between F. matthewsii and F. novae-zelandiae in the upper Waimakariri 

catchment was examined. The Waimakariri River is a braided river system and changes in the course 

of channels leave isolated river terraces which are colonised by a range of species including Festllca 

species. At lower altitudes, roughly below 700 m, plants clearly belong to F. llovae-zelalldiae s.s .. In 

the head waters of the Waimakariri above about 900 m, and in a tributary, White River, plants were 

clearly referable to F. matthewsii. However populations at intermediate altitudes in the river valley 

display varying degrees of affinity to each of the two species. 

Six populations from the sample of 42 populations used in (a) occurred in a sequence from 

540 m to 1050 m altitude in the Waimakariri and White Rivers. The morphological data described in 

(a) was used to investigate the nature of the boundary between F. novae-zelandiae and F. matthewsii 

along this sequence. Two additional populations in the Waimakariri and White River valleys, 

Waimakariri at 770 m and Kilmarnock at 880 m were sampled in the same manner in order to 

increase the representation of populations in the transition zone. Distances between populations 

decreased with increasing altitude, however all populations were at least 1 kilometre apart. 

The sequence examined therefore consisted of eight populations in sites ranging in altitude 

from 540 m to 1050 m in comparable habitats but under increasing annual rainfalls at higher altitudes 

(Table 5.4). Representative material of all populations was deposited in the University of Canterbury 

herbarium. Accession numbers are tabulated in Appendix 2. 

Mean values for lamina length, lamina abaxial hair density, culm height and upper culm 

internode hair density were calculated for each site. In addition the proportion of individuals at each 

site with glabrous leaves and culms was determined. 

(c) Attributes of 18 populations in cultivation. 

Plants from 18 of the 42 populations were grown on under uniform conditions in the University 

shadehouse for a year. The plants were in pots filled with standard potting mix. They were watered 

regularly and were exposed to full sunlight. 

Twelve of these populations had already been selected for cultivation to provide material for 

isozyme analysis (section 5.5) and material consisted of at least 10 individuals per population. 

Logistical constraints prevented the cultivation of a similar amount of material from all 42 

populations so a subsample of six additional populations was selected and at least two plants brought 

into cultivation from each population. The additional material consisted of two populations of "high 

altitude" F. novae-zelalldiae, two F. matthewsii populations and two populations situated along the 
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sequence of sites in the upper Waimakariri. After a year in cultivation 128 healthy individuals were 

remeasured for a subset of vegetative characters. No floral characters were remeasured as not all of 

the material flowered in cultivation. 

Paired T-tests were used to compare initial measurements with measurements taken after a 

year in cultivation. 
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53.2 Results 

(a) Variation among 42 populations for 40 characters. 

The 40 characters measured differed in the amount of variation present. Some characters such as 

lamina adaxial hair length remained virtually static for all populations while others showed substantial 

among-population variation. One-way analysis of variance found significant differences between the 

three taxa for 34 of the 40 characters (Table 5.3). 

F. matthewsii and F. novae-zelandiae s.s. differed significantly in 28 characters. F. matthewsii 

and "high altitude" F. Ilovae-zelandiae differed significantly in 24 characters. "High altitude" F. novae­

zelandiae differed significantly from F. novae-zelandiae s.s. in 15 characters, most of which were 

associated with the size or numbers of vegetative or reproductive parts. 

Principal components analysis using the 40 morphological characters produced a good 

separation of the 42 sites. The first ordination axis accounted for 87% of the total variation present 

within the data and was strongly associated with inflorescence branching angle and overall scabridity 

(hair densities) (Fig. 5.3, Table 5.5). F. novae-zelandiae s.l. and F. matthewsii were most distinct with 

reference to this axis. One population of F. novae-zelandiae s.s. (HLF) occurred on the far right of 

the ordination with the F. matthewsii populations. This was due to the very wide branching angles 

among individuals in this population. The mean branching angle for the population was 95.7 ± 37.00 

which was the highest mean value recorded. 

The second principal components axis accounted for a further 8% of the variation in the 

data and was related to factors of overall size which included length of leaf blade and height of culm. 

F. novae-zelandiae s.s. and "high altitude" F. novae-zelandiae were separated mainly with reference to 

this second axis (Fig. 5.3, Table 5.5). 

Altitude, temperature and rainfall were strongly correlated with overall morphological 

trends (Fig. 5.4, Table 5.5). Rainfall was associated most strongly with the first axis and therefore with 

the separation of F. novae-zelandiae and F. l11atthewsii. Altitude and maximum annual temperature 

were most strongly associated with the second axis and therefore with the separation of F. novae­

zelandiae s.s. and "high altitude" F. novae-zelandiae. 

The first two axes from an ordination of the 42 sites by vegetation composition (section 5.2) 

were significantly related to the ordination of the same sites by morphology (Fig. 5.4). The first 

morphological axis was significantly correlated with the second vegetation axis and the second 

morphological axis was significantly correlated with the first vegetation axis (Table 5.5). 

Stepwise regression was used to develop explanatory models for 5 characters; lamina length, 

lamina abaxial hair density (used as a measure of lamina scabridity), branch angle, 3rd culm 

internode length and 3rd culm internode hair density (used as a measure of culm scabridity). These 

characters were selected to represent the general trends in size and scabridity identified by principal 

components analysis. 

Variation among the sites in maximum annual temperature explained 42% and 35% 

respectively of the variation in lamina length and 3rd culm internode length among all 42 populations 

(Table 5.6a). When populations of F. matthewsii were omitted from the analysis the amount of 
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Figure 5.3: Axes 1 and 2 from a Principal Components Ordination of 42 populations of tussock 

Festuca by 40 morphological characters. The direction and magnitude of trends in selected 

characters are superimposed. LHD = lamina abaxial hair density, LL = lamina length, CIL = 3rd 

culm internode length, BA = 1st inflorescence branch angle. 
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Figure 5,4: Axes 1 and 2 from a Principal Components Ordination of 42 populations 

of tussock Festzlca by 40 morphological characters, The direction and magnitude of 

trends in environmental variables and a'{es 1 and 2 from an ordination of the 42 

sites by vegetation composition are superimposed. 
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Table 5.5: Pearsons coefficients from correlations of Axes 1 and 2 of a PCA ordination of 42 

tussock Festuca populations by morphology with (a) morphological characters, (b) environmental 

variables and (c) Axes 1 and 2 from a DCA ordination of the 42 sites by species composition. 

VARIABLE AXIS 1 p< AXIS 2 p< 

(a) 

Lamina length -0.29 NS 0.73 0.001 

Lamina abaxial hair density -0.56 0.001 0.43 0.01 

3rd culm internode length -0.10 NS 0.95 0.001 

3rd culm int. hair density -0.75 0.001 0.26 NS 

upper culm sheath length -0.68 0.001 0.76 0.001 

Spikelets per inflorescence 0.30 NS 0.76 0.001 

1st inflor. branch angle 1.00 0.001 0.02 NS 

(b) 

Altitude 0.05 NS -0.64 0.001 

Annual rainfall 0.76 0.001 -0.19 NS 

Mean max. temperature -0.10 NS 0.66 0.001 

( c) 

Vegetation DCA Axis 1 0.06 NS -0.58 0.001 

Vegetation DCA Axis 2 -0.53 0.001 0.11 NS 

Table 5.6: Coefficients from step-wise regression of morphological characters on environmental 

variables for (a) 42 populations of F. novae-zelandiae s.s., "high altitude" F. novae-zelandiae and 

F. matthewsii and (b) as for (a) but excluding the 16 populations of F. matthewsii. 

Dependant Variable Constant MaxTmp PPT R2 p< 

(a) 

Lamina length 5.61 1.22 0.42 0.001 

Lamina abax. hair density 2.76 -5x10-4 0.53 0.001 

1st inflor. branch angle -0.58 0.01 0.56 0.001 

3rd culm internode length -1.83 2.46 0.35 0.001 

hair density 7.09 -lx10-3 0.62 0.001 

(b) 

Lamina length 7.14 1.12 0.56 0.001 

Lamina abax. hair density 3.51 -9x10-4 0.25 0.01 

1st inflor. branch angle NS 

3rd culm internode length 3.69 2.01 0.29 0.01 

hair density NS 
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variance explained increased to 56% for lamina length and decreased to 29% for culm length (Table 

5.6b). 

Variation in annual rainfall among sites constituted the best correlative for variation in 

inflorescence branching angle, lamina and culm scabridity among all 42 populations (Table 5.6a). 

Variation in annual rainfall was also an important factor in variation in lamina scabridity when only 

populations of F. novae-zelandiae were considered. However no environmental variable was 

significantly related to branch angle or culm scabridity (Table 5.6b). 

The branching angle of the lowest inflorescence branch appeared to be associated with the 

growth of a brown callus between the branch base and the rachis. Smaller calluses were also observed 

at the base of upper inflorescence branches. F. matthewsii typically possessed at least a callus at the 

lowest inflorescence branch, as did some F. novae-zelandiae individuals with wide branching angles, 

for example from the Hallelujah Flat (HLF) population. Cheeseman (1925) mentioned this "curious 

brown pulvinate callus" at the junction of the lamina and sheath and the inflorescence branches and 

the rachis as a feature of F. matthewsii but it appears to be associated with branching angle regardless 

of taxon. 

(b) Variation at the boundary between F. llovae-zelandiae and F. matthewsii. 

Plants within the eight popUlations studied displayed a range of combinations of characters from F. 

matthewsii and F. llovae-zelalldiae. For example plants with long glabrous leaves and short scabrid 

culms would occur adjacent to plants with short scabrid leaves and long glabrous culms. 

The eight populations formed a cline in lamina and culm scabridity, with increasing numbers 

of glabrous individuals in higher altitude populations. This result was not due to these populations 

being composed of individuals of both species as culm and leaf scabridity varied independently (Fig. 

5.5). Similarly mean values for both lamina and culm internode hair density declined sharply with 

increasing altitude (Figs. 5.6 & 5.7). 

Mean values for lamina length and culm height formed a more complex pattern. The lower 

altitude F. novae-zelandiae populations had the highest values for mean lamina length (Fig. 5.8). 

Plants become progressive shorter on average with increasing altitude up to 800 m after which lamina 

length appeared to increase slightly. 

Lower altitude populations also had the longest culms on average and culm height decreased 

with increasing altitude up to 800 m (Fig. 5.9). However the two highest altitude F. matthewsii 

populations, Kilmarnock and White River, had culms comparable in length to the lower F. novae­

zelandiae populations. 

( c) Attributes of 18 populations in cultivation 

After one year in cultivation five characters (lamina length, lamina width, lamina abaxial hair length, 

lamina abaxial hair density and sheath length) were remeasured for each of 128 plants from 18 

popUlations. These characters were selected on the basis that they were associated with the 

morphological trends identified in the ordination of all 42 sites and were also easy to remeasure on 



@ proportion 

1000 @ proportion 

600 

RIV 

with scabrid culms 

with scabrid leaves 

KLO ANT 

133 

8 
8 

GRE WAI CAR Kil WRV 

Sequence of sites up Waimakariri Valley 

Figure 5.5 : Frequency of scabrid plants in populations at the 

distributional boundary of F. novae-zelandiae (left) and F. matthewsii 



7·~-----------------------------------------------------. 

6 

.?:- 5 
'00 
C 
Q) 

-0 4 
.~ 
.s::. 
]i 3 

~ 
..0 
«I 
«I 2 
c 
'E 

RIV 

3 
1 tKLO tWAI 
o .·---"-------·.--·---------GRE'---6AfI----KH::--------.......>.NRV-· 

.15-iOO-----sroO-----7..,0-0-----srOO-----9::!OO-=------:-::100'="0~----j1100 

Altitude (m) 

Figure 5.6: Mean lamina scabridity (abaxial hair density) in populations at the 

distributional boundary of F. novae-zelandiae and F. matthewsii. Hair density is 0.06 

mm·2 . 

101,--------------------------------, 

9 

S 

7 

.?:-'00 s 

t~ t,m 
c 
Q) 

-0 5 

4 

: t,l· 
o -.-.... -.--.--.---.-----~.[t.cAa-__KH::------___wRV--. 

. 1
5 
-l0-0-----s'OO------.700,.------STOO------.900-----10:r0-:-0 ----1:-:1

100 

Altitude (m) 

Figu re 5.7: Mean culm scabridity (3rd internode hair density) in populations at the 

distributional boundary of F. Ilovae-zelandiae and F. matthewsii. Hair density is 0.06 

mm-2 . 

134 



32 

30 

28 

RIV 

26 

E 
~ 24 
..c 

t r rn 
c 22 KLO ~ 
cO 
C 

20 'E 
cO 

t 
WRY 

-1 
18 

16 

14 

12 
500 600 700 800 900 1000 

Altitude (m) 

Figure 5.8: Mean lamina length in populations at the distributional boundary of F. 

novae-zelandiae and F. matthewsii. 

70 

65 

RIV 
60 ANT 

E 
~ - 55 KLO ..c 
OJ 

tJ· 
KIL 'Qj 

..c 
E 50 

:i 
0 

45 
;CAR 

40 

35 
500 600 700 800 900 1000 

Altitude (m) 

Figure 5.9: Mean culm height in populations at the distributional boundary of F. 

novae-zelandiae and F. matthewsii. 

WRY 

135 

1100 

1100 



136 

non-reproductive material. 

When field and glasshouse measurements for all populations were compared using a paired 

T-test, lamina length was found to have increased significantly under cultivation (T = 2.27, P < 0.05). 

In five populations mean lamina length in cultivation was shorter than in the field however the 

differences were slight (Fig. 5.10). 

Overall lamina abaxial hair density also decreased significantly in cultivation (T = -2.68, P 

<0.05). Three populations showed an increase in lamina abaxial hair density in cultivation but once 

again the differences were slight (Fig. 5.11). No significant overall change was found in sheath length, 

lamina width or lamina abaxial hair length under cultivation. 
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Figure 5.11: Mean lamina scabridity (abaxial hair density) of 18 populations of tussock Festllca in 

cultivation compared with lamina scabridity in the field. Hair density is 0.06 mm-2• 
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533. Discussion 

(a) Variation among 42 populations belonging to three taxa 

The strong environmental gradients that affect central South Island appear to be of major importance 

to patterns of morphological variation among tussock-forming Festllca. The combination of a 

prevailing westerly air flow and the Southern Alps produces a pronounced west-east rainfall gradient 

superimposed on gradients of altitude and temperature. 

The differences between F. llovae-zelalldiae S.S. and F. matthewsii are mainly quantitative 

rather than qualitative, however studies of plants in cultivation both here and by Connor (1968) have 

shown that distinguishing characters of glabrousness and inflorescence structure are genetically fIxed 

in F. matthewsii. 

Degree of scabridity also varies within F. novae-zelandiae s.s. apparently in relation to 

rainfall. Some higher altitude / rainfall populations contain glabrous individuals. Therefore the 

pattern of genetically determined differences between F. novae-zelandiae s.s. and F. matthewsii is 

echoed by smaller genetic and phenotypic differences among populations within F. novae-zelandiae 

s.s. which experience similar conditions. 

"High altitude" F. llovae-zelandiae was generally less scabrid than F. llovae-zelalldiae S.S. and 

mean values for other characters of "high altitude" F. llovae-zelalldiae were intermediate betweenF. 

llovae-zelalldiae S.S. and F. matthewsii. However it is unlikely that hybridization with F. matthewsii was 

a factor in the evolution of the "high altitude" form of F. llovae-zelandiae (H. E. Connor pers. comm.) 

despite the tendency for "high altitude" populations to display features more usually associated with F. 

mattlzewsii, as "high altitude" F. novae-zelalldiae has a predominantly eastern distribution. Instead 

the genetically-fIxed shared character-states are most likely due to the selective influence of similar 

environmental conditions. 

The similarity between the ordinations of these 42 sites by morphology and by vegetation 

composition could be a result of the importance of the same environmental gradients to both patterns 

of variation. The relationship between the two sets of axes was not sufficiently strong to indicate that 

differences in the vegetation per se were driving patterns of morphological variation. 

(b) The nature of the boundary between F. novae-zelalldiae S.S. and F. matthewsii. 

Clinal variation at the boundary between F. Ilovae-zelandiae S.S. and F. mattlzewsii could be due to any 

one or a combination of three factors. The intermediate populations could be a result of 

hybridization, as the two species are in contact and freely interfertile (Connor, 1968). Alternatively 

environment influences could have brought about the parallel evolution of F. matthewsii-type 

characters in populations of F. Ilovae-zelandiae S.S. in higher altitude and rainfall areas, as may have 

happened with "high altitude" Festllca Ilovae-zelalldiae. Alternatively populations of F. novae­

zelalldiae S.S. at higher altitudes and rainfalls may mimic aspects of F. mattlzewsii via phenotypic 

plasticity. 
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Examination of the plants in cultivation has shown that differences between popUlations are 

at least partly genetic. Therefore the elinal variation observed at the boundary of F. novae-zelandiae 

s.s. and F. 11latthewsii is not entirely due to the plasticity of either species in response to an 

environmental gradient. Connor (1968) expressed doubts about the natural occurrence of hybrids 

between F. novae-zelandiae s.s. and F. 11latthewsii due to their being ecologically separated. He 

considered that the two species evolved allopatrically with little opportunity in pre-human New 

Zealand to hybridize. However large river valleys such as the one studied would have been natural 

contact zones between the two species thereby facilitating limited gene-flow via hybridization. 

The pattern of elinal variation observed among tussock-forming Festllca in the upper 

Waimakariri River could be a result of the genetic specialisation of each popUlation to its position 

along an environmental gradient, augmented by phenotypic plasticity. However it is more 

parsimonious to hypothesize that the eline represents a zone of limited hybridization. Hybrid 

offspring may be adaptive within a limited portion of the prevailing environmental gradient but, as 

the zone of intermediacy appears to be limited, hybrids may not competitive enough in the habitats of 

either parent to facilitate complete merging of the two species. 

Selective forces generated by the differential adaptiveness of two hybridizing taxa are 

thought to be sufficient to maintain a stable, narrow hybrid zone (Moran, 1981) and the more intense 

the selection the narrower the zone (Levin, 1988; Freeman et al., 1991). The zone of intermediacy 

between F. matthewsii and F. novae-zelandiae s.s. in the upper Waimakariri is approximately six 

kilometres long up the river valley and spans approximately 100 vertical metres. This zone is relatively 

narrow considering the ranges of the parent species. This would suggest that F. matthewsii and F. 

novae-zelandiae s.s. are differentially adapted to their positions along the dominant environmental 

gradients of the South Island mountains and differential selective forces maintain their separation. 

Experimental crosses between F. matthewsii and F. novae-zelandiae s.s. conducted by 

Connor (1968) indicated that F. 11latthewsii characters were dominant among F1 progeny. However 

the F2 generation involved a range of recombinations of F. novae-zelandiae s.s. and F. matthewsii 

characters and an overall reduction in panicle size. 

Plants in the populations suggested here as representing a hybrid zone also showed a range 

of recombinations of F. 11latthewsii and F. novae-zelandiae s.s. characters. There also appeared to be a 

reduction in culm length and lamina length in these intermediate popUlations compared with values 

for the parent species. These patterns further reinforce the hypothesis that a naturally occurring zone 

of hybridization does exist between F. matthewsii and F. novae-zelandiae s.s .. 

( c) Attributes of 18 populations under cultivation. 

Although the 18 populations studied varied in the magnitude of morphological changes observed 

under cultivation no direct between-population comparisons in levels of plasticity can be made using 

these data. This is because the change in environment from site of origin to the University 

shadehouse is not of equal magnitude for all 18 populations. 

However if the differences observed among popUlations in the field were solely a result of 

phenotypic plasticity, all plants should become more similar when grown in the same environment. 
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Convergence was not observed in any character measured and the range of values among populations 

in cultivation is comparable to that among the populations in the field. This would suggest that 

differences observed in the field are in part due to genetically determined traits. 

Changes in lamina length in cultivation differed among the four F. mattlzewsii populations 

and as a result the range of lamina length among these populations actually increased under 

cultivation. The conditions experienced by these populations in the field would therefore appear to be 

acting in a stabilizing manner. Phenotypic plasticity enables them to appear more similar in the field 

than under uniformly favourable conditions (Bradshaw, 1965). 

The four "high altitude" F. llovae-zelalldiae populations also appeared to respond differently 

to conditions in cultivation. Porters Pass (PPS) and Broken River (BRO) showed little change in 

lamina length whereas the lamina length of plants from Mt. Horrible (MTH) and Cass Saddle 

'A'(CSA) increased markedly. This would suggest that the first two populations are genetically fixed 

for small size and therefore correspond closely to the "high altitude" form of F. llovae-zelandiae 

described by Connor & Edgar (1986) and Connor (pets. comm.). However the other two populations 

may well be F. novae-zelandiae s.s. but resemble "high altitude" F. llovae-zelandiae phenotypically due 

to a plastic response to local site conditions. 
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5.4 PHENOLOGICAL VARIATION IN CULTIVATION 

5.4.1 Methods 

Of the 18 populations in cultivation that were used in section 5.3( c), 44 plants from 11 different 

populations flowered in the season of 1991/92. The number of plants flowering per population varied 

from 1 to 9. Six of the 11 populations were of F. novae-zelandiae s.s. originating from a variety of sites 

ranging in altitude from 65 m to 1240 m. Four of the populations were of F. matthewsii and one 

populations was of "high altitude" F. llovae-zelalldiae from Porters Pass. A record was made of the 

date culms were first observed on each plant and the timing of anthesis. 

Linear regression was used to investigate the importance of altitudinal variation among the 

sites from which the populations originated in explaining the observed variation in flowering 

phenology. 



5.4.2 Results 

Plants of F. matthewsii were the first to produce culms in cultivation in late October (Fig. 5.13). 

Plants of F. llovae-zelalldiae S.S. first produced culms in early December. All four F. matthewsii 

populations produced culms earlier than any of the sLv: F. novae-zelandiae s.s. There was limited 

overlap between F. matthewsii plants and F. llovae-zelandiae S.S. plants in the timing of anthesis. 
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Three plants from the "high altitude" F. novae-zelalldiae population at Porters Pass flowered. 

However timing of initial culm emergence and anthesis was in synchrony with F. matthewsii plants 

rather than F. llovae-zelandiae s.s. 

Altitudinal variation among the sites from which the 11 populations originated was not 

significant in explaining variation in date of culm emergence (R2 = 0.01, df = 9, NS). Even when 

regressions were performed within each species rather than between species, variation in altitude did 

not significantly explain variation in flowering phenology (F. matthewsii : R2 = 0.28, df = 3, NS; F. 

llovae-zelalldiae s.s : R2 = 0.01, df = 5, NS). However, when tested with One-way Analysis of 

Variance, the date of culm emergence was found to differ significantly between the three taxa (F2,8 = 

42.2, P < 0.001). 



£ Figure 5.12 : Flowering phenology in cultivation of 11 populations 
of tussock F estuca in 1991/92. E=culm emergence. A=anthesis. 
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5.43 Discussion 

Differences in flowering phenology can serve as an effective barrier to hybridization between species 

and can lead to the evolution of genetic reproductive isolation (Stam, 1983). F. matthewsii and F. 

novae-zelandiae s.s. are phenologically distinct in cultivation with regard to timing of culm 

emergence, with F. matthewsii producing culms six to ten weeks earlier than F. llovae-zelandiae s.s .. 

The earlier timing of emergence of F. matthewsii is probably a result of its adaptation to cooler spring 

temperatures; culm elongation being able to commence at lower temperatures than in 

zelandiae s.s .. Alternatively culm elongation in spring may be cued by different daylengths in the two 

species. 

However because plants appear to overlap in the timing of anthesis, the flowering phenology 

of these species presents only a minor barrier to hybridization where the species co-occur. 

Differences in culm emergence but an overlap in anthesis have previously been observed between 

these two species in cultivation (Connor, 1964). Reported timing of flowering of the two species in 

the field (Scott, 1960; Connor, 1968) indicates that they also could overlap at anthesis where they co­

occur (Connor, 1968). Observations made during the course of this study on the flowering stage of 

populations encountered over the summer indicate that populations of F. matthewsii at the heads of 

river valleys overlap in timing of anthesis with popUlations of F. llovae-zelandiae S.S. further down the 

valley. As stated in section 5.3, the boundary between F. matthewsii and F. novae-zelandiae s.s. 

appears to be characterised by a zone of intermediacy. The flowering phenology of populations 

within, and either side of, this zone would not provide a significant barrier to gene-flow and 

hybridization. 

The early flowering and anthesis of the Porters Pass plants indicates that this taxon, in a 

similar manner to F. matthewsii, has adapted to cooler spring conditions and culm elongation 

commences at lower temperatures than in F. novae-zelandiae s.s. 

Although adaptation to cooler temperatures is suggested by the differences in flowering 

phenology of F. matthewsii and "high altitude" F. novae-zelandiae, when com pared with F. novae­

zelalldiae S.s., no similar genetically fixed differences appear to occur within either F. matthewsii or F. 

novae-zelandiae s.s. with relation to altitude. This result could be due to small sample sizes and 

insufficiently frequent monitoring obscuring subtle differences between populations. However a lack 

of finer scale specialisation would be in keeping with what has already been discovered about the 

biology of F. novae-zelandiae s.s .. Due to long generation times, low popUlation turnover and 

infrequent episodes of disturbance and recolonisation, populations of both species may not have the 

opportunity to become specialised to a particular environment. Instead populations within each 

species appear to share a fL'{ed flowering phenology that reflects the mean environment encountered 

by the species as a whole. 
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5.5 BIOCHEMICAL VARIATION 

5.5.1 Introduction 

Allozyme electrophoresis was used to investigate the amount of genetic variation and the degree of 

population differentiation present within F. novae-zelandiae and the manner in which this species was 

related genetically to F. matthewsii. 

Allozyme electrophoresis is ideal for investigating genetic variation at the species and 

population level as large numbers of individuals can be screened quickly and cheaply. The technique 

relies on the existence of electrophoretically distinguishable forms of enzymes (= allozymes). In any 

one individual these can be coded for by genes from more than one locus and anyone locus can be 

multi-allelic with allele frequencies behaving according to the laws of Mendelian segregation. 
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5.5.2 Methods 

(a) Electrophoretic Procedure 

Nine F. novae-zelandiae populations used for previous experiments (sections 3.4 & 4.3), an additional 

F. novae-zelandiae population with characteristics intermediate between F. novae-zelandiae and F. 

matthewsii and two F. matthewsii popUlations were selected for analysis (Table 5.7). Tillers were 

collected from at least 20 randomly selected plants at each site and grown in a heated glasshouse for 

a minimum of eight weeks to allow for the production of new tillers under standard conditions. 

For the analysis a young vigorous tiller was selected from each plant and 15 mm of 

unpigmented tissue from the tiller base was homogenised in 2 drops of extraction buffer using a 

mechanical grinder. The extraction buffer consisted of 50 mls 0.1 M 

tris(hydroxymethyl)aminomethane, 6 mM ascorbic acid, 6 mM cysteine, 0.5 M sucrose, 1 mM 

dithiothreitol, 0.05 mM EDTA, 4% wlv polyvinyl pyrolidione and 3 drops B-mercaptoethanol 

brought to pH 7.5 with HeI. 

The homogenate was absorbed onto 3 mm wide wicks made of What man No.1 filter paper. 

The samples were prepared directly from growing material the same day the gels were to be run, as 

either freezing or refrigeration resulted in loss of enzyme activity. 

The prepared wicks were inserted in a chilled 12.5% (w/v) starch gel 70 mm wide, 230 mm 

long and 10 mm thick. Two buffer systems were used: 

(1) Electrode buffer: 0.06 M lithium hydroxide I 0.3 M boric acid pH 8.1. Gel buffer: 1/100 dilution 

of electrode buffer 

(2) Electrode buffer: 0.125 M Tris adjusted to pH 7.0 with citric acid. Gel buffer: 0.014 M L-histidine 

0.002 M EDTA adjusted to pH 7.0 with Tris. 

The gels were run under a constant current of 50 rnA per gel for 4 hours, during which time 

they were kept cool by trays of ice. 

The gels were then sliced horizontally and separate slices stained for specific enzyme 

systems. Banding patterns were interpreted in terms of putative allelic and hybrid bands and the 

frequency of different allelic phenotypes recorded for each population. The procedure was repeated 

for all populations using material from the same plants in order to confirm results. 
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Table 5.7: Populations of tussock Festuca used for~lozyme electrophoresis. Map references are 

NZMS 260 series except HLF which is NZMS 1. ALT = altitude (m), PPT = annual rainfall 

(mm). 

Species Population Abbr. Map Ref. Alt PPT 

F. novae-zeI. Bankside BNK M36423193 65 690 

F. novae-zeI. Cass River CRY K34071942 640 1500 

F. novae-zeI. Cass Saddle 'B' CSS K34031888 1240 2500 

F. novae-zel. Cass Valley CVS K34053915 820 2000 

F. novae-zel. Hallelujah Flat HLF S59286284 620 2250 

F. novae-zeI. Mt. Sugarloaf MTS K34 1060 1250 

F. novae-zeI. Sugarloaf Fan SLF K34098959 670 1250 

F. novae-zel. W oolshed Hill WSH K33093028 1140 2500 

high alL F. n-z. Cass Saddle 'A' CSA K34027883 1340 2500 

high aIL F. n-z. Porters Pass PPS K35080673 1000 1000 

F. matthewsii Arthurs Pass APS K33923095 880 6000 

F. matthewsii Bealey River BRV K33925075 760 5000 

Table 5.8: Enzyme system standard abbreviations and codes, buffer systems used, number of loci 

consistently scorable and total number of alleles observed per locus. 

Enzyme Standard Code Buffer used No. of Loci No. of Alleles 

6PG EC 1.1.1.44 2 1 4 

ACP EC 3.1.3.2 2 2 2,2 

G6P EC 1.1.1.49 2 2 5,4 

IDH EC 1.1.1.42 2 1 3 

LAP EC 3.4.11/13 1 1 1 

MDH EC 1.1.1.37 2 1 5 

MR EC 1.1.1.40 2 1 5 

PGI EC 5.3.1.9 1 2 2,5 

PGM EC 2.7.5.1 2 1 3 

SOD EC 1.15.1.1 1 2 2,1 
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(b) Analysis 

Polyploidy creates difficulties in the interpretation of 6lbzyme banding patterns and the species being 

investigated in this experiment are hexaploid. The analysis of progeny arrays or haploid tissue can 

reveal the parent's genome or comparisons can be made with related diploid taxa (e.g. Brown et ai, 

1974; Werth, 1978; Barrett & Shore, 1989). 

If observed banding patterns are simple, the relative intensity of bands can be interpreted as 

'gene dosage' and thus provide allele frequency data (Kephart, 1990; A. H. D. Brownpers. comm.). 

However these techniques cannot be easily applied to high-polyploid out-crossing species such as F. 

novae-zelandiae and F. matthewsii which lack close diploid relatives. Instead I have utilised two 

alternative methods involving allele frequency estimates and phenotype frequencies. 

i) Estimated allele frequency 

For a diploid species, allele frequencies can be calculated directly from genotype frequencies, 

p = freq. homozygote 'aa' + 1/2 freq. heterozygote 'ab' 

where p is the frequency of allele a. 

In this study only banding phenotype frequencies were known and each phenotype could 

represent more than one genotype. However by using an extended version of the equation above, an 

estimate of allele frequency can be obtained from phenotype frequencies i.e. 

p = freq. homozygote + 1/2 freq. of biallelic heterozygote + 1/3 freq. of triallelic heterozygote + ... 
+ l/n freq. of n-allelic heterozygote. 

Of course this equation does not represent expected genotype frequencies under Hardy­

Wienberg equilibrium as the influences of genomic structure and modes of segregation are totally 

ignored, but it does at least provide an index of allele frequency. However this method does have the 

drawback that a population exhibiting uniform fixed heterozygosity at a locus will be recorded as 

being polymorphic at that locus with frequency estimates identical for all alleles. It would therefore 

be indistinguishable from a population in which the alleles actually occurred at equal frequencies, but 

segregating into homozygotes and heterozygotes according to Hardy-Wienberg expectations. This 

would result in an over-estimate of the proportion of loci exhibiting polymorphisms, an over-estimate 

of within-population variation and possibly an under-estimate of between-population variation. 

I tested the accuracy of the method by comparing calculated allele frequencies with known 

frequencies from an artificial population that corresponded to a diploidised autoploid with identical 

allele frequencies across parental loci: a highly unlikely situation but an easy model to deal with. 
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Vickery (1990) dealt with polyploid~lIozyme data by using the percent presence of each allele 

at each locus as the gene frequency. However his method lacked the degree of resolution possible in 

the method described above and resulted in ambiguity when frequencies were compared between 

ploidy levels. 

ii) Phenotype frequency: 

A\lozyme phenotypes have previously been used to obtain basic qualitative information on population 

variation in the absence of a formal genetic interpretation (e.g., Grant et ai, 1984). However 

phenotype frequencies are also amenable to statistical analysis in a similar manner to allele 

frequencies. 

For example the measure of genetic identity, '1', put forward by Nei (1972) can in its simplest 

form be applied to phenotype frequencies without any change to the equation itself. This is because 

the equation concerns probabilities of identity. In a similar manner Nei's (1973) genetic diversity 

statistics can also be applied to phenotype frequencies as measures of phenotypic diversity. This 

method makes no assumptions about the underlying genetic structure and mode of inheritance in the 

species studied and is therefore relatively robust. The only assumption required is that a\lozyme 

phenotypes reflect underlying genetic structure. 

(iii) Further analyses 

One-way analysis of variance was used to test for significant differences between the two species for 

each of percent loci polymorphic, mean alleles per locus, mean percent heterozygosity and the 

frequency of higher level multi-allelic phenotypes. 

Pearson correlation was used to investigate the relationship between the geographical 

distance between pairs of populations and their phenotypic and genetic similarity as measured by 

Nei's genetic identity, I (Nei, 1972). Correlations were calculated for all pairs of populations including 

both species and for pairs of F. novae-zelandiae populations only. 

The partitioning of genetic diversity within populations, between populations and between 

species was calculated for all populations from allele frequency estimates using Nei's (1973) diversity 

statistics. Allele frequency estimates were also used to calculate the partitioning of genetic diversity 

within populations and between populations for F. novae-zelandiae populations only. 

Total phenotypic diversity and the partitioning of phenotypic diversity were likewise 

calculated from phenotype frequencies using Nei's diversity statistics for all populations of both 

species and for F. novae-zelandiae populations only. 

The above measures of variability, similarity and partitioning of diversity were calculated 

using BIOSYS-1 (Swofford & Selander, 1981), a program designed specifically for electrophoretic 

data. 
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Principal Components Analysis of both allele frequency estimates and phenotype 

frequencies, as implemented by CANOCO using default options, was used to summarise the 

relationships between the populations and examine the importance of altitude, annual rainfall and 

temperature in the observed patterns of variation. Annual rainfall was based on recorded values from 

nearby stations (New Zealand Meteorological Service, 1982) and a rainfall isohyet map of the 

Waimakariri catchment (Greenland, 1977). Mean annual temperature was estimated using the 

regression equations of Norton (1985). 

Principal Components Analysis was also performed on the 12 populations using 

morphological data collected earlier (section 5.3) and Detrended Correspondence Analysis was 

performed using vegetation data from section 5.2 for the same 12 populations. The axes from the 

ordination of phenotype frequencies were included in the above analyses as pseudo-environmental 

variables in order to investigate the concurrence between patterns of genetic, morphological and 

ecological variation. 
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5.5.3 Results 

Of 17 enzyme systems examined for activity, 10 were consistently interpretable in all populations. 

These gave a total of 14 reliable loci exhibiting 43 alleles (Table 5.8). Two loci, LAP and SOD-2, were 

monomorphic for the same allele in all populations. The number of alleles observed at the remaining 

loci ranged from two to five (Table 5.8). The number of alleles per locus averaged across all loci for 

each population ranged from 2.2 to 2.9 (Table 5.9). F. matthewsii had significantly more alleles per 

locus on average than F. novae-zelandiae (F = 6.32, P < 0.05) although individual F. novae-zelandiae 

populations had values approaching those of F. matthewsii. 

The number of allelic bands for anyone individual ranged from one to four with multi-allelic 

phenotypes the rule. The two F. matthewsii populations had significantly more individuals with 3-

allele and 4-allele phenotypes than the F. novae-zelandiae populations (F = 32.85, P < 0.001 and F = 

26.18, P < 0.001 respectively). 

The percentage of loci that displayed allelic polymorphism and percent heterozygous 

individuals per locus ranged from 71.4 to 85.7 and 45.5 to 72.2 respectively (Table 5.9) but neither 

showed a significant difference between species. Percent phenotypically polymorphic loci was lower, 

ranging from 57.1 to 85.7. The mean difference due to apparently 'fixed' heterozygosity was 7.2% 

(Table 5.9). 

Three populations, Bealey River, Arthurs Pass (bothF. matthewsii) and Sugarloaf Fan 

possessed unique alleles. Pooling the populations by species resulted inFo novae-zelandiae having 

four and F. matthewsii having three species-specific alleles. In all cases these alleles were rare. 

When allele frequency estimates calculated by method 1 for an artificial population were 

compared with true values, in the simplest case of two alleles at a locus they were found to deviate in 

a systematic manner (Fig 5.13). The estimate coincided with the true value when the alleles were 

equal in frequency (i.e. p = 0.5 = q) or when one allele was fixed (e.g. p = 1 and q = 0). However 

the method over-estimated p when it was less than 0.5 and under-estimated it when it was greater 

than 0.5. This method would therefore tend to minimise frequency differences between alleles at a 

locus and between populations that differed only in which allele was most common. 

Nei's genetic identity coefficients (Nei, 1972) based on allele frequency estimates resulted in 

the two F. matthewsii populations being on average as similar to F. novae-zelandiae (0.94 ± 0.08) as 

F. novae-zelandiae was within itself (0.94 ± 0.08). However the same comparison using phenotype 

frequencies produced smaller values. The phenotypic identity of F. matthewsii and F. novae-zelandiae 

populations was 0.75 ± 0.03 while within F. novae-zelandiae phenotypic identity was 0.83 ± 0.02. 

The similarity between pairs of popUlations based on allele frequency estimates was 

significantly correlated with similarity based on phenotype frequencies when tested with Pearson 

correlations (R2 = 0.841, P < 0.001). 



152. 

Table 5.9: Allozyme variation within 12 populations of tussock Festuca. S = mean sample size per 

locus; P a = % loci with > 1 allele; P p = % loci with > 1 phenotype; A = mean alleles per locus; 

Ho = mean % heterozygosity (includes fIxed). 

Population S Pa Pp A Ho 

Bankside 24 78.6 78.6 2.5 53.87 

Cass River 15 71.4 71.4 2.2 64.13 

Cass Saddle 'A' 16 78.6 64.3 2.2 69.58 

Cass Saddle 'B' 17.6 78.6 78.6 2.6 67.16 

Cass Valley 17.8 78.6 71.4 2.7 68.20 

Hallelujah Flat 12.6 78.6 71.4 2.5 64.73 

Mt Sugarloaf 16.3 78.6 78.6 2.5 56.04 

Sugarloaf Fan 66.9 85.7 71.4 2.6 45.47 

W oolshed Hill 16 85.7 78.6 2.8 71.84 

Porters Pass 30 85.7 78.6 2.7 62.14 

Arthurs Pass 18 85.7 78.6 2.9 72.17 

Bealey River 18 85.7 85.7 2.9 71.71 
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Figure 5.13: Relationship between true allele frequency and frequencies estimated using a Hardy­

Wienberg analogue. 
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The geographical distance between pairs of populations was not significantly correlated with 

between-population similarity based on either allele frequency estimates or phenotype frequencies 

when tested with Pearson correlations (R2 = -0.018, P > 0.05 and R2 = -0.052, NS). When the 

correlations were repeated for pairwise comparisons within F. novae-zelandiae only, there was still no 

significant relationship between similarity based on either allele frequency estimates or phenotype 

frequencies and geographical separation between populations (R2 = 0.132, NS and R2 = 0.164, NS 

respectively) . 

Nei's diversity statistics using allele frequency estimates resulted in a mean total genetic 

diversity for polymorphic loci of 0.52 ± 0.08 for all populations (Table 5.10a). SOD-1 exhibited the 

lowest diversity (0.33) and G6P-2 the highest (0.67). On average the vast majority of this diversity 

(95.3 ± 3.04%) was due to within-population diversity, as opposed to between-population diversity 

which contributed 4.18 ± 3.08%. Between-species diversity contributed only 0.50 ± 0.43% on average 

to total genetic diversity as estimated by allele frequency calculations. 

When the analysis was repeated with F. novae-zelandiae populations only, mean total genetic 

diversity decreased slightly to 0.51 ± 0.08. Between-population diversity accounted for on average 

5.69 ± 4.27% of total diversity, however at two loci (SOD-1 and PGI-1) over 20% of the observed 

diversity was due to between-population differences (Table 5.10b). 

The same statistics calculated using phenotype frequencies resulted in similar values for total 

phenotypic diversity for all populations (0.50 ± 0.09) but higher values for mean between-population 

and between-species diversity (22.0 ± 10.3% and 3.98 ± 3.63 respectively) (Table 5.11a). When the 

apportionment of phenotypic diversity was calculated for F. novae-zelandiae alone, 24.2 ± 11.5% of 

total phenotypic diversity was due to between-population differences (Table 5.11b). At the SOD-1 

and PGI-11oci the proportion of total phenotypic diversity due to between-population differences 

exceeded 60%. 

PCA ordinations of the 12 populations using allele frequency estimates and phenotype 

frequencies were very similar. In the ordination of allele frequency estimates, the first two principal 

components axes jointly summarised 57% of the variation among populations (Fig. 5.14). In the 

ordination using phenotype frequencies, the first two axes jointly summarised 62% of the variation 

among populations (Fig. 5.15). Altitude, annual rainfall and maximum, mean and minimum annual 

temperatures were all significantly correlated with the observed trends in both ordinations (Table 

5.12). 

Both ordinations showed a similar pattern of relationships among the 12 populations. The 

two F. matthewsii populations occurred in close proximity to each other and the closest F. novae­

zelandiae population to them in both cases was Woolshed Hill (WSH). The three F. novae-ze/{mdiae 

populations from the upper Cass Valley, Cass Saddle 'A' (CSA), Cass Saddle 'B' (CSS) and Cass 

Valley (CVS) occurred together in both ordinations. The lower altitude F. novae-zelandiae 

populations Sugarloaf Fan (SLF), Hallelujah Flat (HLF) and Bankside (BNK) also occurred together 

in both ordinations. Mt. Sugarloaf (MTS) although geographically closest to Sugarloaf Fan shows as 

much similarity with the other high altitude populations. 
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Table 5.10: Total diversity (Nei, 1972) calculated from allele frequency estimates and percentage 

due to variation within and between populations and species, (a) for all 12 populations of both F. 

matthewsii and F. novae-zelandiae, and (b) for 10 populations of F. novae-zelandiae only. 

(a) Total % Within % Between % Between 
Diversity Populations Populations Species 

6PG 0.58 96.6 2.91 0.51 

APH-1 0.18 94.5 2.75 2.75 

APH-2 0.47 97.9 2.13 0 

G6P-1 0.61 96.7 2.63 0.66 

G6P-2 0.67 99.8 0 0.15 

IDH 0.51 100 0 0 

MDH 0.65 97.4 2.62 0 

MR 0.63 94.7 4.31 0.96 

PGI-1 0.47 86.9 13.0 0 

PGI-2 0.63 99.0 0.95 0 

PGM 0.54 98.7 0.37 0.93 

SOD-1 0.33 81.4 18.5 0 

mean 0.52 95.3 4.18 0.50 

95% C.L ±0.08 ±3.04 ±3.08 ±0.43 

(b) 

6PG 0.56 96.9 3.04 

APH-1 0.16 93.6 6.37 

APH-2 0.46 97.8 2.17 

G6P-l 0.58 97.2 2.76 

G6P-2 0.67 100 0 

IDH 0.51 99.4 0.59 

MDH 0.65 96.9 3.06 

MR 0.60 95.3 4.70 

PGI-l 0.46 86.2 21.6 

PGI-2 0.63 99.0 0.96 

PGM 0.54 99.4 0.56 

SOD-1 0.33 77.4 22.6 

mean 0.51 94.9 5.70 

95% C.L ±0.08 ±3.61 ±4.27 
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Table 5.11: Total phenotypic diversity and percentage due to variation within and between 

populations and species calculated using Nei's diversity formulae (Nei, 1972), for (a) all 12 

populations of both F. matthewsii and F. novae-zelandiae, and (b) 10 populations of F. novae-

zelandiae only. 

(a) 
Total % Within % Between % Between 
Diversity Populations Populations Species 

6PG 0.65 73.1 11.2 15.5 

APH-1 0.32 86.1 12.6 0.95 

APH-2 0.43 74.2 25.6 0.23 

G6P-1 0.53 61.4 19.1 19.5 

G6P-2 0.24 89.5 3.78 6.30 

IDH 0.36 84.8 15.1 0 

MDH 0.70 73.1 26.8 0 

MR 0.75 76.7 18.1 5.03 

PGI-1 0.41 37.3 62.6 0 

PGI-2 0.56 91.5 8.49 0 

PGM 0.61 95.4 4.26 0.33 

SOD-1 0.48 43.9 56.1 0 

mean 0.50 73.9 22.0 3.98 

95% C.I. .±. 0.09 .±. 9.92 .±. 10.3 .±. 3.63 

(b) 

6PG 0.57 87.2 12.8 

APH-1 0.27 85.8 14.2 

APH-2 0.47 77.0 23.0 

G6P-1 0.40 74.4 25.6 

G6P-2 0.16 94.4 5.55 

IDH 0.40 84.6 15.4 

MDH 0.71 72.0 28.0 

MR 0.71 80.8 19.1 

PGI-1 0.43 33.3 66.7 

PGI-2 0.53 91.7 8.29 

PGM 0.59 95.6 4.37 

SOD-1 0.49 32.8 67.1 

mean 0.48 75.8 24.2 

95% C.1. .±. 0.09 .±. 11.5 .±.11.5 
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Table 5.12: Pearson coefficients and levels of significance for correlations between environmental 

variables and the first two principal components axes from ordinations of 12 tussock Festuca 

populations using, (a) ll110zyme allele frequency estimates, and (b) ililozyme phenotype frequencies. 

VARIABLE AXIS 1 p< AXIS 2 p< 

(a) 

Altitude -0.692 0.05 0.126 NS 

Annual rainfall -0.602 0.05 -0.633 0.05 

Maximum temperature 0.724 0.01 -0.087 NS 

Mean temperature 0.682 0.05 -0.144 NS 

Minimum temperature 0.610 0.05 -0.213 NS 

(b) 

Altitude -0.60 0.05 -0.36 NS 

Annual rainfall -0.78 0.01 0.49 NS 

Maximum temperature 0.64 0.05 0.32 NS 

Mean temperature 0.58 0.05 0.38 NS 

Minimum temperature 0.49 NS 0.45 NS 

Morphology Axis 1 0.83 0.001 -0.23 NS 

Morphology Axis 2 0.06 NS -0.73 0.01 

Vegetation Axis 1 0.12 NS -0.36 NS 

Vegetation Axis 2 -0.62 0.05 -0.13 NS 
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While the western "high altitude" F. novae-zelandiae population Cass Saddle 'A' (CSA), was 

placed with other F. novae-zelandiae populations that occurred at higher altitudes, the other, Porters 

Pass (PPS), was not. Surprisingly the eastern "high altitude" F. novae-zelandiae population at Porters 

Pass was placed in both ordinations with the lower altitude populations and particularly with 

Bankside (BNK), the most eastern population of the twelve. 

Some differences existed between the two ordinations; the two F. matthewsii populations 

emerged as more distinct when phenotype frequencies were used (Fig. 5.15) than when the ordination 

was performed using allele frequency estimates (Fig. 5.14). In addition Mt. Sugarloaf (MTS) becomes 

less distinct from the other populations generally and Sugarloaf Fan (SLF) more so when phenotype 

frequencies rather than allele frequency estimates were used. 

When the 12 populations were ordinated by 40 quantitative morphological characters (Fig. 

5.16), the spread of sites was similar to both ordinations using DJI ozyme data. The two F. matthewsii 

populations were most similar to each other and WSH was the closest F. novae-zelandiae populations 

to them. The lower altitude F. novae-zelandiae populations, (BNK, CRY, HLF and SLF) occurred 

together as did the higher altitude F. novae-zelandiae populations (CSS, CVS, MTS and WSH). The 

two populations referred to 'high altitude' F. novae-zelandiae, CSA and PPS were much more similar 

morphologically than biochemically. The first axis of the ordination of populations by morphology 

was significantly correlated with the first ordination axis of populations by phenotype frequency and 

the second axes from both ordinations were also significantly correlated (Table 5.12). 

The first two axes from an ordination of the vegetation composition of 12 sites from which 

the populations originated summarised only 23.1% of the variation in the data, indicating that the 

vegetation among these 12 sites was very diverse. The spread of sites on the ordination diagram (Fig. 

5.17) differed from that of the ordinations byallozyme data and morphology and appeared to be more 

influenced by landform. For example, the two sites on young river terraces, BRV and CRY emerged 

as most similar to each other despite the fact that they contain different species of Festuca. The first 

axis of the ordination by vegetation composition was not significantly correlated with each of the two 

ordination axes using ullozyme data (Table 5.12). The second vegetation axis was significantly 

correlated with the first allozyme axis; however this second vegetation axis summarised very little of 

the variation among sites. 
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5.5.4 Discussion 

The frequency of polymorphic loci and heterozygous individuals in F. novae-zelandiae and F. 

matthewsii are high compared with values reported for other grass species (Hamrick, 1983) and mean 

values for monocotyledones and widespread herbaceous taxa generally (Karron, 1987; Hamrick & 

Godt, 1989) but they are not outside reported ranges. Relatively high amounts of variation could be 

expected, given the out-crossing, wind-pollinated life history of these species and their potentially 

long-lived perennial habit (Hamrick, 1989). The difference between allelic and phenotypic 

polymorphism highlights the impact of the 'ftxed' heterozygosity of polyploids on observed genetic 

variation; mean values in the literature are derived largely from studies of diploid taxa. 

The number of alleles per locus observed was also higher than mean values for similar 

organisms, but presumably the high level of ploidy in F. novae-zelandiae and F. matthewsii was 

directly involved in this difference. The predominance of multi-allelic phenotypes indicates that both 

species are allopolyploid, but more interestingly, the complete absence of ftve- and six-allele 

phenotypes could suggest that one of the three parental genomes may be a duplicate. 

The low amount of diversity due to differences between species is hardly surprising considering 

that only two F. matthewsii populations were sampled but the results are ambiguous concerning the 

amount of between-population differentiation in F. novae-zelandiae. Low values for between­

population diversity are a feature of out-crossing and wind-pollinated species (Hamrick, 1989) and in 

this case these factors could have been further depressed by the effect of polyploidy and the local 

nature of the study. However, it also seems that the method used to estimate allele frequencies 

tended to minimise differences between popUlations. Population differentiation was much higher 

when phenotype frequencies were considered. 

Assigning a single frequency to an allele at a particular locus as was done in method 1, is 

technically incorrect for an allopolyploid such as F. novae-zelandiae, as there are, in fact, as many 

duplicate loci as there are parental genomes and allele frequencies and allelic compliments will 

almost certainly differ between these duplicate loci (Werth, 1978; Gottlieb, 1981). The measure of 

between-population differentiation based on phenotypic variation may in fact be more representative 

of true genetic divergence than that based on allele frequency estimates. 

The lack of correlation between the genetic similarity of populations and their proximity does 

not rule out gene-flow as an influencing factor. However the distances between populations may be 

generally too great for much gene-flow to occur. While gene-flow can counteract the tendency of 

small populations to randomly diverge, its influence will be over-ridden if selection disadvantages 

plants possessing 'foreign' genes (Levin, 1981). Strong selective forces have been shown to maintain 

genetic differences within a number of grass species over distances of a few metres (Gregory & 

Bradshaw, 1965; Antonovics & Bradshaw, 1970; Snaydon & Davies, 1982; McCain & Davies, 1983; 

Wilson & Bell, 1985). 
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The four populations in the Cass Valley were all connected by a sequence of small, scattered 

F. novae-zelandiae populations. The similarity of the three uppermost populations may be a function 

of gene-flow; Cass Saddle 'A' and Cass Saddle 'B' are particularly close. However the selective 

influence of the different type of environment experienced by the lowermost population, Cass River, 

may have over-ridden any effects of gene-flow from higher altitude populations. 

The correlation between allozyme profile and environmental factors in the principal 

components analyses does not prove the 'adaptiveness' of allozyme substitutions. However it is 

apparent that populations within F. novae-zelandiae in broadly similar environments have similar 

allozyme profiles. Lower altitude populations experiencing lower annual rainfalls and warmer 

temperatures appear to be similar genetically as do higher altitude populations experiencing higher 

annual rainfalls and cooler temperatures. 

The concurrence between ordinations by allozyme data and by morphology suggest that both 

are responding to the same broad environmental gradients and that morphological variation has a 

genetic basis. The lack of concurrence between ordination by vegetation and by allozyme data is 

somewhat surprising considering that the environmental variables that were most important to 

variation in vegetation composition generally (chapter 5.2) were also most important for allozyme 

variation. The lack of concurrence between variation in vegetation composition and in allozyme 

profile appears to be due, in part, to the diversity of vegetation types among the 12 sites sampled and 

also to the overriding influence of human disturbance. Sites such as BRV and CRV, with totally 

different climates, are relatively similar in vegetation because they both contain a large adventive 

element. Because of this, patterns of similarity among these populations based on allozyme data and 

morphology would be a more accurate representation of true between-population relationships. 

The major disjunction between the western and eastern "high altitude" populations in allozyme 

profile could be due to the importance of the east-west gradient in rainfall that affects the study area. 

However it could be that this apparently distinct form has had multiple origins and represents the 

typical response of F. novae-zelandiae when it encounters a certain type of environment. Also it could 

be that the populations classified in this study as "high altitude" in fact consist of both true "high 

altitude" F. novae-zelandiae with an eastern distribution and other populations that morphologically 

resemble "high altitude" F. novae-zelandiae due to shared environmental conditions. 

In summary, both F. novae-zelandiae and F. matthewsii appear to be allopolyploid with 

perhaps a genomic constitution of ABE. F. novae-zelandiae contains a large amount of genetic 

variation, augmented by 'fixed' heterozygosity and popUlation differentiation has taken place at 

different rates for different loci. Phenotypic differentiation, which is probably more representative of 

the true genetic situation, indicates overall between-population diversity to be in the order of 20% of 

total phenotypic diversity. 

There appears to have been only limited genetic divergence between F. novae-zelandiae and F. 

matthewsii. However it is quite likely that if the electrophoretic profiles of a wider range of F. 

matthewsii populations were investigated then more between-species differences would emerge. 



Divergence among populations of F. novae-zelandiae is low but significant. The selective 

influence of the environment in which the plants occur appears to be a major factor in between­

population differences. 
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5.6. RECIPROCAL TRANSPLANT EXPERIMENT 

5.6.1. Introduction 

The overall adaptiveness of observed patterns of variation among populations can be assessed by 

comparing the general performance of plants of different origins in their own versus other 

environments in a reciprocal transplant experiment. This type of experiment has been the classic 

method to test for adaptive variation and was a major part of the work of J ens Clausen, David Keck 

and William Hiesey in experimental taxonomy (Clausen et. al., 1939, 1940). 

Reciprocal transplants are most adept at detecting discontinuous variation that relates to 

edaphic and climatic factors. If variation is, in fact, continuous, a reciprocal transplant will still only 

allow the recognition of distinct types. The distinctiveness of types recognised using a reciprocal 

transplant is therefore very much affected by the scale at which patterns of variation are sampled. 

McMillan (1959, 1969) cited the ability of perennial grasses to form ecotypes in response to 

habitat gradients as a major factor in the dominance of grassland over very large areas. He found 

ample evidence for ecotypic differentiation among five grass taxa that related to latitude and 

photoperiod (McMillan, 1956, 1957). 

Ecotypic differentation in the ability of plants to extract nutrients from the soil has already 

been demostrated for F. novae-zelandiae by Espie (1987). Espie conducted nutrient trials using 

populations from different soil types and found differences in uptake that appeared to reflect nutrient 

availability at the site of origin. 

The aim of this experiment is to test for the existence of adaptively differentiated forms 

among populations of F. novae-zelandiae in terms of demographic factors such as survival, growth 

and reproduction. 



164 

5.6.2. Methods 

Four populations, Cass Saddle 'A', Sugarloaf Fan, Porters Pass and Waimakiriri Gorge were selected 

to cover the range of environments occupied by F. llovae-zelandiae within the study area (See Fig. 2.1 

for locations). Plants from Porters Pass represented a distinct high altitude form of F. llovae­

zelandiae. The Cass Saddle 'A', Sugarloaf Fan and Porters Pass populations all occurred in short 

tussock grassland / shrubland with a high indigenous component. The Waimakiriri Gorge material 

was collected from roadside remnants in the Waddington - Oxford area of the upper Canterbury 

Plains. This material was used in preference to material from Bankside, the lowland population used 

in previous experiments, because it was the closest in origin and altitude to the preselected low 

altitude planting site in an experimental plot in a garden at Waddington. 

In April 1990 three tussocks from each population were randomly selected, divided into four 

and grown on in sterilised potting-mix in a glasshouse for 4 months. These 48 plants were then 

divided again into four parts of approximately 1 to 2 cm in diameter each. These 192 plants were 

grown on for a further 6 weeks in sterilised potting-mix. The experimental material therefore 

consisted of 16 cloned plants of each of three genotypes from each of four populations. 

Prior to planting all plants were measured for height and basal diameter. The number of live 

tillers (showing green leaves) were also counted and all dead tillers removed. It was decided not to 

use biomass as a measure of performance because of the difficulties in controlling for root-weight 

and soil water content. 

In October 1990 the plants were planted back into each of the sites of the three populations 

from predominantly indigenous vegetation and also into the fourth site at Waddington. Each 

population was represented at each site by four replicates of each of the three original plants 

collected from that population, giving a total of 48 plants per site. The Sugarloaf Fan plot was 

situated in short tussock grassland with a dense growth of adventive species; The Cass Saddle plot 

was located on a slope just below the top of the Saddle and the Porters Pass plot was situated in a 

small south-west facing gully. The Waddington experimental plot was in an area of cleared ground 

surrounded by lawn. It was not watered during the study period but was weeded in autumn and spring 

of 1991. 

The plants were planted into a 2 m x 2 m plot at each site. Random number tables were used 

to assign plants to positions on the intersection points of a 20 cm grid laid across the plot. Each plant 

was identified with a coded metal tag and X,Y co-ordinates were also recorded. All sites were planted 

within a 7 day period. 

The plants were all watered with approximately 500 mls of water per plant at the time of 

planting. Heavy rainfall in the study area during the fortnight after planting negated the need for 

further watering. Minimum-maximum thermometers were placed at each site, face-down at ground 

level under adjacent vegetation, in November 1990 and read and reset every month. 

In January 1992,14 months after planting, all plants were removed intact. Plants from the 

three areas of predominantly indigenous vegetation were removed before anthesis so as to avoid 

genetic contamination of adjacent natural populations of F. llovae-zelandiae. Each plant was 

measured for height and basal diameter and the number of live tillers, dead tillers and culms were 
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counted. No plants had flowered in the 1990/1991 season so all culms present had been produced in 

the 1991/1992 season. 

A mixed-model analysis of variance was performed on five measures of performance. These 

were: 

(1) increase in height as a percentage of initial height, 

(2) increase in basal diameter as a percentage of initial basal diameter, 

(3) final number of live and dead tillers as a percentage of initial tillers, 

(4) dead tillers as a percentage of the final number of tillers, 

(5) number of culms per final number of live tillers. 

Least significant difference (LSD) pairwise comparisons of means were performed on 

population grand means across all sites and site grand means across all populations for each of the 

five measures of performance. 
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5.6.2 Results 

Climate differed between the four sites (Fig. 5.18, a & b). Thermometer readings were not taken for 

June at Porters Pass or from July to October at Cass Saddle due to heavy snow falls burying the sites. 

The Waddington site was the most moderate with higher minimum temperatures and intermediate 

maximum temperatures. The Cass Saddle site was the most extreme, recording the lowest minimum 

temperature and the highest maximum temperature of the four sites. The other high altitude site, 

Porters Pass was less extreme possibly due to greater vegetation cover and topography; the plot at 

Porters Pass was situated in a gully, whereas the Cass Saddle plot was situated on the exposed slope 

of the saddle. 

Deaths occurred only at the Waddington site where 11 plants out of 48 died. At the 

remaining three sites all plants had at least some green leaves at the conclusion of the experiment. 

Plants had initiated culms at every site but differences in timing of flowering meant that plants from 

different sites were not at the same stage of culm development when the experiment was terminated. 

As a result no comparison was made of culm height between sites. The timing of culm elongation was 

also not recorded at each site because it was not anticipated that the plants would flower after just 

one season in situ. 

Dead plants at Waddington disintegrated rapidly so that at the end of the experiment the 

plants were not sufficiently intact for tillers to be counted. In order to retain a balanced design for 

analysis, dead plants were assigned values of -100% for increase in height and diameter, 100% for 

dead tillers and zero values for tillers per initial tiller and culms per tiller. 

Most plants at most sites decreased in height from the initial height measured in the 

glasshouse. However plants that survived at Waddington increased enormously in diameter and tiller 

number. The deaths at this site could well have been exacerbated by competition between adjacent. 

tussocks. The largest observed increase in tillers was by a plant from Porters Pass growing at 

Waddington that had 9 tillers when planted and 130 dead and 958 live tillers after 14 months at the 

site, an increase of 12088%. 

Results from a mixed-model analysis of variance indicated significant differences between 

sites for all measures of performance (Table 5.13). The Waddington site was the most productive 

with virtually all populations performing better there for all variables than at any other site. When site 

grand means across all populations were compared using LSD tests, for all measures of performance 

except culm production the difference between sites was due to the difference in performance 

between Waddington and the others (Table 5.14). 

There were also significant differences between the populations in mean performance across 

all sites. The Porters Pass population out-performed other popUlations in all variables except culm 

production, for which it was the least productive. Sugarloaf Fan was consistently third or fourth in 

performance at all sites and for all variables except culm production (Table 5.14). The difference 

among popUlations for percent dead tillers was due entirely to the difference between Sugarloaf Fan 

and the other 
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Table 5.13: Results of a mixed model analysis of variance for five variables associated with 

performance of cloned F. novae-zelandiae tussocks in a reciprocal transplant experiment. NS 

indicates value is not significant. 

Source of % Diameter % Height Tillering % Dead Flowering 
Variation Increase Increase Rate Tillers Intensity 

Site F 16.8 39.6 29.6 19.9 31.5 

p< 0.001 0.001 0.001 0.001 0.001 

Population F 5.97 3.40 12.5 3.19 2.85 

p< 0.01 0.05 0.001 0.05 0.05 

Site x Pop F 1.25 3.28 2.06 1.68 1.26 

p< NS 0.01 0.05 NS NS . 

Site x Clone F 3.31 3.73 1.73 4.50 3.49 

within Pop p< 0.001 0.001 0.05 0.001 0.001 
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Table 5.14: Population means for (a) percent increase in diameter (b) percent increase in height 

(c) percent increase in tiller number (d) percent dead tillers (e) culms per tiller of cloned F. 

novae-zelandiae tussocks at each of four sites in a reciprocal transplant. Different superscripts 

indicate a significant difference between population and site grand means using LSD tests. 

Site: CSA PPS SLF Waddington Population 
Altitude (m): 1340 1000 670 350 Grand Mean 

(a) Diameter 

Cass Saddle 205.8 1665 141.9 457.6 243.0 c 

Porters Pass 205.8 147.8 105.0 326.8 196.4 bc 

Sugarloaf Fan 75.0 62.6 75.5 138.3 87.8 a 

Waimak Gorge 35.6 55.1 51.8 307.9 112.6 ab 

Site Grand Mean 130.6 a 108.0 a 93.6 a 307.7 b 

(b) Height 

Cass Saddle -43.0 -40.6 -35.2 -12.4 -32.8 ab 

Porters Pass -47.5 -38.2 -30.3 23.6 -23.1 b 

Sugarloaf fan -54.4 -47.4 -38.4 -33.5 -43.4 a 

Waimak Gorge -62.5 -51.3 -46.2 4.82 -38.8 a 

Site Grand Mean -51.9 a -44.4 a -37.5 a -4.35 b 

(c) tiller number 

Cass Saddle 481.7 353.6 329.7 1660 706.2 ab 

Porters Pass 928.5 565.3 342.2 2543 1095 b 

Sugarloaf Fan 240.0 185.4 193.6 676.1 323.8 a 

Waimak Gorge 234.4 287.4 272.6 2300 773.7 ab 

Site Grand Mean 471.1 a 347.9 a 284.5 a 1795 a 

(d) % dead tillers 

Cass Saddle 15.0 10.1 21.9 48.7 23.9 a 

Porters Pass 6.39 9.40 16.5 41.1 18.3 a 

Sugarloaf Fan 47.7 35.5 39.7 72.8 48.9 b 

Waimak Gorge 18.6 24.8 36.7 33.9 28.5 a 

Site Grand Mean 21.9 a 20.0 a 28.7 a 49.1 b 

(e) culms tiller-1 

Cass Saddle 0.03 0.22 0.11 0.12 0.12 b 

Porters Pass 0.002 0.10 0.02 0.05 0.04 a 

Sugarloaf Fan 0.02 0.13 0.10 0.07 0.08 ab 

Waimak Gorge 0.01 0.19 0.08 0.10 0.10 b 

Site Grand Mean 0.02 a 0.16 c 0.08 b 0.09 b 



populations. The two high altitude sites differed significantly from each other in culm production 

only. The two lower altitude sites differed significantly only in percent dead tillers. 
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Despite significant site and population effects only two variables, percent height increase and 

percent increase in tiller numbers, showed a significant site x population interaction (Table 5.13). For 

the remaining three measures of performance, populations showed no significant tendency to grow 

best at their site of origin. However there was a significant difference among genotypes within 

populations in performance at different sites (Table 5.13). 
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5.6.3. Discussion 

The large differences in overall performance between the four sites emphasises the ability of this 

species to respond plastically to changes in environmental conditions. Plants from all populations 

responded with an impressive burst of tillering activity in the favourable growing conditions at the 

lowest altitude site. Genetically identical plants showed very conservative rates of growth under the 

harsher conditions of the highest altitude site. 

The consistent differences between populations across all sites indicates that some 

populations are innately more vigorous than others or have a better ability to respond plastically to 

different environments. The ecological amplitude or adaptability of a population has often been 

associated with its levels of genetic variation (Van Val en, 1965; Babbel & Selander, 1974; Allard et. 

al., 1978; Nevo et. al., 1984; Antonovics et. al., 1988). The Sugarloaf Fan population which did so 

poorly at all sites in the reciprocal transplant also contained fewer heterozygotes than Cass Saddle 'A' 

or Porters Pass when analysed using isozyme electrophoresis (section 5.5). However this may simply 

be a coincidence and as genetic variation was not examined in the Waimakiriri Gorge population the 

relationship between ecological amplitude and heterozygosity cannot be tested here. 

Lambrechtsen (1968) in a study of the perennial grass Allthoxallthul1l OdOl'at1ll1l found that 

high altitude plants were more 'adaptable' when exposed to different experimental regimes than 

lowland plants. In this study the two populations from high altitudes tended to perform best at all 

sites. Plants in alpine environments have to cope with extremes in temperature, exposure and 

physiological drought and yet m<L--amise growth during the shorter growing season. Species that are 

restricted to an alpine environment are often genetically specialised to cope with the conditions and 

often don't thrive when transplanted to a lowland environment (e.g. Dahl, 1951). 

However bothA. odoratzllll and F. novae-zelandiae are widespread species. In alpine 

populations of a widespread species the degree of genetic specialisation possible may be restricted by 

the pre-existing genetic composition of the species. An alpine environment could instead selectively 

advantage genotypes with well developed phenotypic plasticity (Bradshaw, 1965; Schlichting, 1986) 

resulting in higher levels of adaptability among high altitude populations of widespread species. The 

nature of a plastic response is under genetic control like any other character (Bradshaw, 1965; 

Schlichting, 1986) and the plasticity of a character can evolve independently of the character it 

controls (Scheiner & Lyman, 1991). This could be a possible explanation of the superior performance 

of the two high altitude populations of F. novae-zelandiae in this study. 

There also appears to be a difference between the two high altitude populations in allocation 

of resources to vegetative growth versus reproduction. Both populations responded equally in terms 

of increase in size and tiller number but while plants from Cass Saddle produced the most culms on 

average, plants from Porters Pass produced the least. A difference in resource allocation between 

these two populations has already been suggested as a partial explanation of differences in stage-class 

distribution (Section 4.4). 

The Porters Pass population represents a high altitude form of F. llovae-zelandiae that is not 

genetically distinct (Section 5.5). Nor does it appear to be specifically adapted to an alpine 

environment versus a lowland one. None-the-Iess, it would appear that this population differs in the 



nature and timing of resource allocation to reproduction compared with the other high altitude 

population examined. 
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Espie (1987) found evidence for ecotypic differentiation between populations of F. novae­

zelalldiae in terms of their response to added nutrients during a glasshouse pot trial. However when 

he conducted a reciprocal transplant he found that differences between the populations in growth and 

flowering were not due to local genetic specialisation but were more a function of site conditions. The 

present study, using four different popUlations from a wider range of sites than those of Espie (1987). 

However the lack of a significant interaction between populations and sites for most variables 

measured indicates that only limited ecotypic differentiation has occurred among these populations in 

terms of the demographic attributes of growth and survival. This finding is in agreement with the 

results from the isozyme analysis (Section 5.5) which indicated that between-population genetic 

differentiation was not high. 

The significant interaction between sites and genotypes indicates that considerable 

differences exist within populations in terms of ability to respond to different environments. This 

result exactly parallels the findings of Rapson & Wilson (1988; 1992a) who tested between-population 

differentiation inAgrostis capillaris. They found little evidence of adaptation to different 

environments among populations in terms of growth, floral phenology and tiller population dynamics. 

The majority of variation they observed was due to differences between genotypes rather than 

populations and the effect of phenotypic plasticity. However they did find differentiation among 

popUlations in response to site differences in soil-water availability and soil nitrogen and phosphorus 

levels (Rapson & Wilson, 1992b). 

Lack of ecotypic differentiation, with respect to growth and reproduction, has been reported 

on several occasions among popUlations of widespread perennial grasses. Mark (1965c) conducted 

reciprocal transplant experiments with Chionochloa ligida, a long-lived New Zealand tussock grass, 

using characters of morphology, phenology and growth as measures of performance. He recognised 

one distinctive high-altitude ecotype but found little difference between the remaining lower altitude 

popUlations. His distinctive ecotypewas later described as a separate species (c. macra) and 

therefore his experiments showed that there was little ecotypic differentiation between populations of 

C. rigida sensu stlicto. 

Similarly Platenkamp (1990) found little evidence of ecotypic differentiation for survival and 

reproductive output in a reciprocal transplant experiment with Anlhoxanthlllll odoratlllll. In his study, 

phenotypic plasticity accounted for almost all of the observed variation in mortality and reproductive 

output. However Lambrechtsen (1968) found marked differences between populations of 

Allthoxanthlllll odoratlllll in their ability to extract soil nutrients that related to nutrient availability at 

the sites. Also Lee et al. (1983) found evidence for ecotypic differentiation with respect to ultramafic 

tolerance in bothAllthoxanthum odoratlllll andAgrostis tenuis (= capillads). 

Roy (1985) compared demographic and phenological attributes of populations in contrasting 

environments for two grass species, BrOl1lliS erectlls and Dactylis glomerata. As in this study and that 

of Rapson & Wilson (1988, 1992a) she found high within-population variation but little evidence for 

ecotypic differentiation in overall performance. She suggested that this lack of differentiation is due 

to the buffering capacity of polyploidy and the long life-span of these species. 



173 

The above findings, and the results of the present study when considered in light of Espie 

(1987), would indicate that ecotypic differentiation with reference to the physiology of nutrient uptake 

evolves more readily, or is more readily detected, than differentiation in the demographic characters 

of growth and reproduction. Studies involving only a limited set of attributes, that claim to have found 

or not have found ecotypic differentiation should therefore be careful to state that their findings are 

relevant to those attributes only and don't necessarily represent the overall evolutionary condition of 

the species. 



174 

5.6 SUMMARY AND DISCUSSION OF CHAPTER 5. 

The pattern of variation among tussock Festllca in mid-Canterbury is dominated by the patterns of 

variation in rainfall, altitude and temperature in the study area. These environmental factors 

influence not only the vegetation in which populations of tussock Festllca occur but also patterns of 

morphological and biochemical variation among them. 

The ecological differentiation of F. matthewsii and F. novae-zelandiae s.s. is paralleled by 

morphological and phenological differences; however biochemical differences are less marked. For 

most characteristics investigated the differences between the two species were quantitative (for 

example, significantly different species means for continuously distributed variables), rather than 

clear-cut dichotomous distinctions. A similar lack of clear-cut distinctions in the leaf anatomy of F. 

novae-zelandiae and F. matthewsii was found by Connor (1960). The plants he examined showed 

considerable variation in anatomical characters but none of it related to taxonomic, ecological or 

geographic groupings. 

The results of the present study indicate that F. Ilovae-zelalldiae s.s. and F. matthewsii intergrade 

ecologically and morphologically. Populations possessing intermediate characteristics occur in higher 

rainfall areas just east of the Main Divide. This intergradation may be due to hybridization between 

the two species, although Connor (1968) was doubtful as to the occurrence of hybrids in the field. If 

the observed zone of intermediacy is a hybrid zone, the differential adaptiveness of the parent species 

probably acts as an genetic isolation mechanism and restricts hybridization to a relatively small 

contact area. A similar situation has been found for hybridizing subspecies of sagebrush; the hybrid 

offspring are not competitive in the habitats of either parent and are restricted in a narrow zone of 

intermediate conditions (Freeman et al., 1991). Whether due to hybridization or selection, both the 

morphological and isozyme data indicate that F. novae-zelmidiae s.s. in higher altitude environments 

becomes more similar to F. matthewsii. The observed morphological similarities between F. novae­

zelandiae s.s. from higher rainfall sites and F. matthewsii appear to be both phenotypic and genetic. 

The results of the present study indicate that "high altitude" F. Ilovae-zelandiae possesses 

genetically-fixed morphological and phenological differences that distinguish it from F. novae­

zelandiae s.s. Scott (1970) also found genetically determined differences between two taxa in relative 

growth rates at low temperatures; "high altitude" F. llovae-zelandiae grew optimally at 12 °C whereas 

F. llovae-zelandiae S.S. grew optimally at 18 °C. The ordination analysis of vegetation composition at 

sites containing these teem indicated that "high altitude" F. novae-zelandiae and F. novae-zelandiae s.s. 

are ecologically distinct; the vegetation at sites containing "high altitude" F. novae-zelandiae appeared 

to differ more from sites containing F. novae-zelandiae s.s. than the latter did from sites containing F. 

matthewsii. 

However, some of the morphological differences found between these two taxa in the field 

appeared to be the result of phenotypic plasticity. Moreover, the popUlations regarded as "high 

altitude" F. novae-zelandiae based on morphology and ecology showed no isozymic differentiation 

from F. novae-zelandiae s.s. but, rather, most resembled adjacent F. Ilovae-zelandiae S.S. populations 

in similar environments. This could suggest that these two taxa are not sufficiently differentially 

adapted to their different environments to prevent gene-flow from maintaining relative levels of 
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similarity between their gene-pools. Also selection or random drift may not have had much impact on 

the respective gene-pools. Alternatively these two taxa could have diverged only recently. 

Unfortunately the genetic data are insufficient to determine whether "high altitude" F. novae­

zelandiae originated only once or has had mUltiple origins. However it is apparent that "high altitude" 

F. novae-zelalldiae is a distinct ecotype within F. llovae-zelalldiae. 
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CHAPTER 6: SYNTHESIS AND CONCLUSIONS. 

Among the grasses of New Zealand, large tussock grasses in the endemic genus Chionochloa have 

received the most attention from researchers. This attention has been justified considering the 

dominant role of members of this genus in New Zealand montane and alpine grasslands. F. novae­

zelandiae is an ecologically important, widespread indigenous grass of lowland and montane grassland 

and is therefore also worthy of intensive study. The present study contributes to the understanding of 

the biology of Festllca novae-zelalldiae. Few other indigenous herbs have been studied in as much 

detail and from such a broad range of aspects. 

In this final chapter I will summarise the principal findings of the present study and examine 

how these findings challenge previously published hypotheses concerning F. novae-zelandiae. I will 

also comment on the likely future of F. novae-zelandiae in the face of land degradation and biological 

invasion. Finally I will examine how the findings of my studies apply to evolutionary and ecological 

theories concerning 'life-history strategies' and 'adaptation' in long-lived, perennial grasses. 

6.1 The Biology of' Festllca novae-ze!andiae 

The reproductive biology of F. novae-zelandiae is characterised by many, annual reproductive 

episodes, the intensity of which varies in response to annual fluctuations in climatic conditions and 

resource availability. While reproduction between years varies significantly, the differences from year 

to year are smaller than differences displayed by 'masting' species (Silvertown, 1980) such as 

Chionochloa species (Kelly et al., 1992). 

There are significant differences in reproductive expenditure among individuals. Many of the 

individuals studied did not flower at all in four years, and the majority of individuals did not flower 

every year. Plants that did flower every year also produced the most culms and set the most seed. 

Since F. novae-zelandiae flowers are hermaphroditic, pollen production and therefore the total 

contribution of individuals to seeds will follow this pattern of seed production. As a result, the total 

reproductive output of a population would tend to be dominated in successive years by just a few 

individuals. 

Seeds of F. novae-zelandiae tend to fall adjacent to the parent plant and seed rain 

patchiness is a consequence of the patchy distribution of reproductive tussocks. However dispersal 

over longer distances occurs in strong winds and has undoubtedly been important in the colonisation 

of new habitats by F. novae-zelandiae. 

Seed viability was found to be high and in artificial storage, seeds remained viable for at least 

a year. The majority of seeds germinated readily, confirming the findings of Dunbar (1970). Seedling 

emergence in the field occurred mainly in the autumn, so under natural conditions seeds probably 

germinate within a few weeks of falling. 

The present study found that seedlings of F. novae-zelandiae were relatively common in 

natural stands, particularly on mat-vegetation and had a half-life of 12 months. While none of the 

seedlings monitored grew to more than the two-tiller stage, the presence of "juvenile" tussocks « 1 

cm diameter, 5 - 10 tillers) in the population indicated that some seedlings are becoming established. 
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This contrasts with previously published observations that seedlings were uncommon in short-tussock 

grassland and establishment rare (Boyce, 1939; Sewell, 1947; Moore, 1976; Espie, 1987). It also 

contrasts with statements that seedlings established exclusively in litter at the base of large tussocks 

(Sewell, 1947, 1952). The difference in findings between those studies and the present study could 

reflect differences between the various study areas in microclimatic factors effecting seedling survival 

but may also reflect differences in the intensity of search. In the present study, seedling substrate 

preference differed between two study plots, presumably due to differences in factors causing 

mortality. 

Seedling density was more affected by the availability of 'safe-sites' than by variation in seed 

rain. This appears to be a feature of stable populations of long-lived perennials (Andersen, 1989). 

Seedling mortality was higher than has been recorded for Chiollochloa rigida (Mark, 1965b) and 

seedlings grew slowly. Those seedlings that did survive more than a year did not increase appreciably 

in size, as had been observed elsewhere for F. llovae-zelalldiae seedlings by Moore (1976). Seedling 

survival to the juvenile stage appears to be the critical phase in the regeneration of F. Ilovae-zelandiae 

by seed. 

The inequality of reproductive output belween F. novae-zelandiae individuals results in an 

L-shaped fecundity distribution (Fig. 3.1) typical of many plant popUlations (Harper, 1977; Levin & 

Wilson, 1978). Such a fecundity distribution can accelerate the response of a population to selection, 

irrespective of generation time, if the most fecund individuals possess favourable genotypes (Levin & 

Wilson, 1978). For long-lived species, the environment encountered by successive cohorts of offspring 

may change during the course of the parents reproductive life (Levin, 1978). The attributes possessed 

by the parent that have enabled it to be reproductively successful may not necessarily confer seedling 

success. In addition, the attributes possessed by the parent that enabled it to survive as a seedling may 

no longer be adaptive if environmental conditions have changed. This means that the fitness of 

individuals, in terms of the number of offspring that reach reproductive maturity, is not necessarily 

correlated with fecundity. The result obtained by the model of Levin & Wilson (1978), that an L­

shaped fecundity distribution can increase the response rate to selection, therefore does not apply to 

species where the generation time is equal to or greater than the periodicity of environmental 

fluctuations. 

In a closed grassland such as that at Cass, the chances of a seed landing in a suitable site and 

surviving to germinate and become established are low. Recruitment of young plants to the adult 

population therefore probably occurs only at low levels in closed grassland. However, it may be more 

common on more open sites such as young river terraces colonised by mat-vegetation (Calder, 1958, 

1961). Due to the longevity of individuals and the changes that have occurred in montane grassland in 

the last 50 years (Rose, 1983; Scott et al., 1988; Treskonova, 1991; White, 1991), the observations 

made in the present study on seedling emergence and survival may be atypical of the conditions under 

which the adults in the Sugarloaf Fan popUlation became established. 

The reproductive strategy of a species is intimately associated with its life-span and the 

nature of the environment in which it occurs (Giesel, 1976; Harper, 1977, Lloyd, 1980a). FestZlca 

novae-zelandiae is a long-lived species and an individual can reproduce many times during its life­

span. Flowering, seedling establishment or recruitment failure in one year, or even many successive 
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short-lived species (Mark, 1965b; Harper, 1977). 
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Longevity and iteroparity are often, but not always, found together in plant species. When 

the probability of reproductive success varies through time, long-lived individuals which reproduce in 

many, approximately equal episodes during their life-time may have a higher fitness than shorter­

lived individuals reproducing in fewer, larger episodes (Giesel, 1976). This can also be the case when 

mortality is high among offspring but low among adults (Giesel, 1976). By spreading reproductive 

expenditure among many years, there is more chance of seed being available in those years which are 

more favourable for seedling establishment and survival. 

The reproductive expenditure of F. novae-zelandiae from culm production to seedling 

recruitment is conservative but sustained. As a result this species is relatively unaffected by short­

term fluctuations in the favourability of conditions for regeneration from seed. Longevity and 

iteroparity mean that, should conditions change to favour seedling survival, seed will always be 

available. The reproductive strategy of F. novae-zelandiae could be seen as a response to an 

unpredictable, temporally heterogeneous environment that affects seedling more than adult survival. 

A number of authors (e.g. Zotov, 1938; Sewell. 1952; Moore, 1977; Espie, 1987) have 

suggested that fragmentation of F. novae-zelandiae tussocks into several independent plants provides 

a mechanism for the maintenance of tussock numbers in what they perceived to be the absence of 

seedling recruitment. The present study found, with the aid of isozyme electrophoresis, that clonal 

fragmentation involving short distances had possibly occurred. However, the levels of fragmentation 

found discount this process as an important mechanism for the maintenance of popUlation density in 

the grassland studied. 

The population dynamics of F. Ilovae-zelalldiae, at both the level of tillers within tussocks 

and tussocks within populations, are characterised by flexibility in the face of environmental 

heterogeneity. The dynamic nature of the tiiler population that comprises an individual tussock of F. 

novae-zelandiae provides a means by which risk can be spread among many functionally equal units 

and expenditure can be adjusted seasonally to accommodate environmental change (White, 1979). 

The findings of this study with regard to the dynamic nature of the tiller popUlation within a tussock 

discount previously published statements by Sewell (1947, 1952) about slow growth and lack of 

change in F. novae-zelandiae individuals. 

The modular structure of tussock grasses means that genets are potentially immortal, but are 

composed of modules each of which is only a few years old. The continual replacement of modules 

allows the genet as a whole to increase or decrease in size in response to environmental fluctuations 

(Harper, 1977; White, 1979). As a result, chronological age and tussock size and vigour are quite 

unrelated and adult mortality is low. For plants like F. novae-zelandiae where genets are potentially 

immortal and adult mortality low, genetic differentiation through random drift or selection will be 

low, because of low levels of turnover in established populations, i.e. long generation times (Levin & 

Wilson, 1978). 

The present study examined in detail the use of a stage-based approach (reviewed in Gatsuk 

et al., 1980) to the investigation of popUlation structure and dynamics in F. novae-zelandiae. It was 

found that 'natural' stage-classes could be defined relatively objectively using discriminant analysis, 
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and that the resulting classes were useful in terms of elucidating developmental pathways in the 

species studied. It was also found that individuals did not proceed in a linear sequence from small, 

healthy plants, through large, reproductive classes, to become decrepit and then die. This linear 

progression through classes is often implied by descriptive stage-class studies (e.g. Gatsuk et al., 1980; 

Vorontzova & Zaugolnova, 1985; Zhukova & Ermakova, 1985). The present study found that the size 

and 'vigour' of particular F. Ilovae-zelandiae individuals changed dramatically (both increasing and 

decreasing) within the space of only two years, in response to short-term environmental fluctuations. 

This has important implications for stage-based studies of population structure in similar species. The 

study conducted by Rose & Platt (1990), for example, used stage-classes to reconstruct the 

establishment history of Chionochloa pallens populations. If this species is as plastic in its growth 

response to environmental fluctuations as F. llovae-zelandiae, then Rose & Platt's results relate more 

to differences in environmental conditions between sites, than the chronological age of individuals 

and populations. 
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6.2 Evolution within New Zealand Tussock Festl.lca. 

Species can respond to new or changed environmental circumstances in two ways; individuals can 

adjust phenotypically and populations can shift in genetic constitution (Lewontin, 1957). Of course 

these two types of responses are not mutually exclusive and species can and do respond in both ways. 

Tussock Festl.lca in New Zealand displays both types of patterns in response to recent and earlier 

environmental changes. 

The amount of differentiation that has occurred within F. novae-zelandiae s.s. varies, 

depending on the attribute being considered. Morphologically there are apparently genetically-fIxed 

differences between popUlations that reflect different environmental conditions. There also appears 

to be biochemical differentiation among popUlations and Espie (1987) found differentiation among 

popUlations with respect to nutrient uptake. 

Phenologically there is no discernible differentiation among populations of F. novae­

zelandiae s.s., even though the populations came from quite different environments. Neither was any 

'home-site advantage' evident, in terms of survival, growth and flowering, in a reciprocal transplant 

experiment involving four popUlations from markedly different habitats. 

Variation within F. llovae-zelalldiae S.S. is therefore a complex problem. It would appear that 

different attributes have evolved at different rates and that selection has not equally affected all 

aspects of the biology of the species. 

The three entities studied, F. llovae-zelandiae S.s., 'high altitude' F. novae-zelandiae and F. 

matthewsii, appeared to be characterised by ecological and genetic differentiation at the level of 

taxonomic units within a coenospecies, and plasticity or generalisation with limited differentiation, at 

the level of populations. 

The findings of this study support the conclusions of Connor (1960, 1968) that F. llovae­

zelandiae s.l. and F. matthewsii are a closely related pair of ecologically and morphologically 

differentiated, but somewhat intergrading, species. Despite being differentiated in some aspects they 

can be easily crossed to produce fully fertile hybrids (Connor, 1968) and the present study found little 

biochemical differentiation between them. Lack of reproductive isolation between otherwise 

differentiated species is often associated with generalist species occupying a range of habitats (Grant, 

1971; Stebbins, 1989). As well as being a feature of generalists, morphological and ecological rather 

than genetic differentiation appears to be a feature of recently evolved species complexes (Grant, 

1971; Fisher, 1973; Coates & Hnatiuk, 1990; Vickery, 1990). However, measures of differentiation 

obtained from isozyme frequencies and analysis of morphological traits are not necessarily 

comparable. Lewontin (1984) established that it was much harder to detect significant differences in 

gene frequencies than in morphological traits when the loci influencing the traits were equally 

differentiated. 

Connor (1968) expressed scepticism concerning hybridization between F. novae-zelandiae 

and F. matthewsii in the fIeld. The present study'S finding of clinal variation in morphological 

characters in populations at the distributional boundary between the two species, while not providing 

conclusive evidence of a natural hybrid zone, strongly suggest that one could well exist. 
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The findings of this study concerning 'high altitude' F. llovae-zelandiae support the 

suggestions of Connor (1960, 1968) and Connor & Edgar (1986) that this represents a partially 

differentiated, but none-the-Iess distinctive, entity within F. llovae-zelalldiae. It probably arose from 

populations isolated above timberline during a mild, forested period in the history of South Island, 

but has evolved features more usually associated with F. matthewsii, possibly due to the selective 

pressure of a similar environment. 
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6.3 The Future of F. llovae-zelandiae 

O'Connor (1991) used a life-history approach to postulate the occurrence of an 'extinction-prone 

perennial grass' as an element in many perennial grasslands. He suggests that such a grass would 

typically be palatable, obligate seed reproducer with a poorly developed seed-bank, producing low 

numbers of large seeds that are poorly dispersed. Such a grass could easily become locally extinct 

under the combined influences of drought and heavy grazing. 

O'Connor's model, while developed for C 4 grasses in semi-arid grassland, also may account, 

in part, for the replacement of Chiollochloa species by F. llovae-zelalldiae following the advent of 

pastoral farming in montane Canterbury (Connor & MacRae, 1969). Compared with Chionochloa 

species, F. llovae-zelalldiae is less palatable, more tolerant of burning (O'Connor, 1982, 1986) and, 

as the present study reveals, it flowers and produces seed every year. 

In present-day montane short-tussock grassland, F. llovae-zelalldiae has, to some extent, 

assumed the role of the 'extinction-prone perennial'. In comparison with invasive adventive grasses 

such as Agrostis capillaris, Allthoxallth1ll1l odorat1l11l, Daclylis glomerata and Festllca ntbra, F. llovae­

zelandiae is slow-growing and somewhat uncompetitive (e.g. Scott, 1970). However, a major factor 

that limits the 'extinction-proneness' of F. llovae-zelalldiae is its unpalatability and low feed value 

(Dryden & Archie, 1980). Grazing by sheep may become an important tool in some localities for the 

maintenance of tussock populations in modified grassland (Meurk et al., 1989; Lord, 1990). 

However, in other situations (e.g. in dry climates with light soils such as in the MacKenzie Basin and 

Central Otago) F. Ilovae-zelalldiae is succumbing under combined pressure from periodic drought, 

rabbit grazing, declining soil fertility and competition from invasive plants such as Hieracillln pilosella. 

The environmental conditions that provided the window of opportunity for F. Ilovae­

zelandiae to expand its range, no longer exist. Competition from adventive species, land degradation 

and pastoralisation are bringing about range contraction in F. Ilovae-ze!andiae, particularly in the 

lowland and montane zones (Scott, 1979; O'Connor, 1982; Scott et al., 1988). The invasion of 

montane grassland by adventive species, such asAgrostis capillaris, Anthoxanthlll71 odoratllJ71, Festllca 

ntbra and Hieracillnt species (Rose, 1983; Scott et al., 1988; White, 1991; Treskonova, 1991), means 

that in many areas the majority of adult tussocks in existence today will not be replaced. This is not 

unusual for the species. In pre-human New Zealand analogous situations would have occurred where 

F. novae-zelalldiae occupied sites for only one or two generations before being competitively excluded 

by other species, particularly woody species such as Discaria tOlll7latoll (Calder, 1957, 1961). 

The long-term result of such a selective elimination of lowland populations and the survival 

of higher-altitude populations may be to force the means of some character traits in F. novae~ 

zelandiae towards those of F. matthewsii. Range contraction could therefore potentially have more of 

an influence on evolution within F. llovae-zelandiae than range expansion has. 
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6.4 Generalist and Specialist 'Strategies' in Long-lived, Perennial, Polyploid Grasses. 

The ability of an organism to adapt to its environment is determined by genetic constraints and the 

temporal and spatial scale of environmental heterogeneity with reference to the organism's life­

history. 

The life-history and genetic background of F. llovae-zelalldiae limits the degree to which this 

species can genetically track environmental changes. Adults are long-lived and seedling establishment 

rates are low. Populations are most probably dominated by pioneer cohorts and the reproductive 

output of a population is dominated by a few individuals. All these factors contribute to genetic 

inertia in the face of selective forces and resistance to differentiation among populations in different 

environments by random processes. 

Polyploidy further increases the resistance of F. llovae-zelalldiae to genetic change. As 

polyploidy acts as a store of variation, populations would be buffered against founder effects and 

random drift. Mutation in anyone gene would have less effect on the genotype as a whole than would 

be the case in a diploid species (Lewis, 1980). 

However the modular structure and perpetual somatic renewal of the tussock habit is a 

perfect vehicle for tracking short-term environmental changes through phenotypic plasticity (White, 

1979). Individuals are able to endure periods of unfavourable conditions and then respond rapidly to 

an improvement in the environment. As a result the structure of populations of tussock species such 

as F. llovae-zelalldiae is more a product of its recent past than of its age structure or establishment 

history. 

All these features of F. llovae-zelalldiae argue for the greater importance of phenotypic 

plasticity rather than genetic differentiation as a means of coping with environmental change. 

However it is the scale of environmental heterogeneity that is important. F. llovae-zelalldiae would 

appear to utilise phenotypic plasticity and an all-purpose genotype to track short-term environmental 

change. Nevertheless, the present study indicates that genetic differentiation has occurred within F. 

llovae-zelalldiae in response to selection pressures that have been operating over long time-scales (i.e. 

thousands of years). 

Patterns of variation in morphological and biochemical characters between populations 

indicate that F. llovae-zelandiae appears to be genetically attuned to long-term environmental trends 

and large-scale environmental gradients. This conforms with the findings of McMillan (1956, 1957, 

1959) that genetically-fL,<ed differences in the phenology of long-lived North American grasses reflect 

large-scale climatic differences and day length variation among their sites of origin. Of necessity and 

as a function of the species' biology, F. llovae-zelandiae adopts a generalist strategy in the face of 

short-term or small-scale heterogeneity. 

The expansion of F. Ilovae-zelalldiae into the new habitats created by human deforestation 

and disturbance was undoubtedly facilitated by pre-existing genetic adaptation to broad climatic 

regimes. Opportunistic generalist behaviour in combination with a capacity for plastic response were 

probably more important in bringing about such a dramatic range expansion. 

The genetic, phenotypic and life-history attributes displayed by F. Ilovae-zelalldiae typify a 

hitherto poorly recognised common suite of attributes characteristic of long-lived, polyploid, out-
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crossing grasses. These species are characterised by high within-population genetic variation, low 

between-population genetic differentiation and generally high phenotypic plasticity. Typically there is 

little differentiation among populations in morphology, or the demographic characters of growth and 

reproduction when tested with reciprocal transplant experiments. However physiological differences 

between populations are more common. Some or all of these attributes have been found inAgrostis 

capillaris, Anthoxanthlll11 odoratlll71, Brol1l11S erectlls, Calamagrostis canadensis, Chionochloa rigida, 

Dactylis glomerata and HolcllS lanatus. 

Agrostis capillaris exhibits the same pattern of high within-population and low between­

population variation in isozymes as F. novae-zelandiae (G. Rapson, pel:\'. COI1lI1l.). Reciprocal 

transplant experiments found little differentiation among popUlations in attributes of growth, 

phenology and reproduction (Rapson & Wilson, 1988, 1992a). However standard garden and pot 

trials have revealed differences in response to fertiliser and soil water as well as ecotypic 

differentiation in heavy metal tolerance in this species (Gregory & Bradshaw, 1965; Snaydon & 

Davies, 1982; Lee et al., 1983; Rapson & Wilson, 1992b). 

Platenkamp (1990) tested for adaptive differentiation among populations ofAnthoxanth1l11l 

odoratllm using a reciprocal transplant experiment and found no evidence of significant divergence 

in characters of survival, reproductive output and growth. Yet Antho;'canthu11l odoratlU11, likeAgrostis 

capillaris, has been shown to form specialised races under strong selective pressures involving mineral 

nutrition, such as ultramafic and heavy metal contaminated soils or in manipulated experimental plots 

(Lambrechtsen, 1968; Antonovics & Bradshaw, 1970; Lee et al., 1983; McCain & Davies, 1983). 

Roy (1985) found high within-population variation in above-ground biomass in hexaploid 

and octaploid Brol1llls erectlls and tetraploid and hexaploid Dactylis glomerata but no significant 

difference between populations. She also found no significant differences between popUlations for 

germination, root and shoot growth, phenology or seed weights despite the populations coming from 

quite different environments. Lumerat (1984) investigated the isozyme profile of D. glomcrata and 

also found high within-population diversity. 

MacDonald et al. (1991) found that populations of tetraploid Calamagrostis canadensis had 

failed to differentiate isozymically to any great extent despite occurring in different vegetation types. 

The findings of Mark (1965c) indicated little ecotypic differentiation in Chionoch/oa rigida in terms of 

morphology, growth and reproduction, yet this species contains distinct triterpene methyl ether­

synthesising and -nonsynthesising chemodemes within the vicinity of Mark's sludy area (Connor & 

Purdie, 1976). 

Billington et af. (1990) transplanted HolcliS lanatus individuals between habitats and found 

that the amount of morphological variation due to genetically-fixed population attributes was low 

compared to the influence of phenotypic plasticity. Other studies of long-lived herbaceous species, 

e.g. RanllllculllS repens (Lovett Doust, 1981) and Plantago lanceolata (Antonovics and Primack, 1982), 

have revealed a similar predominance of environmental effects and phenotypic plasticity over genetic 

popUlation differentiation. 

Several suggestions have been made concerning the lack of differentiation in certain 

attributes among long-lived, polyploid grasses. The populations in some studies may have had 

insufficient time in new environments for selection to produce differences between popUlations in the 
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attributes investigated, e.g. introductions to New Zealand like Agl'Ostis capillmis (Rapson & Wilson, 

1988) or pasture species such asAnthoxanth1l11l odoratzll1l on recently abandoned farmland 

(Platenkamp, 1990). Also the selection differential between the sites studied may not have been large 

enough to produce adaptive variation in demographic attributes and the lack of strong directional 

selection may have precluded the development of specialised races (Platenkamp, 1990). 

The attributes listed above, of high levels of variation but low levels of differentiation, are 

particularly a feature of polyploid species. Polyploids are thought to be generally more tolerant of 

stress and extreme conditions (Levin, 1983). They can function as generalists and occupy a wider 

ecological niche than comparatively 'specialist' diploid relatives (Roose & Gottlieb, 1975; Lumerat, 

1985). This would appear to be due to their higher stores of fixed and / or segregating genetic 

variation promoting biochemical diversity at the level of individuals (Adams & Allard, 1977; Gottlieb, 

1981 

The apparently contradictory findings outlined above indicate that adaptation to 

environment does not necessarily take the form of morphological or demographic differentiation. 

Perhaps the physiology of perennial, long-lived polyploid species is more amenable to evolution via 

natural selection than its overall morphology or behaviour. Grime (1979) lists physiological 

adaptation without morphogenetic change as a feature of stress-tolerant species. However, the 

species listed above do not all resemble Grime's concept of a stress-tolerator. Rather they display 

attributes associated with each of his three primary strategies - competitive stress-tolerant and 

ruderal; their ability to compete or tolerate is more dependent on the specific edaphic and biotic 

circumstances of the habitat. 

In the above studies, those in which differences were found between populations from 

different environments largely involved pot or garden trials, experimental manipulation or very strong 

environmental gradients. Those studies that have failed to find evidence for ecotypic differentiation in 

long-lived perennial grasses have typically involved reciprocal transplants in 'natural' habitats. 

'Natural' habitats are usually characterised by small scale spatial patchiness and temporal variation. 

Fitness differences between popUlations in characters of growth and reproduction may only become 

apparent when compared over a sufficient number of 'normal' and 'extreme' years (Thoday, 1953). 

As a result, laboratory experiments on adaptation can be misleading. Harper (1977, p769) explained 

it thus - "Organisms in nature live in environments that contain rhythms and unpredictabilities, 

patterns and noise. The environment varies both in space and time and although it is apparently 

rather easy for many out-breeding organisms to adapt to a stable or reliably rhythmic environment, 

nature sets an infinitely more difficult problem of adaptation to environments that are unstable." 

Different attributes evolve at different rates (Stebbins, 1983) and selection for differentiation 

in response to environmental differences will not necessarily act equally on all aspects of the biology 

of a species. This does not mean that I advocate the trait-by-trait approach to adaptation criticised by 

Gould & Lewontin (1979). Nonetheless, the degree of differentiation between populations is bound 

to differ between different types of traits because when variation in a single trait confers fitness, 

selection will act on that trait alone. Even when selection acts jointly on a range of traits expressed in 

the phenotype, the effect of selection will differ between traits because of differences in heritability, 



selective advantage and developmental correlation (Gould & Lewontin, 1979; Stebbins, 1983; 

Bradshaw, 1984). 
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In long-lived perennial species of modular construction such as F. llovae-zelandiae, the 

challenges posed by environmental variation and novel habitats can often be met by phenotypic 

plasticity (White, 1979). In the case of environmental variation at a scale less than the generation 

time of the organism, its response to environmental heterogeneity can only be plastic (Bradshaw, 

1965; Lloyd, 1984; Schlichting, 1986). However this does not necessarily represent a limitation. If a 

species possesses an all-purpose genotype (e.g. Baker, 1965) and can adjust plastically it can 

potentially perform as well as genetically specialised species which closely track the environment, 

provided environmental fluctuations remain within its tolerance range. 

The wide ecological amplitude of F. llovae-zelandiae, facilitated by biochemical diversity, a 

generalist life-history strategy and phenotypic plasticity as well as differentiation in some attributes, 

has enabled this species to adjust to environmental change at a range of spatial and temporal scales. 

In addition it has been able to take advantage of opportunities created by human disturbance. These. 

characteristics are possibly widespread among New Zealand's indigenous long-lived herbs. Just as the 

generalist strategies prevalent in the floral biology of New Zealand plants are probably adaptations to 

an unpredictable assemblage of generalist pollinators (Lloyd, 1985), so could generalised life-histories 

and conservative levels of, at least demographic and morphological, adaptation, be a response to 

unpredictable or 'untrackable' environmental variation. 
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APPENDIX 1: The taxonomic history of F. novae-zelandiae. 

Species of fescue encountered by early botanists were initially all referred to a common European 

pasture grass, Festllca dll1illSclila. J. D. Hooker, in his 'Handbook of the New Zealand Flora' (1867), 

describedF. dwillscula in New Zealand as: "very slender, densely tufted, glabrous. Culms 1-3 feet 

high ... Leaves slender, involute, filiform or short and setaceous. Panicle 1-6 inches long, effuse or 

contracted ... Spikelets few, 4-8 flowered, 1/4 to 1/3 inch long." 

The name F. dll1illSClila appears to have been applied to a range of New Zealand Festuca 

species. Two specimens of F. dwilisclIla are illustrated in Buchanan's (1880) Manual of the 

Indigenous Grasses of New Zealand. One is small and slender, with short setaceous leaves and is 

most probably what Buchanan refers to as the sub-alpine form that resembles F. ovina. The other is 

more than twice the height, with a densely tufted habit and is more like the present-day F. matthewsii. 

Buchanan comments that New Zealand plants grouped under F. dllrillsclila showed a tendency to 

vary. 

Further evidence of the polyphyletic nature of New Zealand F. dll1illSCllla comes from 

records of its habitat and distribution. Hooker (1867) records it as abundant on the Alps, from 

Nelson to Otago, ascending to 4000 feet. Buchanan (1880) likewise describes it as "common in both 

Islands, from 1 - 4000 feet altitude." However previously, Buchanan (1868) recorded F. dlllillscliia in 

Otago as alpine, found above 4000 feet. In 1870, J. F. Armstrong recorded F. dll1illSCula as occurring 

on the Port Hills and at Sumner, on the North side of the range as well as "swamps". However, the 

Armstrongs' list of Canterbury indigenous grasses (1872) recorded F. dll1illSClila as "found all over the 

world in alpine pastures". J. B. Armstrong in 1880 recorded F. dllrillsclila as abundant in both the 

lowland and alpine zones. 

The polyphyletic nature of New Zealand F. dlilillsclila was confirmed when Professor 

Edouard Hackel of Austria, described by Cheeseman as in the first rank of European agrostologists, 

examined New Zealand specimens of the genus Festzlca. His conclusions formed the basis for 

Cheeseman's (1906) treatment of the genus. Those specimens that had previously been referred to F. 

dllrillscliia were now divided between F. ovina (two varieties) and F. ntbra, with the comment that the 

true F. dlirillscliia probably did not exist in an indigenous state in New Zealand. To F. mbra was 

allocated the greater part of F. dlirillsCllla, these plants undoubtedly being the smaller types described 

by Hooker (1867) and Buchanan (1880). Two new entities were described under F. avina, F. ovina 

var llovae-zelandiae and F. ovina var l11atthewsii (Hackel, 1903). 

In 1915, in a paper concerning plants in the vicinity of the Cass Biological Station (Cockayne 

& Foweraker, 1916), Festzlca novae-zealandiae [sic} (Hack.) Cockayne was included in the list of 

species with the note' = F. ovina L. var novae-zealandiae [sic} Hack.'. When Cheeseman updated his 

Manual he cited this reference by Leonard Cockayne as the authority for the elevation of the taxon to 

specific rank (Cheeseman, 1925). In his revised Manual Cheeseman (1925) also elevated F. ovina var. 

matthewsii to specific rank as F. matthewsii, with the comment: "This appears to me to be a perfectly 

distinct species, easily recognized by the large spikelets and curious pulvinate callus at the base of the 

leaf-blades." 
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APPENDIX 2: 

Locations and accession numbers for representative specimens of all populations studied. 

Material is deposited in the University of Canterbury herbarium, Christchurch (CANU). Map 

references are for NZMS 260 series except RLF which is for NZMS 1. 

Abbr. Population Map Ref. Taxon CANU 

ANT Anticrow K34900991 F. novae-zelandiae 35677 

APS Arthurs Pass K33923095 F. matthewsii 33928 

BNK Bankside M36423193 F. novae-zelandiae 35686 

BRO Broken River K34034863 'high alt' F. n-z. 35671 

BRV Bealey River K33925075 F. matthewsii 33927 

CAR Castle Hill K34055752 F. novae-zelandiae 35678 

CAR Carrington K33835042 F. matthewsii 35669 

CBC Craigieburn Cutting K34076841 F. novae-zelandiae 35660 

CFL Cass River Flats K34076955 F. novae-zelandiae 35681 

CRY Cass River K34071942 F. novae-zelandiae 35685 

CSA Cass Saddle 'A' K34027883 'high alt' F. n-z. 33921 

CSS Cass Saddle 'B' K34031888 F. novae-zelandiae 33920 

CVS Cass Valley K34053915 F. novae-zelandiae 33923 

DEC Deception River K33976113 F. matthewsii 35659 

DIS Discovery Stream K33066098 F. matthewsii 35667 

GPS Goat Pass K33980107 F. matthewsii 35658 

GRE Greenlaw K33852007 F. matthewsii 35674 

HLF Hallelujah Flat S59286284 F. novae-zelandiae 35662 

KIL Kilmarnock K33818042 F. matthewsii 35663 

KLO Klondike corner K34947985 F. novae-zelandiae 35664 

KRV Kowai River L35104660 F. novae-zelandiae 35687 

LBR lower Bealey River K33934051 F. matthewsii 35665 

LHR lower Hawdon River K33078032 F. novae-zelandiae 35682 

LMR lower Mingha River K33967045 F. novae-zelandiae 35668 

LYN Lake Lyndon K35048682 F. novae-zelandiae 35666 

MBV upper Mingha River K33982085 F. matthewsii 35673 

MTH Mt Horrible K34046968 'high alt' F. n-z. 33929 

MTL Mt Lyndon K35036676 'high alt' F. n-z. 35684 

MTS Mt Sugarloaf K34104965 F. novae-zelandiae 33922 

OTR Otira River K33904114 F. matthewsii 35657 
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APPENDIX 2 continued: 

Locations and accession numbers for representative specimens of all populations studied. 

Material is deposited in the University of Canterbury herbarium, Christchurch (CANU). Map 

references are for NZMS 260 series except HLF which is for NZMS 1. 

PEG Pegleg Creek K33925115 F. matthewsii 33918 

PPS Porters Pass K35080673 'high alt' F. n-z. 33926 

RED Red Lakes K35978632 F. novae-zelandiae 33925 

RIV Riversdale K34076100 F. novae-zelandiae 35679 

SLF Sugarloaf Fan K34098959 F. novae-zelandiae 35688 

SVH Sudden Valley head K33034075 F. matthewsii 35676 

SVY Sudden Valley K33044049 F. matthewsii 35670 

TOR Mt Torlesse L35134697 F. novae-zelandiae 35680 

UBR upper Bealey River K33908094 F. matthewsii 35672 

UHR upper Hawdon River K33073075 F. matthewsii 35683 

WAI Waimakariri River K33841028 F. matthewsii 35675 

WRY White River K33810030 F. matthewsii 35689 

WSH W oolshed Hill K33093028 F. novae-zelandiae 33930 

WSS Woolshed Hill summit K33103038 'high alt' F. n-z. 35661 
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