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EXTENDED ABSTRACT 

Noise in gene expression, or the variation in gene 

expression in an isogenic population under a 

homogeneous environment, has been of much 

interest in recent years. Differences in gene 

expression of two isogenic cells could be attributed 

to the variation in factors determining gene 

expression in these cells, such as transcription 

factors, the concentration of operators, RNA 

polymerase, the cell cycle, etc., which is termed 

extrinsic noise. However, variation could still 

persist even when all extrinsic noise is eliminated, 

due to the limited number of molecules for typical 

molecular species involved. The latter is termed 

intrinsic noise. It has been shown theoretically and 

confirmed experimentally that stochasticity is an 

inherent feature of gene expression (Arkin et al., 

1998; Blake et al., 2003; Elowitz et al., 2002; Rao et 

al., 2002), and that these random fluctuations may 

play important roles in cellular processes (Turner et 

al., 2004). However, the implications of stochastic 

gene expression are still not clear. There is very 

little knowledge about the consequences of 

stochasticity on particular systems. 

Because of the complexity of genetic regulatory 

networks, where non-linear interactions between 

components are commonplace, many mathematical 

models have been developed to obtain insights into 

the dynamical features of the networks. Most of 

these models are of a deterministic nature and take 

the form of coupled ordinary differential equations. 

However, the question arises as to whether 

deterministic models are always appropriate for the 

description of genetic networks. This is because in 

genetic networks, many intracellular components 

are present at very low quantities: the gene copy 

number is typically one or two; and the number of 

transcriptional factors is frequently in order of tens 

(Ramanathan & Swain, 2005). At such low 

concentration it becomes necessary to resort to 

stochastic approaches. Only by using stochastic 

modelling can we study the effect of noise on the 

dynamics of systems. Stochastic modelling enables 

us to discover system behaviours which might have 

been neglected in deterministic descriptions. 

Here, we seek to better understand what differences 

may result from stochastic and deterministic kinetic 

approaches to modelling genetic regulatory systems 

by considering a model system of tryptophan (Trp) 

operon system in Escherichia coli. This genetic 

regulatory network is responsible for the production 

of tryptophan amino acid inside the cells. The 

molecular basis of the system is presented in the 

introduction part of the paper. The development and 

analysis of two stochastic models for the tryptophan 

operon system are discussed in section 2 and 3. In 

the first model we introduce molecular noise by 

setting up stochastic differential equations using the 

Langevin approach in which molecular fluctuation 

in the form of white noise is explicitly considered. 

The second stochastic model is based on the 

Gillespie method. Due to the lack of data on kinetic 

rates for elementary reaction steps of molecular 

processes, the implementation of the Gillespie 

method is carried out without decomposing the 

deterministic mechanism into detailed reaction 

steps. Simulation results from two versions of the 

stochastic regimes are compared to their 

deterministic counterpart.  

We found that intrinsic fluctuations resulted from 

molecular noise can destroy stable oscillatory 

behaviour. In this case, a new value for the 

bifurcation point is established, which is far from 

the corresponding deterministic bifurcation point. 

Moreover, we demonstrate that intrinsic noise can 

enable the system to obtain qualitatively different 

dynamics compared to when noise is absent. 

Specifically, stable sustained oscillations are 

obtained only when molecular noise is incorporated. 

Quantification of noise strength for key molecular 

species indicates that the transcription process 

exhibits high fluctuation levels which subsequently 

suggests that in order to reduce noise at the 

tryptophan output level, one may consider speeding 

up mRNA transcripts degradation. 
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1. INTRODUCTION 

We consider the tryptophan operon system in 

Escherichia coli as the model system to study the 

effect of molecular noise on system’s dynamics in 

comparison to when noise is absent; and to quantify 

fluctuations in the abundance of different molecular 

components under the influence of noise.  

The tryptophan operon system controls the 

production of tryptophan amino acid inside the cell. 

Key molecular processes include transcription, 

translation and synthesis of tryptophan. To regulate 

these processes, the tryptophan operon utilises three 

negative feedback mechanisms: transcriptional 

repression, attenuation, and enzyme inhibition 

(Yanofsky, 2003). The transcription process is 

initiated as RNA polymerase binds to the promoter. 

However, when the activated form of repressor 

which is induced by the attachment of two 

tryptophan molecules become abundant, it will bind 

to the operator site and block RNA polymerase 

from binding to the promoter, thereby, repressing 

transcription and forming the first feedback loop. 

Furthermore, transcription can also be attenuated 

depending on the level of intracellular tryptophan 

and is controlled by the leader region sitting 

between the operator and the genes (Figure 1). This 

attenuation makes up the second feedback loop. The 

tryptophan operon consists of five structural genes 

positioned consecutively after the leader region. 

These genes code for five polypeptides that make 

up enzyme molecules in the form of tetramers, 

which in turn catalyse the synthesis of tryptophan 

from chorismates (Santillan & Mackey, 2001; 

Yanofsky, 2003). Anthranilate synthase (AS) is the 

enzyme catalysing the first reaction step in the 

tryptophan synthesis pathway. The pathway end 

product tryptophan is fedback to inhibit anthranilate 

synthase activity if tryptophan level is high. 

Enzyme inhibition therefore forms the third 

negative feedback loop in the tryptophan operon 

system.  
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Figure 1. Schematic diagram of the tryptophan 

operon system. 5 genes are denoted as E (AS), D, C, 

B and A. P, O, L denotes the promoter, operator and 

leader region, respectively. Blunt arrow represents 

inhibition while normal arrow represents activation. 

2. DEVELOPMENT OF STOCHASTIC 

MODELS 

To assess the effect of molecular noise we describe 

two stochastic versions of the tryptophan operon 

system using two predominantly used frameworks 

in stochastic modelling of biochemical reactions: 

stochastic differential equations (Langevin 

equations) and stochastic simulation algorithm 

(Gillespie’s SSA). 

2.1. Derivation of the Langevin Equations 

In this section, we firstly describe the theoretical 

derivation of the Langevin equations following 

Gillespie’s argument (Gillespie, 2000). Let us 

consider a biochemical system of N molecular 

species {S1, S2,…, SN} that interact chemically 

through M reaction channels {R1, R2,…, RM}, where 

N, M ≥ 1. Let v={vji}, j=1,..,M; i=1,..,N be the 

stoichiometric matrix of the system. The system’s 

state at the current time t can be represented as x(t) 

= (x1(t), x2(t),…, xN(t)) where xi(t) is the number of 

Si molecules in the system at time t. For each 

reaction channel Rj and for any time difference τ>0, 

denote a random variable Kj(x(t),τ) as the number of 

reactions of channel Rj that occur in the subsequent 

time interval [t,t+τ]. Since each of these reactions 

will change the Si population by vji, the number of Si 

molecules in the system at time t+τ will be: 

1

( ) ( ) ( ( ), ) ( 1,..., ).
M

i i ji j

j

x t x t v K x t i Nτ τ
=

+ = + =∑   (1) 

An excellent approximation to Ki(x(t),τ) in 

equations (1) can be obtained by imposing two 

conditions on τ (Gillespie, 2000): (i) τ is small 

enough so that the propensity functions rj(x(t)) 

(j=1,..,M) for all reactions vary little during the 

period [t,t+τ] and each Kj(x(t),τ) will therefore be a 

statistically independent Poisson random variable 

Pj(rj(x(t)),τ): 

( ( ), ) ( ( ( )), ) ( 1,..., ).
j j j

K x t P r x t j Mτ τ= =           (2) 

(ii) τ is large enough so that the expected number of 

occurrences of each reaction channel Rj in [t,t+τ] be 

much larger than 1, which allows us to approximate 

each statistically independent Poisson random 

variable  Pj(rj(x(t)),τ) by a normal random variable 

Nj(mj,σj
2
) with the same mean mj = rj(x(t))τ and 

varianceσj
2 
= rj(x(t))τ; then, 

( ( ( )), ) ( ( ( )) , ( ( )) )
j j j j j

P r x t N r x t r x tτ τ τ= .              (3) 
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Using N(m,σ2
) = m + σ N(0,1), where N(0,1) is the 

unit normal random variable, equation (1) now 

become (Gillespie, 2000; Turner et al., 2004): 

1 1

( ) ( ( )) ( ( )) ( )
M M

i ji j ji j j

j j

dx t v r x t dt v r x t dW t
= =

= +∑ ∑   (4) 

for i=1,..,N. dWj=1,…,.M(t) are M independent Wiener 

processes associated with the M reaction channels, 

with    〈dWj(t)〉 = 0 and 〈 dWj(t)dWj(t
’
)〉 = δijδ(t-t

’
). 

Equation (4) has the canonical form of standard 

Langevin equations for multivariate continuous 

Markov processes.  

By relating the concentration of species Xi(t) and 

the number of molecules xi(t) using Xi(t) = xi(t)/Ω, 

where Ω is the total cell volume, we can obtain the 

chemical Langevin equations in the form of species 

concentrations: 

1 1

1
( ) ( ( )) ( ( )) ( )

(5)

M M

i ji j ji j j

j j

dX t v r X t dt v r X t dW t
= =

= +
Ω

∑ ∑

It can be noted that the internal fluctuation term is 

proportional  to 1/η = Ω in equation (5). In the 

macroscopic limit Ω→ ∞; η→ 0 and  the internal 

noise terms can be ignored, resulting in the 

deterministic dynamics. 

Returning to the Trp operon system presented in 

section 1, we identified four key molecular species 

which are free operator, mRNA, enzyme, and 

intracellular tryptophan with corresponding 

concentrations denoted as OR, mRNA, E and T. The 

system can be described using a set of 8 reactions 

involving the production and loss (including 

degradation and dilution due to cell growth) of these 

four species. Description of the reactions and their 

reaction rates adapted from Bhartiya et al. (2006) 

are given in Table 1. For detailed description of the 

parameters, we refer to Bhartiya et al. (2006) and 

Santillan and Mackey (2001). The parameter values 

obtained from these references are summarised in 

Table 2. 

Reactions Description Reaction rates 

Ot → OR 

Synthesis of free 

operators from total 

operators 

1

1
1 11
1

n

I
n nt
I

K
k O

K T+
 

OR→ ∅ 

Loss of free operon 

due to degradation and 

dilution 
(kd1 + µ)OR  

OR→ 

mRNA  

Synthesis of mRNA 

through transcription 

2

2
2 22
2

n

I
n nR
I

K
k O

K T+
 

mRNA→ 

∅ 

Loss of transcripts due 

to degradation and 

dilution 
(kd2 + µ) mRNA 

mRNA→ 

E 

Synthesis of enzyme 

via translation 
k3 mRNA 

E→ ∅ 
Loss of transcripts due 

to dilution 
µ E 

E→ T 

Synthesis of 

tryptophan catalysed 

by enzymes 

3

3
3 34
3

n

I
n n

I

K
k E

K T+
 

T→ ∅ 

Loss of tryptophan 

due to protein making 

and dilution 
(g/(T+Kg) + µ) T 

Table 1. System reactions and the associated rates. 

Based on the reactions in Table 1, we set up below 

the SDEs of the Langevin model following the form 

of equations (5). The corresponding deterministic 

model of the Trp operon system can also be 

obtained from equations (6) by simply omitting the 

fluctuation terms or setting η=0 (Bhartiya et al., 

2006). 

1

1
1 11 1

1

1

1
1 1 1 21 1

1

( )
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( ) ( )
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R t d Rn n

I

n

I
t d Rn n

I

K
d O k O dt k O dt

K T

K
k O dW t k O dW t

K T
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η η µ

= −
+

+

+ +

− +

2

2
2 22 2

2

2

2
2 3 2 42 2

2

( )

( )
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( ) ( )

n

I
R dn n

I

n

I
R dn n

I

K
d mRNA k O dt k mRNAdt

K T

K
k O dW t k mRNAdW t

K T

µ

η η µ

= −
+

+

+ +

− +

3 3 5 6( ) ( ) ( )d E k mRNAdt Edt k mRNAdW t EdW tµ η η µ= − + −

3

3
4 3 3

3

3

3
4 7 83 3

3

( )

( ) ( )

n

I

n n

I g

n

I

n n

I g

K g
d T k E dt Tdt

K T T K

K g
k E dW t dW t

K T T K

µ

η η µ

= − + +
+ +

+
+ +

 
  
 

 
−   

 
           (6) 

To solve the SDEs above, the numerical algorithm 

we used is the Euler-Maruyama method (Gard, 

1988). In all the simulations, a dt of 0.001 was used. 

We implemented the numerical algorithm for the 

SDEs using Mathematica 5. The addition of noise 

terms to the Langevin system of equations 

presented the problem that values could go 

negative. Because negative concentrations have no 

biological meaning, we needed to set boundary 

conditions to avoid them. In our simulation, we set 

any possible negative values to zero. Under most 

conditions, negative values were rare, however in 

certain conditions this can generate misleading 

result. By setting a lower boundary to the 

concentrations of all species, we guarantee non-

negative values in the simulations. 

Parameters Value Parameters Value 

k1 50 min-1 KI3 810 µM 

k2 15 min-1 n1 1.92 

k3 90 min-1 n2 1.72 

k4 59 min-1 n3 1.2 
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kd1 0.5 min-1 u 0.01 min-1 

kd2 15 min-1 g 25 µM min-1 

KI1 3.53 µM Kg 0.2 µM 

KI2 0.04 µM Ot 0.00332 µM 

Table 2. Model parameter values 

2.2. Derivation of the Gillespie Model 

Another way to assess the effect of molecular noise 

is to describe the reaction steps as stochastic birth 

and death processes. Consequently, the stochastic 

dynamics of a biochemical system can be described 

by the means of the Chemical Master Equation and 

simulated using Gillespie algorithm (Gillespie, 

1977).  

A biochemical system is best implemented using 

Gillespie’s algorithm when the detailed kinetic 

information of its individual elementary reactions 

are available. However, for many molecular 

systems, such complete set of kinetic rate constants 

of all reactions are not available. This is also the 

case for the tryptophan operon system. To 

accommodate this problem, we attribute to each 

linear and nonlinear term of the deterministic 

equations a probability of occurrence for the 

corresponding reaction (Gonze et al., 2002). 

Because the system reactions we set up before were 

simplified as unimolecular reactions, the propensity 

functions are therefore identical as the deterministic 

reaction rates(Gillespie, 1977). Transitions in terms 

of molecule numbers for each reaction channel are 

given in Table 3. Simulation of the Gillespie model 

was carried out using the improved Gibson-Bruck 

algorithm (Gibson & Bruck, 2000).  

Reactions Transitions 

Ot → OR OR→ OR + 1 

OR→ ∅ OR→ OR - 1 

OR→ mRNA  mRNA→ mRNA + 1 

mRNA→ ∅ mRNA→ mRNA - 1 

mRNA→ E E → E + 1 

E→ ∅ E → E + 1 

E→ T T → T + 1 

T→ ∅ T → T - 1 

Table 3. Reaction transitions (the same notation 

was used here to denote molecule numbers). 

3. EFFECT OF MOLECULAR NOISE ON 

THE TRYPTOPHAN OPERON SYSTEM 

Before investigating the effect of molecular noise, 

we first examine the predictions produced from the 

deterministic model. For the parameter set in Table 

2, typical dynamics of the tryptophan system 

predicted by the model shows that the concentration 

of the system species eventually settle to stable 

steady states after some transient period, regardless 

of the initial conditions which were used. Previous 

studies based on the deterministic model, however, 

did not investigate further the behaviour of the 

system beyond the given parameter values.  

Motivated by recent suggestions that transcriptional 

bursting or the nature of birth and death of mRNA 

transcripts is a major source of noise at gene 

expression level (Kaern et al., 2005), we further 

explore the system behaviour by perturbating the 

mRNA degradation process. The rate at which 

mRNA degrades is controlled by parameter kd2. We 

found that for the set of parameter given in Table 2, 

the deterministic tryptophan system exhibits 

sustained oscillatory behaviour at equilibrium when 

kd2 decreases below a threshold value of about 2.2. 

In the phase plane of enzyme versus tryptophan 

level, a limit cycle is approached as the system 

moves into equilibrium state. Shown in Figure 2 are 

the oscillatory patterns of the tryptophan level for 

three mRNA degradation rate: kd2 = 1, 1.2 and 1.5; 

together with their limit cycles in enzyme vs 

tryptophan phase plane. As kd2 moves further away 

from the bifurcation point towards oscillatory 

regime, the limit cycle size starts small and gets 

bigger indicating that this is a supercritical Hopf 

bifurcation.  

Results from further bifurcation analysis shows that 

if level of total operon (Ot) is increased (Ot can be 

increased for example by means of constructing 

plasmids and inserting into the cell), the Hopf 

bifurcation point decreases. This means if the total 

of operon available is higher then periodic 

equilibrium is only possible at low degradation rates 

of mRNA.  
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Figure 2. Sustained oscillations of tryptophan level 

predicted by the deterministic model; and limit 

cycles for kd2=1, 1.2, 1.5 

3.1. Effect Of Noise On Bifurcation Pattern 

Turning into the effect of noise, we now consider 

the dynamical behaviour of the stochastic version 

based on the Langevin approach. As expected, with 

low noise coefficient (e.g. η = 10
-3

), the stochastic 

predictions yield similar quantitative dynamics as in 

the deterministic regime except that in the 

stochastic model, small noisy fluctuations persist 

2009



around the deterministic concentrations. However, 

when noise level is large enough (e.g. η = 5x10
-3

), 

stable sustained oscillations disappear for values of 

kd2 close to its bifurcation point. In fact, bifurcation 

analysis of the stochastic model identified a new 

bifurcation point for kd2 of around 1.5 (Figure 4), 

much lower compared to when noise is ignored. For 

kd2 below this new value, predicted system 

behaviour of stable oscillations is similar for both 

regimes. For comparison, we have produced as 

thick trajectories in Figure 3 the limit cycles (LCs) 

produced by the Langevin model, and thin 

trajectories the LCs produced by the deterministic 

model in enzyme versus tryptophan coordinates for 

two values of kd2 = 1.5 and 2. At kd2 = 1.5, the 

stochastic LC is noisy but stable, and having 

smaller average oscillation amplitude compared to 

the deterministic case. However, as kd2 is increased 

to 2, the stochastic LC has been reduced to a stable 

focus point with no exhibition of oscillations. On 

the other hand, we still observe a nice LC produced 

by the deterministic model. 

Molecular fluctuations, when large enough, have 

been demonstrated to destroy oscillations in the 

tryptophan system in the vicinity of the bifurcation 

point. Furthermore, fluctuations have effectively 

replaced the bifurcation point from its deterministic 

position to a new, lower value. We show in Figure 4 

the effects of internal noise on the bifurcation point 

for kd2. Stochastic bifurcation diagram are plotted 

for 10 different realizations together with their 

mean.  
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Figure 3. Stochastic and deterministic LCs for kd2 = 

1.5 and 2 in the enzyme vs tryptophan concentration 

phase plane (see text for discussion). 

3.2. Emergence of Stochastic Sustained 

Oscillations  

In the previous section, we fixed other model 

parameters except for kd2 in order to investigate the 

influence of internal molecular noise on the system 

while changing the mRNA degradation rate.  
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Figure 4. Deterministic compared to stochastic 

bifurcation diagrams (in log-scale ) for parameter 

kd2 (η = 0.005).  

In this section, we further investigate the difference 

in system dynamics emerged from comparing the 

stochastic and deterministic descriptions by varying 

the total operator concentration, Ot, while keeping 

other model parameters at values in Table 2. The 

deterministic model predicts stable steady state for 

the system over a wide range of tested values for Ot 

from 0 to 10 µM. On the other hand, when we apply 

molecular noise with sufficient level (η = 10
-2

), the 

tryptophan system exhibits clear oscillatory 

dynamics with which we stochastically estimated a 

lower bifurcation point in [0.04,0.06] and a upper 

point in [0.8,1] (lower noise coefficient of η = 10
-3 

did not show oscillations – Figure 5). These 

bifurcation points generally vary within the 

estimated ranges across different runs due to 

randomness. We plotted in Figure 5 the bifurcation 

diagram in log scale of the stochastic Langevin 

model in comparison with stable steady state of the 

deterministic model for two noise levels, η = 10
-3

 

and η = 10
-2

.  

Unlike the case in the previous section where 

internal noise has the effect of displacing the 

bifurcation point; noise has been seen here to induce 

stable sustained oscillations over parameter range 

with that, no such behaviour is predicted under the 

deterministic description. By stochastically 

modelling the tryptophan operon system, we have 

shown the emergence of qualitatively different 

dynamics when molecular noise is incorporated and 

pointed out marked differences in the predictions 

obtained from two modelling frameworks. 

3.3. Prediction Of The Gillespie Approach 

Besides the Langevin, we also carried out stochastic 

simulation using the Gillespie approach. Due to the 

high computational cost of the Gillespie’s 

algorithm, we instead implemented the simulations 

with the Gibson-Bruck algorithm which manages to 

improve  time  performance   substantially       while  
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Figure 5. Stochastic bifurcation (in log-scale) for 

parameter Ot  from 0.001 to 10 displayed with 10 

realizations; the mean curves in solid black was 

calculated over 100 realizations (η = 10
-2

). The 

dashed line represents the case when no noise is 

added. 

maintaining the exactness of the algorithm (Gibson 

& Bruck, 2000). 

For the parameter values and noise levels tested 

with the Langevin model, we obtained good 

agreement in predictions resulted from the two 

stochastic models (Figure 6). This shows that even 

without detailed kinetic knowledge of all 

elementary reactions involved in the system 

processes, our implementation of the Gillespie’s 

method provides good predictions. The same 

approach could be used for systems in which only 

kinetic data on lumped reactions is available. Below 

we show the time evolution of tryptophan in 

concentration obtained from two stochastic model 

with same setting of noise level (η = 10
-3

). 
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Figure 6. Time evolution of the tryptophan 

concentration predicted by the Gillespie approach in 

comparison with the Langevin equations approach 

4. FLUCTUATION STRENGTH OF 

MOLECULAR COMPONENTS  

One of the important topics in stochastic gene 

expression modelling is quantification of noise for 

different molecular components and processes 

within the genetic network. A quantitative picture of 

the network’s internal fluctuations provides 

valuable knowledge into system behaviours under 

uncertain environments. Using the stochastic 

differential equations model, we aimed to quantify 

fluctuation strength for the molecular species in the 

tryptophan operon system. Normally, the 

fluctuation strength of a random variable µ is 

reported by its variance σµ
2
. Thattai and 

Oudenaarden (2001) suggested to use the Fano 

factor (ratio of the variance to the mean) to measure 

the relative size of noise in gene expression. 

However, the Fano factor can be misleading for 

multivariate random processes and only works well 

for univariate discrete random processes (Paulsson, 

2005). We adopted a preferred alternative 

measurement for noise which is formulated as the 

variance over the squared mean (Paulsson, 2005).  

Simulation plots indicate that mRNA fluctuation 

level at steady state is much more significant that 

fluctuations of other molecular components. 

Quantitative results confirm that noise at mRNA is 

about from 3 to 5 orders of magnitude higher than 

that exhibited by enzyme and tryptophan level 

(Table 4). Noise is measured over 1000 simulation 

runs. Calculations are carried out using parameter 

values in Table 2; simulations start with zero level 

of all species. We also carried out the same 

measurement for various values of the mRNA 

degradation rate (kd2) and found, as expected, that as 

kd2 is increased, mRNA fluctuation level is also 

increased. However, fluctuation level at all other 

component is decreased (Table 4). Therefore, to 

reduce noise output at the level of tryptophan, the 

degradation rate of transcripts should be increased.  

kd2 OR mRNA Enzyme Tryptophan 

15 0.00066 0.12 4.78 x 10-6 0.00065 

30 0.00026 0.14 3.04 x 10-6 0.00043 

90 0.00005 0.35 2.36 x 10-6 0.00022 

Table 4. Noise strengths (noise coefficient η = 10
-2

 

was used). 

5. DISCUSSION AND SUMMARY 

The goal of this paper was to compare deterministic 

and stochastic models for a genetic regulatory 

network, thereby, studying the possible effects of 

molecular noise on system behaviour. In the 

presence of significant molecular noise, when the 

number of reacting molecules is small, stochastic 

modelling and simulations are necessary. We have 

constructed two stochastic models for the 

tryptophan operon system using two contemporary 

dominant frameworks: stochastic differential 

equations or the Langevin equations and the 

Gillespie’s stochastic simulation. By means of such 

simulations, we have shown that noise at molecular 

level can result in oscillatory equilibrium for our 

tryptophan system. This behaviour is predicted only 

by means of stochastic modelling. The deterministic 
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model over the same parameter set could not predict 

oscillations but instead indicated that the system 

settles to a stable steady state. Furthermore, for 

cases when the deterministic model yields sustained 

oscillation at equilibrium, molecular noise has 

effectively displaced the bifurcation point by a 

significant distance. Nevertheless, the stochastic 

and deterministic bifurcation diagrams demonstrate 

similar patterns as the parameter moves away from 

the bifurcation point. For noise induced oscillations, 

we moreover found that the level of internal noise 

has quantitative effects on the amplitude and 

frequency of the oscillations. Higher noise levels 

within acceptable range result in limit cycle (in the 

enzyme versus tryptophan phase plane) with larger 

size and higher maximum value of tryptophan 

concentration. At very low level of noise, the 

stochastic model yields similar dynamics predicted 

by the deterministic counterpart. Discrepancies are 

more significant as the level of noise is increased.  

As important as the qualitative information, 

quantitative information of noise also provides 

valuable insights into the nature as well as 

consequences of stochasticity within a particular 

biological system. We quantified noise strength for 

all key molecular species of the tryptophan system 

where fluctuation level is formulated as the variance 

divided by the squared mean. It is revealed that 

noise at mRNA is most significant while noise at 

enzyme is the smallest. This suggests that one 

possible strategy for reducing noise at the 

tryptophan level is to increase the degradation rate 

of mRNA transcripts.  

 

To conclude, by explicitly including molecular 

noise in its formulation, stochastic modelling of the 

tryptophan operon system has provided more 

informative insights into the system behaviours 

compared to when only deterministic model is used. 
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