The eigenvalue approach to groundwater modelling for resource evaluation at regional scale

Vincent J. Bidwell & Matthew J. Morgan Lincoln Ventures Ltd P O Box 133, Lincoln,Christchurch 8152 NEW ZEALAND Email: bidwellv@lincoln.ac.nz

Objectives

- Identify the dynamic behaviour of an aquifer as storage reservoir
- Separate the piezometric effect of land surface recharge from that of river recharge
- Provide information about aquifer boundaries
- Enable estimation of river recharge relative to land surface recharge

Assumptions: aquifer dynamics

- Land surface recharge causes most of the temporal variation in piezometric head
- River recharge has a steady piezometric effect throughout most of an aquifer
- Groundwater resource can be quantified as a dynamic response to land surface recharge

Method: eigenvalue approach to groundwater modelling

- A 2-D heterogeneous aquifer can be modelled as a linear system based on the eigenvalues of the solution to the partial differential equations of groundwater flow
- Only a few eigenvalues are significant for modelling piezometric response to land surface recharge that has a fixed spatial pattern and time-varying magnitude
- We call this simple version, the "Eigenmodel"

Eigenmodel concept

Eigenmodel parameters

- Eigenvalues are displayed here as the inverse T_i, called the storage residence time
- Eigenvalues are, theoretically, the same everywhere in the aquifer
- Gain coefficients g_i are specific to a location, and determine the proportions of linear element response
- Piezometric response is relative to a datum parameter *d* at each location
- Vadose zone storage parameter T_v varies with location

L35/0163

Results: wells in a 2000 km² aquifer in Central Canterbury, New Zealand

Well No.	L35/0163	L36/0092	M36/0255	M35/1080
T _v (mth)	2.7	4.8	0.6	1.6
T ₁ (mth)	18.9	20.4	19.2	20.4
g ₁	1.22	1.12	0.28	0.15
7 ₂ (mth)	-	-	0.61	0.62
g ₂	-	-	0.02	0.04
<mark>d</mark> (m)	80.2	59.6	28.9	44.0

M35/1080

L36/0092

M35/1080

M36/0255

Discussion

- This aquifer has a hydraulic residence time of about 20 months (T₁)
- High vadose zone storage (T_v) indicates presence of an aquitard at L35/0163 and L36/0092
- Higher gain (g₁) at L35/0163 and L36/0092 means no interaction with rivers (perched above aquifer)
- Datum values (d) are height above sea level, at each well, of piezometric effect of river recharge

Model calibration and implementation

- Eigenmodels are transformed to difference equations for implementation in Microsoft Excel
- Calibration utilises the "solver" tool in Excel
- Simulation error is modelled as the noise term of a stochastic difference equation (SDE)
- SDE structure enables model updating for forecasting groundwater levels
- Calibration can be assisted by eigenvalues being the same at all observation sites

Summary

- The eigenvalue approach can quantify the storage characteristics of an aquifer from as few as one observation well record
- The piezometric record at each well can be separated into the effects of river recharge and land surface recharge
- The dynamic models are simple, and suitable for updating in forecast versions
- Models are calibrated and implemented in spreadsheet form