Pathways from Land to Stream - Lessons from Pukemanga

Vince Bidwell¹, Roland Stenger², Greg Barkle³

¹Lincoln Ventures Ltd, Lincoln

²Lincoln Ventures Ltd, Hamilton

³Aqualinc Research Ltd, Hamilton

Purpose of the analysis

- Nitrate is leached from soil under agricultural land use and transported by subsurface water flow to surface waters
- Hypothesis: groundwater is the dominant transport pathway
- Determine proportion of groundwater discharge to streamflow by partitioning of daily and hourly streamflow on the basis of groundwater dynamics

Conceptual model of catchment processes

The really important model parameters

- Groundwater catchment area Agw
- Maximum vertical drainage rate to groundwater Dmax
- Dynamic parameter α, which describes the response of groundwater levels and discharge to recharge inputs

Results: daily groundwater discharge to stream

Results: annual water balance for four complete years of daily data

Year	1996	1999	2000	2002	Mean
Rainfall R (mm)	1967	1532	1565	1678	1685
Potential evaporation P (mm)	832	807	775	783	799
Predicted evaporation E (mm)	642	595	596	625	615
Predicted groundwater recharge (mm)	1128	829	794	950	1002
Predicted near-surface runoff (mm)	181	117	122	125	136
Observed mean streamflow (L/s)	0.660	0.308	0.332	0.474	0.444
Predicted mean streamflow (L/s) for:					
<i>Agw</i> = 3.0 ha	1.217	0.890	0.809	1.092	0.986
Error (%)	84	189	144	130	137
Agw = 1.13 ha for all years	0.556	0.410	0.345	0.498	0.452
Error (%)	-16	33	4	5	7
Agw varies annually 1.09 – 1.32 ha	0.623	0.393	0.338	0.502	0.464
Error (%)	-6	28	2	6	8

Results: hourly groundwater discharge to stream

Results: hourly groundwater level at 30 m well

Results: hourly groundwater level at 5 m well

Conclusions

- For this steep, headwater catchment receiving 1700 mm mean annual rainfall, about 85% of drainage to surface water is via groundwater
- Associated maximum vertical drainage rate to groundwater is about 3.5 mm/h
- Groundwater catchment for Pukemanga Stream does not coincide with topographical catchment

Why is the groundwater catchment smaller?

- illustrated with 2D vertical, groundwater flowline analysis

Lessons from Pukemanga - a local confirmation of existing knowledge

- Most streamflow is sustained by groundwater, most of the time
- Groundwater transports most of the water that has leached nitrate from the soil
- The groundwater catchment does not necessarily coincide with the topograpical catchment
- This has implications for which land use affects which surface water body