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ABSTRACT 

In the standard classical regression model the most commonly 

used procedures for estimation are based on the Ordinary Least 

Squares Method, which is justified on the basis of well known 

finite-sample properties. However, this model consists of a number 

of assumptions, such as, for example, homoskedastic, serially 

independent and normally distributed disturbances and nonstochastic 

regressors. By changing these assumptions in one way or another, 

different estimating situations are created, in many of which the 

OLS estimator may have no statistical justification at all. 

Further, alternative estimation methods have often been justified 

only on the basis of their asymptotic properties, although in 

practice economists frequently have to base their statistical 

analysis on a relatively small number of observations. This 

suggests that the particular estimator to use in any situation 

should be chosen on the basis of finite-sample considerations. 

The analysis of finite-sample properties of commonly used 

estimators in three well known Econometric models is the focus of 

this thesis. In particular the three models considered are: the 

limited-information simultaneous equations model, the nonnormal 

linear regression model and the nonnormal limited-information 

simultaneous equation model. The techniques used include the 

derivation of the estimators' exact distribution and when this is 

analytically intractable Monte Carlo methods are employed. 

The limited-information simultaneous equation model is 

analyzed in two stages. First, a useful method of numerically 



evaluating many of the commonly used estimators, including the 

two - stage least squares estimator, is presented. Secondly this 

method is then used, and combined with Monte Carlo analysis, to 

compare the distributions of the limited-information maximum 

likelihood and two-stage least squares estimators in misspecified 

simultaneous equations models. The result of this comparison 

indicates the superior performance of the limited-information 

maximum likelihood estimator over the two-stage least squares 

estimator in both correctly specified and misspecified simultaneous 

equations models. 

Recently, models with possibly nonnormal distributed 

disturbances have attracted more attention. For such models, 

independence and uncorrelatedness of the disturbance terms are not 

equivalent. Using the nonnormal regression model the statistical 

consequences of distinguishing between independence and 

uncorrelatedness are considered when the disturbances are Student-t 

distributed. The results obtained demonstrate that the distinction 

between the two assumptions is an important one and the 

consequences of making the wrong assumption can be serious. 

Consequently, specification tests are also presented which test for 

uncorrelatedness versus independence in the elliptically symmetric 

family. 

The nonnormal limited-information simultaneous equation 

model provides a relatively new area of analysis as there are few 

published results available on the effects of nonnormal 

disturbances in the limited- information simultaneous equation 

model. The objective here is to combine the themes pursued 
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separately in the other two models previously considered. However, 

to narrow the range of possible models that can be examined, 

attention is focussed only on the exactly-identified simultaneous 

equation model. This model has a number of interesting features 

when the reduced-form disturbances are normally distributed. These 

features are illustrated and then comparisons are made with the 

same model when the distribution of the disturbances is widened to 

include. the Student-t family. In this case, as for the nonnormal 

linear regression model, a distinction needs to be made between 

independently distributed and jointly distributed disturbances. 

The consequences of these different assumptions are shown to be 

important; specification tests relating to this distinction are 

therefore also presented. 
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CHAPTER 1 

INTRODUCTORY COMMENTS 

1.1 A GENERAL OVERVIEW 

Consider the standard linear multiple regression model that 

appears in all econometric textbooks (e.g. Johnston (1984), Harvey 

(1981»: 

y = X{3 + E (1.1) 

where y' = (Y1" 'YN)' X is an N X K matrix, {3' = ({31" .{3K) is a 

vector of unknown parameters and E' = (E 1 ... EN) is a vector of 

disturbances, and where the following conditions are satisfied: 

Condition (i) : X is a nonstochastic matrix of rank K < N and has 

the property that 

(X' X) lim N = Q, 
N:>oo 

where Q is a finite nonsingu1ar matrix. It is further assumed that 

there are no variables wrongly included in and/or excluded from the 

X matrix. 

Condition (ii) : E has a multivariate normal distribution with mean 

O d · . 21 an covar~ance matrlx a . 

The most commonly used procedures for estimation and 

inference in this model are based on the Ordinary Least Squares 

(OLS) principle. This principle is justified on the basis of its 

well known finite-sample properties which are given in Properties 

1.1; for proofs see, for example, Schmidt (1976a, pp.6-31). 
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Properties 1.1 

(i) The least-squares estimator b = (X'X)-lx'y, which is also 

the maximum likelihood estimator, and the associated 

variance estimator s2 (y-Xb)' (y-Xb)/(N-K), are unbiased 

minimum variance estimators from within the class of all 

unbiased estimators. 

(ii) The joint distribution of b is multivariate normal with mean 

(iii) 

(iv) 

f3 and variance covariance matrix a2 (X' X) -1, implying that 

the marginal distribution for an element of the b-vector, 

2 -1 and variance a (X' X) ... 
JJ 

b., is normal with mean f3. 
J J 

say 

The 2 2 statistic (N-K)s /a is distributed as a chi-square 

random variable with N-K degrees of freedom. 

Under the null hypothesis f3
j 

0, the test statistic 

~ 2 -1 b. / s (X' X) .. 
J JJ 

has a Student-t distribution with N K 

degrees of freedom. 

However, this model is not sufficient as a basis for 

modelling many economic data generation processes, simply because 

in many situations conditions (i) and (ii) do not hold. 

Consequently, Properties 1.1 are not valid in general and, in 

particular, the use of OLS techniques may have no statistical 

justification at all. The relaxation of these conditions has 

enriched the range of econometric models and has consequently led 

to the development of a number of estimation and inference 

techniques which are alternatives to those based on OLS. The 

introduction of most of these techniques however has only been 

justified on the basis of their asymptotic properties, asymptotic 

efficiency and asymptotic normality. However, in practice 
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economists frequently have to base their statistical inferences on 

a relatively small number of sample observations. This suggests 

that the choice of the appropriate techniques to use should be 

based on finite-sample considerations such as those given in 

Properties 1.1, rather than asymptotic behaviour. However, in 

general, relatively little is known about these relevant 

finite-sample considerations. 

The objective of this thesis is to extend and develop 

finite-sample results for various estimators used for estimation 

and inference in three econometric models. The particular 

econometric models chosen are well-known extensions of the standard 

multiple linear regression model when conditions (i) or (ii) or a 

combination of both conditions are relaxed. Further, each of the 

econometric models chosen provides a basis for much applied econo-

metric analysis and, in particular, all of the estimators 

considered are now included in standard and widely-used econometric 

packages such as SHAZAM and TSP. 

The next section describes the three econometric models 

chosen for investigation and so defines the three main components 

of this thesis. These models are: the limited-information 

simultaneous equations model, the nonnormal linear regression model 

and the nonnormal limited-information simultaneous equations model. 
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1.2 THE MODELS AND OBJECTIVES 

(i) The Limited-Information Simultaneous Equations Model 

Econometric models typically consist of sets of equations 

which incorporate feedback effects from one variable to another. 

These are known as Simultaneous Equation Models (SEMS). In 

particular, when the econometrician is interested only in making 

statistical inferences about the parameters of a single equation of 

the model, then this is known as "The Limi ted- Information SEM". 

Writing this model in the form of (1.1) implies that some of the 

regressors in X are stochastic and are correlated with the 

disturbance vector €, in the sense that (l/N)X'€ does not tend to 

the zero vector as the sample size, N, tends to infinity. 

Therefore condition (i) is invalidated, and furthermore OLS is an 

inconsistent estimation technique. 

The SEM was first proposed by Haave1mo (1943, 1944, 1947) 

and this suggestion provided the basis for a research programme 

undertaken by the Cowles Foundation during the late 1940' sand 

early 1950's. However, the estimators suggested, such as Two Stage 

Least Squares (TSLS) and the Limited Information Maximum Likelihood 

estimator (LIML) , are rather complicated functions of the 

underlying random variables, so that the exact distributions are 

difficult to derive. Nonetheless, the analysis of the exact 

distributions and their moments began in the early 1960' s and in 

recent years substantial progress has been made for the case when 

all of the predetermined variables are assumed to be exogenous and 

the equation is identified by means of zero res tric tions (e. g. 

Nagar (1959); Basmann (1961, 1963, 1974); Mariano (1972, 1973a, 
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1973b, 1977); Hillier, Kinal and Srivastava (1984); Hillier (1985); 

Phillips (1980a, 1980b, 1984a, 1984b, 1985); Anderson (1982». 

the finite-sample properties of certain Although 

test-statistics and variance estimators have received some 

attention in the literature, most results are concerned with the 

estimation of the parameters of the structural equation of interest 

and, in particular, the coefficients of the endogenous regressors. 

It is this topic that is pursued here. 

Traditionally a distinction is made between models in which 

the structural equation of interest contains only one endogenous 

regressor, and more than one endogenous regressor. This is because 

it is only recently that techniques have been developed which allow 

for the derivation of the exact densities in the case of more than 

one endogenous regressor, and even then these results are complex 

and currently not suitable for numerical evaluation. 

Consequently, most numerical evaluations have concentrated simply 

on the one endogenous regressor case. One of the themes in this 

case has been the numerical comparison of the distributions of the 

LIML and TSLS estimators. In particular the numerical computations 

of Anderson et al. (1979, 1982) have pointed to the superior 

performance of the LIML procedure over the TSLS estimator. In this 

thesis this analysis is extended to the comparison of the 

distributions of the TSLS and LIML estimators when there are 

predetermined variables wrongly included in and/or excluded from 

the model. 

The numerical procedures used in this thesis differ from 

those of Anderson et al. (1979, 1982). In particular, as most of 

the commonly used estimators, including TSLS, can simply be written 
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as a ratio of quadratic forms in normal variables it is shown how 

the techniques such as those developed by Imhof (1961) and Davies 

(1973) can be used to compute the distribution functions. This is 

an extension of the analysis in Cribbett et al. (1989) which 

concentrates only on the TSLS estimator. In the case of the LIML 

estimator, however, the nonparametric density estimator is 

integrated with a simple Monte-Carlo approach to estimate the 

density, due to the complexity of numerically evaluating the exact 

expressions. 

(ii) The nonnormal linear regression model 

When it is assumed that the error distribution is nonnormal, 

condition (ii) is invalidated. In the literature a distinction is 

commonly made on the basis of whether the distribution has a finite 

or infinite variance. 

If the error distribution is assumed to have finite first 

and second moments then the properties of OLS are well-known. The 

OLS estimator of ~ is best linear unbiased (BLUE) and the 

conventional tests are asymptotically justified in the sense that 

they have the correct size asymptotically. These results have 

often been the justification for the use of the least squares 

estimator under conditions of nonnormality. However, there are two 

problems with this approach. First, it is well-known that although 

OLS is BLUE it is, in general, asymptotically inefficient. 

Consequently there may be nonlinear estimators which have superior 

finite and asymptotic properties. Secondly, there is a large body 

of literature (e.g. Mandelbrot (1963a, 1963b, 1966), Fama (1963, 

1965, 1970), which suggests that many economic data series, 
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particularly prices in financial and commodity markets, are well 

represented by a class of distributions with infinite variance. A 

distribution with an infinite variance has "fat tails" which 

implies that large values or "outliers" will be relatively 

frequent. Because the least squares technique minimizes squared 

deviations, it places relatively heavy weight on outliers, leading 

to estimates that are extremely sensitive to the presence and 

values of such observations. 

In recent years, to broaden the assumption of nonnormality 

in the linear regression model, it has often been assumed that the 

error components follow a joint multivariate elliptically symmetric 

distribution. Under this assumption it has been shown that the 

resulting estimators and test statistics possess properties which 

make them analytically tractable and, furthermore, in many cases, 

identical to those obtained under the normality assumption. See, 

for example, Zellner (1976), King (1979, 1980), Singh (1987, 1988). 

However, the normal distribution is the only member of the 

class of multivariate elliptically symmetric distributions where 

the disturbances are, in fact, independent. Also, it is usually 

forgotten that the marginal distributions of the disturbance terms 

under this assumption are identical to those obtained when the 

disturbances are assumed to be independently and identically 

distributed (iid) elliptically symmetric. It is these features 

that lead naturally to the question of the statistical consequences 

of distinguishing between multivariate and iid elliptically 

symmetric error distributions and it is this issue that is taken up 

here. 
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Kelejian and Prucha (1985) address this problem using 

asymptotic criteria for the linear regression model and Student-t 

errors for degrees of freedom greater than 2. This distribution is 

a particularly important member of the elliptically symmetric class 

because it is claimed by authors such as Judge et al. (1985) that 

this distribution may be a reasonable way of modelling tails that 

are fatter than those of the normal distribution. (see also the 

recent article by Lange et al. (1989)). The obj ective here is to 

extend this analysis by developing properties of the maximum 

likelihood estimators for the entire Student-t family using 

finite-sample criteria. Results are obtained assuming the data 

matrix, X, is nonstochastic. 

(iii) The Nonnormal Limited-Information Simultaneous Equations Model 

Models (i) and (ii) can be related by simultaneously 

relaxing both of the conditions associated with the standard linear 

regression model. This model provides a relatively new area of 

analysis as there are few published results available on the 

effects of nonnormal disturbances in the limited- information SEM 

(e.g. Knight (1985b, 1986), Raj (1980), Donatos (1989)). 

The objective here is to combine both of the themes pursued 

separately in Models (i) and (ii). In particular, in the 

estimation of the coefficient of the one endogenous regressor in 

the exactly-identified limited-information SEM, the statistical 

consequences of distinguishing between multivariate and iid. 

Student-t error distributions on the LIML and TSLS estimators are 

examined. Although (because it is exactly-identified) it is a 

somewhat restrictive model, it is worthy of study because it has a 
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number of interesting features when the errors are normally 

distributed. In particular, in this case the TSLS, LIML and Least 

Variance Ratio (LVR) estimators are identical and 

1 distribution is bimodal over part of the parameter space. 

1.3 AN OVERVIEW OF THE CHAPTERS 

their 

Chapter 2 reviews certain key concepts in probability and 

statistical inference used in this thesis. It also introduces the 

notational conventions used. 

Chapter 3 reviews an essential tool of analysis that is used 

throughout this thesis. This is the integration of the 

nonparametric density estimator with the Monte-Carlo technique. 

This is a useful technique for approximating many of the density 

functions considered in the thesis when either the exact 

distribution is too difficult to derive explicitly or when the 

exact distribution is known but too complex to be analyzed 

conveniently. A number of statistical properties of this estimator 

are discussed. These are all asymptotic properties, but are 

considered relevant because in the applications considered here, 

sample size, which is simply the number o( replications in the 

simulation experiment, can be chosen by the investigator. 

Chapter 4 discusses the methods used in the simulation 

experiments. In particular, this includes a discussion of the 

choice of the number of replications in the simulation experiments, 

the generation of the random numbers involved, and the algorithms 

I The Least Variance Ratio estimator is the name given to 
the LIML estimator derived under the assumption of normally 
distributed errors, when in fact their true distribution is 
nonnormal. 
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used to solve the likelihood equations associated with the models 

considered. 

Chapter 5 shows that the exact distribution of a ratio of a 

bilinear form to a quadratic form in normal variables can be 

computed using techniques such as those developed by Imhof (1961) 

and Davies (1973). As many of the commonly used estimators in the 

limited-information SEM, including TSLS, are of this form, this is 

a useful technique for the numerical evaluation of their 

distributions. 

Chapter 6 reviews recent relevant finite-sample properties 

in the literature on the limited-information SEM. It also pursues 

the theme of comparing the LIML and TSLS distributions, which 

involves the use of techniques discussed or developed in Chapter 3 

and Chapter 5. 

Chapter 7 reviews some alternatives to the assumption that 

the disturbances in the econometric models considered are 

distributed normally. In particular, the effects of iid 

nonnorma1ly distributed regression disturbances on the traditional 

inference and estimation procedures used for normally distributed 

disturbances are discussed, and a class of alternative estimation 

techniques collectively labelled "robust estimators" are reviewed. 

Also in this chapter, the consequences of replacing the normality 

assumption with the assumption that the regression disturbances 

follow a multivariate elliptically symmetric distribution are 

examined. Therefore two types of nonnorma11y distributed 

disturbances are reviewed in this chapter, these being, iid 

nonnormal1y distributed disturbances and multivariate distributed 

disturbances. This distinction sets the theme for the remaining 
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chapters. That is, "an examination of the statistical conse-

quences of distinguishing between the regression disturbances 

following a multivariate elliptically symmetric distribution and an 

iid elliptically symmetric distribution". 

Chapters 8 and 9 take up this theme in the nonnormal linear 

regression model. Chapter 8 considers the "location-scale" model, 

which is a special case of the linear regression model. It is 

equivalent to only estimating the intercept term in the linear 

regression model. Chapter 9 extends the results obtained to the 

more general model. A distinction is made between the 

location-scale model and the more general model simply because a 

number of techniques can be used to examine the problem in the 

location-scale model that do not generalize to the more general 

model. 

Chapter 10 pursues this theme in the exactly-identified 

nonnorma1 limited-information SEM. In particular, the 

distributions of the TSLS and LIML estimators are compared, since 

with nonnorma1 disturbances these two estimation techniques are not 

necessarily the same. 

Chapters 8, 9 and 10 indicate the importance of making the 

distinction between iid nonnormally distributed disturbances and 

multivariate nonnormally distributed disturbances. This suggests 

that it is important to construct appropriate specification tests 

that make this distinction. This is the topic of Chapter 11. 

Finally, Chapter 12 offers some conclusions and presents 

ideas for future work. 
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CHAPTER 2 

PRELIMINARY DEFINITIONS 

2.1 INTRODUCTION 

The purpose of this Chapter is to introduce the notational 

conventions used throughout this thesis. 

Section 2.2 defines preliminary mathematical and statistical 

definitions, such as those given in De Groot (1970), Feller (1966, 

1968) and Muirhead (1982). Section 2.3 defines a number of 

distributions that are used throughout this thesis. These include 

the multivariate normal, multivariate Student-t, multivariate 

elliptically-symmetric and Wishart distributions. Finally, Section 

2.4 gives a brief note on the layout of the thesis. 

2.2 PRELIMINARY MATHEMATICAL AND STATISTICAL DEFINITIONS 

(i) Random Variables 

A probability space is defined as the combination (0, A, P) 

where, 0 is a set of points, A is a a-field of subsets of 0, and P 

is a probability distribution defined on the elements of A. 

1 Furthermore, any set LEA is known as an event. 

1 A a-field is a set of subsets of 0 which is closed under 
complementation, countable unions and intersections. A a-field of 
interest in the study of probability is the Borel a-field of 
subsets of the real line. It is the a-field generated by the class 
of all bounded semi-closed intervals of the form (a,b] and is 
denoted by B. The sets of B are called Borel sets. 
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A random variable Z is a real valued function from 0 to the 

real line R which satisfies the condition that for each Borel set B 

E fi on R, the set Z-l(B) = (W:Z(W)EB,WEO) is an event in A. 

A collection of random variables Zl(w),Z2(w)", on a given 

pair (O,A) will be denoted by Zl' Z2' ... A random vector is a 

K-tuple ZK = (Zl" ,ZK) of random variables defined on a given pair 

(O,A) . 

No distinction will be made between a random variable or 

vector and the value taken by that random variable or vector. 

(ii) Distribution, Probability Density and Characteristic Functions 

Associated with a random vector ZK on (O,A,P) is a 

distribution function defined on RK by 

FK(tl · .. t K) = Pro ((W:Z1 (W) ~ t 1 .. ,ZK(w) ~ t K} ) (2.1) 

K for all t E R . The joint distribution of Zl" ,ZK is absolutely 

continuous if there exists a nonnegative joint probability density 

K function pdfK(Zl" ,ZK) such that for every Borel set B cR. 

(2.2) 

The characteristic function of a random K-vector ZK is defined as 

-1. (2.3) 

The characteristic function always exists and no two different 

distributions yield the same characteristic function so that there 

is a one-to-one correspondence between characteristic functions and 

distribution functions. 
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(iii) Marginal Distribution Functions 

The j oint distribution of a subset of random variables 

Zl ... Zp of Zl ... ZK (p ~ K) is called a marginal distribution. 

marginal j oint distribution F of Zl ... Z is determined from the p p 

The 

joint distribution function by the relation 

(2.4) 

p+1. .. K 

Similarly, the marginal j oint probability density function 

pdfp of Zl ... Zp is determined from the joint probability density 

function pdfK Zl ... ZK by the relation 

pdfp (Zl·· .Zp) = J K~~ J pdfK(Zl·· .ZK)dZp+1 ·· .dZK· (2.5) 
R 

Let G. denote the marginal univariate distribution function 
~ 

of the random variable Z .. 
~ 

The random variables Zl ... ZK are 

independent if and only if (iff) their joint distribution function 

can be factored at every point (Zl ... ZK) E RK as follows: 

(2.6) 

(iv) The Expectation Operator 

The expectation E(Z) of any random variable Z with 

distribution function F is defined as 

E(Z) = J Z pdf(Z)dZ 
R1 

and it exists iff the integral exists. 

(2.7) 

E(Z) is also called the 
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mean of Z or the expected value of Z. For a random vector ZK the 

mean is defined as 

(2.8) 

The variance of a random variable Z is given by E[(Z-E(Z»)1 

and denoted var(Z). The covariance between random variables Zl and 

Z2 is defined as [(Zl-E(Zl»)(Z2-E(Z2»] and denoted cov(Zi,Zj)' 

Equivalently, this can be expressed as 

For a vector ZK' the covariance matrix is ~ = (aij)KxK' where aij 
cov(Z.,Z.). 

~ J 
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2.3 MULTIVARIATE NORMAL, MULTIVARIATE STUDENT-T, ELLIPTICALLY-SYMMETRIC 

AND WISHART DISTRIBUTIONS 

(i) Multivariate .. Normal and Student-t distributions 

A K-dimensional random vector ZK has a nonsingular normal 

distribution with mean J.L
K 

and covariance matrix ~ if ZK has an 

absolutely continuous distribution whose probability density 

function pdf(ZKIJ.LK'~) is specified at any point ZK E RK by the 

equation 

(3.1) 

In (3.1) J.LK = (J.L l . .. J.LK) is a K-dimensional vector whose 



components can be arbitrary real numbers and ~ must be a symmetric 

and positive definite matrix. This distribution is denoted 

-1 
~ . 

Define the precision matrix T of NK (JL!~:~) to be equal to 

Suppose that Y
K 

is NK(JLK'~) with precision matrix T and 

suppose the random variable i is distributed independently of Y 

and is chi-square distributed with v degrees of freedom, so that 

2 pdf(X ) = 

where r(a) is the gamma function, 

r(a) f a-1 x exp(-x)dx, a > 0 

o 

If the components of ZK are defined by the equation, 

1 

2 2 
Z. = y.(K) + JL. , i = l ... K, 

1. 1.V 1. 

(3.2) 

(3.3) 

(3.4) 

with v then the distribution of ZK is multivariate Student-t, 

degrees of freedom, location vector ILK and precision matrix T. It 

is denoted by MTK(ILK,T,v), and the probability density function of 

Z E RK . K 1.S, 

r 

r 

1 
_ (v+K) 

[1 + ~ ( ZK - JLK ) T ( ZK - ILK )' ] 2 (3.5) 
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For v > 1, the mean vector E(Z~) = p,~ exists, and for v > 2 the 

covariance matrix exists and is equal to v2~' v-

In both cases the marginal distributions are easy to derive. 

Suppose that the random vector Z~ is partitioned in the form, 

ZK ~ [:~ 1 
)~ 

where the dimension of Zi is Ki (i = 1,2) and Kl + K2 K. Also 

suppose that p,~, T and ~ are partitioned as 

T [ ~ll 

~21 

~12 

~22 1 ' 

where the dimension of p,. is K. (i = 1,2) and the dimension of the 
1. 1. 

sub- matrices T .. and ~ .. is K. X K. (i,j = 1,2). 
1.J 1.J 1. J K 

normal distribution at any point Z~ E R 1 the value 
~l 

Then, for the 

* pdfK (Zl) of 
1 

the marginal probability density function of Zl is specified as 
~l 

(3.6) 
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For the multivariate Student-t distribution it is, 

-1 where T* = Tll - T12T22T2l' Therefore, in both cases, the marginal 

distributions are members of the same family as their respective 

joint distributions. 

Further properties of both of these distributions can be 

found in, for example, De Groot (1970, pp.50-60). 

Elliptically Symmetric Distributions 

Each of the distributions above belong to the wider family 

of multivariate elliptically-symmetric distributions. The random 

vector ZK has a multivariate elliptically-symmetric distribution if 

the characteristic function ~Z _ (sK) of (Z_K - ~_K) is a function 
K J-lK -

of the quadratic form sKh sK' (where sK is a row vector), 

that, 

such 

(3.8) 

for some function 1/1. If it is further assumed that the density 

function with nonsingular h exists, then it is of the form, 

1 

pdf(ZK) = CKITI
2

g[(ZK-J-lK)T(ZK-J-lK)'] , (3.9) 
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where g is a one-dimensional real-valued function independent of K 

and CK is a scalar proportionality constant. This distribution is 

denoted MES(~,T) and it has the first two moments, E(Z~) = ~K and 

Cov(Z~) = a~, where a = -2~' (0), provided these moments exist. If 

~ = 0 and ~ = I in (3.8) then the multivariate elliptically 
~ 

symmetric distributions are called spherically symmetric 

distributions. Two properties of these distributions used in this 

thesis are (see, for example, Muirhead (1982, p.34»: 

Properties 3.1 

(1) All marginal distributions are elliptical and all marginal 

density functions of dimension p ~ K have the same 

functional form. 

(2) If Z~ is N(~~,~) and ~ is diagonal then the components 

Zl' .. ZK of Z~ are all independent. Wi thin the class of 

multivariate-elliptically symmetric distributions 

independence when ~ is diagonal characterizes the normal 

distribution. 

Further properties of these distributions are discussed by 

authors such as Chmielewski (1981), Kelker (1970), King (1979), 

Cambanis, Huang and Simons (1981) and Muirhead (1982). 

(iii) The Wishart Distribution 

The Wishart distribution is used in the derivation of 

finite-sample properties of common estimators in 
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limited-information simultaneous equations models (as discussed in 

Chapters 5 and 6). The Wishart distribution is a matrix 

generalization of the noncentral chi-squared distribution (see, for 

example, Johnston and Kotz (1972, p.158». Consider the random n x 

K matrix 

Z Z' 1 

Z' 
n 

where the Z. terms are independent normal random vectors with mean 
1. 

M. and covariance matrix E. 
1. 

The K x K matrix W = Z'Z, with (i,j)th 

element Z(i),z(j), is said to be a Wishart matrix. The elements of 

W have a non- central Wishart distribution of order K, with n 

degrees of freedom, covariance matrix E and noncentrality parameter 
n 

M = E MiMi, This is denoted by 
i=l 

The distribution is said to be central if M = O. 

(3.10) 

The Wishart 

distribution has properties similar to those of the noncentral 

chi-squared distribution. In particular, if A and B are symmetric 

idempotent matrices, then Z'AZ - WK[q,E,E(Z)'AE(Z)], where q is the 

rank of A, and Z'AZ and Z'BZ have independent Wishart distributions 

iff AB = O. Further properties are discussed in Muirhead (1982, 

pp.441-449); and Johnston and Kotz (1972, pp.158-180). 
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2.4 NOTE ON LAYOUT AND NOTATION 

The purpose of this chapter has been to introduce the basic 

notational conventions used in this thesis. Other notation used 

that is not introduced in this chapter is defined when it is 

required. 

The layout of this thesis is as follows. Each chapter is 

divided into sections. Theorems, Equation Numbers, Properties and 

Figures within each section of a chapter are denoted by their 

section number and then in sequence. Therefore, when referenced in 

other chapters they are denoted by their chapter number first and 

then their section and sequence number. 
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CHAPTER 3 

KERNEL DENSITY ESTIMATION 

3.1 INTRODUCTION 

There are a number of techniques that are used to 

approximate density functions, either when the exact distribution 

is too difficult to derive explicitly, or when the exact 

distribution is known but too complex to be analyzed conveniently. 

For example, the exact sampling distributions of estimators of the 

unknown coefficients of the endogenous variables in single 

structural equations, have been shown to depend upon multiple 

infinite series of zonal-type polynomials, and these present 

enormous difficulties in numerical work. Phillips (1980a, 1983) 

has overcome these difficulties by extracting various j oint and 

marginal density approximations using asymptotic expansions. 

However, another method which may be used to analyze such 

distributions is the Monte Carlo method, in which artificial data 

are generated and from them sampling distributions and moments are 

estimated. One advantage of this technique is that it can be 

implemented easily on an extensive range of models and error 

probability distributions. An extension of this technique which is 

used in this thesis is the integration of density estimation with 

the Monte Carlo technique, as suggested by Ullah and Singh (1985). 

That is, the Monte Carlo approach is used to generate the 

statistics of interest and then the density of these statistics is 

estimated using the generated statistics as observations. The 

obj ective of this chapter is to briefly review the history and 

discuss the statistical properties of the Kernel estimator, which 
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is a particular example of a density estimator that is both widely 

used and thoroughly studied in the statistical literature. The 

actual Monte Carlo methodology that is used in this thesis is the 

topic of the next chapter. 

The Kernel estimation technique has been reviewed by, for 

example, Tapia and Thompson (1976), Singh, Ullah and Carter (1987), 

Wertz (1978), Devroye (1987), Silverman (1986), and Ullah (1988) 

and the contents of this chapter draw heavily on these reviews. 

The finite-sample analysis of statistics is the application of the 

Kernel density estimation technique that will be used throughout 

this thesis. Recently there has been a great deal of interest in 

other applications of the technique, such as applying the method to 

the estimation and testing of econometric models. A review of 

these applications is beyond the scope of this chapter. However, 

these applications have been reviewed by Bierens (1986), Singh 

et al. (1987) and Ullah (1988). 

In Section 2 the Kernel density estimation technique is 

defined and its history is briefly reviewed. Section 3 considers 

the asymptotic properties of this estimator and Section 4 considers 

the choice of Kernel, window width and sample size. 

concludes this chapter with a simple illustration. 

3.2 THE METHOD 

Section 5 

Let Xl ,X2 , ... ,XN* be independently and identically 

distributed observations on a random variable X with probability 

density function pdf (X) . Rosenblatt (1956) and Parzen (1962) 

developed the Kernel estimator of pdf(X) , which is defined as, 
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pdf(X) 1 N* [X-X.] l:: K J 
j=l h(N~'<') 

(2.1) 

where h(N*) is the window width, which is assumed to be a positive 

function of the sample size, N*, such that lim h(N*) = 0, and K is 
N~C() 

the Kernel. If K is everywhere a nonnegative function and 

satisfies J K(x)dx 1, then pdf(X) will be a probability density 

function which possesses all of the continuity and 

differentiability properties of K. Numerous extensions of this 

estimator have been considered. For example, Breiman et a1. (1977) 

introduced the variable Kernel estimator in which the window width 

varies across the data points, allowing the tails of the estimator 

to be smooth while not distorting the central part of the density. 

Cacou11os (1966 ) extended the Kernel estimator to the 

estimation of multivariate density functions. Let 

Xi = x(xii) X(i) 
2 ... x~i)) i 1 . .. N* 

be a given sample of N* independent realizations of an 

m-dimensiona1 random variable X(X1 X) from a population 
m 

characterized by a continuous m-variate probability density f(X1 

... X). The estimator suggested by Cacou11os is, 
m 

pdf(X) (2.2) 

where (as in the univariate case), h(N~'<') is the window width, 

assumed to be a positive function of sample size such that 

lim h(N*) 
N*:;.oo 

0, and K is the natural generalization of the 

univariate Kernel. This estimator uses only a single h(N*) for all 

m variables, however it has been suggested that this may not be 
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appropriate (see, for example, Ullah (1988, p.634». On occasions 

throughout this thesis an estimate of the appropriate marginal 

density is required, and these can be estimated using the 

expression in (2.2). Conditional densities can also be estimated; 

however, the details will not be given here but can be found in 

Ullah (1988). 

Suppose that the vector of realizations is written as, 

Xi(Xii) x~i) .,. x~i)) = xi(z(i) ,y(i») 

where Z(i) is a p X 1 vector and y(i) is a q X 1 vector such that p 

+ q = m. The marginal density of Zt at Z is 

J p~f(Z,y)dy (2.3) 

One example of a joint Kernel K from which marginal 

densities can be found easily is studied by Epanechnikov (1969), 

and is given by the equation 

pdf(X) 
N~~ m 

N*-l L: II 
t=l i=l 

If each Ki satisfies J Ki(x)dx 

can be written as, 

_1_ K 1. 1. 
[

X. -X~ t)] 
h (N*) i h (N*) . 

(2.4) 

1 and h. (N*) 
1. 

h(N*), then (2.3) 

N~~ q 
N*-l L: h(N*)-q II [ z._z~t)] K J J 

j h(N*) . 
(2.5) 

t=l j=l 

In particular, when (2.4) and (2.5) are used in this thesis it is 

assumed that each K. has the same form, such as, for example, K. 
1. 1. 

__ 1_exp(_~y2), the normal Kernel. 
ffrr 2 
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3.3 THE ASYMPTOTIC PROPERTIES 

The asymptotic properties of the Kernel estimator are 

particularly relevant for the application of the density estimation 

technique to the finite-sample analysis of statistics. This is 

because the sample size, N*, which is the number of replications of 

the simulation experiment, can be chosen and is bounded only by the 

limits of the duplication of the random number generator. The 

obj ective of this section is to present some of the asymptotic 

properties of Kernel estimators. In particular, these properties 

are dependent upon the chosen Kernel, window width and the unknown 

density. A more extensive review can be found in Ullah (1988, 

pp.638-642). 

To obtain these asymptotic properties, certain regularity 

conditions are specified on the Kernel, window width and density. 

The following set of assumptions are taken from Ullah (1988, 

p.639). Let K be the class of Borel-measurable bounded real valued 

functions K(x), x = (xl" .xm) such that for the: 

Kernel 

I. (i) J K(x)dx = 1 

(ii) JIK(X)ldX < 00 

26 

(iii) IIxllmIK(x) I=}O as II xII =} 00 where II .11 is the Euclidean norm. 

(iv) supIK(x)1 < 00. 

Window Width 

II. h(N*) =} 0 as N*=} 00 

III. m N*h(N*) =} 00 as N)~ =} 00. 



Density 

IV. pdf(x) is continuous at any point xO' 

Using these assumptions Cacoullos (1966) has shown that if 

I, II and IV hold, 

lim E [P~f(X)] = pdf (x) 
N*=}ex:> 

which implies pointwise asymptotic unbiasedness, and if I, II, 
III and IV hold, 

1\ p 
pdf(x) =} pdf (x) as N* =} ex:> 

at any point and therefore implies pointwise weak consistency. 

Other results have also been shown to hold. For example, Deheuvels 

(1974) develops weaker conditions under which these results hold, 

and Devroye and Wagner (1976) develop strong consistency results 

assuming some further conditions. 

Each of the properties above are pointwise properties. Some 

authors (e.g. Bai and Chen (1987» have obtained results for global 

properties, using criteria such as those based on the norm Lp, 

which involve considering conditions under which 

[J 1\ ] lip 
Ipdf(x) - pdf(x)IPdx =} ° as N* (3.1) 

The last asymptotic property to be discussed is the property 

of asymptotic normality, which is useful for deriving confidence 

intervals for pdf(x). The results of Parzen (1962) and Cacoullos 

(1966) imply, 

1 

(N*hm(N*»)2[P~f(X) - E(P~f(X»)] - N(O,Pdf(X)JK
Z

) (3.2) 

holds. The result given in (3.2) can be achieved if 
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1 

(N*hm(N*»)2Bias[p~f(X)] tends to zero asymptotically since, 

1 

(N*hm(N*») 2[P~f(X) - pdf (x) ] = (N*hm(N*») [P~f(X) - E (P~f(X»)] 

1 

+ (N*hm(N*»)2Bias[p~f(X)] 

Ullah (1988, p.642) shows that 

This implies that 

asymptotically then (3.2) holds. 

Bias [P~f(X)] is 
4+m 

if N*h-2-(N*) 

(3.3) 

proportional to 

tends to zero 

As an example, consider the univariate normal Kernel 

1 1 2 --exp( --y ), then the 99% asymptotic confidence interval for 
v'2ii 2 

pdf (x) is given by 

1 

pdf(x) ± 2.58 (3.4) 

3.4 CHOOSING THE KERNEL, WINDOW WIDTH AND SAMPLE SIZE 

In the implementation of the Kernel estimator and in the use 

of the results in the previous section, the selection of h, K and 

N* is required. Most emphasis in the literature has been given to 

choosing a suitable window width and Kernel on the basis of 

minimizing some measure. The usual measures to be taken are 

approximate bias, mean squared error (MSE) , or integrated mean 

squared error (IMSE) of pdf(x) where, 

(4.1) 

The difference between the two measures MSE and IMSE is that 

MSE is a measure of the estimator f at a single point whereas, IMSE 
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1\ 

is used as a global accuracy measure of f as an estimator of f. 

The approximations to these measures are obtained using similar 

me thods to Kadane' s (1971) small disturbance expansion of 

estimators, and they can be found in Ullah (1988, p. 642) . The 

existence of these approximations require a number of assumptions 

as given in Ullah (1988, p.64l). 

The optimal h that minimizes MSE is, 

-1/(m+4) h* = cN* . where , , 
(4.2) 

[ { }
2] -1/m+4 

c = mpdf(x) Dpdf(x) J x 2K(x)dx J K2(x) 

and for IMSE is, 

h* c*N*-1/(m+4); where, 
(4.3) 

d 2pdf(x) where Dpdf(X) is the operator 8x8x' , so that h* converges to 0 

as N*~ ~ but only at the rate N*-1/m+4. 

However, these choices are not in general operational as 

they depend upon the unknown dens i ty . However, suitable 

operational window widths have been suggested which depend upon the 

actual estimator pdf(x). Simply, in (4.2) and (4.3) above, pdf(x) 

replaces pdf(x), and the iteration process is begun with an initial 

arbitrary starting value for h. However, the rate of convergence 

of this estimator may be slow (see, for example, Ullah (1988, 

p.644». 

There are various other ways of choosing h. The 

cross-validity approach is one that has often been used. It is 

also called the modified maximum likelihood method (Duin (1976», 
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and it involves a completely data- based choice for h. There have 

been a number of papers that have examined the asymptotic 

equivalence of the cross-validity choice to MISE (e.g., Hall 

(1983), Stone (1984». 

Tapia and Thompson (1976) suggest an "interactive" method 

which is useful mainly in the univariate case. It is recommended 

that the estimation technique begins with h values that are too 

large, that is, when the pdf is obviously overly smoothed, and then 

h is sequentially decreased until overly noisy probability density 

estimates are obtained. The point where further attempts to 

improve resolution, by decreasing h lead to noisy estimators is 

generally fairly sharp and readily observable. Examples of this 

approach are given by Tapia and Thompson (1976, pp.61-66). 

Alternatively, they also present an empirical algorithm which 

iterates according to the algorithm: 

[ 
I 2 ] -1/5 [1\ ] -1/5 h. = N*-1/5K (x)dx JIDPdf(x)1 2dX 

1+1 Ix2K(x)dx 

Other approaches have been suggested and the details are 

given in U11ah (1988, p.644). A Monte Carlo study of three 

data-based nonparametric probability density estimators is given by 

Scott and Factor (1981). 

Usually the choice of K will be a symmetric unimodal pdf. 

Two examples of multivariate kernels are, 

-m/2 1 K(x) = 21(" exp(--x'x), 
2 

(4.4) 

the multivariate normal Kernel, and 



K(x) -1 -1 2 c (m+2) (l-x'x) m 

o 

if x'x 1 

}. (4.5) 
otherwise 

where c is the volume of the unit m-dimensional sphere. 
m 

These 

examples illustrate two different types of Kernels, that is, those 

with compact or those with non-compact support. Kernels with 

compact support have two advantages. These are: 

savings in computer time, 

if the density to be estimated has compact support, 

estimation using a Kernel with noncompact support will 

always be disturbed by boundary effects (see, for 

example, Gasser and Muller (1979». 

To obtain the optimal Kernel (4.3) is substituted into (4.1) 

and IMSE is then minimized. This gives the optimal Kernel given in 

(4.5) as shown in Epanechnikov (1969). 

Davis (1975, 1977) examines the rate at which MSE and IMSE 

decrease, as sample size increases, for a number of univariate 

Kernels. Generally though, both the theoretical and the Monte 

Carlo results have led some researchers to question whether the 

properties of the Kernel estimator are sensitive to the choice of 

Kernel. See, for example, Epanechnikov (1969, p.156). However, it 

is also considered (e.g. Davis (1975» that if the Kernels are not 

restricted to be nonnegative, then the degree of approximation may 

actually improve, although the resulting density estimate may be 

negative at some points. 

Although in many situations the sample size is determined by 

the availability of data, when the Monte Carlo method is integrated 

with non- parametric density estimation the investigator can choose 
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the sample size, as it is simply the number of replications in the 

simulation experiment. 

Epanechnikov (1969) gives values of sample size that assure 

a prescribed level of "minimum relative global error", when the 

true density is assumed to be multivariate normal and the 

multivariate normal Kernel is 1 used. This approach is not 

operational because it depends upon the unknown density. However, 

using the approximate expressions for MSE and IMSE given by Ullah 

(1988, p. 642), with the estimate pdf(x) appropriately replacing 

pdf(x), then a similar procedure to Epanechnikov (1969) can be 

performed. However, the properties of this procedure need to be 

examined. Alternatively, an easy technique to employ is similar to 

the application of the Kolmogorov-Smirnov statistic in the 

estimation of the empirical cumulative distribution function. This 

method is used throughout this thesis and is discussed in the next 

chapter. 

3.5 AN ILLUSTRATION 

Epanechnikov (1969) compares various Kernels by calculating 

the ratio, 

co 

f 2 K (y)dy 

-co 
r (5.1) co 

f 2 
KO(y)dy 

-co 

where K~ refers to the optimal Kernel given in (4.2) for m l. 

1 In determining the optimal window 
"minimum relative global error II gives the 
minimizing IMSE. 

width and Kernel, 
same result as given by 
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This ratio is used because the optimal Kernel is determined on the 

basis of minimum IMSE and this is equivalent to minimizing 

J K2 (y)dy, subject to a number of conditions. For the normal 

Kernel, given in (4.4), r = 1.051 and for the Laplace Kernel, which 

is defined by the equation, 

K(y) 1 
- exp(V2 lyl), 
V2 

(5.2) 

r = 1. 320. To illustrate the techniques reviewed in the chapter, 

and to compare the three Kernels mentioned, given the difference in 

their r values, the standard Cauchy density is estimated. Two 

sample sizes are chosen, (loa, 000 and 100 replications), these 

representing a "large" and "small" sample respectively. The choice 

of window width is determined using the technique of Tapia and 

Thompson (1976). Figure 5.1 illustrates the results obtained for 

100,000 replications, and given the asymptotic properties presented 

in Section 3 it is expected that all of the estimated densities 

will be very similar. In Figure 5.2 when only 100 replications are 

used, some differences, particularly with the Laplace Kernel, are 

noticeable, suggesting that in small samples differences do exist 

between different Kernels. However, these results are only 

illustrative and the differences obtained with this example may not 

be generally representative. 
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FIGURE 5.1 Comparison of Different Kernels for Cauchy 

Distribution Using 100,000 Replications 
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CHAPTER 4 

MONTE CARLO EXPERIMENTS - A DESCRIPTION OF METHODOLOGY 

4.1 INTRODUCTION 

Each of the Monte Carlo experiments used in this thesis 

comprises five steps, these being, the choice of the underlying 

model, the number of replications in the experiment, the generation 

of appropriate pseudo-random numbers, the estimation of the unknown 

parameters of interest and, finally, the estimation of the 

population variance (or when this does not exist some other measure 

of dispersion such as the Interquartile Range), and/or, the 

estimation of the probability density function, (or the 

distribution function, denoted by cdf) , of the estimator of 

interest. Each of the models chosen in Step 1 is discussed in the 

appropriate chapter, as well as the Ikey parameters' on which each 

experiment is based. In particular, these models are, the LIML 

estimator with normally distributed disturbances (Chapter 6), the 

location-scale model (Chapter 8), the multiple regression model 

(Chapter 9) and the exactly-identified LIML estimator (Chapter 10), 

each with Student-t disturbances. The topic of this chapter is a 

description of the remaining steps, that is, Steps 2-5. All 

computations included in these steps were carried out on a VAX 8350 

computer. 

As Steps 2 and 5 are not independent they are jointly 

discussed in Section 2. Section 3 discusses the methods used to 

generate the pseudo- random numbers and Section 4 outlines the 

algorithms used to solve the likelihood equations associated with 
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the models given above. 

4.2 NUMBER OF REPLICATIONS AND THE ESTIMATION OF DF's, PDF's 

AND MEASURES OF LOCATION AND DISPERSION 

Let Xl' X2 , ... , XN* denote a random sample of size N* from 

a cumulative distribution function DF. Then Y1 ~ Y2 ~ ... YN*, 

where Y1 are the Xl arranged in order of increasing magnitudes and 

are defined to be the order statistics corresponding to the random 

sample Xl' ... , ~*' The unknown DF is estimated using the 

empirical DF, DFN~\"' which is a function of order statistics. In 

particular, DFN*, is defined by, 

(l/N*) ~\" (number of Yj less than or equal to x). (2.1) 

The Ko1mogorov-Smirnov statistic, DN*, is used to test how 

well a given set of observations fits some specified DF. It is 

defined as follows. 

DFN*(x) - DF(x) I ' 
and the exact distribution of DN* has been tabulated for various N* 

(see e.g. Mood, Graybill and Boes (1986, p.508). 

N*, in this thesis, represents the number of replications 

for the simulation experiments performed. N* is chosen in such a 

way that on the basis of N* replications we can calculate from the 

distribution of the Ko1mogorov-Smirnov statistic that DFN* is 

within 0.001 of DF everywhere, with probability more than 0.99, 

* (see e.g. Anderson et a1. (1982». In general, this implies that N 

varies between 60,000 - 90,000 replications. 

The integration of the Kernel density estimator (the topic 

of Chapter 3), with the naive Monte Carlo method is used to obtain 
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the empirical pdf's. In each experiment two Kernels are used, these 

being the Epanechnikov and normal Kernels (although the final 

results do not depend on which Kernel is used), and the window 

width is determined using the technique of Tapia and Thompson 

(1976), as described in Chapter 3. The number of observations, N*, 

used in the application of the Kernel estimator is simply the 

number of replications in the simulation experiment, and is chosen 

using the bound of estimation, B, associated with the error of 

estimation. For example, when the normal Kernel and the 99% 

asymptotic confidence interval are used, as is given in (3.3.4), B 

is equal to 

1 

B 2.58 " ]-2 pdf (x) 

[2N*h CN*)' 
N* is varied until B is less than 0.01 for all points at which the 

density is estimated. In all of the experiments, N* varies between 

60,000 and 90,000 replications. This technique is similar to the 

use of the Kolmogorov- Smirnov statistic in the estimation of the 

empirical cumulative distribution function. Given the large number 

of replications, N*, used the final results do not depend on which 

kernel is used. This situation is similar to the comparison of 

different kernels for the Cauchy distribution using a "large 

sample", as is illustrated in Figure 5.1, in Chapter 3. 

The measures of dispersion used include, the median, 

interquartile range and the variance (if it exists) of the 

population. These are estimated using the corresponding sample 

equivalents, (see e.g. Mood, Graybill and Boes (1986, p.7S)). The 

same number of replications used to estimate DF or PDF is used 

here. 



4.3 GENERATION OF RANDOM NUMBERS 

The generation of random normal and iid Student-t 

observations is required in order to obtain the empirical pdf's, 

cdf's, and dispersion measures, in the analysis of each of the 

models in Chapters 6, 8, 9 and 10. The analysis of 

misspecification of error distributions in Chapters 8 and 9, and 

the analysis of the model in Chapter 11, also require the 

generation of multivariate Student-t observations. The generation 

of variates from each of the distributions is based on one or more 

transformations of uniform random numbers. 

Random numbers distributed uniformly on the interval [0,1], 

denoted U(O, 1), are generated using the NAG subroutine G05CAF, 

which uses a multiplicative congruential method. This generator 

passes the spectral test which has become the most respected 

theoretical test of a linear congruential random number generator 

(Bratley et al. (1983, p.195), Kelejian and Adam (1989, p.3), NAG 

manual Mark 12 Vol. 6, Algorithm G05CAF). From these variates the 

following are obtained: 

Normal 

Standard normal variates, N(O,l), as given by (2.3.1), (with 

h = I and K = 1), are generated using the NAG Subroutine G05DDF, 

which is based on Brent's (1974) algorithm. This involves a 

generalization of Von Neumann's (1951) method of generating random 

samples from the exponential distribution by comparison of uniform 

random numbers. These are then converted into normal random 

variates. 
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Chi Square 

The chi-square distribution, as given by (2.3.2), has a 

single positive integer parameter v, the degrees of freedom. If 

(Z.) is a sequence of independent standard normal variates, then 
~ 

v 
X = L; 

i=l 
Z~ 
~ 

has a chi-square distribution with v degrees of freedom. This 

relationship can be used in the generation of chi-square variates, 

however, it is thought to be inefficient, except for small v, due 

to an increasing requirement for normal deviates, as v increases 

(see, for example, Dagpunar (1988». 

An alternative method, which is considered to be an 

efficient method for small v, (see, for example, Rubinstein (1981, 

p.93», is as follows. If v is even, then X can be computed as, 

and if v is odd then 

X -2ln( v~2 u.) 
i=l ~ 

X ( 
v/2-~ ) 

-2ln IT 2 U
i 

+ Z2 , 

i=l 

where Z is from N(O,l) and U. is from U(O,l). 
~ 

Another approach for generating chi-square variates, (see, 

for example, Bratley (1963, p .163», includes making use of the 

fact that the chi-square distribution is a particular case of a 

gamma density. This method is particularly useful when v is large. 

As most of the focus in this thesis is on small v, the 

second method is the main method used. 
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IID Student-t 

The standard iid Student-t distribution is defined by 

(2.3.5) with ~ = I and K = 1. For degrees of freedom v < 3, these 

variates are generated by the inversion of the distribution 

function (see, for example, Devroye (1986, p.27». In particular, 

for v = 1, the Cauchy distribution, standard Cauchy variates are 

generated as, 

and for v 2, the t 2 -distribution, 

where U is from U(O,l). 

For the rest of the Student-t family, v ~ 3, X is generated 

via a transformation of a symmetric beta variate, (see, for 

example, Devroye (1986, p.446». This can be written in terms of 

independent uniform random numbers U1 , U2 as, 

X 
2vv sin (2~Ul)(1-U~/v-1) 

(1-sin2(2~U »(1_U2/ v - 1 ) 1 2 

This formula is useful as it is valid for all members of the 

Student-t family with v ~ 3. It also does not require the 

generation of as many random uniform deviates as does the 

traditional method of generating a t-random variable via its 

interpretation as a ratio of a standard normal to the square root 

of an independent normalized chi-square variable. 
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Multivariate Student-t 

For the multivariate Student-t distribution, (2.3.5), with 

location vector 0 and precision matrix I, the K j oint random 

variates are generated using the relationship (see, for example 

(2.3.4», 

x. 
1-

1 

i 1 ... K , 

2 where Zl ... ZK are K independent standard normal variables and X 

is an independent chi-square variable with v degrees of freedom. 

For each of the univariate distributions, the methods were 

tested by estimating the density functions using the Kernel 

estimator and the generated random variables as observations and 

comparing the results obtained with the "true pdf", (see, for 

example, Figure 3.5.1). In the multivariate case, the method was 

tested against known results, such as, for example, in the linear 

regression model the t-statistic under the null hypothesis is 

t-distributed for all v, and the statistic, 222 
S /a, where s is 

defined in Properties 1.1.1, is F-distributed with N-K and v 

degrees of freedom for v ~ 3 (see, for example, Zellner (1976». 

The results of these tests suggest that the random number 

generators perform well. 

4.4 ESTIMATION OF THE UNKNOWN PARAMETERS OF THE MODELS 

The implementation of the simulation experiments performed 

in this thesis requires the estimation of various parameters of the 

models involved. The objective of this section is to describe all 

of the algorithms that are used for this purpose. 
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Maximum likelihood estimation of the unknown parameters of 

the models in Chapters 6, 8, 9 and 10 requires the maximization of 

the appropriate likelihood function or, equivalently, the 

minimization of the negative of this function, say f(x), where x ERn. 

Quasi-Newton methods for the unconstrained minimization of 

f(x), x E are line search algorithms which use the basic 

iteration 

x (K+l) 1,2 ... (4.1) 

to generate a sequence of approximations (K) 
(x , K=2 , 3 ... ) to a 

stationary point x* of f(x) from a given starting vector x(l). 

A scalar a(K) > 0 is usually chosen to reduce the objective 

function at each iteration so that convergence can be achieved, and 

this scalar satisfies a descent condition of the form, 

where p E (O,~), and V is the gradient of f at x(K). 
2 

The search direction, p (K) E Rn in (4.1) is determined by 

solving a system of equations, 

,8(K)p = _ g(K) , 

where ,8(K) is a positive-definite approximation to the Hessian 

matrix of second derivatives and 

generated vector Vf(x(K». 

(K) g is the 

Two algorithms from the Harwell subroutine library are used 

in this thesis, these being algorithms VAI3AD and VF04AD. Both of 

these initially choose ,8(1) = I and then use the BFGS formula 

(Broyden (1970), Fletcher (1970), Goldfard (1970) and Shanno 

(1970», 
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[ 
,Bpp' ,B TY'] (K) 

,B - p',Bp + a'p'-y , 

where -y(K) is the vector, 

(K) (K+l) (K) -y = g - g , 

to update the matrix ,B(K) E RnXn. The VAI3AD algorithm, instead of 

working directly with the matrix ,B, or its inverse, stores and 

updates the Choleski factors of ,B since this enables the search 

direction p to be obtained in 0 (nz) operations. This algorithm 

requires analytical first and second partial derivatives. 

Algorithm VF04AD, however, uses a conjugate factorization of the 

approximating Hessian matrix which is useful when gradient 

information is estimated by finite difference formulae (for further 

details see, for example, Coope (1987». 

All computations are performed in double precision to 7 

decimal places of accuracy. The final results, however, are not 

dependent upon which algorithm is used in this step. 

The other estimation techniques used (Chapter 9) are the 

trimmed least squares (defined in Chapter 7), and the OLS 

estimators. To obtain the trimmed least squares estimators, the 

computation of the 8th regression quantile is required. 

Specifically, for the linear regression model, 

Y = x',B + € t t t ' (4.2) 

where the €t are iid distributed with distribution function F, 

which is symmetrical around zero, and x t is the t- th row of the 

nonstochastic matrix of K regressors X, the 8th regression 

quantile, (0 < 8 < 1) is defined as any solution to the 

minimization problem, 
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(4.3) 

The minimization problem in (4.3) is a linear programming problem 

which can be solved using the algorithm of Koenker and D'Orey 

(1987). The alternative modified algorithm of Barrodale and 

Roberts (1974), (see, for example, Koenker and D'Orey (1987, 

p.385» is also used, but there are no differences in the results 

obtained. 

The OLS estimators of ~ in (4.2) are found using SUBROUTINE 

ELIM (Gerald and Wheatley (1984, p.144» which solves a set of 

linear equations using the Gaussian elimination method. 

The solutions of each of the algorithms used were compared 

with those in the standard Econometric packages TSP and SHAZAM, and 

were found to give similar results. 



CHAPTER 5 

THE NUMERICAL CALCULATION OF THE DISTRIBUTION FUNCTION OF A 

BILINEAR FORM TO A QUADRATIC FORM .WITH ECONOMETRIC EXAMPLES 

5.1 INTRODUCTION1 

In many statistical and econometric applications statistics 

that are the ratio of a bilinear form to a quadratic form are used. 

The aim of this chapter is to show that the exact distribution of 

these statistics can be computed using techniques such as those 

developed by Imhof (1961) and Davies (1973). Numerous examples of 

the application of this technique will be given, such as Theil's 

(1961) two-stage least squares (TSLS) and K-class estimators and 

Nagar's (1962) double K-c1ass estimator of the coefficient of the 

endogenous regressor in both a correctly specified and misspecified 

single structural equation. These examples are particularly 

important because in the last three decades analytical results for 

the exact density of many of these estimators have been found, as 

is reviewed in Chapter 6. However, three points can be noted. 

First, the results have been obtained by alternative techniques. 

Second, the resulting expressions are complicated and often not 

suitable for numerical evaluation. Third, the techniques that have 

been developed for the numerical evaluation of the distribution of 

one estimator are not easily extended to various other econometric 

estimators. This then emphasizes the objectives of our approach. 

1 The results of this chapter extend the work of Cribbett 
et al.(1989) on the TSLS estimator. 
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That is, the use of a single technique for various estimators and 

easy numerical evaluation. 

In Section 2 it is shown that the distribution of a general 

bilinear form to a quadratic form is essentially the distribution 

of a quadratic form. In Section 3, various special cases of our 

main result in Section 2 are given, including estimators of the 

coefficient of the explanatory endogenous variable in a single 

structural equation and the estimator of the coefficient of a 

lagged dependent variable in a dynamic regression model. 

5.2 MAIN RESULTS 

Consider a class of statistics which are of the form 

(2.1) 

where y = (Yl" 'YN)' and x = (xl' .. xN)' are random column vectors 

such that the rows of [yi,xil (i 1 ... N) are independently 

normally distributed, each row having mean and 

nonsingular covariance matrix ~, both Al and A2 are nonstochastic 

and symmetric matrices and A2 is assumed to be positive 

. d f" 2 sem~- e ~n~te. In (2.1), w is the ratio of a bilinear to a 

quadratic form in normal variables. To obtain the results the 

following two Lemmas are used: 

Lemma 1: -1 The ratio w = (x'A2x) (x'Aly) can be written as a ratio 

of quadratic forms, 

2 The results in this section also hold for nonsymmetric 
matrices by noting that x' Ax = x' ~(A+A')x if A is not symmetric. 

2 

The positive semi- definiteness of A2 ensures that the matrix B2 in 

(2.2) is positive semi- definite, which is assumed in Lemma 2. 
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(2.2) 

where z is a 2N x 1 vector distributed as N2N(~ ,0), 
. z2N 

(2.3) 

The result in the Lemma follows immediately by substituting (2.3) 

in (2.2).3 

Lemma 2: The distribution function of w for a given q can be 
expressed as 

F(q) [ -1 Pr. (x' A2x) (x' Aly) s q] 

[ -1 Pro (z'B2z) (z'B1z) s q] 

Pro [z' (B l -qB2)z s 0] 

Pr. [z*' Az~'< S 0] 

pr.[ 
2T 0] 2 

2: A.Zt S 
. 1 J J J= 

where A is a diagonal matrix of eigenvalues of the matrix 

1 1 

P is an orthogonal matrix of corresponding 

3 Lemma 1 is as in Cribbett et al. (1989). 
different transformation is used in U1lah (1985). 

However, a 
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1 1 

* eigenvectors and z p' 0 2 Z - N
2N

(P' 0 2 J.t
Z2N

' I
2N

) . Furthermore, 

zt2 are independent noncentral chi-square variables each with 
J 

one 
1 

degree of freedom and noncentrality parameter 15,:.-2 = [(P' 0 2J.t) .)2. 
J J 

The details of Lemma 2 can be found in Koerts and Abrahamse 

(1971, pp.81-87). 

Combining Lemmas 1 and 2 implies that the distribution 

function of w, which is a ratio of a bilinear form to a quadratic 

form, reduces to the distribution of a single quadratic form. The 

distribution of a single quadratic form can be computed easily 

using techniques such as those of Imhof (1961) and Davies (1973). 

With these techniques, in order to calculate the distribution 

function F(q), use is made of the inversion theorem of 

characteristic fUnctions. This theorem enables a distribution 

function to be expressed in terms of its characteristic function. 

The characteristic function of F(q) is defined as the complex 

function of the real variable t, 

4> (t) exp(itx)dF(q) . 

-co 

Levy (1925) proved that a distribution is uniquely determined by 

its characteristic function. Levy's (1925) theorem, known as, "the 

Uniqueness Theorem of characteristic functions", states that if 

(a-h, a+h) is a continuity interval of the distribution function 

49 



4 F(q) I then 

F(a+h) - F(a-h) - lim 
T:}OO +f sin(ht) 

exp(-ita)~(t)d(t). (2.4) 
t 

-T 

From (2.4), it is derived that whenever two distributions have the 

same ~(t), the corresponding distribution functions are identical 

for any interval which is a continuity interval for both 

distributions. From this result, it then follows that the 

distributions are identical. However, this result does not give the 

distribution itself, but the difference F(a+h) F(a-h). Gil -

Peleaz (1951) derived an inversion formula that gives F(q) 

directly. He showed that for any random variable X with 

characteristic function ~(t) we have Pr.( X S q) - F(q), where, 

F(q) - 0.5 + 1 
211" 

- 0.5 + 1 

J
oo __ _ exp(itq)¢(-t) - exp(-itq)~(t) 

it 
o 

1 
t 

dt, 

dt, (2.5) 

(2.6) 

where I[) denotes the imaginary part of the complex number. 

To calculate the distribution function of w in (2.2), 

which is a ratio of quadratic forms, we know from Lemma 2 that we 

can calculate the distribution function of the single quadratic 

4An interval (a, b) is called a continuity interval for F(q) 
when both extremes a and b are continuity points of F(q). That is, 
lim F(q) - F(a) and lim F(q) = F(b). F(q) need not be continuous at 
q:}a q:}b 

every point in (a, b). 
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form w* = z*' Az·k. Thus, if we have the characteristic function of 

w* we can use the formulae (2.5) and (2.6) noting in this case q 

o and ¢(t) is the characteristic function of w*. That is, letting 

x = z*'Az* and q = 0 in (2.5) and (2.6) we have, 

~ 0] , 

where, 

Pr. [z*' Az* 0] 
1 r ¢ (- t) - ¢(t) 

~ 0.5 + dt, 
21f it 

(2.7) 

0.5 + 1 r 1 
r[¢(t)] dt. 

1f t 

To find the characteristic function of w~~ we note from Lemma 2 

that, 

2T 
Pro [ 2 2: ).. z~~ 

j=l J J 

Since zt2 are independent noncentral chi - square random variables, 
J 

2 each with one degree of freedom and noncentrality parameter ot , it 
J 

is well known that the characteristic function of zt2 equals, 
J 

h(t) (1 2 · )-0.5 [. - Lt exp L 
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(see e.g. Rao (1965, p.147). Furthermore, as the characteristic function of 

>... zt2 equals h. (>... t), and also using the rule that the characteristic 
J J J J 

function of a sum of independent random variables equals the product of the 

individual characteristic functions, (see ~ Lukacs and Laha (1964, 

p.2l», then, 

fjJ (t) II (1 - 2 D. t) - 0 . 5 exp (i 2.: 
i J 

This implies that (2.7) is equal to, 

1 - 2D.t 
J 

) . 

0.5 + 
~ 2 

--l--J ~t I[II(1-2i>...t)-0.5exP (i2.: oj >"jt )]dt. 
7f i J l-2D.t 

o J 

(2.8) 

Imhof (1961), (see also Koerts and Abrahamse (1971, pp. 78 -

80» , expresses I [ 1 in known quantities, showing that (2.8) may 

be written as, 

Pro [Z*'AZ* S 0] = 0.5 + 

where, 

e(u) 

_7fl J~ 
o 

sin E (u) 

u')'(u) 
du, 



Hence Pro [Z*'AZ* S 0] can be calculated by numerical integration. 

In numerical work, the integration is carried out on a finite 

range only, say 0 SuS U. Therefore, the degree of approximation 

will depend on two types of error, as well as the usual rounding -

off errors. These are, the error arising from using an approximate 

rule to compute the integral, and secondly a truncation error, 

t 
u 

1 sin € (u) 

Ul'(u) 
duo 

Davies (1980) and Koerts and Abrahamse (1971) program the 

techniques of Davies (1973) and Imhof (1961) respectively, for the 

numerical inversion of (2.8)5. Farebrother (1984) has shown that 

the Davies (1980) routine achieves the desired level of accuracy 

more rapidly than the Koerts and Abrahamse (1971) routine. Another 

advantage of the Davies routine is that both the truncation and the 

numerical integration errors are controlled with guaranteed 

accuracy. For the numerical implementation of either of these 

techniques, the eigenvalues and corresponding eigenvectors of the 
1 1 

matrix 02(Bl -qB2)02 are needed. These can always be obtained 

numerically and in some cases, as shown in Section 3, can be found 

analytically. 6 

5 A Fortran version of Davies 
which was supplied to the author by 

(1980) is used in this thesis 
Robert Davies. 

6 The method used to find the eigenvalues and 
is illustrated in the appendix. It is 
Anderson and Sawa (1973). 

parameters 
methods of 

noncentrality 
similar to the 
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5.3 SPECIAL CASES 

In Section 2 it was shown that the exact distribution of the 

ratio of a general bilinear to quadratic form can be obtained by 

using techniques such as those proposed by Imhof (1961) and Davies 

(1973). This result provides a simple method of obtaining the 

exact distribution of various econometric estimators and test 

statistics by using a single algorithm. For illustrative purposes 

five examples are considered: 

5.3.i Double K-class estimator. 

5.3. ii Reciprocal Double K-class estimator. 

5.3.iii Misspecification Analysis. 

5.3.iv Ratio of normal variables. 

5.3.v Other Cases. 

The objective here is to show that the exact distribution of 

each of these cases can be evaluated by using just one algorithm. 

The detailed analysis of each case is, however, beyond the scope of 

this chapter. 

5.3.i Double K-class Estimator 

We consider the distribution of the Double K-class estimator 

of the structural parameter ~ in an equation, 

yt = y~~ + X11 1 + u, (3.1) 

where yt and y~ are N-component vectors of observations on the 

endogenous variables, Xl is a N X G1 matrix of observations on 

exogenous variables, ~ is a scalar parameter, 11 is a Gl-component 

vector of parameters and u is a N-component vector of structural 

disturbances. The reduced-form of the system of structural 
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equations includes, 

(3.2) 

where X2 is a N X G2 matrix of observations on G2 exogenous 

variables that are excluded from (3.1), 

G1 -component vectors, and 7P'<" are 22 G2 -component vectors, of 

reduced-form coefficients and (v1v 2) is a N X 2 matrix of 

reduced-form disturbances. 

AS SUMPTI ON 1: The rows of (v1 ,v2) are independently normally 

distributed, each row having mean 0 and non-singular covariance 

matrix. 

1 
As u v 1 - ~v2' the variance of each component of u is, 

ASSUMPTION 2: The N X G (G G1 + G2) matrix X of exogenous 

variables is of rank G « N). 

ASSUMPTION 3: The matrix (~~1 ~~2) is of rank one and ~~2 has at 

least one non-zero component so that (3.1) is identified. 

-1 For any matrix D of full column rank let PD = D(D'D) D' and 

I D(D' D) -lD, . Then Nagar's (1962) Double K-c1ass (DK) 

estimator with non- stochastic parameters K1 and K2 is 

~DK 
-1 (y*'A y*) (y*'A y*) 212 221 (3.3) 
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where A. = K.(P -P ) + (l-K.)P j = 1,2. This class of estimators 
J J x xl J xl 

provides considerable appeal as a summary statement of several 

commonly used estimators. In particular, when Kl = K2 K, (3.3) 

is Theil's K-class estimator. Also, if Kl = 1 - G(N - G - 3)-1 and 
-1 -1 K2 = 1 - G(l + g) (N - G - 3) for a chosen g, we get Zellner's 

(1986) extended MELO estimator. 

There exist transformations of the variables and parameters 

of the model given by (3.1) and (3.2) which transform it into one 

in which 0 12 , the canonical form of the model. These 

transformations are given in Anderson and Sawa (1973) for example, 

and are 
1 1 

Yl = wI2' 0 ,-Z[yt - (w12/w22 )y~] , Y 2 

The canonical form of the model depends on six key parameters. 

These are, the noncentrality parameter 

1r~2 X2PxlX21r~2 
02 

= --------------

the standard structural coefficient 

0: = 

(3.4) 

(3.5) 

the number of excluded exogenous variables G2 , and the parameters N 

- G, Kl and K2 . The corresponding form of the canonical model is 

1 1 1 

wI2,O,-Z(1rtl w12 ) --- 1r* w22 12 
2 * W221r12 

II 1 1 1 (3.6) 

wI21 0 I -z (1r~1 w12 ) 2 * - w
22 

1rtz W221r22 

The DK estimator of 0: in (3.5) is 
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(3.7) 

Applying Lemma 1 in Section 2 we can write (3.7) as 

where z is a 2N X 1 vector distributed N2N (Vec (X II ) ,I 2N ) and B1 and 

B2 are symmetric matrices such that 

Further, using Lemma 2, 

where 

Pr. (O:DK~ q) 

z'(B -qB)z = 1 2 
2 .A X (N-G,O) . r r 

(3.8) 

(3.9) 

The .A r in (3.9) are the non-zero eigenvalues of the matrix (B1 -qB2) 

such that 

1 

.A1 = - Hq - (1+q2)~ 

both with mUltiplicity G2 and 

- ~ (q (1- K ) 
2 1 

1 

- H q + (1+q2)~ 

1 

( 2 (1 K ) 2 ( 1- K2 ) 2) 2) q - 1 + J 

(3.10) 

(3.11) 

both with mUltiplicity N - G. X~ and X~ in (3.9) are noncentra1 

chi-square variables with G2 degrees of freedom and noncentra1ity 

parameters o~ and o~ respectively, where 
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1 

f{l + c/ + (20: _ q + q0:2) (1 + q2) -Z} 
1 

2 02{ 2 2 --} O
2 

= 2 1 + 0: - (20: - q + qa )(1 + q2) 2 

(3.12) 

(3.13) 

2 2 and X3 and X4 are each central chi-square variables with N - G 

degrees of freedom. 

5.3.ii Reciprocal Double K-C1ass Estimator 

It is well known that the DK estimator of ~ in (3.1) is not 

invariant to normalization. That is, we could apply DK to estimate 

1/~ in, 

(3.14) 

and then take the reciprocal of this statistic as an estimate of ~. 

This will be called RDK and it yields a different estimation 

technique to DK for G2 > 1. For a special case, Reciprocal Two 

Stage Least Squares (Kl = K2 = 1), Anderson and Sawa (1977) compare 

the reciprocal and direct procedures using approximate asymptotic 

expansions. However, for RDK in general a version of the Lemmas in 

Section 2 can be applied to find the exact distribution function. 

Using the canonical form of the model, the RDK with nonstochastic 

A 

O:RDK = (Yl'A2Y2)-1(Yl'A1Yl) , (3.15) 

which is the ratio of a quadratic to bilinear form. However, this 

can be written as a ratio of quadratic forms, 

-1 
(z'B"~z) (z'B)\'z) 2 1 (3.16) 

where z is a (2N X 1) vector distributed N2N (vec(Xn ), I 2N) and Bt 
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and B~ are symmetric matrices such that 

~[O A2] 
2 A 0 

2 

Applying Lemma 2 we can write, 

" 
Pro (Z' (Bt - 0) Pr. (O:RDK ~ q) qB~'() Z ~ 2 (3.17) 

where 

2 4 
z' (B* - qB~'() Z = 

2 2 2 
L: A RX (G 2 orR) + L: A RX (N-G,O) 1 2 r=l r r r=3 r r 

(3.18) 

The ArR are the non-zero eigenvalues of the matrix (Bt -qB~) such that 

1 H 1 + (1 + q2) 2) , 

both with multiplicity G2 , and 
1 

A3R = ~ {(1-K1) + (1-Kl )2 + (1_K2)2q2)2} 

1 

A4R = ~ {(1-K1) - (1-K1)2 + (1-K2)2q2f} 

(3.19) 

(3.20) 

(3.21) 

both with multiplicity N - G. X~ and X~ are noncentra1 chi-square 

variables with G2 degrees of freedom and noncentrality parameters. 
1 1 1 

O~R f[(q2- 20:q (1+(1+q2)2) + 0: 2 (1+(1+q2)~2) (1+(l+q2)2+q2f 1] (3.22) 

1 1 1 

O~R = ~2[(q2+20:q(1+(1+q2)2_1) + 0: 2 (1-(1+q2)2fJ (1_(1+q2)2+q2f1] (3.23) 

for q ~ 0, and 



for q = 0 since A2 = O. 2 2 X3 and X4 are central chi-square variables 

with N - G degrees of freedom and .02 and a are defined in (3.4) and 

(3.5) . 

5.3.iii Misspecification Analysis 

Rhodes and Westbrook (1981) derive the exact probability 

density function of the TSLS estimator when exogenous variables are 

wrongly excluded from the equation being estimated, but not from 

the system. The analysis of this type of misspecification of the 

DK and RDK estimators can easily be analyzed using the Lemmas of 

Section 2. 

Suppose that the correctly specified pair of equations in 

the simultaneous equations model are 

y* 1 

If Xl is partitioned as 

where X+l is N x G+ and X++ is N x G++(G 
1 1 1 1 

may be written as 

(3.24) 

(3.25) 

G+ + G++) then (3.24) 
1 1 

(3.26 ) 

where 11 has been partitioned so as to conform with Xl' Let the 

correct specification for identification of (3.26) be 

Misspecification occurs when the actual specification of (3.26) 

asserts 
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'Y = ° '2 - and ++ = _0 "11 

The DK estimator with this type of misspecification is 

(3.27) 

(3.28) 
M where A. = K.(P -P ) + (l-K.)P j = 1,2. J J x x+ J x+ Using the canonical 

1 1 

form of the model and applying Lemma 1 in Section 2 we can write 

(3.29) 

where z is a 2N X 1 vector distributed N2N (vec(Xn ),I 2N ) and B~ and 

BM are symmetric matrices such that 2 

z 

Applying Lemma 2 we can write 

AM 
Pr. (QDK ~ q) Pro (Z' (B~ -

M qB 2) z ~ 0) (3.30) 

z' (BM - M 2 2+ 4 
qB 2)z 2:;.:\ 2(G+++ G2 ,02 ) + 2:; .:\ /(N-G,O) 1 rXr 1 r=3 r r r=l 

(3.31) 

The.:\ in (3.31) have previously been defined in (3.10) and (3.11). r 

X~ and X~ are noncentra1 chi-square variables with G~+ + G2 degrees 

of freedom and noncentra1ity parameters, 

1 1 

1 ( 2 2 2) -1 [-++' -++ ( 2 2) {-t+' -++ 2 (l+q +q(l+q ) IT12 IT12+ q+(l+q ) J IT11 IT12 

1 

+(q+(1+q2)~1f~~'1f~~}] + O~ (3.32) 
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1 1 

1 ( 2 2 2) -1 [-++' -++ ( 2 2) {-++' -++ 2 (l+q -q(l+q ) ~12 ~12+ q-(l+q) ~11 ~12 

1 

+ ( q - ( l+q 
2

) 2 ) ;~~' ;~~ } 1 + 0 ~ (3.33) 

where o~ and o~ are defined in (3.12) and (3.13). The ~ .. , j = 1, 2 
~J 

are the relevant components of the matrix, 

IT (3.34) 
o 

where IT is defined in (3.6) and X3 is a matrix containing 

++ 2 2 (Xl ,X2)· X3 and X4 are central chi-square variables with N - G 

degrees of freedom. 

The RDK with this type of misspecification is 

(3.35) 

M where A. for j = 1,2 has been defined in (3.28). 
J 

Using the 

canonical form of the model, and applying Lemma 1 in Section 2 we 

have 

M -1 M (z'B* z) (z'B* z) 2 1 (3.36) 

where z is a (2N X 1) vector distributed N2N (vec(XIT ), 12N ) and BtM 

and B~M are symmetric matrices such that 

z = 1 . o 
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Applying Lemma 2 we can write 

"M 
Pr. (aRDK ~ q) 

where 

M Pr. (z' (Bt 

2 

M 
qB~ )z ~ 0) 

2 ++ 2+ 
~ A RX (G1 + G2 ,orR) 

r=l r r 

4 

(3.37) 

2 + ~ A RX (N - G,O) (3.38) 
r=3 r r 

The ArR in (3.37) have previously been defined in (3.19), (3.20) 

and (3.21). 2 2 Xl and X2 are noncentra1 chi-square variables with 

++ G1 and G2 degrees of freedom and noncentra1ity parameters, 

1 1 1 

1 ( 1 - (1+ - + 
2 2 q 

~(1 2)2) -2[-++'-++ 
2 +q 1f12 1f12 

q 
1 ( 2 2) + q l+(l+q ) J 

1 

X {~~'~; + ~(1+(1+q2)~~r~~}] + O~R (3.39) 

1 1 1 1( 1 - (1+ - -
2 2 

q 

~(1 2)2) -2[-++'-++ 
2 +q J 1f12 1f12 

q 
1 ( 2 2) - q 1- (1 +q ) J 

1 

X {~~'1li; -~(1-(1+q2)~1li~'1li~}] + o~R (3.40) 

for q ;>& 0 and where 2 2 (3.22) (3.23). °lR and °2R are defined in and 

For q = 0, since A2 = 0 we just have, 

2 -++'-++ -++' -++ 2 2 (3.41) °lR 1f 11 1f11 + 1f12 1f12 + a 0 

where 02 is defined in (3.4). 2 2 X3 and X4 are central chi-square 

variables with N - G degrees of freedom. 

5.3.iv Ratio of Normal Variables 

Another special case of interest is when A1 = A2 = A in 

(2.1) and A is an m X m positive semidefinite matrix of rank 1 

which can be written as aa' , where a is an rn X 1 vector. Therefore 
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w in (2.1) becomes the ratio of normal variables (a'x)-l(a'Y) and 

its distribution can be studied using Lemmas 1 and 2 in Section 2. 

The distribution of such ratios has been studied by, for example, 

Geary (1930), Fieller (1932) and Marsaglia (1965). 

A particular example of this ratio is the TSLS (or RTSLS) 

estimator when G2 = 1. Substituting K1 = K2 = 1 in (3.7) the 

estimator is, 

1\ 

a: = (3.42) 

1\ 

To evaluate the distribution function of a: the relevant eigenvalues 

and noncentra1ity parameters are, ll' l2' 6~ and 6; as given in 

(3.10), (3.12) and (3.13) corresponding to K1 = K2 = 1. 

To calculate the distribution function of a ratio 

-1 (a'x) (a'y) in general, we note that it suffices to consider the 

distribution function of 

-1 
w' = (c + p 2) (b + p 1 ) (3.43) 

for b, c nonnegative constants and P1' P2 independent standard 

normal variables. 7 In this case 

Pr.(w' ~ q) = pr.[ ~ l X
2

(1,6
2

) ~ 01' r=l r r r 
(3.44) 

where ll' l2 are given in (3.10) corresponding to K1 K2 = 1 and 

7 If w is the ratio of two arbitrary normal random variables 
which may be correlated or not, then there exist constants c1 and 

c 2 such that c1 + c 2w have the same distribution as w' where w' = 
-1 (b + P1)(c + P2) for c, b nonnegative constants and P1' P2 are 

independent standard normal variables. 
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2 2 Xl and X2 are noncentra1 chi-square variables with 1 degree of 

freedom and non-centrality parameters, 

1 1 1 1( 2 221 -1[ 2 ( 221{ ( 22) 2}] 2 l+q +q (l+q ) J c + q+(l+q ) J bc+ q+(1+q) b (3.45) 

1 1 1 1( 2 2 21-1[ 2.( 221{ ( 221 2}] "2 1 +q - q ( 1 +q ) J c + q - (1 +q ) J b c - q - (1 +q ) J b (3.46) 

5.3.v Other Cases 

All of the previous examples have concentrated on the 

application of the main result presented in Section 2 to the 

evaluation of the distribution function of various estimators in 

the limited information linear simultaneous equations model. 

However, other examples do exist, such as the evaluation of the 

distribution functions of estimators in macro models with 

expectations (e. g. see Ullah (1985» and the test statistic of a 

set of restrictions in the general linear model. Recently, Knight 

(1985a) used a technique developed by Davis (1976) to obtain the 

characteristic function of a quadratic form with a nonnormal error 

process characterized by an Edgeworth or Gram - Charlier series 

expansion, (see ~ Knight (1985a, p.232) or Peters (1989, p.283). 

Therefore, using the notation of Lemma 2, where z* is now a vector 

of iid Edgeworth variables with mean It , and covariance I, we have, ""Z)( 

[ -1 ] F(q) Pro (z'B2z) (z'B1z) ~ q) , 

Pr. [z*' Az* s 0], 
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0.5 + ,; r 
o 

¢(-t) - ¢(t) 
dt. (3.47) 

it 

From Equation (2.4) of Knight (1985a, p.234) we have, 

+ 6b(bJ-L
k

S .. ) 2S .. + b(bJ-LkSk .) 4] + 
j JJ JJ j J 

18bb (bJ-LkSk .)2S .. S .. + 9bb (bJ-L1Sk.)(J-LlSl.)S .. S .. + 
ij 1 1J 1J i j (1 1 11 JJ 

}, 
~'( 

-1 
~'( 

where 11 = (I - 2 i t1\), S = 11 - I and K r (r=O,1,2 ... ), are the 

standard cumulants,where in particular it is assumed that K3 ~ ° 
and K4 to;; 3. The calculation of P and 1\ are as for the normality 

assumption and the distribution function given in (3.47) can be 

numerically obtained by using appropriate algorithms in standard 

packages such as NAG and IMSL. Consequently, all of the previous 

examples can now be extended to include this type of nonnormality. 

Note however, that there are various limitations with this type of 

nonnormality. In particular, 
, 

all of the Z~f s are assumed to have 
1 
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the same 3rd and 4th cumulants, and various restrictions are needed 

on the values of K3 and K4 to obtain a positive probability density 

function, these being K3 ~ 0.6 and 0.3 ~ K4 ~ 4.0. 

Another example is the evaluation of the distribution 

function of the Ordinary Least Squares (OLS) estimator of the 

coefficient of the lagged endogenous variable in dynamic models. 8 

This example will be considered in some detail assuming both a 

correctly-specified and misspecified equation structure. 

Suppose that the correctly specified equation is, 

y (3.48 ) 

where y and y -1 (the subscript referring to a one-period lagged 

value of y) are n X 1 random vectors (n = N - 1), Xl and X2 are 

nonstochastic matrices of order n X Kl and n X K2 respectively, and 

a satisfies I a I < 1. Assuming that the vector u is normally 

distributed with E(u) = 0, E(uu') = 0u' then so is y with E(y) = ~ 

where the t-th element of ~ is, 

(3.49) 

L being the Lag operator, and the variance-covariance matrix 0 is 
y 

determined by the specification of 0 .9 The OLS estimator for a u 

is, 

8 Sawa (1978) evaluates 
least squares estimator 
autoregressive coefficient 
quadratic forms. 

the exact 
of the 

using the 

mean and variance of the 
stationary first-order 

moments of a ratio of 

9 In the Adaptive Expectation Model, for example, it is 
assumed that u t = v - av 1 so that 0 = a 2I. 

t t- Y 
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(3.50) 

where M = I - X(X X) -lx', (using the notation X = (Xl ,X2», an 

idempotent matrix of rank n - (Kl +K2 ), z = [Yl .,. yT ), N = ~(DiMD2 

+ D2MD1 ) and Nl = DiMDl with Dl = [In,O) and D2 = [O,In ), that is, 

identity matrices bordered by one column of zeroes. 

However, if, for example, the exogenous variables X2 are 

erroneously excluded from (3.48), then the misspecified equation 

is, 

(3.51) 

and the OLS estimator of a is 

M -1 M (z'Nlz) (z'N z) (3.52) 

where M = I - Xl(XiXl)-lXi, an idempotent matrix of n - Kl , NM 
= 

~(Di~D2 + D2M
M

D), Nl = DiMMOl and z, Dl and D2 are defined as 

above. 

Both of these estimators, are ratios of quadratic 

forms so that the main result of Section 2 is applicable. However, 

in this example the eigenvalues and eigenvectors of the matrices 
1 1 1 1 - -

02(N-qN
1

)02 and fl(NM_qNM)02 
Y Y Y 1 Y 

need to be found numerically. An 

illustration is given in Lye (1988). 
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CHAPTER 6 

THE LIML AND TSLS ESTIMATORS 

6.1 INTRODUCTION 

The study of simultaneity did not become a dominant research 

program by the Cowles Foundation until Haavelmo (1944) recognized 

it as a unified approach to demand systems (Wright (1934», 

Tinbergen's (1930) macroeconometric models and Frisch's (1933, 

1934) confluent systems (see, for example, Epstein (1987». The 

Cowles Foundation developed the theory of simultaneity as a 

mUltiple equation problem in Fisher's (1925) likelihood framework 

and, in particular, a distinction was made between limited-

information and full-information SEM's. In the limited-information 

SEM, attention focusses on just one particular equation. In this 

case the investigator is not prepared to specify fully the 

equations of the rest of the system, but recognizes the necessity 

to develop special techniques that acknowledge the endogeneity of 

some of the regressors. This chapter looks at some finite-sample 

properties of the two most common estimators in limited-information 

SEM's, these being the LIML and TSLS estimators. 

Section 2 of this chapter defines the two estimators. 

Recently, the finite-sample properties of these single-equation 

methods have been investigated extensively, and Section 3 reviews 

some of these studies. This review is divided up into three parts, 

these being moment results, properties of the exact distributions 

and misspecification analysis. Sections 4 and 5 present some new 

results on the comparison of the two estimators based on their 
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finite-sample distributions when exogenous variables are wrongly 

excluded from the equation of interest but not from the system. 

Finally, Section 6 presents some conclusions and suggestions for 

future work. Throughout this chapter the canonical form of the 

limited- information SEM and the same notation will be used as is 

given in Section 3 of Chapter 5. 

6.2 THE ESTIMATORS 

The TSLS estimator is defined in Chapter 5, (5.3.7), as a 

member of the double K-class estimator family with nonstochastic 

parameters Kl = K2 = 1. That is, if we consider again the 

structural equation (5.3.1) in canonical form, 

then the TSLS estimator is equal to, 

1\ 

a = 

Y 2' (p x -P xJ Y 1 

Y2' ( Px -PXJY2 

(2.1) 

-1 where Po = 0(0' 0) 0' for any matrix 0 of full column rank. To 

define the LIML estimator, rewrite (2.1) as 

y~~~ + X17 + u = 0 (2.2) 

where y~ = (Yl'Y2) and ~~ = (_l,a),.l The LIML estimator of ~~ is 

the estimator obtained by maximizing the joint likelihood function 

of y~ subject to the constraint IT~70 = 0, where IT~ = (IT2l IT 22 ) and 

1 Equation (2.1) and (5.3.1) contain one endogenous regressor 
only, as this structural equation is the main focus of Chapters 5 
and 6. However, the expressions given for the TSLS (see 5.3.7) and 
LIML (see 2.4) are also relevant for G(> 1) endogenous regressors 
by assuming the sizes of Y2 and a are respectively (N X G) and (Gxl). 
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o 
'1 (1 '1)'. However, when the reduced-form disturbances are 

mu1tivariate1y normally distributed, the resulting estimator is 

identical to the LVR estimator of ~~. This estimator minimizes the 

variance ratio, 

~~Y~PxlY~~~ 

~~Y~PxY~~~ 
(2.3) 

where PD I - PD, and therefore is the solution to the equation, 

A " 

o , (2.4) 

where t is the smallest root of the determinental equation, 

" 
IY~PxlY~ - ty~pxY~1 = 0 . (2.5) 

Some normalization rule must be imposed if the solution to (2.4) is 

to be unique, however, which normalization rule is imposed is of no 

consequence. This estimator is also a member of the double K-class 

" 
estimator family with stochastic parameters Kl = K2 = t. 

Both the TSLS and LIML estimators are instrumental variable 

estimators (see, for example, Bowden and Turkington (1984, 

pp.llO-113», and this interpretation is useful for comparing the 

two estimation techniques. Using the second expression in (2.1) 

the LIML estimator of 01 is, 

(2.6) 

which is an instrumental variable estimator where the matrix of 

instruments is given by H1 = [Y2,Xll where 

H1 = [Y2, Xl l and n12' n22 are the maximum likelihood estimators of 

the respective population coefficients subj ect to the restriction 
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o 0 
ll21'2 

where 

where 

O. The TSLS estimator of 15 1 is, 

in this case the 

" " 7f 
12' 

7f 
22 

" 

are 

" " _1" 
15 1 (Hi H1 ) H1 Y1 

matrix of instruments 

the OLS estimators 

" 
H1 is given by, 

of the corresponding 

population parameters. Therefore, in forming the instruments the 

LIML estimator takes account of the overidentification restrictions 

whereas the TSLS estimator does not use this information. 

However, both estimators have the same asymptotic 

distribution, that is, 

where V p1im (H'P H /N)-l 1 x 1 Further, both estimators are BAN. 

6.3 FINITE SAMPLE PROPERTIES OF THE TSLS AND LIML ESTIMATORS: 

A REVIEW 

Throughout this chapter it is assumed that the structural 

equation of interest is identified by means of zero restrictions; 

the sample size is greater than the number of exogenous variables 

and all of the predetermined variables are assumed to be exogenous. 

In these equations, one further distinction is made between the 

case of one and more than one endogenous regressor, due to the 

complexity of deriving finite-sample analytical results for the 

latter case. Equations of this type have been of interest for many 

years (see, for example, Haavelmo (1947), Bergstrom (1962) and 

Basmann (1961, 1963». 

This review concentrates on the finite-sample properties of 
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2 the estimators of the coefficients on the endogenous regressors. 

As both the TSLS and LIML estimators are complicated functions of 

the underlying random variables, their exact distributions are 

difficult to derive. Consequently, their use was first justified 

on the basis of large sample criteria, such as consistency and 

asymptotic efficiency. However, in the early 1960' s the analysis 

of the exact distributions and moments of these estimators began, 

and since this time substantial progress has been made. Although 

these estimators are asymptotically equivalent, recent research has 

shown that their finite-sample properties are substantially 

different, and these differences are the focus of this review. In 

particular, three areas are considered, these being, moment 

results, exact distributions and misspecification analysis. 

(i) Moment Results 

The necessary and sufficient condition for the TSLS 

estimator to have finite absolute moments of positive order is that 

the order of the moments must be less than or equal to the degree 

of overidentification. This result was shown for special cases by 

Basmann (1961), Richardson (1968) and Sawa (1969) and extended more 

generally by Kinal (1980), and Hillier, Kinal and Srivastava 

(1984). The LIML estimator, however, has no positive finite moments 

of any order, as shown by Mariano and Sawa (1972) for the case of 

one endogenous regressor and more generally in an unpublished paper 

by Sargan (1970), and also in Phillips (1984a). 

These moment results imply that the LIML estimator is 

inadmissible under a strictly quadratic loss function. However, 
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this does not mean that the LIML estimator should be dropped in 

favour of the TSLS estimator, since, for example, we could be 

comparing a Cauchy distribution with high concentration about the 

true parameter value and a normal distribution with a finite but 

very large variance. Consequently, the two estimators have been 

compared using measures other than those that depend upon the 

existence of moments. One such measure, for example, is the 

"Probability of Concentration around the true parameter value" 

(see, for example, Rao (1981», and in using such measures 

knowledge of the finite-sample distribution is important. 3 

(ii) Finite-Sample Distribution 

In the case of one endogenous regressor, Richardson (1968) 

and Sawa (1969) derived the density of the TSLS estimator and 

Mariano and Sawa (1972) gave the density of the LIML estimator. 

Phillips (1980a, 1984a, 1985) extended both of these results to the 

case where there is an arbitrary number of endogenous regressors. 

However, the expressions for the densities involve complicated 

functions making general comparisons difficult, and numerical 

computations to date have concentrated only on the one endogenous 

regressor case. This is because the general expressions involve 

zonal-type polynomials which converge slowly and so are not yet 

suitable for numerical evaluation. 

Anderson et al. (1979, 1982) give tables of the distribution 

functions of the two estimators when there is only one endogenous 

regressor. The method used to evaluate the distribution function of 

3 The Probability of ConcentratiQn for 
estimator 8 of e is defined as I Pr. ( 10 -e I < r) I 

other words I it considers the concentration of 
particular neighbourhood of e. 

a particular 
for some r. In 
e around e in a 
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the TSLS estimator is similar to the method explained in Chapter 5; 

however, it is not as general (see, for example, Cribbett et al. 

(1989». To obtain the corresponding tables for the LIML estimator 

a simulation method is used. Comparisons of the performance of the 

estimators based on these tables indicate two major differences in 

their finite-sample distributions. These are: 

The distribution of the LIML estimator is essentially 

median- unbiased whereas the distribution of the TSLS estimator is 

badly distorted except for small a and/or large noncentrality 

parameters. 

- The approach to its asymptotic distribution is very slow 

for the TSLS estimator and very rapid for the LIML estimator, so 

that even though the moments of the LIML estimator are not finite, 

the normal distribution is a very good approximation to the actual 

distribution. 

Hillier (1988) considers that the differences in the 

performances of the two estimators are a result of the dependence 

of the TSLS estimator on the normalization rule, whereas the LIML 

estimator is invariant to this. 

To analyze the sampling behaviour of the estimators when 

there is an arbitrary number of endogenous regressors, asymptotic 

approximations to the exact formulae have been used. In 

particular, Phillips (1983) applies the method of extracting 

marginal density approximations using the multivariate version of 

the Laplace formula to the instrumental variables estimators, which 

includes the TSLS estimator. Some features emerge from the 

numerical computations of these approximations, such as: 
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as the number of endogenous regressors increases, the 

marginal distribution concentrates more slowly as N tends to 

infinity. 

- the marginal distribution displays more bias as the degree 

of overidentification increases. 

the true values of the coefficients of the other 

endogenous regressors in the equation can affect the Probability of 

Concentration around the true parameter value of the marginal 

distribution of the estimator of the coefficient of the endogenous 

variable of interest. 

These features are illustrated in Phillips (1980, 

pp.872-876; 1983, pp.13-l9). No corresponding computations exist 

for the LIML estimator. However, Anderson et al. (1986) compare a 

number of estimators on the basis of their mean-squared errors and 

their Probability of Concentration around the true parameter value. 

These measures are computed by means of asymptotic expansions of 

their distributions when the disturbance variance tends to zero 

and, alternatively, when the sample size increases indefinitely. 

In particular, from these comparisons, it is recommended that the 

TSLS estimator should not be used in practice, and several 

modifications of the LIML estimator are given that are 

asymptotically admissible in the large-sample asymptotic theory. 

That is, they are third-order efficient. The particular choice of 

modification depends on criteria such as asymptotic 

mean-unbiasedness (e.g. Fuller (1977» or asymptotic median 

unbiasedness (e.g. the LIML-estimator itself). 
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The combination of these results indicates the superior 

performance of the LIML estimator over TSLS, and therefore a 

long-standing issue over the choice of a single-equation estimator 

in a correctly specified SEM has been resolved. 

(iii) Misspecification Analysis 

Since typically in applied econometric studies economic 

theory provides some guidance but falls short of specifying the 

precise form of structural relationship, the possibilities for 

misspecification in SEW s are numerous. Al though this area of 

analysis has not received a great deal of attention in the 

literature (see, for example, the comments of Taylor (1983) and 

Zellner (1979», there have been contributions from Fisher (1961, 

1966, 1967), Hale et al. (1980), Mariano and Ramage (1978, 1983) 

and Rhodes and Westbrook (1981, 1983), Knight (1982) and Skeels 

(1988).4 

Fisher (1961, 1966, 1967) compares the large-sample asymptotic 

behaviour of the TSLS and LIML estimators in the presence of 

misspecification consisting of exclusion of relevant variables in 

a single equation. His principal result is that neither TSLS nor 

LIML dominates the other for all possible values of the 

specification error according to his criterion, which amounts to a 

weighted sum of squares of the large-sample asymptotic bias. 

Hale et al. (1980) examine the effects of misspecification 

on the exact sampling moments of the K-class estimator family for 

nonstochastic K, and this family includes the TSLS estimator. 

4See Phillips (1982, p. 503) for the correction of a minor 
error in Theorem 2.1 of Rhodes and Westbrook (1981). 
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Exact expressions and large concentration parameter asymptotic 

expansions are presented and analyzed for the bias and MSE of the 

K-class estimators in the case of one endogenous regressor. In 

particular, when relevant exogenous variables are omitted from the 

estimated equation but not from the system, the entire K-class for 

nonstochastic K between 0 and 1 is dominated in terms of large 

concentration parameter asymptotic MSE by either TSLS or OLS. In a 

similar study, Mariano and Ramage (1978) included the LIML 

estimator, which was also found to be dominated by either OLS or 

TSLS with respect to asymptotic MSE. Mariano and Ramage (1980) 

consider other types of misspecification including the omission of 

relevant endogenous variables and the misclassification of 

endogenous regressors as exogenous. 

Knight (1982) gives an alternative derivation to that of Hale 

et al. (1980) of the effects of misspecification on both the OLS 

and TSLS estimators. Skeels (1988) examines the finite sample 

properties of a class of instrumental variable estimators, 

(including OLS and TSLS but excluding LIML), when the system of 

equations, and in particular the equation being estimated, are 

misspecified by the incorrect exclusion of exogenous variables. 

Rhodes and Westbrook (1981) compute the exact density 

function of the OLS and TSLS estimators, when exogenous variables 

are wrongly excluded from the equation being estimated and when 

there is only one endogenous regressor. The misspecified 

distributions are compared with the correctly specified ones on the 

basis of density function concentration (that is, the length of 90% 

probability intervals), and location around the true parameter 

value (that is, the midpoint of the probability interval). It is 
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concluded that the effect of misspecification on estimator 

performance is ambiguous. In particular, for the TSLS estimator 

the following is concluded: 

- the lengths of the TSLS probability intervals may increase 

or decrease under misspecification errors. 

- the deviation of the midpoint of the probability intervals 

from the true parameter value may increase or decrease and may even 

change sign. 

Overall, they conclude that under misspecification OLS may 

indeed be the superior estimation technique. However, no similar 

analysis exists for the LIML estimator, although Rhodes and 

Westbrook (1983) have considered some specific examples from which 

no general conclusions can be drawn. In the rest of this chapter, 

Rhodes and Westbrook's (1983) analysis is extended to include the 

LIML estimator, so that further comparisons between the TSLS and 

LIML estimators can be made. 

6.4 THE KEY PARAMETERS IN THE MISSPECIFIED CANONICAL DISTRIBUTIONS 

Let the structural equation of interest be written 

+ + X++ ++ 
Y1 = Y2a + X1'l + 1'1 + X2'2 + u1 , 

as, 

(4.1) 

where X+· N*G+ X++ . N)'(G++ (+ G++ ) . N ~G d h l~s l' 1 ~s l' G1+ 1 = Gl ' X2 ~s ~ 2 an '1 as 

been partitioned so as to conform with Xl' Let the correct 

specification after identification of (4.1) be o. 

Misspecification occurs when the actual specification of (4.1) 
++ asserts '2 = Q, and '1 = Q. The TSLS estimator with this type of 

misspecification is, 
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(4.2) 

In Chapter 5, Section 3, it is shown that (4.2) can be written as a 

ratio of quadratic forms, that is, 

where z is a 2N * 1 normally distributed vector, and BM and BM are 1 2 
symmetric matrices such that 

[ :~ ] BM i[l: _p 

IP -P +1] BM [ 0 0 ] x x z = 1 1 
+} 0 2 0 {P -P +} 

X xl X xl 

This implies that the distribution function can be calculated as 

follows: 

AM 
Pr. (0: S q) Pr. (Zl (B~ - M qB 2) z s 0) 

Z' (BM _ M 2 2+ qB 2)z l:;). 2(G+++ G2 ,o2 ). 1 rXr 1 r=l 

The the eigenvalues of the matrix ). are non-zero r 

defined as, 
1 1 

[q - q2)"2 ] , [q + (1 + 
-

). = -1 (1 + ).2 
-1 q2)2 -1 2 2 

both with mu1 tiplici ty 

chi-square variables + 

noncentra1ity parameters, 

and 2 
X2 

degrees 

are 

of 

(BM M - qB2) 1 

] , 
noncentra1 

freedom and 
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1 1 

1 ( 2 2 2) -1 [-++' -++ ( 2 2) {-++' -++ 2 (l+q +q(l+q ) J n12 n12+ q+(l+q ) J n11 n12 

1 

+( q+(1+q2)~~~' ~~}] + O~ 
(4.3) 

1 1 

1 ( 2 2 2) -1 [-++' -++ ( 2 2) {-++'-++ 2 (l+q -q(l+q) J n 12 n 12+ q-(l+q) nu n12 

1 

+( q- (1+q2)~~r ~~}] + O~ 
where o~, o~ and 02 

are equal to, 

f[ -1/2] 
02 1 + 2 2 q2) 

1 a + (2a - q + qa )(1 + 

02 f[ 1 + 2 (2a - q 
2 2 -1/2] 

a - + qa ) (1 + q ) 2 
(4.4) 

, , 
n'/( X (I - P x )X 27f;2 2 22 1 

0 
W 22 

where n~~ and ware defined in Chapter 5, Section 3, ( see 22 22 

Assumption 1 and (5.3.6». The j = 1,2 are the relevant 

components of the matrix, 

IT 

o 

++ where X3 is a matrix containing (Xl ,X2). Given this information, 

"M the exact distribution function of a can be calculated using the 

techniques such as those developed by Imhof (1961) and Davies 

(1973, 1980), as described in Chapter 5. Furthermore, from (4.3) 

and (4.4) the "key parameters" of this distribution are given by 



2 the non-centrality parameter, 0 , the true parameter value Q, the 

degrees of freedom parameter G~+ + G2 and the parameters ~~' ~~, 
-++ I -++ d -++, -++ 
~ll ~12 an ~12 ~12' 

The derivation of the LIML estimator of the endogenous 

regressor in the correctly specified model (5.3.1) begins with the 

joint distribution of two independent Wishart matrices (see Chapter 

W = Y6 (px -

PXl)Y~ (where Xl' X are given in (5.3.2) and the Projection matrix 

2), which will be denoted Wand S. In particular, 

P D is defined in (5.3.3», is a noncentral Wishart matrix with 

degrees of freedom G2 , covariance matrix I and noncentrality 

parameter M where, 

and S = Y~ (I - Px)Y~ is a central Wishart statistic with N - G 

degrees of freedom and covariance matrix I. When the equation is 

misspecified as in (5.3.26) however, the distribution of W changes, 

although the distribution of S remains the same. In this case ~ = 

Y6 (p x - P x~) Y ~ (the superscript M representing the misspecified 

Wishart matrix, and X~ is as defined in (5.3.26» is a noncentral 

Wishart with degrees of freedom parameter G~+ + G2 , covariance 

matrix I and noncentrality parameter, 

-++ 1 ~l2 -
-++ + M . 
~12 

However, the matrices ~ and S remain independent since ( p - p +) 
x xl 

x (I - P ) 
X 

o (see Chapter 2), so that the results of Hillier 

(1987) can be used to obtain the analytical expression for the 

distribution function of the LIML estimator subject to this type of 
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misspecification. However, for the purposes of the simulation 

experiment performed in this chapter, the key parameters have 

already been identified, and are the parameters in the Wishart 

distributions of S and ~. 

a, -++ 
11"11' 

These parameters are N - G, 

Therefore, as in the 

correctly specified case, the only Key parameter that differs from 

those that affect the TSLS distribution function is N - G. 

6.5 PROPERTIES OF THE MISSPECIFIED DISTRIBUTIONS 

When the structural equation of interest is misspecified by 

the exclusion of relevant exogenous variables, such as in (5.3.26), 

the density functions of the TSLS and LIML estimators of the 

endogenous regressor coefficients contain a number of key 

parameters in addition to those that affect the densities in the 

correctly specified model. These parameters are: 

-++ -++ h' h b hOd -++, -++ > 0 d 11"12' 11"12 w LC are ot non - negative, ~ ,an 11"11 11"12 < an, 

in addition, the degrees of freedom parameter increases to include 

the number of wrongly excluded exogenous variables. The effect of 

these parameters on the density functions is examined in this 

section. 

In particular, the influence of misspecification upon the 

density functions is analyzed for a number of parameter 

constellations by numerically evaluating the exact distribution of 

the TSLS estimator as descibed above and in Chapter 5, and 

simulating the distribution of the LIML estimator via the 

integration of the Kernel density estimator with the naive Monte 

Carlo method. The kernel estimate at point X is equal to, 
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1 

[
X - x 1 k j, 

h(N*) 

(5.1) pdf (X) 

where k[.] is the standard N(O,l) density. The window width h(N*) 

is chosen using the interactive approach of Tapia and Thompson 

(1978). In all cases this approach led to the use of a window width 

between 0.02 and 0.09. N* is simply the number of replications in 

the simulation experiment, and is chosen using the bound of 

estimation. For example, the results of Parzen (1962) and Cacoullos 

(1966) imply that, 

1 

(N*hm(N*»)2[P~f(X) - E(P~f(X»)] - N(0,Pdf(x)fK2). (5.2) 

1 

The result in (5.2) can be achieved if (N)\-hm(N)\-») 2Bias [P~f(X)] 
tends to zero asymptotically since, 

1 

(N)\-hm(N)\-») 2 [P~f(X) - Pdf(X)] 

1 

+ (N)\-hm(N)\-)VBias[p~f(X)]. 

Ullah (1988, p. 642) shows that Bias [P~f(X)] is proportional to 

h2(N*). This implies that if N*h(4+m)/2(N*) tends to zero 

asymptotically then (5.2) holds. Therefore, for the normal kernel, 
1 1 2 ---exp(--y), the 99% asymptotic confidence interval for pdf(X) is 

..f2ir 2 

given by, 
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1 

" [P~f(X) ] 2 pdf (X) ± 2.58 , 
2N~~hV1f 

so that B is given by, 

1 

" 
B [

Pdf(X) ] 2 
2.58 2N*h(N~~)1f 

N* is varied until B is less than 0.01 for all points at which the 

density is estimated. In all experiments, N* varies between 60,000 

and 90,000 1 . . 5 rep lcatlons The input of X. 
J 

in (5.1) involves 

numerically maximizing the likelihood function to obtain the LIML 

estimator of a. Two algorithms from the Harwell Subroutine library 

are used, these being algorithms VAI3AD and VF04AD, which both use 

the BFGS formula, (Broydon (1970), Fletcher (1970), Goldfard (1970) 

and Shanno (1970)). All computations are performed in double 

precision to 7 decimal places of accuracy. The final results, 

however, are not dependent upon which algorithm is used in this 

step. Furthermore, the solutions of each of the algorithms used 

were compared with those in the standard econometric packages TSP 

and SHAZAM, and were found to give similar results. Random numbers 

distributed uniformly on the interval [0,1], denoted U, are 

generated using the NAG subroutine GOFCAF, which uses a 

multiplicative congruential method. Standard normal variates, 

N(O, 1), were generated using the NAG subroutine G05DDF, which is 

5Empirical densities were also computed using the Epanechnikov 
(1969) kernel. However, given the number of replications used, the 
results proved not to depend on which kernel is used. This 
situation is similar to the comparison of different kernels for the 
Cauchy distribution using a "large sample", as is illustrated in 
Figure 5.1 in Chapter 3. 
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based on Brent IS (1974) algorithm. Further details are given in 

Chapter 4. 

A selection of these densities is presented in Figures 

5.1-5.3. The median and interquartile range (IQR) are also 

computed and these are used as summary measures of the influence of 

misspecification on the location and concentration of the density 

functions. A selection of these values is presented in Table 5.1. 

These were calculated exactly for the TSLS estimator using the 

Davies (1980) routine and were estimated for the LIML estimator as 

described in Mood, Graybill and Boes (1986, p.75). The same number 

of replications used to estimate the PDF is used here. In each of 

these computations it is necessary only to consider the parameter 

space defined by Q 2 0, as the respective densities for Q < ° are 

simply the mirror images of their corresponding positive 

counterpart. 

The analysis begins with the case of one wrongly excluded 

exogenous variable and the effect of misspecification on the 

location and rQR of the density functions. 

--++ determining the effect of the parameters n11' 

In this case in 

--++ --++, 
n U ' n 12 

--++ n12 on the misspecified distributions, it is sufficient to discuss 

--++ --++ the effects of n11 and n12 only. From Table 5.1 the following 

comments can be made. For the TSLS estimator the conclusions are 

similar to those of Rhodes and Westbrook (1981). 

the IQR can increase or decrease in comparison to the 

correctly specified model. Increases in the IQR are associated 

with increases in --++ Inlll, while decreases are associated with 

. . 1--++1 increases in n l2 . Therefore, these two parameters exert opposing 

influences, although in general, misspecification is associated 
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FIGURE 5.1 Densities for the LIML and TSLS Estimators when 

a = 0.0, <5 2 = 16 
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FIGURE 5.2 Densities for the LIML and TSLS Estimators 

When a = 0.5, 0 2 = 16 
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FIGURE 5.3 Densities for the LIML and TSLS Estimators 

When a = 1.0, 6 2 = 16 
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Table 5.1: Median and rQR for LrML and TSLS Estimators 

-++ n 

o 
2 

4 

o 
2 

4 

-++ 
Median for nil = 

-++ 
rQR for nn = 

o 2 

LIML 0: = 0.0 

0.0 0.0 

4 7 

02 
= 16 N - G = 20 

0.0 0.0 

o 

G2 = 2 

0.374 

0.0 

0.0 

0.011 0.0239 0.0441 0.370 

0.0216 0.0434 0.0830 0.369 

2 

G++ = 1 
1 
0.400 

0.381 

0.374 

correctly specified Median = 0.0 rQR = 0.42 

TSLS 0: = 0.0 02 = 16 G2 = 2 G~+ = 1 

0.0 0.0 0.0 0.0 0.3200 0.354 

0.0 

0.0 

0.091 

0.117 

0.182 

0.235 

0.318 

0.412 

0.2900 0.316 

0.2320 0.246 

correctly specified Median = 0.0 rQR = 0.333 

LIML 0: = 0.5 02 
= 5 N - G = 10 G~+ = 1 G2 = 2 

4 7 

0.4029 0.4680 

0.4001 0.4600 

0.3930 0.4491 

0.444 

0.382 

0.282 

0.624 

0.5230 

0.36399 

o 0.4778 0.5022 0.5666 0.8230 0.8452 0.8956 1.0712 1.9363 

2 0.4542 0.5142 0.6089 0.9021 0.8174 0.8362 0.7445 1.7909 

4 0.4056 0.4892 0.5973 0.8537 0.7531 0.9430 0.7988 1.4788 

correctly specified Median = 0.4834 rQR = 0.7634 

o 
2 

4 

o 
2 

TSLS 0: = 0.5 02 = 5 G++ = 1 G = 2 
1 2 

0.338 0.338 0.338 0.5440 0.6690 0.9630 1. 50 0.338 

0.223 

0.109 

0.403 

0.282 

0.586 

0.456 

0.8999 0.4299 0.4910 0.6467 0.961 

0.717 0.291 0.3130 0.3730 0.501 

correctly specified Median 0.397 rQR = 0.60199 

LIML 0: = 0.5 02 
= 16 N - G = 10 

0.5003 0.5037 0.5302 0.6075 

0.4886 0.5083 0.5435 0.6338 

G = 2 G++ = 1 
2 1 
0.4147 0.4246 

0.4106 0.4138 

0.4644 

0.4403 

0.5865 

0.5308 

4 0.4676 0.4967 0.5405 0.6371 0.3903 0.3953 0.4118 0.4760 

o 
2 

4 

correctly specified Median 0.4935 rQR = 0.3966 

TSLS 0: = 0.5 02 = 16 G2 = 2 G~+ = 1 

0.4419 0.4419 0.4419 0.4419 0.3480 

0.4530 0.5440 0.6810 0.3110 

0.3800 

O. 3 ~50 0.363 

0.235 0.353 0.470 0.6470 0.2460 0.257 

correctly specified Median = 0.4960 IQR = 0.3640 

0.464 

0.396 

0.292 

0.638 

0.531 

0.370 



Table 5.1 continued. 

o 
2 

4 

o 

-++ Median for ~11 = 

2 4 7 

LIML Q = 0.5 02 
= 25 N - G = 10 

0.5007 0.5055 0.5197 0.5683 

0.4949 

0.4814 

0.5077 

0.5288 

0.5001 

0.5274 

0.5846 

0.5899 

--++ rQR for ~1l = 

o 2 

G = 2 G++ = 1 
2 1 
0.3206 0.3301 

0.32296 0.3252 

0.3188 0.3394 

4 

0.3507 

0.3158 

0.3235 

correctly specified Median = 0.4985 rQR = 0.2971 

TSLS Q = 0.5 02 = 25 N - G = 10 G2 = 2 G~+ = 1 
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7 

0.4077 

0.3810 

0.3572 

o 0.46199 0.46199 0.46199 0.46199 0.28699 0.30399 0.35099 0.45799 

2 0.4030 0.46699 0.53199 0.62799 0.2634 0.27799 0.31699 0.40399 

4 

o 

0.291 0.384 0.47599 0.61599 0.221 0.22899 0.25299 0.311 

correctly specified Median = 0.48099 IQR = 0.29499 

LIML Q = 1.0 02 = 16 N - G = 10 

0.991 1.0073 1.0372 1.1234 

G~+ = 1.0 

0.5157 

G = 2 2 
0.5257 0.5512 0.6299 

2 0.9884 0.9989 1.0272 1.1051 0.5175 0.5125 0.5237 0.5729 

4 0.9601 0.9711 0.9989 1.072 0.5108 0.4942 0.4948 0.5205 

-2 NA 0.9993 1.0302 1.1207 NA 0.5396 

-4 NA 0.9699 0.9991 1.084 NA 0.5493 

correctly specified Median = 0.999 IQR = 0.4952 

LIML Q = 1.0 02 
= 16 N - G = 20 G~+ = 1.0 G2 = 2 

0.5817 

0.6074 

0.6962 

0.6432 

o 1.0024 1.0068 1.0231 1.0686 0.5132 0.5196 0.5496 0.5718 

2 0.9965 1.0012 1.0169 1.0626 0.5152 0.5114 0.5188 0.5442 

4 0.9799 0.9852 1.0016 1.0444 0.5113 0.5026 0.5028 0.5185 

correctly specified Median = 1.0003 rQR = 0.4899 

o 
2 

4 

-2 

-4 

TSLS Q = 1.0 02 
= 16 G~+ = 1.0 G2 = 2 

0.885 0.885 0.885 0.885 0.420 

0.730 

0.471 

NA 

NA 

0.815 

0.588 

0.635 

0.353 

0.912 

0.702 

0.544 

0.236 

1.045 

0.886 

0.410 

0.059 

0.370 

0.280 

NA 

NA 

0.450 

0.378 

0.289 

0.392 

0.292 

correctly specified Median = 0.930 rQR = 0.451 

0.530 

0.440 

0.325 

0.451 

0.327 

0.680 

0.565 

0.395 

0.577 

0.399 
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Table 5.1: Median and IQR for LIML and TSLS Estimators 

-++ 
11" 

o 
2 

4 

o 
2 

4 

Median for ~~ = 
-++ IQR for 11" 11 = 

o 2 

LIML 0: = 0.0 

0.0 0.0 

4 7 

62 
= 16 N - G = 20 

0.0 0.0 

o 

G2 = 2 
0.374 

0.0 

0.0 

0.011 0.0239 0.0441 0.370 

0.0216 0.0434 0.0830 0.369 

2 

G++ = 1 
1 
0.400 

0.381 

0.374 

correctly specified Median = 0.0 rQR = 0.42 

TSLS 0: = 0.0 

0.0 0.0 

0.0 0.091 

0.0 0.117 

62 
= 16 G2 = 2 G~+ = 1 

0.0 0.0 0.3200 

0.2900 

0.354 

0.316 0.182 

0.235 

0.318 

0.412 0.2320 0.246 

correctly specified Median = 0.0 rQR = 0.333 

LIML 0: = 0.5 62 
= 5 N - G = 10 G~+ = 1 G2 = 2 

4 7 

0.4029 0.4680 

0.4001 0.4600 

o . 3930 0 . 4491 

0.444 

0.382 

0.282 

0.624 

0.5230 

0.36399 

o 0.4778 0.5022 0.5666 0.8230 0.8452 0.8956 1.0712 1.9363 

2 0.4542 0.5142 0.6089 0.9021 0.8174 0.8362 0.7445 1.7909 

4 0.4056 0.4892 0.5973 0.8537 0.7531 0.9430 0.7988 1.4788 

correctly specified Median = 0.4834 rQR = 0.7634 

o 
2 

4 

o 
2 

4 

o 
2 

4 

TSLS 0: = 0.5 62 
= 5 G++ = 1 G 1 2 

0.338 .0.338 0.338 0.338 0.6690 

0.4910 

0.9630 

0.6467 

1. 50 

0.961 0.223 

0.109 

0.403 

0.282 

0.586 

0.456 

0.8999 

0.717 

2 

0.5440 

0.4299 

0.291 0.3130 0.3730 0.501 

correctly specified Median 0.397 rQR = 0.60199 

LIML 0: = 0.5 62 
= 16 N - G = 10 

0.5003 0.5037 0.5302 0.6075 

G = 2 G++ = 1 
2 1 
0.4147 0.4246 0.4644 0.5865 

0.4886 0.5083 0.5435 0.6338 0.4106 

0.4676 0.4967 0.5405 0.6371 0.3903 

0.4138 0.4403 0.5308 

0.3953 0.4118 0.4760 

correctly specified Median 0.4935 rQR = 0.3966 

TSLS 0: = 0.5 62 
= 16 G2 = 2 G~+ = 1 

0.4419 0.4419 0.4419 0.4419 0.3480 

0.363 

0.235 

0.4530 

0.353 

0.5440 0.6810 

0.470 0.6470 

0.3110 

0.2460 

0.3800 0.464 

0.3~50 0.396 

0.257 0.292 

correctly specified Median = 0.4960 rQR = 0.3640 

0.638 

0.531 

0.370 



with decreases in concentration as I~~I has to be considerably 

larger with respect to I~;I before the IQR increases. 

the parameters I~~I and I~;I also exert opposing 

influences on the median. In particular, the value of the median 

increases as I~~I increases and decreases as I~;I increases. In 

the correctly specified model, the TSLS estimator is badly median 

under-biased (see, for example, Anderson et al. (1979)). In the 

misspecified model, the TSLS estimator may become median 

over-biased, unbiased or remain under-biased, depending on the 

values of I~~I and I~;I. 

Although both I~I and I~;I exert similar influences on 

the misspecified density of the LIML estimator, the extent to which 

this density is affected by these parameters differs. In 

particular, 

- in the correctly specified model the LIML estimator is 

essentially median-unbiased (see, for example, Anderson et a1. 

(1982), so that increases in I~~I imply the estimator becomes 

median over-biased and increases in I~;I imply the estimator 

becomes meqian under-biased. However, even for very large values 

of I~I and I~;I, the density becomes only mildly median-biased. 

- the IQR for the misspecified densities only moderately 

differs from that of the correctly specified model, although in 

general it increases as I~~I exceeds the value of I~;I. 

. ~+ ~+ These comments consider the absolute effects of n l1 and n l2 , 

however, it is also interesting to note the differences that occur 

~ ~+ -++ ~+ when n11 n12 < 0 rather than n 11 n l2 > O. These are illustrated in 

Table 5.1 for 0: = 1.0, 02 
= 16. In particular, for the LIML 
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estimator, although the value of the median remains similar in both 

-++ -++ cases, the value of the IQR is much larger for ~11 ~12 < O. The 

opposite occurs for the TSLS estimator. In this case, while the 

value of the IQR is similar in both -++ -++ 0 the cases, when ~ll ~12 < 

value of the median is substantially smaller compared to when -++ 
~ll 

-++ 
~12 > O. 

In the correctly specified model, the degrees of freedom 

parameter is equal however under this type of 

misspecification this increases to G2 + G~+ The effect of this 

-++ -++ increase is isolated by considering the parameter values ~11 = ~12 

= 0 in Table 5.1. In particular, the IQR falls (and concentration 

increases) for the LIML estimator. However, for the TSLS 

estimator, the median in general decreases in comparison to the 

correctly specified model, so that the pdf becomes more 

concentrated around the wrong parameter value. For the LIML 

estimator, the median remains essentially unbiased, so that 

although dispersion increases, the pdf is concentrated around the 

true parameter value. 

Figures 5.1-5.3 illustrate a selection of pdf's for the TSLS 

and LIML estimators, showing a subset of the range of behaviours 

represented in Table 5.1, and clearly displaying a number of 

comparisons between the two alternative estimation techniques. 

Each figure is divided up into four plots, these corresponding to: 

(i) the correctly specified model; 

(ii) -++ -++ O' ~ll ~12 , 

(iii) -++ -++ 4' ~ll o ~12 , and 

(iv) -++ -++ O. ~ll 7 ~12 = 

Further, in each figure, the true parameter value is increased, 
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2 while the other key parameter values are kept equal to 0 = 16, N -

++ G = 10, G2 = 1 and G1 = 1. 

In the plots of the correctly specified models for the small 

parameter values, a - 0.0 and a - 0.5 (Figures 5.1-5.2), the 

distributions of the LIML and TSLS estimators are almost identical. 

Therefore, plots (i), (ii), (iii) and (iv) in each of these figures 

illustrates not only the effects of misspecification on each 

estimator but also how the effects differ between the two 

estimation techniques. In particular, the TSLS estimator appears 

to be more sensitive to misspecification as is easily seen by 

comparing the location and spread between the plots. 

In Figure 5.3, when the true parameter value is equal to 1, 

even in the correctly specified model the two estimation techniques 

are clearly distinguishable. However, the differences between the 

two become even more apparent in the plots corresponding to the 

misspecified models. Once again, the TSLS estimator is clearly 

more affected by misspecification as the LIML estimator maintains a 

similar shape as that in the correctly specified case. 

Similar results to those above are also reported in Table 

5.2, where in this case both the number of correctly excluded, G2 , 

and incorrectly excluded, variables are increased 

corresponding to the true parameter value a = 1.0 and noncentrality 

2 parameter 0 = 25. 

consequently then, the results presented in this section 

suggest that although the TSLS and LIML distributions are affected 

in similar ways under this type of misspecification, the LIML 

estimator tends to be more robust, particularly in the location of 

its distribution in relation to the true parameter value. 
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Table 5.2: Median and rQR for LrML and TSLS Estimators 

o 
2 

4 

-2 

o 
2 

4 

-2 

o 
2 

4 

-2 

o 
2 

4 
-2 

o 

-++ Median for ~11 = 

2 4 

LIML a = 1.0 02 
= 25 N - G = 10 

0.99744 
0.97764 
0.91522 
NA 

0.97639 
0.99823 
0.93990 
1. 0002 

0.91383 
1.0597 
0.99784 

1. 0747 

-++ rQR for ~11 = 

o 2 

G = 3 G++ = 5 
2 1 
0.44929 
0.44903 
0.43971 

NA 

0.44856 
0.43591 
0.40784 
0.49438 

correctly specified Median = 1.0019 rQR = 0.40167 

0.77599 
0.39100 
0.22400 
NA 

0.77899 
0.67199 
0.40100 
0.28800 

0.77899 
0.86499 
0.58099 
0.09600 

0.63699 
0.19699 
0.14100 
NA 

0.34900 
0.24800 
0.14999 
0.2500 

correctly specified Median = 0.92399 rQR = 0.40107 

LIML a = 1.0 02 
= 25 N - G = 10 G = 6 G++ = 5 2 1 

1. 0791 
1. 0169 
0.98313 
NA 

1. 0387 
1. 0273 
0.99453 
1. 0282 

0.98313 
1. 0567 
1. 0258 
1. 0588 

0.47246 
0.38684 
0.40969 
NA 

0.37936 

0.37532 
0.38216 
0.39738 

correctly specified Median = 1.0003 rQR = 0.4252 

TSLS a = 1.0 02 
= 25 G2 = 6 G~+ = 5 

0.70899 
0.45299 
0.21700 
NA 

0.70999 
0.63499 
0.39100 
0.04400 

0.71399 
0.81599 
0.56499 
0.09100 

0.27200 
0.21499 
0.13800 
NA 

0.32400 
0.23700 
0.14699 
0.14900 

correctly specified Median = 0.82899 rQR = 31400 
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0.43939 
0.45986 
0.40588 
0.60225 

0.4800 
0.31400 
0.17500 
0.32600 

0.40969 
0.35851 
0.39651 
0.40324 

0.441 
0.299 
0.172 
0.311 



6.6 SOME FINAL COMMENTS 

In a correctly specified SEM, the LIML estimator is 

considered to be a superior estimation technique to the TSLS 

estimator, as it is essentially median-unbiased whereas the 

distribution of the TSLS estimator is, in general, badly distorted. 

The numerical results presented in this chapter extend the 

comparison of the two estimation techniques to the case when the 

structural equation of interest is misspecified by the exclusion of 

relevant exogenous variables (which are, however, not excluded from 

the system as a whole). The key parameters of the distribution are 

identified, and are shown to affect the distributions in a similar 

way. However, in general, the LIML estimator is more robust as, 

although it tends to be more dispersed than the TSLS estimator it 

is, in general, better located around the true parameter value. 

The numerical results presented here, combined with those of 

Anderson et al. (1979, 1982), are also applicable to the analysis 

of other types of misspecification, specifically the inclusion of 

irrelevant exogenous variables and a combination of inclusion of 

irrelevant and exclusion of relevant exogenous variables, from the 

structural equation of interest. This is because in the case of 

the inclusion of irrelevant exogenous variables, only the degrees 

of freedom parameter in the Wishart matrix, W, (as in Section 6.4) 

is affected. This is easily seen by applying a similar argument to 

that given in Section 6.4. 

97 



CHAPTER 7· 

EXTENSIONS OF THE NORMALITY ASSUMPTION: A REVIEW 

7.1 THE NORMAL ASSUMPTION 

The early statistical researchers, in particular De Moivre 

(1733), regarded the normal distribution only as a convenient 

approximation to the binomial distribution, and it was not until 

the nineteenth century that appreciation of its broader theoretical 

importance spread with the work of Gauss (1809) and Laplace (1812). 

Gauss and Laplace were both led to the rediscovery of the normal 

distribution through their work on the theory of errors of 

observations. Laplace in particular gave the first statement 

(although incomplete) of the general theorem, now well known under 

the title of the Central Limit Theorem. 1 Today in the majority of 

cases the distribution of disturbances in econometric equations is 

assumed to be normal. This is by and large true for single 

equation and simultaneous equation models, both linear and 

nonlinear. A number of reasons have been suggested for the 

dominance and popularity of the normality assumption in this 

context. Two of the most frequently used arguments are the 

following: 

1 This only briefly summarizes the major developments in 
the derivation of the normal distribution. Considerable attention 
has been paid to its historical development by authors such as 
Johnston and Kotz (1970), Cramer (1946) and Stigler (1986). 
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- Haave1mo (1944) argues that the random disturbance terms of 

econometric models can be considered to be the sum of a large 

number of independent small elementary random shocks, and therefore 

will be approximately normal by virtue of central limit theorem 

considerations. 

- In at least the simplest models, such as the classical 

linear regression model, the assumption of normality implies that 

the maximum likelihood and the BLU least squares estimators 

coincide. Further, a large collection of finite sampling 

distributions are analytically tractable and consequently have been 

extensively studied. 

However, the widespread use of the normality assumption does 

not mean it has escaped criticism, and comments such as the 

following have frequently appeared in the literature: 

-" everyone believes in the Gaussian law of errors, the 

experimenters because they think it is a mathematical theorem, the 

mathematicians because they think it is an experimental fact" 

Lippmann (quoted by Poincare (1912». 

"normality is a myth, there never was and never will be a 

normal distribution" - Geary (1947, p.209). 

"Practical statisticians have tended to disregard 

nonnormality, partly for lack of an adequate body of mathematical 

theory to which an appeal can be made, partly because they think it 

is too much trouble, and partly because of a hazy tradition that 

all mathematical ills arising from nonnormality will be cured by 

sufficiently large numbers. This last idea presumably stems from 

limit theorems, or rumors or inaccurate recollection of them" 

Hote11ing (1961, p.319). 
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- "however, it is rather puzzling that investigators who are 

generally loathe to adopt informative priors about the systematic 

structure of the models about which theoretical considerations and 

part empirical evidence should provide substantive evidence, should 

find themselves so well informed about the unobservable 

constituents of their model's unobservable errors to argue that 

they satisfy a Lindeberg condition" - Koenker and Bassett (1978, 

p. 34). 

There is a large body of empirical literature (e.g. 

Mande1brot (1963a, 1963b, 1966, 1967, 1969) and Fama (1963,1965, 

1970)) which suggests that many economic time series, particularly 

prices in financial and commodity markets, are well represented by 

nonnorma1 distributions, especially those with infinite variance. 

Another example of econometric models in which errors are nonnormal 

is the study of frontier production and cost function models (e.g. 

Schmidt (1976b), Waldman (1982)). 

Even the asymptotic justification of the normal distribution 

has been ques tioned. Bartels (1977) argues that limit-theorem 

arguments in the context of economic statistics are just as likely 

to lead to a nonnorma1 stable distribution as to a normal 

distribution, so that limiting arguments cannot guarantee that a 

variable will be normal. 

Consequently, there has been a substantial interest in 

alternatives to the normality assumption. This interest has 

essentially followed two different directions. The first direction 

considers iid nonnormal disturbances. This has led to the 

derivation and use of estimators other than Gaussian- type 

estimators. The next two sections examine properties of estimators 

and test statistics optimal in a Gaussian sense under iid nonnormal 
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conditions and considers an important class of alternative methods 

given under the rubric of robust regression. With the use of the 

normality assumption the terms independence and uncorrelatedness 

are equivalent. However, with nonnormally distributed disturbances 

they are not. Therefore, the second direction broadens the 

assumption of normality by assuming the disturbances of the 

regression model follow a joint multivariate elliptical 

distribution (as defined in Chapter 2). The results that have been 

obtained under this assumption are reviewed in Section 4. The 

final section of this chapter combines both of the directions by 

considering the importance of distinguishing between independence 

and uncorrelatedness in nonnorma1 models. This section sets the 

theme of the remaining chapters in this thesis. 

7.2 NONNORMAL lID DISTURBANCES - THE EFFECT ON GAUSSIAN-TYPE 

STATISTICS 

"What are the effects of nonnormality on the traditional 

normal procedures?" 

The objective of this section is to answer this question by 

drawing together numerous results which have been published on the 

properties of Gaussian-type statistics under the regime of 

nonnorma1 disturbances. Attention is given only to symmetric 

nonnorma1 parent populations. 

First consider the relaxation of condition (11) in Section 

(ii) of Chapter 1. That is, consider the usual linear regression 

model with non- normal errors. If the errors are assumed to be 

independently and identically distributed with zero mean and finite 
2 variance a, then the following properties hold for the ordinary 

least-squares based statistics: 



Properties 2.1: 

(i) 

(11) 

(iii) 

{3 (X'X)-lX'y is unbiased, consistent, BLUE and has 

covariance matrix a2 (X'X)-1. 
1 " " s2 = N_K(y-X{3)' (y-X{3) is unbiased and consistent. 

~ does not have a normal distribution and (N-K)s2 does not 
2 a 

have a chi-squared distribution. 

(iv) The usual t- and F-tests are not in general valid, however, 

(2.1) 

where Q X'X 
lim~. Further, under the null hypothesis R{3=r, 
N=}oo 

where R is a 1 X K known vector and r a known scalar then 

" 
VN(R{3-r) (g) N(O,l) , (2.2) 

s/a[X~x(;, 

A proof of these properties is given by Schmidt 

(1976a, pp.SS-60). 

If the existence of a finite mean and variance of the errors 

is not assumed then Properties 2.1 do not in general hold. There 

are many examples of distributions without any finite moments (e.g. 

Cauchy) or finite mean only (e.g. t 2) and it is believed that these 

types of distributions are representative of many economic data 

series, particularly prices in financial and commodity markets 

( e . g . F ama ( 196 3 , 196 S , 1970) ) . These distributions have "fat 

tails" implying that large values or "outliers" will be relatively 

frequent. Because the least squares technique minimizes squared 

deviations it places a relatively heavy weight on these outliers, 

and their presence can lead to estimates that are extremely 

sensitive to the presence and values of such outliers. For 

example, it is well known that the mean of a sample of n values 
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from the standard Cauchy distribution is the same as that of a 

single observation so consequently even the moments of the 

distribution of the mean do not exist. A further feature with this 

class of distributions is that the t- and F-test do not have the 

usual asymptotic justification as described above in Properties 

2.1. For example, Logan et a1. (1973), (see also Phillips and 

Hajivassi1iou (1987)) examine the asymptotic distribution and 

density of the t-statistic in the location 2 model when the 

observations are a sample from a symmetric stable distribution with 

index a, where 0 < a S 2. They conclude that: 

- the tails of the distribution are Gaussian-like at ± ~ 

- if 0 < a < 1 then the density has infinite singularities 

- for 1 < a < 2 there are finite "bumps" in the density at ±1. 

These disappear as a approaches 2 as the distribution 

converges to the standard Gaussian density. 

This then illustrates the importance of distinguishing between the 

existence and non-existence of the first two moments of the error 

distribution, even in the consideration of asymptotic properties. 

The finite-sample properties of the t- and F-tests under 

various moment assumptions have also received much attention in the 

literature. For the t-statistic, interest has focussed primarily 

on the location model and the following remarks briefly sketch the 

main results to illustrate the magnitudes of the differences when 

compared with classical results. The studies were pioneered by 

Pearson and Adyantaya (1929) with some empirical investigations on 

the size and power of the t-test. Many articles soon followed in 

2 Using Equation (1.2.1) the location model is equivalent to 
y = f3 + f.. 
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which theoretical investigations were carried out using the first 

four terms of Edgeworth series expansions by authors such as 

Bartlett (1935), Gayen (1949) and Srivastava (1958), and similarly 

using Laguerre polynomials and gamma density functions by Tiku 

(1971). It was concluded from these studies that if there is only 

a moderate departure from the normal distribution then the effect 

on the properties of the t- test is negligible. Bondesson (1983) 

establishes that if the distribution function has finite moments of 

all orders and if the t-test statistic is distributed as central t 

wi th N -1 degrees of freedom under the null hypothesis for all 

sample sizes N ~ 2, then the distribution function is normal. 

However, these results depend on the existence of moments of 

the parent population up to a certain order. Unfortunately for 

many parent populations such as the Student-t with small degrees of 

freedom, these procedures either fail or do not work well. Yuen 

and Murthy (1974) perform a Monte Carlo experiment to determine 

percentage points for the t-statistic when the parent population is 

Student-t with v ~ 3. They suggest the following approximation: 

t = t (1-2.08-1.18 log size %) 
N-1 Nv 

where t is the t-statistic for a parent Student-t family with v ~ 3, 

t N_l is the classical normal t-statistic, and log a% assumes the 

values 0, 0.7, 1.0 corresponding to size a% of the test equal to 1, 

5, 10 respectively. This implies that the t statistic is 

conservative, that is, the size of the test is smaller than it 

would be under normality, whenever the value of the ratio is less 

than 1. More generally, this result is believed to hold for all 

long-tailed parent distributions (see, for example Cressie (1980), 

Johnston (1978) and Efron (1969». However, Benjamini (1983) claims 

that this is too broad a statement and using various criteria for 
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long-tai1edness proves that the t-test is conservative but only for 

large enough critical values. 

Results on the performance of the F-test in the linear 

regression model (e.g. Schrader and Hettmansperger (1980» suggest 

that it is moderately robust with respect to the size of the test 

but loses power rapidly even in the presence of small departures 

from the normality assumption of the errors. 

The model of interest in this thesis when both conditions 

(i) and (ii) from Section 2, Chapter 1 are relaxed is the limited 

information linear simultaneous equations model. In this case the 

asymptotic distribution of estimators such as OLS, TSLS and the LVR 

are well known to be normal under certain conditions (e.g. Theil 

(1971, p.SOS), Bowden and Turkington (1984, p.26». However, 

although the finite-sample properties of these estimators have 

attracted a great deal of attention in recent years, there are few 

published results available on the effect of nonnormal 

disturbances. Knight (198Sb, 1986) analyzes the effect of nonnormal 

disturbances on the moments and distribution of OLS and TSLS 

estimators by applying results of Davis (1976). Although it is 

concluded that nonnormality has little effect, the analysis is very 

limited in the sense that all common nonnormal distributions are 

excluded. Therefore it is only valid for very small departures 

from normality. Raj (1980) considers four alternative forms of two 

parameter normal and nonnormal error distributions and reports on a 

Monte Carlo study of the small-sample properties of estimators 

including OLS and TSLS. On the basis of 1,000 replications of 

sample size 20, in two experiments on an overidentified model, it 

is found that the small-sample rankings of the estimators of both 

structural coefficients and forecasts of endogenous variables, 
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according to parametric and nonparametric 3 measures of bias, 

dispersion and dispersion including bias do not change for any of 

the four error distributions. This study, too, has its 

limitations, particularly in the error distributions which are 

chosen so as to satisfy the existence of the first two moments. A 

similar study was also carried out by Donatos (1989) and reached 

similar conclusions. 

This section has reviewed several properties of the 

traditional Gaussian-type statistics in both the general linear and 

linear simultaneous equations model under a variety of nonnormal 

distributions. Therefore the question posed at the beginning of 

this section can now be answered. In the linear regression model 

the answer is clear-cut. In this model two results, namely 

Properties (i) and (ii) are often used to justify the use of least-

squares statistics under conditions of nonnormality. However, 

these properties require the existence of the first two moments 

of the parent distribution, and if this condition is not met the 

least-squares statistics can have vastly different properties. 

Even if they do hold, the finite sample properties of the usual 

inference procedures may be substantially different from those 

under the classical assumptions. Further, the class of linear 

estimators tends to be drastically restrictive as its members 

generally are asymptotically inefficient relative to many 

non-linear estimators. Although very little analysis has been 

carried out on the linear simultaneous equations model, similar 

comments can be made. In particular, the traditional estimators 

such as OLS, TSLS and the LVR are in general asymptotically 

3 Nonparametric measures were used as there exist few 
results on the existence of moments for nonnormal situations. 

106 



inefficient. Consequently, these results have led to the 

development of other estimation techniques, which is the topic of 

the next section. 

7.3 ROBUST ESTIMATION TECHNIQUES 

Are there estimators that are not much worse than least 

squares when the disturbances are normal but considerably 

better for nonnormal distributions? 

Judge et al. (1985) recommend that if g priori information 

about the likely form of a nonnormal distribution exists, then 

because of its known desirable asymptotic properties maximum 

likelihood estimation should be used. 

estimation technique should be used. 

Otherwise, a robust 

Robust estimators are 

independent of a distributional assumption on the errors of the 

model and are "robust" in the sense that they are reasonably 

efficient irrespective of the form of the underlying distribution. 

These estimation techniques have been used since the nineteenth 

century especially in astronomical calculations (see, for example, 

Stigler (1973». Although initially most attention was focussed on 

the location model, recently there have been developments which are 

relevant for both the linear regression and linear simultaneous 

equations models. The rest of this section will only briefly 

outline the three major classes of estimators in this area as there 

are excellent reviews in the literature. These include Mosteller 

and Tukey (1977), Huber (1972,1973,1977, 1981), Bickel (1976), 

Koenker (1982) and Koenker and Bassett (1978, 1982). The three 

classes of estimators are the M, Land R estimators. 

The M estimators are also known as "maximum-likelihood like" 

estimators. Suppose the errors of the model are iid with pdf f(e t ) 

and are symmetrically distributed about zero. The first order 
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condition of the log likelihood equation for the unknown vector ~ 

is, 

N 
l:: 

t=l 

x' f' (y -x'~) t t t 
f(Yt-x~~) 

o (3.1) 

However, if the density function is unknown then this equation 

cannot be solved. An M-estimator is found by replacing f'lf with 

another function~. For robust estimation this function is chosen 

so that outliers are weighted less heavily than in the least 

squares solution. The scale factor ~ has also been introduced into 

this estimation technique. One method is to solve the equation 

(3.2) 

where ~ is a robust scale estimator of ~. Another approach, 

however, is to set up a "pseudo maximum-likelihood estimator" for 

both ~ and ~ (see, for example, Huber (1981». 

The asymptotic properties of M-estimators have been 

investigated by authors such as Huber (1973, 1981) and Yohai and 

Maronna (1979). If, in addition to some mild conditions on ~ and 

F, it is assumed that 
00 

(i) J ~(et)dF "" 0 
-00 

00 

(ii) J ~(et) 2dF < 00 

-00 

(iii) lim N- 1 (X'X) = Q is positive definite, 

1\ 

then the corresponding M-estimator, say BM, is consistent and 

d (2 -1) '* N O,~ (~,F)Q (3.3) 

where 
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00 J 1/I(e
t

)2 dF 

a2 (1/1, F) _-_00 ____ _ 

[ ( ~,<etldF]' 

In the location model L-estimators are simply estimators 

which involve linear combinations of order statistics, where the 

order statistics are defined as the observations ordered, in 

ascending order. Equivalently L-estimators can be regarded as 

linear functions of the sample quanti1es. The definition of 

L-estimators on the basis of sample quanti1es has been extended to 

the linear regression model by Koenker and Bassett (1978). This 

definition was used because the usual concept of order statistics 

is no longer adequate in the regression model, because what 

constitutes an appropriate ordering depends on the vector ~. 

In the linear regression model the 8th sample quantile, 0 < 

8 < 1, is defined as any solution to the minimization problem: 

(3.4) 

Koenker and Bassett (1978) have established a number of properties 

of the estimators that are solutions to (3.4). 

The rth- trimmed mean estimator in the location model is 

defined as 

N~r Y(i) 
i=r+1 N-2r 

(3.5) 

where y (1) are the order statistics. Ruppert and Carroll (1980) 

and Koenker (1987) discuss alternative estimators based on sample 

quanti1es say ~TLS which, asymptotically, behave similarly to the 

rth-trimmed mean estimator. That is, under appropriate conditions 

they show that 
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_r.:;" d (2 -1) vN(~TLS-~) ~ N O,a (rF)Q (3.6) 

2 where a (r,F) denotes the asymptotic variance of the corresponding 

rth- trimmed mean from a population with distribution F. 

When 0 0.5 in (3.4), the corresponding estimator is 

defined as the least absolute deviations estimator. This estimator 
A 

is also a ~TLS estimator and in this case (3.6) (Koenker and 

Bassett (1982» reduces to 

where f(O) is the value of the density at the median. This implies 

that the least absolute deviations estimator is asymptotically more 

efficient than OLS for all error distributions where the median is 

superior to the mean as an estimator of location. Amemiya (1982) 

and Powell (1983) have extended this estimator to simultaneous 

equation models. 

R-estimators, proposed by Jaeckel (1972), are based on a 

ranking of the residuals in linear models. He wrote the regression 

model as 

y = ~l + X~* + u , (3.8) 

where X is the usual regressor matrix except for the column of l's 

and ~* is the usual coefficient vector except for the intercept 

term. Jaeckel estimator maximizes 

N [ N+l] D(y-Xb~\-) = ~ R -- (y -x' b*) , 
t=l t 2 t t 

(3.9) 

where Rt = rank (Yt-x~b*). Jaeckel proves that D is a nonnegative, 

continuous and convex function of b* and that his estimator is 

asymptotically normal with mean ~* and covariance matrix, 
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(3.10) 

where r2 is l~[J f 2 (U)dU]-2 and 1 is a column of l's. 

A number of Monte Carlo experiments have compared the 

performance of robust estimators to the OLS estimator ina variety 

of nonnormal iid distributions. Using the location model Andrews 

et al. (1972) reports a Monte Carlo study of 68 robust estimators. 

Their study shows that the performance of the sample mean is 

clearly inferior for heavy tailed distributions. Similar studies 

have been carried out by, for example, Hill and Holland (1977), 

Forsythe (1972), Koenker (1987) and Ruppert and Carroll (1980), for 

the regression model. These studies have indicated that the 

particular choice of robust estimator to use depends upon the 

assumed distribution. Therefore, Amemiya (1985, p. 75) concludes 

that in choosing an appropriate robust estimator, a preliminary 

study is required to narrow the range of distributions that the 

given data are supposed to follow. 

7.4 MULTIVARIATE ELLIPTICALLY SYMMETRIC DISTRIBUTIONS 

In recent years in the econometric literature, to broaden 

the assumption of nonnormality in the linear regression model, it 

is assumed that the error components follow a j oint multivariate 

elliptical distribution, as defined in Chapter 2; see also Muirhead 

(1982). The objective of this section is to review the results in 

the literature that have been obtained under this assumption. 

Thomas (1970) looks at the univariate general linear model 

y = X{3+f., where X is a nonstochastic design matrix and f. has a 

spherically symmetric distribution. He shows that the usual t- and 
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F-statistics used for ~ have unchanged null distributions for this 

wider class of spherically symmetric laws and he also gives 

expressions for the non-null distributions. Zellner (1976) 

considers the problem for multivariate Student-t errors, a special 

case, and shows that ~ is a maximum likelihood estimator for ~ and, 

furthermore, that ~ is a maximum likelihood estimator for ~ for 

all likelihood functions which are monotonically decreasing 

functions of (y_X~)' (y-X~). He further adds that if second moments 

exist, then ~ is a minimum variance unbiased estimator. He also 

presents the corresponding Bayesian analysis. With a diffuse prior 

probability density function it is found that the joint posterior 

distribution for the regression coefficients is in precisely the 

same multivariate Student-t form as arise from the usual normal 

model. However, the posterior distribution for the scale parameter 

is in the form of an F-distribution whereas in the normal model it 

has an inverted gamma density. He also presents a natural 

conjugate prior. Extensions to this result have been considered by 

Jarnma1amadaka, Chib and Tiwari (1987, 1988). 

The methods used to obtain results for the univariate 

regression model have been mechanized routinely to give the 

distribution theory for the multivariate regression model. For 

example, Sutradhar and Ali (1986) consider the multivariate 

regression model defined by, 

y = ~X + € , (4.1) 

where Y is the (pxN) matrix of dependent variables, ~ is a (pxk) 

matrix of unknown parameters to be estimated, X is a nonstochastic 

matrix of order (kxN) and € = (€1 ... €j ... €N)' an error variable 

where € j € .) each with covariance matrix L;. 
PJ 

The 

probability density function of € is given by the mu1tivariate-t 
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distribution, 

(4.2) 

They show that the ordinary least squares estimator of ~ is 

unbiased and weakly consistent. Using the method of moments, they 

also consider the consistent estimation of v, for v > 4. Singh 

(1987) also considers this problem in the univariate regression 

mode1. 

Andrews and Phillips (1987) consider optimal median-unbiased 

estimation in a linear regression model with the distribution of 

the errors lying in a subclass of the elliptically symmetric 

distributions. The generalized least squares estimator is shown to 

be best for any loss function that is nondecreasing as the 

magnitude of underestimation or overestimation increases. For the 

same loss functions, a restricted generalized least squares 

estimator is shown to be best when the estimator is known to lie in 

an interval. The class of error distributions that is considered 

are rotated variance mixtures of multivariate normal distribu-

tions. 

The properties of a number of statistical tests have also 

been examined by, for example, King (1979, 1980), Ul1ah and 

Phillips (1986), Sutradhar (1988), Ullah and Zinde-Walsh (1984, 

1985, 1987) and Anderson, Fang and Hsu (1986). 

King (1979, 1980) establishes the result that statistics 

which are invariant to the scale of the disturbances have the same 

small sample distributions as they do under normality. 

In the special case of multivariate- terrors, Ullah and 

Phillips (1986) analyze the distribution of the F-ratio for testing 



a set of linear restrictions and in particular derive its non-null 

density function. Sutradhar (1988) also examines this problem and 

calculates the power of the test for a particular set of exogenous 

variables. In this case the power of the test depends upon the 

degrees of freedom parameter, which is assumed known. 

In a series of papers, Ullah and Zinde-Walsh (1984, 1985, 

1987) consider the F, Likelihood-Ratio (LR), Lagrangian Multiplier 

(LM), Wald (W) and Rao-Score (RS) tests for testing a set of linear 

restrictions. They describe these statistics as being 

numerically robust over a class of error distributions if their 

values are independent of the specific error distribution from that 

class, and inferentially robust if no matter which error 

distribution from that class of distributions is considered the 

test statistics remain unchanged. Using these criteria, they show 

that if the error disturbance is assumed to be spherically normally 

distributed, F and LR are numerically robust against the class of 

all monotonically decreasing continuous spherical distributions, 

but RS and Ware not. However, all these statistics are 

inferentially robust over this class so that the test conclusions 

reached under the assumption of normality will not be overturned if 

the error distribution is spherical. They also extend these 

results based on the assumption of spherical normality against the 

general class of elliptical error distributions. In particular, 

they obtain conditions for numerical robustness for the class of 

covariance matrices often used in econometrics such as in 

autoregressive, moving average and heteroskedastic models. Their 

investigations show that for these covariance matrices the 

numerical robustness of test statistics under consideration is rare 

and they develop bounds for critical values which ensure that the 
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conclusions based on the usual tests are not affected by a 

particular class of distributions. 

Anderson, Fang and Hsu (1986) obtain likelihood ratio 

criteria for a class of null hypotheses for 

monotonically-decreasing 

distributions. 

continuous elliptically contoured 

The topic of spherical matrix distributions and a 

multivariate model has been studied by many authors, among whom are 

Dawid (1977), Fraser and Ng (1980), Jensen and Good (1981), Kariya 

(1981), Eaton (1983) and Sutradhar and Ali (1986). 

Stein (1955) shows that in higher dimensional problems, the 

sample mean of a multivariate normal distribution is inadmissible 

against expected squared error loss. This result was extended and 

analyzed for the vector of regression coefficients when the 

disturbances are distributed normally by James and Stein (1961) and 

Brown (1966) and they show the inadmissibility of the OLS estimator 

for greater than two regressors. Because of this deficiency, 

Stein-type improved estimators have been developed (see Judge 

et a1. (1985, p.82». Recently, several authors have extended the 

analysis to include spherically symmetric disturbances. These 

include, Strawderman (1974), Berger (1975), Brandwein and 

Strawderman (1978, 1980), Brandwein (1979), Judge et al. (1985). 

and Judge and Yancey (1986). Judge and Yancey (1986, p.271) 

conclude that, "in general, the risk characteristics for 

traditional Stein-like estimators for the nonnorma1 errors were 

found to be the same as for the normal case". The Stein-type 

estimators have been shown to be another type of pretest estimator 

for combining the unrestricted and restricted least-squares 

estimator (see, for example, Judge et al. (1985, p.86». Giles 
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(1990) has derived some results on pretesting with models whose 

errors are assumed to be normally distributed but, in fact, follow 

a spherically symmetric distribution. 

Knight (1986) considers the compound normal distributions 

which are contained within the elliptically symmetric class, in a 

simultaneous equation framework. In particular he establishes the 

result that the OLS and TSLS estimators in the leading case are 

robust to this class of non- normal distributions. This implies 

that the estimators possess the same moment results as under the 

normality assumption. Using the techniques of Ullah and Phillips 

(1986) and Giles (1990) the results of Chapter 5 could be extended 

to consider the distribution of these estimators in the general 

case under the assumption of mu1tivariate-t errors. 

The results reviewed in this section suggest that by 

replacing the normality assumption with the assumption that the 

regression disturbances follow a multivariate elliptically 

symmetric distribution in the linear regression model, the 

resulting distributions possess properties which make them 

analytically tractable and, further, in many cases identical to 

those obtained under the normality assumption. However, the 

marginal distributions of the disturbance terms from this 

assumption are identical to those when it is assumed the 

disturbances are distributed identically and independently 

elliptically symmetric and, in this case, the results of Sections 2 

and 3 are applicable. The differences in the results reviewed in 

Sections 2, 3 and 4 suggest it is important to distinguish between 

and iid elliptically symmetric distributed multivariate 

disturbances. The importance of this distinction is discussed 

further in the next section. 
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7.5 JOINTLY DISTRIBUTED VERSUS INDEPENDENT DISTURBANCES 

It is well known that within the class of elliptically 

symmetric distributions, independence when the covariance matrix is 

diagonal, characterizes the normal distribution (see Chapter 2). 

The bivariate normal distribution with covariance matrix and 

location vector zero is illustrated in Figure 5.1. The 

corresponding bivariate joint-Cauchy distribution is illustrated in 

Figure 5.2. This distribution has a "bell-shape" similar to that 

of the bivariate normal distribution. However, the 

independent-Cauchy distribution, as given in Figure 5.3, has a 

rather different shape, especially in the tails. These features 

are also reflected in the reviews of Sections 2, 3 and 4 of this 

Chapter. In particular, Section 4 illustrates the robustness of 

many Gaussian statistics when disturbances are distributed 

multivariate elliptically symmetric. However, 

these statistics when the disturbances 

the properties of 

are independently 

distributed (Section 2), has led to the development of a wide range 

of alternative methods (Section 3). 

Consequently, when it is assumed the disturbances are 

nonnormally distributed, it is important to distinguish between 

"jointly-distributed" and "independently-distributed" disturbances, 

as they lead to quite different estimation and inference 

techniques. This problem is similar to distinguishing between 

"heteroskedastic versus homoskedastic disturbances" or 

"autocorrelated versus serial-independent disturbances". However, 

while it is standard in virtually every econometric textbook to 

study the implications of misspecifying "heteroskedastic and 

homoskedastic disturbances" or "autocorrelated and serial 

independent disturbances", it would seem that the article by 
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FIGURE 5.1 BIVARIATE SURFACE FOR SPHERICAL NORMAL DISTRIBUTION 
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FIGURE 5.2 BIVARIATE SURFACE FOR JOINT SPHERICAL CAUCHY DISTRIBUTION 
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FIGURE 5.3 BIVARIATE SURFACE FOR INDEPENDENT SPHERICAL CAUCHY 

DISTRIBUTION 

1 2 -1 2 -1 
1fT( 1 + xl) (1 + x 2 ) 



Ke1ej ian and Prucha (1985) is the only one which attempts to 

address this issue for misspecifying "jointly-distributed" and 

"independently-distributed disturbances". In this paper they 

consider this issue using the Student-t distribution. This is an 

important nonnorma1 distribution as it is considered that it is a 

reasonable way of modelling tails that are fatter than those of the 

normal distribution, (see e.g. Jeffreys (1961», and this is 

relevant for many economic data series such as prices in financial 

and commodity markets, (see ~ Judge et a1. (1985, p. 825), and 

the recent paper by Lange et al. (1989». In particular, Ke1ejian 

and Prucha (1985) compare the asymptotic properties of the maximum 

likelihood estimators of the linear regression model, when the 

disturbances are assumed either to be distributed multivariate 

Student-t with v ~ 3 (uncorre1ated disturbances) or iid Student-t 

wi th v ~ 3 (independent dis turbances) . In this example, if the 

disturbances are assumed to be independent when they are only 

uncorre1ated, and the regression parameters are correspondingly 

estimated, the estimator of the variance-covariance matrix is 

inconsistent. On the other hand, if the disturbances are 

independent, but they are only assumed to be uncorrelated, 

efficiency is lost and inferences are based on an incorrect large 

sample distribution. Further, the efficiency loss is substantial 

for certain parameter values. 

The obj ective of the next three chapters is to extend this 

analysis to finite-sample differences between the two alternative 

assumptions for the entire Student- t family (i. e. v ~ 1). Given 

the extent of the existing literature in the dependent case, most 

attention is given to developing properties of maximum likelihood 

statistics in the independent case. These include, for example, 
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the estimation of variance (if it exists), the shape of the 

distribution function of the statistics and their relationship to 

the robust estimators of Section 3. 4 Once these properties are 

established, we examine the statistical consequences of using the 

maximum likelihood estimator associated with one assumption, when 

in fact the other assumption is true. Further, because properties 

of the maximum likelihood estimator for iid Student-t disturbances 

are compared with a number of robust estimators, we can also see 

the statistical consequences of making one error assumption over 

the other when a more general robust estimator is used. Chapter 7 

concentrates solely on the location model. Chapters 8 and 9 extend 

these results to both the linear regression model and the 

exactly-identified limited-information SEM. 

Since the distinction between the two assumptions is 

important, specification tests need to be developed to make this 

distinction. This topic is also discussed in the following 

chapters. In particular, tests are developed which make this 

distinction in the elliptically-symmetric class of distributions 

and which use existing tests for normality. The properties of such 

tests are illustrated for the Student-t family. 

4 The comparison with the robust estimators is only carried 
out for the location-scale and linear regression models. This is 
because the theory of general robust estimation techniques is not 
well developed in limited- information SEMs, (see e.g. Powell 
(1983». --
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CHAPTER 8 

THE LOCATION/SCALE MODEL WITH STUDENT-t OBSERVATIONS 

8.1 INTRODUCTION 

The topic of the next three chapters is the statistical 

comparison of the maximum likelihood estimators of the unknown 

parameters in the linear regression and limited-information SEM's, 

when it is assumed the disturbances are distributed either as iid 

Student-t or multivariate Student-to This problem is similar to 

the comparison of alternative assumptions in econometric models, 

such as autocorrelation versus serial independence, or 

heteroskedasticity versus homoskedasticity, which are standard 

analyses in all econometric textbooks. 

The analysis begins in this chapter with the location-scale 

model, which is the simplest case of the linear regression model, 

This refers to the estimation of location M, and scale u, in the 

model, 

i = 1 ... N (1.1) 

where if it is assumed that u l .. , ~ have a multivariate Student-t 

distribution then 

r[~l [l~ 
r(~)(v~)N/2uN vu

2 
(1. 2) 

or, alternatively, if it is assumed that the elements of u, are iid 
1. 

distributed as, 
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(l. 3) 

then the joint distribution of the disturbances is, 

[ 
r(V;l )]N N [ 1 2] -(V;l) 

II 1-t-:- u i . r(i)vv; a i=l va
2

. 

(l. 4) 

Section 4 of Chapter 7 reviews finite-sample properties of 

the maximum likelihood estimators when the j oint distribution of 

the disturbances is given by (1.2). These properties include: 

Properties 1.1 
" 

(i) ~OLS' the sample mean, is the maximum likelihood estimator 

of ~. 

" (ii) (~OLS - ~)/a is distributed MT1 (O,1/N,v). 

(iii) ~OLS is the MVB estimator and therefore also the BLUE when 

v ~ 3. 
" 

(iv) ~OLS is median-unbiased, is at least as concentrated about ~ 

as any other median-unbiased linear estimators and is "best" 

for any monotone loss function (that is, any loss function 

that is non- decreasing as the magnitude of underestimation 

or overestimation increases), for all v. 

(v) For v ~ 3, an unbiased estimator of scale is, 

1 

" a = 

where B(N,v) is an adjustment factor, which depends upon 

Nand v. 
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However, when the disturbances are jointly distributed as (1.4) the 

corresponding properties of the maximum likelihood estimators are 

not known. In this chapter they are developed by using properties 

of order statistics. Using order statistics, Lloyd (1952) derives 

the exact generalised BLU estimators of ~ and a. These estimators 

are compared with the maximum likelihood estimators and from this 

comparison similar properties, such as those in Properties 1.1 for 

multivariate Student- t disturbances, are developed. Once these 

properties are developed, the statistical consequences of making 

one error assumption over the other are discussed. 

Section 2 reviews Lloyd's (1952) BLU estimators, using the 

order statistics of the sample. Section 3 considers properties of 

the maximum likelihood estimators with independent Student-t 

observations. This section is divided into a number of parts, 

including discussions of the numerical maximization of the 

log-likelihood function, the asymptotic distribution and the 

finite-sample distribution of the maximum likelihood estimators. 

Section 4 considers the statistical consequences of making one 

error assumption over the other in the location- scale model; and 

Section 5 concludes with some final comments. 

8.2 LLOYD'S BEST LINEAR UNBIASED ESTIMATORS 

Suppose the u i in the location-scale model of (1.1) are iid 

such that 

1 (Yi-~) pdf(u.) = - pdf --
1. a a a > O. 

For this family of distributions, using order statistics, Lloyd 

(1952) obtained the unbiased and minimum variance estimators of 
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location and scale, within the L-class of robust-estimators 

(Chapter 7). These estimators are defined as follows. Suppose the 

"ordered" location model is, 

where (i) denotes the order statistics of the sample (that is, the 

observations of the sample are arranged in ascending order), then 

using formulae for the means, variances and covariances of order 

statistics as given by David (1970, pp.25-30), 

Since u(i) = (Y(i) - ~)/a, this implies that 

aa. 
~ 

2 af3 .. 
~J 

Lloyd's BLU estimator is obtained by rewriting (1.1) as, 

a 
Y(i) = ~ + aa i + aU(i) , (2.1) 

a a a so that, E(u(i» = 0, and var(u(i),u(j» = f3 ij , and then applying 

Generalized Least Squares to (2.1) to obtain, 

where 

" 
" 

[ ~::] , n ~ hJ 1 ' X - [1, a 1 ' a - hl ' y ~ [Y (i) ] f3 = 

and 1 is a column of l's. For symmetrical parent populations the 

formulae become, 

with variances, 

" a'O-ly 
aLB = -1' 

a'O a 
(2.2) 
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1\ 

(2.3) 

This is shown in David (1970, p.l04). In particular, the BLUE for 

p corresponds to the sample mean iff 1'0- 1 
= 1, or equivalently, 

iff all of the rows of the covariance matrix add to unity. 

Bondesson (1976) proves that the sample mean is BLUE iff the 

underlying distribution is either normal or the gamma distribution. 

For the Student-t distribution with iid observations, a 

number of results for the calculation of the BLU estimators in 

(2.2) are used in the following sections. These results are: 

(i) For sample sizes less than 20, these estimators can be 

calculated when v > 2 using the means, variances and 

covariances of the order statistics calculated by Tiku and 

Kumra (1985). 

(ii) Jung (1962) considers the asymptotic distribution of these 

estimators when v > 2. In particular, he shows them to be 

consistent, asymptotically normally distributed and 

asymptotically efficient. 

(iii) For the Cauchy distribution (for which the means, variances 

and covariances of the order statistics are calculated by 

Barnett (1966», and the t 2 -distribution, some care is 

needed in obtaining the BLU estimators, as the extreme order 

statistics have infinite variances. However, in this case, 

the standard expressions (2.2) are used, by assuming the 

coefficients of the extreme order statistics are zero. For 

the Cauchy distribution, these are the first and last two 

order statistics of the sample, and for the t 2 -distribution, 
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the first and last order statistic. Asymptotically these 

estimators are consistent and asymptotically normally 

distributed, since as N -7 00, the order statistics Y (r
l
)' .. Y(r

K
) , 

for o < 1, j 1, ... , K, are 

asymptotically multivariate normal (see, for example, Cox 

and Hinkley (1974, p.469». 

8.3 MAXIMUM LIKELIHOOD ESTIMATORS FOR INDEPENDENT STUDENT-t 

OBSERVATIONS 

This section is divided into four parts. The first part 

defines the maximum likelihood estimators for both JL and a, and 

since analytical expressions do not exist for these estimators in 

general, the numerical maximization of the likelihood function is 

also discussed. Parts 2 and 3 concentrate on the distribution 

function of the maximum likelihood estimators. Part 2 considers 

the asymptotic distribution and Part 3 develops properties of the 

finite-sample distribution. Finally, Part 4 summarizes the results 

of this section in a form similar to Properties 1.1. 

(a) Definition 

uN be a random sample with j oint distribution 

function given by (1.4). The log-likelihood function is given by, 

(
V+l) N [2 2] constant + (-N+v+l) log a - --2-- i:l log va +(Yi-JL) . (3.1) 

If v is specified and both JL and a are assumed unknown then the 

first order conditions for the maximum likelihood estimators are 

given by the equations, 



aJ!. N Yi-J.L 
L: 0 

aJ.L i=l 2 2 va +(y. -J.L) 
1 

(3.2) 

N 2va aJ!. -N+v+l v+l L: O. 
aa -2- i=l 2 2 a va -(Y.-J.L) 

1 

(3.3) 

Ferguson (1978) finds closed-form expressions for the 

solutions to these equations for the Cauchy distribution when the 

sample size is 3 or 4. However, in general, this is not possible 

and the maximum likelihood estimators must be obtained by numerical 

methods. Copas (1975) shows that the joint likelihood function for 

the Cauchy distribution has exactly one point of maxima and at most 

one stationary point. This result has been extended to the 

t -distribution in general by Gabrielson (1982). This implies that v 

the maximized likelihood function for given degrees of freedom is 

unimodal and that numerical maximization of (3.1) produces the 
1\ 

global maximum likelihood estimators, and these will be denoted J.LML 
1\ 1 

and aML . 

(b) The Asymptotic Distribution 
While the existing literature contains results on the 

asymptotic distributions of some specific members of the Student-t 

family (for example, Haas, Bain and Antle (1970) and Norden (1972) 

for the Cauchy distribution and Kelejian and Prucha (1985) for v ~ 

3), none of these authors considers the Student-t family as a 

whole. However, it is easy to generalise their results as in the 

following theorem: 

1 Alternatively, although not considered in this thesis, a 
can be assumed to be known in (3.1). In this case, Barnett (1966) 
shows that (3.1), for the Cauchy distribution, will often have 
multiple roots. This argument can be extended to the 
t -distribution in general. v 
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Theorem 3.1 

1\ 

There exist solutions J.tML 
equations (3.2) and (3.3) such that 

1\ 1\ 

and 

(i) J.tML and are consistent 

respectively. 

1\ 

of the likelihood 

estimators of J.t and a 

(ii) VN(;ML-J.t'~ML-a) is asymptotically biva:;ate 

d . . [11 
normal 

112]-1 

122 

with 

vector mean zero an covarLance matrLx where 
121 

130 

[ 
8

2
!£ ] I == -E --- , that is. the Gramer - Rao 

ij 80 80 
Lower Bound. 

i j 

(GRLB). In this case we have. 

00 

III 
1 J [Pdf

l 

(y)fPdf(Y)dY (V+1)~ 2 pdf(y) v+3 2 a a 
-00 

122 = 
2 [1~] • 

a
2
(ll> ;) 

v 

and 112 = 121 = O. 
" " (iii) J.tML and aML are asymptotically efficient in the sense that 

(3.4) 

Proof: 

The proof of the theorem follows by considering the 

combination of the following two points: 
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(1) There exist linear combinations of order statistics that are 

estimators of J.l and a, as given in Section 2, which are 

consistent and asymptotically normally distributed. 
A A 

(2) If 0 is a consistent estimator of 0 such that VN(O-O) has a 

proper limit distribution, the second round estimator is 

asymptotically normally distributed and asymptotically 

efficient. Details of the argument on which this result is 

based are given in Appendix B. 

Therefore, by beginning the numerical maximization process 

with the estimators given in (1), since the likelihood function is 

unimodal, the resulting estimators are the maximum likelihood 

estimators and from (2) are consistent, asymptotically normally 

distributed and asymptotically efficient. 

(c) Finite-Sample Distribution 

In this section members of the Student- t distribution are 

divided into two cases, those where the variance of the 

disturbances is finite (v> 2), and those where it is infinite (v ~ 

2). In each of these cases the variances and probability density 

functions of the standardized maximum likelihood and Lloyd's BLU 

estimators of location, (J.l-J.l)/a, and scale, a/a, are estimated for 

various sample sizes and degrees of freedom, as Antle and Bain 

(1969) have shown that these distributions depend only on sample 

size. Figures 3.1 - 3.4 and a number of entries in Tables 3.1 - 3.2 

are based on the results of Monte - Carlo experiments. Details of 

these experiments were given in Chapter 4, but they will be briefly 

outlined here for completeness. Empirical variances of (J.lML - J.l)/a, 

(Table 3.1), and empirical biases and variances of 



estimated using 40,000 - 60,000 replications. Empirical densities 

of, (ILML - IL)/a, (ILLB - IL)/a, (Figures 3.1 - 3.2, 3.4 - 3.6), and 
A A 

aML/a, aLB/a, (Figure 3.3), were estimated via the integration of 

the kernel density estimator with the naive Monte Carlo method. 

The kernel estimate at point X is equal to, 

A 1 [x -x 1 pdf (X) = L: 

k h(N*~ 
(3.5) 

N~~h(N~~) j 

where k[.] is the standard N(O,l) density. The window width h(N*) 

is chosen using the interactive approach of Tapia and Thompson 

(1978). In all cases this approach led to the use of a window width 

between 0.02 and 0.09. N~~ is simply the number of replications in 

the simulation experiment, and is chosen using the bound of 

estimation. For example, the results of Parzen (1962) and Cacoullos 

(1966) imply, 

1 

(N*hm(N*»)2[P~f(X) - E(P~f(X»)] - N(0,Pdf(X)JK
2

) (3.6) 

holds. The result given in (3.6) can be achieved if 
1 

(N*hm(N*»)2Bias[p~f(X)] tends to zero asymptotically since, 

1 

(N*hm(N*»)2[P~f(X) - pdf (X)] 

1 

+ (N*hm(N*»)2Bias[p~f(X)]. 

Ullah (1988, p. 642) shows that Bias [P~f(X)] is proportional to 

h2 (N*). This implies that if N~\-h(4+m)/2(N*) tends to zero 

asymptotically then (3.6) holds. Therefore, for the normal kernel 
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1 1 2 --exp( --y ), the 99% asymptotic confidence interval for pdf(X) is 
..f2ii 2 

given by, 

so that B is given by, 

1 
"-

p~f(X) ± 2.58 [Pdf(X)]2, 
2N*hv'1r 

1 
"-

[
Pdf(X) ] 2 

B = 2.58 2N*h(N*)n 

N* is varied until B is less than 0.01 for all points at which the 

density is estimated. In all experiments, N* varies between 60,000 

and 90,000 replications 2 . The input of X. 
J 

in (3.5) involves 

numerically maximizing the likelihood function (3.1) to obtain the 

maximum likelihood estimators and calculating (2.2) to obtain the 

BLU estimators. Two algorithms from the Harwell Subroutine library 

are used, these being algorithms VAI3AD and VF04AD, which both use 

the BFGS formula, (Broydon (1970), Fletcher (1970), Goldfard (1970) 

and Shanno (1970». All computations are performed in double 

precision to 7 decimal places of accuracy. The final results, 

however, are not dependent upon which algorithm is used in this 

step. Furthermore, the solutions of each of the algorithms used 

were compared with those in the standard Econometric packages TSP 

and SHAZAM, and were found to give similar results. Random numbers 

2Empirical densities were also computed using the 
Epanechnikov (1969) kerne1. However, given the number of 
replications used, the results proved not to depend on which kernel 
is used. This situation is similar to the comparison of different 
kernels for the Cauchy distribution using a "large sample", as is 
illustrated in Figure 5.1 in Chapter 3. 
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distributed uniformly on the interval [0,1], denoted U, are 

generated using the NAG subroutine GOFCAF, which uses a 

mUltiplicative congruentia1 method. Standard iid Student- t 

variates, for degrees of freedom v < 3, are generated by the 

inversion of the distribution function (see, for example, Devroye 

(1986, p.27». In particular, for v = 1, the Cauchy distribution, 

standard Cauchy variates are generated as, 

and for v 2, the t 2 -distribution, 

where U is from U(O,l). For the rest of the Student-t family, v ~ 

3, X is generated via a transformation of a symmetric beta variate, 

(see, for example, Devroye (1986, p.446». This can be written in 

terms of independent uniform random numbers U1 , U2 as, 

X 
2vv sin (2~U1)(1-U~/v-1) 

(1-sinz(2~U »(1_Uz/ v - 1 ) 1 2 

This formula is useful as it is valid for all members of the 

Student-t family with v ~ 3. Also it does not require the 

generation of as many random uniform deviates as does the 

traditional method of generating a t-random variable via its 

interpretation as a ratio of a standard normal to the square root 

of an independent normalized chi-square variable. Further details 

of the Monte Carlo methodology are given in Chapter 4. 
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Finite Variance v > 2 

Table 3.1 gives the estimated variances corresponding to 

various v and N for the standardized location estimator. Also 

given in this table is the Cramer-Rao lower bound (CRLB) as given 

in (3.4). However, this bound is attainable only asymptotically 

due to the jOint application of the results of Koopman (1936) and 

Pitman (1936). The results of Koopman (1936, p.408) imply that a 

pair of jointly sufficient statistics for the unknown parameters 

exist only for the normal distribution (v = ~). Consequently, the 

Cramer-Rao lower bound (CRLB) is not attainable in finite-samples 

due to the joint results of Koopman (1936) and Pitman (1936) and 

summarized in, for example, Theorem 9 of Dhrymes (1970) "if an ... 

unbiased MVB estimator of B exists, pdf (Y1 ... YN) admits a set of 

jointly sufficient statistics for its parameters ... " 

However, as indicated in Table 3.1 the empirical variances 

are well approximated by applying the asymptotic theory for small v 

and N, for example v = 3 and 5 and N = 20. Consequently, in these 

cases the maximum likelihood estimator is the MVB estimator. More 

generally though, a relationship between the maximum likelihood 

estimator and Lloyd's BLU estimator of location can be established 

and also given in Table 3.1 are the known finite-sample variances 

of Lloyd's estimator as defined in (2.3). These variances are the 

same as the empirical variances of the maximum likelihood estimator 

to at least two decimal places. Figures 3.1 and 3.2 compare the 

estimated densities for the two estimators for different v and N. 

These results indicate that the maximum likelihood estimator of 

location can be regarded as the BLU estimator since their estimated 

densities are indistinguishable from one another. 
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TABLE 3.1: The Variance of i-LLB , Empirical Variance of i-LML , the CRLB and 

the Degrees of Freedom Parameter, 0, in the Student-t Approximation 
A 

for the Distribution of i-LLB and i-LML · 

N 5 10 20 25 30 

v=1 

Blue 1.2213 0.3263 0.1820 0.1261 0.0713 

Empirical 
Variance 1.0160 0.29004 0.16961 0.11884 0.0683 

CRLB 0.4000 0.2000 0.1300 0.1000 0.0667 

0 3 6 8 11 16 

v=2 

Blue * * * 
Empirical 
Variance 0.4606 0.1952 0.1233 0.0900 0.0581 

CRLB 0.3333 0.1667 0.1111 0.0833 0.0556 

0 6 11 16 21 00 

v=3 

Blue 0.3599 0.1634 0.1060 0.0782 0.0541 

Empirical 
Variance 0.3571 0.1634 0.1057 0.0783 0.0540 

CRLB 0.3000 0.1000 0.1000 0.0750 0.0533 

0 10 15 20 00 00 
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Table 3.1 continued 

N 5 10 20 25 30 

v=5 

Blue 0.2916 0.1399 0.0920 0.0683 0.0441 

Empirical 
Variance 0.28952 0.1393 0.0916 0.0682 0.0441 

CRLB 0.2667 0.1333 0.0889 0.0667 0.0440 

a 24 00 00 00 00 

v=10 

Blue 

Empirical Essentially equal to the CRLB 
Variance 

CRLB 0.2364 0.1182 0.0788 0.0591 0.0400 

a 00 00 00 00 00 

v=19 

Blue 0.2221 Essentially equal to the CRLB 

Empirical 
Variance 0.2211 

CRLB 0.2200 0.1100 0.0733 0.0550 0.0367 

a 00 00 00 00 00 

* Order statistics not available 
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FIGURE 3.1 Comparison of Maximum Likelihood, BLUE and 

Student-t Approximation for the Standardized 

Location Parameter Corresponding to v = 3 and 

Different N 
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FIGURE 3.2 Comparison of Maximum Likelihood, BLUE, and 

Student-t Approximation for the Standardized 

Location Parameter Corresponding to Different 
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The distribution of the standardized location estimator is 

normally distributed as either v and/or N tend to infinity. 

However, for both small v and N the empirical densities indicate 

they have tails that are fatter than those of the normal 

distribution, which suggests approximating them by the Student-t 

distribution. The degrees of freedom parameter in this 

approximation, 1, is given in Table 3.1, and is chosen by matching 

the empirical variance with the variance obtained from the 

Student-t distribution with different degrees of freedom. The 

value of 1 obtained again illustrates the closeness between the 

finite-sample and asymptotic approximations. Some examples of the 

approximation are illustrated in Figures 3.1 and 3.2. 

Similar properties can be derived for the standardized 

maximum likelihood estimator of the scale parameter. Table 3.2 

reports the bias of this estimator and its variance once the 

estimator has been adjusted for bias. As for the location 

parameter, the variance of this estimator corrected for bias will 

be above the CRLB (which is also given in Table 3.2), although the 

empirical variances are well approximated by the asymptotic 

variances at least for sample sizes greater than 20, and as v 

increases for even smaller sample sizes. Therefore in these cases 

the adjusted for bias maximum likelihood estimator of scale is the 

minimum variance estimator. More generally though, the maximum 

likelihood estimator is closely related to the BLU estimator of 

scale as given in Section 2. Table 3.2 gives the known 

finite-sample variance of this estimator, as defined in (2.3), and 

it is equal to the empirical variance of the maximum likelihood 

estimator adjusted for bias to at least 2 decimal places. Figure 
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TABLE 3.2: The Bias of O'ML' the Variance of O'LB and the Variance of O'ML 

Adjusted for Bias. 

N 10 15 20 

A 

V = 1 Bias(O'ML) 0.0 0.0 0.0 
A 

var(O'ML) adJ 
0.2896 0.1678 0.1175 

A 

var(O'LB) 0.4158 0.2070 0:1375 

CRLB 0.200 0.1330 0.1000 

A 

v = 3 Bias(O'ML) -0.0404 -0.0270 -0.0202 
A 

var(O'ML) 0.1155 0.0753 0.0554 
adJ 

A 

var(O'LB) 0.1231 0.0764 0.0552 

CRLB 0.1000 0.0667 0.0500 

A 

v = 5 Bias(O'ML) -0.0509 -0.0340 -0.0256 
A 

var(O'ML) 0.0898 0.0579 0.0419 
adJ 

A 

var(O'LB) 0.0913 0.0583 0.0420 

CRLB 0.800 0.0533 0.0400 

A 

v = 10 Bias(O'ML) -0.0612 -0.0408 -0.0302 
A 

var(O'ML) 0.0709 0.0456 0.0329 
adJ 

A 

var(O'LB) 0.0715 0.0464 0.0338 

CRLB 0.540 0.0433 0.0325 

A 

V = 19 Bias(O'ML) -0.0684 -0.0455 -0.0336 
A 

var(O'ML) adJ 
0.0641 0.0386 0.0302 

A 

var(O'B 0.0640 0.0390 0.0301 

CRLB 0.0579 0.0386 0.0289 
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FIGURE 3.3 Comparison of Maximum Likelihood and BLU 

Estimators for the Standardized Scale Parameter 
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3.3 compares the empirical densities of some cases corresponding to 

different v and N. These figures indicate that the maximum 

likelihood estimator for scale, adjusted for bias, is essentially 

the BLU estimator, as their densities are identical. 

Infinite Variance: v ~ 2 

The empirical variances for the standardized maximum 

likelihood estimator of the location parameter are given in Table 

3.1. By applying the same argument as above, these variances will 

be greater than the CRLB. The sample size at which the asymptotic 

variance approximates the empirical variances is much larger than 

in the finite-variance case. For example, for both v = 1,2, the 

sample size needs to be greater than 30. 

There are some differences between the BLU and maximum 

likelihood estimators. 

distribution (v = 1). 

This is illustrated for the Cauchy 

Table 3.1 gives the known finite sample 

variances of the BLU estimator, as defined in (2.3). These 

variances are greater than the empirical variances of the maximum 

likelihood estimator, and the two converge only asymptotically. 

Similarly, Figure 3.4 illustrates the empirical densities for two 

sample sizes, N = 5 and 10. These differences imply that for the 

infinite variance distributions, the maximum likelihood estimator 

is a nonlinear function of the "ordered" sample observations. 

The empirical densities can be approximated by Student- t 

distributions, although the degrees of freedom parameter, 1, (as 

given in Table 3.1), in this approximation is much smaller than in 

the finite-variance case. Some cases are illustrated in Figures 

3.4, 3.5 and 3.6 for different sample sizes. This approximation 

also indicates that the only difference between the BLU and maximum 
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FIGURE 3.4 Comparison of Maximum Likelihood, BLUE and Student-t 
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Approximation for the Standardized Location Parameter 
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FIGURE 3.5 Comparison of Maximum Likelihood and Student-t 

Approximation for the Standardized Location 

Parameter Corresponding to v = 1 and different N 
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FIGURE 3.6 Comparison of Maximum Likelihood and Student-t 

Approximation for the Standardized Location 

Parameter Corresponding to v = 2 and different N 
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likelihood estimators is different variances. This is because the 

same degrees of freedom parameter in this approximation is suitable 

for both estimators. 

Similar properties hold for the standardized scale 

parameter. In particular, the maximum likelihood estimator of this 

parameter is more efficient in small samples than the corresponding 

BLU estimator. This is illustrated for the Cauchy distribution in 

Table 3.2. Further, for these sample sizes the variance of the 

maximum likelihood estimator is not approximated by the CRLB. 

Finally, it is interesting to note that for the Cauchy 

distribution, the maximum likelihood estimator is unbiased. This 

estimator only becomes biased as v increases. 

(d) Summary of Properties 

To complete this section, the results obtained are 

summarized in a form similar to Properties 1.1 

Properties 3.1 

1\ 1\ 

(i) ~ML and 0ML' the joint solutions to (3.2) and (3.3) are the 

maximum likelihood estimators of ~ and ° respectively. 
1\ 

(U) The distribution of (~ML-~)/o can be approximated by a 

Student-t distribution with 1 degrees of freedom, where 1 is 

given in Table 3.1. As sample size tends to infinity, so 

too does 1. 
1\ 

(iii) For v > 2, ~ML has the same distribution as Lloyd's BLU 
1\ 

estimator, ~. Even for small v and N, these estimators can 

be regarded as being the MVB estimator, since their variance 

is well approximated by the CRLB. 
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(iv) For v ~ 2, J.tML is a nonlinear estimator that is more 

efficient than J.t LB . 

(v) For v > 2, the distribution of aML , adjusted for bias, can 

be approximated by Lloyd's BLU estimator aLB' For v ~ 2, 

aML adjusted for bias, has smaller variance than aLB' 

8.4 JOINT VERSUS lID STUDENT-t DISTURBANCES 

To assess the importance of developing specification tests 

to distinguish between the assumption of j ointness versus 

independence, it is necessary first to consider the consequences of 

misspecification. Therefore, the topic of this section is the 

statistical analysis of the properties of the appropriate estimator 

to use under one assumption, when the alternative assumption is 

actually correct. 

Throughout this section, the superscripts I and D will be 

used to denote whether the standardized estimators are being used 

when the disturbances are iid Student-t (I) or multivariate 

Student-t (D). As in Section 3 it will be assumed that the 

estimators have been appropriately standardized, that is, they are 

in the form, (J.t- J.t)/a and (a/a). 

Finite Variance v > 2 

The Location Parameter 

Consider the case in which the disturbance terms are assumed 

to be independent, but are only uncorre1ated. Then ;~~) would be 

taken as the maximum likelihood estimator, with a distribution 

" (1) function that is identical to J.t LB ' and can be approximated by a 

Student-t distribution with 'Y degrees of freedom (Table 3.1) and 

variance, 
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(
,,(I») (,,(I») 1( []) 1 1 var ~M =var ~LB =(1'B1)- l' Bvar u(i) B (1'B1)- =(1'B1)- , (4.1) 

where B is the inverse of the covariance matrix of [u(i)] and 1 is 

column vector of l's. However, Figure 4.1 illustrates a number of 

empirical densities for ~~~) and ~~~), for different v and N, and 

as illustrated, these estimators are unbiased but are Student-t 

distributed with v degrees of freedom, 3 where v < -y. These 

densities are estimated via the integration of the kernel density 

estimator with the naive Monte - Carlo method. Details of this 

approach is given in Section 3, although in this case, multivariate 

Student - t variates are generated using the relationship (see, for 

example (2.3.4», 
1 

Xi = Zi ( ~2r i = 1 ... K , 

where Zl ... ZK are K independent standard normal variables and X2 

is an independent chi-square variable with v degrees of freedom. 

"(D) The "correct" BLU and maximum likelihood estimator is ~OLS with 

variance, 

(" (D») var ~OLS 
v 1 

v-2 N 

"(D) A(D) whereas, the actual variance of ~ML and ~LB is, 

3 The unbiasedness follows from properties 
parent distributions (see David (1970, p.10S». 
follows from the dependent structure. 

(4.2) 

(4.3) 

of symmetrical 
The distribution 
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where 0* is the covariance matrix of [u(i)] for the multivariate 

Student-t sample. A selection of the values of the variances in 

(4.1), (4.2) and (4.3) are given in Table 4.1 for different v and 

N. Given the range of v and N covered in Table 4.1, a comparison 

of these variances indicates that in general: 

so that ~~~) and ~i~) are inefficient with respect to ~~~~, except 

as v ~ 00, in which case all of the estimators are equivalent, and 

(2) var(~(D)) = var(~(D)) < var(~(I)) = var(~(I)) ML LB - ML LB' 

so that the actual variance of ~~~) and ~i~) is substantially less 

than the assumed variance for small v. 

Therefore, if the disturbances are assumed to be 

independently distributed but are only uncorre1ated, an inefficient 

estimator will be used which will be assumed to have a 

"thinner-tailed" distribution with a smaller variance than its 

actual distribution. Consequently, the estimator will be thought 

of as being more precise than it actually is. Furthermore, 

inferences will be based on the use of the wrong distribution, 

although the implications of this are beyond the scope of this 

thesis. 

Consider, on the other hand, the case in which the 

disturbance terms are assumed to be uncorre1ated only, but are in 

fact independent. Then ~~~~ would be used as the appropriate 

maximum likelihood estimator, assumed to be distributed Student-t 

with v degrees of freedom. However, Figure 4.2 illustrates 

empirical densities, generated via the integration of the kernel 
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TABLE 4.1: "(D) "(1) 
The Actual and Assumed Variances of ~ML ' ~OLS' 

v N 5 10 15 

Var(~~B)=var(~~L) 0.3599 0.1634 0.1061 

3 var(~~)-var(~~L) 0.65613 0.3595 0.2131 

Var(~~LS)=var(~~LS) 0.6000 0.3000 0.2000 

var (~~B) =var (~~L) 0.2916 0.1399 0.0916 

5 Var(~~B)=var(~~L) 0.25433 0.1787 0.1210 

Var(~~LS)=var(~~LS) 0.3355 0.1667 0.1111 

var(~~B)=var(~~L) 0.2434 0.1182 0.0788 

10 Var(~~B)=Var(~~L) 0.2620 0.1340 0.0860 

Var(~~LS)=Var(~~LS) 0.2500 0.1250 0.0833 

var(~~B)=var(~~L) 0.2221 0.1100 0.0733 

19 var(~~B)=var(~~L) 0.2250 0.1126 0.0748 

Var(~~LS)=var(~~LS) 0.2235 0.1118 0.0745 
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FIGURE 4.1 Distributions of G~~) and Gt~) when the Disturb-

ances are Uncorrelated 
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Disturbances 

(NB Only v = 3 is shown here, as this illustrates well the 

feature that the distribution of o~i~ is fatter tailed than 

A ( I) ) 
~ML • 

0.9 (i) N = 10 v = 3 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
-2.5 -2 -1.5 -1 -0.5 o 0.5 1 1.5 2 2.5 

x value 

KEY Empirical Density 

Student-t Approximation with 6 degrees of freedom 

Student-t Approximation with 15 degrees of freedom 
(which is the same approximation used for 0(1)). 

ML 



154 

FIGURE 4.2(ii) 
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method with the naive Monte - Carlo method as described in Section 

3, for the unbiased ~~~~ estimator and the Student-t approximation 
4 to this distribution with 7* degrees of freedom. In this case 

7* > v, so that the assumed distribution is "fatter-tailed than the 

actual distribution. "(I) . Further, the actual distribution of ~OLS ~s 

"fatter-tailed" than the distribution of the correct maximum 
"(I) likelihood estimator, ~ML ' since 7* < 7. As well, the selection 

of variances given in Table 4.1 illustrates that in general, 

(3) (" (I») (" (D») var ~OLS = var ~OLS (
"(I») ("(I») ~ var ~LB = var ~ML . 

A comparison of all of these features indicates they can be 

substantial for small v. 

Therefore, if the disturbances are assumed to be uncorrelated, 

when in fact they are independently distributed, an inefficient 

estimator with a IIfatter-tailed" distribution than the IIcorrect 

maximum likelihood estimator ll will be used. Consequently, there is 

more probability of obtaining outliers. Furthermore, the 

distribution of this estimator will be assumed to have a 

"fatter-tailed" distribution than its "actual distribution ll
, and 

this will in turn have consequences for inference. However, these 

consequences are beyond the scope of this thesis. 

The Scale Parameter 

When the disturbance terms are assumed to be independent, 

"(D) but are only uncorrelated, (JML is used to estimate the scale 
"(D) parameter, (J, instead of (JOLS' the "correct" maximum likelihood 

4 The unbiasedness follows from properties of symmetrical 
parent distributions (see David (1970), p.10S). 
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TABLE 4.2: 
A(D) A(1) 

The Bias of C1' ML and C1' OLS' 

N 5 10 15 50 

v=3 

Bias(;~d 0.0269 0.0783 0.0913 0.0929 

Bias (;~LS) 0.1036 0.1228 0.1378 0.1847 

v=5 

Bias (;~L) 0.0004 0.0023 0.0118 0.0156 

Bias(;~LS) 0.0426 0.0566 0.0595 0.07612 

TABLE 4.3: 
A(D) A(I) 

Median-Bias of Adjusted C1'ML and C1' OLS Estimators for the 

Cauchy Distribution. 

N 5 10 15 50 100 

-0.4013 -0.1402 -0.13375 -0.09666 -0.0959 

0.88476 1.58122 2.0929 4.6639 6.9358 



• 5 estLmator. On the other hand, when the disturbance terms are 

assumed to be uncorrelated only, but are in fact independent, the 

estimator ~~~~ is used instead of a~~). In both cases then, the 

estimator is biased. This bias is illustrated in Table 4.2, where 

the entries in this Table are based on the results of Monte - Carlo 

experiments using 40,000 - 60,000 replications. In particular, we 

see that the bias increases with N and decreases with v. 

Consequently, the estimated standard deviation of the 
1 

unstandardized location parameter, ~(var(~S))2, is also biased 

(where s denotes the standardized parameter). This bias is greater 

when the disturbance terms are assumed to be uncorrelated but are 

in fact independent. 

Infinite Variance v S 2 

For the infinite variance distributions the statistical 

consequences of inappropriately using the least squares or robust 

iid Student-t maximum likelihood estimators are even more serious. 

First, consider the inappropriate use of the OLS estimator (that 

is, when the disturbances are wrongly assumed to be multivariate 

Student-t), Because the least squares technique minimizes squared 

deviations, it places relatively heavy weight on outliers, so that 

least squares estimates are extremely sensitive to the presence and 

values of such observations. For iid infinite-variance 

distributions, "outliers" occur frequently since these 

distributions have "fat tails". Consequently, in repeated samples, 

the least squares estimates vary more than in the finite-variance 

case. 

5 1\ 

The aML discussed ~n this section is assumed to have an 

equivalent distribution to aLB' see Section 3(c). 
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Andrews and Phillips (1986) discuss the inappropriate use of 

the robust and Student- t maximum likelihood estimators (that is, 

when the disturbances are wrongly assumed to be independent 

Student-t). In particular, they show that the least squares 

estimator is strictly preferred to the robust technique. 

To consider these statistical consequences in more detail, 

the rest of this section will assume that the disturbances are 

Cauchy distributed. 

Location Parameter 

When the disturbances are assumed to be multivariate 

Student-t distributed, "(I) MOLS is assumed to be the appropriate 

maximum likelihood estimator. However, if the disturbances are 

actually iid Student-t distributed, then the distribution of ;~~~ 

is standard Cauchy, although its assumed distribution is Cauchy 

with scale factor liN. Consequently, for large N, it will be 

assumed MOLS is very concentrated around zero, when in fact it has 

the same distribution as that of a single standardized observa-

tion (see Kendall and Stuart (1969, p.248». 

Alternatively, if the disturbances are assumed to be iid 
" (1) Student-t, MML is assumed to be the appropriate maximum likelihood 

estimator; the distribution of which will be taken to be 

approximately Student-t, with at least the first finite two moments 

for N ~ 5. Furthermore, it will be assumed that the limiting 

distribution is normal. However, if the disturbances are actually 

multivariate Student-t, "(D) the distribution of MML is Cauchy (even 

asymptotically), with no finite moments. 
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Scale Parameter 

To consider the effects of misspecification on the scale 

parameter a simulation experiment is first used to transform ~~~) 

and ~6~~ into median- unbiased estimators. Then, the "median-bias" 

of the resulting estimators, under the appropriate type of 

misspecification, is calculated using 40,000 - 60,000 replications 

in a simple Monte - Carlo experiment. This bias is reported in 

Table 4.3. The results indicate that the adjusted estimator, aOLS ' 

is extremely sensitive to misspecification whereas the adjusted 

estimator aML , although "median-biased" is more robust. 

8.5 SOME FINAL COMMENTS 

Recently, models with nonnormal disturbances have attracted 

substantial attention (see Chapter 7). However, in such models a 

distinction needs to be made between multivariate distributed 

disturbances and iid distributed disturbances. This section has 

concentrated on the importance of making this distinction in the 

location-scale model with Student-t disturbances. In this section, 

small sample properties of the standardized maximum likelihood 

estimators of the location and scale parameters when the 

disturbances are distributed iid Student-t, are developed. In the 

literature (see, for example, Chapter 7) attention has been given 

to the properties of the distributions assuming multivariate 

Student-t disturbances. The results obtained demonstrate that the 

distinction between the two assumptions is an important one and the 

consequences of making the wrong assumption is serious, 

especially for small v. 

Therefore, it must also be important to develop 
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specification tests as a way of choosing between the alternative 

assumptions. However, before this topic is discussed, the results 

obtained here for the location-scale model are generalized to the 

multiple regression model and the exactly- identified SEM. 
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CHAPTER 9 

THE GENERAL LINEAR REGRESSION MODEL WITH STUDENT-t DISTURBANCES 

9.1 INTRODUCTION 

This chapter considers the statistical comparison of the 

maximum likelihood estimator of the unknown ~ in the linear 

regression model (1.1.1), when it is assumed that the disturbances 

are distributed either as iid Student-t, or multivariate Student-to 

This extends the results obtained for the location-scale model 

considered in Chapter 8. 

In Section 2, the results of Zellner (1976) are used to 

develop finite-sample properties for the maximum likelihood 

estimator for multivariate Student-t disturbances. These 

properties are easily seen to be a simple generalization of those 

obtained for the location-scale model. In Section 3, similar 

properties are developed for the maximum likelihood estimator for 

independent Student-t disturbances. However, these properties are 

not a simple generalization of those obtained for the 

location-scale model. This is mainly because order statistics were 

used to develop these properties in the location-scale model. 

However, in the general linear regression model the usual concept 

of order statistics is no longer adequate, because what constitutes 

an appropriate ordering depends on the vector of unknown regression 

coefficients ~. Section 4 considers the statistical consequences 

of making one error assumption when in fact the other assumption is 

valid and Section 5 concludes with some final 

comments. 
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9.2 PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS WITH DEPENDENT 

STUDENT-T ERRORS 

If it is assumed that are multivariate-t 

distributed disturbances as in (8.1.2), (~with precision matrix 

a 2I), then the likelihood function for the linear regression model, 

y = X{3 + € , (2.1) 

where, y' = (Yl'''''YN)' X is an N * K matrix of nonstochastic 

regressors, (K assumed to be greater than 1), {3' = ({3l"" ,13K) is a 

vector of unknown parameters, is given by, 

(2.2) 

where, 

() vV/2f[(v+N)/2j 
g v = ----~~--~~-

1fN/2 f (v/2) , 

00 

J 
a-1 f(a) - x exp(-x)dx, a > 0 , 

o 
b = (X'X)-lX'Y , 

2 
S = (y-Xb)' (y-Xb)/(N-K) 

In this case the disturbances are homoskedastic but not serially 

independent. It is easily seen from (2.2), (see also Zellner (1976, 

p.40l) or Chapter 7) that band s2 are sufficient statistics and 

further, that b is the maximum likelihood estimator of {3. 

Furthermore, from the review given in Chapter 7, we have the 

following set of properties: 
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PROPERTIES 1.1 

1. b is the maximum likelihood estimator of p. 

2. When v > 2, b is the minimum variance unbiased estimator and 

is therefore also BLUE, with covariance matrix (V/(V-2))a2 (x,x)-1. 

3. For all v, b is the optimal median-unbiased estimator for 

any loss function that is nondecreasing as the magnitude of 

underestimation or overestimation increases. 

4. Assuming ~ = 1im(X'X)/N is finite and nonsingu1ar, then the 

limiting distribution of Nl/2(b_P) is multivariate Student-t 

with a location vector of zeros and characteristic matrix 
2 -1 a ~ . This also describes the finite-sample distribution. 

These properties are easily seen to be straight 

generalizations of Properties 8.1.1 for the 10cation- scale model. 

In the next section, the corresponding properties are developed for 

the maximum likelihood estimator of P in the linear regression 

model when the disturbances are distributed iid Student-to 

However, in this case there are distinguishing features between the 

location-scale and general linear regression model. 

9.3 PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS WITH INDEPENDENT 

STUDENT-t ERRORS 

In this case it is assumed that E1 , ... ,EN are homoskedastic 

and serially-independent iid Student-t distributed as in (8.1.4), 

so that the density of E = (E 1 , ... ,EN) is given by, 

Throughout this section we will concentrate only on developing 

properties of P assuming 2 
a is unknown. Consequently, the 



likelihood function for the regression model (2.1) is given by, 

l(YI~,v,a) = constant - Nlog(a) 

_ (V+l)L:lO [1 + {Yi-Xi~ }2] (3.1) 
2 i g Yva 

where Xi refers to the ith row of the matrix X in (2.1). As in the 

location-scale model of Chapter 8, the OLS estimator is not the 

maximum likelihood estimator; although the OLS estimator is BLUE 

for v > 2, it is asymptotically inefficient. 

It is not possible to give a closed-form expression for the 
A A 

maximum likelihood estimator of ~, say ~ML' so ~ML is obtained via 

the numerical optimization of (3.1). However, unlike the 

location-scale model, the likelihood function is in general 

multimodal, as shown by Gabrielson (1982), since for all v and all 

linear models with K > 1, there exist, with probability greater 

than zero, data such that the j oint likelihood function for both 
2 

~l"" '~K and a is mUltimodal. Therefore, because of the multi-

modality of the likelihood function, it is important to have 

appropriate initial starting values for the unknown parameters ~ 

2 and a . These are obtained, for example, using Arnemiya (1985, 

p.138) who states that if 01 is a consistent estimator of 00 such 
" that 1&(01-00) has a proper limit distribution, the second round 

estimator 02 has the same asymptotic distribution as a consistent 

root of the likelihood equation, and so too does the final 

" converged root 0. Details of the argument on which this result is c 

based are given in Appendix B. The actual first round estimators 

used in this Chapter are given in the discussion of the asymptotic 

distribution of ~ML' 
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The mu1timodality of the likelihood function (3.1) is one 

distinguishing feature between the linear regression model and 

the location- scale model. Another difference between the two 

models arises as a result of the definition of order statistics. 

In the location-scale model, finite- sample properties of ~ML 

(which corresponds to K = 1 in (2.1», are developed for v > 2, by 

showing a relationship with Lloyd's BLUE, which is the BLU 

estimator among the class of L-estimators. However, when the more 

general linear model is considered, the usual concept of order 

statistics is no longer adequate, because what constitutes an 

appropriate ordering depends on the vector~. Consequently, there 

is no generalization of Lloyd's BLU estimator. However, there have 

been generalizations of some of the estimators contained in the 

L-c1ass, such as generalizations of the trimmed- mean estimator, 

which will be denoted as a class of estimators by ~TLS. In the 

finite-sample analysis of ~ML' the mean square error (MSE) of some 

members of ~TLS are compared with the corresponding MSE of ~ML" 

The obj ective of this comparison is to determine if there is a 

generalized relationship between the maximum-likelihood and L-c1ass 

estimators in the linear regression model. 

The rest of this section is divided up into four parts. The 

first part discusses the asymptotic distribution of the maximum 

likelihood estimator, and the second part develops properties of 

the finite-sample distribution of ~ML. The third part summarizes 

all of the properties of ~ML obtained, and the fourth part offers 

some overall comments. 
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A 

(i) Asymptotic Distribution of ~ML 

Although in the likelihood function (3.1) it is assumed that 

both ~ and a are unknown parameters, in the discussion in this 

section we are interested only in developing the asymptotic 
A 

distribution of ~ML' as the properties of this estimator are the 

focus of this chapter. Therefore, for the purposes of this section 

it will be assumed that a is known in (3.1), since from Lehmann 

(1983, p.438), the asymptotic efficiency in this case is the same 

as if a is assumed unknown, because the distribution of € is 

symmetric. 

Ke1ejian and Prucha (1985) consider the limiting 
A 

distribution of ~ML corresponding to v > 2. 

show that, 

In particular, they 

(3.2) 

where ~X = 1im(X'X)/N. However, as for the location scale model, 
N~oo 

it is relatively easy to show that this result holds for all v. 

This result is proved in Theorem 3.1. 

Theorem 3.1 
A 

There exists a solution ~ML to the likelihood (3.1) such 

that (3.2) holds for all v. 

Proof 

The proof of the theorem follows by considering the 

combination of the following two points: 

1. There exist estimators of ~ which are consistent and 

asymptotically normally distributed. The estimators used in 
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this chapter are OLS for v > 2 and .BLAD as described in 

(7.3.4) with asymptotic distribution in (7.3.7) for v ~ 2. 

These two estimators are used because, not only do they 

satisfy the requirements of consistency and asymptotic 

normality, but they also proved to be efficient in terms of 
1 

the number of iterations required to obtain a maximum of (3.1). 
A A 

2. If 0 is a consistent estimator of 0 such that VN(O-O) has a 

proper limit distribution, the second round estimator is 

asymptotically normally distributed and asymptotically 

efficient. The details of the argument this result is based 

on is given in Appendix B. 

Therefore, if the numerical maximization of (3.1) begins 

with the estimators in (1), this implies from (2) that the 

resulting converged root of the likelihood equation corresponding 
A 

to (3.1), .BML , will be asymptotically normally distributed and 

asymptotically efficient. 

(ii) Properties of the Finite-Sample Distribution 

In developing properties of the finite-sample distribution 
A 

of .BML , we consider the standardized maximum likelihood estimators, 

that is, (.BML-.B)/a. This is because Antle and Bain (1969) show that 

these statistics depend only on the sample size N. 

To develop the finite-sample properties a number of results 

are obtained. In particular, mean square errors (MSE's) are 

1 In the actual numerical computation of (3.1), we also need 
to supply an initial starting value for a. For v < 2, s is used, 
while for v ~ 2, we find the residuals from the least absolute 
regression and then take the median of these residuals as our 
starting value (see, for example, Judge (1985, p.83l)). 
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estimated for the linear regression model with sample sizes N = 20, 
2 50 and numerous values of K. These MSE's are reported in Table 

3.1, (N = 20) and Table 3.2 (N = 50). Each of the entries in the 

tables are based on at least 40,000 replications for K < 10. 

However, for K > 10, since the convergence of the likelihood 

equation (2.2) is very slow, the number of replications is 

decreased substantially, and often less than 10,000 replications 

are used. This number of replications was chosen on the basis of 

available computer processor time. The MSE's require iid Student -

t variates to be generated. For degrees of freedom v < 3, these are 

generated by the inversion of the distribution function (see, for 

example, Devroye (1986, p.27». In particular, for v 1, the 

Cauchy distribution, standard Cauchy variates are generated as, 

and for v = 2, the t 2-distribution, 

where U is from U(O,l), generated using the NAG subroutine GOFCAF, 

which uses a mUltiplicative congruentia1 method. For the rest of 

the Student-t family, v ~ 3, X is generated via a transformation of 

a symmetric beta variate, (see, for example, Devroye (1986, 

p.446». This can be written in terms of independent uniform 

random number~ Ul , U2 as, 

2 All of the estimators in this chapter are unbiased. This 
holds because the error distributions assumed are symmetrical, (see 
David (1970, p.105». Hence, MSE is simply the sum of the 
individual variances of each of the estimated coefficients of 
(2.1) . 
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x 

This formula is useful as it is valid for all members of the 

Student-t family with v ~ 3. It also does not require the 

generation of as many random uniform deviates as does the 

traditional method of generating a t-random variable via its 

interpretation as a ratio of a standard normal to the square root 

of an independent normalized chi-square variable. The design matrix 

X is generated as a column of ones with remaining entries drawn as 

iid realizations from the N(O,l) distribution generated using NAG 

subroutine GOSDDF which is based on Brent's (1974) algorithm. In 

the preliminary analysis, numerous other X matrices were used, but 

the results given in Table 3.1 and Table 3.2 illustrate the general 

results obtained. Also reported in these tables is the 

corresponding asymptotic MSE, which is calculated on the basis of 

the formula given in (3.2). 

As well as estimating the MSE's, a number of pdf's for 

(fjML. - fj) / a, ( i 1, ... ,K) are estimated using the procedures 
1. 

described in Chapters 3 and 4. Therefore, we only briefly detail 

them here for completeness. Empirical densities are estimated via 

the integration of the kernel density estimator with the naive 

Monte-Carlo method. The kernel estimate at point X is equal to, 

pdf (X) [
X - X ] 

k -'h;--;-:-( N::-:*-;:'~ , 
(3.3) 

where k[.] is the standard N(O,l) density. The window width h(N*) 

is chosen using the interactive approach of Tapia and Thompson 



(1978). In all cases this approach led to the use of a window width 

between 0.02 and 0.09. N* is simply the number of replications in 

the simulation experiment, and is chosen using the bound of 

estimation. For example, the results of Parzen (1962) and Cacoullos 

(1966) imply, 

1 

(N*hm(N~\-)y[P~f(X) - E(P~f(X))] - N(O,Pdf(X) fK2
). (3.4) 

holds. The result given in (3.4) can be achieved if 
1 

(N*hm(N*))2Bias[p~f(X)] tends to zero asymptotically since, 

1 

(N*hm(N*) )2[P~f(X) - Pdf(X)] = (N*hm(N*)) [P~f(X) - E(P~f(X))] 

1 

+ (N~\-hm(N*))2Bias[p~f(X)]. 

Ullah (1988, p. 642) shows that Bias [P~f(X)] is proportional to 

h2 (N*). This implies that if N*h(4+m)/2(N*) tends to zero 

asymptotically then (3.4) holds. Therefore, for the normal kernel 
1 1 2 -exp( --y ), the 99% asymptotic confidence interval for pdf(X) is 

fu 2 

given by, 

so that B is given by, 

1 
1\ 

p~f(X) ± 2.58 [Pdf(X) ] ~ 
2N~\-hv'1f 

1 
1\ 

[ 
pdf (X) ] 2 

B = 2.58 2N*h(N*)n . 

N* is varied until B is less than 0.01 for all points at which the 
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density is estimated. In all experiments, N* varies between 60,000 

and 90,000 1 . . 3 rep lcatlons The input of in (3.3) involves 

numerically maximizing the likelihood function (3.1). Two 

algorithms from the Harwell Subroutine library are used, these 

being algorithms VAI3AD and VF04AD, which both use the BFGS 

formula, (Broydon (1970), Fletcher (1970), Go1dfard (1970) and 

Shanno (1970». All computations are performed in double precision 

to 7 decimal places of accuracy. The final results, however, are 

not dependent upon which algorithm is used in this step. 

Furthermore, the solutions of each of the algorithms used were 

compared with those in the standard econometric packages TSP and 

SHAZAM, and were found to give similar results. Standard iid 

Student-t variates, are generated as described above. Further 

details of the Monte Carlo methodology are given in Chapter 4. 

Empirical densities are illustrated in Figures 3.1 and 3.2 for 

one particular i (as similar results are obtained for the others), 

for v = 3 and v = 10 respectively, with N = 20 and K = 2, 5, 10 and 

12. In Figure 3.3, empirical densities are also illustrated for v 

= 1, N = 20 and K = 2, 10. In each of these figures the empirical 

densities are compared with the corresponding appropriate 

asymptotic distribution. 

Finally, various MSE's are estimated using at least 40,000 

replications in a simple Monte-Carlo experiment. These MSE's are 

3Empirical densities were also computed using the 
Epanechnikov (1969) kernel. However, given the number of 
replications used, the results proved not to depend on which kernel 
is used. This situation is similar to the comparison of different 
kernels for the Cauchy distribution using a "large sample", as is 
illustrated in Figure 5.1 in Chapter 3. 
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reported in Table 3.3 for a number of trimmed-mean robust 

estimators, ~TLS' All of the estimators considered are based on 

solutions to (7.3.4), and are obtained numerically using the 

subroutine of Koenker and D'Orey (1987). This subroutine involves 

linear programming techniques. In particular we have, 

1\ 

1. ~LAD' which corresponds to the solution of (7.3.4) when 

o = 0.5. This estimator has asymptotic distribution given 

by (7.3.7). 

2. ~TLSl' requires the calculation of a preliminary estimate, 
1\ A 

~O' ~O is obtained as the average of the 0 and (1- 0) 

regression quantiles. These regression quantiles are 

obtained as solutions to (7.3.4). Then the residuals from 

~o are calculated and the observations corresponding to the 

[NO] smallest and [NO] largest residuals 4 are removed. 

~TLSI is defined as the least squares estimate calculated 

from the remaining observations and has asymptotic 

distribution given in (7.3.6). 

A 

3. ~TLS2' also requires the calculation of a preliminary 

estimate. The regression quantiles obtained as solutions 

to (7.3.4) for 0 < 0 < 0.5 are calculated corresponding 

to 0 (denote by ~(O», and (1-0), (denoted by ~(1-0». 

Then, any observation whose residual from ~(O) is 
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Table 3.1: Empirical and Asymptotic MSE's for (3ML for N = 20 

K=2 K=5 K=1O K = 12 K = 14 

'" 
Empirical MSE (3ML v=1 0.5370 1.7750 16.337 23.4105 99.5194 

Asymptotic MSE (3ML 0.3566 0.7300 3.3794 2.9824 5.6424 

Empirical MSE (3ML v=2 0.3466 0.9085 5.9611 5.6886 13.0976 

Asymptotic MSE (3ML 0.2972 0.6083 2.8162 2.4853 4.7020 

Empirical MSE (3ML v=3 0.2934 0.6933 4.4360 4.6078 10.1311 

Asymptotic MSE (3ML 0.2675 0.5475 2.5346 2.2368 4.2318 

Empirical MSE (3ML v=5 0.2474 0.5376 0.28608 2.7820 6.2487 

Asymptotic MSE (3ML 0.2377 0.4867 2.2529 1. 9883 3.7616 

Empirical MSE (3ML v=1O 0.2129 0.4449 2.1309 1. 9013 3.6882 

Asymptotic MSE (3ML 0.2107 0.4314 1. 9970 1. 7623 3.3341 



Table 3.2: Empirical and Asymptotic MSE's for f3 ML for N = 50 

Empirical MSE f3ML 

Asymptotic MSE f3ML 

Empirical MSE f3ML 

Asymptotic MSE f3ML 

Empirical MSE f3ML 

Asymptotic MSE f3ML 

Empirical MSE f3ML 

Asymptotic MSE f3ML 

Empirical MSE f3ML 

Asymptotic MSE f3ML 

* 

v=1 

v=2 

v=3 

v=5 

v=lO 

K=3 

0.19674 

0.1516 

0.14104 

0.1263 

0.12045 

0.1137 

0.10335 

0.1011 

0.08996 

0.0896 

K = 5 

0.3681 

0.2444 

0.24233 

0.2037 

0.20207 

0.1833 

0.17069 

0.1629 

0.14679 

0.1444 

Conjectured on the basis of empirical results. 

K=lO 

1.1868 

0.6216 

0.68398 

0.5180 

0.5440 

0.4662 

0.4547 

0.3673 

0.03807 

0.3673 

K = 30 

* (Xl 

4.3796 

* (Xl 

3.6497 

7.2081 

3.2847 

3.9620 

2.9197 

2.9536 

2.5897 

174 



175 

Table 3.3: Empirical MSE's for ~TLS and Actual MSE's for b for N = 20 

Empirical MSE ~LAD 

Empirical MSE ~TR1 

Empirical MSE ~TR2 

+Actua1 MSE b 

Empirical MSE ~LAD 

Empirical MSE ~TR1 

Empirical MSE ~TR2 

+Actua1 MSE b 

Empirical MSE ~LAD 

Empirical MSE ~TR1 

Empirical MSE ~TR2 

+Actua1 MSE b 

Empirical MSE ~LAD 

Empirical MSE ~TR1 
'" Empirical MSE ~TR2 

+Actua1 MSE b 

Empirical MSE ~LAD 

Empirical MSE ~TR1 

Empirical MSE ~TR2 

+Actua1 MSE b 

* 

v=l 

v=2 

v=3 

v=5 

v=10 

K = 2 

0.6958 

0.9575 

1.4144 

00 

0.4491 

0.5205 

0.4454 

00 

0.3709 

0.3376 

0.3360 

0.5349 

0.3543 

0.2864 

0.2763 

0.2972 

0.3049 

0.2553 

0.2416 

0.2229 

K = 5 K = 10 

2.4039 36.3327 

* 2.8250 00 

* 10.1941 00 

00 00 

1.1811 6.6794 

2.3078 158.40 

1.2337 29.3768 

00 00 

0.8375 4.5484 

0.9487 9.8426 

0.8370 3.5280 

0.9880 5.0691 

0.7032 3.4456 

0.7675 6.9117 

0.6428 2.8998 

0.6085 2.8162 

0.6223 2.8603 

0.6633 5.6639 

0.5388 2.2101 

0.4563 2.1121 

+Conjectured on the basis of empirical results. 
For a comparison between ~ML and b when K is greater than 10 we 

can note that the actual MSE's of b for K=14, v=3,5, and 10 are 
8.4656, 4.702 and 3.5265 respectively. 
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FIGURE 3.1 Comparison of the Finite-Sample Distribution of 
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FIGURE 3.2 Comparison of the Finite-Sample Distribution of 

SML' with its Asymptotic Distribution for v = 10, 
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N = 20 
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FIGURE 3.3 Comparison of the Finite-Sample Distribution of 

~MLi with its Asymptotic Distribution for v = 1, 

N = 20 
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negative or whose residual from ~(l-O) is positive is 
" removed from the sample. ~TLS2 is defined as the least 

squares estimate calculated from the remaining observations, 

and has asymptotic distribution given in (7.3.6). 

" " In particular, both ~TLS1 and ~TLS2 are calculated assuming 

o = 0.2. This 0 is chosen so as to represent a "slightly" trimmed 
" estimator, whereas ~LAD represents a "drastic" robust estimator 

(see, for example, Amemiya (1985, p.75). 

The discussion of all of these results is divided into two 

" parts. The finite-sample distribution of (~ML-~)/a is, first 

compared with its corresponding asymptotic distribution and 

secondly, compared with the results obtained for the finite-sample 
" distribution for each of the (~TLS-~)/a considered. The discussion 

is also broken down into finite- variance (v > 2) and 

infinite-variance (v ~ 2) distributions. 

(i) Comparison With Limiting Distribution 

It is important to make comparisons between the 

finite-sample distribution and the limiting distribution, as the 

limiting distribution is often used as an approximation to the 

finite-sample distribution. 

Finite Variance: v > 2 

From the results reported in Table 3.1 then, the following 

general comments can be made. For small models, the asymptotic MSE 

is a good approximation to the actual MSE. This was also true for 

the individual variances, although they are not reported here. 
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However, as the number of regressors increases for a fixed N, the 

asymptotic MSE considerably understates the actual MSE. These 

features are also illustrated in Figures 3.1 and 3.2, where for 

larger sized models the empirical pdf is much "fatter- tailed" than 

the corresponding asymptotic distribution. 

These results suggest that for small K relative to N the 

asymptotic distribution can be used to approximate the 

finite-sample distribution. However, for large K relative to N, 

some other approximation is needed, perhaps based on the Student-t 

distribution which has fatter-tails than the normal distribution. 

However, this approximation is not pursued here as the results 

obtained in the comparison with other estimators suggest that the 

maximum likelihood estimator may not be the appropriate estimator 

to use in this case. 

Infinite Variance: v S 2 

From the results reported in Table 3.1, we can see that the 

asymptotic MSE understates the actual MSE considerably, even in 

models where K is small relative to N. 

Figure 3.3 for the Cauchy distribution. 

This is also shown in 

Consequently, even for moderately-sized N and small K, the 

asymptotic distribution should not be used to approximate the 

finite-sample 

distributions, 

distribution. For 

some other approximation, 

the infinite-variance 

perhaps based on the 

Student-t distribution, should be used instead. 
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(ii) Comparison With Other Estimators 

Finite Variance: v > 2 

From Table 3.3 we can see that the performance of the 

" members of f3TLS chosen deteriorates rapidly as K increases for 

" fixed N. In comparison with these estimators, f3ML can clearly be 

" seen to be superior on the basis of MSE. However, when f3ML is 

compared with b, the OLS estimator, this superiority holds only for 

small and moderately-sized K. In this case, we have an interesting 

example of an asymptotic inefficient estimator having superior 

finite-sample performance, at least over some of the parameter 

5 space. 

Infinite Variance: v ~ 2 

As in the case when v > 2, the performance of all of the 

" f3TLS estimators deteriorates rapidly for moderately-sized K. In 

particular, the MSE appears to approach infinity as it does for b. 

While for small and moderately- sized K f3ML is superior to these 

estimators on the basis of MSE, it too has an infinite MSE for 

large K. Therefore, while for moderately- sized values of K, f3ML 

is substantially superior to the other estimators considered for 

large values of K, all of the estimators seem to have infinite MSE 

as does b, so in this case, on the basis of MSE, they are 

indistinguishable. 

" 5 Although the results reported here for f3ML correspond to 

the converged root of (3.1) with b as the initial starting value, 
similar "results were obtained with other starting values, for 
example f3LAD . 
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(iii) Summary of Properties 

The results obtained on the finite-sample distribution of 

~ML are now summarized in Properties 2.1. 

Properties 2.1 

1. ~ML is the maximum likelihood estimator of ~. It is found 

via the numerical optimization of the likelihood function (3.1). 

2. When v > 2, ~ML is superior to a wide number of robust 

estimators and b on the basis of MSE, for moderately-sized K 

and fixed N. However, as K increases, the performance of 

~ML deteriorates rapidly, and ~ML becomes inefficient 

relative to b, where b is BL~E but asymptotically inefficient. 

3. For v ~ 2, I3ML is superior to a wide range of robust 

estimators and b for moderately-sized K and fixed N. 

However, for large K corresponding to fixed N, all of 

these estimators have infinite MSE, so that on the basis of 

this measure it is impossible to distinguish between them. 

4. Assuming ~ ~ lim(X'X) is finite and nonsingular, there 

" exists a solution, I3ML to (3.1) such that, YN(I3ML-I3)/a is 

multivariate normal with a mean vector of zeros and 

covariance matrix a2[~:i]~-1. This limiting distribution is 

only useful as an approximation to the finite-sample 

distribution in linear regression models where K is small 

and v ~ 2. 



(iv) Overall Comments 

A comparison of Properties 1.1 and 2.1 suggest substantial 

differences between the maximum likelihood estimators band f3ML , 

corresponding to joint and independent Student-t disturbances 

respectively. Therefore, it is important to consider the 

consequences of misspecifying "joint versus independent" 

disturbances. This analysis is carried out in the next section. 

9.4 JOINT VERSUS lID STUDENT-T DISTURBANCES 

In this section we consider the statistical consequences of 

misspecifying "jointly-distributed" and "independently-distributed" 

disturbances. Such an analysis will assess the importance of 

developing specification tests to make this distinction in the 

linear regression model. 

Throughout this section, the superscripts I and D will be 

used to denote whether the standardized estimators are being used 

when the disturbances are iid Student-t, (I), and multivariate 

Student-t, (D). As in Section 3, it will be assumed that f3ML has 

been appropriately standardized, that is, it is written as, (f3ML . 
~ 

- f3 i )/a as Antle and Bain (1969) show that these statistics depend 

only on the sample size N. 

Finite Variance: v > 2 

Consider the case in which the disturbance terms are assumed 

to be independent, but are only uncorrelated. In this case, f3ML 
will be assumed to be the correct maximum likelihood estimator to 

use. Although this estimator is unbiased, there are a number of 
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consequences as a result of using this estimator. rather than the 

correct maximum likelihood estimator. the OLS estimator. b. 6 

In Table 4.1. empirical MSE's are reported for "(D) 
/3ML 

corresponding to N = 20. K = 2. 3. 5. 10. These MSE's are 

estimated as described in the previous section. although in this 

case multivariate Student t variates. say Xi' need to be 

generated. These are generated' using the relationship (see. for 

example (2.3.4». 

i = 1 ... K • 

2 where Zl ... ZK are K independent standard normal variables and X 

is an independent chi-square variable with v degrees of freedom. 

The chi-square and standard normal variables are generated as 

described in Section 3. In comparison with the actual MSE's for b. 

which are also given in Table 4.1. we can see that while ~~~) is 

robust for small models. it becomes increasingly inefficient. 

Further. the large-sample distribution of will 

incorrectly be assumed to be given by (3.2). There are two 

implications associated with this. First. the asymptotic variances 

associated with (3.2) will be used to approximate the actual 

variances for each ~~~). (i = 1 •...• K). Some examples of the use 

of this approximation are given in Table 4.2 for (~~~) -/3)/a (i = 
i 

1 ..... K). for N 20. K = 2. v = 3. 5. 10. These examples are 

illustrative of a more general comparison. from which it can be 

concluded that the use of this incorrect approximation results in 

6 The unbiasedness follows from properties of symmetrical 
parent distributions (see David (1970. p.105». 
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Table 4.1: 
A (D) 

Comparison of MSE's for (3ML and b for N = 20 

K = 2 K = 3 

Empirical MSE (3ML v = 3 0.6207 1.0773 

MSE b 0.5349 0.2609 

Empirical MSE (3ML v = 5 0.3202 0.5803 

MSE b 0.2972 0.5338 

Empirical MSE (3ML v = 10 0.2270 0.4142 

MSE b 0.2229 0.4003 

Table 4.2: Comparison of Empirical Variances 

A ( I) 
Asymptotic Variance of (3ML for K = 2, N = 20 

Empirical MSE ~~~~ 
1 

v = 3 i = 1 0.39876 

i = 2 0.22195 

v = 5 i = 1 0.20884 

i = 2 0.11131 

v = 10 i = 1 0.14801 

i = 2 0.07900 

K = 5 K = 10 

1.3099 7.1583 

0.9885 5.0691 

0.6706 2.4783 

0.6083 2.8162 

0.4684 2.006 

0.4563 2.1121 

for with 

A ( I) 
Asymptotic MSE (3ML. 

1 

0.17475 

0.0927 

0.1553 

0.0824 

0.13768 

0.07303 

1~6 
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Comparison of the distribution of S(D) with its ML 
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FIGURE 4.1 (ii) K = 10 
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~~~) being considered to be substantially more precise than it 

actually is. Secondly, the multivariate normal distribution will 
1\ 

be used to approximate the finite- sample distribution of f3ML , 

which is actually distributed multivariate Student-t with v degrees 

of freedom. The effect of this is illustrated for a particular 
1\ 

(f3ML . -13)/0 corresponding to v = 3, N = 20, K = 2, 10 in Figure 4.1 
]. 

(i) and (ii) respectively. This density was estimated via the 

integration of the kernel method with the naive Monte-Carlo method 

as described in Section 3, and using multivariate t random 

numbers as described above. This figure emphasizes that the use of 

the wrong limiting distribution implies that one is much more 

confident that the estimator is located around the true parameter 

value than one should be. These results hold for all sample sizes 

N, as the wrong asymptotic distribution is used even 

asymptotically. 

Consequently, when the disturbances are assumed to be 

independent, but are only uncorrelated, an inefficient estimator is 

used, and the inefficiency increases as K increases. Further, the 

wrong limit distribution is used as an approximation to the 

finite-sample distribution, which results in one assuming that the 

estimator is more located around the true parameter value than it 

actually is. 

Consider now the case in which the disturbances are assumed 

to be jointly-distributed, but they are actually independently 

distributed. Then the OLS estimator, b, will be taken to be the 

correct maximum likelihood estimator to use. Although this 

estimator is unbiased, there are a number of consequences of using 
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Table 4.3: 
A(I) (1) 

Empirical MSE's for (3ML and Actual MSE's for b for N = 20 

K = 2 K = 5 K=1O 

Empirical MSE ~~~) v = 1 0.5370 1.7750 16.337 

Actual MSE b (I) 00 00 00 

Empirical MSE ~~~) v = 2 0.3466 0.9085 5.9611 

Actual MSE b (I) 00 00 00 

Empirical MSE ~~~) v = 3 0.2934 0.6933 4.4360 

Actual MSE b (I) 0.5349 0.9880 5.0691 

Empirical MSE ~~~) v = 5 0.2474 0.5376 0.28608 

Actual MSE b (I) 0.2972 0.6083 2.8162 

Empirical MSE ~~~) v = 10 0.2129 0.4449 2.1309 

Actual MSE b (I) 0.2229 0.4563 2.1121 



p 
D 
F 

v 
a 
1 
u 
e 

191 

FIGURE 4.2 Comparison of the Distribution of b(I) ~ith its 

incorrectly Assumed Asymptotic Distribution b(D) 

for v = 3, N = 20 
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FIGURE 4.2 (ii) K = 10 
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this estimator rather than the correct maximum likelihood 
.... 7 

estimator, f3ML . 

In Table 4.3, actual MSE's are given for and 
.... (1) 

empirically estimated MSE's for f3
ML 

' (these were taken from the 

relevant entries in Table 3.2), corresponding to N - 20 and 

numerous values of K. A comparison of these illustrates that for 

small K, b is substantially inefficient, but becomes more robust as 

K increases. 

Further, while for each individual b., (i = 1, ... , K), the 
~ 

correct variance will be estimated, the finite-sample distribution 

will be approximated by the distribution of b~D), 
~ 

which is 

Student-t with v degrees of freedom. The effect of this is 

illustrated in Figure 4.2, for a particular i (only one i is 

illustrated as the results are similar for the others), for v = 3, 

N ~ 20, K 2 (i) and K = 10 (ii). Again, this density is 

estimated via the integration of the kernel density method with the 

naive Monte - Carlo method as described in Section 3, using iid 

student - t random variables. In this case however, the subroutine 

ELIM from Gerald and Wheatley (1984, p.144) is used to obtain the 

OLS inputs for (3.3). This subroutine solves a set of linear 

equations using the Gaussian elimination method. We can see that 

the actual distribution of has thinner tails than the 

incorrectly assumed distribution, which is to be expected as the 

actual distribution limits to the normal distribution. However, 

for the central part of the distribution, the use of the wrong 

7 The unbiasedness of b follows from properties of symmetrical 
parent distributions (see David (1970, p.10S». 

193 



limit distribution implies that one is much more confident that the 

estimator is located around the true parameter value. 

Consequently, when the disturbances are assumed to be 

uncorrelated but are actually independent, for small K for fixed N, 

a substantially inefficient estimator will be used, although this 

estimator becomes robust as K increases. However, the wrong limit 

distribution is used to approximate the finite-sample distribution, 

which results in one assuming that the estimator is more located 

around the true parameter value than it actually is, at least for 

the central part of the distribution. 

Infinite Variance: v ~ 2 

As in the location-scale model, for the infinite variance 

distributions the statistical consequences of inappropriately using 
A 

b or ~ML are even more serious. To illustrate this, we will assume 

the disturbances are Cauchy distributed. 

When the disturbances are assumed to be multivariate 

Student-t distributed, b is assumed to be the correct maximum 

likelihood estimator to use. However, if the disturbances are 

actually iid Student-t distributed, then the correct maximum 
A 

likelihood estimator is ~ML' In Table 4.3,(where the appropriate 
A 

values have been taken from Table 3.2 for ~ML)' we see that on the 

basis of MSE this results in a particularly inefficient estimator 
A 

being used, as b has infinite MSE, whereas ~ML' at least for 

moderately-sized regression models, has finite MSE. Further, the 

distribution of bi I ) is standard Cauchy with scale hi [X(X'X)-lX' ]i l 
for i = i, ... ,K and where hi [X(X'X)-lX' ].1 denotes the sum of the 

1 
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absolute terms of the ith row of the matrix [X(X' X)X'] (see, for 

example, Johnston and Kotz (1970, p.1S7». However, because the 

disturbances are assumed to be multivariate Student-t, it will be 

incorrectly assumed that the finite-sample distribution of b~I) is 
1. 

Cauchy with scale (X' X) / IN), where (X' X) ~ 1 is the ith diagonal 

-1 term of the matrix (X'X) . Some examples of the consequences of 

this incorrect assumption are illustrated in Figure 4.3, (i) K 2, 

and (ii) K = 10. In particular we can see from these figures that 

the estimator is thought to be substantially more located around 

the true parameter value than it actually is, especially as K 

increases. 

Alternatively, if the disturbances are assumed to be iid 
1\ 

Student-t, .BML is assumed to be the correct maximum likelihood 

estimator, with asymptotic distribution given by (3.2). However, 

if the disturbances are actually multivariate Student-t 
1\ 

distributed, then the finite-sample distribution of .BML is Cauchy. 

Consequently, the normal distribution with finite variance, which 

is the assumed asymptotic distribution in (3.2), will be used to 

approximate the Cauchy distribution, which has infinite variance. 

Some examples of this incorrect approximation are illustrated in 

Figure 4.4, (i) and (ii). These densities were estimated via an 

integration of the kernel and naive Monte-Carlo methods as 

described in Section 3. From the figures we can see that the 

estimator is assumed to be more concentrated around the true 

parameter value than it actually is. 
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FIGURE 4.3 Comparison of the distribution of S~~) with its 
A (I) 

Incorrectly Assumed Asymptotic Distribution SML 

for v = 1, N = 20 
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FIGURE 4.3 (ii) K = 10 
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FIGURE 4.4 
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Comparison of the Distribution of b(I) with its 

Incorrectly Assumed Asymptotic Distribution b(D) 

for v = 1, N = 20 
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FIGURE 4.4 (ii) K = 10 
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9.5 SOME FINAL COMMENTS 

In nonnormal models a distinction needs to be made between 

multivariate distributed disturbances and iid distributed 

disturbances. In this chapter the importance of this distinction 

in finite-samples, has been illustrated for the maximum likelihood 

estimators of the regression coefficients in the general linear 

regression model, when the disturbances are Student-t distributed. 

This extends the results of Chapter 8, in which the location-scale 

model was assumed. 

Properties of the maximum likelihood estimator of the 

regression coefficients when the disturbances are multivariate 

Student-t distributed, (i.e., the OLS estimator, (b), are well 

known, and more importantly, they are a simple generalization of 

those given for the location-scale model. However, similar 

properties for the maximum likelihood estimator of the regression 

coefficients, when the disturbances are iid Student-t (i.e., the 

robust estimator, (~ML)' are not known and so are developed in this 

chapter; these properties are shown not to be a simple 

generalization of those given in the location-scale model. These 

properties are then used to consider the implications of 

misspecification. That is, to consider the implications of using 

the maximum likelihood estimator associated with one assumption, 

when in fact the other error assumption is correct. Although these 

implications depend on the number of regressors in the model, in 

general the consequences of making the wrong assumption are 

serious, with respect to the efficiency of the resulting estimator, 

and the use of the wrong limit distribution to approximate the 



finite-sample distribution. 

However, before specification tests are developed to test 

for this distinction, we first discuss the implications of 

"jointness versus independence" in the nonnormal 

limited-information SEM. This is the topic of the next chapter. 
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CHAPTER 10 

THE NONNORMAL LIMITED-INFORMATION SIMULTANEOUS EQUATIONS MODEL 

10.1 INTRODUCTION 

The nonnormal limited- information SEM provides a relatively 

new area of analysis as there are few published results on the 

effects of nonnormal disturbances in the limited- information SEM 

(e. g. Knight (1985b, 1986), Raj (1980), Donatos (1989)). However, 

the obj ective in this chapter is simply to combine the themes 

pursued in this thesis for the limited-information SEM and the 

nonnormal linear regression model. 

To narrow the range of possible models to consider, 

attention is focussed only on the exactly- identified SEM. This 

model, although somewhat restrictive, is worthy of study because 

the finite-sample distribution of the estimator of the coefficient 

of the endogenous regressor, has a number of interesting features 

when the errors are normally distributed. In particular in this 

chapter, finite-sample properties of the LIMLK estimator of the 

coefficient of the one endogenous regressor in the exactly-

identified SEM are considered. The LIMLK estimator is the LIML 

estimator assuming the covariance matrix of the reduced-form 

disturbances is known. It is considered here because in the cases 

when the LIMLK estimator is not equivalent to the LIML estimator, 

it is numerically easy to compute, and it is considered that the 

distribution of the two estimators will have similar features. We 
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begin by first considering properties of the finite-sample 

distribution of this estimator when the reduced-form disturbances 

are normally distributed. In this case the LIMLK estimator reduces 

to LIML and TSLS, and a number of interesting properties of the 

resulting distribution are illustrated. Next these properties are 

examined when the assumption of normally-distributed reduced-form 

disturbances is widened to Student- t disturbances. In this case 

two assumptions are considered, these being, jointly-distributed 

Student-t reduced-form disturbances and iid Student-t reduced-form 

disturbances. Finally, the statistical consequences of 

distinguishing between these two assumptions are considered to 

determine how important it is to make this distinction by applying 

appropriate specification tests. 

There are two sections in this chapter. Section 2 discusses 

the properties of the LIMLK estimator. Part (i) of this section 

assumes normally-distributed reduced-form disturbances, and Parts 

(ii) and (iii) concentrate on Student-t distributed reduced-form 

disturbances. Section 3 considers the statistical consequences of 

misspecifying the jointness versus iid Student-t distributed 

reduced-form disturbances. 

10.2 EXACTLY-IDENTIFIED LIMITED-INFORMATION SEM 

(i) Normally distributed disturbances 

In the exactly-identified SEM with normally-distributed 

reduced-form disturbances, the TSLS and LIMLK estimators reduce to 
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indirect least squares (ILS). Using the notation of Chapter 5, 

this estimator takes the form, 

a == (2.1) 

where, in particular, X2 is of dimension (N*l). In this case where 

there are only two-included endogenous variables, (2.1) reduces to 

a ratio of normal variables. 

Ratios of normal random variates of the form, 

(2.2) 

where a, b are nonnegative constants, and c1 and c2 are independent 

standard normal variables, have been studied by authors such as 

Geary (1930), Fie11er (1932) and Marsag1ia (1965). These studies 

are also relevant for the ILS estimator when there are only two 

included endogenous variables in the structural equation of 

interest, as in this case (2.1) can be written in the form of 

(2.2), where a = a~22 and b = ~22' 

Geary (1930) gives the distribution of z when a = b = O. 

This distribution can easily be seen to be the Cauchy distribution 

and further, as Phillips (1982, p.64) notes, it provides the 

leading term in the multiple series expansion of the more general 

case a F 0, b F O. Therefore, the ILS estimator possesses no 

moments of finite-order, which implies that, in general, its 

distribution will have "fat tails". Fieller (1932) gives the 

following expression for the pdf of z in this case. 
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pdf(z) 

+ ( 
1(a-bZ)2) b+az fP)'( (1 2)d exp -- exp --y y, 
21+z2 (1+z2)3/20 2 

(2.3) 

(b+BZ) 
where,p*=-~--~1-/2 This pdf depends only on the parameter values 

(1+2: 2 ) 

2 a and b, which for the ILS estimator correspond to 6 and a, as is 

given in Chapter 5, equations (5.3.4) and (5.3.5) respectively. 

Phillips (1982, p.63 eqn. 3.78) gives the form of (2.3) for the ILS 

estimator. Marsag1ia (1965) gives the limiting distribution of 

(2.3) and for the ILS estimator (see also Anderson (1982, p.1015)) 

this is equal to, 

(a-a) -7 N(O,l) as 2 () -7 00 • (2.4) 

Table 2.1 presents a number of points of the DF of the 

normalized ILS estimator for different {)2 and for two parameter 

1 values a = 0.5 and 5.33. These points are calculated using the 

method given in Chapter 5, Section 3, and are useful in determining 

the approach of the density of the normalized ILS estimator to the 

standardized normal distribution. Although this depends upon the 

1 Only points on the right hand side of the distribution are 
presented as the approach on the left hand side was very similar 
for the {)2 chosen. 
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Table 2.1: Points of the Distribution Function of 0: in the Exactly-

Identified Limited-Information SEM with Normally-Distributed Reduced-form 

Disturbances, 0: = 0.5 and 5.33 and Various (52. 

0: = 0.5 

60% 

70% 

80% 

90% 

95% 

99% 

0: = 5.33 

60% 

70% 

80% 

90% 

95% 

99% 

0.26265 

0.55739 

0.92617 

1.4998 

2.0543 

3.3184 

(52=25 

0.26879 

0.59083 

1.0179 

1.7242 

2.4489 

4.3095 

0.25933 

0.54289 

0.87962 

1.3803 

1.8055 

2.6833 

(52=100 

0.26227 

0.55777 

0.92562 

1.4717 

1. 9691 

3.0101 

0.25688 

0.53267 

0.85496 

1.3132 

1.6941 

2.4289 

(52=1000 

0.25780 

0.53832 

0.87049 

1.3406 

1. 7404 

2.5024 

Normal 

0.255466 

0.5301033 

0.8469008 

1.282630 

1.645 

2.326 

Normal 

0.255466 

0.5301033 

0.8469008 

1.282630 

1.645 

2.326 
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FIGURE 2.1 Distributions of Maximum Likelihood Estimator in 
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FIGURE 2.2 Distributions of Maximum Likelihood Estimator in 

Exactly-Identified SEM with Normally Distributed 

Reduced-form Disturbances Corresponding to 
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2 values of Q and 6 , in general, even though the moments of the ILS 

estimator are not finite, the standard normal distribution is a 

good approximation to its actual distribution. Hence the usual 

methods with asymptotic standard deviation give reasonable 

inference. 

Marsaglia (1965) also presents an interesting numerical 

analysis from which it is concluded that the density of z is 

unimodal or bimodal, according to the value a takes, and in 

particular, when a > 2.33 (- implies this result is based on 

asymptotic behaviour see, for example, Marsaglia (1965, p .197), 

the density is bimodal, although one of the modes may be 

insignificant. Applying this result to the ILS estimator means 

that its distribution will be bimodal when, 

Qn22 ~ 2.255 = 02 ~ 5.~9 
Q 

(2.5) 

Consequently, for example, as Q -7 00 the distribution will be 

bimodal for all values of the noncentrality parameter whereas as 

Q -7 0, the distribution should always be unimodal. 

To determine the significance of the bimodality, several 

densities for the ILS estimator are illustrated in Figures 2.1 and 

2.2 for Q 0.5 and 5.33 respectively. These values are chosen to 

represent a small and large value of Q respectively. Furthermore, 

they are calculated by first finding the points of the DF using the 

method in Chapter 5, Section 3, and then the pdf is obtained via 

numerical differentiation. For Q = 0.5, the distribution of the ILS 

estimator can be considered to be unimodal whereas for Q = 5.33, 

prominent bimodality occurs, but is only a feature of the 
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distribution for very small 02
• In general, the distribution 

locates around the true parameter value very quickly. 

Consequently, even though the density in (2.3) is an 

interesting example in which maximum likelihood estimators may have 

bimodal distributions for certain parameter values, the feature is 

only prominent for relative large a values and very small 

noncentra1ity parameters and, in general, the distribution of the 

ILS estimator tends to be well approximated by the normal 

distribution in finite-samples, even though the ILS estimator has 

no moments of finite order. 

Next, the assumption of normally-distributed reduced-form 

disturbances is widened to Student-t disturbances and properties 

of the LIMLK estimator are developed. 

(ii) Dependent Student-t Disturbances 

In this case, again assuming there are two-included 

endogenous variables in the structural equation of interest, as in 

(5.3.1), the distribution of the reduced-form disturbances 

(2.6) 

and it is easily shown that the LIMLK estimator takes the same form 

as when the disturbances are normally distributed. This can be 



shown quite simply in the exactly- identified SEM by using the 

relationship between the reduced- form and structural parameters. 

In particular we have, 

(2.7) 

Using the invariance property of maximum likelihood, this implies 

that the maximum likelihood estimator of Q is, 

(2.8) 

The results of Sutradhar and Ali (1986) show that the maximum 

likelihood estimators of the reduced-form parameters are OLS, and 

this is all that is needed to establish the result that Q is the 

same as for normally- distributed (1/1,1/2)' Consequently, (2.8) 

takes the form, 

(2.9) 

which is a ratio of correlated bivariate Student-t variables. 

In a similar manner to Marsag1ia (1965), Press (1969) 

considers the distribution of the ratio, 

where c1 and c2 have a bivariate-t distribution, and this ratio, of 

course, includes (2.9) with a = QIT22 and b = IT22 . In particular, 

he gives the following expression for the pdf of z~"'. 

pdf (z*) = ~ {1 + ~[2F (qVV+1) - 1]}, 
1+z*2 q*v+1 v+1 q* 

(2.10) 

where 
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K = 1 

q = 

1 

1 

L (2 b2 q2)2 q~< = a + + v -

A number of properties of the ILS estimator are the same as 

when (vl ,v2) are normally distributed. In particular, the key 

parameters of the density are the same as is given in (2.3) and the 

estimator possesses no moments of finite order (see, for example, 

Press (1969) Knight (1986». However, using the results of Press 

(1969), the asymptotic distribution is not normal but Student-t so 

that, 

r;z A 2 / -::z-- (0:-0:) -7 MTl (0,1) , as {; -7 00 , 

1+0:2 

with asymptotic variance ~ for v > 2. Table 2.2 illustrates the v-2 

approach of the standardized distributions to their limit 

2 distributions for various v, {; and 0: = 0.5 and 5.33. These values 

were obtained by calculating a number of points of the pdf using 

(2.10) and then numerically integrating to obtain the DF. As in 

the case of normally distributed (vl ,v2), the limiting distribution 

provides a good approximation to the finite-sample distribution, 
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Table 2.2: Points of the Distribution Function of a in the 

Exactly-Identified Limited-Information SEM with Reduced-form 

Disturbances Distributed as in (2.6), a = 0.5 and 5.33 and Various 02. 

a = 0.5 a = 5.33 

v=l 

02=25 02=100 02=1000 02=25 02=100 02=1000 Cauchy 

60% 0.24041 0.28651 0.31778 0.13693 0.23600 0.30057 0.31831 

70% 0.63526 0.68883 0.71979 0.52169 0.63168 0.70358 0.71520 

80% 1. 2812 1. 3423 1. 3830 1.1575 1.2805 1. 3525 1. 3602 

90% 2.9283 3.0222 3.0777 2.8108 2.9838 3.0265 3.0662 

95% 5.9985 6.1196 6.2236 6.0695 6.1050 6.0939 6.3985 

99% 31. 241 31.576 31.145 30.034 30.287 29.532 32.197 

a = 0.5 a = 5.33 

v=2 

02=25 02=100 02=1000 02=25 02=100 02=1000 Cauchy 

60% 0.27260 0.29383 0.29863 0.24485 0.28731 0.29502 0.28404 

70% 0.62077 0.63302 0.63103 0.61038 0.63785 0.62702 0.61725 

80% 1.1224 1.1102 1. 0825 1.1763 1.1538 1. 0951 1. 0639 

90% 2.1786 2.0548 1. 9540 2.4641 2.2408 2.0090 1.8893 

95% 3.8042 3.3758 3.0874 4.5815 3.8077 3.1957 2.9351 

99% 15.048 10.680 7.8185 19.786 13.494 8.8381 6.9584 
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Table 2.2 continued 

a = 0.5 a = 5.33 

v=3 

62=25 62=100 62=1000 62=25 62=100 62=1000 Cauchy 

60% 0.27952 0.28781 0.28691 0.26960 0.28250 0.28020 0.27355 

70% 0.60416 0.60384 0.59406 0.62805 0.61572 0.59477 0.58387 

80% 1.0609 1. 0275 0.99644 1.1599 1. 0763 1. 0098 0.98337 

90% 1.9352 1.7819 1. 6841 2.2626 1. 9256 1.7150 1. 6426 

95% 3.1230 2.6900 2.4534 3.8935 3.0223 2.5373 2.3498 

99% 9.6094 6.2814 5.0255 13.414 7.7844 5.3318 4.5500 

a = 0.5 a = 5.33 

v=5 

62=25 15 2=100 15 2=1000 62=25 15 2=100 15 2=1000 Cauchy 

60% 0.26697 0.26173 0.26564 0.27528 0.27383 0.26919 0.26381 

70% 0.58174 0.56849 0.55634 0.62259 0.59355 0.57063 0.55853 

80% 1. 0017 0.96015 0.92868 1.1052 1. 0063 0.94319 0.92556 

90% 1. 7480 1. 5911 1. 5062 2.0220 1. 7071 1. 5322 1. 4741 

95% 2.6245 2.2519 2.0756 2.2534 2.5098 2.1471 2.0146 

99% 6.0475 4.1986 3.5601 8.7804 5.0229 3.7640 3.3705 



215 

FIGURE 2.3 Distributions of Maximum Likelihood Estimator in 

Exactly-Identified SEM with Student-t Distributed 

Reduced-form Disturbances given by (2.6) and 

Corresponding to a = 0.5 
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FIGURE 2.4 Distributions of Maximum Likelihood Estimator in 

Exactly-Identified SEM with Student-t Distributed 

Reduced-form Disturbances given by (2.6) and 

Corresponding to a = 5.33 
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even for small v and and hence the usual methods with 

asymptotic standard deviation give reasonable inference. 

From a numerical analysis, Press (1969, p.24S) concludes the 

finite- sample distribution of z* is similar to that of the ratio 

of normal variates. Figures 2.3 and 2.4 illustrate a number of 

distributions for the ILS estimator for different v and Q = 0.5 and 

5.33 respectively. These Figures are calculated using (2.10). 

Comparing these illustrations to those of Figures 2.1 and 2.2, the 

conclusion reached by Press (1969) seems valid, although bimodality 

does not tend to be as pronounced for small v. 

Therefore, most of the properties obtained for the ILS 

estimator with normally-distributed disturbances remain valid when 

these disturbances have a j oint multivariate Student-t pdf. The 

only maj or difference between the two error assumptions is that 

with multivariate Student-t errors the limiting distribution of the 

ILS estimator is Student-to 

(iii) Independent Student-t Disturbances 

For the structural equation (5.3.1) with corresponding 

reduced-form (5.3.2), if (vln 'v2n) is assumed to be independently 

distributed bivariate Student-t for all n, we have, 

r 
(2.11) pdf(vln ,v2n) = r ~ 

2 

so that the joint-distribution of (vl ,v2) is given by, 
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N . (V+2) 

[
_r+-

V
...,,;_2 ...... ] ~ [1 + !(V~ +v~ )] - -2- . 

r ~ V~ i=l v n n 
2 

(2.12) 

The LIMLK estimator of Q can be obtained by first maximizing 

the log- likelihood equation for the reduced- form parameters ~ 21 

and ~22' that is, maximizing the expression, 

(V+2) N [ 1 -2 -2] - -2- i~l Log 1 + v(v1n + v 2n) (2.13) 

where, 

V2n 

and then, secondly, by using the relationship between the 

structural and reduced-form parameters in the exactly- identified 

SEM, to obtain, 

(2.14) 

The log-likelihood equation (2.13) needs to be solved 

numerically. Recently, Koenker and Portnoy (1988) have considered 



classes of robust estimators for this type of 2 model. In 

particular, they show that the usual LAE, although asymptotically 

inefficient, is asymptotically normally distributed, which suggests 

that it provides a useful starting value. Furthermore, since to 

date no analytical expression exists for the probability density 

function of a, preliminary numerical analysis was 

required to determine the key parameters of the density of a. 
However, this analysis indicated that the key parameters of the 

density are the same as is given in (2.3). 

Ke1ej ian and Prucha (1984) show that 

distribution of a for v ~ 5 is, 

sqrt(V+2 ~)(a-a) ~ N(O,l) as 02 ~ 00 • 

v+4 1+a2 

the asymptotic 

(2.15) 

Table 2.3 contains a number of points of the distribution 
2 function of (2.14) for v = 5, a = 0.5 and 5.33 and 0 = 25, 100, 

1000. These points are obtained via Monte-Carlo methods. In 

particular the empirical DF is estimated, (see (4.2.1», with 

appropriate bivariate Student - t random numbers generated using 

the relationship, (see e.g. (2.3.4», 

i 1, ... K (2.16) 

2 In fact, Koenker and Portnoy (1988) consider classes of 
robust estimators for Seemingly Unrelated Regression Models. 
However, the reduced- form of a SEM is just a special class of 
these (see, for example, Srivastava and Giles (1987, p.6». 
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where Zl' ZK are K, (K in this case equals 2), independent 

standard normal variables 2 and X is an independent chi-square 

variable with v degrees of freedom. From Table 2.3 it is seen that 

the finite-sample distributions are well approximated by the 

asymptotic distribution N(O, 1) . Similar points are also given for 

v = 1, 2 and 3, although these are values of v that are not covered 

in the proof of Kelej ian and Prucha (1984). However, comparing 

these points with the appropriate values from N(O,l) it is 

conjectured that (2.15) is, in fact, the asymptotic distribution 

for all v. Furthermore, (2.15) provides a good approximation to 

the finite-sample distributions for these v, except for small 0 2 

and v = 1, which tends in these cases to have very "fat tails". 

Graphs of the distribution of a corresponding to a = 0.5, 5.33 

for various v and 0 2 are illustrated in Figures (2.5) and (2.6) 

respectively. The densities illustrated in these Figures are 

estimated via the integration of the kernel density estimator with 

the naive Monte-Carlo method. The kernel estimate at point X is 

equal to, 

pdf (X) (2.17) 

where k[.J is the standard N(O,l) density. The window width h(N*) is 

chosen using the interactive approach of Tapia and Thompson (1978). 

In all cases this approach led to the use of a window width between 

0.02 and 0.09. N* is simply the number of replications in the 
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simulation experiment, and is chosen using the bound of estimation. 

For example, the results of Parzen (1962) and Cacoullos (1966) 

imply, 

1 

(N~\-hm(N*»)2[P~f(X) - E(P~f(X»)] - N(O,Pdf(x)JK
2

) (2.18) 

1 

holds. The result given in (2.18) can be achieved if (N* hm(N*»)2* 

Bias[p~f(X)] tends to zero asymptotically since, 

1 

(N*hm(N*»)2[P~f(X) • Pdf(X)] = (N~\-hm(N*») [P~f(X) - E(P~f(X»)] 

1 

+ (N~\-hm(N*») 2Bias [P~f(X)] 

Ullah (1988, p.642) shows that Bias[p~f(X)] is proportional to 

h 2 (N*). This implies that if N*h(4+m)/2(N*) tends to zero 

asymptotically then (2.18) holds. Therefore, for the normal kernel 

1 1 2 " -exp( --y ), the 99% asymptotic confidence interval for pdf(X) is 
fu 2 

given by, 

1 
" 

p~f(X) ± 2.58 [Pdf(X) ] ~ 
2N*hv'1f 

so that B is given by, 

1 

B 
[

A ] 2 2.58 pdf (X) . 
2N*h(N~\-)1f 
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Table 2.3: Points of the Distribution Function of a in the Exactly-

Identified Limited-Information SEM with Reduced-form Disturbances 

Distributed as (2.12), a = 0.5 and 5.33 and Various c/o 

a = 0.5 a = 5.33 

v=1 

0 2=25 0 2=100 0 2=1000 0 2=25 0 2=100 0 2=1000 Normal 

607- 0.26088 0.26366 0.26549 0.27049 0.27005 0.26369 0.25547 

707- 0.57163 0.55658 0.55000 0.61162 0.57664 0.54971 0.53010 

807- 0.99046 0.93255 0.90903 1.1022 0.97887 0.90342 0.84690 

907- 1.7387 1.5319 1.4572 2.0866 1.6785 1.4644 1.28263 

957- 2.6404 2.1384 1. 9623 3.3645 2.4145 1. 9952 1.6450 

997- 6.3461 3.9129 3.1764 9.3176 4.7121 3.3461 2.3260 

a = 0.5 a = 5.33 

v=2 

0 2=25 0 2=100 0 2=1000 0 2=25 0 2=100 0 2=1000 Normal 

607- 0.26767 0.26338 0.25969 0.27274 0.26465 0.25934 0.25547 

707- 0.57062 0.54520 0.53491 0.60480 0.56615 0.54184 0.53010 

807- 0.96609 0.89471 0.86492 1.0657 0.94926 0.88200 0.84690 

907- 1.6448 1.4320 1.3429 1.8785 1.5411 1.3738 1.28263 

957- 2.3577 1. 9067 1.7585 2.8370 2.1302 1.8187 1.6450 

997- 4.7057 3.0127 2.6072 5.9174 3.5108 2.7387 2.3260 
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Table 2.3 continued 

IX = 0.5 IX = 5.33 

v=3 

02=25 02=100 0 2=1000 02=25 0 2=100 0 2=1000 Normal 

60% 0.26635 0.26338 0.25969 0.27274 0.26465 0.25934 0.25547 

70% 0.56557 0.54520 0.53491 0.60480 0.56615 0.54184 0.53010 

80% 0.95315 0.89471 0.86492 1.0657 0.94926 0.88200 0.84690 

90% 1.6044 1.4320 1.3429 1.8785 1.5411 1.3738 1.28263 

95% 2.2618 1. 9067 1.7585 2.8370 2.1302 1.8187 1.6450 

99% 4.2261 3.0127 2.6072 5.9174 3.5108 2.7387 2.3260 

IX = 0.5 IX = 5.33 

v=5 

02=25 0 2=100 0 2=1000 02=25 0 2=100 0 2=1000 Normal 

60% 0.25368 0.25128 0.24975 0.26435 0.25682 0.25146 0.25547 

70% 0.55655 0.53874 0.52672 0.58863 0.55318 0.53865 0.53010 

80% 0.94102 0.88659 0.85668 1.0335 0.92662 0.86537 0.84690 

90% 1.5465 1.3982 1.3209 1.8151 1.5076 1.3517 1.28263 

95% 2.1585 1.8556 1. 7226 2.6626 2.0533 1.7724 1.6450 

99% 3.8551 2.8602 2.5256 5.2774 3.3075 2.6357 2.3260 
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FIGURE 2.5 Distributions of Maximum Likelihood Estimator in 

Exactly-Identified SEM with Student-t Distributed 

Reduced-form Disturbances given by (2.12) and 

Corresponding to a = 0.5 
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FIGURE 2.6 Distributions of Maximum Likelihood Estimator in 

Exactly-Identified SEM with Student-t Distributed 

Reduced-form Disturbances given by (2.12) and 

Corresponding to a = 5.33 
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N* is varied until B is less than 0.01 for all points at which the 

density is estimated. In all experiments, N* varies between 60,000 

and 90,000 replications 3 The input of Xj in (2.17) involves 

numerically maximizing the likelihood function (2.16). Two 

algorithms from the Harwell Subroutine library are used, these 

being algorithms VAI3AD and VF04AD, which both use the BFGS 

formula, (Broydon (1970), Fletcher (1970), Goldfard (1970) and 

Shanno (1970». All computations are performed in double precision 

to 7 decimal places of accuracy. The final results, however, are 

not dependent upon which algorithm is used in this step. 

Furthermore, the solutions of each of the algorithms used were 

compared with those in the standard Econometric packages TSP and 

SHAZAM, and were found to give similar results. Appropriate 

bivariate Student- t variates, are generated as described above. 

Further details of the Monte Carlo methodology are given in 

Chapter 4. 

Generally, these figures illustrate that the maximum 

likelihood estimator behaves similarly in finite-samples to the 

maximum likelihood estimator associated with normally-distributed 

reduced-form disturbances. In particular, we again see that the 

maximum likelihood estimator is bimodal over part of the parameter 

space. 

3Empirica1 densities were also computed using the Epanechnikov 
(1969) kernel. However, given the number of replications used, the 
results proved not to depend on which kernel is used. This 
situation is similar to the comparison of different kernels for the 
Cauchy distribution using a "large sample", as is illustrated in 
Figure 5.1 in Chapter 3. 
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Overall Comments 

The finite-sample distribution of the LIMLK estimator with 

norma11y- distributed reduced-form disturbances has a number of 

interesting properties. In particular, the LIMLK estimator reduces 

to ILS and the computations presented in this section indicate that 

the limiting distribution is a good approximation to the 

finite-sample distribution. Further, the numerical computations of 

Marsag1ia (1965) illustrate that the distribution is bimodal over 

part of the parameter space. 

When the distribution of the reduced-form disturbances are 

widened to include the Student-t family, there are two different 

error assumptions to consider. These are given by equations (2.6) 

and (2.12), and they lead to quite different estimation techniques 

with different properties. In particular, when (2.6) is assumed, 

the LIMLK estimator is ILS whereas when (2.12) is assumed, the 

LIMLK estimator needs to be numerically computed. Further, each of 

the estimators converges to different limiting distributions. 

However, the computations of the finite-sample distributions of 

each of these estimators indicates that they both have 

distributions with similar properties to the LIMLK estimator when 

the reduced-form disturbances are normally distributed. That is, 

in each case, the limiting distribution is a good approximation to 

the finite-sample distribution and the distribution is bimodal over 

part of the parameter space. 

However, because there are differences between the two 
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assumptions it is important to consider the consequences of 

misspecifying the type of Student- assumption. 

of the next section. 

This is the topic 

10.3 CONSEQUENCES OF MISSPECIFICATION 

In this section, the statistical consequences of 

misspecifying the jointness versus independence assumption of 

Student-t distributed reduced- form disturbances in the 

exactly-identified limited-information SEM is considered. One 

implication of this analysis is to determine how important it is to 

make this distinction 

specification tests. 

by 

In 

applying 

particular, 

appropriate "powerful" 

the consequences of 

misspecification on the following three measures are considered. 

(i) Median and Interquartile Range (IQR) of the finite-sample 

distribution, which is used to determine the consequences of 

misspecification in finite- sample distributions. 

(ii) Asymptotic Variance, which is considered because even though 

the finite-sample variance does not necessarily exist, the 

asymptotic variance is often reported as an approximate measure of 

dispersion. 

(iii) Limiting Distribution, which is considered because this is 

often used as an approximation to the finite-sample distribution 

for the purposes of inference. 
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Throughout this section the superscripts D and I will be 

used to distinguish between the assumptions given by (2.6) and 

(2.12) respectively. In particular, the following notation will be 

used: 

IML(I) = Maximum Likelihood Estimator associated with (2.12) 

when the pdf of (v1 ,v2) is given by (2.12). 

IML(D) = Maximum Likelihood Estimator associated with (2.12) 

when the pdf of (v1 ,v2) is given by (2.6). 

Maximum Likelihood Estimator associated with (2.6) 

when the pdf of (v1 ,v2) is given by (2.12). 

DML(D) Maximum Likelihood Estimator associated with (2.6) 

when the pdf of (v1 ,v2) is given by (2.6). 

(i) Median and IQR of finite-sample distribution 

Table 3.1 compares values of the median and IQR for the 

estimators DML(I) and IML(I), corresponding to a = 5.33, 0.5 and 

2 various O. These are estimated on the basis of a simple Monte -

Carlo experiment using at least 40,000 replications. Appropriate 

random numbers are generated using (2.16). 

In this case the reduced-form disturbances are assumed to be 

distributed as in (2.6) but actually have the distribution given by 

(2.12). Consequently, the appropriate maximum likelihood estimator 

to use is IML but due to this misspecification, DML is used 

instead. From Table 3.1 we can see that this results in the use of 

an estimator similarly dispersed as IML(I), but one which locates 

around the true parameter value much more slowly. These features 

are also illustrated by comparing Figure 3.1, which shows various 
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Table 3.1: Comparison of Median and rQR for Estimators rML(r) and DML(r) 

ex = 5.33 rML(r) 

v=l v=2 v=3 v=5 

<5
2 Median rQR Median rQR Median rQR Median rQR 

0.141 0.66162 4.0574 0.7555 4.2283 0.81975 4.3676 0.91612 4.5412 

1.00 2.9093 4.807 3.0817 4.7230 3.2148 4.7045 3.3607 4.7124 

4.00 4.7298 4.3867 4.8843 4.3118 4.9304 4.2705 5.0155 4.1438 

DML(r) 

v=l v=2 v=3 v=5 

<5
2 Median rQR Median rQR Median rQR Median rQR 

0.141 0.04132 9.2247 0.26942 3.0298 0.49154 3.6245 0.58650 3.840318 

1.00 0.31977 3.2247 1.7682 5.8761 2.5061 6.1140 2.70228 5.2526 

4.00 1.11304 4.6842 3.6970 4.8161 0.1875 4.28779 4.5308 4.4199 

ex = 0.05 1ML(I) DML (I) 

v=l v=5 v=l v=5 

<5
2 Median rQR Median rQR Median rQR Median rQR 

5 0.44461 0.91239 0.47269 0.79927 0.11716 1. 79085 0.45683 0.874497 

23 0.49865 0.42616 0.49971 0.36419 0.29884 1.35172 0.49963 0.40088 
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Table 3.2: Comparison of Median and lOR for Estimators IML (D) and DML (D) 

<X = 5.33 IML (D) 

v=1 v=2 v=3 v=5 

0 2 Median IQR Median IQR Median IQR Median IQR 

0.141 0.49067 3.6467 0.71379 4.0723 0.83722 4.344 0.95121 4.5641 

1.00 2.1830 5.6321 3.0526 5.2346 3.1560 4.9883 3.3943 4.7916 

4.00 3.6319 4.7006 4.4795 4.0724 5.0522 5.5123 4.9172 3.8686 

DML(D) 

v=1 v=2 v=3 v=5 

0 2 Median IQR Median IQR Median IQR Median IQR 

0.141 0.6416 4.0185 0.8384 4.3621 0.9385 4.58123 1.01731 4.6965 

1.00 2.6615 5.5760 3.1725 5.0887 3.3724 4.8793 3.5055 4.7981 

4.00 4.2718 4.3901 4.7105 3.8734 5.2526 5.4833 4.9931 3.8163 

<X = 0.5 IML(D) DML(D) 

v=1 v=5 v=1 v=5 

0 2 Median IQR Median IQR Median IQR Median IQR 

5 0.3921 1.0195 0.4617 0.7679 0.4014 0.8387 0.4679 0.7385 

23 0.4679 0.5479 0.4963 0.3583 0.4813 0.4569 0.4979 0.3430 



graphs of DML (1) , 

graphs of IML(I). 

and Figure 2. 6 which shows 

The graphs of DML(I) are 

the corresponding 

estimated via an 

integration of the kernel density estimator with the Monte-Carlo 

method, as described in the previous Section, except with inputs 

into (2.17) obtained by calculating (2.9) with bivariate Student-t 

variates generated using (2.16). We consider different v, a = 5.33 
2 and numerous 15, Further, we also see from Figure 3.1 that the 

distribution of DML(I) tends to be bimodal over the same parameter 

space as IML(I) except for v = 1. 

Alternatively, Table 3.2 compares values of the median and 

IQR for the estimators DML (D) and IML (D), corresponding to a = 

5.33, 0.5 and various 15 2
• For DML (D) these values are calculated 

exactly via the numerical integration of points of the pdf 

calculated from (2.10). For IML(D) , they are estimated using a 

simple Monte-Carlo experiment using at least 40, 000 replications 

and N, (= sample size, arbitraiily chosen since sample size is not 

a key parameter), jointly distributed random variates generated 

using the relationship given in (2.16). 

In this case the reduced-form disturbances are assumed to be 

distributed as in (2.12) but actually have the distribution given 

by (2.6). However, the iesulting estimator that is used, IML(D), 

has a distribution that is similar both in location and dispersion, 

to the correct maximum likelihood estimator DML(D). This feature 

is also illustrated by comparing Figure 3.2, which shows various 

graphs of IML (D), (estimated via the integration of the kernel 

density estimator with the Monte-Carlo method as described in the 
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FIGURE 3.2 Graphs of IML(D) 
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previous Section, with N jointly distributed random Student-t 

variates generated using (2.16», corresponding to various v, a = 

z 5.33 and numerous 0 , and Figure 2.4, which shows the corresponding 

graphs of DML(D). In particular, the two figures can be seen to be 

essentially identical. 

Consequently, on the basis of this measure, we would 

conclude that IML (D) is a more robust estimator in comparison to 

DML (I) . 

(ii) Asymptotic Variance 

The implications of misspecification on the asymptotic 

variances are similar to those discussed by Kelej ian and Prucha 

(1985) for the linear regression model. In particular, some 

examples of the standardized asymptotic variances of a and Q (i.e. 
l+aZ A l+az _ 
---Z-(a-a) , ---Z-(a-a» , associated with reduced-form disturbances 
o 0 

distributed as in (2.6) and (2.12) are given in Table 3.3. These 

variances are calculated using the known results of Kelej ian and 

Prucha (1985); for IML(I) for v ~ 5 and calculated using at 40,000 

replications in a simple Monte - Carlo experiment for v < 5; from 

Theil (1971, p.505) for DML(I) and DML(D) for v > 2; and are 

calculated on the basis of a simulation experiment using at least 

40,000 replications for IML(D). From the values given in Table 3.3 

the following general comments can be seen to hold for v ~ 3: 

(1) If the reduced-form disturbances are jointly-distributed as 

in (2.6) but are assumed to be iid-distributed as in (2.12), then 

IML will be taken as the appropriate maximum likelihood estimator 
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Table 3.3: Asymptotic Variances 
2 

for l+a (DML-a) 
02 

2 
and l+a (IML-a) 

02 

when reduced-form disturbances are distributed as (2.6) and (2.12). 

v 

3 4 5 

Var(DMLI=D) 3.0 2.0 1.6667 

D Var(IML ) 3.4649 2.2366 1.7999 

I Var(IML ) 1.40 1.3333 1.2857 



to use. In this case the asymptotic variances of IML (D) are 

similar to those of DML(D), which again emphasizes the robustness 

of this estimator. However, the asymptotic variances reported for 

IML will be those associated with IML (1), which substantially 

underestimate those for IML (D) . Consequently, on the basis of 

asymptotic variance, under this type of misspecification IML(D) is 

robust, but incorrect asymptotic variances will be reported. 

(2) On the other hand, if the reduced-form disturbances are iid-

distributed as in (2.12) but are assumed to be jointly-distributed 

as in (2.6), then DML will be used, with associated asymptotic 

variances given by DML (I) . These variances can be seen to be 

substantially greater than those corresponding to the correct 

maximum likelihood estimator IML(D). Consequently, on the basis 

of asymptotic variance, this type of misspecification is associated 

with an inefficient estimator. 

For the infinite-variance distributions, that is v = 1, 2, the 

asymptotic variances for DML(I) and DML(D) ~o not exist, so in this 

case the consequences of misspecifying the type of Student-t 

distribution are even more serious. 

(ii) Limiting Distribution 

If it is thought that the reduced - form disturbances are 

independent Student t distributed, that is with joint 

distribution given by (2.12), then it will be assumed that the 

associated maximum likelihood estimator, a, has the asymptotic 

distribution, 
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(3.1) 

This result is based on the results of Kelejian and Prucha (1984) 

and simulation results presented in this chapter. However, if the 

reduced-form disturbances are actually dependent Student t 

distributed as in (2.6), this limiting distribution will be 

incorrect. It is important to consider the implications of the use 

of the wrong limiting distribution since it is this distribution 

that is often used as an approximation to the finite sample 

distribution for purposes of inference. 

r;z 
Various points of the distribution of 1~----2 (a-a), assuming 

l+a 

dependent Student t distributed reduced form disturbances 

(2.6), are given in Table 3.4, corresponding to a = 0.5, 5.33 and 

~2 = 25, 1000 for various v. These points are obtained via the 

estimation of the empirical DF (see (4.2.1», with appropriate N, 

jointly distributed Student- t random numbers generated using the 

relationship (2.16). These points are compared wi th the 

corresponding points of the incorrect limiting distribution given 

by (3.1). In particular, we can see that this misspecification 

will result in the use of an asymptotic approximation that has 

tails that are much thinner than the actual finite-sample 

distribution. This suggests that conventional hypothesis testing 

about a structural coefficient based on the incorrect limiting 

distribution is very likely to seriously overestimate the actual 
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Table 3.4 Effect Of Using The Wrong Limiting Distribution For Standardized 

-a When Errors are Jointly - Distributed but are Thought to be 

Independently-Distributed 

v= 1 

0: = 0.5 0: = 5.33 
Normal with 

62=25 62=1000 62=25 62=1000 5 variance=-
3 

-0.05615 -0.015 -0.14882 -0.0314 0.0 50% 

0.18537 0.2518 0.09788 0.22974 0.33588 60% 

0.49478 0.5794 0.40091 0.55844 0.68278 70% 

0.98739 1.1449 0.88458 1. 0984 1.095589 80% 

2.562 2.8233 2.1704 2.7086 1.65957 90% 

4.7073 6.6137 4.5275 6.1978 2.124746 95% 

23.681 37.092 21.736 32.9330 2.99854 99% 

v = 2 

0: = 0.5 0: = 5.33 

Normal with 
62=25 62=1000 62=25 62=1000 3 variance=-

2 

-0.02517 -0.0639 -0.0018 -0.045 0.0 50% 

0.20929 0.23842 0.19702 0.23873 0.318641 60% 

0.49204 0.52747 0.48951 0.52533 0.64774 70% 

0.90398 0.92969 0.93528 0.93676 1.03937 80% 

1.7620 1.7470 1. 9842 1.7781 1. 57441 90% 

3.0839 2.9367 3.7235 3.0806 2.01571 95% 

11.138 9.3376 14.706 10.7560 2.84466 99% 
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Table 3.4 continued 

v = 3 

0: - 0.5 0: = 5.33 

Normal with 

02=25 02=1000 02=25 02=1000 7 variance=-' 
5 

-0.01329 -0.006 -0.02055 0.007 0.0 50% 

0.22135 0.2402 0.22078 0.23508 0.307836 60% 

0.50103 0.5169 0.51246 0.51531 0.625775 70% 

0.89663 0.8808 0.95179 0.88275 1.00412 80% 

1. 6140 1. 5245 1.8937 1. 5687 1. 52102 90% 

2.6488 2.3036 3.2677 2.4067 1.94736 95% 

7.9429 5.3103 10.608 5.8209 2.74820 99% 

v = 5 

0: = 0.5 0: = 5.33 

Normal with 
02=25 02=1000 02=25 02=1000 9 variance=-

7 

-0.006 0.0 -0.0110 -0.007 0.0 50% 

0.23491 0.295004 0.23621 0.23839 0.295004 60% 

0.51026 0.599689 0.54425 0.51720 0.599689 70% 

0.88533 0.962267 0.97429 0.86824 0.9622767 80% 

1. 5478 1.45762 1.8132 1.4365 1.45762 90% 

2.2832 1.86619 2.8796 2.0349 1.86619 95% 

5.3451 2.63364 8.0263 3.7498 2.63364 99% 



significance. 

Similar comments can be made when the reduced-form 

disturbances are assumed to be distributed as (2.6) but are 

actually distributed as (2.12). In this case if disturbances are 

thought to be distributed as (2.6) then DML will be taken as the 

appropriate maximum likelihood estimator to use with corresponding 

limiting distribution, 

r;zA 
,j-!z-- (a-a) -7 MT1 (0,1,v) 

1+a
2 

as (3.2) 

However, if the reduced form disturbances are actually 

distributed as (2.12) then (3.2) will be wrong. We again examine 

the consequences of the use of this wrong limiting distribution by 
A 

comparing the finite - sample distribution of a, assuming (2.12) 

with the limit distribution given in (3.2). 

In Table 3.5 various points of the distribution function of 

! 15
2 (~-a), assuming reduced - form disturbances distributed as 

1+a2 

in (2.12) and corresponding to a = 0.5, 5.33 and 02 
= 25, 1000 for 

various v are given. These are obtained via the estimation of the 

empirical DF, (see (4.2.1», with bivariate Student - t random 

numbers generated using the relationship (2.16) with K =2. A 

comparison of these points with the corresponding points of the 

incorrect limiting distribution MT1 (0,1,v), when the reduced-form 

disturbances are actually distributed as (2.12) illustrate that the 

use of the wrong limit distribution results in the use of an 

approximation to the finite-sample distribution that has much 

thinner tails. This suggests that conventional hypothesis testing 
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Table 3.5: Effect Of Using The Wrong Limiting Distribution for Standardized 

a when Errors are Independently-Distributed but are Thought to be 

Jointly-Distributed 

v = 1 

a = 0.5 

{) =25 {) =1000 {) =25 

-0.79209 -0.21434 -1.8473 

0.17617 1. 0627 -1. 0483 

1. 3876 2.5909 -0.07521 

3.3597 5.1025 1.5267 

8.3335 11.838 5.6863 

18.109 24.506 13 .466 

93.673 104.21 76.542 

v = 2 

a = 0.5 

-0.076 0.0056 -0.11832 

0.43516 0.51300 0.39167 

1. 0621 1. 0754 1.0909 

1. 9535 1.7917 2.1923 

3.8423 2.9663 4.6354 

6.4801 4.2071 8.8531 

27.866 8.6984 41. 896 

a = 5.33 

{) =1000 

-0.48310 

0.75251 

2.3163 

4.8041 

11.399 

23.042 

112.58 

a = 5.33 

0.01946 

0.52170 

1.1028 

1. 8479 

3.0860 

4.5621 

9.8816 

Standardized 
Cauchy 

0.0 

0.31831 

0.71520 

1.3602 

3.0662 

6.3985 

33.197 

Standardized 
t2 

0.0 

0.28404 

0.61725 

1. 0639 

1. 8839 

2.9351 

6.9584 

50% 

60% 

70% 

80% 

90% 

95% 

99% 

50% 

60% 

70% 

80% 

90% 

95% 

99% 
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Table 3.5 continued 

v = 3 

a = 0.5 a = 5.33 

Standardized 
02=25 02=1000 02=25 02=1000 t3 

0.00 0.01 -0.01005 0.00848 0.0 50% 

0.38074 0.38478 0.40673 0.40234 0.7335 60% 

0.8632 0.81032 0.91962 0.82241 0.58387 70% 

1.4920 1.3192 1. 6809 1. 3485 0.98337 80% 

2.6055 2.0940 3.1914 2.1459 1. 6426 90% 

3.9398 2.8111 5.2853 2.8976 2.3498 95% 

10.219 4.4269 16.101 4.9267 4.5500 99% 

v = 5 

a = O.S a = 5.33 

Standardized 
02=25 02=1000 02=25 02=1000 t5 

0.00 0.0046 0.01676 0.01841 0.0 50% 

0.3215 0.31422 0.35601 0.33849 0.25546 60% 

0.69624 0.65384 0.77380 0.68782 0.55802 70% 

1.1789 1. 0684 1. 3359 1.0964 0.91295 80% 

2.0125 1. 6709 2.4058 1.7259 1.44792 90% 

2.9204 2.1872 3.6145 2.2755 1.96776 95% 

5.5950 3.2260 8.5127 3.5476 3.33237 99% 



about a structural coefficient is very likely to seriously 

overestimate the actual significance. 

Consequently, misspecifying the type of error distribution 

results in the use of the wrong limiting distribution, which in 

each case has much thinner tails than the actual finite-sample 

distribution, 

inference. 

and this will have adverse implications for 

(iv) Overall Comments 

The purpose of this section has been to illustrate the 

importance of distinguishing between reduced-form distributed 

disturbances given by (2.6) and (2.12). In particular, we see that 

when reduced- form disturbances are assumed to be distributed as 

(2.6) but actually have distribution (2.12), the effects on the 

resulting maximum likelihood estimator used are two-fold. This 

estimator is slow to locate around the true parameter value and an 

incorrect asymptotic distribution is used to approximate the 

finite-sample distribution, resulting in an approximation that has 

much thinner tails than the actual distribution, which will have 

implications for inference. On the other hand, when the 

reduced-form disturbances are assumed to be distributed as (2.12) 

but actually have distribution (2.6) the resulting maximum 

likelihood estimator used is robust in the sense that its 

finite-sample distribution is essentially identical to the correct 

maximum likelihood estimator. However, once again an incorrec t 

asymptotic distribution is used to approximate the finite-sample 
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distribution of the maximum likelihood estimator used, which 

results in an approximation that is much thinner tailed than the 

actual distribution, and this will have implications for inference. 

Consequently, the results suggest that it is worthwhile to have 

appropriate specification tests to distinguish between (2.6) and 

(2.12). This is one of the topics of the next chapter. 

Before closing this Chapter however, note that the results 

presented could have been extended to include the more general SEM, 

by using for example the Godfrey and Wickens (1982) approach of 

treating LIML as a special case of FIML. However, it was decided to 

restrict attention simply to the exactly-identified SEM because of 

the interesting bimodality feature of the resulting density in this 

case, and also because it was considered that the results obtained 

would illustrate the general features of misspecification. 

Furthermore, the use of the LIMLK estimator, by assuming a known 

covariance matrix, simplified numerical computations considerably. 

More generally, what is required assuming iid nonnorma1 errors is a 

comphrehensive theory, including computational aspects, of robust 

estimators in the multivariate case. The maximum likelihood 

estimator for Student - t errors can be considered to be an example 

of a robust estimator, see e.g. Koenker and Prucha (1984). This 

problem has been set aside for future work, and it seems more 

appropriate to consider the more general SEM in this context. 
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CHAPTER 11 

TESTING THE ASSUMPTION OF JOINTLY-DISTRIBUTED VERSUS 

INDEPENDENTLY-DISTRIBUTED NONNORMAL DISTURBANCES 

11.1 INTRODUCTION 

A widely used assumption in econometrics is that regression 

disturbances are normally distributed, and in this case there is no 

need to distinguish between independence and uncorrelatedness. 

Recently, however, as is illustrated in Chapter 7, there has been 

much interest in nonnormally distributed disturbances, and in this 

case a distinction needs to be made between assuming 

independently-distributed nonnormal disturbances and 

jointly-distributed nonnormal disturbances. In particular, if the 

appropriate moments exist, then this is a distinction between 

independence and uncorrelatedness. Chapters 8, 9 and 10 illustrate 

the importance of making this distinction in two models, these 

being the linear regression model and the exactly-identified 

limited-information SEM. In the linear regression model and in the 

exactly-identified linear-information SEM, the consequences of 

misspecifying the jointness/independence distinction are such that 

it is important to construct appropriate specification tests that 

make this distinction. In this chapter, such specification tests 

are presented to make this distinction in the 

elliptically-symmetric family of distributions, by adopting the use 

of existing tests for normality. 

As the specification tests for jointness versus independence 
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presented here adopt the use of existing tests for normality, we 

begin this chapter by first reviewing tests for normality. This 

review begins in Section 2 with tests for univariate normality and 

multivariate normality. In particular, attention is given to 

Shapiro and Wi1k's (1965) test used to test for univariate 

normality, and a modification of this test used to test for 

multivariate normality. Section 3 discusses the application of 

these tests to the types of models considered in Chapters 9 and la, 

while Section 4 considers the use of these tests for testing the 

j ointness versus independence assumption. In Section 5 a Monte 

Carlo experiment is presented which illustrates the power of these 

tests for testing the j ointness versus independence assumption 

assuming that the disturbances are Student-t distributed, and 

Section 6 concludes with some final comments. 

11.2 TESTS OF NORMALITY 

(i) Univariate Normality 

Research into tests of normality of observations has a long 

history, with attention being given to one-directional tests such 

as skewness and kurtosis tests and tests that are sensitive to any 

form of departure from normality such as omnibus tests. Recent 

contributions to the literature are the skewness, kurtosis and 

omnibus tests proposed by D'Agostino and Pearson (1973), Bowman and 

Shenton (1975), Pearson, D'Agostino and Bowman (1977), Shapiro and 

Wi1k (1965) and Shapiro and Francia (1972) and the use of the score 

test on a general family of distributions by Jarque and Bera 

(1987) . 
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Shapiro et a1. (1968) launched the first major power study 

into the behaviour of a number of tests for normality. They 

concluded that the Shapiro and Wilk (1965), W, test provides a 

general omnibus measure of nonnorma1ity. Similar conclusions were 

obtained in studies by Dyer (1974), Stephens (1974) and Pearson 

et al. (1977). 

Given these conclusions then, this chapter will focus on the 

W-test. This test has further appeal since Royston (1982) has 

provided a simple algorithm which enables it to be computed for 

sample sizes up to 2000 as well as providing appropriate 

significance levels. It is defined as follows. Let m' 

(m1 , ... ,mN) denote the vector of expected values of standard normal 

order statistics, and let V = be the corresponding N*N 

covariance matrix; that is 

E(x.) == m.(i=l, ... ,N) and cov(x.,x.) = v .. (i,j=l, ... ,N) 
~ ~ ~ J ~J 

where xl < x2 < ... < xN is an ordered random sample from a 

standard normal distribution N(O,l). Suppose y' = (Y1"" 'YN) is a 

random sample on which the W test of normality is to be carried 

out, ordered Y(l) < Y(2) < ... < Y(N)' Then 

[ ]
2 - 2 W == 2:a'Yi /2:(y. -y) 

i ~ i ~ 
(2.1) 

where 

The coefficients {ail are the normalized "best linear 

unbiased" coefficients tabulated for N < 20 by Sarhan and Greenberg 

(1956). The covariance matrix V which features in g may be 
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obtained using the algorithm of Davis and Stephens (1978). 

However, V is not required explicitly, and Shapiro and Wi1k (1965) 

offer a satisfactory approximation for g which improves with 

increasing sample size N, and this approximation is usually 

adopted. By definition, g has the property g' g = 1. Let a* = 

-1 m'V ; approximations a* for a* are 

{ ,:mi i 2,3 ... N-1 
" a i 

where, 

N-1 [ a. 

1-~:~ 2:: 
j=2 

1. 

"2 {g(N-1) 
aN = 

g(N) 

and g(N) = r(N+1)/l2r(~N+1). 
2 

1 -" r i 1, i N *2 aj 

, N ~ 20 

, N > 20 

In the algorithm developed by Royston (1982) for computing 

W, these approximations are used throughout the range 7 < N < 2000, 

while exact values are used for the (a i ) for N < 7. The values of 

mi required in the computation are calculated using B10m (1958, 

pp.69-71) and are accurate to 0.0001. Values of the significance 

levels are also given, and are obtained by approximating the null 

distribution of W. That is, Royston (1982) showed that W could be 

transformed to an approximately standard normal variate, Z, under 

the hypothesis that the unordered observations come from a normal 

distribution with unspecified mean and variance, so that, 

(2.2) 
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and A, ~, a are all functions of N, for which polynomial formulae 

are provided (Royston (1982, p.119». 

(ii) Multivariate Normality 

Let X = (xl' ... ,xm) be m variates each with N observations 

and let X and S be the sample mean vector and covariance-matrix 

respectively, corresponding to the population statistics ~ and ~, 

that is, 

and 

X = [Xj ] , j = 1, ... ,m, where Xj 
N 

liN ~ xji i=l 

1 N 
S = N ~ (xj . -x) (xk . -x), j 

i=l ~ ~ 
k = 1,,,. ,m. 

The null hypothesis to be tested is that X is multivariate normally 

distributed. One simple procedure is to test the marginal 

normality of each of the m components by using univariate 

procedures. However, marginal normality does not imply 

multivariate normality although the presence of nonnormality is 

often reflected in the marginal distributions. Hence, it is 

usually claimed (see, for example, Mardia (1980» that tests which 

exploit the multivariate structure will be more sensitive. 

A number of test procedures for multivariate normality have 

been proposed in the literature, and reviews of these procedures 

are given in, for example, Mardia (1980) and Cox and Small (1978). 

Generally though these procedures have concentrated either on 

combinations of univariate tests of normality such as those of 

Small (1980), Malkovich and Afifi (1973), or on the geometrical 

m properties in R of two or more variates taken together such as 
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Healy (1968) and Cox and Small (1978). However, often the 

suggested tests have intractable null hypothesis distributions, are 

difficult to calculate and further convincing power studies are 

rare. 

Recently, a number of authors such as Royston (1983) and 

Srivastava and Hui (1987) have suggested extensions of W which 

solve some of these problems. However, the statistic proposed by 

Royston (1983) requires certain approximations to be made, in order 

for the statistic to have large-sample justification. 

Consequently, in this section we review only the statistic 

suggested by Srivastava and Hui (1987) which has large-sample 

justification. 

Srivastava and Hui (1987) propose the test statistic Ml for 

testing multivariate normality, and this statistic may be 

considered as a generalisation of both the univariate-W statistic, 

and also the statistic proposed by Shapiro and Wilk (1968) for the 

joint assessment of normality of several independent samples. In 

particular, Ml is based on principal components. That is, let r = 

(1l , ... ,1m) be an orthogonal matrix such that r'~r = DA, where DA 

is a diagonal matrix with diagonal elements AI"" ,Am' then, 

1iX, ... ,1~X are called m principal components which are 

independently distributed with means 1i~"" ,1~~ and variances 

AI"" ,Am respectively, if X is normally distributed. When ~ is 

not known it is estimated from the sample by S and approximately 

independent principal components are obtained. That is, let H 

(hI"" ,h ), be an orthogonal matrix such that H'SH, = D where D m w w 
diag(Wl ,· .. ,Wm) and let 
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Yij - hiXij , i - 1, ... ,m, j = 1, ... ,N. 

Then Yij is the ith principal component for the jth sample, where ~ 

is estimated by S. Thus under the null hypothesis of normality, 

1, ... ,m is treated as m approximately 

independent samples and the procedures of Shapiro and Wilk (1968) 

can then be used. That is , for sample i, the univariate W is 

calculated, denoted as W(i), where 

as in (2.1) and, 

(2.3) 

where G(W(i)) is the transformation of W(i) to a standard normal 

variate, suggested by Shapiro and Wi1k (1968), and is equal to 

( .) {W(i)-€} G W(l) = 1+o1og 1-W(i) 

with values for 1, 0 and € obtained in Table 1 of Shapiro and Wilk 

(1968) up to N = 50 and Royston (1983) for larger sample sizes, 

and, 

ifJ(x) 

1 x 

(2II) 2 f 
-00 

1 2 exp(--t)dt. 
2 

2 Asymptotically M1 is distributed as X2m , 

A Monte Carlo study is reported by Srivastava and Hui (1987) 

in which it is concluded that the null distribution of M1 is well 
2 approximated by X2m for sample sizes that are small as 10. 

However, no power results are given. 
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11.3 EXTENSION TO TESTING THE NORMALITY ASSUMPTION IN REGRESSION 

MODELS 

(i) Using Univariate Tests in the Classical Regression Model 

In the classical regression model (1.1.1), the disturbances, 

although assumed iid are unobservable. They can be estimated with 

the least squares residual vector, 

e = (I - X(X'X)-lx')y 

but E(ee') 2 ( -1 ) a I - X(X' X) X' and so the elements of e are 

correlated. This problem can be overcome by transforming e to a 

new N-k vector of uncorrelated residuals such as the BLUS or 

recursive residual vector (see, for example, Judge (1985, 

pp.172-l73», and then these can be used in conjunction with the 

univariate tests of normality in 11.2. 

Alternatively, Mukantseva (1977), Pierce and Kopecky (1979), 

Loynes (1980) and White and MacDonald (1980) provide conditions 

under which several well-known tests for univariate normality have 

the same limiting null distribution when used to test the normality 

assumption of the regression disturbances and are calculated using 

least-squares residuals. These conditions are summarized in 

Condition (11.1): 

Condition (11.1) (X. ), which denotes a vector of all of the 
1 

observations on the regressors at point i, is a sequence of 

uniformly bounded fixed vectors 

positive definite matrix. 

such that lim [X' X/N] 
N,,*CO 

= Q, 

Given this assumption then, for W we have, in probability, 

" IW - Wi ---7 0 , 

a 
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where the A refers to W calculated with least-squares residuals. 

In finite-samples, using the same significance levels as 

appropriate for the univariate tests, Huang and Bolch (1974) and 
A 

Ramsey (1974) report on Monte Carlo studies, including W, where use 

of the least squares vector leads to a more powerful test than that 

obtained using the BLUS residual vector e. Furthermore, Monte 

Carlo studies carried out by Weisberg (1980) suggest that the 
A 

significance level of W is near the nominal level, therefore 

suggesting that in finite-samples the significance levels of W can 

be used, although the accuracy of this approximation depends on the 

regressors as well as sample size. However, in all of these 

studies emphasis is mainly given to the nominal 10% level. The 

Monte Carlo study carried out in the last section of this chapter 

extends this analysis to all the common nominal significance values 

used. 

(ii) Using Multivariate Tests in SEM's 

If we consider the reduced-form of the SEM, such that, 

Y = XII + v , (3.1) 

. (X'X) 
where X is assumed to be strictly exogenous such that lim---N-- = Q, 

and II is the matrix of corresponding reduced-form parameters, then 

the usual assumption made about the reduced- form errors is v -

N(O,O), and this then also implies that the structural'disturbances 

are multivariate-normal. If v - N(O,O) is taken as the null 

hypothesis, then it is easily shown that when the reduced-form 

errors v, with estimated covariance matrix 0, where, 



with ith and jth residuals from the ith and jth equation (2.4), are 
" " used to calculate Ml , (" indicates use of v in constructing Ml ) , 

" " then the limiting distribution of Ml is as in (2.3), that is, Ml -
2 where is the number of variables in the X2m , m exogenous 

reduced-form. This result holds simply because Condition (11.1) is 

satisfied at the first stage of forming the marginal W(i). 

However, while many Monte Carlo studies have been carried 

out to assess the finite-sample performance of tests of normality 

calculated using least-squares residuals in the linear regression 

model, similar studies that consider the use of the reduced- form 

least squares residuals in the calculation of tests of 

multivariate-normality in SEMs are non-existent. Consequently, in 

the last section of this chapter a simple Monte Carlo study is 

performed to consider the performance of in the 

exactly-identified model of Chapter 10. 

11.4 TESTING FOR JOINTNESS VERSUS INDEPENDENCE 

King (1980b) shows that any statistic which is invariant to 

the scale of the disturbances of the linear regression model has 

the same distribution when u - 2 
N(O,aL) as it does when u is 

assumed to follow any other elliptically symmetric distribution 

with characteristic matrix L. In particular, if tests of normality 

satisfy this invariance property then widening the null hypothesis 

of these tests to include the spherically symmetric family of 

distributions does nothing to the size (and also the power in this 
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case), of these tests. Examples King (1980b) gives of tests of 

normality where this property holds are those suggested by Putter 

(1967), Koerts and Abrahamse (1969), Louter and Koerts (1970), 

Huang and Bolch (1974) and Mukantseva (1977). 

In the previous section emphasis is given to the Shapiro and 

Wilk (1965) univariate test Wand its modifications to testing 

normality in the classical regression model and SEM's. These tests 

also satisfy the above invariance property as shown by Shapiro and 

Wi1k (1965). Consequently, it is more accurate to regard them as 

tests for spherical symmetry rather than tests for normality. 

In the linear regression model, using this testing strategy 

implies the following. If the null hypothesis is accepted then 

there is no need to distinguish between the spherically distributed 

distributions. This is because all of the common test-statistics 

used satisfy this invariance property, such as, for example, the 

classical F-test of fixed linear restrictions on ~, tests for 

serial correlation in regression disturbances proposed by Durbin 

and Watson (1950), tests for heteroscedastic disturbances suggested 

by Go1dfe1d and Quandt (1965), tests for regression misspecifica-

tion such as those outlined by Ramsey (1969) (see also King (1980b, 

p.14». However, if the alternative hypothesis is accepted then 

robust estimation and inference techniques are needed, at least for 

moderately-sized linear regression models. 

A similar strategy can be adopted in SEM's using the 

recently suggested ways of defining structural-form residuals by 

Harvey and Phillips (1980), Phillips (1988), for 1imited- and 

full-information SEM's. 
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For example, for the limited-information SEM with two 

endogenous variables, the topic of Chapters 5 and 6, 

Y,\- "" y* 13 + X -y + 1 2 1 1 . (4.1) 

we have the following relationship between the structura1- and 

reduced-form disturbances, 

Harvey and Phillips (1980) showed that all the usual tests, such as 

those mentioned above, have the same exact size as in the general 

linear model when based on the estimate, 

1\ 

1\ 1\ 

where vI' v 2 are the OLS estimates of the reduced-form disturbances 
1\ 

corresponding to (3.1), and 13 is a consisitent estimate of 13. 

Therefore, since these statistics are also invariant to scale, this 

implies there is no need to make any distinction between the 

elliptically-symmetric distributed disturbances when the null 

hypothesis of multivariate normality is accepted. If the 

alternative hypothesis is accepted then estimation and inference 

procedures can be based on maximum-likelihood methods with 

Student-t distributed disturbances for example, or some other 

robust method such as those suggested by Amemiya (1982) and Powell 

(1983). 

11.5 MONTE CARLO EXPERIMENTS 

In this section, results of Monte Carlo experiments are 

given to illustrate the performance, in terms of both size and 
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power, of the W1 and M1 tests, in the linear regression model and 

the exactly-identified SEM. The results of a Monte- Carlo 

experiment to determine the size and power of the W1 test are 

presented in Table 5.1 and for the M1 test in Tables 5.2 and 5.3 

respectively. Every Monte Carlo experiment in this section 

consists of generating 5,000 random numbers from a given 

distribution; computing the values of the test - statistics and 

seeing whether HO is rejected by each individual test. Assuming an 

underlying normal distribution gives the size of the test, and 

assuming the independent nonnorma1 Student - t alternatives yields 

an estimate of the power of the test. The estimates of the size and 

power of the tests are obtained by dividing 5,000 the number of 

times HO is rejected. 

(i) Linear Regression Model 

In this part, results of a Monte Carlo experiment are 

presented which illustrate the size and power associated with W, 

where W is used to test the assumption, 

2 
€ - N(O, a I) , 

which, from Section 4, is equivalent to assuming 

and where the alternative hypothesis is, 

1, ... N, 

and the associated significance levels are taken from those 

calculated by Royston (1982) for the W test. These significance 
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levels rather than the asymptotic significance levels are used, due 

to the results obtained by Weisberg (1980), (see e.g. 11.3). Each 

regression model contains a number of nonstochastic regressors, as 

well as a constant term, and the total number of regressors is 

denoted by K. These numbers of regressors were chosen to 

illustrate the consequenc~s of both size and power when, first, N 

is fixed and K is increased and, secondly, when K is fixed and N is 

increasedJ For N = 20, the three data sets of Weisberg (1980) are 

used. It is well known (see e.g. Jarque and Bera (1987, p.170)), 
-1 that the matrix V = I - X(X'X) X' influences both the actual size 

and power of the normality test. The three data sets of Weisberg 

(1980) illustrate the effects of different V on the normality test. 

For N 50, four nonstochastic regressors are generated from 

independent uniform, normal and X~o distributions. Uniform variates 

are generated using the NAG subroutine G05CAF, which uses a 

mUltiplicative congruential method; normal variates are generated 

using the NAG subroutine G05DDF, which is based on Brent's (1974) 

algorithm and 2 variates generated using the formula, X10 are 

-2ln[ ~ Ui ] , where U. are uniform variates. These regressors are 
i=l ~ 

used as it is considered that they cover a wide range of 

alternatives. To obtain the estimates of the size and power of W, 

normal and iid Student - t variates are generated. Normal variates 

are generated as above, and for v = 1, the Cauchy distribution, 

standard Cauchy variates are generated as, 

and for v = 2, the t 2-distribution, 
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where U is from U(O,l). 

For the rest of the Student-t family, v ~ 3, X is generated 

via a transformation of a symmetric beta variate, (see, for 

example, Devroye (1986, p.446». This can be written in terms of 

independent uniform random numbers Ul ' U2 as, 

_r 2/v-l 2vv sin (2nUl )(1-U2 ) 

(1-sin2 (2nU »(1_U 2
/
v - l ) 1 2 

X 

This formula is useful as it is valid for all members of the 

Student-t family with v ~ 3. It also does not require the 

generation of as many random uniform deviates as does the 

traditional method of generating a t-random variable via its 

interpretation as a ratio of a standard normal to the square root 

of an independent normalized chi-square variable. 

The results of the simulations for three significance levels 

a= 0.01,0.05 and 0.10, are presented in Table 5.1, from which the 

following two points can be made: 

- Except for small N and large K, the actual size of W is 

very close to the normal size. 
" The power of W is large for the infinite-variance 

disturbances (v ~ 2) even for small sample sizes, and in comparison 

falls dramatically for the finite-variance disturbances (v> 2). 

Consequently, for Student-t disturbances, for small samples 

" and moderate values of K, the significance values of Ware well 
" approximated by those computed for W. Furthermore, W is very 
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Table 5.1: Results of Monte Carlo Experiments for Linear 

Regression Models using 5000 Replications 

N K Normal v = 1 v = 2 v = 3 v = 5 v = 10 

Data Set 1 size power 

0.10 20 4 0.0978 0.7782 0.4618 0.3132 0.1952 0.1304 

20 8 0.1068 0.5746 0.3274 0.1920 0.1682 0.1284 

Data Set 2 

0.10 20 4 0.0994 0.7838 0.8066 0.3118 0.1964 0.1330 

20 8 0.1012 0.5386 0.5542 0.2232 0.1586 0.1316 

Data Set 3 

0.10 20 4 0.1040 0.7848 0.9010 0.3110 0.1904 0.1242 

20 8 0.2440 0.7478 0.7650 0.4160 0.3320 0.2778 

Data Set 3 

0.05 20 4 0.042 0.7346 0.7592 0.2416 0.1302 0.0686 

20 8 0.153 0.6840 0.7058 0.3106 0.2362 0.0930 

Data Set 3 

0.01 20 4 0.0080 0.6254 0.6514 0.1340 0.0534 0.0162 

20 8 0.0486 0.4542 0.5736 0.1774 0.1032 0.0670 

Data Set 4 

0.10 50 4 0.0980 0.9892 0.9928 0.568 0.3172 0.1688 

Data Set 4 

0.01 50 4 0.005 0.970 0.6592 0.3804 0.1528 0.0418 



powerful in distinguishing between joint Student-t and 

infinite-variance iid Student-t disturbances, and moderately 

powerful otherwise. Whether this is a feature of all the normality 

tests is a matter for future analysis. Another interesting 

question is the behaviour of W in the elliptically-symmetric family 

of distributions generally. 

(ii) Exactly Identified SEM 

In this section, Monte Carlo results are presented for the 

Ml-test, used to test the assumption of multivariate normality in 

the exactly- identified SEM. 1 The reduced-form model considered 

is, 

where c1 and c 2 are constants, and X2 is a N X 1 vector of 

observations on a strictly exogenous variable. The null hypothesis 

is taken to be, 

where 

(5.1) 

This can also be written as, 

1 For the purposes of the simulation experiment here, the 
SEM is considered in standard form as opposed to the canonical form 
presented in Chapters 5, 6 and 10. This is so we could determine 
the effect of p, see for example (5.3). 
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(5.2) 

and using the "invariance of scale" property of Ml as discussed in 

" Section 4, implies that Ml has the same distribution when (5.2) is 

assumed as it does when it is assumed, 

The alternative hypothesis is taken as 

As the results on the Monte Carlo experiment depend upon the 

values of 0 and X2 , these are varied in a number of ways. In 

particular, it is assumed, 

(5.3) 

where p represents the correlation between v lt and v2t and is set 

equal to O. 3 , 0 . 6 and O. 9 . Two different data sets for X2 are 

included. In the first data set X2 is assumed orthogonal (XZX2 = 

1), and in the second X2 is assumed to be x~O distributed, and 

these variates are generated as above. To obtain estimates of the 

size and power of the test it is necessary to generate bivariate 

normal and Student - t variates with precision matrix O. Normal 

variates are generated as described above. Student - t variates are 

generated using the relationship 

i 1,2 
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Table 5.2: Results of Monte Carlo Experiments for Exactly-Identified 

Limited - Inf ormation SEM using 5000 Replications and Corresponding to 

data set 1. 

p = 0.30 p = 0.60 p = 0.90 

nominal size 10% 

actual size 0.108 0.093 0.091 

power power power 

v = 1 0.949 v = 1 0.964 v = 1 0.972 

2 0.713 2 0.741 2 0.872 

3 0.518 3 0.568 3 0.674 

5 0.304 5 0.330 5 0.392 

10 0.190 10 0.200 10 0.204 

nominal size 57-

actual size 0.046 0.048 0.054 

power power power 

v = 1 0.931 v = 1 0.952 v = 1 0.959 

2 0.645 2 0.677 2 0.784 

3 0.437 3 0.473 3 0.590 

5 0.231 5 0.246 5 0.325 

10 0.112 10 0.116 10 0.140 

nominal size 1% 

actual size 0.01 0.012 0.006 

power power power 

v = 1 0.891 v = 1 0.926 v = 1 0.936 

2 0.508 2 0.583 2 0.687 

3 0.297 3 0.335 3 0.464 

5 0.129 5 0.136 5 0.209 

10 0.037 10 0.041 10 0.065 
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Table 5.3: Results of Monte Carlo Experiments for Exactly-Identified 

Limited-Information SEM Using 5000 Replications and Corresponding to Data 

set 2. 

p = 0.30 P = 0.60 P = 0.90 

nominal size 107-

actual size 0.113 0.10 0.095 

power power power 

v = 1 0.940 v = 1 0.975 v = 1 0.979 

2 0.716 2 0.741 2 0.807 

3 0.520 3 0.549 3 0.670 

5 0.319 5 0.344 5 0.409 

10 0.177 10 0.181 10 0.205 

nominal size 57-

actual size 0.056 0.051 0.048 

power power 

v = 1 0.950 v = 1 0.965 v = 1 0.970 

2 0.643 2 0.702 2 0.763 

3 0.434 3 0.476 3 0.598 

5 0.239 5 0.250 5 0.332 

10 0.111 10 0.113 10 0.113 

nominal size 17-

actual size 0.09 0.012 0.010 

power power power 

v = 1 0.890 v = 1 0.935 v = 1 0.955 

2 0.523 2 0.591 2 0.677 

3 0.297 3 0.349 3 0.486 

5 0.129 5 0.137 5 0.212 

10 0.030 10 0.037 10 0.067 



where Zl' Z2 are K independent standard normal variables and X2 is 

an independent chi-square variable with v degrees of freedom. The 

generated normal and Student - t variates are then appropriately 

transformed so as to have precision matrix n. 
The results of the Monte Carlo experiment are presented in 

Tables 5.2 and 5.3. These results indicate that the size of the 

test is well approximated by the corresponding size of Ml and 

furthermore, the power of the test is reasonably large even for 

rather high values of v. 

11.6 SOME FINAL COMMENTS 

The objective of this Chapter was to illustrate the use of 

existing normality tests to test for the distinction between 

jointness versus independence in the elliptically-symmetric family 

of distributions. In particular, results of Monte Carlo 

experiments suggest that the use of Shapiro and Wilk's (1965) test 

and various modifications to this test are useful methods of 

testing this assumption in moderately-sized linear regression 

models and in exactly-identified limited-information SEM's. 
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CHAPTER 12 

SUMMARY AND CONCLUSIONS 

12.1 OVERVIEW 

The OLS estimator is the most common procedure for 

estimation in the classical mUltiple linear regression model. This 

estimation technique is justified on the basis of its well known 

finite-sample behaviour. However, in empirical work, the 

assumptions of this model, including nonstochastic regressors and 

normally distributed disturbances, are often violated, and as a 

result OLS often has no statistical justification. This has led to 

the relaxation of these assumptions and consequently to the 

development of a number of estimation and inference techniques 

which are alternatives to those based on OLS. The introduction of 

these techniques though, has usually been justified on the basis of 

their behaviour in large samples. However, generally the sample 

sizes used in empirical work are small, and in small samples the 

behaviour of these techniques may be very different. Consequently, 

this suggests that the choice of appropriate statistical techniques 

to use should be based on finite-sample behaviour. 

Early investigations into the finite-sample behaviour of 

various statistics date back to Haavelmo (1947), Anderson and Rubin 

(1949), and Hurwicz (1950) and since the 1960's substantial 

progress has been made, particularly in the finite-sample analysis 

of SEM' s, (see .!'hg. Phillips (1982». In this thesis, 

finite-sample properties of estimators used in three well known 

econometric models have been extended and developed. Each of these 
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models are extensions of the classical multiple linear regression 

model when the assumptions of either nonstochastic regressors, or 

normally distributed disturbances, or a combination of these 

assumptions are relaxed. In particular, all of the estimators 

considered are now included in standard and widely-used econometric 

packages such as SHAZAM and TSP. The three models considered are, 

the limited-information SEM, the nonnorma1 linear regression model 

and the nonnorma1 limited-information SEM. 

12.2 METHODS USED 

The approach taken in the development of finite-sample 

properties of estimators used in each of the models considered, was 

to calculate or approximate the exact distribution function, or 

density function, or various descriptions of these functions, such 

as moments, medians and inter- quartile ranges. Further, the 'key 

parameters' of these functions were identified, and varied in the 

computations of these functions, so as to make the results as 

general as possible. 

In the calculation of exact results, a FORTRAN version of 

Davies' (1980) algorithm was used. This algorithm has been well 

tested (see e.g. Davies (1980)), and results obtained using this 

algorithm were considered to be very accurate. However, when 

computations of exact results were impossible, due either to 

analytical intractability, or infeasible numerical calculations, 

Monte Carlo techniques were employed. 

distributions were estimated using 

empirically estimate density functions, 

In particular, empirical 

order statistics. To 

the nonparametric density 

estimator (Rosenblatt (1956)) was integrated with a simple Monte 
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Carlo approach, and the empirical measures of location and 

dispersion were estimated on the basis of their sample definitions. 

In each of the experiments, the number of replications used was 

chosen using the Kolmogorov-Smirnov statistic for empirical 

distribution functions, and a technique similar to this for the 

empirical density functions, and empirical measures of dispersion. 

On the basis of these statistics, it is considered that the results 

obtained are accurate to at least two decimal places. 

12.3 RESULTS AND CONCLUSIONS OBTAINED 

This section summarizes the results and conclusions obtained 

in each of the models considered. 

(i) The Limited-Information Simultaneous Equations Model 

The Limited- Information SEM considered in this thesis is 

defined as the structural equation, 

(3.1) 

where Yl and Y2 are N-component vectors of observations on the 

endogenous variables, Xl is a N * Gl matrix of observations on 

exogenous variables, a is a scalar parameter, 11 is a Gl-component 

vector of parameters and u is a N-component vector of structural 

disturbances. Further, the reduced-form of the system of 

structural equations includes, 

1f 
12 

1f 
22 

where X2 is a N * G2 matrix of observations on G2 exogenous 

variables, 1f
ll

, 1f
12

, 1f
21

, 1f22 are reduced-form coefficients, and (vI' 

v 2) is a N * 2 matrix of reduced-form disturbances. A number of 
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assumptions were made. In particular it was assumed that, the rows 

of the reduced-form disturbances are independently normally 

distributed, each row having mean 0 and non- singular covariance 

matrix, I, (that is, the model was assumed to be in canonical 

form); the matrix X = (Xl 'X2) is of rank (G l +G 2) and finally it was 

assumed (3.1) was identified by exclusion type restrictions. 

This model was analyzed in two stages. In the first stage, 

a useful method of numerically evaluating the distribution function 

of many of the commonly used estimators of a was presented. These 

estimators include those that can be written as a ratio of 

quadratic forms, so that existing numerical algorithms, such as 

those of Imhof (1961) and Davies (1980) can be used to calculate 

exact points of the distribution function. This method was applied 

to estimators in both correctly-specified and misspecified 

limited-information SEM's. An example of estimators included is 

the DK family where, 

1\ 

(3.3) 

for A. = K.(PX-PX ) + (l-K.)PX ' j = 1, 2; PD J J 1 J 1 
D(D' D) -lD', and PD 

~ I - PD' for any matrix D of full column rank, and nonstochastic 

Kl and K2 . This class of estimators provides considerable appeal as 

a summary statement of several commonly used estimators, including 

TSLS, which is equal to (3.3) when Kl = K2 = 1. 

In the second stage, comparisons were made between the TSLS 

and LIML estimators, where the LIML estimator is a member of DK 
1\ 1\ 

corresponding to stochastic parameters Kl = K2 = 1, where 1 is the 

smallest root of the determinental equation, 
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It is well known, (see e.g. Phillips (1982» that the distribution 

functions of these estimators in a correctly specified 

limi ted- information SEM depend only on a small number of 'key 

parameters' . For the TSLS estimator, these 'key parameters/ are, 

K2 , ex and a noncentrality parameter 02
, which is related to the 

proportion of the variation in y 2 explained in its reduced form 

equation by the excluded exogenous variables X2 . The 'key 

parameters' of the LIML estimator are the same as for TSLS, plus 

N - G. Anderson et al. (1982) compare the distribution functions 

of these asymptotically equivalent estimators by covering a wide 

range of values for the key parameters. They conclude from this 

comparison that the LIML estimator is a superior estimation 

technique to the TSLS estimator. This is because the distribution 

of the LIML estimator approaches its limit distribution much faster 

than TSLS and furthermore, LIML is essentially median-unbiased 

whereas the distribution of the TSLS estimator is, in general, 

badly distorted. 

In this thesis, this comparison was extended to misspecified 

limited- information SEM's. In particular, it was assumed that 

(3.1) is misspecified by the exclusion of relevant exogenous 

variables. This is an important area of analysis as typically in 

applied econometric studies, economic theory provides some 

guidance, but falls short of specifying the precise form of 

structural relationship. The key parameters of the misspecified 

distributions were identified. These are seen to be the same as 

those for the correctly specified case, plus a number of 
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combinations of reduced~form parameters associated with the 

incorrectly excluded exogenous variables. 

The distribution functions for the estimators were 

calculated, using the method given in the first stage for the TSLS 

estimator, and using Monte Carlo methods for the LIML estimator. 

From these computations it was concluded that under this type of 

misspecification, the LIML estimator is generally more robust than 

is the TSLS estimator, as it is better located around the true 

parameter value. Hence, the superiority of the LIML estimator is 

maintained in the presence of misspecification. 

Finally, the numerical results obtained were shown to be 

applicable to the analysis of other types of misspecification, 

specifically the inclusion of irrelevant exogenous variables and a 

combination of inclusion and exclusion of relevant exogenous 

variables. In each of these cases, the LIML estimator is robust to 

misspecification. 

(ii) The Nonnormal Linear Regression Model 

Recently, models with possible nonnormally distributed 

disturbances have attracted more attention. This is because there 

is a large body of empirical literature, (e.g. Mandelbrot (1963, 

1967, 1969), and Fama (1963, 1965)), which suggests that many 

economic time series are well represented by nonnormal 

disturbances. 

In particular, to broaden the assumption of normality in the 

linear regression model, 

y X{3 + € (3.4) 
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where y' = (Yl"" 'YN) ,X is an N * K matrix of nonstochastic 

regressors, ~' = (~l"" '~K) is a vector of unknown parameters and 

€' (€l'''''€N) is a vector of homoskedastic and 

serially- independent distributed disturbances; it has often been 

assumed that the error components follow a j oint multivariate 

elliptical distribution, of the form, 

where g is a one-dimensional real-valued function independent of N 

and eN is a scalar proportionality constant. The results obtained, 

(e.g. Zellner (1976), Thomas (1970», indicate that provided the 

resulting likelihood function is a monotonically decreasing 

function of €' €, the maximum likelihood estimator of ~ is the 

same as for normally distributed disturbances. This illustrates 

the robustness of the OLS estimator of ~, in the presence of 

nonnormality. 

However, the marginal distributions of the disturbance terms 

which are multivariate elliptically symmetric distributed, are 

identical to those when it is assumed the disturbances are 

distributed identically and independently elliptically symmetric, 

that is, when it is assumed 

In this case it is well known (see ~ Judge (1985», that the OLS 

estimator is asymptotically inefficient, and furthermore, a class 

of Irobust estimation' methods have been introduced which possess 

superior asymptotic properties to OLS. These differences suggest 

it is important to distinguish between I jointly-distributed' and 

I iid distributed' disturbances, as they lead to quite different 



estimation techniques. 

Using (3.4) the statistical consequences of distinguishing 

between "jointness" and "independence" was considered when it was 

assumed the disturbances were Student-t distributed. The Student-t 

distribution belongs to the elliptically symmetric family, and 

furthermore, this distribution is an important nonnormal 

distribution as it is considered that it is a reasonable way of 

modelling tails that are fatter than those of the normal 

distribution (see ~ Jeffreys (1961)). This is relevant for many 

economic data series such as prices in financial and. commodi ty 

markets, (see e.g. Judge et al. (1985, p.825) and Lange et al. 

(1989)). 

There were a number of stages used to develop the 

statistical consequences of distinguishing between "jointness" 

and "independence". First, finite-sample properties of the 

appropriate maximum likelihood estimator under each assumption were 

considered, and these properties were also compared with a number 

of "general type robust estimators". Secondly, these properties 

were then used to consider the consequences of misspecifying the 

"jointness" and "independence" assumptions. Finally, specification 

tests were presented, which test for "jointness versus 

independence" . These tests are applicable for the elliptically 

symmetric family, in general. 

Each of these stages was examined for two separate cases of 

the linear regression model. In the first case, the location-scale 

model was assumed, which corresponds to (3.4) when K ~ 1, and in 

the second case, the more general model was assumed, which 

corresponds to K > 1. This distinction was made because a number 
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of techniques could be used to examine this topic, (e. g. order 

statistics), in the location-scale model that are not applicable in 

the more general case. A further distinction was made on the basis 

of the variance of the disturbances. In particular, two cases were 

considered, one' where the variance of the disturbances is finite, 

and the other where it is infinite. This distinction follows Judge 

(1985, p.823), and was made because the consequences of 

rnisspecification were generally more serious for the 

infinite-variance case than the finite- variance case. 

Generally in both models the consequences of misspecifying 

the "jointness" versus "independence" assumptions can be summarized 

as follows. First, suppose the disturbances are assumed to be 

independently-distributed Student-t, but are actually 

jointly-distributed Student-to Then the maximum likelihood 

estimator associated with independently-distributed Student-t 

disturbances is used in estimation, denoted ~ML' where this 

estimator belongs to a class of "robust estimators". However, the 

"correct" maximum likelihood estimator to use in this case is the 

OLS estimator, denoted b. The use of a "robust estimator" rather 

than the OLS estimator results in an inefficient estimator, and the 

inefficiency increases as the number of regressors in the model 

increases. Furthermore, the variances used to estimate the actual 

variances are based on the use of the distribution of ~ML assuming 

the disturbances are independently distributed. This results in 

estimates of variances that seriously underestimate the actual 

variances, and consequently one concludes that the estimator is 

substantially more precise than it actually is. On the other hand, 

when the disturbances are assumed to be jointly-distributed 



Student- t but are actually independently- distributed Student- t, 

the OLS estimator is used in estimation. However, in this case it 

is well known that b is in general asymptotically inefficient, and 

the use of robust procedures such as iJML has been suggested. In 

particular, it is shown here that in finite samples the OLS 
1\ 

estimator is inefficient with respect to iJML , although this 

inefficiency decreases as K increases, and for large K 

corresponding to fixed N, b is more efficient. However, the 

distribution of b will be assumed to be as for jointly- distributed 

disturbances. This assumption was shown to be incorrect, and the 

use of this incorrect assumption will have implications for 

inference. 

Although the extent of these consequences depends on the 

particular Student- t distribution and K assumed, in general they 

are serious. Hence, this justifies the use of specification tests 

to test for "jointness versus independence", just as "serial 

independence versus autocorrelation" and "homoskedasticity versus 

heteroskedasticity" are tested for. In particular, King's (1980) 

invariance property of statistics for elliptically symmetric 

disturbances was used to adopt existing tests of normality to test 

for "jointness versus independence". An examination of the size 

and power of these tests using Student-t disturbances showed them 

to be useful for moderately-sized regression models. 

(iii) The Nonnormal Limited-Information Simultaneous Equations Model 

The nonnormal limited-information SEM provides a relatively 

new area of analysis as there are few published results available 

on the effects of nonnormal disturbances in the limited-information 
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SEM (see e.g. Knight (1985b, 1986), Raj (1980), Donatos (1989)). 

The obj ective here was simply to combine the themes that 

were pursued separately in the limited-information SEM and 

nonnorma1 linear regression model. That is, we considered the 

finite-sample distribution of the LIMLK estimator of ex in (3.1) 

when the corresponding reduced-form disturbances are assum.ed either 

to be multivariate Student-t distributed or iid Student-t 

distributed. The LIMLK corresponds to the LIML estimator when it 

is assumed the covariance matrix of the reduced-form disturbances 

is known. This estimator was considered rather than the LIML 

estimator itself, because in the cases when the LIMLK estimator is 

not equivalent to the LIML estimator, it is numerically easy to 

compute, and it is considered that the distribution functions of 

the two estimators will have similar features. 

Further, it was also assumed (3.1) was exactly-identified by 

exclusion-type restrictions. An exactly-identified model was 

chosen simply as a way of narrowing the range of possible models to 

consider. More importantly, the exact1y- identified model has a 

number of interesting properties when the reduced-form disturbances 

are assumed to be normally distributed. Hence, it was interesting 

to see how these properties changed when the assumption of normally 

distributed disturbances was widened to Student-t disturbances. In 

particular, when the disturbances are normally distributed the 

following properties of the LIMLK estimator were illustrated: 

(1) - the LIMLK estimator reduced to ILS (which corresponds to 

(3.2) when K1 = K2 = 1 and G2 = 1). 

(2) - the computations presented, indicated that the limiting 
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distribution was a good approximation to the finite-sample 

distribution. 

(3) - the computations of Marsaglia (1965) illustrated that the 

distribution was bimodal over part of the parameter space. 

However, when the reduced-form disturbances were assumed to be 

Student-t distributed the following properties were obtained. When 

the disturbances were multivariate Student-t distributed the LIMLK 

estimator was ILS, whereas when the disturbances were iid Student-t 

distributed, the LIMLK estimator needed to be computed numerically. 

Further, each of the estimators converged to different limiting 

distributions, although the computations of the finite-sample 

distributions of each of these estimators indicated that they both 

had distributions with similar properties to the LIMLK estimator 

when the reduced-form disturbances were normally distributed. That 

is, in each 

approximation 

case, the 

to the 

limiting distribution was 

finite-sample distribution 

distribution was bimodal over part of the parameter space. 

a 

and 

good 

the 

Therefore, as in the nonnormal linear regression model, the 

assumptions of joint and independent disturbances lead to quite 

different estimation methods that have different properties. Hence 

we also considered the consequences of misspecifying the type of 

Student-t assumption. 

The consequences of misspecifying the type of Student-t 

assumption can be summarized as follows. If the reduced- form 

disturbances are assumed to be jointly Student-t distributed, but 

are actually independently Student-t distributed, the effects on 

the resulting maximum likelihood estimator are two-fold. This 
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estimator is slow to locate around the true parameter value and an 

incorrect asymptotic distribution will be used to approximate the 

finite-sample distribution, which will have implications for 

inference. On the other hand, when the reduced-form disturbances 

are assumed to be independently Student-t distributed but are 

actually jointly Student-t distributed, the resulting maximum 

likelihood estimator used is robust in the sense that its 

finite-sample distribution is essentially identical to the correct 

maximum likelihood estimator. However, once again an incorrec t 

asymptotic distribution will be used to approximate the finite-

sample distribution of the maximum likelihood estimator used, which 

will have implications for inference. 

These results suggested that it would be worthwhile to have 

specification tests that distinguish between jointly-distributed 

reduced-form 

reduced-form 

disturbances 

disturbances. 

and 

Tests 

independently-distributed 

of "jointness versus 

independence" in the exactly-identified limited- information SEM 

were constructed by applying King's (1980) invariance property of 

statistics for elliptically symmetric disturbances, to existing 

tests of multivariate normality. An examination of the size and 

power of these tests using Student-t disturbances showed that this 

was a useful method of testing this 

exactly-identified limited- information SEM. 

12.4 SOME FURTHER ISSUES 

assumption in the 

This thesis has extended and developed finite-sample 

properties of estimators used in three well known econometric 
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models. However, even within these models a number of interesting 

aspects still remain to be considered. Some of these warrant brief 

mention. 

In the Limited-Information SEM, results were obtained assuming 

that the structural equation of interest contained only two 

endogenous variables, and all of the predetermined variables in the 

system were strictly exogenous. Therefore it would be of interest 

to see how the results obtained change when these two assumptions 

are relaxed, that is, when there are three or more endogenous 

regressors included in the structural equation of interest, and/or 

dynamic predetermined variables are included in the system. 

In the Nonnormal Linear Regression model, the statistical 

consequences for estimation, of distinguishing 

jointly-distributed and independently-distributed 

between 

nonnormal 

disturbances were considered. It would also be of interest to 

consider the implications of this distinction for inference. This 

is of particular interest for some distributions with 

infinite-variance, as the misspecification of the type of 

distribution in this case leads to the use of bimodal distributions 

under the null hypothesis, (see e.g. Logan et al. (1973». 

Another interesting topic to pursue for the iid nonnormal linear 

regression model is an analysis of the implications of increasing 

the number of regressors on the resulting finite-sample mean-square 

error (provided this measure exists), as the evidence presented in 

this thesis suggests that the "robust estimators" become 

inefficient with respect to the ordinary least squares estimator. 

In the Nonnormal Limited-Information SEM, a general theory 

for robust estimators for iid nonnormal disturbances needs to be 
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developed. While there is a rapidly growing literature on robust 

estimation for univariate linear models, the multivariate case has 

received little attention. Therefore, a comprehensive treatment of 

the multivariate case is long overdue, and as well as theory, this 

should also include computational aspects. 
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APPENDIX A 

CALCULATION OF EIGENVALUES AND NONCENTRALITY PARAMETERS 

In this appendix, the method used to derive the eigenvalues 

and noncentrality parameters given in Chapter 5 is illustrated for 

the DK family. 

In addition to the assumptions of Chapter 5, orthonormality 

of the exogenous variables is assumed. That is, 

and in particular 

1 X'X = I G, 

x = 2 A(l) 

For the Double K-Class estimator family, the eigenvalues and 

corresponding eigenvectors of the matrix 

o 
(B -qB ) = 1 2 .. 

will be derived. 

Theorem Al. The eigenvalues and eigenvectors of the matrix 

(Bl -qB2) are as listed in Table Al. 

1 This assumption is the orthonormalization of the exogenous 

variables. It helps to reduce the parameter space to an essential 

set. It is discussed in Phillips (1983, p.467). 
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Table Al: The Eigenvalues of (Bl -qB2) and their multiplicities 

Multiplicity 

N-G 

Proof: 

Let (B1-qB2) ~ [~1 :~]. where the definitions of At and 

A'~ are 2 obvious. To find the eigenvalues of (Bl -qB2), the equation 

det. [[ ~1 A1] . 
At 

[ ~I ~I ]] ~ a 

or equivalently 

det. [[ 
-AI :!t-Jl ~ a 

(A2) 
A* 2 

needs to be solved. 

Equation (A2) may be written as 

or, as 

o o (_>.)T -AI 

o 
o 

1 (-q+>'--I) 4>. 

o 
o 

(_ (q-qKl->.)4(-~2) 2) I 

and the multiplicities can be determined, since 
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[ 
~.u 0 0 

1 
0 1 0 (-q+>.--)I 4>. 

( 1 C-KZf) 0 0 -(q-qK1+>.)+t-Z- I 

. is partitioned into blocks with the following orders 

[ G
1 X G1 G1 X GZ G1 X (N-G) 

1 
Gz X G1 Gz X Gz Gz X (N-G) 

(N-G) X G1 (N-G) x Gz (N-G) x (N-G) 

11 

Theorem AZ: The components for the eigenvectors corresponding to 

each eigenvalue are as listed in Table AZ. 

Table AZ: Components of the Eigenvectors 

where, 

a = Z 

(1-KZ)2} 
(1-KZ)2} 

Components 

(1 0 ) 

(a1 a Z) 

(a3 a4 ) 

(b i b Z) 

(b3 b4 ) 
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a = 4 

Proof: 

Given that the matrix (Bl -qB2) can be diagonalized 

orthogonally, then if an eigenvalue >. of (Bl -qB2) has algebraic 

multiplicity j its geometric multiplicity is also j. Therefore, 

instead of solving the 2N X 2N system of linear equations we need 

only solve 2 X 2 sets and insert the resulting eigenvector into the 

appropriate. posi tion in the P matrix. Taking, for example >. = 

~(_q+yll+qi), we need to solve 
2 

or, as the equations are linearly dependent, we have 

so that after normalization we have (al ,a2). A similar process can 

be repeated for the other eigenvalues. 
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Theorems A1 and A2 derive results for the implementation of 

the Imhof or Davies technique for one particular case corresponding 

to X'X = I G. However, when the orthogonality of the data matrix is 

assumed it is well known (e.g. Phillips (1983, p.467)) that the 

results do not depend on the form of the X matrix. Therefore, 

there is no loss in generality in assuming (A1). 

The quadratic form z' (B1-qB2)z corresponding to (5.3.8) can 

be written as ~ A.X2(1,0~) where A. are the eigenvalues from Table 
j J J J 

2 2 A1 and X (1,0.) is a noncentrality parameter which equals the 
J 

square of the j'th element of the vector P'E(z) where the 

components of the P matrix are given in Table A.2. However, since 

the matrix (Bl -qB2) has multiple roots then we can rewrite 

Suppose m is the order of mUltiplicity of r 

the different roots and n is the number of different roots, then r 
rewrite 

n r 
z' (B1 -qB2)z ~ 

2 '0 2 
Xm 

r=l ' r r 

m r 
where z 

~ 
2 2 

Xm X1 ;Oi 
r=l 

and 

m r 
02 ... l: 02 

r r=l . i 

It is this form that is used in Chapter 5. 
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APPENDIX B 

THE ASYMPTOTIC PROPERTIES OF THE SECOND ROUND ESTIMATOR IN 

QUASI - NEWTON METHODS 

Quasi Newton methods are based on the quadratic 

approximation of the maximand (or minimand if relevant): 

1\ " 1\, 1\ 

Q(O) : Q(Ol) + gi(O - 01)+ 1/2(0 - 01) H1 (0 - 01), (A3) 

" where 01 is an initial estimate and 

82Q/8080 
, 

gl 8Q/80 I and Hi I 
" 1\ 

01 01 
1\ 

The second round estimator, O2 , is obtained by maximizing the 

right-hand side of the approximation (A3) so that, 

1\ 1\ -1 O2 01 - Hl gl (A4) , 
where, 

, 1\ 

gl 8Q/aO I + a2Q/aoao I (0 1 - 0 ) 
* 

0 
00 0 

* " and 0 lies between 01 and 00 , Inserting (A4) into (A3) yields, 

" 
[ I . (a 2Q/80aO' I )-1 a2Q/a080' I e* ]VN(OI . YN(02 - 0 ) 00 ) 0 1\ 

01 

(N- 1a2Q/aoao' I i\ )-1 (l/YN) aQ/80 I (AS) 
01 00 



Under the following conditions: 

(i) a2QN/aoao' exists and is continuous in an open, convex 

neighbourhood of 00 

(ii) N-l(a2QN/aoaO') I converges to a finite nonsingular matrix 
00 

lim E N-l(a2QN/aoaO') I in probability for any sequence O~ 
00 

* such that plim ON = 00 , 

where QN is the set of roots of the equations aQN/80 = 0 

corresponding to the local maxima, (or minima as the case may be), 

then, 

p 1 im N -1 ( 8 2Q/ 8080') I" . p lim N -1 (a 2Q/ 8080') I 
01 00 

= plim N-l(8 2Q/8080') I * 
o 

Therefore, substituting (A6) into (AS) gives, 

so that O2 is asymptotically efficient. 

(A6). 

8Q/80
1 

Further details of this result are given in Amemiya (1985, 

p.l38). 
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