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ABSTRACT

In the standard classical regression model the most commonly
used procedures for estimation are based on the Ordinary Least
Squares Method, which is justified on the basis of well known
finite-sample properties. However, this model consists of a number
of assumptions, such as, for example, homoskedastic, serially
independent and normally distributed disturbances and nonstochastic
regressors. By changing these assumptions in one way or another,
different estimating situations are created, in many of which the
OLS estimator may have mno statistical justification at all.
Further, alternative estimation methods have often been justified
only on the basis of their asymptotic properties, although in
practice economists frequently have to base their statistical
analysis on a relatively small number of observations. This
suggests that the particular estimator to use in any situation
should be chosen on the basis of finite-sample considerations.

The analysis of finite-sample properties of commonly used
estimators in three well known Econometric models is the focus of
this thesis. In particular the three models considered are: the
limited-information simultaneous equations model, the mnonnormal
linear regression model and the nonnormal limited-information
simultaneous equation model. The techniques wused include the
derivation of the estimators’ exact distribution and when this is
analytically intractable Monte Carlo methods are employed.

The limited-information simultaneous equation model 1is

analyzed in two stages. First, a useful method of numerically



evaluating many of the commonly wused estimators, including the
two-stage least squares estimator, is presented. Secondly this
method is then used, and combined with Monte Carlo analysis, to
compare the distributions of the limited-information maximum
likelihood and two-stage least squares estimators in misspecified
simultaneous equations models. The result of this comparison
indicates the superior performance of the 1limited-information
maximum likelihood estimator over the two-stage least squares
estimator in both correctly specified and misspecified simultaneous
equations models,

Recently, models with possibly nonnormal distributed
disturbances have attracted more attention. For such models,
independence and uncorrelatedness of the disturbance terms are not
equivalent. Using the nonnormal regression model the statistical
consequences of distinguishing between independence and
uncorrelatedness are considered when the disturbances are Student-t
distributed. The results obtained demonstrate that the distinction
between the two assumptions is an important one and the
consequences of making the wrong assumption can be serious.
Consequently, specification tests are also presented which test for
uncorrelatedness versus independence in the elliptically symmetric
family.

The nonnormal limited-information simultaneous equation
model provides a relatively new area of analysis as there are few
published results available on the effects of ‘nonnormal
disturbances in the limited- information simultaneous equation

model. The objective here is to combine the themes pursued

i



separately in the other two models previously considered. However,
to narrow the range of possible models that can be examined,
attention is focussed only on the exactly-identified simultaneous
equation model. This model has é number of interesting features
when the reduced-form disturbances are normally distributed. These
features are illustrated and then comparisons are made with the
same model when the distribution of the disturbances is widened to
include the Student-t family. In this case, as for the nonnormal
linear regression model, a distinction needs to be made between
independently distributed and jointly distributed disturbances.
The consequences of these different assumptions are shown to be
important; specification tests relating to this distinction are

therefore also presented,
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CHAPTER 1

INTRODUCTORY COMMENTS

1.1 A GENERAL OVERVIEW

Consider the standard linear multiple regression model that
appears in all econometric textbooks (e.g. Johnston (1984), Harvey

(1981)):
y=X8+ ¢, (1.1)

where y’ = (yl...yN), X is an N X K matrix, g = (ﬁl...ﬂK) is a
vector of unknown parameters and ¢ = (el...eN) is a vector of

disturbances, and where the following conditions are satisfied:

Condition (i) : X is a nonstochastic matrix of rank K < N and has

the property that

lim [XNX] - q,
N=co

where Q is a finite nonsingular matrix. It is further assumed that
there are no variables wrongly included in and/or excluded from the

X matrix.

Condition (ii) : € has a multivariate normal distribution with mean

0 and covariance matrix o°l.

The most commonly wused procedures for estimation and
inference in this model are based on the Ordinary Least Squares
(OLS) principle. This principle is justified on the basis of its
well known finite-sample properties which are given in Properties

1.1; for proofs see, for example, Schmidt (1976a, pp.6-31).



Properties 1.1

(i) The least-squares estimator b = (X’X)—1X’y, which is also
the maximum likelihood estimator, and the associated
variance estimator s = (y-Xb)’ (y-Xb)/(N-K), are unbiased

minimum wvariance estimators from within the class of all
unbiased estimators.

(ii) The joint distribution of b is multivariate normal with mean
f and variance covariance matrix oz(X’X)_l, implying that
the marginal distribution for an element of the b-vector,
say bj’ is normal with mean ﬂj and variance oZ(X’X)j%.

(iii) The statistic (N-K)sz/a2 is distributed as a chi-square
random variable with N-K degrees of freedom.

(iv) Under the mnull hypothesis ﬂj = 0, the test statistic

bj/Vsz(X’X)j} has a Student-t distribution with N - K

degrees of freedom.

However, this model 1is not sufficient as a basis for
modelling many economic data generation processes, simply because
in many situations conditions (i) and (ii) do mnot hold.
Consequently, Properties 1.1 are not valid in general and, in
particular, the use of OLS techniques may have no statistical
justification at all. The relaxation of these conditions has
enriched the range of econometric models and has consequently led
to the development of a number of estimation and inference
techniques which are alternatives to those based on OLS. The
introduction of most of these techniques however has only been
justified on the basis of their asymptotic properties, asymptotic

efficiency and asymptotic mnormality. However, 1in practice



economists frequently have to base their statistical inferences on
a relatively small number of sample observations. This suggests
that the choice of the appropriate techniques to wuse should be
based on finite-sample considerétions such as those given in
Properties 1.1, rather than asymptotic behaviour. However, in
general, relatively 1little is known about these relevant
finite-sample considerations.

The objective of this thesis 1s to extend and develop
finite-sample results for various estimators used for estimation
and inference in three econometric models. The particular
econometric models chosen are well-known extensions of the standard
multiple linear regression model when conditions (i) or (ii) or a
combination of both conditions are relaxed. Further, each of the
econometric models chosen provides a basis for much applied econo-
metric analysis and, in particular, all of the estimators
considered are now included in standard and widely-used econometric
packages such as SHAZAM and TSP.

The mnext section describes the three econometric models
chosen for investigation and so defines the three main components
of this thesis. These models are: the limited-information
simultaneous equations model, the nbnnormal linear regression model

and the nonnormal limited-information simultaneous equations model.



1.2 THE MODELS AND OBJECTIVES

(i) The Limited-Information Simultaneous Equations Model

Econometric models typicaily consist of sets of equations
which incorporate feedback effects from one wvariable to another.
These are known as Simultaneous Equation Models (SEMS). In
particular, when the econémetrician is interested only in making
statistical inferences about the parameters of a single equation of
the model, then this is known as "The Limited-Information SEM".
Writing this model in the form of (1.1) implies that some of the
regressors in X are stochastic and are correlated with the
disturbance vector e, in the sense that (1/N)X’ ¢ does not tend to
the =zero vector as the sample size, N, tends to infinity.
Therefore condition (i) is invalidated, and furthermore OLS is an
inconsistent estimation technique.

The SEM was first proposed by Haavelmo (1943, 1944, 1947)
and this suggestion provided the basis for a research programme
undertaken by the Cowles Foundation during the late 1940’'s and
early 1950's. However, the estimators suggested, such as Two Stage
Least Squares (TSLS) and the Limited Information Maximum Likelihood
estimator (LIML), are rather complicated functions of the
underlying random variables, so that the exact distributions are
difficult to derive. Nonetheless, the analysis of the exact
distributions and their moments began in the early 1960's and in
recent years substantial progress has been made for the case when
all of the predetermined variables are assumed to be exogenous and
the equation is identified by means of zero restrictions (e.g.

Nagar (1959); Basmann (1961, 1963, 1974); Mariano (1972, 1973a,



1973b, 1977); Hillier, Kinal and Srivastava (1984); Hillier (1985);
Phillips (1980a, 1980b, 1984a, 1984b, 1985); Anderson (1982)).

Although the finite-sample properties of certain
test-gtatistics and variance eétimators have received some
attention in the literature, most results are concerned with the
estimation of the parameters of the structural equation of interest
and, in particular, the coéfficients of the endogenous regressors.
It is this topic that is pursued here.

Traditionally a distinction is made between models in which
the structural equation of interest contains only one endogenous
regressor, and more than one endogenous regressor. This is because
it is only recently that techniques have been developed which allow
for the derivation of the exact densities in the case of more than
one endogenous regressor, and even then these results are complex
and currently not suitable for numerical evaluation.
Consequently, most numerical evaluations have concentrated simply
on the one endogenous regressor case. One of the themes in this
case has been the numerical comparison of the distributions of the
LIML and TSLS estimators. In particular the numerical computations
of Anderson et al. (1979, 1982) have pointed to the superior
performance of the LIML procedure over the TSLS estimator. In this
thesis this analysis is extended to the comparison of the
distributions of the TSLS and LIML estimators when there are
predetermined variables wrongly included in and/or excluded from
the model.

The numerical procedures used in this thesis differ from
those of Anderson et al. (1979, 1982). In particular, as most of

the commonly used estimators, including TSLS, can simply be written



as a ratio of quadratic forms in normal variables it is shown how
the techniques such as those developed by Imhof (1961) and Davies
(1973) can be used to compute the distribution functions. This is
an extension of the analysis in Cribbett et al. (1989) which
concentrates only on the TSLS estimator. In the case of the LIML
estimator, Thowever, the nonparametric density estimator is
integrated with a simple Monte-Carlo approach to estimate the
density, due to the complexity of numerically evaluating the exact

expressions.

(ii) The nonnormal linear regression model

When it is assumed that the error distribution is nonnormal,
condition (ii) is invalidated. In the literature a distinction is
commonly made on the basis of whether the distribution has a finite
or infinite variance.

If the error distribution is assumed to have finite first
and second moments then the properties of OLS are well-known. The
OLS estimator of B 1s Dbest 1linear unbiased (BLUE) and the
conventional tests are asymptotically justified in the sense that
they have the correct size asymptotically. These results have
often been the justification for the use of the least squares
estimator under conditions of nonnormality. However, there are two
problems with this approach. First, it is well-known that although
OLS is BLUE it 1is, in general, asymptotically inefficient.
Consequently there may be nonlinear estimators which have superior
finite and asymptotic properties. Secondly, there is a large body
of literature (e.g. Mandelbrot (1963a, 1963b, 1966), Fama (1963,

1965, 1970), which suggests that many economic data series,



particularly prices in financial and commodity markets, are well
represented by a class of distributions with infinite variance. A
distribution with an infinite variance has "fat tails" which
implies that 1large wvalues or woutliers” will be relatively
frequent. Because the least squares technique minimizes squared
deviations, it places relatively heavy weight on outliers, leading
to estimates that are extremely sensitive to the presence and
values of such observations.

In recent years, to broaden the assumption of nonnormality
in the linear regression model, it has often been assumed that the
error components follow a joint multivariate elliptically symmetric
distribution. Under this assumption it has been shown that the
resulting estimators and test statistics possess properties which
make them analytically tractable and, furthermore, in many cases,
identical to those obtained under the normality assumption. See,
for example, Zellner (1976), King (1979, 1980), Singh (1987, 1988).

However, the normal distribution is the only member of the
class of multivariate elliptically symmetric distributions where
the disturbances are, in fact, independent. Also, it is usually
forgotten that the marginal distributions of the disturbance terms
under this assumption are identical to those obtained when the
disturbances are assumed to be independently and identically
distributed (iid) elliptically symmetric. It is these features
that lead naturally to the question of the statistical consequences
of distinguishing between multivariate and 1iid elliptically
symmetric error distributions and it is this issue that is taken up

here.



Kelejian and Prucha (1985) éddress this problem wusing
asymptotic criteria for the linear regression model and Student-t
errors for degrees of freedom greater than 2. This distribution is
a particularly important member of the elliptically symmetric class
because it is claimed by authors such as Judge et al. (1985) that
this distribution may be a reasonable way of modelling tails that
are fatter than those ofvthe normal distribution. (see also the
recent article by Lange et al. (1989)). The objective here is to
extend this analysis by developing properties of the maximum
likelihood estimators for the entire Student-t family wusing
finite-sample criteria. Results are obtained assuming the data

matrix, X, is nonstochastic.

(iii) The Nonnormal Limited-Information Simultaneous Equations Model

Models (i) and (ii) can be related by simultaneously
relaxing both of the conditions associated with the standard linear
regression model. This model provides a relatively new area of
analysis as there are few published results available on the
effects of nonnormal disturbances in the limited- information SEM
(e.g. Knight (1985b, 1986), Raj (1980), Donatos (1989)).

The objective here is to combine both of the themes pursued
separately in Models (i) and (ii). In particular, in the
estimation of the coefficient of the one endogenous regressor in
the exactly-identified limited-information SEM, the statistical
consequences of distinguishing between multivariate and iid.
Student-t error distributions on the LIML and TSLS estimators are
examined.  Although (because it is exactly-identified) it is a

somewhat restrictive model, it is worthy of study because it has a



number of interesting features when the errors are mnormally
distributed. In particular, in this case the TSLS, LIML and Least
Variance Ratio (LVR) estimators are identical and their

distribution is bimodal over part of the parameter space.

1.3 AN OVERVIEW OF THE CHAPTERS

Chapter 2 reviews certain key concepts in probability and
statistical inference used in this thesis. It also introduces the
notational conventions used.

Chapter 3 reviews an essential tool of analysis that is used
throughout this thesis. This 1is the integration of the
nonparametric density estimator with the Monte-Carlo technique.
This is a useful technique for approximating many of the density
functions considered in the thesis when either the exact
distribution is too difficult to derive explicitly or when the
exact distribution is known but too complex to be analyzed
conveniently. A number of statistical properties of this estimator
are discussed, These are all asymptotic properties, but are
considered relevant because in the applications considered here,
sample size, which is simply the number of replications in the
simulation experiment, can be chosen by the investigator.

Chapter 4 discusses the methods used in the simulation
experiments. In particular, this includes a discussion of the
choice of the number of replications in the simulation experiments,

the generation of the random numbers involved, and the algorithms

The Least Variance Ratio estimator is the name given to
the LIML estimator derived under the assumption of normally
distributed errors, when in fact their true distribution is
nonnormal.



used to solve the likelihood equations associated with the models
considered.

Chapter 5 shows that the exact distribution of a ratio of a
bilinear form to a quadratic form in normal variables can be
computed using techniques such as those developed by Imhof (1961)
and Davies (1973). As many of the commonly used estimators in the
limited-information SEM, iﬁcluding TSLS, are of this form, this is
a useful technique for the numerical evaluation of their
distributions.

Chapter 6 reviews recent relevant finite-sample properties
in the literature on the limited-information SEM. It also pursues
the theme of comparing the LIML and TSLS distributions, which
involves the use of techniques discussed or developed in Chapter 3
and Chapter 5.

Chapter 7 reviews some alternatives to the assumption that
the disturbances in the econometric models considered are
distributed mnormally, In particular, the effects of 1iid
nonnormally distributed regression disturbances on the traditional
inference and estimation procedures used for normally distributed
disturbances are discussed, and a class of alternative estimation
techniques collectively labelled "robust estimators” are reviewed.
Also in this chapter, the consequences of replacing the normality
assumption with the assumption that the regression disturbances
follow a multivariate elliptically symmetric distribution are
examined. Therefore two types of nonnormally distributed
disturbances are reviewed in this chapter, these being, iid
nonnormally distributed disturbances and multivariate distributed

disturbances, This distinction sets the theme for the remaining

10



chapters, That is, "an examination of the statistical conse-
quences of distinguishing between the regression disturbances
following a multivariate elliptically symmetric distribution and an
iid elliptically symmetric distribution".

Chapters 8 and 9 take up this theme in the nonnormal linear
regression model. Chapter 8 considers the "location-scale" model,
which is a special case of the linear regression model. It is
equivalent to only estimating the intercept term in the linear
regression model. Chapter 9 extends the results obtained to the
more general model, A distinction 1s made Dbetween the
location-scale model and the more general model simply because a
number of techniques can be used to examine the problem in the
location-scale model that do not generalize to the more general
model.

Chapter 10 pursues this theme in the exactly-identified
nonnormal limited-information SEM. In  particular, the
distributions of the TSLS and LIML estimators are compared, since
with nonnormal disturbances these two estimation techniques are not
necessarily the same.

Chapters 8, 9 and 10 indicate the importance of ﬁaking the
distinction between iid nonnormally distributed disturbances and
multivariate nonnormally distributed disturbances. This suggests
that it is important to construct appropriate specification tests
that make this distinction. This is the topic of Chapter 11,

Finally, Chapter 12 offers some conclusions and presents

ideas for future work.

11



CHAPTER 2

PRELTMINARY DEFINITIONS

2.1 INTRODUCTION

The purpose of this Chapter is to introduce the notational
conventions used throughout this thesis.

Section 2.2 defines preliminary mathematical and statistical
definitions, such as those given in De Groot (1970), Feller (1966,
1968) and Muirhead (1982). Secfion 2.3 defines a number of
distributions that are used throughout this thesis. These include
the multivariate normal, multivariate Student-t, multivariate
elliptically-symmetric and Wishart distributions. Finally, Section

2.4 gives a brief note on the layout of the thesis.

2.2 PRELIMINARY MATHEMATICAL AND STATISTICAL DEFINITIONS

(1) Random Variables

A probability space is defined as the combination (Q,A,P)
vhere, Q is a set of points, A is a o-field of subsets of Q, and P
is a probability distribution defined on the elements of A.

Furthermore, any set L € A is known as an event.

A o-field is a set of subsets of O which is closed under
complementation, countable unions and intersections. A o-field of
interest in the study of probability 1is the Borel o-field of
subsets of the real line. It is the o-field generated by the class
of all bounded semi-closed intervals of the form (a,b] and is
denoted by B. The sets of B are called Borel sets.

12
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A random variable Z is a real valued function from (Q to the
real line R which satisfies the condition that for each Borel set B
€ f on R, the set Z_l(B) = (w:Z(w)eB,wefl} is an event in A,
A collection of random variables Zl(w)’ZZ(W)"’ on a given

pair (f1,A) will be denoted by Z A random vector is a

1,22....

K-tuple Z = (Zl"'ZK) of random variables defined on a given pair

K

(Q,A).
No distinction will be made between a random variable or

vector and the value taken by that random variable or vector,

(ii) Distribution, Probability Density and Characteristic Functions

Associated with a random wvector Z on (Q,A,P) is a

K
distribution function defined on RK by
FK(tl...tK) = Pr.({wzzl(w) < tl...ZK(w) < tK)] (2.1)
for all t e RK. The joint distribution of Zl...ZK is absolutely

continuous if there exists a nonnegative joint probability density

function pde(Zl"'ZK) such that for every Borel set B C RK.

Fo(ty..t,) = j - J PAE, (Z) .. .2, )dZ, .. .dZ, . (2.2)
The characteristic function of a random K-vector ZK is defined as
. K .2
¢_(8) = J J exp(isZ/,)dF, S e R, 1" = -1. (2.3)
z 3 K

The characteristic function always exists and no two different
distributions yield the same characteristic function so that there
is a one-to-one correspondence between characteristic functions and

distribution functions.



(iii) Marginal Distribution Functions

The joint distribution of a subset of random wvariables

Zl"'zp of Zl"'ZK (p £ K) 1s called a marginal distribution. The

marginal joint distribution Fp of Zl"'Zp is determined from the

joint distribution function by the relation

Fo(t ...tp) = Pr(Z1 <t,...2_ <t) (2.4)

P( 1 -1 P P

= lim FK(tl"'tK) as tj 3 o, j =p+l...K

Similarly, the marginal joint probability density function

pdfp of Zl...Zp is determined from the joint probability density

function pdf ..ZK by the relation

g %1

pAf (Z)...2)) = J = f pAfy (Z) ... 2 )dZ .. .2y (2.5)

RK

Let Gi denote the marginal univariate distribution function
of the random variable Zi' The random variables Zl...ZK are

independent if and only if (iff) their joint distribution function

can be factored at every point (Zl...ZK) € RK as follows:

FK(tl...tK) = Gl(tl)G2(t2)"'GK(tK) (2.6)

(iv) The Expectation Operator

The expectation E(Z) of any random variable Z with
distribution function F is defined as

E(Z) = J Z pdf(2)dz (2.7)
Rl
and it exists iff the integral exists. E(Z) is also called the

14
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mean of Z or the expected value of Z. For a random vector ZK the

mean is defined as

E(Z) = {E(Zl)...E(ZK)} (2.8)

The variance of a random variable Z is given by E[{Z-E(Z)]Z]

and denoted var(Z). The covariance between random variables Z1 and

22 is defined as [[Zl-E(Zl)](ZZ-E(ZZ))] and denoted cov(Zi,Zj).

Equivalently, this can be expressed as

cov(Z,,%,) = f J [Zl-E(Zl))[ZZ—E(ZZ)]pdf(lez)dzleZ (2.9)
RZ
)

For a vector ZK’ the covariance matrix is 2 = (Uij KK’ where Uij =

cov(Zi,Zj).

2.3 MULTIVARTATE NORMAL, MULTIVARIATE STUDENT-T, ELLIPTICALLY-SYMMETRIC

AND WISHART DISTRIBUTIONS

(1) Multivariate .. Normal and Student-t distributions

A K-dimensional random vector ZK has a nonsingular normal

distribution with mean Py and covariance matrix X if ZK has an

absolutely continuous distribution whose probability density

function pdf(ZKIuK,Z) is specified at any peoint ZK € RK by the

equation

’

pAf(Z |, 2 = @m 23] M rexp 2z m )3 T ) 1 31

In (3.1) Py = (pl...yK) is a K-dimensional vector whose



components can be arbitrary real numbers and X must be a symmetric
and positive definite matrix. This distribution is denoted
NK(uI_S_’Z) . ‘

Define the precision matrix T of NK(pK,Z) to be equal to

DI Suppose that YK is NK(uK,Z) with precision matrix T and
suppose the random wvariable xz is distributed independently of Y

and is chi-square distributed with v degrees of freedom, so that

ol )L T)

2
pdf(x") = , (3.2)
2V/2P(X)
2
where I'(a) is the gamma function,
!
a-1
I'(a) = J X exp(-x)dx, a >0 (3.3)
0
If the components of ZK are defined by the equation,
1
XZ 2
Z1 = Yi(; ) + py oo 1= 1...K, (3.4)

then the distribution of ZK is multivariate Student-t, with v

degrees of freedom, location vector o and precision matrix T. It
is denoted by MTK(uK,T,v), and the probability density function of

ZK e RK is,

v+K
()

PAE (Zy |y, T) = [1 + %(ZK-uK)T(ZK-#&)’] . (3.5)

16



For v > 1, the mean vector E(ZK) = bg exists, and for v > 2 the
covariance matrix exists and is equal to ;Yzz.

In both cases the marginal distributions are easy to derive.

Suppose that the random vector Z, is partitioned in the form,

K
Z*
S !
K Z* ’
: 2
1Y
where the dimension of z; is K, (i = 1,2) and K| + K, = K. Also
suppose that By T and ¥ are partitioned as
y T T %11 %12
uK= ' T = y %= ’
# | To1 T2 %21 %22

where the dimension of By is Ki (i = 1,2) and the dimension of the

J

* *
normal distribution at any point Z1 € R 1 the wvalue pde (Zl) of

K 1

-1

sub- matrices T,, and =,, is K, x K, (i,j = 1,2). Then, for the
ij ij i K

the marginal probability density function of Z is specified as

1
Ky

pdf,, (2¥ |p, ,T*) =
k1R

K, /2 i 1
(27) | T% | “exp|-2(2%  -p, YT*(Z¥  -p, ). (3.6)
271 K 1 K
K1 Ry 1

17
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For the multivariate Student-t distribution it is,

pdf [z* |u ,T*) =
1 151 9]

1

F[V+K1]|T*|E[1+l(z* - ]T*[Z* - ]']—( 2 ] (3.7)
2] v 1K 51 1K K

=1 =1

-1

* = - ; .

where T T11 T12T22T21. Therefore, in both cases, the marginal

distributions are members of the same family as their respective
joint distributions.

Further properties of both of these distributions can be

found in, for example, De Groot (1970, pp.50-60).

Elliptically Symmetric Distributions

Each of the distributions above belong to the wider family
of multivariate elliptically-symmetric distributions. The random

vector ZK has a multivariate elliptically-symmetric distribution if

the characteristic function ¢Z ” (sK) of (ZK - yK) is a function
-K = _— =

K
of the quadratic form SKZ Sy (where Sy is a row vector), such
that,
¢Z ” <SK) = ¢[SK % SK] = exp[ls&ug]ll)[sK P SKJ (3.8)
K"K
for some function ¥. If it is further assumed that the density

function with nonsingular £ exists, then it is of the form,

1

PAE(Z,) = CKITIzg[[zg-ug]r[zg—ug]'] : (3.9)



where g is a one-dimensional real-valued function independent of K

and CK is a scalar proportionality constant. This distribution is

denoted MES(g,T) and it has the first two moments, E(ZK) = and

P
Cov(ZK) = aX, where a = -2y’ (0), ﬁrovided these moments exist. If

By = 0 and X = I in (3.8) then the multivariate elliptically

symmetric distributions are called spherically symmetric
distributions. Two properties of these distributions used in this

thesis are (see, for example, Muirhead (1982, p.34)):

Properties 3.1

(L) All marginal distributions are elliptical and all marginal
density functions of dimension p < K have the same
functional form.

(2) If ZK is N(uK,E) and % 1is diagonal then the components
Zl...ZK of ZK are all independent. Within the class of
multivariate-elliptically symmetric distributions

independence when X is diagonal characterizes the normal

distribution,

Further properties of these distributions are discussed by
authors such as Chmielewski (1981), Kelker (1970), King (1979),

Cambanis, Huang and Simons (1981l) and Muirhead (1982).

(iii) The Wishart Distribution

The Wishart distribution is used in the derivation of

finite-sample properties of common estimators in
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limited-information simultaneous equations models (as discussed in
Chapters 5 and 6). The Wishart distribution 1is a matrix
generalization of the noncentral chi-squared distribution (see, for
example, Johnston and Kotz (1972, b.158)). Consider the random n X

K matrix

z=[zy] = CARE AN ALY

)

7
n

where the Zi terms are independent normal random vectors with mean

4, and covariance matrix . The K X K matrix W = 2’2, with (i,j)th
i

i j . . \ .

element Z( )’Z(J), is said to be a Wishart matrix. The elements of

W have a non- central Wishart distribution of order K, with n

degrees of freedom, covariance matrix ¥ and noncentrality parameter

n
M= X p,p,. This is denoted by
. i7i
i=1
W o~ WK(n,E,M) (3.10)
The distribution is said to be central if M = 0. The Wishart

distribution has properties similar to those of the mnoncentral
chi-squared distribution. In particular, if A and B are symmetric
idempotent matrices, then Z’AZ ~ WK[q,Z,E(Z)’AE(Z)], where q is the
rank of A, and Z’AZ and Z’BZ have independent Wishart distributions
iff AB = 0. Further properties are discussed in Muirhead (1982,

PP.441-449); and Johnston and Kotz (1972, pp.158-180).
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2.4 NOTE ON LAYOUT AND NOTATION

The purpose of this chapter has been to introduce the basic
notational conventions used in this thesis. Other notation used
that 1s not introduced in this ‘chapter is defined when it is
required.

The layout of this thesis is as follows. Each chapter is
divided into sections. Théorems, Equation Numbers, Properties and
Figures within each section of a chapter are denoted by their
section number and then in sequence. Therefore, when referenced in
other chapters they are denoted by their chapter number first and

then their section and sequence number,
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CHAPTER 3

KERNEL DENSITY ESTIMATION

3.1 INTRODUCTION

There are a mnumber of techniques that are wused to
approximate density functions, either when the exact distribution
is too difficult to derive explicitly, or when the exact
distribution is known but too complex to be analyzed conveniently.
For example, the exact sampling distributions of estimators of the
unknown coefficients of the endogenous wvariables in single
structural equations, have been shown to depend upon multiple
infinite series of =zonal-type polynomials, and these present
enormous difficulties in numerical work. Phillips (1980a, 1983)
has overcome these difficulties by extracting various joint and
marginal density approximations using asymptotic expansions.

However, another method which may be used to analyze such
distributions is the Monte Carlo method, in which artificial data
are generated and from them sampling distributions and moments are
estimated. One advantage of this technique is that it can be
implemented easily on an extensive range of models and error
probability distributions. An extension of this technique which is
used in this thesis is the integration of density estimation with
the Monte Carlo technique, as suggested by Ullah and Singh (1985).
That 1is, the Monte Carlo approach is wused to generate the
statistics of interest and then the density of these statistics is
estimated using the generated statistics as observations. The
objective of this chapter is to briefly review the history and

discuss the statistical properties of the Kernel estimator, which
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is a particular example of a density estimator that is both widely
used and thoroughly studied in the statistical literature. The
actual Monte Carlo methodology that is used in this thesis is the
topic of the next chapter. |

The Kernel estimation technique has been reviewed by, for
example, Tapia and Thompson (1976), Singh, Ullah and Carter (1987),
Wertz (1978), Devroye (1987), Silverman (1986), and Ullah (1988)
and the contents of this chapter draw heavily on these reviews,
The finite-sample analysis of statistics is the application of the
Kernel density estimation technique that will be used throughout
this thesis. Recently there has been a great deal of interest in
other applications of the technique, such as apﬁlying the method to
the estimation and testing of econometric models. A review of
these applications is beyond the scope of this chapter. However,
these applications have been reviewed by Bierens (1986), Singh
et al, (1987) and Ullah (1988).

In Section 2 the Kernel density estimation technique is
defined and its history is briefly reviewed. Section 3 considers
the asymptotic properties of this estimator and Section 4 considers
the choice of Kernel, window width and sample size. Section 5

concludes this chapter with a simple illustration.

3.2 THE METHOD

Let Xl’XZ""’XN* be  independently and  identically
distributed observations on a random variable X with probability
density function pdf(X). Rogsenblatt (1956) and Parzen (1962)

developed the Kernel estimator of pdf(X), which is defined as,
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. L N%*  [X-X.
pdf(X) = — » g|—1
N*h(N¥) j=1 |h(*)

(2.1)

where h(N*) is the window width, which is assumed to be a positive
function of the sample size, N¥, such that lim h(N¥*) = 0, and K is
N5

the Kernel. If K is everywhere a nonnegative function and
satisfies J K(x)dx = 1, then paf(X) will be a probability density
function which possesses all of the continuity and
differentiability properties of K. Numerous extensions of this
estimator have been considered. For example, Breiman et al. (1977)
introduced the variable Kernel estimator in which the window width
varies across the data points, allowing the tails of the estimator
to be smooth while not distorting the central part of the density.

Cacoullos (1966) extended the Kernel estimator to the

estimation of multivariate density functions. Let

x=xk“)ﬂ”.“x“q i=1 ... N¥
i 1 2 m

be a given sample of N¥ independent realizations of an
m-dimensional random variable X(Xl ce Xm) from a population

characterized by a continuous m-variate probability density f(X1

. Xm). The estimator suggested by Cacoullos is,

A N¥* (t)
pdf(X) = N+ Thwey ™ w k| XX (2.2)
t=1 | h(y*)

where (as 1in the univariate case), h(N*) is the window width,
assumed to be a positive function of sample size such that

lim h(N*) = 0, and K is the mnatural generalization of the
N#¥=pe0

univariate Kernel. This estimator uses only a single h(N*) for all

m variables, however it has been suggested that this may not be
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appropriate (see, for example, Ullah (1988, p.634)). On occasions
throughout this thesis an estimate of the appropriate marginal
density is required, and these can be estimated using the
expression in (2.2). Conditional densities can also be estimated;
however, the details will not be given here but can be found in
Ullah (1988).

Suppose that the vector of realizations is written as,

(1) (1) (L) _ (i) (1)
xi[x1 X, X ] = xi[z Y ]

where Z(l) is a p X 1 vector and y(l) is a q X 1 vector such that p

+ q = m. The marginal density of Zt at Z is

J paf(Z,y)dy . (2.3)
One example of a joint Kernel K from which marginal
densities can be found easily is studied by Epanechnikov (1969),
and is given by the equation

(t)
3 -
1 N m 1 Xl Xl

pdf(X) = N¥ ~ % I 9 . (2.4)
t=1 i=1 h (N*) h (N%)

If each Ki satisfies f Ki(x)dx = 1 and hi(N*) = h(N*), then (2.3)

can be written as,

1 N* . q z.—zgt)
Nt s hao) dnmo ok [I |, (2.5)
t=1 j=1 I haw)

In particular, when (2.4) and (2.5) are used in this thesis it is
assumed that each Ki has the same form, such as, for example, Ki =

_l—exp[-éyz], the normal Kernel.
VoI
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3.3 THE ASYMPTOTIC PROPERTIES

The asymptotic properties of the Kernel estimator are
particularly relevant for the application of the density estimation
technique to the finite-sample aﬁalysis of statistics. This 1is
because the sample size, N*, which is the number of replications of
the simulation experiment, can be chosen and is bounded only by the
limits of the duplicationvof the random number generator. The
objective of this section is to present some of the asymptotic
properties of Kernel estimators. In particular, these properties
are dependent upon the chosen Kernel, window width and the unknown
density. A more extensive review can be found in Ullah (1988,
pp.638-642).

To obtain these asymptotic properties, certain regularity
conditions are specified on the Kernel, window width and density.
The following set of assumptions are taken from Ullah (1988,
p.639). Let K be the class of Borel-measurable bounded real valued

functions K(x), x = (Xl"'xm) such that for the:

Kernel

I, (1) I K(x)dx = 1
(ii) J|K(x)|dx <
(111) |x|"|R(x)| = 0 as |x| » © where |.| is the Euclidean norm.
(iv)  sup|K(x)| < =,

Window Width

IT. h(N*) = 0 as N¥3 o

III. N*h@*)™ 3 © as N¥ > .



Density
Iv. pdf(x) is continuous at any point Xg-
Using these assumptions Cacoullos (1966) has shown that if

I, II and IV hold,

lim E[pdf(x)] = pdf(x)
N#¥=00

which implies pointwise asymptotic unbiasedness, and if I, II,

IIT and IV hold,

A p
pdf(x) = pdf(x) as N¥ = o

at any point and éherefore implies pointwise weak consistency.
Other results have also been shown to hold. For example, Deheuvels
(1974) develops weaker conditions under which these results hold,
and Devroye and Wagner (1976) develop strong consistency results
assuming some further conditions.

Each of the properties above are pointwise properties. Some
authors (e.g. Bai and Chen (1987)) have obtained results for global
properties, using criteria such as those based on the norm Lp,

which involve considering conditions under which

A 1/p
pdf(x) - pdf(x)|"dx = 0 as N¥ = o, (3.1)
Il P

The last asymptotic property to be discussed is the property
of asymptotic normality, which is useful for deriving confidence
intervals for paf(x). The results of Parzen (1962) and Cacoullos
(1966) imply,

1

[N*hm(N*)}i[p:if(x) - E[paf(x)” - N[o,pdﬂx)ﬁc"} (3.2)

holds. The result given in (3.2) «can be achieved 1if
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1
[N*hm(N*)]zBias[pdf(x)] tends to zero asymptotically since,

1
2

[N*hm(N*)] [paf(x) - pdf(x)] - [N*hm(N*)][paf(x) - E(paf(x))]

1
+ (N*hm(N*)]zBias[paf(x)] (3.3)

Ullah (1988, p.642) shows that Bias[pdf(x)] is proportional to
44m

IF(N*). This implies that if N%h 2 (N*) tends to =zero

asymptotically then (3.2) holds.

As an example, consider the wunivariate normal Kernel
—l—exp(-gyz), then the 99% asymptotic confidence interval for
V2n
pdf(x) is given by

1

A ~ 2
pdf(x) + 2.58 [Egﬁiﬁl] : (3.4)
2N*hVx

3.4 CHOOSING THE KERNEL, WINDOW WIDTH AND SAMPLE SIZE

In the implementation of the Kernel estimator and in the use
of the results in the previous section, the selection of h, K and
N* is required. Most emphasis in the literature has been given to
choosing a suitable window width and Kernel on the basis of
minimizing some measure. The wusual measures to be taken are
approximate bias, mean squared error (MSE), or integrated mean

squared error (IMSE) of pdf(x) where,

. A 2
IMSE = I MSE = J E[pdf(x) - pdf(x)] dx. (4.1)

The difference between the two measures MSE and IMSE is that

MSE is a measure of the estimator f at a single point whereas, IMSE



A
is used as a global accuracy measure of f as an estimator of f.

The approximations to these measures are obtained using similar
methods to Kadane's (1971) small disturbance expansion of
estimators, and they can be fouﬁd in Ullah (1988, p.642). The
existence of these approximations require a number of assumptions
as given in Ullah (1988, p.641).

The optimal h that minimizes MSE is,

h¥* = CN*-l/(m+4).

; where,
(4.2)
2 -1/mt+4
c = [mpdf(x){Dpdf(x) j xZK(x)dx} I Kz(x)]
and for IMSE is,
-1/ (m+4)
% = .
h C¥N* ; where, (4.3)
-1 -1/m+4
2 -2 2 2
ck = [m[J X K(x)dx] [J Dpdf(x) ] J K (x)]
d®pdf (x)
where Dpdf(X) is the operator —555;7——, so that h¥* converges to 0
-1/m+4

as N*=3 « but only at the rate N¥*

However, these choices are not in general operational as
they depend wupon the wunknown density. However, suitable
operational window widths have been suggested which depend upon the
actual estimator paf(x). Simply, in (4.2) and (4.3) above, paf(x)
replaces pdf(x), and the iteration process is begun with an initial
arbitrary starting value for h. However, the rate of convergence
of this estimator may be slow (see, for example, Ullah (1988,
p.644)) .

There are various other ways of choosing h. The

cross-validity approach is one that has often been used. It is

also called the modified maximum likelihood method (Duin (1976)),
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and it involves a completely data- based choice for h. There have
been a number of papers that have examined the asymptotic
equivalence of the cross-validity choice to MISE (e.g., Hall
(1983), Stone (1984)).

Tapia and Thompson (1976) suggest an "interactive" method
which is useful mainly in the univariate case. It is recommended
that the estimation technique begins with h wvalues that are too
large, that is, when the pdf is obviously overly smoothed, and then
h is sequentially decreased until overly noisy probability density
estimates are obtained. The point where further attempts to
improve resolution, by decreasing h lead to noisy estimators is
generally fairly sharp and readily observable. Examples of this
approach are given by Tapia and - Thompson (1976, pp.61-66).
Alternatively, they also present an empirical algorithm which

iterates according to the algorithm:

2 -1/5 . -1/5
h, =N /3 [—M] Uledf(x) Izdx]

i+l fsz(x)dx

Other approaches have been suggested and the details are
given in Ullah (1988, p.644). A Monte Carlo study of three
data-based nonparametric probability density estimators is given by
Scott and Factor (1981).

Usually the choice of K will be a symmetric unimodal pdf.
Two examples of multivariate kernels are,

-m/?2

K(x) = 2x exp(-ix’x) , (4.4)

the multivariate normal Kernel, and
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K(x) = 2—10;1(m+2)(1-x’x) if x’x =1
, (4.5)
=0 otherwise
where < is the volume of the unit m-dimensional sphere. These

examples illustrate two different types of Kernels, that is, those
with compact or those with non-compact support. Kernels with

compact support have two advantages. These are:

- savings in computer time,

- 1if the density to be estimated has compact support,
estimation using a Kernel with noncompact support will
always be disturbed by boundary effects (see, for
example, Gasser and Midller (1979)).

To obtain the optimal Kernel (4.3) is substituted into (4.1)
and IMSE is then minimized. This gives the optimal Kernel given in
(4.5) as shown in Epanechnikov (1969).

Davis (1975, 1977) examines the rate at which MSE and IMSE
decrease, as sample size increases, for a number of univariate
Kernels. Generally though, both the theoretical and the Monte
Carlo results have led some researchers to question whether the
properties of the Kernel estimator are sensitive to the choice of
Kernel. See, for example, Epanechnikov (1969, p.156). However, it
is also considered (e.g. Davis (1975)) that if the Kernels are not
restricted to be nonnegative, then the degree of approximation may
acpually improve, although the resulting density estimate may be
negative at some points.

Although in many situations the sample size is determined by
the availability of data, when the Monte Carlo method is integrated

with non- parametric density estimation the investigator can choose
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the sample size, as it is simply the number of replications in the
simulation experiment.

Epanechnikov (1969) gives values of sample size that assure
a prescribed level of "minimum rélative global error", when the
true density 1is assumed to be multivariate normal and the
multivariate mnormal Kernel is used.1 This approach 1is not
operational because it depénds upon the unknown density. However,
using the approximate expressions for MSE and IMSE given by Ullah
(1988, p.642), with the estimate paf(x) appropriately replacing
pdf(x), then a similar procedure to Epanechnikov (1969) can be
performed. However, the properties of this procedure need to be
examined. Alternatively, an easy technique to employ is similar to
the application of the Kolmogorov-Smirnov statistic in the
estimation of the empirical cumulative distribution function. This

method is used throughout this thesis and is discussed in the next

chapter.

3.5 AN ILLUSTRATION

Epanechnikov (1969) compares various Kernels by calculating

the ratio,
o0
2
[ ®oe
-0
r-2 (5.1)
J K% (y)d
oy ay
-c0
where Ké refers to the optimal Kernel given in (4.2) for m = 1.
1

In determining the optimal window  width and Kernel,
"minimum relative global error" gives the same result as given by
minimizing IMSE.
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This ratio is used because the optimal Kernel is determined on the
basis of minimum IMSE and this is equivalent to minimizing

J Kz(y)dy, subject to a number of conditions. For the normal
Kernel, given in (4.4), r = 1.051‘and for the Laplace Kernel, which

is defined by the equation,
1 .
K(y) = —= exp(V2|y|), (5.2)
V2

r = 1.320. To illustrate the techniques reviewed in the chapter,
and to compare the three Kernels mentioned, given the difference in
their r values, the standard Cauchy density is estimated. Two
sample sizes are chosen, (100,000 and 100 replications), these
representing a "large" and "small" sample respectively. The choice
of window width is determined using the technique of Tapia and
Thompson (1976). Figure 5.1 illustrates the results obtained for
100,000 replications, and given the asymptotic properties presented
in Section 3 it is expected that all of the estimated densities
will be very similar. 1In Figure 5.2 when only 100 replications are
used, some differences, particularly with the Laplace Kernel, are
noticeable, suggesting that in small samples differences do exist
between different Kernels, However, these results are only
illustrative and the differences obtained with this example may not

be generally representative,



FIGURE 5.1 Comparison of Different Kernels for Cauchy

Distribution Using 100,000 Replications
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FIGURE 5.2 Comparison of Different Kernels for Cauchy

Distribution Using 100 Replications
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CHAPTER 4

MONTE CARLO EXPERIMENTS - A DESCRIPTION OF METHODOLOGY

4.1 INTRODUGTION

Each of the Monte Carlo experiments used in this thesis
comprises five steps, theée being, the choice of the underlying
model, the number of replications in the experiment, the generation
of appropriate pseudo-random numbers, the estimation of the unknown
parameters of interest and, finally, the estimation of the
population variance (or when this does not exist some other measure
of dispersion such as the Interquartile Range), and/or, the
estimation of the probability density function, (or the
distribution function, denoted by cdf), of the estimator of
interest., Each of the models chosen in Step 1 is discussed in the
appropriate chapter, as well as the ‘key parameters’ on which each
experiment is based. In particular, these models are, the LIML
estimator with normally distributed disturbances (Chapter 6), the
location-scale model (Chapter 8), the multiple regression model
(Chapter 9) and the exactly-identified LIML estimator (Chapter 10),
each with Student-t disturbances. The topic of this chapter is a
description of the remaining steps, that 1is, Steps 2-5. All
computations included in these steps were carried out on a VAX 8350
computer,

As Steps 2 and 5 are mnot independent they are jointly
discussed in Section 2. Section 3 discusses the methods used to
generate the pseudo- random numbers and Section 4 outlines the

algorithms used to solve the likelihood equations associated with
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the models given above.

4.2 NUMBER OF REPLICATIONS AND THE ESTIMATION OF DF's, PDF's

AND MEASURES OF LOCATION AND DISPERSION

Let X ., X, denote a random sample of size N* from

1 %y Nk

a cumulative distribution function DF. Then Y, < Y2 < ... Y

1 N+’

where Yl are the X1 arranged in order of increasing magnitudes and
are defined to be the order statistics corresponding to the random
sample Xl’ N XN*' The unknown DF 1is estimated wusing the
empirical DF, DFN*,which is a function of order statistics. In
particular, DFN*’ is defined by,

DFN*(X) = (1/N%) * (number of Yj less than or equal to x). (2.1)

The Kolmogorov-Smirnov statistic, DN*’ is used to test how
well a given set of observations fits some specified DF. It is
defined as follows,

DN* = sup DFN*(X) - DF(x) ,
~ oK<

and the exact distribution of DN* has been tabulated for various N¥
(see e.g. Mood, Graybill and Boes (1986, p.508).

N*, in this thesis, represents the number of replications
. for the simulation experiments performed. N¥* is chosen in such a
way that on the basis of N* replications we can calculate from the
distribution of the Kolmogorov-Smirnov statistic that DFN* is
within 0.001 of DF everywhere, with probability more than 0.99,
(see e.g. Anderson et al. (1982)). In general, this implies that N*
varies between 60,000 - 90,000 replications.

The integration of the Kernel density estimator (the topic

of Chapter 3), with the naive Monte Carlo method is used to obtain
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the empirical pdf’s. In each experiment two Kernels are used, these
being the Epanechnikov and normal Kernels (although the final
results do not depend on which Kernel is used), and the window
width is determined using the ﬁechnique of Tapia and Thompson
(1976), as described in Chapter 3. The number of observations, N¥,
used in the application of the Kernel estimator is simply the
number of replications in the simulation experiment, and is chosen
using the bound of estimation, B, associated with the error of
estimation. For example, when the mnormal Kernel and the 99%
asymptotic confidence interval are used, as is given in (3.3.4), B

is equal to
1
pdf(x)

B = 2.58 .
2NFh (NF) 7 ]

N¥* is varied until B is less than 0.01 for all points at which the
density is estimated. In all of the experiments, N* varies between
60,000 and 90,000 replications. This technique is similar to the
use of the Kolmogorov- Smirnov statistic in the estimation of the
empirical cumulative distribution function. Given the large number
of replications, N¥%, used the final results do not depend on which
kernel is used. This situation is similar to the comparison of
different kernels for the Cauchy distribution wusing a "large
sample", as is illustrated in Figure 5.1, in Chapter 3.

The measures of dispersion used include, the median,
interquartile range and the wvariance (if it exists) of the
population. These are estimated using the corresponding sample
equivalents, (see e.g. Mood, Graybill and Boes (1986, p.75)). The
same number of replications used to estimate DF or PDF is used

here.
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4.3 GENERATION OF RANDOM NUMBERS

The generation of random normal and 1iid Student-t
observations is required in order to obtain the empirical pdf's,
cdf’s, and dispersion measures, in the analysis of each of the
models in Chapters 6, 8, 9 and 10. The analysis of
misspecification of error distributions in Chapters 8 and 9, and
the analysis of the model in Chapter 11, also require the
generation of multivariate Student-t observations. The generation
of variates from each of the distributions is based on one or more
transformations of uniform random numbers.

Random numbers distributed uniformly on the interval [0,1],
denoted U(0,1), are generated using the NAG subroutine GOS5CAF,
which uses a multiplicative congruential method. This generator
passes the spectral test which has become the most respected
theoretical test of a linear congruential random number generator
(Bratley et al. (1983, p.195), Kelejian and Adam (1989, p.3), NAG
manual Mark 12 Vol. 6, Algorithm GO5CAF). From these variates the

following are obtained:

Normal

Standard normal variates, N(0,1), as given by (2.3.1), (with
2 =1 and K = 1), are generated using the NAG Subroutine GOS5DDF,
which is based on Brent's (1974) algorithm. This involves a
generalization of Von Neumann's (1951) method of generating random
samples from the exponential distribution by comparison of uniform
random numbers. These are then converted into normal random

variates.
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Chi Square

The chi-square distribution, as given by (2.3.2), has a
single positive integer parameter v, the degrees of freedom. TIf

{Zi) is a sequence of independent standard normal variates, then

T2
X= 2 Zi
i=1
has a chi-square distribution with v degrees of freedom. This

relationship can be used in the generation of chi-square variates,
however, it is thought to be inefficient, except for small v, due
to an increasing requirement for normal deviates, as Vv increases
(see, for example, Dagpunar (1988)).

An alternative method, which is considered to be an
efficient method for small v, (see, for example, Rubinstein (1981,

p.93)), is as follows. If v is even, then X can be computed as,

v/2
X = —21n[ I U.]
. i
i=1
and if v is odd then
v/2—§ .
X = —Zln( I U ] + 7,
. i
i=1

where Z is from N(0,1) and Ui is from U(0,1).

Another approach for generating chi-square variates, (see,
for example, Bratley (1963, p.163)), includes making use of the
fact that the chi-square distribution is a particular case of a
gamma density. This method is particularly useful when v is large.

As most of the focus in this thesis 1s on small v, the

second method is the main method used,



IID Student-t

The standard iid Student-t distribution is defined by
(2.3.5) with £ = I and K = 1. For degrees of freedom v < 3, these
variates are generated by the inversion of the distribution
function (see, for example, Devroye (1986, p.27)). In particular,
for v = 1, the Cauchy distribution, standard Cauchy variates are

generated as,
1
X = tan(ﬂ(U—E)]

and for v = 2, the tz—distribution,

X = V[;(U—%)/SQRT[U(I-U)] ,

where U is from U(0,1).

For the rest of the Student-t family, v > 3, X is generated
via a transformation of a symmetric beta variate, (see, for
example, Devroye (1986, p.446)). This can be written in terms of

independent uniform random numbers U,, U, as,

1 Yy
Vv sin (2nUl)(1-U;/V'1)

X =
(1-Sinz(2ﬂUl))(l—U;/v—l)

This formula is useful as it is valid for all members of the
Student-t family with v > 3. It also does mnot require the
generation of as many random uniform deviates as does the
traditional method of generating a t-random variable wvia its
interpretation as a ratio of a standard normal to the square root

of an independent normalized chi-square variable.

41



Multivariate Student-t

For the multivariate Student-t distribution, (2.3.5), with
location vector O and precision matrix I, the K joint random
variates are generated using the relationship (see, for example

(2.3.4)),

where Z1 ca ZK are K independent standard normal variables and xz
is an independent chi-square variable with v degrees of freedom.
For each of the univariate distributions, the methods were
tested by estimating the density functions wusing the Kernel
estimator and the generated random variables as observations and
comparing the results obtained with the "true pdf", (see, for
example, Figure 3.5.1). 1In the multivariate case, the method was
tested against known results, such as, for example, in the linear
regression model the t-statistic wunder the null hypothesis is
t-distributed for all v, and the statistic, sz/oz, where s” is
defined in Properties 1.1.1, 1is F-distributed with N-K and v
degrees of freedom for v > 3 (see, for example, Zellner (1976)).

The results of these tests suggest that the random number

generators perform well.

4.4 ESTIMATION OF THE UNKNOWN PARAMETERS OF THE MODELS

The implementation of the simulation experiments performed
in this thesis requires the estimation of various parameters of the
models involved. The objective of this section is to describe all

of the algorithms that are used for this purpose.



Maximum likelihood estimation of the unknown parameters of
the models in Chapters 6, 8, 9 and 10 requires the maximization of

the appropriate 1likelihood function or, equivalently, the

minimization of the negative of this function, say f(x), where x € R™,

Quasi-Newton methods for the unconstrained minimization of

f(x), x € Rn, are line search algorithms which use the basic

iteration

LD KR ey g (4.1)

to generate a sequence of approximations (x(K),K=2,3...) to a

1L

stationary point x* of f£(x) from a given starting vector x

(K)

A scalar o > 0 is usually chosen to reduce the objective
function at each iteration so that convergence can be achieved, and

this scalar satisfies a descent condition of the form,

£y ¢ p By L)) () f(x(K>)’

where p € (0,%), and V is the gradient of f at X(K).
. , (K) n ., . .
The search direction, p € R in (4.1) is determined by
solving a system of equations,
K K
s, )
where ﬂ(K) is a positive-definite approximation to the Hessian

matrix of second derivatives sz(x(K)) and g(K) e R" is the
generated vector Vf(x(K)).

Two algorithms from the Harwell subroutine library are used
in this thesis, these being algorithms VAI3AD and VFO4AD. Both of
these initially choose ﬂ(l) = I and then use the BFGS formula

(Broyden (1970), Fletcher (1970), Goldfard (1970) and Shanno

(1970)),
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S [ﬂ _Bep’ B Y ](K) ,

P’fp a'pvy

(K)

where vy is the vector,

'Y(K) _ g(K+1) ) g(K)

4

(K) ¢ R™™  The VAT3AD algorithm, instead of

to update the matrix B
working directly with the matrix B, or its inverse, stores and
updates the Choleski factors of B since this enables the search
direction p to be obtained in O(nz) operations. This algorithm
requires analytical first and second partial derivatives.
Algorithm VFO4AD, however, uses a conjugate factorizati;n of the
approximating Hessian matrix which 1is wuseful when gradient
information is estimated by finite difference formulae (for further
detalls see, for example, Coope (1987)).

All computations are performed in double precision to 7
decimal places of accuracy. The final results, however, are not
dependent upon which algorithm is used in this step.

The other estimation techniques used (Chapter 9) are the
trimmed least squares (defined in Chapter 7), and the OLS
estimators. To obtain the trimmed least squares estimators, the

computation of the #th regression quantile 1is required.

Specifically, for the linear regression model,

= x'f8 + .
o = X8+ e, (4.2)
where the €, are iid distributed with distribution function F
which is symmetrical around zero, and X, is the t-th row of the
nonstochastic matrix of K regressors X, the #6th regression

quantile, (0 < # < 1) 1is defined as any solution to the

minimization problem,



min z 0|y -x 8| + by (1-6) |y -xB]|- (4.3)
B L{t/y 2x{p) (t/y <x(B)

The minimization problem in (4.3) is a linear programming problem
which can be solved using the élgorithm of Koenker and D'Orey
(1987). The alternative modified algorithm of Barrodale and
Roberts (1974), (see, for example, Koenker and D'Orey (1987,
p.385)) is also used, but there are no differences in the results
obtained.

The OLS estimators of B in (4.2) are found using SUBROUTINE
ELIM (Gerald and Wheatley (1984, p.l44)) which solves a set of
linear equations using the Gaussian elimination method.

The solutions of each of the algorithms used were compared
with those in the standard Econometric packages TSP and SHAZAM, and

were found to give similar results,
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CHAPTER 5

THE NUMERICAL CALCULATION OF THE DISTRIBUTION FUNCTION OF A

BILINEAR FORM TO A QUADRATIC FORM WITH ECONOMETRIC EXAMPLES

5.1 INTRODUCTION1

In many statistical and econometric applications sﬁatistics
that are the ratio of a bilinear form to a quadratic form are used.
The aim of this chapter is to show that the exact distribution of
these statistics can be computed using techniques such as those
developed by Imhof (1961) and Davies (1973). Numerous examples of
the application of this technique will be given, such as Theil'’s
(1961) two-stage least squares (TSLS) and K-class estimators and
Nagar’s (1962) double K-class estimator of the coefficient of the
endogenous regressor in both a correctly specified and misspecified
single structural equation. These examples are particularly
important because in the last three decades analytical results for
the exact density of many of these estimators have been found, as
is reviewed in Chapter 6. However, three points can be noted.
First, the results have been obtained by alternative techniques.
Second, the resulting expressions are complicated and often not
suitable for numerical evaluation. Third, the techniques that have
been developed for the numerical evaluation of the distribution of
one estimator are not easily extended to various other econometric

estimators, This then emphasizes the objectives of our approach,

1 The results of this chapter extend the work of Cribbett
et al,(1989) on the TSLS estimator,
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That is, the use of a single technique for various estimators and
easy numerical evaluation.

In Section 2 it is shown that the distribution of a general
bilinear form to a quadratic forﬁ is egsentially the distribution
of a quadratic form. In Section 3, various special cases of our
main result in Section 2 are given, including estimators of the
coefficient of the explaﬁatory endogenous variable in a single
structural equation and the estimator of the coefficient of a

lagged dependent variable in a dynamic regression model.

5.2 MAIN RESULTS

Consider a class of statistics which are of the form

w= (A Ay (2.1)
where y = (yl...yN)’ and x = (xl...xN)’ are random column vectors
such that the rows of [yi,xi] (i = 1...N) are independently
normally distributed, each row having mean [”iy’“ix] and
nonsingular covariance matrix ¥, both Al and A2 are nonstochastic
and symmetric matrices and A2 is assumed to be positive

semi-definite.2 In (2.1), w is the ratio of a bilinear to a
quadratic form in normal wvariables, To obtain the results the
following two Lemmas are used:

Lemma 1: The ratio w = (x’Azx)-l(x’Aly) can be written as a ratio

of quadratic forms,

2 ; . . .
The results in this section also hold for nonsymmetric

matrices by noting that x’Ax = xfi(A+A')x if A is mnot symmetric.

The positive semi- definiteness of A2 ensures that the matrix B2 in

(2.2) is positive semi- definite, which is assumed in Lemma 2.
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W = (z'Bzz)‘l(zfslz). (2.2)

where z 1s a 2N X 1 vector distributed as N, (u
2N ZoN

pe |
[ } 0= [woyp) . ¢
#y
The result in the Lemma follows immediately by substituting (2.3)
in (2.2).3
Lemma 2: The distribution function of w for a given q can be

expressed as

I

A

F(q) Pr. (x’Azx)’l(x’Aly) < q]

[ rs _l 4
= Pr._(z Bzz) (z Blz)

IA
o]
Al

= Pr.-z’(Bl-qu)z < O]

IA

= Pr.|z¥ Az* O]

where A 1is a diagonal matrix of eigenvalues of the matrix

1 1
Oz(Bl-qu)Qz, P is an orthogonal matrix of corresponding
3 Lemma 1 is as in Cribbett et al. (1989). However, a

different transformation is used in Ullah (1985).



1 1

%
eigenvectors and z = P’ "z ~ NZN(P’Q zp ). Furthermore,

, 1
ZZE 2N

2 . . . .
z? are independent noncentral chi-square wvariables each with one
1

degree of freedom and noncentrality parameter 6?2 = [(P'Q zu)j]z.
The details of Lemma 2 can be found in Koerts and Abrahamse

(1971, pp.81-87).

Combining Lemmas 1 and 2 implies that the distribution
function of w, which is a ratio of a bilinear form to a quadratic
form, reduces to the distribution of a single quadratic form. The
distribution of a single quadratic form can be computed: easily
using techniques such as those of Imhof (1961) and Davies (1973).
With these techniques, in order to calculate the distribution
function F(q), use 1is made of the inversion theorem of
characteristic functions. This theorem enables a distribution
function to be expressed in terms of its characteristic function.

The characteristic function of F(q) is defined as the complex

function of the real variable t,

o0
p(t) = J exp(itx)dF(q).
. )
Lévy (1925) proved that a distribution is uniquely determined by
its characteristic function. Lévy's (1925) theorem, known as, "the
Uniqueness Theorem of characteristic functions", states that if

(a~h, a+h) is a continuity interval of the distribution function
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F(q),4 then

1 sin(ht)
F(a+h) - F(a-h) = lim e J ——  exp(-ita)g(t)d(t). (2.4)

T=>c0 t
-T .

From (2.4), it is derived that whenever two distributions have the
same ¢(t), the corresponding distribution functions are identical
for any interval which is a continuity interval for both
distributions. From this result, it then follows that the
distributions are identical. However, this result does not give the
distribution itself, but the difference F(a+h) - F(a-h). Gil -
Peleaz (1951) derived an inversion formula that gives F(q)
directly. He showed that for any random variable X with

characteristic function ¢(t) we have Pr.( X £ q) = F(q), where,

0

. exp(itq)g(-t) - exp(-itq)d(t)
F(q) = 0.5 + dt, (2.5)
n it
0
- 0.5 + —}r— -tL I[exp(-itq)]¢(t) dt, (2.6)

where I{] denotes the imaginary part of the complex number.
To calculate the distribution function of w in (2.2),
which is a ratio of quadratic forms, we know from Lemma 2 that we

can calculate the distribution function of the single quadratic

AAn interval (a,b) is called a continuity interval for F(q)
when both extremes a and b are continuity points of F(q). That is,
%%T F(q) = F(a) and %%@ F(q) = F(b). F(q) need not be continuous at

every point in (a, b).
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form w¥* = z¥ Az*, Thus, if we have the characteristic function of
w* we can use the formulae (2.5) and (2.6) noting in this case q =
0 and ¢(t) is the characteristic function of w¥, That is, letting

X = 2z¥% Az% and q = 0 in (2.5) and (2.6) we have,

F(q) = Pr.[(x’A2X)'1(X’A1y) < q]
- Pr.[z*’ Az* < o],
where,

ISR IO

Pr.[z*’Az* < O] = 0.5+ ; dt,
" it

]
(2.7)
1 1
= 0.5+ — — I[¢(t)] dt.

To find the characteristic function of w* we note from Lemma 2

that,

7AN

2T
Pr.[z*'Az* < 0] = Pr.[ = A.z#z < 0].
j=1 J ]

. 2 . .
Since z? are independent noncentral chi - square random variables,
. . W2
each with one degree of freedom and noncentrality parameter 6} , it

is well known that the characteristic function of z?z equals,

0.8 5%t
h(t) = (1 - 2it) "> exp |i —L1—
1 - 2it
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(see e.g. Rao (1965, p.l1l47). Furthermore, as the characteristic function of
A.z*z equals hj(Ajt), and also wusing the rule that the characteristic

function of a sum of independent random variables equals the product of the

individual characteristic functions, (see e.g. Lukacs and Laha (1964,

p-21)), then,

5%°x . t
i3 ;.

BCt) =T (1 - 203, 6707 exp(d =
J L - 20t

This implies that (2.7) is equal to,

Pr.[z*’Az* < O] =

=] 2
%2,
0.5+ — w%—x[g(l-zix,t)'O'Sexp(iz——i——i———)]dt. (2.8)
J L - 20A¢

0

Imhof (1961), (see also Koerts and Abrahamse (1971, pp. 78 -

80)), expresses I[ ] in known quantities, showing that (2.8) may

be written as,

Pr.[z*’Az* < o] - 0.5+ i sin e(W) g
uy (u)

where,

e(u) = 0.5 % [tan'l(xju) + 6§2Aju(1 + A? u2>'1] - 0.5qu

y(u) = (1 + A§ w2y exp[(O.S 2(6§2A§ Wy 1 + A? u?y J.



Hence Pr.{z*’Az* < O] can be calculated by numerical integration.
In numerical work, the integration is carried out on a finite
range only, say 0 < u £ U, Therefore, the degree of approximation
will depend on two types of error; as well as the usual rounding -
off errors. These are, the error arising from using an approximate

rule to compute the integral, and secondly a truncation error,

—

£ - sin e(u) du.

uy(u)

Davies (1980) and Koerts and Abrahamse (1971) program the
techniques of Davies (1973) and Imhof (1961) respectively, for the
numerical inversion of (2.8)5. Farebrother (1984) has shown that
the Davies (1980) routine achieves the desired level of accuracy
more rapidly than the Koerts and Abrahamse (1971) routine. Another
advantage of the Davies routine is that both the truncation and the
numerical integration errors are controlled with guaranteed
accuracy. For the numerical implementation of either of these

techniques, the eigenvalues and corresponding eigenvectors of the
1 1

matrix ﬂz(Bl-qBZ)Qz are needed. These can always be obtained
numerically and in some cases, as shown in Section 3, can be found

analytically.6

5A Fortran version of Davies (1980) is used in this thesis
which was supplied to the author by Robert Davies.

6 The method used to find the eigenvalues and noncentrality

parameters is illustrated in the appendix. It is similar to the
methods of Anderson and Sawa (1973).
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5.3 SPECIAL CASES

In Section 2 it was shown that the exact distribution of the
ratio of a general bilinear to quadratic form can be obtained by
using techniques such as those proposed by Imhof (1961) and Davies
(1973). This result provides a simple method of obtaining the
exact distribution of wvarious econometric estimators and test
statistics by using a singie algorithm. For illustrative purposes

five examples are considered:

5.3.1 Double K-class estimator.

5.3.1ii Reciprocal Double K-class estimator.
5.3.iii  Misspecification Analysis.

5.3.1iv Ratio of normal variables.

5.3.v Other Cases.

The objective here is to show that the exact distribution of
each of these cases can be evaluated by using just one algorithm.
The detailed analysis of each case is, however, beyond the scope of

this chapter.

5.3.1i Double K-class Estimator

We consider the distribution of the Double K-class estimator

of the structural parameter f in an equation,

¥ = yX
Y{ = y58 + Xyvq + u, (3.1)
where yf and y§ are N-component vectors of observations on the
endogenous variables, X1 is a N X Gl matrix of observations on

exogenous variables, A is a scalar parameter, 71 is a Gl-component
vector of parameters and u is a N-component vector of structural

disturbances, The reduced-form of the system of structural
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equations includes,

™1 ™2
(y¥ v%) = (X,X,) + (v,v,) = XI* + v , (3.2)
172 172 - - 1°2
21 22
where X2 is a N X G2 matrix of observations on G2 exogenous
variables that are excluded from (3.1), ﬂfl and ﬂfz are

Gl-component vectors,

reduced-form coefficients and (VlV

* 3 - t
5 and ¥, are G2 component vectors, of

2 is a N X 2 matrix of

reduced-form disturbances.

ASSUMPTION 1: The rows of (vl’VZ) are independently normally

distributed, each row having mean 0 and non-singular covariance

matrix.

As u = vy - ﬂVZ, the variance of each component of u is,

2 2
o = wll - 2ﬂw12 + 8 w22.

ASSUMPTION 2: The N X G (G = G

1t G2) matrix X of exogenous

variables is of rank G (< N).

ASSUMPTION 3: The matrix (ﬂgl ﬂ%z) is of rank one and ﬂ§2 has at

least one non-zero component so that (3.1) is identified.

For any matrix D of full column rank let P_ = D(D’D)—lD’ and

D

§D = 1 - D(D’D)-lD’. Then Nagar's (1962) Double K-class (DK)

estimator with non- stochastic parameters K1 and K2 is

p ’ -1 ’
Ppg = F" A% G Ay (3.3)
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where A, = K, (P_-P_ ) + (1-K,)P_ j 1,2. This class of estimators
j NAEE S 5 i’

1

provides considerable appeal as a summary statement of several

commonly used estimators. In particular, when K1 = K2 = K, (3.3)

is Theil's K-class estimator. Also, if K1 =1-GN -G - 3)_1 and

K2 =1 - G(1 + g)-l(N - G - 3)-1 for a chosen g, we get Zellner's

(1986) extended MELO estimator.

There exist transfofmations of the wvariables and parameters
of the model given by (3.1) and (3.2) which transform it into one
in which Q = 12, the canonical form of the model. These
transformations are given in Anderson and Sawa (1973) for example,

and are

1 1 1

2 2 2
¥y = valal [yf - (le/wzz)yﬁ] » Y = WY
The canonical form of the model depends on six key parameters.

These are, the noncentrality parameter

%P, X
8% = , (3.4)

Y92

the standard structural coefficient

1

-= w
2 12
a = w,, |0] (ﬁ - ———j (3.5)
22 Voq
the number of excluded exogenous variables G2, and the parameters N
- G, Kl and K2. The corresponding form of the canonical model is
R w ]
2 2 12 2
w2101 [”fl W "fz] ¥22™2
22
o = 1 1 1 (3.6)
2 o 2 Y12 2
*. - ——= ¥ *
722191 {"21 oy ”12] ¥92™%2

The DK estimator of a in (3.5) is



A

’ -1 ’
Applying Lemma 1 in Section 2 we can write (3.7) as

A

’ _1' ’
aog = (z B2z) (z Blz)

where z is a 2N X 1 vector distributed NZN(Vec(XII),IZN) and B, and

B, are symmetric matrices such that

2
yl 1
Yy

Further, using Lemma 2,

A

Pr.(aDKS q) = Pr.(z’(Bl-qu)z < 0) (3.8)
where
2 2 2 4 2
z'(Bl-qu)z = E Arxr(G ,ér) + % Arxr(N-G,O) . (3.9

r=1 r=3

The Ar in (3.9) are the non-zero eigenvalues of the matrix (Bl—qu)

such that

1 1
A o= é[q - (1+q2)5] yoAy = - %[q + (1+q2)2] . (3.10)

both with multiplicity G, and

2
1
Ay = - %[q(l-w SCHCS SR (1-K2>2>;J
. (3.11)
z = - -;-[q(l-Kl) + (g7 (1K) + <1—K2>2>5]

both with multiplicity N - G. xi and X; in (3.9) are noncentral

chi-square variables with G, degrees of freedom and noncentrality

2
2

parameters 61 and 5; respectively, where
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1

, 1 .
5i=525-{1+a2 + (2a - q + qa®) (1 + ¢%) 2} (3.12)
2 L
5;=g{1+a2 - Qa - q+ @)L+ gD 2} (3.13)
and xg and xZ are each central chi-square variables with N - G

degrees of freedom.

5.3.ii Reciprocal Double K-Class Estimator

It is well known that the DK estimator of f in (3.1) is not

invariant to normalization. That is, we could apply DK to estimate

1/ in,

x _ okl ! !

and then take the reciprocal of this statistic as an estimate of 8.
This will be called RDK and it yields a different estimation
technique to DK for G, > 1. For a special case, Reciprocal Two

2
Stage Least Squares (I(1 = K2 = 1), Anderson and Sawa (1977) compare
the reciprocal and direct procedures using approximate asymptotic
expansions. However, for RDK in general a version of the Lemmas in
Section 2 can be applied to find the exact distribution function,

Using the canonical form of the model, the RDK with nonstochastic

Kl and K2 is,

A

) 1.,
which is the ratio of a quadratic to bilinear form. However, this

can be written as a ratio of quadratic forms,

A

7 Rt -1 7 R
KR (z Bﬁz) (z BTZ) (3.16)

where z is a (2N X 1) vector distributed NZN(VeC(XH )’IZN) and B{
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and B§ are symmetric matrices such that

y- A, 0O
Yo 0 0

Applying Lemma 2 we can write,

Pr.(aRDK <£q) = Pr.[z’(Bf - qu) z < OJ (3.17)
where
2 2 2 4 2
’ (B - Yz = -
Z (BT qBE)z rilArer(Gz 6rR) + r§3Arer(N G,0) (3.18)

The ArR are the non-zero eigenvalues of the matrix (Bf —qB%) such that

1 1

Mp = %[1 + (1 + qz)z], Aop = %[1 - (1 + qz)i] (3.19)

both with multiplicity G,, and

2)
1
1 2 2 2 E
Aag = 3 {(l-Kl) + [(1-1(1) + (1-K,) qJ } (3.20)
1
1 2 2 2 2
MR TS {(1-1(1) - [(1-1(1) + (1-K,) q] } (3.21)

both with multiplicity N - G. xi and X; are noncentral chi-square

variables with G2 degrees of freedom and noncentrality parameters.

2rr
2

1 1 1
2 2 - -1
01 = 5| o7 2eactr ) + o (1t | (i) ] aa22)

(=]

1

=2 -1
1) + az[1-<1+q2)2] ][1-(1+q2) +qu ] (3.23)

N
{—

2 -
2

é 2 2
62R =5 q +2aq(1+(1+q")

N

for q # 0, and



2 2.2
61R-—a5
for q = 0 since Az = 0, xi and xZ are central chi-square variables

with N - G degrees of freedom and .6° and a are defined in (3.4) and

(3.5).

5.3.iii Misspecification Analysis

Rhodes and Westbrook (1981) derive the exact probability
density function of the TSLS estimator when exogenous variables are
wrongly excluded from the equation being estimated, but not from
the system. The analysis of this type of misspecification of the
DK and RDK estimators can easlily be analyzed using the Lemmas of
Section 2.

Suppose that the correctly specified pair of equations in

the simultaneous equations model are

vt = y§ﬁ + lel + X272 + uy (3.24)
o= oy
V¥ = yEX + X173 + X274 +u, (3.25)
If Xl is partitioned as
+
X = & X,
+ + ++ o, ++ + ++
where X1 is N X G1 and Xl is N X G1 (Gl = Gl + G1 Y then (3.24)
may be written as
, + + ++ 4+
yf = ﬂyg + X171 + Xl 1Tt X272 +ouy (3.26)
where 71 has been partitioned so as to conform with Xl' Let the

correct specification for identification of (3.26) be

T, =0 .
Misspecification occurs when the actual specification of (3.26)

asserts
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7, =0  and 7{+ -0 . (3.27)

The DK estimator with this type of misspecification is

M LM -1, M

M . . .
where Aj = Kj(Px_PxT) + (1-Kj) XT j=1,2. Using the canonical

form of the model and applying Lemma 1 in Section 2 we can write

A -1
M , M , oM
ape = (z BZZ) (z Blz) (3.29)

where z is a 2N X 1 vector distributed NZN(vec(XII),IZN) and BT and

M . .
B, are symmetric matrices such that

2
M
71 M 1 0 AZ M o 0
z = ) B, = = , B, = ,
v, ol o Lo A
Applying Lemma 2 we can write
"M , oM M
Pr.(aDK <q) = Pr.(z (B1 - qB2) z < O] (3.30)
M M 2 2, ++ 24 4 2
z (B1 - qB2)z = rilArxr(Gl + G2,62 ) +r§3xrxr(N-G,O) (3.31)

The Ar in (3.31) have previously been defined in (3.10) and (3.11).
xi and X; are noncentral chi-square variables with GI+ + G2 degrees

of freedom and noncentrality parameters,

1 1
2+ 1 2 2,2) - L[=++ —++ 2,2) [+ —++
61 = E[(l+q +q(1+q™) ] [WIZ n12+(q+(1+q )_]{wll 19

1
+(q+(1+q2)5]%ﬁ’§r‘ﬁ}] + 5; (3.32)



1 1
2+ 1 2 2,2) - 1[=++" —++ 2, 2) [—++ —++
é E[(1+q -q(14+q") ] [le ﬂ12+[q-(1+q ) ]{ﬂll T

1

1

+{q—(l+q2)2]%11’;;;}} + 8] (3.33)

2 2
where 61 and 62

are the relevant components of the matrix,

are defined in (3.12) and (3.13). The %.j, j=1,2

1

+ o+ + 2
X)X &y X)Xy Xy
no (3.34)
0 XS le X3

where I 1is defined in (3.6) and X3 is a matrix containing

++
%

degrees of freedom.

LX), xg and xZ are central chi-square variables with N - G

2

The RDK with this type of misspecification is

AM ’ M 'l , M
ﬁRDK = 78y vy Ay (3.35)
where A? for j = 1,2 has been defined in (3.28). Using the

canonical form of the model, and applying Lemma 1 in Section 2 we

have

an e = (z'BgMz)-l(z’B§Mz) (3.36)

where z is a (2N X 1) vector distributed NZN(vec(XII),IZN) and BTM

M , .
and B§ are symmetric matrices such that
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Applying Lemma 2 we can write

"M , oM M
Pr.(aRDK < q) = Pr.(z (BT - qB§ Yz £ 0) (3.37)
where
M M 2 2, ++ 2+
(z (B{ - qB§ )z = rilArer(Gl + G2’6rR)
4 2
+ rEBArer(N - G,0) . (3.38)

The ArR in (3.37) have previously been defined in (3.19), (3.20)

and (3.21). xi and x; are mnoncentral chi-square variables with

GI+and G2 degrees of freedom and noncentrality parameters,

1 1 1
24 1 1 1 2.2) 2[—++ —++ 1 2.2
61R = E[(1+ = ;5(1+q )] [ﬂlZ Tip a[l+(l+q ,]
1
—++ —++ 1 2, 2| —++ —++ 2
X {ﬂll T + a[l+(1+q ) 1 ﬂll}] + 51R . (3.39)

1 1 1
2+ 1 1 1 2.2) 2=+ —++ 1 2.2
é = '2-((14' ——z- - —2~(1+q )_] [7['12 71’12 - a(l-(l'f‘q )—]

2R
- 9" q
1
—++"—++ 1 2, 2| —++ —++ 2
{ﬁll le - a(l-(l+q )—]Wll ﬂll}] + 62R . (3.40)
for q # 0 and where 5iR and a;R are defined in (3.22) and (3.23).

For q = 0, since X, = 0 we just have,

2
2 —++ —++ —++7 2.2
61R =T T F Ty 19 + a’d (3.41)
where 8° is defined in (3.4). xg and XZ are central chi-square

variables with N - G degrees of freedom.

5.3.iv Ratio of Normal Variables

Another special case of interest is when A1 = A2 = A in
(2.1) and A is an m X m positive semidefinite matrix of rank 1

which can be written as aa’, where a is an m X 1 vector. Therefore
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w in (2.1) becomes the ratio of normal variables (a’x)-l(a’y) and
its distribution can be studied using Lemmas 1 and 2 in Section 2.
The distribution of such ratios has been studied by, for example,
Geary (1930), Fieller (1932) and Marsaglia (1965).

A particular example of this ratio is the TSLS (or RISLS)

estimator when G2 = 1. Substituting K1 = K2 = 1 in (3.7) the

estimator is,
A XZleyl
@ = —— ] (3.42)
XoFx ¥y

To evaluate the distribution function of a the relevant eigenvalues

] 2 . .
and noncentrality parameters are, Al’ A §7 and 6, as given in

2
2" 71 2
(3.10), (3.12) and (3.13) corresponding to Kl = K2 = 1,

To calculate the distribution function of a ratio

(a’x)-l(a’y) in general, we note that it suffices to consider the

distribution function of

W o= (e + py) (b + py) (3.43)

for b,c nonnegative constants and Py Py independent standard

. 7 ,
normal wvariables. In this case

2
Pr.(w < q) = Pr.| = A x(1,6%) <0 |, (3.44)
'y r
r=1
where Al, Az are given in (3.10) corresponding to Kl = K2 = 1 and
7

If w 1s the ratio of two arbitrary normal random variables

which may be correlated or not, then there exist constants ; and

c2 such that c1 + 02w have the same distribution as w’ where w =

(b + pl)(c + pz)- for ¢, b nonnegative constants and Py, P, are

independent standard normal variables.



xi and x; are noncentral chi-square variables with 1 degree of

freedom and non-centrality parameters,

' 1 1 1
67 - %[1+qz+q(1+qzﬂ’1[c2+(q+(1+q2)5){bc+[q+(1+q2)2]b2}] (3.45)
1 1 1 ‘
6 = %[1+qZ-Q(1+q2)EJ "1[c2+[q-(1+qﬂ{bc-(q-(1+q2)5]b2}] (3.46)

5.3.v Other Cases

All of the previous examples have concentrated on the
application of the main result presented in Section 2 to the
evaluation of the distribution function of various estimators in
the 1limited information 1linear simultaneous equations model.
However, other examples do exist, such as the evaluation of the
distribution functions of estimators in macro models with
expectations (e.g. see Ullah (1985)) and the test statistic of a
set of restrictions in the general linear model. Recently, Knight
(1985a) used a technique developed by Davis (1976) to obtain the
characteristic function of a quadratic form with a nonnormal error
process characterized by an Edgeworth or Gram - Charlier series
expansion, (see e.g. Knight (1985a, p.232) or Peters (1989, p.283).
Therefore, using the notation of Lemma 2, where z¥* is now a vector

of iid Edgeworth variables with mean By and covariance I, we have,
, -1
F(q) = Pr. (z BZZ) (z’Blz) <q) |,

= Pr. [ z’(B1 - qu)z <4q ],

I

Pr. [z*’Az* < 0],



p(-t) - ¢(t)
cos s oL it (3.47)
it

From Equation (2.4) of Knight (1985a, p.234) we have,

$(t) = |1 - ZitAlnl/zexp(l/Zu’Su)

K 3
3 {33 (5us. .)S.. + 5(S p. S, . +
{ 1+ [ 5SSy BE Sy ) ]

6

K 2 2
4 32 8,., 4+ 63(3u,S..)°S..
[ J( i JJ)

4
+ 2(2pu, S, . +
2% J iJ JJ J( ’uk kJ) ]

2
3 |9%% §,.8,.5,. + 6%% S, + 1850 (Zp, S, .)(Bp,8,.)S, . +
72 [ 19 11 1) 1] 1y 1] 13 ( P kl)( #1 1J) ij

18§§ (S Sy )28, S 0 + 9%3 (B Sy ;) (By87)S

A
joij 11 Jj

3
632 (B Sy ) (BqS5)8

33

2 2
+ 988 (2u, S, . 2p,S8,.)°S,. +
13 ( “k kl) ( Hl lJ) ij

3 3
?? (B Sy 4) (Zﬂlslj) ] Ce ,

. 1
where 0 = (I-2itA), S = - I and Kr (r=0,1,2 ...), are the

standard cumulants, where in particular it is assumed that K3 x 0

and K4 % 3. The calculation of P and A are as for the normality
assumption and the distribution function given in (3.47) can be
numerically obtained by using appropriate algorithms in standard
packages such as NAG and IMSL. Consequently, all of the previous
examples can now be extended to include this type of nonnormality.
Note however, that there are various limitations with this type of

’
nonnormality. In particular, all of the z? s are assumed to have
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the same 3rd and 4th cumulants, and various restrictions are needed
on the values of K3 and K& to obtain a positive probability density

function, these being K, < 0.6 and 0.3 < X, £ 4.0,

3 4

Another example 1is the evaluation of the distribution
function of the Ordinary Least Squares (OLS) estimator of the
coefficient of the lagged endogenous variable in dynamic‘models.8
This example will be considered in some detail assuming both a

correctly-specified and misspecified equation structure.

Suppose that the correctly specified equation is,
y =oay 4+ Xlﬂl + X2ﬂ2 + u (3.48)

where y and Y1 (the subscript referring to a one-period lagged

value of y) are n X 1 random vectors (n = N - 1), X1 and X2 are
nonstochastic matrices of order n X Kl and n X K2 respectively, and
a satisfies |a| < 1. Assuming that the vector u is mnormally

distributed with E(u) = 0, E(uu ) = Qu, then so is y with E(y) = p

where the t-th element of u is,
- x v X, B.) (3.49)
Fe = |Toaz) Faefy * Xaify) '

L being the Lag operator, and the variance-covariance matrix ﬂy is

determined by the specification of Qu,g The OLS estimator for a

is,

8Sawa (1978) evaluates the exact mean and variance of the
least squares estimator of the stationary first-order
autoregressive coefficient using the moments of a ratio of
quadratic forms.

2 In the Adaptive Expectation Model, for example, it is

2
t = - =
assumed tha ut vt avt_1 so that Qy d'1l.
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" Id -1 ’ ’ —1 ’
« = (v My )7 (v My) = (2'Nj2) (2 Nz) (3.50)
where M = I - X(X X)'lx', (using the notation X = (X;,X,)), an
1.0
idempotent matrix of rank n - (K1+K2), z = [yl . yT], N = E(D]_MD2
+ D&MDl) and N1 = D’lMD1 with Dl = [In,O] and D2 = [O,In], that is,

identity matrices bordered by one column of zeroes.
However, 1f, for example, the exogenous variables X2 are

erroneously excluded from (3.48), then the misspecified equation

is,
y=ay q + Xlﬂl +u , (3.51)

and the OLS estimator of a is

A

M , oM -1, ., M ,GM -1, M
a = (Y My DY) = (N2 (2N E) (3.52)
o, -1 . . M
where M = 1 - Xl(Xlxl) Xi, an idempotent matrix of n - Kl, N~ =
1,., s M R .
E(DlMMD2 + D2M D), N1 = DlM D1 and z, D1 and D2 are defined as
above.

A A

Both of these estimators, a, aM, are ratios of quadratic
forms so that the main result of Section 2 is applicable. However,

in this example the eigenvalues and eigenvectors of the matrices
1 1 1 1

2 2 2, M M 2
Q" (N-gN. Q" and O (N -gN.)Q need to be found numerically. An
MCRBLE S -aNy)a? y

illustration is given in Lye (1988).
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CHAPTER 6

THE LIML AND TSLS ESTIMATORS

6.1 INTRODUCTION

The study of simultaneity did not become a dominant. research
program by the Cowles Foundation until Haavelmo (1944) recognized
it as a wunified approach to demand systems (Wright (1934)),
Tinbergen's (1930) macroeconometric models and Frisch’s (1933,
1934) confluent systems (see, for example, Epstein (1987)). The
Cowles Foundation developed the theory of simultaneity as a
multiple equation problem in Fisher’s (1925) likelihood framework
and, in particular, a distinction was made between limited-
information and full-information SEM’s. In the limited-information
SEM, attention focusses on just one particular equation. In this
case the investigator 1is not prepared to specify fully the
equations of the rest of the system, but recognizes the necessity
to develop special techniques that acknowledge the endogeneity of
some of the regressors. This chapter looks at some finite-sample
properties of the two most common estimators in limited-information
SEM’s, these being the LIML and TSLS estimators.

Section 2 of this chapter defines the two estimators.
Recently, the finite-sample properties of these single-equation
methods have been investigated extensively, and Section 3 reviews
some of these studies. This review is divided up into three parts,
these being moment results, properties of the exact distributions
and misspecification analysis. Sections 4 and 5 present some new

results on the comparison of the two estimators based on their
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finite-sample distributions when exogenous variables are wrongly
excluded from the equation of interest but not from the system.
Finally, Section 6 presents some conclusions and suggestions for
future work. Throughout this chépter the canonical form of the
limited- information SEM and the same notation will be used as is

given in Section 3 of Chapter 5.

6.2 THE ESTIMATORS

The TSLS estimator is defined in Chapter 5, (5.3.7), as a
member of the double K-class estimator family with nonstochastic
parameters K1 = K2 = 1. That is, if we consider again the

structural equation (5.3.1) in canonical form,

¥y = Y,@ + le + u = Hlél + u , (2.1)

then the TSLS estimator is equal to,

y2,[Px_Px ]yl
1

y2,[Px-le}y2

where PD = D(D’D)-lD' for any matrix D of full column rank. To

A
a = y

define the LIML estimator, rewrite (2.1) as

YAﬂA + le +u=20, (2.2)

, 1 . .
where YA = (yl,yz) and ﬂA = (-1,a)’. The LIML estimator of ﬂA is
the estimator obtained by maximizing the joint likelihood function

of YA subject to the constraint Hgyo = 0, where HO

5 = (nzl ﬂ22) and

1 Equation (2.1) and (5.3.1) contain one endogenous regressor
only, as this structural equation is the main focus of Chapters 5
and 6. However, the expressions given for the TSLS (see 5.3.7) and
LIML (see 2.4) are also relevant for G(> 1) endogenous regressors
by assuming the sizes of Yo and a are respectively (N X G) and (GX1).
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70 = (1 v)’. However, when the reduced-form disturbances are

multivariately normally distributed, the resulting estimator is
A

identical to the LVR estimator of ﬂA. This estimator minimizes the

variance ratio,

P¥iPx YaPa
s —m™MMm (2.3)

RPN
where ?D =1 - PD’ and therefore is the solution to the equation,
(YAleYA - ﬂYAPXYA)ﬁA =0, (2.4)

where ¢ is the smallest root of the determinental equation,

|YL§X1YA - ZYgﬁxYAI =0 . (2.5)
Some normalization rule must be imposed if the solution to (2.4) is
to be unique, however, which normalization rule is imposed is of no
consequence. This estimator is also a member of the double K-class
estimator family with stochastic parameters K1 = K2 = 2.

Both the TSLS and LIML estimators are instrumental variable
estimators (see, for example, Bowden and Turkington (1984,
pp.110-113)), and this interpretation is useful for comparing the
two estimation techniques. Using the second expression in (2.1)

the LIML estimator of 61 is,

- = -1~
61 = (H1 Hl) Hlyl , (2.6)
which is an instrumental variable estimator where the matrix of

instruments is given by ﬁl = [;2,X1] where

s

~ 12
y2 = (Xl X2) _ )
T2
H1 = [y2’X1] and M9 Moo are the maximum likelihood estimators of

the respective population coefficients subject to the restriction



o _ 0. The TSLS estimator of 6. is,

17 1
3 = (ﬁ’ H )—lﬁ y
1 171 171"
where in this case the matrix of instruments H1 is given by,
i} 7’;12
Hy = QX - = By o
22 .
where "12, W22 are the OLS estimators of the corresponding
population parameters. Therefore, in forming the instruments the

LIML estimator takes account of the overidentification restrictions
whereas the TSLS estimator does not use this information.

However, both  estimators have the same  asymptotic
distribution, that is,

VR(E,-6,), VR(6,-6)) B mv¢o,v)

where V = plim (HiPle/N)-l' Further, both estimators are BAN.

6.3 FINITE SAMPLE PROPERTIES OF THE TSLS AND LIML ESTIMATORS:

A REVIEW

Throughout this chapter it is assumed that the structural
equation of interest is identified by means of zero restrictions;
the sample size is greater than the number of exogenous variables
and all of the predetermined variables are assumed to be exogenous.
In these equations, one further distinction is made between the
case of one and more than one endogenous regressor, due to the
complexity of deriving finite-sample analytical results for the
latter case. Equations of this type have been of interest for many
years (see, for example, Haavelmo (1947), Bergstrom (1962) and
Basmann (1961, 1963)),

This review concentrates on the finite-sample properties of



the estimators of the coefficients on the endogenous regressors,

As both the TSLS and LIML estimators are complicated functions of
the underlying random variables, their exact distributions are
difficult to derive. Consequently; their use was first justified
on the basis of large sample criteria, such as consistency and
asymptotic efficiency. However, in the early 1960’'s the analysis
of the exact distributionsvand‘moments of these estimators began,
and since this time substantial progress has been made. Although
these estimators are asymptotically equivalent, recent research has
shown that their finite-sample properties are substantially
different, and these differences are the focus of this review. In
particular, three areas are considered, these being, moment

results, exact distributions and misspecification analysis.

(i) Moment Results

The necessary and sufficient condition for the TSLS
estimator to have finite absolute moments of positive order is that
the order of the moments must be less than or equal to the degree
of overidentification. This result was shown for special cases by
Basmann (1961), Richardson (1968) and Sawa (1969) and extended more
generally by Kinal (1980), and Hillier, Kinal and Srivastava
(1984). The LIML estimator, however, has no positive finite moments
of any order, as shown by Mariano and Sawa (1972) for the case of
one endogenous regressor and more generally in an unpublished paper
by Sargan (1970), and also in Phillips (1984a).

These moment results imply that the LIML estimator is

inadmissible under a strictly quadratic loss function. However,
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Some results also exist for the estimators of the coefficients

of the exogenous regressors, see for example Phillips (1984b).



this does not mean that the LIML estimator should be dropped in
favour of the TSLS estimator, since, for example, we could be
comparing a Cauchy distribution with high concentration about the

true parameter value and a normai distribution with a finite but
very large variance. Consequently, the two estimators have been
compared using measures other than those that depend upon the
existence of moments. Oné such measure, for example, is the
"Probability of Concentration around the true parameter value"
(see, for example, Rao (1981)), and in wusing such measures

knowledge of the finite-sample distribution is important.

(ii) Finite-Sample Distribution

In the case of one endogenous regressor, Richardson (1968)
and Sawa (1969) derived the density of the TSLS estimator and
Mariano and Sawa (1972) gave the density of the LIML estimator.
Phillips (1980a, 1984a, 1985) extended both of these results to the
case where there is an arbitrary number of endogenous regressors.
However, the expressions for the densities involve complicated
functions making general comparisons difficult, and numerical
computations to date have concentrated only on the one endogenous
regressor case. This 1is because the general expressions involve
zonal-type polynomials which converge slowly and so are not yet
suitable for numerical evaluation,

Anderson et al. (1979, 1982) give tables of the distribution
functions of the two estimators when there is only one endogenous

regressor. The method used to evaluate the distribution function of

3 The Probability of Concentratien for a particular

estimator § of 6 is defined as, Pr.(!?-0| < r),,for some T. In
other words, it considers the concentration of § around 4 in a
particular neighbourhood of 4.
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the TSLS estimator is similar to the method explained in Chapter 5;
however, it is not as general (see, for example, Cribbett et al,.
(1989)). To obtain the corresponding tables for the LIML estimator
a simulation method is used. Compérisons of the performance of the
estimators based on these tables indicate two major differences in

their finite-sample distributions. These are:

- The distribution of the LIML estimator is essentially
median- unbiased whereas the distribution of the TSLS estimator is
badly distorted except for small o and/or large noncentrality
parameters.

- The approach to its asymptotic distribution is very slow
for the TSLS estimator and very rapid for the LIML estimator, so
that even though the moments of the LIML estimator are not finite,
the normal distribution is a very good approximation to the actual
distribution.

Hillier. (1988) considers that the differences in the
performances of the two estimators are a result of the dependence
of the TSLS estimator on the normalization rule, whereas the LIML
estimator is invariant to this.

To analyze the sampling behaviour of the estimators when
there is an arbitrary number of endogenous regressors, asymptotic
approximations to the exact formulae have been used. In
particular, Phillips (1983) applies the method of extracting
marginal density approximations using the multivariate version of
the Laplace formula to the instrumental variables estimators, which
includes the TSLS estimator. Some features emerge from the

numerical computations of these approximations, such as:
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- as the number of endogenous regressors increases, the
marginal distribution concentrates more slowly as N tends to
infinity. |

- the marginal distribution displays more bias as the degree
of overidentification increases.

- the true Valueé of the coefficients of the other
endogenous regressors in the equation can affect the Probability of
Concentration around the true parameter value of the marginal
distribution of the estimator of the coefficient of the endogenous

variable of interest.

These features are illustrated in Phillips (1980,
pp.872-876; 1983, pp.13-19). ©No corresponding computations exist
for the LIML estimator. However, Anderson et al. (1986) compare a
number of estimators on the basis of their mean-squared errors and
their Probability of Concentration around the true parameter value.
These measures are computed by means of asymptotic expansions of
their distributions when the disturbance variance tends to zero
and, alternatively, when the sample size increases indefinitely.
In particular, from these comparisons, it is recommended that the
TSLS estimator should not be wused in practice, and several
modifications of the LIML estimator are given that are
asymptotically admissible in the large-sample asymptotic theory.
That is, they are third-order efficient. The particular choice of
modification depends on criteria such as asymptotic
mean-unbiasedness (e.g. Fuller (1977)) or asymptotic median

unbiasedness (e.g. the LIML-estimator itself),
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The combination of these results indicates the superior
performance of the LIML estimator over TSLS, and therefore a
long-standing issue over the choice of a single-equation estimator

in a correctly specified SEM has been resolved.

(iii) Misspecification Analysis

Since typically in applied econometric studies economic
theory provides some guidance but falls short of specifying the
precise form of structural relationship, the possibilities for
misspecification in SEM'’s are numerous, Although this area of
analysis has not received a great deal of attention in the
literature (see, for example, the comments of Taylor (1983) and
Zellner (1979)), there have been contributions from Fisher (1961,
1966, 1967), Hale et al. (1980), Mariano and Ramage (1978, 1983)
and Rhodes and Westbrook (1981, 1983), Knight (1982) and Skeels
(1988).4

Fisher (1961, 1966, 1967) compares the large-sample asymptotic
behaviour of the TSLS and LIML estimators in the presence of
misspecification consisting of exclusion of relevant variables in
a single equation. His principal result is that neither TSLS nor
LIML dominates the other for all possible values of the
specification error according to his criterion, which amounts to a
weighted sum of squares of the large-sample asymptotic bias.

Hale et al. (1980) examine the effects of misspecification
on the exact sampling moments of the K-class estimator family for

nonstochastic K, and this family includes the TSLS estimator.

ASee Phillips (1982, p. 503) for the correction of a minor

error in Theorem 2.1 of Rhodes and Westbrook (1981).
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Exact expressions and large concentration parameter asymptotic
expansions are presented and analyzed for the bias and MSE of the
K-class estimators in the case of one endogenous regressor. In
particular, when relevant exogenoﬁs variables are omitted from the
estimated equation but not from the system, the entire K-class for
nonstochastic K between 0 and 1 is dominated in terms of large
concentration parameter asymptotic MSE by either TSLS or OLS. 1In a
similar study, Mariano and Ramage (1978) included the LIML
.estimator, which was also found to be dominated by either OLS or
TSLS with respect to asymptotic MSE. Mariano and Ramage (1980)
consider other types of misspecification including the omission of
relevant endogenous variables and the misclassification of
endogenous regressors as eXOgenous.

Knight (1982) gives an alternative derivation to that of Hale
et al. (1980) of the effects of misspecification on both the OLS
and TSLS estimators. Skeels (1988) examines the finite - sample
properties of a class of instrumental variable estimators,
(including OLS and TSLS but excluding LIML), when the system of
equations, and in particular the equation being estimated, are
misspecified by the incorrect exclusion of exogenous variables.

Rhodes and Westbrook (1981) compute the exact density
function of the OLS and TSLS estimators, when exogenous variables
are wrongly excluded from the equation being estimated and when
there 1is only one endogenous regressor. The = misspecified
distributions are compared with the correctly specified ones on the
basis of density function concentration (that is, the length of 90%
probability intervals), and location around the true parameter

value (that is, the midpoint of the probability interval). It is

78



concluded that the effect of misspecification on estimator
performance is ambiguous. In particular, for the TSLS estimator
the following is concluded:

- the lengths of the TSLS probability intervals may increase
or decrease under misspecification errors.

- the deviation of the midpoint of the probability intervals
from the true parameter value may increase or decrease and may even
change sign.

Overall, they conclude that under misspecification OLS may
indeed be the superior estimation technique. However, no similar
analysis exists for the LIML estimator, although Rhodes and
Westbrook (1983) have considered some specific examples from which
no general conclusions can be drawn. In the rest of this chapter,
Rhodes and Westbrook'’s (1983) analysis is extended to include the
LIML estimator, so that further comparisons between the TSLS and

LIML estimators can be made.

6.4 THE KEY PARAMETERS IN THE MISSPECIFIED CANONICAL DISTRIBUTIONS

Let the structural equation of interest be written as,

Sanas
Yy = Y, + X171 + Xl 1 + X272 + Uy (4.1)
++ ++ +,
* i 3 = i X
where Xlls N Gl’ X1 is Nle , (G1+ G1 Gl), X2 is N>G2 and 7 has
been partitioned so as to conform with Xl' Let the correct
specification after identification of (4.1) Dbe Ty = 0.

Misspecification occurs when the actual specification of (4.1)
asserts Ty = 0, and 7I+= 0, The TSLS estimator with this type of

misspecification is,
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"M , -1, .,
a - (}’2 (PX-PX'{‘)yZ ) (}’2 (PX-PX}‘)yl )- (4'2>
In Chapter 5, Section 3, it is shown that (4.2) can be written as a

ratio of quadratic forms, that is,

N -1
M , M , M
o = (z BZZ) (z Blz)

where z is a 2N % 1 normally distributed vector, and B? and Bg are

symmetric matrices such that

vy 0 (P_-P_+) 0 0
1 , B, =
Yy ‘PX'PX;’ 0 0 (B R

N
i
=
=
I
[SEE

This implies that the distribution function can be calculated as

follows:
Pr.(aM £ q) = Pr.[z’(BT - qu) z < O]
M M 2 2, ++ 2+
z (B1 - qu)z = I Arxr(Gl + G2,62 ).
r=1
: . M M
The Ar are the non-zero eigenvalues of the matrix (Bl - qu)
defined as,
1 1
-1 2,2 -1 2,2
Al—g[q-(lJrq)]. Az-g[q+(l+q)],
. . - ++ 2 2
both with multiplicity G1 + GZ' X1 and X, are noncentral

chi-square variables with G{+ + G, degrees of freedom and

noncentrality parameters,
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Ii

1
2+ 1 2 2,2}~ —++’-++ 2,2 —++’—++
1 -2—((1+q +q(1+q )} [ [q+(1+q )){ 711 ™19
1
—++ —+
[q+(1+q) o 11}] + 6

(4.3)
1
2+ 2.2 + b —+ —+
07" = 3 (a’a(iq ﬂ A e CREte ]{"11 Ty
2, 2] =+ —++ 2
[q (1+q ﬂ ™1 11}] * %
2 .2 2
where 61, 52 and 6 are equal to,
2 8T 2 2 2 V2
61 - 3 l+a + (2a - g + qo)(L + q) ]
2 8°T 2 2 2 M2
= 2l 1+a - (20 - q+ @)+ q) ] (4.4)

’

m X (T - le)in’z"z

w
22

where ﬂ;; and Wéz are defined in Chapter 5, Section 3,( see
Assumption 1 and (5.3.6)). The Eij’ j = 1,2 are the relevant

components of the matrix,

- 1 -
+ +. 2+
(X, X)) (x xt D X X, |
o,
0 X PX1 X3

: e 2 ++ . . . .
where X, is a matrix containing (Xl X Given this information,

3

the exact distribution function of aM can be calculated using the

2)'

techniques such as those developed by Imhof (1961) and Davies
(1973, 1980), as described in Chapter 5. Furthermore, from (4.3)

and (4.4) the "key parameters" of this distribution are given by
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the non-centrality parameter, 62, the true parameter value a, the

degrees of freedom parameter GI+ + G2 and the parameters }I;’ ;II,
P s R
11 M2 12 "12°

The derivation of the LIML estimator of the endogenous
regressor in the correctly specified model (5.3.1) begins with the
joint distribution of two independent Wishart matrices (see Chapter
2), which will be denotede and S. In particular, W = Y’A[PX -

X are given in (5.3.2) and the Projection matrix

le]YA (where Xl’

PD is defined in (5.3.3)), is a noncentral Wishart matrix with

degrees of freedom G2, covariance matrix I and noncentrality

parameter M where,

a 1
and § = YA(I - PX)YA is a central Wishart statistic with N - G
degrees of freedom and covariance matrix I. When the equation is
misspecified as in (5.3.26) however, the distribution of W changes,
although the distribution of S remains the same. In this case WM =

YA[PX - PX+JYA (the superscript M representing the misspecified

1
. + . . . .
Wishart matrix, and X1 is as defined in (5.3.26)) is a noncentral
Wishart with degrees of freedom parameter GI+' + G2, covariance

matrix I and noncentrality parameter,

o e
we o | 11 " T Tz o
—++, —++  —+, —++ '

M2 M1 M2 "2
However, the matrices WM and S remain independent since [Px - §%+]
1
X (I - Px) = 0 (see Chapter 2), so that the results of Hillier

(1987) can be used to obtain the analytical expression for the

distribution function of the LIML estimator subject to this type of

82



misspecification. However, for the purposes of the simulation
experiment performed in this chapter, the key parameters have

already been identified, and are the parameters in the Wishart

distributions of S and WM. These parameters are N - G, G2 + GI+,
2 —t+, —++  —++, —++ —t+,  —++ .
a, 67, T ™1 T Mg and T Ty Therefore, as in the

correctly specified case, the only Key parameter that differs from

those that affect the TSLS.distribution function is N - G.

6.5 PROPERTIES OF THE MISSPECIFIED DISTRIBUTIONS

When the structural equation of interest is misspecified by
the exclusion of relevant exogenous variables, such as in (5.3.26),
the density functions of the TSLS and LIML estimators of the
endogenous regressor coefficients contain a number of key

parameters in addition to those that affect the densities in the

—+,  —t

correctly specified model. These parameters are: 1" T and
—+, —++ . . —t+, =+t >
T1o" T which are both non - negative, > 0, and m11 12 2 0 and,

in addition, the degrees of freedom parameter increases to include
the number of wrongly excluded exogenous variables. The effect of
these parameters on the density functions is examined in this
section.

In particular, the influence of misspecification upon the
density functions 1s analyzed for a number of parameter
constellations by numerically evaluating the exact distribution of
the TSLS estimator as descibed above and in Chapter 5, and
simulating the distribution of the LIML estimator via the
integration of the Kernel density estimator with the naive Monte

Carlo method. The kernel estimate at point X is equal to,
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A 1
pdf(X) = Novh (N) 3 k[x 5 ]’ ' (.1)
h (N+*)

where k[.] is the standard N(O,l) density. The window width h(N¥)

is chosen using the interactive approach of Tapia and Thompson

(1978). In all cases this approach led to the use of a window width

between 0.02 and 0.09. N* is simply the number of replications in
the simulation experiment, and is chosen wusing the bound of

estimation. For example, the results of Parzen (1962) and Cacoullos

(1966) imply that,

1
2

[N*hm(N*)] [p3f<x) - E[p3f<x)]] - N(O,pdf(x)JKZ]. (5.2)

NI

The result in (5.2) can be achieved if [N*hm(N*)) Bias[pdf(x)]

tends to zero asymptotically since,

1
2

{N*hm(N*)] [paf(x) - pdf(x)] - [N*hm(N*)][paf(x) - E[paf(x)]]

1
+ [N*hm(N*)]zBias[paf(x)].

Ullah (1988, p.642) shows that Bias[paf(x)] is proportional to
h2(N*).  This implies that if N+ *™7/2(N%) tends to zero
asymptotically then (5.2) holds. Therefore, for the normal kernel,
—l-exp(-gyz), the 99% asymptotic confidence interval for paf(X) is

Vor
given by,



pdf(X) + 2.58 Fﬁﬁlﬁl ],

2N*hvr

so that B is given by,

[SEE

- pdf (X)
B = 2.58[2N*h(N*)ﬂ]

N* is varied until B is less than 0.0l for all points at which the
density is estimated. In all experiments, N¥ varies between 60,000
and 90,000 replicationss. The input of Xj in (5.1) involves
numerically maximizing the likelihood function to obtain the LIML
estimator of a. Two algorithms from the Harwell Subroutine library
are used, these being algorithms VAI3AD and VFO04AD, which both use
the BFGS formula, (Broydon (1970), Fletcher (1970), Goldfard (1970)
and Shanno (1970)). All computations are performed in double
precision to 7 decimal places of accuracy. The final results,
however, are not dependent upon which algorithm is used in this
step. Furthermore, the solutions of each of the algorithms used
were compared with those in the standard econometric packages TSP
and SHAZAM, and were found to give similar results. Random numbers
distributed uniformly on the interval [0,1}, denoted U, are
generated using the NAG subroutine GOFCAF, which wuses a
multiplicative congruential method. Standard mnormal variates,

N(0,1), were generated using the NAG subroutine GO5DDF, which is

5Empirical densities were also computed using the Epanechnikov
(1969) kernel. However, given the number of replications used, the
results proved mnot to depend on which kernel is wused. This
situation is similar to the comparison of different kernels for the
Cauchy distribution using a "large sample", as is illustrated in
Figure 5.1 in Chapter 3.
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based on Brent’'s (1974) algorithm. Further details are given in
Chapter 4.

A selection of these den;ities is presented in Figures
5.1-5.3. The median and interquartile range (IQR) are also
computed and these are used as summary measures of the influence of
misspecification on the location and concentration of the density
functions. A selection of these values is presented in Table 5.1.
These were calculated exactly for the TSLS estimator using the
Davies (1980) routine and were estimated for the LIML estimator as
described in Mood, Graybill and Boes (1986, p.75). The same number
of replications used to estimate the PDF is used here. In each of
these computations it is necessary only to consider the parameter
space defined by a > 0, as the respective densities for o < 0 are
simply the mirror images of their corresponding positive
counterpart.

The analysis begins with the case of one wrongly excluded
exogenous variable and the effect of misspecification on the

location and IQR of the density functions. In this case in

s —+, —t+ =, —+ =+,
determining the effect of the parameters 1 110 T120 ™10 T19

~—++ . PP . . . P . .
M1p OB the misspecified distributions, it is sufficient to discuss

the effects of ;II and E{; only. From Table 5.1 the following
comments can be made. For the TSLS estimator the conclusions are

similar to those of Rhodes and Westbrook (1981).

- the IQR can increase or decrease in comparison to the

correctly specified model. Increases in the IQR are associated
. . . —++ . . .
with increases in ]w11|, while decreases are associated with
. . —++ .
increases in |W12|. Therefore, these two parameters exert opposing

influences, although in general, misspecification is associated
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FIGURE 5.1 Densities for the LIML and TSLS Estimators when
a = 0.0, 62 = 16
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FIGURE 5.2

Densities for the LIML and TSLS Estimators

When ¢ = 0.5, &2 = 16
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FIGURE 5.3 Densities for the LIML and TSLS Estimators

When a = 1.0, 82 = 16
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Table 5.1: Median and IQR for LIML and TSLS Estimators

Median for ;{I = IQR for ;{I =
ran 0 2 4 7 0 2 4 7
LML a = 0.0 §" =16 N-6G=20 G, =2 G =1
0 0.0 0.0 0.0 0.0 0.374 0.400 0.4029  0.4680
0.0 0.011 0.0239 0.0441 0.370 0.381-  0.4001 0.4600
4 0.0 0.0216 0;0434 0.0830 0.369 0.374 0.3930 0.4491
correctly specified Median = 0.0 IQR = 0.42
TSLS a = 0.0 6" = 16 G, - 2 G-{+=l
0 0.0 0.0 0.0 0.0 0.3200 0.354 0.444 0.624
0.0 0.091 0.182 0.318 0.2900 0.316 0.382 0.5230
4 0.0 0.117 0.235 0.412 0.2320 0.246 0.282 0.36399
correctly specified Median = 0.0 IQR = 0.333
LML a = 0.5 6" =5 N-G=10 G =1 G, =2
0 0.4778 0.5022 0.5666 0.8230 0.8452 0.8956 1.0712 1.9363
0.4542 0.5142 0.6089 0.9021 0.8174 0.8362 0.7445 1.7909
4 0.4056 0.4892 0.5973 0.8537 0.7531 0.9430 0.7988 1.4788
correctly specified Median = 0.4834 1IQR = 0.7634
SIS @ = 0.5 6 =5 G =1 6, =2
0 0.338 0.338 0.338 0.338 0.5440 0.6690 0.9630 1.50
0.223 0.403 0.586 0.8999 0.4299 0.4910 0.6467 0.961
4 0.109 0.282 0.456 0.717 0.291 0.3130 0.3730 0.501
correctly specified Median 0.397 1IQR = 0.60199
LML o« = 0.5 6" =16 N-G=10 6,-2 G -1
0 0.5003 0.5037 0.5302 0.6075 0.4147 0.4246 0.4644  0.5865
2 0.4886 0.5083 0.5435 0.6338 0.4106 0.4138 0.4403 0.5308
4 0.4676  0.4967 0.5405 0.6371 0.3903 0.3953 0.4118 0.4760
correctly specified Median 0.4935 IQR = 0.3966
LS a = 0.5 & - 16 G, -2 G -1
0 0.4419  0.4419  0.4419 0.4419 0.3480 0.3800 0.464 0.638
0.363 0.4530  0.5440 0.6810 0.3110 0.3}50 0.396 0.531
4 0.235 0.353 0.470 0.6470 0,2460 0.257 0.292 0.370

correctly specified Median = 0.4960 1IQR = 0.3640
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Table 5.1 continued.

Median for %;I - IQR for'E{I -
E{Z 0 2 4 7 0 2 4 7
LML a = 0.5 &" =25 N-G=10 G, =2 c{* -1
0 0.5007 0.5055 0.5197 0.5683 0.3206 0.3301 0.3507 0.4077
0.4949  0.5077 0.5001 0.5846 0.32296 0.3252 0.3158 0.3810
4 0.4814 0.5288 0.5274 0.5899 0.3188 0.3394 0.3235 0.3572
correctly specified Median = 0.4985 1IQR = 0.2971
TSLS a -~ 0.5 8" =25 N-6=10 G, =2 GI+ -1
0 0.46199 0.46199 0.46199 0.46199 0.28699 0.30399 0.35099 0.45799
2 0.4030  0.46699 0.53199 0.62799 0.2634 0.27799 0.31699 0.40399
4 0.291  0.384  0.47599 0.61599 0.221  0.22899 0.25299 0.311
correctly specified Median = 0.48099 1IQR = 0.29499
LML « = 1.0 6° =16 N-G=-10 G =1.0 G, =2
0 0.991  1.0073 1.0372 1.1234 0.5157 0.5257 0.5512 0.6299
2 0.9884 0.9989 1.0272 1.1051 0.5175 0.5125 0.5237 0.5729
4 0.9601 0.9711 0.9989 1.072  0.5108 0.4942  0.4948  0.5205
) NA 0.9993  1.0302 1.1207 NA 0.5396 0.5817  0.6962
-4 NA 0.9699 0.9991 1.084  NA 0.5493  0.6074  0.6432
correctly specified Median = 0.999 IQR = 0.4952
LIML ¢ = 1.0 6% =16 N - G = 20 c{* =1.0 6, =2
0 1.0024 1.0068 1.0231 1.0686 0.5132 0.5196 0.5496 0.5718
0.9965 1.0012 1.0169 1.0626 0.5152 0.5114 0.5188  0.5442
4 0.9799 0.9852 1.0016 1.0444 0.5113 0.5026 0.5028 0.5185
correctly specified Median = 1.0003 1IQR = 0.4899
TSLS a = 1.0 6% = 16 GI+ -1.0 Gé -2
0 0.885  0.885  0.885  0.885  0.420  0.450  0.530  0.680
2 0.730  0.815  0.912  1.045  0.370  0.378  0.440  0.565
4 0.471  0.588  0.702  0.886  0.280  0.289  0.325  0.395
-2 NA 0.635  0.544  0.410  NA 0.392  0.451  0.577
-4 NA 0.353  0.236  0.059  NA 0.292  0.327  0.399

correctly specified Median = 0.930 IQR = 0.451
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Table 5.1: Median and IQR for LIML and TSLS Estimators
Median for EI; = IQR for ;II =
A 0 2 4 7 0 2 4 7
LML o = 0.0 6°=16 N-G=20 G, -2 G =1
0 0.0 0.0 0.0 0.0 0.374 0.400 0.4029 0.4680
0.0 0.011 0.0239 0.0441 0.370 0.381. - 0.4001 0.4600
4 0.0 0.0216 0.0434 0.0830 0.369 0.374 0.3930 0.4491
correctly specified Median = 0.0 IQR = 0.42
SIS @ = 0.0 6% =16 G, =2 G =1
0 0.0 0.0 0.0 0.0 0.3200 0.354 0.444 0.624
0.0 0.091 0.182 0.318 0.2900 0.316 0.382 0.5230
4 0.0 0.117 0.235 0.412 0.2320 0.246 0.282 0.36399
correctly specified Median = 0.0 IQR = 0.333
LIML @ = 0.5 6°=5 N-G=10 G =1 6, -2
0 0.4778 0.5022 0.5666 0.8230 0.8452 0.8956 1.0712 1.9363
0.4542 0.5142 0.6089 0.9021 0.8174 0.8362 0.7445 1.7909
4 0.4056 0.4892 0.5973 0.8537 0.7531 0.9430 0.7988 1.4788
correctly specified Median = 0.4834 1IQR = 0.7634
SIS @ = 0.5 6% =5 G -1 6, =2
0 0.338 . 0.338 0.338 0.338 0.5440 0.6690 0.9630 1.50
0.223 0.403 0.586 0.8999 0.4299 0.4910 0.6467 0.961
4 0.109 0.282 0.456 0.717 0.291 0.3130 0.3730 0.501
correctly specified Median 0.397 IQR = 0.60199
LML o = 0.5 8" =16 N-G=10 G, =2 G -1
0 0.5003 0.5037 0.5302 0.6075 0.4147 0.4246  0.4644  0.5865
0.4886 0.5083 0.5435 0.6338 0.4106 0.4138 0.4403 0.5308
4 0.4676 0.4967 0.5405 0.6371 0.3903 0.3953 0.4118 0.4760
correctly specified Median 0.4935 IQR = 0.3966
1SLS a = 0.5 &° =16 G, =2 6 -1
0 0.4419  0.4419  0.4419  0.4419 0.3480 0.3800 0.464 0.638
0.363 0.4530 0.5440 0.6810 0.3110 O.BFSO 0.396 0.531
4 0.235 0.353 0.470 0.6470 0.2460 0.257 0.292 0.370

correctly specified Median =

0.4960 1IQR = 0.3640



with decreases 1in concentration as has to be considerably

11
. —++ .
larger with respect to [n 2| before the IQR increases.

11’ 'E{;l also exert opposing

influences on the median. In particular, the value of the median

- the parameters [w and

increases as lﬂ11| increases and decreases as IEIEI increases. In
the correctly specified model, the TSLS estimator is badly median
under-biased (see, for exémple, Anderson et al. (1979)). In the
misspecified model, the TSLS estimator may become median
over-biased, unbiased or remain under-biased, depending on the
values of I;III and |E++|.

Although both |ﬂ and ]w exert similar influences on

11I 12|
the misspecified density of the LIML estimator, the extent to which

this density 1is affected by these parameters differs. In
particular,

- in the correctly specified model the LIML estimator is
essentially median-unbiased (see, for example, Anderson et al.

(1982)), so that increases in imply the estimator becomes

By
11

median over-biased and increases in imply the estimator

|71,
12
becomes median under-biased. However, even for very large values

of Iw and |w12| the density becomes only mildly median-biased.

11
- the IQR for the misspecified densities only moderately

differs from that of the correctly specified model, although in

general it increases as Iﬂ exceeds the value of [w

11I 12l

, —+
These comments consider the absolute effects of « and ﬂ

11 12’

however, it is also interesting to note the differences that occur
—H —H .

when T11 ™19 < 0 rather than = T11 19 > 0. These are illustrated in

Table 5.1 for a = 1.0, 6% = 16. In particular, for the LIML
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estimator, although the value of the median remains similar in both

cases, the value of the IQR 1is much larger for EII ;I; < 0. The

opposite occurs for the TSLS estimator. In this case, while the
value of the IQR is similar in both cases, when ;II EIZ < 0 the

value of the median is substantially smaller compared to when ;II

—+
e > 0.

In the correctly specified model, the degrees of freedom
parameter is equal to G2, however under this type of

misspecification this increases to 02 + GI+. The effect of this
increase is isolated by considering the parameter values EII = ;;;
= 0 in Table 5.1. In particular, the IQR falls (and concentration
increases) for the LIML estimator. However, for the TSLS
estimator, the median in general decreases in comparison to the
correctly specified model, so that the pdf becomes more
concentrated around the wrong parameter value. For the LIML
estimator, the median remains essentially unbiased, so that
although dispersion increases, the pdf is concentrated around the
true parameter value.

Figures 5.1-5.3 illustrate a selection of pdf’s for the TSLS
and LIML estimators, showing a subset of the range of behaviours
represented in Table 5.1, and clearly displaying a number of
comparisons between the two alternative estimation techniques,
Each figure is divided up into four plots, these corresponding to:
(1) the correctly specified model;
aw Hp -7
(ii1) my = 0 7, = 4; and

— g
M1~ " ™Mo

Further, in each figure, the true parameter value is increased,

(iv) = 0.
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while the other key parameter values are kept equal to 5% = 16, N -
G=-10, G, = 1 and 6" = 1.

In the plots of the correctly specified models for. the small
parameter values, o = 0.0 and ﬁ = 0.5 (Figures 5.1-5.2), the
distributions of the LIML and TSLS estimators are almost identical.
Therefore, plots (i), (ii), (iii) and (iv) in each of these figures
illustrates not only the effects of misspecification on each
estimator but also how the effects differ between the two
estimation techniques. In particular, the TSLS estimator appears
to be more sensitive to misspecification as is easily seen by
comparing the location and spread between the plots.

In Figure 5.3, when the true parameter value is equal to 1,
even in the correctly specified model the two estimation techniques
are clearly distinguishable. However, the differences between the
two become even more apparent in the plots corresponding to the
misspecified models. Once again, the TSLS estimator is clearly
more affected by misspecification as the LIML estimator maintains a
similar shape as that in the correctly specified case.

Similar results to those above are also reported in Table

5.2, where in this case both the number of correctly excluded, G2,

and incorrectly excluded, GI+, variables are increased
corresponding to the true parameter value a = 1.0 and noncentrality
parameter 6% = 25.

Consequently then, the results presented in this section
suggest that although the TSLS and LIML distributions are affected
in similar ways under this type of misspecification, the LIML

estimator tends to be more robust, particularly in the location of

its distribution in relation to the true parameter value.
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Table 5.2: Median and IQR for LIML and TSLS Estimators

-t —t+

96

Median for ”11 = IQR for My =
—+
T19 0 2 4 0 2 4
LML o = 1.0 8" =25 N-G=10 G, =3 G =5
0 0.99744 0.97639 0.91383 0.44929 0.44856 0.43939
0.97764 0.99823" 1.0597 0.44903 0.43591 0.45986
4 0.91522 0.93990 0.99784 0.43971 0.40784 0.40588
-2 NA 1.0002 1.0747 NA 0.49438 0.60225
correctly specified Median = 1.0019 IQR = 0.40167
TSLS @ = 1.0 & =25 G, =3 G =5
0 0.77599 0.77899 0.77899 0.63699 0.34900 0.4800
0.39100 0.67199 0.86499 0.19699 0.24800 0.31400
4 0.22400 0.40100 0.58099 0.14100 0.14999 0.17500
-2 NA 0.28800 0.09600 NA 0.2500 0.32600
correctly specified Median = 0.92399 1IQR = 0.40107
LML o = 1.0 6" =25 N-G=10 G, =6 G =5
0 1.0791 1.0387 0.98313 0.47246 0.37936 0.40969
1.0169 1.0273 1.0567 0.38684 0.37532 0.35851
4 0.98313 0.99453 1.0258 0.40969 0.38216 0.39651
-2 NA 1.0282 1.0588 NA 0.39738 0.40324
correctly specified Median = 1.0003 1IQR = 0.4252
TSLS @ = 1.0 & =25 G, -6 G =5
0 0.70899 0.70999 0.71399 0.27200 0.32400 0.441
0.45299 0.63499 0.81599 0.21499 0.23700 0.299
4 0.21700 0.39100 0.56499 0.13800 0.14699 0.172
-2 NA 0.04400 0.09100 NA 0.14900 0.311

correctly specified Median = 0.82899 IQR = 31400




6.6 SOME FINAL COMMENTS

In a correctly specified SEM, the LIML estimator is
considered to be a superior estimation technique to the TSLS
estimator, as it is essentialiy median-unbiased whereas the
distribution of the TSLS estimator is, in general, badly distorted.

The numerical results presented in this chapter extend the
comparison of the two estimation techniques to the case when the
structural equation of interest is misspecified by the exclusion of
relevant exogenous variables (which are, however, not excluded from
the system as a whole). The key parameters of the distribution are
identified, and are shown to affect the distributions in a similar
way. However, in general, the LIML estimator is more robust as,
although it tends to be more dispersed than the TSLS estimator it
is, in general, better located around the true parameter value.

The numerical results presented here, combined with those of
Anderson et al. (1979, 1982), are also applicable to the analysis
of other types of misspecification, specifically the inclusion of
irrelevant exogenous variables and a combination of inclusion of
irrelevant and exclusion of relevant exogenous variables, from the
structural equation of interest. This is because in the case of
the inclusion of irrelevant exogenous variables, only the degrees
of freedom parameter in the Wishart matrix, W, (as in Section 6.4)
is affected. This is easily seen by applying a similar argument to

that given in Section 6.4.
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CHAPTER 7

EXTENSIONS OF THE NORMALITY ASSUMPTION: A REVIEW

7.1 THE NORMAL ASSUMPTION

The early statistical researchers, in particular De Moivre
(1733), regarded the mnormal distribution only as a convenient
approximation to the binomial distribution, and it was not until
the nineteenth century that appreciation of its broader theoretical
importance spread with the work of Gauss (1809) and Laplace (1812).
Gauss and Laplace were both led to the rediscovery of the normal
distribution through their work on the theory of errors of
observations. Laplace in particular gave the first statement
(alth&ugh incomplete) of the general theorem, now well known under
the title of the Central Limit Theorem.1 Today in the majority of
cases the distribution of disturbances in econometric equations is
assumed to be normal. This 1is by and large true for single
equation and simultaneous equation models, both linear and
nonlinear. A number of reasons have been suggested for the
dominance and popularity of the normality assumption in this
context, Two of the most frequently used arguments are the

following:

1 This only briefly summarizes the major developments in
the derivation of the normal distribution. Considerable attention
has been paid to its historical development by authors such as
Johnston and Kotz (1970), Cramér (1946) and Stigler (1986).
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- Haavelmo (1944) argues that the random disturbance terms of
econometric models can be considered to be the sum of a large
number of independent small elementary random shocks, and therefore
will be approximately normal by‘virtue of central limit theorem
considerations.

- In at least the simplest models, such as the classical
linear regression model,‘the assumption of normality implies that
the maximum likelihood and the BLU 1least squares estimators
coincide. Further, a large collection of finite sampling
distributions are analytically tractable and consequently have been
extensively studied.

However, the widespread use of the normality assumption does
not mean it has escaped criticism, and comments such as the
following have frequently appeared in the literature:

-"everyone believes in the Gaussian law of errors, the
experimenters because they think it is a mathematical theorem, the
mathematicians because they think it is an experimental fact" -
Lippmann (quoted by Poincaré (1912)).

- "normality is a myth, there never was and never will be a
normal distribution" - Geary (1947, p.209).

"Practical statisticians have tended to disregard
nonnormality, partly for lack of an adequate body of mathematical
theory to which an appeal can be made, partly because they think it
is too much trouble, and partly because of a hazy tradition that
all mathematical ills arising from nonnormality will be cured by
sufficiently large numbers. This last idea presumably stems from
limit theorems, or rumors or Inaccurate recollection of them" -

Hotelling (1961, p.319).
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- "however, it is rather puzzling that investigators who are
generally loathe to adopt informative priors about the systematic
structure of the models about which theoretical considerations and
part empirical evidence should prévide substantive evidence, should
find themselves so well informed about the unobservable
constituents of their model’s unobservable errors to argue that
they satisfy a Lindeberg éondition" - Koenker and Bassett (1978,
p.34).

There is a large body of empirical literature (e.g.
Mandelbrot (1963a, 1963b, 1966, 1967, 1969) and Fama (1963, 1965,
1970)) which suggests that many economic time series, particularly
prices in financial and commodity markets, are well represented by
nonnormal distributions, especially those with infinite variance.
Another example of econometric models in which errors are nonnormal
is the study of frontier production and cost function models (e.g.
Schmidt (1976b), Waldman (1982)).

Even the asymptotic justification of the normal distribution
has been questioned. Bartels (1977) argues that limit-theorem
arguments in the context of economic  statistics are just as likely
to lead to a mnonnormal stable distribution as to a normal
distribution, so that limiting arguments cannot guarantee that a
variable will be normal,

Consequently, there has been a substantial interest in
alternatives to the normality assumption. This interest has
essentially followed two different directions. The first direction
considers 1id mnonnormal disturbances. This has 1led to the
derivation and wuse of estimators other than Gaussian-type
estimators. The next two sections examine properties of estimators

and test statistics optimal in a Gaussian sense under iid nonnormal
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conditions and considers an important class of alternative methods
given under the rubric of robust regression. With the use of the
normality assumption the terms independence and uncorrelatedness
are equivalent. However, with noﬁnormally distributed disturbances
they are not. Therefore, the second direction broadens the
assumption of mnormality by assuming the disturbances of the
regression model follow a joint multivariate elliptical
distribution (as defined in Chapter 2). The results that have been
obtained under this assumption are reviewed in Section 4. The
final section of this chapter combines both of the directions by
considering the importance of distinguishing between independence
and uncorrelatedness in nonnormal models. This section sets the

theme of the remaining chapters in this thesis.

7.2 NONNORMAL IID DISTURBANCES - THE EFFECT ON GAUSSIAN-TYPE

STATISTICS

"What are the effects of nonnormality on the traditional
normal procedures?”

The objective of this section is to answer this question by
drawing together numerous results which have been published on the
properties of Gaussian-type statistics under the regime of
nonnormal disturbances. Attention is given only to symmetric
nonnormal parent populations.

First consider the relaxation of condition (ii) in Section
(1i) of Chapter 1. That is, consider the usual linear regression
model with non- normal errors. If the errors are assumed to be
independently and identically distributed with zero mean and finite
variance 02, then the following properties hold for the ordinary

least-squares based statistics:
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Properties 2.1:

A

(i) B = (X’X)-1X’y is unbiased, consistent, BLUE and has

covariance matrix oz(X'X)-l.

(ii) sZ = ﬁ%ﬁ(y-Xﬁ)’(y-Xﬁ) is unbiased and consistent.
p (N-K) s®
(iii) B does not have a normal distribution and — does not
o

have a chi-squared distribution.
(iv) The usual t- and F-tests are not in general valid, however,
vip-p (9 neo,oh. (2.1)

XX
N

where Q = lim
N=oo

Further, under the null hypothesis Rf=r,
where R 1is a 1 X K known vector and r a known scalar then

VN(RE-x) ()

s R[X’X)-l ,

N(O0,1) , (2.2)

N

A proof of these properties is given by Schmidt
(1976a, pp.55-60).

If the existence of a finite mean and variance of the errors
is not assumed then Properties 2.1 do not in general hold. There
are many examples of distributions without any finite moments (e.g.
Cauchy) or finite mean only (e.g. t2) and it is believed that these
types of distributions are representative of many economic data
series, particularly prices in financial and commodity markets
(e.g. Fama (1963, 1965, 1970)). These distributions have "fat
tails" implying that large values or "outliers" will be relatively
frequent. Because the least squares technique minimizes squared
deviations it places a relatively heavy weight on these outliers,
and their presence can lead to estimates that are extremely
sensitive to the presence and wvalues of such outliers. For

example, it is well known that the mean of a sample of n values



from the standard Cauchy distribution is the same as that of a
single observation so consequently even the moments of the
distribution of the mean do not exist. A further feature with this
class of distributions is that tﬁe t- and F-test do not have the
usual asymptotic justification as described. above in Properties
2.1. For example, Logan et al. (1973), (see also Phillips and
Hajivassiliou (1987)) éxamine the asymptotic distribution and
density of the t-statistic in the location model2 when the
observations are a sample from a symmetric stable distribution with
index @, where 0 < @ £ 2. They conclude that:

- the tails of the distribution are Gaussian-like at + «

- if 0 < @ < 1 then the density has infinite singularities

at |1+ xI-a

- for 1 < a < 2 there are finite "bumps" in the density at *1.

These disappear as o approaches 2 as the distribution

converges to the standard Gaussian density.
This thenvillustrates the importance of distinguishing between the
existence and non-existence of the first two moments of the error
distribution, even in the consideration of asymptotic properties.

The finite-sample properties of the t- and F-tests under
various moment assumptions have also received much attention in the
literature. For the t-statistic, interest has focussed primarily
on the location model and the following remarks briefly sketch the
main results to illustrate the magnitudes of the differences when
compared with classical results, The studies were pioneered by
Pearson and Adyantaya (1929) with some ‘empirical investigations on

the size and power of the t-test. Many articles soon followed in

2 Using Equation (1.2.1) the location model is equivalent to
y=p8+ €.
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which theoretical investigations were carried out using the first
four terms of Edgeworth series expansions by authors such as
Bartlett (1935), Gayen (1949) and Srivastava (1958), and similarly
using Laguerre polynomials and gamma. density functions by Tiku
(1971). It was concluded from these studies that if there is only
a moderate departure from the normal distribution then the effect
on the properties of the t-test is negligible. Bondesson (1983)
establishes that if the distribution function has finite moments of
all orders and if the t-test statistic is distributed as central t
with N-1 degrees of freedom under the null hypothesis for all
sample sizes N > 2, then the distribution function is normal.
However, these results depend on the existence of moments of
the parent population up to a certain order. Unfortunately for
many parent populations such as the Student-t with small degrees of
freedom, these procedures either fail or do not work well. Yuen
aﬁd Murthy (1974) perform a Monte Carlo experiment to determine
percentage points for the t-statistic when the parent population is
Student-t with v > 3. They suggest the following approximation:

{1-2.08-1.18 log size %)

=t Nv

where t is the t-statistic for a parent Student-t family with v > 3,

ty-1 is the classical normal t-statistic, and log a% assumes the
values 0, 0.7, 1.0 corresponding to size a% of the test equal to 1,
5, 10 respectively. This implies that the ¢t statistic is
conservative, that 1is, the size of the test is smaller than it
would be under normality, whenever the value of the ratio is less
than 1. More generally, this result is believed to hold for all
long-tailed parent distributions (see, for example Cressie (1980),

Johnston (1978) and Efron (1969)). However, Benjamini (1983) claims

that this is too broad a statement and using various criteria for
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long-tailedness proves that the t-test is conservative but only for
large enough critical values.

Results on the performance of the F-test in the 1linear
regression model (e.g. Schrader and Hettmansperger (1980)) suggest
that it is moderately robust with respect to the size of the test
but loses power rapidly even in the presence of small departures
from the normality assumption of the errors.

The model of interest in this thesis when both conditions
(i) and (ii) from Section 2, Chapter 1 are relaxed is the limited
information linear simultaneous equations model. In this case the
asymptotic distribution of estimators such as OLS, TSLS and the LVR
are well known to be normal under certain conditions (e.g. Theil
(1971, p.505), Bowden and Turkington (1984, p.26)). However,
although the finite-sample properties of these estimators have
attracted a great deal of attention in recent years, there are few
published results available on the effect of nonnormal
disturbances. Knight (1985b, 1986) analyzes the effect of nonnormal
disturbances on the moments and distribution of OLS and TSLS
estimators by applying results of Davis (1976). Although it is
concluded that nonnormality has little effect, the analysis is very
limited in the sense that all common nonnormal distributions are
excluded. Therefore it is only valid for very small departures
from normality. Raj (1980) considers four alternative forms of two
parameter normal and nonnormal error distributions and reports on a
Monte Carlo study of the small-sample properties of estimators
including OLS and TSLS. On the basis of 1,000 replications of
samﬁle size 20, in two experiments on an overidentified model, it
is found that the small-sample rankings of the estimators of both

structural coefficients and forecasts of endogenous variables,
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according to parametric and nonparametric measures3 of biasg,
dispersion and dispersion including bias do not change for any of
the four error distributions, This study, too, has its
limitations, particularly in thé error distributions which are
chosen so as to satisfy the existence of the first two moments. A
similar study was also carried out by Donatos (1989) and reached
similar conclusions,

This section has reviewed several properties of the
traditional Gaussian-type statistics in both the general linear and
linear simultaneous equations model under a variety of nonnormal
distributions. Therefore the question posed at the beginning of
this section can now be answered. In the linear regression model
the answer is clear-cut, In this model two results, mnamely
Properties (i) and (i1i) are often used to justify the use of least-
squares statistics under conditions of mnonnormality. However,
these properties require the existence of the first two moments
of the parent distribution, and if this condition is not met the
least-squares statistics can have wvastly different properties.
Even if they do hold, the finite sample properties of the usual
inference procedures may be substantially different from those
under the classical assumptions. Further, the ‘class of 1linear
estimators tends to be drastically restrictive as its members
generally are asymptotically inefficient relative to many
non-linear estimators. Although very little analysis has been
carried out on the linear simultaneous equations model, similar
comments can be made. In particular, the traditional estimators

such as OLS, TSLS and the LVR are in general asymptotically

Nonparametric measures were used as there exist few
results on the existence of moments for nonnormal situations.
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inefficient. Consequently, these results have led to the
development of other estimation techniques, which is the topic of

the next section.

7.3 ROBUST ESTIMATION TECHNIQUES

Are there estimators that are not much worse than least
squares when the disturbances are normal but considérably
better for nonnormal distributions?

Judge et al. (1985) recommend that if a priori information
about the likely form of a nonnormal distribution exists, then
because of its known desirable asymptotic properties maximum
likelihood estimation should be wused. Otherwise, a robust
estimation technique should be used. Robust estimators are
independent of a distributional assumption on the errors of the
model and are "robust" in the sense that they are reasonably
efficient irrespective of the form of the underlying distribution.
These estimation techniques have been used since the nineteenth
century especlally in astronomical calculations (see, for example,
Stigler (1973)). Although initially most attention was focussed on
the location model, recently there have been developments which are
relevant for both the linear regression and linear simultaneous
equations models. The rest of this section will only briefly
outline the three major classes of estimators in this area as there
are excellent reviews in the literature. These include Mosteller
and Tukey (1977), Huber (1972, 1973, 1977, 1981), Bickel (1976),
Koenker (1982) and Koenker and Bassett (1978, 1982). The three
classes of estimators are the M, L and R estimators.

The M estimators are also known as "maximum-likelihood like"
estimators. Suppose the errors of the model are iid with pdf f(et)

and are symmetrically distributed about =zero. The first order



condition of the log likelihood equation for the unknown vector f
is,

N x%f’(yt-xéﬂ)
PN —f?*—j—r—j— = 0 (3.1)
g=1 T X

However, if the density function is unknown then this equation
cannot be solved. An M-estimator is found by replacing £’ /f with
another function . For robust estimation this function is chosen
so that outliers are weigﬁted. less heavily than in the least
squares solution. The scale factor o has also been introduced into

this estimation technique, One method is to solve the equation

N Ve ¥t
b) X;¢ ——| =0 (3.2)
t=1 v
where o 1s a robust scale estimator of a. Another approach,

however, is to set up a "pseudo maximum-likelihood estimator" for
both B8 and o (see, for example, Huber (1981)).

The asymptotic properties of M-estimators have Dbeen
investigated by authors such as Huber (1973, 1981) and Yohai and
Maronna (1979), If, in addition to some mild conditions on ¥ and

F, it is assumed that

W [ plepar =0
f‘oo 2
(ii) w(et) dF < o

(iii) 1lim N-l(X’X) = Q is positive definite,

A

then the corresponding M-estimator, say BM, is consistent and

Vi8-8 S N{o,oz(w,m'l] (3.3)

where
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Iw Y(e,) dF

- 00

Uz(lb,F) -

o 2
| ¥ (eper
-

In the location model L-estimators are simply estimators
which involve linear combinations of order statistics, where the
order statistics are defined as the observations ordered, in
ascending order, Equivalently L-estimators can be regarded as
linear functions of the sample quantiles. The definition of
L-estimators on the basis of sample quantiles has been extended to
the linear regression model by Koenker and Bassett (1978). This
definition was used because the usual concept of order statistics
is mno longer adequate in the regression model, because what
constitutes an appropriate ordering depends on the vector 8.

In the linear regression model the #th sample quantile, 0 <

§ <1, is defined as any solution to the minimization problem:

min p) 0|y -x.B] + = (1-0) |y x| - (3.4)
B Lit/y 2xi8) (t/y<x(pB)

Koenker and Bassett (1978) have established a number of properties
of the estimators that are solutions to (3.4).

The rth-trimmed mean estimator in the Llocation model is
defined as

(1)
-2r (3.5)

=z

i=-r+1
where y(i) are the order statistics. Ruppert and Carroll (1980)
and Koenker (1987) discuss alternative estimators based on sample
quantiles say BTLS which, asymptotically, behave similarly to the
rth-trimmed mean estimator, That is, under appropriate conditions

they show that
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VR (B -B) g N(O,oz(rF)Q'l] (3.6)

where az(r,F) denotes the asymptotic variance of the corresponding
_rth- trimmed mean from a population with distribution F.

When 4§ = 0.5 in (3.4), the corresponding estimator is
defined as the least absolute deviations estimator. This estimator

is also a ﬂTLS estimator and in this case (3.6) (Koenker and

Bassett (1982)) reduces to
(-8 $ 1[0, 1260001 707 (3.7)

where £(0) is the value of the density at the median. This implies
that the least absolute deviations estimator is asymptotically more
efficient than OLS for all error distributions where the median is
superior to the mean as an estimator of location., Amemiya (1982)
and Powell (1983) have extended this estimator to simultaneous
equation models,

R-estimators, proposed by Jaeckel (1972), are based on a
ranking of the residuals in linear models. He wrote the regression

model as

y =B +XBF+u, (3.8)
where X is the usual regressor matrix except for the column of 1l's
and p* is the usual coefficient vector except for the intercept
term. Jaeckel estimator maximizes

D(y-Xb¥) = u [Rt-ggl](yt-x%b*) , (3.9)
t=1

where Rt = rank (yt—xéb*). Jaeckel proves that D is a nonnegative,
continuous and convex function of b* and that his estimator is

asymptotically normal with mean B* and covariance matrix,
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1 )-1
A% [I-i]x (3.10)

where 72 is T%[f fz(u)du.]-2 and 1 is a column of 1's.

A number of Monte Carlo experiments have compared the
performance of robust estimators to the OLS estimator in a variety
of nommormal iid distributions. Using the location model Andrews
et al. (1972) reports a Monte Carlo study of 68 robust estimators.
Their study shows that the performance of the sample mean is
clearly inferior for heavy tailed distributions. Similar studies
have been carried out by, for example, Hill and Holland (1977),
Forsythe (1972), Koenker (1987) and Ruppert and Carroll (1980), for
the regression model. These studies have indicated that the
particular choice of robust estimator to use depends upon the
assumed distribution. Therefore, Amemiya (1985, p.75) concludes
that in choosing an appropriate robust estimator, a preliminary
study is required to narrow the range of distributions that the

given data are supposed to follow,

7.4 MULTIVARIATE ELLIPTICALLY SYMMETRIC DISTRIBUTIONS

In recent years in the econometric literature, to broaden
the assumption of nonnormality in the linear regression model, it
is assumed that the error components follow a joint multivariate
elliptical distribution, as defined in Chapter 2; see also Muirhead
(1982). The objective of this section is to review the results in
the literature that have been obtained under this assumption.

Thomas (1970) looks at the univariate general linear model
y = Xp+e, where X is a nonstochastic design matrix and € has a

spherically symmetric distribution. He shows that the usual t- and
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F-statistics used for B have unchanged null distributions for this
wider class of spherically symmetric laws and he also gives
expressions for the mnon-null distributions. Zellner (1976)
considers the problem for multivafiate Student-t errors, a special

A

case, and shows that B is a maximum likelihood estimator for g and,
furthermore, that ; is a maximum likelihood estimator for B for
all 1likelihood functioné which are monotonically decreasing
functions of (y-XB)’ (y-X8). He further adds that if second moments
exist, then ; is a minimum variance unbiased estimator. He also
presents the corresponding Bayesian analysis. With a diffuse prior
probability density function it is found that the joint posterior
distribution for the regression coefficients is in precisely the
same multivariate Student-t form as arise from the usual normal
model. However, the posterior distribution for the scale parameter
is in the form of an F-distribution whereas in the normal model it
has an inverted gamma density. He also presents a mnatural
conjugate prior. Extensions to this result have been considered by
Jammalamadaka, Chib and Tiwari (1987, 1988).

The methods used to obtain results for the wunivariate
regression model have been mechanized routinely to give the
distribution theory for the multivariate regression model. For
example, Sutradhar and Ali (1986) consider the multivariate

regression model defined by,

Y=p8X+¢€, 4.1)

where Y is the (pxN) matrix of dependent variables, B8 is a (pxk)
matrix of unknown parameters to be estimated, X is a nonstochastic

matrix of order (kxN) and e = (e1 R 4 .. € an error variable

j ' N);

where ¢ € .) each with covariance matrix X. The

g 7 (e

probability density function of ¢ is given by the multivariate-t
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distribution,

v
(V-Z)ZF[VZNP] N N V+Np]

pdf(e) = —5 =] 2{(V-‘2) + = eaz'le.} [ 2

(g e

They show that the ordinary least squares estimator of g is

(4.2)

unbiased and weakly consistent. Using the method of moments, they
also consider the consistent estimation of v, for v > 4, Singh
(1987) also considers this problem in the univariate regression
model.

Andrews and Phillips (1987) consider optimal median-unbiased
estimation in a linear regression model with the distribution of
the errors lying in a subclass of the elliptically symmetric
distributions. The generalized least squares estimator is shown to
be best for any loss function that is nondecreasing as the
magnitude of underestimation or overestimation increases. For the
same loss functions, a restricted generalized least squares
estimator 1s shown to be best when the estimator is known to lie in
an interval. The class of error distributions that is considered
are rotated variance mixtures of multivariate normal distribu-
tions,

The properties of a number of statistical tests have also
been examined by, for example, King (1979, 1980), Ullah and
Phillips (1986), Sutradhar (1988), Ullah and Zinde-Walsh (1984,
1985, 1987) and Anderson, Fang and Hsu (1986).

King (1979, 1980) establishes the result that statistics
which are inQariant to the scale of the disturbances have the same
small sample distributions as they do under normality.

In the special case of multivariate-t errors, Ullah and

Phillips (1986) analyze the distribution of the F-ratio for testing
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a set of linear restrictions and in particular derive its non-null
density function. Sutradhar (1988) also examines this problem and
calculates the power of the test for a particular set of exogenous
variables. In this case the powér of the test depends upon the
degrees of freedom parameter, which is assumed known.

In a series of papers, Ullah and Zinde-Walsh (1984, 1985,
1987) consider the F, Likelihood-Ratio (LR), Lagrangian Multiplier
(LM), Wald (W) and Rao-Score (RS) tests for testing a set of linear
restrictions. They describe these statistics as Dbeing

numerically robust over a class of error distributions if their

values are independent of the specific error distribution from that

class, and inferentially robust if no matter which error

distribution from that class of distributions is considered the
test statistics remain unchanged. Using these criteria, they show
that if the error disturbance is assumed to be spherically normally
distributed, F and LR are numerically robust against the class of
all monotonically decreasing continuous spherical distributions,
but RS and W are not. However, all these statistics are
inferentially robust over this class so that the test conclusions
reached under the assumption of normality will not be overturned if
the error distribution is spherical, They also extend these
results based on the assumption of spherical normality against the
general class of elliptical error distributions. In particular,
they obtain conditions for numerical robustness for the class of
covariance matrices often used in econometrics such as in
autoregressive, moving average and heteroskedastic models. Their
investigations show that for these covariance matrices the
numerical robustness of test statistics under consideration is rare

and they develop bounds for critical values which ensure that the
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conclusions based on the wusual tests are mnot affected by a
particular class of distributions,

Anderson, Fang and Hsu (1986) obtain 1likelihood ratio

criteria for a class of null hypotheses for
monotonically-decreasing continuous elliptically contoured
distributions.

The topic of spherical matrix distributions and a
multivariaté model has been studied by many authors, among whom are
Dawid (1977), Fraser and Ng (1980), Jensen and Good (1981), Kariya
(1981), Eaton (1983) and Sutradhar and Ali (1986).

Stein (1955) shows that in higher dimensional problems, the
sample mean of a multivariate normal distribution is inadmissible
against expected squared error loss. This result was extended and
analyzed for the wvector of regression coefficients when the
disturbances are distributed normally by James and Stein (1961) and
Brown (1966) and they show the inadmissibility of the OLS estimator
for greater than two regressors, Because of this deficiency,
Stein-type improved estimators have been developed (see Judge
et al. (1985, p.82)). Recently, several authors have extended the
analysis to include spherically symmetric disturbances. These
include, Strawderman  (1974), Berger (1975), Brandwein and
Strawderman (1978, 1980), Brandwein (1979), Judge et al. (1985),.
and Judge and Yancey (1986). Judge and Yancey (1986, p.271)
conclude that, "in general, the risk characteristics for
traditional Stein-like estimators for the nonnormal errors were
found to be the same as for the normal case". The Stein-type
estimators have been shown to be another type of pretest estimator
for combining the unrestricted and restricted least-squares

estimator (see, for example, Judge et al. (1985, p.86)). Giles
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(1990) has derived some results on pretesting with models whose
errors are assumed to be normally distributed but, in fact, follow
a spherically symmetric distribution.

Knight (1986) considers tﬁe compound normal distributions
which are contained within the elliptically symmetric class, in a
simultaneous equation framework. In particular he establishes the
result that the OLS and TSLS estimators in the leading case are
robust to this class of non- normal distributions. This implies
that the estimators possess the same moment results as under the
normality assumption. Using the techniques of Ullah and Phillips
(1986) and Giles (1990) the results of Chapter 5 could be extended
to consider the distribution of these estimators in the general
case under the assumption of multivariate-t errors.

The results reviewed in this section suggest that by
replacing the normality assumption with the assumption that the
regression disturbances follow a multivariate elliptically
symmetric distribution in the linear regression model, the
resulting distributions possess properties which make them
analytically tractable and, further, in many cases identical to
those obtained wunder the normality assumption. However, the
marginal distributions of the disturbance terms from this
assumption are identical to those when it 1is assumed the
disturbances are distributed identically and independently
elliptically symmetric and, in this case, the results of Sections 2
and 3 are applicable. The differences in the results reviewed in
Sections 2, 3 and 4 suggest it is important to distinguish between
multivariate and 1id elliptically symmetric distributed
disturbances. The importance of this distinction is discussed

further in the next section.
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7.5 JOINTLY DISTRIBUTED VERSUS INDEPENDENT DISTURBANCES

It is well known that within the class of elliptically
symmetric distributions, independence when the covariance matrix is
diagonal, characterizes the normél distribution (see Chapter 2).
The bivariate normal distribution with covariance matrix and
location vector =zero is 1illustrated in Figure 5.1. = The
corresponding bivariate joint-Cauchy distribution is illustrated in
Figure 5.2. This distribution has a "bell-shape" similar to that
of the bivariate normal distribution. However, the
independent-Cauchy distribution, as given in Figure 5.3, has a
rather different shape, especially in the tails. These features
are also reflected in the reviews of Sections 2, 3 and 4 of this
Chapter., 1In particular, Section 4 illustrates the robustness of
many Gaussian statistics when disturbances are distributed
multivariate elliptically symmetric. However, the properties of
these statistics when the disturbances are independently
distributed (Section 2), has led to the development of a wide range
of alternative methods (Section 3).

Consequently, when it 1s assumed the disturbances are
nonnormally distributed, it is important to distinguish between
"jointly-distributed" and "independently-distributed" disturbances,

as they 1lead to quite different estimation and inference

techniques. This problem is similar to distinguishing between
"heteroskedastic versus homoskedastic disturbances" or
"autocorrelated versus serial-independent disturbances". However,

while it is standard in virtually every econometric textbook to
study the implications of misspecifying "heteroskedastic and
homoskedastic  disturbances" or  "autocorrelated and serial

independent disturbances", it would seem that the article by
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FIGURE 5.1 BIVARIATE SURFACE FOR SPHERICAL NORMAL DISTRIBUTION
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FIGURE 5.2 BIVARIATE SURFACE FOR JOINT SPHERICAL CAUCHY DISTRIBUTION
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FIGURE 5.3 BIVARIATE SURFACE FOR INDEPENDENT SPHERICAL CAUCHY

DISTRIBUTION
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Kelejian and Prucha (1985) 1is the only one which attempts to
address this issue for misspecifying "jointly-distributed" and
"independently-distributed disturbances”, In this paper they
consider this issue using the Stﬁdent-t distribution. This is an
important nonnormal distribution as it is considered that it is a
reasonable way of modelling tails that are fatter than those of the
normal distribution, (see e.g. Jeffreys (1961)), and this is
relevant for many economic data series such as prices in financial
and commodity markets, (see e.g. Judge et al. (1985, p.825), and
the recent paper by Lange et al. (1989)). 1In particular, Kelejian
and Prucha (1985) compare the asymptotic properties of the maximum
likelihood estimators of the linear regression model, when the
disturbances are assumed either to be distributed multivariate
Student-t with v > 3 (uncorrelated disturbances) or iid Student-t
with v 2 3 (independent disturbances). In this example, if the
disturbances are assumed to be independent when they are only
uncorrelated, and the regression parameters are correspondingly
estimated, the estimator of the variance-covariance matrix is
inconsistent. On the other hand, if the disturbances are
independent, but they are only assumed to be wuncorrelated,
efficiency is lost and inferences are based on an incorrect large
sample distribution. Further, the efficiency loss is substantial
for certain parameter values.

The objective of the next three chapters is to extend this
analysis to finite-sample differences between the two alternative
assumptions for the entire Student-t family (i.e. v 2 1). Given
the extent of the existing literature in the dependent case, most

attention is given to developing properties of maximum likelihood

statistics in the independent case. These include, for example,
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the estimation of wvariance (if it exists), the shape of the
distribution function of the statistics and their relationship to
the robust estimators of Section 3.4 Once these properties are
established, we examine the statigtical consequences of using the
maximum likelihood estimator associated with one assumption, when
in fact the other assumption is true. Further, because properties
of the maximum likelihood estimator for iid Student-t disturbances
are compared with a number of robust estimators, %e can also see
the statistical consequences of making one error assumption over
the other when a more general robust estimator is used. Chapter 7
concentrates solely on the location model. Chapters 8 and 9 extend
these results to both the 1linear regression model and the
exactly-identified limited-information SEM.

Since the distinction between the two assumptions is
important, specification tests need to be developed to make this
distinction. This topic is also discussed in the following
chapters. In particular, tests are developed which make this
distinction in the elliptically-symmetric class of distributions
and which use existing tests for normality. The properties of such

~ tests are illustrated for the Student-t family.

A.The comparison with the robust estimators is only carried
out for the location-scale and linear regression models. This is
because the theory of general robust estimation techniques is not
well developed in 1limited- information SEMs, (see e.g. Powell
(1983)).
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CHAPTER 8

THE LOCATION/SCALE MODEL WITH STUDENT-t OBSERVATIONS

8.1 INTRODUCTION

The topic of the next three chapters is the statistical
comparison of the maximuﬁ likelihood estimators of the wunknown
parameters in the linear regression and limited-information SEM’s,
when it is assumed the disturbances are distributed either as iid
Student-t or multivariate Student-t. This problem is similar to
the comparison of alternative assumptions in econometric models,

such as autocorrelation  versus serial independence, or

heteroskedasticity versus homoskedasticity, which are standard

analyses in all econometric textbooks.

The analysis begins in this chapter with the location-scale
model, which is the simplest case of the linear regression model,
This refers to the estimation of location g, and scale o, in the

model,
Yy = B tu i=1...N (1.1)

where if it is assumed that u1 e uN have a multivariate Student-t

distribution then

2
F[%}(VN)N/ZUN

or, alternatively, if it is assumed that the elements of u, are iid

N+v
F[V+N ] S| ==

pdf(u1 e uva,O

o) [1+ 1 (uz+...+u§)] (1.2)

distributed as,
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F{V+l J
pdf(u, |v,0,07) = 14—-u2] (1.3)

F[%](Vﬂ)l/za vo’ '

then the joint distribution of the disturbances is,

N v+1
v+l —[———
2 '\ Nroo1 oo V20
pdf(u; ... u|v,0,0%) = I [1+—= uf. (1.4)
F[X}VGE o =1 vo
2

Section 4 of Chapter 7 reviews finite-sample properties of

the maximum likelihood estimators when the joint distribution of

the disturbances is given by (1.2). These properties include:

Properties 1.1

(1)

(i1)

(iii)

(iv)

(v)

A

EoLs’ the sample mean, is the maximum likelihood estimator
of p.

(MOLS - pn)/o is distributed MTl(O,l/N,v).

Fors is the MVB estimator and therefore also the BLUE when
v 2 3.

A

Fors is median-unbiased, is at least as concentrated about pu

as any other median-unbiased linear estimators and is "best"
for any monotone loss function (that is, any loss function
that is non- decreasing as the magnitude of underestimation

or overestimation increases), for all v,

For v > 3, an unbiased estimator of scale is,

1
2

A

g = 'B—(%]""V_)[Z(yi'u)z] )

where B(N,v) is an adjustment factor, which depends upon

N and v.
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However, when the disturbances are jointly distributed as (1.4) the
corresponding properties of the maximum likelihood estimators are
not known. In this chapter they are developed by using properties
of order statistics. Using order‘statistics, Lloyd (1952) derives
the exact generalised BLU estimators of p and o. These estimators
are compared with the maximum likelihood estimators and from this
comparison similar properties, such as those in Properties 1.1 for
multivariate Student-t disturbances, are developéd. Once these
properties are developed, the statistical consequences of making
one error assumption over the other are discussed.

Section 2 reviews Lloyd’s (1952) BLU estimators, using the
order statistics of the sample. Section 3 considers properties of
the maximum likelihood estimators with independent Student-t
observations. This section is divided into a number of parts,
including discussions of the numerical maximization of the
log-likelihood function, the asymptotic distribution and the
finite-sample distribution of the maximum 1likelihood estimators.
Section 4 considers the statistical consequences of making one
error assumption over the other in the 1ocation—§cale model; and

Section 5 concludes with some final comments.

8.2 LLOYD'S BEST LINEAR UNBIASED ESTIMATORS

Suppose the uy in the location-scale model of (1.1) are iid

such that

yi'”

g

pdf(ui) = % pdf[ ] , o> 0.

For this family of distributions, using order statistics, Lloyd

(1952) obtained the unbiased and minimum variance estimators of
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location and scale, within the L-class of robust-estimators
(Chapter 7). These estimators are defined as follows. Suppose the

"ordered" location model is,

y(i) = U + ou

(1)’
where (i) denotes the order statistics of the sample (that is, the
observations of the sample are arranged in ascending ordet),‘then

using formulae for the means, varilances and covariances of order

statistics as given by David (1970, pp.25-30),

o) me 0 varagy ) - o
Since u(i) = [y(i) - u]/a, this implies that

2
T R S A Y

Lloyd’s BLU estimator is obtained by rewriting (1.1) as,

=g + o, + ou (2.1)

V(i)

a
(1)’

a a

so that, E(u(i)) = 0, and var(u

(i)’u?j)) = ﬂij’ and then applying

Generalized Least Squares to (2.1) to obtain,

fs - (x'n'lel(x"n'ly) ,

where

(2] o b xo Bl o e b

LB

and 1 is a column of 1'’s, For symmetrical parent populations the

formulae become,

] =1'0'1Y g Ul
LB~ gL

(2.2)

o'l T«

with variances,



2 2 2
—— , var(o, ) = ———a—
1’0'11 LB 1'0 a

g

var(u ) = (2.3)

This is shown in David (1970, p.10a). In particular, the BLUE for

-1

4 corresponds to the sample mean iff 1°Q = 1, or equivalently,

iff all of the rows of the covariance matrix add to unity.

Bondesson (1976) proves that the sample mean is BLUE iff the

underlying distribution is either normal or the gamma distribution.

For the Student-t distribution with iid observations, a

number of results for the calculation of the BLU estimators in

(2.2) are used in the following sectlons. These results are:

(1)

(ii)

(iii)

For sample sizes less than 20, these estimators can be:

calculated when v > 2 wusing the means, variances and
covariances of the order statistics calculated by Tiku and
Kumra (1985).

Jung (1962) considers the asymptotic distribution of these
estimators when v > 2. 1In particular, he shows them to be
consistent, asymptotically  normally distributed  and
asymptotically efficient.

For the Cauchy distribution (for which the means, variances
and covariances of the order statistics are calculated by
Barnett (1966)), and the t2-distribution, some care is
needed in obtaining the BLU estimators, as the extreme order
statistics have infinite variances. However, in this case,
the standard expressions (2.2) are used, by assuming the
coefficients of the extreme order statistics are zero. For
the Cauchy distribution, these are the first and last two

order statistics of the sample, and for the t,-distribution,

2
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the first and last order statistic. Asymptotically these
estimators are consistent and asymptotically normally

distributed, since as N &> «, the order statistics Y

for rj = PjN with 0 < Pj <1, j =1, ..., K, are

asymptotically multivariate normal (see, for example, Cox

and Hinkley (1974, p.469)).

8.3 MAXIMUM LIKELIHOOD ESTIMATORS FOR INDEPENDENT STUDENT-t

OBSERVATIONS

This section is divided into four parts. The first part
defines the maximum likelihood estimators for both p and o, and
since analytical expressions do not exist for these estimators in
general, the numerical maximization of the likelihood function is
also discussed. Parts 2 and 3 concentrate on the distribution
function of the maximum likelihood estimators. Part 2 considers
the asymptotic distribution and Part 3 develops properties of the
finite-sample distribution. Finally, Part 4 summarizes the results

of this section in a form similar to Properties 1.1.

(a) Definition

Let u u. be a random sample with joint distribution

1 N
function given by (1.4). The log-likelihood function is given by,

N
£ = constant + (-N+v+l) log o - [Y-ﬂ] % log[vaz+(yi—u)z}. (3.1)

2 )i

If v is specified and both g and ¢ are assumed unknown then the
first order conditions for the maximum likelihood estimators are

given by the equations,
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N Y. -4
%y 0y (3.2)
ap 2 2
i=1 vo +(yi-u)
N 2vo
9€  -N+v+l - v+l 3 — 3 = 0. (3.9)
do o 2 i=1 vo -(yi—u) )

Ferguson (1978) finds closed-form expressions for the
solutions to these equations for the Cauchy distribution when the
sample size is 3 or 4, However, in general, this is not possible
and the maximum likelihood estimators must be obtained by numerical
methods. Copas (1975) shows that the joint likelihood function for
the Cauchy distribution has exactly one point of maxima and at most
one stationary point. This result has been extended to the
tv-distribution in general by Gabrielson (1982). This implies that
the maximized likelihood function for given degrees of freedom is
unimodal and that numerical maximization of (3.1) produces the

global maximum likelihood estimators, and these will be denoted Pyl
) 1
and Oy,

(b) The Asymptotic Distribution

While the existing literature contains results on the
asymptotic distributions of some specific members of the Student-t
family (for example, Haas, Bain and Antle (1970) and Norden (1972)
for the Cauchy distribution and Kelejian and Prucha (1985) for v 2>
3), none of these authors considers the Student-t family as a
whole. However, it is easy to generalise their results as in the

following theorem:

Alternatively, although not considered in this thesis, o
can be assumed to be known in (3.1). In this case, Barnett (1966)
shows that (3.1), for the Cauchy distribution, will often have
multiple roots. This argument can be extended to the
tv-distribution in general,
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Theorem 3.1
There exist solutions Pyt and oML of the 1likelihood
equations (3.2) and (3.3) such that
(1) Py, and Oy, &re consistent estimators of px and o
respectively.

A A .
(ii) Vﬁ[uML-u,aML-a] is asymptotically bivagiate normal with

I I -1
. . 1 12
vector mean zero and covariance matrix where
2 In Ia2
3£

I - -E[
3 36 06
i J

(CRLB). In this case we have,

T =

1
2 2
o

pdf’ (y)]? ~(v+1) 1
[ pdf(y)] pdf{y)dy = (m]

Q

8 — 8

and 112 == 121 = 0,

A

(1ii) P, and oML are asymptotically efficient in the sense that

VN[;ML-p] b, N[O,Ii}] (3.4)

Proof:

The proof of the theorem follows by considering the

combination of the following two points:
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(1) There exist linear combinations of order statistics that are
estimators of p and o, as given in Section 2, which are
consistent and asymptotically normally distributed.

(2) If ; is a consistent estimétor of § such that Vﬁ(;-ﬂ) has a
proper limit distribution, the second round estimator is
asymptotically normally distributed and asymptotically

efficient. Details of the argument on which this result is

based are given in Appendix B.

Therefore, by beginning the numerical maximization process
with the estimators given in (1), since the likelihood function is
unimodal, the resulting estimators are the maximum 1likelihood
estimafors and from (2) are consistent, asymptotically mnormally

distributed and asymptotically efficient.

(c) Finite-Sample Distribution

In this section members of the Student-t distribution are
divided into two <cases, those where the <variance of the
disturbances is finite (v > 2), and those where it is infinite (v £
2). In each of these cases the variances and probability density
functions of the standardized maximum likelihood and Lloyd's BLU
estimators of location, (;-u)/a, and scale, ;/a, are estimated for
various sample sizes and degrees of freedom, as Antle and Bain
(1969) have shown that these distributions depend only on sample
size. Figures 3.1 - 3.4 and a number of entries in Tables 3.1 - 3.2
are based on the results of Monte - Carlo experiments. Details of
these experiments were given in Chapter 4, but they will be briefly
outlined here for completeness. Empirical variances of (;ML - pw/o,

A

(Table 3.1), and empirical biases and variances of UML/U are
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estimated using 40,000 - 60,000 replications. Empirical densities

of,

aML/a, ULB/U, (Figure 3.3), were estimated via the integration of

(”ML - w/o, (”LB - p)/o, (Figures 3.1 - 3.2, 3.4 - 3.6), and
the kernel density estimator with the naive Monte Carlo method.

The kernel estimate at point X is equal to,

A 1
h(N*)

where k[.] is the standard N(0,1l) density. The window width h(N%)

is chosen using the interactive approach of Tapia and Thompson

(1978). In all cases this approach led to the use of a window width

between 0.02 and 0.09. N* is simply the number of replications in
the simulation experiment, and 1is chosen using the bound of

estimation. For example, the results of Parzen (1962) and Cacoullos

(1966) imply,

1

- A A
[N*hm(N*))z[pdf(x) - E[pdf(x)]] ~ N[o,pdf(x)fxﬂ (3.6)
holds. The result given in (3.6) <can be achieved if
1
(N*hm(N*)JZBias[pdf(x)] tends to zero asymptotically since,

[N*hm(N*)]E[paf(x) - pdf(x)] [N*hm(N*)][paf(x) - E[paf(x)]]

1
+ (N*hm(N*)]zBias[pdf(x)].

Ullah (1988, p.642) shows that Bias[pdf(x)] is proportional to

(4+m) /2

hZ(N*). This implies that if N#h (N*) tends to zero

asymptotically then (3.6) holds. Therefore, for the normal kernel
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—l—exp(-gyz), the 997 asymptotic confidence interval for pdf(X) is
Vix
given by,

N1

pdf(X) + 2.58 PEHQQQJ ,

2N*hvr

so that B is given by,

N

_ pdf (X)
B 2‘58[2N*h(N*)w]

N* is varied until B is less than 0.01 for all points at which the
density is estimated. In all experiments, N¥% varies between 60,000
and 90,000 replicationsz. The input of Xj in (3.5) involves
numerically maximizing the likelihood function (3.1) to obtain the
maximum likelihood estimators and calculating (2.2) to obtain the
BLU estimators. Two algorithms from the Harwell Subroutine library
are used, these being algorithms VAI3AD and VFO4AD, which both use
the BFGS formula, (Broydon (1970), Fletcher (1970), Goldfard (1970)
and Shanno (1970)). All computations are performed in double
precision to 7 decimal places of accuracy. The final results,
however, are not dependent upon which algorithm is used in this
step. Furthermore, the solutions of each of the algorithms used
were compared with those in the standard Econometric packages TSP

and SHAZAM, and were found to give similar results. Random numbers

2Empirical densities were also computed using the
Epanechnikov  (1969) kernel. However, given the number of
replications used, the results proved not to depend on which kernel
is used. This situation is similar to the comparison of different
kernels for the Cauchy distribution using a "large sample", as is
illustrated in Figure 5.1 in Chapter 3.
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distributed uniformly on the interval [0,1], denoted U, are
generated using the NAG subroutine GOFCAF, which wuses a
multiplicative congruential method. Standard iid Student-t
variates, for degrees of freedoﬁ v < 3, are generated by the
inversion of the distribution function (see, for example, Devroye
(1986, p.27)). 1In particular, for v = 1, the Cauchy distribution,

standard Cauchy variates are generated as,
1
X = tan(ﬂ(U-E)]

and for v = 2, the t,-distribution,

2
X = Vf;(U-%)/SQRT[U(l-U)) ,

where U 1is from U(0,1). For the rest of the Student-t family, v 2>
3, X is generated via a transformation of a symmetric beta variate,
(see, for example, Devroye (1986, p.446)). This can be written in

terms of independent uniform random numbers Ul’ U2 as,

2/v-1

2Vv sin (2nU,) (1-U, )
X=
(l—sinz(ZwUl))(l-U;/v-l)

This formula is useful as it is valid for all members of the
Student-t family with v > 3. Also it does mnot require the
generation of as many random uniform deviates as does the
traditional method of generating a t-random variable via its
interpretation as a ratio of a standard normal to the square root
of an independent normalized chi-square variable. Further details

of the Monte Carlo methodology are given in Chapter 4,
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Finite Variance v > 2

Table 3.1 gives the estimated wvariances corresponding to
various v and N for the standardized location estimator. Also
given in this table is the Cramér-Rao lower bound (CRLB) as given
in (3.4). However, this bound is attainable only asymptotically
due to the joint application of the results of Koopman (1936) and
Pitman (1936). The results of Koopman (1936, p.408) imply that a
pair of jointly sufficient statistics for the unknown parameters
exist only for the normal distribution (v = «), Consequently, the
Cramér-Rao lower bound (CRLB) is not attainable in finite-samples
due to the joint results of Koopman (1936) and Pitman (1936) and
summarized in, for example, Theorem 9 of Dhrymes (1970) "if an...
unbiased MVB estimator of 4§ exists, pdf (Yl . YN) admits a set of
jointly sufficient statisties for its parameters..."

However, as indicated in Table 3.1 the empirical variances
are well approximated by applying the asymptotic theory for small v
and N, for example v = 3 and 5 and N = 20, Consequently, in these
cases the maximum likelihood estimator is the MVB estimator. More
generally though, a relationship between the maximum likelihood
estimator and Lloyd's BLU estimator of location can be established
and also given in Table 3.1 are the known finite-sample variances
of Lloyd’'s estimator as defined in (2.3). These variances are the
same as the empirical variances of the maximum likelihood estimator
to at least two decimal places., Figures 3.1 and 3.2 compare the
estimated densities for the two estimators for different v and N,
These results indicate that the maximum likelihood estimator of
location can be regarded as the BLU estimator since their estimated

densities are Indistinguishable from one another.
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TABLE 3.1: The Variance of By g Empirical Variance of ML the CRLB and

the Degrees of Freedom Parameter, ¥, in the Student-t Approximation

for the Distribution of M g and “ML'

N 5 10 20 25 30
v=]
Blue 1.2213 0.3263 0.1820 0.1261 0.0713
Empirical
Variance 1.0160 0.29004 0.16961 0.11884 0.0683
CRLB 0.4000 0.2000 0.1300 0.1000 0.0667
Y 3 6 8 11 16
v=2
Blue # # #* * L3
Empirical
Variance 0.4606 0.1952 0.1233 0.0900 0.0581
CRLB 0.3333 0.1667 0.1111 0.0833 0.0556
¥ 6 11 16 21 0
v=3
Blue 0.3599 0.1634 0.1060 0.0782 0.0541
Empirical
Variance 0.3571 0.1634 0.1057 0.0783 0.0540
CRLB 0.3000 0.1000 0.1000 0.0750 0.0533
¥ 10 15 20 o ©




Table 3.1 continued
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N 5 10 20 25 30

v=5

Blue 0.2916 0.1399 0.0920 0.0683 0.0441

Empirical

Variance 0.28952 0.1393 0.0916 0.0682 0.0441

CRLB 0.2667 0.1333 0.0889 0.0667 0.0440
¥ 24 (2] 0 o] 0

v=10

Blue

Empirical Essentially equal to the CRLB

Variance

CRLB 0.2364 0.1182 0.0788 0.0591 0.0400
Y 0 © 0 0 ©

v=19

Blue 0.2221 Essentially equal to the CRLB

Empirical

Variance 0.2211

CRLB 0.2200 0.1100 0.0733 0.0550 0.0367
Y 00 ) 0 0 )

* Order statistics not available
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FIGURE 3.2 Comparison of Maximum Likelihood, BLUE, and

Student-t Approximation for the Standardized

Location Parameter Corresponding to Different

v and N = 10.
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The distribution of the standardized location estimator is
normally distributed as either v and/or N tend to infinity.
However, for both small v and N the empirical densities indicate
they have tails that are fafter than those of the mnormal
distribution, which suggests approximating them by the Student-t
distribution, The degrees of freedom parameter ‘ in this
approximation, v, is giveﬁ in Table 3.1, and is chosen by matching
the empirical wvariance with the variance obtained from the
Student-t distribution with different degrees of freedom. The
value of vy obtained again illustrates the closeness between the
finite-sample and asymptotic approximations. Some examples of the
approximation are illustrated in Figures 3.1 and 3.2,

Similar properties can be derived for the standardized
maximum likelihood estimator of the sgcale parameter. Table 3.2
reports the bias of this estimator and its wvariance once the
estimator has been adjusted for bias. As for the 1location
parameter, the variance of this estimator corrected for bias will
be above the CRLB (which 1s also given in Table 3.2), although the
empirical wvariances are well approximated by the asymptotic
variances at least for sample sizes greater than 20, and as v
increases for even smaller sample sizes. Therefore in these cases
the adjusted for bias maximum likelihood estimator of scale is the
minimum variance estimator. More generally though, the maximum
likelihood estimator\is closely related to the BLU estimator of
scale as given in Section 2, Table 3.2 gives the known
finite-sample variance of this estimator, as defined in (2.3), and
it is equal to the empirical variance of the maximum likelihood

estimator adjusted for bias to at least 2 decimal places. Figure
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TABLE 3.2: The Bias of ¢

ML’

the Variance of o

LB

~

and the Variance of o

141

ML

Adjusted for Bias.

N 10 15 20
v =1 Bxas(o*ML) 0.0 0.0 0.0
var(@ML)adJ 0.2896 0.1678 0.1175
var‘(U‘LB) 0.4158 0.2070 0.1375
CRLB 0.200 0.1330 0.1000
v=23 BiaS(O‘ML) ~0.0404 -0.0270 -0.0202
var(o‘ML)adJ 0.1155 0.0753 0.0554
Var‘(O‘LB) 0.1231 0.0764 0.0552
CRLB 0.1000 0.0667 0.0500
v =2>5 BiaS(O‘ML) -0.0509 -0.0340 ~-0.0256
Var(o‘ML)adJ 0.0898 0.0579 0.0419
VaI‘(cr‘LB) 0.0913 0.0583 0.0420
CRLB 0.800 0.0533 0.0400
v = 10 BiaS(O‘ML) -0.0612 ~0.0408 -0.0302
Var‘(O‘ML)ad) 0.0709 0.0456 0.0329
var‘(o‘LB) 0.0715 0.0464 0.0338
CRLB 0.540 0.0433 0.0325
v =19 Bias(O‘ML) -0.0684 -0.0455 -0.0336
var(chL)aldj 0.0641 0.0386 0.0302
var(o*B ) 0.0640 0.0390 0.0301
CRLB 0.0579 0.0386 0.0289




S lw ]

DS~

R wiie]

0Ocrog

142

FIGURE 3.3 Comparison of Maximum Likelihood and BLU

Estimators for the Standardized Scale Parameter
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3.3 compares the empirical densities of some cases corresponding to
different v and N. These figures indicate that the maximum
likelihood estimator for scale, adjusted for bias, is essentially

the BLU estimator, as their densities are identical.

Infinite Variance: v < 2

The empirical variances for the standardized maximum

likelihood estimator of the location parameter are given in Table

3.1. By applying the same argument as above, these variances will
be greater than the CRLB. The sample size at which the asymptotic
variance approximates the empirical variances is much larger than
in the finite-variance case. For example, for both v = 1,2, the
sample size needs to be greater than 30.

There are some differences between the BLU and maximum

likelihood estimators. This 1is illustrated for the Cauchy
distribution (v = 1). Table 3.1 gives the known finite sample
variances of the BLU estimator, as defined in (2.3). These

variances are greater than the empirical variances of the maximum
likelihood estimator, and the two converge only asymptotically.
Similarly, Figure 3.4 illustrates the empirical densities for two
sample sizes, N = 5 and 10. These differences imply that for the
infinite variance distributions, the maximum likelihood estimator
is a nonlinear function of the "ordered" sample observations.

The empirical densities can be approximated by Student-t
distributions, although the degrees of freedom parameter, 7y, (as
given in Table 3.1), in this approximation is much smaller than in
the finite-variance case. Some cases are illustrated in Figures
3.4, 3.5 and 3.6 for different sample sizes. This approximation

also indicates that the only difference between the BLU and maximum
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FIGURE 3.5 Comparison of Maximum Likelihood and Student-t

Approximation for the Standardized Location
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FIGURE 3.6 Comparison of Maximum Likelihood and Student-t

Approximation for the Standardized Location

Parameter Corresponding to v = 2 and different N
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likelihood estimators is different variances. This is because the
same degrees of freedom parameter in this approximation is suitable
for both estimators.

Similar properties hold‘ for the standardized scale
parameter. In particular, the maximum likelihood estimator of this
parameter is more efficient in small samples than the corresponding
BLU estimator. This is iliustrated for the Cauchy distribution in
Table 3.2. Further, for these sample sizes the variance of the
maximum 1likelihood estimator is not approximated by the CRLB.
Finally, it 1is interesting to mnote that for the Cauchy
distribution, the maximum likelihood estimator is unbiased. This

estimator only becomes biased as v increases,

(d) Summary of Properties

To complete this section, the results obtained are

summarized in a form similar to Properties 1.1

Properties 3.1

A A

(i) Py, and Oy’ the joint solutions to (3.2) and (3.3) are the
maximum likelihood estimators of p and ¢ respectively.

(ii) The distribution of (;ML-p)/a can be approximated by a
Student-t distribution with v degrees of freedom, where 7 is
given in Table 3.1. As sample size tends to infinity, so
too does 7.

A
(iii) For v > 2, Pyl has the same distribution as Lloyd's BLU

A
estimator, p. Even for small v and N, these estimators can

be regarded as being the MVB estimator, since their variance

is well approximated by the CRLB,
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A

(iv) For v £ 2, By, is a nonlinear estimator that 1is more
efficient than Bip-

A

(v) For v > 2, the distribution of Oy’ adjusted for bias, can
be approximated by Lloyd’s BLU estimator 9B For v £ 2,
Iy, adjusted for bias, has smaller variance than OB

8.4 JOINT VERSUS IID STUDENT-t DISTURBANCES

To assess the importance of developing specification tests
to distinguish Dbetween the assumption of Jjointness versus
independence, it is necessary first to consider the consequences of
misspecification, Therefore, the topic of this section is the
statistical analysis of the properties of the appropriate estimator
to use under one assumption, when the alternative assumption is
actually correct.

Throughout this section, the superscripts I and D will be
used to denote whether the standardized estimators are being used
when the disturbances are 1iid Student-t (I) or multivariate
Student-t (D). As in Section 3 it will be assumed that the
estimators have been appropriately standardized, that is, they are

A A
in the form, (u- p)/v and (o/0).

Finite Variance v > 2

The Location Parameter

Consider the case in which the disturbance terms are assumed
to be independent, but are only uncorrelated. Then uéi) would be
taken as the maximum likelihood estimator, with a distribution

function that is identical to pié),

and can be approximated by a
Student-t distribution with v degrees of freedom (Table 3.1) and

variance,



A(T) A(I)y 1 -1 -1
var[ ]=var[ ]=(1'B1) [1’Bvar[u(i)]B](l’Bl) =(1’B1) ", (4.1)

Fy F1B

where B is the inverse of the covariance matrix of [u(i)] and 1 is
column vector of 1's., However, Figure 4.1 illustrates a number of

"(D) "(D)
Py, and By

emplrical densities for for different v and N, and
as illustrated, these estimators are unbiased but are .Student-t
distributed with v degreés of freedom, where v < 7.3 These
densities are estimated via the integration of the kernel density
estimator with the naive Monte - Carlo method. Details of this
approach is given in Section 3, although in this case, multivariate

Student - t variates are generated using the relationship (see, for

example (2.3.4)),

2y 2
x=z{xJ i=1...K,
i il v
where Zl ce ZK are K independent standard normal variables and xz

is an independent chi-square variable with v degrees of freedom.

The "correct" BLU and maximum likelihood estimator 1is pégé with
variance,
W) v 1
var[“OLS SY2 N (4.2)
"(D) “(D) |
whereas, the actual variance of vy and pp’ is,
"(D)) _ (D)) _ 4, -1{,, , -1
var[uML ) var[uLB = (1’ Bl) 1’ Bvar u(i) B1| (1’ Bl)
-1 -1
= (1’Bl) (l’Bﬂ*Bl)(l’Bl) , (4.3)

The unbiasedness follows from properties of symmetrical
parent distributions (see David (1970, p.105)). The distribution
follows from the dependent structure,
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where Q% is the covariance matrix of [u(i)] for the multivariate
Student-t sample. A selection of the values of the variances in
(4.1), (4.2) and (4.3) are given in Table 4.1 for differemt v and
N. Given the range of v and N covered in Table 4.1, a comparison

of these variances indicates that in general:

(1) var{A(D)] = var[A(D)] > Var[A(D)] ,

Py, Fip PoLs
A A A
(D) (D) . - . (D)
so that Py, and prg’ are inefficient with respect to Fors’ except

as v » ©, in which case all of the estimators are equivalent, and

(2) Var[A(D)] = var[A(D)] < var{A(I)) - var[A(I)] ,

i Fip Fyr, Pre
so that the actual variance of ;ég) and ;ég) is substantially less
than the assumed variance for small v.
Therefore, if the disturbances are assumed to be

independently distributed but are only uncorrelated, an inefficient
estimator will be wused which will be assumed to have a
"thinner-tailed" distribution with a smaller variance than its
‘actual distribution. Consequently, the estimator will be thought
of as being more precise than it actually is. Furthermore,
inferences will be based on the use of the wrong distribution,
although the implications of this are beyond the scope of this
thesis,

Consider, on the other hand, the case in which the
disturbance terms are assumed to be uncorrelated only, but are in

fact independent. Then uéi;

would be used as the appropriate
maximum likelihood estimator, assumed to be distributed Student-t

with v degrees of freedom. However, Figure 4.2 illustrates

empirical densities, generated via the integration of the kernel
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TABLE 4.1: The Actual and Assumed Variances of ”éi)' uéi;.
- N 10 15 20
{ A A
var uiB]=var[u§L] 0.3599 1634 0.1061 .0786
\
[ A A
3 var ugB]-var[pﬁLJ 0.65613 .3595 0.2131 .1660
\
[ A AI ]
var | ]=var[u 0.6000 .3000 0.2000 .1500
var|Kors oLS
var[uiB)=var[u§L) 0.2916 .1399 0.0916 0682
5 var[uEB]=Var(ng] 0.25433 .1787 0.1210 .0868
var[uOLs]mvar[ugLS) 0.3355 1667 0.1111 .0833
) e )
var{p var | 0.2434 .1182 0.0788 L0591
P ML
{ A A
10 var ugB]—var(pﬁLJ 0.2620 .1340 0.0860 .0651
\
fAI ) [AI ]
var|pr |=var|u 0.2500 .1250 0.0833 L0625
HoLs oLS
) e ()
var|p =var|u 0.2221 .1100 0.0733 .0550
ML ML,
A A
19 var ugB]=var[uML] 0.2250 1126 0.0748 .0561
\
ors) v o)
var|p =var|u 0.2235 L1118 0.0745 .0559
HoLs oLS
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FIGURE 4.1 Distributions of ﬁ&%)and ﬁﬂg) when the Disturb-
ances are Uncorrelated
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FIGURE 4.2 The Distribution of ﬁég% for IID Student-t

Disturbances

(NB Only v = 3 is shown here, as this illustrates well the
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FIGURE 4.2(4ii)
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method with the naive Monte - GCarlo method as described in Section

; "(I)
3, for the unbiased BoLs

estimator and the Student-t approximation
to this ﬂistribution with y* degrees of freedom.4 In this case
v* > v, so that the assumed distribution is "fatter-tailed than the
(1)

actual distribution. Further, the actual distribution of Bors is

"fatter-tailed" than the distribution of the correct maximum

(1)

TV since y* < v. As well, the selection

likelihood estimator,

of variances given in Table 4.1 illustrates that in general,

(3) var[;éié] = var{;éig) < var[&éé)] = var[zéi)].

A comparison of all of these features indicates they can be
substantial for small v,

Therefore, if the disturbances are assumed to be uncorrelated,
when in fact they are independently distributed, an inefficient
estimator with a "fatter-tailed" distribution than the "correct
maximum likelihood estimator" will be used. Consequently, there is
more probability of obtaining outliers. Furthermore, the
Aistribution of this estimator will be assumed to have a
"fatter-tailed" distribution than its "actual distribution”, and

this will in turn have consequences for inference. However, these

consequences are beyond the scope of this thesis,

The Scale Parameter

When the disturbance terms are assumed to be independent,

but are only uncorrelated, aéi)

"(D)

parameter, o, instead of 901’

is used to estimate the scale

the "correct" maximum likelihood

4 The unbiasedness follows from properties of symmetrical
parent distributions (see David (1970), p.105).
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TABLE 4.2: The Bias of TML and ®OLS’
N 5 10 15 50
v=
Bias (;I\]?IL] - 0.0269 0.0783 0.0913 0.0929
. (21
Bias [OOLS] 0.1036 0.1228 0.1378 0.1847
=
Bias [%?IL] 0.0004 0.0023 0.0118 0.0156
. [rI
Bias [o*OLS] 0.0426 0.0566 0.0595 0.07612
TABLE 4.3: Median-Bias of Adjusted ;(D) and ;( 1) Estimators for the
T ML OLS
Cauchy Distribution.
N 5 10 15 50 100
01&5) -0.4013 ~-0.1402 -0.13375 -0.09666 -0.0959
0‘( 1) 0.88476 1.58122 2.0929 4.6639 6.9358

OLS




estimator.5 On the other hand, when the disturbance terms are
assumed to be uncorrelated only, but are in fact independent, the

(1)

estimator o is used instead of a(I). In both cases then, the

OLS ML
estimator is biased. This bias 1is illustrated in Table 4.2, where
the entries in this Table are based on the results of Monte - Carlo
experiments using 40,000 - 60,000 replications. In particular, we

see that the bias incfeases with N and decreases with v,

Consequently, the estimated standard deviation of the
1

A

A
unstandardized location parameter, a[var(us)lz, is also biased
(where s denotes the standardized parameter). This bias is greater
when the disturbance terms are assumed to be uncorrelated but are

in fact independent.

Infinite Variance v £ 2

For the infinite wvariance distributions the statistical
consequences of inappropriately using the least squares or robust
iid Student-t maximum likelihood estimators are even more serious.
First, consider the inappropriate use of the OLS estimator (that
is, when the disturbances are wrongly assumed to be multivariate
Student-t). Because the least squares technique minimizes squared
deviations, it places relatively heavy weight on outliers, so that

least squares estimates are extremely sensitive to the presence and

values of such observations. For iid infinite-variance
distributions, "outliers" occur frequently since these
distributions have "fat tails". Consequently, in repeated samples,

the least squares estimates vary more than in the finite-variance

case.

> The UML discussed in this section is assumed to have an
equivalent distribution to o g See Section 3(c).
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~Andrews and Phillips (1986) discuss the inappropriate use of

the robust and Student-t maximum likelihood estimators (that is,

when the disturbances are wrongly assumed to be independent

Student-t). In particular, the&' show that the least squares
estimator is strictly preferred to the robust technique.

To consider these statistical consequences in more detail,

the rest of this section will assume that the disturbances are

Cauchy distributed.

Location Parameter

When the disturbances are assumed to be multivariate

A
Student-t distributed, ué{g is assumed to be the appropriate
maximum likelihood estimator. However, if the disturbances are

actually iid Student-t distributed, then the distribution of ﬂéié

is standard Cauchy, although its assumed distribution is Cauchy
with scale factor 1/N, Consequently, for large N, it will be
assumed ;OLS is very concentrated around zero, when in fact it has
the same distribution as that of a single standardized observa-

tion (see Kendall and Stuart (1969, p.248)).

Alternatively, if the disturbances are assumed to be iid

“(1)
Py,

estimator; the distribution of which will be taken to be

Student-t, is assumed to be the appropriate maximum likelihood
approximately Student-t, with at least the first finite two moments
for N > 5. Furthermore, it will be assumed that the limiting
distribution is normal. However, if the disturbances are actually
" (D)
ML

multivariate Student-t, the distribution of u is Cauchy (even

asymptotically), with no finite moments.
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Scale Parameter

To consider the effects of misspecification on the scale

“(1)

parameter a simulation experiment is first used to transform OuL

A .
and Uégé into median- unbiased estimators. Then, the "median-bias"

of the resulting estimators, under the appropriate type of
misspecification, is calculated using 40,000 - 60,000 replications

in a simple Monte - Carlo experiment. This bias 1is reported in
A

Table 4.3, The results indicate that the adjusted estimator, I5LS

is extremely sensitive to misspecification whereas the adjusted
A

estimator o although "median-biased" is more robust,

ML’

8.5 SOME FINAL COMMENTS

Recently, models with nonnormal disturbances have attracted
substantial attention (see Chapter 7). However, in such models a
distinction mneeds to be made between multivariate distributed
disturbances and iid distributed disturbances. This section has
concentrated on the importance of making this distinction in the
location-scale model with Student-t disturbances. In this section,
small sample properties of the standardized maximum 1likelihood
estimators of the location and scale parameters when the
disturbances are distributed iid Student-t, are developed. In the
literature (see, for example, Chapter 7) attention has been given
to the properties of the distributions assuming multivariate
Student-t disturbances. The results obtained demonstrate that the
distinction between the two assumptions is an important one and the
consequences of making the wrong assumption 1is serious,
especially for small v,

Therefore, it must also be important to develop
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specification tests as a way of choosing between the alternative
assumptions. However, before this topic is discussed, the results
obtained here for the location-scale model are generalized to the

multiple regression model and the exactly- identified SEM.



CHAPTER 9

THE GENERAL LINEAR REGRESSION MODEL WITH STUDENT-t DISTURBANCES

9.1 INTRODUCTION

This chapter considers the statistical comparison of the
maximum likelihood estimator of the unknown g in tﬁe linear
regression model (1.1.1), when it is assumed that the disturbances
are distributed either as iid Student-t, or multivariate Student-t.
This extends the results obtained for the location-scale model
considered in Chapter 8.

In Section 2, the results of Zellner (1976) are used to
develop finite-sample properties for the maximum likelihood
estimator for multivariate Student-t disturbances. These
properties are easily seen to be a simple generalization of those
obtained for the Jlocation-scale model. In Section 3, similar
properties are developed for the maximum likelihood estimator for
independent Student-t disturbances. However, these properties are
not a simple generalization of those obtained for the
location-scale model. This is mainly because order statistics were
used to develop these properties in the location-scale model.
However, in the general linear regression model the usual concept
of order statistics is no longer adequate, because what constitutes
an appropriate ordering depends on the vector of unknown regression
coefficients B. Section 4 considers the statistical consequences
of making one error assumption when in fact the other assumption is
valid and Section 5 concludes with some final

comments.
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9.2 PROPERTIES OF MAXTMUM LIKELIHOOD ESTIMATORS WITH DEPENDENT

STUDENT-T ERRORS

€ are multivariate-t

If 1t 1is assumed that ¢ N

1
distributed disturbances as in (8.1.2), (i.e. with precision matrix

azI), then the likelihood function for the linear regression model,

y =X+ e, S (2.1)
where, y = (yl,...,yN), X is an N * K matrix of nonstochastic
regressors, (K assumed to be greater than 1), g = (ﬂl,...,ﬁK) is a

vector of unknown parameters, is given by,

. N/2
£(y|B,v,0) = [g(V)/(UZ) ]{w[(N-K)sz

- (N+v) /2
+ (ﬂ-b)’X’X(ﬂ-b)]/UZ} (2.2)
where,
V20 (viN) /2]
g(V) = N/2 ’
n TT(v/2)
I'(a) = J «* Lexp(-x)dx, « >0,
0

b= (XX Xy,

s® = (y-Xb)’ (y-Xb)/(N-K)

In this case the disturbances are homoskedastic but not serially
independent. It is easily seen from (2.2), (see also Zellner (1976,
p.401) or Chapter 7) that b and s® are sufficient statistics and
further, that b is the maximum 1likelihood estimator of g.
Furthermore, from the review given in Chapter 7, we have the

following set of properties:
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PROPERTIES 1.1

1. b is the maximum likelihood estimator of j.

2. When v > 2, b is the minimum variance unbiased estimator and

163

is therefore also BLUE, with covariance matrix (V/(V-Z)]UZ(X'X)-I.

3. For all v, b is the optimal median-unbiased estimator for
any loss function that is nondecreasing as the magnitude of
underestimation or overestimation increases.

4, Assuming ¥ = 1lim(X’X)/N is finite and nonsingular, then the
limiting distribution of Nuz(b—ﬂ) is multivariate Student-t
with a location vector of zeros and characteristic matrix

022-1. This also describes the finite-sample distribution.

These  properties are easily seen to be straight
generalizations of Properties 8.1.1 for the location-scale model.

In the next section, the corresponding properties are developed for

the maximum likelihood estimator of B in the linear regression

model when the disturbances are distributed iid Student-t.

However, in this case there are distinguishing features between the

location-scale and general linear regression model.

9.3 PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS WITH INDEPENDENT

STUDENT -t ERRORS

In this case it is assumed that ¢ are homoskedastic

1 ey
and serially-independent iid Student-t distributed as in (8.1.4),

so that the density of ¢

I

(el,...,eN) is given by,

pdf(elv,a)

]

pdf(ellv,a) . pdf(eva,o)

Throughout this section we will concentrate only on developing

properties of S assuming o® 1is unknown. Consequently, the
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likelihood function for the regression model (2.1) is given by,

2(y|B,v,0) = constant - Nlog(o)

2

- [ 5101 + 7———Y1“Xiﬂ (3.1)
) > og o . .
where X, refers to the ith row of the matrix X in (2.1). As in the

i
location-scale model of Chapter 8, the OLS estimator is not the

maximum likelihood estimator; although the OLS estimator is BLUE
for v > 2, it is asymptotically inefficient.

It is not possible to give a closed-form expression for the
maximum likelihood estimator of B, say ;ML’ s0 BML is obtained via
the numerical optimization of (3.1). However, unlike the
location-scale model, the 1likelihood function 1is 1in general
multimodal, as shown by Gabrielson (1982), since for all v and all
linear models with K > 1, there exist, with probability greater
than zero, data such that the joint likelihood function for both
ﬂl,...,ﬂK and ¢ is multimodal. Therefore, because of the multi-
modality of the 1likelihood function, it is important to have
appropriate initial starting values for the unknown parameters f
and az. These are obtained, for example, using Amemiya (1985,
p.138) who states that if ;1 is a consistent estimator of ;0 such
that Vﬁ(gl-ﬂo) has a proper limit distribution, the second round
estimator 92 has the same asymptotic distribution as a consistent
root of the 1likelihood equation, and so too does the final
converged root 20. Details of the argument on which this result is
based are given in Appendix B. The actual first round estimators

used in this Chapter are given in the discussion of the asymptotic

distribution of ﬂML'



The multimodality of the likelihood function (3.1) is one
distinguishing feature between the linear regression model and
the location- scale model, Another difference between the two
models arises as a result of thé definition of order statistics.
In the location-scale model, finite- sample properties of BML
(which corresponds to K = 1 in (2.1)), are developed for v > 2, by
showing a relationship with Lloyd’s BLUE, which is the BLU
estimator among the class of L-estimators. However, when the more
general linear model 1is considered, the usual concept of order
statistics is no longer adequate, because what constitutes an
appropriate ordering depends on the vector 8. Consequently, there
is no generalization of Lloyd’'s BLU estimator. However, there have
been generalizations of some of the estimators contained in the
L-class, such as generalizations of the trimmed- mean estimator,
which will be denoted as a class of estimators by ;TLS' In the
finite-sample analysis of EML’ the mean square error (MSE) of some
members of ;TLS are compared with the corresponding MSE of BML'
The objective of this comparison 1is to determine if there is a
generalized relationship between the maximum-likelihood and L-class
estimators in the linear regression model.

The rest of this section is divided up into four parts. The
first part discusses the asymptotic distribution of the maximum
likelihood estimator, and the second part develops properties of
the finite-sample distribution of BML' The third part summarizes

all of the properties of ﬂML obtained, and the fourth part offers

some overall comments.
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(1) Asymptotic Distribution of ﬁML

Although in the likelihood funection (3.1) it is assumed that
both B and ¢ are unknown parameters, in the discussion in this
section we are interested only in developing the asymptotic
distribution of BML’ as the properties of this estimator are the
focus of this chapter. Therefore, for the purposes of this section
it will be assumed that o is known in (3.1), since from Lehmann
(1983, p.438), the asymptotic efficiency in this case is the same
as if ¢ is assumed unknown, because the distribution of ¢ is
symmetric.

Kelejian and Prucha (1985) consider the limiting

A

distribution of g corres ondiﬁ to v > 2, In particular, the
ML P g y

show that,
o D v+3] 2.-1
VN(Byyy -B) > N[O.{m}oz ] y V> 2 (3.2)
where ZX = 1lim(X’X)/N. However, as for the location scale model,
N=peo

it is relatively easy to show that this result holds for all wv.

This result is proved in Theorem 3.1,

Theorem 3.1

There exists a solution ﬂML to the likelihood (3.1) such

that (3.2) holds for all v.

Proof

The proof of the theorem follows by considering the
combination of the following two points:
1, There exist estimators of J which are consistent and

asymptotically normally distributed. The estimators used in
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this chapter are OLS for v > 2 and ELAD as described in
(7.3.4) with asymptotic distribution in (7.3.7) for v £ 2.
These two estimators are used because, not only do they
satisfy the requirements ‘of conslstency and asymptotic

normality, but they also proved to be efficient in terms of

the number of iterations required to obtain a maximgm of (3.1).

A A

2. If § is a consistent estimator of § such that VN(6-6) has a
proper limit distribution, the second round estimator is
asymptotically normally distributed and asymptotically
efficient. The details of the argument this result is based
on is given in Appendix B.

Therefore, if the numerical maximization of (3.1) begins
with the estimators in (1), this dimplies from (2) that the
resulting converged root of the likelihood equation corresponding

will be asymptotically normally distributed and

to (3.1), By

asymptotically efficient,

(ii) Properties of the Finite-Sample Distribution

In developing properties of the finite-sample distribution
of ;ML’ we consider the standardized maximum likelihood estimators,
that is, (;ML-ﬁ)/a. This is because Antle and Bain (1969) show that
these statistics depend only on the sample size N.

To develop the finite-sample properties a number of results

are obtained. In particular, mean square errors (MSE's) are

1 In the actual numerical computation of (3.1), we also need
to supply an initial starting value for o. For v < 2, s 1is used,
while for v 2 2, we find the residuals from the least absolute
regression and then take the median of these residuals as our
starting value (see, for example, Judge (1985, p.831)).

167



estimated for the linear regression model with sample sizes N = 20,
50 and numerous values of K? These MSE's are reported in Table
3.1, (N = 20) and Table 3.2 (N = 50). Each of the entries in the
tables are based on at least 40,000 replications for K < 10,
However, for K > 10, since the convergence of the likelihood
equation (2.2) 1s wvery slow, the number of replications is
decreased substantially, and often less than 10,000 replications
are used. This number of replications was chosen on the basis of
. available computer processor time. The MSE’s require iid Student -
t variates to be generated. For degrees of freedom v < 3, these are
generated by the inversion of the distribution function (see, for
example, Devroye (1986, p.27)). In particular, for v = 1, the

Cauchy distribution, standard Cauchy variates are generated as,
1
X = tan(w(U-E)]

and for v = 2, the t,-distribution,

2
X = ‘/—Z(U-%)/SQRT[U(l-U)] ,

where U is from U(0,1), generated using the NAG subroutine GOFCAF,
which uses a multiplicative congruential method. For the rest of
the Student-t family, v > 3, X is generated via a transformation of
a symmetric beta variate, (see, for example, Devroye (1986,
p.446)). This can be written in terms of independent uniform

random numbers Ul’ U2 as,

2All of the estimators in this chapter are unbiased. This
holds because the error distributions assumed are symmetrical, (see
David (1970, p.105)). Hence, MSE 1is simply the sum of the
individual wvariances of each of the estimated coefficients of
(2.1).
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z/v-l)
2

2/v-1
2 )

2Vv sin (2wul)(1-u

X =
(1-sin2(2ﬁU1))(1-U

This formula is useful as it is valid for all members of the
Student-t family with v > 3. It also does mnot require the
generation of as many random uniform deviates as does the
traditional method of generating a t-random variable wvia its
interpretation as a ratio of a standard normal to the square root
of an independent normalized chi-square variable. The design matrix
X is generated as a column of ones with remaining entries drawn as
iid realizations from the N(0,1) distribution generated using NAG
subroutine GO5DDF which is based on Brent's (1974) algorithm. In
the preliminary analysis, numerous other X matrices were used, but
the results given in Table 3.1 and Table 3.2 illustrate the general
results obtained. Also reported in these tables 1is the
corresponding asymptotic MSE, which is calculated on the basis of
the formula given in (3.2).

As well as estimating the MSE's, a number of pdf’s for

(ﬂML -By/o, (i = 1,...,K) are estimated using the procedures
i

described in Chapters 3 and 4. Therefore, we only briefly detail
them here for completeness. Empirical densities are estimated via
the integration of the kernel density estimator with the mnaive

Monte-Carlo method. The kernel estimate at point X is equal to,

A 1
— X - X
PAE(X) = 3 K [ e ], (3.3)

where k[.] is the standard N(0,1) density. The window width h(N¥)

is chosen using the interactive approach of Tapia and Thompson
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(1978). In all cases this approach led to the use of a window width
between 0.02 and 0.09. N¥ is simply the number of replications in
the simulation experiment, and 1is chosen using the bound of
estimation. For example, the resuits of Parzen (1962) and Cacoullos

(1966) imply,

1
[N*hm(N*)]z[pdf(x) - E[pdf(x)]] ~ N[o,pdf(x)fxﬂ. (3.4)
holds. The result given in (3.4) can be achieved if
1
[N*hm(N*)]zBias[pdf(x)] tends to zero asymptotically since,

[N*hm(N*)]é[paf(x) - pdf(x)} = [N*hm(N*)J[paf(x) - E[paf(x)}]

1
m 2. -
+ [N*h (N*)] Blas[pdf(x)].
Ullah (1988, p.642) shows that Bias[pdf(x)] is proportional to
hz(N*). This implies that if N*h(a+m)/2(N*) tends to zero
asymptotically then (3.4) holds. Therefore, for the normal kernel

;%:exp(-éyz), the 99% asymptotic confidence interval for pdf(X) is
2n

given by,
i
g df(x) 17
pdf(X) + 2.58 [E————~ ],
2N*hVm
so that B is given by,
1
2

i pdf (X)
B 2'58[2N*h(N*)n :

N* is varied until B is less than 0.01 for all points at which the



density is estimated, In all experiments, N¥ varies between 60,000
and 90,000 replications3. The input of Xj in (3.3) 1involves
numerically maximizing the 1likelihood function (3.1). Two
algorithms from the Harwell SuBroutine library are used, these
being algorithms VAI3AD and VF04AD, which both wuse the BFGS
formula, (Broydon (1970), Fletcher (1970), Goldfard (1970) and
Shanno (1970)). All computations are performed in double precision
to 7 decimal places of accuracy. The final results, however, are
not dependent wupon which algorithm 1is wused 1in this step,.
Furthermore, the solutions of each of the algorithms used were
compared with those in the standard econometric packages TSP and
SHAZAM, and. were found to give similar results., Standard iid
Student-t wvariates, are generated as described above. Further
details of the Monte Carlo methodology are given in Chapter 4.

Empirical densities are illustrated in Figures 3.1 and 3.2 for
one particular 1 (as similar results are obtained for the others),
for v = 3 and v = 10 respectively, with N = 20 and K = 2, 5, 10 and
12. In Figure 3.3, empirical densities are also illustrated for v
=1, N= 20 and K = 2, 10, 1In each of these figures the empirical
densities are compared with the corresponding appropriate
asymptotic distribution.

Finally, various MSE's are estimated using at least 40,000

replications in a simple Monte-Carlo experiment. These MSE'’s are

3Empirical densities were also computed using the
Epanechnikov  (1969) kernel. However, given the number of
replications used, the results proved not to depend on which kernel
is used. This situation is similar to the comparison of different
kernels for the Cauchy distribution using a "large sample", as is
illustrated in Figure 5.1 in Chapter 3.
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reported in Table 3.3 for a number of trimmed-mean tobust

estimators, All of the estimators considered are based on

A
ﬂTLS'
solutions to (7.3.4), and are obtained numerically wusing the

subroutine of Koenker and D’Orey (1987). This subroutine involves

linear programming techniques. In particular we have,

A .
ﬂLAD’ which corresponds to the solution of (7.3.4) when
0 = 0.5. This estimator has asymptotic distribution given

by (7.3.7).

;Tle’ requires the calculation of a preliminary estimate,
BO' ;0 is obtained as the average of the ¢ and (1l-4)
regression quantiles. These regression quantiles are
obtained as solutions to (7.3.4). Then the residuals from
BO are calculated and the observations corresponding to the
[N¢] smallest and [Nf] largest residuals are removed.4
BTLSl is defined as the least squares estimate calculated

from the remaining observations and has asymptotic

distribution given in (7.3.6).

;TLSZ’ also requires the calculation of a preliminary
estimate. The regression quantiles obtained as solutions
to (7.3.4) for 0 < § < 0.5 are calculated corresponding
to # (denote by B(e)), and (1-6), (denoted by 5(1-0)).

Then, any observation whose residual from Sg(§) is
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Table 3.1: Empirical and Asymptotic MSE’s for BML for N = 20

173

K=2 K=5 K =10 K =12 K =14
Empirical MSE BML v=1 0.5370 1.7750 16.337 23.4105 99.5194
Asymptotic MSE BML 0.3566 0.7300 3.3794  2.9824 5.6424
Empirical MSE BML v=2 0.3466 0.9085 5.9611 5.6886 13.0976
Asymptotic MSE BML 0.2972 0.6083 2.8162 2.4853 4.7020
Empirical MSE BML v=3 0.2934 0.6933 4.4360 4.6078 10.1311
Asymptotic MSE BML 0.2675 0.5475 2.5346  2.2368 4.2318
Empirical MSE BML v=5 0.2474 0.5376 0.28608 2.7820 6.2487
Asymptotic MSE BML 0.2377 0.4867 2.2529  1.9883 3.7616
Empirical MSE BML v=10  0.2129 0.4449 2.1309 1.9013 3.6882
Asymptotic MSE BML 0.2107 0.4314 1.9970 1.7623 3.3341
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Table 3.2: Empirical and Asymptotic MSE’s for BML for N = 50

K=3 K=25 K = 10 K = 30
A *
Empirical MSE BML v=1 ~ 0.19674 0.3681 1.1868 0
Asymptotic MSE BML 0.1516 0.2444 0.6216 4.3796
A *
Empirical MSE BML v= 0.14104 0.24233 0.68398 o
Asymptotic MSE BML 0.1263 0.2037 0.5180 3.6497
Empirical MSE BML v= 0.12045 0.20207 0.5440 7.2081
Asymptotic MSE BML 0.1137 0.1833 0.4662 3.2847
Empirical MSE BML =5 0.10335 0.17069 0.4547 3.9620
Asymptotic MSE BML 0.1011 0.1629 0.3673 2.9197
Empirical MSE BML v=10 0.08996 0.14679 0.03807 2.9536
Asymptotic MSE BML 0.0896 0.1444 0.3673 2.5897

*
Conjectured on the basis of empirical results.
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Table 3.3: Empirical MSE's for g . and Actual MSE’s for b for N = 20

K =2 K =5 K = 10
Empirical MSE g, -1 0.6958 2.4039 36.3327
” *
Empirical MSE ﬂTRl _ 0.9575 2.8250 ©
~ *
Empirical MSE ﬂTRZ 1.4144 10.1941 0
+Actual MSE b 0 o ©
Empirical MSE f -2 0.4491 1.1811 6.6794
Empirical MSE f.. 0.5205 2.3078  158.40
Empirical MSE B, 0.4454 1.2337  29.3768
tactual MSE b o o o
Empirical MSE g, y=3 0.3709 0.8375 4.5484
Empirical MSE fp, 0.3376 0.9487 9.8426
Empirical MSE ., 0.3360 0.8370 3.5280
*actual MSE b 0.5349 0.9880 5.0691
Empirical MSE B, v=5 0.3543 0.7032 3.4456
Empirical MSE fp. 0.2864 0.7675 6.9117
Empirical MSE B, 0.2763 0.6428 2.8998
*actual MSE b 0.2972 0.6085 2.8162
Empirical MSE ﬁLAD v=10 0.3049 0.6223 2.8603
Bmpirical MSE g, 0.2553 0.6633 5.6639
Empirical MSE ﬁTRZ 0.2416 0.5388 2.2101
*actual MSE b 0.2229 0.4563 2.1121

%
+Conjectured on the basis of empirical results.
For a comparison between ﬂML and b when K is greater than 10 we

can note that the actual MSE’s of b for K=1l4, v=3,5, and 10 are
8.4656, 4,702 and 3.5265 respectively.
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FIGURE 3.1 Comparison of the Finite-Sample Distribution of

éMLi with its Asymptotic Distribution for v = 3,

N = 20.
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FIGURE 3.2 Comparison of the Finite-Sample Distribution of

QMLi with its Asymptotic Distribution for v = 10,

N =20
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FIGURE 3.3 Comparison of the Finite-Sample Distribution of

@MLi with its Asymptotic Distribution for v =

1,

N = 20
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FIGURE 3.3 (ii) K = 10
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negative or whose residual from pB(1l-§) is positive is

is defined as the least

removed from the sample. ﬂTLSZ

squares estimate calculated from the remaining observations,

and has asymptotic distribﬁtion given in (7.3.6).

. In particular, both ;Tle and BTLSZ are calculated assuming
§ = 0.2, This # is chosen so as to represent a "slightly" trimmed
estimator, whereas BLAD represents a "drastic" robust estimator
(see, for example, Amemiya (1985, p.75).

The discussion of all of these results is divided into two
parts. The finite-sample distribution of (BML~ﬂ)/a is, first
compared with 1its corresponding asymptotic distribution and
secondly, compared with the results obtained for the finite-sample
distribution for each of the (;TLS-ﬂ)/U considered. The discussion

is also broken down into finite- wvariance (v > 2) and

infinite-variance (v £ 2) distributions.

(i) Comparison With Limiting Distribution

It 1is important to make comparisons between the
finite-sample distribution and the limiting distribution, as the
limiting distribution is often used as an approximation to the

finite-sample distribution,

Finite Variance: v > 2

From the results reported in Table 3.1 then, the following
general comments can be made. For small models, the asymptotic MSE
is a good approximation to the actual MSE. This was also true for

the individual variances, although they are not reported here.
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However, as the number of regressors increases for a fixed N, the
asymptotic MSE considerably understates the actual MSE. These
features are also illustrated in Figures 3.1 and 3.2, where for
larger sized models the empirical.pdf is much "fatter- tailed" than
the corresponding asymptotic distribution.

These results suggest that for small K relative to N the
asymptotic  distribution " can be used to approximate the
finite-sample distribution. However, for large K relative to N,
some other approximation is needed, perhaps based on the Student-t
distribution which has fatter-tails than the normal distribution.
However, this approximation 1is not pursued here as the results
obtained in the comparison with other estimators suggest that the
maximum likelihood estimator may not be the appropriate estimator

to use in this case.

Infinite Variance: v £ 2

From the results reported in Table 3.1, we can see that the
asymptotic MSE understates the actual MSE considerably, even in
models where K is small relative to N. This 1is also shown in
Figure 3.3 for the Cauchy distribution.

Consequently, even for moderately-sized N and small K, the
asymptotic distribution should not be used to approximate the
finite-sample distribution. For the infinite-variance
distributiéns, some other approximation, perhaps based on the

Student-t distribution, should be used instead.
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(ii) Comparison With Other Estimators

Finite Variance: v > 2

From Table 3.3 we can see that the performance of the

members of ﬂTLS chosen deteriorates rapidly as K increases for

fixed N. In comparison with these estimators, BML can clearly be
seen to be superior on the basis of MSE. However, when BML is
compared with b, the OLS estimator, this superiority holds only for
small and moderately-sized K. In this case, we have an interesting
example of an asymptotic inefficient estimator having superior

finite-sample performance, at least over some of the parameter

space,

Infinite Variance: v < 2

As in the case when v > 2, the performance of all of the
;TLS estimators deteriorates rapidly for moderately-sized K. 1In
particular, the MSE appears to approach infinity as it does for b.
While for small and moderately-sized K BML is superior to these
estimators on the basis of MSE, it too has an infinite MSE for
large K. Therefore, while for moderately- sized values of K, ;ML
is substantially superior to the other estimators considered for
large values of K, all of the estimators seem to have infinite MSE

as does b, so in this case, on the basis of MSE, they are

indistinguishable,

> Although the results reported here for ﬂML correspond to

the converged root of (3.1) with b as the initial starting value,
similar .results were obtained with other starting values, for

example ﬁLAD'
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(iii) Summary of Properties

The results obtained on the finite-sample distribution of
ﬂML are now summarized in Properties 2.1.

Properties 2.1

ﬂML is the maximum likelihood estimator of B. It is found

183

via the numerical optimization of the likelihood function (3.1).

2. When v > 2, is superior to a wide number of robust

ﬂML
estimators and b on the basis of MSE, for moderately-sized K

and fixed N. However, as K increases, the performance of

A A
ﬂML deteriorates rapidly, and ﬂML becomes inefficient
relative to b, where b is BLUE but asymptotically inefficient.

A

3. For v 2 2, ﬂML

is superior to a wide range of robust
estimators and b for moderately-sized K and fixed N.
However, for large K corresponding to fixed N, all of
these estimators have infinite MSE, so that on the basis of
this measure it is impossible to distinguish between them.

4, Assuming ¥ = 1im(X’X) is finite and nonsingular, there
N=poo

exists a solution, to (3.1) such that, Vﬁ(ﬂML~ﬁ)/a is

ﬂML
multivariate normal with a mean vector of zeros and

\ v+3] .- . e . . . :
covariance matrix UZ[GIT]E 1. This limiting distribution is

only wuseful as an approximation to the finite-sample

distribution in linear regression models where K is small

and v > 2.



(iv) Overall Comments

A comparison of Properties 1.1 and 2.1 suggest substantial
differences between the maximum likelihood estimators b and BML’
corresponding to joint and independent Student-t disturbances
respectively. Therefore, it 1s important to consider the

consequences of misspecifying "joint versus independent"

disturbances. This analysis is carried out in the next section.

9.4  JOINT VERSUS IID STUDENT-T DISTURBANCES

In this section we consider the statistical consequences of
misspecifying "jointly-distributed" and "independently-distributed"
disturbances. Such an analysis will assess the importance of
developing specification tests to make this distinction in the
linear regression model.

Throughout this section, the superscripts I and D will be
used to denote whether the standardized estimators are being used
when the disturbances are iid Student-t, (I), and multivariate
Student-t, (D). As in Section 3, it will be assumed that BML has
been appropriately standardized, that is, it is written as, (BML.

- ﬁi)/a as Antle and Bain (1969) show that these statistics dep;nd

only on the sample size N,

Finite Variance: v > 2

Consider the case in which the disturbance terms are assumed

A

to be independent, but are only uncorrelated. In this case, ﬁML

will be assumed to be the correct maximum likelihood estimator to

use. Although this estimator is unbiased, there are a number of
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consequences as a result of using this estimator, rather than the

. . . . . 6
correct maximum likelihood estimator, the OLS estimator, b.

In Table 4.1, empirical MSE's are reported for Bég)
corresponding to N = 20, K = 2, 3, 5, 10. These MSE's are
estimated as described in the previous section, although in this
case multivariate Student - t variates, say Xi’ negd to be

generated. These are genefated'using the relationship (see, for

example (2.3.4)),

1

232
X =z.[1) i
i il v

where Z1 o ZK are K independent standard normal variables and xz

is an independent chi-square variable with v degrees of freedom.

1
Jed

. K,

The chi-square and standard normal variables are generated as
described in Section 3, In comparison with the actual MSE's for b,
which are also given in Table 4.1, we can see that while ;ég) is
robust for small models, it becomes increasingly inefficient.
Further, the large-sample distribution of ;ég) will

incorrectly be assumed to be given by (3.2). There are two
implications associated with this. First, the asymptotic variances
associated with (3.2) will be used to approximate the actual
variances for each Béi), (i =1,...,K). Some examples of the use
of this approximation are given in Table 4.2 for (;ég)-ﬂ)/a (i =
1,...,K), for N = 20, K =2, v =3, 5, 10. These eiamples are

illustrative of a more general comparison, from which it can be

concluded that the use of this incorrect approximation results in

6 The unbiasedness follows from properties of symmetrical
parent distributions (see David (1970, p.105)).
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Table 4.1: Comparison

~ (D)

of MSE’s for BML

and b for N = 20

186

K=2 K =3 K =5 K =10
Empirical MSE BML v=3 0.6207 1.0773 1.3099 7.1583
MSE b 0.5349 0.2609 0.9885 5.0691
Empirical MSE BML v=>5 0.3202 0.5803 0.6706 2.4783
MSE b 0.2972 0.5338 0.6083 2.8162
Empirical MSE BML v =10 0.2270 0.4142 0.4684 2.006
MSE b 0.2229 0.4003 0.4563 2.1121
. . . , ~(D) .
Table 4.2: Comparison of Empirical Variances for BML with
Asymptotic Variance of BAEII{) for K =2, N =20
Empirical MSE fg(D) Asymptotic MSE é( 1)
MLi MLi
v=23 =] 0.39876 0.17475
i=2 0.22195 0.0927
v=2>5 =1 0.20884 0.1553
i=2 0.11131 0.0824
v = 10 i=1 0.14801 0.13768
= 2 0.07900 0.07303
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FIGURE 4.1 Comparison of the distribution of BML with its
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ﬂéi)‘ being considered to be substantially more precise than it
actually is. Secondly, the multivariate normal distribution will

A

be used to approximate the finite- sample distribution of ﬂML’
which is actually distributed multivariate Student-t with v degrees
of freedom. The effect of this is illustrated for a particular

(ﬂML -B)/0 corresponding to v =3, N = 20, K = 2, 10 in Figure 4.1
1 :

(1) and (ii) respectively. This density was estimated via the
integration of the kernel method with the naive Monte-Carlo method
as described in Section 3, and wusing multivariate - t random
numbers as described above. This figure emphasizes that the use of
the wrong limiting distribution implies that one is much more
confident that the estimator is located around the true parameter
value than one should be, These results hold for all sample sizes
N, as the wrong asymptotic distribution is used even
asymptotically.

Consequently, when the disturbances are assumed to be
independent, but are only uncorrelated, an inefficlent estimator is
used, and the inefficlency increases as K increases. Further, the
wrong limit distribution is wused as an approximation to the
finite-sample distribution, which results in one assuming that the
estimator 1is more located around the true parameter value than it
actually is.

Consider now the case in which the disturbances are assumed
to be jointly-distributed, but they are actually independently
distributed, Then the OLS estimator, b, will be taken to be the
correct maximum 1likelihood estimator to wuse. Although this

estimator is unbiased, there are a number of consequences of using
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Table 4.3: Empirical MSE’s for BML and Actual MSE’s for b for N = 20
K=2 K=5 K =10
Empirical MSE BI\(/IIId) =1 0.5370 1.7750 16.337
(1)
Actual MSE b © © ©
Empirical MSE Br\(ai) =2 0.3466 0.9085 5.9611
(1)
Actual MSE b © ) 0
Empirical MSE Bl\(/[II,) =3 0.2934 0.6933 4.4360
Actual MSE b(I) 0.5349 0.9880 5.0691
Empirical MSE Bh(AII,) =5 0.2474 0.5376 0.28608
Actual MSE b(I) 0.2972 0.6083 2.8162
Empirical MSE B]\(/II{) = 10 0.2129 0.4449 2.1309
Actual MSE b(U 0.2229 0.4563 2.1121
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FIGURE 4.2 Comparison of the Distribution of b(I) with its

(D)

Incorrectly Assumed Asymptotic Distribution b
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this estimator rather +than the correct maximum 1likelihood
. 7
t to .
estimator, ﬁML

b(I), and

In Table 4.3, actual MSE's are given for

empirically estimated MSE’s for ﬁéi),

(these were taken from the
relevant entries in Table 3.2), corresponding to N = 20 and
numerous values of K. A comparison of these illustrates that for
small K, b is substantialiy inefficient, but becomes more robust as
K increases.

Further, while for each individual bi’ (i =1,...,K), the
correct variance will be estimated, the finite-sample distribution
will be approximated by the distribution of bgD), which is
Student-t with v degrees of freedom. The effect of this is
illustrated in Figure 4.2, for a particular 1 (only one i is
illustrated as the results are similar for the others), for v = 3,
N = 20, K = 2 (i) and K = 10 (ii). Again, this density is
estimated via the integration of the kernel density method with the
naive Monte - Carlo method as described in Section 3, using iid
student - t random variables. In this case however, the subroutine
ELIM from Gerald and Wheatley (1984, p.144) is used to obtain the
OLS inputs for (3.3). This subroutine solves a set of 1linear
equations using the Gaussian elimination method. We can see that
the actual distribution of bil) has thinner tails than the
incorrectly assumed distribution, which is to be expected as the

actual distribution limits to the normal distribution. However,

for the central part of the distribution, the use of the wrong

/ The unbiasedness of b follows from properties of symmetrical

parent distributions (see David (1970, p.105)).
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limit distribution implies that one is much more confident that the
estimator is located around the true parameter value.

Consequently, when the disturbances are assumed to be
uncorrelated but are actually in&ependent, for small K for fixed N,
a substantially inefficient estimator will be used, although this
estimétor becomes robust as K increases. However, the wrong limit
distribution is used to approximate the finite-sample distribution,
which results in one assuming that the estimator is more located
around the true parameter value than it actually is, at least for

the central part of the distribution.

Infinite Variance: v £ 2

As in the location-scale model, for the infinite wvariance

distributions the statistical consequences of inappropriately using
A

b or ﬂML are even more serious. To illustrate this, we will assume
the disturbances are Cauchy distributed.

When the disturbances are assumed to be multivariate
Student-t distributed, b is assumed to be the correct maximum
likelihood estimator to wuse. However, 1f the disturbances are

actually 1id Student-t distributed, then the correct maximum
likelihood estimator is ﬁML' In Table 4.3, (where the appropriate

A

values have been taken from Table 3.2 for ﬂML)’ we sgee that on the

basis of MSE this results in a particularly inefficient estimator

being used, as b has infinite MSE, whereas ﬂML’ at least for
moderately-sized regression models, has finite MSE. Further, the
distribution of b;I) is standard Cauchy with scale E|[X(X’X)-1X’]i|
for i = i,...,K and where EI[X(X’X)-lX']i] denotes the sum of the
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absolute terms of the ith row of the matrix [X(X’X)X’] (see, for
example, Johnston and Kotz (1970, p.157)). However, because the
disturbances are assumed to be multivariate Student-t, it will be
incorrectly assumed that the finite—sample distribution of bgl) is
Cauchy with scale [(X’X);l/N], where (X’X);1 is the ith diagonal
term of the matrix (X'X)-l. Some examples of the consequences of
this incorrect assumption'are illustrated in Figure 4.3, (i) K = 2,
and (ii) K = 10. In particular we can see from these figures that
the estimator is thought to be substantially more located around
the true parameter value than it actually is, especially as K
increases,

Alternatively, if the disturbances are assumed to be iid

Student-t, is assumed to be the correct maximum likelihood

AL
estimator, with asymptotic distribution given by (3.2). However,

if the disturbances are actually multivariate  Student-t
A

distributed, then the finite-sample distribution of ﬂML is Cauchy.

Consequently, the normal distribution with finite variance, which

is the assumed asymptotic distribution in (3.2), will be used to

approximate the Cauchy distribution, which has infinite variance.

Some examples of this incorrect approximation are illustrated in
Figure 4.4, (i) and (ii). These densities were estimated via an
integration of the kernel and naive Monte-Carlo methods as
described in Section 3. From the figures we can see that the
estimator is assumed to be more concentrated around the true

parameter value than it actually is,
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FIGURE 4.3 Comparison of the distribution of @ég) with its
Incorrectly Assumed Asymptotic Distribution @éi)
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FIGURE 4.4 Comparison of the Distribution of b(I) with its

Incorrectly Assumed Asymptotic Distribution b(D)
for v =1, N = 20
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FIGURE 4.4 . .(ii) K = 10
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9.5 SOME FINAL COMMENTS

In nonnormal models a distinction needs to be made between
multivariate distributed disturbances and iid distributed
disturbances. In this chapter ﬁhe importance of this distinction
in finite-samples, has been illustrated for the maximum likelihood
estimators of the regression coefficients in the general linear
regression model, when tﬁe disturbances are Student-t distributed.
This extends the results of Chapter 8, in which the location-scale
model was assumed.

Properties of the maximum likelihood estimator of the
regression coefficients when the disturbances are multivariate
Student-t distributed, (i.e., the OLS estimator, (b), are well
known, and more importantly, they are a simple generalization of
those given for the location-scale model, However, similar
properties for the maximum likelihood estimator of the regression
coefficients, when the disturbances are iid Student-t (i.e., the
robust estimator, (BML)’ are not known and so are developed in this
chapter; these properties are shown mnot to be a simple
generalization of those given in the location-scale model. These
properties are then wused to consider the implications of
misspecification. Thaﬁ is, to consider the implications of using
the maximum likelihood estimator associated with one assumption,
when in fact the other error assumption is correct. Although these
implications depend on the number of regressors in the model, in
general the consequences of making the wrong assumption are
serious, with respect to the efficiency of the resulting estimator,

and the use of the wrong limit distribution to approximate the
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finite-sample distribution.

However, before specification tests are developed to test
for this distinction, we first discuss the implicaﬁions of
"jointness versus independénce" in the nonnormal

limited-information SEM. This is the topic of the next chapter.



CHAPTER 10

THE NONNORMAL LIMITED-INFORMATION SIMULTANEOUS EQUATIONS MODEL

10.1 INTRODUCTION

The nonnormal limited-information SEM provides a relatively
new area of analysis as there are few published results on the
effects of nonnormal disturbances in the limited-information SEM
(e.g. Knight (1985b, 1986), Raj (1980), Donatos (1989)). However,
the objective in this chapter is simply to combine the themes
pursued in this thesis for the limited-information SEM and the
nonnormal linear regression model.

To mnarrow the range of possible models to consider,
attention is focussed only on the exactly-identified SEM. This
model, although somewhat restrictive, is worthy of study because
the finite-sample distribution of the estimator of the coefficient
of the endogenous regressor, has a number of interesting features
when the errors are normally distributed. In particular in this
chapter, finite-sample properties of the LIMIK estimator of the
coefficient of the one endogenous regressor in the exactly-
identified SEM are considered. The LIMLK estimator is the LIML
estimator assuming the covariance matrix of the reduced-form
disturbances is known. It is considered here because in the cases
when the LIMIK estimator is not equivalent to the LIML estimator,
it is numerically easy to compute, and it is considered that the

distribution of the two estimators will have similar features. We

202



begin by first considering properties of the finite-sample
distribution of this estimator when the reduced-form disturbances
are normally distributed. 1In this case the LIMLK estimator reduces
to LIML and TSLS, and a number 6f interesting properties of the
resulting distribution are illustrated. Next these properties are
examined when the assumption of normally-distributed redgced—form
disturbances is widened to Student-t disturbances. In this case
two assumptions are considered, these being, jointly-distributed
Student-t reduced-form disturbances and iid Student-t reduced-form
disturbances, Finally, the statistical consequences  of
distinguishing between these two assumptions are considered to
determine how important it is to make this distinction by applying
appropriate specification tests.

There are two sections in this chapter. Section 2 discusses
the properties of the LIMIK estimator. Part (i) of this section
assumes normally-distributed reduced-form disturbances, and Parts
(1i) and (iii) concentrate on Student-t distributed reduced-form
disturbances. Section 3 considers the statistical consequences of
misspecifying the jointness versus iid Student-t distributed

reduced-form disturbances.

10.2 EXACTLY-IDENTIFIED LIMITED-INFORMATION SEM

(i) Normally distributed disturbances

In the exactly-identified SEM with normally-distributed

reduced-form disturbances, the TSLS and LIMLK estimators reduce to
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indirect least squares (ILS), Using the notation of Chapter 5,
this estimator takes the form,

A

a = [Xy,]1 " (Xy,] (2.1)

where, in particular, X, is of dimension (N*1). In this case where

2
there are only two-included endogenous variables, (2.1) reduces to

a ratio of normal variables.

Ratios of normal random variates of the form,

z = (02+b)'1(cl+a) (2.2)

where a, b are nonnegative constants, and ¢, and c, are independent
standard normal variables, have been studied by authors such as
Geary (1930), Fieller (1932) and Marsaglia (1965). These studies
are also relevant for the ILS estimator when there are only two
included endogenous variables in the structural equation of
interest, as in this case (2.1) can be written in the form of

(2.2), where a = and b = ¢

*22 22°

Geary (1930) gives the'distribution of z when a = b = 0,
This distribution can easily be seen to be the Cauchy distribution
and further, as Phillips (1982, p.64) notes, it provides the
leading term in the multiple series expansion of the more general
case a # 0, b = 0, Therefore, the ILS estimator possesses no
moments of finite-order, which implies that, in general, its

distribution will have "fat tails",. Fieller (1932) gives the

following expression for the pdf of z in this case.



pdf(z) = % 1 P exp[-g(a2+bz)]
14z
; 2 ' p»‘r
+ exp(—;(a bi) ] b+a§ v f exp[-gyz]dy, (2.3)
1+z (1+z%) 0
where,p* ﬂﬁaw]JZ This pdf depends only on the parameter values
(1+22) _

a and b, which for the ILS estimator correspond to 8% and a, as 1s
given in Chapter 5, equations (5.3.4) and (5.3.5) respectively.
Phillips (1982, p.63 eqn. 3.78) gives the form of (2.3) for the ILS
estimator. Marsaglia (1965) gives the limiting distribution of
(2.3) and for the ILS estimator (see also Anderson (1982, p.1015))

this is equal to,

(SZ

l+a

, (&-a)—)N(O,l) as 6% 5 w . (2.4)

Table 2.1 presents a number of points of the DF of the
normalized ILS estimator for different &> and for two parameter
values a = 0.5 and 5.33.1 These points are calculated using the
method given in Chapter 5, Section 3, and are useful in determining

the approach of the density of the normalized ILS estimator to the

standardized normal distribution. Although this depends upon the

1 Only points on the right hand side of the distribution are
presentedzas the approach on the left hand side was very similar
for the 6" chosen.
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~

Table 2.1: Points of the Distribution Function of « in the Exactly-

Identified Limited-Information SEM with Normally-Distributed Reduced-form

Disturbances, « = 0.5 and 5.33 and Various 62.

oa = 05

8%=25 5%=100 5%=1000 Normal
60% 0.26265 0.25933 0.25688 0.255466
70% 0.55739 0.54289 0.53267 0.5301033
80% 0.92617 0.87962 0.85496 0.8469008
90% 1.4998 1.3803 1.3132 1.282630
957 2.0543 1.8055 1.6941 1.645
997% 3.3184 2.6833 2.4289 2.326
« = 5.33

8%= 82100 5%=1000 Normal

60% 0.26879 0.26227 0.25780 0.255466
70% 0.59083 0.55777 0.53832 0.5301033
80% 1.0179 0.92562 0.87049 0.8469008
90% 1.7242 1.4717 1.3406 1.282630
95% 2.4489 1.9691 1.7404 1.645

997% 4.3095 3.0101 2.5024 2.326
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values of a and 52, in general, even though the moments of the ILS
estimator are not finite, the standard normal distribution is a
good approximation to its actual distribution. Hence the usual
methods with asymptotic standérd deviation give reasonable
inference.

Marsaglia (1965) also presents an interesting numerical
analysis from which it is concluded that the density of =z is
unimodal or bimodal, according to the wvalue a takes, and in
particular, when a > 2.33 (~ implies this result is based on
asymptotic behaviour see, for example, Marsaglia (1965, p.197)),
the density 1s bimodal, although one of the modes may be
. insignificant. Applying this result to the ILS estimator means

that its distribution will be bimodal when,

2 5.09
an,, > 2.255 = 6" 2 2

(2.5)

Consequently, for example, as o > « the distribution will be
bimodal for all values of the noncentrality parameter whereas as
a > 0, the distribution should always be unimodal.

To determine the significance of the bimodality, several
densities for the ILS estimator are illustrated in Figures 2.1 and
2.2 for a = 0.5 and 5.33 respectively. These values are chosen to
represent a small and large value of a respectively. Furthermore,
they are calculated by first finding the points of the DF using the
method in Chapter 5, Section 3, and then the pdf is obtained via
numerical differentiation. For o« = 0.5, the distribution of the ILS
estimator can be considered to be unimodal whereas for o = 5,33,

prominent bimodality occurs, but is only a feature of the
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distribution for wvery small 8%, In pgeneral, the distribution
locates around the true parameter value very quickly.

Consequently, even though the density in (2.3) is an
interesting example in which maximum likelihood estimators may have
bimodal distributions for certain parameter values, the feature is
only prominent for relative large a values and very small
noncentrality parameters and, in general, the distribution of the
ILS estimator tends to be well approximated by the mnormal
distribution in finite-samples, even though the ILS estimator has
no moments of finite order.

Next, the assumption of normally-distributed reduced-form
disturbances is widened to Student-t disturbances and properties

of the LIMLK estimator are developed.

(ii) Dependent Student-t Disturbances

In this «case, again assuming there are two-included
endogenous variables in the structural equation of interest, as in
(5.3,1), the distribution of the reduced-form disturbances

(Vl,Vz) is given by,

pdf(vll"'leVZl"'VZN) =

v+2N - v+2N
r 2 1, 2 2 2 2 2
- [1+;(v SRR &V S S U & )] , (2.6)

v 11 1IN 21 2N
r [-é'] (V?l’)

and it is easily shown that the LIMLK estimator takes the same form

as when the disturbances are normally distributed. This can be
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shown quite simply in the exactly-identified SEM by wusing the
relationship between the reduced- form and structural parameters.

In particular we have,

@ =M,/ Ty (2.7)
Using the invariance property of maximum likelihood, this implies
that the maximum likelihood estimator of « is,

A A A

a = le/"22 (2.8)

The results of Sutradhar and Ali (1986) show that the maximum
likelihood estimators of the reduced-form parameters are OLS, and
this is all that is needed to establish the result that a is the

same as for normally- distributed (ul,uz). Consequently, (2.8)

takes the form,

" , -1 ’
a = (X2y2) (Xzyl) ) (2.9)
which is a ratio of correlated bivariate Student-t wvariables.

In a similar manner to Marsaglia (1965), Press (1969)

considers the distribution of the ratio,

z¥ = (c1+b)'1(c2+a) ,

where ¢, and c, have a bilvariate-t distribution, and this ratio, of

1 2
course, includes (2.9) with a = aH22 and b = H22. In’particular,
he gives the following expression for the pdf of =z¥,.
k k,q
1 2 qvv+l
pdf (z%) = {1 + —————[ZF (—————l - l]}, (2.10)
R q*v+1 v+l qg*

where



1
wzv(v+2)/2F v+l
K, = 1 K, = 2
1 s 2 v/2 ! 2 s 2 -v/2
w[l a“+4b ] 2F[v+2][1+a +b ]
AY 2 v
1
-az¥ 2
q=ﬂ; ) g% = (@ + b’ + v - g7
(L+zx?)?

n+l

1" ulsiiind
1 [ 2 ] dw
F_(t) = j

n
‘/r—x_'n F[-Z‘} - [14-!2]—-2—‘-

A number of properties of the ILS estimator are the same as

when (Vl’VZ) are normally distributed. In particglar, the key
parameters of the density are the same as is given in (2.3) and the
estimator possesses no moments of finite order (see, for example,
Press (1969) Knight (1986)). However, using the results of Press
(1969), the asymptotic distribution is not normal but Student-t so
that,

2 A 9

0 (a-a) - MTl(O,l), as 6 5 o

l+a

with asymptotic variance ;¥7 for v > 2. Table 2.2 illustrates the
approach of the standardized distributions to their limit
distributions for various v, 6> and @ = 0.5 and 5.33. These values
were obtained by calculating a number of points of the pdf using
(2.10) and then numerically integrating to obtain the DF. As in

the case of normally distributed (vl,vz), the limiting distribution

provides a good approximation to the finite-sample distribution,
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A

Table 2.2: Points of the Distribution Function of a in the

Exactly-Identified Limited-Information SEM with Reduced-form

Disturbances Distributed as in (2.6), a = 0.5 and 5.33 and Various 6%,

a=20.,5 a=5.33

v=1

6%=25 6%=100 %1000  &%=25 6%=100 5°=1000  Ccauchy

607% 0.24041  0.28651 0.31778 0.13693 0.23600 0.30057 0.31831
70% 0.63526 0.68883 0.71979 0.52169 0.63168 0.70358 0.71520
807% 1.2812 1.3423 1.3830 1.1575 1.2805 1.3525 1.3602
90% 2.9283 3.0222 3.0777 2.8108 2.9838 3.0265 3.0662
95% 5.9985 6.1196 6.2236 6.0695 6.1050 6.0939 6.3985

99% 31.241 31.576 31.145 30.034 30.287 29.532 32.197

a=0.5 a =5.33

v=2

6%=25 6%=100  6°<1000  6%=25 6°=100  6°=1000  Cauchy

60% 0.27260 0.29383 0.29863 0.24485 0.28731 0.29502 0.28404
70% 0.62077 0.63302 0.63103 0.61038 0.63785 0.62702 0.61725
80% 1.1224 1.1102 1.0825 1.1763 1.1538 1.0951 1.0639
90% 2.1786 2.0548 1.9540 2.4641 2.2408 2.0090 1.8893
95% 3.8042 3.3758 3.0874 4.5815 3.8077 3.1957 2.9351

99%  15.048 10.680 7.8185 19.786 13.494 8.8381 6.9584



Table 2.2 continued
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= 0.5 a = 5.33
v=3
6%=25 6%=100  §%=1000  6°=25 6°=100  6°-1000  Cauchy
60%  0.27952 0.28781 0.28691 0.26960 0.28250 0.28020  0.27355
70%  0.60416 0.60384 0.59406 0.62805 0.61572 0.59477  0.58387
80%  1.0609  1.0275  0.99644 1,1599  1.0763  1.0098  0.98337
90%  1.9352  1.7819  1.6841  2.2626  1.9256  1.7150  1.6426
95%  3.1230  2.6900  2.4534  3.8935  3.0223  2.5373  2.3498
99%  9.6094  6.2814  5.0255 13.414 7.7844  5.3318  4.5500
- 0.5 a = 5.33
v=5
6%=25 62100 6%=1000  6%=25 62=100 6°=1000  Cauchy
60%  0.26697 0.26173 0.26564 0.27528 0.27383  0.26919  0.26381
70%  0.58174 0.56849  0.55634 0.62259 0.59355 0.57063 0.55853
80%  1.0017  0.96015 0,92868 1.1052  1.0063  0.94319  0.92556
90%  1.7480  1,5911  1.5062  2.0220  1.7071  1.5322  1.4741
95%  2.6245  2,2519  2.0756  2.2534  2.5098  2.1471  2.0146
99%  6.0475  4.1986  3,5601  8.7804  5.0229  3.7640  3,3705
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FIGURE 2.3 Distributions of Maximum Likelihood Estimator in

Exactly-Identified SEM with Student-t Distributed

Reduced-form Disturbances given by (2.6) and

Corresponding to o = 0.5
L5 Cauchy disturbances o t2 disturbances
P
D 1.5}k 4
1 - r
1 - -
v
0.5 _ a
l 0.5 - =
u
0 i ] e 0 1 1
-10 -5 5 10 -10 -5 5 10
x value x value
o t3 disturbances o t5 disturbances
P
1.6 = p 1.6 .
F
1+ . 1} -
v
0.5+ . a 0.5 ~
1
0 1 u O ) I
-10 5 10 e -10 -H 0 5 10
x value
KEY §2 = 5.0
-- §2 = 15.0



o Rwile)

DY

=g

De =g

FIGURE 2.4

216

Distributions of Maximum Likelihood Estimator in
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even for small v and 62, and hence the usual methods with
asymptotic standard deviation give reasonable inference.

From a numerical analysis, Press (1969, p.245) concludes the
finite- sample distribution of z*‘is similar to that of the ratio
of normal variates. Figures 2.3 and 2.4 illustrate a number of
distributions for the ILS estimator for different v and o = 0.5 and
5.33 respectively. These Figures are calculated using (2.10).
Comparing these illustrations to those of Figures 2.1 and 2.2, the
conclusion reached by Press (1969) seems valid, although bimodality
does not tend to be as pronounced for small v.

Therefore, most of the properties obtained for the ILS
estimator with normally-distributed disturbances remain valid when
these disturbances have a joint multivariate Student-t pdf. The
only major difference between the two error assumptions is that
with multivariate Student-t errors the limiting distribution of the

ILS estimator is Student-t,.

(iii) Independent Student-t Disturbances

For the structural equation (5.3.1) with corresponding
reduced-form (5.3.2), if (Vln'VZn) is assumed to be independently

distributed bivariate Student-t for all n, we have,

so that the joint-distribution of (vl,vz) is given by,
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pdf(vll"'leV21"'V2N).=

(2.12)

The LIMLK estimator of o can be obtained by first maximizing
the log- likelihood equation for the reduced-form parameters Toy

and LPPY that is, maximizing the expression,

v+2 N 1, ~2 ~2
-[—E—Jizl Log[l + ;(v1n + V2n)] (2.13)

where,

Yin T Y10 *10™117%20™21 ' Von T Yon *1n™12 ¥2n™22

and then, secondly, by wusing the relationship between the
structural and reduced-form parameters in the exactly-identified

SEM, to obtain,

~

a = ﬂzl/ﬂzz . (2.14)

The 1log-likelihood -equation (2.13) needs to be solved

numerically. Recently, Koenker and Portnoy (1988) have considered
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classes of robust estimators for this type of model.2 In
particular, they show that the usual LAE, although asymptotically
inefficient, is asymptotically normally distributed, which suggests
that it provides a useful startiﬁg value. Furthermore, since to
date no analytical expression exists for the probability density
function of @, preliminary numerical analysis was
required to determine the‘ key parameters of the density of a.
However, this analysis indicated that the key parameters of the
density are the same as is given in (2.3).

Kelejian and Prucha (1984) show that the asymptotic

distribution of a for v > 5 is,

2
Sqrt[% —
l+a

](a-a) 5> N(0,1) as &6 > @ . (2.15)
Table 2.3 contains a number of points of the distribution
function of (2.14) for v = 5, a = 0.5 and 5.33 and 8 = 25, 100,
1000. These points are obtained via Monte-Carlo methods. 1In
particular the empirical DF is estimated, (see (4.2.1)), with

appropriate bivariate Student - t random numbers generated using

the relationship, (see e.g. (2.3.4)),

2
x.=z.[1} i=1, ... K (2.16)
1 1 v

2 In fact, Koenker and Portnoy (1988) consider classes of
robust estimators for Seemingly Unrelated Regression Models.
However, the reduced- form of a SEM is just a special class of
these (see, for example, Srivastava and Giles (1987, p.6)).
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where Zl’ A ZK are K, (K.in this case equals 2), independent
standard normal wvariables and x2 is an independent chi-square
variable with v degrees of freedom. From Table 2.3 it is seen that
the finite-sample distributions ‘are well approximated by the
asymptotic distribution N(0,1). Similar points are also given for
v =1, 2 and 3, although these are values of v that are not covered
in the proof of Kelejian énd Prucha (1984). However, comparing
these points with the appropriate wvalues from N(0,1) it is
conjectured that (2.15) is, in fact, the asymptotic distribution
for all v. Furthermore, (2.15) provides a good approximation to
the finite-sample distributions for these v, except for small 8
and v = 1, which tends in these cases to have very "fat tails".
Graphs of the distribution of a corresponding to @ = 0.5, 5.33
for wvarious v and 82 are illustrated in Figures (2.5) and (2.6)
respectively. The densities illustrated in these Figures are
estimated via the integration of the kernel density estimator with

the naive Monte-Carlo method. The kernel estimate at point X is

equal to,

1

> X - X
N¥h (N*)

k 3 (2.17)
h(N%)

paf(x) =

where k[.] is the standard N(0,1l) density. The window width h(N¥) is
chosen using the interactive approach of Tapia and Thompson (1978).
In all cases this approach led to the use of a window width between

0.02 and 0.09. N* is simply the number of replications in the
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simulation experiment, and is chosen using the bound of estimation.
For example, the results of Parzen (1962) and Cacoullos (1966)

imply,

1
2

[N*hm(N*)] [paf(x) - E(paf(x)]] ~ N[o,pdf(x)fx?] (2.18)

1

holds. The result given in (2.18) can be achieved if [N* hm(N*)]Z*

Bias[pdf(x)] tends to zero asymptotically since,

N =

[N*hm(N*)] [paf(x) . pdf(x)] = [N*hm(N*)][paf(x) . E[pﬁf(x))]

1
+ [N*hm(N*))ZBias[pSf(x)]

Ullah (1988, p.642) shows that Bias paf(x)] is proportional to
KA(N%). This implies that if N+h(*'™7/2(N2) tends to zero
asymptotically then (2,18) holds. Therefore, for the normal kernel
—l—exp(~§yz), the 99% asymptotic confidence interval for paf(X) is

Var
given by,

PO 1

pdf(X) + 2.58 [ngﬁﬁ) ],
2N*hvVr

so that B is given by,

8| -

B = 2'58[‘E§££§l_ ]. 7
2N¥h (N*) 7
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Table 2.3: Points of the Distribution Function of & in the Exactly-
Identified Limited-Information SEM with Reduced-form Disturbances
Distributed as (2.12), &« = 0.5 and 5.33 and Various 52,
a = 0.5 o = 5.33
=]

8%=25 8°=100  5°=1000 &%=25 8%=100  8°=1000 Normal
607 0.26088 0.26366 0.26549 0.27049 0.27005 0.26369 0.25547
707% 0.57163 0.55658 0.55000 0.s6l1162 0.57664 0.54971 0.53010
80% 0.99046 0.93255 0.90903 1.1022 0.97887 0.90342 0.84690
907 1.7387 1.5319 1.4572 2.0866 1.6785 1.4644 1.28263
957 2.6404 2.1384 1.9623 3.3645 2.4145 1.9952 1.6450
997, 6.3461 3.9129 3.1764 9.3176 4.7121 3.3461 2.3260

a =05 o = 5.33

v=

8%=25 5°=100  §°=1000 &%=25 5%=100  8°=1000 Normal
607 0.26767 0.26338 0.25969 0.27274 0.26465 0.25934 0.25547
707 0.57062 0.54520 0.53491 0.60480 0.56615 0.54184 0.53010
807 0.96609 0.89471 0.86492 1.0657 0.94926 0.88200 0.84690
907% 1.6448 1.4320 1.3429 1.8785 1.5411 1.3738 1.28263
95% 2.3577 1.9067 1.7585 2.8370 2.1302 1.8187 1.6450
997 4,7057 3.0127 2.6072 5.9174 3.5108 2.7387 2.3260



Table 2.3 continued
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a = 05 o = 533
V=
5%=25 s%=100  &%=1000 &%=25 52100  8°=1000 Normal
60%  0.26635 0.26338 0.25969 0.27274 0.26465 0.25934  0.25547
70%  0.56557 0.54520 0.53491 0.60480 0.56615 0.54184  0.53010
80%  0.95315 0.89471 0.86492 1.0657  0.94926 0.88200 0.84690
90%  1.6044  1.4320  1.3429  1.8785 1.5411 1.3738 1.28263
95%  2.2618  1.9067  1.7585 2.8370  2.1302  1.8187 1.6450
99%  4.2261  3.0127  2.6072  5.9174 3.5108  2.7387  2.3260
® = 0.5 ® = 5.33
v=
8%=25 8%=100  8%=1000 &%=25 5%=100  &°=1000 Normal
60%  0.25368 0.25128 0.24975 0.26435 0.25682 0.25146  0.25547
70%  0.55655 0.53874 0.52672 0.58863 0.55318 0.53865  0.53010
80%  0.94102 0.88659 0.85668 1.0335  0.92662 0.86537 0.84690
90%  1.5465  1.3982  1.3209  1.8151 1.5076  1.3517 1.28263
95%  2.1585 1.8556 1.7226  2.6626  2.0533  1.7724 1.6450
997  3.8551  2.8602  2.5256  5.2774  3.3075  2.6357  2.3260
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Distributions of Maximum Likelihood Estimator in

Exactly-Identified SEM with Student-t Distributed
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FIGURE 2.6 Distributions of Maximum Likelihood Estimator in

Exactly-Identified SEM with Student-t Distributed

Reduced-form Disturbances given by (2.12) and

Corresponding to o = 5.33
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N+ is varied until B is less than 0.01 for all points at which the
density is estimated. In all experiments, N* varies between‘60,000
and 90,000 replicationsB. The input of Xj in (2.17) involves
numerically maximizing the 1ikelihood function (2.16). Two
algorithms from the Harwell Subroutine 1library are used, these
being algorithms VAI3AD and VFO04AD, which both wuse the BFGS
formula, (Broydon (1970), Fletcher (1970), Goldfard (1970) and
Shanno (1970)). All computations are performed in double precision
to 7 decimal places of accuracy. The final results, hQWever, are
not dependent upon which algorithm is wused in this step.
Furthermore, the solutions of each of the algorithms used were
compared with those in the standard Econometric packages TSP and
SHAZAM, and were found to give similar results. Appropriate
bivariate Student-t variates, are generated as described above.
Further details of the Monte Carlo methodology are given in
Chapter 4.

Generally, these figures illustrate that the maximum
likelihood estimator behaves similarly in finite-samples to the
maximum likelihood estimator associated with normally-distributed
reduced-form disturbances. In particular, we again see that the
maximum likelihood estimator is bimodal over part of the parameter

space,

3Empirical densities were also computed using the Epanechnikov
(1969) kernel., However, given the number of replications used, the
results proved not to depend on which kernel 1is wused. This
situation is similar to the comparison of different kernels for the
Cauchy distribution using a "large sample”, as is illustrated in
Figure 5.1 in Chapter 3.



Overall Comments

The finite-sample distribution of the LIMLK estimator with
normally- distributed reduced-form disturbances has a number of
intefesting properties. In particular, the LIMIK estimator reduces
to ILS and the computations presented in this section indiéaté that
the 1limiting distribution is a good approximation to the
finite-sample distribution. Further, the numerical computations of
Marsaglia (1965) illustrate that the distribution is bimodal over
part of the parameter space.

When the distribution of the reduced-form disturbances are
widened to include the Student-t family, there are two different
error assumptions to consider. These are given by equations (2.6)
and (2.12), and they lead to quite different estimation techniques
with different properties. 1In particular, when (2.6) is assumed,
the LIMLK estimator is ILS whereas when (2.12) is assumed, the
LIMLK estimator needs to be numerically computed. Further, each of
the estimators converges to different limiting distributions.
However, the computations of the finite-sample distributions of
each of these estimators indicates that they both have
distributions with similar properties to the LIMLK estimator when
the reduced-form disturbances are normally distributed. That is,
in each case, the limiting distribution is a good approximation to
the finite-sample distribution and the distribution is bimodal over
part of the parameter space.

However, because there are differences between the two
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assumptions it is important to consider the consequences of
misspecifying the type of Student- assumption. This is the topic

of the next section.

10.3 CONSEQUENCES OF MISSPECIFICATION

In this  section, the statistical consequences of
misspecifying the jointnéss versus independence assumption of
Student-t  distributed reduced- form disturbances in  the
exactly-identified limited-information SEM 1is considered. One
implication of this analysis is to determine how important it is to
make this distinction by applying appropriate  "powerful"
specification tests. In particular, the consequences of

misspecification on the following three measures are considered.

(1) Median and Interquartile Range (IQR) of the finite-sample

distribution, which is wused to determine the consequences of

misspecification in finite- sample distributions.

(ii) Asymptotic Variance, which is considered because even though

the finite-sample variance does mnot necessarily exist, the
asymptotic variance is often reported as an approximate measure of

dispersion,

(iii) Limiting Distribution, which is considered because this is

often used as an approximation to the finite-sample distribution

for the purposes of inference.
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Throughout this section the superscripts D and I will be
used to distinguish between the assumptions given by (2.6) and

(2.12) respectively. In particular, the following notation will be

used:
IML(I) = Maximum Likelihood Estimator associated with (2.12)
when the pdf of (Vl’VZ) is given by (2.12)7
L) - Maximum Likelihood Estimator associated with (2.12)
when the pdf of (Vl,VZ) is given by (2.6).
DML(I) = Maximum Likelihood Estimator associated with (2.6)
when the pdf of (vl,vz) is given by (2.12).
DML(D) = Maximum Likelihood Estimator associated with (2.6)
when the pdf of (Vl’VZ) is given by (2.6).
(1) Median and IQR of finite-sample distribution

Table 3.1 compares values of the median and IQR for the
estimators DML(I) and IML(I), corresponding to o = 5.33, 0.5 and
various 6°. These are estimated on the basis of a simple Monte -
Carlo experiment using at least 40,000 replications. Appropriate
random numbers are generated using (2.16).

In this case the reduced-form disturbances are assumed to be
distributed as in (2.6) but actually have the distribution given by
(2.12). Consequently, the appropriate maximum likelihood estimator
to use is IML but due to this misspecification, DML is wused
instead. From Table 3.1 we can see that this results in the use of
an estimator similarly dispersed as IML(I), but one which locates

around the true parameter value much more slowly. These features

are also illustrated by comparing Figure 3.1, which shows various
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Table 3.1: Comparison of Median and IQR for Estimators IML(I) and DML(

230

iy

a = 5,33
v=1
2
] Median
0.141 0.66162 4.
1.00 2.9093 4,
4.00 4,7298 4,
v=1
2
o Median
0.141 0.04132 9,
1.00 0.31977 3.
4.00 1.11304 4,
a = 0,05
v=1
2
é Median
5

23

IQR Median
0574 0.7555
807 3.0817

3867 4.8843

IQR Median
2247 0.26942
2247 1.7682

6842 3.6970

AR

IQR Median

0.44461 0,91239 0.47269

0.49865 0.42616 0,49971

IML(I)
=2 v=3 v=5

IQR Median IQR Median IQR
4,2283 0.81975 4.3676> 0.91612 4.5412
4.7230 3.2148 4.7045 3.3607 4.7124

4.3118 4.9304  4.2705 5.0155 4.1438

pmL (D)

IQR Median IQR Median IQR
3.0298 0.49154 3.6245 0.58650 3.840318
5.8761 2.5061 6.1140 2.70228 5.2526

4.8161 0.1875  4.28779 4.5308  4.4199

DML(I)
V=5 v=1 V=5

IQR Median IQR Median IQR
0.79927 0.11716 1.79085 0.45683 0.874497

0.36419 0.29884 1.35172 0.49963 0.40088
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Table 3.2: Comparison of Median and IQR for Estimators IML(D) and DML(D)
o = 5.33 IML(D)
v=] v=2 v=3 v=
8% Median IQR Median IQR Median IQR Median IQR
0.141 0.49067 3.6467 0.71379 4.0723 0.83722 4.344 0.95121 4.5641
1.00 2.1830 5.6321 3.0526 5.2346 3.1560 4,9883 3.3943 4.7916
4.00 3.6319 4,7006 4.4795 4.0724 5.0522 5.5123 4.9172 3.8686
DML(D)
v=1 v=2 v=3 v=5
62 Median IQR Median IQR Median IQR Median IQR
0.141 0.6416 4.0185 0.8384 4.3621 0.9385 4.58123 1.01731 4,.6965
1.00 2.6615 5.5760 3.1725 5.0887 3.3724 4.8793 3.5055 4.,7981
4,00 4.2718 4.3901 4.7105 3.8734 5.2526 5.4833 4.9931 3.8163
o = 0.5 IML(D) DML(D)
v=1 v=5 v=1 v=5
8%  Median IQR  Median IQR Median IQR Median  IQR
5 0.3921 1.0195 0.4617 0.7679 0.4014 0.8387 0.4679 0.7385
23 0.4679 0.5479 0.4963 0.3583 0.4813 0.4569 0.4979 0.3430




graphs of DML(I), and Figure 2.6 which shows the corresponding
graphs of IML(I). The graphs of DML(I) are estimated via an
integration of the kernel density estimator with the Monte-Carlo
method, ag described in the previous Section, except with inputs
into (2.17) obtained by calculating (2.9) with bivariate Student-t
variates generated using (2.16). We consider different v, o = 5.33
and numerous 62, Further, we also see from Figure 3.1 that the
distribution of DML(I) tends to be bimodal over the same parameter

(1)

space as IML except for v = 1,

Alternatively, Table 3.2 compares values of the median and
IQR for the estimators DML(D) and IML(D), corresponding to o =
5.33, 0.5 and various 62. For DML(D) these values are calculated
exactly via the numerical integration of points of the pdf
calculated from (2.10). For IML(D), they are estimated using a
simple Monte-Carlo experiment using at least 40,000 replications
and N, (= sample size, arbitrarily chosen since sample size is not
a key parameter), jointly distributed random variates generated
using the relationship given in (2.16).

In this case the reduced-form disturbances are assumed to be
distributed as in (2.12) but actually have the distribution given
by (2.6). However, the resulting estimator that is used, IML(D),
has a distribution that 1is similar both in location and dispersion,

(o).

to the correct maximum likelihood estimator DML This feature

is also illustrated by comparing Figure 3.2, which shows various
graphs of IML<D), (estimated via the integration of the kernel

density estimator with the Monte-Carlo method as described in the
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previous Section, with N jointly distributed random Student-t
variates generated using (2.16)), corresponding to various v, a =
5.33 and numerous 62, and Figure 2.4, which shows the corresponding

()

graphs of DML In particular, the two figures can be seen to be
essentially identical.
Consequently, on the basis of this measure, we would

conclude that IML(D) is a more robust estimator in comparison to

omL (D),

(ii) Asymptotic Variance

The implications of misspecification on the asymptotic
variances are similar to those discussed by Kelejian and Prucha

(1985) for the linear regression model, In particular, some
A

examples of the standardized asymptotic variances of a and a (i.e.

1+a® 1+a”

2 (a'a)’ 5

8 é

distributed as in (2.6) and (2.12) are given in Table 3.3. These

(a-a)), associated with reduced-form disturbances

variances are calculated using the known results of Kelejian and
Prucha (1985); for IML'™ for v > 5 and calculated using at 40,000
replications in a simple Monte - Carlo experiment for v < 5; from
Theil (1971, p.505) for DML‘T) and pML®) for v > 2; and are
calculated on the basis of a simulation experiment using at least
40,000 replications for IML(D). From the values given in Table 3.3
the following general comments can be seen to hold for v 2 3:

(1) If the reduced-form disturbances are jointly-distributed as

in (2.6) but are assumed to be iid-distributed as in (2.12), then

IML will be taken as the appropriate maximum likelihood estimator
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2 2
L+a (DML-@) and Lta
52 52

Table 3.3: Asymptotic Variances for (IML-a)

when reduced-form disturbances are distributed as (2.6) and (2.12).

v
3 [ 5
I=D
Var(DML™ ) 3.0 2.0 1.6667
Var(IMLD) 3.4649 2,2366 1.7999

var (1MLD) 1.40 1.3333 1.2857




(D)

to use. In this case the asymptotic wvariances of IML are

(D)

similar to those of DML'"’, which again emphasizes the robustness

of this estimator. However, the asymptotic variances reported for

(I)

IML will be those associated with IML , which substantially
underestimate those for IML(D). Consequently, on the basis of
asymptotic variance, under this type of misspecification IML(D) is

robust, but incorrect asymptotic variances will be reported.

(2) On the other hand, if the reduced-form disturbances are iid-
distributed as in (2.12) but are assumed to be jointly-distributed
as in (2.6), then DML will be used, with associated asymptotic

(1)

variances given by DML These variances can be seen to be

substantially greater than those corresponding to the correct

(D)

maximum likelihood estimator IML Consequently, on the basis
of asymptotic variance, this type of misspecification is associated
with an inefficient estimator.

For the infinite-variance distributions, that is v = 1, 2, the

(0 and DML(D) do not exist, so in this

asymptotic variances for DML
case the consequences of misspecifying the type of Student-t

distribution are even more serious.

(ii) Limiting Distribution

If it is thought that the reduced - form disturbances are
independent Student - t distributed, that is with joint
distribution given by (2.12), then it will be assumed that the
associated maximum likelihood estimator, a, has the asymptotic

distribution,
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——] as 6% 5 « . (3.1)

This result is based on the results of Kelejian and Prucha (1984)
and simulation results presented in this chapter. However, if the
reduced-form disturbances ‘are actually dependent Student - ¢t
distributed as in (2.6), this 1limiting distribution will be
incorrect. It is important to consider the implications of the use
of the wrong limiting distribution since it is this distribution
that is often used as an approximation to the finite - sample
distribution for purposes of inference.

52

l+a

Various points of the distribution of (a-a), assuming

dependent Student - t distributed reduced - form disturbances
(2.6), are given in Table 3.4, corresponding to a = 0.5, 5.33 and
8% = 25, 1000 for wvarious v. These points are obtained via the
estimation of the empirical DF (see (4.2.1)), with appropriate N,
jointly distributed Student- t random numbers generated using the
relationship (2.16). These points are compared with the
corresponding points of the incorrect limiting distribution given
by (3.1). In particular, we can see that this misspecification
will result in the use of an asymptotic approximation that has
tails that are much thinner than the actual finite-sample
distribution. This suggests that conventional hypothesis testing

about a structural coefficient based on the incorrect limiting

distribution is very likely to seriously overestimate the actual
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Table 3.4  Effect Of Using The Wrong Limiting Distribution For Standardized

@ When Errors are Jointly - Distributed but are Thought to be

Independently-Distributed

v =1
a=20.5 a = 5,33
- Normal with
6%=25 6=1000 6%=25 62=1000 variance=§
-0.05615 -0.015 -0.14882 -0.0314 0.0 50%
0.18537 0.2518 0.09788 0.22974 0.33588 60%
0.49478 0.5794 0.40091 0.55844 0.68278 70%
0.98739 1.1449 0.88458 1.0984 1.095589 80%
2.562 2.8233 2.1704 2.7086 1.65957 90%
4.7073 6.6137 4.5275 6.1978 2.124746 95%
23.681 37.092 21.736 32.9330 2.99854 99%
v =2
a=0.5 a=5.33
Normal with
6%=25 6%=1000 6=25 6=1000 variance=3
-0.02517 -0.0639 -0.0018 -0.045 0.0 50%
0.20929 0.23842 0.19702 0.23873 0.318641 60%
0.49204 0.52747 0.48951 0.52533 0.64774 70%
0.90398 0.92969 0.93528 0.93676 1.03937 80%
1.7620 1.7470 1.9842 1.7781 1.57441 90%
3.0839 2.9367 3.7235 3.0806 2.01571 95%

11.138 9.3376 14,706 10.7560 2.84466 99%
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Table 3.4 continued

v =73
a=0.5 ) a = 5,33
Normal with
82=25 62=1000 6%=25 62=1000 variance=§
-0.01329 -0.006 -0.02055 0.007 0.0 50%
0.22135 0.2402 0.22078 0.23508 0.307836 60%
0.50103 0.5169 0.51246 0.51531 0.625775 70%
0.89663 0.8808 0.95179 0.88275 1.00412 80%
1.6140 1.5245 1.8937 1.5687 1.52102 90%
2.6488 2.3036 3.2677 2.4067 1.94736 95%
7.9429 5.3103 10.608 5.8209 2.74820 99%
v =25
a=0.5 a=5.33
Normal with
6%=25 6%=1000 6%=25 6°-1000  variance=>
-0.006 0.0 -0.0110 -0.007 0.0 50%
0.23491 0.295004  0.23621 0.23839 0.295004 60%
0.51026 0.599689  0.54425 0.51720 0.599689 70%
0.88533 0.962267  0.97429 0.86824 0.9622767 80%
1.5478 1.45762 1.8132 1.4365 1.45762 90%
2.2832 1.86619 2.8796 2.0349 1.86619 95%

5.3451 2.63364 8.0263 3.7498 2.63364 99%



significance.

Siﬁilar comments can be made when the reduced-form
disturbances are assumed to be distributed as (2.6) but are
actually distributed as (2.12). .In this case if disturbances are
thought to be distributed as (2.6) then DML will be taken as the
appropriate maximum likelihood estimator to use with corresponding

limiting distribution,

2 A
/0 = (a-a) 3 M (0,1,v) as 6% 5w . (3.2)

l+a

However, if the reduced - form disturbances are actually
distributed as (2.12) then (3.2) will be wrong. We again examine
the consequences of the use of this wrong limiting distribution by
comparing the finite - sample distribution of ;, assuming (2.12)

with the limit distribution given in (3.2).

In Table 3.5 wvarious points of the distribution function of

2 A ’
/ 0 5 (a-a), assuming reduced - form disturbances distributed as
l+a '

in (2.12) and corresponding to @ = 0.5, 5.33 and 6% = 25, 1000 for
various v are given. These are obtained via the estimation of the
empirical DF, (see (4.2.1)), with bivariate Student - t random
numbers generated using the relationship (2.16) with K =2. A

comparison of these points with the corresponding points of the
incorrect limiting distribution MTl(O,l,v), when the reduced-form
disturbances are actually distributed as (2.12) illustrate that the
use of the wrong limit distribution results in the use of an
approximation to the finite-sample distribution that has much

thinner tails. This suggests that conventional hypothesis testing
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Table 3.5: Effect Of Using The Wrong Limiting Distribution for Standardized

A

a when Errors are Independently-Distributed but are Thought to be

Jointly-Distributed

v=1
a = 0.5 a = 5,33
Standardized
5 =25 6 =1000 6 =25 6 =1000 Cauchy

-0.79209 -0.21434 -1.8473 -0.48310 0.0 50%
0.17617 1.0627 -1.0483 0.75251 0.31831 60%
1.3876 2.5909 -0.07521 2.3163 0.71520 70%

"~ 3.3597 5.1025 1.5267 4,8041 1.3602 80%
8.3335 11.838 5.6863 11.399 3.0662 90%

18.109 24,506 13.466 23.042 6.3985 95%

93.673 104,21 76.542 112.58 33.197 997

v o= 2
a= 0.5 a = 5,33
2 Standardized
62=25 6%=1000 6=25 62=1000 £,

-0.076 0.0056 -0.11832 0.01946 0.0 50%
0.43516 0.51300 0.39167 0.52170 0.28404 60%
1.0621 1.0754 1.0909 1.1028 0.61725 70%
1.9535 1.7917 2.1923 1.8479 1.0639 80%
3.8423 2.9663 4.6354 3.0860 1.8839 90%
6.4801 4.,2071 8.8531 4.5621 2.9351 95%

27.866 8.6984 41.896 9.8816 6.9584 99%
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Table 3.5 continued

v o= 3
a = 0.5 . a = 5.33

2 2 ) Standardized

8%=25 6%=1000 6°=25 5%=1000 £,
0.00 0.01 -0.01005 0.00848 0.0 50%
0.38074 0.38478 0.40673 0.40234 0.7335 60%
0.8632 0.81032 0.91962 0.82241 0.58387 70%
1.4920 1.3192 1.6809 1.3485 0.98337 80%
2.6055 2.0940 3.1914 2.1459 1.6426 90%
3.9398 2.8111 5.2853 2.8976 2.3498 95%
10.219 4.4269 16.101 4.9267 4 .5500 99%

v =25
a=20.5 a = 5.33

2 2 ) ’ Standardized

5%=25 6%=1000 8%=25 52=1000 €
0.00 0.0046 0.01676 0.01841 0.0 50%
0.3215 0.31422 0.35601 0.33849 0.25546 60%
0.69624 0.65384 0.77380 0.68782 0.55802 70%
1.1789 1.0684 1.3359 1.0964 0.91295 80%
2.0125 1.6709 2.4058 1.7259 1.44792 90%
2.9204 2.1872 3.,6145 2.2755 1.96776 95%

5.5950 3.2260 8.5127 3.5476 3.33237 99%



about a structural coefficient 1is very 1likely to seriously
overestimate the actual significance.

Consequently, misspecifying the type of error distribution
results in the usé of the wrong limiting distribution, which in
each case has much thinner tails than the actual finite-sample
distribution, and this will have adverse implica;ions for

inference.

(iv) Overall Comments

The purpose of this section has been to illustrate the
importance of distinguishing between reduced-form distributed
disturbances given by (2.6) and (2.12). In particular, we see that
when reduced-form disturbances are assumed to be distributed as
(2.6) but actually have distribution (2.12), the effects on the
resulting maximum 1likelihood estimator used are two-fold. This
estimator is slow to locate around the true parameter value and an
incorrect asymptotic distribution 1is wused to approximate the
finite-sample distribution, resulting in an approximation that has
much thinner tails than the actual distribution, which will have
implications for inference. On the other hand, when the
reduced-form disturbances are assumed to be distributed as (2.12)
but actually have distribution (2.6) the resulting maximum
likelihood estimator wused 1is robust in the sense that 1its
finite-sample distribution is essentially identical to the correct
maximum likelihood estimator. However, once again an incorrect

asymptotic distribution is used to approximate the finite-sample
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distribution of the maximum 1likelihood estimator wused, which
results in an approximation that is much thinner tailed than the
actual distribution, and this will have implications for inference.
Consequently, the results suggest that it is worthwhile to have
appropriate specification tests to distinguish between (2.6) and
(2.12). This is one of the topics of the next chapter.

Before closing thisVChapter however, note that the results
presented could have been extended to include the more general SEM,
by using for example the Godfrey and Wickens (1982) approach of
treating LIML as a special case of FIML. However, it was decided to
restrict attention simply to the exactly-identified SEM because of
the interesting bimodality feature of the resulting density in this
case, and also because it was considered that the results obtained
would illustrate the general features of misspecification.
Furthermore, the use of the LIMLK estimator, by assuming a known
covariance matrix, simplified numerical computations considerably.
More generally, what is required assuming iid nonnormal errors is a
comphrehensive theory, including computational aspects, of robust
estimators in the multivariate case. The maximum likelihood
estimator for Student - t errors can be considered to be an example
of a robust estimator, see e.g. Koenker and Prucha (1984). This
problem has been set aside for future work, and it seems more

appropriate to consider the more general SEM in this context.
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CHAPTER 11

TESTING THE ASSUMPTION OF JOINTLY-DISTRIBUTED VERSUS

INDEPENDENTLY-DISTRIBUTED NONNORMAL DISTURBANCES

11.1 INTRODUCTION

A widely used assumption in econometrics is that regression
disturbances are normally distributed, and in this case there is no
need to distinguish between independence and uncorrelatedness.
Recently, however, as is illustrated in Chapter 7, there has been
much interest in nonnormally distributed disturbances, and in this
case a distinction needs to be made Dbetween assuming
independently-distributed nonnormal disturbances and
jointly-distributed nonnormal disturbances. In particular, if the
appropriate moments exist, then this is a distinction between
independence and uncorrelatedness. Chapters 8, 9 and 10 illustrate
the importance of making this distinction in two models, these
being the 1linear tregression model and the exactly-identified
limited-information SEM. In the linear regression model and in the
exactly-identifiéd linear-information SEM, the consequences of
misspecifying the jointness/independence distinction are such that
it is important to construct appropriate specification tests that
make this distinction. 1In this chapter, such specification tests
are presented to make this distinction in the
elliptically-symmetric family of distributions, by adopting the use
of existing tests for normality.

As the specification tests for jointness versus independence
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presented here adopt the use of existing tests for normality, we
begin this chapter by first reviewing tests for normality. This
review begins in Section 2 with tests for univariate normality and
multivariate normality. In pafticular, attention is given to
Shapiro and Wilk’s (1965) test wused to test for wunivariate
normality, and a modification of this test wused to test for
multivariate normality. ‘Section 3 discusses the application of
these tests to the types of models considered in Chapters 9 and 10,
while Section 4 considers the use of these tests for testing the
jointness versus independence assumption. In Section 5 a Monte
Carlo experiment 1s presented which illustrates the power of these
tests for testing the jointness versus independence assumption
assuming that the disturbances are Student-t distributed, and

Section 6 concludes with some final comments.

11.2 TESTS OF NORMALITY

(1) Univariate Normality

Research into tests of normality of observations has a long
history, with attention being given to one-directional tests such
as skewness and kurtosis tests and tests that are sensitive to any
form of departure from normality such as omnibus tests. Recent
contributions to the literature are the skewness, kurtosis and
omnibus tests proposed by D'Agostino and Pearson (1973), Bowman and
Shenton (1975), Pearson, D'Agostino and Bowman (1977), Shapiro and
Wilk (1965) and Shapiro and Francia (1972) and the use of the score
test on a general family of distributions by Jarque and Bera

(1987).
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Shapiro et al, (1968) launched the first major power study
into the behaviour of a number of tests for normality. They
concluded that the Shapiroc and Wilk (1965), W, test provides a
general omnibus measure of nonnofmality. Similar conclusions were
obtained in studies by Dyer (1974), Stephens (1974) and Pearson
et al. (1977).

Given these conclusions then, this chapter will focus on the
W-test. This test has further appeal since Royston (1982) has
provided a simple algorithm which enables it to be computed for
sample sizes wup to 2000 as well as providing appropriate
significance levels. It is defined as follows. Let mw =
(ml,...,mN) denote the vector of expected values of standard normal

order statistics, and let V ) be the corresponding N*N

(vij

covariance matrix; that is

E(xi) = mi(1=1,...,N) and cov(xi,xj) = Vij(l’J=1""’N)
where Xy < X, < ... < Xy is an ordered random sample from a
standard normal distribution N(0,1). Suppose y’ = (yl,...,yN) is a

random sample on which the W test of normality is to be carried

out, ordered y(l) < y(z) < ... < y(N). Then
W= |Za,y, |%/=y. -2 (2.1)
- iyi / yi-y) .
i i
where
a’ = (al,...,aN) = m’V_l[(m’V'l)(V-lm)]-l/2 .

The coefficients {a,) are the normalized "best linear

i
unbiased" coefficients tabulated for N < 20 by Sarhan and Greenberg

(1956) . The covariance matrix V which features in a may be
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obtained wusing the algorithm of Davis and Stephens (1978).
However, V is not required explicitly, and Shapiro and Wilk (1965)
offer a satisfactory approximation for a which improves with
increasing sample size N, andl this approximation 1is wusually

adopted. By definition, a has the property a’a = 1. Let a* =

A

m’V ~; approximations a* for a¥ are
2mi , i=2,3 N-1
' ai N-1a 12 i=1,1i=N
[—"'—rz— by a’?] ! B !
1-2a; j=2
i
where,

g(N-1) , N < 20

g(N) , N> 20

and g(N) = F(N+1)/V§F(%N+l).

In the algorithm developed by Royston (1982) for computing
W, these approximations are used throughout the range 7 < N < 2000,
while exact values are used for the (ai) for N < 7. The values of
m, required in the computation are calculated using Blom (1958,
pp.69-71) and are accurate to 0.0001l. Values of the significance
levels are also given, and are obtained by approximating the null
distribution of W, That is, Royston (1982) showed that W could be
transformed to an approximately standard normal variate, Z, under
the hypothesis that the unordered observations come from a normal

distribution with unspecified mean and variance, so that,

Z - [(1—W>A : u]/o , (2.2)
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and A, p, o are all functions of N, for which polynomial formulae

are provided (Royston (1982, p.119)).

(ii) Multivariate Normality

Let X = (Xl,...,xm) be m variates each with N observations
and let X and S be the sample mean vector and covariance-matrix
respectively, corresponding to the population statistics p and X,

that is,

I ™M=

X = [i.], }J =1,...,m, where ;j = 1/N

KXo
J 1

i=1

and

N
z (x

Z ji-i)(xki&), j=k=1,...,m
1

Zl=

The null hypothesis to be tested is that X is multivariate normally
distributed. One simple procedure is to test the marginal
normality of each of the m components by wusing univariate
procedures. However, marginal normality does mnot imply
multivariate normality although the presence of nonnormality is
often reflected in the marginal distributions. Hence, it is
usually claimed (see, for example, Mardia (1980)) that tests which
exploit the multivariate structure will be more sensitive.

A number of test procedures for multivariate normality have
been proposed in the literature, and reviews of these procedures
are given in, for example, Mardia (1980) and Cox and Small (1978).
Generally though these procedures have concentrated either on
combinations of univariate tests of normality such as those of

Small (1980), Malkovich and Afifi (1973), or on the geometrical

m .
properties in R of two or more variates taken together such as



Healy (1968) and Cox and Small (1978). However, often the
suggested tests have intractable null hypothesis distributions, are
difficult to calculate and further convincing power studies are
rare.

Recently, a number of authors such as Royston (1983) and
Srivastava and Hui (1987) have suggested extensions of W which
solve some of these probléms. However, the statistic proposed by
Royston (1983) requires certain approximations to be made, in order
for the statistic to have large-sample justification,
Consequently, in this section we review only the statistic
suggested by Srivastava and Hui (1987) which has 1large-sample
justification.

Srivastava and Hﬁi (1987) propose the test statistic Ml for
testing multivariate normality, and this statistic may be
considered as a generalisation of both the univariate-W statistie,
and also the statistic proposed by Shapiro and Wilk (1968) for the

joint assessment of normality of several independent samples. In

particular, M1 is based on principal components. That is, let I' =

(71,...,7m) be an orthogonal matrix such that VIl = DA’ where DA
is a diagonal matrix with diagonal elements Al,...,Am, then,
71X,...,7&X are called m principal components which are
Independently distributed ‘with means 7iu,...,75u and variances
Al,...,Am respectively, if X is normally distributed. When X is

not known it is estimated from the sample by S and approximately

I

independent principal components are obtained. That is, let H

(h

i

y+..,h ), be an orthogonal matrix such that H’SH. = D_ where D
1 m w w

dlag(Wl,...,Wm) and let
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y.. = hix

1] 1%45 i=1,...,m, j=1,...,N,

Then y]._j is the ith principal component for the jth sample, where X
is estimated by S. Thus under the null hypothesis of normality,
(yil""’yiN)’ i = 1,...,m 1is treated as m approximately
independent samples and the procedures of Shapiro and Wilk (1968)
can then be used. That 1is, for sample i, the univariate W is

calculated, denoted as W(i), where
W(i) = [ Ta ]Z/z[ -"]2
L ly(l) i Y(l) y ’

as in (2.1) and,

M, = -221n{¢[G[W(i))}} (2.3)
1

where G[W(i)} is the transformation of W(i) to a standard normal

variate, suggested by Shapiro and Wilk (1968), and is equal to

G{W(i)} - 7+6log{¥f;z;;}

with values for v, 6 and ¢ obtained in Table 1 of Shapiro and Wilk

(1968) up to N = 50 and Royston (1983) for larger sample sizes,
and,

Aox
$(x) = (2m) > J exp(-gtz)dc .
-00
Asymptotically M1 is distributed as x;m.
A Monte Carlo study is reported by Srivastava and Hui (1987)
in which it is concluded that the null distribution of M1 is well

approximated by Xgm for sample sizes that are small as 10,

However, no power results are given,
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11.3 EXTENSION TO TESTING THE NORMALITY ASSUMPTION IN REGRESSION

MODELS

(1) Using Univariate Tests in the Classical Regression Model

In the classical regression model (1.1.1), the disturbances,
although assumed iid are unobservable. They can be estimated with

the least squares residual vector,

e = [1 - X(x'X)’lx']y

but E(ee’) = UZ{I - X(X’X)-1X’] and so the elements of e are
correlated. This problem can be overcome by transforming e to a
new N-k vector of uncorrelated residuals such as the BLUS or
recursive residual <vector (see, for example, Judge (1985,
pp.172-173)), and then these can be used in conjunction with the
univariate tests of normality in 11.2.

Alternatively, Mukantseva (1977), Pierce and Kopecky (1979),
Loynes (1980) and White and MacDonald (1980) provide conditions
under which several well-known tests for univariate normality have
the same limiting null distribution when used to test the normality
assumption of the regression disturbances and are calculated using
least-squares residuals. These conditions are summarized in

Condition (11.1):

Condition (11.1) (Xi)’ which denotes a vector of all of the
observations on the regressors at point i, is a sequence of
uniformly bounded fixed wvectors such that %%g [X’X/N] = Q, a
positive definite matrix.

Given this assumption then, for W we have, in probability,

W - W — 0,



where the " refers to W calculated with least-squares residuals,

In finite-samples, using the same significance levels as
appropriate for the univariate tests, Huang and Bolch (1974) and
Ramsey (1974) report on Monte Cario studies, including G, where use
of the least squares vector leads to a more powerful test than that
obtained using the BLUS residual vector e, Furthermore, Monte
Carlo studies carried out by Weisberg (1980) suggest that the
significance level of & is near the nominal 1level, therefore
suggesting that in finite-samples the significance levels of W can
be used, although the accuracy of this approximation depends on the
regressors as well as sample size. However, in all of these
studies emphasis is mainly given to the nominal 10% level. The
Monte Carlo study carried out in the last section of this chapter

extends this analysis to all the common nominal significance values

used.

(ii) Using Multivariate Tests in SEM's
g

If we consider the reduced-form of the SEM, such that,

Y =XI+ v, (3.1
where X i§ assumed to be strictly exogenous such that 1im£§§§l = Q,
and II is the matrix of corresponding reduced-form parameters, then
the usual assumption made about the reduced-form errors is v =~
N(0,Q), and this then also implies that the structural disturbances
are multivariate-normal. If v ~ N(0,0) is taken as the null
hypothesis, then it 1s easily shown that when the reduced-form

A A

errors v, with estimated covariance matrix 1, where,
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A A A

ﬂj = —N‘ViVj ,

with ith and jth residuals from the ith and jth equation (2.4), are

used to calculate Ml’ " indicafes use of v in constructing Ml)’

A
then the limiting distribution of M

A

is as in (2.3), that is, M, ~

1 1

x;m, where m 1is the number of exogenous variablgs in the
reduced-form. This result holds simply because Condition (11.1) is
satisfied at the first stage of forming the marginal W(i).

However, while many Monte GCarlo studies have been carried
out to assess the finite-sample performance of tests of normality
calculated using least-squares residuals in the linear regression
model, similar studies that consider the use of the reduced-form
least squares residuals in the calculation of tests of
multivariate-normality in SEMs are non-existent. Consequently, in
the last section of this chapter a simple Monte Carlo study is
performed to consider the performance of M1 in the

exactly-identified model of Chapter 10,

11.4  TESTING FOR JOINTNESS VERSUS INDEPENDENCE

King (1980b) shows that any statistic which is invariant to
the scale of the disturbances of the linear regression model has
the same distribution when u -~ N(O,azL) as it does when u is
assumed to follow any other elliptically symmetric distribution
with characteristic matrix L. In particular, if tests of normality
satisfy this invariance property then widening the null hypothesis
of these tests to include the spherically symmetric family of

distributions does nothing to the size (and also the power in this
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case), of these tests. Examples King (1980b) gives of tests of
normality where this property holds are those suggested by Putter
(1967), Koerts and Abrahamse (1969), Louter and Koerts (1970),
Huang and Bolch (1974) and Mukantseva (1977).

In the previous section emphasis is given to the Shapiro and
Wilk (1965) wunivariate test W and its modifications to testing
normality in the classical regression model and SEM's. These tests
also satisfy the above invariance property as shown by Shapiro and
Wilk (1965). Consequently, it is more accurate to regard them as
tests for spherical symmetry rather than tests for normality.

In the linear regression model, using this testing strategy
implies the following, If the null hypothesis is accepted then
there is no need to distinguish between the spherically distributed
distributions. This is because all of the common test-statistics
used satisfy this invariance property, such as, for example, the
classical F-test of fixed linear restrictions on B, tests for
serial correlation in regression disturbances proposed by Durbin
and Watson (1950), tests for heteroscedastic disturbances suggested
by Goldfeld and Quandt (1965), tests for regression misspecifica-
tion such as those outlined by Ramsey (1969) (see also King (1980b,
p.14)). However, if the alternative hypothesis is accepted then
robust estimation and inference techniques are needed, at least for
moderately-sized linear regression models,

A similar strategy can be adopted in SEM's wusing the
recently suggested ways of defining structural-form residuals by
Harvey and Phillips (1980), Phillips (1988), for 1limited- and

full-information SEM’s.

256



For example, £for the limited-information SEM with two

endogenous variables, the topic of Chapters 5 and 6,

yi - ygﬂ X1 by (4.1)
we have the following relationship between the structural- and
reduced-form disturbances,
vy = vzﬂ + u -
Harvey and Phillips (1980) showed that all the usual tests, such as
those mentioned above, have the same exact size as in the general

linear model when based on the estimate,

A A A 1
u, = (v, v,)| A
1 172 !
-B
A A
where K v, are the OLS estimates of the reduced-form disturbances

A
corresponding to (3.1), and B 1is a consisitent estimate of 8.

Therefore, since these statistics are also invariant to scale, this
implies there is no need to make any distinction between the
elliptically-symmetric distributed disturbances when the null
hypothesis of multivariate mnormality 1is accepted. If the
alternative hypothesis is accepted then estimation and inference
procedures can be based on maximum-likelihood methods with
Student-t distributed disturbances for example, or some other
robust method such as those suggested by Amemiya (1982) and Powell

(1983).

11.5 MONTE CARLO EXPERIMENTS

In this section, results of Monte Carlo experiments are

given to illustrate the performance, in terms of both size and
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A A
power, of the Wl and Ml tests, in the linear regression model and

the exactly-identified SEM, The results of a Monte- Carlo
experiment to determine the size and power of the W, test are

1
presented in Table 5.1 and for the ﬁl test in Tables 5.2 and 5.3
respectively. Every Monte - Carlo experiment in this section
consists of generating 5,000 random numbers from a given
distribution; computing the values of the test - statistics and

seeing whether H, is rejected by each individual test. Assuming an

0
underlying normal distribution gives the size of the test, and
assuming the independent nonnormal Student - t alternatives yields
an estimate of the power of the test, The estimates of the size and

power of the tests are obtained by dividing 5,000 the number of

times HO is rejected.

(D) Linear Regression Model

In this part, results of a Monte Carlo experiment are
A
presented which illustrate the size and power associated with W,

A
where W is used to test the assumption,

H.: €~ N(,o’I) ,

which, from Section 4, is equivalent to assuming

2
HO. € ~ MTN(O,U I,v) ,

and where the alternative hypothesis is,

. | -— 1 2 —_
Hl' € iid MTl(O,a ,v) for n 1,...N,

and the associated significance levels are taken from those

calculated by Royston (1982) for the W test. These significance
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levels rather than the asymptotic significance levels are used, due
to the results obtained by Weisberg (1980), (see e.g. 11.3). Each
regression model contains a number of nonstochastic regressors, as
well as a constant term, aﬁd the total number of regressors is
denoted by K. These mnumbers of regressors were chosen to
illustrate the consequences of both size and power when,.first, N
is fixed and K is increased and, secondly, when K is fixed and N is
increased. For N = 20, the three data sets of Weisberg (1980) are
used., It is well known (see e.g. Jarque and Bera (1987, p.170)),
that the matrix V =1 - X(X'X)-1X’ influences both the actual size
and power of the normality test. The three data sets of Weisberg
(1980) illustrate the effects of different V on the normality test.
For N = 50, four nonstochastic regressors are generated f£from
independent uniform, normal and XiO distributions. Uniform variates
are generated wusing the NAG subroutine GO5CAF, which uses a
multiplicative congruential method; normal variates are generated
using the NAG subroutine GO5DDF, which is based on Brent's (1974)
algorithm and X;O variates are generated using the formula,
-21n[i§1 Ui]’ where Ui are uniform variates. These regressors are
used as it 1is considered that they cover a wide range of
alternatives. To obtain the estimates of the size and power of W,
normal and 1id Student - t variates are generated. Normal variates

are generated as above, and for v = 1, the Cauchy distribution,

standard Cauchy variates are generated as,
1
X = tan[ﬂ(U—E)J

and for v = 2, the t, -distribution,

2
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X = Vf;(U-%)/SQRT[U(l—U)] :

where U is from U(0,1).

For the rest of the Student-t family, v > 3, X is generated
via a transformation of a symmetric beta variate, (see, for
example, Devroye (1986, p.446)). This can be written in terms of

independent uniform random numbers Ul’ U2 as,

v sin (2wU1)(1-U§/V'1)
X =
(1-sin2(2wUl))(1-U;/v-l)

This formula is wuseful as it is valid for all members of the
Student-t family with v 2> 3. It also does mnot require the
generation of as many random uniform deviates as does the
traditional method of generating a t-random wvariable wvia its
interpretation as a ratio of a standard normal to the square root
of an independent normalized chi-square variable.

The results of the simulations for three significance levels
a= 0.01,0.05 and 0.10, are presented in Table 5.1, from which the
following two points can be made:

- Except for small N and large K, the actual size of & is
very close to the normal size.

- The power of % is 1large for the infinite-variance
disturbances (v £ 2) even for small sample sizes, and in comparison
falls dramatically for the finite-variance disturbances (v > 2).

Consequently, for Student-t disturbances, for small samples
and moderate values of K, the significance values of & are well

A

approximated by those computed for W. Furthermore, W 1is wvery
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Table 5.1: Results of Monte Carlo Experiments for Linear
Regression Models using 5000 Replications
a N K Normal = 1 v =2 v =3 =5 v =10

Data Set 1 size power

0.10 20 0.0978 .7782 0.4618 L3132 .1952 0.1304
20 0.1068 .5746 0.3274 .1920 .1682 0.1284

Data Set 2

0.10 20 4 0.0994 .7838 0.8066 .3118 .1964 0.1330
20 0.1012 .5386 0.5542 .2232 .1586 0.1316

Data Set 3

0.10 20 4 0.1040 .7848 0.9010 .3110 .1904 0.1242
20 0.2440 L7478 0.7650 .4160 .3320 0.2778

Data Set 3

0.05 20 4 0.042 L7346 0.7592 L2416 .1302 0.0686
20 0.153 .6840 0.7058 .3106 .2362 0.0930

Data Set 3

0.01 20 0.0080 .6254 0.6514 .1340 .0534 0.0162
20 0.0486 L4542 0.5736 L1774 .1032 0.0670

Data Set 4

0.10 50 0.0980 .9892 0.9928 568 .3172 0.1688

Data Set 4

0.01 50 0.005 .970 0.6592 .3804 .1528 0.0418




powerful in distinguishing between  joint Student-t and

infinite-variance 1id Student-t disturbances, and moderately

powerful otherwise. Whether this is a feature of all the normality

tests 1is a matter for future 'analysis. Another interesting
A

question is the behaviour of W in the elliptically-symmetric family

of distributions generally.

(ii) Exactly Identified SEM

In this section, Monte Carlo results are presented for the
A

Ml-test, used to test the assumption of multivariate normality in

the exactly- identified SEM.1 The reduced-form model considered

is,
- %
Yy = ¢ XMy v vy

¥ *
Yy = Cp * Xy + Yy,

9 is a N X 1 wvector of

observations on a strictly exogenous variable. The hull hypothesis

where ¢y and cy are constants, and X

is taken to be,

(Vlt’VZt) ~ N(0,Q) V t
where
W w
Q- w11 12| 5.1)
21 Y22

This can also be written as,

For the purposes of the simulation experiment here, the
SEM is considered in standard form as opposed to the canonical form
presented in Chapters 5, 6 and 10. This is so we could determine
the effect of p, see for example (5.3).
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(Vl’VZ) ~ N(0,08I) , (5.2)

and using the "invariance of scale" property of Ml as discussed in

Section 4, implies that M. has the same distribution when (5.2) is

1

assumed as it does when it is assumed,

(Vl’VZ) ~ MTZN(O’0®I’V)'

The alternative hypothesis is taken as

(Vlt’v2t) ~ iid MTZ(O,O,V) vV t.

As the results on the Monte Carlo experiment depend upon the

values of 0 and X2, these are wvaried in a number of ways. In

particular, it is assumed,

0= (5.3)

where p represents the correlation between Vie and Vor and is set

equal to 0.3, 0.6 and 0.9. Two different data sets for X, are

2

included. 1In the first data set X, is assumed orthogonal (szx2 =

2
1), and in the second X2 is assumed to be X;O distributed, and
these variates are generated as above, To obtain estimates of the
size and power of the test it is necessary to generate bivariate
normal and Student - t variates with precision matrix . Normal

variates are generated as described above. Student - t variates are

generated using the relationship

2y 2
x=z[l] i=1,2
itv
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Table 5.2: Results of Monte Carlo Experiments for Exactly-Identified

Limited-Information SEM using 5000 Replications and Corresponding to

data set 1.

p = 0.30 p = 0.60 p = 0.90

nominal size 10%

actual size 0.108 ‘ 0.093 - 0.091

ower ower ower

v =1 0.949 v =1 0.964 v=1 0.972
2 0.713 2 0.741 2 0.872
3 0.518 3 0.568 3 0.674
5 0.304 5 0.330 5 0.392
10 ~0.190 10 0.200 10 0.204

nominal size 5%

actual size 0.046 0.048 0.054

ower ower ower

v=1 0.931 v=1 0.952 v =1 0.959
2 0.645 2 0.677 2 0.784
3 0.437 3 0.473 3 0.590
5 0.231 5 0.246 5 0.325
10 0.112 10 0.116 10 0.140

nominal size 1%

actual size 0.01 0.012 0.006

ower ower ower

v=1 0.891 v =1 0.926 v =1 0.936
2 0.508 ‘ 2 0.583 2 0.687
3 0.297 3 0.335 3 0.464
5 0.129 5 0.136 5 0.209

10 0.037 10 0.041 10 0.065
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Table 5.3: Results of Monte Carlo Experiments for Exactly-Identified

Limited-Information SEM Using 5000 Replications and Corresponding to Data

set 2.
p = 0.30 p = 0.60 p = 0.90

nominal size 10%

actual size 0.113 , 0.10 - 0.095

power ower ower

v=l 0.940 v=1 0.975 v=1 0.979
2 0.716 2 0.741 2 0.807
3 0.520 3 0.549 3 0.670
5 0.319 5 0.344 5 0.409
10 0.177 10 0.181 10 0.205

nominal size 5%

actual size 0.056 0.051 0.048

power ower

v=1 0.950 v=1 0.965 v=1 0.970
2 0.643 2 0.702 2 0.763
3 0.434 3 0.476 3 0.598
5 - 0.239 5 0.250 5 0.332
10 0.111 10 0.113 10 0.113

nominal size 1%

actual size 0.09 0.012 0.010

ower ower power

ve=1 0.890 v=1l 0.935 v=1 0.955
2 0.523 2 0.591 2 0.6717
3 0.297 3 0.349 3 0.486
5 0.129 5 0.137 5 0.212

10 0.030 10 0.037 10 0.067



where Zl' Z2 are K independent standard normal variables and xz is
an independent chi-square variable with v degrees of freedom. The
generated normal and Student - t variates are then appropriately
transformed so as to have precisioﬁ matrix Q,

The results of the Monte Carlo experiment are presented in
Tables 5.2 and 5.3. These results indicate that the size of the
test is well approximatedb by the corresponding size of M1 and

furthermore, the power of the test is reasonably large even for

rather high values of v,

11.6 SOME FINAL COMMENTS

The objective of this Chapter was to illustrate the use of
existing normality tests to test for the distinction between
jointness versus independence in the elliptically-symmetric family
of distributions. In particular, results of Monte Carlo
experiments suggest that the use of Shapiro and Wilk'’s (1965) test
and various modifications to this test are useful methods of
testing this assumption in moderately-sized linear regression

models and in exactly-identified limited-information SEM'’s.
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CHAPTER 12

SUMMARY AND CONCLUSIONS

12.1  OVERVIEW

The OLS estimator is the most common procedure for
estimation in the classical multiple linear regression model. This
estimation fechnique is justified on the basis of its well known
finite-sample behaviour, However, in empirical work, the
assumptions of this model, including nonstochastic regressors and
normally distributed disturbances, are often violated, and as a
result OLS often has no statistical justification. This has led to
the relaxation of these assumptions and consequently to the
development of a number of estimation and inference techniques
which are alternatives to those based on OLS. The introduction of
these techniques though, has usually been justified on the basis of
their behaviour in large samples. However, generally the sample
sizes used in empirical work are small, and in small samples the
behaviour of these techniques may be very different. Consequently,
this suggests that the choice of appropriate statistical techniques
to use should be based on finite-sample behaviour,

Early investigations into the finite-sample behaviour of
various statistics date back to Haavelmo (1947), Anderson and Rubin
(1949), and Hurwicz (1950) and since the 1960's substantial
progress has been made, particularly in the finite-sample analysis
of SEM's, (see e.g. Phillips (1982)). In this thesis,
finite-sample properties of estimators used in three well known

econometric models have been extended and developed. Each of these
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models are extensions of the classical multiple linear regression
model when the assumptions of either nonstochastic regressors, or
normally distributed disturbances, or a combination of these
assumptions are relaxed. In pafticular, all of the estimators
considered are now included in standard and widely-used econometric
packages such as SHAZAM and TSP. The three models considered are,
the limited-information SEM, the nonnormal linear regression model

and the nonnormal limited-information SEM.

12.2 METHODS USED

The approach taken in the development of finite-sample
properties of estimators used in each of the models considered, was
to calculate or approximate the exact distribution function, or
density function, or various descriptions of these functions, such
as moments, medians and inter- quartile ranges. Further, the ‘key
parameters’ of these functions were identified, and varied in the
computations of these functions, so as to make the results as
general as possible.

In the calculation of exact results, a FORTRAN version of
Davies' (1980) algorithm was used. This algorithm has been well
tested (see e.g. Davies (1980)), and results obtained using this
algorithm were considered to be very accurate. However, when
computations of exact results were impossible, due either to
analytical intractability, or infeasible numerical calculations,
Monte Carlo techniques were employed. In particular, empirical
distributions were estimated wusing order statistics. To
empirically estimate density functions, the nonparametric density

estimator (Rosenblatt (1956)) was integrated with a simple Monte
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Carlo approach, and the empirical measures of location and
dispersion were estimated on the basis of their sample definitions.
In each of the experiments, the number of replications used was
chosen wusing the Kolmogorov-Smirnov statistic for empirical
distribution functions, and a technique similar to this for the
empirical density functions, and empirical measures of dispersion.
On the basis of these statistics, it is considered that the results

obtained are accurate to at least two decimal places.

12.3 RESULTS AND CONCLUSIONS OBTAINED

This section summarizes the results and conclusions obtained

in each of the models considered.

(i) The Limited-Information Simultaneous Equations Model

The Limited-Information SEM considered in this thesis is

defined as the structural equation,

y1 = yza + X171 + u (3.1)
where Y1 and y, are N-component vectors of observations on the

endogenous variables, Xl is a N * G1 matrix of observations on

exogenous variables, o is a scalar parameter, 71 is a G,-component

1

vector of parameters and u is a N-component vector of structural
disturbances, Further, the reduced-form of the system of
structural equations includes,

n w
11 12

(}’1,}’2) = (lexz) . . + (Vl,vz)
21 22

where X2 is a N # G2 matrix of observations on G2 exogenous

variables, T g T Mop are reduced-form coefficients, and (vl,

VZ) is a N * 2 matrix of reduced-form disturbances. A number of
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assumptions were made. In particular it was assumed that, the rows
of the reduced-form disturbances are independently normally
distributed, each row having mean 0 and non- singular covariance
matrix, I, (that is, the model Iwas assumed to be in canonical
form); the matrix X = (Xl’XZ) is of rank (G1+G2) and finally it was
assumed (3.1) was identified by exclusion type restrictions.

This model was analyzed in two stages. In the first stage,
a useful method of numerically evaluating the distribution function
of many of the commonly used estimators of o was presented. These
estimators 1include those that can be written as a ratio of
quadratic forms, so that existing numerical algorithms, such as
those of Imhof (1961) and Davies (1980) can be used to calculate
exact points of the distribution function. This method was applied
to estimators in both correctly-specified and misspecified
limited-information SEM's. An example of estimators included is

the DK family where,

. ’ -1 ’

o = H81Y5) T (¥HAy) (3.3)
L 4
X

=TI - PD’ for any matrix D of full column rank, and nonstochastic

’ ']-1 E5)
for A, = Kj(PX-PXl) + (1K) =1, 2; ) = D(OD) ", and B

D

Kl and KZ‘ This class of estimators provides considerable appeal as

a summary statement of several commonly used estimators, including

TSLS, which is equal to (3.3) when K1 = K2 =1,

In the second stage, comparisons were made between the TSLS

and LIML estimators, where the LIML estimator is a member of DK
A A

corresponding to stochastic parameters Kl = K2 = 1, where 1 is the

smallest root of the determinental equation,
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|Y’APX1YA - WY PY, |

It is well known, (see e.g. Phillips (1982)) that the distribution
functions of these estimators in a correctly specified
limited-information SEM depend only on a small number of ‘key
parameters’. For the TSLS estimator, these ‘key parameters' are,
KZ’ a and a noncentrality parameter 62, which is related to the
proportion of the wvariation in Yo explained in its reduced form
equation by the excluded exogenous wvariables X2. The ‘key
parameters’ of the LIML estimator are the same as for TSLS, plus

N - G. Anderson et al, (1982) compare the distribution functions
of these asymptotically equivalent estimators by covering a wide
range of values for the key parameters. They conclude from this
comparison that the LIML estimator is a superior estimation
technique to the TSLS estimator. This is because the distribution
of the LIML estimator approaches its limit distribution much faster
than TSLS and furthermore, LIML is essentially median-unbiased
whereas the distribution of the TSLS estimator is, in general,
badly distorted.

In this thesis, this comparison was extended to misspecified
limited- information SEM's. In particular, it was assumed that
(3.1) is misspecified by the exclusion of relevant exogenous
variables. This is an important area of analysis as typically in
applied econometric studies, economic theory provides some
guidance, but falls short of specifying the precise form of
structural relationship. The key parameters of the misspecified

distributions were identified. These are seen to be the same as

those for the correctly specified case, plus a number of
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combinations of reduced-form parameters associated with the
incorrectly excluded exogenous variables.

The distribution functions for the estimators were
calculatéd, using the method giveﬁ in the first stage for the TSLS
estimator, and using Monte Carlo methods for the LIML estimator.
From these computations it was concluded that under this type of
misspecification, the LIML estimator is generally more robust than
is the TSLS estimator, as it is better located around the true
parameter value. Hence, the superiority of the LIML estimator is
maintained in the presence of misspecification.

Finally, the numerical results obtained were shown to be
applicable to the analysis of other types of misspecification,
specifically the inclusion of irrelevant exogenous variables and a
combination of inclusion and exclusion of relevant exogenous
variables. 1In each of these cases, the LIML estimator is robust to

misspecification.

(i1) The Nonnormal Linear Regression Model

Recently, models with possible nonnormally distributed
disturbances have attracted more attention, This is because there
is a large body of empirical literature, (e.g. Mandelbrot (1963,
1967, 1969), and Fama (1963, 1965)), which suggests that many
economic time series are well represented by nonnormal
disturbances.

In particular, to broaden the assumption of normality in the

linear regression model,

y =XB + ¢ (3.4)
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where y’ = (yl, e ,yN) , X is an N * K matrix of nonstochastic
regressors, f = (ﬂl,...,ﬂK) is a vector of unknown parameters and
€’ = (el,...,eN) is a vector of homoskedastic and

serially-independent distributed disturbances; it has often been
assumed that the error components follow a joint multivariate

elliptical distribution, of the form,
paf(e) = oy g[(er )] |

where g is a one-dimensional real-valued function independent of N
and CN is a scalar proportionality constant. The results obtained,
(e.g. Zellner (1976), Thomas (1970)), indicate that provided the
resulting 1likelihood function 1is a monotonically decreasing
function of €’¢, the maximum likelihood estimator of g 1is the
same as for normally distributed disturbances. This illustrates
the robustness of the OLS estimator of B, in the presence of
nonnormality.

However, the marginal distributions of the disturbance terms
which are multivariate elliptically symmetric distributed, are
identical +to those when it 1s assumed the disturbances are

distributed identically and Independently elliptically symmetric,

that is, when it is assumed

pdf(e) = [Cl]dif(el) L. pdf(ey).

In this case it is well known (see e.g. Judge (1985)), that the OLS
estimator is asymptotically inefficient, and furthermore, a class
of 'robust estimation’ methods have been introduced which possess
superior asymptotic properties to OLS. These differences suggest
it 1s important to distinguish between ‘'jointly-distributed’ and

‘iid distributed’ disturbances, as they lead to quite different
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estimation techniques.

Using (3.4) the statistical consequences of distinguishing
between "jointness" and "independence" was considered when it was
assumed the disturbances were Student-t distributed. The Student-t
distribution belongs to the elliptically symmetric family, and
furthermore, this distribution is an important nonnormal
distribution as it is considered that it is a reasonable way of
modelling tails that are fatter than those of the normal
distribution (see e.g. Jeffreys (1961)). This is relevant for many
economic data series such as prices in financial and  commodity
markets, (see e.g. Judge et al. (1985, p.825) and Lange et al.
(1989)).

There were a number of stages wused to develop the
statistical consequences of distinguishing between "jointness"
and "independence". First, finite-sample properties of the
appropriate maximum likelihood estimator under each assumption were
considered, and these properties were also compared with a number
of "general type robust estimators". Secondly, these properties
were then used to consider the consequences of misspecifying the
"jointness" and "independence" assumptions. Finally, specification
tests were presented, which test for "jointness versus
independence". These tests are applicable for the elliptically
symmetric family, in general.

Each of these stages was examined for two separate cases of
the linear regression model. 1In the first case, the location-scale
model was assumed, which corresponds to (3.4) when K = 1, and in
the second case, the more general model was assumed, which

corresponds to K > 1. This distinction was made because a number

274



of techniques could be used to examine this topic, (e.g. order
statistics), in the location-scale model that are not applicable in
the more general case. A further distinction was made on the basis
of the variance of the disturbances. In particular, two cases were
considered, one where the variance of the disturbances is finite,
and the other where it is infinite. This distinction follows Judge
(1985, p.823), and was made because the consequences of
misspecification were generally more serious for the
infinite-variance case than the finite- variance case.

Generally in both models the consequences of misspecifying

the "jointness" versus "independence" assumptions can be summarized

as follows, First, suppose the disturbances are assumed to be
independently-distributed Student-t, but are actually
jointly-distributed Student-t, Then the maximum likelihood

estimator associated with independently-distributed Student-t
disturbances 1is wused in estimation, denoted EML’ where this
estimator belongs to a class of "robust estimators". However, the
"correct" maximum likelihood estimator to use in this case is the
OLS estimator, denoted b, The use of a "robust estimator" rather
than the OLS estimator results in an inefficient estimator, and the
inefficiency increases as the number of regressors in the model
increases. Furthermore, the variances used to estimate the actual
variances are based on the use of the distribution of EML assuming
the disturbances are independently distributed. This results in
estimates of variances that seriously underestimate the actual
variances, and consequently one concludes that the estimator is

substantially more precise than it actually is. On the other hand,

when the disturbances are assumed to be jointly-distributed
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Student-t but are actually independently- distributed Student-t,

the OLS estimator is used in estimation. However, in this case it

is well known that b is in general asymptotically inefficient, and
’ A

the use of robust procedures such as ﬂML has been suggested. 1In

particular, it is shown here that in finite samples the OLS

estimator 1is inefficient with respect to ﬂML’ although this
inefficiency decreases as K 1increases, and for large K
corresponding to fixed N, b is more efficient, However, the

distribution of b will be aséumed to be as for jointly- distributed
disturbances. This assumption was shown to be incorrect, and the
use of this incorrect assumption will have implications for
inference.

Although the extent of these consequences depends on the
particular Student-t distribution and K assumed, in general they
are serilous. Hence, thils justifies the use of specification tests
to test for "jointness versus independence", just as ‘"serial
independence versus autocorrelation" and "homoskedasticity versus
heteroskedasticity" are tested for. In particular, King's (1980)
invariance " property of statistics for elliptically symmetric
disturbances was used to adopt existing tests of normality to test
for "jointness versus independence". An examination of the'éize
and power of these tests using Student-t disturbances showed them

to be useful for moderately-sized regression models.

(iii) The Nonnormal Limited-Information Simultaneous Equations Model

The nonnormal limited-information SEM provides a relatively
new area of analysis as there are few published results available

on the effects of nonnormal disturbances in the limited-information
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SEM (see e.g. Knight (1985b, 1986), Raj (1980), Donatos (1989)).

The objective here was simply to combine the themes that
were pursued separately in the limited-information SEM and
nonnormal linear regression model. That 1s, we considered the
finite-sample distribution of the LIMLK estimator of o in (3.1)
when the corresponding reduced-form disturbances are assumed either
to Be multivariate Stuaent-t distributed or 1iid Student-t
distributed. The LIMILK corresponds to the LIML estimator when it
is assumed the covariance matrix of the reduced-form disturbances
is known, This estimator was considered rather than the LIML
estimator itself, because in the cases when the LIMLK estimator is
not equivalent to the LIML estimatof, it is numerically easy to
compute, and it is considered that the distribution functions of
the two estimators will have similar features.

Further, it was also assumed (3.1) was exactly-identified by
exclusion-type restrictions. An exactly-identified model was
chosen simply as a way of narrowing the range of possible models to
consider. More importantly, the exactly-identified model has a
number of Interesting properties when the reduced-form disturbances
are assumed to be normally distributed. Hence, it was interesting
to see how these properties changed when the assumption of normally
distributed disturbances was widened to Student-t disturbances. 1In
particular, when the disturbances are normally distributed the

following properties of the LIMLK estimator were illustrated:

(D) - the LIMIK estimator reduced to ILS (which corresponds to

(3.2) when Kl = K2 = 1 and G2 = 1),

(2) - the computations presented, indicated that the limiting
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distribution was a good approximation to the finite-sample
distribution. ‘
(3) - the computations of Marsaglia (1965) illustrated that the

distribution was bimodal over part of the parameter space.

However, when the reduced-form disturbances were assumed to be
Student-t distributed the following properties were obtained. When
the disturbances were multivariate Student-t distributed the LIMIK
estimator was ILS, whereas when the disturbances were iid Student-t
distributed, the LIMLK estimator needed to be computed numerically.
Further, each of the estimators converged to different limiting
distributions, although the computations of the finite-sample
distributions of each of these estimators indicated that they both
had distributions with similar properties to the LIMLK estimator
when the reduced-form disturbances were normally distributed. That
is, in each case, the limiting distribution was a good
approximation  to the finite-sample distribution and  the
distribution was bimodal over part of the parameter space.

Therefore, as in the nonnormal linear regressioh model, the
assumptions of joint and independent disturbances lead to quite
different estimation methods that have different properties. Hence
we also considered the consequences of misspecifying the type of
Student-t assumption.

The consequences of misspecifying the type of Student-t
assumption can be summarized as follows. If the reduced-form
disturbances are assumed to be jointly Student-t distributed, but
are actually independently Student-t distributed, the effects on

the resulting maximum likelihood estimator are two-fold. This
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estimator 1s slow to locate around the true parameter value and an
incorrect asymptotic distribution will be used to approximate the
finite-sample distribution, which will have implications for
inference. On the other hand, when the reduced-form disturbances
are assumed to be independently Student-t distributed but are
actually jointly Student-t distributed, the resulting maximum
likelihood estimator used is robust in the sense that its
finite-sample distribution is essentially identical to the correct
maximum likelihood estimator. However, once again an incorrect
asymptotic distribution will be used to approximate the finite-
sample distribution of the maximum likelihood estimator used, which
will have implications for inference.

These results suggested that it would be worthwhile to have
specification tests that distinguish between jointly-distributed
reduced-form disturbances and independently-distributed
reduced-form  disturbances. Tests of "jointness versus
independence” in the exactly-identified limited- information SEM
were constructed by applying King's (1980) invariance property of
statistics for elliptically symmetric disturbances, to existing
tests of multivariate normality. An examination of the size and
power of these tests using Student-t disturbances showed that this
was a useful method of testing this assumption in the

exactly-identified limited- information SEM.

12.4 SOME FURTHER ISSUES

This thesis has extended and developed finite-sample

properties of estimators used in three well known econometric
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models. However, even within- these models a number of interesting
aspects still remain to be considered. Some of these warrant brief
mention,

In the Limited-Information SEM, results were obtained assuming
that the structural equation of interest contained only two
endogenous variables, and all of the predetermined variables in the
system were strictly exogeﬁous. Therefore it would be of interest
to see how the results obtained change when these two assumptions
are relaxed, that 1is, when there are three or more endogenous
regressors included in the structural equation of interest, and/or
dynamic predetermined variables are included in the system.

In the Nonnormal Linear Regression model, the statistical
consequences  for  estimation, of distinguishing between
jointly-distributed and independently-distributed nonnormal
disturbances were considered. It would also be of interest to
consider the implications of this distinction for inference. This
is of particular interest for some distributions with
infinite-variance, as the misspecification of the type of
distribution in this case leads to the use of bimodal distributions
under the null hypothesis, (see e.g. Logan et al. (1973)).
Another interesting topic to pursue for the iid nonnormal linear
regression model is an analysis of the implications of increasing
the number of regressors on the resulting finite-sample mean-square
error (provided this measure exists), as the evidence presented in
this thesis suggests that the '"robust estimators” beéome
inefficient with respect to the ordinary least squares estimator.

In the Nonnormal Limited-Information SEM, a general theory

for robust estimators for iid nonnormal disturbances needs to be
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developed. While there is a rapidly growing literature on robust
estimation for univariate linear models, the multivariate case has
received little attention. Therefore, a comprehensive treatment of
the multivariate case is long ovefdue, and as well as theory, this

should also include computational aspects.
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APPENDIX A

CALCULATION OF EIGENVALUES AND NONCENTRALITY PARAMETERS

In this appendix, the method used to derive the eigenvalues
and noncentrality parameters given in Chapter 5 is illustrated for
the DK family.

In addition to the assumptions of Chapter 5, orthonmormality

of the exogenous variables 1is assumed. That is,

, 1
XX = IG’
and in particular
Xl = I G1 X G X2 = 0 G1 X G2 . A(L)
0 G2 X G1 I G2 X G2
0 | (NXG) X G1 0 J(NXG) x G2

For the Double K-Class estimator family, the eigenvalues and

corresponding eigenvectors of the matrix

K, 1-Kyy
0 7 By By )+[ 2 ]Px
1 1
(B,-qB,) =
1 772 .
K, l-K2 _ _
7 Py Py )+[ 7 ]Px K a(By-Py )-(-Ky by
i 1 1 1 1 ]

will be derived.
Theorem Al, The eigenvalues and eigenvectors of the matrix

(Bl-qu) are as listed in Table Al.

This assumption is the orthonormalization of the exogenous
variables. It helps to reduce the parameter space to an essential

set, It is discussed in Phillips (1983, p.467).
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Table Al: The Eigenvalues of (Bl-qu) and their multiplicities

A Multiplicity

0 ' 2G
S(-a + V1+q%) G
2(-q = V1+q") G,

i{-q(l-ﬁl) +‘ng(1_ﬁl)z + (1-E2)z N-G

g{-q(1~ﬁl) - vﬁz(l-ﬁl)z + (1-E2)2} N-G

Proof:

* *
A2 Al 1

A% are obvious. To find the eigenvalues of (Bl—qu), the equation

2
0 A§ AL O
det. - = 0
*
A2 Af 0 I

-Aal A%
det, =0 (A2)
Ag (A¥-2I

needs to be-solved,

0 AX
Let (Bl-qu) == [ 2 }, where the definitions of A¥ and

or equivalently

Equation (A2) may be written as

| -A1] (A¥-AI) - Ag(-AI)'lAg =0
or, as
-0 Az 0 0 -0
0 (-q+A—%XI) 0 . 1-K2 )
0 -(q-qkl-A)+X(——§—] }I

and the multiplicities can be determined, since



A1 0 0
1
0 (-q+A—ZX)I 0 1-K <2
1 2
0 0 [-(q-qK1+A)+X[——§—J ]I

" is partitioned into blocks with the following orders

G, X Gy G, X G, G, X (N-G)
G, X Gll G, X G, G, x (N-G)
(N-G) X Gl (N-G) x G2 (N-G) x (N-G)
#
Theorem A2: The components for the eigenvectors corresponding to

each eigenvalue are as listed in Table A2.

Table A2: Components of the Eigenvectors

A Components

a , o

[-q Vl+q2l (al » az)
2

N

0
+

1 / '

5[-q l+q (83 ’ 34)
§{~q(1-ﬁl> + /qz<1~iil_>2 + (1-122)2} (by ,  by)
g{-qa-ﬁl) AR 4 Ry’ (by . b,

where,

q + Y1+q¢® V2 (1+q%+q/1+q>
1/V2 (1+q%+qv/1+q>
q-¢1+qz/VZ(1+q2+qV1+qZ

w
I

o
I

w
I
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a, = 1/V/2(1+q%-q/1+q>.

A

Ky

b ==qK+qK )/\/(qK+K+qK\/22+K

1

- (1-K ), then

b, = 2/ 2(q K1+K2+qK1Vq K1+K

2

b, = (qﬁ Vq 21<2+1< )/V/(q 2g? +K qK Vq K2 +K2

172

b, = 2/\//(q K> +K +quVq 22 +K .

1

Proof:

Given that the matrix (Bl-qu) can be diagonalized
orthogonally, then if an eigenvalue X of (Bl-qu) has algebraic
multiplicity j its geometric multiplicity is also j. Therefore,
instead of solving the 2N X 2N system of linear equations we need
only solve 2 X 2 sets and insert the resulting eigenvector into the
appropriate position in the P matrix. Taking, forAexample A =

;('q+Vl+qz), we need to solve

Y 1
2

I
]
{3

i -(q+X)

or, as the equations are linearly dependent, we have

1 1 /. z)
2K = 5{q+ 1+q Xy

so that after normalization we have (a A similar process can

1'3)

be repeated for the other eigenvalues.
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Theorems Al and A2 derive results for the implementation of
the Imhof or Davies technique for one particular case corresponding
to X’X = IG. However, when the orthogonality of the data matrix is
assumed it is well known (e.g. Phillips (1983, p.467)) that the
results do not depend on the form of the X matrix. Therefore,
there is no loss in generality in assuming (Al).

The quadratic form z’(Bl-qu)z corresponding to (5.3.8) can

‘be written as Z ijz(l,bg) where Aj are the eigenvalues from Table
3

Al and xz(l,é;) is a noncentrality parameter which equals the
square of the j'th element of the vector P’E(z) where the
components of the P matrix are given in Table A.2. However, since
the matrix (Bl-qu) has multiple roots then we can rewrite
z’(Bl-qu)z as follows. Suppose m is the order of multiplicity of
the different roots and n is the number of different roots, then
rewrite
"
2

’ - — 2 .
Z (Bl qBZ)z P X ,6r
r=1 r

m
where x; = 3 xi;&
r=1

2
i
and

m

o,
6" = PN 51
r=1

It is this form that is used in Chapter 5.
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APPENDIX B

THE ASYMPTOTIC PROPERTIES OF THE SECOND ROUND ESTIMATOR IN

QUASI - NEWTON METHODS

Quasi - Newton methods are based on the quadratic

approximation of the maximand (or minimand if relevant):

A

QUO) = Qo) + gy (8 - 0+ 1/2¢8 - ) H (0 - 0)),  (A3)

A
where 01 is an initial estimate and

g, = 9Q/80 | and H) = 3°Q/3680 | .

o1 o1

92,
right-hand side of the approximation (A3) so that,

The second round estimator,

(AL)

where,
- 2 ’ A
g, = 9Q/8¢ | + 8°Q/a030 | i} (0, - 0)

00 6

A

*
and # 1lies between 01 and 90. Inserting (A4) into (A3) yields,

A ’ -1 , A
NG, - 0) = | T - (8°Q/a080 | ) 9°Q/308¢6 | . NGO, - 0,)
6, g
-1,2 ' -1
- (N 73°Q/8688 | ) T (1/VN) 8Q/a8 | . (A5)
9 ' g

1 0

is - obtained by maximizing the
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Under the following conditions:

(1) azQN/6060 exists and is continuous in an open, convex

neighbourhood of 00

(ii) N-l(azQN/BBBG ) | converges to a finite nonsingular matrix

b

- ’ %
lim E N 1(6ZQN/6060 ) |  in probability for any sequence 0

bo

. *
such that plim 0N = 90,

where QN is the set of roots of the equations BQN/GH = 0
corresponding to the local maxima, (or minima as the case may be),

then,

plim N'l(aZQ/aaaa ) |+ = . plim N'i(aZQ/aaao ) |
g 9

1 0
. -1,.2 ’
= plim N 7(8°Q/3680 ) | (A6)
; .
Therefore, substituting (A6) into (AS5) gives,
" D -1, .2 ’ -
\/N(e2 - 0y = - |plim N 7(8°Q/3036 )] (1/VI) 6Q/60|
0 )
0 9

0

so that 02 is asymptotically efficient.
Further details of this result are given in Amemiya (1985,

p.138).
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